File size: 12,746 Bytes
f998fcd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.

// SPDX-License-Identifier: Apache-2.0

pragma solidity 0.8.17;

uint256 constant n = 4;
uint256 constant N = 1 << n;
uint256 constant m = 5;
uint256 constant M = 1 << m;

library Utils {
    uint256 constant GROUP_ORDER = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001;
    uint256 constant FIELD_ORDER = 0x30644e72e131a029b85045b68181585d97816a916871ca8d3c208c16d87cfd47;
    uint256 constant PPLUS1DIV4 = 0x0c19139cb84c680a6e14116da060561765e05aa45a1c72a34f082305b61f3f52;

    function add(uint256 x, uint256 y) internal pure returns (uint256) {
        return addmod(x, y, GROUP_ORDER);
    }

    function mul(uint256 x, uint256 y) internal pure returns (uint256) {
        return mulmod(x, y, GROUP_ORDER);
    }

    function inv(uint256 x) internal view returns (uint256) {
        return exp(x, GROUP_ORDER - 2);
    }

    function mod(uint256 x) internal pure returns (uint256) {
        return x % GROUP_ORDER;
    }

    function sub(uint256 x, uint256 y) internal pure returns (uint256) {
        return x >= y ? x - y : GROUP_ORDER - y + x;
    }

    function neg(uint256 x) internal pure returns (uint256) {
        return GROUP_ORDER - x;
    }

    function exp(uint256 base, uint256 exponent) internal view returns (uint256 output) {
        uint256 order = GROUP_ORDER;
        assembly {
            let location := mload(0x40)
            mstore(location, 0x20)
            mstore(add(location, 0x20), 0x20)
            mstore(add(location, 0x40), 0x20)
            mstore(add(location, 0x60), base)
            mstore(add(location, 0x80), exponent)
            mstore(add(location, 0xa0), order)
            if iszero(staticcall(gas(), 0x05, location, 0xc0, location, 0x20)) {
                revert(0, 0)
            }
            output := mload(location)
        }
    }

    function fieldExp(uint256 base, uint256 exponent) internal view returns (uint256 output) { // warning: mod p, not q
        uint256 order = FIELD_ORDER;
        assembly {
            let location := mload(0x40)
            mstore(location, 0x20)
            mstore(add(location, 0x20), 0x20)
            mstore(add(location, 0x40), 0x20)
            mstore(add(location, 0x60), base)
            mstore(add(location, 0x80), exponent)
            mstore(add(location, 0xa0), order)
            if iszero(staticcall(gas(), 0x05, location, 0xc0, location, 0x20)) {
                revert(0, 0)
            }
            output := mload(location)
        }
    }

    struct Point {
        bytes32 x;
        bytes32 y;
    }

    function add(Point memory p1, Point memory p2) internal view returns (Point memory r) {
        assembly {
            let location := mload(0x40)
            mstore(location, mload(p1))
            mstore(add(location, 0x20), mload(add(p1, 0x20)))
            mstore(add(location, 0x40), mload(p2))
            mstore(add(location, 0x60), mload(add(p2, 0x20)))
            if iszero(staticcall(gas(), 0x06, location, 0x80, r, 0x40)) {
                revert(0, 0)
            }
        }
    }

    function mul(Point memory p, uint256 s) internal view returns (Point memory r) {
        assembly {
            let location := mload(0x40)
            mstore(location, mload(p))
            mstore(add(location, 0x20), mload(add(p, 0x20)))
            mstore(add(location, 0x40), s)
            if iszero(staticcall(gas(), 0x07, location, 0x60, r, 0x40)) {
                revert(0, 0)
            }
        }
    }

    function neg(Point memory p) internal pure returns (Point memory) {
        return Point(p.x, bytes32(FIELD_ORDER - uint256(p.y))); // p.y should already be reduced mod P?
    }

    function eq(Point memory p1, Point memory p2) internal pure returns (bool) {
        return p1.x == p2.x && p1.y == p2.y;
    }

    function decompress(bytes32 input) internal view returns (Point memory) {
        if (input == 0x00) return Point(0x00, 0x00);
        uint256 x = uint256(input);
        uint256 sign = (x & 0x8000000000000000000000000000000000000000000000000000000000000000) >> 255;
        x &= 0x7FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF;
        uint256 ySquared = fieldExp(x, 3) + 3;
        uint256 y = fieldExp(ySquared, PPLUS1DIV4);
        Point memory result = Point(bytes32(x), bytes32(y));
        if (sign != y & 0x01) return neg(result);
        return result;
    }

    function compress(Point memory input) internal pure returns (bytes32) {
        uint256 result = uint256(input.x);
        if (uint256(input.y) & 0x01 == 0x01) result |= 0x8000000000000000000000000000000000000000000000000000000000000000;
        return bytes32(result);
    }

    function mapInto(uint256 seed) internal view returns (Point memory) {
        uint256 y;
        while (true) {
            uint256 ySquared = fieldExp(seed, 3) + 3; // addmod instead of add: waste of gas, plus function overhead cost
            y = fieldExp(ySquared, PPLUS1DIV4);
            if (fieldExp(y, 2) == ySquared) {
                break;
            }
            seed += 1;
        }
        return Point(bytes32(seed), bytes32(y));
    }

    function mapInto(string memory input) internal view returns (Point memory) {
        return mapInto(uint256(keccak256(abi.encodePacked(input))) % FIELD_ORDER);
    }

    function mapInto(string memory input, uint256 i) internal view returns (Point memory) {
        return mapInto(uint256(keccak256(abi.encodePacked(input, i))) % FIELD_ORDER);
    }

    function slice(bytes memory input, uint256 start) internal pure returns (bytes32 result) {
        assembly {
            result := mload(add(add(input, 0x20), start))
        }
    }

    struct Statement {
        Point[N] Y;
        Point[N] CLn;
        Point[N] CRn;
        Point[N] C;
        Point D;
        uint256 epoch;
        Point u;
        uint256 fee;
    }

    struct DepositProof {
        Point A;
        Point B;

        Point[n] C_XG;
        Point[n] y_XG;

        uint256[n] f;
        uint256 z_A;

        uint256 c;
        uint256 s_r;
    }

    function deserializeDeposit(bytes memory arr) internal view returns (DepositProof memory proof) {
        proof.A = decompress(slice(arr, 0));
        proof.B = decompress(slice(arr, 32));

        for (uint256 k = 0; k < n; k++) {
            proof.C_XG[k] = decompress(slice(arr, 64 + k * 32));
            proof.y_XG[k] = decompress(slice(arr, 64 + (k + n) * 32));
            proof.f[k] = uint256(slice(arr, 64 + n * 64 + k * 32));
        }
        uint256 starting = n * 96;
        proof.z_A = uint256(slice(arr, 64 + starting));

        proof.c = uint256(slice(arr, 96 + starting));
        proof.s_r = uint256(slice(arr, 128 + starting));

        return proof;
    }

    struct TransferProof {
        Point BA;
        Point BS;
        Point A;
        Point B;

        Point[n] CLnG;
        Point[n] CRnG;
        Point[n] C_0G;
        Point[n] DG;
        Point[n] y_0G;
        Point[n] gG;
        Point[n] C_XG;
        Point[n] y_XG;

        uint256[n][2] f;
        uint256 z_A;

        Point T_1;
        Point T_2;
        uint256 tHat;
        uint256 mu;

        uint256 c;
        uint256 s_sk;
        uint256 s_r;
        uint256 s_b;
        uint256 s_tau;

        InnerProductProof ip;
    }

    function deserializeTransfer(bytes memory arr) internal view returns (TransferProof memory proof) {
        proof.BA = decompress(slice(arr, 0));
        proof.BS = decompress(slice(arr, 32));
        proof.A = decompress(slice(arr, 64));
        proof.B = decompress(slice(arr, 96));

        for (uint256 k = 0; k < n; k++) {
            proof.CLnG[k] = decompress(slice(arr, 128 + k * 32));
            proof.CRnG[k] = decompress(slice(arr, 128 + (k + n) * 32));
            proof.C_0G[k] = decompress(slice(arr, 128 + n * 64 + k * 32));
            proof.DG[k] = decompress(slice(arr, 128 + n * 96 + k * 32));
            proof.y_0G[k] = decompress(slice(arr, 128 + n * 128 + k * 32));
            proof.gG[k] = decompress(slice(arr, 128 + n * 160 + k * 32));
            proof.C_XG[k] = decompress(slice(arr, 128 + n * 192 + k * 32));
            proof.y_XG[k] = decompress(slice(arr, 128 + n * 224 + k * 32));
            proof.f[0][k] = uint256(slice(arr, 128 + n * 256 + k * 32));
            proof.f[1][k] = uint256(slice(arr, 128 + n * 288 + k * 32));
        }

        uint256 starting = n * 320;
        proof.z_A = uint256(slice(arr, 128 + starting));

        proof.T_1 = decompress(slice(arr, 160 + starting));
        proof.T_2 = decompress(slice(arr, 192 + starting));
        proof.tHat = uint256(slice(arr, 224 + starting));
        proof.mu = uint256(slice(arr, 256 + starting));

        proof.c = uint256(slice(arr, 288 + starting));
        proof.s_sk = uint256(slice(arr, 320 + starting));
        proof.s_r = uint256(slice(arr, 352 + starting));
        proof.s_b = uint256(slice(arr, 384 + starting));
        proof.s_tau = uint256(slice(arr, 416 + starting));

        for (uint256 i = 0; i < m + 1; i++) {
            proof.ip.L[i] = decompress(slice(arr, 448 + starting + i * 32));
            proof.ip.R[i] = decompress(slice(arr, 448 + starting + (i + m + 1) * 32));
        }
        proof.ip.a = uint256(slice(arr, 448 + starting + (m + 1) * 64));
        proof.ip.b = uint256(slice(arr, 480 + starting + (m + 1) * 64));

        return proof;
    }

    struct WithdrawalProof {
        Point BA;
        Point BS;
        Point A;
        Point B;

        Point[n] CLnG;
        Point[n] CRnG;
        Point[n] y_0G;
        Point[n] gG;
        Point[n] C_XG;
        Point[n] y_XG;

        uint256[n] f;
        uint256 z_A;

        Point T_1;
        Point T_2;
        uint256 tHat;
        uint256 mu;

        uint256 c;
        uint256 s_sk;
        uint256 s_r;
        uint256 s_b;
        uint256 s_tau;

        InnerProductProof ip;
    }

    function deserializeWithdrawal(bytes memory arr) internal view returns (WithdrawalProof memory proof) {
        proof.BA = decompress(slice(arr, 0));
        proof.BS = decompress(slice(arr, 32));
        proof.A = decompress(slice(arr, 64));
        proof.B = decompress(slice(arr, 96));

        for (uint256 k = 0; k < n; k++) {
            proof.CLnG[k] = decompress(slice(arr, 128 + k * 32));
            proof.CRnG[k] = decompress(slice(arr, 128 + (k + n) * 32));
            proof.y_0G[k] = decompress(slice(arr, 128 + n * 64 + k * 32));
            proof.gG[k] = decompress(slice(arr, 128 + n * 96 + k * 32));
            proof.C_XG[k] = decompress(slice(arr, 128 + n * 128 + k * 32));
            proof.y_XG[k] = decompress(slice(arr, 128 + n * 160 + k * 32));
            proof.f[k] = uint256(slice(arr, 128 + n * 192 + k * 32));
        }
        uint256 starting = n * 224;
        proof.z_A = uint256(slice(arr, 128 + starting));

        proof.T_1 = decompress(slice(arr, 160 + starting));
        proof.T_2 = decompress(slice(arr, 192 + starting));
        proof.tHat = uint256(slice(arr, 224 + starting));
        proof.mu = uint256(slice(arr, 256 + starting));

        proof.c = uint256(slice(arr, 288 + starting));
        proof.s_sk = uint256(slice(arr, 320 + starting));
        proof.s_r = uint256(slice(arr, 352 + starting));
        proof.s_b = uint256(slice(arr, 384 + starting));
        proof.s_tau = uint256(slice(arr, 416 + starting));

        for (uint256 i = 0; i < m; i++) { // will leave the `m`th element empty
            proof.ip.L[i] = decompress(slice(arr, 448 + starting + i * 32));
            proof.ip.R[i] = decompress(slice(arr, 448 + starting + (i + m) * 32));
        }
        proof.ip.a = uint256(slice(arr, 448 + starting + m * 64));
        proof.ip.b = uint256(slice(arr, 480 + starting + m * 64));

        return proof;
    }

    struct InnerProductStatement {
        uint256 salt;
        Point[M << 1] hs; // "overridden" parameters.
        Point u;
        Point P;
    }

    struct InnerProductProof {
        Point[m + 1] L;
        Point[m + 1] R;
        uint256 a;
        uint256 b;
    }

    function assemblePolynomials(uint256[n][2] memory f) internal pure returns (uint256[N] memory result) {
        // f is a 2m-by-2 array... containing the f's and x - f's, twice (i.e., concatenated).
        // output contains two "rows", each of length N.
        result[0] = 1;
        for (uint256 k = 0; k < n; k++) {
            for (uint256 i = 0; i < N; i += 1 << n - k) {
                result[i + (1 << n - 1 - k)] = mul(result[i], f[1][n - 1 - k]);
                result[i] = mul(result[i], f[0][n - 1 - k]);
            }
        }
    }
}