File size: 40,857 Bytes
f998fcd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 |
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.
// SPDX-License-Identifier: MIT
pragma solidity 0.8.7;
/// @dev Do not manually set balances without updating totalSupply, as the sum of all user balances must not exceed it.
abstract contract ERC20 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 amount);
event Approval(address indexed owner, address indexed spender, uint256 amount);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
uint8 public immutable decimals;
/*//////////////////////////////////////////////////////////////
ERC20 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
/*//////////////////////////////////////////////////////////////
EIP-2612 STORAGE
//////////////////////////////////////////////////////////////*/
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
mapping(address => uint256) public nonces;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(
string memory _name,
string memory _symbol,
uint8 _decimals
) {
name = _name;
symbol = _symbol;
decimals = _decimals;
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
/*//////////////////////////////////////////////////////////////
ERC20 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 amount) public virtual returns (bool) {
allowance[msg.sender][spender] = amount;
emit Approval(msg.sender, spender, amount);
return true;
}
function transfer(address to, uint256 amount) public virtual returns (bool) {
balanceOf[msg.sender] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(msg.sender, to, amount);
return true;
}
function transferFrom(
address from,
address to,
uint256 amount
) public virtual returns (bool) {
uint256 allowed = allowance[from][msg.sender]; // Saves gas for limited approvals.
if (allowed != type(uint256).max) allowance[from][msg.sender] = allowed - amount;
balanceOf[from] -= amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(from, to, amount);
return true;
}
/*//////////////////////////////////////////////////////////////
EIP-2612 LOGIC
//////////////////////////////////////////////////////////////*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) public virtual {
require(deadline >= block.timestamp, "PERMIT_DEADLINE_EXPIRED");
// Unchecked because the only math done is incrementing
// the owner's nonce which cannot realistically overflow.
unchecked {
address recoveredAddress = ecrecover(
keccak256(
abi.encodePacked(
"\x19\x01",
DOMAIN_SEPARATOR(),
keccak256(
abi.encode(
keccak256(
"Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)"
),
owner,
spender,
value,
nonces[owner]++,
deadline
)
)
)
),
v,
r,
s
);
require(recoveredAddress != address(0) && recoveredAddress == owner, "INVALID_SIGNER");
allowance[recoveredAddress][spender] = value;
}
emit Approval(owner, spender, value);
}
function DOMAIN_SEPARATOR() public view virtual returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view virtual returns (bytes32) {
return
keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes(name)),
keccak256("1"),
block.chainid,
address(this)
)
);
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 amount) internal virtual {
totalSupply += amount;
// Cannot overflow because the sum of all user
// balances can't exceed the max uint256 value.
unchecked {
balanceOf[to] += amount;
}
emit Transfer(address(0), to, amount);
}
function _burn(address from, uint256 amount) internal virtual {
balanceOf[from] -= amount;
// Cannot underflow because a user's balance
// will never be larger than the total supply.
unchecked {
totalSupply -= amount;
}
emit Transfer(from, address(0), amount);
}
}
/// @notice Safe ETH and ERC20 transfer library that gracefully handles missing return values.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/utils/SafeTransferLib.sol)
/// @dev Use with caution! Some functions in this library knowingly create dirty bits at the destination of the free memory pointer.
/// @dev Note that none of the functions in this library check that a token has code at all! That responsibility is delegated to the caller.
library SafeTransferLib {
/*//////////////////////////////////////////////////////////////
ETH OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferETH(address to, uint256 amount) internal {
bool success;
assembly {
// Transfer the ETH and store if it succeeded or not.
success := call(gas(), to, amount, 0, 0, 0, 0)
}
require(success, "ETH_TRANSFER_FAILED");
}
/*//////////////////////////////////////////////////////////////
ERC20 OPERATIONS
//////////////////////////////////////////////////////////////*/
function safeTransferFrom(
ERC20 token,
address from,
address to,
uint256 amount
) internal {
bool success;
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x23b872dd00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), from) // Append the "from" argument.
mstore(add(freeMemoryPointer, 36), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 68), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 100 because the length of our calldata totals up like so: 4 + 32 * 3.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 100, 0, 32)
)
}
require(success, "TRANSFER_FROM_FAILED");
}
function safeTransfer(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0xa9059cbb00000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "TRANSFER_FAILED");
}
function safeApprove(
ERC20 token,
address to,
uint256 amount
) internal {
bool success;
assembly {
// Get a pointer to some free memory.
let freeMemoryPointer := mload(0x40)
// Write the abi-encoded calldata into memory, beginning with the function selector.
mstore(freeMemoryPointer, 0x095ea7b300000000000000000000000000000000000000000000000000000000)
mstore(add(freeMemoryPointer, 4), to) // Append the "to" argument.
mstore(add(freeMemoryPointer, 36), amount) // Append the "amount" argument.
success := and(
// Set success to whether the call reverted, if not we check it either
// returned exactly 1 (can't just be non-zero data), or had no return data.
or(and(eq(mload(0), 1), gt(returndatasize(), 31)), iszero(returndatasize())),
// We use 68 because the length of our calldata totals up like so: 4 + 32 * 2.
// We use 0 and 32 to copy up to 32 bytes of return data into the scratch space.
// Counterintuitively, this call must be positioned second to the or() call in the
// surrounding and() call or else returndatasize() will be zero during the computation.
call(gas(), token, 0, freeMemoryPointer, 68, 0, 32)
)
}
require(success, "APPROVE_FAILED");
}
}
/// @notice Modern, minimalist, and gas efficient ERC-721 implementation.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC721.sol)
abstract contract ERC721 {
/*//////////////////////////////////////////////////////////////
EVENTS
//////////////////////////////////////////////////////////////*/
event Transfer(address indexed from, address indexed to, uint256 indexed id);
event Approval(address indexed owner, address indexed spender, uint256 indexed id);
event ApprovalForAll(address indexed owner, address indexed operator, bool approved);
/*//////////////////////////////////////////////////////////////
METADATA STORAGE/LOGIC
//////////////////////////////////////////////////////////////*/
string public name;
string public symbol;
function tokenURI(uint256 id) public view virtual returns (string memory);
/*//////////////////////////////////////////////////////////////
ERC721 BALANCE/OWNER STORAGE
//////////////////////////////////////////////////////////////*/
mapping(uint256 => address) internal _ownerOf;
mapping(address => uint256) internal _balanceOf;
function ownerOf(uint256 id) public view virtual returns (address owner) {
require((owner = _ownerOf[id]) != address(0), "NOT_MINTED");
}
function balanceOf(address owner) public view virtual returns (uint256) {
require(owner != address(0), "ZERO_ADDRESS");
return _balanceOf[owner];
}
/*//////////////////////////////////////////////////////////////
ERC721 APPROVAL STORAGE
//////////////////////////////////////////////////////////////*/
mapping(uint256 => address) public getApproved;
mapping(address => mapping(address => bool)) public isApprovedForAll;
/*//////////////////////////////////////////////////////////////
CONSTRUCTOR
//////////////////////////////////////////////////////////////*/
constructor(string memory _name, string memory _symbol) {
name = _name;
symbol = _symbol;
}
/*//////////////////////////////////////////////////////////////
ERC721 LOGIC
//////////////////////////////////////////////////////////////*/
function approve(address spender, uint256 id) public virtual {
address owner = _ownerOf[id];
require(msg.sender == owner || isApprovedForAll[owner][msg.sender], "NOT_AUTHORIZED");
getApproved[id] = spender;
emit Approval(owner, spender, id);
}
function setApprovalForAll(address operator, bool approved) public virtual {
isApprovedForAll[msg.sender][operator] = approved;
emit ApprovalForAll(msg.sender, operator, approved);
}
function transferFrom(
address from,
address to,
uint256 id
) public virtual {
require(from == _ownerOf[id], "WRONG_FROM");
require(to != address(0), "INVALID_RECIPIENT");
require(
msg.sender == from || isApprovedForAll[from][msg.sender] || msg.sender == getApproved[id],
"NOT_AUTHORIZED"
);
// Underflow of the sender's balance is impossible because we check for
// ownership above and the recipient's balance can't realistically overflow.
unchecked {
_balanceOf[from]--;
_balanceOf[to]++;
}
_ownerOf[id] = to;
delete getApproved[id];
emit Transfer(from, to, id);
}
function safeTransferFrom(
address from,
address to,
uint256 id
) public virtual {
transferFrom(from, to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, "") ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
function safeTransferFrom(
address from,
address to,
uint256 id,
bytes calldata data
) public virtual {
transferFrom(from, to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, from, id, data) ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
/*//////////////////////////////////////////////////////////////
ERC165 LOGIC
//////////////////////////////////////////////////////////////*/
function supportsInterface(bytes4 interfaceId) public view virtual returns (bool) {
return
interfaceId == 0x01ffc9a7 || // ERC165 Interface ID for ERC165
interfaceId == 0x80ac58cd || // ERC165 Interface ID for ERC721
interfaceId == 0x5b5e139f; // ERC165 Interface ID for ERC721Metadata
}
/*//////////////////////////////////////////////////////////////
INTERNAL MINT/BURN LOGIC
//////////////////////////////////////////////////////////////*/
function _mint(address to, uint256 id) internal virtual {
require(to != address(0), "INVALID_RECIPIENT");
require(_ownerOf[id] == address(0), "ALREADY_MINTED");
// Counter overflow is incredibly unrealistic.
unchecked {
_balanceOf[to]++;
}
_ownerOf[id] = to;
emit Transfer(address(0), to, id);
}
function _burn(uint256 id) internal virtual {
address owner = _ownerOf[id];
require(owner != address(0), "NOT_MINTED");
// Ownership check above ensures no underflow.
unchecked {
_balanceOf[owner]--;
}
delete _ownerOf[id];
delete getApproved[id];
emit Transfer(owner, address(0), id);
}
/*//////////////////////////////////////////////////////////////
INTERNAL SAFE MINT LOGIC
//////////////////////////////////////////////////////////////*/
function _safeMint(address to, uint256 id) internal virtual {
_mint(to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, "") ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
function _safeMint(
address to,
uint256 id,
bytes memory data
) internal virtual {
_mint(to, id);
require(
to.code.length == 0 ||
ERC721TokenReceiver(to).onERC721Received(msg.sender, address(0), id, data) ==
ERC721TokenReceiver.onERC721Received.selector,
"UNSAFE_RECIPIENT"
);
}
}
/// @notice A generic interface for a contract which properly accepts ERC721 tokens.
/// @author Solmate (https://github.com/Rari-Capital/solmate/blob/main/src/tokens/ERC721.sol)
abstract contract ERC721TokenReceiver {
function onERC721Received(
address,
address,
uint256,
bytes calldata
) external virtual returns (bytes4) {
return ERC721TokenReceiver.onERC721Received.selector;
}
}
/// @title Contains 512-bit math functions
/// @notice Facilitates multiplication and division that can have overflow of an intermediate value without any loss of precision
/// @dev Handles "phantom overflow" i.e., allows multiplication and division where an intermediate value overflows 256 bits
library FullMath {
/// @notice Calculates floor(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
/// @dev Credit to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv
function mulDiv(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = a * b
// Compute the product mod 2**256 and mod 2**256 - 1
// then use the Chinese Remainder Theorem to reconstruct
// the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2**256 + prod0
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(a, b, not(0))
prod0 := mul(a, b)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division
if (prod1 == 0) {
require(denominator > 0);
assembly {
result := div(prod0, denominator)
}
return result;
}
// Make sure the result is less than 2**256.
// Also prevents denominator == 0
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0]
// Compute remainder using mulmod
uint256 remainder;
assembly {
remainder := mulmod(a, b, denominator)
}
// Subtract 256 bit number from 512 bit number
assembly {
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator
// Compute largest power of two divisor of denominator.
// Always >= 1.
uint256 twos = (0 - denominator) & denominator;
// Divide denominator by power of two
assembly {
denominator := div(denominator, twos)
}
// Divide [prod1 prod0] by the factors of two
assembly {
prod0 := div(prod0, twos)
}
// Shift in bits from prod1 into prod0. For this we need
// to flip `twos` such that it is 2**256 / twos.
// If twos is zero, then it becomes one
assembly {
twos := add(div(sub(0, twos), twos), 1)
}
prod0 |= prod1 * twos;
// Invert denominator mod 2**256
// Now that denominator is an odd number, it has an inverse
// modulo 2**256 such that denominator * inv = 1 mod 2**256.
// Compute the inverse by starting with a seed that is correct
// correct for four bits. That is, denominator * inv = 1 mod 2**4
uint256 inv = (3 * denominator) ^ 2;
// Now use Newton-Raphson iteration to improve the precision.
// Thanks to Hensel's lifting lemma, this also works in modular
// arithmetic, doubling the correct bits in each step.
inv *= 2 - denominator * inv; // inverse mod 2**8
inv *= 2 - denominator * inv; // inverse mod 2**16
inv *= 2 - denominator * inv; // inverse mod 2**32
inv *= 2 - denominator * inv; // inverse mod 2**64
inv *= 2 - denominator * inv; // inverse mod 2**128
inv *= 2 - denominator * inv; // inverse mod 2**256
// Because the division is now exact we can divide by multiplying
// with the modular inverse of denominator. This will give us the
// correct result modulo 2**256. Since the precoditions guarantee
// that the outcome is less than 2**256, this is the final result.
// We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inv;
return result;
}
}
/// @notice Calculates ceil(a×b÷denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
/// @param a The multiplicand
/// @param b The multiplier
/// @param denominator The divisor
/// @return result The 256-bit result
function mulDivRoundingUp(
uint256 a,
uint256 b,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
result = mulDiv(a, b, denominator);
if (mulmod(a, b, denominator) > 0) {
require(result < type(uint256).max);
result++;
}
}
}
}
/// @notice Allows a buyer to execute an order given they've got
/// an secp256k1 signature from a seller containing verifiable
/// metadata about the trade. The seller can accept native ETH
/// or an ERC-20 if they're whitelisted.
/// @author ConcaveFi
contract Marketplace {
// @dev This function ensures this contract can receive ETH
receive() external payable {}
function onERC721Received(
address,
address,
uint256,
bytes memory
) public virtual returns (bytes4) {
return 0x150b7a02;
}
//////////////////////////////////////////////////////////////////////
// CONSTANTS
//////////////////////////////////////////////////////////////////////
uint256 internal constant FEE_DIVISOR = 1e4;
// keccak256("Swap(address seller,address erc721,address erc20,uint256 tokenId,uint256 startPrice,uint256 endPrice,uint256 start,uint256 deadline)")
bytes32 public constant SWAP_TYPEHASH = 0xce02533ba8247ea665b533936094078425c41815f15e8e856183c2fadc084ea3;
//////////////////////////////////////////////////////////////////////
// MUTABLE STORAGE
//////////////////////////////////////////////////////////////////////
// @notice Returns the address fees are sent to.
address payable public feeAddress;
// @notice Returns the fee charged for selling a token from specific 'collection'
mapping(address => uint256) public collectionFee;
// @notice Returns whether a token is allowed to be traded within this contract.
mapping(address => bool) public allowed;
// @notice Returns whether a specific signature has been executed before.
mapping(bytes32 => bool) public executed;
//////////////////////////////////////////////////////////////////////
// IMMUTABLE STORAGE
//////////////////////////////////////////////////////////////////////
uint256 internal immutable INITIAL_CHAIN_ID;
bytes32 internal immutable INITIAL_DOMAIN_SEPARATOR;
constructor() {
address payable concaveTreasury = payable(0x226e7AF139a0F34c6771DeB252F9988876ac1Ced);
address lsdCNV = 0x93c3A816242E50Ea8871A29BF62cC3df58787FBD;
address FRAX = 0x853d955aCEf822Db058eb8505911ED77F175b99e;
address DAI = 0x6B175474E89094C44Da98b954EedeAC495271d0F;
address USDC = 0xA0b86991c6218b36c1d19D4a2e9Eb0cE3606eB48;
address ETH = address(0);
allowed[lsdCNV] = true;
collectionFee[lsdCNV] = 150; // 1.5 %
emit WhitelistUpdated(lsdCNV, true);
allowed[FRAX] = true;
emit WhitelistUpdated(FRAX, true);
allowed[DAI] = true;
emit WhitelistUpdated(DAI, true);
allowed[USDC] = true;
emit WhitelistUpdated(USDC, true);
allowed[ETH] = true;
emit WhitelistUpdated(ETH, true);
feeAddress = concaveTreasury;
emit FeeAddressUpdated(concaveTreasury);
INITIAL_CHAIN_ID = block.chainid;
INITIAL_DOMAIN_SEPARATOR = computeDomainSeparator();
}
//////////////////////////////////////////////////////////////////////
// USER ACTION EVENTS
//////////////////////////////////////////////////////////////////////
event OrderExecuted(
address indexed seller,
address indexed erc721,
address indexed erc20,
uint256 tokenId,
uint256 price,
uint256 deadline
);
//////////////////////////////////////////////////////////////////////
// EIP-712 LOGIC
//////////////////////////////////////////////////////////////////////
// @notice Struct containing metadata for a ERC721 <-> ERC20 trade.
//
// @param seller The address of the account that wants to sell their
// 'erc721' in exchange for 'price' denominated in 'erc20'.
//
// @param erc721 The address of a contract that follows the ERC-721 standard,
// also the address of the collection that holds the token that
// you're purchasing.
//
// @param erc20 The address of a contract that follows the ERC-20 standard,
// also the address of the token that the seller wants in exchange
// for their 'erc721'
//
// @dev If 'erc20' is equal to address(0), we assume the seller wants
// native ETH in exchange for their 'erc721'.
//
// @param tokenId The 'erc721' token identification number, 'tokenId'.
//
// @param startPrice The starting or fixed price the offered 'erc721' is being sold for,
// if ZERO we assume the 'seller' is hosting a dutch auction.
//
// @dev If a 'endPrice' and 'start' time are both defined, we assume
// the order type is a dutch auction. So 'startPrice' would be
// the price the auction starts at, otherwise 'startPrice' is
// the fixed cost the 'seller' is charging.
//
// @param endPrice The 'endPrice' is the price in which a dutch auction would no
// no longer be valid after.
//
// @param start The time in which the dutch auction starts, if ZERO we assume
// the 'seller' is hosting a dutch auction.
//
// @param deadline The time in which the signature/swap is not valid after.
struct SwapMetadata {
address seller;
address erc721;
address erc20;
uint256 tokenId;
uint256 startPrice;
uint256 endPrice;
uint256 start;
uint256 deadline;
}
function computeSigner(
SwapMetadata calldata data,
uint8 v,
bytes32 r,
bytes32 s
) public virtual view returns (address signer) {
bytes32 hash = keccak256(
abi.encode(
SWAP_TYPEHASH,
data.seller,
data.erc721,
data.erc20,
data.tokenId,
data.startPrice,
data.endPrice,
data.start,
data.deadline
)
);
signer = ecrecover(keccak256(abi.encodePacked("\x19\x01", DOMAIN_SEPARATOR(), hash)), v, r, s);
}
function DOMAIN_SEPARATOR() public virtual view returns (bytes32) {
return block.chainid == INITIAL_CHAIN_ID ? INITIAL_DOMAIN_SEPARATOR : computeDomainSeparator();
}
function computeDomainSeparator() internal view returns (bytes32) {
return keccak256(
abi.encode(
keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"),
keccak256(bytes("Marketplace")),
keccak256("1"),
block.chainid,
address(this)
)
);
}
//////////////////////////////////////////////////////////////////////
// PRICE LOGIC
//////////////////////////////////////////////////////////////////////
function computePrice(
SwapMetadata calldata data
) public virtual view returns (uint256 price) {
data.endPrice == 0 || data.start == 0 ?
price = data.startPrice :
price = data.startPrice - FullMath.mulDiv(
data.startPrice - data.endPrice,
block.timestamp - data.start,
data.deadline - data.start
);
}
//////////////////////////////////////////////////////////////////////
// USER ACTIONS
//////////////////////////////////////////////////////////////////////
/// @notice Allows a buyer to execute an order given they've got an secp256k1
/// signature from a seller containing verifiable swap metadata.
/// @param data Struct containing metadata for a ERC721 <-> ERC20 trade.
/// @param v v is part of a valid secp256k1 signature from the seller.
/// @param r r is part of a valid secp256k1 signature from the seller.
/// @param s s is part of a valid secp256k1 signature from the seller.
function swap(
SwapMetadata calldata data,
uint8 v,
bytes32 r,
bytes32 s
) external virtual payable {
// Make sure both the 'erc721' and the 'erc20' wanted in exchange are both allowed.
require(allowed[data.erc721] && allowed[data.erc20], "tokenNotWhitelisted()");
// Make sure the deadline the 'seller' has specified has not elapsed.
require(data.deadline >= block.timestamp, "orderExpired()");
bytes32 dataHash = keccak256(abi.encode(data));
// Make sure the signature has not already been executed.
require(!executed[dataHash], "signatureExecuted()");
address signer = computeSigner(data, v, r, s);
// Make sure the recovered address is not NULL, and is equal to the 'seller'.
require(signer != address(0) && signer == data.seller, "signatureInvalid()");
executed[dataHash] = true;
uint256 price = computePrice(data);
// Cache the fee that's going to be charged to the 'seller'.
uint256 fee = FullMath.mulDiv(price, collectionFee[data.erc721], FEE_DIVISOR);
// If 'erc20' is NULL, we assume the seller wants native ETH.
if (data.erc20 == address(0)) {
// Make sure the amount of ETH sent is at least the price specified.
require(msg.value >= price, "insufficientMsgValue()");
// Transfer msg.value minus 'fee' from this contract to 'seller'
SafeTransferLib.safeTransferETH(signer, price - fee);
// If 'erc20' is not NULL, we assume the seller wants a ERC20.
} else {
// Transfer 'erc20' 'price' minus 'fee' from caller to 'seller'.
SafeTransferLib.safeTransferFrom(ERC20(data.erc20), msg.sender, signer, price - fee);
// Transfer 'fee' to 'feeAddress'.
if (fee > 0) SafeTransferLib.safeTransferFrom(ERC20(data.erc20), msg.sender, feeAddress, fee);
}
// Transfer 'erc721' from 'seller' to msg.sender/caller.
ERC721(data.erc721).safeTransferFrom(signer, msg.sender, data.tokenId);
// Emit event since state was mutated.
emit OrderExecuted(signer, data.erc721, data.erc20, data.tokenId, price, data.deadline);
}
//////////////////////////////////////////////////////////////////////
// MANAGMENT EVENTS
//////////////////////////////////////////////////////////////////////
// @notice emitted when 'feeAddress' is updated.
event FeeAddressUpdated(
address newFeeAddress
);
// @notice emitted when 'collectionFee' for 'collection' is updated.
event CollectionFeeUpdated(
address collection,
uint256 percent
);
// @notice emitted when 'allowed' for a 'token' has been updated.
event WhitelistUpdated(
address token,
bool whitelisted
);
// @notice emitted when ETH from fees is collected from the contract.
event FeeCollection(
address token,
uint256 amount
);
//////////////////////////////////////////////////////////////////////
// MANAGMENT MODIFIERS
//////////////////////////////////////////////////////////////////////
// @notice only allows 'feeAddress' to call modified function.
modifier access() {
require(msg.sender == feeAddress, "ACCESS");
_;
}
//////////////////////////////////////////////////////////////////////
// MANAGMENT ACTIONS
//////////////////////////////////////////////////////////////////////
function updateFeeAddress(address payable account) external virtual access {
feeAddress = account;
emit FeeAddressUpdated(account);
}
function updateCollectionFee(address collection, uint256 percent) external virtual access {
collectionFee[collection] = percent;
emit CollectionFeeUpdated(collection, percent);
}
function updateWhitelist(address token) external virtual access {
bool whitelisted = !allowed[token];
allowed[token] = whitelisted;
emit WhitelistUpdated(token, whitelisted);
}
function collectEther() external virtual access {
uint256 balance = address(this).balance;
SafeTransferLib.safeTransferETH(feeAddress, balance);
emit FeeCollection(address(0), balance);
}
function collectERC20(address token) external virtual access {
uint256 balance = ERC20(token).balanceOf(address(this));
SafeTransferLib.safeTransfer(ERC20(token), feeAddress, balance);
emit FeeCollection(token, balance);
}
//////////////////////////////////////////////////////////////////////
// EXTERNAL SIGNATURE VERIFICATION LOGIC
//////////////////////////////////////////////////////////////////////
function isExecuted(
SwapMetadata calldata data
) external view returns (bool) {
return executed[keccak256(abi.encode(data))];
}
function verify(
SwapMetadata calldata data,
address buyer,
uint8 v,
bytes32 r,
bytes32 s
) external virtual view returns (bool valid) {
bytes32 dataHash = keccak256(abi.encode(data));
if (executed[dataHash]) return false;
// Make sure current time is greater than 'start' if order type is dutch auction.
if (data.start == 0 || data.endPrice == 0) {
if (data.start > block.timestamp) return false;
}
// Make sure both the 'erc721' and the 'erc20' wanted in exchange are both allowed.
if (!allowed[data.erc721] || !allowed[data.erc20]) return false;
// Make sure the deadline the 'seller' has specified has not elapsed.
if (data.deadline < block.timestamp) return false;
// Make sure the 'seller' still owns the 'erc721' being offered, and has approved this contract to spend it.
if (ERC721(data.erc721).ownerOf(data.tokenId) != data.seller || ERC721(data.erc721).getApproved(data.tokenId) != address(this)) return false;
// Make sure the buyer has 'price' denominated in 'erc20' if 'erc20' is not native ETH.
if (data.erc20 != address(0)) {
if (ERC20(data.erc20).balanceOf(buyer) < computePrice(data) && buyer != address(0)) return false;
}
address signer = computeSigner(data, v, r, s);
// Make sure the recovered address is not NULL, and is equal to the 'seller'.
if (signer == address(0) || signer != data.seller) return false;
return true;
}
} |