zellic-audit
Initial commit
f998fcd
raw
history blame
190 kB
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.
// Sources flattened with hardhat v2.12.6 https://hardhat.org
// SPDX-License-Identifier: MIT
// File @openzeppelin/contracts-upgradeable/access/[email protected]
// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControl declared to support ERC165 detection.
*/
interface IAccessControlUpgradeable {
/**
* @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`
*
* `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite
* {RoleAdminChanged} not being emitted signaling this.
*
* _Available since v3.1._
*/
event RoleAdminChanged(
bytes32 indexed role,
bytes32 indexed previousAdminRole,
bytes32 indexed newAdminRole
);
/**
* @dev Emitted when `account` is granted `role`.
*
* `sender` is the account that originated the contract call, an admin role
* bearer except when using {AccessControl-_setupRole}.
*/
event RoleGranted(
bytes32 indexed role,
address indexed account,
address indexed sender
);
/**
* @dev Emitted when `account` is revoked `role`.
*
* `sender` is the account that originated the contract call:
* - if using `revokeRole`, it is the admin role bearer
* - if using `renounceRole`, it is the role bearer (i.e. `account`)
*/
event RoleRevoked(
bytes32 indexed role,
address indexed account,
address indexed sender
);
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account)
external
view
returns (bool);
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {AccessControl-_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role) external view returns (bytes32);
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function grantRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*/
function revokeRole(bytes32 role, address account) external;
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been granted `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*/
function renounceRole(bytes32 role, address account) external;
}
// File @openzeppelin/contracts-upgradeable/utils/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol)
pragma solidity ^0.8.1;
/**
* @dev Collection of functions related to the address type
*/
library AddressUpgradeable {
/**
* @dev Returns true if `account` is a contract.
*
* [IMPORTANT]
* ====
* It is unsafe to assume that an address for which this function returns
* false is an externally-owned account (EOA) and not a contract.
*
* Among others, `isContract` will return false for the following
* types of addresses:
*
* - an externally-owned account
* - a contract in construction
* - an address where a contract will be created
* - an address where a contract lived, but was destroyed
* ====
*
* [IMPORTANT]
* ====
* You shouldn't rely on `isContract` to protect against flash loan attacks!
*
* Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets
* like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract
* constructor.
* ====
*/
function isContract(address account) internal view returns (bool) {
// This method relies on extcodesize/address.code.length, which returns 0
// for contracts in construction, since the code is only stored at the end
// of the constructor execution.
return account.code.length > 0;
}
/**
* @dev Replacement for Solidity's `transfer`: sends `amount` wei to
* `recipient`, forwarding all available gas and reverting on errors.
*
* https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost
* of certain opcodes, possibly making contracts go over the 2300 gas limit
* imposed by `transfer`, making them unable to receive funds via
* `transfer`. {sendValue} removes this limitation.
*
* https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more].
*
* IMPORTANT: because control is transferred to `recipient`, care must be
* taken to not create reentrancy vulnerabilities. Consider using
* {ReentrancyGuard} or the
* https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern].
*/
function sendValue(address payable recipient, uint256 amount) internal {
require(
address(this).balance >= amount,
"Address: insufficient balance"
);
(bool success, ) = recipient.call{value: amount}("");
require(
success,
"Address: unable to send value, recipient may have reverted"
);
}
/**
* @dev Performs a Solidity function call using a low level `call`. A
* plain `call` is an unsafe replacement for a function call: use this
* function instead.
*
* If `target` reverts with a revert reason, it is bubbled up by this
* function (like regular Solidity function calls).
*
* Returns the raw returned data. To convert to the expected return value,
* use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`].
*
* Requirements:
*
* - `target` must be a contract.
* - calling `target` with `data` must not revert.
*
* _Available since v3.1._
*/
function functionCall(address target, bytes memory data)
internal
returns (bytes memory)
{
return
functionCallWithValue(
target,
data,
0,
"Address: low-level call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with
* `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCall(
address target,
bytes memory data,
string memory errorMessage
) internal returns (bytes memory) {
return functionCallWithValue(target, data, 0, errorMessage);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but also transferring `value` wei to `target`.
*
* Requirements:
*
* - the calling contract must have an ETH balance of at least `value`.
* - the called Solidity function must be `payable`.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value
) internal returns (bytes memory) {
return
functionCallWithValue(
target,
data,
value,
"Address: low-level call with value failed"
);
}
/**
* @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but
* with `errorMessage` as a fallback revert reason when `target` reverts.
*
* _Available since v3.1._
*/
function functionCallWithValue(
address target,
bytes memory data,
uint256 value,
string memory errorMessage
) internal returns (bytes memory) {
require(
address(this).balance >= value,
"Address: insufficient balance for call"
);
(bool success, bytes memory returndata) = target.call{value: value}(
data
);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(address target, bytes memory data)
internal
view
returns (bytes memory)
{
return
functionStaticCall(
target,
data,
"Address: low-level static call failed"
);
}
/**
* @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`],
* but performing a static call.
*
* _Available since v3.3._
*/
function functionStaticCall(
address target,
bytes memory data,
string memory errorMessage
) internal view returns (bytes memory) {
(bool success, bytes memory returndata) = target.staticcall(data);
return
verifyCallResultFromTarget(
target,
success,
returndata,
errorMessage
);
}
/**
* @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling
* the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract.
*
* _Available since v4.8._
*/
function verifyCallResultFromTarget(
address target,
bool success,
bytes memory returndata,
string memory errorMessage
) internal view returns (bytes memory) {
if (success) {
if (returndata.length == 0) {
// only check isContract if the call was successful and the return data is empty
// otherwise we already know that it was a contract
require(isContract(target), "Address: call to non-contract");
}
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
/**
* @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the
* revert reason or using the provided one.
*
* _Available since v4.3._
*/
function verifyCallResult(
bool success,
bytes memory returndata,
string memory errorMessage
) internal pure returns (bytes memory) {
if (success) {
return returndata;
} else {
_revert(returndata, errorMessage);
}
}
function _revert(bytes memory returndata, string memory errorMessage)
private
pure
{
// Look for revert reason and bubble it up if present
if (returndata.length > 0) {
// The easiest way to bubble the revert reason is using memory via assembly
/// @solidity memory-safe-assembly
assembly {
let returndata_size := mload(returndata)
revert(add(32, returndata), returndata_size)
}
} else {
revert(errorMessage);
}
}
}
// File @openzeppelin/contracts-upgradeable/proxy/utils/[email protected]
// OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol)
pragma solidity ^0.8.2;
/**
* @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed
* behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an
* external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer
* function so it can only be called once. The {initializer} modifier provided by this contract will have this effect.
*
* The initialization functions use a version number. Once a version number is used, it is consumed and cannot be
* reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in
* case an upgrade adds a module that needs to be initialized.
*
* For example:
*
* [.hljs-theme-light.nopadding]
* ```
* contract MyToken is ERC20Upgradeable {
* function initialize() initializer public {
* __ERC20_init("MyToken", "MTK");
* }
* }
* contract MyTokenV2 is MyToken, ERC20PermitUpgradeable {
* function initializeV2() reinitializer(2) public {
* __ERC20Permit_init("MyToken");
* }
* }
* ```
*
* TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as
* possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}.
*
* CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure
* that all initializers are idempotent. This is not verified automatically as constructors are by Solidity.
*
* [CAUTION]
* ====
* Avoid leaving a contract uninitialized.
*
* An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation
* contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke
* the {_disableInitializers} function in the constructor to automatically lock it when it is deployed:
*
* [.hljs-theme-light.nopadding]
* ```
* /// @custom:oz-upgrades-unsafe-allow constructor
* constructor() {
* _disableInitializers();
* }
* ```
* ====
*/
abstract contract Initializable {
/**
* @dev Indicates that the contract has been initialized.
* @custom:oz-retyped-from bool
*/
uint8 private _initialized;
/**
* @dev Indicates that the contract is in the process of being initialized.
*/
bool private _initializing;
/**
* @dev Triggered when the contract has been initialized or reinitialized.
*/
event Initialized(uint8 version);
/**
* @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope,
* `onlyInitializing` functions can be used to initialize parent contracts.
*
* Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a
* constructor.
*
* Emits an {Initialized} event.
*/
modifier initializer() {
bool isTopLevelCall = !_initializing;
require(
(isTopLevelCall && _initialized < 1) ||
(!AddressUpgradeable.isContract(address(this)) &&
_initialized == 1),
"Initializable: contract is already initialized"
);
_initialized = 1;
if (isTopLevelCall) {
_initializing = true;
}
_;
if (isTopLevelCall) {
_initializing = false;
emit Initialized(1);
}
}
/**
* @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the
* contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be
* used to initialize parent contracts.
*
* A reinitializer may be used after the original initialization step. This is essential to configure modules that
* are added through upgrades and that require initialization.
*
* When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer`
* cannot be nested. If one is invoked in the context of another, execution will revert.
*
* Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in
* a contract, executing them in the right order is up to the developer or operator.
*
* WARNING: setting the version to 255 will prevent any future reinitialization.
*
* Emits an {Initialized} event.
*/
modifier reinitializer(uint8 version) {
require(
!_initializing && _initialized < version,
"Initializable: contract is already initialized"
);
_initialized = version;
_initializing = true;
_;
_initializing = false;
emit Initialized(version);
}
/**
* @dev Modifier to protect an initialization function so that it can only be invoked by functions with the
* {initializer} and {reinitializer} modifiers, directly or indirectly.
*/
modifier onlyInitializing() {
require(_initializing, "Initializable: contract is not initializing");
_;
}
/**
* @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call.
* Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized
* to any version. It is recommended to use this to lock implementation contracts that are designed to be called
* through proxies.
*
* Emits an {Initialized} event the first time it is successfully executed.
*/
function _disableInitializers() internal virtual {
require(!_initializing, "Initializable: contract is initializing");
if (_initialized < type(uint8).max) {
_initialized = type(uint8).max;
emit Initialized(type(uint8).max);
}
}
/**
* @dev Returns the highest version that has been initialized. See {reinitializer}.
*/
function _getInitializedVersion() internal view returns (uint8) {
return _initialized;
}
/**
* @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}.
*/
function _isInitializing() internal view returns (bool) {
return _initializing;
}
}
// File @openzeppelin/contracts-upgradeable/utils/[email protected]
// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)
pragma solidity ^0.8.0;
/**
* @dev Provides information about the current execution context, including the
* sender of the transaction and its data. While these are generally available
* via msg.sender and msg.data, they should not be accessed in such a direct
* manner, since when dealing with meta-transactions the account sending and
* paying for execution may not be the actual sender (as far as an application
* is concerned).
*
* This contract is only required for intermediate, library-like contracts.
*/
abstract contract ContextUpgradeable is Initializable {
function __Context_init() internal onlyInitializing {}
function __Context_init_unchained() internal onlyInitializing {}
function _msgSender() internal view virtual returns (address) {
return msg.sender;
}
function _msgData() internal view virtual returns (bytes calldata) {
return msg.data;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// File @openzeppelin/contracts-upgradeable/utils/introspection/[email protected]
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165Upgradeable {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File @openzeppelin/contracts-upgradeable/utils/introspection/[email protected]
// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Implementation of the {IERC165} interface.
*
* Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check
* for the additional interface id that will be supported. For example:
*
* ```solidity
* function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {
* return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);
* }
* ```
*
* Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.
*/
abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable {
function __ERC165_init() internal onlyInitializing {}
function __ERC165_init_unchained() internal onlyInitializing {}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override
returns (bool)
{
return interfaceId == type(IERC165Upgradeable).interfaceId;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[50] private __gap;
}
// File @openzeppelin/contracts-upgradeable/utils/math/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library MathUpgradeable {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = sqrt(a);
return
result +
(rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = log2(value);
return
result +
(rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = log10(value);
return
result +
(rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = log256(value);
return
result +
(rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// File @openzeppelin/contracts-upgradeable/utils/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library StringsUpgradeable {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = MathUpgradeable.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, MathUpgradeable.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length)
internal
pure
returns (string memory)
{
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// File @openzeppelin/contracts-upgradeable/access/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that allows children to implement role-based access
* control mechanisms. This is a lightweight version that doesn't allow enumerating role
* members except through off-chain means by accessing the contract event logs. Some
* applications may benefit from on-chain enumerability, for those cases see
* {AccessControlEnumerable}.
*
* Roles are referred to by their `bytes32` identifier. These should be exposed
* in the external API and be unique. The best way to achieve this is by
* using `public constant` hash digests:
*
* ```
* bytes32 public constant MY_ROLE = keccak256("MY_ROLE");
* ```
*
* Roles can be used to represent a set of permissions. To restrict access to a
* function call, use {hasRole}:
*
* ```
* function foo() public {
* require(hasRole(MY_ROLE, msg.sender));
* ...
* }
* ```
*
* Roles can be granted and revoked dynamically via the {grantRole} and
* {revokeRole} functions. Each role has an associated admin role, and only
* accounts that have a role's admin role can call {grantRole} and {revokeRole}.
*
* By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means
* that only accounts with this role will be able to grant or revoke other
* roles. More complex role relationships can be created by using
* {_setRoleAdmin}.
*
* WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to
* grant and revoke this role. Extra precautions should be taken to secure
* accounts that have been granted it.
*/
abstract contract AccessControlUpgradeable is
Initializable,
ContextUpgradeable,
IAccessControlUpgradeable,
ERC165Upgradeable
{
function __AccessControl_init() internal onlyInitializing {}
function __AccessControl_init_unchained() internal onlyInitializing {}
struct RoleData {
mapping(address => bool) members;
bytes32 adminRole;
}
mapping(bytes32 => RoleData) private _roles;
bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;
/**
* @dev Modifier that checks that an account has a specific role. Reverts
* with a standardized message including the required role.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*
* _Available since v4.1._
*/
modifier onlyRole(bytes32 role) {
_checkRole(role);
_;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override
returns (bool)
{
return
interfaceId == type(IAccessControlUpgradeable).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev Returns `true` if `account` has been granted `role`.
*/
function hasRole(bytes32 role, address account)
public
view
virtual
override
returns (bool)
{
return _roles[role].members[account];
}
/**
* @dev Revert with a standard message if `_msgSender()` is missing `role`.
* Overriding this function changes the behavior of the {onlyRole} modifier.
*
* Format of the revert message is described in {_checkRole}.
*
* _Available since v4.6._
*/
function _checkRole(bytes32 role) internal view virtual {
_checkRole(role, _msgSender());
}
/**
* @dev Revert with a standard message if `account` is missing `role`.
*
* The format of the revert reason is given by the following regular expression:
*
* /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/
*/
function _checkRole(bytes32 role, address account) internal view virtual {
if (!hasRole(role, account)) {
revert(
string(
abi.encodePacked(
"AccessControl: account ",
StringsUpgradeable.toHexString(account),
" is missing role ",
StringsUpgradeable.toHexString(uint256(role), 32)
)
)
);
}
}
/**
* @dev Returns the admin role that controls `role`. See {grantRole} and
* {revokeRole}.
*
* To change a role's admin, use {_setRoleAdmin}.
*/
function getRoleAdmin(bytes32 role)
public
view
virtual
override
returns (bytes32)
{
return _roles[role].adminRole;
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleGranted} event.
*/
function grantRole(bytes32 role, address account)
public
virtual
override
onlyRole(getRoleAdmin(role))
{
_grantRole(role, account);
}
/**
* @dev Revokes `role` from `account`.
*
* If `account` had been granted `role`, emits a {RoleRevoked} event.
*
* Requirements:
*
* - the caller must have ``role``'s admin role.
*
* May emit a {RoleRevoked} event.
*/
function revokeRole(bytes32 role, address account)
public
virtual
override
onlyRole(getRoleAdmin(role))
{
_revokeRole(role, account);
}
/**
* @dev Revokes `role` from the calling account.
*
* Roles are often managed via {grantRole} and {revokeRole}: this function's
* purpose is to provide a mechanism for accounts to lose their privileges
* if they are compromised (such as when a trusted device is misplaced).
*
* If the calling account had been revoked `role`, emits a {RoleRevoked}
* event.
*
* Requirements:
*
* - the caller must be `account`.
*
* May emit a {RoleRevoked} event.
*/
function renounceRole(bytes32 role, address account)
public
virtual
override
{
require(
account == _msgSender(),
"AccessControl: can only renounce roles for self"
);
_revokeRole(role, account);
}
/**
* @dev Grants `role` to `account`.
*
* If `account` had not been already granted `role`, emits a {RoleGranted}
* event. Note that unlike {grantRole}, this function doesn't perform any
* checks on the calling account.
*
* May emit a {RoleGranted} event.
*
* [WARNING]
* ====
* This function should only be called from the constructor when setting
* up the initial roles for the system.
*
* Using this function in any other way is effectively circumventing the admin
* system imposed by {AccessControl}.
* ====
*
* NOTE: This function is deprecated in favor of {_grantRole}.
*/
function _setupRole(bytes32 role, address account) internal virtual {
_grantRole(role, account);
}
/**
* @dev Sets `adminRole` as ``role``'s admin role.
*
* Emits a {RoleAdminChanged} event.
*/
function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {
bytes32 previousAdminRole = getRoleAdmin(role);
_roles[role].adminRole = adminRole;
emit RoleAdminChanged(role, previousAdminRole, adminRole);
}
/**
* @dev Grants `role` to `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleGranted} event.
*/
function _grantRole(bytes32 role, address account) internal virtual {
if (!hasRole(role, account)) {
_roles[role].members[account] = true;
emit RoleGranted(role, account, _msgSender());
}
}
/**
* @dev Revokes `role` from `account`.
*
* Internal function without access restriction.
*
* May emit a {RoleRevoked} event.
*/
function _revokeRole(bytes32 role, address account) internal virtual {
if (hasRole(role, account)) {
_roles[role].members[account] = false;
emit RoleRevoked(role, account, _msgSender());
}
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// File @openzeppelin/contracts-upgradeable/access/[email protected]
// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)
pragma solidity ^0.8.0;
/**
* @dev External interface of AccessControlEnumerable declared to support ERC165 detection.
*/
interface IAccessControlEnumerableUpgradeable is IAccessControlUpgradeable {
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index)
external
view
returns (address);
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role) external view returns (uint256);
}
// File @openzeppelin/contracts-upgradeable/utils/structs/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)
// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.
pragma solidity ^0.8.0;
/**
* @dev Library for managing
* https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive
* types.
*
* Sets have the following properties:
*
* - Elements are added, removed, and checked for existence in constant time
* (O(1)).
* - Elements are enumerated in O(n). No guarantees are made on the ordering.
*
* ```
* contract Example {
* // Add the library methods
* using EnumerableSet for EnumerableSet.AddressSet;
*
* // Declare a set state variable
* EnumerableSet.AddressSet private mySet;
* }
* ```
*
* As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)
* and `uint256` (`UintSet`) are supported.
*
* [WARNING]
* ====
* Trying to delete such a structure from storage will likely result in data corruption, rendering the structure
* unusable.
* See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.
*
* In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an
* array of EnumerableSet.
* ====
*/
library EnumerableSetUpgradeable {
// To implement this library for multiple types with as little code
// repetition as possible, we write it in terms of a generic Set type with
// bytes32 values.
// The Set implementation uses private functions, and user-facing
// implementations (such as AddressSet) are just wrappers around the
// underlying Set.
// This means that we can only create new EnumerableSets for types that fit
// in bytes32.
struct Set {
// Storage of set values
bytes32[] _values;
// Position of the value in the `values` array, plus 1 because index 0
// means a value is not in the set.
mapping(bytes32 => uint256) _indexes;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function _add(Set storage set, bytes32 value) private returns (bool) {
if (!_contains(set, value)) {
set._values.push(value);
// The value is stored at length-1, but we add 1 to all indexes
// and use 0 as a sentinel value
set._indexes[value] = set._values.length;
return true;
} else {
return false;
}
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function _remove(Set storage set, bytes32 value) private returns (bool) {
// We read and store the value's index to prevent multiple reads from the same storage slot
uint256 valueIndex = set._indexes[value];
if (valueIndex != 0) {
// Equivalent to contains(set, value)
// To delete an element from the _values array in O(1), we swap the element to delete with the last one in
// the array, and then remove the last element (sometimes called as 'swap and pop').
// This modifies the order of the array, as noted in {at}.
uint256 toDeleteIndex = valueIndex - 1;
uint256 lastIndex = set._values.length - 1;
if (lastIndex != toDeleteIndex) {
bytes32 lastValue = set._values[lastIndex];
// Move the last value to the index where the value to delete is
set._values[toDeleteIndex] = lastValue;
// Update the index for the moved value
set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex
}
// Delete the slot where the moved value was stored
set._values.pop();
// Delete the index for the deleted slot
delete set._indexes[value];
return true;
} else {
return false;
}
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function _contains(Set storage set, bytes32 value)
private
view
returns (bool)
{
return set._indexes[value] != 0;
}
/**
* @dev Returns the number of values on the set. O(1).
*/
function _length(Set storage set) private view returns (uint256) {
return set._values.length;
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function _at(Set storage set, uint256 index)
private
view
returns (bytes32)
{
return set._values[index];
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function _values(Set storage set) private view returns (bytes32[] memory) {
return set._values;
}
// Bytes32Set
struct Bytes32Set {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(Bytes32Set storage set, bytes32 value)
internal
returns (bool)
{
return _add(set._inner, value);
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(Bytes32Set storage set, bytes32 value)
internal
returns (bool)
{
return _remove(set._inner, value);
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(Bytes32Set storage set, bytes32 value)
internal
view
returns (bool)
{
return _contains(set._inner, value);
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(Bytes32Set storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(Bytes32Set storage set, uint256 index)
internal
view
returns (bytes32)
{
return _at(set._inner, index);
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(Bytes32Set storage set)
internal
view
returns (bytes32[] memory)
{
bytes32[] memory store = _values(set._inner);
bytes32[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// AddressSet
struct AddressSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(AddressSet storage set, address value)
internal
returns (bool)
{
return _add(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(AddressSet storage set, address value)
internal
returns (bool)
{
return _remove(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(AddressSet storage set, address value)
internal
view
returns (bool)
{
return _contains(set._inner, bytes32(uint256(uint160(value))));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(AddressSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(AddressSet storage set, uint256 index)
internal
view
returns (address)
{
return address(uint160(uint256(_at(set._inner, index))));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(AddressSet storage set)
internal
view
returns (address[] memory)
{
bytes32[] memory store = _values(set._inner);
address[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
// UintSet
struct UintSet {
Set _inner;
}
/**
* @dev Add a value to a set. O(1).
*
* Returns true if the value was added to the set, that is if it was not
* already present.
*/
function add(UintSet storage set, uint256 value) internal returns (bool) {
return _add(set._inner, bytes32(value));
}
/**
* @dev Removes a value from a set. O(1).
*
* Returns true if the value was removed from the set, that is if it was
* present.
*/
function remove(UintSet storage set, uint256 value)
internal
returns (bool)
{
return _remove(set._inner, bytes32(value));
}
/**
* @dev Returns true if the value is in the set. O(1).
*/
function contains(UintSet storage set, uint256 value)
internal
view
returns (bool)
{
return _contains(set._inner, bytes32(value));
}
/**
* @dev Returns the number of values in the set. O(1).
*/
function length(UintSet storage set) internal view returns (uint256) {
return _length(set._inner);
}
/**
* @dev Returns the value stored at position `index` in the set. O(1).
*
* Note that there are no guarantees on the ordering of values inside the
* array, and it may change when more values are added or removed.
*
* Requirements:
*
* - `index` must be strictly less than {length}.
*/
function at(UintSet storage set, uint256 index)
internal
view
returns (uint256)
{
return uint256(_at(set._inner, index));
}
/**
* @dev Return the entire set in an array
*
* WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed
* to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that
* this function has an unbounded cost, and using it as part of a state-changing function may render the function
* uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.
*/
function values(UintSet storage set)
internal
view
returns (uint256[] memory)
{
bytes32[] memory store = _values(set._inner);
uint256[] memory result;
/// @solidity memory-safe-assembly
assembly {
result := store
}
return result;
}
}
// File @openzeppelin/contracts-upgradeable/access/[email protected]
// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)
pragma solidity ^0.8.0;
/**
* @dev Extension of {AccessControl} that allows enumerating the members of each role.
*/
abstract contract AccessControlEnumerableUpgradeable is
Initializable,
IAccessControlEnumerableUpgradeable,
AccessControlUpgradeable
{
function __AccessControlEnumerable_init() internal onlyInitializing {}
function __AccessControlEnumerable_init_unchained()
internal
onlyInitializing
{}
using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet;
mapping(bytes32 => EnumerableSetUpgradeable.AddressSet)
private _roleMembers;
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override
returns (bool)
{
return
interfaceId ==
type(IAccessControlEnumerableUpgradeable).interfaceId ||
super.supportsInterface(interfaceId);
}
/**
* @dev Returns one of the accounts that have `role`. `index` must be a
* value between 0 and {getRoleMemberCount}, non-inclusive.
*
* Role bearers are not sorted in any particular way, and their ordering may
* change at any point.
*
* WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure
* you perform all queries on the same block. See the following
* https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]
* for more information.
*/
function getRoleMember(bytes32 role, uint256 index)
public
view
virtual
override
returns (address)
{
return _roleMembers[role].at(index);
}
/**
* @dev Returns the number of accounts that have `role`. Can be used
* together with {getRoleMember} to enumerate all bearers of a role.
*/
function getRoleMemberCount(bytes32 role)
public
view
virtual
override
returns (uint256)
{
return _roleMembers[role].length();
}
/**
* @dev Overload {_grantRole} to track enumerable memberships
*/
function _grantRole(bytes32 role, address account)
internal
virtual
override
{
super._grantRole(role, account);
_roleMembers[role].add(account);
}
/**
* @dev Overload {_revokeRole} to track enumerable memberships
*/
function _revokeRole(bytes32 role, address account)
internal
virtual
override
{
super._revokeRole(role, account);
_roleMembers[role].remove(account);
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// File @openzeppelin/contracts-upgradeable/security/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol)
pragma solidity ^0.8.0;
/**
* @dev Contract module that helps prevent reentrant calls to a function.
*
* Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier
* available, which can be applied to functions to make sure there are no nested
* (reentrant) calls to them.
*
* Note that because there is a single `nonReentrant` guard, functions marked as
* `nonReentrant` may not call one another. This can be worked around by making
* those functions `private`, and then adding `external` `nonReentrant` entry
* points to them.
*
* TIP: If you would like to learn more about reentrancy and alternative ways
* to protect against it, check out our blog post
* https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul].
*/
abstract contract ReentrancyGuardUpgradeable is Initializable {
// Booleans are more expensive than uint256 or any type that takes up a full
// word because each write operation emits an extra SLOAD to first read the
// slot's contents, replace the bits taken up by the boolean, and then write
// back. This is the compiler's defense against contract upgrades and
// pointer aliasing, and it cannot be disabled.
// The values being non-zero value makes deployment a bit more expensive,
// but in exchange the refund on every call to nonReentrant will be lower in
// amount. Since refunds are capped to a percentage of the total
// transaction's gas, it is best to keep them low in cases like this one, to
// increase the likelihood of the full refund coming into effect.
uint256 private constant _NOT_ENTERED = 1;
uint256 private constant _ENTERED = 2;
uint256 private _status;
function __ReentrancyGuard_init() internal onlyInitializing {
__ReentrancyGuard_init_unchained();
}
function __ReentrancyGuard_init_unchained() internal onlyInitializing {
_status = _NOT_ENTERED;
}
/**
* @dev Prevents a contract from calling itself, directly or indirectly.
* Calling a `nonReentrant` function from another `nonReentrant`
* function is not supported. It is possible to prevent this from happening
* by making the `nonReentrant` function external, and making it call a
* `private` function that does the actual work.
*/
modifier nonReentrant() {
_nonReentrantBefore();
_;
_nonReentrantAfter();
}
function _nonReentrantBefore() private {
// On the first call to nonReentrant, _status will be _NOT_ENTERED
require(_status != _ENTERED, "ReentrancyGuard: reentrant call");
// Any calls to nonReentrant after this point will fail
_status = _ENTERED;
}
function _nonReentrantAfter() private {
// By storing the original value once again, a refund is triggered (see
// https://eips.ethereum.org/EIPS/eip-2200)
_status = _NOT_ENTERED;
}
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[49] private __gap;
}
// File @openzeppelin/contracts-upgradeable/token/ERC20/extensions/[email protected]
// OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in
* https://eips.ethereum.org/EIPS/eip-2612[EIP-2612].
*
* Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by
* presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't
* need to send a transaction, and thus is not required to hold Ether at all.
*/
interface IERC20PermitUpgradeable {
/**
* @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens,
* given ``owner``'s signed approval.
*
* IMPORTANT: The same issues {IERC20-approve} has related to transaction
* ordering also apply here.
*
* Emits an {Approval} event.
*
* Requirements:
*
* - `spender` cannot be the zero address.
* - `deadline` must be a timestamp in the future.
* - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner`
* over the EIP712-formatted function arguments.
* - the signature must use ``owner``'s current nonce (see {nonces}).
*
* For more information on the signature format, see the
* https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP
* section].
*/
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
/**
* @dev Returns the current nonce for `owner`. This value must be
* included whenever a signature is generated for {permit}.
*
* Every successful call to {permit} increases ``owner``'s nonce by one. This
* prevents a signature from being used multiple times.
*/
function nonces(address owner) external view returns (uint256);
/**
* @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}.
*/
// solhint-disable-next-line func-name-mixedcase
function DOMAIN_SEPARATOR() external view returns (bytes32);
}
// File @openzeppelin/contracts-upgradeable/token/ERC20/[email protected]
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC20 standard as defined in the EIP.
*/
interface IERC20Upgradeable {
/**
* @dev Emitted when `value` tokens are moved from one account (`from`) to
* another (`to`).
*
* Note that `value` may be zero.
*/
event Transfer(address indexed from, address indexed to, uint256 value);
/**
* @dev Emitted when the allowance of a `spender` for an `owner` is set by
* a call to {approve}. `value` is the new allowance.
*/
event Approval(
address indexed owner,
address indexed spender,
uint256 value
);
/**
* @dev Returns the amount of tokens in existence.
*/
function totalSupply() external view returns (uint256);
/**
* @dev Returns the amount of tokens owned by `account`.
*/
function balanceOf(address account) external view returns (uint256);
/**
* @dev Moves `amount` tokens from the caller's account to `to`.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transfer(address to, uint256 amount) external returns (bool);
/**
* @dev Returns the remaining number of tokens that `spender` will be
* allowed to spend on behalf of `owner` through {transferFrom}. This is
* zero by default.
*
* This value changes when {approve} or {transferFrom} are called.
*/
function allowance(address owner, address spender)
external
view
returns (uint256);
/**
* @dev Sets `amount` as the allowance of `spender` over the caller's tokens.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* IMPORTANT: Beware that changing an allowance with this method brings the risk
* that someone may use both the old and the new allowance by unfortunate
* transaction ordering. One possible solution to mitigate this race
* condition is to first reduce the spender's allowance to 0 and set the
* desired value afterwards:
* https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729
*
* Emits an {Approval} event.
*/
function approve(address spender, uint256 amount) external returns (bool);
/**
* @dev Moves `amount` tokens from `from` to `to` using the
* allowance mechanism. `amount` is then deducted from the caller's
* allowance.
*
* Returns a boolean value indicating whether the operation succeeded.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 amount
) external returns (bool);
}
// File @openzeppelin/contracts-upgradeable/token/ERC20/utils/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol)
pragma solidity ^0.8.0;
/**
* @title SafeERC20
* @dev Wrappers around ERC20 operations that throw on failure (when the token
* contract returns false). Tokens that return no value (and instead revert or
* throw on failure) are also supported, non-reverting calls are assumed to be
* successful.
* To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract,
* which allows you to call the safe operations as `token.safeTransfer(...)`, etc.
*/
library SafeERC20Upgradeable {
using AddressUpgradeable for address;
function safeTransfer(
IERC20Upgradeable token,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transfer.selector, to, value)
);
}
function safeTransferFrom(
IERC20Upgradeable token,
address from,
address to,
uint256 value
) internal {
_callOptionalReturn(
token,
abi.encodeWithSelector(token.transferFrom.selector, from, to, value)
);
}
/**
* @dev Deprecated. This function has issues similar to the ones found in
* {IERC20-approve}, and its usage is discouraged.
*
* Whenever possible, use {safeIncreaseAllowance} and
* {safeDecreaseAllowance} instead.
*/
function safeApprove(
IERC20Upgradeable token,
address spender,
uint256 value
) internal {
// safeApprove should only be called when setting an initial allowance,
// or when resetting it to zero. To increase and decrease it, use
// 'safeIncreaseAllowance' and 'safeDecreaseAllowance'
require(
(value == 0) || (token.allowance(address(this), spender) == 0),
"SafeERC20: approve from non-zero to non-zero allowance"
);
_callOptionalReturn(
token,
abi.encodeWithSelector(token.approve.selector, spender, value)
);
}
function safeIncreaseAllowance(
IERC20Upgradeable token,
address spender,
uint256 value
) internal {
uint256 newAllowance = token.allowance(address(this), spender) + value;
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
function safeDecreaseAllowance(
IERC20Upgradeable token,
address spender,
uint256 value
) internal {
unchecked {
uint256 oldAllowance = token.allowance(address(this), spender);
require(
oldAllowance >= value,
"SafeERC20: decreased allowance below zero"
);
uint256 newAllowance = oldAllowance - value;
_callOptionalReturn(
token,
abi.encodeWithSelector(
token.approve.selector,
spender,
newAllowance
)
);
}
}
function safePermit(
IERC20PermitUpgradeable token,
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) internal {
uint256 nonceBefore = token.nonces(owner);
token.permit(owner, spender, value, deadline, v, r, s);
uint256 nonceAfter = token.nonces(owner);
require(
nonceAfter == nonceBefore + 1,
"SafeERC20: permit did not succeed"
);
}
/**
* @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement
* on the return value: the return value is optional (but if data is returned, it must not be false).
* @param token The token targeted by the call.
* @param data The call data (encoded using abi.encode or one of its variants).
*/
function _callOptionalReturn(IERC20Upgradeable token, bytes memory data)
private
{
// We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since
// we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that
// the target address contains contract code and also asserts for success in the low-level call.
bytes memory returndata = address(token).functionCall(
data,
"SafeERC20: low-level call failed"
);
if (returndata.length > 0) {
// Return data is optional
require(
abi.decode(returndata, (bool)),
"SafeERC20: ERC20 operation did not succeed"
);
}
}
}
// File @openzeppelin/contracts/utils/introspection/[email protected]
// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface of the ERC165 standard, as defined in the
* https://eips.ethereum.org/EIPS/eip-165[EIP].
*
* Implementers can declare support of contract interfaces, which can then be
* queried by others ({ERC165Checker}).
*
* For an implementation, see {ERC165}.
*/
interface IERC165 {
/**
* @dev Returns true if this contract implements the interface defined by
* `interfaceId`. See the corresponding
* https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]
* to learn more about how these ids are created.
*
* This function call must use less than 30 000 gas.
*/
function supportsInterface(bytes4 interfaceId) external view returns (bool);
}
// File @openzeppelin/contracts/interfaces/[email protected]
// OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol)
pragma solidity ^0.8.0;
/**
* @dev Interface for the NFT Royalty Standard.
*
* A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal
* support for royalty payments across all NFT marketplaces and ecosystem participants.
*
* _Available since v4.5._
*/
interface IERC2981 is IERC165 {
/**
* @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of
* exchange. The royalty amount is denominated and should be paid in that same unit of exchange.
*/
function royaltyInfo(uint256 tokenId, uint256 salePrice)
external
view
returns (address receiver, uint256 royaltyAmount);
}
// File @openzeppelin/contracts/token/ERC1155/[email protected]
// OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol)
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC1155 compliant contract, as defined in the
* https://eips.ethereum.org/EIPS/eip-1155[EIP].
*
* _Available since v3.1._
*/
interface IERC1155 is IERC165 {
/**
* @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`.
*/
event TransferSingle(
address indexed operator,
address indexed from,
address indexed to,
uint256 id,
uint256 value
);
/**
* @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all
* transfers.
*/
event TransferBatch(
address indexed operator,
address indexed from,
address indexed to,
uint256[] ids,
uint256[] values
);
/**
* @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to
* `approved`.
*/
event ApprovalForAll(
address indexed account,
address indexed operator,
bool approved
);
/**
* @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI.
*
* If an {URI} event was emitted for `id`, the standard
* https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value
* returned by {IERC1155MetadataURI-uri}.
*/
event URI(string value, uint256 indexed id);
/**
* @dev Returns the amount of tokens of token type `id` owned by `account`.
*
* Requirements:
*
* - `account` cannot be the zero address.
*/
function balanceOf(address account, uint256 id)
external
view
returns (uint256);
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}.
*
* Requirements:
*
* - `accounts` and `ids` must have the same length.
*/
function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids)
external
view
returns (uint256[] memory);
/**
* @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`,
*
* Emits an {ApprovalForAll} event.
*
* Requirements:
*
* - `operator` cannot be the caller.
*/
function setApprovalForAll(address operator, bool approved) external;
/**
* @dev Returns true if `operator` is approved to transfer ``account``'s tokens.
*
* See {setApprovalForAll}.
*/
function isApprovedForAll(address account, address operator)
external
view
returns (bool);
/**
* @dev Transfers `amount` tokens of token type `id` from `from` to `to`.
*
* Emits a {TransferSingle} event.
*
* Requirements:
*
* - `to` cannot be the zero address.
* - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}.
* - `from` must have a balance of tokens of type `id` of at least `amount`.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the
* acceptance magic value.
*/
function safeTransferFrom(
address from,
address to,
uint256 id,
uint256 amount,
bytes calldata data
) external;
/**
* @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}.
*
* Emits a {TransferBatch} event.
*
* Requirements:
*
* - `ids` and `amounts` must have the same length.
* - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the
* acceptance magic value.
*/
function safeBatchTransferFrom(
address from,
address to,
uint256[] calldata ids,
uint256[] calldata amounts,
bytes calldata data
) external;
}
// File @openzeppelin/contracts/token/ERC1155/[email protected]
// OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol)
pragma solidity ^0.8.0;
/**
* @dev _Available since v3.1._
*/
interface IERC1155Receiver is IERC165 {
/**
* @dev Handles the receipt of a single ERC1155 token type. This function is
* called at the end of a `safeTransferFrom` after the balance has been updated.
*
* NOTE: To accept the transfer, this must return
* `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))`
* (i.e. 0xf23a6e61, or its own function selector).
*
* @param operator The address which initiated the transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param id The ID of the token being transferred
* @param value The amount of tokens being transferred
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed
*/
function onERC1155Received(
address operator,
address from,
uint256 id,
uint256 value,
bytes calldata data
) external returns (bytes4);
/**
* @dev Handles the receipt of a multiple ERC1155 token types. This function
* is called at the end of a `safeBatchTransferFrom` after the balances have
* been updated.
*
* NOTE: To accept the transfer(s), this must return
* `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))`
* (i.e. 0xbc197c81, or its own function selector).
*
* @param operator The address which initiated the batch transfer (i.e. msg.sender)
* @param from The address which previously owned the token
* @param ids An array containing ids of each token being transferred (order and length must match values array)
* @param values An array containing amounts of each token being transferred (order and length must match ids array)
* @param data Additional data with no specified format
* @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed
*/
function onERC1155BatchReceived(
address operator,
address from,
uint256[] calldata ids,
uint256[] calldata values,
bytes calldata data
) external returns (bytes4);
}
// File @openzeppelin/contracts/token/ERC721/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol)
pragma solidity ^0.8.0;
/**
* @dev Required interface of an ERC721 compliant contract.
*/
interface IERC721 is IERC165 {
/**
* @dev Emitted when `tokenId` token is transferred from `from` to `to`.
*/
event Transfer(
address indexed from,
address indexed to,
uint256 indexed tokenId
);
/**
* @dev Emitted when `owner` enables `approved` to manage the `tokenId` token.
*/
event Approval(
address indexed owner,
address indexed approved,
uint256 indexed tokenId
);
/**
* @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets.
*/
event ApprovalForAll(
address indexed owner,
address indexed operator,
bool approved
);
/**
* @dev Returns the number of tokens in ``owner``'s account.
*/
function balanceOf(address owner) external view returns (uint256 balance);
/**
* @dev Returns the owner of the `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function ownerOf(uint256 tokenId) external view returns (address owner);
/**
* @dev Safely transfers `tokenId` token from `from` to `to`.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId,
bytes calldata data
) external;
/**
* @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients
* are aware of the ERC721 protocol to prevent tokens from being forever locked.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must exist and be owned by `from`.
* - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}.
* - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer.
*
* Emits a {Transfer} event.
*/
function safeTransferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Transfers `tokenId` token from `from` to `to`.
*
* WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721
* or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must
* understand this adds an external call which potentially creates a reentrancy vulnerability.
*
* Requirements:
*
* - `from` cannot be the zero address.
* - `to` cannot be the zero address.
* - `tokenId` token must be owned by `from`.
* - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}.
*
* Emits a {Transfer} event.
*/
function transferFrom(
address from,
address to,
uint256 tokenId
) external;
/**
* @dev Gives permission to `to` to transfer `tokenId` token to another account.
* The approval is cleared when the token is transferred.
*
* Only a single account can be approved at a time, so approving the zero address clears previous approvals.
*
* Requirements:
*
* - The caller must own the token or be an approved operator.
* - `tokenId` must exist.
*
* Emits an {Approval} event.
*/
function approve(address to, uint256 tokenId) external;
/**
* @dev Approve or remove `operator` as an operator for the caller.
* Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller.
*
* Requirements:
*
* - The `operator` cannot be the caller.
*
* Emits an {ApprovalForAll} event.
*/
function setApprovalForAll(address operator, bool _approved) external;
/**
* @dev Returns the account approved for `tokenId` token.
*
* Requirements:
*
* - `tokenId` must exist.
*/
function getApproved(uint256 tokenId)
external
view
returns (address operator);
/**
* @dev Returns if the `operator` is allowed to manage all of the assets of `owner`.
*
* See {setApprovalForAll}
*/
function isApprovedForAll(address owner, address operator)
external
view
returns (bool);
}
// File @openzeppelin/contracts/utils/math/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)
pragma solidity ^0.8.0;
/**
* @dev Standard math utilities missing in the Solidity language.
*/
library Math {
enum Rounding {
Down, // Toward negative infinity
Up, // Toward infinity
Zero // Toward zero
}
/**
* @dev Returns the largest of two numbers.
*/
function max(uint256 a, uint256 b) internal pure returns (uint256) {
return a > b ? a : b;
}
/**
* @dev Returns the smallest of two numbers.
*/
function min(uint256 a, uint256 b) internal pure returns (uint256) {
return a < b ? a : b;
}
/**
* @dev Returns the average of two numbers. The result is rounded towards
* zero.
*/
function average(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b) / 2 can overflow.
return (a & b) + (a ^ b) / 2;
}
/**
* @dev Returns the ceiling of the division of two numbers.
*
* This differs from standard division with `/` in that it rounds up instead
* of rounding down.
*/
function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {
// (a + b - 1) / b can overflow on addition, so we distribute.
return a == 0 ? 0 : (a - 1) / b + 1;
}
/**
* @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0
* @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)
* with further edits by Uniswap Labs also under MIT license.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator
) internal pure returns (uint256 result) {
unchecked {
// 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use
// use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256
// variables such that product = prod1 * 2^256 + prod0.
uint256 prod0; // Least significant 256 bits of the product
uint256 prod1; // Most significant 256 bits of the product
assembly {
let mm := mulmod(x, y, not(0))
prod0 := mul(x, y)
prod1 := sub(sub(mm, prod0), lt(mm, prod0))
}
// Handle non-overflow cases, 256 by 256 division.
if (prod1 == 0) {
return prod0 / denominator;
}
// Make sure the result is less than 2^256. Also prevents denominator == 0.
require(denominator > prod1);
///////////////////////////////////////////////
// 512 by 256 division.
///////////////////////////////////////////////
// Make division exact by subtracting the remainder from [prod1 prod0].
uint256 remainder;
assembly {
// Compute remainder using mulmod.
remainder := mulmod(x, y, denominator)
// Subtract 256 bit number from 512 bit number.
prod1 := sub(prod1, gt(remainder, prod0))
prod0 := sub(prod0, remainder)
}
// Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.
// See https://cs.stackexchange.com/q/138556/92363.
// Does not overflow because the denominator cannot be zero at this stage in the function.
uint256 twos = denominator & (~denominator + 1);
assembly {
// Divide denominator by twos.
denominator := div(denominator, twos)
// Divide [prod1 prod0] by twos.
prod0 := div(prod0, twos)
// Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.
twos := add(div(sub(0, twos), twos), 1)
}
// Shift in bits from prod1 into prod0.
prod0 |= prod1 * twos;
// Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such
// that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for
// four bits. That is, denominator * inv = 1 mod 2^4.
uint256 inverse = (3 * denominator) ^ 2;
// Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works
// in modular arithmetic, doubling the correct bits in each step.
inverse *= 2 - denominator * inverse; // inverse mod 2^8
inverse *= 2 - denominator * inverse; // inverse mod 2^16
inverse *= 2 - denominator * inverse; // inverse mod 2^32
inverse *= 2 - denominator * inverse; // inverse mod 2^64
inverse *= 2 - denominator * inverse; // inverse mod 2^128
inverse *= 2 - denominator * inverse; // inverse mod 2^256
// Because the division is now exact we can divide by multiplying with the modular inverse of denominator.
// This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is
// less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1
// is no longer required.
result = prod0 * inverse;
return result;
}
}
/**
* @notice Calculates x * y / denominator with full precision, following the selected rounding direction.
*/
function mulDiv(
uint256 x,
uint256 y,
uint256 denominator,
Rounding rounding
) internal pure returns (uint256) {
uint256 result = mulDiv(x, y, denominator);
if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {
result += 1;
}
return result;
}
/**
* @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.
*
* Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11).
*/
function sqrt(uint256 a) internal pure returns (uint256) {
if (a == 0) {
return 0;
}
// For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.
//
// We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have
// `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.
//
// This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`
// → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`
// → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`
//
// Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.
uint256 result = 1 << (log2(a) >> 1);
// At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,
// since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at
// every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision
// into the expected uint128 result.
unchecked {
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
result = (result + a / result) >> 1;
return min(result, a / result);
}
}
/**
* @notice Calculates sqrt(a), following the selected rounding direction.
*/
function sqrt(uint256 a, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = sqrt(a);
return
result +
(rounding == Rounding.Up && result * result < a ? 1 : 0);
}
}
/**
* @dev Return the log in base 2, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 128;
}
if (value >> 64 > 0) {
value >>= 64;
result += 64;
}
if (value >> 32 > 0) {
value >>= 32;
result += 32;
}
if (value >> 16 > 0) {
value >>= 16;
result += 16;
}
if (value >> 8 > 0) {
value >>= 8;
result += 8;
}
if (value >> 4 > 0) {
value >>= 4;
result += 4;
}
if (value >> 2 > 0) {
value >>= 2;
result += 2;
}
if (value >> 1 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 2, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log2(uint256 value, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = log2(value);
return
result +
(rounding == Rounding.Up && 1 << result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 10, rounded down, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >= 10**64) {
value /= 10**64;
result += 64;
}
if (value >= 10**32) {
value /= 10**32;
result += 32;
}
if (value >= 10**16) {
value /= 10**16;
result += 16;
}
if (value >= 10**8) {
value /= 10**8;
result += 8;
}
if (value >= 10**4) {
value /= 10**4;
result += 4;
}
if (value >= 10**2) {
value /= 10**2;
result += 2;
}
if (value >= 10**1) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log10(uint256 value, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = log10(value);
return
result +
(rounding == Rounding.Up && 10**result < value ? 1 : 0);
}
}
/**
* @dev Return the log in base 256, rounded down, of a positive value.
* Returns 0 if given 0.
*
* Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.
*/
function log256(uint256 value) internal pure returns (uint256) {
uint256 result = 0;
unchecked {
if (value >> 128 > 0) {
value >>= 128;
result += 16;
}
if (value >> 64 > 0) {
value >>= 64;
result += 8;
}
if (value >> 32 > 0) {
value >>= 32;
result += 4;
}
if (value >> 16 > 0) {
value >>= 16;
result += 2;
}
if (value >> 8 > 0) {
result += 1;
}
}
return result;
}
/**
* @dev Return the log in base 10, following the selected rounding direction, of a positive value.
* Returns 0 if given 0.
*/
function log256(uint256 value, Rounding rounding)
internal
pure
returns (uint256)
{
unchecked {
uint256 result = log256(value);
return
result +
(rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);
}
}
}
// File @openzeppelin/contracts/utils/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)
pragma solidity ^0.8.0;
/**
* @dev String operations.
*/
library Strings {
bytes16 private constant _SYMBOLS = "0123456789abcdef";
uint8 private constant _ADDRESS_LENGTH = 20;
/**
* @dev Converts a `uint256` to its ASCII `string` decimal representation.
*/
function toString(uint256 value) internal pure returns (string memory) {
unchecked {
uint256 length = Math.log10(value) + 1;
string memory buffer = new string(length);
uint256 ptr;
/// @solidity memory-safe-assembly
assembly {
ptr := add(buffer, add(32, length))
}
while (true) {
ptr--;
/// @solidity memory-safe-assembly
assembly {
mstore8(ptr, byte(mod(value, 10), _SYMBOLS))
}
value /= 10;
if (value == 0) break;
}
return buffer;
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.
*/
function toHexString(uint256 value) internal pure returns (string memory) {
unchecked {
return toHexString(value, Math.log256(value) + 1);
}
}
/**
* @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.
*/
function toHexString(uint256 value, uint256 length)
internal
pure
returns (string memory)
{
bytes memory buffer = new bytes(2 * length + 2);
buffer[0] = "0";
buffer[1] = "x";
for (uint256 i = 2 * length + 1; i > 1; --i) {
buffer[i] = _SYMBOLS[value & 0xf];
value >>= 4;
}
require(value == 0, "Strings: hex length insufficient");
return string(buffer);
}
/**
* @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.
*/
function toHexString(address addr) internal pure returns (string memory) {
return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);
}
}
// File @openzeppelin/contracts/token/ERC721/[email protected]
// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol)
pragma solidity ^0.8.0;
/**
* @title ERC721 token receiver interface
* @dev Interface for any contract that wants to support safeTransfers
* from ERC721 asset contracts.
*/
interface IERC721Receiver {
/**
* @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom}
* by `operator` from `from`, this function is called.
*
* It must return its Solidity selector to confirm the token transfer.
* If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted.
*
* The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`.
*/
function onERC721Received(
address operator,
address from,
uint256 tokenId,
bytes calldata data
) external returns (bytes4);
}
// File @openzeppelin/contracts/utils/cryptography/[email protected]
// OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol)
pragma solidity ^0.8.0;
/**
* @dev These functions deal with verification of Merkle Tree proofs.
*
* The tree and the proofs can be generated using our
* https://github.com/OpenZeppelin/merkle-tree[JavaScript library].
* You will find a quickstart guide in the readme.
*
* WARNING: You should avoid using leaf values that are 64 bytes long prior to
* hashing, or use a hash function other than keccak256 for hashing leaves.
* This is because the concatenation of a sorted pair of internal nodes in
* the merkle tree could be reinterpreted as a leaf value.
* OpenZeppelin's JavaScript library generates merkle trees that are safe
* against this attack out of the box.
*/
library MerkleProof {
/**
* @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree
* defined by `root`. For this, a `proof` must be provided, containing
* sibling hashes on the branch from the leaf to the root of the tree. Each
* pair of leaves and each pair of pre-images are assumed to be sorted.
*/
function verify(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProof(proof, leaf) == root;
}
/**
* @dev Calldata version of {verify}
*
* _Available since v4.7._
*/
function verifyCalldata(
bytes32[] calldata proof,
bytes32 root,
bytes32 leaf
) internal pure returns (bool) {
return processProofCalldata(proof, leaf) == root;
}
/**
* @dev Returns the rebuilt hash obtained by traversing a Merkle tree up
* from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt
* hash matches the root of the tree. When processing the proof, the pairs
* of leafs & pre-images are assumed to be sorted.
*
* _Available since v4.4._
*/
function processProof(bytes32[] memory proof, bytes32 leaf)
internal
pure
returns (bytes32)
{
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Calldata version of {processProof}
*
* _Available since v4.7._
*/
function processProofCalldata(bytes32[] calldata proof, bytes32 leaf)
internal
pure
returns (bytes32)
{
bytes32 computedHash = leaf;
for (uint256 i = 0; i < proof.length; i++) {
computedHash = _hashPair(computedHash, proof[i]);
}
return computedHash;
}
/**
* @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by
* `root`, according to `proof` and `proofFlags` as described in {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerify(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProof(proof, proofFlags, leaves) == root;
}
/**
* @dev Calldata version of {multiProofVerify}
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function multiProofVerifyCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32 root,
bytes32[] memory leaves
) internal pure returns (bool) {
return processMultiProofCalldata(proof, proofFlags, leaves) == root;
}
/**
* @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction
* proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another
* leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false
* respectively.
*
* CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree
* is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the
* tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer).
*
* _Available since v4.7._
*/
function processMultiProof(
bytes32[] memory proof,
bool[] memory proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(
leavesLen + proof.length - 1 == totalHashes,
"MerkleProof: invalid multiproof"
);
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen
? leaves[leafPos++]
: hashes[hashPos++];
bytes32 b = proofFlags[i]
? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
/**
* @dev Calldata version of {processMultiProof}.
*
* CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details.
*
* _Available since v4.7._
*/
function processMultiProofCalldata(
bytes32[] calldata proof,
bool[] calldata proofFlags,
bytes32[] memory leaves
) internal pure returns (bytes32 merkleRoot) {
// This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by
// consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the
// `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of
// the merkle tree.
uint256 leavesLen = leaves.length;
uint256 totalHashes = proofFlags.length;
// Check proof validity.
require(
leavesLen + proof.length - 1 == totalHashes,
"MerkleProof: invalid multiproof"
);
// The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using
// `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop".
bytes32[] memory hashes = new bytes32[](totalHashes);
uint256 leafPos = 0;
uint256 hashPos = 0;
uint256 proofPos = 0;
// At each step, we compute the next hash using two values:
// - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we
// get the next hash.
// - depending on the flag, either another value for the "main queue" (merging branches) or an element from the
// `proof` array.
for (uint256 i = 0; i < totalHashes; i++) {
bytes32 a = leafPos < leavesLen
? leaves[leafPos++]
: hashes[hashPos++];
bytes32 b = proofFlags[i]
? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]
: proof[proofPos++];
hashes[i] = _hashPair(a, b);
}
if (totalHashes > 0) {
return hashes[totalHashes - 1];
} else if (leavesLen > 0) {
return leaves[0];
} else {
return proof[0];
}
}
function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) {
return a < b ? _efficientHash(a, b) : _efficientHash(b, a);
}
function _efficientHash(bytes32 a, bytes32 b)
private
pure
returns (bytes32 value)
{
/// @solidity memory-safe-assembly
assembly {
mstore(0x00, a)
mstore(0x20, b)
value := keccak256(0x00, 0x40)
}
}
}
// File contracts/interfaces/ICollection.sol
pragma solidity 0.8.16;
interface ICollection {
enum TokenType {
ERC721,
ERC1155
}
struct WhitelistParams {
bytes32 merkleRoot;
uint256 endTime;
uint256 startTime;
}
struct Collection {
string title;
TokenType tokenType;
string description;
string thumbnail;
string bgImage;
string bgColor;
uint256[] tokenIds;
address owner;
uint256 createdAt;
uint256 updatedAt;
int256 userPurchaseLimit;
int256 allowedPurchaseLimit;
uint256 primarySoldCount;
WhitelistParams[] whitelistParams;
bool exists;
}
/**
* @dev Returns the collection data of a erc721 token.
* @param _id the id of the collection to fetch data
* @return Collection the collection data associated with {_id}
*/
function getCollectionData(uint256 _id)
external
returns (Collection memory);
/**
* @dev Returns the collection id of a erc721 token.
* @param _id the id of the collection to fetch data
* @return Collection the collection data associated with {_id}
*/
function getERC721CollectionId(uint256 _id) external returns (uint256);
/**
* @dev Returns the collection id of a erc1155 token.
* @param _id the id of the collection to fetch data
* @return Collection the collection data associated with {_id}
*/
function getERC1155CollectionId(uint256 _id) external returns (uint256);
/**
* @dev Updates the collection after the primary sales.
* @param account Address of the account which is to be updated
* @param _collectionId the id of the collection to update
*/
function updateCollectionAfterPrimarySale(
address account,
uint256 _collectionId
) external returns (bool);
/**
* @dev Returns the primary sale user counts.
* @param account Address of the account which is to be updated
* @param _collectionId the id of the collection to update
*/
function getPrimarySaleUserCount(address account, uint256 _collectionId)
external
view
returns (uint256);
}
// File contracts/interfaces/IERC1155Custom.sol
pragma solidity 0.8.16;
interface IERC1155Custom {
struct WhitelistParams {
bytes32 merkleRoot;
uint256 endTime;
uint256 startTime;
}
struct Collection {
string title;
string description;
string thumbnail;
string bgImage;
string bgColor;
uint256[] tokenIds;
address owner;
uint256 createdAt;
uint256 updatedAt;
int256 userPurchaseLimit;
int256 allowedPurchaseLimit;
uint256 primarySoldCount;
WhitelistParams[] whitelistParams;
// mapping(address => uint256) primarySaleUserCount;
}
/**
* @dev Returns the First owner address of an {_id}.
* @param _id the id of the collection to fetch data
*/
function getFirstOwner(uint256 _id) external returns (address);
/**
* @dev Returns the primary sale purchase limit per token of an {_id}.
* @param _tokenId the id of the token which is to be checked.
*/
function getPrimarySalePurchaseLimitPerToken(uint256 _tokenId)
external
view
returns (int256);
/**
* @dev Returns the primary sale user count per token of an {_id}.
* @param account Address of the account which is to be checked.
* @param _tokenId the id of the token which's sale count to be checked.
*/
function getPrimarySaleUserCountPerToken(address account, uint256 _tokenId)
external
view
returns (uint256);
/**
* @dev Updates the primary sale user count per token of an {_id}.
* @param account Address of the account which is to updated.
* @param _tokenId the id of the token which's sale should updated.
* @param quantity Number of count to be increased.
*/
function updatePrimarySaleUserCountPerToken(
address account,
uint256 _tokenId,
uint256 quantity
) external returns (bool);
}
// File contracts/interfaces/IERC721Custom.sol
pragma solidity 0.8.16;
interface IERC721Custom {
struct WhitelistParams {
bytes32 merkleRoot;
uint256 endTime;
uint256 startTime;
}
struct Collection {
string title;
string description;
string thumbnail;
string bgImage;
string bgColor;
uint256[] tokenIds;
address owner;
uint256 createdAt;
uint256 updatedAt;
int256 userPurchaseLimit;
int256 allowedPurchaseLimit;
uint256 primarySoldCount;
WhitelistParams[] whitelistParams;
}
/**
* @dev Returns the First owner address of an {_id}.
* @param _id the id of the collection to fetch data
*/
function getFirstOwner(uint256 _id) external returns (address);
}
// File contracts/interfaces/IMarketPlace.sol
pragma solidity 0.8.16;
interface IMarketplace {
/// @notice Type of the tokens that can be listed for sale.
enum TokenType {
ERC721,
ERC1155
}
/**
* @notice The two types of listings.
* `Direct`: NFTs listed for sale at a fixed price.
* `Auction`: NFTs listed for sale in an auction.
*/
enum ListingType {
Direct,
Auction
}
/**
* @notice The two types of listings.
* `Direct`: NFTs listed for sale at a fixed price.
* `Auction`: NFTs listed for sale in an auction.
*/
enum SaleType {
Primary,
Secondary
}
/**
* @notice The two types of Asset Types.
* `NFT`: ERC721 type asset.
* `Currency`: ERC20 type asset.
*/
enum AssetType {
NFT,
CURRENCY
}
/**
* @dev For use in `createListing` as a parameter type.
*
* @param assetContract The contract address of the NFT to list for sale.
* @param tokenId The tokenId on `assetContract` of the NFT to list for sale.
*
* @param quantityToList The quantity of NFT of ID `tokenId` on the given `assetContract` to list. For
* ERC 721 tokens to list for sale, the contract strictly defaults this to `1`,
* Regardless of the value of `quantityToList` passed.
*
* @param currencyToAccept For direct listings: the currency in which a buyer must pay the listing's fixed price
* to buy the NFT(s). For auctions: the currency in which the bidders must make bids.
*
* @param buyoutPrice For direct listings: interpreted as 'price per token' listed. For auctions: if
* `buyoutPricePerToken` is greater than 0, and a bidder's bid is at least as great as
* `buyoutPricePerToken * quantityToList`, the bidder wins the auction, and the auction
* is closed.
*
* @param listingType The type of listing to create - a direct listing or an auction.
*/
struct ListingParameters {
address assetContract;
uint256 tokenId;
uint256 quantityToList;
address currencyToAccept;
uint256 buyoutPrice;
ListingType listingType;
address tokenOwner;
}
/**
* @notice The information related to a listing; either (1) a direct listing, or (2) an auction listing.
*/
struct Listing {
uint256 listingId;
address tokenOwner;
address assetContract;
uint256 tokenId;
uint256 quantity;
address currency;
uint256 buyoutPrice;
TokenType tokenType;
ListingType listingType;
SaleType saleType;
}
/// @dev Emitted when a new listing is created.
event NewListing(
uint256 indexed listingId,
address indexed assetContract,
uint256 tokenId,
address indexed lister,
Listing listing
);
/**
* @dev Emitted when a buyer buys from a direct listing, or a lister accepts some
* buyer's offer to their direct listing.
*/
event NewSale(
uint256 indexed listingId,
address indexed assetContract,
uint256 tokenId,
address indexed lister,
address buyer,
uint256 quantityBought,
uint256 pricePaid
);
/**
* @dev Emitted when an admin withdraws the fund to an address.
*/
event FundsWithdrawn(
address indexed to,
address indexed currency,
uint256 amount
);
/**
* @dev Emitted when an asset is whitelisted.
*/
event AssetWhitelisted(
address indexed assetContract,
AssetType assetType,
address listedBy,
bool isWhitelisted
);
/**
* @dev Emitted when a listing is removed.
*/
event ListingRemoved(uint256 listingId);
/**
* @dev Emitted when a listing is modified.
*/
event ListingModified(
uint256 listingId,
uint256 buyoutPrice,
uint256 quantityToList
);
/**
* @notice Lets a token (ERC 721 or ERC 1155) owner list tokens for sale in a direct listing, or an auction.
* @param _params The parameters that govern the listing to be created.
* @dev The values of `_params` are passsed to this function in a `ListingParameters` struct, instead of
* directly due to Solidity's limit of the no. of local variables that can be used in a function.
* @dev NFTs to list for sale in an auction are escrowed in Marketplace. For direct listings, the contract
* only checks whether the listing's creator owns and has approved Marketplace to transfer the NFTs to list.
*/
function createListing(ListingParameters memory _params) external;
/**
* @notice Lets someone buy a given quantity of tokens from a direct listing by paying the fixed price.
*
* @param _listingId The unique ID of the direct lisitng to buy from.
*
* @dev A sale will fail to execute if either:
* (1) buyer does not own or has not approved Marketplace to transfer the appropriate
* amount of currency (or hasn't sent the appropriate amount of native tokens)
*
* (2) the lister does not own or has removed Markeplace's
* approval to transfer the tokens listed for sale.
*/
function buy(
uint256 _listingId,
address _currency,
uint256 _price,
uint256 _quantityToBuy,
bytes32[] memory _proof,
uint256 _signatureTimestamp,
bytes memory signature
) external payable;
/**
* @notice Lets someone buy a given quantity of tokens to another approve account from a direct listing by paying the fixed price.
*
* @param _listingId The unique ID of the direct lisitng to buy from.
*
* @dev A sale will fail to execute if either:
* (1) buyer does not own or has not approved Marketplace to transfer the appropriate
* amount of currency (or hasn't sent the appropriate amount of native tokens)
*
* (2) the lister does not own or has removed Markeplace's
* approval to transfer the tokens listed for sale.
*/
function delegatedBuy(
uint256 _listingId,
address _currency,
uint256 _price,
uint256 _quantityToBuy,
address _buyer,
bytes32[] memory _proof,
uint256 _signatureTimestamp,
bytes memory signature
) external payable;
}
// File contracts/interfaces/INFTCustom.sol
pragma solidity 0.8.16;
interface INFTCustom {
function getFirstOwner(uint256 _id) external returns (address);
}
// File contracts/interfaces/IWETH.sol
pragma solidity 0.8.16;
interface IWETH {
function deposit() external payable;
function withdraw(uint256 amount) external;
function transfer(address to, uint256 value) external returns (bool);
function allowance(address owner, address spender)
external
view
returns (uint256);
function transferFrom(
address src,
address dst,
uint256 amount
) external returns (bool);
}
// File contracts/utils/Authenticator.sol
pragma solidity ^0.8.16;
/* Signature Verification
How to Sign and Verify
# Signing
1. Create message to sign
2. Hash the message
3. Sign the hash (off chain, keep your private key secret)
# Verify
1. Recreate hash from the original message
2. Recover signer from signature and hash
3. Compare recovered signer to claimed signer
*/
contract Authenticator is AccessControlEnumerableUpgradeable {
address internal _privilegedSigner;
constructor(address _privilegedSignerAddress) {
_privilegedSigner = _privilegedSignerAddress;
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
}
/// @dev Check whether the caller is a protocol admin
modifier onlyAdmin() {
require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "ONLY ADMIN");
_;
}
/* 1. Unlock MetaMask account
ethereum.enable()
*/
/* 2. Get message hash to sign
getMessageHash(
0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C,
123,
"coffee and donuts",
1
)
hash = "0xcf36ac4f97dc10d91fc2cbb20d718e94a8cbfe0f82eaedc6a4aa38946fb797cd"
*/
function getMessageHash(address _to, uint256 _timestamp)
public
pure
returns (bytes32)
{
return keccak256(abi.encodePacked(_to, _timestamp));
}
/* 3. Sign message hash
# using browser
account = "copy paste account of signer here"
ethereum.request({ method: "personal_sign", params: [account, hash]}).then(console.log)
# using web3
web3.personal.sign(hash, web3.eth.defaultAccount, console.log)
Signature will be different for different accounts
0x993dab3dd91f5c6dc28e17439be475478f5635c92a56e17e82349d3fb2f166196f466c0b4e0c146f285204f0dcb13e5ae67bc33f4b888ec32dfe0a063e8f3f781b
*/
function getEthSignedMessageHash(bytes32 _messageHash)
public
pure
returns (bytes32)
{
/*
Signature is produced by signing a keccak256 hash with the following format:
"\x19Ethereum Signed Message\n" + len(msg) + msg
*/
return
keccak256(
abi.encodePacked(
"\x19Ethereum Signed Message:\n32",
_messageHash
)
);
}
/* 4. Verify signature
signer = 0xB273216C05A8c0D4F0a4Dd0d7Bae1D2EfFE636dd
to = 0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C
amount = 123
message = "coffee and donuts"
nonce = 1
signature =
0x993dab3dd91f5c6dc28e17439be475478f5635c92a56e17e82349d3fb2f166196f466c0b4e0c146f285204f0dcb13e5ae67bc33f4b888ec32dfe0a063e8f3f781b
*/
function verify(
address _signer,
address _to,
uint256 _timestamp,
bytes memory signature
) public pure returns (bool) {
bytes32 messageHash = getMessageHash(_to, _timestamp);
bytes32 ethSignedMessageHash = getEthSignedMessageHash(messageHash);
return recoverSigner(ethSignedMessageHash, signature) == _signer;
}
function recoverSigner(
bytes32 _ethSignedMessageHash,
bytes memory _signature
) public pure returns (address) {
(bytes32 r, bytes32 s, uint8 v) = splitSignature(_signature);
return ecrecover(_ethSignedMessageHash, v, r, s);
}
function splitSignature(bytes memory sig)
public
pure
returns (
bytes32 r,
bytes32 s,
uint8 v
)
{
require(sig.length == 65, "invalid signature length");
assembly {
/*
First 32 bytes stores the length of the signature
add(sig, 32) = pointer of sig + 32
effectively, skips first 32 bytes of signature
mload(p) loads next 32 bytes starting at the memory address p into memory
*/
// first 32 bytes, after the length prefix
r := mload(add(sig, 32))
// second 32 bytes
s := mload(add(sig, 64))
// final byte (first byte of the next 32 bytes)
v := byte(0, mload(add(sig, 96)))
}
// implicitly return (r, s, v)
}
/**
* @dev Sets the privilegedSigner address.
* @param _signer Address of signer.
*/
function setPrivilegedSigner(address _signer)
external
onlyAdmin
returns (bool)
{
require(_signer != address(0), "ZERO_ADDRESS");
_privilegedSigner = _signer;
return true;
}
/**
* @dev Returns the privilegedSigner address.
*/
function getPrivilegedSigner() public view returns (address) {
return _privilegedSigner;
}
}
// File contracts/utils/Errors.sol
pragma solidity 0.8.16;
// Library
/**
* @dev Abstarct for managing error messages.
*
*/
abstract contract ErrorCodes {
int32 internal constant ONLY_ADMIN = 0;
int32 internal constant ONLY_MINTER = 1;
int32 internal constant ONLY_WHITE_LISTER = 2;
int32 internal constant ONLY_TOKEN_OWNER = 3;
int32 internal constant ZERO_ADDRESS = 4;
int32 internal constant BPS_EXCEEDS_10000 = 5;
int32 internal constant TOKEN_NOT_EXISTS = 6;
int32 internal constant URI_QUERY_NON_EXISTENT_TOKEN = 7;
int32 internal constant URI_NOT_SET = 8;
int32 internal constant ASSET_NOT_WHITELISTED = 9;
int32 internal constant CURRENCY_NOT_WHITELISTED = 10;
int32 internal constant INVALID_TOKEN_AMOUNT = 11;
int32 internal constant CANT_MODIFY_LISTING_ASSET = 12;
int32 internal constant CANT_MODIFY_LISTING_TOKEN_ID = 13;
int32 internal constant CANT_MODIFY_LISTING_TOKEN_TYPE = 14;
int32 internal constant CURRENCY_OR_PRICE_DOES_NOT_MATCH_LISTING = 15;
int32 internal constant OWNER_BUYER_CONFLICT = 16;
int32 internal constant ASSET_INSUFFICIENT_ALLOWANCE_BALANCE = 17;
int32 internal constant FEES_EXCEEDS_PRICE = 18;
int32 internal constant TRANSFER_FAILED = 19;
int32 internal constant BID_AMOUNT_MISMATCH_FROM_LISTING = 20;
int32
internal constant INVALID_ASSET_OWNERSHIP_OR_INSUFFICIENT_ALLOWANCE_BALANCE =
21;
int32 internal constant INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET = 22;
int32 internal constant CANT_BUY_LISTING_FROM_AUCTION = 23;
int32 internal constant BUYING_INVALID_ASSET_AMOUNT = 24;
int32 internal constant NATIVE_TOKEN_AMOUNT_MISMATCH_FROM_LISTING = 25;
int32 internal constant TOKEN_INSUFFICIENT_ALLOWANCE_BALANCE = 26;
int32 internal constant WITHDRAW_ZERO_AMOUNT = 27;
int32 internal constant WITHDRAW_FAILED = 28;
int32 internal constant ASSET_ALREADY_WHITELISTED = 29;
int32 internal constant CURRENCY_ALREADY_WHITELISTED = 30;
int32 internal constant EITHER_ADMIN_OR_FIRST_OWNER = 31;
int32 internal constant BURN_AMOUNT_EXCEEDS_BALANCE_OR_ID_NOT_FOUND = 32;
int32 internal constant INSUFFICIENT_BALANCE_FOR_TRANSFER_OR_ID_NOT_FOUND =
33;
int32 internal constant TOKEN_ID_NOT_FOUND = 34;
int32 internal constant NO_IDS_FOUND = 35;
int32 internal constant ALREADY_LISTED = 36;
int32 internal constant SECONDARY_SALE_NOT_SUPPORTED = 37;
int32 internal constant MARKET_ADDRESS_CANNOT_BE_ZERO_ADDRESS = 38;
int32 internal constant LISTING_ID_NOT_FOUND = 39;
int32 internal constant FUNCTION_NOT_EXECUTABLE = 40;
int32 internal constant UNAUTHORISED_ACCESS = 41;
int32 internal constant CANNOT_MODIFY_INACTIVE_SALE = 42;
int32 internal constant QUANTITY_MUST_BE_GREATER_THAN_EQUAL_TO_ONE = 43;
int32 internal constant TOKEN_ID_DOESNOT_EXIST = 44;
int32 internal constant MAX_QUANTITY_MUST_BE_GREATER_THAN_ZERO = 45;
int32 internal constant MAX_QUANTITY_ALLOWANCE_LIMIT_REACHED = 46;
int32 internal constant ONLY_MAINTAINER = 47;
int32 internal constant INVALID_TOKEN_OWNER = 48;
int32 internal constant ADDRESS_NOT_WHITELISTED = 49;
int32 internal constant EXCEEDED_PRIMARY_PURCHASE_LIMIT = 50;
int32 internal constant INVALID_COLLECTION_DETAIL = 51;
int32 internal constant COLLECTION_ID_CANNOT_BE_LESS_THAN_ZERO = 52;
int32 internal constant INVALID_OWNER = 53;
int32 internal constant INVALID_WHITELIST_PARAMS = 54;
int32 internal constant TOKEN_IDS_REQUIRED = 55;
int32 internal constant SENDER_SHOULD_BE_MARKETPLACE_CONTRACT = 56;
int32 internal constant INVALID_FUNCTION_PARAMS = 57;
int32 internal constant ERC721_CANNOT_BE_ZERO_ADDRESS = 58;
int32 internal constant ERC1155_CANNOT_BE_ZERO_ADDRESS = 59;
int32 internal constant COLLECTION_DOES_NOT_EXIST = 60;
int32 internal constant COLLECTION_CONTRACT_CANNOT_BE_ZERO_ADDRESS = 61;
int32 internal constant INVALID_TOKEN_TYPE = 62;
int32 internal constant MAXIMUM_PURCHASE_QUANTITY_PER_TOKEN_LIMIT_REACHED =
63;
int32 internal constant INVALID_PAYABLE_AMOUNT = 64;
int32 internal constant INVALID_WITHDRAWABLE_AMOUNT = 65;
int32 internal constant EXCEEDED_TOKEN_LIMIT = 66;
int32 internal constant EXCEEDED_MINT_LIMIT = 67;
int32 internal constant EXCEEDED_INDIVIDUAL_TOKEN_LIMIT = 68;
int32 internal constant NAME_CANNOT_BE_EMPTY = 69;
int32 internal constant SYMBOL_CANNOT_BE_EMPTY = 70;
int32 internal constant INVALID_ROYALTY_BPS = 71;
int32 internal constant INVALID_MINT_PRICE = 72;
int32 internal constant INVALID_TOKEN_SUPPLY_CAP = 73;
int32 internal constant INVALID_USER_PURCHASE_LIMIT = 74;
int32 internal constant WHITELIST_STARTTIME_MUST_BE_LESS_THAN_ENDTIME = 75;
int32 internal constant SIGNATURE_MUST_BE_USED_WITHIN_30_MINUTES = 76;
function throwError(int32 _errCode) public pure returns (string memory) {
return Strings.toString(uint32(_errCode));
}
}
// File contracts/TokenTraxxMarket.sol
pragma solidity 0.8.16;
// Royalty
// Security
// Upgrades
// Utils
/**
* @title Marketplace Contract
* @author Tokentraxx Team
* @dev This contract is used to create a listing of of ERC721 and ERC1155 token, which users can buy in direct sale.
* It supports native currency and whitelisted ERC20 currency to list and make purchases.
*/
contract TokenTraxxMarketplace is
Initializable,
IMarketplace,
AccessControlEnumerableUpgradeable,
IERC721Receiver,
ReentrancyGuardUpgradeable,
ErrorCodes
{
// using library to safely interact with ERC-20 tokens.
using SafeERC20Upgradeable for IERC20Upgradeable;
bytes32 public constant WHITE_LISTER = keccak256("WHITE_LISTER");
/// @dev The address of the native token wrapper contract.
address public nativeTokenWrapper;
/// @dev The address of royalty treasury.
address public royaltyTreasury;
/// @dev The max bps of the contract. So, 10_000 == 100 %
uint64 public constant MAX_BPS = 10_000;
/// @dev The marketplace fee.
uint64 public marketFeeBps;
/// @dev The primary fee.
uint64 public primaryFeeBps;
/// @dev The address interpreted as native token of the chain.
address public constant NATIVE_TOKEN =
0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE;
/// @dev The address of ERC20 => whitelisted
mapping(address => bool) public wlistToken;
/// @dev The address of NFT => whitelisted
mapping(address => bool) public wlistAsset;
/// @dev listingId => listing info.
mapping(uint256 => Listing) public listings;
/// @dev safe listing token => prevent multiple listings with same token.
mapping(uint256 => bool) public safeListing;
/// @dev Total number of listings on market.
uint256 public listingIdTracker;
/// @dev Check whether the caller is a protocol admin
modifier onlyAdmin() {
_onlyAdmin();
_;
}
/**
* @dev Method to initialize the contract.
* @param _nativeTokenWrapper address of the native currency.
* @param _primaryMarketFeeBps Primary market fees to be set in Bps
* @param _marketFeeBps Market fees to be set in Bps
* @param _initialCurrency address of the initial currency.
* @param _collectionContract address of the collection contract.
* Requirement:
* {_nativetokenWrapper} address should not be zero address
* {_collectionContract} address should not be zero address
* {_primaryMarketFeeBps} should be less than Max market Fee
* {_initialCurrency} address should not be zero address
*/
function initialize(
address _nativeTokenWrapper,
uint64 _primaryMarketFeeBps,
uint64 _marketFeeBps,
address _initialCurrency,
address _collectionContract
) external initializer {
__ReentrancyGuard_init();
_nonZeroAddress(_nativeTokenWrapper, ZERO_ADDRESS);
_nonZeroAddress(_collectionContract, ZERO_ADDRESS);
require(
_primaryMarketFeeBps <= MAX_BPS && _marketFeeBps <= MAX_BPS,
throwError(BPS_EXCEEDS_10000)
);
_nonZeroAddress(_initialCurrency, ZERO_ADDRESS);
nativeTokenWrapper = _nativeTokenWrapper;
primaryFeeBps = _primaryMarketFeeBps;
marketFeeBps = _marketFeeBps;
royaltyTreasury = address(this);
collectionContract = _collectionContract;
_setupRole(DEFAULT_ADMIN_ROLE, msg.sender);
_setupRole(WHITE_LISTER, msg.sender);
wlistToken[_initialCurrency] = true;
}
/**
* @dev This function sets the collection contract
* @param _collectionContract address of the collection contract.
* Rquirement:
* Only admin can call this function
*/
function setCollectionContract(address _collectionContract)
external
onlyAdmin
{
_nonZeroAddress(_collectionContract, ZERO_ADDRESS);
collectionContract = _collectionContract;
}
/**
* @dev Lets a token owner list tokens for sale: Direct Listing or Auction.
* @param _params datas to be passed for create listing in tuple format.
* Requirement:
* Asset should be whitelisted before listing
* currency should be whitelisted before listing
* Already listed asset cannot be listed again
*/
function createListing(ListingParameters calldata _params)
external
override
{
// Get values to populate `Listing`.
(uint256 totalListing, ) = getTokenListingCount(
_params.assetContract,
_params.tokenId
);
require(
_checkIfZero(totalListing),
throwError(SECONDARY_SALE_NOT_SUPPORTED)
);
require(
wlistAsset[_params.assetContract],
throwError(ASSET_NOT_WHITELISTED)
);
require(
wlistToken[_params.currencyToAccept],
throwError(CURRENCY_NOT_WHITELISTED)
);
address tokenOwner;
TokenType listTokenType = getTokenType(_params.assetContract);
if (listTokenType == TokenType.ERC721) {
tokenOwner = IERC721(_params.assetContract).ownerOf(
_params.tokenId
);
} else if (listTokenType == TokenType.ERC1155) {
tokenOwner = _params.tokenOwner;
}
uint256 tokenAmountToList = getSafeQuantity(
listTokenType,
_params.quantityToList
);
require(tokenAmountToList > 0, throwError(INVALID_TOKEN_AMOUNT));
validateUserOwnershipAndApproval(
tokenOwner,
_params.assetContract,
_params.tokenId,
tokenAmountToList,
listTokenType
);
require(
validateApproval(
tokenOwner,
_params.assetContract,
_params.tokenId,
listTokenType,
address(this)
),
throwError(INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET)
);
// Defaulting SaleType to Primary, determine based on listingCount when enabling secondary sales
SaleType saleType = SaleType.Primary;
Listing memory newListing = Listing({
listingId: listingIdTracker,
tokenOwner: tokenOwner,
assetContract: _params.assetContract,
tokenId: _params.tokenId,
quantity: _params.quantityToList,
currency: _params.currencyToAccept,
buyoutPrice: _params.buyoutPrice,
tokenType: listTokenType,
listingType: _params.listingType,
saleType: saleType
});
listings[listingIdTracker] = newListing;
_tokenListings[_params.assetContract][_params.tokenId].push(
listingIdTracker
);
emit NewListing(
listingIdTracker,
_params.assetContract,
_params.tokenId,
tokenOwner,
newListing
);
listingIdTracker += 1;
}
/**
* @dev Lets a token owner modify his listing.
* @param _listingId listing Id which is to be modified.
* @param _params datas to be passed for create listing in tuple format.
*/
function modifyListing(uint256 _listingId, ListingParameters memory _params)
external
{
Listing memory listing = listings[_listingId];
TokenType _tokenType = getTokenType(_params.assetContract);
address tokenOwner = _params.tokenOwner;
if (_tokenType == TokenType.ERC721) {
tokenOwner = IERC721(_params.assetContract).ownerOf(
_params.tokenId
);
}
require(
listing.assetContract == _params.assetContract,
throwError(CANT_MODIFY_LISTING_ASSET)
);
require(
listing.tokenId == _params.tokenId,
throwError(CANT_MODIFY_LISTING_TOKEN_ID)
);
validateUserOwnershipAndApproval(
tokenOwner,
_params.assetContract,
_params.tokenId,
_params.quantityToList,
_tokenType
);
require(
validateApproval(
tokenOwner,
_params.assetContract,
_params.tokenId,
_tokenType,
address(this)
),
throwError(INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET)
);
require(listing.quantity > 0, throwError(CANNOT_MODIFY_INACTIVE_SALE));
listing.buyoutPrice = _params.buyoutPrice;
listing.quantity = _params.quantityToList;
listings[_listingId] = listing;
emit ListingModified(
_listingId,
_params.buyoutPrice,
_params.quantityToList
);
}
/**
* @dev Lets a user buy a token for another approved account.
* @param _listingId listing Id which is to be bought.
* @param _currency address of the currency which is used to buy that asset.
* @param _price Price of the asset which is to buy
* @param _quantityToBuy Number of assets to be bought.
* @param _proof Proof should be passed in bytes32
* Requirement:
* currency should be valid
* owner should not be the buyer
*/
function delegatedBuy(
uint256 _listingId,
address _currency,
uint256 _price,
uint256 _quantityToBuy,
address _buyer,
bytes32[] memory _proof,
uint256 _signatureTimestamp,
bytes memory signature
) external payable override nonReentrant {
Listing memory targetListing = listings[_listingId];
// address buyer = _buyer;
// Validate passed params based on membership status and listing info
bool isPrivileged = validateBuyParams(
_listingId,
_currency,
_price,
_buyer,
_quantityToBuy,
_signatureTimestamp,
signature
);
validateSaleParameters(targetListing, _proof, _buyer, _quantityToBuy);
executeSale(
targetListing,
_buyer,
targetListing.currency,
_price * _quantityToBuy,
_quantityToBuy,
isPrivileged
);
}
///@dev verifies the whitelisted wallet
function verifyWalletWhitelist(
bytes32[] memory proof,
bytes32 root,
bytes32 leaf
) public pure returns (bool) {
return MerkleProof.verify(proof, root, leaf);
}
///@dev validates the sale parameters
function validateSaleParameters(
Listing memory listingData,
bytes32[] memory proof,
address buyer,
uint256 quantityToBuy
) internal {
ICollection collectionContractInstance = ICollection(
collectionContract
);
uint256 collectionId = listingData.tokenType == TokenType.ERC721
? collectionContractInstance.getERC721CollectionId(
listingData.tokenId
)
: collectionContractInstance.getERC1155CollectionId(
listingData.tokenId
);
ICollection.Collection
memory collectionData = collectionContractInstance
.getCollectionData(collectionId);
if (
collectionData.allowedPurchaseLimit != -1 &&
collectionData.allowedPurchaseLimit > 0
) {
require(
(collectionData.primarySoldCount + quantityToBuy) <=
uint256(collectionData.allowedPurchaseLimit),
throwError(MAX_QUANTITY_ALLOWANCE_LIMIT_REACHED)
);
}
bytes32 merkleRoot = 0x00;
for (uint256 i; i < collectionData.whitelistParams.length; ++i) {
if (
block.timestamp > collectionData.whitelistParams[i].startTime &&
block.timestamp < collectionData.whitelistParams[i].endTime
) {
merkleRoot = collectionData.whitelistParams[i].merkleRoot;
break;
}
}
if (merkleRoot != 0x00) {
require(
verifyWalletWhitelist(
proof,
merkleRoot,
keccak256(abi.encodePacked(msg.sender))
),
throwError(ADDRESS_NOT_WHITELISTED)
);
}
if (
INFTCustom(listingData.assetContract).getFirstOwner(
listingData.tokenId
) == collectionData.owner
) {
if (collectionData.userPurchaseLimit != -1) {
require(
collectionContractInstance.getPrimarySaleUserCount(
msg.sender,
collectionId
) +
quantityToBuy <=
uint256(collectionData.userPurchaseLimit),
throwError(EXCEEDED_PRIMARY_PURCHASE_LIMIT)
);
}
}
if (listingData.tokenType == TokenType.ERC1155) {
if (
IERC1155Custom(listingData.assetContract)
.getPrimarySalePurchaseLimitPerToken(listingData.tokenId) !=
-1
) {
require(
(IERC1155Custom(listingData.assetContract)
.getPrimarySaleUserCountPerToken(
buyer,
listingData.tokenId
) + quantityToBuy) <=
uint256(
IERC1155Custom(listingData.assetContract)
.getPrimarySalePurchaseLimitPerToken(
listingData.tokenId
)
),
throwError(
MAXIMUM_PURCHASE_QUANTITY_PER_TOKEN_LIMIT_REACHED
)
);
}
}
}
/**
* @dev Lets a user buy a listed asset.
* @param _listingId listing Id which is to be bought.
* @param _currency address of the currency which is used to buy that asset.
* @param _price Price of the asset
* @param _quantityToBuy Number of assets to be bought
* @param proof Proof should be passed in bytes32
* Requirement:
* currency should be valid
* owner should not be the buyer
*/
function buy(
uint256 _listingId,
address _currency,
uint256 _price,
uint256 _quantityToBuy,
bytes32[] memory proof,
uint256 _signatureTimestamp,
bytes memory signature
) external payable override nonReentrant {
require(
_listingId < listingIdTracker,
throwError(LISTING_ID_NOT_FOUND)
);
Listing memory targetListing = listings[_listingId];
address buyer = _msgSender();
// Validate passed params based on membership status and listing info
bool isPrivileged = validateBuyParams(
_listingId,
_currency,
_price,
buyer,
_quantityToBuy,
_signatureTimestamp,
signature
);
validateSaleParameters(targetListing, proof, buyer, _quantityToBuy);
executeSale(
targetListing,
buyer,
targetListing.currency,
_price * _quantityToBuy,
_quantityToBuy,
isPrivileged
);
}
/// @dev Lets the contract accept ether.
receive() external payable {}
/// @dev Performs a direct listing sale.
function executeSale(
Listing memory _targetListing,
address _buyer,
address _currency,
uint256 _currencyAmountToTransfer,
uint256 _quantity,
bool _isDiscounted
) internal {
validateDirectListingSale(
_targetListing,
_quantity,
_currencyAmountToTransfer
);
_targetListing.quantity -= _quantity;
listings[_targetListing.listingId].quantity = _targetListing.quantity;
if (_currencyAmountToTransfer > 0) {
payout(
msg.sender,
_targetListing.tokenOwner,
_currency,
_currencyAmountToTransfer,
_targetListing,
_isDiscounted
);
}
transferListingTokens(_buyer, _quantity, _targetListing);
ICollection collectionContractInstance = ICollection(
collectionContract
);
uint256 collectionId = _targetListing.tokenType == TokenType.ERC721
? collectionContractInstance.getERC721CollectionId(
_targetListing.tokenId
)
: collectionContractInstance.getERC1155CollectionId(
_targetListing.tokenId
);
ICollection.Collection
memory collectionData = collectionContractInstance
.getCollectionData(collectionId);
if (
INFTCustom(_targetListing.assetContract).getFirstOwner(
_targetListing.tokenId
) == collectionData.owner
) {
collectionContractInstance.updateCollectionAfterPrimarySale(
msg.sender,
collectionId
);
}
if (_targetListing.tokenType == TokenType.ERC1155) {
IERC1155Custom(_targetListing.assetContract)
.updatePrimarySaleUserCountPerToken(
_buyer,
_targetListing.tokenId,
_quantity
);
}
emit NewSale(
_targetListing.listingId,
_targetListing.assetContract,
_targetListing.tokenId,
_targetListing.tokenOwner,
_buyer,
_quantity,
_currencyAmountToTransfer
);
}
/**
* @dev Transfers tokens listed for sale in a direct or auction listing.
* @param _to address of which token listing should be transferred
* @param _quantity Number of assets should be transferred.
* @param _listing listing type of the asset
* Requirement:
* quantity should be valid
*/
function transferListingTokens(
address _to,
uint256 _quantity,
Listing memory _listing
) internal {
require(
_quantity >= 1,
throwError(QUANTITY_MUST_BE_GREATER_THAN_EQUAL_TO_ONE)
);
if (_listing.tokenType == TokenType.ERC721) {
IERC721(_listing.assetContract).safeTransferFrom(
_listing.tokenOwner,
_to,
_listing.tokenId,
""
);
} else if (_listing.tokenType == TokenType.ERC1155) {
IERC1155(_listing.assetContract).safeTransferFrom(
_listing.tokenOwner,
_to,
_listing.tokenId,
_quantity,
""
);
}
}
/// @dev Enforces quantity == 1 if tokenType is TokenType.ERC721.
function getSafeQuantity(TokenType _tokenType, uint256 _quantityToCheck)
internal
pure
returns (uint256 safeQuantity)
{
if (_checkIfZero(_quantityToCheck)) {
safeQuantity = 0;
} else {
safeQuantity = _tokenType == TokenType.ERC721
? 1
: _quantityToCheck;
}
}
/// @dev Payout stakeholders on sale
function payout(
address _payer,
address _payee,
address _currencyToUse,
uint256 _totalPayoutAmount,
Listing memory _listing,
bool _isDiscounted
) internal {
// Collect protocol fee
uint256 marketCut;
uint256 _transferAmount;
if (!_isDiscounted) {
if (_listing.saleType == SaleType.Primary)
marketCut = (_totalPayoutAmount * primaryFeeBps) / MAX_BPS;
else marketCut = (_totalPayoutAmount * marketFeeBps) / MAX_BPS;
}
uint256 remainder = _totalPayoutAmount - marketCut;
if (_listing.saleType == SaleType.Secondary) {
// Distribute royalties. See Sushiswap's https://github.com/sushiswap/shoyu/blob/master/contracts/base/BaseExchange.sol#L296
try
IERC2981(_listing.assetContract).royaltyInfo(
_listing.tokenId,
_totalPayoutAmount
)
returns (address royaltyFeeRecipient, uint256 royaltyFeeAmount) {
if (royaltyFeeAmount > 0) {
require(
royaltyFeeAmount + marketCut <= _totalPayoutAmount,
throwError(FEES_EXCEEDS_PRICE)
);
remainder -= royaltyFeeAmount;
_transferAmount += royaltyFeeAmount;
tShares[royaltyFeeRecipient][
_currencyToUse
] += royaltyFeeAmount;
}
} catch {}
} else {
_transferAmount += marketCut;
tShares[royaltyTreasury][_currencyToUse] += marketCut;
}
// Store remaining funds.
transferCurrency(
_currencyToUse,
_payer,
royaltyTreasury,
_transferAmount
);
// Distribute price to token owner
transferCurrency(_currencyToUse, _payer, _payee, remainder);
}
/**
* @dev Transfers a given amount of currency.
* @param _currency address of currency which is be transferred.
* @param _from address of which the currency should be transferred.
* @param _to address of which the currency is to be sent
* @param _amount Amount of currency which is to be transferred.
* Requirement:
* Amount should be valid
*/
function transferCurrency(
address _currency,
address _from,
address _to,
uint256 _amount
) internal {
if (_checkIfZero(_amount)) {
return;
}
if (_currency == NATIVE_TOKEN) {
if (_from == address(this)) {
// withdraw from weth then transfer withdrawn native token to recipient
IWETH(nativeTokenWrapper).withdraw(_amount);
safeTransferNativeToken(_to, _amount);
} else if (_to == address(this)) {
// store native currency in weth
require(
_amount <= msg.value,
throwError(BID_AMOUNT_MISMATCH_FROM_LISTING)
);
_depositToIWETH(_amount);
// IWETH(nativeTokenWrapper).deposit{value: _amount}();
} else {
// passthrough for native token transfer from buyer to the seller
safeTransferNativeToken(_to, _amount);
}
} else {
safeTransferERC20(_currency, _from, _to, _amount);
}
}
/**
* @dev Transfer `amount` of ERC20 token from `from` to `to`.
* @param _currency address of ERC20 token which is be transferred.
* @param _from address of which the token should be transferred.
* @param _to address of which the token is to be sent
* @param _amount Amount of token which is to be transferred.
* Requirement:
* There should be enough balance.
*/
function safeTransferERC20(
address _currency,
address _from,
address _to,
uint256 _amount
) internal {
if (_from == _to) {
return;
}
uint256 balBefore = IERC20Upgradeable(_currency).balanceOf(_to);
_from == address(this)
? IERC20Upgradeable(_currency).safeTransfer(_to, _amount)
: IERC20Upgradeable(_currency).safeTransferFrom(
_from,
_to,
_amount
);
uint256 balAfter = IERC20Upgradeable(_currency).balanceOf(_to);
require(balAfter == balBefore + _amount, throwError(TRANSFER_FAILED));
}
/**
* @dev Transfers `amount` of native token to `to`.
* @param to address of which token is to be transferred.
* @param value amount of the token to be transferred.
*/
function safeTransferNativeToken(address to, uint256 value) internal {
(bool success, ) = to.call{value: value}("");
if (!success) {
_depositToIWETH(value);
// IWETH(nativeTokenWrapper).deposit{value: value}();
safeTransferERC20(nativeTokenWrapper, address(this), to, value);
}
}
/**
* @dev Validates that `_tokenOwner` owns and has approved to lister / minter to live asset.
* @param _tokenOwner address of token owner which is to be validated.
* @param _assetContract address of the asset contract.
* @param _tokenId Id of the token to be validated
* @param _quantity Number of tokens
* @param _tokenType Type of token whether its ERC20/721/1155
* Requirement:
* Token owner should be valid
*/
function validateUserOwnershipAndApproval(
address _tokenOwner,
address _assetContract,
uint256 _tokenId,
uint256 _quantity,
TokenType _tokenType
) internal view {
// address sender = msg.sender;
if (_tokenType == TokenType.ERC721) {
require(
_tokenOwner == msg.sender ||
IERC721(_assetContract).isApprovedForAll(
_tokenOwner,
msg.sender
) ||
IERC721(_assetContract).getApproved(_tokenId) == msg.sender,
throwError(
INVALID_ASSET_OWNERSHIP_OR_INSUFFICIENT_ALLOWANCE_BALANCE
)
);
} else if (_tokenType == TokenType.ERC1155) {
require(
(_tokenOwner == msg.sender ||
IERC1155(_assetContract).isApprovedForAll(
_tokenOwner,
msg.sender
)) &&
(IERC1155(_assetContract).balanceOf(
_tokenOwner,
_tokenId
) >= _quantity),
throwError(
INVALID_ASSET_OWNERSHIP_OR_INSUFFICIENT_ALLOWANCE_BALANCE
)
);
}
}
/**
* @dev validates the approval of an account.
* @param _tokenOwner address of token Owner.
* @param _assetContract address of the asset contract.
* @param _tokenId Id of the token to be validated
* @param _tokenType Type of the token whether its ERC20/721/1155
* @param operator Address of the current operator.
*/
function validateApproval(
address _tokenOwner,
address _assetContract,
uint256 _tokenId,
TokenType _tokenType,
address operator
) internal view returns (bool flag) {
if (_tokenType == TokenType.ERC721) {
if (
IERC721(_assetContract).isApprovedForAll(
_tokenOwner,
operator
) || IERC721(_assetContract).getApproved(_tokenId) == operator
) {
return true;
} else {
return false;
}
} else if (_tokenType == TokenType.ERC1155) {
if (
IERC1155(_assetContract).isApprovedForAll(_tokenOwner, operator)
) {
return true;
} else {
return false;
}
}
}
/**
* @dev Validates conditions of a direct listing sale.
* @param _listing Type of the listing.
* @param _quantityToBuy Number of tokens to be purchased
* @param settledTotalPrice Total price to be settled.
* Requirement:
* Token amount should be valid
* Cannot buy assets which are in Auction
*/
function validateDirectListingSale(
Listing memory _listing,
uint256 _quantityToBuy,
uint256 settledTotalPrice
) internal {
require(
_listing.listingType == ListingType.Direct,
throwError(CANT_BUY_LISTING_FROM_AUCTION)
);
// Check whether a valid quantity of listed tokens is being bought.
require(
_listing.quantity > 0 &&
_quantityToBuy > 0 &&
_quantityToBuy <= _listing.quantity,
throwError(BUYING_INVALID_ASSET_AMOUNT)
);
// Check: buyer owns and has approved sufficient currency for sale.
if (_listing.currency == NATIVE_TOKEN) {
require(
msg.value == settledTotalPrice,
throwError(NATIVE_TOKEN_AMOUNT_MISMATCH_FROM_LISTING)
);
} else {
if (settledTotalPrice > 0) {
validateERC20BalAndAllowance(
msg.sender,
_listing.currency,
settledTotalPrice
);
}
}
// Check iwhether token owner owns and has approved `quantityToBuy` amount of listing tokens from the listing.
require(
validateApproval(
_listing.tokenOwner,
_listing.assetContract,
_listing.tokenId,
_listing.tokenType,
address(this)
),
throwError(INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET)
);
}
/// @dev Returns the interface supported by a contract.
function getTokenType(address _assetContract)
internal
view
returns (TokenType tokenType)
{
if (
IERC165(_assetContract).supportsInterface(type(IERC721).interfaceId)
) {
tokenType = TokenType.ERC721;
} else if (
IERC165(_assetContract).supportsInterface(
type(IERC1155).interfaceId
)
) {
tokenType = TokenType.ERC1155;
} else {
revert MustImplementERC721();
}
}
/**
* @dev Sets the Royalty Treasury .
* @param _treasury addres of the treasury account
* Requirement:
* Only admin can call this function
* treasury address should be valid
*/
function setRoyaltyTreasury(address _treasury) external onlyAdmin {
_nonZeroAddress(_treasury, ZERO_ADDRESS);
royaltyTreasury = _treasury;
}
/**
* @dev Validates that `_addrToCheck` owns and has approved markeplace to transfer the appropriate amount of currency
* @param _addrToCheck address to be checked.
* @param _currency address of the currency.
* @param _currencyAmountToCheckAgainst address of the currency to be checked against.
*/
function validateERC20BalAndAllowance(
address _addrToCheck,
address _currency,
uint256 _currencyAmountToCheckAgainst
) internal view {
require(
IERC20Upgradeable(_currency).balanceOf(_addrToCheck) >=
_currencyAmountToCheckAgainst &&
IERC20Upgradeable(_currency).allowance(
_addrToCheck,
address(this)
) >=
_currencyAmountToCheckAgainst,
throwError(TOKEN_INSUFFICIENT_ALLOWANCE_BALANCE)
);
}
/**
* ERC 721 Receiver functions.
**/
function onERC721Received(
address,
address,
uint256,
bytes calldata
) external pure override returns (bytes4) {
return this.onERC721Received.selector;
}
/**
* @dev See {IERC165-supportsInterface}.
*/
function supportsInterface(bytes4 interfaceId)
public
view
virtual
override(AccessControlEnumerableUpgradeable)
returns (bool)
{
return
interfaceId == type(IERC721Receiver).interfaceId ||
interfaceId == type(IERC2981).interfaceId;
}
/// @dev Lets a protocol admin withdraw tokens from this contract.
function withdrawFunds(address to, address currency) external nonReentrant {
_nonZeroAddress(to, ZERO_ADDRESS);
uint256 amount = tShares[msg.sender][currency];
tShares[msg.sender][currency] = 0;
_withdraw(to, currency, amount);
}
/**
* @dev Lets a protocol admin withdraw treasury amount.
* @param to address of which token is to be withdrawed.
* @param currency address of the currency.
* Requirement:
* Currency should be valid.
* Only admin can call the function
*/
function withdrawTreasury(address to, address currency)
external
onlyAdmin
nonReentrant
{
_nonZeroAddress(to, ZERO_ADDRESS);
uint256 amount = tShares[royaltyTreasury][currency];
tShares[royaltyTreasury][currency] = 0;
_withdraw(to, currency, amount);
}
/**
* @dev Lets a protocol admin withdraw amount.
* @param to address of which token is to be withdrawed.
* @param currency address of the currency.
* @param amount amount to be withdrawn
* Requirement:
* Currency should be valid.
*/
function _withdraw(
address to,
address currency,
uint256 amount
) internal {
IERC20Upgradeable _currency = IERC20Upgradeable(currency);
bool isNativeToken = _isNativeToken(currency);
bool transferSuccess;
require(amount > 0, throwError(WITHDRAW_ZERO_AMOUNT));
if (royaltyTreasury == address(this)) {
if (isNativeToken) {
IWETH(nativeTokenWrapper).withdraw(amount);
(transferSuccess, ) = payable(to).call{value: amount}("");
} else {
_currency.safeTransfer(to, amount);
transferSuccess = true;
}
} else {
if (isNativeToken) {
if (
IWETH(nativeTokenWrapper).allowance(
royaltyTreasury,
address(this)
) >= amount
) {
bool ifWithdrawn = IWETH(nativeTokenWrapper).transferFrom(
royaltyTreasury,
address(this),
amount
);
if (ifWithdrawn)
(transferSuccess, ) = payable(to).call{value: amount}(
""
);
}
} else {
_currency.safeTransferFrom(royaltyTreasury, to, amount);
transferSuccess = true;
}
}
require(transferSuccess, throwError(WITHDRAW_FAILED));
emit FundsWithdrawn(to, currency, amount);
}
/// @dev Checks whether an address is to be interpreted as the native token
function _isNativeToken(address _toCheck) internal pure returns (bool) {
return _toCheck == NATIVE_TOKEN || _toCheck == address(0);
}
/**
* @dev Whitelist asset contract [NFT]
* @param _assetContract address of the asset contract.
* @param _type Type of the asset whether its NFT or Currency
* @param _value whether to whitelist or Not.
* Requirement:
* Only privileged accounts can call the function
* asset should not be already whitelisted
* currency should not be already whitelisted
*/
function whiteListAsset(
address _assetContract,
AssetType _type,
bool _value
) external {
require(
hasRole(WHITE_LISTER, msg.sender),
throwError(ONLY_WHITE_LISTER)
);
if (_type == AssetType.NFT) {
require(
!wlistAsset[_assetContract],
throwError(ASSET_ALREADY_WHITELISTED)
);
wlistAsset[_assetContract] = _value;
} else {
require(
!wlistToken[_assetContract],
throwError(CURRENCY_ALREADY_WHITELISTED)
);
wlistToken[_assetContract] = _value;
}
emit AssetWhitelisted(_assetContract, _type, msg.sender, _value);
}
/**
* @dev Allows the admin to remove the listing .
* @param listingId Id of the listing.
* Requirement:
* Only admin can call the function.
*/
function removeListing(uint256 listingId) external {
Listing memory listing = listings[listingId];
require(
hasRole(DEFAULT_ADMIN_ROLE, msg.sender) ||
listing.tokenOwner == msg.sender ||
validateApproval(
listing.tokenOwner,
listing.assetContract,
listing.tokenId,
listing.tokenType,
msg.sender
),
throwError(UNAUTHORISED_ACCESS)
);
address assetContract = listing.assetContract;
uint256 tokenId = listing.tokenId;
// Iterate over listing Ids when supporting secondary sale and multiple listings can exist
require(
listing.assetContract != address(0),
throwError(LISTING_ID_NOT_FOUND)
);
_tokenListings[assetContract][tokenId].pop();
delete listings[listingId];
emit ListingRemoved(listingId);
}
///@dev Gets the token Listing from "_assetcontract" and its "_tokenId".
function getTokenListingCount(address _assetContract, uint256 _tokenId)
internal
view
returns (uint256 listingCount, uint256 activeCount)
{
listingCount = _tokenListings[_assetContract][_tokenId].length;
for (uint256 i; i < listingCount; ++i) {
uint256 listingId = _tokenListings[_assetContract][_tokenId][i];
Listing memory currentListing = listings[listingId];
if (currentListing.quantity > 0) {
activeCount++;
}
}
}
/**
* @dev Returns latest active listings of the given tokenId, assetContract.
* @param _assetContract Address of the asset contract.
* @param _tokenId TokenId of the asset.
*/
function getTokenListing(address _assetContract, uint256 _tokenId)
public
view
returns (Listing[] memory activeListings)
{
(uint256 totalListing, uint256 activeCount) = getTokenListingCount(
_assetContract,
_tokenId
);
// If there are no listing, return empty array.
// If there are no active listings, return last completed index.
// Else return all the active listings array.
if (_checkIfZero(totalListing)) return activeListings;
else if (_checkIfZero(activeCount)) activeListings = new Listing[](1);
else activeListings = new Listing[](activeCount);
uint256 validIndex;
for (
uint256 i;
i < _tokenListings[_assetContract][_tokenId].length;
++i
) {
Listing memory currentListing = listings[
_tokenListings[_assetContract][_tokenId][i]
];
activeListings[validIndex] = currentListing;
if (currentListing.quantity > 0) {
validIndex++;
}
}
}
/**
* @dev Sets the authenticator contract address.
* @param _authenticator Address of authenticator contract.
*/
function setAuthenticatorContract(address _authenticator)
external
onlyAdmin
returns (bool)
{
_nonZeroAddress(_authenticator, ZERO_ADDRESS);
_authenticatorAddress = _authenticator;
return true;
}
function validateBuyParams(
uint256 _listingId,
address _currency,
uint256 _price,
address _buyer,
uint256 _quantityToBuy,
uint256 _signatureTimestamp,
bytes memory signature
) private view returns (bool) {
Listing memory targetListing = listings[_listingId];
bool isPrivileged = false;
// Check if buyer is a privileged member
if (signature.length > 0) {
require(
block.timestamp <= _signatureTimestamp + 30 minutes,
throwError(SIGNATURE_MUST_BE_USED_WITHIN_30_MINUTES)
);
Authenticator authenticatorContractInstance = Authenticator(
_authenticatorAddress
);
isPrivileged = authenticatorContractInstance.verify(
authenticatorContractInstance.getPrivilegedSigner(),
_buyer,
_signatureTimestamp,
signature
);
}
// Check whether the settled total price and currency to use are correct.
if (isPrivileged) {
require(
_currency == targetListing.currency &&
_price >=
targetListing.buyoutPrice -
((targetListing.buyoutPrice * primaryFeeBps) / MAX_BPS),
throwError(CURRENCY_OR_PRICE_DOES_NOT_MATCH_LISTING)
);
} else {
require(
_currency == targetListing.currency &&
_price == targetListing.buyoutPrice,
throwError(CURRENCY_OR_PRICE_DOES_NOT_MATCH_LISTING)
);
}
require(
_buyer != targetListing.tokenOwner,
throwError(OWNER_BUYER_CONFLICT)
);
if (listings[_listingId].tokenType == TokenType.ERC721) {
//tokenowner at the time of listing is the current owner
require(
targetListing.tokenOwner ==
IERC721(targetListing.assetContract).ownerOf(
targetListing.tokenId
),
throwError(INVALID_TOKEN_OWNER)
);
} else if (targetListing.tokenType == TokenType.ERC1155) {
//tokenowner at the time of listing is the current owner
require(
IERC1155(targetListing.assetContract).balanceOf(
targetListing.tokenOwner,
listings[_listingId].tokenId
) >= _quantityToBuy,
throwError(INVALID_TOKEN_OWNER)
);
}
return isPrivileged;
}
function _onlyAdmin() private view {
require(
hasRole(DEFAULT_ADMIN_ROLE, msg.sender),
throwError(ONLY_ADMIN)
);
}
function _nonZeroAddress(address _toCheck, int32 _errorCode) private pure {
require(_toCheck != address(0), throwError(_errorCode));
}
function _checkIfZero(uint256 _toCheck) private pure returns (bool) {
return _toCheck == 0;
}
function _depositToIWETH(uint256 _amount) private {
IWETH(nativeTokenWrapper).deposit{value: _amount}();
}
/**
* @dev Error message - Market: must implement ERC 721.
* @notice You can use this for reverting when condition fails for ERC721 Implementation required
*/
error MustImplementERC721();
/**
* @dev This empty reserved space is put in place to allow future versions to add new
* variables without shifting down storage in the inheritance chain.
* See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps
*/
uint256[48] private __gap;
mapping(address => mapping(address => uint256)) public tShares;
/// @dev safe listing token => prevent multiple listings with same token.
mapping(address => mapping(uint256 => bool)) private _safeListing;
// Keep only active listings in this and listing details in db.
mapping(address => mapping(uint256 => uint256[])) private _tokenListings;
/// @dev The address of collection contract
address public collectionContract;
/// @dev The address of the authenticator contract
address public _authenticatorAddress;
}