zellic-audit
Initial commit
f998fcd
raw
history blame
27.8 kB
// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023.
// SPDX-License-Identifier: MIT
pragma solidity =0.5.16;
interface IFireBirdFactory {
event PairCreated(address indexed token0, address indexed token1, address pair, uint32 tokenWeight0, uint32 swapFee, uint256);
function feeTo() external view returns (address);
function formula() external view returns (address);
function protocolFee() external view returns (uint256);
function feeToSetter() external view returns (address);
function getPair(
address tokenA,
address tokenB,
uint32 tokenWeightA,
uint32 swapFee
) external view returns (address pair);
function allPairs(uint256) external view returns (address pair);
function isPair(address) external view returns (bool);
function allPairsLength() external view returns (uint256);
function createPair(
address tokenA,
address tokenB,
uint32 tokenWeightA,
uint32 swapFee
) external returns (address pair);
function getWeightsAndSwapFee(address pair)
external
view
returns (
uint32 tokenWeight0,
uint32 tokenWeight1,
uint32 swapFee
);
function setFeeTo(address) external;
function setFeeToSetter(address) external;
function setProtocolFee(uint256) external;
}
interface IFireBirdPair {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint256);
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
event PaidProtocolFee(uint112 collectedFee0, uint112 collectedFee1);
event Mint(address indexed sender, uint256 amount0, uint256 amount1);
event Burn(address indexed sender, uint256 amount0, uint256 amount1, address indexed to);
event Swap(address indexed sender, uint256 amount0In, uint256 amount1In, uint256 amount0Out, uint256 amount1Out, address indexed to);
event Sync(uint112 reserve0, uint112 reserve1);
function MINIMUM_LIQUIDITY() external pure returns (uint256);
function factory() external view returns (address);
function token0() external view returns (address);
function token1() external view returns (address);
function getReserves()
external
view
returns (
uint112 reserve0,
uint112 reserve1,
uint32 blockTimestampLast
);
function getCollectedFees() external view returns (uint112 _collectedFee0, uint112 _collectedFee1);
function getTokenWeights() external view returns (uint32 tokenWeight0, uint32 tokenWeight1);
function getSwapFee() external view returns (uint32);
function price0CumulativeLast() external view returns (uint256);
function price1CumulativeLast() external view returns (uint256);
function mint(address to) external returns (uint256 liquidity);
function burn(address to) external returns (uint256 amount0, uint256 amount1);
function swap(
uint256 amount0Out,
uint256 amount1Out,
address to,
bytes calldata data
) external;
function skim(address to) external;
function sync() external;
function initialize(
address,
address,
uint32,
uint32
) external;
}
/*
Bancor Formula interface
*/
interface IFireBirdFormula {
function getFactoryReserveAndWeights(
address factory,
address pair,
address tokenA,
uint8 dexId
)
external
view
returns (
address tokenB,
uint256 reserveA,
uint256 reserveB,
uint32 tokenWeightA,
uint32 tokenWeightB,
uint32 swapFee
);
function getFactoryWeightsAndSwapFee(
address factory,
address pair,
uint8 dexId
)
external
view
returns (
uint32 tokenWeight0,
uint32 tokenWeight1,
uint32 swapFee
);
function getAmountIn(
uint256 amountOut,
uint256 reserveIn,
uint256 reserveOut,
uint32 tokenWeightIn,
uint32 tokenWeightOut,
uint32 swapFee
) external view returns (uint256 amountIn);
function getAmountOut(
uint256 amountIn,
uint256 reserveIn,
uint256 reserveOut,
uint32 tokenWeightIn,
uint32 tokenWeightOut,
uint32 swapFee
) external view returns (uint256 amountOut);
function getFactoryAmountsIn(
address factory,
address tokenIn,
address tokenOut,
uint256 amountOut,
address[] calldata path,
uint8[] calldata dexIds
) external view returns (uint256[] memory amounts);
function getFactoryAmountsOut(
address factory,
address tokenIn,
address tokenOut,
uint256 amountIn,
address[] calldata path,
uint8[] calldata dexIds
) external view returns (uint256[] memory amounts);
function ensureConstantValue(
uint256 reserve0,
uint256 reserve1,
uint256 balance0Adjusted,
uint256 balance1Adjusted,
uint32 tokenWeight0
) external view returns (bool);
function getReserves(
address pair,
address tokenA,
address tokenB
) external view returns (uint256 reserveA, uint256 reserveB);
function getOtherToken(address pair, address tokenA) external view returns (address tokenB);
function quote(
uint256 amountA,
uint256 reserveA,
uint256 reserveB
) external pure returns (uint256 amountB);
function sortTokens(address tokenA, address tokenB) external pure returns (address token0, address token1);
function mintLiquidityFee(
uint256 totalLiquidity,
uint112 reserve0,
uint112 reserve1,
uint32 tokenWeight0,
uint32 tokenWeight1,
uint112 collectedFee0,
uint112 collectedFee1
) external view returns (uint256 amount);
}
interface IFireBirdERC20 {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external pure returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
function DOMAIN_SEPARATOR() external view returns (bytes32);
function PERMIT_TYPEHASH() external pure returns (bytes32);
function nonces(address owner) external view returns (uint256);
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external;
}
// a library for performing overflow-safe math, courtesy of DappHub (https://github.com/dapphub/ds-math)
library SafeMath {
function add(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x + y) >= x, "ds-math-add-overflow");
}
function sub(uint256 x, uint256 y) internal pure returns (uint256 z) {
require((z = x - y) <= x, "ds-math-sub-underflow");
}
function mul(uint256 x, uint256 y) internal pure returns (uint256 z) {
require(y == 0 || (z = x * y) / y == x, "ds-math-mul-overflow");
}
function div(uint256 a, uint256 b) internal pure returns (uint256 c) {
require(b > 0, "ds-math-division-by-zero");
c = a / b;
}
}
contract FireBirdERC20 is IFireBirdERC20 {
using SafeMath for uint256;
string public constant name = "FireBird Liquidity Provider";
string public constant symbol = "FLP";
uint8 public constant decimals = 18;
uint256 public totalSupply;
mapping(address => uint256) public balanceOf;
mapping(address => mapping(address => uint256)) public allowance;
bytes32 public DOMAIN_SEPARATOR;
// keccak256("Permit(address owner,address spender,uint256 value,uint256 nonce,uint256 deadline)");
bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9;
mapping(address => uint256) public nonces;
constructor() public {
uint256 chainId;
assembly {
chainId := chainid
}
DOMAIN_SEPARATOR = keccak256(
abi.encode(keccak256("EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"), keccak256(bytes(name)), keccak256(bytes("1")), chainId, address(this))
);
}
function _mint(address to, uint256 value) internal {
totalSupply = totalSupply.add(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(address(0), to, value);
}
function _burn(address from, uint256 value) internal {
balanceOf[from] = balanceOf[from].sub(value);
totalSupply = totalSupply.sub(value);
emit Transfer(from, address(0), value);
}
function _approve(
address owner,
address spender,
uint256 value
) private {
allowance[owner][spender] = value;
emit Approval(owner, spender, value);
}
function _transfer(
address from,
address to,
uint256 value
) private {
balanceOf[from] = balanceOf[from].sub(value);
balanceOf[to] = balanceOf[to].add(value);
emit Transfer(from, to, value);
}
function approve(address spender, uint256 value) external returns (bool) {
_approve(msg.sender, spender, value);
return true;
}
function transfer(address to, uint256 value) external returns (bool) {
_transfer(msg.sender, to, value);
return true;
}
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool) {
if (allowance[from][msg.sender] != uint256(-1)) {
allowance[from][msg.sender] = allowance[from][msg.sender].sub(value);
}
_transfer(from, to, value);
return true;
}
function permit(
address owner,
address spender,
uint256 value,
uint256 deadline,
uint8 v,
bytes32 r,
bytes32 s
) external {
require(deadline >= block.timestamp, "FLP: EXPIRED");
bytes32 digest = keccak256(abi.encodePacked("\x19\x01", DOMAIN_SEPARATOR, keccak256(abi.encode(PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline))));
address recoveredAddress = ecrecover(digest, v, r, s);
require(recoveredAddress != address(0) && recoveredAddress == owner, "FLP: INVALID_SIGNATURE");
_approve(owner, spender, value);
}
}
// a library for performing various math operations
library Math {
function min(uint256 x, uint256 y) internal pure returns (uint256 z) {
z = x < y ? x : y;
}
// babylonian method (https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method)
function sqrt(uint256 y) internal pure returns (uint256 z) {
if (y > 3) {
z = y;
uint256 x = y / 2 + 1;
while (x < z) {
z = x;
x = (y / x + x) / 2;
}
} else if (y != 0) {
z = 1;
}
}
}
// a library for handling binary fixed point numbers (https://en.wikipedia.org/wiki/Q_(number_format))
// range: [0, 2**112 - 1]
// resolution: 1 / 2**112
library UQ112x112 {
uint224 constant Q112 = 2**112;
// encode a uint112 as a UQ112x112
function encode(uint112 y) internal pure returns (uint224 z) {
z = uint224(y) * Q112; // never overflows
}
// divide a UQ112x112 by a uint112, returning a UQ112x112
function uqdiv(uint224 x, uint112 y) internal pure returns (uint224 z) {
z = x / uint224(y);
}
}
interface IERC20 {
event Approval(address indexed owner, address indexed spender, uint256 value);
event Transfer(address indexed from, address indexed to, uint256 value);
function name() external view returns (string memory);
function symbol() external view returns (string memory);
function decimals() external view returns (uint8);
function totalSupply() external view returns (uint256);
function balanceOf(address owner) external view returns (uint256);
function allowance(address owner, address spender) external view returns (uint256);
function approve(address spender, uint256 value) external returns (bool);
function transfer(address to, uint256 value) external returns (bool);
function transferFrom(
address from,
address to,
uint256 value
) external returns (bool);
}
interface IUniswapV2Callee {
function uniswapV2Call(
address sender,
uint256 amount0,
uint256 amount1,
bytes calldata data
) external;
}
contract FireBirdPair is IFireBirdPair, FireBirdERC20 {
using SafeMath for uint256;
using UQ112x112 for uint224;
uint256 public constant MINIMUM_LIQUIDITY = 10**3;
bytes4 private constant SELECTOR = bytes4(keccak256(bytes("transfer(address,uint256)")));
address public factory;
address public token0;
address public token1;
uint112 private reserve0; // uses single storage slot, accessible via getReserves
uint112 private reserve1; // uses single storage slot, accessible via getReserves
uint32 private blockTimestampLast; // uses single storage slot, accessible via getReserves
uint256 public price0CumulativeLast;
uint256 public price1CumulativeLast;
uint256 private unlocked = 1;
address public formula;
uint112 private collectedFee0; // uses single storage slot, accessible via getReserves
uint112 private collectedFee1; // uses single storage slot, accessible via getReserves
uint32 private tokenWeight0;
uint32 private swapFee;
modifier lock() {
require(unlocked == 1, "FLP: LOCKED");
unlocked = 0;
_;
unlocked = 1;
}
function getReserves()
public
view
returns (
uint112 _reserve0,
uint112 _reserve1,
uint32 _blockTimestampLast
)
{
_reserve0 = reserve0;
_reserve1 = reserve1;
_blockTimestampLast = blockTimestampLast;
}
function getCollectedFees() public view returns (uint112 _collectedFee0, uint112 _collectedFee1) {
_collectedFee0 = collectedFee0;
_collectedFee1 = collectedFee1;
}
function getTokenWeights() public view returns (uint32 _tokenWeight0, uint32 _tokenWeight1) {
_tokenWeight0 = tokenWeight0;
_tokenWeight1 = 100 - tokenWeight0;
}
function getSwapFee() public view returns (uint32 _swapFee) {
_swapFee = swapFee;
}
function _safeTransfer(
address token,
address to,
uint256 value
) private {
(bool success, bytes memory data) = token.call(abi.encodeWithSelector(SELECTOR, to, value));
require(success && (data.length == 0 || abi.decode(data, (bool))), "FLP: TRANSFER_FAILED");
}
constructor() public {
factory = msg.sender;
}
// called once by the factory at time of deployment
function initialize(
address _token0,
address _token1,
uint32 _tokenWeight0,
uint32 _swapFee
) external {
require(msg.sender == factory, "FLP: FORBIDDEN");
// sufficient check
token0 = _token0;
token1 = _token1;
tokenWeight0 = _tokenWeight0;
swapFee = _swapFee;
formula = IFireBirdFactory(factory).formula();
}
// update reserves and, on the first call per block, price accumulators
function _update(
uint256 balance0,
uint256 balance1,
uint112 _reserve0,
uint112 _reserve1
) private {
uint32 _tokenWeight0 = tokenWeight0;
require(balance0 * (100 - _tokenWeight0) <= uint112(-1) && balance1 * _tokenWeight0 <= uint112(-1), "FLP: OVERFLOW");
uint32 blockTimestamp = uint32(block.timestamp % 2**32);
uint32 timeElapsed = blockTimestamp - blockTimestampLast;
// overflow is desired
if (timeElapsed > 0 && _reserve0 != 0 && _reserve1 != 0) {
// * never overflows, and + overflow is desired
uint112 mReserve0 = _reserve0 * (100 - _tokenWeight0);
uint112 mReserve1 = _reserve1 * _tokenWeight0;
price0CumulativeLast += uint256(UQ112x112.encode(mReserve1).uqdiv(mReserve0)) * timeElapsed;
price1CumulativeLast += uint256(UQ112x112.encode(mReserve0).uqdiv(mReserve1)) * timeElapsed;
}
reserve0 = uint112(balance0);
reserve1 = uint112(balance1);
blockTimestampLast = blockTimestamp;
emit Sync(reserve0, reserve1);
}
function _mintFee(uint112 _reserve0, uint112 _reserve1) private returns (bool feeOn) {
address feeTo = IFireBirdFactory(factory).feeTo();
uint112 protocolFee = uint112(IFireBirdFactory(factory).protocolFee());
feeOn = feeTo != address(0);
(uint112 _collectedFee0, uint112 _collectedFee1) = getCollectedFees();
if (protocolFee > 0 && feeOn && (_collectedFee0 > 0 || _collectedFee1 > 0)) {
uint32 _tokenWeight0 = tokenWeight0;
uint256 liquidity = IFireBirdFormula(formula).mintLiquidityFee(totalSupply, _reserve0, _reserve1, _tokenWeight0, 100 - _tokenWeight0, _collectedFee0 / protocolFee, _collectedFee1 / protocolFee);
if (liquidity > 0) _mint(feeTo, liquidity);
}
if (_collectedFee0 > 0) collectedFee0 = 0;
if (_collectedFee1 > 0) collectedFee1 = 0;
}
// this low-level function should be called from a contract which performs important safety checks
function mint(address to) external lock returns (uint256 liquidity) {
(uint112 _reserve0, uint112 _reserve1, ) = getReserves(); // gas savings
uint256 balance0 = IERC20(token0).balanceOf(address(this));
uint256 balance1 = IERC20(token1).balanceOf(address(this));
uint256 amount0 = balance0.sub(_reserve0);
uint256 amount1 = balance1.sub(_reserve1);
_mintFee(_reserve0, _reserve1);
uint256 _totalSupply = totalSupply;
// gas savings, must be defined here since totalSupply can update in _mintFee
if (_totalSupply == 0) {
liquidity = Math.sqrt(amount0.mul(amount1)).sub(MINIMUM_LIQUIDITY);
_mint(address(0), MINIMUM_LIQUIDITY);
// permanently lock the first MINIMUM_LIQUIDITY tokens
} else {
liquidity = Math.min(amount0.mul(_totalSupply) / _reserve0, amount1.mul(_totalSupply) / _reserve1);
}
require(liquidity > 0, "FLP: INSUFFICIENT_LIQUIDITY_MINTED");
_mint(to, liquidity);
_update(balance0, balance1, _reserve0, _reserve1);
emit Mint(msg.sender, amount0, amount1);
}
// this low-level function should be called from a contract which performs important safety checks
function burn(address to) external lock returns (uint256 amount0, uint256 amount1) {
(uint112 _reserve0, uint112 _reserve1, ) = getReserves(); // gas savings
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
uint256 balance0 = IERC20(_token0).balanceOf(address(this));
uint256 balance1 = IERC20(_token1).balanceOf(address(this));
uint256 liquidity = balanceOf[address(this)];
_mintFee(_reserve0, _reserve1);
uint256 _totalSupply = totalSupply; // gas savings, must be defined here since totalSupply can update in _mintFee
amount0 = liquidity.mul(balance0) / _totalSupply; // using balances ensures pro-rata distribution
amount1 = liquidity.mul(balance1) / _totalSupply; // using balances ensures pro-rata distribution
require(amount0 > 0 && amount1 > 0, "FLP: INSUFFICIENT_LIQUIDITY_BURNED");
_burn(address(this), liquidity);
_safeTransfer(_token0, to, amount0);
_safeTransfer(_token1, to, amount1);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
_update(balance0, balance1, _reserve0, _reserve1);
emit Burn(msg.sender, amount0, amount1, to);
}
// this low-level function should be called from a contract which performs important safety checks
function swap(
uint256 amount0Out,
uint256 amount1Out,
address to,
bytes calldata data
) external lock {
require(amount0Out > 0 || amount1Out > 0, "FLP: INSUFFICIENT_OUTPUT_AMOUNT");
uint112 _reserve0 = reserve0; // gas savings
uint112 _reserve1 = reserve1; // gas savings
require(amount0Out < _reserve0 && amount1Out < _reserve1, "FLP: INSUFFICIENT_LIQUIDITY");
uint256 balance0;
uint256 balance1;
{
// scope for _token{0,1}, avoids stack too deep errors
address _token0 = token0;
address _token1 = token1;
require(to != _token0 && to != _token1, "FLP: INVALID_TO");
if (amount0Out > 0) _safeTransfer(_token0, to, amount0Out); // optimistically transfer tokens
if (amount1Out > 0) _safeTransfer(_token1, to, amount1Out); // optimistically transfer tokens
if (data.length > 0) IUniswapV2Callee(to).uniswapV2Call(msg.sender, amount0Out, amount1Out, data);
balance0 = IERC20(_token0).balanceOf(address(this));
balance1 = IERC20(_token1).balanceOf(address(this));
}
uint256 amount0In = balance0 > _reserve0 - amount0Out ? balance0 - (_reserve0 - amount0Out) : 0;
uint256 amount1In = balance1 > _reserve1 - amount1Out ? balance1 - (_reserve1 - amount1Out) : 0;
require(amount0In > 0 || amount1In > 0, "FLP: INSUFFICIENT_INPUT_AMOUNT");
{
// scope for reserve{0,1}Adjusted, avoids stack too deep errors
uint256 balance0Adjusted = balance0.mul(10000);
uint256 balance1Adjusted = balance1.mul(10000);
{
// avoids stack too deep errors
if (amount0In > 0) {
uint256 amount0InFee = amount0In.mul(swapFee);
balance0Adjusted = balance0Adjusted.sub(amount0InFee);
collectedFee0 = uint112(uint256(collectedFee0).add(amount0InFee));
}
if (amount1In > 0) {
uint256 amount1InFee = amount1In.mul(swapFee);
balance1Adjusted = balance1Adjusted.sub(amount1InFee);
collectedFee1 = uint112(uint256(collectedFee1).add(amount1InFee));
}
uint32 _tokenWeight0 = tokenWeight0; // gas savings
if (_tokenWeight0 == 50) {
// gas savings for pair 50/50
require(balance0Adjusted.mul(balance1Adjusted) >= uint256(_reserve0).mul(_reserve1).mul(10000**2), "FLP: K");
} else {
require(IFireBirdFormula(formula).ensureConstantValue(uint256(_reserve0).mul(10000), uint256(_reserve1).mul(10000), balance0Adjusted, balance1Adjusted, _tokenWeight0), "FLP: K");
}
}
}
_update(balance0, balance1, _reserve0, _reserve1);
emit Swap(msg.sender, amount0In, amount1In, amount0Out, amount1Out, to);
}
// force balances to match reserves
function skim(address to) external lock {
address _token0 = token0; // gas savings
address _token1 = token1; // gas savings
_safeTransfer(_token0, to, IERC20(_token0).balanceOf(address(this)).sub(reserve0));
_safeTransfer(_token1, to, IERC20(_token1).balanceOf(address(this)).sub(reserve1));
}
// force reserves to match balances
function sync() external lock {
_update(IERC20(token0).balanceOf(address(this)), IERC20(token1).balanceOf(address(this)), reserve0, reserve1);
}
}
contract FireBirdFactory is IFireBirdFactory {
address public feeTo;
address public formula;
uint256 public protocolFee;
address public feeToSetter;
mapping(bytes32 => address) private _pairSalts;
address[] public allPairs;
mapping(address => uint64) private _pairs;
constructor(address _feeToSetter, address _formula) public {
feeToSetter = _feeToSetter;
formula = _formula;
}
function isPair(address b) external view returns (bool) {
return _pairs[b] > 0;
}
function allPairsLength() external view returns (uint256) {
return allPairs.length;
}
function getPair(
address tokenA,
address tokenB,
uint32 tokenWeightA,
uint32 swapFee
) external view returns (address pair) {
(address token0, address token1, uint32 tokenWeight0) = tokenA < tokenB ? (tokenA, tokenB, tokenWeightA) : (tokenB, tokenA, 100 - tokenWeightA);
bytes32 salt = keccak256(abi.encodePacked(token0, token1, tokenWeight0, swapFee));
pair = _pairSalts[salt];
}
function createPair(
address tokenA,
address tokenB,
uint32 tokenWeightA,
uint32 swapFee
) external returns (address pair) {
require(tokenA != tokenB, "FLP: IDENTICAL_ADDRESSES");
require(tokenWeightA >= 2 && tokenWeightA <= 98 && (tokenWeightA % 2) == 0, "FLP: INVALID_TOKEN_WEIGHT");
// swap fee from [0.01% - 20%]
require(swapFee >= 1 && swapFee <= 2000, "FLP: INVALID_SWAP_FEE");
(address token0, address token1, uint32 tokenWeight0) = tokenA < tokenB ? (tokenA, tokenB, tokenWeightA) : (tokenB, tokenA, 100 - tokenWeightA);
require(token0 != address(0), "FLP: ZERO_ADDRESS");
// single check is sufficient
bytes memory bytecode = type(FireBirdPair).creationCode;
bytes32 salt = keccak256(abi.encodePacked(token0, token1, tokenWeight0, swapFee));
require(_pairSalts[salt] == address(0), "FLP: PAIR_EXISTS");
assembly {
pair := create2(0, add(bytecode, 32), mload(bytecode), salt)
}
IFireBirdPair(pair).initialize(token0, token1, tokenWeight0, swapFee);
_pairSalts[salt] = address(pair);
allPairs.push(pair);
uint64 weightAndFee = uint64(swapFee);
weightAndFee |= uint64(tokenWeight0) << 32;
_pairs[address(pair)] = weightAndFee;
emit PairCreated(token0, token1, pair, tokenWeight0, swapFee, allPairs.length);
}
function setFeeTo(address _feeTo) external {
require(msg.sender == feeToSetter, "FLP: FORBIDDEN");
feeTo = _feeTo;
}
function setFeeToSetter(address _feeToSetter) external {
require(msg.sender == feeToSetter, "FLP: FORBIDDEN");
feeToSetter = _feeToSetter;
}
function setProtocolFee(uint256 _protocolFee) external {
require(msg.sender == feeToSetter, "FLP: FORBIDDEN");
require(_protocolFee == 0 || (_protocolFee >= 10000 && _protocolFee <= 100000), "FLP: Invalid Protocol fee");
protocolFee = _protocolFee;
}
function getWeightsAndSwapFee(address pair)
public
view
returns (
uint32 tokenWeight0,
uint32 tokenWeight1,
uint32 swapFee
)
{
uint64 weightAndFee = _pairs[pair];
if (weightAndFee > 0) {
swapFee = uint32(weightAndFee);
tokenWeight0 = uint32(weightAndFee >> 32);
tokenWeight1 = 100 - tokenWeight0;
} else {
// Default is 0.3%
return (50, 50, 30);
}
}
}