// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. // Sources flattened with hardhat v2.12.6 https://hardhat.org // SPDX-License-Identifier: MIT // File @openzeppelin/contracts-upgradeable/access/IAccessControlUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControlUpgradeable { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged( bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole ); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted( bytes32 indexed role, address indexed account, address indexed sender ); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked( bytes32 indexed role, address indexed account, address indexed sender ); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; } // File @openzeppelin/contracts-upgradeable/utils/AddressUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/Address.sol) pragma solidity ^0.8.1; /** * @dev Collection of functions related to the address type */ library AddressUpgradeable { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== * * [IMPORTANT] * ==== * You shouldn't rely on `isContract` to protect against flash loan attacks! * * Preventing calls from contracts is highly discouraged. It breaks composability, breaks support for smart wallets * like Gnosis Safe, and does not provide security since it can be circumvented by calling from a contract * constructor. * ==== */ function isContract(address account) internal view returns (bool) { // This method relies on extcodesize/address.code.length, which returns 0 // for contracts in construction, since the code is only stored at the end // of the constructor execution. return account.code.length > 0; } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require( address(this).balance >= amount, "Address: insufficient balance" ); (bool success, ) = recipient.call{value: amount}(""); require( success, "Address: unable to send value, recipient may have reverted" ); } /** * @dev Performs a Solidity function call using a low level `call`. A * plain `call` is an unsafe replacement for a function call: use this * function instead. * * If `target` reverts with a revert reason, it is bubbled up by this * function (like regular Solidity function calls). * * Returns the raw returned data. To convert to the expected return value, * use https://solidity.readthedocs.io/en/latest/units-and-global-variables.html?highlight=abi.decode#abi-encoding-and-decoding-functions[`abi.decode`]. * * Requirements: * * - `target` must be a contract. * - calling `target` with `data` must not revert. * * _Available since v3.1._ */ function functionCall(address target, bytes memory data) internal returns (bytes memory) { return functionCallWithValue( target, data, 0, "Address: low-level call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], but with * `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCall( address target, bytes memory data, string memory errorMessage ) internal returns (bytes memory) { return functionCallWithValue(target, data, 0, errorMessage); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but also transferring `value` wei to `target`. * * Requirements: * * - the calling contract must have an ETH balance of at least `value`. * - the called Solidity function must be `payable`. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value ) internal returns (bytes memory) { return functionCallWithValue( target, data, value, "Address: low-level call with value failed" ); } /** * @dev Same as {xref-Address-functionCallWithValue-address-bytes-uint256-}[`functionCallWithValue`], but * with `errorMessage` as a fallback revert reason when `target` reverts. * * _Available since v3.1._ */ function functionCallWithValue( address target, bytes memory data, uint256 value, string memory errorMessage ) internal returns (bytes memory) { require( address(this).balance >= value, "Address: insufficient balance for call" ); (bool success, bytes memory returndata) = target.call{value: value}( data ); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall(address target, bytes memory data) internal view returns (bytes memory) { return functionStaticCall( target, data, "Address: low-level static call failed" ); } /** * @dev Same as {xref-Address-functionCall-address-bytes-string-}[`functionCall`], * but performing a static call. * * _Available since v3.3._ */ function functionStaticCall( address target, bytes memory data, string memory errorMessage ) internal view returns (bytes memory) { (bool success, bytes memory returndata) = target.staticcall(data); return verifyCallResultFromTarget( target, success, returndata, errorMessage ); } /** * @dev Tool to verify that a low level call to smart-contract was successful, and revert (either by bubbling * the revert reason or using the provided one) in case of unsuccessful call or if target was not a contract. * * _Available since v4.8._ */ function verifyCallResultFromTarget( address target, bool success, bytes memory returndata, string memory errorMessage ) internal view returns (bytes memory) { if (success) { if (returndata.length == 0) { // only check isContract if the call was successful and the return data is empty // otherwise we already know that it was a contract require(isContract(target), "Address: call to non-contract"); } return returndata; } else { _revert(returndata, errorMessage); } } /** * @dev Tool to verify that a low level call was successful, and revert if it wasn't, either by bubbling the * revert reason or using the provided one. * * _Available since v4.3._ */ function verifyCallResult( bool success, bytes memory returndata, string memory errorMessage ) internal pure returns (bytes memory) { if (success) { return returndata; } else { _revert(returndata, errorMessage); } } function _revert(bytes memory returndata, string memory errorMessage) private pure { // Look for revert reason and bubble it up if present if (returndata.length > 0) { // The easiest way to bubble the revert reason is using memory via assembly /// @solidity memory-safe-assembly assembly { let returndata_size := mload(returndata) revert(add(32, returndata), returndata_size) } } else { revert(errorMessage); } } } // File @openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.1) (proxy/utils/Initializable.sol) pragma solidity ^0.8.2; /** * @dev This is a base contract to aid in writing upgradeable contracts, or any kind of contract that will be deployed * behind a proxy. Since proxied contracts do not make use of a constructor, it's common to move constructor logic to an * external initializer function, usually called `initialize`. It then becomes necessary to protect this initializer * function so it can only be called once. The {initializer} modifier provided by this contract will have this effect. * * The initialization functions use a version number. Once a version number is used, it is consumed and cannot be * reused. This mechanism prevents re-execution of each "step" but allows the creation of new initialization steps in * case an upgrade adds a module that needs to be initialized. * * For example: * * [.hljs-theme-light.nopadding] * ``` * contract MyToken is ERC20Upgradeable { * function initialize() initializer public { * __ERC20_init("MyToken", "MTK"); * } * } * contract MyTokenV2 is MyToken, ERC20PermitUpgradeable { * function initializeV2() reinitializer(2) public { * __ERC20Permit_init("MyToken"); * } * } * ``` * * TIP: To avoid leaving the proxy in an uninitialized state, the initializer function should be called as early as * possible by providing the encoded function call as the `_data` argument to {ERC1967Proxy-constructor}. * * CAUTION: When used with inheritance, manual care must be taken to not invoke a parent initializer twice, or to ensure * that all initializers are idempotent. This is not verified automatically as constructors are by Solidity. * * [CAUTION] * ==== * Avoid leaving a contract uninitialized. * * An uninitialized contract can be taken over by an attacker. This applies to both a proxy and its implementation * contract, which may impact the proxy. To prevent the implementation contract from being used, you should invoke * the {_disableInitializers} function in the constructor to automatically lock it when it is deployed: * * [.hljs-theme-light.nopadding] * ``` * /// @custom:oz-upgrades-unsafe-allow constructor * constructor() { * _disableInitializers(); * } * ``` * ==== */ abstract contract Initializable { /** * @dev Indicates that the contract has been initialized. * @custom:oz-retyped-from bool */ uint8 private _initialized; /** * @dev Indicates that the contract is in the process of being initialized. */ bool private _initializing; /** * @dev Triggered when the contract has been initialized or reinitialized. */ event Initialized(uint8 version); /** * @dev A modifier that defines a protected initializer function that can be invoked at most once. In its scope, * `onlyInitializing` functions can be used to initialize parent contracts. * * Similar to `reinitializer(1)`, except that functions marked with `initializer` can be nested in the context of a * constructor. * * Emits an {Initialized} event. */ modifier initializer() { bool isTopLevelCall = !_initializing; require( (isTopLevelCall && _initialized < 1) || (!AddressUpgradeable.isContract(address(this)) && _initialized == 1), "Initializable: contract is already initialized" ); _initialized = 1; if (isTopLevelCall) { _initializing = true; } _; if (isTopLevelCall) { _initializing = false; emit Initialized(1); } } /** * @dev A modifier that defines a protected reinitializer function that can be invoked at most once, and only if the * contract hasn't been initialized to a greater version before. In its scope, `onlyInitializing` functions can be * used to initialize parent contracts. * * A reinitializer may be used after the original initialization step. This is essential to configure modules that * are added through upgrades and that require initialization. * * When `version` is 1, this modifier is similar to `initializer`, except that functions marked with `reinitializer` * cannot be nested. If one is invoked in the context of another, execution will revert. * * Note that versions can jump in increments greater than 1; this implies that if multiple reinitializers coexist in * a contract, executing them in the right order is up to the developer or operator. * * WARNING: setting the version to 255 will prevent any future reinitialization. * * Emits an {Initialized} event. */ modifier reinitializer(uint8 version) { require( !_initializing && _initialized < version, "Initializable: contract is already initialized" ); _initialized = version; _initializing = true; _; _initializing = false; emit Initialized(version); } /** * @dev Modifier to protect an initialization function so that it can only be invoked by functions with the * {initializer} and {reinitializer} modifiers, directly or indirectly. */ modifier onlyInitializing() { require(_initializing, "Initializable: contract is not initializing"); _; } /** * @dev Locks the contract, preventing any future reinitialization. This cannot be part of an initializer call. * Calling this in the constructor of a contract will prevent that contract from being initialized or reinitialized * to any version. It is recommended to use this to lock implementation contracts that are designed to be called * through proxies. * * Emits an {Initialized} event the first time it is successfully executed. */ function _disableInitializers() internal virtual { require(!_initializing, "Initializable: contract is initializing"); if (_initialized < type(uint8).max) { _initialized = type(uint8).max; emit Initialized(type(uint8).max); } } /** * @dev Returns the highest version that has been initialized. See {reinitializer}. */ function _getInitializedVersion() internal view returns (uint8) { return _initialized; } /** * @dev Returns `true` if the contract is currently initializing. See {onlyInitializing}. */ function _isInitializing() internal view returns (bool) { return _initializing; } } // File @openzeppelin/contracts-upgradeable/utils/ContextUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract ContextUpgradeable is Initializable { function __Context_init() internal onlyInitializing {} function __Context_init_unchained() internal onlyInitializing {} function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // File @openzeppelin/contracts-upgradeable/utils/introspection/IERC165Upgradeable.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165Upgradeable { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File @openzeppelin/contracts-upgradeable/utils/introspection/ERC165Upgradeable.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165Upgradeable is Initializable, IERC165Upgradeable { function __ERC165_init() internal onlyInitializing {} function __ERC165_init_unchained() internal onlyInitializing {} /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165Upgradeable).interfaceId; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[50] private __gap; } // File @openzeppelin/contracts-upgradeable/utils/math/MathUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library MathUpgradeable { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } } // File @openzeppelin/contracts-upgradeable/utils/StringsUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library StringsUpgradeable { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = MathUpgradeable.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, MathUpgradeable.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // File @openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol) pragma solidity ^0.8.0; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ``` * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ``` * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. */ abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable { function __AccessControl_init() internal onlyInitializing {} function __AccessControl_init_unchained() internal onlyInitializing {} struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with a standardized message including the required role. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ * * _Available since v4.1._ */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual override returns (bool) { return _roles[role].members[account]; } /** * @dev Revert with a standard message if `_msgSender()` is missing `role`. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Revert with a standard message if `account` is missing `role`. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", StringsUpgradeable.toHexString(account), " is missing role ", StringsUpgradeable.toHexString(uint256(role), 32) ) ) ); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address account) public virtual override { require( account == _msgSender(), "AccessControl: can only renounce roles for self" ); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * May emit a {RoleGranted} event. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== * * NOTE: This function is deprecated in favor of {_grantRole}. */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Grants `role` to `account`. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } /** * @dev Revokes `role` from `account`. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File @openzeppelin/contracts-upgradeable/access/IAccessControlEnumerableUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControlEnumerable declared to support ERC165 detection. */ interface IAccessControlEnumerableUpgradeable is IAccessControlUpgradeable { /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) external view returns (address); /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) external view returns (uint256); } // File @openzeppelin/contracts-upgradeable/utils/structs/EnumerableSetUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ``` * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSetUpgradeable { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } } // File @openzeppelin/contracts-upgradeable/access/AccessControlEnumerableUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol) pragma solidity ^0.8.0; /** * @dev Extension of {AccessControl} that allows enumerating the members of each role. */ abstract contract AccessControlEnumerableUpgradeable is Initializable, IAccessControlEnumerableUpgradeable, AccessControlUpgradeable { function __AccessControlEnumerable_init() internal onlyInitializing {} function __AccessControlEnumerable_init_unchained() internal onlyInitializing {} using EnumerableSetUpgradeable for EnumerableSetUpgradeable.AddressSet; mapping(bytes32 => EnumerableSetUpgradeable.AddressSet) private _roleMembers; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlEnumerableUpgradeable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) { return _roleMembers[role].at(index); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) { return _roleMembers[role].length(); } /** * @dev Overload {_grantRole} to track enumerable memberships */ function _grantRole(bytes32 role, address account) internal virtual override { super._grantRole(role, account); _roleMembers[role].add(account); } /** * @dev Overload {_revokeRole} to track enumerable memberships */ function _revokeRole(bytes32 role, address account) internal virtual override { super._revokeRole(role, account); _roleMembers[role].remove(account); } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File @openzeppelin/contracts-upgradeable/security/ReentrancyGuardUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (security/ReentrancyGuard.sol) pragma solidity ^0.8.0; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuardUpgradeable is Initializable { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant _NOT_ENTERED = 1; uint256 private constant _ENTERED = 2; uint256 private _status; function __ReentrancyGuard_init() internal onlyInitializing { __ReentrancyGuard_init_unchained(); } function __ReentrancyGuard_init_unchained() internal onlyInitializing { _status = _NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be _NOT_ENTERED require(_status != _ENTERED, "ReentrancyGuard: reentrant call"); // Any calls to nonReentrant after this point will fail _status = _ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = _NOT_ENTERED; } /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[49] private __gap; } // File @openzeppelin/contracts-upgradeable/token/ERC20/extensions/draft-IERC20PermitUpgradeable.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/draft-IERC20Permit.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 Permit extension allowing approvals to be made via signatures, as defined in * https://eips.ethereum.org/EIPS/eip-2612[EIP-2612]. * * Adds the {permit} method, which can be used to change an account's ERC20 allowance (see {IERC20-allowance}) by * presenting a message signed by the account. By not relying on {IERC20-approve}, the token holder account doesn't * need to send a transaction, and thus is not required to hold Ether at all. */ interface IERC20PermitUpgradeable { /** * @dev Sets `value` as the allowance of `spender` over ``owner``'s tokens, * given ``owner``'s signed approval. * * IMPORTANT: The same issues {IERC20-approve} has related to transaction * ordering also apply here. * * Emits an {Approval} event. * * Requirements: * * - `spender` cannot be the zero address. * - `deadline` must be a timestamp in the future. * - `v`, `r` and `s` must be a valid `secp256k1` signature from `owner` * over the EIP712-formatted function arguments. * - the signature must use ``owner``'s current nonce (see {nonces}). * * For more information on the signature format, see the * https://eips.ethereum.org/EIPS/eip-2612#specification[relevant EIP * section]. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external; /** * @dev Returns the current nonce for `owner`. This value must be * included whenever a signature is generated for {permit}. * * Every successful call to {permit} increases ``owner``'s nonce by one. This * prevents a signature from being used multiple times. */ function nonces(address owner) external view returns (uint256); /** * @dev Returns the domain separator used in the encoding of the signature for {permit}, as defined by {EIP712}. */ // solhint-disable-next-line func-name-mixedcase function DOMAIN_SEPARATOR() external view returns (bytes32); } // File @openzeppelin/contracts-upgradeable/token/ERC20/IERC20Upgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20Upgradeable { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval( address indexed owner, address indexed spender, uint256 value ); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 amount ) external returns (bool); } // File @openzeppelin/contracts-upgradeable/token/ERC20/utils/SafeERC20Upgradeable.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC20/utils/SafeERC20.sol) pragma solidity ^0.8.0; /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20Upgradeable { using AddressUpgradeable for address; function safeTransfer( IERC20Upgradeable token, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transfer.selector, to, value) ); } function safeTransferFrom( IERC20Upgradeable token, address from, address to, uint256 value ) internal { _callOptionalReturn( token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value) ); } /** * @dev Deprecated. This function has issues similar to the ones found in * {IERC20-approve}, and its usage is discouraged. * * Whenever possible, use {safeIncreaseAllowance} and * {safeDecreaseAllowance} instead. */ function safeApprove( IERC20Upgradeable token, address spender, uint256 value ) internal { // safeApprove should only be called when setting an initial allowance, // or when resetting it to zero. To increase and decrease it, use // 'safeIncreaseAllowance' and 'safeDecreaseAllowance' require( (value == 0) || (token.allowance(address(this), spender) == 0), "SafeERC20: approve from non-zero to non-zero allowance" ); _callOptionalReturn( token, abi.encodeWithSelector(token.approve.selector, spender, value) ); } function safeIncreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { uint256 newAllowance = token.allowance(address(this), spender) + value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } function safeDecreaseAllowance( IERC20Upgradeable token, address spender, uint256 value ) internal { unchecked { uint256 oldAllowance = token.allowance(address(this), spender); require( oldAllowance >= value, "SafeERC20: decreased allowance below zero" ); uint256 newAllowance = oldAllowance - value; _callOptionalReturn( token, abi.encodeWithSelector( token.approve.selector, spender, newAllowance ) ); } } function safePermit( IERC20PermitUpgradeable token, address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) internal { uint256 nonceBefore = token.nonces(owner); token.permit(owner, spender, value, deadline, v, r, s); uint256 nonceAfter = token.nonces(owner); require( nonceAfter == nonceBefore + 1, "SafeERC20: permit did not succeed" ); } /** * @dev Imitates a Solidity high-level call (i.e. a regular function call to a contract), relaxing the requirement * on the return value: the return value is optional (but if data is returned, it must not be false). * @param token The token targeted by the call. * @param data The call data (encoded using abi.encode or one of its variants). */ function _callOptionalReturn(IERC20Upgradeable token, bytes memory data) private { // We need to perform a low level call here, to bypass Solidity's return data size checking mechanism, since // we're implementing it ourselves. We use {Address-functionCall} to perform this call, which verifies that // the target address contains contract code and also asserts for success in the low-level call. bytes memory returndata = address(token).functionCall( data, "SafeERC20: low-level call failed" ); if (returndata.length > 0) { // Return data is optional require( abi.decode(returndata, (bool)), "SafeERC20: ERC20 operation did not succeed" ); } } } // File @openzeppelin/contracts/utils/introspection/IERC165.sol@v4.8.1 // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); } // File @openzeppelin/contracts/interfaces/IERC2981.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.6.0) (interfaces/IERC2981.sol) pragma solidity ^0.8.0; /** * @dev Interface for the NFT Royalty Standard. * * A standardized way to retrieve royalty payment information for non-fungible tokens (NFTs) to enable universal * support for royalty payments across all NFT marketplaces and ecosystem participants. * * _Available since v4.5._ */ interface IERC2981 is IERC165 { /** * @dev Returns how much royalty is owed and to whom, based on a sale price that may be denominated in any unit of * exchange. The royalty amount is denominated and should be paid in that same unit of exchange. */ function royaltyInfo(uint256 tokenId, uint256 salePrice) external view returns (address receiver, uint256 royaltyAmount); } // File @openzeppelin/contracts/token/ERC1155/IERC1155.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.7.0) (token/ERC1155/IERC1155.sol) pragma solidity ^0.8.0; /** * @dev Required interface of an ERC1155 compliant contract, as defined in the * https://eips.ethereum.org/EIPS/eip-1155[EIP]. * * _Available since v3.1._ */ interface IERC1155 is IERC165 { /** * @dev Emitted when `value` tokens of token type `id` are transferred from `from` to `to` by `operator`. */ event TransferSingle( address indexed operator, address indexed from, address indexed to, uint256 id, uint256 value ); /** * @dev Equivalent to multiple {TransferSingle} events, where `operator`, `from` and `to` are the same for all * transfers. */ event TransferBatch( address indexed operator, address indexed from, address indexed to, uint256[] ids, uint256[] values ); /** * @dev Emitted when `account` grants or revokes permission to `operator` to transfer their tokens, according to * `approved`. */ event ApprovalForAll( address indexed account, address indexed operator, bool approved ); /** * @dev Emitted when the URI for token type `id` changes to `value`, if it is a non-programmatic URI. * * If an {URI} event was emitted for `id`, the standard * https://eips.ethereum.org/EIPS/eip-1155#metadata-extensions[guarantees] that `value` will equal the value * returned by {IERC1155MetadataURI-uri}. */ event URI(string value, uint256 indexed id); /** * @dev Returns the amount of tokens of token type `id` owned by `account`. * * Requirements: * * - `account` cannot be the zero address. */ function balanceOf(address account, uint256 id) external view returns (uint256); /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {balanceOf}. * * Requirements: * * - `accounts` and `ids` must have the same length. */ function balanceOfBatch(address[] calldata accounts, uint256[] calldata ids) external view returns (uint256[] memory); /** * @dev Grants or revokes permission to `operator` to transfer the caller's tokens, according to `approved`, * * Emits an {ApprovalForAll} event. * * Requirements: * * - `operator` cannot be the caller. */ function setApprovalForAll(address operator, bool approved) external; /** * @dev Returns true if `operator` is approved to transfer ``account``'s tokens. * * See {setApprovalForAll}. */ function isApprovedForAll(address account, address operator) external view returns (bool); /** * @dev Transfers `amount` tokens of token type `id` from `from` to `to`. * * Emits a {TransferSingle} event. * * Requirements: * * - `to` cannot be the zero address. * - If the caller is not `from`, it must have been approved to spend ``from``'s tokens via {setApprovalForAll}. * - `from` must have a balance of tokens of type `id` of at least `amount`. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155Received} and return the * acceptance magic value. */ function safeTransferFrom( address from, address to, uint256 id, uint256 amount, bytes calldata data ) external; /** * @dev xref:ROOT:erc1155.adoc#batch-operations[Batched] version of {safeTransferFrom}. * * Emits a {TransferBatch} event. * * Requirements: * * - `ids` and `amounts` must have the same length. * - If `to` refers to a smart contract, it must implement {IERC1155Receiver-onERC1155BatchReceived} and return the * acceptance magic value. */ function safeBatchTransferFrom( address from, address to, uint256[] calldata ids, uint256[] calldata amounts, bytes calldata data ) external; } // File @openzeppelin/contracts/token/ERC1155/IERC1155Receiver.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC1155/IERC1155Receiver.sol) pragma solidity ^0.8.0; /** * @dev _Available since v3.1._ */ interface IERC1155Receiver is IERC165 { /** * @dev Handles the receipt of a single ERC1155 token type. This function is * called at the end of a `safeTransferFrom` after the balance has been updated. * * NOTE: To accept the transfer, this must return * `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` * (i.e. 0xf23a6e61, or its own function selector). * * @param operator The address which initiated the transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param id The ID of the token being transferred * @param value The amount of tokens being transferred * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155Received(address,address,uint256,uint256,bytes)"))` if transfer is allowed */ function onERC1155Received( address operator, address from, uint256 id, uint256 value, bytes calldata data ) external returns (bytes4); /** * @dev Handles the receipt of a multiple ERC1155 token types. This function * is called at the end of a `safeBatchTransferFrom` after the balances have * been updated. * * NOTE: To accept the transfer(s), this must return * `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` * (i.e. 0xbc197c81, or its own function selector). * * @param operator The address which initiated the batch transfer (i.e. msg.sender) * @param from The address which previously owned the token * @param ids An array containing ids of each token being transferred (order and length must match values array) * @param values An array containing amounts of each token being transferred (order and length must match ids array) * @param data Additional data with no specified format * @return `bytes4(keccak256("onERC1155BatchReceived(address,address,uint256[],uint256[],bytes)"))` if transfer is allowed */ function onERC1155BatchReceived( address operator, address from, uint256[] calldata ids, uint256[] calldata values, bytes calldata data ) external returns (bytes4); } // File @openzeppelin/contracts/token/ERC721/IERC721.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (token/ERC721/IERC721.sol) pragma solidity ^0.8.0; /** * @dev Required interface of an ERC721 compliant contract. */ interface IERC721 is IERC165 { /** * @dev Emitted when `tokenId` token is transferred from `from` to `to`. */ event Transfer( address indexed from, address indexed to, uint256 indexed tokenId ); /** * @dev Emitted when `owner` enables `approved` to manage the `tokenId` token. */ event Approval( address indexed owner, address indexed approved, uint256 indexed tokenId ); /** * @dev Emitted when `owner` enables or disables (`approved`) `operator` to manage all of its assets. */ event ApprovalForAll( address indexed owner, address indexed operator, bool approved ); /** * @dev Returns the number of tokens in ``owner``'s account. */ function balanceOf(address owner) external view returns (uint256 balance); /** * @dev Returns the owner of the `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function ownerOf(uint256 tokenId) external view returns (address owner); /** * @dev Safely transfers `tokenId` token from `from` to `to`. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId, bytes calldata data ) external; /** * @dev Safely transfers `tokenId` token from `from` to `to`, checking first that contract recipients * are aware of the ERC721 protocol to prevent tokens from being forever locked. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must exist and be owned by `from`. * - If the caller is not `from`, it must have been allowed to move this token by either {approve} or {setApprovalForAll}. * - If `to` refers to a smart contract, it must implement {IERC721Receiver-onERC721Received}, which is called upon a safe transfer. * * Emits a {Transfer} event. */ function safeTransferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Transfers `tokenId` token from `from` to `to`. * * WARNING: Note that the caller is responsible to confirm that the recipient is capable of receiving ERC721 * or else they may be permanently lost. Usage of {safeTransferFrom} prevents loss, though the caller must * understand this adds an external call which potentially creates a reentrancy vulnerability. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `tokenId` token must be owned by `from`. * - If the caller is not `from`, it must be approved to move this token by either {approve} or {setApprovalForAll}. * * Emits a {Transfer} event. */ function transferFrom( address from, address to, uint256 tokenId ) external; /** * @dev Gives permission to `to` to transfer `tokenId` token to another account. * The approval is cleared when the token is transferred. * * Only a single account can be approved at a time, so approving the zero address clears previous approvals. * * Requirements: * * - The caller must own the token or be an approved operator. * - `tokenId` must exist. * * Emits an {Approval} event. */ function approve(address to, uint256 tokenId) external; /** * @dev Approve or remove `operator` as an operator for the caller. * Operators can call {transferFrom} or {safeTransferFrom} for any token owned by the caller. * * Requirements: * * - The `operator` cannot be the caller. * * Emits an {ApprovalForAll} event. */ function setApprovalForAll(address operator, bool _approved) external; /** * @dev Returns the account approved for `tokenId` token. * * Requirements: * * - `tokenId` must exist. */ function getApproved(uint256 tokenId) external view returns (address operator); /** * @dev Returns if the `operator` is allowed to manage all of the assets of `owner`. * * See {setApprovalForAll} */ function isApprovedForAll(address owner, address operator) external view returns (bool); } // File @openzeppelin/contracts/utils/math/Math.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv( uint256 x, uint256 y, uint256 denominator ) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv( uint256 x, uint256 y, uint256 denominator, Rounding rounding ) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10**64) { value /= 10**64; result += 64; } if (value >= 10**32) { value /= 10**32; result += 32; } if (value >= 10**16) { value /= 10**16; result += 16; } if (value >= 10**8) { value /= 10**8; result += 8; } if (value >= 10**4) { value /= 10**4; result += 4; } if (value >= 10**2) { value /= 10**2; result += 2; } if (value >= 10**1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0); } } } // File @openzeppelin/contracts/utils/Strings.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol) pragma solidity ^0.8.0; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } } // File @openzeppelin/contracts/token/ERC721/IERC721Receiver.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.6.0) (token/ERC721/IERC721Receiver.sol) pragma solidity ^0.8.0; /** * @title ERC721 token receiver interface * @dev Interface for any contract that wants to support safeTransfers * from ERC721 asset contracts. */ interface IERC721Receiver { /** * @dev Whenever an {IERC721} `tokenId` token is transferred to this contract via {IERC721-safeTransferFrom} * by `operator` from `from`, this function is called. * * It must return its Solidity selector to confirm the token transfer. * If any other value is returned or the interface is not implemented by the recipient, the transfer will be reverted. * * The selector can be obtained in Solidity with `IERC721Receiver.onERC721Received.selector`. */ function onERC721Received( address operator, address from, uint256 tokenId, bytes calldata data ) external returns (bytes4); } // File @openzeppelin/contracts/utils/cryptography/MerkleProof.sol@v4.8.1 // OpenZeppelin Contracts (last updated v4.8.0) (utils/cryptography/MerkleProof.sol) pragma solidity ^0.8.0; /** * @dev These functions deal with verification of Merkle Tree proofs. * * The tree and the proofs can be generated using our * https://github.com/OpenZeppelin/merkle-tree[JavaScript library]. * You will find a quickstart guide in the readme. * * WARNING: You should avoid using leaf values that are 64 bytes long prior to * hashing, or use a hash function other than keccak256 for hashing leaves. * This is because the concatenation of a sorted pair of internal nodes in * the merkle tree could be reinterpreted as a leaf value. * OpenZeppelin's JavaScript library generates merkle trees that are safe * against this attack out of the box. */ library MerkleProof { /** * @dev Returns true if a `leaf` can be proved to be a part of a Merkle tree * defined by `root`. For this, a `proof` must be provided, containing * sibling hashes on the branch from the leaf to the root of the tree. Each * pair of leaves and each pair of pre-images are assumed to be sorted. */ function verify( bytes32[] memory proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProof(proof, leaf) == root; } /** * @dev Calldata version of {verify} * * _Available since v4.7._ */ function verifyCalldata( bytes32[] calldata proof, bytes32 root, bytes32 leaf ) internal pure returns (bool) { return processProofCalldata(proof, leaf) == root; } /** * @dev Returns the rebuilt hash obtained by traversing a Merkle tree up * from `leaf` using `proof`. A `proof` is valid if and only if the rebuilt * hash matches the root of the tree. When processing the proof, the pairs * of leafs & pre-images are assumed to be sorted. * * _Available since v4.4._ */ function processProof(bytes32[] memory proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Calldata version of {processProof} * * _Available since v4.7._ */ function processProofCalldata(bytes32[] calldata proof, bytes32 leaf) internal pure returns (bytes32) { bytes32 computedHash = leaf; for (uint256 i = 0; i < proof.length; i++) { computedHash = _hashPair(computedHash, proof[i]); } return computedHash; } /** * @dev Returns true if the `leaves` can be simultaneously proven to be a part of a merkle tree defined by * `root`, according to `proof` and `proofFlags` as described in {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerify( bytes32[] memory proof, bool[] memory proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProof(proof, proofFlags, leaves) == root; } /** * @dev Calldata version of {multiProofVerify} * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function multiProofVerifyCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32 root, bytes32[] memory leaves ) internal pure returns (bool) { return processMultiProofCalldata(proof, proofFlags, leaves) == root; } /** * @dev Returns the root of a tree reconstructed from `leaves` and sibling nodes in `proof`. The reconstruction * proceeds by incrementally reconstructing all inner nodes by combining a leaf/inner node with either another * leaf/inner node or a proof sibling node, depending on whether each `proofFlags` item is true or false * respectively. * * CAUTION: Not all merkle trees admit multiproofs. To use multiproofs, it is sufficient to ensure that: 1) the tree * is complete (but not necessarily perfect), 2) the leaves to be proven are in the opposite order they are in the * tree (i.e., as seen from right to left starting at the deepest layer and continuing at the next layer). * * _Available since v4.7._ */ function processMultiProof( bytes32[] memory proof, bool[] memory proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require( leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof" ); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } /** * @dev Calldata version of {processMultiProof}. * * CAUTION: Not all merkle trees admit multiproofs. See {processMultiProof} for details. * * _Available since v4.7._ */ function processMultiProofCalldata( bytes32[] calldata proof, bool[] calldata proofFlags, bytes32[] memory leaves ) internal pure returns (bytes32 merkleRoot) { // This function rebuild the root hash by traversing the tree up from the leaves. The root is rebuilt by // consuming and producing values on a queue. The queue starts with the `leaves` array, then goes onto the // `hashes` array. At the end of the process, the last hash in the `hashes` array should contain the root of // the merkle tree. uint256 leavesLen = leaves.length; uint256 totalHashes = proofFlags.length; // Check proof validity. require( leavesLen + proof.length - 1 == totalHashes, "MerkleProof: invalid multiproof" ); // The xxxPos values are "pointers" to the next value to consume in each array. All accesses are done using // `xxx[xxxPos++]`, which return the current value and increment the pointer, thus mimicking a queue's "pop". bytes32[] memory hashes = new bytes32[](totalHashes); uint256 leafPos = 0; uint256 hashPos = 0; uint256 proofPos = 0; // At each step, we compute the next hash using two values: // - a value from the "main queue". If not all leaves have been consumed, we get the next leaf, otherwise we // get the next hash. // - depending on the flag, either another value for the "main queue" (merging branches) or an element from the // `proof` array. for (uint256 i = 0; i < totalHashes; i++) { bytes32 a = leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++]; bytes32 b = proofFlags[i] ? leafPos < leavesLen ? leaves[leafPos++] : hashes[hashPos++] : proof[proofPos++]; hashes[i] = _hashPair(a, b); } if (totalHashes > 0) { return hashes[totalHashes - 1]; } else if (leavesLen > 0) { return leaves[0]; } else { return proof[0]; } } function _hashPair(bytes32 a, bytes32 b) private pure returns (bytes32) { return a < b ? _efficientHash(a, b) : _efficientHash(b, a); } function _efficientHash(bytes32 a, bytes32 b) private pure returns (bytes32 value) { /// @solidity memory-safe-assembly assembly { mstore(0x00, a) mstore(0x20, b) value := keccak256(0x00, 0x40) } } } // File contracts/interfaces/ICollection.sol pragma solidity 0.8.16; interface ICollection { enum TokenType { ERC721, ERC1155 } struct WhitelistParams { bytes32 merkleRoot; uint256 endTime; uint256 startTime; } struct Collection { string title; TokenType tokenType; string description; string thumbnail; string bgImage; string bgColor; uint256[] tokenIds; address owner; uint256 createdAt; uint256 updatedAt; int256 userPurchaseLimit; int256 allowedPurchaseLimit; uint256 primarySoldCount; WhitelistParams[] whitelistParams; bool exists; } /** * @dev Returns the collection data of a erc721 token. * @param _id the id of the collection to fetch data * @return Collection the collection data associated with {_id} */ function getCollectionData(uint256 _id) external returns (Collection memory); /** * @dev Returns the collection id of a erc721 token. * @param _id the id of the collection to fetch data * @return Collection the collection data associated with {_id} */ function getERC721CollectionId(uint256 _id) external returns (uint256); /** * @dev Returns the collection id of a erc1155 token. * @param _id the id of the collection to fetch data * @return Collection the collection data associated with {_id} */ function getERC1155CollectionId(uint256 _id) external returns (uint256); /** * @dev Updates the collection after the primary sales. * @param account Address of the account which is to be updated * @param _collectionId the id of the collection to update */ function updateCollectionAfterPrimarySale( address account, uint256 _collectionId ) external returns (bool); /** * @dev Returns the primary sale user counts. * @param account Address of the account which is to be updated * @param _collectionId the id of the collection to update */ function getPrimarySaleUserCount(address account, uint256 _collectionId) external view returns (uint256); } // File contracts/interfaces/IERC1155Custom.sol pragma solidity 0.8.16; interface IERC1155Custom { struct WhitelistParams { bytes32 merkleRoot; uint256 endTime; uint256 startTime; } struct Collection { string title; string description; string thumbnail; string bgImage; string bgColor; uint256[] tokenIds; address owner; uint256 createdAt; uint256 updatedAt; int256 userPurchaseLimit; int256 allowedPurchaseLimit; uint256 primarySoldCount; WhitelistParams[] whitelistParams; // mapping(address => uint256) primarySaleUserCount; } /** * @dev Returns the First owner address of an {_id}. * @param _id the id of the collection to fetch data */ function getFirstOwner(uint256 _id) external returns (address); /** * @dev Returns the primary sale purchase limit per token of an {_id}. * @param _tokenId the id of the token which is to be checked. */ function getPrimarySalePurchaseLimitPerToken(uint256 _tokenId) external view returns (int256); /** * @dev Returns the primary sale user count per token of an {_id}. * @param account Address of the account which is to be checked. * @param _tokenId the id of the token which's sale count to be checked. */ function getPrimarySaleUserCountPerToken(address account, uint256 _tokenId) external view returns (uint256); /** * @dev Updates the primary sale user count per token of an {_id}. * @param account Address of the account which is to updated. * @param _tokenId the id of the token which's sale should updated. * @param quantity Number of count to be increased. */ function updatePrimarySaleUserCountPerToken( address account, uint256 _tokenId, uint256 quantity ) external returns (bool); } // File contracts/interfaces/IERC721Custom.sol pragma solidity 0.8.16; interface IERC721Custom { struct WhitelistParams { bytes32 merkleRoot; uint256 endTime; uint256 startTime; } struct Collection { string title; string description; string thumbnail; string bgImage; string bgColor; uint256[] tokenIds; address owner; uint256 createdAt; uint256 updatedAt; int256 userPurchaseLimit; int256 allowedPurchaseLimit; uint256 primarySoldCount; WhitelistParams[] whitelistParams; } /** * @dev Returns the First owner address of an {_id}. * @param _id the id of the collection to fetch data */ function getFirstOwner(uint256 _id) external returns (address); } // File contracts/interfaces/IMarketPlace.sol pragma solidity 0.8.16; interface IMarketplace { /// @notice Type of the tokens that can be listed for sale. enum TokenType { ERC721, ERC1155 } /** * @notice The two types of listings. * `Direct`: NFTs listed for sale at a fixed price. * `Auction`: NFTs listed for sale in an auction. */ enum ListingType { Direct, Auction } /** * @notice The two types of listings. * `Direct`: NFTs listed for sale at a fixed price. * `Auction`: NFTs listed for sale in an auction. */ enum SaleType { Primary, Secondary } /** * @notice The two types of Asset Types. * `NFT`: ERC721 type asset. * `Currency`: ERC20 type asset. */ enum AssetType { NFT, CURRENCY } /** * @dev For use in `createListing` as a parameter type. * * @param assetContract The contract address of the NFT to list for sale. * @param tokenId The tokenId on `assetContract` of the NFT to list for sale. * * @param quantityToList The quantity of NFT of ID `tokenId` on the given `assetContract` to list. For * ERC 721 tokens to list for sale, the contract strictly defaults this to `1`, * Regardless of the value of `quantityToList` passed. * * @param currencyToAccept For direct listings: the currency in which a buyer must pay the listing's fixed price * to buy the NFT(s). For auctions: the currency in which the bidders must make bids. * * @param buyoutPrice For direct listings: interpreted as 'price per token' listed. For auctions: if * `buyoutPricePerToken` is greater than 0, and a bidder's bid is at least as great as * `buyoutPricePerToken * quantityToList`, the bidder wins the auction, and the auction * is closed. * * @param listingType The type of listing to create - a direct listing or an auction. */ struct ListingParameters { address assetContract; uint256 tokenId; uint256 quantityToList; address currencyToAccept; uint256 buyoutPrice; ListingType listingType; address tokenOwner; } /** * @notice The information related to a listing; either (1) a direct listing, or (2) an auction listing. */ struct Listing { uint256 listingId; address tokenOwner; address assetContract; uint256 tokenId; uint256 quantity; address currency; uint256 buyoutPrice; TokenType tokenType; ListingType listingType; SaleType saleType; } /// @dev Emitted when a new listing is created. event NewListing( uint256 indexed listingId, address indexed assetContract, uint256 tokenId, address indexed lister, Listing listing ); /** * @dev Emitted when a buyer buys from a direct listing, or a lister accepts some * buyer's offer to their direct listing. */ event NewSale( uint256 indexed listingId, address indexed assetContract, uint256 tokenId, address indexed lister, address buyer, uint256 quantityBought, uint256 pricePaid ); /** * @dev Emitted when an admin withdraws the fund to an address. */ event FundsWithdrawn( address indexed to, address indexed currency, uint256 amount ); /** * @dev Emitted when an asset is whitelisted. */ event AssetWhitelisted( address indexed assetContract, AssetType assetType, address listedBy, bool isWhitelisted ); /** * @dev Emitted when a listing is removed. */ event ListingRemoved(uint256 listingId); /** * @dev Emitted when a listing is modified. */ event ListingModified( uint256 listingId, uint256 buyoutPrice, uint256 quantityToList ); /** * @notice Lets a token (ERC 721 or ERC 1155) owner list tokens for sale in a direct listing, or an auction. * @param _params The parameters that govern the listing to be created. * @dev The values of `_params` are passsed to this function in a `ListingParameters` struct, instead of * directly due to Solidity's limit of the no. of local variables that can be used in a function. * @dev NFTs to list for sale in an auction are escrowed in Marketplace. For direct listings, the contract * only checks whether the listing's creator owns and has approved Marketplace to transfer the NFTs to list. */ function createListing(ListingParameters memory _params) external; /** * @notice Lets someone buy a given quantity of tokens from a direct listing by paying the fixed price. * * @param _listingId The unique ID of the direct lisitng to buy from. * * @dev A sale will fail to execute if either: * (1) buyer does not own or has not approved Marketplace to transfer the appropriate * amount of currency (or hasn't sent the appropriate amount of native tokens) * * (2) the lister does not own or has removed Markeplace's * approval to transfer the tokens listed for sale. */ function buy( uint256 _listingId, address _currency, uint256 _price, uint256 _quantityToBuy, bytes32[] memory _proof, uint256 _signatureTimestamp, bytes memory signature ) external payable; /** * @notice Lets someone buy a given quantity of tokens to another approve account from a direct listing by paying the fixed price. * * @param _listingId The unique ID of the direct lisitng to buy from. * * @dev A sale will fail to execute if either: * (1) buyer does not own or has not approved Marketplace to transfer the appropriate * amount of currency (or hasn't sent the appropriate amount of native tokens) * * (2) the lister does not own or has removed Markeplace's * approval to transfer the tokens listed for sale. */ function delegatedBuy( uint256 _listingId, address _currency, uint256 _price, uint256 _quantityToBuy, address _buyer, bytes32[] memory _proof, uint256 _signatureTimestamp, bytes memory signature ) external payable; } // File contracts/interfaces/INFTCustom.sol pragma solidity 0.8.16; interface INFTCustom { function getFirstOwner(uint256 _id) external returns (address); } // File contracts/interfaces/IWETH.sol pragma solidity 0.8.16; interface IWETH { function deposit() external payable; function withdraw(uint256 amount) external; function transfer(address to, uint256 value) external returns (bool); function allowance(address owner, address spender) external view returns (uint256); function transferFrom( address src, address dst, uint256 amount ) external returns (bool); } // File contracts/utils/Authenticator.sol pragma solidity ^0.8.16; /* Signature Verification How to Sign and Verify # Signing 1. Create message to sign 2. Hash the message 3. Sign the hash (off chain, keep your private key secret) # Verify 1. Recreate hash from the original message 2. Recover signer from signature and hash 3. Compare recovered signer to claimed signer */ contract Authenticator is AccessControlEnumerableUpgradeable { address internal _privilegedSigner; constructor(address _privilegedSignerAddress) { _privilegedSigner = _privilegedSignerAddress; _setupRole(DEFAULT_ADMIN_ROLE, msg.sender); } /// @dev Check whether the caller is a protocol admin modifier onlyAdmin() { require(hasRole(DEFAULT_ADMIN_ROLE, msg.sender), "ONLY ADMIN"); _; } /* 1. Unlock MetaMask account ethereum.enable() */ /* 2. Get message hash to sign getMessageHash( 0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C, 123, "coffee and donuts", 1 ) hash = "0xcf36ac4f97dc10d91fc2cbb20d718e94a8cbfe0f82eaedc6a4aa38946fb797cd" */ function getMessageHash(address _to, uint256 _timestamp) public pure returns (bytes32) { return keccak256(abi.encodePacked(_to, _timestamp)); } /* 3. Sign message hash # using browser account = "copy paste account of signer here" ethereum.request({ method: "personal_sign", params: [account, hash]}).then(console.log) # using web3 web3.personal.sign(hash, web3.eth.defaultAccount, console.log) Signature will be different for different accounts 0x993dab3dd91f5c6dc28e17439be475478f5635c92a56e17e82349d3fb2f166196f466c0b4e0c146f285204f0dcb13e5ae67bc33f4b888ec32dfe0a063e8f3f781b */ function getEthSignedMessageHash(bytes32 _messageHash) public pure returns (bytes32) { /* Signature is produced by signing a keccak256 hash with the following format: "\x19Ethereum Signed Message\n" + len(msg) + msg */ return keccak256( abi.encodePacked( "\x19Ethereum Signed Message:\n32", _messageHash ) ); } /* 4. Verify signature signer = 0xB273216C05A8c0D4F0a4Dd0d7Bae1D2EfFE636dd to = 0x14723A09ACff6D2A60DcdF7aA4AFf308FDDC160C amount = 123 message = "coffee and donuts" nonce = 1 signature = 0x993dab3dd91f5c6dc28e17439be475478f5635c92a56e17e82349d3fb2f166196f466c0b4e0c146f285204f0dcb13e5ae67bc33f4b888ec32dfe0a063e8f3f781b */ function verify( address _signer, address _to, uint256 _timestamp, bytes memory signature ) public pure returns (bool) { bytes32 messageHash = getMessageHash(_to, _timestamp); bytes32 ethSignedMessageHash = getEthSignedMessageHash(messageHash); return recoverSigner(ethSignedMessageHash, signature) == _signer; } function recoverSigner( bytes32 _ethSignedMessageHash, bytes memory _signature ) public pure returns (address) { (bytes32 r, bytes32 s, uint8 v) = splitSignature(_signature); return ecrecover(_ethSignedMessageHash, v, r, s); } function splitSignature(bytes memory sig) public pure returns ( bytes32 r, bytes32 s, uint8 v ) { require(sig.length == 65, "invalid signature length"); assembly { /* First 32 bytes stores the length of the signature add(sig, 32) = pointer of sig + 32 effectively, skips first 32 bytes of signature mload(p) loads next 32 bytes starting at the memory address p into memory */ // first 32 bytes, after the length prefix r := mload(add(sig, 32)) // second 32 bytes s := mload(add(sig, 64)) // final byte (first byte of the next 32 bytes) v := byte(0, mload(add(sig, 96))) } // implicitly return (r, s, v) } /** * @dev Sets the privilegedSigner address. * @param _signer Address of signer. */ function setPrivilegedSigner(address _signer) external onlyAdmin returns (bool) { require(_signer != address(0), "ZERO_ADDRESS"); _privilegedSigner = _signer; return true; } /** * @dev Returns the privilegedSigner address. */ function getPrivilegedSigner() public view returns (address) { return _privilegedSigner; } } // File contracts/utils/Errors.sol pragma solidity 0.8.16; // Library /** * @dev Abstarct for managing error messages. * */ abstract contract ErrorCodes { int32 internal constant ONLY_ADMIN = 0; int32 internal constant ONLY_MINTER = 1; int32 internal constant ONLY_WHITE_LISTER = 2; int32 internal constant ONLY_TOKEN_OWNER = 3; int32 internal constant ZERO_ADDRESS = 4; int32 internal constant BPS_EXCEEDS_10000 = 5; int32 internal constant TOKEN_NOT_EXISTS = 6; int32 internal constant URI_QUERY_NON_EXISTENT_TOKEN = 7; int32 internal constant URI_NOT_SET = 8; int32 internal constant ASSET_NOT_WHITELISTED = 9; int32 internal constant CURRENCY_NOT_WHITELISTED = 10; int32 internal constant INVALID_TOKEN_AMOUNT = 11; int32 internal constant CANT_MODIFY_LISTING_ASSET = 12; int32 internal constant CANT_MODIFY_LISTING_TOKEN_ID = 13; int32 internal constant CANT_MODIFY_LISTING_TOKEN_TYPE = 14; int32 internal constant CURRENCY_OR_PRICE_DOES_NOT_MATCH_LISTING = 15; int32 internal constant OWNER_BUYER_CONFLICT = 16; int32 internal constant ASSET_INSUFFICIENT_ALLOWANCE_BALANCE = 17; int32 internal constant FEES_EXCEEDS_PRICE = 18; int32 internal constant TRANSFER_FAILED = 19; int32 internal constant BID_AMOUNT_MISMATCH_FROM_LISTING = 20; int32 internal constant INVALID_ASSET_OWNERSHIP_OR_INSUFFICIENT_ALLOWANCE_BALANCE = 21; int32 internal constant INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET = 22; int32 internal constant CANT_BUY_LISTING_FROM_AUCTION = 23; int32 internal constant BUYING_INVALID_ASSET_AMOUNT = 24; int32 internal constant NATIVE_TOKEN_AMOUNT_MISMATCH_FROM_LISTING = 25; int32 internal constant TOKEN_INSUFFICIENT_ALLOWANCE_BALANCE = 26; int32 internal constant WITHDRAW_ZERO_AMOUNT = 27; int32 internal constant WITHDRAW_FAILED = 28; int32 internal constant ASSET_ALREADY_WHITELISTED = 29; int32 internal constant CURRENCY_ALREADY_WHITELISTED = 30; int32 internal constant EITHER_ADMIN_OR_FIRST_OWNER = 31; int32 internal constant BURN_AMOUNT_EXCEEDS_BALANCE_OR_ID_NOT_FOUND = 32; int32 internal constant INSUFFICIENT_BALANCE_FOR_TRANSFER_OR_ID_NOT_FOUND = 33; int32 internal constant TOKEN_ID_NOT_FOUND = 34; int32 internal constant NO_IDS_FOUND = 35; int32 internal constant ALREADY_LISTED = 36; int32 internal constant SECONDARY_SALE_NOT_SUPPORTED = 37; int32 internal constant MARKET_ADDRESS_CANNOT_BE_ZERO_ADDRESS = 38; int32 internal constant LISTING_ID_NOT_FOUND = 39; int32 internal constant FUNCTION_NOT_EXECUTABLE = 40; int32 internal constant UNAUTHORISED_ACCESS = 41; int32 internal constant CANNOT_MODIFY_INACTIVE_SALE = 42; int32 internal constant QUANTITY_MUST_BE_GREATER_THAN_EQUAL_TO_ONE = 43; int32 internal constant TOKEN_ID_DOESNOT_EXIST = 44; int32 internal constant MAX_QUANTITY_MUST_BE_GREATER_THAN_ZERO = 45; int32 internal constant MAX_QUANTITY_ALLOWANCE_LIMIT_REACHED = 46; int32 internal constant ONLY_MAINTAINER = 47; int32 internal constant INVALID_TOKEN_OWNER = 48; int32 internal constant ADDRESS_NOT_WHITELISTED = 49; int32 internal constant EXCEEDED_PRIMARY_PURCHASE_LIMIT = 50; int32 internal constant INVALID_COLLECTION_DETAIL = 51; int32 internal constant COLLECTION_ID_CANNOT_BE_LESS_THAN_ZERO = 52; int32 internal constant INVALID_OWNER = 53; int32 internal constant INVALID_WHITELIST_PARAMS = 54; int32 internal constant TOKEN_IDS_REQUIRED = 55; int32 internal constant SENDER_SHOULD_BE_MARKETPLACE_CONTRACT = 56; int32 internal constant INVALID_FUNCTION_PARAMS = 57; int32 internal constant ERC721_CANNOT_BE_ZERO_ADDRESS = 58; int32 internal constant ERC1155_CANNOT_BE_ZERO_ADDRESS = 59; int32 internal constant COLLECTION_DOES_NOT_EXIST = 60; int32 internal constant COLLECTION_CONTRACT_CANNOT_BE_ZERO_ADDRESS = 61; int32 internal constant INVALID_TOKEN_TYPE = 62; int32 internal constant MAXIMUM_PURCHASE_QUANTITY_PER_TOKEN_LIMIT_REACHED = 63; int32 internal constant INVALID_PAYABLE_AMOUNT = 64; int32 internal constant INVALID_WITHDRAWABLE_AMOUNT = 65; int32 internal constant EXCEEDED_TOKEN_LIMIT = 66; int32 internal constant EXCEEDED_MINT_LIMIT = 67; int32 internal constant EXCEEDED_INDIVIDUAL_TOKEN_LIMIT = 68; int32 internal constant NAME_CANNOT_BE_EMPTY = 69; int32 internal constant SYMBOL_CANNOT_BE_EMPTY = 70; int32 internal constant INVALID_ROYALTY_BPS = 71; int32 internal constant INVALID_MINT_PRICE = 72; int32 internal constant INVALID_TOKEN_SUPPLY_CAP = 73; int32 internal constant INVALID_USER_PURCHASE_LIMIT = 74; int32 internal constant WHITELIST_STARTTIME_MUST_BE_LESS_THAN_ENDTIME = 75; int32 internal constant SIGNATURE_MUST_BE_USED_WITHIN_30_MINUTES = 76; function throwError(int32 _errCode) public pure returns (string memory) { return Strings.toString(uint32(_errCode)); } } // File contracts/TokenTraxxMarket.sol pragma solidity 0.8.16; // Royalty // Security // Upgrades // Utils /** * @title Marketplace Contract * @author Tokentraxx Team * @dev This contract is used to create a listing of of ERC721 and ERC1155 token, which users can buy in direct sale. * It supports native currency and whitelisted ERC20 currency to list and make purchases. */ contract TokenTraxxMarketplace is Initializable, IMarketplace, AccessControlEnumerableUpgradeable, IERC721Receiver, ReentrancyGuardUpgradeable, ErrorCodes { // using library to safely interact with ERC-20 tokens. using SafeERC20Upgradeable for IERC20Upgradeable; bytes32 public constant WHITE_LISTER = keccak256("WHITE_LISTER"); /// @dev The address of the native token wrapper contract. address public nativeTokenWrapper; /// @dev The address of royalty treasury. address public royaltyTreasury; /// @dev The max bps of the contract. So, 10_000 == 100 % uint64 public constant MAX_BPS = 10_000; /// @dev The marketplace fee. uint64 public marketFeeBps; /// @dev The primary fee. uint64 public primaryFeeBps; /// @dev The address interpreted as native token of the chain. address public constant NATIVE_TOKEN = 0xEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeeeeeEEeE; /// @dev The address of ERC20 => whitelisted mapping(address => bool) public wlistToken; /// @dev The address of NFT => whitelisted mapping(address => bool) public wlistAsset; /// @dev listingId => listing info. mapping(uint256 => Listing) public listings; /// @dev safe listing token => prevent multiple listings with same token. mapping(uint256 => bool) public safeListing; /// @dev Total number of listings on market. uint256 public listingIdTracker; /// @dev Check whether the caller is a protocol admin modifier onlyAdmin() { _onlyAdmin(); _; } /** * @dev Method to initialize the contract. * @param _nativeTokenWrapper address of the native currency. * @param _primaryMarketFeeBps Primary market fees to be set in Bps * @param _marketFeeBps Market fees to be set in Bps * @param _initialCurrency address of the initial currency. * @param _collectionContract address of the collection contract. * Requirement: * {_nativetokenWrapper} address should not be zero address * {_collectionContract} address should not be zero address * {_primaryMarketFeeBps} should be less than Max market Fee * {_initialCurrency} address should not be zero address */ function initialize( address _nativeTokenWrapper, uint64 _primaryMarketFeeBps, uint64 _marketFeeBps, address _initialCurrency, address _collectionContract ) external initializer { __ReentrancyGuard_init(); _nonZeroAddress(_nativeTokenWrapper, ZERO_ADDRESS); _nonZeroAddress(_collectionContract, ZERO_ADDRESS); require( _primaryMarketFeeBps <= MAX_BPS && _marketFeeBps <= MAX_BPS, throwError(BPS_EXCEEDS_10000) ); _nonZeroAddress(_initialCurrency, ZERO_ADDRESS); nativeTokenWrapper = _nativeTokenWrapper; primaryFeeBps = _primaryMarketFeeBps; marketFeeBps = _marketFeeBps; royaltyTreasury = address(this); collectionContract = _collectionContract; _setupRole(DEFAULT_ADMIN_ROLE, msg.sender); _setupRole(WHITE_LISTER, msg.sender); wlistToken[_initialCurrency] = true; } /** * @dev This function sets the collection contract * @param _collectionContract address of the collection contract. * Rquirement: * Only admin can call this function */ function setCollectionContract(address _collectionContract) external onlyAdmin { _nonZeroAddress(_collectionContract, ZERO_ADDRESS); collectionContract = _collectionContract; } /** * @dev Lets a token owner list tokens for sale: Direct Listing or Auction. * @param _params datas to be passed for create listing in tuple format. * Requirement: * Asset should be whitelisted before listing * currency should be whitelisted before listing * Already listed asset cannot be listed again */ function createListing(ListingParameters calldata _params) external override { // Get values to populate `Listing`. (uint256 totalListing, ) = getTokenListingCount( _params.assetContract, _params.tokenId ); require( _checkIfZero(totalListing), throwError(SECONDARY_SALE_NOT_SUPPORTED) ); require( wlistAsset[_params.assetContract], throwError(ASSET_NOT_WHITELISTED) ); require( wlistToken[_params.currencyToAccept], throwError(CURRENCY_NOT_WHITELISTED) ); address tokenOwner; TokenType listTokenType = getTokenType(_params.assetContract); if (listTokenType == TokenType.ERC721) { tokenOwner = IERC721(_params.assetContract).ownerOf( _params.tokenId ); } else if (listTokenType == TokenType.ERC1155) { tokenOwner = _params.tokenOwner; } uint256 tokenAmountToList = getSafeQuantity( listTokenType, _params.quantityToList ); require(tokenAmountToList > 0, throwError(INVALID_TOKEN_AMOUNT)); validateUserOwnershipAndApproval( tokenOwner, _params.assetContract, _params.tokenId, tokenAmountToList, listTokenType ); require( validateApproval( tokenOwner, _params.assetContract, _params.tokenId, listTokenType, address(this) ), throwError(INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET) ); // Defaulting SaleType to Primary, determine based on listingCount when enabling secondary sales SaleType saleType = SaleType.Primary; Listing memory newListing = Listing({ listingId: listingIdTracker, tokenOwner: tokenOwner, assetContract: _params.assetContract, tokenId: _params.tokenId, quantity: _params.quantityToList, currency: _params.currencyToAccept, buyoutPrice: _params.buyoutPrice, tokenType: listTokenType, listingType: _params.listingType, saleType: saleType }); listings[listingIdTracker] = newListing; _tokenListings[_params.assetContract][_params.tokenId].push( listingIdTracker ); emit NewListing( listingIdTracker, _params.assetContract, _params.tokenId, tokenOwner, newListing ); listingIdTracker += 1; } /** * @dev Lets a token owner modify his listing. * @param _listingId listing Id which is to be modified. * @param _params datas to be passed for create listing in tuple format. */ function modifyListing(uint256 _listingId, ListingParameters memory _params) external { Listing memory listing = listings[_listingId]; TokenType _tokenType = getTokenType(_params.assetContract); address tokenOwner = _params.tokenOwner; if (_tokenType == TokenType.ERC721) { tokenOwner = IERC721(_params.assetContract).ownerOf( _params.tokenId ); } require( listing.assetContract == _params.assetContract, throwError(CANT_MODIFY_LISTING_ASSET) ); require( listing.tokenId == _params.tokenId, throwError(CANT_MODIFY_LISTING_TOKEN_ID) ); validateUserOwnershipAndApproval( tokenOwner, _params.assetContract, _params.tokenId, _params.quantityToList, _tokenType ); require( validateApproval( tokenOwner, _params.assetContract, _params.tokenId, _tokenType, address(this) ), throwError(INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET) ); require(listing.quantity > 0, throwError(CANNOT_MODIFY_INACTIVE_SALE)); listing.buyoutPrice = _params.buyoutPrice; listing.quantity = _params.quantityToList; listings[_listingId] = listing; emit ListingModified( _listingId, _params.buyoutPrice, _params.quantityToList ); } /** * @dev Lets a user buy a token for another approved account. * @param _listingId listing Id which is to be bought. * @param _currency address of the currency which is used to buy that asset. * @param _price Price of the asset which is to buy * @param _quantityToBuy Number of assets to be bought. * @param _proof Proof should be passed in bytes32 * Requirement: * currency should be valid * owner should not be the buyer */ function delegatedBuy( uint256 _listingId, address _currency, uint256 _price, uint256 _quantityToBuy, address _buyer, bytes32[] memory _proof, uint256 _signatureTimestamp, bytes memory signature ) external payable override nonReentrant { Listing memory targetListing = listings[_listingId]; // address buyer = _buyer; // Validate passed params based on membership status and listing info bool isPrivileged = validateBuyParams( _listingId, _currency, _price, _buyer, _quantityToBuy, _signatureTimestamp, signature ); validateSaleParameters(targetListing, _proof, _buyer, _quantityToBuy); executeSale( targetListing, _buyer, targetListing.currency, _price * _quantityToBuy, _quantityToBuy, isPrivileged ); } ///@dev verifies the whitelisted wallet function verifyWalletWhitelist( bytes32[] memory proof, bytes32 root, bytes32 leaf ) public pure returns (bool) { return MerkleProof.verify(proof, root, leaf); } ///@dev validates the sale parameters function validateSaleParameters( Listing memory listingData, bytes32[] memory proof, address buyer, uint256 quantityToBuy ) internal { ICollection collectionContractInstance = ICollection( collectionContract ); uint256 collectionId = listingData.tokenType == TokenType.ERC721 ? collectionContractInstance.getERC721CollectionId( listingData.tokenId ) : collectionContractInstance.getERC1155CollectionId( listingData.tokenId ); ICollection.Collection memory collectionData = collectionContractInstance .getCollectionData(collectionId); if ( collectionData.allowedPurchaseLimit != -1 && collectionData.allowedPurchaseLimit > 0 ) { require( (collectionData.primarySoldCount + quantityToBuy) <= uint256(collectionData.allowedPurchaseLimit), throwError(MAX_QUANTITY_ALLOWANCE_LIMIT_REACHED) ); } bytes32 merkleRoot = 0x00; for (uint256 i; i < collectionData.whitelistParams.length; ++i) { if ( block.timestamp > collectionData.whitelistParams[i].startTime && block.timestamp < collectionData.whitelistParams[i].endTime ) { merkleRoot = collectionData.whitelistParams[i].merkleRoot; break; } } if (merkleRoot != 0x00) { require( verifyWalletWhitelist( proof, merkleRoot, keccak256(abi.encodePacked(msg.sender)) ), throwError(ADDRESS_NOT_WHITELISTED) ); } if ( INFTCustom(listingData.assetContract).getFirstOwner( listingData.tokenId ) == collectionData.owner ) { if (collectionData.userPurchaseLimit != -1) { require( collectionContractInstance.getPrimarySaleUserCount( msg.sender, collectionId ) + quantityToBuy <= uint256(collectionData.userPurchaseLimit), throwError(EXCEEDED_PRIMARY_PURCHASE_LIMIT) ); } } if (listingData.tokenType == TokenType.ERC1155) { if ( IERC1155Custom(listingData.assetContract) .getPrimarySalePurchaseLimitPerToken(listingData.tokenId) != -1 ) { require( (IERC1155Custom(listingData.assetContract) .getPrimarySaleUserCountPerToken( buyer, listingData.tokenId ) + quantityToBuy) <= uint256( IERC1155Custom(listingData.assetContract) .getPrimarySalePurchaseLimitPerToken( listingData.tokenId ) ), throwError( MAXIMUM_PURCHASE_QUANTITY_PER_TOKEN_LIMIT_REACHED ) ); } } } /** * @dev Lets a user buy a listed asset. * @param _listingId listing Id which is to be bought. * @param _currency address of the currency which is used to buy that asset. * @param _price Price of the asset * @param _quantityToBuy Number of assets to be bought * @param proof Proof should be passed in bytes32 * Requirement: * currency should be valid * owner should not be the buyer */ function buy( uint256 _listingId, address _currency, uint256 _price, uint256 _quantityToBuy, bytes32[] memory proof, uint256 _signatureTimestamp, bytes memory signature ) external payable override nonReentrant { require( _listingId < listingIdTracker, throwError(LISTING_ID_NOT_FOUND) ); Listing memory targetListing = listings[_listingId]; address buyer = _msgSender(); // Validate passed params based on membership status and listing info bool isPrivileged = validateBuyParams( _listingId, _currency, _price, buyer, _quantityToBuy, _signatureTimestamp, signature ); validateSaleParameters(targetListing, proof, buyer, _quantityToBuy); executeSale( targetListing, buyer, targetListing.currency, _price * _quantityToBuy, _quantityToBuy, isPrivileged ); } /// @dev Lets the contract accept ether. receive() external payable {} /// @dev Performs a direct listing sale. function executeSale( Listing memory _targetListing, address _buyer, address _currency, uint256 _currencyAmountToTransfer, uint256 _quantity, bool _isDiscounted ) internal { validateDirectListingSale( _targetListing, _quantity, _currencyAmountToTransfer ); _targetListing.quantity -= _quantity; listings[_targetListing.listingId].quantity = _targetListing.quantity; if (_currencyAmountToTransfer > 0) { payout( msg.sender, _targetListing.tokenOwner, _currency, _currencyAmountToTransfer, _targetListing, _isDiscounted ); } transferListingTokens(_buyer, _quantity, _targetListing); ICollection collectionContractInstance = ICollection( collectionContract ); uint256 collectionId = _targetListing.tokenType == TokenType.ERC721 ? collectionContractInstance.getERC721CollectionId( _targetListing.tokenId ) : collectionContractInstance.getERC1155CollectionId( _targetListing.tokenId ); ICollection.Collection memory collectionData = collectionContractInstance .getCollectionData(collectionId); if ( INFTCustom(_targetListing.assetContract).getFirstOwner( _targetListing.tokenId ) == collectionData.owner ) { collectionContractInstance.updateCollectionAfterPrimarySale( msg.sender, collectionId ); } if (_targetListing.tokenType == TokenType.ERC1155) { IERC1155Custom(_targetListing.assetContract) .updatePrimarySaleUserCountPerToken( _buyer, _targetListing.tokenId, _quantity ); } emit NewSale( _targetListing.listingId, _targetListing.assetContract, _targetListing.tokenId, _targetListing.tokenOwner, _buyer, _quantity, _currencyAmountToTransfer ); } /** * @dev Transfers tokens listed for sale in a direct or auction listing. * @param _to address of which token listing should be transferred * @param _quantity Number of assets should be transferred. * @param _listing listing type of the asset * Requirement: * quantity should be valid */ function transferListingTokens( address _to, uint256 _quantity, Listing memory _listing ) internal { require( _quantity >= 1, throwError(QUANTITY_MUST_BE_GREATER_THAN_EQUAL_TO_ONE) ); if (_listing.tokenType == TokenType.ERC721) { IERC721(_listing.assetContract).safeTransferFrom( _listing.tokenOwner, _to, _listing.tokenId, "" ); } else if (_listing.tokenType == TokenType.ERC1155) { IERC1155(_listing.assetContract).safeTransferFrom( _listing.tokenOwner, _to, _listing.tokenId, _quantity, "" ); } } /// @dev Enforces quantity == 1 if tokenType is TokenType.ERC721. function getSafeQuantity(TokenType _tokenType, uint256 _quantityToCheck) internal pure returns (uint256 safeQuantity) { if (_checkIfZero(_quantityToCheck)) { safeQuantity = 0; } else { safeQuantity = _tokenType == TokenType.ERC721 ? 1 : _quantityToCheck; } } /// @dev Payout stakeholders on sale function payout( address _payer, address _payee, address _currencyToUse, uint256 _totalPayoutAmount, Listing memory _listing, bool _isDiscounted ) internal { // Collect protocol fee uint256 marketCut; uint256 _transferAmount; if (!_isDiscounted) { if (_listing.saleType == SaleType.Primary) marketCut = (_totalPayoutAmount * primaryFeeBps) / MAX_BPS; else marketCut = (_totalPayoutAmount * marketFeeBps) / MAX_BPS; } uint256 remainder = _totalPayoutAmount - marketCut; if (_listing.saleType == SaleType.Secondary) { // Distribute royalties. See Sushiswap's https://github.com/sushiswap/shoyu/blob/master/contracts/base/BaseExchange.sol#L296 try IERC2981(_listing.assetContract).royaltyInfo( _listing.tokenId, _totalPayoutAmount ) returns (address royaltyFeeRecipient, uint256 royaltyFeeAmount) { if (royaltyFeeAmount > 0) { require( royaltyFeeAmount + marketCut <= _totalPayoutAmount, throwError(FEES_EXCEEDS_PRICE) ); remainder -= royaltyFeeAmount; _transferAmount += royaltyFeeAmount; tShares[royaltyFeeRecipient][ _currencyToUse ] += royaltyFeeAmount; } } catch {} } else { _transferAmount += marketCut; tShares[royaltyTreasury][_currencyToUse] += marketCut; } // Store remaining funds. transferCurrency( _currencyToUse, _payer, royaltyTreasury, _transferAmount ); // Distribute price to token owner transferCurrency(_currencyToUse, _payer, _payee, remainder); } /** * @dev Transfers a given amount of currency. * @param _currency address of currency which is be transferred. * @param _from address of which the currency should be transferred. * @param _to address of which the currency is to be sent * @param _amount Amount of currency which is to be transferred. * Requirement: * Amount should be valid */ function transferCurrency( address _currency, address _from, address _to, uint256 _amount ) internal { if (_checkIfZero(_amount)) { return; } if (_currency == NATIVE_TOKEN) { if (_from == address(this)) { // withdraw from weth then transfer withdrawn native token to recipient IWETH(nativeTokenWrapper).withdraw(_amount); safeTransferNativeToken(_to, _amount); } else if (_to == address(this)) { // store native currency in weth require( _amount <= msg.value, throwError(BID_AMOUNT_MISMATCH_FROM_LISTING) ); _depositToIWETH(_amount); // IWETH(nativeTokenWrapper).deposit{value: _amount}(); } else { // passthrough for native token transfer from buyer to the seller safeTransferNativeToken(_to, _amount); } } else { safeTransferERC20(_currency, _from, _to, _amount); } } /** * @dev Transfer `amount` of ERC20 token from `from` to `to`. * @param _currency address of ERC20 token which is be transferred. * @param _from address of which the token should be transferred. * @param _to address of which the token is to be sent * @param _amount Amount of token which is to be transferred. * Requirement: * There should be enough balance. */ function safeTransferERC20( address _currency, address _from, address _to, uint256 _amount ) internal { if (_from == _to) { return; } uint256 balBefore = IERC20Upgradeable(_currency).balanceOf(_to); _from == address(this) ? IERC20Upgradeable(_currency).safeTransfer(_to, _amount) : IERC20Upgradeable(_currency).safeTransferFrom( _from, _to, _amount ); uint256 balAfter = IERC20Upgradeable(_currency).balanceOf(_to); require(balAfter == balBefore + _amount, throwError(TRANSFER_FAILED)); } /** * @dev Transfers `amount` of native token to `to`. * @param to address of which token is to be transferred. * @param value amount of the token to be transferred. */ function safeTransferNativeToken(address to, uint256 value) internal { (bool success, ) = to.call{value: value}(""); if (!success) { _depositToIWETH(value); // IWETH(nativeTokenWrapper).deposit{value: value}(); safeTransferERC20(nativeTokenWrapper, address(this), to, value); } } /** * @dev Validates that `_tokenOwner` owns and has approved to lister / minter to live asset. * @param _tokenOwner address of token owner which is to be validated. * @param _assetContract address of the asset contract. * @param _tokenId Id of the token to be validated * @param _quantity Number of tokens * @param _tokenType Type of token whether its ERC20/721/1155 * Requirement: * Token owner should be valid */ function validateUserOwnershipAndApproval( address _tokenOwner, address _assetContract, uint256 _tokenId, uint256 _quantity, TokenType _tokenType ) internal view { // address sender = msg.sender; if (_tokenType == TokenType.ERC721) { require( _tokenOwner == msg.sender || IERC721(_assetContract).isApprovedForAll( _tokenOwner, msg.sender ) || IERC721(_assetContract).getApproved(_tokenId) == msg.sender, throwError( INVALID_ASSET_OWNERSHIP_OR_INSUFFICIENT_ALLOWANCE_BALANCE ) ); } else if (_tokenType == TokenType.ERC1155) { require( (_tokenOwner == msg.sender || IERC1155(_assetContract).isApprovedForAll( _tokenOwner, msg.sender )) && (IERC1155(_assetContract).balanceOf( _tokenOwner, _tokenId ) >= _quantity), throwError( INVALID_ASSET_OWNERSHIP_OR_INSUFFICIENT_ALLOWANCE_BALANCE ) ); } } /** * @dev validates the approval of an account. * @param _tokenOwner address of token Owner. * @param _assetContract address of the asset contract. * @param _tokenId Id of the token to be validated * @param _tokenType Type of the token whether its ERC20/721/1155 * @param operator Address of the current operator. */ function validateApproval( address _tokenOwner, address _assetContract, uint256 _tokenId, TokenType _tokenType, address operator ) internal view returns (bool flag) { if (_tokenType == TokenType.ERC721) { if ( IERC721(_assetContract).isApprovedForAll( _tokenOwner, operator ) || IERC721(_assetContract).getApproved(_tokenId) == operator ) { return true; } else { return false; } } else if (_tokenType == TokenType.ERC1155) { if ( IERC1155(_assetContract).isApprovedForAll(_tokenOwner, operator) ) { return true; } else { return false; } } } /** * @dev Validates conditions of a direct listing sale. * @param _listing Type of the listing. * @param _quantityToBuy Number of tokens to be purchased * @param settledTotalPrice Total price to be settled. * Requirement: * Token amount should be valid * Cannot buy assets which are in Auction */ function validateDirectListingSale( Listing memory _listing, uint256 _quantityToBuy, uint256 settledTotalPrice ) internal { require( _listing.listingType == ListingType.Direct, throwError(CANT_BUY_LISTING_FROM_AUCTION) ); // Check whether a valid quantity of listed tokens is being bought. require( _listing.quantity > 0 && _quantityToBuy > 0 && _quantityToBuy <= _listing.quantity, throwError(BUYING_INVALID_ASSET_AMOUNT) ); // Check: buyer owns and has approved sufficient currency for sale. if (_listing.currency == NATIVE_TOKEN) { require( msg.value == settledTotalPrice, throwError(NATIVE_TOKEN_AMOUNT_MISMATCH_FROM_LISTING) ); } else { if (settledTotalPrice > 0) { validateERC20BalAndAllowance( msg.sender, _listing.currency, settledTotalPrice ); } } // Check iwhether token owner owns and has approved `quantityToBuy` amount of listing tokens from the listing. require( validateApproval( _listing.tokenOwner, _listing.assetContract, _listing.tokenId, _listing.tokenType, address(this) ), throwError(INSUFFICIENT_ALLOWANCE_BALANCE_FOR_MARKET) ); } /// @dev Returns the interface supported by a contract. function getTokenType(address _assetContract) internal view returns (TokenType tokenType) { if ( IERC165(_assetContract).supportsInterface(type(IERC721).interfaceId) ) { tokenType = TokenType.ERC721; } else if ( IERC165(_assetContract).supportsInterface( type(IERC1155).interfaceId ) ) { tokenType = TokenType.ERC1155; } else { revert MustImplementERC721(); } } /** * @dev Sets the Royalty Treasury . * @param _treasury addres of the treasury account * Requirement: * Only admin can call this function * treasury address should be valid */ function setRoyaltyTreasury(address _treasury) external onlyAdmin { _nonZeroAddress(_treasury, ZERO_ADDRESS); royaltyTreasury = _treasury; } /** * @dev Validates that `_addrToCheck` owns and has approved markeplace to transfer the appropriate amount of currency * @param _addrToCheck address to be checked. * @param _currency address of the currency. * @param _currencyAmountToCheckAgainst address of the currency to be checked against. */ function validateERC20BalAndAllowance( address _addrToCheck, address _currency, uint256 _currencyAmountToCheckAgainst ) internal view { require( IERC20Upgradeable(_currency).balanceOf(_addrToCheck) >= _currencyAmountToCheckAgainst && IERC20Upgradeable(_currency).allowance( _addrToCheck, address(this) ) >= _currencyAmountToCheckAgainst, throwError(TOKEN_INSUFFICIENT_ALLOWANCE_BALANCE) ); } /** * ERC 721 Receiver functions. **/ function onERC721Received( address, address, uint256, bytes calldata ) external pure override returns (bytes4) { return this.onERC721Received.selector; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override(AccessControlEnumerableUpgradeable) returns (bool) { return interfaceId == type(IERC721Receiver).interfaceId || interfaceId == type(IERC2981).interfaceId; } /// @dev Lets a protocol admin withdraw tokens from this contract. function withdrawFunds(address to, address currency) external nonReentrant { _nonZeroAddress(to, ZERO_ADDRESS); uint256 amount = tShares[msg.sender][currency]; tShares[msg.sender][currency] = 0; _withdraw(to, currency, amount); } /** * @dev Lets a protocol admin withdraw treasury amount. * @param to address of which token is to be withdrawed. * @param currency address of the currency. * Requirement: * Currency should be valid. * Only admin can call the function */ function withdrawTreasury(address to, address currency) external onlyAdmin nonReentrant { _nonZeroAddress(to, ZERO_ADDRESS); uint256 amount = tShares[royaltyTreasury][currency]; tShares[royaltyTreasury][currency] = 0; _withdraw(to, currency, amount); } /** * @dev Lets a protocol admin withdraw amount. * @param to address of which token is to be withdrawed. * @param currency address of the currency. * @param amount amount to be withdrawn * Requirement: * Currency should be valid. */ function _withdraw( address to, address currency, uint256 amount ) internal { IERC20Upgradeable _currency = IERC20Upgradeable(currency); bool isNativeToken = _isNativeToken(currency); bool transferSuccess; require(amount > 0, throwError(WITHDRAW_ZERO_AMOUNT)); if (royaltyTreasury == address(this)) { if (isNativeToken) { IWETH(nativeTokenWrapper).withdraw(amount); (transferSuccess, ) = payable(to).call{value: amount}(""); } else { _currency.safeTransfer(to, amount); transferSuccess = true; } } else { if (isNativeToken) { if ( IWETH(nativeTokenWrapper).allowance( royaltyTreasury, address(this) ) >= amount ) { bool ifWithdrawn = IWETH(nativeTokenWrapper).transferFrom( royaltyTreasury, address(this), amount ); if (ifWithdrawn) (transferSuccess, ) = payable(to).call{value: amount}( "" ); } } else { _currency.safeTransferFrom(royaltyTreasury, to, amount); transferSuccess = true; } } require(transferSuccess, throwError(WITHDRAW_FAILED)); emit FundsWithdrawn(to, currency, amount); } /// @dev Checks whether an address is to be interpreted as the native token function _isNativeToken(address _toCheck) internal pure returns (bool) { return _toCheck == NATIVE_TOKEN || _toCheck == address(0); } /** * @dev Whitelist asset contract [NFT] * @param _assetContract address of the asset contract. * @param _type Type of the asset whether its NFT or Currency * @param _value whether to whitelist or Not. * Requirement: * Only privileged accounts can call the function * asset should not be already whitelisted * currency should not be already whitelisted */ function whiteListAsset( address _assetContract, AssetType _type, bool _value ) external { require( hasRole(WHITE_LISTER, msg.sender), throwError(ONLY_WHITE_LISTER) ); if (_type == AssetType.NFT) { require( !wlistAsset[_assetContract], throwError(ASSET_ALREADY_WHITELISTED) ); wlistAsset[_assetContract] = _value; } else { require( !wlistToken[_assetContract], throwError(CURRENCY_ALREADY_WHITELISTED) ); wlistToken[_assetContract] = _value; } emit AssetWhitelisted(_assetContract, _type, msg.sender, _value); } /** * @dev Allows the admin to remove the listing . * @param listingId Id of the listing. * Requirement: * Only admin can call the function. */ function removeListing(uint256 listingId) external { Listing memory listing = listings[listingId]; require( hasRole(DEFAULT_ADMIN_ROLE, msg.sender) || listing.tokenOwner == msg.sender || validateApproval( listing.tokenOwner, listing.assetContract, listing.tokenId, listing.tokenType, msg.sender ), throwError(UNAUTHORISED_ACCESS) ); address assetContract = listing.assetContract; uint256 tokenId = listing.tokenId; // Iterate over listing Ids when supporting secondary sale and multiple listings can exist require( listing.assetContract != address(0), throwError(LISTING_ID_NOT_FOUND) ); _tokenListings[assetContract][tokenId].pop(); delete listings[listingId]; emit ListingRemoved(listingId); } ///@dev Gets the token Listing from "_assetcontract" and its "_tokenId". function getTokenListingCount(address _assetContract, uint256 _tokenId) internal view returns (uint256 listingCount, uint256 activeCount) { listingCount = _tokenListings[_assetContract][_tokenId].length; for (uint256 i; i < listingCount; ++i) { uint256 listingId = _tokenListings[_assetContract][_tokenId][i]; Listing memory currentListing = listings[listingId]; if (currentListing.quantity > 0) { activeCount++; } } } /** * @dev Returns latest active listings of the given tokenId, assetContract. * @param _assetContract Address of the asset contract. * @param _tokenId TokenId of the asset. */ function getTokenListing(address _assetContract, uint256 _tokenId) public view returns (Listing[] memory activeListings) { (uint256 totalListing, uint256 activeCount) = getTokenListingCount( _assetContract, _tokenId ); // If there are no listing, return empty array. // If there are no active listings, return last completed index. // Else return all the active listings array. if (_checkIfZero(totalListing)) return activeListings; else if (_checkIfZero(activeCount)) activeListings = new Listing[](1); else activeListings = new Listing[](activeCount); uint256 validIndex; for ( uint256 i; i < _tokenListings[_assetContract][_tokenId].length; ++i ) { Listing memory currentListing = listings[ _tokenListings[_assetContract][_tokenId][i] ]; activeListings[validIndex] = currentListing; if (currentListing.quantity > 0) { validIndex++; } } } /** * @dev Sets the authenticator contract address. * @param _authenticator Address of authenticator contract. */ function setAuthenticatorContract(address _authenticator) external onlyAdmin returns (bool) { _nonZeroAddress(_authenticator, ZERO_ADDRESS); _authenticatorAddress = _authenticator; return true; } function validateBuyParams( uint256 _listingId, address _currency, uint256 _price, address _buyer, uint256 _quantityToBuy, uint256 _signatureTimestamp, bytes memory signature ) private view returns (bool) { Listing memory targetListing = listings[_listingId]; bool isPrivileged = false; // Check if buyer is a privileged member if (signature.length > 0) { require( block.timestamp <= _signatureTimestamp + 30 minutes, throwError(SIGNATURE_MUST_BE_USED_WITHIN_30_MINUTES) ); Authenticator authenticatorContractInstance = Authenticator( _authenticatorAddress ); isPrivileged = authenticatorContractInstance.verify( authenticatorContractInstance.getPrivilegedSigner(), _buyer, _signatureTimestamp, signature ); } // Check whether the settled total price and currency to use are correct. if (isPrivileged) { require( _currency == targetListing.currency && _price >= targetListing.buyoutPrice - ((targetListing.buyoutPrice * primaryFeeBps) / MAX_BPS), throwError(CURRENCY_OR_PRICE_DOES_NOT_MATCH_LISTING) ); } else { require( _currency == targetListing.currency && _price == targetListing.buyoutPrice, throwError(CURRENCY_OR_PRICE_DOES_NOT_MATCH_LISTING) ); } require( _buyer != targetListing.tokenOwner, throwError(OWNER_BUYER_CONFLICT) ); if (listings[_listingId].tokenType == TokenType.ERC721) { //tokenowner at the time of listing is the current owner require( targetListing.tokenOwner == IERC721(targetListing.assetContract).ownerOf( targetListing.tokenId ), throwError(INVALID_TOKEN_OWNER) ); } else if (targetListing.tokenType == TokenType.ERC1155) { //tokenowner at the time of listing is the current owner require( IERC1155(targetListing.assetContract).balanceOf( targetListing.tokenOwner, listings[_listingId].tokenId ) >= _quantityToBuy, throwError(INVALID_TOKEN_OWNER) ); } return isPrivileged; } function _onlyAdmin() private view { require( hasRole(DEFAULT_ADMIN_ROLE, msg.sender), throwError(ONLY_ADMIN) ); } function _nonZeroAddress(address _toCheck, int32 _errorCode) private pure { require(_toCheck != address(0), throwError(_errorCode)); } function _checkIfZero(uint256 _toCheck) private pure returns (bool) { return _toCheck == 0; } function _depositToIWETH(uint256 _amount) private { IWETH(nativeTokenWrapper).deposit{value: _amount}(); } /** * @dev Error message - Market: must implement ERC 721. * @notice You can use this for reverting when condition fails for ERC721 Implementation required */ error MustImplementERC721(); /** * @dev This empty reserved space is put in place to allow future versions to add new * variables without shifting down storage in the inheritance chain. * See https://docs.openzeppelin.com/contracts/4.x/upgradeable#storage_gaps */ uint256[48] private __gap; mapping(address => mapping(address => uint256)) public tShares; /// @dev safe listing token => prevent multiple listings with same token. mapping(address => mapping(uint256 => bool)) private _safeListing; // Keep only active listings in this and listing details in db. mapping(address => mapping(uint256 => uint256[])) private _tokenListings; /// @dev The address of collection contract address public collectionContract; /// @dev The address of the authenticator contract address public _authenticatorAddress; }