// This contract is part of Zellic’s smart contract dataset, which is a collection of publicly available contract code gathered as of March 2023. //SPDX-License-Identifier: MIT pragma solidity 0.6.12; pragma experimental ABIEncoderV2; /** Mainnet instances: - Uniswap V2 Router: 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D - Sushiswap V1 Router: 0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F - Shibaswap V1 Router: 0x03f7724180AA6b939894B5Ca4314783B0b36b329 - UNI: 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 // exists on Sushi - USDT: 0xdAC17F958D2ee523a2206206994597C13D831ec7 - DAI: 0x6B175474E89094C44Da98b954EedeAC495271d0F // Triangular 1000000000 - WETH: 0xB4FBF271143F4FBf7B91A5ded31805e42b2208d6 // Simple 10000000000000 - Aave LendingPoolAddressesProvider(Mainnet):0xB53C1a33016B2DC2fF3653530bfF1848a515c8c5 */ /** Goerli instances: - Uniswap V2 Router: 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D - Sushiswap V1 Router: 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506 - Shibaswap V1 Router: 0x03f7724180AA6b939894B5Ca4314783B0b36b329 - UNI: 0x1f9840a85d5aF5bf1D1762F925BDADdC4201F984 // exists on Sushi - USDT: 0xaa34a2eE8Be136f0eeD223C9Ec8D4F2d0BC472dd - DAI: 0xdc31Ee1784292379Fbb2964b3B9C4124D8F89C60 // Triangular 1000000000 - WETH: 0xB4FBF271143F4FBf7B91A5ded31805e42b2208d6 // Simple 10000000000000 - Aave LendingPoolAddressesProvider(kovan): 0x5E52dEc931FFb32f609681B8438A51c675cc232d */ /** Kovan instances: - Uniswap V2 Router: 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D - Sushiswap V1 Router: 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506 - UNI: 0x075A36BA8846C6B6F53644fDd3bf17E5151789DC // exists on Sushi - USDT: 0x13512979ADE267AB5100878E2e0f485B568328a4 - BUSD: 0x4c6E1EFC12FDfD568186b7BAEc0A43fFfb4bCcCf - DAI: 0xFf795577d9AC8bD7D90Ee22b6C1703490b6512FD // Triangular 1000000000 - WETH: 0xd0A1E359811322d97991E03f863a0C30C2cF029C // Simple 10000000000000 - Aave LendingPoolAddressesProvider(kovan): 0x88757f2f99175387aB4C6a4b3067c77A695b0349 */ // File: @uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router01.sol interface IUniswapV2Router01 { function factory() external pure returns (address); function WETH() external pure returns (address); function addLiquidity( address tokenA, address tokenB, uint amountADesired, uint amountBDesired, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB, uint liquidity); function addLiquidityETH( address token, uint amountTokenDesired, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external payable returns (uint amountToken, uint amountETH, uint liquidity); function removeLiquidity( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline ) external returns (uint amountA, uint amountB); function removeLiquidityETH( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountToken, uint amountETH); function removeLiquidityWithPermit( address tokenA, address tokenB, uint liquidity, uint amountAMin, uint amountBMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountA, uint amountB); function removeLiquidityETHWithPermit( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountToken, uint amountETH); function swapExactTokensForTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapTokensForExactTokens( uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline ) external returns (uint[] memory amounts); function swapExactETHForTokens(uint amountOutMin, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function swapTokensForExactETH(uint amountOut, uint amountInMax, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapExactTokensForETH(uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline) external returns (uint[] memory amounts); function swapETHForExactTokens(uint amountOut, address[] calldata path, address to, uint deadline) external payable returns (uint[] memory amounts); function quote(uint amountA, uint reserveA, uint reserveB) external pure returns (uint amountB); function getAmountOut(uint amountIn, uint reserveIn, uint reserveOut) external pure returns (uint amountOut); function getAmountIn(uint amountOut, uint reserveIn, uint reserveOut) external pure returns (uint amountIn); function getAmountsOut(uint amountIn, address[] calldata path) external view returns (uint[] memory amounts); function getAmountsIn(uint amountOut, address[] calldata path) external view returns (uint[] memory amounts); } // File: @uniswap/v2-periphery/contracts/interfaces/IUniswapV2Router02.sol interface IUniswapV2Router02 is IUniswapV2Router01 { function removeLiquidityETHSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline ) external returns (uint amountETH); function removeLiquidityETHWithPermitSupportingFeeOnTransferTokens( address token, uint liquidity, uint amountTokenMin, uint amountETHMin, address to, uint deadline, bool approveMax, uint8 v, bytes32 r, bytes32 s ) external returns (uint amountETH); function swapExactTokensForTokensSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; function swapExactETHForTokensSupportingFeeOnTransferTokens( uint amountOutMin, address[] calldata path, address to, uint deadline ) external payable; function swapExactTokensForETHSupportingFeeOnTransferTokens( uint amountIn, uint amountOutMin, address[] calldata path, address to, uint deadline ) external; } // File: https://github.com/aave/protocol-v2/blob/master/contracts/protocol/libraries/types/DataTypes.sol library DataTypes { // refer to the whitepaper, section 1.1 basic concepts for a formal description of these properties. struct ReserveData { //stores the reserve configuration ReserveConfigurationMap configuration; //the liquidity index. Expressed in ray uint128 liquidityIndex; //variable borrow index. Expressed in ray uint128 variableBorrowIndex; //the current supply rate. Expressed in ray uint128 currentLiquidityRate; //the current variable borrow rate. Expressed in ray uint128 currentVariableBorrowRate; //the current stable borrow rate. Expressed in ray uint128 currentStableBorrowRate; uint40 lastUpdateTimestamp; //tokens addresses address aTokenAddress; address stableDebtTokenAddress; address variableDebtTokenAddress; //address of the interest rate strategy address interestRateStrategyAddress; //the id of the reserve. Represents the position in the list of the active reserves uint8 id; } struct ReserveConfigurationMap { //bit 0-15: LTV //bit 16-31: Liq. threshold //bit 32-47: Liq. bonus //bit 48-55: Decimals //bit 56: Reserve is active //bit 57: reserve is frozen //bit 58: borrowing is enabled //bit 59: stable rate borrowing enabled //bit 60-63: reserved //bit 64-79: reserve factor uint256 data; } struct UserConfigurationMap { uint256 data; } enum InterestRateMode {NONE, STABLE, VARIABLE} } // File: https://github.com/aave/protocol-v2/blob/master/contracts/interfaces/ILendingPoolAddressesProvider.sol /** * @title LendingPoolAddressesProvider contract * @dev Main registry of addresses part of or connected to the protocol, including permissioned roles * - Acting also as factory of proxies and admin of those, so with right to change its implementations * - Owned by the Aave Governance * @author Aave **/ interface ILendingPoolAddressesProvider { event MarketIdSet(string newMarketId); event LendingPoolUpdated(address indexed newAddress); event ConfigurationAdminUpdated(address indexed newAddress); event EmergencyAdminUpdated(address indexed newAddress); event LendingPoolConfiguratorUpdated(address indexed newAddress); event LendingPoolCollateralManagerUpdated(address indexed newAddress); event PriceOracleUpdated(address indexed newAddress); event LendingRateOracleUpdated(address indexed newAddress); event ProxyCreated(bytes32 id, address indexed newAddress); event AddressSet(bytes32 id, address indexed newAddress, bool hasProxy); function getMarketId() external view returns (string memory); function setMarketId(string calldata marketId) external; function setAddress(bytes32 id, address newAddress) external; function setAddressAsProxy(bytes32 id, address impl) external; function getAddress(bytes32 id) external view returns (address); function getLendingPool() external view returns (address); function setLendingPoolImpl(address pool) external; function getLendingPoolConfigurator() external view returns (address); function setLendingPoolConfiguratorImpl(address configurator) external; function getLendingPoolCollateralManager() external view returns (address); function setLendingPoolCollateralManager(address manager) external; function getPoolAdmin() external view returns (address); function setPoolAdmin(address admin) external; function getEmergencyAdmin() external view returns (address); function setEmergencyAdmin(address admin) external; function getPriceOracle() external view returns (address); function setPriceOracle(address priceOracle) external; function getLendingRateOracle() external view returns (address); function setLendingRateOracle(address lendingRateOracle) external; } // File: https://github.com/aave/protocol-v2/blob/master/contracts/interfaces/ILendingPool.solpragma experimental ABIEncoderV2; interface ILendingPool { /** * @dev Emitted on deposit() * @param reserve The address of the underlying asset of the reserve * @param user The address initiating the deposit * @param onBehalfOf The beneficiary of the deposit, receiving the aTokens * @param amount The amount deposited * @param referral The referral code used **/ event Deposit( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint16 indexed referral ); /** * @dev Emitted on withdraw() * @param reserve The address of the underlyng asset being withdrawn * @param user The address initiating the withdrawal, owner of aTokens * @param to Address that will receive the underlying * @param amount The amount to be withdrawn **/ event Withdraw(address indexed reserve, address indexed user, address indexed to, uint256 amount); /** * @dev Emitted on borrow() and flashLoan() when debt needs to be opened * @param reserve The address of the underlying asset being borrowed * @param user The address of the user initiating the borrow(), receiving the funds on borrow() or just * initiator of the transaction on flashLoan() * @param onBehalfOf The address that will be getting the debt * @param amount The amount borrowed out * @param borrowRateMode The rate mode: 1 for Stable, 2 for Variable * @param borrowRate The numeric rate at which the user has borrowed * @param referral The referral code used **/ event Borrow( address indexed reserve, address user, address indexed onBehalfOf, uint256 amount, uint256 borrowRateMode, uint256 borrowRate, uint16 indexed referral ); /** * @dev Emitted on repay() * @param reserve The address of the underlying asset of the reserve * @param user The beneficiary of the repayment, getting his debt reduced * @param repayer The address of the user initiating the repay(), providing the funds * @param amount The amount repaid **/ event Repay( address indexed reserve, address indexed user, address indexed repayer, uint256 amount ); /** * @dev Emitted on swapBorrowRateMode() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user swapping his rate mode * @param rateMode The rate mode that the user wants to swap to **/ event Swap(address indexed reserve, address indexed user, uint256 rateMode); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral **/ event ReserveUsedAsCollateralEnabled(address indexed reserve, address indexed user); /** * @dev Emitted on setUserUseReserveAsCollateral() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user enabling the usage as collateral **/ event ReserveUsedAsCollateralDisabled(address indexed reserve, address indexed user); /** * @dev Emitted on rebalanceStableBorrowRate() * @param reserve The address of the underlying asset of the reserve * @param user The address of the user for which the rebalance has been executed **/ event RebalanceStableBorrowRate(address indexed reserve, address indexed user); /** * @dev Emitted on flashLoan() * @param target The address of the flash loan receiver contract * @param initiator The address initiating the flash loan * @param asset The address of the asset being flash borrowed * @param amount The amount flash borrowed * @param premium The fee flash borrowed * @param referralCode The referral code used **/ event FlashLoan( address indexed target, address indexed initiator, address indexed asset, uint256 amount, uint256 premium, uint16 referralCode ); /** * @dev Emitted when the pause is triggered. */ event Paused(); /** * @dev Emitted when the pause is lifted. */ event Unpaused(); /** * @dev Emitted when a borrower is liquidated. This event is emitted by the LendingPool via * LendingPoolCollateral manager using a DELEGATECALL * This allows to have the events in the generated ABI for LendingPool. * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param liquidatedCollateralAmount The amount of collateral received by the liiquidator * @param liquidator The address of the liquidator * @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly **/ event LiquidationCall( address indexed collateralAsset, address indexed debtAsset, address indexed user, uint256 debtToCover, uint256 liquidatedCollateralAmount, address liquidator, bool receiveAToken ); /** * @dev Emitted when the state of a reserve is updated. NOTE: This event is actually declared * in the ReserveLogic library and emitted in the updateInterestRates() function. Since the function is internal, * the event will actually be fired by the LendingPool contract. The event is therefore replicated here so it * gets added to the LendingPool ABI * @param reserve The address of the underlying asset of the reserve * @param liquidityRate The new liquidity rate * @param stableBorrowRate The new stable borrow rate * @param variableBorrowRate The new variable borrow rate * @param liquidityIndex The new liquidity index * @param variableBorrowIndex The new variable borrow index **/ event ReserveDataUpdated( address indexed reserve, uint256 liquidityRate, uint256 stableBorrowRate, uint256 variableBorrowRate, uint256 liquidityIndex, uint256 variableBorrowIndex ); /** * @dev Deposits an `amount` of underlying asset into the reserve, receiving in return overlying aTokens. * - E.g. User deposits 100 USDC and gets in return 100 aUSDC * @param asset The address of the underlying asset to deposit * @param amount The amount to be deposited * @param onBehalfOf The address that will receive the aTokens, same as msg.sender if the user * wants to receive them on his own wallet, or a different address if the beneficiary of aTokens * is a different wallet * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function deposit( address asset, uint256 amount, address onBehalfOf, uint16 referralCode ) external; /** * @dev Withdraws an `amount` of underlying asset from the reserve, burning the equivalent aTokens owned * E.g. User has 100 aUSDC, calls withdraw() and receives 100 USDC, burning the 100 aUSDC * @param asset The address of the underlying asset to withdraw * @param amount The underlying amount to be withdrawn * - Send the value type(uint256).max in order to withdraw the whole aToken balance * @param to Address that will receive the underlying, same as msg.sender if the user * wants to receive it on his own wallet, or a different address if the beneficiary is a * different wallet * @return The final amount withdrawn **/ function withdraw( address asset, uint256 amount, address to ) external returns (uint256); /** * @dev Allows users to borrow a specific `amount` of the reserve underlying asset, provided that the borrower * already deposited enough collateral, or he was given enough allowance by a credit delegator on the * corresponding debt token (StableDebtToken or VariableDebtToken) * - E.g. User borrows 100 USDC passing as `onBehalfOf` his own address, receiving the 100 USDC in his wallet * and 100 stable/variable debt tokens, depending on the `interestRateMode` * @param asset The address of the underlying asset to borrow * @param amount The amount to be borrowed * @param interestRateMode The interest rate mode at which the user wants to borrow: 1 for Stable, 2 for Variable * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man * @param onBehalfOf Address of the user who will receive the debt. Should be the address of the borrower itself * calling the function if he wants to borrow against his own collateral, or the address of the credit delegator * if he has been given credit delegation allowance **/ function borrow( address asset, uint256 amount, uint256 interestRateMode, uint16 referralCode, address onBehalfOf ) external; /** * @notice Repays a borrowed `amount` on a specific reserve, burning the equivalent debt tokens owned * - E.g. User repays 100 USDC, burning 100 variable/stable debt tokens of the `onBehalfOf` address * @param asset The address of the borrowed underlying asset previously borrowed * @param amount The amount to repay * - Send the value type(uint256).max in order to repay the whole debt for `asset` on the specific `debtMode` * @param rateMode The interest rate mode at of the debt the user wants to repay: 1 for Stable, 2 for Variable * @param onBehalfOf Address of the user who will get his debt reduced/removed. Should be the address of the * user calling the function if he wants to reduce/remove his own debt, or the address of any other * other borrower whose debt should be removed * @return The final amount repaid **/ function repay( address asset, uint256 amount, uint256 rateMode, address onBehalfOf ) external returns (uint256); /** * @dev Allows a borrower to swap his debt between stable and variable mode, or viceversa * @param asset The address of the underlying asset borrowed * @param rateMode The rate mode that the user wants to swap to **/ function swapBorrowRateMode(address asset, uint256 rateMode) external; /** * @dev Rebalances the stable interest rate of a user to the current stable rate defined on the reserve. * - Users can be rebalanced if the following conditions are satisfied: * 1. Usage ratio is above 95% * 2. the current deposit APY is below REBALANCE_UP_THRESHOLD * maxVariableBorrowRate, which means that too much has been * borrowed at a stable rate and depositors are not earning enough * @param asset The address of the underlying asset borrowed * @param user The address of the user to be rebalanced **/ function rebalanceStableBorrowRate(address asset, address user) external; /** * @dev Allows depositors to enable/disable a specific deposited asset as collateral * @param asset The address of the underlying asset deposited * @param useAsCollateral `true` if the user wants to use the deposit as collateral, `false` otherwise **/ function setUserUseReserveAsCollateral(address asset, bool useAsCollateral) external; /** * @dev Function to liquidate a non-healthy position collateral-wise, with Health Factor below 1 * - The caller (liquidator) covers `debtToCover` amount of debt of the user getting liquidated, and receives * a proportionally amount of the `collateralAsset` plus a bonus to cover market risk * @param collateralAsset The address of the underlying asset used as collateral, to receive as result of the liquidation * @param debtAsset The address of the underlying borrowed asset to be repaid with the liquidation * @param user The address of the borrower getting liquidated * @param debtToCover The debt amount of borrowed `asset` the liquidator wants to cover * @param receiveAToken `true` if the liquidators wants to receive the collateral aTokens, `false` if he wants * to receive the underlying collateral asset directly **/ function liquidationCall( address collateralAsset, address debtAsset, address user, uint256 debtToCover, bool receiveAToken ) external; /** * @dev Allows smartcontracts to access the liquidity of the pool within one transaction, * as long as the amount taken plus a fee is returned. * IMPORTANT There are security concerns for developers of flashloan receiver contracts that must be kept into consideration. * For further details please visit https://developers.aave.com * @param receiverAddress The address of the contract receiving the funds, implementing the IFlashLoanReceiver interface * @param assets The addresses of the assets being flash-borrowed * @param amounts The amounts amounts being flash-borrowed * @param modes Types of the debt to open if the flash loan is not returned: * 0 -> Don't open any debt, just revert if funds can't be transferred from the receiver * 1 -> Open debt at stable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * 2 -> Open debt at variable rate for the value of the amount flash-borrowed to the `onBehalfOf` address * @param onBehalfOf The address that will receive the debt in the case of using on `modes` 1 or 2 * @param params Variadic packed params to pass to the receiver as extra information * @param referralCode Code used to register the integrator originating the operation, for potential rewards. * 0 if the action is executed directly by the user, without any middle-man **/ function flashLoan( address receiverAddress, address[] calldata assets, uint256[] calldata amounts, uint256[] calldata modes, address onBehalfOf, bytes calldata params, uint16 referralCode ) external; /** * @dev Returns the user account data across all the reserves * @param user The address of the user * @return totalCollateralETH the total collateral in ETH of the user * @return totalDebtETH the total debt in ETH of the user * @return availableBorrowsETH the borrowing power left of the user * @return currentLiquidationThreshold the liquidation threshold of the user * @return ltv the loan to value of the user * @return healthFactor the current health factor of the user **/ function getUserAccountData(address user) external view returns ( uint256 totalCollateralETH, uint256 totalDebtETH, uint256 availableBorrowsETH, uint256 currentLiquidationThreshold, uint256 ltv, uint256 healthFactor ); function initReserve( address reserve, address aTokenAddress, address stableDebtAddress, address variableDebtAddress, address interestRateStrategyAddress ) external; function setReserveInterestRateStrategyAddress(address reserve, address rateStrategyAddress) external; function setConfiguration(address reserve, uint256 configuration) external; /** * @dev Returns the configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The configuration of the reserve **/ function getConfiguration(address asset) external view returns (DataTypes.ReserveConfigurationMap memory); /** * @dev Returns the configuration of the user across all the reserves * @param user The user address * @return The configuration of the user **/ function getUserConfiguration(address user) external view returns (DataTypes.UserConfigurationMap memory); /** * @dev Returns the normalized income normalized income of the reserve * @param asset The address of the underlying asset of the reserve * @return The reserve's normalized income */ function getReserveNormalizedIncome(address asset) external view returns (uint256); /** * @dev Returns the normalized variable debt per unit of asset * @param asset The address of the underlying asset of the reserve * @return The reserve normalized variable debt */ function getReserveNormalizedVariableDebt(address asset) external view returns (uint256); /** * @dev Returns the state and configuration of the reserve * @param asset The address of the underlying asset of the reserve * @return The state of the reserve **/ function getReserveData(address asset) external view returns (DataTypes.ReserveData memory); function finalizeTransfer( address asset, address from, address to, uint256 amount, uint256 balanceFromAfter, uint256 balanceToBefore ) external; function getReservesList() external view returns (address[] memory); function getAddressesProvider() external view returns (ILendingPoolAddressesProvider); function setPause(bool val) external; function paused() external view returns (bool); } // File: https://github.com/aave/protocol-v2/blob/master/contracts/flashloan/interfaces/IFlashLoanReceiver.sol /** * @title IFlashLoanReceiver interface * @notice Interface for the Aave fee IFlashLoanReceiver. * @author Aave * @dev implement this interface to develop a flashloan-compatible flashLoanReceiver contract **/ interface IFlashLoanReceiver { function executeOperation( address[] calldata assets, uint256[] calldata amounts, uint256[] calldata premiums, address initiator, bytes calldata params ) external returns (bool); function ADDRESSES_PROVIDER() external view returns (ILendingPoolAddressesProvider); function LENDING_POOL() external view returns (ILendingPool); } // File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/Address.sol /** * @dev Collection of functions related to the address type */ library Address { /** * @dev Returns true if `account` is a contract. * * [IMPORTANT] * ==== * It is unsafe to assume that an address for which this function returns * false is an externally-owned account (EOA) and not a contract. * * Among others, `isContract` will return false for the following * types of addresses: * * - an externally-owned account * - a contract in construction * - an address where a contract will be created * - an address where a contract lived, but was destroyed * ==== */ function isContract(address account) internal view returns (bool) { // According to EIP-1052, 0x0 is the value returned for not-yet created accounts // and 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470 is returned // for accounts without code, i.e. `keccak256('')` bytes32 codehash; bytes32 accountHash = 0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470; // solhint-disable-next-line no-inline-assembly assembly { codehash := extcodehash(account) } return (codehash != accountHash && codehash != 0x0); } /** * @dev Replacement for Solidity's `transfer`: sends `amount` wei to * `recipient`, forwarding all available gas and reverting on errors. * * https://eips.ethereum.org/EIPS/eip-1884[EIP1884] increases the gas cost * of certain opcodes, possibly making contracts go over the 2300 gas limit * imposed by `transfer`, making them unable to receive funds via * `transfer`. {sendValue} removes this limitation. * * https://diligence.consensys.net/posts/2019/09/stop-using-soliditys-transfer-now/[Learn more]. * * IMPORTANT: because control is transferred to `recipient`, care must be * taken to not create reentrancy vulnerabilities. Consider using * {ReentrancyGuard} or the * https://solidity.readthedocs.io/en/v0.5.11/security-considerations.html#use-the-checks-effects-interactions-pattern[checks-effects-interactions pattern]. */ function sendValue(address payable recipient, uint256 amount) internal { require(address(this).balance >= amount, 'Address: insufficient balance'); // solhint-disable-next-line avoid-low-level-calls, avoid-call-value (bool success, ) = recipient.call{value: amount}(''); require(success, 'Address: unable to send value, recipient may have reverted'); } } // File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/IERC20.sol /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `recipient`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address recipient, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `sender` to `recipient` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom( address sender, address recipient, uint256 amount ) external returns (bool); /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); } // File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/SafeMath.sol /** * @dev Wrappers over Solidity's arithmetic operations with added overflow * checks. * * Arithmetic operations in Solidity wrap on overflow. This can easily result * in bugs, because programmers usually assume that an overflow raises an * error, which is the standard behavior in high level programming languages. * `SafeMath` restores this intuition by reverting the transaction when an * operation overflows. * * Using this library instead of the unchecked operations eliminates an entire * class of bugs, so it's recommended to use it always. */ library SafeMath { /** * @dev Returns the addition of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `+` operator. * * Requirements: * - Addition cannot overflow. */ function add(uint256 a, uint256 b) internal pure returns (uint256) { uint256 c = a + b; require(c >= a, 'SafeMath: addition overflow'); return c; } /** * @dev Returns the subtraction of two unsigned integers, reverting on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub(uint256 a, uint256 b) internal pure returns (uint256) { return sub(a, b, 'SafeMath: subtraction overflow'); } /** * @dev Returns the subtraction of two unsigned integers, reverting with custom message on * overflow (when the result is negative). * * Counterpart to Solidity's `-` operator. * * Requirements: * - Subtraction cannot overflow. */ function sub( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b <= a, errorMessage); uint256 c = a - b; return c; } /** * @dev Returns the multiplication of two unsigned integers, reverting on * overflow. * * Counterpart to Solidity's `*` operator. * * Requirements: * - Multiplication cannot overflow. */ function mul(uint256 a, uint256 b) internal pure returns (uint256) { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) { return 0; } uint256 c = a * b; require(c / a == b, 'SafeMath: multiplication overflow'); return c; } /** * @dev Returns the integer division of two unsigned integers. Reverts on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div(uint256 a, uint256 b) internal pure returns (uint256) { return div(a, b, 'SafeMath: division by zero'); } /** * @dev Returns the integer division of two unsigned integers. Reverts with custom message on * division by zero. The result is rounded towards zero. * * Counterpart to Solidity's `/` operator. Note: this function uses a * `revert` opcode (which leaves remaining gas untouched) while Solidity * uses an invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function div( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { // Solidity only automatically asserts when dividing by 0 require(b > 0, errorMessage); uint256 c = a / b; // assert(a == b * c + a % b); // There is no case in which this doesn't hold return c; } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod(uint256 a, uint256 b) internal pure returns (uint256) { return mod(a, b, 'SafeMath: modulo by zero'); } /** * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo), * Reverts with custom message when dividing by zero. * * Counterpart to Solidity's `%` operator. This function uses a `revert` * opcode (which leaves remaining gas untouched) while Solidity uses an * invalid opcode to revert (consuming all remaining gas). * * Requirements: * - The divisor cannot be zero. */ function mod( uint256 a, uint256 b, string memory errorMessage ) internal pure returns (uint256) { require(b != 0, errorMessage); return a % b; } } // File: https://github.com/aave/protocol-v2/blob/master/contracts/dependencies/openzeppelin/contracts/SafeERC20.sol /** * @title SafeERC20 * @dev Wrappers around ERC20 operations that throw on failure (when the token * contract returns false). Tokens that return no value (and instead revert or * throw on failure) are also supported, non-reverting calls are assumed to be * successful. * To use this library you can add a `using SafeERC20 for IERC20;` statement to your contract, * which allows you to call the safe operations as `token.safeTransfer(...)`, etc. */ library SafeERC20 { using SafeMath for uint256; using Address for address; function safeTransfer( IERC20 token, address to, uint256 value ) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transfer.selector, to, value)); } function safeTransferFrom( IERC20 token, address from, address to, uint256 value ) internal { callOptionalReturn(token, abi.encodeWithSelector(token.transferFrom.selector, from, to, value)); } function safeApprove( IERC20 token, address spender, uint256 value ) internal { require( (value == 0) || (token.allowance(address(this), spender) == 0), 'SafeERC20: approve from non-zero to non-zero allowance' ); callOptionalReturn(token, abi.encodeWithSelector(token.approve.selector, spender, value)); } function callOptionalReturn(IERC20 token, bytes memory data) private { require(address(token).isContract(), 'SafeERC20: call to non-contract'); // solhint-disable-next-line avoid-low-level-calls (bool success, bytes memory returndata) = address(token).call(data); require(success, 'SafeERC20: low-level call failed'); if (returndata.length > 0) { // Return data is optional // solhint-disable-next-line max-line-length require(abi.decode(returndata, (bool)), 'SafeERC20: ERC20 operation did not succeed'); } } } // File: https://github.com/aave/protocol-v2/blob/master/contracts/flashloan/base/FlashLoanReceiverBase.sol abstract contract FlashLoanReceiverBase is IFlashLoanReceiver { using SafeERC20 for IERC20; using SafeMath for uint256; ILendingPoolAddressesProvider public immutable override ADDRESSES_PROVIDER; ILendingPool public immutable override LENDING_POOL; constructor(ILendingPoolAddressesProvider provider) public { ADDRESSES_PROVIDER = provider; LENDING_POOL = ILendingPool(provider.getLendingPool()); } } /* * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with GSN meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address payable) { return msg.sender; } function _msgData() internal view virtual returns (bytes memory) { this; // silence state mutability warning without generating bytecode - see https://github.com/ethereum/solidity/issues/2691 return msg.data; } } // File: Arbitrage_flat.sol contract Ownable { address public owner; event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); /** * @dev The Ownable constructor sets the original `owner` of the contract to the sender * account. */ constructor()public { owner = msg.sender; } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { require(msg.sender == owner,"Ownable: caller is not the owner"); _; } /** * @dev Allows the current owner to transfer control of the contract to a newOwner. * @param newOwner The address to transfer ownership to. */ function transferOwnership(address newOwner) public onlyOwner { require(newOwner != address(0)); emit OwnershipTransferred(owner, newOwner); owner = newOwner; } } /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.zeppelin.solutions/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * We have followed general OpenZeppelin guidelines: functions revert instead * of returning `false` on failure. This behavior is nonetheless conventional * and does not conflict with the expectations of ERC20 applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20 { using SafeMath for uint256; mapping (address => uint256) private _balances; mapping (address => mapping (address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; uint8 private _decimals; /** * @dev Sets the values for {name} and {symbol}, initializes {decimals} with * a default value of 18. * * To select a different value for {decimals}, use {_setupDecimals}. * * All three of these values are immutable: they can only be set once during * construction. */ constructor (string memory name_, string memory symbol_) public { _name = name_; _symbol = symbol_; _decimals = 18; } /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5,05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the value {ERC20} uses, unless {_setupDecimals} is * called. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return _decimals; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `recipient` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address recipient, uint256 amount) public virtual override returns (bool) { _transfer(_msgSender(), recipient, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { _approve(_msgSender(), spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * Requirements: * * - `sender` and `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. * - the caller must have allowance for ``sender``'s tokens of at least * `amount`. */ function transferFrom(address sender, address recipient, uint256 amount) public virtual override returns (bool) { _transfer(sender, recipient, amount); _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, "ERC20: transfer amount exceeds allowance")); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].add(addedValue)); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { _approve(_msgSender(), spender, _allowances[_msgSender()][spender].sub(subtractedValue, "ERC20: decreased allowance below zero")); return true; } /** * @dev Moves tokens `amount` from `sender` to `recipient`. * * This is internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `sender` cannot be the zero address. * - `recipient` cannot be the zero address. * - `sender` must have a balance of at least `amount`. */ function _transfer(address sender, address recipient, uint256 amount) internal virtual { require(sender != address(0), "ERC20: transfer from the zero address"); require(recipient != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(sender, recipient, amount); _balances[sender] = _balances[sender].sub(amount, "ERC20: transfer amount exceeds balance"); _balances[recipient] = _balances[recipient].add(amount); emit Transfer(sender, recipient, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `to` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply = _totalSupply.add(amount); _balances[account] = _balances[account].add(amount); emit Transfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); _balances[account] = _balances[account].sub(amount, "ERC20: burn amount exceeds balance"); _totalSupply = _totalSupply.sub(amount); emit Transfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Sets {decimals} to a value other than the default one of 18. * * WARNING: This function should only be called from the constructor. Most * applications that interact with token contracts will not expect * {decimals} to ever change, and may work incorrectly if it does. */ function _setupDecimals(uint8 decimals_) internal virtual { _decimals = decimals_; } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be to transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual { } } contract WBNB is ERC20 { // string public name = "Wrapped BNB"; // string public symbol = "WBNB"; // uint8 public decimals = 18; event Deposit(address indexed account, uint256 amount); event Withdrawal(address indexed account, uint256 amount); constructor() public ERC20("Wrapped BNB", "WBNB") {} function deposit() external payable { _mint(msg.sender, msg.value); emit Deposit(msg.sender, msg.value); } function withdraw(uint256 _amount) external { _burn(msg.sender, _amount); payable(msg.sender).transfer(_amount); emit Withdrawal(msg.sender, _amount); } } contract FlashLoanSimpleArbitrage is FlashLoanReceiverBase { //-------------------------------------------------------------------- // VARIABLES address public owner; address public exchangeA; address public exchangeB; address public tokenA; address public tokenB; address public devAddr; enum Exchange { EXCA, EXCB, NONE } //-------------------------------------------------------------------- // MODIFIERS modifier onlyOwner() { require(msg.sender == owner, "only owner can call this"); _; } //-------------------------------------------------------------------- // CONSTRUCTOR constructor( address _addressProvider, // 0x5E52dEc931FFb32f609681B8438A51c675cc232d address _exchangeA, // 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D address _exchangeB, // 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506 address _tokenA, address _tokenB, address _devAddr ) public FlashLoanReceiverBase(ILendingPoolAddressesProvider(_addressProvider)) { owner = msg.sender; exchangeA = _exchangeA; exchangeB = _exchangeB; tokenA = _tokenA; tokenB = _tokenB; devAddr = _devAddr; } //-------------------------------------------------------------------- // ARBITRAGE FUNCTIONS/LOGIC function withdrawERC(address _tokenAddress, uint256 amount) public onlyOwner { uint256 erc20Balance = getTokenBalance(_tokenAddress); require(amount <= erc20Balance, "Not enough balance"); IERC20(_tokenAddress).transfer(msg.sender, amount); } function withdrawETH(uint256 amount) public onlyOwner { uint256 ethBalance = getETHBalance(); require(amount <= ethBalance, "Not enough balance"); payable(owner).transfer(amount); } function simpleArbitrage(uint256 _amountIn) public payable { uint256 amountIn = 0; if(tokenA == address(0)) { amountIn = msg.value; } else { amountIn = _amountIn; } uint256 amountOut = 0; uint256 amountOut_ = 0; Exchange result = _comparePrice(tokenA, tokenB, amountIn); // loan amountIn if (result == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut = _swap( amountIn, exchangeA, tokenA, tokenB ); } else if (result == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut = _swap( amountIn, exchangeB, tokenA, tokenB ); } else { revert("No Arbitrage Found"); } Exchange result_ = _comparePrice(tokenB, tokenA, amountOut); // loan amountIn if (result_ == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut_ = _swap( amountOut, exchangeA, tokenB, tokenA ); } else if (result_ == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut_ = _swap( amountOut, exchangeB, tokenB, tokenA ); } else { revert("No Arbitrage Found"); } require(amountOut_ > amountIn, "Trade Reverted, Arbitrage not profitable"); if(tokenA == address(0)) { payable(devAddr).transfer(amountOut_); } else { IERC20(tokenA).transfer(devAddr, amountOut_); } } function simpleArbitrageFlashloan(uint256 _amountIn) internal returns(uint256){ address _tokenA; if(tokenA == address(0)) { // amountIn = msg.value; address WETH = IUniswapV2Router02(exchangeB).WETH(); _tokenA = WETH; } else { _tokenA = tokenA; // amountIn = _amountIn; } uint256 amountOut = 0; uint256 amountOut_ = 0; Exchange result = _comparePrice(_tokenA, tokenB, _amountIn); // loan _amountIn if (result == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut = _swap( _amountIn, exchangeA, _tokenA, tokenB ); } else if (result == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut = _swap( _amountIn, exchangeB, _tokenA, tokenB ); } else { revert("No Arbitrage Found"); } Exchange result_ = _comparePrice(tokenB, _tokenA, amountOut); // loan amountIn if (result_ == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut_ = _swap( amountOut, exchangeA, tokenB, _tokenA ); } else if (result_ == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut_ = _swap( amountOut, exchangeB, tokenB, _tokenA ); } else { revert("No Arbitrage Found"); } require(amountOut_ > _amountIn, "Trade Reverted, Arbitrage not profitable"); return amountOut_; } function _swap( uint256 amountIn, address routerAddress, address sell_token, address buy_token ) internal returns (uint256) { address WETH = IUniswapV2Router02(routerAddress).WETH(); if(sell_token == address(0)) { sell_token = WETH; // IERC20(sell_token).approve(routerAddress, amountIn); uint256 amountOutMin = (_getAmountOut( routerAddress, sell_token, buy_token, amountIn ) * 95) / 100; address[] memory path = new address[](2); path[0] = sell_token; path[1] = buy_token; uint256 amountOut = IUniswapV2Router02(routerAddress) .swapExactETHForTokens{value : amountIn}( amountOutMin, path, address(this), block.timestamp + 15 minutes )[1]; return amountOut; } else if(buy_token == address(0)) { buy_token = WETH; IERC20(sell_token).approve(routerAddress, amountIn); uint256 amountOutMin = (_getAmountOut( routerAddress, sell_token, buy_token, amountIn ) * 95) / 100; address[] memory path = new address[](2); path[0] = sell_token; path[1] = buy_token; uint256 amountOut = IUniswapV2Router02(routerAddress) .swapExactTokensForETH( amountIn, amountOutMin, path, address(this), block.timestamp + 15 minutes )[1]; return amountOut; } else { IERC20(sell_token).approve(routerAddress, amountIn); uint256 amountOutMin = (_getAmountOut( routerAddress, sell_token, buy_token, amountIn ) * 95) / 100; address[] memory path = new address[](2); path[0] = sell_token; path[1] = buy_token; uint256 amountOut = IUniswapV2Router02(routerAddress) .swapExactTokensForTokens( amountIn, amountOutMin, path, address(this), block.timestamp + 15 minutes )[1]; return amountOut; } } function _comparePrice(address _tokenA, address _tokenB, uint256 amount) internal view returns (Exchange) { address WETH = IUniswapV2Router02(exchangeA).WETH(); if(_tokenA == address(0)) _tokenA = WETH; else if(_tokenB == address(0)) _tokenB = WETH; uint256 exchangeAPrice = _getAmountOut( exchangeA, _tokenA, _tokenB, amount ); uint256 exchangeBPrice = _getAmountOut( exchangeB, _tokenA, _tokenB, amount ); // we try to sell ETH with higher price and buy it back with low price to make profit if (exchangeAPrice > exchangeBPrice) { require( _checkIfArbitrageIsProfitable( amount, exchangeAPrice, exchangeBPrice ), "Arbitrage not profitable" ); return Exchange.EXCA; } else if (exchangeAPrice < exchangeBPrice) { require( _checkIfArbitrageIsProfitable( amount, exchangeBPrice, exchangeAPrice ), "Arbitrage not profitable" ); return Exchange.EXCB; } else { return Exchange.NONE; } } function _checkIfArbitrageIsProfitable( uint256 amountIn, uint256 higherPrice, uint256 lowerPrice ) internal pure returns (bool) { // uniswap & sushiswap have 0.3% fee for every exchange // so gain made must be greater than 2 * 0.3% * arbitrage_amount // difference in ETH uint256 difference = ((higherPrice - lowerPrice) * 10**18) / higherPrice; uint256 payed_fee = (amountIn * 3) / 1000; if (difference > payed_fee) { return true; } else { return false; } } function _getAmountOut( address routerAddress, address sell_token, address buy_token, uint256 amount ) internal view returns (uint256) { address[] memory pairs = new address[](2); pairs[0] = sell_token; pairs[1] = buy_token; uint256 price = IUniswapV2Router02(routerAddress).getAmountsOut( amount, pairs )[1]; return price; } //-------------------------------------------------------------------- // FLASHLOAN FUNCTIONS /** * @dev This function must be called only be the LENDING_POOL and takes care of repaying * active debt positions, migrating collateral and incurring new V2 debt token debt. * * @param assets The array of flash loaned assets used to repay debts. * @param amounts The array of flash loaned asset amounts used to repay debts. * @param premiums The array of premiums incurred as additional debts. * @param initiator The address that initiated the flash loan, unused. * @param params The byte array containing, in this case, the arrays of aTokens and aTokenAmounts. */ function executeOperation( address[] calldata assets, uint256[] calldata amounts, uint256[] calldata premiums, address initiator, bytes calldata params ) external override returns (bool) { // // Try to do arbitrage with the flashloan amount. // uint256 amountOut = simpleArbitrageFlashloan(amounts[0]); // At the end of your logic above, this contract owes // the flashloaned amounts + premiums. // Therefore ensure your contract has enough to repay // these amounts. uint256 amountOwing = 0; // Approve the LendingPool contract allowance to *pull* the owed amount for (uint256 i = 0; i < assets.length; i++) { amountOwing = amounts[i].add(premiums[i]); IERC20(assets[i]).approve(address(LENDING_POOL), amountOwing); } if(tokenA == address(0)) { address WETH = IUniswapV2Router02(exchangeA).WETH(); WBNB(WETH).withdraw(amountOut.sub(amountOwing)); payable(devAddr).transfer(amountOut.sub(amountOwing)); } else { IERC20(tokenA).transfer(devAddr, amountOut.sub(amountOwing)); } return true; } function flashloanArbitrage(uint256 _amountIn) public payable { address receiverAddress = address(this); uint256 amountIn = 0; address _tokenA; if(tokenA == address(0)) { address WETH = IUniswapV2Router02(exchangeA).WETH(); _tokenA = WETH; amountIn = msg.value; WBNB(WETH).deposit{value: amountIn}(); } else { _tokenA = tokenA; amountIn = _amountIn; } address[] memory assets = new address[](1); assets[0] = address(_tokenA); // assets[1] = address(_tokenB); uint256[] memory amounts = new uint256[](1); amounts[0] = amountIn; // amounts[0] = getERC20Balance(wethAddress); // 0 = no debt, 1 = stable, 2 = variable uint256[] memory modes = new uint256[](1); modes[0] = 0; // modes[1] = INSERT_ASSET_TWO_MODE; address onBehalfOf = address(this); bytes memory params = ""; uint16 referralCode = 0; LENDING_POOL.flashLoan( receiverAddress, assets, amounts, modes, onBehalfOf, params, referralCode ); } function getTokenBalance(address _erc20Address) public view returns (uint256) { return IERC20(_erc20Address).balanceOf(address(this)); } function getETHBalance() public view returns (uint256) { return address(this).balance; } function checkProbability(address _tokenA, address _tokenB, uint256 _amountIn) public view returns(string memory){ Exchange result = _comparePrice(_tokenA, _tokenB, _amountIn); if (result == Exchange.EXCA) { return "Arbitrage Chances in ExchangeA"; }else if(result == Exchange.EXCB){ return "Arbitrage Chances in ExchangeB"; }else{ return "No Availabe Arbitrage"; } } receive() external payable {} fallback() external payable { } } contract FlashLoanTriangularArbitrage is FlashLoanReceiverBase { //-------------------------------------------------------------------- // VARIABLES address public owner; address public exchangeA; address public exchangeB; address public tokenA; address public tokenB; address public tokenC; address public devAddr; enum Exchange { EXCA, EXCB, NONE } //-------------------------------------------------------------------- // MODIFIERS modifier onlyOwner() { require(devAddr == owner, "only owner can call this"); _; } //-------------------------------------------------------------------- // CONSTRUCTOR constructor( address _addressProvider, // 0x5E52dEc931FFb32f609681B8438A51c675cc232d address _exchangeA, // 0x7a250d5630B4cF539739dF2C5dAcb4c659F2488D address _exchangeB, // 0x1b02dA8Cb0d097eB8D57A175b88c7D8b47997506 address _tokenA, address _tokenB, address _tokenC, address _devAddr ) public FlashLoanReceiverBase(ILendingPoolAddressesProvider(_addressProvider)) { owner = devAddr; exchangeA = _exchangeA; exchangeB = _exchangeB; tokenA = _tokenA; tokenB = _tokenB; tokenC = _tokenC; devAddr = _devAddr; } //-------------------------------------------------------------------- // ARBITRAGE FUNCTIONS/LOGIC function withdrawERC(address _tokenAddress, uint256 amount) public onlyOwner { uint256 erc20Balance = getTokenBalance(_tokenAddress); require(amount <= erc20Balance, "Not enough balance"); IERC20(_tokenAddress).transfer(devAddr, amount); } function withdrawETH(uint256 amount) public onlyOwner { uint256 ethBalance = getETHBalance(); require(amount <= ethBalance, "Not enough balance"); payable(owner).transfer(amount); } function triangularArbitrage(uint256 _amountIn) public payable { // address WETH = IUniswapV2Router02(exchangeB).WETH(); uint256 amountIn = 0; if(tokenA == address(0)) { amountIn = msg.value; } else { amountIn = _amountIn; } uint256 amountOut = 0; uint256 amountOut_ = 0; uint256 _amountOut_ = 0; Exchange result = _comparePrice(tokenA, tokenB, amountIn); // loan amountIn if (result == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut = _swap( amountIn, exchangeA, tokenA, tokenB ); } else if (result == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut = _swap( amountIn, exchangeB, tokenA, tokenB ); } else { revert("No Arbitrage Found"); } Exchange result_ = _comparePrice(tokenB, tokenC, amountOut); // loan amountIn if (result_ == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut_ = _swap( amountOut, exchangeA, tokenB, tokenC ); } else if (result_ == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut_ = _swap( amountOut, exchangeB, tokenB, tokenC ); } else { revert("No Arbitrage Found"); } Exchange _result_ = _comparePrice(tokenC, tokenA, amountOut_); // loan amountIn if (_result_ == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price _amountOut_ = _swap( amountOut_, exchangeA, tokenC, tokenA ); } else if (_result_ == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price _amountOut_ = _swap( amountOut_, exchangeB, tokenC, tokenA ); } else { revert("No Arbitrage Found"); } require(_amountOut_ > amountIn, "Trade Reverted, Arbitrage not profitable"); if(tokenA == address(0)) { payable(devAddr).transfer(_amountOut_); } else { IERC20(tokenA).transfer(devAddr, _amountOut_); } } function triangularArbitrageFlashloan(uint256 _amountIn) internal returns(uint256){ address WETH = IUniswapV2Router02(exchangeB).WETH(); // uint256 amountIn = 0; address _tokenA; if(tokenA == address(0)) { // amountIn = msg.value; _tokenA = WETH; } else { // amountIn = _amountIn; _tokenA = tokenA; } uint256 amountOut = 0; uint256 amountOut_ = 0; uint256 _amountOut_ = 0; Exchange result = _comparePrice(_tokenA, tokenB, _amountIn); // loan _amountIn if (result == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut = _swap( _amountIn, exchangeA, _tokenA, tokenB ); } else if (result == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut = _swap( _amountIn, exchangeB, _tokenA, tokenB ); } else { revert("No Arbitrage Found"); } Exchange result_ = _comparePrice(tokenB, tokenC, amountOut); // loan amountIn if (result_ == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price amountOut_ = _swap( amountOut, exchangeA, tokenB, tokenC ); } else if (result_ == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price amountOut_ = _swap( amountOut, exchangeB, tokenB, tokenC ); } else { revert("No Arbitrage Found"); } Exchange _result_ = _comparePrice(tokenC, _tokenA, amountOut_); // loan amountIn if (_result_ == Exchange.EXCA) { // sell loanToken in uniswap for swapToken with high price and buy loanToken from sushiswap with lower price _amountOut_ = _swap( amountOut_, exchangeA, tokenC, _tokenA ); } else if (_result_ == Exchange.EXCB) { // sell loanToken in sushiswap for swapToken with high price and buy loanToken from uniswap with lower price _amountOut_ = _swap( amountOut_, exchangeB, tokenC, _tokenA ); } else { revert("No Arbitrage Found"); } require(_amountOut_ > _amountIn, "Trade Reverted, Arbitrage not profitable"); return _amountOut_; } function _swap( uint256 amountIn, address routerAddress, address sell_token, address buy_token ) internal returns (uint256) { address WETH = IUniswapV2Router02(routerAddress).WETH(); if(sell_token == address(0)) { sell_token = WETH; // IERC20(sell_token).approve(routerAddress, amountIn); uint256 amountOutMin = (_getAmountOut( routerAddress, sell_token, buy_token, amountIn ) * 95) / 100; address[] memory path = new address[](2); path[0] = sell_token; path[1] = buy_token; uint256 amountOut = IUniswapV2Router02(routerAddress) .swapExactETHForTokens{value : amountIn}( amountOutMin, path, address(this), block.timestamp + 15 minutes )[1]; return amountOut; } else if(buy_token == address(0)) { buy_token = WETH; IERC20(sell_token).approve(routerAddress, amountIn); uint256 amountOutMin = (_getAmountOut( routerAddress, sell_token, buy_token, amountIn ) * 95) / 100; address[] memory path = new address[](2); path[0] = sell_token; path[1] = buy_token; uint256 amountOut = IUniswapV2Router02(routerAddress) .swapExactTokensForETH( amountIn, amountOutMin, path, address(this), block.timestamp + 15 minutes )[1]; return amountOut; } else { IERC20(sell_token).approve(routerAddress, amountIn); uint256 amountOutMin = (_getAmountOut( routerAddress, sell_token, buy_token, amountIn ) * 95) / 100; address[] memory path = new address[](2); path[0] = sell_token; path[1] = buy_token; uint256 amountOut = IUniswapV2Router02(routerAddress) .swapExactTokensForTokens( amountIn, amountOutMin, path, address(this), block.timestamp + 15 minutes )[1]; return amountOut; } } function _comparePrice(address _tokenA, address _tokenB, uint256 amount) internal view returns (Exchange) { // else if(tokenC == address(0)) tokenC = WETH; address WETH = IUniswapV2Router02(exchangeA).WETH(); if(_tokenA == address(0)) _tokenA = WETH; else if(_tokenB == address(0)) _tokenB = WETH; uint256 uniswapPrice = _getAmountOut( exchangeA, _tokenA, _tokenB, amount ); uint256 sushiswapPrice = _getAmountOut( exchangeB, _tokenA, _tokenB, amount ); // we try to sell ETH with higher price and buy it back with low price to make profit if (uniswapPrice > sushiswapPrice) { require( _checkIfArbitrageIsProfitable( amount, uniswapPrice, sushiswapPrice ), "Arbitrage not profitable" ); return Exchange.EXCA; } else if (uniswapPrice < sushiswapPrice) { require( _checkIfArbitrageIsProfitable( amount, sushiswapPrice, uniswapPrice ), "Arbitrage not profitable" ); return Exchange.EXCB; } else { return Exchange.NONE; } } function _checkIfArbitrageIsProfitable( uint256 amountIn, uint256 higherPrice, uint256 lowerPrice ) internal pure returns (bool) { // uniswap & sushiswap have 0.3% fee for every exchange // so gain made must be greater than 2 * 0.3% * arbitrage_amount // difference in ETH uint256 difference = ((higherPrice - lowerPrice) * 10**18) / higherPrice; uint256 payed_fee = (amountIn * 3) / 1000; if (difference > payed_fee) { return true; } else { return false; } } function _getAmountOut( address routerAddress, address sell_token, address buy_token, uint256 amount ) internal view returns (uint256) { address[] memory pairs = new address[](2); pairs[0] = sell_token; pairs[1] = buy_token; uint256 price = IUniswapV2Router02(routerAddress).getAmountsOut( amount, pairs )[1]; return price; } /** * @dev This function must be called only be the LENDING_POOL and takes care of repaying * active debt positions, migrating collateral and incurring new V2 debt token debt. * * @param assets The array of flash loaned assets used to repay debts. * @param amounts The array of flash loaned asset amounts used to repay debts. * @param premiums The array of premiums incurred as additional debts. * @param initiator The address that initiated the flash loan, unused. * @param params The byte array containing, in this case, the arrays of aTokens and aTokenAmounts. */ function executeOperation( address[] calldata assets, uint256[] calldata amounts, uint256[] calldata premiums, address initiator, bytes calldata params ) external override returns (bool) { // // Try to do arbitrage with the flashloan amount. // uint256 amountOut = triangularArbitrageFlashloan(amounts[0]); // At the end of your logic above, this contract owes // the flashloaned amounts + premiums. // Therefore ensure your contract has enough to repay // these amounts. uint256 amountOwing = 0; // Approve the LendingPool contract allowance to *pull* the owed amount for (uint256 i = 0; i < assets.length; i++) { amountOwing = amounts[i].add(premiums[i]); IERC20(assets[i]).approve(address(LENDING_POOL), amountOwing); } if(tokenA == address(0)) { address WETH = IUniswapV2Router02(exchangeA).WETH(); WBNB(WETH).withdraw(amountOut.sub(amountOwing)); payable(devAddr).transfer(amountOut.sub(amountOwing)); } else { IERC20(tokenA).transfer(devAddr, amountOut.sub(amountOwing)); } return true; } function flashloanArbitrage(uint256 _amountIn) public payable { address receiverAddress = address(this); uint256 amountIn = 0; address _tokenA; if(tokenA == address(0)) { address WETH = IUniswapV2Router02(exchangeA).WETH(); _tokenA = WETH; amountIn = msg.value; WBNB(WETH).deposit{value: amountIn}(); } else { _tokenA = tokenA; amountIn = _amountIn; } address[] memory assets = new address[](1); assets[0] = address(_tokenA); // assets[1] = address(_tokenB); // assets[2] = address(_tokenC); uint256[] memory amounts = new uint256[](1); amounts[0] = amountIn; // amounts[0] = getERC20Balance(wethAddress); // 0 = no debt, 1 = stable, 2 = variable uint256[] memory modes = new uint256[](1); modes[0] = 0; // modes[1] = INSERT_ASSET_TWO_MODE; address onBehalfOf = address(this); bytes memory params = ""; uint16 referralCode = 0; LENDING_POOL.flashLoan( receiverAddress, assets, amounts, modes, onBehalfOf, params, referralCode ); } function getTokenBalance(address _erc20Address) public view returns (uint256) { return IERC20(_erc20Address).balanceOf(address(this)); } function getETHBalance() public view returns (uint256) { return address(this).balance; } function checkProbability(address _tokenA, address _tokenB, uint256 _amountIn) public view returns(string memory){ Exchange result = _comparePrice(_tokenA, _tokenB, _amountIn); if (result == Exchange.EXCA) { return "Arbitrage Chances in ExchangeA"; }else if(result == Exchange.EXCB){ return "Arbitrage Chances in ExchangeB"; }else{ return "No Availabe Arbitrage"; } } receive() external payable {} fallback() external payable { } } contract ArbitrageMain is Ownable { using SafeMath for uint256; address public providerAddress = 0xB53C1a33016B2DC2fF3653530bfF1848a515c8c5; // Mainnet enum Exchange { EXCA, EXCB, NONE } event SimpleArbitrageDeployed(address user, address arbitrage); event SimpleFlashLoanArbitrageDeployed(address user, address arbitrage); event TriangularArbitrageDeployed(address user, address arbitrage); event TriangularFlashLoanArbitrageDeployed(address user, address arbitrage); constructor() public { } function modifyProviderAddress(address _providerAddress) external onlyOwner { providerAddress = _providerAddress; } function callSimpleArbitrage(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, uint256 _amountIn) public payable { address payable contractA = address(new FlashLoanSimpleArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _user)); uint256 amountIn; if(_tokenA == address(0)) { amountIn = msg.value; FlashLoanSimpleArbitrage(contractA).simpleArbitrage{value:amountIn}(0); } else { amountIn = _amountIn; IERC20(_tokenA).transferFrom(_user, address(this), amountIn); IERC20(_tokenA).transfer(contractA, amountIn); FlashLoanSimpleArbitrage(contractA).simpleArbitrage(amountIn); } // IERC20(_tokenA).approve(contractA, amountIn); // IERC20(_tokenB).approve(contractA, amountIn); emit SimpleArbitrageDeployed(_user, contractA); } function callSimpleFlashLoan(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, uint256 _amountIn) public payable { address payable contractA = address(new FlashLoanSimpleArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _user)); uint256 amountIn; if(_tokenA == address(0)) { amountIn = msg.value; FlashLoanSimpleArbitrage(contractA).flashloanArbitrage{value:amountIn}(0); } else { amountIn = _amountIn; FlashLoanSimpleArbitrage(contractA).flashloanArbitrage(amountIn); } emit SimpleFlashLoanArbitrageDeployed(_user, contractA); } function callTriangularArbitrage(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, address _tokenC, uint256 _amountIn) public payable { address payable contractA = address(new FlashLoanTriangularArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _tokenC, _user)); uint256 amountIn; if(_tokenA == address(0)) { amountIn = msg.value; FlashLoanTriangularArbitrage(contractA).triangularArbitrage{value:amountIn}(0); } else { amountIn = _amountIn; IERC20(_tokenA).transferFrom(_user, address(this), amountIn); IERC20(_tokenA).transfer(contractA, amountIn); FlashLoanTriangularArbitrage(contractA).triangularArbitrage(amountIn); } emit TriangularArbitrageDeployed(_user, contractA); } function callTriangularFlashLoan(address _user, address _exchangeA, address _exchangeB, address _tokenA, address _tokenB, address _tokenC, uint256 _amountIn) public payable { address payable contractA = address(new FlashLoanTriangularArbitrage(providerAddress, _exchangeA, _exchangeB, _tokenA, _tokenB, _tokenC, _user)); uint256 amountIn; if(_tokenA == address(0)) { amountIn = msg.value; FlashLoanTriangularArbitrage(contractA).flashloanArbitrage{value:amountIn}(0); } else { amountIn = _amountIn; FlashLoanTriangularArbitrage(contractA).flashloanArbitrage(amountIn); } emit TriangularFlashLoanArbitrageDeployed(_user, contractA); } function getTokenBalance(address _erc20Address) public view returns (uint256) { return IERC20(_erc20Address).balanceOf(address(this)); } function getETHBalance() public view returns (uint256) { return address(this).balance; } function withdrawERC(address _tokenAddress, uint256 amount) public onlyOwner { uint256 erc20Balance = getTokenBalance(_tokenAddress); require(amount <= erc20Balance, "Not enough balance"); IERC20(_tokenAddress).transfer(msg.sender, amount); } function withdrawETH(uint256 amount) public onlyOwner { uint256 ethBalance = getETHBalance(); require(amount <= ethBalance, "Not enough balance"); payable(owner).transfer(amount); } receive() external payable {} fallback() external payable { } }