{ "language": "Solidity", "sources": { "TokenFinal.sol": { "content": "// SPDX-License-Identifier: MIT\r\npragma solidity ^0.8.4;\r\n\r\nimport \"@openzeppelin/contracts/token/ERC20/IERC20.sol\";\r\nimport \"@openzeppelin/contracts/access/AccessControlEnumerable.sol\";\r\nimport \"@openzeppelin/contracts/access/Ownable.sol\";\r\nimport \"@openzeppelin/contracts/utils/math/SafeMath.sol\";\r\n\r\ncontract TokenFinal is IERC20, AccessControlEnumerable, Ownable{\r\n using SafeMath for uint256;\r\n\r\n bytes32 public constant BLACKLIST_ROLE = keccak256(\"BLACKLIST_ROLE\");\r\n mapping(address => uint256) private _balances;\r\n mapping (address => mapping (address => uint256)) private _allowances;\r\n address private UNISWAP_PAIR_ADDRESS;\r\n\r\n uint256 private constant _tTotal = 1000000000 * 10**18;\r\n\r\n string private _name = \"Fuck Bots\";\r\n string private _symbol = \"FBOTS\";\r\n uint8 private _decimals = 18;\r\n\r\n constructor(\r\n ) \r\n Ownable() \r\n {\r\n _balances[_msgSender()] = _tTotal;\r\n _setupRole(DEFAULT_ADMIN_ROLE, _msgSender());\r\n emit Transfer(address(0), _msgSender(),_tTotal);\r\n }\r\n\r\n function name() public view returns (string memory) {\r\n return _name;\r\n }\r\n\r\n function symbol() public view returns (string memory) {\r\n return _symbol;\r\n }\r\n\r\n function decimals() public view returns (uint8) {\r\n return _decimals;\r\n }\r\n\r\n\r\n function totalSupply() external view override returns (uint256) {\r\n return _tTotal;\r\n }\r\n\r\n function balanceOf(address account) public view override returns (uint256) {\r\n return _balances[account];\r\n }\r\n\r\n function setPair(address pair) public onlyOwner {\r\n UNISWAP_PAIR_ADDRESS = pair;\r\n }\r\n\r\n\r\n function transfer(address recipient, uint256 amount) public override returns (bool) {\r\n _transfer(_msgSender(), recipient, amount);\r\n return true;\r\n }\r\n\r\n function _transfer(\r\n address from,\r\n address to,\r\n uint256 amount\r\n ) private{\r\n require(from != address(0), \"ERC20: transfer from the zero address\");\r\n require(to != address(0), \"ERC20: transfer to the zero address\");\r\n require(!hasRole(BLACKLIST_ROLE, from), \"ERC20: transfer from a Blacklisted address\");\r\n require(!hasRole(BLACKLIST_ROLE, to), \"ERC20: transfer to a Blacklisted address\");\r\n\r\n uint256 fromBalance = _balances[from];\r\n require(fromBalance >= amount, \"ERC20: transfer amount exceeds balance\");\r\n\r\n unchecked {\r\n _balances[from] = fromBalance - amount;\r\n }\r\n\r\n if(_msgSender() == UNISWAP_PAIR_ADDRESS || to == UNISWAP_PAIR_ADDRESS) { // 5% fee if traded on uniswap\r\n uint256 fee = 5;\r\n uint256 feeAmount = amount.mul(fee).div(100);\r\n amount -= feeAmount;\r\n _balances[owner()] += feeAmount;\r\n emit Transfer(from, owner(), feeAmount);\r\n }\r\n\r\n _balances[to] += amount;\r\n\r\n emit Transfer(from, to, amount);\r\n }\r\n\r\n function renounceRole(bytes32 role, address account) public virtual override {\r\n require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\r\n require(!hasRole(BLACKLIST_ROLE, account), \"AccessControl: cannot renounce Blacklist role from self\");\r\n\r\n _revokeRole(role, account);\r\n }\r\n\r\n function allowance(address owner, address spender) external view override returns (uint256) {\r\n return _allowances[owner][spender];\r\n }\r\n\r\n function approve(address spender, uint256 amount) external override returns (bool) {\r\n _approve(_msgSender(), spender, amount);\r\n return true;\r\n }\r\n\r\n function transferFrom(address sender, address recipient, uint256 amount) external override returns (bool) {\r\n _transfer(sender, recipient, amount);\r\n _approve(sender, _msgSender(), _allowances[sender][_msgSender()].sub(amount, \"ERC20: transfer amount exceeds allowance\"));\r\n return true;\r\n }\r\n function _approve(address owner, address spender, uint256 amount) private {\r\n require(owner != address(0), \"ERC20: approve from the zero address\");\r\n require(spender != address(0), \"ERC20: approve to the zero address\");\r\n\r\n _allowances[owner][spender] = amount;\r\n emit Approval(owner, spender, amount);\r\n }\r\n\r\n}\r\n\r\n\r\n" }, "@openzeppelin/contracts/utils/math/SafeMath.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (utils/math/SafeMath.sol)\n\npragma solidity ^0.8.0;\n\n// CAUTION\n// This version of SafeMath should only be used with Solidity 0.8 or later,\n// because it relies on the compiler's built in overflow checks.\n\n/**\n * @dev Wrappers over Solidity's arithmetic operations.\n *\n * NOTE: `SafeMath` is generally not needed starting with Solidity 0.8, since the compiler\n * now has built in overflow checking.\n */\nlibrary SafeMath {\n /**\n * @dev Returns the addition of two unsigned integers, with an overflow flag.\n *\n * _Available since v3.4._\n */\n function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n unchecked {\n uint256 c = a + b;\n if (c < a) return (false, 0);\n return (true, c);\n }\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, with an overflow flag.\n *\n * _Available since v3.4._\n */\n function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n unchecked {\n if (b > a) return (false, 0);\n return (true, a - b);\n }\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, with an overflow flag.\n *\n * _Available since v3.4._\n */\n function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n unchecked {\n // Gas optimization: this is cheaper than requiring 'a' not being zero, but the\n // benefit is lost if 'b' is also tested.\n // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522\n if (a == 0) return (true, 0);\n uint256 c = a * b;\n if (c / a != b) return (false, 0);\n return (true, c);\n }\n }\n\n /**\n * @dev Returns the division of two unsigned integers, with a division by zero flag.\n *\n * _Available since v3.4._\n */\n function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n unchecked {\n if (b == 0) return (false, 0);\n return (true, a / b);\n }\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag.\n *\n * _Available since v3.4._\n */\n function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) {\n unchecked {\n if (b == 0) return (false, 0);\n return (true, a % b);\n }\n }\n\n /**\n * @dev Returns the addition of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity's `+` operator.\n *\n * Requirements:\n *\n * - Addition cannot overflow.\n */\n function add(uint256 a, uint256 b) internal pure returns (uint256) {\n return a + b;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting on\n * overflow (when the result is negative).\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(uint256 a, uint256 b) internal pure returns (uint256) {\n return a - b;\n }\n\n /**\n * @dev Returns the multiplication of two unsigned integers, reverting on\n * overflow.\n *\n * Counterpart to Solidity's `*` operator.\n *\n * Requirements:\n *\n * - Multiplication cannot overflow.\n */\n function mul(uint256 a, uint256 b) internal pure returns (uint256) {\n return a * b;\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers, reverting on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator.\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(uint256 a, uint256 b) internal pure returns (uint256) {\n return a / b;\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * reverting when dividing by zero.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(uint256 a, uint256 b) internal pure returns (uint256) {\n return a % b;\n }\n\n /**\n * @dev Returns the subtraction of two unsigned integers, reverting with custom message on\n * overflow (when the result is negative).\n *\n * CAUTION: This function is deprecated because it requires allocating memory for the error\n * message unnecessarily. For custom revert reasons use {trySub}.\n *\n * Counterpart to Solidity's `-` operator.\n *\n * Requirements:\n *\n * - Subtraction cannot overflow.\n */\n function sub(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n unchecked {\n require(b <= a, errorMessage);\n return a - b;\n }\n }\n\n /**\n * @dev Returns the integer division of two unsigned integers, reverting with custom message on\n * division by zero. The result is rounded towards zero.\n *\n * Counterpart to Solidity's `/` operator. Note: this function uses a\n * `revert` opcode (which leaves remaining gas untouched) while Solidity\n * uses an invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function div(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n unchecked {\n require(b > 0, errorMessage);\n return a / b;\n }\n }\n\n /**\n * @dev Returns the remainder of dividing two unsigned integers. (unsigned integer modulo),\n * reverting with custom message when dividing by zero.\n *\n * CAUTION: This function is deprecated because it requires allocating memory for the error\n * message unnecessarily. For custom revert reasons use {tryMod}.\n *\n * Counterpart to Solidity's `%` operator. This function uses a `revert`\n * opcode (which leaves remaining gas untouched) while Solidity uses an\n * invalid opcode to revert (consuming all remaining gas).\n *\n * Requirements:\n *\n * - The divisor cannot be zero.\n */\n function mod(\n uint256 a,\n uint256 b,\n string memory errorMessage\n ) internal pure returns (uint256) {\n unchecked {\n require(b > 0, errorMessage);\n return a % b;\n }\n }\n}\n" }, "@openzeppelin/contracts/access/Ownable.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.7.0) (access/Ownable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"../utils/Context.sol\";\n\n/**\n * @dev Contract module which provides a basic access control mechanism, where\n * there is an account (an owner) that can be granted exclusive access to\n * specific functions.\n *\n * By default, the owner account will be the one that deploys the contract. This\n * can later be changed with {transferOwnership}.\n *\n * This module is used through inheritance. It will make available the modifier\n * `onlyOwner`, which can be applied to your functions to restrict their use to\n * the owner.\n */\nabstract contract Ownable is Context {\n address private _owner;\n\n event OwnershipTransferred(address indexed previousOwner, address indexed newOwner);\n\n /**\n * @dev Initializes the contract setting the deployer as the initial owner.\n */\n constructor() {\n _transferOwnership(_msgSender());\n }\n\n /**\n * @dev Throws if called by any account other than the owner.\n */\n modifier onlyOwner() {\n _checkOwner();\n _;\n }\n\n /**\n * @dev Returns the address of the current owner.\n */\n function owner() public view virtual returns (address) {\n return _owner;\n }\n\n /**\n * @dev Throws if the sender is not the owner.\n */\n function _checkOwner() internal view virtual {\n require(owner() == _msgSender(), \"Ownable: caller is not the owner\");\n }\n\n /**\n * @dev Leaves the contract without owner. It will not be possible to call\n * `onlyOwner` functions anymore. Can only be called by the current owner.\n *\n * NOTE: Renouncing ownership will leave the contract without an owner,\n * thereby removing any functionality that is only available to the owner.\n */\n function renounceOwnership() public virtual onlyOwner {\n _transferOwnership(address(0));\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Can only be called by the current owner.\n */\n function transferOwnership(address newOwner) public virtual onlyOwner {\n require(newOwner != address(0), \"Ownable: new owner is the zero address\");\n _transferOwnership(newOwner);\n }\n\n /**\n * @dev Transfers ownership of the contract to a new account (`newOwner`).\n * Internal function without access restriction.\n */\n function _transferOwnership(address newOwner) internal virtual {\n address oldOwner = _owner;\n _owner = newOwner;\n emit OwnershipTransferred(oldOwner, newOwner);\n }\n}\n" }, "@openzeppelin/contracts/access/AccessControlEnumerable.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControlEnumerable.sol\";\nimport \"./AccessControl.sol\";\nimport \"../utils/structs/EnumerableSet.sol\";\n\n/**\n * @dev Extension of {AccessControl} that allows enumerating the members of each role.\n */\nabstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl {\n using EnumerableSet for EnumerableSet.AddressSet;\n\n mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers;\n\n /**\n * @dev See {IERC165-supportsInterface}.\n */\n function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId);\n }\n\n /**\n * @dev Returns one of the accounts that have `role`. `index` must be a\n * value between 0 and {getRoleMemberCount}, non-inclusive.\n *\n * Role bearers are not sorted in any particular way, and their ordering may\n * change at any point.\n *\n * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure\n * you perform all queries on the same block. See the following\n * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]\n * for more information.\n */\n function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) {\n return _roleMembers[role].at(index);\n }\n\n /**\n * @dev Returns the number of accounts that have `role`. Can be used\n * together with {getRoleMember} to enumerate all bearers of a role.\n */\n function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) {\n return _roleMembers[role].length();\n }\n\n /**\n * @dev Overload {_grantRole} to track enumerable memberships\n */\n function _grantRole(bytes32 role, address account) internal virtual override {\n super._grantRole(role, account);\n _roleMembers[role].add(account);\n }\n\n /**\n * @dev Overload {_revokeRole} to track enumerable memberships\n */\n function _revokeRole(bytes32 role, address account) internal virtual override {\n super._revokeRole(role, account);\n _roleMembers[role].remove(account);\n }\n}\n" }, "@openzeppelin/contracts/token/ERC20/IERC20.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.6.0) (token/ERC20/IERC20.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC20 standard as defined in the EIP.\n */\ninterface IERC20 {\n /**\n * @dev Emitted when `value` tokens are moved from one account (`from`) to\n * another (`to`).\n *\n * Note that `value` may be zero.\n */\n event Transfer(address indexed from, address indexed to, uint256 value);\n\n /**\n * @dev Emitted when the allowance of a `spender` for an `owner` is set by\n * a call to {approve}. `value` is the new allowance.\n */\n event Approval(address indexed owner, address indexed spender, uint256 value);\n\n /**\n * @dev Returns the amount of tokens in existence.\n */\n function totalSupply() external view returns (uint256);\n\n /**\n * @dev Returns the amount of tokens owned by `account`.\n */\n function balanceOf(address account) external view returns (uint256);\n\n /**\n * @dev Moves `amount` tokens from the caller's account to `to`.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transfer(address to, uint256 amount) external returns (bool);\n\n /**\n * @dev Returns the remaining number of tokens that `spender` will be\n * allowed to spend on behalf of `owner` through {transferFrom}. This is\n * zero by default.\n *\n * This value changes when {approve} or {transferFrom} are called.\n */\n function allowance(address owner, address spender) external view returns (uint256);\n\n /**\n * @dev Sets `amount` as the allowance of `spender` over the caller's tokens.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * IMPORTANT: Beware that changing an allowance with this method brings the risk\n * that someone may use both the old and the new allowance by unfortunate\n * transaction ordering. One possible solution to mitigate this race\n * condition is to first reduce the spender's allowance to 0 and set the\n * desired value afterwards:\n * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729\n *\n * Emits an {Approval} event.\n */\n function approve(address spender, uint256 amount) external returns (bool);\n\n /**\n * @dev Moves `amount` tokens from `from` to `to` using the\n * allowance mechanism. `amount` is then deducted from the caller's\n * allowance.\n *\n * Returns a boolean value indicating whether the operation succeeded.\n *\n * Emits a {Transfer} event.\n */\n function transferFrom(\n address from,\n address to,\n uint256 amount\n ) external returns (bool);\n}\n" }, "@openzeppelin/contracts/utils/Context.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/Context.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Provides information about the current execution context, including the\n * sender of the transaction and its data. While these are generally available\n * via msg.sender and msg.data, they should not be accessed in such a direct\n * manner, since when dealing with meta-transactions the account sending and\n * paying for execution may not be the actual sender (as far as an application\n * is concerned).\n *\n * This contract is only required for intermediate, library-like contracts.\n */\nabstract contract Context {\n function _msgSender() internal view virtual returns (address) {\n return msg.sender;\n }\n\n function _msgData() internal view virtual returns (bytes calldata) {\n return msg.data;\n }\n}\n" }, "@openzeppelin/contracts/utils/structs/EnumerableSet.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/structs/EnumerableSet.sol)\n// This file was procedurally generated from scripts/generate/templates/EnumerableSet.js.\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Library for managing\n * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive\n * types.\n *\n * Sets have the following properties:\n *\n * - Elements are added, removed, and checked for existence in constant time\n * (O(1)).\n * - Elements are enumerated in O(n). No guarantees are made on the ordering.\n *\n * ```\n * contract Example {\n * // Add the library methods\n * using EnumerableSet for EnumerableSet.AddressSet;\n *\n * // Declare a set state variable\n * EnumerableSet.AddressSet private mySet;\n * }\n * ```\n *\n * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`)\n * and `uint256` (`UintSet`) are supported.\n *\n * [WARNING]\n * ====\n * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure\n * unusable.\n * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info.\n *\n * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an\n * array of EnumerableSet.\n * ====\n */\nlibrary EnumerableSet {\n // To implement this library for multiple types with as little code\n // repetition as possible, we write it in terms of a generic Set type with\n // bytes32 values.\n // The Set implementation uses private functions, and user-facing\n // implementations (such as AddressSet) are just wrappers around the\n // underlying Set.\n // This means that we can only create new EnumerableSets for types that fit\n // in bytes32.\n\n struct Set {\n // Storage of set values\n bytes32[] _values;\n // Position of the value in the `values` array, plus 1 because index 0\n // means a value is not in the set.\n mapping(bytes32 => uint256) _indexes;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function _add(Set storage set, bytes32 value) private returns (bool) {\n if (!_contains(set, value)) {\n set._values.push(value);\n // The value is stored at length-1, but we add 1 to all indexes\n // and use 0 as a sentinel value\n set._indexes[value] = set._values.length;\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function _remove(Set storage set, bytes32 value) private returns (bool) {\n // We read and store the value's index to prevent multiple reads from the same storage slot\n uint256 valueIndex = set._indexes[value];\n\n if (valueIndex != 0) {\n // Equivalent to contains(set, value)\n // To delete an element from the _values array in O(1), we swap the element to delete with the last one in\n // the array, and then remove the last element (sometimes called as 'swap and pop').\n // This modifies the order of the array, as noted in {at}.\n\n uint256 toDeleteIndex = valueIndex - 1;\n uint256 lastIndex = set._values.length - 1;\n\n if (lastIndex != toDeleteIndex) {\n bytes32 lastValue = set._values[lastIndex];\n\n // Move the last value to the index where the value to delete is\n set._values[toDeleteIndex] = lastValue;\n // Update the index for the moved value\n set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex\n }\n\n // Delete the slot where the moved value was stored\n set._values.pop();\n\n // Delete the index for the deleted slot\n delete set._indexes[value];\n\n return true;\n } else {\n return false;\n }\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function _contains(Set storage set, bytes32 value) private view returns (bool) {\n return set._indexes[value] != 0;\n }\n\n /**\n * @dev Returns the number of values on the set. O(1).\n */\n function _length(Set storage set) private view returns (uint256) {\n return set._values.length;\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function _at(Set storage set, uint256 index) private view returns (bytes32) {\n return set._values[index];\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function _values(Set storage set) private view returns (bytes32[] memory) {\n return set._values;\n }\n\n // Bytes32Set\n\n struct Bytes32Set {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(Bytes32Set storage set, bytes32 value) internal returns (bool) {\n return _add(set._inner, value);\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) {\n return _remove(set._inner, value);\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) {\n return _contains(set._inner, value);\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(Bytes32Set storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) {\n return _at(set._inner, index);\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(Bytes32Set storage set) internal view returns (bytes32[] memory) {\n bytes32[] memory store = _values(set._inner);\n bytes32[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n\n // AddressSet\n\n struct AddressSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(AddressSet storage set, address value) internal returns (bool) {\n return _add(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(AddressSet storage set, address value) internal returns (bool) {\n return _remove(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(AddressSet storage set, address value) internal view returns (bool) {\n return _contains(set._inner, bytes32(uint256(uint160(value))));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(AddressSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(AddressSet storage set, uint256 index) internal view returns (address) {\n return address(uint160(uint256(_at(set._inner, index))));\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(AddressSet storage set) internal view returns (address[] memory) {\n bytes32[] memory store = _values(set._inner);\n address[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n\n // UintSet\n\n struct UintSet {\n Set _inner;\n }\n\n /**\n * @dev Add a value to a set. O(1).\n *\n * Returns true if the value was added to the set, that is if it was not\n * already present.\n */\n function add(UintSet storage set, uint256 value) internal returns (bool) {\n return _add(set._inner, bytes32(value));\n }\n\n /**\n * @dev Removes a value from a set. O(1).\n *\n * Returns true if the value was removed from the set, that is if it was\n * present.\n */\n function remove(UintSet storage set, uint256 value) internal returns (bool) {\n return _remove(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns true if the value is in the set. O(1).\n */\n function contains(UintSet storage set, uint256 value) internal view returns (bool) {\n return _contains(set._inner, bytes32(value));\n }\n\n /**\n * @dev Returns the number of values in the set. O(1).\n */\n function length(UintSet storage set) internal view returns (uint256) {\n return _length(set._inner);\n }\n\n /**\n * @dev Returns the value stored at position `index` in the set. O(1).\n *\n * Note that there are no guarantees on the ordering of values inside the\n * array, and it may change when more values are added or removed.\n *\n * Requirements:\n *\n * - `index` must be strictly less than {length}.\n */\n function at(UintSet storage set, uint256 index) internal view returns (uint256) {\n return uint256(_at(set._inner, index));\n }\n\n /**\n * @dev Return the entire set in an array\n *\n * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed\n * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that\n * this function has an unbounded cost, and using it as part of a state-changing function may render the function\n * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block.\n */\n function values(UintSet storage set) internal view returns (uint256[] memory) {\n bytes32[] memory store = _values(set._inner);\n uint256[] memory result;\n\n /// @solidity memory-safe-assembly\n assembly {\n result := store\n }\n\n return result;\n }\n}\n" }, "@openzeppelin/contracts/access/AccessControl.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (access/AccessControl.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControl.sol\";\nimport \"../utils/Context.sol\";\nimport \"../utils/Strings.sol\";\nimport \"../utils/introspection/ERC165.sol\";\n\n/**\n * @dev Contract module that allows children to implement role-based access\n * control mechanisms. This is a lightweight version that doesn't allow enumerating role\n * members except through off-chain means by accessing the contract event logs. Some\n * applications may benefit from on-chain enumerability, for those cases see\n * {AccessControlEnumerable}.\n *\n * Roles are referred to by their `bytes32` identifier. These should be exposed\n * in the external API and be unique. The best way to achieve this is by\n * using `public constant` hash digests:\n *\n * ```\n * bytes32 public constant MY_ROLE = keccak256(\"MY_ROLE\");\n * ```\n *\n * Roles can be used to represent a set of permissions. To restrict access to a\n * function call, use {hasRole}:\n *\n * ```\n * function foo() public {\n * require(hasRole(MY_ROLE, msg.sender));\n * ...\n * }\n * ```\n *\n * Roles can be granted and revoked dynamically via the {grantRole} and\n * {revokeRole} functions. Each role has an associated admin role, and only\n * accounts that have a role's admin role can call {grantRole} and {revokeRole}.\n *\n * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means\n * that only accounts with this role will be able to grant or revoke other\n * roles. More complex role relationships can be created by using\n * {_setRoleAdmin}.\n *\n * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to\n * grant and revoke this role. Extra precautions should be taken to secure\n * accounts that have been granted it.\n */\nabstract contract AccessControl is Context, IAccessControl, ERC165 {\n struct RoleData {\n mapping(address => bool) members;\n bytes32 adminRole;\n }\n\n mapping(bytes32 => RoleData) private _roles;\n\n bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00;\n\n /**\n * @dev Modifier that checks that an account has a specific role. Reverts\n * with a standardized message including the required role.\n *\n * The format of the revert reason is given by the following regular expression:\n *\n * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n *\n * _Available since v4.1._\n */\n modifier onlyRole(bytes32 role) {\n _checkRole(role);\n _;\n }\n\n /**\n * @dev See {IERC165-supportsInterface}.\n */\n function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId);\n }\n\n /**\n * @dev Returns `true` if `account` has been granted `role`.\n */\n function hasRole(bytes32 role, address account) public view virtual override returns (bool) {\n return _roles[role].members[account];\n }\n\n /**\n * @dev Revert with a standard message if `_msgSender()` is missing `role`.\n * Overriding this function changes the behavior of the {onlyRole} modifier.\n *\n * Format of the revert message is described in {_checkRole}.\n *\n * _Available since v4.6._\n */\n function _checkRole(bytes32 role) internal view virtual {\n _checkRole(role, _msgSender());\n }\n\n /**\n * @dev Revert with a standard message if `account` is missing `role`.\n *\n * The format of the revert reason is given by the following regular expression:\n *\n * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/\n */\n function _checkRole(bytes32 role, address account) internal view virtual {\n if (!hasRole(role, account)) {\n revert(\n string(\n abi.encodePacked(\n \"AccessControl: account \",\n Strings.toHexString(account),\n \" is missing role \",\n Strings.toHexString(uint256(role), 32)\n )\n )\n );\n }\n }\n\n /**\n * @dev Returns the admin role that controls `role`. See {grantRole} and\n * {revokeRole}.\n *\n * To change a role's admin, use {_setRoleAdmin}.\n */\n function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) {\n return _roles[role].adminRole;\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n *\n * May emit a {RoleGranted} event.\n */\n function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n _grantRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * If `account` had been granted `role`, emits a {RoleRevoked} event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n *\n * May emit a {RoleRevoked} event.\n */\n function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) {\n _revokeRole(role, account);\n }\n\n /**\n * @dev Revokes `role` from the calling account.\n *\n * Roles are often managed via {grantRole} and {revokeRole}: this function's\n * purpose is to provide a mechanism for accounts to lose their privileges\n * if they are compromised (such as when a trusted device is misplaced).\n *\n * If the calling account had been revoked `role`, emits a {RoleRevoked}\n * event.\n *\n * Requirements:\n *\n * - the caller must be `account`.\n *\n * May emit a {RoleRevoked} event.\n */\n function renounceRole(bytes32 role, address account) public virtual override {\n require(account == _msgSender(), \"AccessControl: can only renounce roles for self\");\n\n _revokeRole(role, account);\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event. Note that unlike {grantRole}, this function doesn't perform any\n * checks on the calling account.\n *\n * May emit a {RoleGranted} event.\n *\n * [WARNING]\n * ====\n * This function should only be called from the constructor when setting\n * up the initial roles for the system.\n *\n * Using this function in any other way is effectively circumventing the admin\n * system imposed by {AccessControl}.\n * ====\n *\n * NOTE: This function is deprecated in favor of {_grantRole}.\n */\n function _setupRole(bytes32 role, address account) internal virtual {\n _grantRole(role, account);\n }\n\n /**\n * @dev Sets `adminRole` as ``role``'s admin role.\n *\n * Emits a {RoleAdminChanged} event.\n */\n function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual {\n bytes32 previousAdminRole = getRoleAdmin(role);\n _roles[role].adminRole = adminRole;\n emit RoleAdminChanged(role, previousAdminRole, adminRole);\n }\n\n /**\n * @dev Grants `role` to `account`.\n *\n * Internal function without access restriction.\n *\n * May emit a {RoleGranted} event.\n */\n function _grantRole(bytes32 role, address account) internal virtual {\n if (!hasRole(role, account)) {\n _roles[role].members[account] = true;\n emit RoleGranted(role, account, _msgSender());\n }\n }\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * Internal function without access restriction.\n *\n * May emit a {RoleRevoked} event.\n */\n function _revokeRole(bytes32 role, address account) internal virtual {\n if (hasRole(role, account)) {\n _roles[role].members[account] = false;\n emit RoleRevoked(role, account, _msgSender());\n }\n }\n}\n" }, "@openzeppelin/contracts/access/IAccessControlEnumerable.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IAccessControl.sol\";\n\n/**\n * @dev External interface of AccessControlEnumerable declared to support ERC165 detection.\n */\ninterface IAccessControlEnumerable is IAccessControl {\n /**\n * @dev Returns one of the accounts that have `role`. `index` must be a\n * value between 0 and {getRoleMemberCount}, non-inclusive.\n *\n * Role bearers are not sorted in any particular way, and their ordering may\n * change at any point.\n *\n * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure\n * you perform all queries on the same block. See the following\n * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post]\n * for more information.\n */\n function getRoleMember(bytes32 role, uint256 index) external view returns (address);\n\n /**\n * @dev Returns the number of accounts that have `role`. Can be used\n * together with {getRoleMember} to enumerate all bearers of a role.\n */\n function getRoleMemberCount(bytes32 role) external view returns (uint256);\n}\n" }, "@openzeppelin/contracts/access/IAccessControl.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev External interface of AccessControl declared to support ERC165 detection.\n */\ninterface IAccessControl {\n /**\n * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole`\n *\n * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite\n * {RoleAdminChanged} not being emitted signaling this.\n *\n * _Available since v3.1._\n */\n event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole);\n\n /**\n * @dev Emitted when `account` is granted `role`.\n *\n * `sender` is the account that originated the contract call, an admin role\n * bearer except when using {AccessControl-_setupRole}.\n */\n event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Emitted when `account` is revoked `role`.\n *\n * `sender` is the account that originated the contract call:\n * - if using `revokeRole`, it is the admin role bearer\n * - if using `renounceRole`, it is the role bearer (i.e. `account`)\n */\n event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender);\n\n /**\n * @dev Returns `true` if `account` has been granted `role`.\n */\n function hasRole(bytes32 role, address account) external view returns (bool);\n\n /**\n * @dev Returns the admin role that controls `role`. See {grantRole} and\n * {revokeRole}.\n *\n * To change a role's admin, use {AccessControl-_setRoleAdmin}.\n */\n function getRoleAdmin(bytes32 role) external view returns (bytes32);\n\n /**\n * @dev Grants `role` to `account`.\n *\n * If `account` had not been already granted `role`, emits a {RoleGranted}\n * event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n */\n function grantRole(bytes32 role, address account) external;\n\n /**\n * @dev Revokes `role` from `account`.\n *\n * If `account` had been granted `role`, emits a {RoleRevoked} event.\n *\n * Requirements:\n *\n * - the caller must have ``role``'s admin role.\n */\n function revokeRole(bytes32 role, address account) external;\n\n /**\n * @dev Revokes `role` from the calling account.\n *\n * Roles are often managed via {grantRole} and {revokeRole}: this function's\n * purpose is to provide a mechanism for accounts to lose their privileges\n * if they are compromised (such as when a trusted device is misplaced).\n *\n * If the calling account had been granted `role`, emits a {RoleRevoked}\n * event.\n *\n * Requirements:\n *\n * - the caller must be `account`.\n */\n function renounceRole(bytes32 role, address account) external;\n}\n" }, "@openzeppelin/contracts/utils/introspection/ERC165.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./IERC165.sol\";\n\n/**\n * @dev Implementation of the {IERC165} interface.\n *\n * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check\n * for the additional interface id that will be supported. For example:\n *\n * ```solidity\n * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId);\n * }\n * ```\n *\n * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation.\n */\nabstract contract ERC165 is IERC165 {\n /**\n * @dev See {IERC165-supportsInterface}.\n */\n function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) {\n return interfaceId == type(IERC165).interfaceId;\n }\n}\n" }, "@openzeppelin/contracts/utils/Strings.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/Strings.sol)\n\npragma solidity ^0.8.0;\n\nimport \"./math/Math.sol\";\n\n/**\n * @dev String operations.\n */\nlibrary Strings {\n bytes16 private constant _SYMBOLS = \"0123456789abcdef\";\n uint8 private constant _ADDRESS_LENGTH = 20;\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` decimal representation.\n */\n function toString(uint256 value) internal pure returns (string memory) {\n unchecked {\n uint256 length = Math.log10(value) + 1;\n string memory buffer = new string(length);\n uint256 ptr;\n /// @solidity memory-safe-assembly\n assembly {\n ptr := add(buffer, add(32, length))\n }\n while (true) {\n ptr--;\n /// @solidity memory-safe-assembly\n assembly {\n mstore8(ptr, byte(mod(value, 10), _SYMBOLS))\n }\n value /= 10;\n if (value == 0) break;\n }\n return buffer;\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation.\n */\n function toHexString(uint256 value) internal pure returns (string memory) {\n unchecked {\n return toHexString(value, Math.log256(value) + 1);\n }\n }\n\n /**\n * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length.\n */\n function toHexString(uint256 value, uint256 length) internal pure returns (string memory) {\n bytes memory buffer = new bytes(2 * length + 2);\n buffer[0] = \"0\";\n buffer[1] = \"x\";\n for (uint256 i = 2 * length + 1; i > 1; --i) {\n buffer[i] = _SYMBOLS[value & 0xf];\n value >>= 4;\n }\n require(value == 0, \"Strings: hex length insufficient\");\n return string(buffer);\n }\n\n /**\n * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation.\n */\n function toHexString(address addr) internal pure returns (string memory) {\n return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH);\n }\n}\n" }, "@openzeppelin/contracts/utils/introspection/IERC165.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Interface of the ERC165 standard, as defined in the\n * https://eips.ethereum.org/EIPS/eip-165[EIP].\n *\n * Implementers can declare support of contract interfaces, which can then be\n * queried by others ({ERC165Checker}).\n *\n * For an implementation, see {ERC165}.\n */\ninterface IERC165 {\n /**\n * @dev Returns true if this contract implements the interface defined by\n * `interfaceId`. See the corresponding\n * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section]\n * to learn more about how these ids are created.\n *\n * This function call must use less than 30 000 gas.\n */\n function supportsInterface(bytes4 interfaceId) external view returns (bool);\n}\n" }, "@openzeppelin/contracts/utils/math/Math.sol": { "content": "// SPDX-License-Identifier: MIT\n// OpenZeppelin Contracts (last updated v4.8.0) (utils/math/Math.sol)\n\npragma solidity ^0.8.0;\n\n/**\n * @dev Standard math utilities missing in the Solidity language.\n */\nlibrary Math {\n enum Rounding {\n Down, // Toward negative infinity\n Up, // Toward infinity\n Zero // Toward zero\n }\n\n /**\n * @dev Returns the largest of two numbers.\n */\n function max(uint256 a, uint256 b) internal pure returns (uint256) {\n return a > b ? a : b;\n }\n\n /**\n * @dev Returns the smallest of two numbers.\n */\n function min(uint256 a, uint256 b) internal pure returns (uint256) {\n return a < b ? a : b;\n }\n\n /**\n * @dev Returns the average of two numbers. The result is rounded towards\n * zero.\n */\n function average(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b) / 2 can overflow.\n return (a & b) + (a ^ b) / 2;\n }\n\n /**\n * @dev Returns the ceiling of the division of two numbers.\n *\n * This differs from standard division with `/` in that it rounds up instead\n * of rounding down.\n */\n function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) {\n // (a + b - 1) / b can overflow on addition, so we distribute.\n return a == 0 ? 0 : (a - 1) / b + 1;\n }\n\n /**\n * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0\n * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv)\n * with further edits by Uniswap Labs also under MIT license.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator\n ) internal pure returns (uint256 result) {\n unchecked {\n // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use\n // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256\n // variables such that product = prod1 * 2^256 + prod0.\n uint256 prod0; // Least significant 256 bits of the product\n uint256 prod1; // Most significant 256 bits of the product\n assembly {\n let mm := mulmod(x, y, not(0))\n prod0 := mul(x, y)\n prod1 := sub(sub(mm, prod0), lt(mm, prod0))\n }\n\n // Handle non-overflow cases, 256 by 256 division.\n if (prod1 == 0) {\n return prod0 / denominator;\n }\n\n // Make sure the result is less than 2^256. Also prevents denominator == 0.\n require(denominator > prod1);\n\n ///////////////////////////////////////////////\n // 512 by 256 division.\n ///////////////////////////////////////////////\n\n // Make division exact by subtracting the remainder from [prod1 prod0].\n uint256 remainder;\n assembly {\n // Compute remainder using mulmod.\n remainder := mulmod(x, y, denominator)\n\n // Subtract 256 bit number from 512 bit number.\n prod1 := sub(prod1, gt(remainder, prod0))\n prod0 := sub(prod0, remainder)\n }\n\n // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1.\n // See https://cs.stackexchange.com/q/138556/92363.\n\n // Does not overflow because the denominator cannot be zero at this stage in the function.\n uint256 twos = denominator & (~denominator + 1);\n assembly {\n // Divide denominator by twos.\n denominator := div(denominator, twos)\n\n // Divide [prod1 prod0] by twos.\n prod0 := div(prod0, twos)\n\n // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one.\n twos := add(div(sub(0, twos), twos), 1)\n }\n\n // Shift in bits from prod1 into prod0.\n prod0 |= prod1 * twos;\n\n // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such\n // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for\n // four bits. That is, denominator * inv = 1 mod 2^4.\n uint256 inverse = (3 * denominator) ^ 2;\n\n // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works\n // in modular arithmetic, doubling the correct bits in each step.\n inverse *= 2 - denominator * inverse; // inverse mod 2^8\n inverse *= 2 - denominator * inverse; // inverse mod 2^16\n inverse *= 2 - denominator * inverse; // inverse mod 2^32\n inverse *= 2 - denominator * inverse; // inverse mod 2^64\n inverse *= 2 - denominator * inverse; // inverse mod 2^128\n inverse *= 2 - denominator * inverse; // inverse mod 2^256\n\n // Because the division is now exact we can divide by multiplying with the modular inverse of denominator.\n // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is\n // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1\n // is no longer required.\n result = prod0 * inverse;\n return result;\n }\n }\n\n /**\n * @notice Calculates x * y / denominator with full precision, following the selected rounding direction.\n */\n function mulDiv(\n uint256 x,\n uint256 y,\n uint256 denominator,\n Rounding rounding\n ) internal pure returns (uint256) {\n uint256 result = mulDiv(x, y, denominator);\n if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) {\n result += 1;\n }\n return result;\n }\n\n /**\n * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down.\n *\n * Inspired by Henry S. Warren, Jr.'s \"Hacker's Delight\" (Chapter 11).\n */\n function sqrt(uint256 a) internal pure returns (uint256) {\n if (a == 0) {\n return 0;\n }\n\n // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target.\n //\n // We know that the \"msb\" (most significant bit) of our target number `a` is a power of 2 such that we have\n // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`.\n //\n // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)`\n // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))`\n // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)`\n //\n // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit.\n uint256 result = 1 << (log2(a) >> 1);\n\n // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128,\n // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at\n // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision\n // into the expected uint128 result.\n unchecked {\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n result = (result + a / result) >> 1;\n return min(result, a / result);\n }\n }\n\n /**\n * @notice Calculates sqrt(a), following the selected rounding direction.\n */\n function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = sqrt(a);\n return result + (rounding == Rounding.Up && result * result < a ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 2, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 128;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 64;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 32;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 16;\n }\n if (value >> 8 > 0) {\n value >>= 8;\n result += 8;\n }\n if (value >> 4 > 0) {\n value >>= 4;\n result += 4;\n }\n if (value >> 2 > 0) {\n value >>= 2;\n result += 2;\n }\n if (value >> 1 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 2, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log2(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log2(value);\n return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 10, rounded down, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >= 10**64) {\n value /= 10**64;\n result += 64;\n }\n if (value >= 10**32) {\n value /= 10**32;\n result += 32;\n }\n if (value >= 10**16) {\n value /= 10**16;\n result += 16;\n }\n if (value >= 10**8) {\n value /= 10**8;\n result += 8;\n }\n if (value >= 10**4) {\n value /= 10**4;\n result += 4;\n }\n if (value >= 10**2) {\n value /= 10**2;\n result += 2;\n }\n if (value >= 10**1) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log10(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log10(value);\n return result + (rounding == Rounding.Up && 10**result < value ? 1 : 0);\n }\n }\n\n /**\n * @dev Return the log in base 256, rounded down, of a positive value.\n * Returns 0 if given 0.\n *\n * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string.\n */\n function log256(uint256 value) internal pure returns (uint256) {\n uint256 result = 0;\n unchecked {\n if (value >> 128 > 0) {\n value >>= 128;\n result += 16;\n }\n if (value >> 64 > 0) {\n value >>= 64;\n result += 8;\n }\n if (value >> 32 > 0) {\n value >>= 32;\n result += 4;\n }\n if (value >> 16 > 0) {\n value >>= 16;\n result += 2;\n }\n if (value >> 8 > 0) {\n result += 1;\n }\n }\n return result;\n }\n\n /**\n * @dev Return the log in base 10, following the selected rounding direction, of a positive value.\n * Returns 0 if given 0.\n */\n function log256(uint256 value, Rounding rounding) internal pure returns (uint256) {\n unchecked {\n uint256 result = log256(value);\n return result + (rounding == Rounding.Up && 1 << (result * 8) < value ? 1 : 0);\n }\n }\n}\n" } }, "settings": { "optimizer": { "enabled": false, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } } } }