Datasets:
wtf
Browse files- tmmluplus.py +0 -124
tmmluplus.py
DELETED
@@ -1,124 +0,0 @@
|
|
1 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
import os
|
15 |
-
|
16 |
-
import datasets
|
17 |
-
import pandas as pd
|
18 |
-
|
19 |
-
|
20 |
-
_DESCRIPTION = """\
|
21 |
-
TMMLU2 data loader
|
22 |
-
"""
|
23 |
-
_DATA_PATH = "data"
|
24 |
-
|
25 |
-
task_list = [
|
26 |
-
'dentistry', 'traditional_chinese_medicine_clinical_medicine', 'clinical_psychology',
|
27 |
-
'technical', 'culinary_skills', 'mechanical', 'logic_reasoning', 'real_estate',
|
28 |
-
'general_principles_of_law', 'finance_banking', 'anti_money_laundering', 'ttqav2',
|
29 |
-
'marketing_management', 'business_management', 'organic_chemistry', 'advance_chemistry',
|
30 |
-
'physics', 'secondary_physics', 'human_behavior', 'national_protection', 'jce_humanities',
|
31 |
-
'politic_science', 'agriculture', 'official_document_management',
|
32 |
-
'financial_analysis', 'pharmacy', 'educational_psychology', 'statistics_and_machine_learning',
|
33 |
-
'management_accounting', 'introduction_to_law', 'computer_science', 'veterinary_pathology',
|
34 |
-
'accounting', 'fire_science', 'optometry', 'insurance_studies', 'pharmacology', 'taxation',
|
35 |
-
'education_(profession_level)', 'economics',
|
36 |
-
'veterinary_pharmacology', 'nautical_science', 'occupational_therapy_for_psychological_disorders',
|
37 |
-
'trust_practice', 'geography_of_taiwan', 'physical_education', 'auditing', 'administrative_law',
|
38 |
-
'basic_medical_science', 'macroeconomics', 'trade', 'chinese_language_and_literature',
|
39 |
-
'tve_design', 'junior_science_exam', 'junior_math_exam', 'junior_chinese_exam',
|
40 |
-
'junior_social_studies', 'tve_mathematics', 'tve_chinese_language',
|
41 |
-
'tve_natural_sciences', 'junior_chemistry', 'music', 'education',
|
42 |
-
'three_principles_of_people', 'taiwanese_hokkien',
|
43 |
-
'engineering_math'
|
44 |
-
]
|
45 |
-
|
46 |
-
_URLs = {
|
47 |
-
task_name: {
|
48 |
-
split_name: [
|
49 |
-
os.path.join(
|
50 |
-
_DATA_PATH, task_name+"_"+split_name+".csv"
|
51 |
-
), # TODO -> handle multiple shards
|
52 |
-
]
|
53 |
-
for split_name in ['dev', 'test', 'val']
|
54 |
-
}
|
55 |
-
for task_name in task_list
|
56 |
-
}
|
57 |
-
|
58 |
-
|
59 |
-
class TMMLU2Config(datasets.BuilderConfig):
|
60 |
-
def __init__(self, **kwargs):
|
61 |
-
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
62 |
-
|
63 |
-
|
64 |
-
class TMMLU2(datasets.GeneratorBasedBuilder):
|
65 |
-
BUILDER_CONFIGS = [
|
66 |
-
TMMLU2Config(
|
67 |
-
name=task_name,
|
68 |
-
)
|
69 |
-
for task_name in task_list
|
70 |
-
]
|
71 |
-
|
72 |
-
def _info(self):
|
73 |
-
features = datasets.Features(
|
74 |
-
{
|
75 |
-
"question": datasets.Value("string"),
|
76 |
-
"A": datasets.Value("string"),
|
77 |
-
"B": datasets.Value("string"),
|
78 |
-
"C": datasets.Value("string"),
|
79 |
-
"D": datasets.Value("string"),
|
80 |
-
"answer": datasets.Value("string"),
|
81 |
-
}
|
82 |
-
)
|
83 |
-
return datasets.DatasetInfo(
|
84 |
-
description=_DESCRIPTION,
|
85 |
-
features=features,
|
86 |
-
)
|
87 |
-
|
88 |
-
def _split_generators(self, dl_manager):
|
89 |
-
task_name = self.config.name
|
90 |
-
data_dir = dl_manager.download(_URLs[task_name])
|
91 |
-
return [
|
92 |
-
datasets.SplitGenerator(
|
93 |
-
name=datasets.Split.TEST,
|
94 |
-
gen_kwargs={
|
95 |
-
"filepath": data_dir['test'],
|
96 |
-
},
|
97 |
-
),
|
98 |
-
datasets.SplitGenerator(
|
99 |
-
name=datasets.Split.VALIDATION,
|
100 |
-
gen_kwargs={
|
101 |
-
"filepath": data_dir['val'],
|
102 |
-
},
|
103 |
-
),
|
104 |
-
datasets.SplitGenerator(
|
105 |
-
name=datasets.Split.TRAIN,
|
106 |
-
gen_kwargs={
|
107 |
-
"filepath": data_dir['dev'],
|
108 |
-
},
|
109 |
-
),
|
110 |
-
]
|
111 |
-
|
112 |
-
def _generate_examples(self, filepath):
|
113 |
-
if isinstance(filepath, list):
|
114 |
-
filepath = filepath[0]
|
115 |
-
df = pd.read_csv(filepath)
|
116 |
-
|
117 |
-
for i, instance in enumerate(df.to_dict(orient="records")):
|
118 |
-
yield i, {'question': instance['question'],
|
119 |
-
'A': instance['A'],
|
120 |
-
'B': instance['B'],
|
121 |
-
'C': instance['C'],
|
122 |
-
'D': instance['D'],
|
123 |
-
'answer': instance['answer']
|
124 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|