Datasets:
File size: 4,318 Bytes
bf5ee00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
"""TODO(x_stance): Add a description here."""
import json
import os
import datasets
# TODO(x_stance): BibTeX citation
_CITATION = """\
@inproceedings{vamvas2020xstance,
author = "Vamvas, Jannis and Sennrich, Rico",
title = "{X-Stance}: A Multilingual Multi-Target Dataset for Stance Detection",
booktitle = "Proceedings of the 5th Swiss Text Analytics Conference (SwissText) \\& 16th Conference on Natural Language Processing (KONVENS)",
address = "Zurich, Switzerland",
year = "2020",
month = "jun",
url = "http://ceur-ws.org/Vol-2624/paper9.pdf"
}
"""
# TODO(x_stance):
_DESCRIPTION = """\
The x-stance dataset contains more than 150 political questions, and 67k comments written by candidates on those questions.
It can be used to train and evaluate stance detection systems.
"""
_URL = "https://github.com/ZurichNLP/xstance/raw/v1.0.0/data/xstance-data-v1.0.zip"
class XStance(datasets.GeneratorBasedBuilder):
"""TODO(x_stance): Short description of my dataset."""
# TODO(x_stance): Set up version.
VERSION = datasets.Version("0.1.0")
def _info(self):
# TODO(x_stance): Specifies the datasets.DatasetInfo object
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# datasets.features.FeatureConnectors
features=datasets.Features(
{
"question": datasets.Value("string"),
"id": datasets.Value("int32"),
"question_id": datasets.Value("int32"),
"language": datasets.Value("string"),
"comment": datasets.Value("string"),
"label": datasets.Value("string"),
"numerical_label": datasets.Value("int32"),
"author": datasets.Value("string"),
"topic": datasets.Value("string")
# These are the features of your dataset like images, labels ...
}
),
# If there's a common (input, target) tuple from the features,
# specify them here. They'll be used if as_supervised=True in
# builder.as_dataset.
supervised_keys=None,
# Homepage of the dataset for documentation
homepage="https://github.com/ZurichNLP/xstance",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
# TODO(x_stance): Downloads the data and defines the splits
# dl_manager is a datasets.download.DownloadManager that can be used to
# download and extract URLs
dl_dir = dl_manager.download_and_extract(_URL)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "train.jsonl")},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "test.jsonl")},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={"filepath": os.path.join(dl_dir, "valid.jsonl")},
),
]
def _generate_examples(self, filepath):
"""Yields examples."""
# TODO(x_stance): Yields (key, example) tuples from the dataset
with open(filepath, encoding="utf-8") as f:
for id_, row in enumerate(f):
data = json.loads(row)
yield id_, {
"id": data["id"],
"question_id": data["question_id"],
"question": data["question"],
"comment": data["comment"],
"label": data["label"],
"author": data["author"],
"numerical_label": data["numerical_label"],
"topic": data["topic"],
"language": data["language"],
}
|