File size: 10,685 Bytes
045a82e
3bee934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fb2a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33e763e
30fb2a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bee934
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30fb2a7
 
 
387de82
30fb2a7
 
387de82
30fb2a7
 
387de82
30fb2a7
 
3bee934
 
 
 
 
 
 
 
 
4977700
 
387de82
 
4977700
045a82e
3bee934
4977700
 
3bee934
 
 
 
 
 
 
 
387de82
3bee934
 
 
 
 
 
 
7a0e2be
3bee934
 
 
 
387de82
3bee934
 
 
 
 
387de82
3bee934
 
 
 
 
 
387de82
3bee934
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
import os
import datasets

logger = datasets.logging.get_logger(__name__)

# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""

# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
SemEval 2023 Task 2: MultiCoNER II
Multilingual Complex Named Entity Recognition
"""

# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://multiconer.github.io/"

# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""

# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = ""


class Multiconer2Config(datasets.BuilderConfig):
    """BuilderConfig for Multiconer2"""

    def __init__(self, **kwargs):
        """BuilderConfig for Multiconer2.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(Multiconer2Config, self).__init__(**kwargs)


class Multiconer2(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        Multiconer2Config(name="bn", version=VERSION),
        Multiconer2Config(name="de", version=VERSION),
        Multiconer2Config(name="en", version=VERSION),
        Multiconer2Config(name="es", version=VERSION),
        Multiconer2Config(name="fa", version=VERSION),
        Multiconer2Config(name="fr", version=VERSION),
        Multiconer2Config(name="hi", version=VERSION),
        Multiconer2Config(name="it", version=VERSION),
        Multiconer2Config(name="pt", version=VERSION),
        Multiconer2Config(name="sv", version=VERSION),
        Multiconer2Config(name="uk", version=VERSION),
        Multiconer2Config(name="zh", version=VERSION),
    ]

    DEFAULT_CONFIG_NAME = "en"

    micro_to_macro_ner_mapping = {
        'O': "O",
        "B-AerospaceManufacturer": "B-Group",
        'I-AerospaceManufacturer': 'I-Group',
        'B-AnatomicalStructure': "B-Medical",
        'I-AnatomicalStructure': "I-Medical",
        'B-ArtWork': "B-CreativeWork",
        'I-ArtWork': "I-CreativeWork",
        'B-Artist': "B-Person",
        'I-Artist': "I-Person",
        'B-Athlete': "B-Person",
        'I-Athlete': "I-Person",
        'B-CarManufacturer': "B-Group",
        'I-CarManufacturer': "I-Group",
        'B-Cleric': "B-Person",
        'I-Cleric': "I-Person",
        'B-Clothing': "B-Product",
        'I-Clothing': "I-Product",
        'B-Disease': "B-Medical",
        'I-Disease': "I-Medical",
        'B-Drink': "B-Product",
        'I-Drink': "I-Product",
        'B-Facility': "B-Location",
        'I-Facility': "I-Location",
        'B-Food': "B-Product",
        'I-Food': "I-Product",
        'B-HumanSettlement': "B-Location",
        'I-HumanSettlement': "I-Location",
        'B-MedicalProcedure': "B-Medical",
        'I-MedicalProcedure': "I-Medical",
        'B-Medication/Vaccine': "B-Medical",
        'I-Medication/Vaccine': "I-Medical",
        'B-MusicalGRP': "B-Group",
        'I-MusicalGRP': "I-Group",
        'B-MusicalWork': "B-CreativeWork",
        'I-MusicalWork': "I-CreativeWork",
        'B-ORG': "B-Group",
        'I-ORG': "I-Group",
        'B-OtherLOC': "B-Location",
        'I-OtherLOC': "I-Location",
        'B-OtherPER': "B-Person",
        'I-OtherPER': "I-Person",
        'B-OtherPROD': "B-Product",
        'I-OtherPROD': "I-Product",
        'B-Politician': "B-Person",
        'I-Politician': "I-Person",
        'B-PrivateCorp': "B-Group",
        'I-PrivateCorp': "I-Group",
        'B-PublicCorp': "B-Group",
        'I-PublicCorp': "I-Group",
        'B-Scientist': "B-Person",
        'I-Scientist': "I-Person",
        'B-Software': "B-CreativeWork",
        'I-Software': "I-CreativeWork",
        'B-SportsGRP': "B-Group",
        'I-SportsGRP': "I-Group",
        'B-SportsManager': "B-Person",
        'I-SportsManager': "I-Person",
        'B-Station': 'B-Location',
        'I-Station': 'I-Location',
        'B-Symptom': "B-Medical",
        'I-Symptom': "I-Medical",
        'B-Vehicle': "B-Product",
        'I-Vehicle': "I-Product",
        'B-VisualWork': "B-CreativeWork",
        'I-VisualWork': "I-CreativeWork",
        'B-WrittenWork': "B-CreativeWork",
        'I-WrittenWork': "I-CreativeWork",
    }

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=['O',
                                   "B-AerospaceManufacturer", 'I-AerospaceManufacturer',
                                   'B-AnatomicalStructure', 'I-AnatomicalStructure',
                                   'B-ArtWork', 'I-ArtWork',
                                   'B-Artist', 'I-Artist',
                                   'B-Athlete', 'I-Athlete',
                                   'B-CarManufacturer', 'I-CarManufacturer',
                                   'B-Cleric', 'I-Cleric',
                                   'B-Clothing', 'I-Clothing',
                                   'B-Disease', 'I-Disease',
                                   'B-Drink', 'I-Drink',
                                   'B-Facility', 'I-Facility',
                                   'B-Food', 'I-Food',
                                   'B-HumanSettlement', 'I-HumanSettlement',
                                   'B-MedicalProcedure', 'I-MedicalProcedure',
                                   'B-Medication/Vaccine', 'I-Medication/Vaccine',
                                   'B-MusicalGRP', 'I-MusicalGRP',
                                   'B-MusicalWork', 'I-MusicalWork',
                                   'B-ORG', 'I-ORG',
                                   'B-OtherLOC', 'I-OtherLOC',
                                   'B-OtherPER', 'I-OtherPER',
                                   'B-OtherPROD', 'I-OtherPROD',
                                   'B-Politician', 'I-Politician',
                                   'B-PrivateCorp', 'I-PrivateCorp',
                                   'B-PublicCorp', 'I-PublicCorp',
                                   'B-Scientist', 'I-Scientist',
                                   'B-Software', 'I-Software',
                                   'B-SportsGRP', 'I-SportsGRP',
                                   'B-SportsManager', 'I-SportsManager',
                                   'B-Station', 'I-Station',
                                   'B-Symptom', 'I-Symptom',
                                   'B-Vehicle', 'I-Vehicle',
                                   'B-VisualWork', 'I-VisualWork',
                                   'B-WrittenWork', 'I-WrittenWork']
                        )
                    ),
                    "ner_macro_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=['O',
                                   "B-Location", "I-Location",
                                   "B-CreativeWork", "I-CreativeWork",
                                   "B-Group", "I-Group",
                                   "B-Person", "I-Person",
                                   "B-Product", "I-Product",
                                   "B-Medical", "I-Medical",
                                   ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://www.aclweb.org/anthology/W03-0419/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager: datasets.DownloadManager):
        """Returns SplitGenerators."""

        downloaded_files = dl_manager.download_and_extract({
            "train": f"{self.config.name}-train.conll",
            "dev": f"{self.config.name}-dev.conll",
        })

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            ner_macro_tags = []
            for line in f:
                if line.startswith("#") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                            "ner_macro_tags": ner_macro_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                        ner_macro_tags = []
                else:
                    # conll2003 tokens are space separated
                    splits = line.split(" _ _ ")
                    tokens.append(splits[0])
                    ner_tags.append(splits[1].rstrip())
                    ner_macro_tags.append(self.micro_to_macro_ner_mapping[splits[1].rstrip()])
            # last example
            if tokens:
                yield guid, {
                    "id": str(guid),
                    "tokens": tokens,
                    "ner_tags": ner_tags,
                    "ner_macro_tags": ner_macro_tags,
                }