File size: 10,685 Bytes
045a82e 3bee934 30fb2a7 33e763e 30fb2a7 3bee934 30fb2a7 387de82 30fb2a7 387de82 30fb2a7 387de82 30fb2a7 3bee934 4977700 387de82 4977700 045a82e 3bee934 4977700 3bee934 387de82 3bee934 7a0e2be 3bee934 387de82 3bee934 387de82 3bee934 387de82 3bee934 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 |
import os
import datasets
logger = datasets.logging.get_logger(__name__)
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
SemEval 2023 Task 2: MultiCoNER II
Multilingual Complex Named Entity Recognition
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = "https://multiconer.github.io/"
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = ""
class Multiconer2Config(datasets.BuilderConfig):
"""BuilderConfig for Multiconer2"""
def __init__(self, **kwargs):
"""BuilderConfig for Multiconer2.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(Multiconer2Config, self).__init__(**kwargs)
class Multiconer2(datasets.GeneratorBasedBuilder):
VERSION = datasets.Version("1.0.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
Multiconer2Config(name="bn", version=VERSION),
Multiconer2Config(name="de", version=VERSION),
Multiconer2Config(name="en", version=VERSION),
Multiconer2Config(name="es", version=VERSION),
Multiconer2Config(name="fa", version=VERSION),
Multiconer2Config(name="fr", version=VERSION),
Multiconer2Config(name="hi", version=VERSION),
Multiconer2Config(name="it", version=VERSION),
Multiconer2Config(name="pt", version=VERSION),
Multiconer2Config(name="sv", version=VERSION),
Multiconer2Config(name="uk", version=VERSION),
Multiconer2Config(name="zh", version=VERSION),
]
DEFAULT_CONFIG_NAME = "en"
micro_to_macro_ner_mapping = {
'O': "O",
"B-AerospaceManufacturer": "B-Group",
'I-AerospaceManufacturer': 'I-Group',
'B-AnatomicalStructure': "B-Medical",
'I-AnatomicalStructure': "I-Medical",
'B-ArtWork': "B-CreativeWork",
'I-ArtWork': "I-CreativeWork",
'B-Artist': "B-Person",
'I-Artist': "I-Person",
'B-Athlete': "B-Person",
'I-Athlete': "I-Person",
'B-CarManufacturer': "B-Group",
'I-CarManufacturer': "I-Group",
'B-Cleric': "B-Person",
'I-Cleric': "I-Person",
'B-Clothing': "B-Product",
'I-Clothing': "I-Product",
'B-Disease': "B-Medical",
'I-Disease': "I-Medical",
'B-Drink': "B-Product",
'I-Drink': "I-Product",
'B-Facility': "B-Location",
'I-Facility': "I-Location",
'B-Food': "B-Product",
'I-Food': "I-Product",
'B-HumanSettlement': "B-Location",
'I-HumanSettlement': "I-Location",
'B-MedicalProcedure': "B-Medical",
'I-MedicalProcedure': "I-Medical",
'B-Medication/Vaccine': "B-Medical",
'I-Medication/Vaccine': "I-Medical",
'B-MusicalGRP': "B-Group",
'I-MusicalGRP': "I-Group",
'B-MusicalWork': "B-CreativeWork",
'I-MusicalWork': "I-CreativeWork",
'B-ORG': "B-Group",
'I-ORG': "I-Group",
'B-OtherLOC': "B-Location",
'I-OtherLOC': "I-Location",
'B-OtherPER': "B-Person",
'I-OtherPER': "I-Person",
'B-OtherPROD': "B-Product",
'I-OtherPROD': "I-Product",
'B-Politician': "B-Person",
'I-Politician': "I-Person",
'B-PrivateCorp': "B-Group",
'I-PrivateCorp': "I-Group",
'B-PublicCorp': "B-Group",
'I-PublicCorp': "I-Group",
'B-Scientist': "B-Person",
'I-Scientist': "I-Person",
'B-Software': "B-CreativeWork",
'I-Software': "I-CreativeWork",
'B-SportsGRP': "B-Group",
'I-SportsGRP': "I-Group",
'B-SportsManager': "B-Person",
'I-SportsManager': "I-Person",
'B-Station': 'B-Location',
'I-Station': 'I-Location',
'B-Symptom': "B-Medical",
'I-Symptom': "I-Medical",
'B-Vehicle': "B-Product",
'I-Vehicle': "I-Product",
'B-VisualWork': "B-CreativeWork",
'I-VisualWork': "I-CreativeWork",
'B-WrittenWork': "B-CreativeWork",
'I-WrittenWork': "I-CreativeWork",
}
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"ner_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['O',
"B-AerospaceManufacturer", 'I-AerospaceManufacturer',
'B-AnatomicalStructure', 'I-AnatomicalStructure',
'B-ArtWork', 'I-ArtWork',
'B-Artist', 'I-Artist',
'B-Athlete', 'I-Athlete',
'B-CarManufacturer', 'I-CarManufacturer',
'B-Cleric', 'I-Cleric',
'B-Clothing', 'I-Clothing',
'B-Disease', 'I-Disease',
'B-Drink', 'I-Drink',
'B-Facility', 'I-Facility',
'B-Food', 'I-Food',
'B-HumanSettlement', 'I-HumanSettlement',
'B-MedicalProcedure', 'I-MedicalProcedure',
'B-Medication/Vaccine', 'I-Medication/Vaccine',
'B-MusicalGRP', 'I-MusicalGRP',
'B-MusicalWork', 'I-MusicalWork',
'B-ORG', 'I-ORG',
'B-OtherLOC', 'I-OtherLOC',
'B-OtherPER', 'I-OtherPER',
'B-OtherPROD', 'I-OtherPROD',
'B-Politician', 'I-Politician',
'B-PrivateCorp', 'I-PrivateCorp',
'B-PublicCorp', 'I-PublicCorp',
'B-Scientist', 'I-Scientist',
'B-Software', 'I-Software',
'B-SportsGRP', 'I-SportsGRP',
'B-SportsManager', 'I-SportsManager',
'B-Station', 'I-Station',
'B-Symptom', 'I-Symptom',
'B-Vehicle', 'I-Vehicle',
'B-VisualWork', 'I-VisualWork',
'B-WrittenWork', 'I-WrittenWork']
)
),
"ner_macro_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=['O',
"B-Location", "I-Location",
"B-CreativeWork", "I-CreativeWork",
"B-Group", "I-Group",
"B-Person", "I-Person",
"B-Product", "I-Product",
"B-Medical", "I-Medical",
]
)
),
}
),
supervised_keys=None,
homepage="https://www.aclweb.org/anthology/W03-0419/",
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager):
"""Returns SplitGenerators."""
downloaded_files = dl_manager.download_and_extract({
"train": f"{self.config.name}-train.conll",
"dev": f"{self.config.name}-dev.conll",
})
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
tokens = []
ner_tags = []
ner_macro_tags = []
for line in f:
if line.startswith("#") or line == "" or line == "\n":
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
"ner_macro_tags": ner_macro_tags,
}
guid += 1
tokens = []
ner_tags = []
ner_macro_tags = []
else:
# conll2003 tokens are space separated
splits = line.split(" _ _ ")
tokens.append(splits[0])
ner_tags.append(splits[1].rstrip())
ner_macro_tags.append(self.micro_to_macro_ner_mapping[splits[1].rstrip()])
# last example
if tokens:
yield guid, {
"id": str(guid),
"tokens": tokens,
"ner_tags": ner_tags,
"ner_macro_tags": ner_macro_tags,
}
|