Search is not available for this dataset
name
stringlengths 2
88
| description
stringlengths 31
8.62k
| public_tests
dict | private_tests
dict | solution_type
stringclasses 2
values | programming_language
stringclasses 5
values | solution
stringlengths 1
983k
|
---|---|---|---|---|---|---|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx")
using namespace std;
template <typename T>
inline void priv(vector<T> a) {
for (int i = 0; i < a.size(); i++) {
cerr << a[i] << ((i == a.size() - 1) ? "\n" : " ");
}
}
inline void fastio() {
cin.tie(nullptr);
cout.tie(nullptr);
ios::sync_with_stdio(false);
cout << fixed << setprecision(15);
}
int_fast64_t gcd(int_fast64_t a, int_fast64_t b) {
int_fast64_t c = max(a, b);
int_fast64_t d = min(a, b);
return c == 0 || d == 0 ? c : gcd(c % d, d);
}
int_fast64_t lcm(int_fast64_t a, int_fast64_t b) {
return a == 0 || b == 0 ? 0 : a * b / gcd(a, b);
}
int_fast64_t modfact(int_fast64_t a) {
int_fast64_t b = 1;
for (int i = 2; i <= a; i++) b = b * i % 1000000007LL;
return b;
}
int_fast64_t modpow(int_fast64_t a, int_fast64_t n) {
int_fast64_t b = 1;
while (n > 0) {
if (n & 1) b = b * a % 1000000007LL;
a = a * a % 1000000007LL;
n >>= 1;
}
return b;
}
int_fast64_t modcomb(int_fast64_t n, int_fast64_t k) {
int_fast64_t b = 1;
k = min(n - k, k);
for (int i = n; i >= n - k + 1; i--) b = b * i % 1000000007LL;
return b * modpow(modfact(k), 1000000007LL - 2) % 1000000007LL;
}
int_fast64_t N, S, ans;
int_fast64_t A[100001];
int main() {
fastio();
cin >> N;
for (int i = 0; i < N; i++) cin >> A[i];
ans = 0, S = A[0];
for (int i = 1; i <= N - 1; i++) {
if (S * (S + A[i]) < 0) {
S += A[i];
} else {
if (S > 0) {
ans += abs(A[i] - (-S - 1));
S = -1;
} else {
ans += abs(A[i] - (-S + 1));
S = 1;
}
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | {-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
{-# OPTIONS_GHC -fno-warn-unused-imports #-}
{-# OPTIONS_GHC -fno-warn-missing-signatures #-}
{-# OPTIONS_GHC -fno-warn-unused-binds #-}
{-# OPTIONS_GHC -fno-warn-incomplete-patterns #-}
{-# OPTIONS_GHC -fno-warn-name-shadowing #-}
{-# LANGUAGE OverloadedStrings #-}
-- {-# LANGUAGE FlexibleContexts #-}
-- {-# LANGUAGE MultiWayIf #-}
-- {-# LANGUAGE BangPatterns #-}
-- {-# LANGUAGE ViewPatterns #-}
-- {-# LANGUAGE TupleSections #-}
import System.IO hiding (char8)
import Control.Applicative
import Control.Monad
import Data.List
import Data.Tuple
import Data.Int
import Data.Char
import Data.Function (on)
import Data.Ord (comparing)
import Data.Monoid (mappend)
import Data.Array
-- import Data.Array.Unboxed
-- import Data.Array.IArray
-- import Data.Array.ST
-- import Data.Array.MArray
-- import Data.Array.Unsafe
-- import Data.Array.Base(unsafeRead, unsafeWrite)
-- import Data.Array.IO
import Data.Ix
import Data.Maybe
-- import Data.Monoid hiding ((<>))
import qualified Data.ByteString.Char8 as BS
import qualified Data.ByteString.Lazy.Char8 as BL
import Data.ByteString.Builder
-- import Data.Graph
-- import Data.Vector.Unboxed ((//), (++), (!), (!?))
-- import qualified Data.Vector.Unboxed as U
-- import Data.IntSet (IntSet)
-- import qualified Data.IntSet as IntSet
-- import Data.IntMap.Strict (IntMap)
-- import qualified Data.IntMap.Strict as IntMap
-- import Data.Sequence ((|>), (<|), (><),ViewR(..), ViewL(..), Seq)
-- import qualified Data.Sequence as Seq
-- import Data.Foldable (toList, minimumBy)
-- import Debug.Trace
main = solve <$ getInt1 <*> getInt64s >>= print
solve = solve' 0 0 . scanl (+) 0 where
solve' _ ans [_] = ans
solve' acc ans (x:x2:xs)
| x2+acc == 0 = solve' (acc-signum x) (ans+1) (x2+acc-signum x:xs)
| signum x == signum (x2+acc) = solve' (acc+d) (ans+abs d) (x2+acc+d:xs)
| otherwise = solve' acc ans (x2+acc:xs)
where
d = - signum (x2+acc) * (abs (x2+acc) + 1)
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
getInt64s :: IO [Int64]
getInt64s = readInt64s <$> BS.getLine
getInt1 :: IO Int
getInt1 = readInt1 <$> BS.getLine
getInt2 :: IO (Int, Int)
getInt2 = readInt2 <$> BS.getLine
getInt3 :: IO (Int, Int, Int)
getInt3 = readInt3 <$> BS.getLine
getInts :: IO [Int]
getInts = readInts <$> BS.getLine
getIntN :: Int -> IO [Int]
getIntN n = map readInt1 <$> replicateM n BS.getLine
format :: Show a => Maybe a -> IO ()
format Nothing = putStrLn "NO"
format (Just a) = putStrLn "YES" >> print a
-- [1,2,3] -> 1 2 3
putInts :: [Int] -> IO ()
-- putInts [] = return ()
-- putInts xs = BL.putStrLn . toLazyByteString . foldl1 mappend . intersperse (char8 ' ') $ map intDec xs
putInts = putStrLn . unwords . map show
readInt1 :: BS.ByteString -> Int
readInt1 = fst . fromJust . BS.readInt
readInt2 :: BS.ByteString -> (Int,Int)
readInt2 = toTuple . readInts
readInt3 :: BS.ByteString -> (Int,Int,Int)
readInt3 = toTriple . readInts
readInts :: BS.ByteString -> [Int]
readInts = map readInt1 . BS.words
readInt641 :: BS.ByteString -> Int64
readInt641 = fromIntegral . fst . fromJust . BS.readInteger
readInt642 :: BS.ByteString -> (Int64,Int64)
readInt642 = toTuple . readInt64s
readInt643 :: BS.ByteString -> (Int64,Int64,Int64)
readInt643 = toTriple . readInt64s
readInt64s :: BS.ByteString -> [Int64]
readInt64s = map readInt641 . BS.words
readInteger1 :: BS.ByteString -> Integer
readInteger1 = fst . fromJust . BS.readInteger
readInteger2 :: BS.ByteString -> (Integer,Integer)
readInteger2 = toTuple . readIntegers
readInteger3 :: BS.ByteString -> (Integer,Integer,Integer)
readInteger3 = toTriple . readIntegers
readIntegers :: BS.ByteString -> [Integer]
readIntegers = map readInteger1 . BS.words
toTuple :: [a] -> (a, a)
toTuple [x, y] = (x, y)
toTriple :: [a] -> (a, a, a)
toTriple [x, y, z] =(x, y, z)
fromTuple :: (a, a) -> [a]
fromTuple (x, y) = [x, y]
fromTriple :: (a, a, a) -> [a]
fromTriple (x, y, z) = [x, y, z]
-- if not applying, use "id"
applyTuple :: (a -> a') -> (b -> b') -> (a, b) -> (a', b')
applyTuple f g (x, y) = (f x, g y)
applyTriple :: (a -> a') -> (b -> b') -> (c -> c') -> (a, b, c) -> (a', b', c')
applyTriple f g h (x, y, z) = (f x, g y, h z)
-- @since 4.8.0.0
sortOn' :: Ord b => (a -> b) -> [a] -> [a]
sortOn' f =
map snd . sortBy (comparing fst) . map (\x -> let y = f x in y `seq` (y, x))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
long long sum = 0, cost = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
sum += a[i];
if (a[0] > 0) {
if (i % 2 == 0 && sum < 0) {
cost += 1 - sum;
sum = 1;
}
if (i % 2 == 1 && sum > 0) {
cost += sum + 1;
sum = -1;
}
} else {
if (i % 2 == 0 && sum > 0) {
cost += 1 + sum;
sum = -1;
}
if (i % 2 == 1 && sum < 0) {
cost += 1 - sum;
sum = 1;
}
}
}
cout << cost << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long sum_ = a[0];
long count = 0;
if (a[0] > 0) {
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum_ + a[i] >= 0) {
long r = -(sum_ + a[i]) - 1;
count += abs(r);
a[i] += r;
}
} else {
if (sum_ + a[i] <= 0) {
long r = -(sum_ + a[i]) + 1;
count += abs(r);
a[i] += r;
}
}
sum_ += a[i];
}
} else {
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum_ + a[i] <= 0) {
long r = -(sum_ + a[i]) + 1;
count += abs(r);
a[i] += r;
}
} else {
if (sum_ + a[i] >= 0) {
long r = -(sum_ + a[i]) - 1;
count += abs(r);
a[i] += r;
}
}
sum_ += a[i];
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n;
cin >> n;
int i;
long int a[n], su, cnt, cnt2;
cnt = 0;
cnt2 = 0;
for (i = 0; i < n; i++) {
cin >> a[i];
}
su = 0;
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] >= 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt += su + 1;
su = -1;
}
} else {
if (su <= 0) {
cnt += 1 - su;
su = 1;
}
}
}
}
su = 0;
for (i = 0; i < n; i++) {
su += a[i];
if (a[0] <= 0) {
if (i % 2 == 0) {
if (su <= 0) {
cnt2 += 1 - su;
su = 1;
}
} else {
if (su >= 0) {
cnt2 += su + 1;
su = -1;
}
}
} else {
if (i % 2 == 0) {
if (su >= 0) {
cnt2 += su + 1;
su = -1;
}
} else {
if (su <= 0) {
cnt2 += 1 - su;
su = 1;
}
}
}
}
cout << min(cnt, cnt2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < (n); ++i) cin >> a[i];
long long int ans = 0;
long long int tmp, old_sum = a[0], sum = 0;
for (int i = 1; i < n; ++i) {
sum = old_sum + a[i];
if (sum == 0) {
ans++;
if (old_sum >= 0) {
sum--;
} else {
sum++;
}
}
if ((old_sum >= 0) && (sum >= 0)) {
ans += (sum + 1);
sum = -1;
} else if ((old_sum < 0) && (sum < 0)) {
ans += abs(sum - 1);
sum = 1;
}
old_sum = sum;
}
tmp = 0;
old_sum = 0, sum = 0;
tmp += abs(a[0]) + 1;
old_sum -= a[0];
for (int i = 1; i < n; ++i) {
sum = old_sum + a[i];
if (sum == 0) {
tmp++;
if (old_sum >= 0) {
sum--;
} else {
sum++;
}
}
if ((old_sum >= 0) && (sum >= 0)) {
tmp += (sum + 1);
sum = -1;
} else if ((old_sum < 0) && (sum < 0)) {
tmp += abs(sum - 1);
sum = 1;
}
old_sum = sum;
}
cout << min(ans, tmp) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> A(N);
for (int x = 0; x < (N); x++) {
cin >> A.at(x);
}
long long sign = A.at(0);
long long ans = 0;
for (int x = 0; x < (N - 1); x++) {
if (sign < 0) {
if (sign + A.at(x + 1) <= 0) {
ans += abs(A.at(x + 1) - (abs(sign) + 1));
A.at(x + 1) = abs(sign) + 1;
}
} else {
if (sign + A.at(x + 1) >= 0) {
ans += abs(A.at(x + 1) - (-abs(sign) - 1));
A.at(x + 1) = -abs(sign) - 1;
}
}
sign += A.at(x + 1);
}
cout << ans << endl;
;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
cin.sync_with_stdio(false);
int n;
cin >> n;
long long a[n], sum[n];
bool ok = true;
for (int i = (int)(0); i < (int)(n); i++) {
cin >> a[i];
if (i == 0)
sum[i] = a[i];
else
sum[i] = sum[i - 1] + a[i];
if (sum[i] == 0 || (i > 0 && sum[i] * sum[i - 1] < 0)) ok = false;
}
if (ok) {
cout << 0 << endl;
} else {
long long sump = (a[0] != 0) ? a[0] : 1, sumq = (a[0] != 0) ? -a[0] : -1;
long long p = (a[0] != 0) ? 0 : 1, q = (a[0] != 0) ? 0 : 1;
for (int i = (int)(1); i < (int)(n); i++) {
if ((sump + a[i]) * sump < 0)
sump = sump + a[i];
else if (sump < 0)
p += abs(1 - (sump + a[i])), sump = 1;
else if (sump > 0)
p += abs(-1 - (sump + a[i])), sump = -1;
if ((sumq + a[i]) * sumq < 0)
sumq = sumq + a[i];
else if (sumq < 0)
q += abs(1 - (sumq + a[i])), sumq = 1;
else if (sumq > 0)
q += abs(-1 - (sumq + a[i])), sumq = -1;
}
cout << min(p, q) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
A = list(map(int, input().split()))
B = [0]*(n+1)
ans = 0
for i in range(n):
temp = B[i]+A[i]
if i == 0:
if temp == 0:
ans += 1
temp += 1
B[i+1] = temp
else:
B[i+1] =temp
else:
if B[i]*temp > 0:
if temp < 0:
ans += 1-temp
B[i+1] = 1
else:
ans += temp+1
B[i+1] = -1
elif temp == 0:
if B[i] > 0:
ans += 1
B[i+1] = -1
else:
ans += 1
B[i+1] = 1
else:
B[i+1] = temp
ans_ = 0
for i in range(n):
temp = B[i]+A[i]
if i == 0:
if temp == 0:
ans_ += 1
temp -= 1
B[i+1] = temp
else:
B[i+1] =temp
else:
if B[i]*temp > 0:
if temp < 0:
ans_ += 1-temp
B[i+1] = 1
else:
ans_ += temp+1
B[i+1] = -1
elif temp == 0:
if B[i] > 0:
ans_ += 1
B[i+1] = -1
else:
ans_ += 1
B[i+1] = 1
else:
B[i+1] = temp
print(min(ans, ans_))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 0x3f3f3f3f;
long long a[1000010];
int n;
unsigned long long solve() {
unsigned long long sum = 0;
long long oo = 0, flag;
if (a[0] > 0)
flag = -1;
else if (a[0] < 0)
flag = 1;
for (int i = 0; i < n; i++) {
oo += a[i];
if (flag == 1) {
if (oo >= 0) {
sum += oo + 1;
oo = -1;
}
}
if (flag == -1) {
if (oo <= 0) {
sum += 0 - oo + 1;
oo = 1;
}
}
flag = -flag;
}
return sum;
}
int main() {
while (scanf("%d", &n) != EOF) {
unsigned long long sum;
for (int i = 0; i < n; i++) {
scanf("%lld", &a[i]);
}
if (a[0] == 0) {
a[0] = 1;
unsigned long long sum1 = solve();
a[0] = -1;
unsigned long long sum2 = solve();
sum = min(sum1, sum2) + 1;
} else {
unsigned long long sum1 = solve();
sum = sum1;
}
printf("%lld\n", sum);
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import std.stdio, std.algorithm, std.conv, std.array, std.string;
void main()
{
auto n = readln.chomp.to!uint;
auto as = readln.chomp.split(" ").map!(to!long).array;
long op;
auto sum = as[0];
foreach (a; as[1..$]) {
if (sum < 0) {
if ((sum + a) <= 0) {
op += (1 - (sum + a));
sum = 1;
} else {
sum += a;
}
} else {
if ((sum + a) >= 0) {
op += sum + a + 1;
sum = -1;
} else {
sum += a;
}
}
}
writeln(op);
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return true;
}
return false;
}
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return true;
}
return false;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
long long n;
cin >> n;
long long a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long cnt = 0;
long long ans = 0;
long long p = -1;
if (a[0] > 0) p = 1;
for (int i = 0; i < n; ++i) {
cnt += a[i];
if (cnt * p <= 0) {
long long g = cnt * -1 + p;
ans += (g * p);
cnt = cnt + g;
}
p *= -1;
}
cout << (ans) << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(int argc, char const *argv[]) {
long long int n, ans = 0, sum = 0;
cin >> n;
vector<long long int> a(n);
for (size_t i = 0; i < n; i++) {
cin >> a[i];
if (i == 0)
sum += a[i];
else {
if (sum * (sum + a[i]) > 0) {
if (sum < 0) {
if (a[i] < 0) {
a[i] += abs(sum) * 2;
ans += abs(sum) * 2;
} else {
a[i] += abs(sum);
ans += abs(sum);
}
} else if (sum > 0) {
if (a[i] > 0) {
a[i] -= abs(sum) * 2;
ans += abs(sum) * 2;
} else {
a[i] -= abs(sum);
ans += abs(sum);
}
}
}
if (sum + a[i] == 0) {
if (sum > 0)
a[i]--;
else
a[i]++;
ans++;
}
sum += a[i];
}
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<int> a(N);
for (int i=0; i<N; i++) {
cin >> a.at(i);
}
int ans1 = 0, ans2 = 0; sum = 0;
for (int i=0; i<N; i++) {
sum += a.at(i);
if (i%2 == 0 and sum <= 0) {
ans1 += -sum+1; //sumは負
sum = 1;
}
else if (i%2 == 1 and sum >= 0) {
ans1 += sum+1;
sum = -1;
}
}
sum = 0;
for (int i=0; i<N; i++) {
ans2 += a.at(i);
if (i%2 == 0 and sum >= 0) {
ans2 += sum+1;
sum = -1;
}
else if (i%2 == 1 and sum <= 0) {
ans2 += -sum+1;
sum = 1;
}
}
int ans = min(ans1, ans2);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def sequence(N: int, A: list) -> int:
s = A[0]
op = 0
for a in A[1:]:
print(s, '->', s+a)
if s < 0:
if s + a > 0:
# OK
s = s + a
continue
else:
op += 1 - (s + a)
s = 1
else: # s > 0
if s + a < 0:
# OK
s = s + a
continue
else:
op += (s + a) - (-1)
s = -1
return op
if __name__ == "__main__":
N = int(input())
A = [int(s) for s in input().split()]
ans = sequence(N, A)
print(ans)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long ans = 0;
if (a[0] == 0 && a[1] >= 0) {
a[0] = -1;
ans++;
} else if (a[0] == 0 && a[1] < 0) {
a[0] = 1;
ans++;
}
for (int i = 1; i < n; i++) {
a[i] += a[i - 1];
if (a[i] >= 0 && a[i - 1] > 0) {
ans += abs(a[i] + 1);
a[i] = -1;
} else if (a[i] <= 0 && a[i - 1] < 0) {
ans += abs(a[i] - 1);
a[i] = 1;
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int sum;
cin >> sum;
int answer = 0;
for (int i = 1; i < n; i++) {
int a;
cin >> a;
int nextSum = sum + a;
if ((sum > 0 && nextSum < 0) || (sum < 0 && nextSum > 0)) {
sum = nextSum;
} else if (nextSum == 0) {
sum = sum > 0 ? -1 : 1;
answer += 1;
} else if (nextSum > 0) {
sum = -1;
answer += nextSum + 1;
} else if (nextSum < 0) {
sum = 1;
answer += nextSum * -1 + 1;
}
}
cout << answer << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int n = sc.nextInt();
long[] a = new long[n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
long sum = a[0];
long x = 0;
if(a[0] == 0) {
if(a[1] >= 0) {
sum = -1;
x++;
} else {
sum = 1;
x++;
}
}
long count = 0;
for(int i = 1; i < n; i++) {
if(sum * (sum + a[i]) >= 0) {
if(sum < 0) {
count = -sum - a[i] + 1;
} else {
count = -sum - a[i] - 1;
}
}
sum += a[i] + count;
x += Math.abs(count);
count = 0;
}
System.out.println(x);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.*;
public class Main {
public static void main(String args[]) {
Scanner sc = new Scanner(System.in);
long n = sc.nextLong();
long a[] = new long[(int)n];
for(int i = 0; i < n; i++) {
a[i] = sc.nextLong();
}
long sum = a[0];
if(sum == 0) {
boolean flag = true;
int cnt = 1;
while(flag) {
if(a[cnt] > 0) {
if(cnt % 2 == 0) {
sum = 1;
} else {
sum = -1;
}
flag = false;
} else if(a[cnt] < 0) {
if(cnt % 2 == 0) {
sum = -1;
} else {
sum = 1;
}
flag = false;
}
cnt++;
}
}
long ans = 0;
for(int i = 1; i < n; i++) {
if(sum > 0) {
if(sum + a[i] >= 0) {
ans += sum + a[i] + 1;
sum = -1;
} else {
sum = sum + a[i];
}
} else {
if(sum + a[i] <= 0) {
ans += Math.abs(a[i] + sum) + 1;
sum = 1;
} else {
sum = sum + a[i];
}
}
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
A = list(map(int, input().split()))
currentSum = 0
count1 = 0
count2 = 0
count3 = 0
count4 = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count1 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count1 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count1 += 1
currentSum = -1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count2 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count2 += abs(currentSum) + 1
currentSum = -1
elif currentSum == 0 and restSum == 0:
count2 += 1
currentSum = 1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count3 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count3 += abs(currentSum) + 1
currentSum = -1
elif A[i] <= 0 and restSum == 0:
count3 += 1
currentSum = 1
currentSum = 0
for i in range(N):
restSum = currentSum
currentSum += A[i]
if currentSum <= 0 and restSum < 0:
count4 += abs(currentSum) + 1
currentSum = 1
elif currentSum >= 0 and restSum > 0:
count4 += abs(currentSum) + 1
currentSum = -1
elif A[i] >= 0 and restSum == 0:
count4 += 1
currentSum = -1
print(min(count1, count2, count3, count4))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
b = [0]*n
b[0]=a[0]
pt = 0
m = 0
ans = 0
for i in range(1,n):
b[i]=b[i-1]+a[i]
bo = b[::2]
be = b[1::2]
if sum(bo)>sum(be):
pt=0
else:
pt=1
if pt==0:
for i in range(n):
if i%2==0 and b[i]+m<=0:
ans+=1-b[i]-m
m+=1-b[i]-m
elif i%2==1 and b[i]+m>=0:
ans+=1+b[i]+m
m+=-1-b[i]-m
if pt==1:
for i in range(n):
if i%2==1 and b[i]+m<=0:
ans+=1-b[i]-m
m+=1-b[i]-m
elif i%2==0 and b[i]+m>=0:
ans+=1+b[i]+m
m+=-1-b[i]-m
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
unsigned long op = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
if (a[0] == 0) {
for (int i = 1; i < n; i++) {
if (a[i] == 0) {
continue;
} else if (a[i] > 0) {
if (i % 2 == 0) {
a[0] = 1;
} else {
a[0] = -1;
}
op = 1;
break;
} else {
if (i % 2 == 0) {
a[0] = -1;
} else {
a[0] = 1;
}
op = 1;
break;
}
}
if (op == 0) {
a[0] = 1;
op = 1;
}
}
long sum = a[0];
for (int i = 1; i < n; i++) {
if (sum > 0) {
if (sum + a[i] >= 0) {
op += abs(-1 - sum - a[i]);
sum = -1;
} else {
sum += a[i];
}
} else {
if (sum + a[i] <= 0) {
op += abs(1 - sum - a[i]);
sum = 1;
} else {
sum += a[i];
}
}
}
cout << op << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include<bits/stdc++.h>
#define int long long
#define r(i,n) for(int i=0;i<n;i++)
using namespace std;
int a[100009],n;
int d1(){
int sum=0,ans=0;
for(int i=0;i<n;i++){
if(i%2==0){
if(sum+a[i]>=0)ans+=sum-a[i]+1,sum=-1;
else sum+=a[i];
}
else{
if(sum+a[i]<=0)ans+=sum-a[i]-1,sum=1;
else sum+=a[i];
}
}
return ans;
}
int d2(){
int sum=0,ans=0;
for(int i=0;i<n;i++){
if(i%2==1){
if(sum+a[i]>=0)ans+=sum-a[i]+1,sum=-1;
else sum+=a[i];
}
else{
if(sum+a[i]<=0)ans+=sum-a[i]-1,sum=1;
else sum+=a[i];
}
}
return ans;
}
main(){
cin>>n;
r(i,n)cin>>a[i];
cout<<min(d1(),d2())<<endl;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int dx[4] = {1, 0, 0, -1};
int dy[4] = {0, 1, -1, 0};
using namespace std;
bool cmp_P(const pair<long long int, long long int> &a,
const pair<long long int, long long int> &b) {
return a.second < b.second;
}
int main() {
long long int tmp = 0, n, sum = 0, v, res = 0;
cin >> n;
vector<long long int> a(n + 1);
for (int i = 0; i < (int)(n); i++) cin >> a[i];
if (a[0] != 0) {
v = abs(a[0]) / a[0];
sum = a[0];
for (int i = 1; i < n; i++) {
if (v == -1) {
if (a[i] + sum <= 0) {
tmp += abs(1 - a[i] - sum);
sum = 1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum >= 0) {
tmp += abs(-1 - a[i] - sum);
sum = -1;
} else {
sum += a[i];
}
}
v = -v;
}
v = -abs(a[0]) / a[0];
sum = v;
res += abs(a[0]) + 1;
for (int i = 1; i < n; i++) {
if (v == -1) {
if (a[i] + sum <= 0) {
res += abs(1 - a[i] - sum);
sum = 1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum >= 0) {
res += abs(-1 - a[i] - sum);
sum = -1;
} else {
sum += a[i];
}
}
v = -v;
}
res = min(res, tmp);
} else {
v = 1;
tmp++;
sum = 1;
for (int i = 1; i < n; i++) {
if (v == -1) {
if (a[i] + sum <= 0) {
tmp += abs(1 - a[i] - sum);
sum = 1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum >= 0) {
tmp += abs(-1 - a[i] - sum);
sum = -1;
} else {
sum += a[i];
}
}
v = -v;
}
v = 1;
res++;
sum = 1;
for (int i = 1; i < n; i++) {
if (v == -1) {
if (a[i] + sum <= 0) {
res += abs(1 - a[i] - sum);
sum = 1;
} else {
sum += a[i];
}
} else {
if (a[i] + sum >= 0) {
res += abs(-1 - a[i] - sum);
sum = -1;
} else {
sum += a[i];
}
}
v = -v;
}
res = min(res, tmp);
}
cout << res << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, i, j, count, sum, x, bsum, s, count2;
vector<int> a, b;
cin >> n;
a.resize(n);
b.resize(n);
cin >> a[0];
for (i = 1; i < n; i++) {
cin >> a[i];
}
b = a;
count = 0;
count2 = 0;
if (a[0] <= 0) {
count = abs(a[0]) + 1;
a[0] = 1;
}
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += a[i];
if (sum + a[i + 1] == 0) {
count++;
if (sum > 0) {
a[i + 1]--;
} else {
a[i + 1]++;
}
}
if (sum > 0 && (sum + a[i + 1]) > 0 || sum < 0 && (sum + a[i + 1]) < 0) {
if (sum > 0) {
x = sum + 1;
s = x + a[i + 1];
a[i + 1] = -x;
count += abs(s);
} else {
x = sum - 1;
s = x + a[i + 1];
a[i + 1] = -x;
count += abs(s);
}
}
}
if (b[0] >= 0) {
count2 = abs(b[0]) + 1;
b[0] = -1;
}
sum = 0;
for (int i = 0; i < n - 1; i++) {
sum += b[i];
if (sum + b[i + 1] == 0) {
count2++;
if (sum > 0) {
b[i + 1]--;
} else {
b[i + 1]++;
}
}
if (sum > 0 && (sum + b[i + 1]) > 0 || sum < 0 && (sum + b[i + 1]) < 0) {
if (sum > 0) {
x = sum + 1;
s = x + b[i + 1];
b[i + 1] = -x;
count2 += abs(s);
} else {
x = sum - 1;
s = x + b[i + 1];
b[i + 1] = -x;
count2 += abs(s);
}
}
}
cout << min(count, count2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long int cnt;
long long int x;
long long int ans = 0;
cin >> cnt;
for (int i = 1; i < n; i++) {
cin >> x;
if (cnt < 0) {
if (0 < cnt + x) {
cnt += x;
} else {
ans += 1 - (cnt + x);
cnt = 1;
}
} else if (0 < cnt) {
if (cnt + x < 0) {
cnt += x;
} else {
ans += (cnt + x) + 1;
cnt = -1;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.BufferedReader;
import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.io.OutputStream;
import java.io.IOException;
import java.io.FileReader;
import java.io.FileWriter;
import java.util.Arrays;
import java.util.Collections;
import java.util.ArrayList;
import java.util.List;
import java.util.HashSet;
import java.util.Comparator;
import java.util.Set;
import java.util.HashMap;
import java.util.Map;
public class Main {
// 標準入力
static BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
// 標準入力数値配列用 int
static int[] inputval() throws Exception {
String[] strarray = br.readLine().trim().split(" ");
int[] intarray = new int[strarray.length];
for (int i = 0; i < intarray.length; i++) {
intarray[i] = Integer.parseInt(strarray[i]);
}
return intarray;
}
/* 標準入力数値配列用 long */
static long[] inputLongArr() throws Exception {
String[] strarray = br.readLine().trim().split(" ");
long[] longarray = new long[strarray.length];
for (int i = 0; i < longarray.length; i++) {
longarray[i] = Long.parseLong(strarray[i]);
}
return longarray;
}
// 標準入力数値リスト用 int
static List<Integer> inputIntList() throws Exception {
List<String> strList = Arrays.asList(br.readLine().trim().split(" "));
List<Integer> intList = new ArrayList<Integer>();
for (String elem : strList){
intList.add(Integer.parseInt(elem));
}
return intList;
}
// 標準入力数値配列用 integer 降順ソート用
static Integer[] inputvalInteger() throws Exception {
String[] strarray = br.readLine().trim().split(" ");
Integer[] intarray = new Integer[strarray.length];
for (int i = 0; i < intarray.length; i++) {
intarray[i] = Integer.parseInt(strarray[i]);
}
return intarray;
}
/*標準入力long*/
static long inputLong() throws Exception {
return Long.parseLong(br.readLine());
}
/*標準入力long*/
static int inputInt() throws Exception {
return Integer.parseInt(br.readLine());
}
public static void main(String[] args) throws Exception {
// write your code here
int n = inputInt();
long [] al = inputLongArr();
long sum = al[0];
long ans = 0;
boolean nextPlusF = al[0] < 0;
for(int i=1;i<n;i++){
sum += al[i];
if(nextPlusF && sum <=0){
ans += 1-sum;
sum += ans;
}else if ((! nextPlusF) && sum >= 0){
ans += sum +1;
sum -= ans;
}
nextPlusF = !nextPlusF;
}
System.out.println(ans);
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = list(map(int, input().split()))
check = copy.deepcopy(a)
#####segfunc######
def segfunc(x,y):
return x+y
def init(init_val):
#set_val
for i in range(len(init_val)):
seg[i+num-1]=init_val[i]
#built
for i in range(num-2,-1,-1) :
seg[i]=segfunc(seg[2*i+1],seg[2*i+2])
def update(k,x):
k += num-1
seg[k] = x
while k:
k = (k-1)//2
seg[k] = segfunc(seg[k*2+1],seg[k*2+2])
def query(p,q):
if q<=p:
return ide_ele
p += num-1
q += num-2
res=ide_ele
while q-p>1:
if p&1 == 0:
res = segfunc(res,seg[p])
if q&1 == 1:
res = segfunc(res,seg[q])
q -= 1
p = p//2
q = (q-1)//2
if p == q:
res = segfunc(res,seg[p])
else:
res = segfunc(segfunc(res,seg[p]),seg[q])
return res
#####単位元######
ide_ele = 0
num =2**(n-1).bit_length()
seg=[ide_ele]*(2*num - 1)
init(a)
ans_1 = 0
pre_sum = (-1) * a[0]
for i in range(n):
q_sum = query(0,i+1)
if q_sum * pre_sum >= 0:
if pre_sum < 0:
update(i, abs(pre_sum) + 1)
else:
update(i, (-1) * (pre_sum+1))
pre_sum = query(0,i+1)
for i in range(n):
ans_1 += abs(check[i] - seg[i + num - 1])
if a[0] == 0:
a[0] = 1
ans_2 = 1
else:
ans_2 = abs(a[0] * 2)
a[0] *= -1
pre_sum = (-1) * a[0]
init(a)
for i in range(n):
q_sum = query(0,i+1)
if q_sum * pre_sum >= 0:
if pre_sum < 0:
update(i, abs(pre_sum) + 1)
else:
update(i, (-1) * (pre_sum+1))
pre_sum = query(0,i+1)
for i in range(n):
ans_2 += abs(check[i] - seg[i + num - 1])
print(min(ans_1,ans_2)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
_arr = list(map(int, input().split()))
ans = []
for pm in (1, -1):
arr = _arr[:]
c = 0
prev = 0
for i in range(n):
t = prev + arr[i]
if prev == 0 and t == 0:
arr[i] = pm
elif prev > 0 and t >= 0:
diff = t + 1
c += diff
arr[i] -= diff
elif prev < 0 and t <= 0:
diff = -1 * t + 1
c += diff
arr[i] += diff
prev += arr[i]
ans.append(c)
print(min(ans)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main(void) {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
int counter = 0;
if (a[0] >= 0) {
for (int i = 1; i < n; i++) {
int total = 0;
for (int j = 0; j <= i; j++) {
total += a[j];
}
if (i % 2 == 0 && total <= 0) {
counter += abs(total - 1);
a[i] += abs(total - 1);
} else if (i % 2 != 0 && total >= 0) {
counter += abs(total - (-1));
a[i] -= abs(total - (-1));
}
}
} else {
for (int i = 1; i < n; i++) {
int total = 0;
for (int j = 0; j <= i; j++) {
total += a[j];
}
if (i % 2 == 0 && total >= 0) {
counter += abs(total - (-1));
a[i] -= abs(total - (-1));
} else if (i % 2 != 0 && total <= 0) {
counter += abs(total - 1);
a[i] += abs(total - 1);
}
}
}
cout << counter << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n], sum = 0;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
int kekka = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum >= 0) {
kekka += sum + 1;
sum = -1;
}
if (i % 2 == 1 && sum <= 0) {
kekka += -sum + 1;
sum = 1;
}
}
int result = 0;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (i % 2 == 0 && sum <= 0) {
result += -sum + 1;
sum = 1;
}
if (i % 2 == 1 && sum >= 0) {
result += sum + 1;
sum = -1;
}
}
cout << min(kekka, result) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # https://atcoder.jp/contests/abc059/tasks/arc072_a
# 累積和を作っておいて、その累積和の符号が交互になるようにしていく
import sys
read = sys.stdin.readline
def read_ints():
return list(map(int, read().split()))
def read_a_int():
return int(read())
class cumsum1d: # 一次元累積和クラス
def __init__(self, ls: list):
'''
1次元リストを受け取る
'''
from itertools import accumulate
self.ls_accum = [0] + list(accumulate(ls))
def total(self, i, j):
# もとの配列lsにおける[i,j)の中合計
return self.ls_accum[j] - self.ls_accum[i]
def __call__(self, i):
# i番目までの合計
return self.ls_accum[i + 1]
N = read_a_int()
A = read_ints()
A = cumsum1d(A)
# ただし第一項が0とか途中0になる場合がめんどくさい
# →二通りやって少ないほうでいいじゃん
ans1 = 0
bias = 0
pre_sign = 1 # 第一項が負と仮定
for i in range(N):
now = A(i) + bias
if (-1, 1)[pre_sign] * now < 0: # 異符号
pass
elif (-1, 1)[pre_sign] * now >= 0: # 同符号
ans1 += abs(now) + 1
bias += (1, -1)[pre_sign] * ans1
pre_sign = 1 - pre_sign
ans2 = 0
bias = 0
pre_sign = 0 # 第一項が正と仮定
for i in range(N):
now = A(i) + bias
if (-1, 1)[pre_sign] * now < 0: # 異符号
pass
elif (-1, 1)[pre_sign] * now >= 0: # 同符号
ans2 += abs(now) + 1
bias += (1, -1)[pre_sign] * ans2
pre_sign = 1 - pre_sign
print(min(ans1, ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace ::std;
int N, a[100000], A, ans[2];
int min(int x, int y) {
if (x > y) return y;
return x;
}
int main() {
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a[i];
}
A = 0;
for (int i = 0; i < N; i++) {
A += a[i];
if (A >= 0 && i % 2 == 0) {
ans[0] += A + 1;
A = -1;
}
if (A <= 0 && i % 2 == 1) {
ans[0] += -A + 1;
A = 1;
}
}
A = 0;
for (int i = 0; i < N; i++) {
A += a[i];
if (A >= 0 && i % 2 == 1) {
ans[1] += A + 1;
A = -1;
}
if (A <= 0 && i % 2 == 0) {
ans[1] += -A + 1;
A = 1;
}
}
cout << min(ans[0], ans[1]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INF = 1000000000;
const long long MOD = (long long)1e9 + 7;
template <class T>
inline T in() {
T x;
cin >> x;
return x;
}
signed main() {
long long n = in<long long>();
vector<long long> v(n, 0);
for (long long i = 0; i < n; i++) {
if (i == 0)
cin >> v[i];
else {
long long x = in<long long>();
v[i] = v[i - 1] + x;
}
}
long long sign = v[0] / abs(v[0]);
long long sum = 0;
long long cnt1 = 0;
for (long long i = 1; i < n; i++) {
if (v[i] * sign >= 0) {
long long d = (sign > 0 ? (v[i] + 1) * -1 : (v[i] - 1) * -1);
sum += d;
cnt1 += abs(d);
}
if (i < n - 1) v[i + 1] += sum;
sign *= -1;
}
sum = 0;
long long cnt2 = 0;
sign *= v[0] / abs(v[0]) * -1;
for (long long i = 0; i < n; i++) {
if (v[i] * sign >= 0) {
long long d = (sign > 0 ? (v[i] + 1) * -1 : (v[i] - 1) * -1);
sum += d;
cnt2 += abs(d);
}
if (i < n - 1) v[i + 1] += sum;
sign *= -1;
}
cout << min(cnt1, cnt2) << "\n";
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Numerics;
using static System.Console;
using static System.Math;
using static System.Array;
class Program
{
public static void Main()
{
var n = int.Parse(ReadLine());
var a = ReadLine().Split().Select(long.Parse).ToArray();
var b = new long[2, n];
var sum = new long[2, n];
var count = new int[2];
for(int i = 0; i < n; i++)
{
b[0, i] = a[i];
b[1, i] = -a[i];
}
for(int i = 0; i < 2; i++)
{
for(int j = 0; j < n; j++)
{
if(j == 0)
sum[i, j] = b[i, j];
else
sum[i, j] = b[i, j] + sum[i, j - 1];
if(j % 2 == 0)
{
while(sum[i, j] <= 0)
{
b[i, j]++;
count[i]++;
if(j == 0)
sum[i, j] = b[i, j];
else
sum[i, j] = b[i, j] + sum[i, j - 1];
}
}
else
{
while(sum[i, j] >= 0)
{
b[i, j]--;
count[i]++;
if(j == 0)
sum[i, j] = b[i, j];
else
sum[i, j] = b[i, j] + sum[i, j - 1];
}
}
}
}
WriteLine(count.Min());
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, ansa = 0, ansb = 0, suma = 0, sumb = 0;
cin >> n;
for (int i = 0; i < (n); i++) {
int c;
cin >> c;
suma += c;
sumb += c;
if (i % 2 == 0) {
if (suma <= 0) {
ansa += 1 - c - suma;
suma = 1;
}
if (sumb >= 0) {
ansb += sumb + c + 1;
sumb = -1;
}
} else {
if (suma >= 0) {
ansa += suma + c + 1;
suma = -1;
}
if (sumb <= 0) {
ansb += 1 - c - sumb;
sumb = 1;
}
}
}
cout << min(ansa, ansb) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | main :: IO()
main = do
getLine
lis <- words <$> getLine
let numlis = map read lis
print $ solve numlis 0
solve :: [Integer] -> Integer -> Integer
solve [] x = 0
solve (x:xs) 0
| x /= 0 = solve xs x
| otherwise = min (solve xs (-1) + 1) (solve xs 1 + 1)
solve (x:xs) m
| m > 0 = max 0 (sum+1) + solve xs (min sum (-1))
| m < 0 = max 0 (1-sum) + solve xs (max sum 1)
where sum = m+x
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = [int(i) for i in input().split()]
a = [int(i) for i in input().split()]
total = 0
fugo = 0
count = 0
for i in a:
total += i
if(fugo == 0):
total = i
if(total > 0):
fugo = 1
else:
fugo = -1
continue
elif(fugo > 0):
fugo = -1
if(total >= 0):
while(total>=0):
count += 1
total -= 1
elif(fugo < 0):
fugo = 1
if(total <= 0):
while(total<=0):
count += 1
total += 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # -*- coding: utf-8 -*-
N = int(input())
a = [int(n) for n in input().split()]
count_a = 0 #+start
count_b = 0 #-start
nowsum = a[0]
if nowsum > 0:
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_a += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
count_b += nowsum + 1
a[0] = -1
nowsum = -1
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_b += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
print(min(count_a, count_b))
elif nowsum < 0:
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_a += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
count_b += abs(nowsum) + 1
a[0] = 1
nowsum = 1
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_b += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
print(min(count_a, count_b))
else:
a[0] = 1
count_a += 1
nowsum = 1
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_a += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
a[0] = -1
count_b += 1
nowsum = -1
for n in range(1, N):
if nowsum * (nowsum + a[n]) >= 0:
count_b += abs(nowsum + a[n]) + 1
if nowsum < 0:
nowsum = 1
else:
nowsum = -1
else:
nowsum += a[n]
print(min(count_a, count_b))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
cum_a = [0 for _ in range(n)]
cum_a[0] = a[0]
for i in range(n-1):
cum_a[i+1] = cum_a[i] + a[i+1]
count = 0
flag = 0
diff = 0
def r_flag(n):
if n > 0:
return 1
elif n < 0:
return -1
else:
return 0
flag = r_flag(cum_a[0])
for i in range(1, len(cum_a)):
tmp_flag = r_flag(cum_a[i]+diff)
if tmp_flag * flag == -1:
flag = tmp_flag
elif tmp_flag * flag == 1:
if tmp_flag == 1:
count += abs(-1-(cum_a[i]+diff))
diff += -1-(cum_a[i]+diff)
flag = -1
else:
count += abs(1-(cum_a[i]+diff))
diff += 1-(cum_a[i]+diff)
flag = 1
else:
try:
next_flag = r_flag(cum_a[i+1]-diff)
if next_flag == 1:
diff -= 1
count += 1
else:
diff += 1
count += 1
except:
diff += 1
count += 1
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vpii = vector<pair<int, int>>;
using vpll = vector<pair<ll, ll>>;
int N;
ll solve(vector<ll> &A, ll cur) {
ll ans = 0;
for (int i = 1; i < N; i++) {
if (cur > 0 && cur + A[i] >= 0) {
ans += abs(-1 - (cur + A[i]));
cur = -1;
} else if (cur < 0 && cur + A[i] <= 0) {
ans += abs(1 - (cur + A[i]));
cur = 1;
} else
cur += A[i];
}
return (ans);
}
int main(void) {
cin >> N;
vector<ll> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
ll ans1 = 0, ans2 = 0;
ll cur = A[0];
if (cur <= 0) {
cur = 1;
ans1 += abs(1 - cur);
}
ans1 += solve(A, cur);
cur = A[0];
if (cur >= 0) {
cur = -1;
ans2 += abs(-1 - cur);
}
ans2 += solve(A, cur);
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int getsign(long long int n) {
if (n > 0) {
return 1;
}
if (n < 0) {
return -1;
}
return -1;
}
int count(int sign0, long long a[], int n) {
long long int sum = 0;
int sign = sign0;
long long int count = 0;
for (int i = 0; i < n; ++i) {
sum += a[i];
if (getsign(sum) != sign) {
count += abs(sign - sum);
sum = sign;
}
sign = (sign * -1);
}
return count;
}
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
cout << min(count(1, a, n), count(-1, a, n)) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | from itertools import accumulate
N = int(input())
A = list(map(int,input().split()))
acmA = list(accumulate(A))
add = 0
ans = 0
for i in range(1,N):
acmA[i] += add
if acmA[i-1]*acmA[i]<0:continue
tmp_add = -acmA[i]-1 if acmA[i] > 0 else -acmA[i]+1
#print(i, tmp_add, acmA[i])
acmA[i] += tmp_add
add += tmp_add
ans +=abs(tmp_add)
print(ans)
#print(acmA) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
vector<int> a, b;
int n, ansa = 0, ansb = 0;
cin >> n;
for (int i = 0; i < n; ++i) {
int tmp;
cin >> tmp;
a.push_back(tmp);
b.push_back(tmp);
}
if (a[0] < 0) {
for (int i = 1; i < n; ++i) {
a[i] += a[i - 1];
if (i % 2 == 1) {
if (a[i] <= 0) {
ansa = ansa + 1 - a[i];
a[i] = 1;
}
} else {
if (a[i] >= 0) {
ansa = ansa + 1 + a[i];
a[i] = -1;
}
}
}
ansb = 1 - b[0];
b[0] = 1;
for (int i = 1; i < n; ++i) {
b[i] += b[i - 1];
if (i % 2 == 1) {
if (b[i] >= 0) {
ansb = ansb + 1 + b[i];
b[i] = -1;
}
} else {
if (b[i] <= 0) {
ansb = ansb + 1 - b[i];
b[i] = 1;
}
}
}
} else {
for (int i = 1; i < n; ++i) {
a[i] += a[i - 1];
if (i % 2 == 1) {
if (a[i] >= 0) {
ansa = ansa + 1 + a[i];
a[i] = -1;
}
} else {
if (a[i] <= 0) {
ansa = ansa + 1 - a[i];
a[i] = 1;
}
}
}
ansb = b[0] + 1;
b[0] = -1;
for (int i = 1; i < n; ++i) {
b[i] += b[i - 1];
if (i % 2 == 1) {
if (b[i] <= 0) {
ansb = ansb + 1 - b[i];
b[i] = 1;
}
} else {
if (b[i] >= 0) {
ansb = ansb + 1 + b[i];
b[i] = -1;
}
}
}
}
cout << min(ansa, ansb) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java |
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int num_count = sc.nextInt();
int[] array = new int[num_count];
int first_plus_cost = 0;
int sum = 0;
for(int i = 0;i < num_count;i++){
array[i] = sc.nextInt();
}
for(int i = 0;i < num_count;i++){
int temp = sum;
temp += array[i];
if(i % 2 == 0 && temp <= 0){
int cost = 1 - temp;
first_plus_cost += cost;
//temp += cost;
temp = 1;
//System.out.println("0: i: " + i + ",cost: " + cost);
}else if(i % 2 == 1 && temp >= 0){
int cost = 1 + temp;
first_plus_cost += cost;
//temp -= cost;
temp = -1;
//System.out.println("1: i: " + i + ",cost: " + cost);
}
sum = temp;
}
//System.out.println();
int second_plus_cost = 0;
sum = 0;
for(int i = 0;i < num_count;i++){
int temp = sum;
temp += array[i];
if(i % 2 == 0 && temp >= 0){
int cost = 1 + temp;
second_plus_cost += cost;
//temp -= cost;
temp = -1;
//System.out.println("2: i: " + i + ",cost: " + cost);
}else if(i % 2 == 1 && temp <= 0){
int cost = 1 - temp;
second_plus_cost += cost;
//temp += cost;
temp = 1;
//System.out.println("3: i: " + i + ",cost: " + cost);
}
sum = temp;
}
int min_cost = first_plus_cost < second_plus_cost ? first_plus_cost : second_plus_cost;
System.out.println(min_cost);
sc.close();
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n, x = 0, a[100001], ans = 0;
cin >> n;
for (int i = 0; i < n; i++) cin >> a[i];
for (int i = 0; a[i] == 0; ++i) {
ans = 2 * (i + 1) - 1;
x = i + 1;
}
int sum1 = a[x], sum2 = a[x];
for (int i = x + 1; i < n; i++) {
sum2 += a[i];
if (sum2 >= 0 && sum1 > 0) {
ans += abs(sum2) + 1;
a[i] = a[i] - abs(sum2) - 1;
sum2 = sum2 - abs(sum2) - 1;
}
if (sum2 <= 0 && sum1 < 0) {
ans += abs(sum2) + 1;
a[i] = a[i] + abs(sum2) + 1;
sum2 = sum2 + abs(sum2) + 1;
}
sum1 = sum2;
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
int code(int n) {
if (n < 0)
return 1;
else if (n > 0)
return 0;
else
return 2;
}
int main() {
int n;
long long int sum = 0;
long long int ans = 0;
long long int ans2 = 0;
cin >> n;
vector<long long int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
if (sum != 0) {
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << ans << endl;
return 0;
} else if (sum == 0) {
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
sum = 1;
ans2 = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans2++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans2 += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << min(ans, ans2) << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < (n); i++) cin >> a[i];
long long tmp = a[0];
long long ans1 = 0;
if (a[0] <= 0) {
ans1 += abs(a[0] - 1);
a[0] = 1;
}
long long sum = a[0];
for (int i = 0; i < n - 1; i++) {
sum = sum + a[i + 1];
if (i % 2 == 0 && sum > 0) {
ans1 += abs(sum + 1);
sum = -1;
} else if (i % 2 != 0 && sum < 0) {
ans1 += abs(sum - 1);
sum = 1;
}
}
a[0] = tmp;
long long ans2 = 0;
if (a[0] >= 0) {
ans2 += abs(a[0] + 1);
a[0] = -1;
}
sum = a[0];
for (int i = 0; i < n - 1; i++) {
sum = sum + a[i + 1];
if (i % 2 == 0 && sum < 0) {
ans2 += abs(sum - 1);
sum = 1;
} else if (i % 2 != 0 && sum > 0) {
ans2 += abs(sum + 1);
sum = -1;
}
}
ans2 += 1;
cout << min(ans1, ans2);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
long long sum1 = a.at(0);
long long sum2 = a.at(0);
long long op1 = 0;
long long op2 = 0;
if (sum1 <= 0) {
sum1 = 1;
op1 += -1 * sum1 + 1;
}
if (sum2 >= 0) {
sum2 = -1;
op2 += sum2 + 1;
}
for (int j = 1; j < n; j++) {
if (sum1 > 0) {
sum1 += a.at(j);
if (sum1 >= 0) {
op1 += (sum1 + 1);
sum1 = -1;
}
} else {
sum1 += a.at(j);
if (sum1 <= 0) {
op1 += (-1 * sum1 + 1);
sum1 = 1;
}
}
if (sum2 > 0) {
sum2 += a.at(j);
if (sum2 >= 0) {
op2 += (sum2 + 1);
sum2 = -1;
}
} else {
sum2 += a.at(j);
if (sum2 <= 0) {
op2 += (-1 * sum2 + 1);
sum2 = 1;
}
}
}
cout << (op1 > op2 ? op2 : op1) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long long int N, count = 0;
cin >> N;
vector<long long int> A(N);
for (int i = 0; i < N; i++) cin >> A[i];
long long int su = A[0];
bool plus = A[0] > 0;
for (int i = 1; i < N; i++) {
plus = !plus;
su += A[i];
if (plus) {
if (su <= 0) {
count += -1 * su + 1;
su = 1;
}
} else {
if (su >= 0) {
count += su + 1;
su = -1;
}
}
}
cout << count << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import Control.Monad
import Data.List
main=do
_<-getLine
(a:as)<-map read.words<$>getLine::IO[Int]
print $ min (sum.snd $ mapAccumL f a as)
((+) (1 + (abs a)) $ sum $ snd $ mapAccumL f (a`div`(abs a)) as)
f a b
| signum a * signum (a+b) < 0 = (a+b,0)
| a < 0 = (1, 1-(a+b))
| otherwise = ((-1), 1+(a+b))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | def solve(n, a)
res=0
sum=a[0]
1.upto(n-1) do |i|
pre = sum
sum += a[i]
next if pre*sum < 0
res += sum.abs + 1
sum = pre<0 ? 1 : -1
end
res
end
n=gets.to_i
a=gets.split.map &:to_i
if a[0]!=0
p solve(n, a)
else
a[0]=1
s1 = 1+solve(n, a.dup)
a[0]=-1
s2 = 1+solve(n, a.dup)
p [s1, s2].min
end
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | import copy
n = int(input())
a = list(map(int,input().split()))
b = [0]
for i in range(len(a)):
b.append(b[i] + a[i])
del b[0]
c = copy.copy(b)
first_minus = 0
first_plus = 0
for i in range(len(b)):
if(i%2 == 0):
if (b[i] >= 0):
diff = abs(b[i]) + 1
first_minus = first_minus + diff
b = list(map(lambda x: x - diff, b))
if (c[i] <= 0):
diff = abs(c[i]) + 1
first_plus = first_plus + diff
c = list(map(lambda x: x + diff, c))
else:
if (b[i] <= 0):
diff = abs(b[i]) + 1
first_minus = first_minus + diff
b = list(map(lambda x: x + diff, b))
if (c[i] >= 0):
diff = abs(c[i]) + 1
first_plus = first_plus + diff
c = list(map(lambda x: x - diff, c))
print(min(first_minus,first_plus)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
ios::sync_with_stdio(false);
cin.tie(0);
int n;
cin >> n;
int a[n];
for (long long i = (0); i < (n); i++) {
cin >> a[i];
}
for (long long i = (0); i < (n - 1); i++) {
a[i + 1] += a[i];
}
long long ans1 = 0, cnt = 0;
for (long long i = (0); i < (n); i++) {
if (i % 2 == 0) {
if (a[i] + cnt <= 0) {
ans1 += -(a[i] + cnt) + 1;
cnt += -(a[i] + cnt) + 1;
}
} else {
if (a[i] + cnt >= 0) {
ans1 += a[i] + cnt + 1;
cnt -= a[i] + cnt + 1;
}
}
}
long long ans2 = 0;
cnt = 0;
for (long long i = (0); i < (n); i++) {
if (i % 2 == 1) {
if (a[i] + cnt <= 0) {
ans2 += -(a[i] + cnt) + 1;
cnt += -(a[i] + cnt) + 1;
}
} else {
if (a[i] + cnt >= 0) {
ans2 += a[i] + cnt + 1;
cnt -= a[i] + cnt + 1;
}
}
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def countave(n , a):
ans = 100000
for i in range(2):
kei = 0
forans = 0
for w in range(n):
if (w + i) % 2:
if kei + int(a[w]) > -1:
forans += abs(kei + int(a[w])) + 1
kei = -1
else:
kei += int(a[w])
else:
if kei + int(a[w]) < 1:
forans += abs(kei + int(a[w])) + 1
kei = 1
else:
kei += int(a[w])
ans = min(ans , forans)
return ans
def main():
n = int(input())
a = list(map(int, input().split()))
print(countave(n , a))
if __name__ == '__main__':
main()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using vi = vector<int>;
using vvi = vector<vi>;
using vs = vector<string>;
const int INF = 1001001001;
const int MOD = 1000000007;
const long long INFL = (1LL << 60);
const double EPS = 1e-9;
bool meet(vi a) {
bool ret = true;
bool pos = (a[0] > 0);
int sum = a[0];
for (int i = (1); i < (int)(a.size()); i++) {
sum += a[i];
if ((pos && i % 2 && sum >= 0) || (pos && !(i % 2) && sum <= 0) ||
(!pos && i % 2 && sum <= 0) || (!pos && !(i % 2) && sum >= 0)) {
ret = false;
break;
}
}
return ret;
}
uint64_t solve(vi a, uint64_t res) {
int sum = a[0];
bool pos = (a[0] > 0);
for (int i = (1); i < (int)(a.size()); i++) {
if ((pos && i % 2 && sum + a[i] >= 0) ||
(!pos && !(i % 2) && sum + a[i] >= 0)) {
res += abs(sum + a[i] - (-1));
a[i] = -1 - sum;
} else if ((pos && !(i % 2) && sum + a[i] <= 0) ||
(!pos && i % 2 && sum + a[i] <= 0)) {
res += abs(sum + a[i] - 1);
a[i] = 1 - sum;
}
sum += a[i];
}
return res;
}
int main() {
int N;
cin >> N;
vi a(N);
for (int i = 0; i < (int)(N); i++) cin >> a[i];
bool flg = meet(a);
bool pos = (a[0] > 0);
uint64_t res = 0;
uint64_t res1 = solve(a, res);
res = 0;
if (pos) {
res += abs(a[0] - (-1));
a[0] = -1;
} else {
res += abs(a[0] - 1);
a[0] = 1;
}
uint64_t res2 = solve(a, res);
res = min(res1, res2);
if (flg) res = 0;
cout << res << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
long n = 0;
long sum[2] = {0, 0}, ans[2] = {0, 0};
long hoge, foo;
long flag[2] = {0, 1};
scanf("%d", &n);
int in[n];
for (int i = 0; i < n; i++) {
scanf("%ld", &in[i]);
}
for (int i = 0; i < n; i++) {
long tmp[2];
tmp[0] = in[i];
tmp[1] = tmp[0];
if (i == 0) {
sum[0] = tmp[0];
sum[1] = tmp[1];
continue;
}
long foo[2] = {tmp[0], tmp[0]};
for (int j = 0; j < 2; j++) {
if (sum[j] + tmp[j] <= 0 && !flag[j]) {
tmp[j] = abs(sum[j]) + 1;
ans[j] += abs(sum[j]) - abs(foo[j]) + 1;
sum[j] += tmp[j];
flag[j] = 1;
} else if (sum[j] + tmp[j] > 0 && !flag[j]) {
flag[j] = 1;
sum[j] += tmp[j];
} else if (sum[j] + tmp[j] < 0 && flag[j]) {
sum[j] += tmp[j];
flag[j] = 0;
} else if (sum[j] + tmp[j] >= 0 && flag[j]) {
tmp[j] = -1 * (abs(sum[j]) + 1);
ans[j] += abs(sum[j]) + abs(foo[j]) + 1;
sum[j] += tmp[j];
flag[j] = 0;
}
}
}
printf("%ld\n", ans[0] < ans[1] ? ans[0] : ans[1]);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
int ans = 0;
vector<int> vec(100000);
vector<int> rui(100000);
for (int i = (int)(0); i < (int)(N); ++i) {
cin >> vec[i];
}
rui[0] = vec[0];
for (int i = 1; i < N; i++) {
rui[i] = rui[i - 1] + vec[i];
}
int G = vec[0];
int X = 0;
if (G >= 0) {
for (int i = (int)(0); i < (int)(N); ++i) {
if (i % 2 == 0) {
if (rui[i] <= 0) {
X = abs(1 - rui[i]);
ans += X;
}
} else {
if (rui[i] >= 0) {
X = abs(-1 - rui[i]) * -1;
ans += abs(X);
}
}
for (int j = (int)(0); j < (int)(N); ++j) {
rui[j] += X;
}
}
} else {
for (int i = (int)(0); i < (int)(N); ++i) {
X = 0;
if (i % 2 == 0) {
if (rui[i] >= 0) {
X = abs(-1 - rui[i]) * -1;
ans += abs(X);
}
} else {
if (rui[i] <= 0) {
X = abs(1 - rui[i]);
ans += abs(X);
}
}
for (int j = (int)(0); j < (int)(N); ++j) {
rui[j] += X;
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | N = int(input())
arr = list(map(int, input().split()))
sum = arr[0]
ans = 0
for i in range(1,N,1):
if sum>0:
fugo ='plus'
else:
fugo ='mainus'
sum += arr[i]
if sum>0:
after_fugo ='plus'
elif sum<0:
after_fugo ='mainus'
else:
after_fugo = fugo
if fugo == after_fugo:
if fugo == 'plus':
ans += abs(sum)+1
if sum>=0:
arr[i] = -(abs(sum)+1)
else:
arr[i] = abs(sum)+1
if fugo == 'mainus':
ans += abs(sum)+1
if sum>=0:
arr[i] = -(abs(sum)+1)
else:
arr[i] = abs(sum)+1
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | n = gets.to_i
as = gets.split.map(&:to_i)
cnt1 = 0
sum = as[0]
n.times.with_index(1) do |_,i|
break if as[i].nil?
if sum < 0
if sum + as[i] > 0
sum += as[i]
next
else
x = 1 - sum - as[i]
cnt1 += x
sum = 1
end
elsif sum > 0
if sum + as[i] < 0
sum += as[i]
next
else
x = -1 - sum - as[i]
cnt1 += x.abs
sum = -1
end
end
end
cnt2 = (as[0] * 2).abs
sum = as[0] * -1
n.times.with_index(1) do |_,i|
break if as[i].nil?
if sum < 0
if sum + as[i] > 0
sum += as[i]
next
else
x = 1 - sum - as[i]
cnt2 += x
sum = 1
end
elsif sum > 0
if sum + as[i] < 0
sum += as[i]
next
else
x = -1 - sum - as[i]
cnt2 += x.abs
sum = -1
end
end
end
puts [cnt1, cnt2].min
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int sign(long long n) { return ((n > 0) - (n < 0)); }
int main() {
int n;
scanf("%d", &n);
long long sum = 0;
long long ans = 0;
for (int i = 0; i < n; i++) {
int ra;
scanf("%d", &ra);
long long a = ra;
if (sum == 0) {
if (a == 0) {
a++;
ans++;
}
} else if (sum + a == 0) {
a - sign(sum);
ans++;
} else if (sign(sum + a) + sign(sum) != 0) {
long long tmp = a;
if (sum + a > 0) {
a = a - (sum + a) - 1;
} else {
a = a - (sum + a) + 1;
}
ans += abs(tmp - a);
}
sum += a;
}
printf("%llu\n", ans);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int t;
vector<int> answer(2);
int sumi;
bool flag = true;
cin >> t;
vector<int> A(t);
for (int i = 0; i < t; i++) {
cin >> A[i];
}
for (int j = 0; j < 2; j++) {
for (int i = 0; i < t; i++) {
sumi += A[i];
if (sumi == 0) {
answer[i] += 1;
if (flag) {
sumi = -1;
} else {
sumi = 1;
}
} else if (sumi > 0 == flag) {
answer[i] += abs(sumi) + 1;
if (sumi > 0) {
sumi = -1;
} else {
sumi = 1;
}
}
flag = !flag;
}
flag = false;
}
cout << max(answer[0], answer[1]) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
cin >> N;
vector<long long> a(N);
long long prev = 1000000000000000000, sum = 0, cnt = 0;
for (int i = 0; i < (int)(N); i++) {
cin >> a[i];
sum += a[i];
if (i == 0 && a[i] == 0) {
if (a[i + 1] >= 0)
sum -= 1;
else
sum += 1;
cnt++;
}
if (i != 0) {
if (prev <= 0 && sum <= 0) {
cnt += (1 - sum);
sum = 1;
} else if (prev >= 0 && sum >= 0) {
cnt += (abs(-1 - sum));
sum = -1;
}
}
prev = sum;
}
cout << cnt << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const int INF = 1e9;
const int MOD = 1e9 + 7;
const long long LINF = 1e18;
using Graph = vector<vector<int>>;
using Edge = map<pair<int, int>, int>;
template <typename A, size_t N, typename T>
void Fill(A (&array)[N], const T &val) {
std::fill((T *)array, (T *)(array + N), val);
}
long long gcd(long long a, long long b) {
if (a % b == 0)
return (b);
else
return (gcd(b, a % b));
}
long long lcm(long long a, long long b) { return a * b / gcd(a, b); }
int main() {
cout << fixed << setprecision(15);
long long N;
cin >> N;
vector<long long> A(N);
vector<long long> B(N);
long long start = 0;
bool first = true;
for (long long i = 0; i < (long long)(N); ++i) {
cin >> A[i];
if (first) {
if (A[i] != 0) {
start = i;
}
first = false;
}
if (i == 0) {
B[i] = A[i];
} else {
B[i] = A[i] + B[i - 1];
}
}
long long ans = 0;
long long total = 0;
if (A[start] > 0) {
total = -1;
if (start == 0) {
total = 0;
}
for (long long i = start; i < N; i++) {
if ((i - start) % 2 == 0) {
if (B[i] + total <= 0) {
ans += abs(B[i] + total) + 1;
total += abs(B[i] + total) + 1;
}
} else {
if (B[i] + total >= 0) {
ans += abs(B[i] + total) + 1;
total -= (abs(B[i] + total) + 1);
}
}
}
} else {
total = 1;
if (start == 0) {
total = 0;
}
for (long long i = start; i < N; i++) {
if ((i - start) % 2 == 0) {
if (B[i] + total >= 0) {
ans += abs(B[i] + total) + 1;
total -= (abs(B[i] + total) + 1);
}
} else {
if (B[i] + total <= 0) {
ans += abs(B[i] + total) + 1;
total += (abs(B[i] + total) + 1);
}
}
}
}
if (start != 0) {
ans += 2 * start - 1;
}
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
int N[100000];
cin >> n;
for (int i = 0; i < n; i++) {
cin >> N[i];
}
for (int i = 1; i < n; i++) {
N[i] = N[i] + N[i - 1];
}
int ans = 0;
if (N[0] == 0) {
if (N[1] <= 0) {
for (int i = 0; i < n; i++) {
N[i]++;
ans = 1;
}
} else {
for (int i = 0; i < n; i++) {
N[i] = N[i] - 1;
}
ans = 1;
}
}
for (int i = 1; i < n; i++) {
if (N[i - 1] < 0) {
while (N[i] <= 0) {
for (int j = i; j < n; j++) {
N[j]++;
}
ans++;
}
}
if (N[i - 1] > 0) {
while (N[i] >= 0) {
for (int j = i; j < n; j++) {
N[j] = N[j] - 1;
}
ans++;
}
}
}
cout << ans;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using long long = long long;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
const long long INF = 1e9;
long long n;
vector<long long> a;
int main() {
cin >> n;
a.resize(n);
for (long long i = 0; i < (n); ++i) cin >> a[i];
long long sum;
long long ans = 0;
sum = a[0];
{
sum = -1;
ans += abs(a[0] - sum);
for (long long i = 0; i < (n - 1); ++i) {
if (sum < 0) {
if (sum + a[i + 1] > 0) {
sum += a[i + 1];
continue;
} else {
ans += 1 - sum - a[i + 1];
sum = 1;
}
} else {
if (sum + a[i + 1] < 0) {
sum += a[i + 1];
continue;
} else {
ans += a[i + 1] + sum + 1;
sum = -1;
}
}
}
long long ans2 = 1;
sum = 1;
ans += abs(a[0] - sum);
for (long long i = 0; i < (n - 1); ++i) {
if (sum < 0) {
if (sum + a[i + 1] > 0) {
sum += a[i + 1];
continue;
} else {
ans2 += 1 - sum - a[i + 1];
sum = 1;
}
} else {
if (sum + a[i + 1] < 0) {
sum += a[i + 1];
continue;
} else {
ans2 += a[i + 1] + sum + 1;
sum = -1;
}
}
}
chmin(ans, ans2);
}
long long ans3 = 0;
sum = a[0];
for (long long i = 0; i < (n - 1); ++i) {
if (sum == 0) continue;
if (sum < 0) {
if (sum + a[i + 1] > 0) {
sum += a[i + 1];
continue;
} else {
ans3 += 1 - sum - a[i + 1];
sum = 1;
}
} else {
if (sum + a[i + 1] < 0) {
sum += a[i + 1];
continue;
} else {
ans3 += a[i + 1] + sum + 1;
sum = -1;
}
}
}
chmin(ans, ans3);
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n=int(input())
a=list(map(int , input().split()))
res=[0]*n
res[0]=a[0]
ng=0
ps=0
for i in range(1,n):
res[i]=res[i-1]+a[i]
for i in range(n-1):
s=res[i]
if s*(res[i+1]+ps-ng)>0:
if s>0:
ng+=abs(a[i]+s)+1
else:
ps+=abs(a[i]+s)+1
print(ps+ng) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N, temp;
vector<int> a;
scanf("%d", &N);
int start = 0;
bool v = false;
for (int i = 0; i < N; i++) {
scanf("%d", &temp);
if (temp == 0) {
if (!v) {
start += 1;
}
} else if (!v)
v = true;
a.push_back(temp);
}
int sum = 0, cnt = 0;
if (start != 0) {
cnt = 2 * (start - 1) + 1;
if (a[start] > 0) {
if (a[start] > 1) {
sum = a[start] - 1;
} else {
sum = 1;
cnt += 1;
}
} else {
if (a[start] < -1) {
sum = a[start] + 1;
} else {
sum = -1;
cnt += 1;
}
}
} else {
sum = a[start];
}
start++;
for (size_t i = start; i != a.size(); i++) {
if (sum + a[i] == 0) {
if (sum > 0) {
sum = -1;
} else {
sum = 1;
}
cnt += 1;
continue;
}
if (sum + a[i] > 0 && sum > 0) {
cnt += sum + a[i] + 1;
sum = -1;
} else if (sum + a[i] < 0 && sum < 0) {
cnt += 1 - sum - a[i];
sum = 1;
} else {
sum += a[i];
}
}
if (sum == 0) cnt += 1;
printf("%d\n", cnt);
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> a1(n);
vector<int> a2(n);
for (int i = 0; i < n; i++) {
cin >> a1.at(i);
a2.at(i) = a1.at(i);
}
int ans1 = 0;
int flag1 = 1;
int sum = 0;
for (int i = 0; i < n; i++) {
sum += a1.at(i);
if (flag1 == 1) {
flag1 = -1;
if (sum <= 0) {
ans1 += -sum + 1;
sum = 1;
}
} else if (flag1 == -1) {
flag1 = 1;
if (sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
}
int ans2 = 0;
flag1 = -1;
sum = 0;
for (int i = 0; i < n; i++) {
sum += a2.at(i);
if (flag1 == 1) {
flag1 = -1;
if (sum <= 0) {
ans2 += -sum + 1;
sum = 1;
}
} else if (flag1 == -1) {
flag1 = 1;
if (sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split()))
a_t = [0]
for i in range(n):
a_t.append(a[i] + a_t[i])
ans = 0
ans_ = 0
count = 0
for i in range(1, n + 1):
if i == 1:
if a_t[i] >= 0:
ans += a_t[i] + 1
count += -(a_t[i]) - 1
if a_t[i - 1] + count > 0:
if a_t[i] + count > 0:
ans += a_t[i] + count + 1
count += -(a_t[i] + count) - 1
if a_t[i] + count == 0:
ans += 1
count -= 1
elif a_t[i - 1] + count < 0:
if a_t[i] + count < 0:
ans += -(a_t[i] + count) + 1
count += -(a_t[i] + count) + 1
if a_t[i] + count == 0:
ans += 1
count += 1
for i in range(1, n + 1):
if i == 1:
if a_t[i] <= 0:
ans_ += a_t[i] + 1
count += -(a_t[i]) - 1
if a_t[i - 1] + count > 0:
if a_t[i] + count > 0:
ans_ += a_t[i] + count + 1
count += -(a_t[i] + count) - 1
if a_t[i] + count == 0:
ans_ += 1
count -= 1
elif a_t[i - 1] + count < 0:
if a_t[i] + count < 0:
ans_ += -(a_t[i] + count) + 1
count += -(a_t[i] + count) + 1
if a_t[i] + count == 0:
ans_ += 1
count += 1
print(min(ans, ans_)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
const long long INFL = 1e18;
const int INF = 1001001001;
const int mod = 1000000007;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < (n); i++) cin >> a[i];
int ans1 = 0, ans2 = 0;
long long sum = 0;
for (int i = 0; i < (n); i++) {
sum += a[i];
if (i % 2 == 0) {
if (sum <= 0) {
ans1 += abs(sum) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
}
}
sum = 0;
for (int i = 0; i < (n); i++) {
sum += a[i];
if (i % 2 == 1) {
if (sum <= 0) {
ans2 += abs(sum) + 1;
sum = 1;
}
} else {
if (sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
}
}
cout << min(ans1, ans2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
#pragma GCC optimize("Ofast")
using namespace std;
using ll = long long;
using pii = pair<int, int>;
using pll = pair<long long, long long>;
constexpr char ln = '\n';
constexpr long long MOD = 1000000007LL;
constexpr long long INF = 1000000009LL;
constexpr long long LINF = 1000100010001000100LL;
template <class T>
inline bool chmax(T& a, T b) {
if (a < b) {
a = b;
return 1;
}
return 0;
}
template <class T>
inline bool chmin(T& a, T b) {
if (a > b) {
a = b;
return 1;
}
return 0;
}
int main() {
int n;
cin >> n;
vector<ll> A(n);
for (int i = 0; i < (n); i++) cin >> A[i];
ll res1 = 0, sum = A[0];
for (int i = (1); i < (n); i++) {
sum += A[i];
if (i % 2 == 1 && sum <= 0) {
ll num = -sum + 1;
sum += num;
res1 += num;
} else if (i % 2 == 0 && sum >= 0) {
ll num = sum + 1;
sum -= num;
res1 += num;
}
}
ll res2 = 0;
sum = A[0];
for (int i = (1); i < (n); i++) {
sum += A[i];
if (i % 2 == 0 && sum <= 0) {
ll num = -sum + 1;
sum += num;
res2 += num;
} else if (i % 2 == 1 && sum >= 0) {
ll num = sum + 1;
sum -= num;
res2 += num;
}
}
cout << min(res1, res2) << ln;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | main :: IO ()
main = do
_ <- readLn :: IO Int
(a0:as) <- (map read . words) <$> getLine
print $ solve (0, a0, as)
solve :: (Int, Int, [Int]) -> Int
solve (x, 0, 0:as) = min (solve (x+1, 1, as)) (solve (x+1, -1, as))
solve (x, _, []) = x
solve (x, s, a0:as) = solve (x+k, s + a0 + k, as)
where
m = if s > 0 then -1 else 1
k = m - (s + a0)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | l = int(input())
n = [int(i) for i in input().split()]
count = 0
nsum = n[0]
for i in range(1, l):
while(True):
print("i:" + str(i))
print("n:" + str(n[i]))
print(("nsum:" + str(nsum)))
if (n[i-1] < 0 and n[i] <= 0) or (n[i-1] > 0 and n[i] >= 0) or (nsum * (nsum + n[i]) >= 0):
if n[i-1] < 0:
count += 1
n[i] += 1
else:
count += 1
n[i] -= 1
else:
nsum += n[i]
break
print(count)
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.io.IOException;
import java.io.InputStream;
import java.io.PrintWriter;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
public class Main {
static void exec(MyScanner in, PrintWriter out) {
int N = in.nextInt();
int[] a = new int[N];
for (int i = 0; i < N; i += 1) {
a[i] = in.nextInt();
}
long c = 0;
int sum = a[0];
int signum = Integer.signum(a[0]);
if (signum == 0) {
signum = 1;
}
for (int i = 1; i < N; i += 1) {
int n = sum + a[i];
int s = Integer.signum(n);
if (s == 0) {
c += 1;
sum = -signum;
} else if (s != signum) {
sum = n;
} else {
c += Math.abs((sum >= 0 ? -1 : 1) * (Math.abs(sum) + 1) - a[i]);
sum = -signum;
}
signum = -signum;
}
out.println(c);
}
public static void main(String[] args) {
PrintWriter w = new PrintWriter(System.out);
exec(new MyScanner(System.in), w);
w.flush();
}
static class MyScanner {
static final int BUFFER_SIZE = 1024;
private final InputStream in;
private final byte[] buffer = new byte[BUFFER_SIZE];
private int point;
private int readLength;
MyScanner(InputStream in) {
this.in = in;
}
private int readByte() {
if (point < readLength) {
int result = buffer[point];
point += 1;
return result;
}
try {
readLength = in.read(buffer);
} catch (IOException e) {
e.printStackTrace();
}
if (readLength == -1) {
return -1;
}
point = 1;
return buffer[0];
}
static boolean isPrintableCharExceptSpace(int c) {
return 33 <= c && c <= 126;
}
String next() {
StringBuilder b = new StringBuilder();
int c = readByte();
while (!(c == -1 || isPrintableCharExceptSpace(c))) {
c = readByte();
}
if (c == -1) {
throw new NoSuchElementException();
}
do {
b.appendCodePoint(c);
c = readByte();
} while (c != -1 && isPrintableCharExceptSpace(c));
return b.toString();
}
long nextLong() {
int c = readByte();
while (!(c == -1 || isPrintableCharExceptSpace(c))) {
c = readByte();
}
if (c == -1) {
throw new NoSuchElementException();
}
boolean minus = false;
if (c == '-') {
minus = true;
c = readByte();
}
long result = 0L;
do {
if (!('0' <= c && c <= '9')) {
throw new InputMismatchException();
}
result = result * 10L + (c - '0');
c = readByte();
} while (c != -1 && isPrintableCharExceptSpace(c));
return minus ? -result : result;
}
int nextInt() {
long n = nextLong();
if (Integer.MIN_VALUE <= n && n <= Integer.MAX_VALUE) {
return (int) n;
}
throw new InputMismatchException();
}
double nextDouble() {
return Double.parseDouble(next());
}
}
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<int> arr(n);
for (int i = 0; i < n; ++i) {
cin >> arr[i];
}
int sum = 0;
int cnt_a = 0;
for (int i = 0; i < n; ++i) {
sum += arr[i];
if (i % 2 == 0 and sum < 1) {
cnt_a += (1 - sum);
sum = 1;
}
if (i % 2 == 1 and sum > -1) {
cnt_a += (sum + 1);
sum = -1;
}
}
sum = 0;
int cnt_b = 0;
for (int i = 0; i < n; ++i) {
sum += arr[i];
if (i % 2 == 1 and sum < 1) {
cnt_b += (1 - sum);
sum = 1;
}
if (i % 2 == 0 and sum > -1) {
cnt_b += (sum + 1);
sum = -1;
}
}
cout << min(cnt_a, cnt_b) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int a(long long int z) {
if (z > 0)
return 1;
else if (z < 0)
return -1;
else
return 0;
}
int main() {
long long int n, sum = 0, in, ans = 0;
cin >> n >> sum;
for (int i = 1; i < n; i++) {
cin >> in;
if (i == 1) {
if (sum == 0) {
sum = -1 * a(in);
ans++;
}
}
if (a(sum) * a(in) < 0 && abs(sum) < abs(in)) {
sum += in;
continue;
} else if (a(sum) * a(in) < 0) {
ans += abs(sum) - abs(in) + 1;
if (sum > 0)
sum = -1;
else
sum = 1;
continue;
}
ans += abs(sum) + abs(in) + 1;
if (a(sum) < 0) {
sum = 1;
} else {
sum = -1;
}
}
if (sum == 0) ans++;
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | java | import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int n = scanner.nextInt();
int[] a = new int[n];
int[] s = new int[n];
long sum = 0;
a[0] = scanner.nextInt();
sum += a[0];
boolean check;
if(a[0] < 0){
check = false;
}else{
check = true;
}
long count = 0;
for(int i=1;i<n;i++){
a[i] = scanner.nextInt();
long x = sum + a[i];
long y = 0;
if(check && x >= 0){
y = -1 - x;
}else if(!check && x < 0){
y = 1 - x;
}else if(!check && x == 0){
y = 1;
}
a[i] += y;
count += Math.abs(y);
sum += a[i];
//System.out.println(y + " " + a[i] + " " + sum);
check = !check;
}
if(sum == 0){
count ++;
}
System.out.println(count);
}
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
long long a[n];
for (int i = 0; i < n; i++) {
cin >> a[i];
}
long long s = a[0];
long long cnt = 0;
if (s == 0) {
if (a[1] > 0) {
s = -1;
cnt++;
} else {
s = 1;
cnt++;
}
}
for (int i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] < 0)
s += a[i];
else {
cnt += abs(s + a[i]) + 1;
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
cnt += abs(s + a[i]) + 1;
s = 1;
}
}
}
long long cnt2 = 0;
s = a[0];
if (s > 0) {
cnt2 += s + 1;
s = -1;
} else {
cnt2 += abs(s) + 1;
s = 1;
}
for (int i = 1; i < n; i++) {
if (s > 0) {
if (s + a[i] < 0)
s += a[i];
else {
cnt2 += abs(s + a[i]) + 1;
s = -1;
}
} else {
if (s + a[i] > 0)
s += a[i];
else {
cnt2 += abs(s + a[i]) + 1;
s = 1;
}
}
}
cout << (cnt < cnt2 ? cnt : cnt2);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int inf = 1e9 + 7;
const ll longinf = 1LL << 60;
const ll mod = 1e9 + 7;
int main() {
ll n;
cin >> n;
ll a[n];
for (int i = 0; i < n; i++) cin >> a[i];
ll before = 1, tmp = 0, sum = a[0];
if (a[0] / llabs(a[0]) != 1) {
tmp += 1 - a[0];
sum = 1;
}
for (int i = 1; i < n; i++) {
sum += a[i];
before *= -1;
if (sum == 0) {
sum = before;
tmp++;
} else if (before != (sum / llabs(sum))) {
tmp += llabs(before) + llabs(sum);
sum = before;
}
}
ll ans = tmp;
before = -1, tmp = 0, sum = a[0];
if (a[0] > -1) {
tmp += 1 + a[0];
sum = -1;
}
for (int i = 1; i < n; i++) {
sum += a[i];
before *= -1;
if (sum == 0) {
sum = before;
tmp++;
} else if (before != (sum / llabs(sum))) {
tmp += llabs(before) + llabs(sum);
sum = before;
}
}
ans = min(ans, tmp);
cout << ans << "\n";
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int n;
int main() {
cin >> n;
int a[n + 1];
for (int i = 0; i < n; i++) cin >> a[i];
bool flag;
long long sum;
long long ans1 = 0;
sum = a[0];
flag = true;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
ans1 += -sum + 1;
sum = 1;
} else if (!flag && sum >= 0) {
ans1 += sum + 1;
sum = -1;
}
if (flag)
flag = false;
else
flag = true;
}
long long ans2 = 0;
sum = a[0];
flag = false;
for (int i = 1; i < n; i++) {
sum += a[i];
if (flag && sum <= 0) {
ans2 += -sum + 1;
sum = 1;
} else if (!flag && sum >= 0) {
ans2 += sum + 1;
sum = -1;
}
if (flag)
flag = false;
else
flag = true;
}
cout << min(ans1, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <iostream>
using namespace std;
int main() {
int n;
long long *a
cin >> n;
a = new long long[n];
long long ans = 0;
long long sum = 0;
for (int i = 0; i < n; i++)
cin >> a[i];
int flag = -1;
if (a[0] > 0) flag = 1;
else if (a[0] == 0) flag = 0;
for (int i = 0; i < n; i++) {
sum += a[i];
if (flag > 0 || flag == 0) {
if (sum <= 0) {
while (sum <= 0) {
sum++;
ans++;
}
}
flag = -1;
}
else if (flag < 0) {
if (sum >= 0) {
while (sum >= 0) {
sum--;
ans++;
}
}
flag = 1;
}
}
cout << ans << endl;
return 0;
} |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int N;
int a;
vector<int> V;
cin >> N;
for (int i = 0; i < N; i++) {
cin >> a;
V.push_back(a);
}
int _sum = V[0];
int count = 0;
for (int i = 1; i < N; i++) {
if (_sum < 0) {
_sum = _sum + V[i];
if (_sum < 0) {
count = 1 - _sum;
cout << count << endl;
_sum = 1;
}
} else {
_sum = _sum + V[i];
if (_sum > 0) {
count = 1 + _sum;
cout << count << endl;
_sum = -1;
}
}
}
cout << count << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using ll = long long;
using ld = long double;
int MOD = 1e9 + 7;
using namespace std;
struct UnionFind {
vector<int> par;
UnionFind(int N) : par(N) {
for (int i = 0; i < N; i++) par[i] = i;
}
int root(int x) {
if (par[x] == x) return x;
return par[x] = root(par[x]);
}
void unite(int x, int y) {
int rx = root(x);
int ry = root(y);
if (rx == ry) return;
par[rx] = ry;
}
bool same(int x, int y) {
int rx = root(x);
int ry = root(y);
return rx == ry;
}
};
int main() {
ll n;
cin >> n;
int sum = 0;
int reg_1 = 0;
vector<int> vec(n);
for (int i = 0; i < n; i++) {
cin >> vec[i];
}
for (int i = 0; i < n; i++) {
if (i % 2 == 0) {
sum += vec[i];
if (sum <= 0) {
reg_1 += (1 - sum);
sum = 1;
}
} else {
sum += vec[i];
if (sum >= 0) {
reg_1 += (sum + 1);
sum = -1;
}
}
}
sum = 0;
int reg_2 = 0;
for (int i = 0; i < n; i++) {
if (i % 2 == 1) {
sum += vec[i];
if (sum <= 0) {
reg_2 += (1 - sum);
sum = 1;
}
} else {
sum += vec[i];
if (sum >= 0) {
reg_2 += (sum + 1);
sum = -1;
}
}
}
cout << min(reg_1, reg_2) << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using vi = vector<int>;
int solve(bool sign, vi &a, int N) {
int S = a.at(0);
int ans = 0;
if (sign) {
if (S <= 0) {
ans = -S + 1;
S = 1;
}
} else {
if (S >= 0) {
ans = S + 1;
S = -1;
}
}
for (int i = (1); i < (N); ++i) {
if (S > 0) {
S += a.at(i);
if (S >= 0) {
ans += (S + 1);
S = -1;
}
} else {
S += a.at(i);
if (S <= 0) {
ans += (-S + 1);
S = 1;
}
}
}
printf("ans = %d\n", ans);
return ans;
}
int main() {
int N;
cin >> N;
vi a(N);
for (int i = (0); i < (N); ++i) {
cin >> a.at(i);
}
int ans;
ans = min(solve(false, a, N), solve(true, a, N));
cout << ans << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int,input().split()))
def wh(cst,ttl,flg):
for i in range(n):
ttl += a[i]
if ttl*flg < 0:
flg *= -1
else:
if flg > 0:
memo = abs(ttl)+1
ttl -= memo
cst += memo
elif flg < 0:
memo = abs(ttl)+1
ttl += memo
cst += memo
flg *= -1
return cst
ttl = a[0]
cst = 0
cst = wh(cst,ttl,1)
ttl = a[0]
cst2 = 0
cst2 = wh(cst2,ttl,-1)
print(min(cst,cst2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | import qualified Data.Vector.Unboxed as VU
import qualified Data.ByteString.Char8 as B
import Data.Char
solve :: VU.Vector Int -> Int -> Int
solve vec n
| VU.length vec == 2 && VU.sum vec == 0 = 1
| VU.length vec == 2 && VU.sum vec /= 0 = 0
| otherwise = minimum $ map fst [f, g]
where
t = VU.take 2 vec
d = VU.drop 2 vec
f = VU.foldl' step (fst $ init t) d
g = VU.foldl' step (snd $ init t) d
init :: VU.Vector Int -> ((Int, Int), (Int, Int))
init vec
| a + b == 0 = ((1, 1), (1, negate 1))
| a + b > 0 = ((0, a + b), (1 + a + b, negate 1))
| otherwise = ((0, a + b), (1 - (a+b), 1))
where
a = VU.head vec
b = VU.last vec
step :: (Int, Int) -> Int -> (Int, Int)
step (res, acc) x
| acc + x == 0 = (res + 1, negate (signum acc))
| (signum acc) /= signum (acc + x) = (res, acc + x)
| otherwise =
let
aim = negate $ signum acc
y = aim - (acc + x)
in
(res + abs y, aim)
main = do
n <- readLn :: IO Int
as <- VU.unfoldrN n (B.readInt . B.dropWhile isSpace) <$> B.getLine
print $ solve as n |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | def sign(x):
if x<0:
return -1
elif x>0:
return 1
else:
return 0
n = int(input())
a = list(map(int,input().split()))
cumulative_sum = a[0]
flag = sign(cumulative_sum)
ans = 0
for i in range(1,n):
cumulative_sum += a[i]
if sign(cumulative_sum) == flag or sign(cumulative_sum) == 0:
ans += abs(-flag - cumulative_sum)
flag = sign(cumulative_sum)
print(ans) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
# Here your code
N = int(input())
a = [int(i) for i in input().split()]
result_1 = 0
before_sum =a[0]
if a[0] == 0:
before_sum = 1
result_1 += 1
after_sum =a[0]
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_1 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_1 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_1 += 2
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
if a[0] < 0:
before_sum = 1
elif a[0] >= 0:
before_sum = -1
after_sum =before_sum
result_2 = 1 + abs(before_sum)
for i in range(1,N):
before_sum = after_sum
after_sum = before_sum + a[i]
if before_sum * after_sum > 0:
if after_sum < 0:
result_2 += 1 - after_sum
after_sum = 1
elif after_sum > 0:
result_2 += 1 + after_sum
after_sum = -1
elif before_sum * after_sum == 0:
result_2 += 2
if before_sum < 0:
after_sum = 1
else:
after_sum = -1
print(after_sum)
print(min(result_1,result_2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
using ll = long long;
using ld = long double;
using pii = pair<int, int>;
using pll = pair<ll, ll>;
const int MOD = 1000000007;
const int mod = 1000000007;
const int INF = 1000000000;
const long long LINF = 1e18;
const int MAX = 510000;
int code(int n) {
if (n < 0)
return 1;
else if (n > 0)
return 0;
else
return 2;
}
int main() {
int n;
int sum = 0;
long long int ans = 0;
long long int ans2 = 0;
cin >> n;
vector<int> a(n);
for (int i = 0; i < n; i++) {
cin >> a.at(i);
}
sum = a.at(0);
if (sum != 0) {
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
cout << ans << endl;
return 0;
} else if (sum == 0) {
sum = -1;
ans = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
sum = 1;
ans2 = 1;
for (int i = 1; i < n; i++) {
if (sum + a.at(i) == 0) {
ans2++;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else if (code(sum + a.at(i)) == code(sum)) {
ans2 += abs(sum + a.at(i)) + 1;
if (sum > 0)
sum = -1;
else if (sum < 0)
sum = 1;
} else {
sum = a.at(i) + sum;
}
}
}
cout << min(ans, ans2) << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # encoding: utf-8
n = int(input())
a = list(map(int, input().split()))
anss = [0] * 2
for init in range(2):
ans = 0
state = init
sum_tmp = 0
for i, ai in enumerate(a):
ans_tmp = 0
# 0
if i == 0:
if state == 1 and ai <= 0: ans_tmp += (-ai + 1)
elif state == 0 and ai >= 0: ans_tmp += (ai + 1)
sum_tmp = ai + ans_tmp if state == 1 else ai - ans_tmp
continue
# > 1
state = 1 - state
ans_tmp = 0
if state == 1:
sum_tmp += ai
if sum_tmp <= 0: ans_tmp += (-sum_tmp + 1) # 1
sum_tmp += ans_tmp
ans += ans_tmp
else:
sum_tmp += ai
if sum_tmp >= 0: ans_tmp += (sum_tmp + 1) # -1
sum_tmp -= ans_tmp
ans += ans_tmp
anss[init] = ans
print(min(anss)) |
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
inline signed wait() { return 0; }
inline void dout(const char *arg, ...) {}
template <typename T>
inline void SWAP(T &a, T &b) {
T t = a;
a = b;
b = t;
}
inline void CSWAP(char *&a, char *&b) {
char *t = a;
a = b;
b = t;
}
void CombSort(int N, int *ar, int order_ascending = 1) {
if (N <= 1) return;
int h = int(N / 1.3);
int flag;
int i;
while (true) {
flag = 0;
for (i = 0; i + h < N; ++i) {
if ((order_ascending && ar[i] > ar[i + h]) ||
(!order_ascending && ar[i] < ar[i + h])) {
swap<int>(ar[i], ar[i + h]);
flag = 1;
}
}
if (h == 1 && !flag) break;
if (h == 9 || h == 10) h = 11;
if (h > 1) h = int(h / 1.3);
}
}
void CombSort(int N, long long int *ar, int order_ascending = 1) {
if (N <= 1) return;
int h = int(N / 1.3);
int flag;
int i;
while (true) {
flag = 0;
for (i = 0; i + h < N; ++i) {
if ((order_ascending && ar[i] > ar[i + h]) ||
(!order_ascending && ar[i] < ar[i + h])) {
swap<long long int>(ar[i], ar[i + h]);
flag = 1;
}
}
if (h == 1 && !flag) break;
if (h == 9 || h == 10) h = 11;
if (h > 1) h = int(h / 1.3);
}
}
int EuclideanAlgorithm(int N, int *ar) {
for (int n = 0; n < N - 1; ++n) {
while (true) {
if (ar[n] % ar[n + 1] == 0 || ar[n + 1] % ar[n] == 0) {
ar[n + 1] = ar[n] < ar[n + 1] ? ar[n] : ar[n + 1];
break;
}
if (ar[n] > ar[n + 1]) {
ar[n] %= ar[n + 1];
} else {
ar[n + 1] %= ar[n];
}
}
}
return ar[N - 1];
}
template <typename T>
void CombSort(int N, T *ar, int order_ascending = 1) {
if (N <= 1) return;
int i, flag;
int h = int(N / 1.3);
while (true) {
flag = 0;
for (i = 0; i + h < N; ++i) {
if (order_ascending && ar[i].SortValue > ar[i + h].SortValue ||
!order_ascending && ar[i].SortValue < ar[i + h].SortValue) {
swap<T>(ar[i], ar[i + h]);
flag = 1;
}
}
if (h > 1) {
h = int(h / 1.3);
if (h == 9 || h == 10) h = 11;
} else {
if (!flag) break;
}
}
}
struct UnionFind {
vector<int> par;
UnionFind(int N) : par(N) {
for (int i = 0; i < N; i++) par[i] = i;
}
int root(int x) {
if (par[x] == x) return x;
return par[x] = root(par[x]);
}
void unite(int x, int y) {
int rx = root(x);
int ry = root(y);
if (rx == ry) return;
par[rx] = ry;
}
bool same(int x, int y) {
int rx = root(x);
int ry = root(y);
return rx == ry;
}
};
void Replace(char *c, int len, char before, char after) {
for (int i = 0; i < len; ++i) {
if (c[i] == before) c[i] = after;
}
}
void Replace(char *c, char before, char after) {
int len = strlen(c);
Replace(c, len, before, after);
}
class csNode {
public:
csNode() {}
};
class csStack {
public:
csStack() { num = 0; }
void alloc(int size) { param = new int[size]; }
void sort(int order = 1) {
if (num > 1) CombSort(num, param, order);
}
int num;
int *param;
void push(int p) { param[num++] = p; }
};
class csPosition {
public:
csPosition() { x = y = 0; }
int x, y;
};
template <typename T>
class csPos {
public:
csPos() { x = y = 0; }
T x, y;
};
char s[200010];
signed main() {
long long int n;
scanf("%lld", &n);
long long int cnt = 0;
long long int i;
long long int a, b, sum = 0;
scanf("%lld", &b);
sum = b;
long long int flag;
b < 0 ? flag = -1 : flag = 1;
for (i = 1; i < n; ++i) {
scanf("%lld", &a);
sum += a;
if (flag == -1 && sum < 0) {
cnt += 1 - sum;
sum = 1;
}
if (flag == 1 && sum > 0) {
cnt += sum + 1;
sum = -1;
}
if (sum == 0) {
cnt++;
if (flag == 1) {
sum = -1;
} else {
sum = 1;
}
}
flag *= -1;
}
cout << cnt << endl;
;
return wait();
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int check(vector<int> a) {
int time = 0;
int pre_sum = a.at(0);
int n = a.size();
if (a.at(0) < 0) {
for (int i = 1; i < n; i++) {
int sum = pre_sum + a.at(i);
if (i % 2 == 1 && sum <= 0) {
time += abs(sum - 1);
sum = 1;
} else if (i % 2 == 0 && sum >= 0) {
time += abs(sum + 1);
sum = -1;
}
pre_sum = sum;
}
} else if (a.at(0) > 0) {
for (int i = 1; i < n; i++) {
int sum = pre_sum + a.at(i);
if (i % 2 == 0 && sum <= 0) {
time += abs(sum - 1);
sum = 1;
} else if (i % 2 == 1 && sum >= 0) {
time += abs(sum + 1);
sum = -1;
}
pre_sum = sum;
}
}
return time;
}
int zerocheck(vector<int> a) {
a.at(0) = 1;
int time1 = check(a) + 1;
a.at(0) = -1;
int time2 = check(a) + 1;
int time = max(time1, time2);
return time;
}
int main() {
int n;
cin >> n;
int time = 0;
vector<int> a(n);
for (auto& x : a) {
cin >> x;
}
if (a.at(0) == 0) {
time = zerocheck(a);
} else {
time = check(a);
}
cout << time << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | n = int(input())
a = list(map(int, input().split( )))
#前から貪欲でよいか
#a[0]を正か負に定めて貪欲
#a[0]が正と仮定してよい
if a[0]<0:
for i in range(n):
a[i]*=-1
#場合分け用
a2 = [a[i] for i in range(n)]
ans1 = 0
if not a[0]:
ans1 += 1
a[0] = 1
sm = a[0]
for i in range(1,n):
sm2 = sm + a[i]
#print(sm,sm2)
if sm2*sm>=0:
if sm<0:#sm+a[i]=1
ans1 += abs((1-sm)-a[i])
a[i]=1-sm
sm = 1
else:#sm+a[i] = -1
ans1 += abs(-1-sm-a[i])
a[i]=-1-sm
sm = -1
else:
sm=sm2
#print(a)
"""
else:
if sm>0:#sm+a[i]=-1
ans1 += -1-sm-a[i]
sm = -1
else:#sm+a[i]=1
ans1 += 1-sm-a[i]
"""
ans2 = abs(a2[0]+1)
a2[0]=-1
sm = -1
for i in range(1,n):
sm2 = sm + a2[i]
#print(sm,sm2)
if sm2*sm>=0:
if sm<0:#sm+a[i]=1
ans2 += abs((1-sm)-a[i])
a2[i] = 1-sm
sm = 1
else:#sm+a[i] = -1
ans2 += abs(-1-sm-a[i])
a2[i]=-1-sm
sm = -1
else:
sm =sm2
#print(a2)
"""
else:
if sm>0:#sm+a[i]=-1
ans2 += -1-sm-a[i]
sm = -1
else:#sm+a[i]=1
ans2 += 1-sm-a[i]
"""
#print(ans1,ans2)
print(min(ans1,ans2))
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
vector<long long> a(n);
for (int i = 0; i < n; ++i) {
cin >> a[i];
}
long long ans = 0;
if (a[0] >= 0) {
long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum + a[i] < 0) {
sum += a[i];
} else {
ans += sum + a[i] + 1;
sum = -1;
}
} else {
if (sum + a[i] > 0) {
sum += a[i];
} else {
ans += abs(sum + a[i] - 1);
sum = 1;
}
}
}
} else {
long long sum = a[0];
for (int i = 1; i < n; ++i) {
if (i % 2 == 1) {
if (sum + a[i] > 0) {
sum += a[i];
} else {
ans += abs(sum + a[i] - 1);
sum = 1;
}
} else {
if (sum + a[i] < 0) {
sum += a[i];
} else {
ans += sum + a[i] + 1;
sum = -1;
}
}
}
}
cout << ans << endl;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
int ctoi(const char c) {
if ('0' <= c && c <= '9') return (c - '0');
return -1;
}
using namespace std;
using pii = pair<int, int>;
long long gcd(long long a, long long b) { return (b == 0 ? a : gcd(b, a % b)); }
long long lcm(long long a, long long b) { return a * b / gcd(a, b); }
int main() {
long long N, A[100007], msum = 0, psum = 0, mct, pct;
cin >> N;
for (int i = 0; i < (N); i++) {
cin >> A[i];
}
for (int i = 0; i < (N); i++) {
if (i % 2 == 0) {
if (A[i] + psum > 0) {
psum += A[i];
} else {
pct += -(A[i] + psum) + 1;
psum = 1;
}
if (A[i] + msum >= 0) {
mct += A[i] + msum + 1;
msum = -1;
} else {
msum += A[i];
}
} else {
if (A[i] + msum > 0) {
msum += A[i];
} else {
mct += -(A[i] + msum) + 1;
msum = 1;
}
if (A[i] + psum >= 0) {
pct += A[i] + psum + 1;
psum = -1;
} else {
psum += A[i];
}
}
}
cout << min(pct, mct);
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
int n;
cin >> n;
int a[n];
for (int i = 0; i < n; i++) cin >> a[i];
long long sum = a[0];
long long cnt = 0;
if (sum == 0) {
int ind = 1;
for (int i = 0; i < n; i++) {
if (a[i] != 0) ind = i;
break;
}
if (a[ind] > 0)
sum = (ind % 2 == 0 ? 1 : -1);
else
sum = (ind % 2 == 0 ? -1 : 1);
cnt++;
}
for (int i = 1; i < n; i++) {
long long nsum = sum + a[i];
if (sum > 0 && nsum < 0 || sum < 0 && nsum > 0) {
sum = nsum;
continue;
}
sum = (sum > 0 ? -1 : 1);
cnt += (nsum == 0 ? 1 : abs(nsum) + 1);
}
cout << cnt << endl;
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | python3 | # coding: utf-8
import sys
#from operator import itemgetter
sysread = sys.stdin.buffer.readline
read = sys.stdin.buffer.read
#from heapq import heappop, heappush
#from collections import defaultdict
sys.setrecursionlimit(10**7)
#import math
#from itertools import product, accumulate, combinations, product
#import bisect
import numpy as np
#from copy import deepcopy
#from collections import deque
#from decimal import Decimal
#from numba import jit
INF = 1 << 50
EPS = 1e-8
def run():
n, *A = map(int, read().split())
v = 0
acum = []
for a in A:
v += a
acum.append(v)
# greedy
cums = 0
count = 0
V = A[0] // abs(A[0])
for a in acum[1:]:
#print(a, '---------')
V *= -1
if (a + cums) * V > 0:
continue
else:
update = abs(a + cums) + 1
cums += (update) * V
count += update
#print(V, cums, count)
print(count)
if __name__ == "__main__":
run()
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | cpp | #include <bits/stdc++.h>
using namespace std;
int main() {
while (1) {
int a, b = 0, c = 0;
int n;
cin >> n >> a;
b += a;
for (int i = 1; i < n; i++) {
cin >> a;
while ((a + b) / b >= 0) {
if (a + b > 0)
a--;
else if (a + b < 0)
a++;
else if (b > 0)
a--;
else if (b < 0)
a++;
c++;
}
b += a;
}
cout << c << endl;
}
return 0;
}
|
p03739 AtCoder Beginner Contest 059 - Sequence | You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one.
At least how many operations are necessary to satisfy the following conditions?
* For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero.
* For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term.
Constraints
* 2 ≤ n ≤ 10^5
* |a_i| ≤ 10^9
* Each a_i is an integer.
Input
Input is given from Standard Input in the following format:
n
a_1 a_2 ... a_n
Output
Print the minimum necessary count of operations.
Examples
Input
4
1 -3 1 0
Output
4
Input
5
3 -6 4 -5 7
Output
0
Input
6
-1 4 3 2 -5 4
Output
8 | {
"input": [
"5\n3 -6 4 -5 7",
"4\n1 -3 1 0",
"6\n-1 4 3 2 -5 4"
],
"output": [
"0",
"4",
"8"
]
} | {
"input": [],
"output": []
} | IN-CORRECT | UNKNOWN | #include <bits/stdc++.h>
int main(void) {
int n, i, check = 0;
long long int a, count = 0, sum = 0;
scanf("%d", &n);
for (i = 0; i < n; i++) {
scanf("%lld", &a);
sum += a;
if (check == 1 && sum >= 0) {
count += (1 + sum);
sum = -1;
} else if (check == -1 && sum <= 0) {
count += (1 - sum);
sum = 1;
}
if (sum > 0) {
check = 1;
} else {
check = -1;
}
}
printf("%lld", count);
return 0;
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.