Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> S(N + 1); for (int i = 1; i <= N; ++i) { cin >> S[i]; S[i] += S[i - 1]; } int ians = (1 << 30); for (int j = -1; j <= 1; j += 2) { vector<int> S_(S); int ans = 0; int add = 0; int sign = j; for (int i = 1; i <= N; ++i) { S_[i] += add; int sign_i = ((S_[i] >> 31) << 1) + 1; if (sign_i == sign) { ans += abs(-sign_i - S_[i]); add += -sign_i - S_[i]; S_[i] = -sign_i; } else if (S_[i] == 0) { ans += 1; add += -sign; S_[i] += -sign; } sign = -sign; } ians = min(ans, ians); } cout << ians << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] for i in range(n-1): if a[i] != 0: if i == 0: break else: sign = a[i] // abs(a[i]) if i % 2 == 1: a[0] -= sign else: a[0] += sign res = 0 x = 0 for i in range(n-1): x += a[i] sign = (x // abs(x)) * (-1) tmp = sign - (x + a[i+1]) if sign < 0: tmp = min(tmp, 0) else: tmp = max(tmp, 0) res += abs(tmp) a[i+1] += tmp print(res)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int a[100010]; int sign(int n) { if (n > 0) return 1; if (n < 0) return -1; return 0; } int main(void) { int n; int res = 0; int si, d; int s = 0; cin >> n; for (long long i = 0; i < n; i++) cin >> a[i]; for (long long i = 0; i < n; i++) { if (a[i] != 0) { si = sign(a[i]) * ((i % 2 == 0) ? 1 : -1); break; } } for (long long i = 0; i < n; i++) { s += a[i]; if (sign(s) != si) { d = si - s; res += abs(d); s += d; } si = -si; } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
n=int(raw_input()) a=map(int,raw_input().split(' ')) c=0 for i in range(n): s=sum(a[0:i+1]) if s==0: if i==n-1: a[i]+=1 c+=1 elif a[i+1]>=0: a[i]-=1 c+=1 else: a[i]+=1 c+=1 if i==(n-1): break s=sum(a[0:i+1]) n_s=s+a[i+1] if s*n_s>0: if s>=0: a[i+1]-=(s+1) c+=(s+1) else: a[i+1]+=(s+1) c+=(s+1) print c
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools def sign(num): if num < 0: return -1 elif num > 0: return 1 else: return 0 N = input() a_i = list(map(int, input().split())) a_sum = [a_i[0]] for i, a in enumerate(a_i[1:]): i += 1 a_sum.append(a_sum[-1]+a) signs = [1, -1] for i, sum_i in enumerate(a_sum): if sum_i != 0 and i%2 == 0: signs = [sign(sum_i), -sign(sum_i)] break elif sum_i != 0 and i%2 == 1: signs = [-sign(sum_i), sign(sum_i)] break a_sum = 0 changes = 0 for i, a in enumerate(a_i): a_sum += a if sign(a_sum) != signs[i%2]: changes += abs(a_sum) + 1 a_sum = signs[i%2] print(changes) # # for i, sum_i in enumerate(a_sum): # if i == 0: # signs = [sign(sum_i), -sign(sum_i)] # elif sign(sum_i) != signs[i%2]: # a_sum[i:] = [num + (abs(sum_i) + 1) * signs[i%2] for num in a_sum[i:]] # changes += abs(sum_i) + 1 # # print(a_sum) # print(changes)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long int check(long int sum, long int ans, vector<int> T, int N, bool pre_pm) { for (int i = 1; i < N; i++) { if (pre_pm) { sum += T.at(i); while (0 <= sum) { sum--; ans++; } pre_pm = false; } else { sum += T.at(i); while (sum <= 0) { sum++; ans++; } pre_pm = true; } } return ans; } int main() { int N; vector<int> T; cin >> N; for (int i = 0; i < N; i++) { int tmp; cin >> tmp; T.push_back(tmp); } long int ans = 0; long int sum = 0; bool pre_pm; sum = T.at(0); if (0 <= sum) { pre_pm = true; long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = false; long int tmp2 = check(-1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } else { pre_pm = false; long int tmp1 = check(sum, ans, T, N, pre_pm); pre_pm = true; long int tmp2 = check(1, 1 + sum, T, N, pre_pm); cout << min(tmp1, tmp2) << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void solve() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long ans1 = (a[0] > 0) ? 0 : -a[0] + 1; long long sum = (a[0] > 0) ? a[0] : 1; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) { sum += a[i]; } else { ans1 += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } } long long ans2 = (a[0] < 0) ? 0 : -a[0] + 1; sum = (a[0] < 0) ? a[0] : -1; for (int i = 1; i < n; i++) { if (sum * (sum + a[i]) < 0) { sum += a[i]; } else { ans2 += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } } cout << min(ans1, ans2) << endl; return; } int main(int argc, char const* argv[]) { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; int ans1 = 0; int sum = 0; for (int i = 0; i < n; i++) { int cur = a[i]; if (i % 2) { if (sum + cur >= 0) cur = -(sum + 1); } else { if (sum + cur == 0) cur++; else if (sum + cur < 0) cur = -sum + 1; } sum += cur; ans1 += abs(a[i] - cur); } int ans2 = 0; sum = 0; for (int i = 0; i < n; i++) { int cur = a[i]; if (i % 2 == 0) { if (sum + cur >= 0) cur = -(sum + 1); } else { if (sum + cur == 0) cur++; else if (sum + cur < 0) cur = -sum + 1; } sum += cur; ans2 += abs(a[i] - cur); } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using std::cin; using std::cout; using std::endl; using std::min; using std::vector; static int solve(int N, vector<int> &a) { int count_a = 0; int count_b = 0; int sum_a = 0; int sum_b = 0; int sign_a = 1; int sign_b = -1; for (int n = 0; n < N; n++) { int val = a[n]; sum_a += val; sum_b += val; if (sum_a * sign_a <= 0) { count_a += 1 - (sum_a * sign_a); sum_a = sign_a; } if (sum_b * sign_b <= 0) { count_b += 1 - (sum_b * sign_b); sum_b = sign_b; } sign_a = -sign_a; sign_b = -sign_b; } return min(count_a, count_b); } int main() { int N; cin >> N; vector<int> a(N); for (int n = 0; n < N; n++) { cin >> a[n]; } cout << solve(N, a) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } vector<int> copy_a = a; int count = 0; int sum = 0; if (a[0] != 0) { for (int i = 0; i < n - 1; i++) { sum += a[i]; if (sum < 0 && sum + a[i + 1] <= 0) { int na = 1 - sum; count += abs(na - a[i + 1]); a[i + 1] = na; } if (sum > 0 && sum + a[i + 1] >= 0) { int na = -1 - sum; count += abs(na - a[i + 1]); a[i + 1] = na; } } } else if (a[0] == 0) { a[0] = 1; int count1 = 1; for (int i = 0; i < n - 1; i++) { sum += a[i]; if (sum < 0 && sum + a[i + 1] <= 0) { int na = 1 - sum; count1 += abs(na - a[i + 1]); a[i + 1] = na; } if (sum > 0 && sum + a[i + 1] >= 0) { int na = -1 - sum; count1 += abs(na - a[i + 1]); a[i + 1] = na; } } copy_a[0] = -1; int count2 = 1; int sum2 = 0; for (int i = 0; i < n - 1; i++) { sum2 += copy_a[i]; if (sum2 < 0 && sum2 + copy_a[i + 1] <= 0) { int na = 1 - sum2; count2 += abs(na - copy_a[i + 1]); copy_a[i + 1] = na; } if (sum2 > 0 && sum2 + copy_a[i + 1] >= 0) { int na = -1 - sum2; count2 += abs(na - copy_a[i + 1]); copy_a[i + 1] = na; } } count = min(count1, count2); } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool posi(long long x) { return x > 0; } int main() { int N; cin >> N; vector<long long> a(N); for (auto &i : a) cin >> i; long long ans = 0, tmp = 0; long long sum = a[0]; for (int i = 1; i < N; i++) { if ((!(posi(sum) ^ posi(sum + a[i]))) || sum + a[i] == 0) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = tmp; tmp = abs(a[0]) + 1; sum = (a[0] > 0) ? -1 : 1; for (int i = 1; i < N; i++) { if ((!(posi(sum) ^ posi(sum + a[i]))) || sum + a[i] == 0) { tmp += abs(sum + a[i]) + 1; sum = (sum > 0) ? -1 : 1; } else sum += a[i]; } ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int( input()) A = list( map( int, input().split())) ansp = 0 sums = A[0] if sums == 0: ansp += 1 sums += 1 for i in range(1,n-1): sums += A[i] if i%2 == 1: if sums < 0: pass else: ansp += abs(-1-sums) sums = -1 else: if sums > 0: pass else: ansp += abs(1 - sums) sums = 1 if (n-1)%2 == 0: if A[n-1] > 0: sums += A[n-1] pass else: ansp += abs(1-A[n]) sums += 1 else: if A[n-1] < 0: sums += A[n-1] pass else: ansp += abs(-1-A[n-1]) sums -= 1 if sums == 0: ansp += 1 sums = A[0] ansm = 0 if sums == 0: ansm += 1 sums -= 1 for i in range(1,n-1): sums += A[i] if i%2 == 0: if sums < 0: pass else: ansm += abs(-1-sums) sums = -1 else: if sums > 0: pass else: ansm += abs(1 - sums) sums = 1 if (n-1)%2 == 1: if A[n-1] > 0: sums += A[n-1] pass else: ansm += abs(1-A[n-1]) sums += 1 else: if A[n-1] < 0: sums += A[n-1] pass else: ansm += abs(-1-A[n-1]) sums -= 1 if sums == 0: ansm += 1 print( min(ansp, ansm))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc=new Scanner(System.in); int n=sc.nextInt(); int[] a=new int[n]; for(int i=0;i<n;i++) { a[i]=sc.nextInt(); } //偶数を正とする int counter=0; int sum=0; for(int i=0;i<n;i++) { sum+=a[i]; if(i%2==0 && sum<=0) { //-aだったら+1の操作をa回で0になり //正にするならそこからさらに+1 counter+=Math.abs(sum)+1; sum=1; }else if(i%2==1 && sum>=0){ //+aだったらa回の-1と1回の-1でマイナス counter+=sum+1; sum=-1; } } int counter1=0; int sum1=0; //奇数を正 for(int i=0;i<n;i++) { sum1+=a[i]; if(i%2==0 && sum1>=0) { //+aだったらa回の-1と1回の-1でマイナス counter1+=sum1+1; sum1=-1; }else if(i%2==1 && sum1>=0){ //-aだったら+1の操作をa回で0になり //正にするならそこからさらに+1 counter1+=Math.abs(sum1)+1; sum1=1; } } System.out.println(Math.max(counter,counter1)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; vector<int> answer(2, 0); int sumi; bool flag = true; cin >> t; vector<int> A(t); for (int i = 0; i < t; i++) { cin >> A[i]; } for (int j = 0; j < 2; j++) { for (int i = 0; i < t; i++) { sumi += A[i]; if (sumi == 0) { answer[j] += 1; if (flag) { sumi = -1; } else { sumi = 1; } } else if (sumi > 0 == flag) { answer[j] += abs(sumi) + 1; if (sumi > 0) { sumi = -1; } else { sumi = 1; } } flag = !flag; } flag = false; } cout << min(answer[0], answer[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { int n; cin >> n; ll a[n]; for (int i = 0; i < n; i++) cin >> a[i]; ll ans = 4e18; if (a[0] < 0) for (int i = 0; i < n; i++) a[i] *= -1; ll sum = a[0], now = 0; for (int i = 0; i < n - 1; i++) { if (i % 2) { if (sum + a[i + 1] < 0) { now += 1 - (sum + a[i + 1]); sum = 1; } else { sum += a[i + 1]; } } else { if (sum + a[i + 1] >= 0) { now += sum + a[i + 1] + 1; sum = -1; } else { sum += a[i + 1]; } } } ans = min(ans, now); sum = -1, now = a[0] + 1; for (int i = 0; i < n - 1; i++) { if (i % 2 == 0) { if (sum + a[i + 1] <= 0) { now += 1 - a[i + 1] - sum; sum = 1; } else { sum += a[i + 1]; } } else { if (sum + a[i + 1] >= 0) { now += sum + a[i + 1] + 1; sum = -1; } else { sum += a[i + 1]; } } } ans = min(ans, now); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (n); i++) cin >> a[i]; vector<long long> sums(n); long long ans = 0; sums[0] = a[0]; for (int i = 1; i < n; i++) { sums[i] = sums[i - 1] + a[i]; if (sums[i - 1] > 0 && sums[i] >= 0) { ans += a[i] + (sums[i - 1] + 1); a[i] = -(sums[i - 1] + 1); sums[i] = -1; } else if (sums[i - 1] < 0 && sums[i] <= 0) { ans += (-a[i]) + (-sums[i - 1] + 1); a[i] = (-sums[i - 1] + 1); sums[i] = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; ++i) cin >> a[i]; int sum = 0; int res = 0; if (a[0] > 0) { for (int i = 0; i < n; ++i) { sum += a[i]; while (i % 2 == 0 && sum <= 0) { ++sum; ++res; } while (i % 2 != 0 && sum >= 0) { --sum; ++res; } } } if (a[0] < 0) { for (int i = 0; i < n; ++i) { sum += a[i]; while (i % 2 == 0 && sum >= 0) { --sum; ++res; } while (i % 2 != 0 && sum <= 0) { ++sum; ++res; } } } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int ans = 0; vector<int> inp; vector<int> comp; int num1; cin >> num1; comp.push_back(num1); if (num1 >= 0) { for (int i = 0; i < n - 1; i++) { int num; cin >> num; if (i % 2 == 0) { if (num + comp[i] < 0) { comp.push_back(num + comp[i]); } else { comp.push_back(-1); ans += max(num, comp[i]) + 1 + min(num, comp[i]); } } else { if (num + comp[i] > 0) { comp.push_back(num + comp[i]); } else { comp.push_back(1); ans += abs(min(num, comp[i])) + 1 - max(num, comp[i]); } } } } else { for (int i = 0; i < n - 1; i++) { int num; cin >> num; if (i % 2 != 0) { if (num + comp[i] < 0) { comp.push_back(num + comp[i]); } else { comp.push_back(-1); ans += max(num, comp[i]) + 1 + min(num, comp[i]); } } else { if (num + comp[i] > 0) { comp.push_back(num + comp[i]); } else { comp.push_back(1); ans += abs(min(num, comp[i])) + 1 - max(num, comp[i]); } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { static long ans; public static void main(String[] args) { Scanner sc = new Scanner(System.in); int N = sc.nextInt(); int [] num = new int [N]; long sum = 0; ans=0; for(int i=0; i<N; i++){ num[i] = sc.nextInt(); sum+=num[i]; if(i!=0)sum=function(i,num,sum); } System.out.println(ans); } static long function(int i, int[]num, long sum){ int a = sign((sum-num[i])); int b = sign(sum); int t = a*b; if(t==0){ ans++; if(a>0){ return -1; }else{ return 1; } }else if(t<0){ return sum; }else{ ans+=(Math.abs(sum)+1); if(sum>0){ return -1; }else{ return 1; } } } static int sign(long A){ if(A>0){ return 1; }else if(A<0){ return -1; }else{ return 0; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; import java.util.Arrays; public class Main { public static void main(String[] args) { new Main().solve(); } void solve() { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); long[] a = new long[n]; long A = 0; long ANS = Long.MAX_VALUE; long ans = 0; long q = 1; a[0] = sc.nextLong(); A = a[0]; for (int i = 1; i < n; i++) { a[i] = sc.nextLong(); A += a[i]; q = q * -1; if (A <= 0 && q == 1) { ans += Math.abs(A - 1); A += Math.abs(A - 1); } else if (A >= 0 && q == -1) { ans += Math.abs(A + 1); A -= Math.abs(A + 1); } } ANS = ans; A = a[0]; ans = 0; q = -1; for (int i = 1; i < n; i++) { A += a[i]; q = q * -1; if (A <= 0 && q == 1) { ans += Math.abs(A - 1); A += Math.abs(A - 1); } else if (A >= 0 && q == -1) { ans += Math.abs(A + 1); A -= Math.abs(A + 1); } } ANS = Math.min(ANS, ans); q = -1; System.out.println(ANS); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.Scanner; public class ABC { public static void main(String args[]){ Scanner sc = new Scanner(System.in); // 整数の入力 int n = sc.nextInt(); int a[] = new int[n]; for(int i = 0;i<a.length;i++) { a[i] = sc.nextInt(); } int b[] = new int[n]; b[0] = a[0]; int count = 0; for(int i = 0;i<a.length-1;i++) { b[i+1] = b[i] + a[i+1]; if(b[i+1]*b[i]>0) { count += Math.abs(b[i+1])+1; if(b[i+1]>0) b[i+1]=-1; else b[i+1] = 1; } else if(b[i+1] == 0) { if(b[i]>0) b[i+1]=-1; else b[i+1] = 1; count++; } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ull = uint64_t; using ll = int64_t; using PII = pair<int, int>; using VI = vector<int>; string to_string(string s) { return '"' + s + '"'; } string to_string(const char* s) { return to_string((string)s); } string to_string(bool b) { return (b ? "true" : "false"); } template <typename A, typename B> string to_string(pair<A, B> p) { return "(" + to_string(p.first) + ", " + to_string(p.second) + ")"; } template <typename A> string to_string(A v) { bool first = true; string res = "{"; for (const auto& x : v) { if (!first) { res += ", "; } first = false; res += to_string(x); } res += "}"; return res; } void debug_out() { cerr << endl; } template <typename Head, typename... Tail> void debug_out(Head H, Tail... T) { cerr << " " << to_string(H); debug_out(T...); } int main() { ios::sync_with_stdio(false), cin.tie(0); int N; cin >> N; VI V(N); for (int _n = N, i = 0; i < _n; ++i) cin >> V[i]; if (V[0]) { ll sum = V[0]; ll ans = 0; for (int i = (1), _b = (N - 1); i <= _b; ++i) { ll nsum = sum + V[i]; ll target = (ll)-1 * (sum / abs(sum)); if (nsum == 0) { ans += abs(target - nsum); sum = target; } else { ll nsign = nsum / abs(nsum); if (nsign == target) { sum = nsum; continue; } else { ans += abs(target - nsum); sum = target; } } } cout << ans << endl; } else { ll ans1 = 1; ll sum = 1; for (int i = (1), _b = (N - 1); i <= _b; ++i) { ll nsum = sum + V[i]; ll target = (ll)-1 * (sum / abs(sum)); if (nsum == 0) { ans1 += abs(target - nsum); sum = target; } else { ll nsign = nsum / abs(nsum); if (nsign == target) { sum = nsum; continue; } else { ans1 += abs(target - nsum); sum = target; } } } ll ans2 = 1; sum = -1; for (int i = (1), _b = (N - 1); i <= _b; ++i) { ll nsum = sum + V[i]; ll target = (ll)-1 * (sum / abs(sum)); if (nsum == 0) { ans2 += abs(target - nsum); sum = target; } else { ll nsign = nsum / abs(nsum); if (nsign == target) { sum = nsum; continue; } else { ans2 += abs(target - nsum); sum = target; } } } cout << min(ans1, ans2) << endl; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; const double pi = acos(-1.0); const ll MOD = 1e9 + 7; const ll INF = 1LL << 60; void print(vector<ll> vec) { for (int i = 0; i < ((ll)(vec).size()); i++) { if (i) cout << " "; cout << vec[i]; } cout << "\n"; } ll dp[100005]; int main() { ll n; cin >> n; vector<ll> a(n); for (int i = 0; i < n; i++) cin >> a[i]; dp[0] = a[0]; ll ans = 0; for (int i = 1; i < n; i++) { if (dp[i - 1] < 0) { if (dp[i - 1] + a[i] > 0) { dp[i] = dp[i - 1] + a[i]; } else { ll ai = 1 - dp[i - 1]; ans += abs(ai - a[i]); dp[i] = 1; } } if (dp[i - 1] > 0) { if (dp[i - 1] + a[i] < 0) { dp[i] = dp[i - 1] + a[i]; } else { ll ai = -1 - dp[i - 1]; ans += abs(ai - a[i]); dp[i] = -1; } } } cout << "\n"; cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python2
# -*- coding: utf-8 -*- n = input() a = map(int, raw_input().split()) asum = [0]*len(a) asum[0] = a[0] cnt = 0 for i in range(len(a)-1): asum[i+1] = a[i+1] + asum[i] if(asum[i]*asum[i+1]>=0): if(asum[i+1]>=0): cnt += asum[i+1]+1 asum[i+1] = -1 else: cnt += (-1)*asum[i+1]+1 asum[i+1] = 1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int t; vector<int> answer(2, 0); int sumi; bool flag = true; cin >> t; vector<int> A(t); for (int i = 0; i < t; i++) { cin >> A[i]; } for (int j = 0; j < 2; j++) { for (int i = 0; i < t; i++) { sumi += A[i]; if (sumi == 0) { answer[i] += 1; if (flag) { sumi = -1; } else { sumi = 1; } } else if (sumi > 0 == flag) { answer[i] += abs(sumi) + 1; if (sumi > 0) { sumi = -1; } else { sumi = 1; } } flag = !flag; } flag = false; } cout << min(answer[0], answer[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <stdbool.h> #include <stdio.h> #include <stdlib.h> #include <inttypes.h> #include <ctype.h> #include <stdint.h> #include <string.h> #include <wchar.h> #include <math.h> #define N_MAX (100) #define P_MAX (100) #define DP_ARRAY_SIZE (N_MAX * P_MAX / 32 + 1) #define MIN(a, b) ((a) < (b) ? (a) : (b)) #define MAX(a, b) ((a) > (b) ? (a) : (b)) #define ABS(a) ((a) < 0 ? -(a) : (a)) #define ABSS(a, b) ((a) > (b) ? (a) - (b) : (b) - (a)) int compare_sz_asc(const void* a, const void* b) { return *((size_t*)a) < *((size_t*)b) ? -1 : 1; } int compare_sz_desc(const void* a, const void* b) { return *((size_t*)a) > * ((size_t*)b) ? -1 : 1; } int compare_i64_asc(const void* a, const void* b) { return *((int64_t*)a) < *((int64_t*)b) ? -1 : 1; } int compare_i64_desc(const void* a, const void* b) { return *((int64_t*)a) > * ((int64_t*)b) ? -1 : 1; } int compare_c_asc(const void* a, const void* b) { return *((char*)a) < *((char*)b) ? -1 : 1; } int compare_c_desc(const void* a, const void* b) { return *((char*)a) > * ((char*)b) ? -1 : 1; } static size_t powSz(const size_t base, const size_t exp) { if (exp == 0) { return 1; } if (exp == 1) { return base; } if (exp % 2 == 0) { return powSz(base * base, exp / 2); } else { return base * powSz(base, exp - 1); } } static size_t comb(const size_t n, const size_t r) { size_t result = 1; for (size_t i = 0; i < r; i++) { result *= n - i; result /= i + 1; } return result; } static uint64_t combU64(const uint64_t n, const uint64_t r) { uint64_t result = 1; for (uint64_t i = 0; i < r; i++) { result *= n - i; result /= i + 1; } return result; } static size_t gcdZu(size_t m, size_t n) { size_t temp; while (m % n != 0) { temp = n; n = m % n; m = temp; } return n; } static uint64_t gcdU64(uint64_t m, uint64_t n) { uint64_t temp; while (m % n != 0) { temp = n; n = m % n; m = temp; } return n; } static int64_t a[100000]; int main(void) { size_t n; scanf("%zu\n", &n); for (size_t i = 0; i < n; i++) { scanf("%"PRId64, &a[i]); } size_t cnt[2] = { 0,0 }; int64_t base[2] = { 1,-1 }; int64_t sum = 0; for (size_t i = 0; i < n; i++) { sum += a[i]; cnt[0] = (size_t)ABSS(base[0], sum); cnt[1] = (size_t)ABSS(base[1], sum); base[0] = -base[0]; base[1] = -base[1]; } printf("%zu", MIN(cnt[0], cnt[1])); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import copy n = int(input()) a = [int(i) for i in input().split()] b=a.copy() s0p = a[0] s0n = b[0] countp = 0 countn = 0 if s0p<=0: while s0p<=0: s0p+=1 countp+=1 if s0n>=0: while s0n>=0: s0n-=1 countn+=1 for i in range(1,n): s1 = s0p+a[i] """print("i",i,"a[i]",a[i],"s0p",s0p,"s1",s1,"countp",countp)""" if s0p*s1>=0: if s1>0: a[i]-=(abs(s1)+1) countp+=(abs(s1)+1) elif s1<0: a[i]+=(abs(s1)+1) countp+=(abs(s1)+1) elif s1==0: if s0p>0: a[i]-=1 countp+=1 elif s0p<0: a[i]+=1 countp+=1 s0p += a[i] for i in range(1,n): s1 = s0n+b[i] """print("i",i,"b[i]",b[i],"s0n",s0n,"s1",s1,"countn",countn)""" if s0n*s1>=0: if s1>0: b[i]-=(abs(s1)+1) countn+=(abs(s1)+1) elif s1<0: b[i]+=(abs(s1)+1) countn+=(abs(s1)+1) elif s1==0: if s0n>0: b[i]-=1 countn+=1 elif s0n<0: b[i]+=1 countn+=1 s0n += b[i] print(countp if countp<=countn else(countn))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a, b, s[100000], ans, ans1; int main(void) { cin >> n; for (int i = 0; i < n; i++) { cin >> s[i]; } for (int i = 0; i < n; i++) { a += s[i]; if (i % 2 == 0) { if (a <= 0) { ans += -a + 1; a = 1; } } else { if (a >= 0) { ans += a + 1; a = -1; } } } a = 0; ans1 = ans; ans = 0; for (int i = 0; i < n; i++) { a += s[i]; if (i % 2 == 1) { if (a <= 0) { ans += -a + 1; a = 1; } } else { if (a >= 0) { ans += a + 1; a = -1; } } } cout << min(ans, ans1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace AtCoder { class Code3 { static void Main(string[] args) { string s1 = Console.ReadLine(); string s2 = Console.ReadLine(); Console.WriteLine(funcMain(s1,s2)); } static private string funcMain(string arg1, string arg2) { long ret = 0; long sum = 0; foreach (string buf in arg2.Split()) { if (sum == 0) sum = int.Parse(buf); else { if (sum > 0) { sum += int.Parse(buf); if (sum >= 0) { ret += sum + 1; sum = -1; } } else { sum += int.Parse(buf); if (sum <= 0) { ret += (sum * -1) + 1; // 絶対値の関数探すのがめんどくさかった sum = 1; } } } } return ret.ToString(); } static private void test() { string arg1, arg2; arg1 = "4"; arg2 = "1 -3 1 0"; Console.WriteLine("4" == funcMain(arg1, arg2)); arg1 = "5"; arg2 = "3 -6 4 -5 7"; Console.WriteLine("0" == funcMain(arg1, arg2)); arg1 = "6"; arg2 = "-1 4 3 2 -5 4"; Console.WriteLine("8" == funcMain(arg1, arg2)); Console.ReadKey(); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, ansa = 0, ansb = 0, suma = 0, sumb = 0; cin >> n; for (int i = 0; i < (n); i++) { int a, b; cin >> b; a = b; if (i % 2 == 0) { if (suma + a <= 0) { ansa = 1 - a - suma; suma = 1; } if (sumb + b >= 0) { ansb = sumb + b + 1; sumb = -1; } } else { if (suma + a >= 0) { ansa = suma + a + 1; suma = 1; } if (sumb + b <= 0) { ansb = 1 - b - sumb; sumb = -1; } } } cout << min(ansa, ansb) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
'use strict' let input = require("fs").readFileSync("/dev/stdin", "utf8"); let Nums = input.split('\n'); let amount = Nums[0]*1; let arr = Nums[1].split(" ").map(x => x*1); let sum = 0; let ans = 0; // 一番最初の正負判定フラグ let isInitPlus = arr[0] > 0 ? true : false; for(let i = 0; i < amount; i++){ // 和 sum += arr[i]; if((sum >= 0) != isInitPlus){ ans += Math.abs(sum) + 1; sum = isInitPlus == true? 1 : -1; } isInitPlus =!isInitPlus; } // 和が0になってしまった時の処理 if(sum == 0){ ans += 1; } console.log(ans);
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> arr(n); for (int i = 0; i < n; i++) { cin >> arr[i]; } int aux; int sol = 0; if (arr[0] == 0) { if (arr[1] > 0) { arr[0] = -1; } else { arr[0] = 1; } sol++; } int acum = arr[0]; bool sign = acum < 0 ? false : true; for (int i = 1; i < n; i++) { aux = acum + arr[i]; if (sign) { if (aux >= 0) { sol += abs(acum + 1 + arr[i]); arr[i] = -(acum + 1); } sign = false; } else { if (aux <= 0) { sol += abs(acum - 1 + arr[i]); arr[i] = -(acum - 1); } sign = true; } acum = acum + arr[i]; } cout << sol << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int dy[] = {0, 0, 1, -1}; int dx[] = {1, -1, 0, 0}; int ny, nx; using namespace std; long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long m, long long n) { if ((0 == m) || (0 == n)) return 0; return ((m / gcd(m, n)) * n); } long long llpow(long long x, long long y) { long long ans = 1; for (int i = 0, i_len = (y); i < i_len; ++i) ans *= x; return ans; } int ctoi(char c) { if (c >= '0' && c <= '9') { return c - '0'; } return 0; } class UnionFind { public: vector<long long> par; vector<long long> siz; UnionFind(long long sz_) : par(sz_), siz(sz_, 1LL) { for (long long i = 0; i < sz_; ++i) par[i] = i; } void init(long long sz_) { siz.assign(sz_, 1LL); par.resize(sz_); for (long long i = 0; i < sz_; ++i) par[i] = i; } long long root(long long x) { while (par[x] != x) { x = par[x] = par[par[x]]; } return x; } bool merge(long long x, long long y) { x = root(x); y = root(y); if (x == y) return false; if (siz[x] < siz[y]) swap(x, y); siz[x] += siz[y]; par[y] = x; return true; } bool issame(long long x, long long y) { return root(x) == root(y); } long long size(long long x) { return siz[root(x)]; } }; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0, i_len = (n); i < i_len; ++i) cin >> a[i]; int odd = 0, even = 0; bool flag = false; long long total = 0, res = 0; for (int i = 0, i_len = (n); i < i_len; ++i) { total += a[i]; if (i % 2 != 0) { if (total >= 0) { even += total + 1; total = -1; } } else { if (total <= 0) { even += -total + 1; total = 1; } } } for (int i = 0, i_len = (n); i < i_len; ++i) { res += a[i]; if (i % 2 == 0) { if (res >= 0) { odd += res + 1; res = -1; } } else { if (res <= 0) { odd += -res + 1; res = 1; } } } cout << min(odd, even) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long array[n]; for (int i = 0; i < n; i++) { cin >> array[i]; } long long answer = 0; long long sum = 0; for (int i = 0; i < n; i++) { if (sum == 0) sum += array[0]; else if (sum < 0) { if (sum + array[i] > 0) { sum += array[i]; } else { answer += abs((-1) * sum + 1 - array[i]); sum = 1; } } else { if (sum + array[i] < 0) { sum += array[i]; } else { answer += abs((-1) * sum - 1 - array[i]); sum = -1; } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
object Main { def main(args: Array[String]): Unit = { solve } def solve(): Unit = { val sc = new java.util.Scanner(System.in) val n = sc.nextInt sc.nextLine val a = sc.nextLine.split(" ").map(_.toInt).toList println(a) var prevSum = a(0) var opeCount = 0 for (i <- 1 until n) { val currSum = prevSum + a(i) if (prevSum < 0 && currSum < 0) { opeCount += math.abs(currSum) + 1 prevSum = 1 } else if (prevSum > 0 && currSum > 0) { opeCount += math.abs(currSum) + 1 prevSum = -1 } else { if (currSum == 0) { opeCount += 1 if (prevSum < 0) { prevSum = 1 } else { prevSum = -1 } } else { prevSum = prevSum + a(i) } } } println(opeCount) } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = 1000000007, INF = 1111111111; const double EPS = 1e-9; int main() { cin.tie(0); int n; cin >> n; vector<long long> a(n); for (int i = (int)(0); i < (int)(n); ++i) cin >> a[i]; for (int i = (int)(1); i < (int)(n); ++i) a[i] = a[i - 1] + a[i]; for (const auto &ele : a) ((void)0); long long tmp = 0, ans = 0, prev_sum = a[0]; for (int i = (int)(1); i < (int)(n); ++i) { if (prev_sum > 0 && a[i] + tmp >= 0) { ans += a[i] + tmp + 1; tmp -= a[i] + tmp + 1; } if (prev_sum < 0 && a[i] + tmp <= 0) { ans -= a[i] + tmp - 1; tmp -= a[i] + tmp - 1; } prev_sum *= -1; } cout << ans; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MaxN = 1e5; bool flag, ok; long long sum, ans, anv; int n; int a[MaxN + 5], b[MaxN + 5]; int main() { scanf("%d", &n); for (int i = 1; i <= n; i++) { scanf("%d", &a[i]); b[i] = a[i]; } sum = a[1]; if (a[1] < 0) flag = 1, ok = 1; for (int i = 2; i <= n; i++) { if (flag == 1) { if (sum + a[i] <= 0) { long long ant = sum + a[i]; int t = a[i]; a[i] = 1 - sum; ans += (a[i] - t); sum += a[i]; } else sum += a[i]; flag = 0; } else { if (sum + a[i] >= 0) { long long ant = sum + a[i]; int t = a[i]; a[i] = -1 - sum; ans += (t - a[i]); sum += a[i]; } else sum += a[i]; flag = 1; } } int tr = b[1]; if (ok) b[1] = 1, flag = 0; else b[1] = -1, flag = 1; anv += (abs(b[1] - tr)); sum = b[1]; for (int i = 2; i <= n; i++) { if (flag == 1) { if (sum + b[i] <= 0) { long long ant = sum + b[i]; int t = b[i]; b[i] = 1 - sum; anv += (b[i] - t); sum += b[i]; } else sum += b[i]; flag = 0; } else { if (sum + b[i] >= 0) { long long ant = sum + b[i]; int t = b[i]; b[i] = -1 - sum; anv += (t - b[i]); sum += b[i]; } else sum += b[i]; flag = 1; } } printf("%lld\n", min(ans, anv)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> as(n); for (int i = 0; i < n; i++) { cin >> as[i]; } int kotae1 = 0; int sum1 = 0; int kotae2 = 0; int sum2 = 0; for (int i = 0; i < n; i++) { sum1 += as[i]; if (i % 2 == 0) { if (sum1 <= 0) { kotae1 += (1 - sum1); sum1 = 1; } } else { if (sum1 >= 0) { kotae1 += (sum1 - (-1)); sum1 = -1; } } } for (int i = 0; i < n; i++) { sum2 += as[i]; if (i % 2 == 1) { if (sum2 <= 0) { kotae2 += (1 - sum2); sum2 = 1; } } else { if (sum2 >= 0) { kotae2 += (sum2 - (-1)); sum2 = -1; } } } int kotae = 0; kotae = kotae1 < kotae2 ? kotae1 : kotae2; cout << kotae << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
n = gets.to_i arr = gets.chomp.split(" ").map(&:to_i) $count = [0,0] flg = true 2.times do |j| tmp_arr = Marshal.load(Marshal.dump(arr)) sum = tmp_arr[0] + tmp_arr[1] if sum == 0 if flg tmp_arr[1] -= 1 else tmp_arr[1] += 1 end $count[j] += 1 end if flg if sum > 0 tmp_arr[1] -= sum+1 $count[j] += sum+1 end else if sum < 0 tmp_arr[1] += sum+1 $count[j] += sum+1 end end sum = tmp_arr[0] + tmp_arr[1] (2...tmp_arr.size).each do |i| diff = sum + tmp_arr[i] # puts %(sum : #{sum}) # puts %(diff : #{diff}) if sum > 0 if diff >= 0 tmp_arr[i] -= diff.abs+1 $count[j] += diff.abs+1 end else if diff <= 0 tmp_arr[i] += diff.abs+1 $count[j] += diff.abs+1 end end sum += tmp_arr[i] # p sum # p tmp_arr end flg = false end #p $count #p arr puts $count.min
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] a1 = a.copy() cnt1 = 0 sum1 = 0 if a1[0] == 0: a1[0] = 1 cnt1 +=1 a2 = a.copy() cnt2 = 0 sum2 = 0 if a2[0] == 0: a2[0] = -1 cnt2 +=1 for i in range(n-1): sum1 = sum(a1[:i+1]) if sum1 > 0 and (sum1+a1[i+1]) >= 0: cnt1 += abs(((sum1 * -1)-1) - a1[i+1]) a1[i+1] = ((sum1 * -1)-1) elif sum1 < 0 and (sum1 + a1[i+1]) <= 0: cnt1 += abs(abs(sum1)+1 - a1[i+1]) a1[i+1] = abs(sum1)+1 print(min(cnt1,cnt2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a[i]; int count = 0; if (a[0] == 0) { for (int i = 1; i < N; i++) { if (a[i] > 0) { a[0] = -1; break; } else if (a[i] < 0) { a[0] = 1; break; } } count++; } int sum = a[0]; for (int i = 1; i < N; i++) { if (sum * a[i] < 0 && abs(sum) < abs(a[i])) { sum += a[i]; } else { if (sum > 0) { count += a[i] + sum + 1; sum = -1; } else { count += 1 - sum - a[i]; sum = 1; } } } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using pii = pair<int, int>; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) cin >> a[i]; long long sum = a[0], befsum = a[0]; long long ans = 0; for (int i = 1; i < n; ++i) { sum += a[i]; if (sum == 0) { ans += 1; if (befsum > 0) sum = -1; else sum = 1; } else if (sum * befsum > 0) { if (sum > 0) { ans += sum + 1; sum = -1; } else { ans += -sum + 1; sum = 1; } } befsum = sum; } long long tmp = abs(a[0]) + 1; if (a[0] > 0) { sum = -1; befsum = -1; } else { sum = 1; befsum = 1; } for (int i = 1; i < n; ++i) { sum += a[i]; if (sum == 0) { tmp += 1; if (befsum > 0) sum = -1; else sum = 1; } else if (sum * befsum > 0) { if (sum > 0) { tmp += sum + 1; sum = -1; } else if (sum < 0) { tmp += -sum + 1; sum = 1; } } befsum = sum; } ans = min(ans, tmp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sum, ans, n, i; int a[100005]; int main() { cin >> n; for (i = 1; i <= n; i++) { cin >> a[i]; } ans = 0; sum = 0; for (i = 1; i <= n; i++) { if (a[i] == 0) { sum++; } else break; } if (sum != 0) { for (i = sum; i > 1; i--) { if (a[i + 1] > 0) { a[i] = -1; } else { a[i] = 1; } ans++; } if (a[2] > 0) { a[1] = -2; ans += 2; } else { a[1] = 2; ans += 2; } } sum = a[1]; for (i = 2; i <= n; i++) { if (sum == 0) { if (a[i - 1] > 0) { ans++; sum--; } else { ans++; sum++; } } if (sum > 0) { if (a[i] + sum >= 0) { ans += a[i] + sum + 1; sum = -1; } else { sum += a[i]; } } else { if (a[i] + sum <= 0) { ans += abs(a[i] + sum) + 1; sum = 1; } else { sum += a[i]; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import qualified Data.Vector.Unboxed as VU import qualified Data.ByteString.Char8 as B import Data.Char solve :: VU.Vector Int -> Int -> Int solve vec n | VU.length vec == 2 && VU.sum vec == 0 = 1 | VU.length vec == 2 && VU.sum vec /= 0 = 0 | otherwise = minimum $ map fst [f, g] where t = VU.take 2 vec d = VU.drop 2 vec f = VU.foldl' step (fst $ init t) d g = VU.foldl' step (snd $ init t) d init :: VU.Vector Int -> ((Int, Int), (Int, Int)) init vec | a + b == 0 = ((1, 1), (1, negate 1)) | a + b > 0 = ((0, a + b), (1 + a + b, negate 1)) | otherwise = ((0, a + b), (abs (1 - (a + b)), 1)) where a = VU.head vec b = VU.last vec step :: (Int, Int) -> Int -> (Int, Int) step (res, acc) x | acc + x == 0 = (res + (x + 1) , negate (signum acc)) | (signum acc) /= signum (acc + x) = (res, acc + x) | otherwise = let aim = negate $ signum acc y = aim - (acc + x) in (res + abs y, aim) main = do n <- readLn :: IO Int as <- VU.unfoldrN n (B.readInt . B.dropWhile isSpace) <$> B.getLine print $ solve as n
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { long long n; cin >> n; bool lastPalus = true; long long a[n]; for (long long i = 0; i < n; i++) { cin >> a[i]; } long long sum = 0; long long ans = 0; for (long long i = 0; i < n; i++) { if (sum == 0) { if (a[i] == 0) { sum += a[i + 1] > 0 ? -1 : 1; ans++; } else { sum += a[i]; } } else if (sum > 0) { if (sum + a[i] >= 0) { ans += abs(sum + a[i]) + 1; sum = -1; } else { sum += a[i]; } } else { if (sum + a[i] <= 0) { ans += abs(sum + a[i]) + 1; sum = 1; } else { sum += a[i]; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
fun main(args: Array<String>) { val n = readLine()!!.toInt() val l = readLine()!!.split(" ").map { it.toInt() } var s_pls = 0 var s_mns = 0 var tmp = 0 var pls_cnt = 0 var mns_cnt = 0 l.forEach { tmp += 1 s_pls += it s_mns += it if (tmp % 2 == 0){ while(s_pls <= 0){ pls_cnt += 1 s_pls += 1 } while(s_mns >= 0){ mns_cnt += 1 s_mns -= 1 } } else { while(s_pls >= 0){ pls_cnt += 1 s_pls -= 1 } while(s_mns <= 0){ mns_cnt += 1 s_mns += 1 } } } println(Math.min(Math.abs(pls_cnt), Math.abs(mns_cnt))) }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; #define rep(i, n) for (int i = 0; i < (n); i++) #define rep2(i, x, n) for (int i = x; i < (n); i++) #define all(n) begin(n), end(n) struct cww { cww() { ios::sync_with_stdio(false); cin.tie(0); } } star; const long long INF = numeric_limits<long long>::max(); typedef long long ll; typedef vector<int> vint; typedef vector<char> vchar; typedef vector<vector<int>> vvint; typedef vector<ll> vll; typedef vector<vector<ll>> vvll; typedef unsigned long long ull; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } template <typename T> vector<T> make_v(size_t a) { return vector<T>(a); } template <typename T, typename... Ts> auto make_v(size_t a, Ts... ts) { return vector<decltype(make_v<T>(ts...))>(a, make_v<T>(ts...)); } template <typename T, typename V> typename enable_if<is_class<T>::value == 0>::type fill_v(T &t, const V &v) { t = v; } template <typename T, typename V> typename enable_if<is_class<T>::value != 0>::type fill_v(T &t, const V &v) { for (auto &e : t) fill_v(e, v); } template <typename Set> struct Monoid { using Op = function<Set(Set, Set)>; const Op f; const Set e; Monoid(const Op F, const Set E) : f(F), e(E) { } }; template <typename Set> struct SegmentTree { using Op = function<Set(Set, Set)>; Monoid<Set> M; Set e; int size; //一番下以外の区間たち全部の数 vector<Set> seg; SegmentTree(int n, const Monoid<Set> &M) : M(M) { size = 1; while (size < n) { size <<= 1; } e = M.e; seg.assign(2 * size, e); } void set(int k, const Set &x) { seg[k + size] = x; } void build() { for (int k = size - 1; k > 0; k--) { seg[k] = M.f(seg[2 * k + 0], seg[2 * k + 1]); } } void update(int k, const Set &x) { k += size; seg[k] = x; while (k >>= 1) { seg[k] = M.f(seg[2 * k + 0], seg[2 * k + 1]); } } Set query(int a, int b) //区間[a,b)に対して演算したやつを返す { Set L = e, R = e; for (a += size, b += size; a < b; a >>= 1, b >>= 1) //ループ一回ごとにa,bは親に向かう { if (a & 1) //a%2==1なら { L = M.f(L, seg[a++]); } if (b & 1) { R = M.f(seg[--b], R); } } return M.f(L, R); } }; int main() { int n; cin >> n; vint a(n), s(n + 1); Monoid<int> M([](int a, int b) { return a + b; }, 0); SegmentTree<int> sg(n, M), sg2(n, M); rep(i, n) { cin >> a[i]; s[i + 1] = s[i] + a[i]; sg.update(i, a[i]); sg2.update(i, a[i]); } int prev = 1, ans = 0; rep(i, n) { int sum = sg.query(0, i + 1); if (sum == 0) { if (prev < 0) { sg.update(i, sg.query(i, i + 1) + 1); } else { sg.update(i, sg.query(i, i + 1) - 1); } if (prev != 0) prev *= -1; else prev = 1; ans++; continue; } else { int sgn = sum / abs(sum); if (prev == sgn) { int cnt = -sgn - sum; ans += abs(cnt); sg.update(i, sg.query(i, i + 1) + cnt); } prev *= -1; } } prev = -1; int ans2 = 0; rep(i, n) { int sum = sg2.query(0, i + 1); if (sum == 0) { if (prev < 0) { sg2.update(i, sg2.query(i, i + 1) + 1); } else { sg2.update(i, sg2.query(i, i + 1) - 1); } if (prev != 0) prev *= -1; else prev = 1; ans2++; continue; } else { int sgn = sum / abs(sum); if (prev == sgn) { int cnt = -sgn - sum; ans2 += abs(cnt); sg2.update(i, sg2.query(i, i + 1) + cnt); } prev *= -1; } } cout << min(ans, ans2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, d, a = 0, b = 0, cnta = 0, cntb = 0, i, ans; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &d); a += d; b += d; if (i % 2) { if (a > -1) { cnta += a + 1; a = -1; } if (b < 1) { cntb += 1 - b; b = 1; } } else { if (b > -1) { cntb += b + 1; b = -1; } if (a < 1) { cnta += 1 - a; a = 1; } } } ans = (cnta < cntb) ? cnta : cntb; printf("%d\n", ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { long long n, ans = 0; scanf("%lld", &n); long long a[n], sum[n]; scanf("%lld", &a[0]); sum[0] = a[0]; for (long long i = 1; i < n; i++) { scanf("%lld", &a[i]); sum[i] = a[i] + sum[i - 1]; if (sum[i - 1] < 0) { if (sum[i] == 0) { sum[i]++; ans++; } else if (sum[i] < 0) { ans += (llabs(sum[i]) + 1); sum[i] += (llabs(sum[i]) + 1); } } else { if (sum[i] == 0) { sum[i]--; ans++; } else if (sum[i] > 0) { ans += (llabs(sum[i]) + 1); sum[i] -= (llabs(sum[i]) + 1); } } } printf("%lld\n", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a.at(i); } long long sum1 = a.at(0); long long sum2 = a.at(0); long long op1 = 0; long long op2 = 0; if (sum1 < 0) { sum1 = 1; op1 += -1 * a.at(0) + 1; } if (sum2 > 0) { sum2 = -1; op2 += a.at(0) + 1; } for (int j = 1; j < n; j++) { if (sum1 > 0) { sum1 += a.at(j); if (sum1 >= 0) { op1 += (sum1 + 1); sum1 = -1; } } else { sum1 += a.at(j); if (sum1 <= 0) { op1 += (-1 * sum1 + 1); sum1 = 1; } } if (sum2 > 0) { sum2 += a.at(j); if (sum2 >= 0) { op2 += (sum2 + 1); sum2 = -1; } } else { sum2 += a.at(j); if (sum2 <= 0) { op2 += (-1 * sum2 + 1); sum2 = 1; } } } cout << (op1 > op2 ? op2 : op1) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; vector<int> v(n); for (int i = 0; i < n; i++) cin >> v[i]; int op = 0; int prev_sum = 0; for (int i = 0; i < n; i++) { int new_sum = prev_sum + v[i]; if (i == 0) prev_sum = new_sum; else if (prev_sum >= 0 && new_sum >= 0) { op += new_sum + 1; prev_sum = -1; } else if (prev_sum <= 0 && new_sum <= 0) { op += -new_sum + 1; prev_sum = 1; } else prev_sum = new_sum; } cout << op << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long int MAX_N = 1 << 17; using namespace std; long long int dy[] = {0, 0, 1, -1, 0}; long long int dx[] = {1, -1, 0, 0, 0}; template <class T> bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } long long int gcd(long long int a, long long int b) { return b ? gcd(b, a % b) : a; } struct aaa { aaa() { cin.tie(0); ios::sync_with_stdio(0); cout << fixed << setprecision(20); }; } aaaaaaa; signed main() { long long int n; std::cin >> n; std::vector<long long int> a; for (long long int(i) = 0, i_len = (n); (i) < i_len; (i)++) { long long int temp; std::cin >> temp; a.push_back(temp); } long long int sum = 0; long long int out = 0; long long int outt = 0; sum = a[0]; for (long long int i = 1; i < n; i++) { if (sum < 0) { if (a[i] + sum > 0) { sum = a[i] + sum; } else { out += abs(sum + a[i]) + 1; sum = 1; } } else { if (a[i] + sum < 0) { sum = a[i] + sum; } else { out += abs(sum + a[i]) + 1; sum = -1; } } } std::cout << out << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def c(ints): for i in range(len(ints)): if ints[i] != 0: sig = 1 if ints[i] > 0 else -1 sig_ = -sig total = ints[i] total_ = -sig mov = i mov_ = abs(total) + 1 + i if i > 0: mov += 1 + i - 1 mov_ += 2 + i - 1 j = i break if i == len(ints) - 1: return i * 2 + 1 for i_ in ints[j+1:]: tmp = total + i_ tmp_ = total_ + i_ if tmp == 0: mov +=1 tmp = -sig elif sig * tmp > 0: mov += abs(tmp) + 1 tmp = -sig if tmp_ == 0: mov_ +=1 tmp_ = -sig_ elif sig_ * tmp_ > 0: mov_ += abs(tmp_) + 1 tmp_ = -sig_ sig *= -1 total = tmp sig_ *= -1 total_ = tmp_ return min(mov, mov_) _ = input() inp = input() inp = inp.split(' ') inp = [int(i_) for i_ in inp] print(c(inp))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> bool N(int a) { return (a > 0); } int main() { int a, n; int ans = 0; int sum = 0; std::cin >> n; std::cin >> a; sum += a; for (int i = 0; i < n - 1; ++i) { std::cin >> a; if (N(sum + a) == N(sum)) { int hoge; if (N(sum + a)) hoge = -1 - (sum + a); else hoge = 1 - (sum + a); ans += std::abs(hoge); sum = sum + a + hoge; } else sum += a; } std::cout << ans << std::endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# -*- coding: utf-8 -*- """ Created on Sat Sep 8 15:51:53 2018 @author: maezawa """ n = int(input()) a = list(map(int, input().split())) sa = 0 cnt = 0 for i in range(0,n-1): sa += a[i] na = -sa//abs(sa)*(abs(sa)+1) if abs(a[i+1]) > abs(na) and a[i+1]*na >= 0: continue cnt += abs(na-a[i+1]) a[i+1] = na print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { long long int n, i, a[100000], sum, count = 0, flag = 0; scanf("%lld", &n); for (i = 0; i < n; i++) { scanf("%lld", &a[i]); if (a[0] == 0 && a[i] != 0 && flag == 0) flag = i; } if (flag != 0) { if ((a[flag] > 0 && flag % 2 == 0) || (a[flag] < 0 && flag % 2 == 1)) a[0] = 1; else a[0] = -1; count++; } for (i = 0; i < n; i++) { if (i == 0) sum = a[0]; else { if (sum > 0 && sum + a[i] >= 0) { count += 1 + sum + a[i]; a[i] = -1 * sum - 1; sum = -1; } else if (sum < 0 && sum + a[i] <= 0) { count += 1 - sum - a[i]; a[i] = -1 * sum + 1; sum = 1; } else if (sum + a[i] == 0) { if (sum > 0) a[i]--; else if (sum < 0) a[i]++; sum += a[i]; } else sum += a[i]; } } printf("%lld\n", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const int MAX = 1e6; int status(int a) { if (a < 0) return 1; return 0; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int n, cnt = 0, last = -1, a, f = 0, sum = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a; if (!i) { last = a; sum = a; f = status(a) ^ 1; } else { if (status(last) == status(a)) { cnt += abs(a); a = 0; } sum += a; if (status(sum) != f) { cnt += abs(sum) + 1; if (f == 1) sum = -1; else sum = 1; } else if (sum == 0) { cnt++; if (f == 1) sum = -1; else sum = 1; } if (!a) a = sum; f ^= 1; last = a; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; void sum(int *N, long long *S, int n); int main() { int *N; long long *S; long long count_eve = 0, count_odd = 0, n; int j = 0, k = 0; cin >> n; N = new int[n]; S = new long long[n]; for (int i = 0; i < n; i++) { cin >> N[i]; } sum(N, S, n); int del1 = 0, del2 = 0; while (j != n) { if (j % 2 == 0 && S[j] + del1 <= 0) { count_eve += abs(S[j] + del1) + 1; del1 += abs(S[j] + del1) + 1; } else if (j % 2 == 1 && S[j] + del1 >= 0) { count_eve += abs(S[j] + del1) + 1; del1 += -abs(S[j] + del1) - 1; } j++; } sum(N, S, n); while (k != n) { if (k % 2 == 0 && S[k] + del2 >= 0) { count_odd += abs(S[k] + del2) + 1; del2 += -abs(S[k] + del2) - 1; } else if (k % 2 == 1 && S[k] + del2 <= 0) { count_odd += abs(S[k] + del2) + 1; del2 += abs(S[k] + del2) + 1; } k++; } cout << min(count_eve, count_odd) << endl; delete[] N; delete[] S; return 0; } void sum(int *N, long long *S, int n) { S[0] = N[0]; for (int i = 1; i < n; i++) S[i] = S[i - 1] + N[i]; } void add(int *S, int n, int del, int k) { for (int i = k; i < n + 1; i++) S[i] += del; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const ll INF = 1LL << 60; int main() { ll n; cin >> n; ll a[n]; for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } ll sum = a[0]; ll ans = 0; for (int i = 1; i < n; i++) { ll tmp_sum = sum + a[i]; cout << "debug sum: " << sum << endl; cout << "debug tmp_sum: " << tmp_sum << endl; if (sum > 0) { while (tmp_sum >= 0) { --tmp_sum; ++ans; } } else if (sum < 0) { while (tmp_sum <= 0) { ++tmp_sum; ++ans; } } sum = tmp_sum; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(i) for i in input().split()] ans = 0 tmp = a[0] if a[0] == 0: tmp = 1 ans += 1 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] #print(ans) ans2 = 0 if a[0] > 0: ans2 += a[0]+1 tmp = 1 elif a[0] < 0: ans2 += -a[0]+1 else: tmp = -1 ans2 += 1 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans2 += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans2 += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] print(min(ans,ans2)) exit() ans2 = 0 tmp = -a[0] ans2 += abs(a[0])*2 for i in range(1,n): #print(tmp,ans) if tmp > 0: if tmp + a[i] >= 0: ans2 += tmp + a[i] + 1 tmp = -1 else: tmp += a[i] else: if tmp + a[i] <= 0: ans2 += abs(tmp + a[i]) + 1 tmp = 1 else: tmp += a[i] print(min(ans,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
l = int(input()) n = [int(i) for i in input().split()] count = 0 nsum = n[0] for i in range(1, l): while(True): if (n[i-1] * n[i] >= 0) or (nsum * (nsum + n[i]) >= 0): if n[i-1] < 0: count += 1 n[i] += 1 else: count += 1 n[i] -= 1 else: nsum += n[i] break print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define mod 1000000007 #define ll long long #define mp make_pair #define pb push_back #define ff first #define ss second #define set0(a) memset ((a), 0 , sizeof(a)) #define set1(a) memset((a),-1,sizeof (a)) #define pi pair<int, int> #define ps pair<string, string> #define pl pair<long, long> #define pll pair<long long, long long> #define vll vector<long long> #define vl vector<long> #define vi vector<int> #define vs vector<string> #define vps vector< ps > #define vpi vector< pi > #define vpl vector< pl > #define vpll vector< pll > #define flash ios_base::sync_with_stdio(false); cin.tie(NULL); #define tc(t) for(long long l=0;l<t;l++) #define rep(i,s,n,d) for(long long i=s;i<n;i=i+d) bool sortbysec(const pll &a, const pll &b) { return (a.second < b.second); } void func(void) { freopen("input.txt","r",stdin); freopen("output.txt","w",stdout); } int main(){ ll n; cin>>n; ll a[n]; rep(i,0,n,1){ cin>>a[i]; } ll count1=0; if(a[0]==0){ if(a[1]>0){ a[0]=1; } else a[0]=-1; count1++; } ll sum[n]={}; sum[0]=a[0]; rep(i,1,n,1){ sum[i]=sum[i-1]+a[i]; } ll sum1=a[0]; rep(i,1,n,1){ if(sum1*(sum1+a[i])>=0){ ll d=1; if(sum1<0){ d=1; }else{ d=-1; } int dif=abs(sum1+a[i]-d); count1=count1+dif; sum1=d; } else{ sum1=sum1+a[i]; } } cout<<count1<<endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# vim: fileencoding=utf-8 def calc(a, flg): ans = 0 cursol = a[0] if flg == 1: if cursol <= 0: cursol = 1 ans = abs(cursol) + 1 elif flg == -1: if cursol >= 0: cursol = -1 ans = abs(cursol) + 1 for i in a[1:]: t = cursol + i if cursol > 0: if t >= 0: ans += t + 1 cursol = -1 else: cursol = t elif cursol < 0: if t <= 0: ans += abs(t) + 1 cursol = 1 else: cursol = t return ans def main(): n = int(input()) a = list(map(int, input().split())) ans = min(calc(a, 1), calc(a, -1)) print(ans) if __name__ == "__main__": main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int sign, n, a, cnt = 0, acm = 0, ans = 0; cin >> n; int A[n]; for (int i = 0; i < n; i++) cin >> A[i]; sign = 1; for (int i = 0; i < n; i++) { if ((acm + A[i]) * sign < 0) { acm += A[i]; sign *= -1; } else { cnt += abs(acm + A[i]) + 1; acm = -1 * sign; sign *= -1; } } ans = cnt; sign = -1; acm = 0; cnt = 0; for (int i = 0; i < n; i++) { if ((acm + A[i]) * sign < 0) { acm += A[i]; sign *= -1; } else { cnt += abs(acm + A[i]) + 1; acm = -1 * sign; sign *= -1; } } ans = min(ans, cnt); cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, count = 0; cin >> N; vector<long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; int su = A[0]; bool plus = A[0] > 0; for (int i = 1; i < N; i++) { plus = !plus; su += A[i]; if (plus) { if (su <= 0) { count += abs(su) + 1; su = 1; } } else { if (su >= 0) { count += abs(su) + 1; su = -1; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #pragma GCC target("avx2") #pragma GCC optimize("03") #pragma GCC optimize("unroll-loops") using namespace std; constexpr int INF = 1 << 30; constexpr long long LINF = 1LL << 60; constexpr long long mod = 1e9 + 7; constexpr int NIL = -1; template <class T> inline bool chmax(T &a, const T &b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T &a, const T &b) { if (b < a) { a = b; return 1; } return 0; } int n; const int MX = 1e5 + 7; long long a[MX]; long long b[MX]; int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; for (int i = (0); i <= (n - 1); i++) cin >> a[i]; for (int i = (1); i <= (n - 1); i++) a[i] += a[i - 1]; for (int i = (0); i <= (n - 1); i++) b[i] = a[i]; long long total = 0; long long cnt1 = 0; long long cnt2 = 0; for (int i = (0); i <= (n - 1); i++) { a[i] += total; if (i % 2 == 0) { if (a[i] > 0) continue; else { cnt1 += 1LL - a[i]; total += 1LL - a[i]; } } else { if (a[i] < 0) continue; else { cnt1 += a[i] + 1LL; total -= a[i] + 1LL; } } } total = 0; for (int i = (0); i <= (n - 1); i++) { b[i] += total; if (i % 2 == 1) { if (b[i] > 0) continue; else { cnt2 += 1LL - b[i]; total += 1LL - b[i]; } } else { if (b[i] < 0) continue; else { cnt2 += b[i] + 1LL; total -= b[i] + 1LL; } } } cout << min(cnt1, cnt2) << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def resolve(): # 整数 1 つ n = int(input()) # 整数複数個 # a, b = map(int, input().split()) # 整数 N 個 (改行区切り) # N = [int(input()) for i in range(N)] # 整数 N 個 (スペース区切り) A = list(map(int, input().split())) # 整数 (縦 H 横 W の行列) # A = [list(map(int, input().split())) for i in range(H)] sumi = 0 cnt = 0 for i in range(n-1): sumi += A[i] suminext = sumi + A[i+1] if sumi * suminext < 0: continue else: change = abs(suminext) +1 cnt += change if sumi < 0: A[i+1] = A[i+1] + change else: A[i+1] = A[i+1] - change print(cnt) resolve()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; long long a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long first_plus = 0; long long count_plus = 0; long long first_minus = 0; long long count_minus = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { first_plus += a[i]; first_minus += a[i]; if (first_plus <= 0) { count_plus += 1 - first_plus; first_plus += count_plus; } if (first_minus >= 0) { count_minus += 1 + first_minus; first_minus -= count_minus; } } if (i % 2 == 1) { first_plus += a[i]; first_minus += a[i]; if (first_plus >= 0) { count_plus += 1 + first_plus; first_plus -= count_plus; } if (first_minus <= 0) { count_minus += 1 - first_minus; first_minus += count_minus; } } } if (count_plus <= count_minus) cout << count_plus << endl; else cout << count_minus << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) r_even = 0 # 偶数桁を+にする場合の値 a_even = a[:] sum_even = 0 for i in range(len(a)): sum_even += a_even[i] if i % 2 == 0: if sum_even <= 0: r_even += 1 - sum_even a_even[i] += 1 - sum_even sum_even += 1 - sum_even else: if sum_even > 0: r_even += sum_even + 1 a_even[i] -= sum_even + 1 sum_even -= sum_even + 1 r_odd = 0 #奇数桁を+にする場合の値 a_odd = a[:] sum_odd = 0 for i in range(len(a)): sum_odd += a_odd[i] if i % 2 != 0: if sum_odd <= 0: r_odd += 1 - sum_odd a_odd[i] += 1 - sum_odd sum_odd += 1 - sum_odd else: if sum_odd > 0: r_odd += sum_odd + 1 a_odd[i] -= sum_odd + 1 sum_odd -= sum_odd + 1 print(min(r_odd, r_even))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long change_num(long long p[], int N) { long long res = 0; long long sum = p[0]; for (int i = 1; i < N; i++) { if (sum * (sum + p[i]) < 0) { sum += p[i]; continue; } if (sum > 0 && sum + p[i] >= 0) { sum += p[i]; while (sum >= 0) { res++; sum--; } continue; } if (sum < 0 && sum + p[i] <= 0) { sum += p[i]; while (sum <= 0) { res++; sum++; } continue; } } return res; } int main() { int N; cin >> N; long long a[N]; for (int i = 0; i < N; i++) cin >> a[i]; long long ans = 0; long long sum = a[0]; if (a[0] == 0) { long long plus_ans = 0; a[0] = 1; plus_ans = change_num(a, N) + 1; long long minus_ans = 0; a[0] = -1; minus_ans = change_num(a, N) + 1; if (plus_ans < minus_ans) { ans = plus_ans; } else { ans = minus_ans; } } else { ans = change_num(a, N); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 30; const long long LINF = 1LL << 50; const int NIL = -1; const int MAX = 10000; const int mod = 1000000007; const double pi = 3.141592653589; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) cin >> a[i]; int sum1 = 0, sum2 = 0; int cost1 = 0, cost2 = 0; for (int i = 0; i < N; i++) { if (i % 2 == 0) { if (sum1 + a[i] <= 0) { cost1 += 1 - sum1 - a[i]; sum1 = 1; } else { sum1 += a[i]; } if (sum2 + a[i] >= 0) { cost2 += abs(-1 - sum2 - a[i]); sum2 = -1; } else { sum2 += a[i]; } } else { if (sum1 + a[i] >= 0) { cost1 += abs(-1 - sum1 - a[i]); sum1 = -1; } else { sum1 += a[i]; } if (sum2 + a[i] <= 0) { cost2 += 1 - sum2 - a[i]; sum2 = 1; } else { sum2 += a[i]; } } } cout << min(cost1, cost2) << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long a[100005], dp[100005]; cin >> n; long long sum = 0; for (int i = 0; i < n; i++) { cin >> a[i]; sum += a[i]; dp[i] = sum; } long long diff = 0, ans = 0; for (int i = 1; i < n; i++) { if (dp[i] + diff == 0) { if (dp[i - 1] + diff < 0) diff++, ans++; if (dp[i - 1] + diff > 0) diff--, ans++; continue; } if ((dp[i - 1] + diff) / llabs(dp[i - 1] + diff) == (dp[i] + diff) / llabs(dp[i] + diff)) { if (dp[i] + diff >= 0) { ans += llabs(dp[i] + diff) + 1; diff -= llabs(dp[i] + diff) + 1; } else { ans += llabs(dp[i] + diff) + 1; diff += llabs(dp[i] + diff) + 1; } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 100000000; int dx[] = {0, 1, -1, 0, 1, -1, 1, -1}; int dy[] = {1, 0, 0, -1, 1, -1, -1, 1}; int main() { int n; cin >> n; vector<int> v(n + 1, 0), w(n + 1, 0); for (int i = 1; i <= n; i++) cin >> v[i]; int ans = 0; for (int i = 1; i <= n; i++) { w[i] = w[i - 1] + v[i]; if (w[i - 1] > 0 && w[i] > 0) { int tmp = w[i] + 1; ans += tmp; v[i] -= tmp; w[i] = -1; } else if (w[i - 1] < 0 && w[i] < 0) { int tmp = -w[i] + 1; ans += tmp; v[i] += tmp; w[i] = 1; } else if (w[i] == 0 && w[i - 1] < 0) { ans++; v[i]++; w[i]++; } else if (w[i] == 0 && w[i - 1] > 0) { ans++; v[i]--; w[i]--; } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[100000]; for (int i = 0; i < n; i++) cin >> a[i]; int sum; sum = 0; int ret1 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum <= 0) { ret1 += abs(sum) + 1; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ret1 += abs(sum) + 1; sum = -1; } } sum = 0; int ret2 = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (i % 2 == 0 && sum >= 0) { ret2 += abs(sum) + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { ret2 += abs(sum) + 1; sum = 1; } } cout << min(ret1, ret2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.BufferedReader; import java.io.InputStreamReader; public class Main { public static void main(String[] args) throws Exception { // Your code here! BufferedReader br = new BufferedReader(new InputStreamReader(System.in)); int n = Integer.parseInt(br.readLine()); String[] str_a = br.readLine().split(" "); int[] a = new int[n]; for (int i = 0; i < n; i++) { a[i] = Integer.parseInt(str_a[i]); } int sum = 0; int count = 0; sum += a[0]; if (sum == 0) { a[0]++; sum++; count++; } for (int i = 1; i < n; i++) { sum += a[i]; if (i % 2 == (a[0]>0?1:0)) { if (sum >= 0) { count += sum + 1; sum = -1; } } else { if (sum <= 0) { count += 1 - sum; sum = 1; } } } System.out.println(count); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) { cin >> a.at(i); } long long ans = 0; long long sum = a.at(0); if (a.at(0) > 0) { for (long long i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum <= 0) { ans += 1 - sum; sum = 1; } else if (i % 2 == 1 && sum >= 0) { ans += sum + 1; sum = -1; } } } else if (a.at(0) < 0) { for (long long i = 1; i < n; i++) { sum += a.at(i); if (i % 2 == 0 && sum >= 0) { ans += sum + 1; sum = -1; } else if (i % 2 == 1 && sum <= 0) { ans += 1 - sum; sum = 1; } } } else if (a.at(0) == 0) { long long ans1 = 1; long long ans2 = -1; long long sum1 = 1; long long sum2 = -1; for (long long i = 1; i < n; i++) { sum1 += a.at(i); if (i % 2 == 0 && sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } else if (i % 2 == 1 && sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } for (long long i = 1; i < n; i++) { sum2 += a.at(i); if (i % 2 == 0 && sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } else if (i % 2 == 1 && sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } ans = min(ans1, ans2); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int maxn = 1e5 + 10; int s[maxn]; long long ans[maxn]; int main() { int n, j; cin >> n; long long sum = 0; for (int i = 1; i <= n; i++) { cin >> s[i]; } for (int i = 1; i < n; i++) { ans[i] = ans[i - 1] + s[i]; if (ans[i] > 0) { if (s[i + 1] >= 0) { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } else { if (abs(s[i + 1]) > ans[i]) { } else { sum += (s[i + 1] + ans[i] + 1); s[i + 1] = -(ans[i] + 1); } } } else if (ans[i] == 0) { sum++; ans[i]++; } else if (ans[i] < 0) { if (s[i + 1] > 0) { if (abs(ans[i]) < s[i + 1]) { } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } else { sum += (1 - ans[i] - s[i + 1]); s[i + 1] = -ans[i] + 1; } } } cout << sum << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
def solve(): n = int(input()) A = map(int, input().split()) total = 0 count = 0 for a in A: if total > 0 and a < 0: if total + a >= 0: count += total + a + 1 total = -1 else: total += a elif total > 0 and a >= 0: count += total + a + 1 total = -1 elif total < 0 and a > 0: if total + a <= 0: count += -(total + a) + 1 total = 1 else: total += a elif total < 0 and a <= 0: count += -total - a + 1 total = 1 else: total += a return count if __name__ == '__main__': print(solve())
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const long long INF = 1000000007; using namespace std; using Graph = vector<vector<int>>; template <class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template <class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } long long gcd(long long a, long long b) { return b ? gcd(b, a % b) : a; } long long lcm(long long a, long long b) { return (a * b) / gcd(a, b); } int solve() { int n; cin >> n; vector<long long> v(n), sum(n); for (int i = 0; i < (n); ++i) cin >> v[i]; for (int i = 0; i < (n); ++i) { if (i) sum[i] += sum[i - 1] + v[i]; else sum[i] += v[i]; } long long ans = 10000000000; long long up = 0, cnt = 0; for (int i = 0; i < (n); ++i) { if (i % 2 == 0) { if (sum[i] + up < 0) continue; else { cnt += sum[i] + up + 1; up -= sum[i] + up + 1; } } else { if (sum[i] + up > 0) continue; else { cnt += abs(sum[i] + up) + 1; up += abs(sum[i] + up) + 1; } } } ans = cnt; up = 0; cnt = 0; for (int i = 0; i < (n); ++i) { if (i % 2 == 0) { if (sum[i] + up < 0) continue; else { cnt += sum[i] + up + 1; up -= sum[i] + up + 1; } } else { if (sum[i] + up > 0) continue; else { cnt += abs(sum[i] + up) + 1; up += abs(sum[i] + up) + 1; } } } cout << min(cnt, ans) << endl; return 0; } int main() { ios::sync_with_stdio(false); cin.tie(nullptr); solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int mod = 1e9 + 7; const double EPS = 1e-9; const int INF = 1 << 29; long long int a[100054]; long long int b[100054]; int main() { int n; cin >> n; for (int i = 1; i <= n; ++i) cin >> a[i], b[i] = a[i]; long long int ans = 0; long long int sum = a[1]; for (int i = 2; i <= n; ++i) { if (sum < 0) { long long int num = 1 - sum; if (a[i] < num) ans += num - a[i], a[i] = num; } else { long long int num = -1 - sum; if (a[i] > num) ans += a[i] - num, a[i] = num; } sum += a[i]; } long long int ans1 = b[1] + 1; sum = (b[1] > 0 ? -1 : 1); for (int i = 2; i <= n; ++i) { if (sum < 0) { long long int num = 1 - sum; if (b[i] < num) ans1 += num - b[i], b[i] = num; } else { long long int num = -1 - sum; if (b[i] > num) ans1 += b[i] - num, b[i] = num; } sum += b[i]; } cout << min(ans, ans1) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys input = sys.stdin.readline sys.setrecursionlimit(2147483647) INF=float("inf") MOD=10**9+7 # A = [ int(input()) for _ in range(N) ] ############################## N = int(input()) A = list(map(int, input().split())) count = 0 summary = A[0] for i in range(1, N): # print(summary) # 次はマイナス? if summary > 0: # 条件を満たしてる? if (summary + A[i]) < 0: summary += A[i] else: # 必要な数 diff = -1-summary-A[i] count += abs(diff) summary = -1 else: # 次はプラス if (summary + A[i]) > 0: summary += A[i] else: # 必要な数 diff = 1-summary-A[i] count += abs(diff) summary = 1 print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) hugo=0 wa=a[0] ans=0 for i in range(1,n): # print(wa) if wa>0: if wa+a[i]<0: wa+=a[i] else: ans+=abs(wa+a[i])+1 wa=-1 else: if wa+a[i]>0: wa+=a[i] else: ans+=abs(wa+a[i])+1 wa=1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long mod = 1000000007; const int inf = 1e9; const long long INF = 1LL << 60; const double PI = 3.1415926535897932; int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < (int)(n); i++) cin >> a[i]; long long tmp = 0; long long sum = 0; long long ans = INF; for (int i = 0; i < (int)(n); i++) { if (i == 0) { if (a[i] < 0) { tmp += 1 - a[i]; sum = 1; } else { sum += a[i]; } } else { if (i % 2 == 0) { long long x = a[i]; if (a[i] + sum <= 0) { x = 1 - sum; tmp += x - a[i]; } sum += x; } else { long long x = a[i]; if (a[i] + sum >= 0) { x = -1 - sum; tmp += a[i] - x; } sum += x; } } } ans = min(ans, tmp); tmp = 0; sum = 0; for (int i = 0; i < (int)(n); i++) { if (i == 0) { if (a[i] > 0) { tmp += abs(-1 - a[i]); sum += -1; } else { sum += a[i]; } } else { if (i % 2 == 1) { long long x = a[i]; if (a[i] + sum <= 0) { x = 1 - sum; tmp += x - a[i]; } sum += x; } else { long long x = a[i]; if (a[i] + sum >= 0) { x = -1 - sum; tmp += a[i] - x; } sum += x; } } } ans = min(ans, tmp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys import copy import math from _bisect import * from collections import * from operator import itemgetter from math import factorial """ from fractions import gcd def lcm(x, y): return (x * y) // gcd(x, y) """ stdin = sys.stdin ni = lambda: int(ns()) na = lambda: list(map(int, stdin.readline().split())) ns = lambda: stdin.readline() n = ni() li = na() ans = [0, 0] s = li[0] for j in range(2): code = j for i in range(n - 1): code = 1 - code if code: if s + li[i + 1] > 0: s += li[i + 1] else: ans[j] += abs(1 - s) s = 1 else: if s + li[i + 1] < 0: s += li[i + 1] else: ans[j] += abs(- 1 - s) s = -1 print(min(ans))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) sm = a[0] def f(sm): ret = 0 for e in a[1:]: if sm * (sm + e) < 0: sm += e continue else: if sm > 0: a_mx = -sm - 1 ret += e - a_mx sm += a_mx else: a_mn = -sm + 1 ret += a_mn - e sm += a_mn return ret if sm != 0: ans = f(sm) else: ans = min(f(1), f(-1)) + 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include<bits/stdc++.h> using namespace std; #define rep(i,n) for(int i = 0;i<n;i++) #define erep(i,n) for(int i = 0;i<=n;i++) #define rep1(i,n) for(int i = 1;i<n;i++) #define erep1(i,n) for(int i = 1;i<=n;i++) typedef long long ll; #define vint vector<int> #define vstring vector<string> #define vll vector<ll> #define vbool vector<bool> #define INF 100000000 ll gcm(ll a,ll b); ll lcm(ll a,ll b); ll fac(ll a); int main(){ ll n; cin >> n; ll nowsum = 0; ll ans = 0; ll sum = 0; bool plus = false; bool minus = false; vll A(n); rep(i,n){ cin >> A[i]; sum += A[i]; rep(i,n){ nowsum += A[i]; if(i == 0){ if(nowsum == 0){ if(A[1] > 0){ ans = A[i] - 1; nowsum = (-1)*abs(A[i]-1); minus = true; } else if(A[1] < 0){ ans = A[i] + 1; nowsum = abs(A[i]-1); plus = true; } else{ if(sum >= 0){ ans = 1; nowsum = 1; plus = true; } else{ ans = 1; nowsum = -1; minus = true; } } else if(nowsum >= 0) plus = true; else minus = true; } else{ if(plus){ if(i%2 == 0){ //minusだったらだめ if(nowsum <= 0){ ans += abs(nowsum -A[i] - 1) - A[i]; nowsum = 1; } } else{ //plusだったらだめ if(nowsum >= 0){ ans += A[i] + abs(nowsum -A[i] + 1); nowsum = -1; } } } else if(minus){ if(i%2 == 0){ //plusだったらだめ if(nowsum >= 0){ ans += A[i] + abs(nowsum -A[i] + 1); nowsum = -1; } } else{ //minusだったらだめ if(nowsum <= 0){ ans += abs(nowsum -A[i] - 1) - A[i]; nowsum = 1; } } //cout << nowsum << " " << ans << endl; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; long long *a; cin >> n; a = new long long[n]; long long ans = 0; long long sum = 0; for (int i = 0; i < n; i++) cin >> a[i]; int flag = -1; if (a[0] > 0) flag = 1; else if (a[0] == 0) flag = 0; for (int i = 0; i < n; i++) { sum += a[i]; if (flag > 0 || flag == 0) { if (sum <= 0) { while (sum <= 0) { sum++; ans++; } } flag = -1; } else if (flag < 0) { if (sum >= 0) { while (sum >= 0) { sum--; ans++; } } flag = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long a[100000], b[100001]; int main() { int long long n; cin >> n; for (long long i = 0; i < n; i++) { cin >> a[i]; b[i] += a[i]; b[i + 1] = b[i]; } int long long sum = 0, sum2 = 0; if (b[0] == 0) { long long i = 0; while (b[i] == 0 && i < n) i++; if (i % 2 == 0) { b[0] = 1; sum2 = 1; } else { b[0] = -1; sum2 = -1; } sum++; } for (long long i = 1; i < n; i++) { b[i] += sum2; if (b[i] == 0) { if (b[i - 1] > 0) { sum2--; sum++; b[i] = -1; } else { sum2++; sum++; b[i] = 1; } } else { if (b[i - 1] > 0 && b[i] > 0) { sum2 -= (b[i] + 1); sum += (b[i] + 1); b[i] = -1; } else if (b[i] < 0 && b[i - 1] < 0) { sum2 += (0 - b[i] + 1); sum += (0 - b[i] + 1); b[i] = 1; } } } cout << sum << endl; cin >> n; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using namespace std; //#define int long long using bll = boost::multiprecision::cpp_int; using ll = long long; //constexpr int INF = 1e9;//INT_MAX=(1<<31)-1=2147483647 constexpr ll INF = (ll)1e18;//(1LL<<63)-1=9223372036854775807 constexpr ll MOD = (ll)1e9 + 7; constexpr double EPS = 1e-9; constexpr int dx[4]={1,0,-1,0}; constexpr int dy[4]={0,1,0,-1}; #define p(var) std::cout<<var<<std::endl #define PI (acos(-1)) #define rep(i, n) for(ll i=0, i##_length=(n); i< i##_length; ++i) #define repeq(i, n) for(ll i=1, i##_length=(n); i<=i##_length; ++i) #define all(v) (v).begin(), (v).end() #define uniq(v) (v).erase(unique((v).begin(), (v).end()), (v).end()); template<typename T> inline void pv(vector<T> v) { for(ll i=0, N=v.size(); i<N; i++) cout<< v[i] << (i==N-1 ? '\n' : ' '); } template<typename T> inline T gcd(T a, T b) { return b ? gcd(b,a%b) : a; } template<typename T> inline T lcm(T a, T b) { return a / gcd(a, b) * b; } template<typename T1, typename T2> inline T1 power(T1 x, T2 n){ return n ? power(x*x%MOD,n/2)*(n%2?x:1)%MOD : 1; } template<typename T1, typename T2> inline bool chmax(T1 &a, T2 b) { return a < b && (a = b, true); } template<typename T1, typename T2> inline bool chmin(T1 &a, T2 b) { return a > b && (a = b, true); } template<typename T> class dvector : public std::vector<T> { public: dvector() : std::vector<T>() {} explicit dvector(size_t n, const T& value = T()) : std::vector<T>(n,value) {} dvector(const std::vector<T>& v) : std::vector<T>(v) {} T& operator[](size_t n){ return this->at(n); } }; template<typename T1, typename T2> ostream& operator<<(ostream& s, pair<T1, T2>& p) {return s << "(" << p.first << ", " << p.second << ")";} template<typename T> ostream& operator<<(ostream& s, dvector<T>& v) { for (int i = 0, len = v.size(); i < len; ++i){ s << v[i]; if (i < len - 1) s << "\t"; } return s; } template<typename T> ostream& operator<<(ostream& s, dvector< dvector<T> >& vv) { for (int i = 0, len = vv.size(); i < len; ++i){ s << vv[i] << endl; } return s; } template<typename T1, typename T2> ostream& operator<<(ostream& s, map<T1, T2>& m) { s << "{" << endl; for (auto itr = m.begin(); itr != m.end(); ++itr){ s << "\t" << (*itr).first << " : " << (*itr).second << endl; } s << "}" << endl; return s; } template<typename T> ostream& operator<<(ostream& s, set<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}" << endl; return s; } template<typename T> ostream& operator<<(ostream& s, multiset<T>& se) { s << "{ "; for (auto itr = se.begin(); itr != se.end(); ++itr){ s << (*itr) << "\t"; } s << "}" << endl; return s; } #ifdef LOCAL_DEV #define debug(var) std::cout<<#var" = "<<var<<std::endl #else #define debug(var) #endif #ifdef LOCAL_TEST #define vector dvector #endif /*-----8<-----8<-----*/ signed main() { ll N; cin>>N; vector<ll> a(N,0); rep(i,N)cin>>a[i]; vector<ll> rui(N+1,0); rep(i,N)rui[i+1]=rui[i]+a[i]; ll c,t=a[0]>0 ? 1 : -1; if([&]{ rep(i,N-1){ if(t==1){ if(rui[i+2]>0)return false; }else{ if(rui[i+2]<0)return false; } t*=-1; } return true; }()){ p(0);return 0; } //+ t=0; ll ansb=0; if(rui[1]>0){ }else{ t+=-rui[1]+1; ansb+=abs(-rui[1]+1); } c=-1; for(ll i=1;i<N;i++){ ll tt=rui[i+1]+t; if(c==1){ if(tt>0){ }else{ t+=-tt+1; ansb+=abs(-tt+1); } }else{ if(tt>=0){ t+=-tt-1; ansb+=abs(-tt-1); }else{ } } c*=-1; } //- t=0; ll ansc=0; if(rui[1]>0){ t+=-rui[1]-1; ansc+=abs(-rui[1]-1); }else{ } c=1; for(ll i=1;i<N;i++){ ll tt=rui[i+1]+t; if(c==1){ if(tt>0){ }else{ t+=-tt+1; ansc+=abs(-tt+1); } }else{ if(tt>=0){ t+=-tt-1; ansc+=abs(-tt-1); }else{ } } c*=-1; } p(min(ansb,ansc)); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import sys import itertools # import numpy as np import time import math import heapq from collections import defaultdict sys.setrecursionlimit(10 ** 7) INF = 10 ** 18 MOD = 10 ** 9 + 7 read = sys.stdin.buffer.read readline = sys.stdin.buffer.readline readlines = sys.stdin.buffer.readlines # map(int, input().split()) n = int(input()) A = list(map(int, input().split())) acc = [0] * n acc[0] = A[0] for i in range(1, n): acc[i] = acc[i - 1] + A[i] ans = 0 if acc[0] == 0: acc[0] += 1 ans += 1 cur = acc[0] x = 0 for i in range(1, n): acc[i] += x if cur > 0: if acc[i] >= 0: ans += acc[i] + 1 x -= acc[i] + 1 acc[i] = -1 else: if acc[i] <= 0: ans += abs(acc[i]) + 1 x += abs(acc[i]) + 1 acc[i] = 1 cur = acc[i] print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int64_t> vec(N); for (int i = 0; i < N; i++) { cin >> vec.at(i); } int64_t ans = 0; int64_t x = vec.at(0); for (int i = 1; i < N; i++) { if ((vec.at(i) + x) * x >= 0) { if (x > 0) { ans += abs(vec.at(i) + 1 + x); vec.at(i) -= (vec.at(i) + 1 + x); } if (x < 0) { ans += abs(1 - x - vec.at(i)); vec.at(i) += (1 - x - vec.at(i)); } } x = vec.at(i) + x; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n), tot(n); for (int i = 0; i < (n); ++i) cin >> a[i]; tot[0] = a[0]; for (int i = 0; i < (n - 1); ++i) tot[i + 1] += tot[i] + a[i + 1]; long long ans = 1LL << 60, now = 0; long long wa = 0; int p; if (tot[0] != 0) { p = tot[0] / abs(tot[0]); for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); } else { now = 1; wa = 1; p = 1; for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); now = 1; wa = -1; p = -1; for (int i = 0; i < (n); ++i) { tot[i] += wa; if (p == 1) { if (tot[i] <= 0) { wa += abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } else { if (tot[i] >= 0) { wa -= abs(tot[i]) + 1; now += abs(tot[i]) + 1; } } p *= -1; } ans = min(ans, now); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long a[100001]; for (int i = 0; i < n; ++i) cin >> a[i]; int cnt1 = 0; int cnt2 = 0; long long sum = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 0) { while (sum <= 0) { sum++; cnt1++; } } else { while (sum >= 0) { sum--; cnt1++; } } } sum = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i % 2 == 1) { while (sum <= 0) { sum++; cnt2++; } } else { while (sum >= 0) { sum--; cnt2++; } } } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n, *A = map(int, open(0).read().split()) B = [A[0]] C = [A[0]] D = [0] for i in range(1, n): if (C[i-1] + A[i]) * C[i-1] < 0: B.append(A[i]) C.append(C[i-1] + A[i]) D.append(D[i-1]) else: if C[i-1] > 0: B.append(-(C[i-1]+1)) C.append(-1) D.append(C[i-1]+1 + A[i]) elif C[i-1] < 0: B.append(-C[i-1]+1) C.append(1) D.append(-C[i-1]+1 + A[i]) print(A) print(B) print(C) print(D)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; enum State { Plus, Minus, Zero }; State GetState(int sum) { State state; if (sum > 0) state = Plus; else if (sum == 0) state = Zero; else state = Minus; return state; } int main() { int n; cin >> n; vector<int> a(n); cin >> a[0]; int count = 0; State state = GetState(a[0]); if (state == Zero) { a[0] = 1; state = Plus; count++; } int sum = a[0]; cout << a[0] << " " << sum << endl; for (int i = 1; i < n; i++) { cin >> a[i]; State nextState = GetState(sum + a[i]); switch (nextState) { case Plus: if (state == Plus) { int bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } break; case Minus: if (state == Minus) { int bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } break; case Zero: if (state == Plus) { int bf_a = a[i]; a[i] = -1 - sum; count += abs(a[i] - bf_a); nextState = Minus; } else if (state == Minus) { int bf_a = a[i]; a[i] = 1 - sum; count += abs(a[i] - bf_a); nextState = Plus; } default: break; } sum += a[i]; state = nextState; } if (sum == 0) count++; cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int MOD = (int)1e9 + 7; const int MAX = 1e6; int arr[MAX]; int status(int a) { if (a < 0) return 1; else if (a > 0) return 0; else return 2; } int main() { ios::sync_with_stdio(0); cin.tie(0); cout.tie(0); long long int n, cnt = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> arr[i]; } if (!arr[0]) arr[0] = 1; for (int i = 1; i < n; i++) { if (status(arr[i - 1]) == status(arr[i])) { cnt += abs(arr[i] * 2); arr[i] *= -1; } } long long int sum = arr[0], f = 0; if (arr[0] < 0) f = 1; else f = 0; for (int i = 1; i < n; i++) { f ^= 1; sum += arr[i]; if (status(sum) != f) { cnt += abs(sum) + 1; if (f) sum = -1; else sum = 1; } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import numpy as np n = int(input()) a = [int(_) for _ in input().split()] ans = 0 zeroflag = True zerocnt = 0 tmp = 0 for i in a: if zeroflag and i == 0: zerocnt += 1 elif zeroflag and i != 0: zeroflag = False if zerocnt != 0 and abs(i) == 1: ans += 1 tmp += np.sign(i)*2 else: tmp = i else: if np.sign(tmp+i) == np.sign(tmp) or np.sign(tmp+i) == 0: ans += abs((tmp+i) + np.sign(tmp)) tmp = -np.sign(tmp) else: tmp += i if zerocnt != 0: ans += 2*zerocnt - 1 print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long curr, ans = 0; cin >> curr; for (int i = 1; i < n; ++i) { long long t; cin >> t; if (curr > 0 && (long long)(t + curr) < 0) { curr += t; continue; } if (curr < 0 && (long long)(t + curr) > 0) { curr += t; continue; } else { if (curr > 0 && (long long)(t + curr) > 0) { long long t1 = -1L - (curr); long long t2 = t1 - t; ans += abs(t2); curr = -1L; continue; } if (curr < 0 && (long long)(t + curr) < 0) { long long t1 = 1 - (curr); long long t2 = t1 - t; ans += abs(t2); curr = 1L; continue; } if (!((long long)(t + curr))) { if (curr > 0) { ++ans; curr = -1L; } else if (curr < 0) { ++ans; curr = 1L; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) acc = 0 cnt = 0 flag = 1 if a[0] > 0 else -1 for i in a: acc += i if (flag == 1 and flag > acc) or (flag == -1 and flag < acc) or i == 0: cnt += abs(flag - acc) acc = flag flag *= -1 print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<long long int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; vector<long long int> B(N); B[0] = A[0]; for (int i = 1; i < N; i++) B[i] = B[i - 1] + A[i]; long long int ans = 0; long long int base = 0; for (int i = 1; i < N; i++) { if ((B[i] + base) * (B[i - 1] + base) > 0) { if (B[i] + base > 0) { ans += abs(B[i] + base) + 1; base -= abs(B[i] + base) + 1; continue; } else if (B[i] + base < 0) { ans += abs(B[i] + base) + 1; base += abs(B[i] + base) + 1; continue; } } if (i == 1 && B[i - 1] + base == 0) { if (B[i] + base > 0) { ans++; base -= 1; } else { ans++; base += 1; } } if (i < N - 1) { if (B[i] + base == 0) { if (B[i - 1] + base > 0) { ans += 1; base -= 1; continue; } else if (B[i - 1] + base < 0) { ans += 1; base += 1; continue; } } } else { if (B[i] + base == 0) ans++; } } cout << ans << endl; return 0; }