Search is not available for this dataset
name
stringlengths
2
88
description
stringlengths
31
8.62k
public_tests
dict
private_tests
dict
solution_type
stringclasses
2 values
programming_language
stringclasses
5 values
solution
stringlengths
1
983k
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; int A[100100]; int ANS[2]; for (int i = 0; i < N; ++i) { cin >> A[i]; } int mode; for (int index = 0; index < 2; ++index) { mode = index; ANS[index] = 0; int total = 0; for (int i = 0; i < N; ++i) { mode ^= 1; int _total = total + A[i]; if (mode == 0 && _total <= 0 || mode == 1 && _total >= 0) { _total = mode == 0 ? 1 : -1; ANS[index] += abs(_total - (total + A[i])); } total = _total; } } cout << min(ANS[0], ANS[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 100000000000000LL; long long a[100001]; long long r[2] = {}; int main() { int n; cin >> n; int t1 = 0; int t2 = 0; int s1 = 0; int s2 = 0; int a1; for (int i = 0; i < n; ++i) { cin >> a1; t1 += a1; t2 += a1; if (i % 2 == 0) { if (t1 <= 0) { s1 += -t1 + 1; t1 = 1; } if (t2 >= 0) { s2 += t2 + 1; t2 = -1; } } else { if (t1 >= 0) { s1 += t1 + 1; t1 = -1; } if (t2 <= 0) { s2 += -t2 + 1; t2 = 1; } } } cout << min(s1, s2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long table[100005]; void table_print(int n) { for (int i = 0; i < n; i++) cout << table[i] << ' '; cout << endl; } int main() { int n, ans; cin >> n; for (int i = 0; i < n; i++) { cin >> table[i]; } ans = 0; if (table[0] >= 0) { for (int i = 0; i < n; i++) { if (i > 0) table[i] += table[i - 1]; if (i % 2 == 0 && table[i] <= 0) { ans += 1 - table[i]; table[i] = 1; } if (i % 2 == 1 && table[i] >= 0) { ans += table[i] + 1; table[i] = -1; } } } else { for (int i = 0; i < n; i++) { if (i > 0) table[i] += table[i - 1]; if (i % 2 == 0 && table[i] >= 0) { ans += table[i] + 1; table[i] = -1; } if (i % 2 == 1 && table[i] <= 0) { ans += 1 - table[i]; table[i] = 1; } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) ans = 0 acum = A[0] for i in range(1, N): if (acum >= 0 and acum + A[i] >= 0) or (acum < 0 and acum + A[i] < 0) or (acum + A[i] == 0): # same signs ans += abs(acum + A[i]) + 1 acum = 1 if acum < 0 else -1 # print("a", acum) else: # different signs acum += A[i] # print("b", acum) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> inline bool chmin(T &a, T b) { if (a > b) { a = b; return true; } return false; } template <class T> inline bool chmax(T &a, T b) { if (a < b) { a = b; return true; } return false; } void print(vector<long long> &v) { for (int i = 0; i < v.size(); i++) { if (i) cout << " "; cout << v[i]; } cout << endl; } int main() { long long n, v, cnt = 0; cin >> n; vector<long long> a(n, 0), sum(n, 0); for (int i = 0; i < n; i++) { cin >> a[i]; } sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = a[i] + sum[i - 1]; if (sum[i - 1] > 0) { if (sum[i] >= 0) { cnt += sum[i] + 1; sum[i] -= sum[i] + 1; } } else { if (sum[i] <= 0) { cnt += abs(sum[i]) + 1; sum[i] += abs(sum[i]) + 1; } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int n; cin >> n; int a[n]; for (int i = 0; i < (int)(n); i++) { cin >> a[i]; } int ans = 1000000000; for (int p = 0; p <= 1; p++) { int tmpans = 0; int sum = 0; for (int i = 0; i < (int)(n); i++) { if (i % 2 == p) { if (a[i] + sum <= 0) { tmpans += 1 - (a[i] + sum); sum = 1; } else { sum = a[i] + sum; } } else { if (a[i] + sum >= 0) { tmpans += 1 + a[i] + sum; sum = -1; } else { sum = a[i] + sum; } } } ans = min(ans, tmpans); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int iy[] = {0, 0, 1, -1}; int ix[] = {1, -1, 0, 0}; int n, sum[10001]; long long int a[10001], ans; int main() { cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } sum[0] = a[0]; for (int i = 1; i < n; i++) { sum[i] = sum[i - 1] + a[i]; if (sum[i - 1] > 0 && sum[i] > 0) { ans += sum[i] + 1; sum[i] = -1; for (int j = i + 1; j < n; j++) { a[i] -= sum[i] + 1; } } else if (sum[i - 1] < 0 && sum[i] < 0) { ans += -sum[i] + 1; sum[i] = 1; for (int j = i + 1; j < n; j++) { a[i] += -sum[i] + 1; } } else if (sum[i] == 0) { if (sum[i - 1] > 0) { ans++; sum[i] = -1; for (int j = i + 1; j < n; j++) { a[i]--; } } else { ans++; sum[i] = 1; for (int j = i + 1; j < n; j++) { a[i]++; } } } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> List(n); for (int i = 0; i < n; i++) { cin >> List.at(i); } int cntA, cntB, SignA, SignB; cntA = cntB = 0; ; for (int i = 0; i < n; i++) { if (i == 0) { if (List.at(i) > 0) { SignA = List.at(i); SignB = -1; cntB += abs(List.at(i)) + 1; } else { SignB = List.at(i); SignA = 1; cntA += abs(List.at(i)) + 1; } continue; } if (SignA > 0) { if (SignA + List.at(i) >= 0) { cntA += abs(SignA + List.at(i)) + 1; SignA = -1; } else { SignA += List.at(i); } if (SignB + List.at(i) <= 0) { cntB += abs(SignB + List.at(i)) + 1; SignB = 1; } else { SignB += List.at(i); } } else { if (SignA + List.at(i) <= 0) { cntA += abs(SignA + List.at(i)) + 1; SignA = 1; } else { SignA += List.at(i); } if (SignB + List.at(i) >= 0) { cntB += abs(SignB + List.at(i)) + 1; SignB = -1; } else { SignB += List.at(i); } continue; } } cout << min(cntA, cntB) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N, count = 0; cin >> N; vector<int> A(N); for (int i = 0; i < N; i++) cin >> A[i]; int su = A[0]; for (int i = 1; i < N; i++) { while (((su > 0) == (su + A[i] > 0)) || su + A[i] == 0) { if (su + A[i] == 0) { if (su > 0) A[i]--; else A[i]++; } else if (su + A[i] > 0) { A[i]--; } else { A[i]++; } count++; } su += A[i]; } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int,input().split())) P =[] if a[0]>0: P.append(1) else: P.append(-1) for i in range(n-1): P.append(-P[i]) S = [] S.append(a[0]) cnt = 0 for i in range(1,n): if (S[i-1] + a[i])*P[i]<=0: cnt += abs(P[i]-S[i-1]-a[i]) a[i] = P[i]-S[i-1] S.append(S[i-1]+a[i]) print(cnt)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a(n); for (long long i = 0; i < n; i++) cin >> a[i]; vector<long long> c(a.begin(), a.end()); long long ans = LLONG_MAX; long long csum = 0; long long num = 0; bool is_positive = true; for (long long i = 0; i < n; i++) { csum += c[i]; if (is_positive) { if (csum < 0) { num += abs(1 - csum); csum = 1; } } else { if (csum > 0) { num += abs(csum + 1); csum = -1; } } is_positive = !is_positive; } ans = min(ans, num); csum = 0; num = 0; is_positive = false; for (long long i = 0; i < n; i++) { csum += c[i]; if (is_positive) { if (csum <= 0) { num += abs(1 - csum); csum = 1; } } else { if (csum >= 0) { num += abs(csum + 1); csum = -1; } } is_positive = !is_positive; } ans = min(ans, num); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; long long b[n]; for (int i = 0; i < n; i++) { cin >> a[i]; } b[0] = (long long)a[0]; for (int i = 1; i < n; i++) { b[i] = b[i - 1] + a[i]; } long long cnt1 = 0; long long cnt2 = 0; for (int i = 0; i < n; i += 2) { if (b[i] <= 0) { cnt1 += 1 - b[i]; } } for (int i = 1; i < n; i += 2) { if (0 <= b[i]) { cnt1 += 1 + b[i]; } } for (int i = 0; i < n; i += 2) { if (0 <= b[i]) { cnt2 += 1 + b[i]; } } for (int i = 1; i < n; i += 2) { if (b[i] <= 0) { cnt2 += 1 - b[i]; } } long long ans = min(cnt1, cnt2); cout << ans; cout << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> v(n); for (int i = 0; i < n; i++) { cin >> v[i]; } long long sum; long long ans = 10000000; long long ans_temp; sum = 0; ans_temp = 0; for (int i = 0; i < n; i++) { sum += v[i]; if (i % 2 == 1) { if (sum <= 0) { ans_temp += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans_temp += 1 + sum; sum = -1; } } } ans = min(ans, ans_temp); sum = 0; ans_temp = 0; for (int i = 0; i < n; i++) { sum += v[i]; if (i % 2 == 0) { if (sum <= 0) { ans_temp += 1 - sum; sum = 1; } } else { if (sum >= 0) { ans_temp += 1 + sum; sum = -1; } } } ans = min(ans, ans_temp); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); int ans=0; int ans2=0; int[] f = new int[n]; for(int i=0;i<n;i++) f[i] = sc.nextInt(); int sum1 = f[0]; int sum2 = f[0]; for(int i=0;i<n-1;i++) { sum2 += f[i+1]; if(sum1*sum2 > 0) { ans += Math.abs(sum2)+1; if(sum2 >0) sum2 = -1; else sum2 = 1; }else if(sum2 == 0) { ans += 1; if(sum1 > 0) sum2 = -1; else sum2 = 1; } sum1 = sum2; } sum1 = f[0]; sum2 = f[0]; for(int i=0;i<n-1;i++) { sum2 += f[i+1]; if(sum1*sum2 > 0) { ans2 += Math.abs(sum2)+1; if(sum2 >0) sum2 = -1; else sum2 = 1; }else if(sum2 == 0) { ans2 += 1; if(sum1 < 0) sum2 = -1; else sum2 = 1; } sum1 = sum2; } System.out.println(Math.min(ans,ans2)); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split( ))) #前から貪欲でよいか #a[0]を正か負に定めて貪欲 #a[0]が正と仮定してよい if a[0]<0: for i in range(n): a[i]*=-1 #場合分け用 a2 = [a[i] for i in range(n)] ans1 = 0 if not a[0]: ans1 += 1 a[0] = 1 sm = a[0] for i in range(1,n): sm2 = sm + a[i] #print(sm,sm2) if sm2*sm>0: if sm<0:#sm+a[i]=1 ans1 += abs((1-sm)-a[i]) a[i]=1-sm sm = 1 else:#sm+a[i] = -1 ans1 += abs(-1-sm-a[i]) a[i]=-1-sm sm = -1 else: sm=sm2 ans2 = abs(a2[0]+1) a2[0]=-1 sm = -1 for i in range(1,n): sm2 = sm + a2[i] if sm2*sm>0: if sm<0:#sm+a[i]=1 ans2 += abs((1-sm)-a[i]) a2[i] = 1-sm sm = 1 else:#sm+a[i] = -1 ans2 += abs(-1-sm-a[i]) a2[i]=-1-sm sm = -1 else: sm =sm2 print(min(ans1,ans2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
5 3 -6 4 -5 7
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> vector; long long temp; for (int i = 0; i < n; i++) { cin >> temp; vector.push_back(temp); } long long answer1 = 0; long long answer2 = 0; long long sum1 = 0; long long sum2 = 0; for (int i = 0; i < n; i++) { if (i == 0) { if (vector[0] > 0) sum1 = vector[0]; else { sum1 = vector[0]; while (sum1 <= 0) { sum1++; answer1++; } } } else if (sum1 < 0) { sum1 += vector[i]; if (sum1 < 0) { while (sum1 <= 0) { sum1++; answer1++; } } } else { sum1 += vector[i]; if (sum1 > 0) { while (sum1 >= 0) { sum1--; answer1++; } } } } for (int i = 0; i < n; i++) { if (i == 0) { if (vector[0] < 0) sum2 = vector[0]; else { sum2 = vector[0]; while (sum2 >= 0) { sum2--; answer2++; } } } else if (sum2 < 0) { sum2 += vector[i]; if (sum2 < 0) { while (sum2 <= 0) { sum2++; answer2++; } } } else { sum2 += vector[i]; if (sum2 > 0) { while (sum2 >= 0) { sum2--; answer2++; } } } } cout << min(answer1, answer2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=input() a=list(map(int,input().split())) ans=10**18 for s in -a[1]+1,a[0],-a[1]-1: c=abs(a[0]-s) for i in a[1:]: if s<0: b=-s+1 c+=max(0,b-i) s+=max(i,b) else: b=-s-1 c+=max(0,i-b) s+=min(i,b) ans=min(ans,c) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; using namespace std; int main() { int n; cin >> n; long long a[n]; long long sums[n]; cin >> a[0]; sums[0] = a[0]; for (int i = 1; i < n; ++i) { cin >> a[i]; sums[i] = sums[i - 1] + a[i]; } long long cnt = 0; long long v = 0; long long diff; if (sums[0] == 0) { if (sums[1] >= 0) { diff = -1 - sums[0]; sums[0] += diff; v += diff; cnt += abs(diff); } else { diff = 1 - sums[0]; sums[0] += diff; v += diff; cnt += abs(diff); } } if (sums[0] * sums[1] > 0) { if (sums[0] >= 0 && sums[0] < sums[1]) { diff = -1 - sums[0]; sums[0] += diff; v += diff; cnt += abs(diff); } else if (sums[0] < 0 && sums[0] > sums[1]) { diff = 1 - sums[0]; sums[0] += diff; v += diff; cnt += abs(diff); } } for (int i = 1; i < n; i++) { sums[i] += v; if (sums[i - 1] * sums[i] >= 0) { if (sums[i - 1] < 0) { diff = 1 - sums[i]; } else { diff = -1 - sums[i]; } sums[i] += diff; v += diff; cnt += abs(diff); } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(x) for x in input().split()] def solve(A, N): S = [0]*N answer = 0 total = 0 for i in range(N): total += A[i] S[i] = total if total == 0: d = 1 if S[i-1] < 0 else -1 A[i] += d answer += 1 total += d else: # S[i-1] < 0 and S[i] > 0 # S[i-1] > 0 and S[i] < 0 # S[i-1] > 0 and S[i] > 0 if S[i-1] < 0 and S[i] < 0: answer += -S[i]+1 total += -S[i]+1 elif S[i-1] > 0 and S[i] > 0: answer += S[i]+1 total += -(S[i]+1) S[i] = total #print(i, answer, "S[i-1]=%d"%S[i-1], "S[i]=%d"%S[i], sep="\t") return answer if A[0] == 0: A[0] = -1 m1 = solve(A, N) + 1 A[0] = +1 m2 = solve(A, N) + 1 print(min(m1, m2)) else: print(solve(A, N))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using P = pair<int, int>; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (n); ++i) cin >> a[i]; int sum = 0; int sign = 1; int count = 0; int ans = INT_MAX; for (int j = 0; j < (2); ++j) { if (j == 0) sign = 1; else sign = -1; sum = 0; count = 0; for (int i = 0; i < (n); ++i) { sum += a[i]; if ((sign > 0) && (sum <= 0)) { count += (1 - sum); sum = 1; } else if ((sign < 0) && (sum >= 0)) { count += abs(-1 - sum); sum = -1; } sign = sign == 1 ? -1 : 1; } if (ans > count) ans = count; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) s = a[0] count = 0 total_delta = 0 if a[0] == 0: delta = -1 * (a[1] // abs(a[1])) total_delta += delta count += 1 for i in range(1, n): sign = (s + total_delta) // abs(s + total_delta) if (s + a[i] + total_delta) * sign > 0 : delta = (sign * -1) - (s + a[i] + total_delta) total_delta += delta count += abs(delta) elif (s + a[i] + total_delta) == 0: total_delta += sign * -1 count += 1 s += a[i] print(count)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; using pll = pair<ll, ll>; const ll MOD = 1e9 + 7; const ll LINF = 1LL << 60; const int INF = 1e9 + 7; vector<vector<ll>> g(100010); vector<ll> dist(100010); int main() { ll n; cin >> n; ll sum = 0; ll score = 0; for (ll i = 0; i < n; ++i) { ll a; cin >> a; if (i == 0) { sum += a; continue; } if ((sum < 0 && sum + a <= 0) || (sum > 0 && sum + a >= 0)) { score += 1 + abs(sum + a); sum = -1 * (sum / sum); } else { sum += a; } } cout << score << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) ai=input().split() ai=[int(x) for x in ai] Sn=[0] op=0 for i in range(n-1): Si=Sn[i]+ai[i] Sip=Si+ai[i+1] if(Si>0 and Sip>0): if(Sip>=Si): op+=Si+1 Si=-Si-1 elif(Sip<Si): op+=Sip+1 ai[i + 1]+=-Sip-1 if(Si < 0 and Sip < 0): if(-Sip>=-Si): op += -Si + 1 Si = -Si + 1 elif(-Sip<-Si): op += -Sip + 1 ai[i + 1]+=-Sip+1 if(Si==0): Si+=1 op+=1 Sn.append(Si) Si=Sn[n-1]+ai[n-1] if(Si==0): Si+=1 op+=1 print(op)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { long N; std::cin >> N; long long a[N]; for (long i = 0; i < N; i++) std::cin >> a[i]; long long p = 0, n = 0; long long sum = 0; if (a[0] < 0) { p += -a[0] + 1; sum = 1; } else { sum += a[0]; } for (long i = 1; i < N; i++) { if (i % 2 == 0) { if (sum + a[i] <= 0) { p += -(sum + a[i]) + 1; sum = 1; } else sum += a[i]; } else { if (sum + a[i] >= 0) { p += (sum + a[i]) + 1; sum = -1; } else { sum += a[i]; } } std::cerr << "sum: " << sum << std::endl; std::cerr << "p: " << p << std::endl; } sum = 0; if (a[0] > 0) { n += a[0] + 1; sum = -1; } else { sum += a[0]; } for (long i = 1; i < N; i++) { if (i % 2 == 0) { if (sum + a[i] >= 0) { n += (sum + a[i]) + 1; sum = -1; } else sum += a[i]; } else { if (sum + a[i] <= 0) { n += -(sum + a[i]) + 1; sum = 1; } else { sum += a[i]; } } std::cerr << "sum: " << sum << std::endl; std::cerr << "n: " << n << std::endl; } std::cout << std::min(p, n) << std::endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = [int(_) for _ in input().split()] def counter(dp): count = 0 for i in range(1, N): is_positive = 2 * (dp > 0) - 1 dp += A[i] if dp * is_positive >= 0: count += abs(dp)+1 dp = -is_positive return count print(min(counter(A[0]), abs(A[0])+1+counter(A[0] <= 0)))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; ll ts = 1000000007; ll sum, sum2, ans, i; int main() { ios::sync_with_stdio(false); cin.tie(0); ll n; cin >> n; vector<ll> a(n); for (ll i = 0; i < n; i++) cin >> a[i]; bool can = false; ll ans = 0, sum = a[0], nextSum = a[0]; if (a[0] == 0) { ans = 1; a[0] = 1; } for (int i = 1; i < n; i++) { nextSum += a[i]; if (sum < 0 && nextSum < 0 || sum > 0 && nextSum > 0 || nextSum == 0) { ll N; if (nextSum >= 0) N = nextSum + 1; if (nextSum < 0) N = nextSum - 1; ans += abs(N); if (a[0] >= 0 && i % 2 == 1 || a[0] <= 0 && i % 2 == 0) nextSum = -1; else nextSum = 1; sum = nextSum; } else { sum = nextSum; } } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
N = int(input()) A = list(map(int, input().split())) def sol(S): ret = 0 for a in A[1:]: b = a if S * (S + b) > 0: b = (abs(S) + 1) * (1 if S < 0 else -1) if S + b == 0: b = b - 1 if b < 0 else b + 1 ret += abs(b - a) S += b return ret ans = min( sol(A[0]), (sol(0) + abs(A[0])) if A[0] < 0 else (sol(-1) + abs(A[0]) + 1) ) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; bool ispositive(long long num) { if (num > 0) return true; else if (num < 0) return false; } int main() { int n; cin >> n; long long sum = 0, k, ans = 0; cin >> k; sum = k; bool f = (ispositive(k)) ? true : false; for (int i = 0; i < n - 1; i++) { cin >> k; sum += k; if (sum == 0 && f) { sum--; ans++; } else if (sum == 0 && !f) { sum++; ans++; } else if (f & ispositive(sum)) { ans += (sum + 1); sum = -1; } else if (!f & !ispositive(sum)) { ans += abs(sum) + 1; sum = 1; } f = !f; } cout << ans << "\n"; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); vector<long long> sum1(n), sum2(n); for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { sum1[i] = a[i]; } else { sum1[i] = sum1[i - 1] + a[i]; } sum2[i] = sum1[i]; } long long count1 = 0, count2 = 0; for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum1[i] <= 0) { long long add = 1 - sum1[i]; count1 += add; for (int j = i + 1; j < n; j++) { sum1[j] += add; } } } else { if (sum1[i] >= 0) { long long add = sum1[i] + 1; count1 += add; for (int j = i + 1; j < n; j++) { sum1[j] -= add; } } } } for (int i = 0; i < n; i++) { if (i % 2 == 0) { if (sum2[i] >= 0) { long long add = sum2[i] + 1; count2 += add; for (int j = i + 1; j < n; j++) { sum2[j] -= add; } } } else { if (sum2[i] <= 0) { long long add = 1 - sum2[i]; count2 += add; for (int j = i + 1; j < n; j++) { sum2[j] += add; } } } } long long ans = min(count1, count2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using namespace std; int main() { int n; cin >> n; int a[n]; int sum = 0; for (long long i = 0; i < n; i++) { int x; cin >> x; sum += x; a[i] = sum; } int f = a[0] / abs(a[0]); long long int ans = 0; long long int fix = 0; for (long long i = 0; i < n; i++) { if (f == 1) { if (a[i] + fix <= 0) { ans += 1 - (fix + a[i]); fix += 1 - (fix + a[i]); } f = -1; } else { if (a[i] + fix >= 0) { ans += (fix + a[i]) + 1; fix -= ((fix + a[i]) + 1); } f = 1; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long long func(long long a[], int n) { long long cnt = 0; long long s = 0; for (int i = 1; i < n; i++) { s += a[i - 1]; long long t = 0, u; if (s > 0) { u = (-1) * s - 1; if (u < a[i]) { t = a[i] - u; a[i] = u; } } else { u = (-1) * s + 1; if (u > a[i]) { t = u - a[i]; a[i] = u; } } cnt += t; } return cnt; } int main() { int n; cin >> n; long long a[n]; for (int i = 0; i < (n); i++) cin >> a[i]; long long cnt1 = func(a, n); int d; if (a[0] > 0) { d = a[0] + 1; a[0] = -1; } else { d = (-1) * a[0] + 1; a[0] = 1; } long long cnt2 = d + func(a, n); cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T> bool chmin(T &a, T b) { if (a > b) { a = b; return 1; } return 0; } template <class T> bool chmax(T &a, T b) { if (a < b) { a = b; return 1; } return 0; } using namespace std; using vint = vector<int>; using vvint = vector<vector<int>>; using ll = long long; using vll = vector<ll>; using vvll = vector<vector<ll>>; using P = pair<ll, ll>; const int inf = 1e9; const ll inf_l = 1e18; const int MAX = 2 * 1e5; const int mod = 1e9 + 7; int main() { int n; cin >> n; vint a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; ll accum = a[0]; ll ans = 0; for (int i = 1; i <= n - 1; i++) { ll tmp = accum + a[i]; ll value = a[i]; if (accum * tmp >= 0) { if (accum > 0) a[i] = -accum - 1; if (accum < 0) a[i] = -accum + 1; } ans += abs(value - a[i]); accum += a[i]; } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } long answer = 0; if (nums[0] == 0) { answer = solve(nums, 0, 0); } else { answer = solve(nums, nums[0], 1); } System.out.println(answer); // // long sum = 0; // long answer = 0; // // for (int i = 0; i < n; i++) { // int a = in.nextInt(); // // if (sum < 0 && sum + a < 0) { // answer += 1 + Math.abs(sum + a); // sum = 1; // } else if (sum > 0 && sum + a > 0) { // answer += 1 + sum + a; // sum = -1; // } else if (sum + a == 0) { // answer++; // if (sum < 0) { // sum = 1; // } else { // sum = -1; // } // } else { // sum += a; // } // } // System.out.println(answer); } public static long solve(int[] nums, long sum, int index) { if (index == nums.length) { return 0; } if (sum < 0 && sum + nums[index] < 0) { return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1); } else if (sum > 0 && sum + nums[index] > 0) { return 1 + sum + nums[index] + solve(nums, -1, index + 1); } else if (sum == 0) { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } else if (sum + nums[index] == 0) { if (sum > 0) { return 1 + solve(nums, -1, index + 1); } else { return 1 + solve(nums, 1, index + 1); } } else { return solve(nums, sum + nums[index], index + 1); } // // else if (sum < 0 && sum + nums[index] > 0) { // return solve(nums, sum + nums[index], index + 1); // } else if (sum > 0 && sum + nums[index] < 0) { // return solve(nums, sum + nums[index], index + 1); // } else { // // sum == 0 or sum + nums[index] == 0 // if (sum == 0) { // return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); // } // // sum + nums[index] == 0 // else { // if (sum < 0) { // return Math.abs(sum) + 1 + solve(nums, 1, index + 1); // } else { // return Math.abs(sum) + 1 + solve(nums, -1, index + 1); // } // } // } // else if (sum + nums[index] == 0) { // if (sum < 0) { // return Math.abs(sum) + 1 + solve(nums, 1, index + 1); // } else if (sum > 0) { // return Math.abs(sum) + 1 + solve(nums, -1, index + 1); // } else { // return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); // } // } else if (sum == 0) { // return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); // } else { // return solve(nums, sum + nums[index], index + 1); // } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 300000000; const long long MOD = 1000000007; long long gcd(long long a, long long b) { if (b == 0) return a; return gcd(b, a % b); } int main() { int n; cin >> n; long long a[100100]; for (int i = 0; i < n; ++i) { cin >> a[i]; } long long ans = INF; for (int i = 0; i < 2; ++i) { long long count = 0; int su = 0; for (int j = 0; j < n; ++j) { su += a[j]; if (i == 0) { if (j % 2 == 0 && su <= 0) { count += abs(-su + 1); su = 1; } else if (j % 2 == 1 && su >= 0) { count += abs(-su - 1); su = 1; } } if (i == 1) { if (j % 2 == 0 && su >= 0) { count += abs(-su + 1); su = 1; } else if (j % 2 == 1 && su <= 0) { count += abs(-su - 1); su = 1; } } } ans = min(ans, count); } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; ++i) { cin >> a[i]; } int sum = 0, res = 0, prevsum = 0; for (int i = 0; i < n; ++i) { sum += a[i]; if (i == 0) { if (n == 1) { if (sum != 0) cout << 0; else cout << 1; return 0; } else if (sum != 0) { prevsum = sum; continue; } if (a[i + 1] > 0) { res += abs(a[i + 1]) + 1; prevsum = -(abs(a[i + 1]) + 1); sum = -(abs(a[i + 1]) + 1); } else if (a[i + 1] < 0) { res += abs(a[i + 1]) + 1; prevsum = (abs(a[i + 1]) + 1); sum = (abs(a[i + 1]) + 1); } else { ++res; } } if (sum > 0 && prevsum < 0 || sum < 0 && prevsum > 0) { prevsum += a[i]; continue; } else { if (sum == 0) { if (prevsum < 0) { ++res; ++sum; prevsum = sum; continue; } else if (prevsum > 0) { --res; --sum; prevsum = sum; continue; } } else if (sum > 0) { res += abs(a[i]) + 1 + abs(prevsum); sum = -1; prevsum = -1; continue; } else { res += abs(prevsum) - abs(a[i]) + 1; sum = 1; prevsum = 1; } } } cout << res; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main(void) { long long n, now = 0, ans = 0; bool flag; scanf("%ld", &n); long long a[n]; scanf("%ld", &a[0]); now = a[0]; if (now < 0) { flag = false; } else { flag = true; } for (long long i = 1; i < n; i++) { scanf("%ld", &a[i]); now += a[i]; printf("%ld\n", now); if (flag) { if (now >= 0) { ans += (-1 - now) * (-1); now = -1; } flag = false; } else { if (now <= 0) { ans += 1 - now; now = 1; } flag = true; } } printf("%ld", ans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; // ABC 6-C // http://abc006.contest.atcoder.jp/tasks/abc006_3 public class Main { public static void main (String[] args) throws java.lang.Exception { Scanner in = new Scanner(System.in); int n = in.nextInt(); int[] nums = new int[n]; for (int i = 0; i < n; i++) { nums[i] = in.nextInt(); } long answer = 0; if (nums[0] == 0) { answer = solve(nums, 0, 0); } else { answer = solve(nums, nums[0], 1); } System.out.println(answer); // // long sum = 0; // long answer = 0; // // for (int i = 0; i < n; i++) { // int a = in.nextInt(); // // if (sum < 0 && sum + a < 0) { // answer += 1 + Math.abs(sum + a); // sum = 1; // } else if (sum > 0 && sum + a > 0) { // answer += 1 + sum + a; // sum = -1; // } else if (sum + a == 0) { // answer++; // if (sum < 0) { // sum = 1; // } else { // sum = -1; // } // } else { // sum += a; // } // } // System.out.println(answer); } public static long solve(int[] nums, long sum, int index) { if (index == nums.length) { return 0; } if (sum < 0 && sum + nums[index] < 0) { return 1 + Math.abs(sum + nums[index]) + solve(nums, 1, index + 1); } else if (sum > 0 && sum + nums[index] > 0) { return 1 + sum + nums[index] + solve(nums, -1, index + 1); } else if (sum + nums[index] == 0) { if (sum < 0) { return Math.abs(sum) + 1 + solve(nums, 1, index + 1); } else if (sum > 0) { return Math.abs(sum) + 1 + solve(nums, -1, index + 1); } else { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } } else if (sum == 0) { return 1 + Math.min(solve(nums, 1, index + 1), solve(nums, -1, index + 1)); } else { return solve(nums, sum + nums[index], index + 1); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long func(vector<long long int>& s, vector<int>& hugo, int k) { long long int ret = 0; for (int i = 1; i < n; i++) { if (s[i] == k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret++; k--; } else { hugo[i] = 0; ret++; k++; } } else if (s[i] > k) { if (hugo[i - 1] == 0) { hugo[i] = 1; ret += s[i] - k + 1; k += s[i] - k + 1; } else { hugo[i] = 0; } } else { if (hugo[i - 1] == 0) { hugo[i] = 1; } else { hugo[i] = 0; ret += k - s[i] + 1; k -= k - s[i] + 1; } } } return ret; } void solve() { cin >> n; vector<long long int> v(n), sum(n), sum2(n); for (int i = 0; i < n; i++) { cin >> v[i]; if (i == 0) sum[i] = v[i]; else sum[i] = sum[i - 1] + v[i]; } vector<int> hugo(n); sum2 = sum; long long int ans = 0; if (sum[0] == 0) { vector<int> hugo2(n); hugo[0] = 0; ans = min(func(sum, hugo, -1), func(sum2, hugo2, 1)); } else if (sum[0] > 0) { hugo[0] = 0; ans = func(sum, hugo, 0); } else { hugo[0] = 1; ans = func(sum, hugo, 0); } cout << ans << endl; return; } int main() { solve(); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = [int(x) for x in input().split()] temp = 0 count1 = 0 count2 = 0 if a[0] == 0: a[0] = 1 count1 = 1 sum = a[0] for i in range(1, n): if abs(a[i]) <= abs(sum) or a[i] * sum >= 0: if sum > 0: temp = -1 * abs(sum) - 1 count1 += abs(temp - a[i]) else: temp = abs(sum) + 1 count1 += abs(temp - a[i]) a[i] = temp sum += a[i] count2 = abs(a[0]) + 1 if a[0] > 0: a[0] = -1 else: a[0] = 1 sum = a[0] for i in range(1, n): if abs(a[i]) <= abs(sum) or a[i] * sum >= 0: count2 += abs(sum - a[i]) + 1 if sum > 0: temp = -1 * abs(sum) - 1 count2 += abs(temp - a[i]) else: temp = abs(sum) + 1 count2 += abs(temp - a[i]) a[i] = temp sum += a[i] print(min(count1, count2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int N, A[100000]; int main() { cin >> N; for (int i = 0; i < N; i++) { cin >> A[i]; } long long prev = A[0], sum = A[0], cnt = 0; for (int i = 1; i < N; i++) { sum += A[i]; if (sum == 0) { cnt++; if (prev > 0) { sum = -1; } else { sum = 1; } } else if (sum > 0 && prev > 0) { cnt += sum + 1; sum = -1; } else if (sum < 0 && prev < 0) { cnt += abs(sum) + 1; sum = 1; } prev = sum; } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } long long cur1 = 0, cur2 = 0; int a1 = 0, a2 = 0; for (int i = 0; i < n; ++i) { cur1 += a[i]; cur2 += a[i]; if (i % 2 == 0) { if (cur1 >= 0) { a1 += cur1 + 1; cur1 = -1; } if (cur2 <= 0) { a2 += -cur2 + 1; cur2 = 1; } } else { if (cur1 <= 0) { a1 += -cur1 + 1; cur1 = 1; } if (cur2 >= 0) { a2 += cur2 + 1; cur2 = -1; } } } cout << min(a1, a2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { cin >> a.at(i); } int nzp = 0; for (int i = 0; i < (int)(n); i++) { if (a.at(i) != 0) { nzp = i; break; } if (i == n - 1) { cout << a.size() * 2 - 1 << endl; return 0; } } if (a.at(nzp) < 0) { for (int i = (nzp); i < (int)(n); i++) { a.at(i) *= -1; } } if (nzp == n - 1) { cout << 2 * nzp - 1 << endl; return 0; } int cnt = 0; int sum = 0; if (a.at(nzp) + a.at(nzp + 1) > 0) { if (a.at(nzp) <= a.at(nzp + 1)) { cnt = max(2 * nzp - 1, 0) + a.at(nzp) + 2; sum = -1; } } else { cnt = max(2 * nzp - 1, 0); if (a.at(nzp) == 1 && nzp > 0) { cnt++; a.at(nzp)++; } if (nzp > 0) { sum = a.at(nzp) - 1; } else { sum = a.at(nzp); } } for (int i = (nzp + 1); i < (int)(n); i++) { if (sum > 0) { if (sum + a.at(i) >= 0) { cnt += sum + a.at(i) + 1; sum = -1; } else { sum += a.at(i); } } else { if (sum + a.at(i) <= 0) { cnt += -1 * (sum + a.at(i)) + 1; sum = 1; } else { sum += a.at(i); } } } cout << cnt << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; int sum = 0; int ans1 = 0; int ans2 = 0; int i, j; int t = 1; int main() { cin >> n; int a[100010]; for (i = 0; i < n; i++) { cin >> a[i]; sum += a[i]; if (sum * t <= 0) { ans1 += abs(sum - t); sum = t; } t *= -1; } t = -1; sum = 0; for (i = 0; i < n; i++) { sum += a[i]; if (sum * t <= 0) { ans2 += abs(sum - t); sum = t; } t *= -1; } printf("%d\n", min(ans1, ans2)); cin >> i; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = input().split() a = [int(m) for m in a] q = [] k = 0 kco = 0 #+- for i in range(n): if i == 0: if a[i] > 0: q.append(a[i]) else: q.append(1) kco += 1 - a[i] k += q[i] else: k += a[i] if i % 2 != 0: if k < 0: q.append(a[i]) else: q.append(a[i]-k-1) kco += k + 1 k += q[i] - a[i] if i % 2 == 0: if k > 0: q.append(a[i]) else: q.append(a[i]-k+1) kco += -k + 1 k += q[i] - a[i] xco = kco q = [] k = 0 kco = 0 #-+ for i in range(n): if i == 0: if a[i] < 0: q.append(a[i]) else: q.append(-1) kco += 1 - a[i] k += q[i] else: k += a[i] if i % 2 == 0: if k < 0: q.append(a[i]) else: q.append(a[i]-k-1) kco += k + 1 k += q[i] - a[i] if i % 2 != 0: if k > 0: q.append(a[i]) else: q.append(a[i]-k+1) kco += -k + 1 k += q[i] - a[i] yco = kco print(min(xco, yco))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main(void) { int64_t n; int64_t i; int64_t sum; bool default_flag; bool plus_flag, minus_flag; int64_t ope_count; cin >> n; vector<int64_t> a(n); for (i = 0; i < n; i++) { cin >> a.at(i); } sum = 0; ope_count = 0; default_flag = true; plus_flag = false; minus_flag = false; for (i = 0; i < n; i++) { sum += a.at(i); if (default_flag == true) { default_flag = false; if (a.at(i) > a.at(i + 1)) { while (sum >= 0) { ope_count++; sum--; } minus_flag = true; } else if (a.at(i) <= a.at(i + 1)) { while (sum <= 0) { ope_count++; sum++; } plus_flag = true; } } else if (plus_flag == true) { while (sum >= 0) { ope_count++; sum--; } plus_flag = false; minus_flag = true; } else if (minus_flag == true) { while (sum <= 0) { ope_count++; sum++; } plus_flag = true; minus_flag = false; } } cout << ope_count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long n; cin >> n; vector<long long> a; for (long long i = 0; i < n; i++) { long long ai; cin >> ai; a.push_back(ai); } long long count = 0; if (a.at(0) == 0) { a.at(0) = 1; count = 1; } long long sum = a.at(0); for (long long i = 0; i < n - 1; i++) { long long next_sum = sum + a.at(i + 1); if (sum > 0 && next_sum >= 0) { long long diff = 1 + next_sum; count += diff; a.at(i + 1) -= diff; next_sum -= diff; } else if (sum < 0 && next_sum <= 0) { long long diff = 1 - next_sum; count += diff; a.at(i + 1) += diff; next_sum += diff; } sum = next_sum; } cout << count << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int64_t sum_from1tok(vector<int> vec, int k) { int64_t sum = 0; for (int i = 0; i < (int)(k); i++) { sum += vec.at(i); } return sum; } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) { int num; cin >> num; a.at(i) = num; } int afirst = a.at(0); int seicount = 0; int64_t seisum = 0; if (a.at(0) > 0) { seisum = a.at(0); for (int i = 1; i < n; i++) { seisum += a.at(i); if (i % 2 != 0) { if (seisum >= 0) { seicount += abs(seisum) + 1; seisum = -1; } } else { if (seisum <= 0) { seicount += abs(seisum) + 1; seisum = 1; } } } } else if (a.at(0) < 0) { seicount = abs(a.at(0)) + 1; a.at(0) = 1; seisum = 1; for (int i = 1; i < n; i++) { seisum += a.at(i); if (i % 2 != 0) { if (seisum >= 0) { seicount += abs(seisum) + 1; seisum = -1; } } else { if (seisum <= 0) { seicount += abs(seisum) + 1; seisum = 1; } } } } else { seisum = 1; a.at(0) = 1; seicount = 1; for (int i = 1; i < n; i++) { seisum += a.at(i); if (i % 2 != 0) { if (seisum >= 0) { seicount += abs(seisum) + 1; seisum = -1; } } else { if (seisum <= 0) { seicount += abs(seisum) + 1; seisum = 1; } } } } a.at(0) = afirst; int fucount = 0; int64_t fusum = 0; if (a.at(0) > 0) { fucount = abs(a.at(0)) + 1; a.at(0) = -1; fusum = -1; for (int i = 1; i < n; i++) { fusum += a.at(i); if (i % 2 != 0) { if (fusum <= 0) { fucount += abs(fusum) + 1; fusum = 1; } } else { if (fusum >= 0) { fucount += abs(fusum) + 1; fusum = -1; } } } } else if (a.at(0) < 0) { for (int i = 1; i < n; i++) { fusum += a.at(i); if (i % 2 != 0) { if (fusum <= 0) { fucount += abs(fusum) + 1; fusum = 1; } } else { if (fusum >= 0) { fucount += abs(fusum) + 1; fusum = -1; } } } } else { fusum = -1; a.at(0) = -1; fucount = 1; for (int i = 1; i < n; i++) { fusum += a.at(i); if (i % 2 != 0) { if (fusum <= 0) { fucount += abs(fusum) + 1; fusum = 1; } } else { if (fusum >= 0) { fucount += abs(fusum) + 1; fusum = -1; } } } } cout << min(seicount, fucount) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main() { ll acc; ll N; vector<ll> A; cin >> N; for (ll i = 0; i < N; i++) { ll tmp; cin >> tmp; A.push_back(tmp); } ll ans_pos = 0; if (A[0] <= 0) { acc = 1; ans_pos += abs(A[0]) + 1; } else { acc = A[0]; } for (ll i = 1; i < N; i++) { ll next = acc + A[i]; if (acc * next >= 0) { ans_pos += abs(next) + 1; next = -1 * (acc / abs(acc)); } acc = next; } ll ans_neg = 0; acc = A[0]; if (acc >= 0) { acc = 1; ans_neg += abs(A[0]) + 1; } else { acc = A[0]; } for (ll i = 1; i < N; i++) { ll next = acc + A[i]; if (acc * next >= 0) { ans_neg += abs(next) + 1; next = -1 * (acc / abs(acc)); } acc = next; } ll ans = min(ans_pos, ans_neg); cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int Max = 1e5 + 5; int lst[Max]; int main() { long long n; cin >> n; long long res = 0, sum = 0; for (int i = 1; i <= n; i++) scanf("%d", &lst[i]); if (lst[2] >= 0 && lst[1] == 0) { sum = -1; res++; } else if (lst[1] == 0 && lst[2] < 0) { sum = 1; res++; } else { sum = lst[1]; } if (sum > 0) { for (int i = 2; i <= n; i++) { sum += lst[i]; if (i % 2 == 1 && sum <= 0) { res += (1 - sum); sum = 1; } else if (i % 2 == 0 && sum >= 0) { res += (sum + 1); sum = -1; } } } else { for (int i = 2; i <= n; i++) { sum += lst[i]; if (i % 2 == 0 && sum <= 0) { res += (1 - sum); sum = 1; } else if (i % 2 == 1 && sum >= 0) { res += (sum + 1); sum = -1; } } } cout << res; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
# c_WA2.py よりはWAが減った n = int(input()) a = [int(a) for a in input().split()] times = 0 sum_prefix = a[0] for i in range(1, n): if sum_prefix < 0: if sum_prefix + a[i] > 0: sum_prefix += a[i] else: times += 1 - (sum_prefix + a[i]) sum_prefix = 1 elif sum_prefix > 0: if sum_prefix + a[i] < 0: sum_prefix += a[i] else: times += abs(-1 - (sum_prefix + a[i])) sum_prefix = -1 times2 = 0 if a[0] > 0: times2 += abs(-1 - a[0]) sum_prefix = -1 else: times2 += 1 - a[0] sum_prefix = 1 for i in range(1, n): if sum_prefix < 0: if sum_prefix + a[i] > 0: sum_prefix = sum_prefix + a[i] else: times2 += 1 - (sum_prefix + a[i]) sum_prefix = 1 elif sum_prefix > 0: if sum_prefix + a[i] < 0: sum_prefix = sum_prefix + a[i] else: times2 += abs(-1 - (sum_prefix + a[i])) sum_prefix = -1 print(min(times, times2))
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long s1 = 0, s2 = 0, r1 = 0, r2 = 0, ans; for (int i = 0; i < n; i++) { s1 += a[i]; if ((i & 1) && s1 <= 0) { r1 = r1 + 1 - s1; s1 = 1; } else if (!(i & 1) && s1 >= 0) { r1 = r1 + s1 + 1; s1 = -1; } s2 += a[i]; if (!(i & 1) && s1 <= 0) { r2 = r2 + 1 - s2; s2 = 1; } else if ((i & 1) && s1 >= 0) { r2 = r2 + s2 + 1; s2 = -1; } } ans = min(r1, r2); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.ArrayList; import java.util.List; import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); int n = sc.nextInt(); List<Integer> alist = new ArrayList<>(); for (int i = 0; i < n; i++) { alist.add(sc.nextInt()); } int cntOdd = 0; int cntEvn = 0; int sum = 0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); //iが偶数のとき正 if(i%2 == 0) { if(sum > 0) { continue; } else { while(sum <= 0) { int calc = 1; sum += calc; cntEvn++; } } } else { if(sum < 0) { continue; } else { while(sum >= 0) { int calc = -1; sum += calc; cntEvn++; } } } } sum =0; for (int i = 0; i < alist.size(); i++) { sum += alist.get(i); //iが偶数のとき負 if (i%2 == 0) { if(sum < 0) { continue; } else { while(sum >= 0) { int calc = -1; sum += calc; cntOdd++; } } } else { if(sum > 0) { continue; } else { while(sum <= 0) { int calc = 1; sum += calc; cntOdd++; } } } } if(cntOdd <= cntEvn) { System.out.println(cntOdd); } else { System.out.println(cntEvn); } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; template <class T> bool chmax(T& a, const T& b) { if (a < b) { a = b; return 1; } return 0; } template <class T> bool chmin(T& a, const T& b) { if (b < a) { a = b; return 1; } return 0; } template <typename T1, typename T2> pair<T1, T2> operator+(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first + r.first, l.second + r.second); } template <typename T1, typename T2> pair<T1, T2> operator-(const pair<T1, T2>& l, const pair<T1, T2>& r) { return make_pair(l.first - r.first, l.second - r.second); } const long long int MOD = 1e9 + 7, INF = 1e18; long long int N, arr[100000], sums[100000]; int main() { cin.tie(0); ios_base::sync_with_stdio(false); cin >> N; for (long long int i = (0), i_end_ = (N); i < i_end_; i++) { cin >> arr[i]; } bool flag; long long int sum = 0; long long int ans = 0; sums[0] = arr[0]; for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) { sums[i + 1] = arr[i + 1] + sums[i]; } if (sums[0] > 0) flag = true; else flag = false; for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) { sums[i + 1] += sum; if (flag ^ ((i % 2) == 1)) { if (sums[i + 1] >= 0) { sum -= (sums[i + 1] + 1); ans += abs(sums[i + 1] + 1); sums[i + 1] -= (sums[i + 1] + 1); } } else { if (sums[i + 1] <= 0) { sum -= (sums[i + 1] - 1); ans += abs(sums[i + 1] - 1); sums[i + 1] -= (sums[i + 1] - 1); } } } long long int tmp = ans; sum = 0; ans = 0; sums[0] = arr[0]; for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) { sums[i + 1] = arr[i + 1] + sums[i]; } if (sums[0] >= 0) flag = true; else flag = false; for (long long int i = (0), i_end_ = (N - 1); i < i_end_; i++) { sums[i + 1] += sum; if (flag ^ ((i % 2) == 1)) { if (sums[i + 1] >= 0) { sum -= (sums[i + 1] + 1); ans += abs(sums[i + 1] + 1); sums[i + 1] -= (sums[i + 1] + 1); } } else { if (sums[i + 1] <= 0) { sum -= (sums[i + 1] - 1); ans += abs(sums[i + 1] - 1); sums[i + 1] -= (sums[i + 1] - 1); } } } cout << min(tmp, ans) << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> long long calc(long long *A, long long N, long long start) { long long s = A[0]; long long count = 0; if (s == 0) { count++; s = start; } for (long long i = 1; i < N; i++) { s += A[i]; if (i % 2 == (start == 1 ? 0 : 1)) { if (s <= 0) { count += 1 - s; s = 1; } } else { if (s >= 0) { count += s + 1; s = -1; } } } return count; } int main() { long long N; scanf("%lld", &N); long long *A = (long long *)malloc(N * sizeof(long long)); long long n; long long i = 0; while (scanf("%lld", &n) != EOF) { A[i] = n; i++; } long long can1 = calc(A, N, 1); long long can2 = calc(A, N, -1); printf("%lld", ((can1) < (can2) ? (can1) : (can2))); free(A); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<signed long long> a(n); for (int i = 0; i < n; ++i) { cin >> a[i]; } signed long long ans = 0; if (a[0] == 0) { for (int i = 0; i < n; ++i) { if (a[i] != 0) { if ((a[i] > 0 && i % 2 == 0) || (a[i] < 0 && i % 2 == 1)) { ++ans; a[0] = 1; break; } else { ++ans; a[0] = -1; break; } } else { if (i == n - 1) { ++ans; a[0] = 1; } } } } if (a[0] > 0) { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } else { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } } } else { signed long long sum = a[0]; for (int i = 1; i < n; ++i) { if (i % 2 == 1) { if (sum + a[i] > 0) { sum += a[i]; } else { ans += abs(sum + a[i] - 1); sum = 1; } } else { if (sum + a[i] < 0) { sum += a[i]; } else { ans += sum + a[i] + 1; sum = -1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<long long> vector; long long temp; for (int i = 0; i < n; i++) { cin >> temp; vector.push_back(temp); } long long answer = 0; long long sum = 0; for (int i = 0; i < n; i++) { if (sum == 0) sum += vector[i]; else if (sum < 0) { if (sum + vector[i] > 0) { sum += vector[i]; } else { answer += abs((-1) * sum + 1 - vector[i]); sum = 1; } } else { if (sum + vector[i] < 0) { sum += vector[i]; } else { answer += abs((-1) * sum - 1 - vector[i]); sum = -1; } } } cout << answer << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int sum(int i, vector<int> &a) { if (i == 0) return a[0]; return a[i] + sum(i - 1, a); } int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } int c = 0; for (int i = 0; i < n - 1; i++) { if (sum(i, a) >= 0) { if (sum(i + 1, a) >= 0) { c += abs(-1 - sum(i, a) - a[i + 1]); a[i + 1] = -1 - sum(i, a); } } if (sum(i, a) < 0) { if (sum(i + 1, a) <= 0) { c += abs(1 - sum(i, a) - a[i + 1]); a[i + 1] = 1 - sum(i, a); } } } cout << c << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
import itertools from collections import Counter from collections import defaultdict import bisect from heapq import heappush, heappop def main(): n = int(input()) a = list(map(int, input().split())) cumulative = 0 ans = 0 for v in a: if cumulative == 0: # first time cumulative += v else: if cumulative > 0: if cumulative + v >= 0: ans += abs(cumulative + v) + 1 cumulative += v - (abs(cumulative + v) + 1) else: cumulative += v else: if cumulative + v <= 0: ans += abs(cumulative + v) + 1 cumulative += v + (abs(cumulative + v) + 1) else: cumulative += v print(ans) if __name__ == '__main__': main()
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; const int MAX_N = 1e5 + 10; int A[MAX_N]; int N; ll cnt_0(bool flg) { ll res = 1, sm = 0; if (flg) sm += 1; else sm -= 1; for (int i = 1; i < N; ++i) { ll tmp = sm + (ll)A[i]; if (sm > 0) { if (tmp >= 0) { res += tmp + 1; sm = -1; } else sm = tmp; } else if (sm < 0) { if (tmp <= 0) { res += -tmp + 1; sm = 1; } else sm = tmp; } } return res; } ll cnt() { bool flg = A[0] > 0; ll res = 0, sm = A[0]; for (int i = 1; i < N; ++i) { ll tmp = sm + (ll)A[i]; if (sm > 0) { if (tmp >= 0) { res += tmp + 1; sm = -1; } else sm = tmp; } else if (sm < 0) { if (tmp <= 0) { res += -tmp + 1; sm = 1; } else sm = tmp; } } return res; } int main() { scanf("%d", &N); for (int i = 0; i < N; ++i) scanf("%d", &A[i]); ll res; if (A[0] == 0) res = min(cnt_0(true), cnt_0(false)); else res = cnt(); printf("%lld\n", res); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { ios::sync_with_stdio(false); cin.tie(nullptr), cout.tie(nullptr); int n; cin >> n; vector<long long> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; vector<long long> cusum(n); cusum[0] = a[0]; for (int i = 1; i < n; i++) { cusum[i] = cusum[i - 1] + a[i]; } int tc = 2; long long ans = 1e18; while (tc--) { long long sum = 0; long long tmp = 0; for (int i = 0; i < n; i++) { long long x = cusum[i] + sum; if (x >= 0) { if ((tc && i % 2 == 0) || (tc == 0 && i % 2 == 1)) { continue; } else { tmp += x + 1; sum -= (x + 1); } } else { if ((tc && i % 2 == 0) || (tc == 0 && i % 2 == 1)) { tmp += ((-1) * x + 1); sum += ((-1) * x + 1); } else { continue; } } } if (cusum[n - 1] + sum == 0) tmp++; ans = min(ans, tmp); } cout << ans << '\n'; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> template <class T> inline T chmax(T& a, const T b) { return a = (a < b) ? b : a; } template <class T> inline T chmin(T& a, const T b) { return a = (a > b) ? b : a; } using ll = long long; using ull = unsigned long long; using ld = long double; const ll MOD = 1000000007; const ll INF = 1e18; const double PI = acos(-1); using namespace std; ll N; ll solve(vector<ll> A) { ll ret = 0; ll sum = 0; for (ll i = 0; i < ll(N - 1); ++i) A[i + 1] += A[i]; for (ll i = (1); i < (N); ++i) { A[i] += sum; if (A[i] * A[i - 1] >= 0) { if (A[i] == 0) { if (A[i - 1] < 0) { sum++; ret++; A[i] += 1; } else { sum--; ret++; A[i] -= 1; } } else if (A[i] > 0) { sum -= A[i] + 1; ret += A[i] + 1; A[i] = -1; } else { sum += -A[i] + 1; ret += -A[i] + 1; A[i] = 1; } } } return ret; } signed main() { cin >> N; vector<ll> A(N); for (ll i = 0; i < ll(N); ++i) cin >> A[i]; ll ans = 0; if (A[0] != 0) ans = solve(A); else { A[0] = 1; ans = solve(A) + 1; A[0] = -1; chmin(ans, solve(A) + 1); } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; constexpr long long inf = 1e9 + 7; long long solve(vector<long long> As, bool flag) { long long ans = 0; for (auto A : As) { if (flag && A <= 0) ans += 1 - A; else if (!flag && A >= 0) ans += 1 + A; flag = !flag; } return ans; } int main() { cin.tie(0); ios::sync_with_stdio(false); long long N; cin >> N; vector<long long> A(N); for (long long n = 0; n < N; n++) cin >> A[n]; cout << min(solve(A, false), solve(A, true)) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const long long INF = 1e9, MOD = 1e9 + 7; const double EPS = 1e-9, PI = 3.141592653589793; int main() { cin.tie(0); ios::sync_with_stdio(false); long long n, a[100001], seq, ans = 0, tmp; cin >> n; for (long long i = 0; i < n; i++) cin >> a[i]; seq = a[0]; for (long long i = 1; i < n; i++) { tmp = seq; if (seq > 0) { seq += a[i]; if (seq >= 0) { seq = -1; ans += abs(-1 - tmp - a[i]); } } else { tmp = seq; seq += a[i]; if (seq <= 0) { seq = 1; ans += (1 - tmp - a[i]); } } } cout << ans << "\n"; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n, a[100000]; long long cnt1, cnt2, sum; int main() { ios::sync_with_stdio(false); cin.tie(0); cin >> n; for (int i = 0; i < n; i++) cin >> a[i]; for (int i = 0; i < n; i++) { if (i % 2 == 0 && sum + a[i] <= 0) { cnt1 += (-1) * sum + 1 - a[i]; sum = 1; } else if (i % 2 != 0 && sum + a[i] >= 0) { cnt1 += a[i] + sum + 1; sum = -1; } else sum += a[i]; } sum = 0; for (int i = 0; i < n; i++) { if (i % 2 != 0 && sum + a[i] <= 0) { cnt2 += (-1) * sum + 1 - a[i]; sum = 1; } else if (i % 2 != 0 && sum + a[i] >= 0) { cnt2 += a[i] + sum + 1; sum = -1; } else sum += a[i]; } cout << min(cnt1, cnt2); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n=int(input()) a=list(map(int,input().split())) sum=a[0] if(sum==0): opp=1 sum=1 for i in a[1:]: if(sum*(sum+i)>=0): opp+=abs(sum+i)+1 if(sum<0):sum=1 else:sum=-1 else:sum+=i opm=1 sum=-1 for i in a[1:]: if(sum*(sum+i)>=0): opm+=abs(sum+i)+1 if(sum<0):sum=1 else:sum=-1 else:sum+=i op=min(opm,opp) else: op=0 for i in a[1:]: if(sum*(sum+i)>=0): op+=abs(sum+i)+1 if(sum<0):sum=1 else:sum=-1 else:sum+=i print(op)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; long long sum; cin >> sum; if (sum == 0) { long long delta1 = 1; sum = 1; int ar[N]; for (int i = 1; i < N; ++i) { cin >> ar[i]; int temp = ar[i]; if (sum > 0 && sum + temp > 0) { sum = -1; delta1 += sum + temp + 1; } else if (sum < 0 && sum + temp < 0) { sum = 1; delta1 += 1 - (sum + temp); } else { sum += temp; } } long long delta2 = 1; sum = -1; for (int i = 1; i < N; ++i) { int temp = ar[i]; if (sum > 0 && sum + temp > 0) { sum = -1; delta2 += sum + temp + 1; } else if (sum < 0 && sum + temp < 0) { sum = 1; delta2 += 1 - (sum + temp); } else { sum += temp; } } if (delta1 < delta2) cout << delta1; else cout << delta2; } else { long long delta = 0; for (int i = 1; i < N; ++i) { int temp; cin >> temp; if (sum > 0 && sum + temp >= 0) { delta += sum + temp + 1; sum = -1; } else if (sum < 0 && sum + temp <= 0) { delta += 1 - (sum + temp); sum = 1; } else { sum += temp; } } cout << delta; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
import core.bitop, std.algorithm, std.ascii, std.bigint, std.conv, std.math, std.functional, std.numeric, std.range, std.stdio, std.string, std.random, std.typecons, std.container, std.format; // dfmt off T lread(T = long)(){return readln.chomp.to!T();} T[] lreads(T = long)(long n){return generate(()=>readln.chomp.to!T()).take(n).array();} T[] aryread(T = long)(){return readln.split.to!(T[])();} void scan(TList...)(ref TList Args){auto line = readln.split(); foreach (i, T; TList){T val = line[i].to!(T);Args[i] = val;}} alias sread = () => readln.chomp();enum MOD = 10 ^^ 9 + 7; alias PQueue(T, alias less = "a<b") = BinaryHeap!(Array!T, less); // dfmt on void main() { long N = lread(); auto A = aryread(); long ans = long.max; { auto B = A.dup; long sum = B[0]; long cost; foreach (i; 1 .. N) { if (0 < sum) { if (sum + B[i] < 0) { sum += B[i]; continue; } long x = -1 - B[i] - sum; cost += abs(x); B[i] += x; sum += B[i]; } else { if (0 < sum + B[i]) { sum += B[i]; continue; } long x = 1 - B[i] - sum; cost += abs(x); B[i] += x; sum += B[i]; } } // writeln(cost); // writeln(B); ans = ans.min(cost); } { auto B = A.dup; long cost; if (0 < B[0]) { cost += 1 + B[0]; B[0] -= 1 + B[0]; } else { cost += abs(1 - B[0]); B[0] += 1 - B[0]; } long sum = B[0]; foreach (i; 1 .. N) { if (0 < sum) { if (sum + B[i] < 0) { sum += B[i]; continue; } long x = -1 - B[i] - sum; cost += abs(x); B[i] += x; sum += B[i]; } else { if (0 < sum + B[i]) { sum += B[i]; continue; } long x = 1 - B[i] - sum; cost += abs(x); B[i] += x; sum += B[i]; } } // writeln(cost); // writeln(B); ans = ans.min(cost); } writeln(ans); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { long long int n; cin >> n; long long int sum, pre_sum; long long int ans = 0; sum = 0; int zero_c = 0; while (n > 0) { long long int a; cin >> a; n--; sum += a; if (sum == 0) { zero_c++; } else { break; } } if (zero_c != 0) ans = 2 * zero_c - 1; pre_sum = sum; for (int i = 0; i < n; i++) { long long int a; cin >> a; sum += a; if (sum == 0) { sum = (pre_sum > 0 ? -1 : 1); ans++; } else if ((sum > 0 && pre_sum > 0) || (sum < 0 && pre_sum < 0)) { ans += abs(sum - (pre_sum > 0 ? -1 : 1)); sum = (pre_sum > 0 ? -1 : 1); } pre_sum = sum; } std::cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; long long int a[n], s[n]; for (int i = 0; i < n; i++) { cin >> a[i]; if (i == 0) { s[0] = a[0]; } else { s[i] = s[i - 1] + a[i]; } } long long int ans = 0, tmp; for (int i = 0; i < n; i++) { if (i == 0 && a[0] == 0) { for (int j = 0; j < n; j++) { s[j]++; } ans++; } if (i != 0) { if (s[i] == 0) { if (s[i - 1] < 0) { for (int j = i; j < n; j++) { s[j]++; } } else { for (int j = i; j < n; j++) { s[j]--; } } ans++; } else { if (s[i - 1] > 0 == s[i] > 0) { tmp = s[i]; if (s[i] < 0) { for (int j = i; j < n; j++) { s[j] += abs(tmp) + 1; } } else { for (int j = i; j < n; j++) { s[j] -= abs(tmp) + 1; } } ans += abs(tmp) + 1; } } } } cout << ans << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; int a[n]; for (int i = 0; i < n; i++) cin >> a[i]; long long cnt1 = 0, cnt2 = 0; long long sum = a[0]; for (int i = 0; i < n; i++) { if (i % 2 == 0 && sum < 0) sum = 1; else if (i % 2 == 1 && sum > 0) sum = -1; cnt1 += abs(sum) + 1; } for (int i = 0; i < n; i++) { if (i % 2 == 0 && sum > 0) sum = -1; else if (i % 2 == 1 && sum < 0) sum = 1; cnt1 += abs(sum) + 1; } cout << min(cnt1, cnt2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using P = pair<int, int>; int main() { long long n; cin >> n; long long c[2], s[2]; vector<long long> a(n); for (int i = 0; i < (n); ++i) { cin >> a[i]; for (int j : {0, 1}) { s[j] += a[i]; auto p = 1 - (i + j) % 2 * 2; if (s[j] * p <= 0) { c[j] += abs(p - s[j]); s[j] = p; } } } cout << min(c[0], c[1]) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
function Main(s) { var s = s.split("\n"); var n = parseInt(s[0], 10); var a = s[1].split(" ").map(e => parseInt(e, 10)); var acc1 = 0, cnt1 = 0, arr1 = []; var acc2 = 0, cnt2 = 0, arr2 = []; for (var i = 0; i < n; i++) { acc1 += a[i]; if (i === 0) { if (acc1 === 0) { acc1++; cnt1++; } } else { if (arr1[i - 1] > 0) { if (acc1 >= 0) { cnt1 += (acc1 + 1); acc1 -= (acc1 + 1); } } else { if (acc1 <= 0) { cnt1 += (Math.abs(acc1) + 1); acc1 += (Math.abs(acc1) + 1); } } } arr1.push(acc1); } for (var i = 0; i < n; i++) { acc2 += a[i]; if (i === 0) { if (acc2 === 0) { acc2--; cnt2++; } } else { if (arr2[i - 1] > 0) { if (acc2 >= 0) { cnt2 += (acc2 + 1); acc2 -= (acc2 + 1); } } else { if (acc2 <= 0) { cnt2 += (Math.abs(acc2) + 1); acc2 += (Math.abs(acc2) + 1); } } } arr2.push(acc2); } console.log(Math.min(cnt1, cnt2)); } Main(require("fs").readFileSync("/dev/stdin", "utf8"));
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; import java.math.BigInteger; // warm-up public class Main { static void solve() { Scanner sc = new Scanner(System.in); int n=sc.nextInt(), t=n, i=0; long[] a = new long[n]; BigInteger o = BigInteger.ZERO, s = BigInteger.ZERO; while (t-->0) a[i++] = sc.nextLong(); for (i=0; i<n; i++) { long k=a[i]; int p = s.compareTo(BigInteger.ZERO), q = s.add(new BigInteger(""+a[i])).compareTo(BigInteger.ZERO); if (q==0) a[i]=(p<0) ? BigInteger.ONE.subtract(s).longValue() : s.add(BigInteger.ONE).longValue(); else if ((p<0 && q<0)||(p>0 && q>0)) a[i]=(q<0) ? BigInteger.ONE.subtract(s).longValue() : BigInteger.ZERO.subtract(BigInteger.ONE).subtract(s).longValue(); o = o.add(new BigInteger(""+Math.abs(k-a[i]))); s = s.add(new BigInteger(""+a[i])); } System.out.println(o); sc.close(); } public static void main(String args[]) { solve(); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <iostream> #include <math.h> using namespace std; int a(long long int z) { if (z > 0) return 1; else if (z < 0) return -1; else return 0; } int main(){ long long int n, sum = 0, in, ans = 0; cin >> n >> sum; for(int i = 1;i<n;i++){ cin >> in; if(i == 1){ if(sum == 0){ sum = -1 * a(in); ans++; } } if(a(sum) * a(in) < 0 && abs(sum) < abs(in)){ sum += in; continue; } else if(a(sum) * a(in) < 0){ ans += abs(sum+in) + 1; sum = -1 * a(sum); continue; } ans += abs(sum+in) + 1; sum = 1 * a(sum); } } if (sum == 0) ans++; cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { freopen("testcase", "r", stdin); int N, temp; vector<int> a; scanf("%d", &N); int start = 0; bool v = false; for (int i = 0; i < N; i++) { scanf("%d", &temp); if (temp == 0) { if (!v) { start += 1; } } else if (!v) v = true; a.push_back(temp); } long long sum = 0, cnt = 0; if (start != 0) { cnt = 2 * (start - 1) + 1; if (a[start] > 0) { if (a[start] > 1) { sum = a[start] - 1; } else { sum = 1; cnt += 1; } } else { if (a[start] < -1) { sum = a[start] + 1; } else { sum = -1; cnt += 1; } } } else { sum = a[start]; } start++; for (size_t i = start; i != a.size(); i++) { if (sum + a[i] >= 0 && sum > 0) { cnt += sum + a[i] + 1; sum = -1; } else if (sum + a[i] <= 0 && sum < 0) { cnt += 1 - sum - a[i]; sum = 1; } else { sum += a[i]; } } if (sum == 0) cnt += 1; printf("%lld\n", cnt); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < n; i++) { cin >> a[i]; } long long c1 = 0, s1 = 0; long long c2 = 0, s2 = 0; for (int i = 0; i < n; i++) { s1 += a[i]; s2 += a[i]; if (i % 2 == 0) { if (s1 < 0) { c1 += 1 - s1; s1 = 1; } if (s2 > 0) { c2 += s2 + 1; s2 = -1; } } else { if (s2 < 0) { c2 += 1 - s2; s2 = 1; } if (s1 > 0) { c1 += s1 + 1; s1 = -1; } } } printf("%d\n", min(c1, c2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; const int INF = 1 << 29; inline int two(int n) { return 1 << n; } inline int test(int n, int b) { return (n >> b) & 1; } inline void set_bit(int &n, int b) { n |= two(b); } inline void unset_bit(int &n, int b) { n &= ~two(b); } const long long mod = 1e9 + 7; const int N = 1e6 + 9; long long a[N]; vector<long long> v[N]; long long modexp(long long a, long long n) { long long r = 1; while (n) { if (n & 1) r = (r * a) % mod; a = (a * a) % mod; n >>= 1; } return r; } bool cmp(const pair<double, long long> &a, const pair<double, int> &b) { if (a.first == b.first) { return a.second < b.second; } else return a.first > b.first; } int main() { ios_base::sync_with_stdio(false); cin.tie(0); cout.tie(0); long long n, k = 0; cin >> n; for (int i = 0; i < n; i++) { cin >> a[i]; } long long sum = a[0], ans = 0; if (sum >= 0) { k = 1; } for (int i = 1; i < n; i++) { sum += a[i]; if (k == 1) { if (sum >= 0) { ans += sum + 1; sum = -1; } } else { if (sum <= 0) { ans += (-1 * sum) + 1; sum = 1; } } if (k == 0) k = 1; else k = 0; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#![allow(non_snake_case)] #![allow(dead_code)] #![allow(unused_macros)] #![allow(unused_imports)] use std::str::FromStr; use std::io::*; use std::collections::*; use std::cmp::*; struct Scanner<I: Iterator<Item = char>> { iter: std::iter::Peekable<I>, } macro_rules! exit { () => {{ exit!(0) }}; ($code:expr) => {{ if cfg!(local) { writeln!(std::io::stderr(), "===== Terminated =====") .expect("failed printing to stderr"); } std::process::exit($code); }} } impl<I: Iterator<Item = char>> Scanner<I> { pub fn new(iter: I) -> Scanner<I> { Scanner { iter: iter.peekable(), } } pub fn safe_get_token(&mut self) -> Option<String> { let token = self.iter .by_ref() .skip_while(|c| c.is_whitespace()) .take_while(|c| !c.is_whitespace()) .collect::<String>(); if token.is_empty() { None } else { Some(token) } } pub fn token(&mut self) -> String { self.safe_get_token().unwrap_or_else(|| exit!()) } pub fn get<T: FromStr>(&mut self) -> T { self.token().parse::<T>().unwrap_or_else(|_| exit!()) } pub fn vec<T: FromStr>(&mut self, len: usize) -> Vec<T> { (0..len).map(|_| self.get()).collect() } pub fn mat<T: FromStr>(&mut self, row: usize, col: usize) -> Vec<Vec<T>> { (0..row).map(|_| self.vec(col)).collect() } pub fn char(&mut self) -> char { self.iter.next().unwrap_or_else(|| exit!()) } pub fn chars(&mut self) -> Vec<char> { self.get::<String>().chars().collect() } pub fn mat_chars(&mut self, row: usize) -> Vec<Vec<char>> { (0..row).map(|_| self.chars()).collect() } pub fn line(&mut self) -> String { if self.peek().is_some() { self.iter .by_ref() .take_while(|&c| !(c == '\n' || c == '\r')) .collect::<String>() } else { exit!(); } } pub fn peek(&mut self) -> Option<&char> { self.iter.peek() } } fn main() { let cin = stdin(); let cin = cin.lock(); let mut sc = Scanner::new(cin.bytes().map(|c| c.unwrap() as char)); let n: usize = sc.get(); let a: Vec<i64> = sc.vec(n); let mut p = 0; let mut ans1 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s >= 0 { ans1 += s.abs()+1; s += -s - 1; } else if s == 0 { s += if p > 0 { 1 } else { -1 }; ans1 += 1; } else if s * p > 0 { ans1 += s.abs()+1; s += if s > 0 { -s - 1 } else { s + 1 }; } p = s; } let mut p = 0; let mut ans2 = 0; for i in 0..n { let mut s = p + a[i]; if i == 0 && s <= 0 { ans2 += s.abs()+1; s += s + 1; } else if s == 0 { s += if p > 0 { 1 } else { -1 }; ans2 += 1; } else if s * p > 0 { ans2 += s.abs()+1; s += if s > 0 { -s - 1 } else { s + 1 }; } p = s; } println!("{}", min(ans1, ans2)); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <ext/pb_ds/assoc_container.hpp> #include <ext/pb_ds/tree_policy.hpp> using namespace std; using namespace __gnu_pbds; #define MOD 1000000007 # define INF (1 < <29) #define MODSET(d) if ((d) >= MOD) d %= MOD; #define MODNEGSET(d) if ((d) < 0) d = ((d % MOD) + MOD) % MOD; #define MODADDSET(d) if ((d) >= MOD) d -= MOD; #define MODADDWHILESET(d) while ((d) >= MOD) d -= MOD; //defines #define FILE_IO freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); #define sc1(a,type) type a; cin>>a; #define sc2(a,b,type) type a,b; cin>>a>>b; #define sc3(a, b, c,type) type a,b,c; cin>>a>>b>>c; #define sc4(a, b, c, d,type) type a ,b,c,d; cin>>a>>b>>c>>d; #define nl cout<<"\n"; #define foreach(v, c) for(__typeof( (c).begin()) v = (c).begin(); v != (c).end(); ++v) #define revforeach(v, c) for(__typeof( (c).rbegin()) v = (c).rbegin(); v != (c).rend(); ++v) #define fastio ios_base::sync_with_stdio(0);cin.tie(0); #define re(i,b) for(int i=0;i<int(b);i++) #define re1(i,b) for(int i=1;i<=int(b);i++) #define all(c) c.begin(), c.end() #define rall(c) c.rbegin(),c.rend() #define mpresent(container, element) (container.find(element) != container.end()) //for map,set..etc (returns true/false value) #define vpresent(container, element) (find(all(container),element) != container.end()) //for vectors,strings,list,deque (returns true/false value) #define eb emplace_back #define mp make_pair #define fi first #define se second #define pb push_back #define pf push_front #define ins insert #define F first #define S second #define clr clear() #define sz(x) ((int)x.size()) #define dt distance #define test(t) int t; cin>>t; while(t--) #define csb(i) __builtin_popcount(i) #define csbll(i) __builtin_popcountll(i) #define clz(x) __builtin_clz(x) #define clzl(x) __builtin_clzl(x) #define cp(x) __builtin_parity(x) #define adv(v,num) advance(v,num)//used for lists and other structures that use iterators,when you can't access elements randomly ( iterator moves num positions) #define mod 1000000007 #define MAX_ARR 1000000 #define v2d(rowsize,colsize,type,name) vector<vector<type>> name(rowsize,vector<type>(colsize)); #define digits_in(i) (ll)log10(i)+1 // gives no of digits in a number #define sqr(x) (x)*(x) //does not apply for i==0 , add an excetion contition for n==0 ( cust return count 1 for that inseted of using this function) //typedef typedef string str; typedef long long ll; typedef unsigned long long ull; typedef vector<int> vi; typedef vector<ll> vll; typedef vector<str> vs; typedef vector<char> vc; typedef pair<int,int> pii; typedef pair<str,int> psi; typedef pair<int,str> pis; typedef vector<pii> vii; typedef map<int,int> mii; typedef map<ll,ll> mll; typedef map<str,int> msi; typedef map<char,int> mci; typedef map<int,str> mis; typedef unordered_map<int,int> umii; typedef unordered_map<str,int> umsi; typedef unordered_map<int,str> umis; typedef unordered_map<str,str> umss; typedef unordered_map<char,int> umci; typedef set<str> ss; typedef set<int> si; typedef unordered_set<str> uss; typedef unordered_set<int> usi; typedef tree<int, null_type, less<int>, rb_tree_tag, tree_order_statistics_node_update> pbds; // #ifndef ONLINE_JUDGE // #include "debug.h" // #else // #define debug(args...) // #endif int main(){fastio // #ifndef ONLINE_JUDGE // FILE_IO // #endif vll v; test(t){ int temp;cin>>temp; v.pb(temp); } ll ct=0; re(i,sz(v)-1){ // debug(v[i] ,v[i]+v[i+1]); if( (v[i]<0 && v[i]+v[i+1]<0) || (v[i]>0 && v[i]+v[i+1]>0 || v[i]+v[i+1]==0) ){ if( v[i]>0 && v[i]+v[i+1]>0){ ct+=v[i]+v[i+1]+1; } else if(v[i]<0 && v[i]+v[i+1]<0 ){ ct+=abs(v[i]+v[i+1])+1; } else{ ct+=1; } v[i+1]= v[i]>0?-1:1; } else{ v[i+1]+=v[i]; } // debug(ct); } cout<<ct; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) def solve(tmp): ans = 0 for i in range(1, n): if tmp * (tmp + a[i]) < 0: tmp += a[i] else: ans += abs(tmp + a[i]) + 1 if tmp < 0: tmp = 1 else: tmp = - 1 return ans ans = 0 if a[0] == 0: ans = min(solve(1) + 1, solve(-1) + 1) else: ans = solve(a[0]) print(ans)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.util.*; public class Main { private static Scanner sc = new Scanner(System.in); public static void main(String[] args) { int n = sc.nextInt(); long[] a = new long[n]; for (int i = 0;i < n;i++) a[i] = sc.nextLong(); long ret = calc(a,true); ret = Math.min(calc(a,false),ret); System.out.println(ret); } private static long calc(long[] a, boolean b) { long sum = a[0]; long ret = 0; if (b) { ret = Math.abs(sum)+1; if (sum<0) { sum = 1; } else { sum = -1; } } long tmp = 0; for (int i = 1;i < a.length;i++) { long num = a[i]; tmp = sum; sum += num; if ((tmp<0&&sum>=0)||(tmp>=0&&sum<0)) continue; long l = Math.abs(sum)+1; if (sum>=0) { sum -= l; } else { sum += l; } ret += l; } if (sum==0) ret++; return ret; } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int n, s; int count = 0; vector<int> a; cin >> n; for (int i = 0; i < n; ++i) { cin >> s; a.emplace_back(s); } int sum = a[0]; for (int i = 0; i < n - 1; ++i) { if (i > 0) { sum = sum + a[i]; } if (sum * (sum + a[i + 1]) >= 0 && abs(sum) >= abs(sum + a[i + 1])) { count = count + abs(sum + a[i + 1]) + 1; if (sum + a[i + 1] < 0) { sum = sum + abs(sum + a[i + 1]) + 1; } else { if (sum > 0 && sum + a[i + 1] == 0) { sum = sum - 1; } if (sum < 0 && sum + a[i + 1] == 0) { sum = sum + 1; } else { sum = sum - abs(sum + a[i + 1]) - 1; } } } if (sum * (sum + a[i + 1]) >= 0 && abs(sum) < abs(sum + a[i + 1])) { count = count + abs(sum) + 1; if (sum < 0) { sum = sum + abs(sum) + 1; } else { sum = sum - abs(sum) - 1; } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main() { int n; scanf("%d", &n); long long a[n]; for (int i = 0; i < n; i++) { scanf("%lld", &a[i]); } long long mans = 0, pans = 0; long long msub[n], psub[n]; if (a[0] == 0) { pans = 1; mans = 1; psub[0] = 1; msub[0] = -1; } if (a[0] > 0) { psub[0] = a[0]; msub[0] = -1; mans = a[0] + 1; } else { psub[0] = 1; msub[0] = a[0]; pans = a[0] + 1; } int i; for (i = 1; i < n; i++) { if (i % 2 == 1 && psub[i - 1] + a[i] >= 0) { pans += psub[i - 1] + a[i] + 1; psub[i] = -1; } else if (i % 2 == 0 && psub[i - 1] + a[i] <= 0) { pans += 1 - (psub[i - 1] + a[i]); psub[i] = 1; } else { psub[i] = psub[i - 1] + a[i]; } if (i % 2 == 1 && msub[i - 1] + a[i] <= 0) { mans += 1 - (msub[i - 1] + a[i]); msub[i] = 1; } else if (i % 2 == 0 && msub[i - 1] + a[i] >= 0) { mans += msub[i - 1] + a[i] + 1; msub[i] = -1; } else { msub[i] = msub[i - 1] + a[i]; } } printf("%lld", mans < pans ? mans : pans); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } int main(void) { int n; cin >> n; long long a[n + 1]; for (int i = 1; i <= n; ++i) { cin >> a[i]; } long long S1, S2; long long ans[2]; if (a[1] == 0) { S1 = 1; ans[0] = 1; for (int i = (2); i < (n + 1); ++i) { S2 = S1 + a[i]; if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) { S1 = S2; } else { ans[0] += abs(S2) + 1; if (S1 < 0) S2 = 1; else S2 = -1; S1 = S2; } } S1 = -1; ans[1] = 1; for (int i = (2); i < (n + 1); ++i) { S2 = S1 + a[i]; if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) { S1 = S2; } else { ans[1] += abs(S2) + 1; if (S1 < 0) S2 = 1; else S2 = -1; S1 = S2; } } cout << min(ans[0], ans[1]) << endl; } else { S1 = a[1]; ans[0] = 0; for (int i = (2); i < (n + 1); ++i) { S2 = S1 + a[i]; if ((S1 < 0 && S2 > 0) || (S1 > 0 && S2 < 0)) { S1 = S2; } else { ans[0] += abs(S2) + 1; if (S1 < 0) S2 = 1; else S2 = -1; S1 = S2; } } cout << ans[0] << endl; } return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.math.BigInteger; import java.util.ArrayList; import java.util.Arrays; import java.util.Scanner; public class Main { static int[][] map; static int[][] label; static ArrayList<String> list; static int M; static int N; static int T; static int P; public static void main(String[] args) { Scanner scanner = new Scanner(System.in); int n = scanner.nextInt(); long sum = scanner.nextLong(); long ans = 0; boolean sign = true; if(sum < 0)sign = false; for (int i = 0; i < n - 1; i++) { sum += scanner.nextLong(); // System.out.println(sum); // System.out.println(ans); if(sign){ if(sum >= 0){ ans += sum + 1; sum = -1; } sign = false; }else{ if(sum <= 0){ ans -= sum - 1; sum = 1; } sign = true; } } System.out.println(ans); } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a[i]; int count = 0, sum_count = a[0]; if (a[0] < 0) { for (int i = 1; i < (int)(n); i++) { sum_count += a[i]; if (i % 2 == 0) { while (sum_count >= 0) { sum_count--; count++; } } else { while (sum_count <= 0) { sum_count++; count++; } } } } else if (a[0] > 0) { for (int i = 1; i < (int)(n); i++) { sum_count += a[i]; if (i % 2 == 0) { while (sum_count <= 0) { sum_count++; count++; } } else { while (sum_count >= 0) { sum_count--; count++; } } } } cout << count << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using ll = long long; using namespace std; int main() { int n; cin >> n; vector<int> a(n); for (int i = 0; i < (int)(n); i++) cin >> a.at(i); ll ans = 0, sum = 0; for (int i = 0; i < (int)(n); i++) { int now = a.at(i); if (i == 0) { if (now == 0) { if (a.at(1) > 0) sum--; else sum++; ans++; } else { sum += now; } continue; } if ((sum < 0 && sum + now > 0) || (sum > 0 && sum + now < 0)) { sum += now; } else { ll add = abs(sum + now) + 1; if (sum < 0) sum = 1; else sum = -1; ans += add; } } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using ll = long long; int main(void) { ll n; cin >> n; vector<ll> a(n); for (auto& it : a) cin >> it; ll total = a[0]; ll ans = 0; for (ll i = 1; i < n; i++) { if (total > 0) { if (total + a[i] >= 0) { ans += abs(-total - 1 - a[i]); a[i] = -total - 1; } } else { if (total + a[i] <= 0) { ans += abs(-total + 1 - a[i]); a[i] = -total + 1; } } total += a[i]; } cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
python3
n = int(input()) a = list(map(int, input().split())) answer = 0 sum_a = [0] sum_a[0] = a[0] for i in range(1, n): sum_a.append(sum_a[i-1] + a[i]) if sum_a[i-1] * sum_a[i] >= 0: if sum_a[i-1] < 0: sum_a[i] = 1 answer += abs(a[i] - (1 - sum_a[i-1])) a[i] = 1 - sum_a[i-1] elif sum_a[i-1] > 0: sum_a[i] = -1 answer += abs(a[i] - (-1 - sum_a[i-1])) a[i] = -1 - sum_a[i-1] print(answer)
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int n; long long f(vector<long long>& sum, vector<long long>& pm) { int tmp; tmp = 0; for (int i = 0; i < (n - 1); i++) { sum[i + 1] += pm[i]; if (sum[i] * sum[i + 1] >= 0) { if (sum[i + 1] == 0) { if (sum[i] < 0) sum[i + 1] = pm[i + 1] = 1; else sum[i + 1] = pm[i + 1] = -1; } else if (sum[i + 1] < 0) { pm[i + 1] = 1 - sum[i + 1]; sum[i + 1] = 1; } else if (sum[i + 1] > 0) { pm[i + 1] = -1 - sum[i + 1]; sum[i + 1] = -1; } tmp += abs(pm[i + 1]); } } return tmp; } signed main(void) { cin >> n; vector<long long> s(n), t, pm(n, 0); long long ans, tmp; for (int i = 0; i < (n); i++) { int a; cin >> a; s[i] = a; } for (int i = 0; i < (n - 1); i++) s[i + 1] += s[i]; ans = 1e18; copy(s.begin(), s.end(), back_inserter(t)); tmp = 0; if (t[0] <= 0) { pm[0] = 1 - t[0]; t[0] = 1; tmp += abs(pm[0]); } tmp += f(t, pm); for (int i = 0; i < (n); i++) cout << t[i] << " "; cout << endl; ans = min(ans, tmp); for (int i = 0; i < (n); i++) pm[i] = 0; tmp = 0; if (s[0] >= 0) { pm[0] = -1 - s[0]; s[0] = -1; tmp += abs(pm[0]); } tmp += f(s, pm); ans = min(ans, tmp); cout << ans << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> #include <boost/multiprecision/cpp_int.hpp> using boost::multiprecision::cpp_int; using namespace std; #if __has_include("print.hpp") #include "print.hpp" #endif #define rep(i, n) for(int i = 0; i < (int)(n); i++) #define ALL(x) (x).begin(), (x).end() #define RALL(x) (x).rbegin(), (x).rend() #define MOD 1000000007 template<class T> inline bool chmax(T& a, T b) { if (a < b) { a = b; return 1; } return 0; } template<class T> inline bool chmin(T& a, T b) { if (a > b) { a = b; return 1; } return 0; } typedef long long ll; typedef pair<ll, ll> p; int main(){ ios::sync_with_stdio(false); cin.tie(0); int n; cin >> n; vector<int> v(n); rep(i, n) cin >> v[i]; ll sum = v[0]; ll res = 0; for (int i = 1; i < n; ++i) { // cout << i << del; if((sum + v[i]) * sum < 0){ sum += v[i]; }else{ ll t = -sum - (sum / abs(sum)) ; ll remain = t - v[i]; // cout << t << endl; // cout << remain << endl; res += abs(remain); sum += t; v[i] += t; } // cout << sum << endl; // cout << "===" << endl; } cout << res << endl; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
UNKNOWN
#include <bits/stdc++.h> int main(void) { int a[100000]; int i, n, check = 0; long long int sum = 0, count = 0; scanf("%d", &n); for (i = 0; i < n; i++) { scanf("%d", &a[i]); } for (i = 0; i < n; i++) { sum += a[i]; switch (check) { case 1: if (sum >= 0) { count += sum + 1; sum = -1; } break; case -1: if (sum <= 0) { count += 1 - sum; sum = -1; } break; default: break; } if (sum > 0) { check = 1; } else { check = -1; } } printf("%lld", count); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
java
import java.io.IOException; import java.io.InputStream; import java.io.PrintWriter; import java.util.InputMismatchException; import java.util.NoSuchElementException; public class Main implements Runnable { // クラス名はMain1 PrintWriter out = new PrintWriter(System.out); InputReader sc = new InputReader(System.in); public static void main(String[] args) { Thread.setDefaultUncaughtExceptionHandler((t, e) -> System.exit(1)); new Thread(null, new Main(), "", 1024 * 1024 * 1024).start(); // 16MBスタックを確保して実行 } public void run() { try { int N = sc.nextInt(); long[] A = new long[N]; for (int i = 0; i < N; i++) { A[i] = sc.nextLong(); } long[] wa = new long[N + 1]; for (int i = 1; i <= N; i++) { wa[i] += wa[i - 1] + A[i - 1]; } //out.println("A:" + Arrays.toString(A)); //out.println("W:" + Arrays.toString(wa)); boolean plus = wa[1] >= 0 ? true : false; long cntp = 0; long cntm = 0; for (int i = 1; i <= N; i++) { wa[i] += cntp - cntm; if (!plus && wa[i] >= 0) { long p = Math.abs(wa[i]) + 1; cntm += p; wa[i] -= p; A[i - 1] -= p; } else if (plus && wa[i] <= 0) { long m = Math.abs(wa[i]) + 1; cntp += m; wa[i] += m; A[i - 1] += m; } plus = !plus; } //out.println("A:" + Arrays.toString(A)); //out.println("W:" + Arrays.toString(wa)); out.println(cntp + cntm); } catch (ArithmeticException ae) { //ae.printStackTrace(); throw new RuntimeException(); } catch (Exception e) { e.printStackTrace(); throw new RuntimeException(); } finally { out.flush(); out.close(); } } // 高速なScanner static class InputReader { private InputStream in; private byte[] buffer = new byte[1024]; private int curbuf; private int lenbuf; public InputReader(InputStream in) { this.in = in; this.curbuf = this.lenbuf = 0; } public boolean hasNextByte() { if (curbuf >= lenbuf) { curbuf = 0; try { lenbuf = in.read(buffer); } catch (IOException e) { throw new InputMismatchException(); } if (lenbuf <= 0) return false; } return true; } private int readByte() { if (hasNextByte()) return buffer[curbuf++]; else return -1; } private boolean isSpaceChar(int c) { return !(c >= 33 && c <= 126); } private void skip() { while (hasNextByte() && isSpaceChar(buffer[curbuf])) curbuf++; } public boolean hasNext() { skip(); return hasNextByte(); } public String next() { if (!hasNext()) throw new NoSuchElementException(); StringBuilder sb = new StringBuilder(); int b = readByte(); while (!isSpaceChar(b)) { sb.appendCodePoint(b); b = readByte(); } return sb.toString(); } public int nextInt() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } int res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public long nextLong() { if (!hasNext()) throw new NoSuchElementException(); int c = readByte(); while (isSpaceChar(c)) c = readByte(); boolean minus = false; if (c == '-') { minus = true; c = readByte(); } long res = 0; do { if (c < '0' || c > '9') throw new InputMismatchException(); res = res * 10 + c - '0'; c = readByte(); } while (!isSpaceChar(c)); return (minus) ? -res : res; } public double nextDouble() { return Double.parseDouble(next()); } public int[] nextIntArray(int n) { int[] a = new int[n]; for (int i = 0; i < n; i++) a[i] = nextInt(); return a; } public long[] nextLongArray(int n) { long[] a = new long[n]; for (int i = 0; i < n; i++) a[i] = nextLong(); return a; } public char[][] nextCharMap(int n, int m) { char[][] map = new char[n][m]; for (int i = 0; i < n; i++) map[i] = next().toCharArray(); return map; } } }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; using vi = vector<int>; using vll = vector<long long>; long long mod = 1e9 + 7; using namespace std; using Graph = vector<vector<int>>; Graph G; int cnt_digit(long long N) { int digit = 0; while (N > 0) { N /= 10; digit++; } return digit; } int n; vll a; long long solve(bool isp) { long long sum = 0ll; long long ret = 0ll; for (int i = 0; i < n; i++) { sum += a[i]; if (isp and sum <= 0) { sum += -sum + 1; sum = 1ll; } if (not isp and sum >= 0) { sum += sum + 1; sum = -1ll; } isp ^= 1; } return ret; } int main() { cin.tie(0); ios::sync_with_stdio(false); cin >> n; a = vll(n); for (auto& e : a) { cin >> e; } long long res = min(solve(0), solve(1)); cout << res << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> int main() { int n, a[100002], i, d[100002], b; scanf("%d", &n); for (i = 1; i <= n; i++) { scanf("%d", &a[i]); } d[1] = a[1]; b = 0; for (i = 2; i <= n; i++) { d[i] = d[i - 1] + a[i]; if (d[i] * d[i - 1] >= 0) { if (d[i - 1] < 0) { b = b + 1 - d[i]; d[i] = 1; } if (d[i - 1] > 0) { b = b + 1 + d[i]; d[i] = -1; } } } printf("%d\n", b); return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; long chk(long a[], int N, bool t) { long total = 0; long ops = 0; for (int i = 0; i < N; i++) { total += a[i]; if (t == true && (total < 1)) { ops += (1 - total); total = 1; } else if (t == false && (total > -1)) { ops += (total + 1); total = -1; } t = !t; } return ops; } int main() { long N; cin >> N; long a[1000001]; for (long i = 0; i < N; i++) { cin >> a[i]; } printf("%d\n", min(chk(a, N, true), chk(a, N, false))); }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; int main() { int N; cin >> N; vector<int> a(N); for (int i = 0; i < N; i++) { cin >> a.at(i); } int ans1 = 0, ans2 = 0, sum1 = 0, sum2 = 0; for (int i = 0; i < N; i++) { sum1 += a.at(i); if (i % 2 == 0 && sum1 <= 0) { ans1 += 1 - sum1; sum1 = 1; } else if (i % 2 != 0 && sum1 >= 0) { ans1 += sum1 + 1; sum1 = -1; } } for (int i = 0; i < N; i++) { sum2 += a.at(i); if (i % 2 == 0 && sum2 >= 0) { ans2 += sum2 + 1; sum2 = -1; } else if (i % 2 != 0 && sum2 <= 0) { ans2 += 1 - sum2; sum2 = 1; } } cout << min(ans1, ans2) << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> const int dx[8] = {1, 1, 0, -1, -1, -1, 0, 1}; const int dy[8] = {0, 1, 1, 1, 0, -1, -1, -1}; using namespace std; int main() { int n; cin >> n; long long a[n]; long long sums[n]; cin >> a[0]; sums[0] = a[0]; for (int i = 1; i < n; ++i) { cin >> a[i]; sums[i] = sums[i - 1] + a[i]; } long long cnt = 0; long long diff; for (int i = 1; i < n; i++) { if (sums[i - 1] * sums[i] >= 0) { if (sums[i - 1] < 0) { diff = 1 - sums[i]; } else { diff = -1 - sums[i]; } for (int j = i; j < n; j++) { sums[j] += diff; } cnt += abs(diff); } } cout << cnt << endl; return 0; }
p03739 AtCoder Beginner Contest 059 - Sequence
You are given an integer sequence of length N. The i-th term in the sequence is a_i. In one operation, you can select a term and either increment or decrement it by one. At least how many operations are necessary to satisfy the following conditions? * For every i (1≤i≤n), the sum of the terms from the 1-st through i-th term is not zero. * For every i (1≤i≤n-1), the sign of the sum of the terms from the 1-st through i-th term, is different from the sign of the sum of the terms from the 1-st through (i+1)-th term. Constraints * 2 ≤ n ≤ 10^5 * |a_i| ≤ 10^9 * Each a_i is an integer. Input Input is given from Standard Input in the following format: n a_1 a_2 ... a_n Output Print the minimum necessary count of operations. Examples Input 4 1 -3 1 0 Output 4 Input 5 3 -6 4 -5 7 Output 0 Input 6 -1 4 3 2 -5 4 Output 8
{ "input": [ "5\n3 -6 4 -5 7", "4\n1 -3 1 0", "6\n-1 4 3 2 -5 4" ], "output": [ "0", "4", "8" ] }
{ "input": [], "output": [] }
IN-CORRECT
cpp
#include <bits/stdc++.h> using namespace std; inline int toInt(string s) { int v; istringstream sin(s); sin >> v; return v; } template <class T> inline string toString(T x) { ostringstream sout; sout << x; return sout.str(); } template <class T> inline T sqr(T x) { return x * x; } const double EPS = 1e-10; const double PI = acos(-1.0); int main(void) { int n; cin >> n; int array[100000]; for (int i = (0); i < (100000); ++i) { int a; cin >> array[i]; } int ans = 0; bool flag = false; int sum = array[0]; if (array[0] == 0) { if (array[1] > 0) { ans++; sum = -1; flag = false; } else if (array[1] < 0) { ans++; sum = 1; flag = true; } else { sum = 1; ans++; } } else if (array[0] > 0) flag = true; else flag = false; for (int i = (1); i < (n); ++i) { sum += array[i]; if (flag) { if (sum >= 0) { ans += (sum + 1); sum -= (sum + 1); cerr << "ans" << " = " << (ans) << " (L" << 91 << ")" << " " << "<stdin>" << endl; ; } flag = false; } else { if (sum <= 0) { ans += -1 * (sum - 1); sum += -1 * (sum - 1); cerr << "ans" << " = " << (ans) << " (L" << 98 << ")" << " " << "<stdin>" << endl; ; } flag = true; } } cout << ans << endl; return 0; }