prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
""" BezierGAN for capturing the airfoil manifold Author(s): <NAME> (<EMAIL>) """ import numpy as np import tensorflow as tf #from shape_plot import plot_grid from surrogate.surrogate_model import Model as SM EPSILON = 1e-7 class BezierGAN(object): def __init__(self, latent_dim=5, noise_dim=100, n_points=64, bezier_degree=16, bounds=(0.0, 1.0), lambda0=1., lambda1=0.01): self.latent_dim = latent_dim self.noise_dim = noise_dim self.n_points = n_points self.X_shape = (n_points, 2, 1) self.bezier_degree = bezier_degree self.bounds = bounds self.lambda0 = lambda0 self.lambda1 = lambda1 def generator(self, c, z, reuse=tf.AUTO_REUSE, training=True): depth_cpw = 32*8 dim_cpw = int((self.bezier_degree+1)/8) kernel_size = (4,3) # noise_std = 0.01 with tf.variable_scope('Generator', reuse=reuse): if self.noise_dim == 0: cz = c else: cz = tf.concat([c, z], axis=-1) cpw = tf.layers.dense(cz, 1024) cpw = tf.layers.batch_normalization(cpw, momentum=0.9)#, training=training) cpw = tf.nn.leaky_relu(cpw, alpha=0.2) cpw = tf.layers.dense(cpw, dim_cpw*3*depth_cpw) cpw = tf.layers.batch_normalization(cpw, momentum=0.9)#, training=training) cpw = tf.nn.leaky_relu(cpw, alpha=0.2) cpw = tf.reshape(cpw, (-1, dim_cpw, 3, depth_cpw)) cpw = tf.layers.conv2d_transpose(cpw, int(depth_cpw/2), kernel_size, strides=(2,1), padding='same') cpw = tf.layers.batch_normalization(cpw, momentum=0.9)#, training=training) cpw = tf.nn.leaky_relu(cpw, alpha=0.2) # cpw += tf.random_normal(shape=tf.shape(cpw), stddev=noise_std) cpw = tf.layers.conv2d_transpose(cpw, int(depth_cpw/4), kernel_size, strides=(2,1), padding='same') cpw = tf.layers.batch_normalization(cpw, momentum=0.9)#, training=training) cpw = tf.nn.leaky_relu(cpw, alpha=0.2) # cpw += tf.random_normal(shape=tf.shape(cpw), stddev=noise_std) cpw = tf.layers.conv2d_transpose(cpw, int(depth_cpw/8), kernel_size, strides=(2,1), padding='same') cpw = tf.layers.batch_normalization(cpw, momentum=0.9)#, training=training) cpw = tf.nn.leaky_relu(cpw, alpha=0.2) # cpw += tf.random_normal(shape=tf.shape(cpw), stddev=noise_std) # Control points cp = tf.layers.conv2d(cpw, 1, (1,2), padding='valid') # batch_size x (bezier_degree+1) x 2 x 1 cp = tf.nn.tanh(cp) cp = tf.squeeze(cp, axis=-1, name='control_point') # batch_size x (bezier_degree+1) x 2 # Weights w = tf.layers.conv2d(cpw, 1, (1,3), padding='valid') w = tf.nn.sigmoid(w) # batch_size x (bezier_degree+1) x 1 x 1 w = tf.squeeze(w, axis=-1, name='weight') # batch_size x (bezier_degree+1) x 1 # Parameters at data points db = tf.layers.dense(cz, 1024) db = tf.layers.batch_normalization(db, momentum=0.9)#, training=training) db = tf.nn.leaky_relu(db, alpha=0.2) db = tf.layers.dense(db, 256) db = tf.layers.batch_normalization(db, momentum=0.9)#, training=training) db = tf.nn.leaky_relu(db, alpha=0.2) db = tf.layers.dense(db, self.X_shape[0]-1) db = tf.nn.softmax(db) # batch_size x (n_data_points-1) # db = tf.random_gamma([tf.shape(cz)[0], self.X_shape[0]-1], alpha=100, beta=100) # db = tf.nn.softmax(db) # batch_size x (n_data_points-1) ub = tf.pad(db, [[0,0],[1,0]], constant_values=0) # batch_size x n_data_points ub = tf.cumsum(ub, axis=1) ub = tf.minimum(ub, 1) ub = tf.expand_dims(ub, axis=-1) # 1 x n_data_points x 1 # Bezier layer # Compute values of basis functions at data points num_control_points = self.bezier_degree + 1 lbs = tf.tile(ub, [1, 1, num_control_points]) # batch_size x n_data_points x n_control_points pw1 = tf.range(0, num_control_points, dtype=tf.float32) pw1 = tf.reshape(pw1, [1, 1, -1]) # 1 x 1 x n_control_points pw2 = tf.reverse(pw1, axis=[-1]) lbs = tf.add(tf.multiply(pw1, tf.log(lbs+EPSILON)), tf.multiply(pw2, tf.log(1-lbs+EPSILON))) # batch_size x n_data_points x n_control_points lc = tf.add(tf.lgamma(pw1+1), tf.lgamma(pw2+1)) lc = tf.subtract(tf.lgamma(tf.cast(num_control_points, dtype=tf.float32)), lc) # 1 x 1 x n_control_points lbs = tf.add(lbs, lc) # batch_size x n_data_points x n_control_points bs = tf.exp(lbs) # Compute data points cp_w = tf.multiply(cp, w) dp = tf.matmul(bs, cp_w) # batch_size x n_data_points x 2 bs_w = tf.matmul(bs, w) # batch_size x n_data_points x 1 dp = tf.div(dp, bs_w) # batch_size x n_data_points x 2 dp = tf.expand_dims(dp, axis=-1, name='fake_image') # batch_size x n_data_points x 2 x 1 return dp, cp, w, ub, db def discriminator(self, x, reuse=tf.AUTO_REUSE, training=True): depth = 64 dropout = 0.4 kernel_size = (4,2) with tf.variable_scope('Discriminator', reuse=reuse): x = tf.layers.conv2d(x, depth*1, kernel_size, strides=(2,1), padding='same') x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) x = tf.layers.dropout(x, dropout, training=training) x = tf.layers.conv2d(x, depth*2, kernel_size, strides=(2,1), padding='same') x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) x = tf.layers.dropout(x, dropout, training=training) x = tf.layers.conv2d(x, depth*4, kernel_size, strides=(2,1), padding='same') x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) x = tf.layers.dropout(x, dropout, training=training) x = tf.layers.conv2d(x, depth*8, kernel_size, strides=(2,1), padding='same') x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) x = tf.layers.dropout(x, dropout, training=training) x = tf.layers.conv2d(x, depth*16, kernel_size, strides=(2,1), padding='same') x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) x = tf.layers.dropout(x, dropout, training=training) x = tf.layers.conv2d(x, depth*32, kernel_size, strides=(2,1), padding='same') x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) x = tf.layers.dropout(x, dropout, training=training) x = tf.layers.flatten(x) x = tf.layers.dense(x, 1024) x = tf.layers.batch_normalization(x, momentum=0.9)#, training=training) x = tf.nn.leaky_relu(x, alpha=0.2) d = tf.layers.dense(x, 1) q = tf.layers.dense(x, 128) # q = tf.layers.batch_normalization(q, momentum=0.9)#, training=training) q = tf.nn.leaky_relu(q, alpha=0.2) q_mean = tf.layers.dense(q, self.latent_dim) q_logstd = tf.layers.dense(q, self.latent_dim) q_logstd = tf.maximum(q_logstd, -16) # Reshape to batch_size x 1 x latent_dim q_mean = tf.reshape(q_mean, (-1, 1, self.latent_dim)) q_logstd = tf.reshape(q_logstd, (-1, 1, self.latent_dim)) q = tf.concat([q_mean, q_logstd], axis=1, name='predicted_latent') # batch_size x 2 x latent_dim return d, q def compute_diversity_loss(self, x, y): x = tf.layers.flatten(x) y = tf.squeeze(y) r = tf.reduce_sum(tf.square(x), axis=1, keepdims=True) D = r - 2*tf.matmul(x, tf.transpose(x)) + tf.transpose(r) S = tf.exp(-0.5*tf.square(D)) # similarity matrix (rbf) # S = 1/(1+D) if self.lambda0 == 'naive': eig_val, _ = tf.self_adjoint_eig(S) loss = -tf.reduce_mean(tf.log(tf.maximum(eig_val, EPSILON)))-10*tf.reduce_mean(y) Q = None L = None else: Q = tf.tensordot(tf.expand_dims(y, 1), tf.expand_dims(y, 0), 1) # quality matrix if self.lambda0 == 0.: L = S else: L = S * tf.pow(Q, self.lambda0) eig_val, _ = tf.self_adjoint_eig(L) loss = -tf.reduce_mean(tf.log(tf.maximum(eig_val, EPSILON))) return loss, D, S, Q, L def train(self, X_train, train_steps=2000, batch_size=32, disc_lr=2e-4, gen_lr=2e-4, save_interval=0, directory='.', surrogate_dir='.'): X_train = np.expand_dims(X_train, axis=-1).astype(np.float32) # Inputs self.x = tf.placeholder(tf.float32, shape=(None,)+self.X_shape, name='real_image') self.c = tf.placeholder(tf.float32, shape=[None, self.latent_dim], name='latent_code') self.z = tf.placeholder(tf.float32, shape=[None, self.noise_dim], name='noise') # Targets q_target = tf.placeholder(tf.float32, shape=[None, self.latent_dim]) # Outputs d_real, _ = self.discriminator(self.x) x_fake_train, cp_train, w_train, ub_train, db_train = self.generator(self.c, self.z) d_fake, q_fake_train = self.discriminator(x_fake_train) self.x_fake_test, self.cp, self.w, ub, db = self.generator(self.c, self.z, training=False) # Schedule for lambda1 p = tf.cast(5, tf.float32) G_global_step = tf.Variable(0, name='G_global_step', trainable=False) lambda1 = self.lambda1 * tf.cast(G_global_step/(train_steps-1), tf.float32)**p disc_lr = tf.train.exponential_decay(disc_lr, G_global_step, 1000, 0.8, staircase=True) gen_lr = tf.train.exponential_decay(gen_lr, G_global_step, 1000, 0.8, staircase=True) # Combine with the surrogate model graph with tf.Session() as sess: surrogate_model = SM(sess, self.n_points) surrogate_graph = surrogate_model.restore(directory=surrogate_dir) output_node_names = 'net/y' frozen_graph = tf.graph_util.convert_variables_to_constants( sess, # The session is used to retrieve the weights surrogate_graph.as_graph_def(), # The graph_def is used to retrieve the nodes output_node_names.split(",") # The output node names are used to select the usefull nodes ) graph = tf.get_default_graph() tf.graph_util.import_graph_def(frozen_graph, input_map={'x:0': x_fake_train, 'training:0': False}, name='surrogate') y = graph.get_tensor_by_name('surrogate/net/y:0') mean_y = tf.reduce_mean(y) # Losses # Cross entropy losses for D d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_real, labels=tf.ones_like(d_real))) d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_fake, labels=tf.zeros_like(d_fake))) # Cross entropy losses for G g_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=d_fake, labels=tf.ones_like(d_fake))) dpp_loss, D, S, Q, L = self.compute_diversity_loss(x_fake_train, y*d_fake) g_dpp_loss = g_loss + lambda1 * dpp_loss # Regularization for w, cp, a, and b r_w_loss = tf.reduce_mean(w_train[:,1:-1], axis=[1,2]) cp_dist = tf.norm(cp_train[:,1:]-cp_train[:,:-1], axis=-1) r_cp_loss = tf.reduce_mean(cp_dist, axis=-1) r_cp_loss1 = tf.reduce_max(cp_dist, axis=-1) ends = cp_train[:,0] - cp_train[:,-1] r_ends_loss = tf.norm(ends, axis=-1) + tf.maximum(0.0, -10*ends[:,1]) r_db_loss = tf.reduce_mean(db_train*tf.log(db_train), axis=-1) r_loss = r_w_loss + r_cp_loss + 0*r_cp_loss1 + r_ends_loss + 0*r_db_loss r_loss = tf.reduce_mean(r_loss) # Gaussian loss for Q q_mean = q_fake_train[:, 0, :] q_logstd = q_fake_train[:, 1, :] epsilon = (q_target - q_mean) / (tf.exp(q_logstd) + EPSILON) q_loss = q_logstd + 0.5 * tf.square(epsilon) q_loss = tf.reduce_mean(q_loss) # Optimizers d_optimizer = tf.train.AdamOptimizer(learning_rate=disc_lr, beta1=0.5) g_optimizer = tf.train.AdamOptimizer(learning_rate=gen_lr, beta1=0.5) # Generator variables gen_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Generator') # Discriminator variables dis_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope='Discriminator') # Training operations d_train_real = d_optimizer.minimize(d_loss_real, var_list=dis_vars) d_train_fake = d_optimizer.minimize(d_loss_fake + q_loss, var_list=dis_vars) g_train = g_optimizer.minimize(g_dpp_loss + 10*r_loss + q_loss, var_list=gen_vars, global_step=G_global_step) # for v in tf.trainable_variables(): # print(v.name) # for v in dis_vars: # print(v.name) # for v in gen_vars: # print(v.name) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() # # Create summaries to monitor losses # tf.summary.scalar('D_loss_for_real', d_loss_real) # tf.summary.scalar('D_loss_for_fake', d_loss_fake) # tf.summary.scalar('G_loss', g_loss) # tf.summary.scalar('DPP_loss', dpp_loss) # tf.summary.scalar('R_loss', r_loss) # tf.summary.scalar('Q_loss', q_loss) # # Merge all summaries into a single op # merged_summary_op = tf.summary.merge_all() # Add ops to save and restore all the variables. saver = tf.train.Saver() # Start training self.sess = tf.Session() # Run the initializer self.sess.run(init) # # op to write logs to Tensorboard summary_writer = tf.summary.FileWriter('{}/logs'.format(directory), graph=self.sess.graph) for t in range(train_steps): ind = np.random.choice(X_train.shape[0], size=batch_size, replace=False) X_real = X_train[ind] # y_batch = self.sess.run(y, feed_dict={x_fake_train: X_real}) # print('************************************ y before update ************************************') # print(y_batch) _, dlr = self.sess.run([d_train_real, d_loss_real], feed_dict={self.x: X_real}) latent = np.random.uniform(low=self.bounds[0], high=self.bounds[1], size=(batch_size, self.latent_dim)) noise = np.random.normal(scale=0.5, size=(batch_size, self.noise_dim)) X_fake = self.sess.run(self.x_fake_test, feed_dict={self.c: latent, self.z: noise}) if np.any(np.isnan(X_fake)): ind = np.any(np.isnan(X_fake), axis=(1,2,3)) print(self.sess.run(ub, feed_dict={self.c: latent, self.z: noise})[ind]) assert not np.any(np.isnan(X_fake)) _, dlf, qdl, lrd = self.sess.run([d_train_fake, d_loss_fake, q_loss, disc_lr], feed_dict={x_fake_train: X_fake, q_target: latent}) latent = np.random.uniform(low=self.bounds[0], high=self.bounds[1], size=(batch_size, self.latent_dim)) noise = np.random.normal(scale=0.5, size=(batch_size, self.noise_dim)) _, gl, dppl, rl, qgl, my, lbd1, lrg = self.sess.run([g_train, g_loss, dpp_loss, r_loss, q_loss, mean_y, lambda1, gen_lr], feed_dict={self.c: latent, self.z: noise, q_target: latent}) # y_batch = self.sess.run(y, feed_dict={x_fake_train: X_real}) # print('************************************ y after update ************************************') # print(y_batch) # D_batch, S_batch, Q_batch, L_batch = self.sess.run([D, S, Q, L], feed_dict={self.c: latent, self.z: noise}) # print('************************************ SQL ************************************') # print('L-S:', L_batch-S_batch) # print(Q_batch) # summary_str = self.sess.run(merged_summary_op, feed_dict={self.x: X_real, x_fake_train: X_fake, # self.c: latent, self.z: noise, q_target: latent}) # # summary_writer.add_summary(summary_str, t+1) # Show messages log_mesg = "%d: [D] real %f fake %f q %f lr %f" % (t+1, dlr, dlf, qdl, lrd) log_mesg = "%s [G] fake %f dpp %f reg %f q %f y %f lambda1 %f lr %f" % (log_mesg, gl, dppl, rl, qgl, my, lbd1, lrg) print(log_mesg) if save_interval>0 and (t+1)%save_interval==0 or t+1==train_steps: # Save the variables to disk. save_path = saver.save(self.sess, '{}/model'.format(directory)) print('Model saved in path: %s' % save_path) # print('Plotting results ...') # plot_grid(5, gen_func=self.synthesize, d=self.latent_dim, bounds=self.bounds, # scale=.95, scatter=True, s=1, alpha=.7, fname='{}/synthesized'.format(directory)) summary_writer.close() def restore(self, directory='.'): self.sess = tf.Session() # Load meta graph and restore weights saver = tf.train.import_meta_graph('{}/model.meta'.format(directory)) saver.restore(self.sess, tf.train.latest_checkpoint('{}/'.format(directory))) # Access and create placeholders variables graph = tf.get_default_graph() self.x = graph.get_tensor_by_name('real_image:0') self.c = graph.get_tensor_by_name('latent_code:0') self.z = graph.get_tensor_by_name('noise:0') self.x_fake_test = graph.get_tensor_by_name('Generator_1/fake_image:0') self.cp = graph.get_tensor_by_name('Generator_1/control_point:0') self.w = graph.get_tensor_by_name('Generator_1/weight:0') def synthesize(self, latent, noise=None): if isinstance(latent, int): N = latent latent =
np.random.uniform(low=self.bounds[0], high=self.bounds[1], size=(N, self.latent_dim))
numpy.random.uniform
import nose.tools import numpy as np import subprocess as sp import hexapawn import logging import os tests_logger = logging.getLogger('root') def setup(): tests_logger.debug('Setting Up') def teardown(): tests_logger.debug('Tearing Down') def test_basic(): tests_logger.debug('Running Tests') def test_state_construct(): tests_logger.debug('Testing the board constructor') with open('tests/test1-in.txt', 'r') as f: b = hexapawn.state.State(f.read()) assert b.turn == 'B' assert np.array_equal(b.board, np.array([['p', 'p', 'p'], ['.', 'P', '.'], ['P', '.', 'P']])) b = hexapawn.state.State('W\n...\nPpP\npPp\n') assert b.turn == 'W' assert np.array_equal(b.board, np.array([['.', '.', '.'], ['P', 'p', 'P'], ['p', 'P', 'p']])) print('END') def test_get_move_masks(): tests_logger.debug('Testing getting move masks for white') b = hexapawn.state.State('W\np.p\n.Pp\nP..\n') w = hexapawn.piece.Pawn('W', b.board.shape) attack, move = w.get_moves(b) valid_attack = [(np.array([1, 1]), np.array([0, 0])), (np.array([1, 1]),
np.array([0, 2])
numpy.array
from __future__ import print_function import h5py import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' try: import moxing as mox import npu_bridge mox.file.shift('os', 'mox') h5py_File_class = h5py.File class OBSFile(h5py_File_class): def __init__(self, name, *args, **kwargs): self._tmp_name = None self._target_name = name if name.startswith('obs://') or name.startswith('s3://'): self._tmp_name = os.path.join('cache', 'h5py_tmp', name.replace('/', '_')) if mox.file.exists(name): mox.file.copy(name, self._tmp_name) name = self._tmp_name super(OBSFile, self).__init__(name, *args, **kwargs) def close(self): if self._tmp_name: mox.file.copy(self._tmp_name, self._target_name) super(OBSFile, self).close() setattr(h5py, 'File', OBSFile) except: pass import argparse import glob import time import numpy as np import scipy.io import tensorflow as tf from PIL import Image from tensorflow.core.protobuf.rewriter_config_pb2 import RewriterConfig from network import network _errstr = "Mode is unknown or incompatible with input array shape." def bytescale(data, cmin=None, cmax=None, high=255, low=0): """ Byte scales an array (image). Byte scaling means converting the input image to uint8 dtype and scaling the range to ``(low, high)`` (default 0-255). If the input image already has dtype uint8, no scaling is done. This function is only available if Python Imaging Library (PIL) is installed. Parameters ---------- data : ndarray PIL image data array. cmin : scalar, optional Bias scaling of small values. Default is ``data.min()``. cmax : scalar, optional Bias scaling of large values. Default is ``data.max()``. high : scalar, optional Scale max value to `high`. Default is 255. low : scalar, optional Scale min value to `low`. Default is 0. Returns ------- img_array : uint8 ndarray The byte-scaled array. Examples -------- >>> from scipy.misc import bytescale >>> img = np.array([[ 91.06794177, 3.39058326, 84.4221549 ], ... [ 73.88003259, 80.91433048, 4.88878881], ... [ 51.53875334, 34.45808177, 27.5873488 ]]) >>> bytescale(img) array([[255, 0, 236], [205, 225, 4], [140, 90, 70]], dtype=uint8) >>> bytescale(img, high=200, low=100) array([[200, 100, 192], [180, 188, 102], [155, 135, 128]], dtype=uint8) >>> bytescale(img, cmin=0, cmax=255) array([[91, 3, 84], [74, 81, 5], [52, 34, 28]], dtype=uint8) """ if data.dtype == np.uint8: return data if high > 255: raise ValueError("`high` should be less than or equal to 255.") if low < 0: raise ValueError("`low` should be greater than or equal to 0.") if high < low: raise ValueError("`high` should be greater than or equal to `low`.") if cmin is None: cmin = data.min() if cmax is None: cmax = data.max() cscale = cmax - cmin if cscale < 0: raise ValueError("`cmax` should be larger than `cmin`.") elif cscale == 0: cscale = 1 scale = float(high - low) / cscale bytedata = (data - cmin) * scale + low return (bytedata.clip(low, high) + 0.5).astype(np.uint8) def toimage(arr, high=255, low=0, cmin=None, cmax=None, pal=None, mode=None, channel_axis=None): """Takes a numpy array and returns a PIL image. This function is only available if Python Imaging Library (PIL) is installed. The mode of the PIL image depends on the array shape and the `pal` and `mode` keywords. For 2-D arrays, if `pal` is a valid (N,3) byte-array giving the RGB values (from 0 to 255) then ``mode='P'``, otherwise ``mode='L'``, unless mode is given as 'F' or 'I' in which case a float and/or integer array is made. .. warning:: This function uses `bytescale` under the hood to rescale images to use the full (0, 255) range if ``mode`` is one of ``None, 'L', 'P', 'l'``. It will also cast data for 2-D images to ``uint32`` for ``mode=None`` (which is the default). Notes ----- For 3-D arrays, the `channel_axis` argument tells which dimension of the array holds the channel data. For 3-D arrays if one of the dimensions is 3, the mode is 'RGB' by default or 'YCbCr' if selected. The numpy array must be either 2 dimensional or 3 dimensional. """ data =
np.asarray(arr)
numpy.asarray
#!/usr/bin/env python u""" spatial.py Written by <NAME> (10/2021) Data class for reading, writing and processing spatial data PYTHON DEPENDENCIES: numpy: Scientific Computing Tools For Python https://numpy.org https://numpy.org/doc/stable/user/numpy-for-matlab-users.html dateutil: powerful extensions to datetime https://dateutil.readthedocs.io/en/stable/ netCDF4: Python interface to the netCDF C library https://unidata.github.io/netcdf4-python/netCDF4/index.html h5py: Pythonic interface to the HDF5 binary data format. https://www.h5py.org/ PROGRAM DEPENDENCIES: time.py: utilities for calculating time operations UPDATE HISTORY: Written 10/2021 """ import os import re import io import copy import gzip import h5py import time import uuid import logging import zipfile import netCDF4 import numpy as np class spatial(object): """ Data class for reading, writing and processing spatial data """ np.seterr(invalid='ignore') def __init__(self, **kwargs): #-- set default keyword arguments kwargs.setdefault('spacing',[None,None]) kwargs.setdefault('nlat',None) kwargs.setdefault('nlon',None) kwargs.setdefault('extent',[None]*4) kwargs.setdefault('fill_value',None) #-- set default class attributes self.data=None self.mask=None self.lon=None self.lat=None self.time=None self.fill_value=kwargs['fill_value'] self.attributes=dict() self.extent=kwargs['extent'] self.spacing=kwargs['spacing'] self.shape=[kwargs['nlat'],kwargs['nlon'],None] self.ndim=None self.filename=None def case_insensitive_filename(self,filename): """ Searches a directory for a filename without case dependence """ #-- check if filename is open file object if isinstance(filename, io.IOBase): self.filename = copy.copy(filename) else: #-- tilde-expand input filename self.filename = os.path.expanduser(filename) #-- check if file presently exists with input case if not os.access(self.filename,os.F_OK): #-- search for filename without case dependence basename = os.path.basename(filename) directory = os.path.dirname(os.path.expanduser(filename)) f = [f for f in os.listdir(directory) if re.match(basename,f,re.I)] if not f: errmsg = '{0} not found in file system'.format(filename) raise FileNotFoundError(errmsg) self.filename = os.path.join(directory,f.pop()) return self def from_ascii(self, filename, date=True, **kwargs): """ Read a spatial object from an ascii file Inputs: full path of input ascii file Options: ascii file contains date information keyword arguments for ascii input """ #-- set filename self.case_insensitive_filename(filename) #-- set default parameters kwargs.setdefault('verbose',False) kwargs.setdefault('compression',None) kwargs.setdefault('columns',['lon','lat','data','time']) kwargs.setdefault('header',0) #-- open the ascii file and extract contents logging.info(self.filename) if (kwargs['compression'] == 'gzip'): #-- read input ascii data from gzip compressed file and split lines with gzip.open(self.filename,'r') as f: file_contents = f.read().decode('ISO-8859-1').splitlines() elif (kwargs['compression'] == 'zip'): #-- read input ascii data from zipped file and split lines base,_ = os.path.splitext(self.filename) with zipfile.ZipFile(self.filename) as z: file_contents = z.read(base).decode('ISO-8859-1').splitlines() elif (kwargs['compression'] == 'bytes'): #-- read input file object and split lines file_contents = self.filename.read().splitlines() else: #-- read input ascii file (.txt, .asc) and split lines with open(self.filename,'r') as f: file_contents = f.read().splitlines() #-- compile regular expression operator for extracting numerical values #-- from input ascii files of spatial data regex_pattern = r'[-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[EeD][+-]?\d+)?' rx = re.compile(regex_pattern, re.VERBOSE) #-- output spatial dimensions if (None not in self.extent): self.lat = np.linspace(self.extent[3],self.extent[2],self.shape[0]) self.lon = np.linspace(self.extent[0],self.extent[1],self.shape[1]) else: self.lat = np.zeros((self.shape[0])) self.lon = np.zeros((self.shape[1])) #-- output spatial data self.data = np.zeros((self.shape[0],self.shape[1])) self.mask = np.zeros((self.shape[0],self.shape[1]),dtype=bool) #-- remove time from list of column names if not date columns = [c for c in kwargs['columns'] if (c != 'time')] #-- extract spatial data array and convert to matrix #-- for each line in the file header = kwargs['header'] for line in file_contents[header:]: #-- extract columns of interest and assign to dict #-- convert fortran exponentials if applicable d = {c:r.replace('D','E') for c,r in zip(columns,rx.findall(line))} #-- convert line coordinates to integers ilon = np.int64(np.float64(d['lon'])/self.spacing[0]) ilat = np.int64((90.0-np.float64(d['lat']))//self.spacing[1]) self.data[ilat,ilon] = np.float64(d['data']) self.mask[ilat,ilon] = False self.lon[ilon] = np.float64(d['lon']) self.lat[ilat] = np.float64(d['lat']) #-- if the ascii file contains date variables if date: self.time = np.array(d['time'],dtype='f') #-- get spacing and dimensions self.update_spacing() self.update_extents() self.update_dimensions() self.update_mask() return self def from_netCDF4(self, filename, **kwargs): """ Read a spatial object from a netCDF4 file Inputs: full path of input netCDF4 file Options: netCDF4 file contains date information keyword arguments for netCDF4 reader """ #-- set filename self.case_insensitive_filename(filename) #-- set default parameters kwargs.setdefault('date',True) kwargs.setdefault('verbose',False) kwargs.setdefault('compression',None) kwargs.setdefault('varname','z') kwargs.setdefault('lonname','lon') kwargs.setdefault('latname','lat') kwargs.setdefault('timename','time') #-- read data from netCDF5 file data = ncdf_read(self.filename, **kwargs) #-- copy variables to spatial object self.data = data['data'].copy() if '_FillValue' in data['attributes']['data'].keys(): self.fill_value = data['attributes']['data']['_FillValue'] self.mask = np.zeros(self.data.shape, dtype=bool) self.lon = data['lon'].copy() self.lat = data['lat'].copy() #-- if the netCDF4 file contains date variables if kwargs['date']: self.time = data['time'].copy() #-- update attributes self.attributes.update(data['attributes']) #-- get spacing and dimensions self.update_spacing() self.update_extents() self.update_dimensions() self.update_mask() return self def from_HDF5(self, filename, **kwargs): """ Read a spatial object from a HDF5 file Inputs: full path of input HDF5 file Options: keyword arguments for HDF5 reader """ #-- set filename self.case_insensitive_filename(filename) #-- set default parameters kwargs.setdefault('date',True) kwargs.setdefault('verbose',False) kwargs.setdefault('compression',None) kwargs.setdefault('varname','z') kwargs.setdefault('lonname','lon') kwargs.setdefault('latname','lat') kwargs.setdefault('timename','time') #-- read data from HDF5 file data = hdf5_read(self.filename, **kwargs) #-- copy variables to spatial object self.data = data['data'].copy() if '_FillValue' in data['attributes']['data'].keys(): self.fill_value = data['attributes']['_FillValue'] self.mask = np.zeros(self.data.shape, dtype=bool) self.lon = data['lon'].copy() self.lat = data['lat'].copy() #-- if the HDF5 file contains date variables if kwargs['date']: self.time = data['time'].copy() #-- update attributes self.attributes.update(data['attributes']) #-- get spacing and dimensions self.update_spacing() self.update_extents() self.update_dimensions() self.update_mask() return self def from_file(self, filename, format=None, **kwargs): """ Read a spatial object from a specified format Inputs: full path of input file Options: file format (ascii, netCDF4, HDF5) file contains date information **kwargs: keyword arguments for input readers """ #-- set filename self.case_insensitive_filename(filename) #-- set default verbosity kwargs.setdefault('verbose',False) #-- read from file if (format == 'ascii'): #-- ascii (.txt) return spatial().from_ascii(filename, **kwargs) elif (format == 'netCDF4'): #-- netcdf (.nc) return spatial().from_netCDF4(filename, **kwargs) elif (format == 'HDF5'): #-- HDF5 (.H5) return spatial().from_HDF5(filename, **kwargs) def from_list(self, object_list, **kwargs): """ Build a sorted spatial object from a list of other spatial objects Inputs: list of spatial object to be merged Options: spatial objects contain date information sort spatial objects by date information clear the spatial list from memory """ #-- set default keyword arguments kwargs.setdefault('date',True) kwargs.setdefault('sort',True) kwargs.setdefault('clear',False) #-- number of spatial objects in list n = len(object_list) #-- indices to sort data objects if spatial list contain dates if kwargs['date'] and kwargs['sort']: list_sort = np.argsort([d.time for d in object_list],axis=None) else: list_sort = np.arange(n) #-- extract dimensions and grid spacing self.spacing = object_list[0].spacing self.extent = object_list[0].extent self.shape = object_list[0].shape #-- create output spatial grid and mask self.data = np.zeros((self.shape[0],self.shape[1],n)) self.mask = np.zeros((self.shape[0],self.shape[1],n),dtype=bool) self.fill_value = object_list[0].fill_value self.lon = object_list[0].lon.copy() self.lat = object_list[0].lat.copy() #-- create list of files and attributes self.filename = [] self.attributes = [] #-- output dates if kwargs['date']: self.time = np.zeros((n)) #-- for each indice for t,i in enumerate(list_sort): self.data[:,:,t] = object_list[i].data[:,:].copy() self.mask[:,:,t] |= object_list[i].mask[:,:] if kwargs['date']: self.time[t] = np.atleast_1d(object_list[i].time) #-- append filename to list if getattr(object_list[i], 'filename'): self.filename.append(object_list[i].filename) #-- append attributes to list if getattr(object_list[i], 'attributes'): self.attributes.append(object_list[i].attributes) #-- update the dimensions self.update_dimensions() self.update_mask() #-- clear the input list to free memory if kwargs['clear']: object_list = None #-- return the single spatial object return self def from_dict(self, d, **kwargs): """ Convert a dict object to a spatial object Inputs: dictionary object to be converted """ #-- assign variables to self for key in ['lon','lat','data','error','time']: try: setattr(self, key, d[key].copy()) except (AttributeError, KeyError): pass #-- create output mask for data self.mask = np.zeros_like(self.data,dtype=bool) #-- get spacing and dimensions self.update_spacing() self.update_extents() self.update_dimensions() self.update_mask() return self def to_ascii(self, filename, date=True, **kwargs): """ Write a spatial object to ascii file Inputs: full path of output ascii file Options: spatial objects contain date information keyword arguments for ascii output """ self.filename = os.path.expanduser(filename) #-- set default verbosity kwargs.setdefault('verbose',False) logging.info(self.filename) #-- open the output file fid = open(self.filename, 'w') if date: file_format = '{0:10.4f} {1:10.4f} {2:12.4f} {3:10.4f}' else: file_format = '{0:10.4f} {1:10.4f} {2:12.4f}' #-- write to file for each valid latitude and longitude ii,jj = np.nonzero((self.data != self.fill_value) & (~self.mask)) for ln,lt,dt in zip(self.lon[jj],self.lat[ii],self.data[ii,jj]): print(file_format.format(ln,lt,dt,self.time), file=fid) #-- close the output file fid.close() def to_netCDF4(self, filename, **kwargs): """ Write a spatial object to netCDF4 file Inputs: full path of output netCDF4 file Options: spatial objects contain date information **kwargs: keyword arguments for netCDF4 writer """ self.filename = os.path.expanduser(filename) #-- set default verbosity and parameters kwargs.setdefault('date',True) kwargs.setdefault('verbose',False) kwargs.setdefault('varname','z') kwargs.setdefault('lonname','lon') kwargs.setdefault('latname','lat') kwargs.setdefault('timename','time') kwargs.setdefault('time_units','years') kwargs.setdefault('time_longname','Date_in_Decimal_Years') #-- write to netCDF4 ncdf_write(self.data, self.lon, self.lat, self.time, **kwargs) def to_HDF5(self, filename, **kwargs): """ Write a spatial object to HDF5 file Inputs: full path of output HDF5 file Options: spatial objects contain date information **kwargs: keyword arguments for HDF5 writer """ self.filename = os.path.expanduser(filename) #-- set default verbosity and parameters kwargs.setdefault('date',True) kwargs.setdefault('verbose',False) kwargs.setdefault('varname','z') kwargs.setdefault('lonname','lon') kwargs.setdefault('latname','lat') kwargs.setdefault('timename','time') kwargs.setdefault('time_units','years') kwargs.setdefault('time_longname','Date_in_Decimal_Years') #-- write to HDF5 hdf5_write(self.data, self.lon, self.lat, self.time, **kwargs) def to_file(self, filename, format=None, date=True, **kwargs): """ Write a spatial object to a specified format Inputs: full path of output file Options: file format (ascii, netCDF4 or HDF5) spatial object contains date information keyword arguments for output writers """ #-- set default verbosity kwargs.setdefault('verbose',False) #-- write to file if (format == 'ascii'): #-- ascii (.txt) self.to_ascii(filename, date=date, **kwargs) elif (format == 'netCDF4'): #-- netcdf (.nc) self.to_netCDF4(filename, date=date, **kwargs) elif (format == 'HDF5'): #-- HDF5 (.H5) self.to_HDF5(filename, date=date, **kwargs) def to_masked_array(self): """ Convert a spatial object to a masked numpy array """ return np.ma.array(self.data, mask=self.mask, fill_value=self.fill_value) def update_spacing(self): """ Calculate the step size of spatial object """ #-- calculate degree spacing dlat = np.abs(self.lat[1] - self.lat[0]) dlon = np.abs(self.lon[1] - self.lon[0]) self.spacing = (dlon,dlat) return self def update_extents(self): """ Calculate the bounds of spatial object """ self.extent[0] = np.min(self.lon) self.extent[1] = np.max(self.lon) self.extent[2] = np.min(self.lat) self.extent[3] = np.max(self.lat) def update_dimensions(self): """ Update the dimensions of the spatial object """ self.shape =
np.shape(self.data)
numpy.shape
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' # for removing unnecessary warnings from absl import logging logging._warn_preinit_stderr = 0 logging.warning('...') import tensorflow as tf import numpy as np import pandas as pd from scipy import interpolate from tensorflow import keras import evidential_deep_learning as edl import time import random import matplotlib.pyplot as plt import joblib import pathlib # from PythonCode.KF.ENUtransform import ENUtoWGS84 import src.clustering.COStransforms as ct from src.regression.process import scale_lon_lat_cog_sog, scale_lon_lat_cog_sog_cluster,inverse_transform_lon, inverse_transform_lat, inverse_transform_cog, inverse_transform_sog from src.regression.load_data_regress import load_test_data, load_test_interpolated_data, load_test_data_ENU, load_test_data_gedsar, load_test_data_vk2mmsi ########### check a whole track ############## from src.evidential_deep_learning.layers.dense import DenseNormalGamma from src.evidential_deep_learning.losses.continuous import EvidentialRegression # edl.losses.EvidentialRegression does work, since this custom loss function has a get_config method # that has to be changed in the argument, add **kwarg # Also DenseNormalGamma is imported locally otherwise saved model does not recognise this layer vb_dir = os.path.dirname(__file__) data_dir = os.path.join(vb_dir, "resources/") results_dir = os.path.join(vb_dir, "results/") ANO_DATA = False cluster = True dataset = "1" # 1-> jan 2016, 2-> july 2019, 3=> Jan 2020, 4=> rostock_degsar if cluster: features = ['x', 'y', 'cog', 'sog', 'cluster'] # by default we convert to ENU model_name = "edl_graph_True_ds"+dataset+".h5" else: features = ['x', 'y', 'cog', 'sog'] model_name = "edl_graph_False_ds"+dataset+".h5" dim = len(features) INPUT_LEN = 10 # same as timesteps TARGET_LEN = 1 track_to_check = 0, #167 # 43, 167, 202 # path = "/home/sing_sd/Desktop/evidential/src/regression/resources/" # model = joblib.load(model_name) # custom_objects = {'DenseNormalGamma':edl.layers.DenseNormalGamma} # with keras.utils.custom_object_scope(custom_objects): # model=keras.models.load_model(path+model_name) def EvidentialRegressionLoss(true, pred): return EvidentialRegression(true, pred, coeff=1e-2) # layer_config = layer.get_config() # new_layer = keras.layers.Dense.from_config(layer_config) model = keras.models.load_model(data_dir+model_name, custom_objects={'DenseNormalGamma': DenseNormalGamma, "EvidentialRegressionLoss": EvidentialRegressionLoss}) plt.rcParams.update({'font.size': 12}) fig, ax = plt.subplots(figsize=(6, 8)) def main(): fig1, ax1 = plt.subplots(4, figsize=(6, 8)) # plot_uncertainties_rg_left_right_center() # original_data, test_data, test_data_interpolated = load_test_data(INPUT_LEN, TARGET_LEN, features, dim, track_to_check) original_data, test_data, test_data_interpolated = load_test_data_gedsar(INPUT_LEN, TARGET_LEN, features, dim, ANO_DATA, cluster) # original_data, test_data, test_data_interpolated = load_test_data_vk2mmsi(INPUT_LEN, TARGET_LEN, features, dim, ANO_DATA) ax.plot(original_data[:INPUT_LEN, 0], original_data[:INPUT_LEN, 1], '.k', label='Original trajectory') plt.pause(0.001) test_predict = 0 test_predict_all = np.zeros(shape=(len(test_data)-INPUT_LEN, dim)) uncertainty_all = np.zeros(shape=(len(test_data)-INPUT_LEN, dim)) total_distance_error = [] predicted_track = pd.DataFrame(columns=['x', 'y']) for data_index in range(len(test_data)-INPUT_LEN): if np.isnan(test_data[data_index, (INPUT_LEN-1)*dim]): for i in range(INPUT_LEN): if data_index+i < len(test_data): test_data[data_index + i, (INPUT_LEN-1-i)*dim : (INPUT_LEN-i)*dim] = test_predict[0, 0: dim] X_test = test_data[data_index, :].reshape(1, INPUT_LEN, dim) if not cluster: X_test[0] = scale_lon_lat_cog_sog(X_test[0]) else: X_test[0, :, 0: dim] = scale_lon_lat_cog_sog_cluster(X_test[0, :, 0:dim]) # start_time = time.time() test_predict = model.predict(X_test) # print(time.time()-start_time) # invert predictions y_pred = tf.reshape(test_predict, shape=(test_predict.__len__(), TARGET_LEN * dim * 4)) # n_stds=4 uncertianty = get_uncertainty(y_pred) # sigma, alpha, v mu, v, alpha, beta = tf.split(y_pred, 4, axis=-1) plot_v_alpha_beta(ax1,data_index,v,alpha, beta) test_predict =
np.array(y_pred[:, 0:dim])
numpy.array
from collections import defaultdict import numpy as np from sklearn import svm def makefeatx(fx, fy, bx, by, img): tmpx =
np.hstack((fx, bx))
numpy.hstack
__author__ = '<NAME> <<EMAIL>>' __contributors__ = "<NAME>, <NAME>, <NAME>" __version__ = "0.91" # Copyright (c) 2016, Hong Kong University of Science and Technology (HKUST) # All rights reserved. # =============================================================================== # GLOBAL IMPORTS: import random import operator import time import numpy as np from multiprocessing import Pool from sklearn.base import BaseEstimator, ClusterMixin from sklearn.utils import check_array from sklearn.neighbors import NearestNeighbors from sklearn.metrics.pairwise import pairwise_distances_argmin from sklearn.utils.validation import check_is_fitted from metrics.pairwise import pairwise_distances from functools import reduce # =============================================================================== # LOCAL IMPORTS: #import knn as knnn # =============================================================================== def FaissNearestNeighbors(X, eps, min_samples, nlist, nprobe, return_distance=False, IVFFlat=True, GPU=False): dimension = X.shape[1] if GPU is True: if IVFFlat is True: quantizer = faiss.IndexFlatL2(dimension) index_cpu = faiss.IndexIVFFlat(quantizer, dimension, nlist, faiss.METRIC_L2) # here we specify METRIC_L2, by default it performs inner-product search res = faiss.StandardGpuResources() # use a single GPU flat_config = faiss.GpuIndexFlatConfig() flat_config.device = 0 # make it an IVF GPU index index_gpu = faiss.index_cpu_to_gpu(res, 0, index_cpu) assert not index_gpu.is_trained index_gpu.train(X) assert index_gpu.is_trained # here we specify METRIC_L2, by default it performs inner-product search else: index_cpu = faiss.IndexFlatL2(dimension) res = faiss.StandardGpuResources() flat_config = faiss.GpuIndexFlatConfig() flat_config.device = 0 index_gpu = faiss.index_cpu_to_gpu(res, 0, index_cpu) index_gpu.add(X) n_samples = 10 k = min_samples samples = np.random.choice(len(X), n_samples) # print(samples) D, I = index_gpu.search(X[samples], k) # sanity check while np.max(D[:, k - 1]) < eps: k = k * 2 D, I = index_gpu.search(X[samples], k) # print(np.max(D[:, k - 1]), k, eps) index_gpu.nprobe = nprobe D, I = index_gpu.search(X, k) # actual search else: if IVFFlat is True: quantizer = faiss.IndexFlatL2(dimension) index_cpu = faiss.IndexIVFFlat(quantizer, dimension, nlist, faiss.METRIC_L2) # here we specify METRIC_L2, by default it performs inner-product search assert not index_cpu.is_trained index_cpu.train(X) assert index_cpu.is_trained # here we specify METRIC_L2, by default it performs inner-product search else: index_cpu = faiss.IndexFlatL2(dimension) index_cpu.add(X) n_samples = 10 k = min_samples samples = np.random.choice(len(X), n_samples) # print(samples) D, I = index_cpu.search(X[samples], k) # sanity check while np.max(D[:, k - 1]) < eps: k = k * 2 D, I = index_cpu.search(X[samples], k) # print(np.max(D[:, k - 1]), k, eps) index_cpu.nprobe = nprobe D, I = index_cpu.search(X, k) # actual search if return_distance is True: return D, I else: return D def run_knn(X, n_neighbors=100, n_samples=1000, metric='rmsd', algorithm='vp_tree'): # X = check_array(X, accept_sparse='csr') #print "Calculating pairwise ", metric, " distances of ", n_samples, " samples..." t0 = time.time() if metric is "rmsd": samples = random.sample(list(X), n_samples) whole_samples= reduce(operator.add, (samples[i] for i in range(len(samples)))) else: whole_samples = random.sample(list(X), n_samples) sample_dist_metric = pairwise_distances( whole_samples, whole_samples, metric=metric ) t1 = time.time() #print "time:", t1-t0, #print "Done." # Calculate neighborhood for all samples. This leaves the original point # in, which needs to be considered later #print "Calculating knn..." t0 = time.time() if metric is 'rmsd': shape_x =
np.shape(X.xyz)
numpy.shape
import os import re import numpy as np import scipy.io as sio from scipy.fftpack import fft import pandas as pd from .movie import Movie, FullFieldFlashMovie pd.set_option('display.width', 1000) pd.set_option('display.max_columns', 100) ################################################# def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] ################################################## def compute_FFT_OneCycle(FR, TF, downsample): one_cyc = np.int(((1000. / downsample) / TF)) FR_cyc = list(chunks(FR, one_cyc)) if (TF == 15. or TF == 8.): FR_cyc = FR_cyc[:-1] FR_cyc_avg = np.mean(FR_cyc, axis=0) y = FR_cyc_avg AMP = 2 * np.abs(fft(y) / len(y)) F0 = 0.5 * AMP[0] assert (F0 - np.mean(y) < 1.e-4) F1 = AMP[1] return F0, F1 ################################################## def create_ff_mov(frame_rate, tst, tend, xrng, yrng): ff_mov_on = FullFieldFlashMovie(
np.arange(xrng)
numpy.arange
import cv2 import numpy as np import matplotlib.image as mpimg import matplotlib.pyplot as plt binary_warped = mpimg.imread('warped_example.jpg') left_fit = np.array([ 2.13935315e-04, -3.77507980e-01, 4.76902175e+02]) right_fit = np.array([4.17622148e-04, -4.93848953e-01, 1.11806170e+03]) def fit_poly(img_shape, leftx, lefty, rightx, righty): left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) ploty = np.linspace(0, img_shape[0]-1, img_shape[0]) left_fitx = left_fit[0]*ploty**2 + left_fit[1]*ploty + left_fit[2] right_fitx = right_fit[0]*ploty**2 + right_fit[1]*ploty + right_fit[2] return left_fitx, right_fitx, ploty def search_around_poly(binary_warped): margin = 100 nonzero = binary_warped.nonzero() nonzeroy =
np.array(nonzero[0])
numpy.array
# newly added libraries import copy import wandb import time import math import csv import shutil from tqdm import tqdm import torch import numpy as np import pandas as pd from client import Client from config import * import scheduler as sch class FedAvgTrainer(object): def __init__(self, dataset, model, device, args): self.device = device self.args = args [client_num, _, _, train_data_global, _, train_data_local_num_dict, train_data_local_dict, test_data_local_dict, class_num] = dataset # record the client number of the dataset self.client_num = client_num self.class_num = class_num # setup dataset self.data_shape = list(train_data_global[0][0].size()) self.train_data_local_num_dict = train_data_local_num_dict self.test_data_local_dict = test_data_local_dict self.train_data_local_dict = train_data_local_dict if args.partition_method == "noniid": logger.info("-----------non-i.i.d transform----------") # generate the non i.i.d dataset self.gene_non_iid_dataset(train_data_global, "tmp") # read the non i.i.d dataset self.read_non_iid_dataset("tmp") # rm the tmp directory shutil.rmtree(os.path.join('.', 'tmp')) self.client_list = [] self.setup_clients(train_data_local_num_dict, train_data_local_dict, test_data_local_dict) # initialize the recorder of invalid dataset self.invalid_datasets = dict() # time counter starts from the first line self.time_counter = channel_data['Time'][0] # initialize the cycle_num here self.cycle_num = 0 # initialize the scheduler function if self.args.method == "sch_pn_method_1" or self.args.method == "sch_pn_method_1_empty": for _ in range(100): self.scheduler = sch.Scheduler_PN_method_1() client_indexes, _ = self.scheduler.sch_pn_test(1, 2002) if len(client_indexes) > 5: break elif self.args.method == "sch_pn_method_2" or self.args.method == "sch_pn_method_2_empty": for _ in range(100): self.scheduler = sch.Scheduler_PN_method_2() client_indexes, _ = self.scheduler.sch_pn_test(1, 2002) if len(client_indexes) > 5: break elif self.args.method == "sch_pn_method_3" or self.args.method == "sch_pn_method_3_empty": for _ in range(100): self.scheduler = sch.Scheduler_PN_method_3() client_indexes, _ = self.scheduler.sch_pn_test(1, 2002) if len(client_indexes) > 5: break elif self.args.method == "sch_random": self.scheduler = sch.sch_random elif self.args.method == "sch_channel": self.scheduler = sch.sch_channel elif self.args.method == "sch_rrobin": self.scheduler = sch.sch_rrobin elif self.args.method == "sch_loss": self.scheduler = sch.sch_loss else: self.scheduler = sch.sch_random self.model = model self.model_global = model(self.args, model_name=self.args.model, output_dim=self.class_num) self.model_global.train() def setup_clients(self, train_data_local_num_dict, train_data_local_dict, test_data_local_dict): logger.debug("############setup_clients (START)#############") for client_idx in range(client_num_per_round): c = Client(client_idx, train_data_local_dict[client_idx], test_data_local_dict[client_idx], train_data_local_num_dict[client_idx], self.args, self.device) self.client_list.append(c) logger.debug("############setup_clients (END)#############") def train(self): """ Global initialized values """ # maintain a lst for local losses local_loss_lst = np.zeros((1, client_num_in_total)) # maintain a lst for local acc _, dataset_acc_lst = self.local_test_on_all_clients(self.model_global, 0, True, False) local_acc_lst = dataset_acc_lst[np.arange(client_num_in_total) % self.client_num] # counting days counting_days, reward = 0, 0 # initialize values for calculating iteration num delta, rho, beta, rho_flag, beta_flag = np.random.rand(1)[0], np.random.rand(1)[0], np.random.rand(1)[0], True, True # Initialize values for calculating FPF2 index local_itr_lst = torch.zeros(self.args.comm_round, int(client_num_in_total)).to(self.device) # historical local iterations. G_mat = torch.zeros(int(client_num_in_total)).to(self.device) # initial the value of G with zero # if weight size is larger than THRESHOLD_WEIGHT_SIZE we will use a simpler method to calculate FPF weight_size = sum([self.model_global.cpu().state_dict()[para].numpy().ravel().shape[0] for para in self.model_global.state_dict().keys()]) if weight_size < THRESHOLD_WEIGHT_SIZE: A_mat = torch.ones(weight_size).to(self.device) # initial the value of A with ones. local_w_diffs = torch.zeros((int(client_num_in_total), weight_size)).to(self.device) else: logger.warning("The weight size of the model {} is too large. Thus, we turn to use a more simple method to calculate FPF.".format(self.args.model)) LRU_itr_lst = torch.zeros(int(client_num_in_total)).to(self.device) # store the iteration gap for each client. # show weight size for the model. logger.debug("weight size: {}".format(weight_size)) """ starts training, entering the loop of command round. """ Inform = {} traffic = 0 for round_idx in range(self.args.comm_round): logger.info("################Communication round : {}".format(round_idx)) # set the time_counter self.time_counter = np.array(channel_data['Time'][channel_data['Time'] >= self.time_counter])[0] logger.info("time_counter: {}".format(self.time_counter)) self.model_global.train() # get client_indexes from scheduler reward, loss_a, loss_c = 0, 0, 0 if (self.args.method)[:6] == "sch_pn": if self.args.method[-5:] == "empty" or round_idx == 0: client_indexes, local_itr = self.scheduler.sch_pn_empty(round_idx, self.time_counter) else: client_indexes, local_itr, (reward, loss_a, loss_c) = self.scheduler.sch_pn(round_idx, self.time_counter, loss_locals, FPF2_idx_lst, local_loss_lst, ) else: if self.args.method == "sch_loss": if round_idx == 0: loss_locals = [] client_indexes, local_itr = self.scheduler(round_idx, self.time_counter, loss_locals) else: client_indexes, local_itr = self.scheduler(round_idx, self.time_counter) # write to the scheduler csv with open(scheduler_csv, mode = "a+", encoding='utf-8', newline='') as file: csv_writer = csv.writer(file) if round_idx == 0: csv_writer.writerow(['time counter', 'client index', 'iteration']) csv_writer.writerow([self.time_counter, str(client_indexes), local_itr]) file.flush() logger.info("client_indexes = " + str(client_indexes)) traffic += len(client_indexes) # write one line to trainer_csv trainer_csv_line = [round_idx, self.time_counter, str(client_indexes), traffic] # contribute to time counter self.tx_time(list(client_indexes)) # transmit time # store the last model's training parameters. last_w = copy.deepcopy(self.model_global.cpu().state_dict()) # local Initialization w_locals, loss_locals, beta_locals, rho_locals, cycle_locals = [], [], [], [], [] """ for scalability: following the original FedAvg algorithm, we uniformly sample a fraction of clients in each round. Instead of changing the 'Client' instances, our implementation keeps the 'Client' instances and then updates their local dataset """ for idx in range(len(client_indexes)): # update dataset client = self.client_list[idx] client_idx = client_indexes[idx] dataset_idx = client_idx % self.client_num if dataset_idx in self.invalid_datasets.keys(): current_idx = self.invalid_datasets[dataset_idx] else: current_idx = dataset_idx while True: client.update_local_dataset(current_idx, self.train_data_local_dict[current_idx], self.test_data_local_dict[current_idx], self.train_data_local_num_dict[current_idx]) # train on new dataset # add a new parameter "local_itr" to the funciton "client.train()" # add a new return value "time_interval" which is the time consumed for training model in client. w, loss, local_beta, local_rho, local_acc, local_cycle = client.train(net=copy.deepcopy(self.model_global).to(self.device), local_iteration = local_itr) if loss != None and local_beta != None and local_rho != None and local_acc != None: if dataset_idx != current_idx: self.invalid_datasets[dataset_idx] = current_idx break current_idx = np.random.randint(self.class_num) logger.warning("changing dataset for {} to {}".format(client_idx, current_idx)) # record current cycle cycle_locals.append([client.get_sample_number(), local_cycle]) # record current w into w_locals w_locals.append((client.get_sample_number(), copy.deepcopy(w))) # record current loss into loss_locals loss_locals.append(loss) # record local beta into beta_locals beta_locals.append(local_beta) # record local beta into rho_locals rho_locals.append(local_rho) # update the local_loss_lst local_loss_lst[0, client_idx] = loss # update local_w_diffs if weight_size < THRESHOLD_WEIGHT_SIZE: local_w_diffs[client_idx, :] = torch.cat([w[para].reshape((-1, )) - last_w[para].reshape((-1, )) for para in self.model_global.state_dict().keys()]).to(self.device) # update local_acc_lst local_acc_lst[client_idx] = local_acc # loss logger.info('Client {:3d}, loss {:.3f}'.format(client_idx, loss)) # update global weights w_glob = self.aggregate(w_locals) # copy weight to net_glob self.model_global.load_state_dict(w_glob) # update the time counter if list(client_indexes): self.time_counter += math.ceil(LOCAL_TRAINING_TIME) logger.debug("time_counter after training: {}".format(self.time_counter)) trainer_csv_line += [self.time_counter-trainer_csv_line[1], np.var(local_loss_lst), str(loss_locals), np.var(loss_locals), np.var(local_acc_lst)] # print loss if not loss_locals: logger.info('Round {:3d}, Average loss None'.format(round_idx)) trainer_csv_line.append('None') else: loss_avg = sum(loss_locals) / len(loss_locals) logger.info('Round {:3d}, Average loss {:.3f}'.format(round_idx, loss_avg)) trainer_csv_line.append(loss_avg) if cycle_locals: cycle_locals = np.asarray(cycle_locals) logger.info('Elapsed cycles {:.3f}'.format(np.sum(cycle_locals[:, 0] * cycle_locals[:, 1]) / np.sum(cycle_locals[:, 0]))) # local test on all client. if round_idx % self.args.frequency_of_the_test == 0 or round_idx == self.args.comm_round - 1: test_acc, _ = self.local_test_on_all_clients(self.model_global, round_idx, EVAL_ON_TRAIN, True) trainer_csv_line.append(test_acc) # write headers for csv with open(trainer_csv, mode = "a+", encoding='utf-8', newline='') as file: csv_writer = csv.writer(file) if round_idx == 0: csv_writer.writerow(['round index', 'time counter', 'client index', 'traffic', 'train time', 'fairness', 'local loss', "local loss var", "local acc var", 'global loss', 'test accuracy']) csv_writer.writerow(trainer_csv_line) file.flush() # log on wandb Inform["reward"] = reward wandb.log(Inform) Inform = { "reward": reward, "loss_a": loss_a, "loss_c": loss_c, "round": round_idx, "traffic": traffic, "beta": beta, "rho": rho, "delta": delta, "cum_time": trainer_csv_line[1]+self.cycle_num*59361, "local_itr": local_itr, "client_num": len(client_indexes), "C3": (rho*delta)/beta, "local_loss_var": np.var(loss_locals), "local_acc_var": np.var(local_acc_lst) } # update FPF index list if weight_size < THRESHOLD_WEIGHT_SIZE: FPF2_idx_lst = torch.norm(local_w_diffs * A_mat, dim = 1) / G_mat else: FPF2_idx_lst = LRU_itr_lst / G_mat FPF2_idx_lst = FPF2_idx_lst.cpu().numpy() FPF2_idx_lst[np.bitwise_or(np.isnan(FPF2_idx_lst), np.isinf(FPF2_idx_lst))] = 0 # FPF2_idx_lst = FPF2_idx_lst / max(FPF2_idx_lst) FPF2_idx_lst[np.bitwise_or(np.isnan(FPF2_idx_lst), np.isinf(FPF2_idx_lst))] = 0 # write FPF index list to csv with open(FPF_csv, mode = "a+", encoding='utf-8', newline='') as file: csv_writer = csv.writer(file) if round_idx == 0: csv_writer.writerow(['time counter'] + ["car_"+str(i) for i in range(client_num_in_total)]) csv_writer.writerow([trainer_csv_line[1]]+FPF2_idx_lst.tolist()) file.flush() # update beta & delta & rho if w_locals and loss_locals: sample_nums = np.array([sample_num for sample_num, _ in w_locals]) local_w_diff_norms = np.array([torch.norm(torch.cat([w[para].reshape((-1, )) - w_glob[para].reshape((-1, )) for para in self.model_global.state_dict().keys()])).item() for _, w in w_locals]) # calculate delta delta_tmp = np.sum(sample_nums * local_w_diff_norms) / np.sum(sample_nums) / self.args.lr if (not np.isnan(delta_tmp) and not np.isinf(delta_tmp)): delta = delta_tmp # update rho rho_tmp = np.sum(sample_nums * np.array(rho_locals)) / np.sum(sample_nums) if rho_tmp > rho or rho_flag: if (not np.isnan(rho_tmp) and not np.isinf(rho_tmp)) and rho_tmp < THRESHOLD_RHO: rho, rho_flag = rho_tmp, False # update beta beta_tmp = np.sum(sample_nums * np.array(beta_locals)) / np.sum(sample_nums) if beta_tmp > beta or beta_flag: if (not np.isnan(beta_tmp) and not np.isinf(beta_tmp)) and beta_tmp < THRESHOLD_BETA: beta, beta_flag = beta_tmp, False if self.args.method == "sch_pn_method_1" or self.args.method == "sch_pn_method_1_empty": self.scheduler.calculate_itr_method_1(delta) elif self.args.method == "sch_pn_method_2" or self.args.method == "sch_pn_method_2_empty": self.scheduler.calculate_itr_method_2(rho, beta, delta) elif self.args.method == "sch_pn_method_3" or self.args.method == "sch_pn_method_3_empty": self.scheduler.calculate_itr_method_3(rho, beta, delta) if weight_size < THRESHOLD_WEIGHT_SIZE: # update local_w_diffs global_w_diff = torch.cat([w_glob[para].reshape((-1, )) - last_w[para].reshape((-1, )) for para in self.model_global.state_dict().keys()]).to(self.device) local_w_diffs[list(set(list(range(client_num_in_total))) - set(list(client_indexes))), :] -= global_w_diff # update A_mat A_mat = A_mat * (1 - 1/G2) + (global_w_diff) / G2 / global_w_diff.mean() # Update local_itr_lst if list(client_indexes) and local_itr > 0: # only if client_idx is not empty and local_iter > 0, then I will update following values local_itr_lst[round_idx, list(client_indexes)] = float(local_itr) if weight_size >= THRESHOLD_WEIGHT_SIZE: LRU_itr_lst += float(local_itr) LRU_itr_lst[list(client_indexes)] = 0 # update G_mat G_mat = G_mat * (1 - 1 / G1) + local_itr_lst[round_idx, :] / G1 # if current time_counter has exceed the channel table, I will simply stop early if self.time_counter >= time_cnt_max[counting_days]: counting_days += 1 if counting_days % RESTART_DAYS == 0: if self.args.method == "find_constant" and loss_locals: w_optimal, loss_optimal = self.central_train() w = torch.cat([param.view(-1) for param in self.model_global.parameters()]) w_diff_optimal = torch.norm(w.cpu() - w_optimal.cpu()) logger.info("The norm of difference between w_optmal & w: {}".format(w_diff_optimal.item())) logger.info("The norm of difference between loss & loss_optimal: {}".format(loss_avg - loss_optimal)) break logger.info("################reinitialize model") self.model_global = self.model(self.args, model_name=self.args.model, output_dim=self.class_num) delta, rho, beta, rho_flag, beta_flag = np.random.rand(1)[0],
np.random.rand(1)
numpy.random.rand
from unittest import TestCase import numpy as np from numpy.testing import assert_allclose from skfem import BilinearForm, asm, solve, condense, project from skfem.mesh import MeshTri, MeshTet, MeshHex, MeshQuad, MeshLine from skfem.assembly import InteriorBasis, FacetBasis, Dofs from skfem.element import (ElementVectorH1, ElementTriP2, ElementTriP1, ElementTetP2, ElementHexS2, ElementHex2, ElementQuad2, ElementLineP2) class TestCompositeSplitting(TestCase): def runTest(self): """Solve Stokes problem, try splitting and other small things.""" m = MeshTri() m.refine() m.define_boundary('centreline', lambda x: x[0] == .5, boundaries_only=False) m.refine(3) e = ElementVectorH1(ElementTriP2()) * ElementTriP1() m.define_boundary('up', lambda x: x[1] == 1.) m.define_boundary('rest', lambda x: x[1] != 1.) basis = InteriorBasis(m, e) self.assertEqual( basis.get_dofs(m.boundaries['centreline']).all().size, (2 + 1) * (2**(1 + 3) + 1) + 2 * 2**(1 + 3)) self.assertEqual(basis.find_dofs()['centreline'].all().size, (2 + 1) * (2**(1 + 3) + 1) + 2 * 2**(1 + 3)) @BilinearForm def bilinf(u, p, v, q, w): from skfem.helpers import grad, ddot, div return (ddot(grad(u), grad(v)) - div(u) * q - div(v) * p - 1e-2 * p * q) S = asm(bilinf, basis) D = basis.find_dofs(skip=['u^2']) x = basis.zeros() x[D['up'].all('u^1^1')] = .1 x = solve(*condense(S, basis.zeros(), x=x, D=D)) (u, u_basis), (p, p_basis) = basis.split(x) self.assertEqual(len(u), m.p.shape[1] * 2 + m.facets.shape[1] * 2) self.assertEqual(len(p), m.p.shape[1]) self.assertTrue(np.sum(p - x[basis.nodal_dofs[2]]) < 1e-8) U, P = basis.interpolate(x) self.assertTrue(isinstance(U.value, np.ndarray)) self.assertTrue(isinstance(P.value, np.ndarray)) self.assertTrue((basis.doflocs[:, D['up'].all()][1] == 1.).all()) class TestCompositeFacetAssembly(TestCase): def runTest(self): m = MeshTri() fbasis1 = FacetBasis(m, ElementTriP1() * ElementTriP1(), facets=m.facets_satisfying(lambda x: x[0] == 0)) fbasis2 = FacetBasis(m, ElementTriP1(), facets=m.facets_satisfying(lambda x: x[0] == 0)) @BilinearForm def uv1(u, p, v, q, w): return u * v + p * q @BilinearForm def uv2(u, v, w): return u * v A = asm(uv1, fbasis1) B = asm(uv2, fbasis2) assert_allclose(A[0].todense()[0, ::2], B[0].todense()[0]) class TestFacetExpansion(TestCase): mesh_type = MeshTet elem_type = ElementTetP2 def runTest(self): m = self.mesh_type() m.refine(2) basis = InteriorBasis(m, self.elem_type()) for fun in [lambda x: x[0] == 0, lambda x: x[0] == 1, lambda x: x[1] == 0, lambda x: x[1] == 1, lambda x: x[2] == 0, lambda x: x[2] == 1]: arr1 = basis.find_dofs({ 'kek': m.facets_satisfying(fun) })['kek'].edge['u'] arr2 = basis.edge_dofs[:, m.edges_satisfying(fun)] assert_allclose(arr1, arr2.flatten()) class TestFacetExpansionHexS2(TestFacetExpansion): mesh_type = MeshHex elem_type = ElementHexS2 class TestFacetExpansionHex2(TestFacetExpansionHexS2): elem_type = ElementHex2 class TestInterpolatorTet(TestCase): mesh_type = MeshTet element_type = ElementTetP2 nrefs = 1 def runTest(self): m = self.mesh_type() m.refine(self.nrefs) basis = InteriorBasis(m, self.element_type()) x = project(lambda x: x[0] ** 2, basis_to=basis) fun = basis.interpolator(x) X =
np.linspace(0, 1, 10)
numpy.linspace
import numpy as np import torch from nmtg.data.dataset import Dataset from nmtg.data.text_lookup_dataset import TextLookupDataset class ParallelDataset(Dataset): def __init__(self, src_data: TextLookupDataset, tgt_data: TextLookupDataset=None, src_lang=None, tgt_lang=None): self.src_data = src_data # technically a duplicate, but it's fine self.tgt_data = tgt_data self.src_lang = src_lang self.tgt_lang = tgt_lang def __getitem__(self, index): source = self.src_data[index] res = {'id': index, 'src_indices': source, 'src_size': len(source)} if self.src_lang is not None: res['src_lang'] = self.src_lang if self.tgt_data is not None: target = self.tgt_data[index] target_input = target[:-1] target_output = target[1:] res['tgt_input'] = target_input res['tgt_output'] = target_output res['tgt_size'] = len(target_output) if self.tgt_lang is not None: res['tgt_lang'] = self.tgt_lang return res def __len__(self): return len(self.src_data) def collate_samples(self, samples): src_batch = self.src_data.collate_samples([x['src_indices'] for x in samples]) res = {'src_indices': src_batch['indices'], 'src_size': src_batch['size'], 'src_lengths': src_batch['lengths'], 'id': torch.tensor([x['id'] for x in samples])} if 'src_lang' in samples[0]: res['src_lang'] = [x['src_lang'] for x in samples] if self.tgt_data is not None: target_input = self.tgt_data.collate_samples([x['tgt_input'] for x in samples]) target_output = self.tgt_data.collate_samples([x['tgt_output'] for x in samples]) res['tgt_input'] = target_input['indices'] res['tgt_output'] = target_output['indices'] res['tgt_size'] = target_output['size'] res['tgt_lengths'] = target_output['lengths'] if 'tgt_lang' in samples[0]: res['tgt_lang'] = [x['tgt_lang'] for x in samples] return res class MultiParallelDataset(Dataset): """ A dataset containing a parallel text in two or more languages. When indexing, the indexing order is target language -> source language -> sentence index. """ def __init__(self, exclude_pairs=None, src_bos=False, tgt_lang_bos=False, **datasets): assert len(datasets) > 1 self.datasets = datasets self.src_bos = src_bos self.tgt_lang_bos = tgt_lang_bos self.languages = sorted(self.datasets.keys()) self.num_sentences = len(self.datasets[self.languages[0]]) pad_index = self.datasets[self.languages[0]].pad() align_right = self.datasets[self.languages[0]].align_right self.collate_fn = self.datasets[self.languages[0]].collate_samples assert all(len(dataset) == self.num_sentences for dataset in self.datasets) assert all(dataset.dictionary.pad() == pad_index for dataset in self.datasets) assert all(dataset.align_right == align_right for dataset in self.datasets) if exclude_pairs is not None: assert all(len(pair) == 2 for pair in exclude_pairs) assert all(lang in self.datasets for pair in exclude_pairs for lang in pair) self.exclude_pairs = exclude_pairs if exclude_pairs is not None else [] self.pairs_per_sentence = len(self.datasets) * (len(self.datasets) - 1) - len(self.exclude_pairs) exclude_pairs = [(self.languages.index(s), self.languages.index(t)) for s, t in self.exclude_pairs] self._excluded_indices = sorted([s * (len(self.datasets) - 1) + (t - 1 if t >= s else t) for s, t in exclude_pairs]) def __len__(self): return self.num_sentences * self.pairs_per_sentence def _get_src(self, src_lang, tgt_lang, index): src_dataset = self.datasets[src_lang] src_dataset.lang = tgt_lang src_dataset.bos = self.src_bos source = src_dataset[index] return source def _get_tgt(self, tgt_lang, index): tgt_dataset = self.datasets[tgt_lang] tgt_dataset.lang = tgt_lang if self.tgt_lang_bos else None tgt_dataset.bos, tgt_dataset.eos = True, True target = tgt_dataset[index] return target def __getitem__(self, index): pair_index, sentence_index = divmod(index, self.num_sentences) for excluded in self._excluded_indices: if pair_index >= excluded: pair_index += 1 else: break tgt_index, src_index = divmod(pair_index, len(self.languages) - 1) if src_index >= tgt_index: src_index += 1 source = self._get_src(self.languages[src_index], self.languages[tgt_index], sentence_index) target = self._get_tgt(self.languages[tgt_index], sentence_index) res = {'sentence_id': sentence_index, 'src_lang': self.languages[src_index], 'tgt_lang': self.languages[tgt_index], 'src_indices': source, 'src_size': len(source), 'tgt_input': target[:-1], 'tgt_output': target[1:], 'tgt_size': len(target) - 1} return res def collate_samples(self, samples): src_batch = self.collate_fn([x['src_indices'] for x in samples]) tgt_input = self.collate_fn([x['tgt_input'] for x in samples]) tgt_output = self.collate_fn([x['tgt_output'] for x in samples]) res = {'src_lang': [x['src_lang'] for x in samples], 'tgt_lang': [x['tgt_lang'] for x in samples], 'src_indices': src_batch['indices'], 'src_size': src_batch['size'], 'src_lengths': src_batch['lengths'], 'tgt_input': tgt_input['indices'], 'tgt_output': tgt_output['indices'], 'tgt_size': tgt_output['size'], 'tgt_lengths': tgt_output['lengths']} return res def concat_lengths(self, **lengths): assert all(lang in lengths for lang in self.languages) src_langs, tgt_langs = zip(*self.get_pairs()) src_lengths = np.concatenate([lengths[lang] for lang in src_langs]) tgt_lengths =
np.concatenate([lengths[lang] for lang in tgt_langs])
numpy.concatenate
# -*- coding: utf-8 -*- # Copyright 2018 The Blueoil Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================= """Test file for GraphRunner.""" import unittest from core.data_types import Float32, Uint32, Int32, QUANTIZED_NOT_PACKED from core.graph import Graph, GraphRunner from core.optimizer import Optimizer from core.operators import Add, AveragePool, BatchNormalization, Constant, Conv, Identity, Input, \ MaxPool, Operator, Output, Transpose, QTZ_binary_mean_scaling, QTZ_linear_mid_tread_half, Reshape, Softmax import numpy as np from typing import Any, Dict, List, Tuple class TestOptimizer(unittest.TestCase): """Test class for GraphRunner.""" def test_precompute1(self) -> None: """Test code for precompute optimizer.""" data1 = np.random.rand(3, 2, 2, 3) data2 = np.random.rand(3, 2, 2, 3) data3 = np.random.rand(3, 2, 2, 3) graph1 = self.create_sample_graph(data1, data2, data3) graph2 = self.create_precompute_graph(data1, data2, data3) optim = Optimizer() optim.precompute(graph1) # for debug # from frontend import TensorFlowIO # from core.model import Model # import os # io = TensorFlowIO() # tmp_dir = os.path.join('tmp') # if not os.path.exists(tmp_dir): # os.mkdir(tmp_dir) # path = os.path.join('tmp', 'test_precompute.pb') # model = Model() # model.graph = graph1 # io.write(model, path) self.assertEqual(graph1, graph2, 'precompute failed.') print("Precompute test #1 passed!") def test_precompute2(self) -> None: """Test code for precompute optimizer.""" data1 = np.random.rand(3, 2, 2, 3) data2 = np.random.rand(3, 2, 2, 3) data3 = np.random.rand(3, 2, 2, 3) graph1 = self.create_sample_graph(data1, data2, data3) graph2, scaling1, scaling2 = self.create_quantized_graph(data1, data2, data3) optim = Optimizer() optim.precompute(graph1, hard_quantized=True) self.assertEqual(graph1, graph2, 'precompute failed.') self.assertAlmostEqual(graph1.get_op('conv2').quantizer.scaling_factor, scaling2) # type: ignore print("Precompute test #2 passed!") def test_precompute3(self) -> None: """Test code for precompute optimizer.""" data1 = np.random.rand(3, 2, 2, 3) data2 = np.random.rand(3, 2, 2, 3) data3 = np.random.rand(3, 2, 2, 3) graph1 = self.create_sample_graph3(data1, data2, data3) graph2, scaling2, scaling3 = self.create_quantized_graph2(data1, data2, data3) optim = Optimizer() optim.precompute(graph1, hard_quantized=True) self.assertEqual(graph1, graph2, 'precompute failed.') self.assertAlmostEqual(graph1.get_op('conv2').quantizer.scaling_factor, scaling2) # type: ignore self.assertAlmostEqual(graph1.get_op('conv3').quantizer.scaling_factor, scaling3) # type: ignore print("Precompute test #3 passed!") def test_transpose_NHWC(self) -> None: """Test code for transpose_NHWC optimizer.""" data = np.random.rand(3, 2, 2, 1) graph1 = self.create_sample_graph2(data) graph2 = self.create_transposed_graph(data) optim = Optimizer() optim.transpose_NHWC(graph1) self.assertEqual(graph1, graph2, 'transpose to NHWC failed.') print("Transpose_NHWC test #1 passed!") def create_sample_graph(self, data1: np.ndarray, data2: np.ndarray, data3: np.ndarray) -> Graph: graph = Graph() # input x = Input( 'placeholder', [1, 5, 5, 3], Float32(), ) # constant and internal nodes w = Constant( 'weight', Float32(), data1 ) i = Identity( 'identity1', [3, 2, 2, 3], Float32(), {'input': w} ) t = Transpose( 'transpose1', [3, 2, 2, 3], Float32(), {'data': i}, perm=[3, 2, 1, 0] ) q = QTZ_binary_mean_scaling( 'qtz1', [3, 2, 2, 3], Float32(), {'input': t} ) # Conv conv1 = Conv( 'conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2] ) i2 = Identity( 'identity2', [1, 4, 4, 3], Float32(), {'input': conv1} ) s1 = Constant( 'aq_const1', Float32(), np.array(1) ) s2 = Constant( 'aq_const2', Float32(), np.array(2) ) aq = QTZ_linear_mid_tread_half( 'aqtz1', [1, 4, 4, 3], Float32(), {'X': i2, 'Y': s1, 'Z': s2} ) dummy = Transpose( 'dummy', [1, 4, 4, 3], Float32(), {'data': aq}, perm=[0, 1, 2, 3] ) w2 = Constant( 'weight2', Float32(), data2 ) q2 = QTZ_binary_mean_scaling( 'qtz2', [3, 2, 2, 3], Float32(), {'input': w2} ) conv2 = Conv( 'conv2', [1, 3, 3, 3], Float32(), {'X': dummy, 'W': q2}, kernel_shape=[2, 2] ) s3 = Constant( 'aq_const1', Float32(), np.array(1) ) s4 = Constant( 'aq_const2', Float32(), np.array(2) ) aq2 = QTZ_linear_mid_tread_half( 'aqtz2', [1, 3, 3, 3], Float32(), {'X': conv2, 'Y': s3, 'Z': s4} ) w3 = Constant( 'weight3', Float32(), data3 ) i3 = Identity( 'identity3', [1, 3, 3, 3], Float32(), {'input': aq2} ) conv3 = Conv( 'conv3', [1, 2, 2, 3], Float32(), {'X': i3, 'W': w3}, kernel_shape=[2, 2] ) # One output y = Output( 'output', [1, 2, 2, 3], Float32(), {'input': conv3} ) # add ops to the graph graph.add_op_and_inputs(y) return graph def binary_mean_scaling(self, data: np.ndarray) -> Tuple[np.float32, np.ndarray]: return np.mean(np.abs(data)), np.sign(data).astype(np.float32) def create_precompute_graph(self, data1: np.ndarray, data2: np.ndarray, data3: np.ndarray) -> Graph: graph = Graph() # two inputs x = Input( 'placeholder', [1, 5, 5, 3], Float32(), ) scaling1, qdata = self.binary_mean_scaling(data1.transpose([3, 2, 1, 0])) w = Constant( 'weight', Float32(), qdata * scaling1 ) # Conv conv1 = Conv( 'conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w}, kernel_shape=[2, 2] ) s1 = Constant( 'aq_const1', Float32(), np.array(1) ) s2 = Constant( 'aq_const2', Float32(), np.array(2) ) aq = QTZ_linear_mid_tread_half( 'aqtz1', [1, 4, 4, 3], Float32(), {'X': conv1, 'Y': s1, 'Z': s2} ) dummy = Transpose( 'dummy', [1, 4, 4, 3], Float32(), {'data': aq}, perm=[0, 1, 2, 3] ) scaling2, qdata2 = self.binary_mean_scaling(data2) w2 = Constant( 'weight2', Float32(), qdata2 * scaling2 ) conv2 = Conv( 'conv2', [1, 3, 3, 3], Float32(), {'X': dummy, 'W': w2}, kernel_shape=[2, 2] ) s3 = Constant( 'aq_const1', Float32(), np.array(1) ) s4 = Constant( 'aq_const2', Float32(), np.array(2) ) aq2 = QTZ_linear_mid_tread_half( 'aqtz2', [1, 3, 3, 3], Float32(), {'X': conv2, 'Y': s3, 'Z': s4} ) w3 = Constant( 'weight3', Float32(), data3 ) conv3 = Conv( 'conv3', [1, 2, 2, 3], Float32(), {'X': aq2, 'W': w3}, kernel_shape=[2, 2] ) # One output y = Output( 'output', [1, 2, 2, 3], Float32(), {'input': conv3} ) # add ops to the graph graph.add_op_and_inputs(y) return graph def create_quantized_graph(self, data: np.ndarray, data2: np.ndarray, data3: np.ndarray) \ -> Tuple[Graph, np.float32, np.float32]: graph = Graph() # two inputs x = Input( 'placeholder', [1, 5, 5, 3], Float32(), ) from modules.packer import Packer packer = Packer(1, 32) data = data.transpose([3, 2, 1, 0]) scaling, qdata = self.binary_mean_scaling(data) shape = list(data.shape) w = Constant( 'weight', Float32(), qdata * scaling, ) q = QTZ_binary_mean_scaling( 'qtz1', shape, Float32(), {'input': w} ) q.scaling_factor = scaling # Conv conv1 = Conv( 'conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': w}, kernel_shape=[2, 2], ) s1 = Constant( 'aq_const1', Float32(), np.array(1) ) s2 = Constant( 'aq_const2', Float32(), np.array(2) ) aq = QTZ_linear_mid_tread_half( 'aqtz1', [1, 4, 4, 3], QUANTIZED_NOT_PACKED(), {'X': conv1, 'Y': s1, 'Z': s2} ) dummy = Transpose( 'dummy', [1, 4, 4, 3], QUANTIZED_NOT_PACKED(), {'data': aq}, perm=[0, 1, 2, 3] ) scaling2, qdata2 = self.binary_mean_scaling(data2) w2 = Constant( 'weight2', Uint32(), packer.run(qdata2), packed=True, actual_shape=[3, 2, 2, 3] ) # quantizer connected to conv2 as 'conv2.quantizer' q2 = QTZ_binary_mean_scaling( 'qtz2', [3, 2, 2, 3], Uint32(), {'input': w2} ) q2.scaling_factor = scaling2 conv2 = Conv( 'conv2', [1, 3, 3, 3], Float32(), {'X': dummy, 'W': w2}, kernel_shape=[2, 2], quantized=True ) conv2.quantizer = q2 s3 = Constant( 'aq_const1', Float32(), np.array(1) ) s4 = Constant( 'aq_const2', Float32(), np.array(2) ) aq2 = QTZ_linear_mid_tread_half( 'aqtz2', [1, 3, 3, 3], Float32(), {'X': conv2, 'Y': s3, 'Z': s4} ) w3 = Constant( 'weight3', Float32(), data3 ) conv3 = Conv( 'conv3', [1, 2, 2, 3], Float32(), {'X': aq2, 'W': w3}, kernel_shape=[2, 2] ) # One output y = Output( 'output', [1, 2, 2, 3], Float32(), {'input': conv3} ) # add ops to the graph graph.add_op_and_inputs(y) return graph, scaling, scaling2 def create_sample_graph2(self, data: np.ndarray) -> Graph: graph = Graph() # input x = Input( 'placeholder', [3, 5, 5, 1], Float32(), dimension_format='CWHN' ) # constant and internal nodes w = Constant( 'weight', Float32(), data, dimension_format='CWHN' ) i = Identity( 'identity1', [3, 2, 2, 1], Float32(), {'input': w}, dimension_format='CWHN' ) q = QTZ_binary_mean_scaling( 'qtz1', [3, 2, 2, 1], Float32(), {'input': i}, dimension_format='CWHN' ) # Conv conv = Conv( 'conv', [3, 4, 4, 1], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2], dimension_format='CWHN' ) rs = Reshape( 'reshape', [1, 48], Float32(), {'data': conv} ) # One output y = Output( 'output', [1, 48], Float32(), {'input': rs}, ) # add ops to the graph graph.add_op_and_inputs(y) return graph def create_transposed_graph(self, data: np.ndarray) -> Graph: graph = Graph() data = data.transpose([3, 2, 1, 0]) # input x = Input( 'placeholder', [1, 5, 5, 3], Float32(), dimension_format='NHWC' ) # constant and internal nodes w = Constant( 'weight', Float32(), data, dimension_format='NHWC' ) i = Identity( 'identity1', [1, 2, 2, 3], Float32(), {'input': w}, dimension_format='NHWC' ) q = QTZ_binary_mean_scaling( 'qtz1', [1, 2, 2, 3], Float32(), {'input': i}, dimension_format='NHWC' ) # Conv conv = Conv( 'conv', [1, 4, 4, 3], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2], dimension_format='NHWC' ) rs = Reshape( 'reshape', [1, 48], Float32(), {'data': conv} ) # One output y = Output( 'output', [1, 48], Float32(), {'input': rs}, ) # add ops to the graph graph.add_op_and_inputs(y) return graph def create_sample_graph3(self, data1: np.ndarray, data2: np.ndarray, data3: np.ndarray) -> Graph: graph = Graph() # input x = Input( 'placeholder', [1, 5, 5, 3], Float32(), ) # constant and internal nodes w = Constant( 'weight', Float32(), data1 ) q = QTZ_binary_mean_scaling( 'qtz1', [3, 2, 2, 3], Float32(), {'input': w} ) # Conv conv1 = Conv( 'conv1', [1, 4, 4, 3], Float32(), {'X': x, 'W': q}, kernel_shape=[2, 2] ) i2 = Identity( 'identity2', [1, 4, 4, 3], Float32(), {'input': conv1} ) s1 = Constant( 'aq_const1', Float32(), np.array(1) ) s2 = Constant( 'aq_const2', Float32(),
np.array(2)
numpy.array
# Copyright 2021-2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import cunumeric as num def test(): x = num.array([1, 2, 3]) y = num.array([4, 5, 6]) z = num.vstack((x, y)) xnp = np.array([1, 2, 3]) ynp = np.array([4, 5, 6]) znp = np.vstack((xnp, ynp)) assert
np.array_equal(z, znp)
numpy.array_equal
from xgboost import XGBClassifier from sklearn.metrics import classification_report, matthews_corrcoef from sklearn import svm from feature import Feature from sklearn.linear_model import LogisticRegression from sklearn.ensemble import VotingClassifier import numpy as np def init_data(file_name): seqs_blosum62, label, work2vec, seqs_sr, seqs_dde, seqs_z, seqs_aac, seqs_dpc, seqs_ctdd, seqs_ctrial, seqs_ksctriad, seqs_gtpc, seqs_cksaagp, seqs_gaac, seqs_gdpc, seqs_ctdt, seqs_geary, seqs_cksaap, seqs_aaindex, seqs_paac = Feature( file_name) seqs_sr = np.array(seqs_sr, dtype=np.float32) seqs_ksctriad = np.array(seqs_ksctriad, dtype=np.float32) work2vec = np.array(work2vec, dtype=np.float32) seqs_blosum62 = np.array(seqs_blosum62, dtype=np.float32) seqs_ctrial = np.array(seqs_ctrial, dtype=np.float32) seqs_gtpc = np.array(seqs_gtpc, dtype=np.float32) seqs_cksaagp = np.array(seqs_cksaagp, dtype=np.float32) seqs_gaac = np.array(seqs_gaac, dtype=np.float32) seqs_cksaap = np.array(seqs_cksaap, dtype=np.float32) seqs_aaindex = np.array(seqs_aaindex, dtype=np.float32) seqs_paac = np.array(seqs_paac, dtype=np.float32) seqs_gdpc = np.array(seqs_gdpc, dtype=np.float32) # print(seqs_gtpc.shape) seqs_ctdt = np.array(seqs_ctdt, dtype=np.float32) seqs_ctdt = seqs_ctdt.reshape(seqs_ctdt.shape[0], -1) seqs_dpc = np.array(seqs_dpc, dtype=np.float32) seqs_dpc = seqs_dpc.reshape(seqs_dpc.shape[0], -1) seqs_aac = np.array(seqs_aac, dtype=np.float32) seqs_aac = seqs_aac.reshape(seqs_aac.shape[0], -1) seqs_z = np.array(seqs_z, dtype=np.float32) seqs_z = seqs_z.reshape(seqs_z.shape[0], -1) seqs_geary = np.array(seqs_geary, dtype=np.float32) seqs_geary = seqs_geary.reshape(seqs_geary.shape[0], -1) seqs_dde = np.array(seqs_dde, dtype=np.float32) seqs_dde = seqs_dde.reshape(seqs_dde.shape[0], -1) work2vec = work2vec.reshape(work2vec.shape[0], -1) seqs_ctrial = seqs_ctrial.reshape(seqs_ctrial.shape[0], -1) seqs_ksctriad = seqs_ksctriad.reshape(seqs_ksctriad.shape[0], -1) seqs_blosum62 = seqs_blosum62.reshape(seqs_blosum62.shape[0], -1) seqs_gtpc = seqs_gtpc.reshape(seqs_gtpc.shape[0], -1) seqs_cksaagp = seqs_cksaagp.reshape(seqs_cksaagp.shape[0], -1) seqs_gaac = seqs_gaac.reshape(seqs_gaac.shape[0], -1) seqs_cksaap = seqs_cksaap.reshape(seqs_cksaap.shape[0], -1) seqs_aaindex = seqs_aaindex.reshape(seqs_aaindex.shape[0], -1) seqs_dpc = seqs_dpc.reshape(seqs_dpc.shape[0], -1) seqs_paac = seqs_paac.reshape(seqs_paac.shape[0], -1) seqs_gdpc = seqs_gdpc.reshape(seqs_gdpc.shape[0], -1) data_features = np.concatenate((seqs_blosum62, seqs_ksctriad, seqs_cksaap, seqs_aaindex), 1) data_features1 =
np.concatenate((seqs_blosum62, seqs_aac, seqs_ctdt, seqs_aaindex), 1)
numpy.concatenate
# Import necessary packages import torch import argparse import json import utility_fun, model_fun import matplotlib.pyplot as plt import numpy as np parser = argparse.ArgumentParser(description='Using Neural Networks for Image Classifier') parser.add_argument('--image_path', action='store', default = 'C:/Users/mohamedelbeah/home/Image_Classifier/flowers/test/76/image_02550.jpg', help='Enter path to image') parser.add_argument('--save_dir', action='store', dest='save_directory', default = 'C:/Users/mohamedelbeah/home/Image_Classifier/checkpoint.pth', help='Enter location to save checkpoint') parser.add_argument('--top_k', action='store', dest='topk', type=int, default = 5, help='Enter number of top most likely classes to view, default is 5') parser.add_argument('--cat_to_name', action='store', dest='cat_name_dir', default = 'C:/Users/mohamedelbeah/home/Image_Classifier/cat_to_name.json', help='Enter path to image.') results = parser.parse_args() save_dir = results.save_directory image = results.image_path top_k = results.topk cat_names = results.cat_name_dir with open(cat_names, 'r') as f: cat_to_name = json.load(f) # Loading the model ResNet18 = model_fun.load_checkpoint(save_dir) # Use GPU if it's available device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Performing Prediction ResNet18.to(device) image_tensor = utility_fun.process_image(image) image_tensor = image_tensor.unsqueeze_(0) # Turn off gradients with torch.no_grad(): # set model to evaluation mode ResNet18.eval() logps = ResNet18.forward(image_tensor.to(device)) # Top k probabilities and classes ps = torch.exp(logps) probs, classes = ps.topk(top_k, dim=1) # Convert probs and classes to arrays probs = probs.cpu().data.numpy().squeeze() classes = classes.cpu().data.numpy().squeeze() # Converting topk indices into actual flower names idx_to_class = {value: key for key, value in ResNet18.class_to_idx.items()} labels = [idx_to_class[key] for key in classes] flower_names = [cat_to_name[key].title() for key in labels] # TODO: Display an image along with the top 5 classes fig, (ax1, ax2) = plt.subplots(figsize=(10, 8), ncols=2) utility_fun.imshow(utility_fun.process_image(image), ax=ax1) ax1.set_title(flower_names[0]) ax1.axis('off') ax2.barh(
np.arange(5)
numpy.arange
# -*- coding: utf-8 -*- """Tests for calculating the spherical projection.""" import numpy as np from numpy.testing import assert_allclose from pylode.lib.spherical_harmonics import evaluate_spherical_harmonics class TestSphericalHarmonics: """Test correct behavior of spherical harmonics code""" def test_spherical_harmonics(self): """Start by evaluating spherical harmonics at some special points""" vectors_zdir = np.array([[0, 0, 1], [0, 0, 2]]) lmax = 8 coeffs = evaluate_spherical_harmonics(vectors_zdir, lmax) # spherical harmonics should be independent of length assert np.linalg.norm(coeffs[0] - coeffs[1]) < 1e-14 # Compare to exact values of Y_lm for vectors in +z-direction nonzero_indices = np.array([l**2 + l for l in range(lmax + 1)]) coeffs_nonzero = coeffs[0, nonzero_indices] exact_vals = np.sqrt((2 * np.arange(lmax + 1) + 1) / 4 / np.pi) assert np.linalg.norm(coeffs_nonzero - exact_vals) < 1e-14 # Make sure that all other values are (essentially) zero assert abs(np.sum(coeffs[0]**2) - np.sum(exact_vals**2)) < 1e-14 def test_spherical_harmonics_x_y(self): """use vectors confined on x-y plane""" rng = np.random.default_rng(3218932) N = 10 lmax = 8 vectors_xy =
np.zeros((N, 3))
numpy.zeros
from __future__ import print_function, division import sys sys.path.append('core') import argparse import os import cv2 import time import numpy as np import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader # from raft import RAFT from core.ours import RAFT import evaluate import datasets import flow_vis import random from torch.utils.tensorboard import SummaryWriter from utils.scheduler import CosineAnnealingWarmupRestarts try: from torch.cuda.amp import GradScaler except: # dummy GradScaler for PyTorch < 1.6 class GradScaler: def __init__(self): pass def scale(self, loss): return loss def unscale_(self, optimizer): pass def step(self, optimizer): optimizer.step() def update(self): pass # exclude extremly large displacements MAX_FLOW = 400 SUM_FREQ = 100 VAL_FREQ = 5000 def sequence_loss(flow_preds, flow_gt, valid, sparse_lambda=1.0, gamma=0.8, max_flow=MAX_FLOW): """ Loss function defined over sequence of flow predictions """ n_predictions = len(flow_preds[0]) flow_loss = 0.0 sparse_loss = 0.0 # exlude invalid pixels and extremely large diplacements mag = torch.sum(flow_gt ** 2, dim=1).sqrt() dense_valid = (valid >= 0.5) & (mag < max_flow) bs, _, I_H, I_W = flow_gt.shape for i in range(n_predictions): # i_weight = gamma ** (n_predictions - i - 1) i_weight = 1.0 i_loss = (flow_preds[0][i] - flow_gt).abs() # i_loss = (flow_preds[0][i] - flow_gt).square() flow_loss += i_weight * (dense_valid[:, None] * i_loss).mean() if sparse_lambda > 0.0: ref, sparse_flow, _, _ = flow_preds[1][i] scale = torch.tensor((I_W - 1, I_H - 1), dtype=torch.float32).view(1, 1, 2).to(sparse_flow.device) flatten_gt = flow_gt.flatten(2).permute(0, 2, 1) flatten_valid = valid.flatten(1) coords = torch.round(ref * scale).long() coords = torch.clamp_max(coords[..., 1] * coords[..., 0], I_H * I_W - 1) sparse_gt = torch.gather(flatten_gt, 1, coords.unsqueeze(-1).repeat(1, 1, 2)) sparse_valid = torch.gather(flatten_valid, 1, coords) sparse_valid = (sparse_valid >= 0.5) & (torch.sum(sparse_gt ** 2, dim=-1).sqrt() < max_flow) sparse_i_loss = (sparse_flow * scale - sparse_gt).abs() # sparse_i_loss = (sparse_flow * scale - sparse_gt).square() sparse_loss += i_weight * (sparse_valid[..., None] * sparse_i_loss).mean() loss = flow_loss + sparse_loss * sparse_lambda epe = torch.sum((flow_preds[0][-1] - flow_gt)**2, dim=1).sqrt() epe = epe.view(-1)[dense_valid.view(-1)] metrics = { 'epe': epe.mean().item(), '1px': (epe < 1).float().mean().item(), '3px': (epe < 3).float().mean().item(), '5px': (epe < 5).float().mean().item(), 'loss': loss, 'flow_loss': flow_loss, 'sparse_loss': sparse_loss } return loss, metrics def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def fetch_optimizer(args, model): """ Create the optimizer and learning rate scheduler """ # optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=0.9, weight_decay=args.wdecay) optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, round(args.num_steps * 0.8)) # scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100, # pct_start=0.05, cycle_momentum=False, anneal_strategy='linear') # scheduler = torch.optim.lr_scheduler.OneCycleLR( # optimizer, args.lr, # args.num_steps + 10, # pct_start=0.05, # cycle_momentum=False, # anneal_strategy='cos') # scheduler = torch.optim.lr_scheduler.CosineAnnealingWarmRestarts( # optimizer, 1000, T_mult=1, eta_min=0, last_epoch=- 1, verbose=False) return optimizer, scheduler class Logger: def __init__(self, model, scheduler): self.model = model self.scheduler = scheduler self.total_steps = 0 self.running_loss = {} self.writer = None def _print_training_status(self): metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())] training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0]) metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data) # print the training status print(training_str + metrics_str) if self.writer is None: self.writer = SummaryWriter() for k in self.running_loss: self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps) self.running_loss[k] = 0.0 def push(self, metrics): self.total_steps += 1 for key in metrics: if key not in self.running_loss: self.running_loss[key] = 0.0 self.running_loss[key] += metrics[key] if self.total_steps % SUM_FREQ == SUM_FREQ-1: self._print_training_status() self.running_loss = {} def write_dict(self, results): if self.writer is None: self.writer = SummaryWriter() for key in results: self.writer.add_scalar(key, results[key], self.total_steps) def write_image(self, image1, image2, target, pred, phase="T", idx=0): if self.writer is None: self.writer = SummaryWriter() _, I_H, I_W = image1.shape scale = torch.tensor((I_W, I_H), dtype=torch.float32).view(1, 2).to(image1.device) image1 = image1.detach().cpu().numpy() image1 = np.transpose(image1, (1, 2, 0)) image2 = image2.detach().cpu().numpy() image2 = np.transpose(image2, (1, 2, 0)) target = target.detach().cpu().numpy() target = np.transpose(target, (1, 2, 0)) target_img = flow_vis.flow_to_color(target, convert_to_bgr=False) pred_img = list() for p_i in range(len(pred[0])): ref, sparse_flow, masks, scores = pred[1][p_i] coords = torch.round(ref.squeeze(0) * scale).long() coords = coords.cpu().numpy() confidence = np.squeeze(scores.squeeze(0).cpu().numpy()) ref_img = cv2.cvtColor(np.array(image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) for k_i in range(len(coords)): coord = coords[k_i] ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[k_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) pred_img.append(ref_img) this_pred = pred[0][p_i].squeeze(0).detach().cpu().numpy() this_pred = np.transpose(this_pred, (1, 2, 0)) this_pred = flow_vis.flow_to_color(this_pred, convert_to_bgr=False) pred_img.append(this_pred) mask_img = list() top_k = len(pred[0]) # top_k_indices = np.argsort(-confidence)[:top_k] masks = masks.squeeze(0).cpu() # masks = masks.reshape(self.num_keypoints, 1, H, W) masks = F.interpolate(masks, size=(I_H, I_W), mode="bilinear", align_corners=False).numpy() masks = masks.squeeze(1) top_k_indices = np.argsort(-np.sum(masks, axis=(1, 2)))[:top_k] for m_i in top_k_indices: coord = coords[m_i] # ref_img = cv2.circle(ref_img, coord, 10, (255, 0, 0), 10) ref_img = cv2.cvtColor(np.array(image1, dtype=np.uint8), cv2.COLOR_RGB2BGR) ref_img = cv2.circle(ref_img, coord, 10, (round(255 * confidence[m_i]), 0, 0), 10) ref_img = cv2.cvtColor(np.array(ref_img, dtype=np.uint8), cv2.COLOR_BGR2RGB) mask_img.append(ref_img) masked_flow = np.expand_dims(masks[m_i], axis=-1) * this_pred mask_img.append(masked_flow) pred_img =
np.concatenate(pred_img, axis=1)
numpy.concatenate
""" Created on Wed Apr 10 10:04:29 2019 @author: <NAME> (<EMAIL>) """ import numpy as np from pylab import * import matplotlib.pyplot as plt from copy import copy import pandas as pd from matplotlib import colors from mpl_toolkits.axes_grid1.inset_locator import inset_axes from numpy.matlib import repmat from scipy.spatial import distance_matrix from scipy.spatial.distance import cdist, pdist from sklearn.preprocessing import StandardScaler, MinMaxScaler from sklearn.model_selection import learning_curve from sklearn.model_selection import ShuffleSplit from sklearn.model_selection import StratifiedKFold, train_test_split, StratifiedShuffleSplit from sklearn.decomposition import PCA from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import mean_squared_error from sklearn.metrics import f1_score from sklearn.metrics import confusion_matrix import seaborn as sns from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import shutil import os def cluster_quality(X, centroids): D_k = cdist(X, centroids, 'euclidean') cIdx = np.argmin(D_k,axis=1) dist = np.min(D_k,axis=1) tot_withinss = sum(dist**2) # Total within-cluster sum of squares totss = sum(pdist(X)**2)/X.shape[0] # The total sum of squares betweenss = totss - tot_withinss # The between-cluster sum of squares variance_retain = betweenss/totss*100 return variance_retain def get_centroids(arr_clusters, arr_X): unqvals = np.unique(arr_clusters) centroids = [] for val in unqvals: if val > -1: centroids.append(arr_X[np.where(arr_clusters == val)].mean(axis = 0)) return np.array(centroids) def kmean_elbow_percentange(X, lst_kms, figname): from scipy.spatial.distance import cdist from scipy.spatial.distance import pdist ##### cluster data into K=1..20 clusters ##### K_MAX = len(lst_kms) KK = range(1,K_MAX+1) centroids = [km.cluster_centers_ for km in lst_kms] D_k = [cdist(X, cent, 'euclidean') for cent in centroids] cIdx = [np.argmin(D,axis=1) for D in D_k] dist = [np.min(D,axis=1) for D in D_k] tot_withinss = [sum(d**2) for d in dist] # Total within-cluster sum of squares totss = sum(pdist(X)**2)/X.shape[0] # The total sum of squares betweenss = totss - tot_withinss # The between-cluster sum of squares ##### plots ##### kIdx = 4 # Elbow clr = cm.nipy_spectral( np.linspace(0,1,20) ).tolist() mrk = 'os^p<dvh8>+x.' variance_retain = betweenss/totss*100 # elbow curve fig = plt.figure() ax = fig.add_subplot(111) ax.plot(KK, betweenss/totss*100, marker='o', color='#212F3D') # ax.plot(KK[kIdx], betweenss[kIdx]/totss*100, marker='o', markersize=12, # markeredgewidth=5, markeredgecolor='r', markerfacecolor='None') # ax.set_ylim((0,100)) plt.grid(True) plt.xlabel('Number of clusters') plt.ylabel('Percentage of variance explained (%)') # plt.title('Elbow for KMeans clustering') plt.savefig(figname, dpi=300, bbox_inch = 'tight') plt.show() def kmean_elbow(X, K_MAX = 20): distortions = [] kmeans = [] for i in range(1, K_MAX + 1): km = KMeans(n_clusters=i, init='k-means++', n_init=10, max_iter=300, random_state=0) km.fit(X) distortions.append(km.inertia_) kmeans.append(km) distortions_norm = [dist / distortions[0] for dist in distortions] plt.plot(range(1,K_MAX + 1), distortions_norm, marker='o', color='black') plt.xlabel('Number of clusters') plt.ylabel('Distortion') plt.tight_layout() plt.savefig('KMeans_Elbow_all_ex_99.png', dpi = 300) plt.show() return kmeans def kmean_elbow_distortion(lst_kms, figname): distortions = [] K_MAX = len(lst_kms) for km in lst_kms: distortions.append(km.inertia_) distortions_norm = [dist / distortions[0] for dist in distortions] plt.plot(range(1,K_MAX + 1), distortions_norm, marker='o', color='#212F3D') plt.xlabel('Number of clusters') plt.ylabel('Distortion') plt.tight_layout() plt.savefig(figname, dpi=300) plt.show() def extract_closes_match(X_ref, X_data): """ X_ref: The reference point from which the closest point is going to be extracted. (1D-Array) X_data: The dataset. (2D-Array) (n_points x n_dim) """ n_dim = len(X_ref) r = cdist(X_data, X_ref.reshape(1, n_dim)) i_min = np.argmin(r) return i_min, r[i_min], X_data[i_min, :] def ecdf(X, x): """Emperical Cumulative Distribution Function X: 1-D array. Vector of data points per each feature (dimension), defining the distribution of data along that specific dimension. x: Value. It is the value of the corresponding dimension. P(X <= x): The cumulative distribution of data points with respect to the archetype (the probablity or how much of data in a specific dimension is covered by the archetype). """ return float(len(X[X < x]) / len(X)) def calc_SSE(X_act, X_appr): """ This function returns the Sum of Square Errors. """ return ((X_act - X_appr) ** 2).sum() def calc_SST(X_act): """ This function returns the Sum of Square of actual values. """ return (X_act ** 2).sum() def explained_variance(X_act, X_appr, method = 'sklearn'): if (method.lower == 'sklearn'): from sklearn.metrics import explained_variance_score return explained_variance_score(X_act.T, X_appr.T) else: SSE = calc_SSE(X_act, X_appr) SST = calc_SST(X_act) return (SST - SSE) / SST def show_EV_PCA(pca): var_exp = pca.explained_variance_ratio_ * 100 cum_var_exp = np.cumsum(var_exp) num_comp = len(pca.explained_variance_ratio_) fig = plt.figure() plt.bar(range(1,num_comp + 1), var_exp, alpha=0.5, align='center', label='individual explained variance') plt.step(range(1,num_comp + 1), cum_var_exp, where='mid', label='cumulative explained variance') plt.ylabel('Explained variance ratio') plt.xlabel('Principal components') plt.legend(loc='best') # plt.show() return fig def show_PCA_in_Feat(lst_Feat, res, shape = [3,3]): n = shape[0] m = shape[1] tot_plot = m * n x = np.arange(1, len(lst_Feat) + 1) count = 1 lst_figs = [] for i in range(res.shape[1]): # if (i % tot_plot == 0): # count = 1 # plt.figure(figsize=(20,12)) fig = plt.figure(figsize=(20,12)) # plt.subplot(n,m,count) plt.bar(x, res[:,i]) plt.xticks(x, lst_Feat, rotation='vertical') # plt.show() count += 1 lst_figs.append(fig) return lst_figs def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : int or None, optional (default=None) Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) """ fig = plt.figure(figsize=(6,4)) plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return fig def plot_gth_pre(Y_label, Y_pre, range_set = True, tag='Train'): from scipy.optimize import curve_fit import numpy as np import matplotlib.pyplot as plt from scipy import stats from sklearn.preprocessing import MinMaxScaler min_glob = min(Y_label.min(), Y_pre.min()) max_glob = max(Y_label.max(), Y_pre.max()) Y_label = (Y_label - min_glob) / (max_glob - min_glob).flatten() Y_pre = (Y_pre - min_glob) / (max_glob - min_glob).flatten() # Y_label = sc.fit_transform(Y_label.reshape(-1,1)).flatten() # Y_pre = sc.fit_transform(Y_pre.reshape(-1,1)).flatten() fig = plt.figure(figsize=(6,6)) # Fitting best line: # ================== pre_Y = Y_pre parameter, covariance_matrix = curve_fit(funcLinear, Y_label.astype(float), pre_Y.flatten().astype(float)) xx = np.linspace(-0.1, 1.1, 30) plt.plot(xx, funcLinear(xx, *parameter), color='#52BE80', linewidth = 2, label='fit') axes = plt.gca() if range_set: axes.set_xlim([-0.1,1.1]) axes.set_ylim([-0.1,1.1]) else: # min_true = np.min(Y_label) - 0.1 * np.min(Y_label) # max_true = np.max(Y_label) + 0.1 * np.max(Y_label) # min_pre = np.min(Y_pre) - 0.1 * np.min(Y_pre) # max_pre = np.max(Y_pre) + 0.1 * np.max(Y_pre) axes.set_xlim([min_glob,max_glob]) axes.set_ylim([min_glob,max_glob]) lims = [ np.min([axes.get_xlim(), axes.get_ylim()]), # min of both axes np.max([axes.get_xlim(), axes.get_ylim()]), # max of both axes ] # 45 degree line: # =============== plt.plot(lims, lims, '--', color='#A569BD', linewidth=5, alpha=0.75, zorder=0) # Scattered Data: # =============== plt.scatter(Y_label,pre_Y, marker='o', s=20, facecolors='#273746', edgecolors='#273746') plt.legend(['Best Fit','Perfect Fit', 'Data'], loc='lower right') plt.text(0, 0.9, r'slope: %.2f'%parameter[0]) plt.text(0, 0.85, r'interception: %.2f'%parameter[1]) plt.xlabel('Normalized '+ tag +' Value') plt.ylabel('Normalized Prediction Value') from sklearn.metrics import r2_score plt.title("$R^2 = %.5f$"%r2_score(Y_label,pre_Y.flatten())) return fig def plot_it(y_true, y_pred, filename=None): fig = plt.figure(figsize=(6,6)) y_min = min(y_true.min(), y_pred.min()) y_max = min(y_true.max(), y_pred.max()) xx = np.linspace(y_min, y_max, 30) lr = LinearRegression() lr.fit(y_pred.reshape(-1,1), y_true) y_line = lr.predict(y_pred.reshape(-1,1)) # 45 degree line: # =============== plt.plot(xx,xx, '--', color='#A569BD', linewidth=5, label = 'Perfect fit') # Best straigth line: # =================== # plt.plot(np.unique(y_pred), np.poly1d(np.polyfit(y_pred, y_true, 1))(np.unique(y_pred)), color='#52BE80', linewidth = 2, label= 'Best fit') # plt.plot(y_pred.flatten(), y_line, color='#52BE80', linewidth = 2, label= 'Best fit') # plt.plot(y_line, y_pred.flatten(), color='#52BE80', linewidth = 2, label= 'Best fit') # scattered y-true and y-pred: # ============================ # plt.scatter(y_pred, y_true, color = '#273746', label = 'Data') plt.scatter(y_true, y_pred, color = '#273746', label = 'Data', s = 20) plt.xlabel('Truth') plt.ylabel('Predicted') plt.legend(loc='upper left') R2 = np.round(r2_score( y_true, y_pred ), 3) RMSE = np.round(mean_squared_error( y_true, y_pred )**0.5, 3) MAE = np.round(mean_absolute_error( y_true, y_pred ), 3) plt.title(f"$R^2$ = {R2}, RMSE = {RMSE}, MAE = {MAE}") if filename: plt.savefig(filename, dpi=300, bbox_inches='tight') return fig def skf_cv_scores(model, metrics, x_train, y_train, n_splits = 5, bins = 12, print_scores = False): skf = StratifiedKFold(n_splits=n_splits, shuffle=False, random_state=42) bins_ = np.linspace(y_train.min(), y_train.max(), bins) y_train_binned_cv = np.digitize(y_train, bins_) CV_scores = [] for cv_training_index, cv_testing_index in skf.split(x_train, y_train_binned_cv): X_training_cv = x_train[cv_training_index, :] X_testing_cv = x_train[cv_testing_index, :] Y_training_cv = y_train[cv_training_index] Y_testing_cv = y_train[cv_testing_index] # fit model to training dataset model.fit(X_training_cv, Y_training_cv) # Test CV_scores.append(metrics(model.predict(X_testing_cv), Y_testing_cv)) accuracy = np.mean(CV_scores) uncertainty = np.std(CV_scores)*2 if print_scores: print('CV Scores:', np.round(CV_scores, 3)) print('Accuracy:',np.round(accuracy, 3),'+/-',np.round(uncertainty, 3)) return CV_scores def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Reds, **kwargs): filename = kwargs.get('filename', None) """ reference: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html """ fig = plt.figure() import itertools plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] # print("Normalised confusion matrix") # else: # print('Confusion matrix, without normalization') # print(cm) thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): # plt.text(j, i, round(cm[i,j],2), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") if (i==1) and (j==1): plt.text(j, i, round(cm[i,j],2), horizontalalignment="center", color="white") elif (i==0) and (j==0): plt.text(j, i, round(cm[i,j],2), horizontalalignment="center", color="black") else: plt.text(j, i, round(cm[i,j],2), horizontalalignment="center", color="black") plt.ylabel('True label') plt.xlabel('Predicted label') if filename: plt.savefig(filename, dpi=300, bbox_inches='tight') return fig def plot_feature_importance(ft_set, feature_importance, show_cols = 30): fig = plt.figure(figsize=(8,6)) w_lr_sort, ft_sorted, _ = return_feature_importance(ft_set, feature_importance, show_cols = show_cols) x_val = list(range(len(w_lr_sort))) plt.bar(x_val, w_lr_sort, color = '#212F3D') plt.xticks(x_val, ft_sorted, rotation='vertical') return fig def return_feature_importance(ft_set, feature_importance, show_cols = 30): w_lr = copy(
np.abs(feature_importance)
numpy.abs
__all__ = ["Scalar", "Vector", "Matrix"] class Scalar(object): """ Scalar variable type. It holds a 64-bits floating point value, stored via a zero-dimensional ``ndl``, listen to changes, and fix or unfix its value. Parameters ---------- value : float Initial value. """ __slots__ = [ "raw", "_fixed", "value", "__array_interface__", "__array_struct__", "_bounds", ] def __init__(self, value): from ndarray_listener import ndl from numpy import float64, inf self._bounds = (-inf, +inf) self._fixed = False value = ndl(float64(value)) self.raw = value self.__array_interface__ = value.__array_interface__ self.__array_struct__ = value.__array_struct__ @property def bounds(self): return self._bounds @bounds.setter def bounds(self, v): self._bounds = v def copy(self): """Return a copy.""" return Scalar(self.raw) @property def shape(self): """ Shape according to :mod:`numpy`. """ return self.raw.shape @property def ndim(_): """ Number of dimensions. """ return 0 @property def size(self): """ Size according to :mod:`numpy`. """ return self.raw.size def asarray(self): """ Return a :class:`numpy.ndarray` representation. """ from numpy import array return array(self.raw) @property def isfixed(self): """ Return whether it is fixed or not. """ return self._fixed def fix(self): """ Set it fixed. """ self._fixed = True def unfix(self): """ Set it unfixed. """ self._fixed = False def listen(self, you): """ Request a callback for value modification. Parameters ---------- you : object An instance having ``__call__`` attribute. """ self.raw.talk_to(you) def __setattr__(self, name, value): from numpy import float64 if name == "value": try: value = float64(value) except TypeError: value = value[0] self.raw.itemset(value) else: Scalar.__dict__[name].__set__(self, value) def __getattr__(self, name): if name == "value": name = "raw" return Scalar.__dict__[name].__get__(self) def __str__(self): return "Scalar(" + str(self.raw) + ")" def __repr__(self): return repr(self.raw) def __ge__(self, that): return self.raw >= that.raw def __gt__(self, that): return self.raw > that.raw def __le__(self, that): return self.raw <= that.raw def __lt__(self, that): return self.raw < that.raw def __eq__(self, that): return self.raw == that.raw def __ne__(self, that): return self.raw != that.raw class Vector(object): """ Vector variable type. It holds an array of 64-bits floating point values, via an one-dimensional ``ndl``, listen to changes, and fix or unfix its values. Parameters ---------- value : float Initial value. """ __slots__ = [ "raw", "_fixed", "__array_interface__", "__array_struct__", "value", "_bounds", ] def __init__(self, value): from numpy import asarray, atleast_1d, inf from ndarray_listener import ndl self._bounds = [(-inf, +inf)] * len(value) self._fixed = False value = asarray(value, float) value = ndl(atleast_1d(value).ravel()) self.raw = value self.__array_interface__ = value.__array_interface__ self.__array_struct__ = value.__array_struct__ @property def bounds(self): return self._bounds @bounds.setter def bounds(self, v): self._bounds = v def copy(self): """ Return a copy. """ return Vector(self.raw) @property def shape(self): """ Shape according to :mod:`numpy`. """ return self.raw.shape @property def ndim(self): """ Number of dimensions. """ return len(self.shape) @property def size(self): """ Size according to :mod:`numpy`. """ return self.raw.size def asarray(self): """ Return a :class:`numpy.ndarray` representation. """ from numpy import array return array(self.raw) @property def isfixed(self): """ Return whether it is fixed or not. """ return self._fixed def fix(self): """ Set it fixed. """ self._fixed = True def unfix(self): """ Set it unfixed. """ self._fixed = False def listen(self, you): """ Request a callback for value modification. Parameters ---------- you : object An instance having ``__call__`` attribute. """ self.raw.talk_to(you) def __setattr__(self, name, value): from numpy import asarray, atleast_1d if name == "value": value = asarray(value) value = atleast_1d(value).ravel() self.raw[:] = value else: Vector.__dict__[name].__set__(self, value) def __getattr__(self, name): if name == "value": name = "raw" return Vector.__dict__[name].__get__(self) def __str__(self): return "Vector(" + str(self.raw) + ")" def __repr__(self): return repr(self.raw) def __ge__(self, that): return self.raw >= that.raw def __gt__(self, that): return self.raw > that.raw def __le__(self, that): return self.raw <= that.raw def __lt__(self, that): return self.raw < that.raw def __eq__(self, that): return self.raw == that.raw def __ne__(self, that): return self.raw != that.raw class Matrix(object): __slots__ = ["raw", "_fixed"] def __init__(self, value): self._fixed = False self.raw = value @property def size(self): return self.raw.size def asarray(self): from numpy import asarray return
asarray([self.raw])
numpy.asarray
import sys,os import numpy as np import matplotlib.pyplot as plt from desitarget import cuts import fitsio import astropy.io.fits as fits import healpy as hp from scipy.special import erf from astropy.table import Table colorcuts_function = cuts.isELG_colors #deep DECaLS imaging, with photozs from HSC truthf = '/project/projectdirs/desi/users/ajross/MCdata/desi_mcsyst_truth.dr7.34ra38.-7dec-3.fits' truth = fitsio.read(truthf,1) gmag = truth["g"] w = gmag < 24.5 #truth = truth[w] gmag = truth["g"] rmag = truth["r"] zmag = truth["z"] photz = truth['hsc_mizuki_photoz_best'] #pixfn = '/project/projectdirs/desi/target/catalogs/dr8/0.31.1/pixweight/pixweight-dr8-0.31.1.fits' #update this to be more recent pixfn = '/global/cfs/cdirs/desi/target/catalogs/dr9m/0.42.0/pixweight/main/resolve/dark/pixweight-dark.fits' #dr9m version def mag2flux(mag) : return 10**(-0.4*(mag-22.5)) def flux2mag(flux) : mag = -2.5*np.log10(flux*(flux>0)+0.001*(flux<=0)) + 22.5 mag[(flux<=0)] = 0. return mag gflux = mag2flux(truth["g"]) rflux = mag2flux(truth["r"]) zflux = mag2flux(truth["z"]) w1flux = np.zeros(gflux.shape)#WISE not used in ELG selection, but still needed for code w2flux = np.zeros(gflux.shape) true_selection = colorcuts_function(gflux=gflux, rflux=rflux, zflux=zflux, w1flux=w1flux, w2flux=w2flux,south=True) true_mean=np.mean(true_selection.astype(float)) print(true_mean) grand = np.random.normal(size=gflux.shape) rrand = np.random.normal(size=rflux.shape) zrand = np.random.normal(size=zflux.shape) R_G=3.214 # http://legacysurvey.org/dr8/catalogs/#galactic-extinction-coefficients R_R=2.165 R_Z=1.211 #set up correlation matrix for fluxes ml = np.zeros(3) cv = np.ones((3,3))*.5 #just given them all correlation of 0.5 for now cv[0][0] = 1. cv[1][1] = 1. cv[2][2] = 1. cg = np.random.default_rng().multivariate_normal(ml,cv,len(gflux)) cg = cg.transpose() def perturb_flux(ina,outf='test.fits'): ''' ina should be input array containing necessary columns the idea here is that input photometry + flux errors and their cov given by cv an output distribution consistent with Obiwan could be produced ''' vv =
np.zeros(3)
numpy.zeros
import numpy as np from sklearn.metrics import confusion_matrix, r2_score import sys def class_acc(out, labels): outputs = np.argmax(out, axis=1) sys.stdout.flush() print('\n') print('confusion_matrix:\n', confusion_matrix(labels, outputs)) print('\n') sys.stdout.flush() return
np.sum(outputs == labels)
numpy.sum
import snipar.preprocess as preprocess import numpy as np from snipar.gtarray import gtarray from bgen_reader import open_bgen from snipar.utilities import * def match_observed_and_imputed_snps(gts_f, par_gts_f, snp_ids=None, start=0, end=None): """ Used in get_gts_matrix_given_ped to match observed and imputed SNPs and return SNP information on shared SNPs. Removes SNPs that have duplicated SNP ids. in_obs_sid contains the SNPs in the imputed genotypes that are present in the observed SNPs obs_sid_index contains the index in the observed SNPs of the common SNPs """ # Match SNPs from imputed and observed and restrict to those in list if snp_ids is None: snp_ids = gts_f.ids if np.unique(snp_ids).shape[0] == 1: snp_ids = gts_f.rsids if end is None: end = snp_ids.shape[0] snp_ids = snp_ids[start:end] # Get bim info alleles = np.array([x.split(',') for x in gts_f.allele_ids]) pos = np.array(gts_f.positions) chromosome = np.array(gts_f.chromosomes) # Remove duplicate ids unique_snps, snp_indices, snp_counts = np.unique(snp_ids, return_index=True, return_counts=True) snp_set = set(snp_ids[snp_indices[snp_counts == 1]]) if len(snp_set) < snp_ids.shape[0]: print(str(snp_ids.shape[0]-len(snp_set))+' SNPs with duplicate IDs removed') ## Read and match SNP ids imp_bim = convert_str_array(np.array(par_gts_f['bim_values'])) imp_bim_cols = convert_str_array(np.array(par_gts_f['bim_columns'])) # Find relevant column for SNP ids in imputed data found_snp_ids = False if 'rsid' in imp_bim_cols: imp_sid = imp_bim[:,np.where(imp_bim_cols=='rsid')[0][0]] if np.unique(imp_sid).shape[0] == 0: found_snp_ids = False else: found_snp_ids = True if not found_snp_ids: if 'id' in imp_bim_cols: imp_sid = imp_bim[:,np.where(imp_bim_cols=='id')[0][0]] else: raise(ValueError('Cannot find imputed SNP ids')) # Get imputed allele ids if 'allele_ids' in imp_bim_cols: imp_alleles = np.array([x.split(',') for x in imp_bim[:,np.where(imp_bim_cols=='allele_ids')[0][0]]]) elif 'allele1' in imp_bim_cols and 'allele2' in imp_bim_cols: imp_alleles = imp_bim[:,[np.where(imp_bim_cols=='allele1')[0][0],np.where(imp_bim_cols=='allele2')[0][0]]] obs_sid = gts_f.ids if np.unique(obs_sid).shape[0] == 1: obs_sid = gts_f.rsids obs_sid_dict = make_id_dict(obs_sid) in_obs_sid = np.zeros((imp_sid.shape[0]), dtype=bool) obs_sid_index = np.zeros((imp_sid.shape[0]), dtype=int) for i in range(0, imp_sid.shape[0]): if imp_sid[i] in obs_sid_dict and imp_sid[i] in snp_set: in_obs_sid[i] = True obs_sid_index[i] = obs_sid_dict[imp_sid[i]] if np.sum(in_obs_sid) == 0: raise ValueError('No SNPs in common between imputed and observed data') obs_sid_index = obs_sid_index[in_obs_sid] sid = imp_sid[in_obs_sid] alleles = alleles[obs_sid_index, :] imp_alleles = imp_alleles[in_obs_sid,:] if 'Chr' in imp_bim_cols: chr_col = np.where('Chr' == imp_bim_cols)[0][0] else: chr_col = 0 chromosome = imp_bim[in_obs_sid,chr_col] pos = pos[obs_sid_index] allele_match =
np.logical_and(alleles[:,0]==imp_alleles[:,0],alleles[:,1]==imp_alleles[:,1])
numpy.logical_and
import csv from typing import Tuple, List import numpy as np from pylab import * from scipy import linalg from scipy.stats import norm from sklearn import svm from sklearn.model_selection import GridSearchCV from sklearn import linear_model import time import logging from model import Model from MatrixOperation import multiply_matrices, multiply_transpose logging.basicConfig(format='%(asctime)s %(name)s %(levelname)-8s %(message)s', datefmt='%Y-%m-%d %H:%M:%S', filename=None, level=logging.INFO) logger = logging.getLogger('Baseline') class Classification(object): def __init__(self): super(Classification, self).__init__() @staticmethod # todo def compmedDist(X: np.ndarray) -> np.float64: # X:transpose of feature matrix size1 = X.shape[0] # feature size Xmed = X # every value squared, and sum across row G = sum((Xmed * Xmed), 1) # expand (size1,) to (size1,size1), each row contains size1 sum Q = tile(G[:, newaxis], (1, size1)) # R=Q.T R = tile(G, (size1, 1)) dists = Q + R - 2 * dot(Xmed, Xmed.T) dists = dists - tril(dists) # diagonal and right-top part set to 0 dists = dists.reshape(size1 ** 2, 1, order='F').copy() return sqrt(0.5 * median(dists[dists > 0])) @staticmethod def kernel_Gaussian(x: ndarray, c: ndarray, sigma: np.float64) -> ndarray: (d, nx) = x.shape (d, nc) = c.shape x2 = sum(x ** 2, 0) c2 = sum(c ** 2, 0) distance2 = tile(c2, (nx, 1)) + tile(x2[:, newaxis], (1, nc)) - 2 * dot(x.T, c) return exp(-distance2 / (2 * (sigma ** 2))) @staticmethod def R_ULSIF(x_nu: ndarray, x_de: ndarray, alpha, sigma_list, lambda_list, b, fold): # x_nu: samples from numerator # x_de: samples from denominator # alpha: alpha defined in relative density ratio # sigma_list, lambda_list: parameters for model selection # # b: number of kernel basis # fold: number of fold for cross validation (d, n_nu) = x_nu.shape (d, n_de) = x_de.shape b = min(b, n_nu) x_ce = x_nu[:, np.r_[0:b]] score_cv = np.zeros((len(sigma_list), len(lambda_list))) cv_index_nu = np.random.permutation(n_nu) cv_split_nu = np.floor(np.r_[0:n_nu] * fold / n_nu) cv_index_de = np.random.permutation(n_de) cv_split_de = np.floor(np.r_[0:n_de] * fold / n_de) # 20 iterations iter = 1000 count = 0 mu = 0.1 k1 = 0.1 loss_old = float('inf') thetat = None for i in range(0, iter): count += 1 print("current iteration:", count) # choose sigma for sigma_index in r_[0:size(sigma_list)]: # try different sigma sigma = sigma_list[sigma_index] K_de = Classification.kernel_Gaussian(x_de, x_ce, sigma).T # ndarray K_nu = Classification.kernel_Gaussian(x_nu, x_ce, sigma).T # ndarray score_tmp = zeros((fold, size(lambda_list))) for k in np.r_[0:fold]: # select k-fold Ktmp1 = K_de[:, cv_index_de[cv_split_de != k]] Ktmp2 = K_nu[:, cv_index_nu[cv_split_nu != k]] # Ktmp:990,990 # Ktmp = alpha / Ktmp2.shape[1] * np.dot(Ktmp2, Ktmp2.T) \ # + (1 - alpha) / Ktmp1.shape[1] * np.dot(Ktmp1, Ktmp1.T) Ktmp = alpha / Ktmp2.shape[1] * multiply_transpose(Ktmp2) \ + (1 - alpha) / Ktmp1.shape[1] * multiply_transpose(Ktmp1) # mKtmp:990, mKtmp = np.mean(K_nu[:, cv_index_nu[cv_split_nu != k]], 1) for lambda_index in np.r_[0:size(lambda_list)]: lbd = lambda_list[lambda_index] # thetat_cv:990, thetat_cv = linalg.solve(Ktmp + (lbd * eye(b)), mKtmp) thetah_cv = thetat_cv score_tmp[k, lambda_index] = \ alpha * np.mean( np.dot(K_nu[:, cv_index_nu[cv_split_nu == k]].T, thetah_cv) ** 2) / 2. \ + (1 - alpha) * np.mean( np.dot(K_de[:, cv_index_de[cv_split_de == k]].T, thetah_cv) ** 2) / 2. \ - np.mean(dot(K_nu[:, cv_index_nu[cv_split_nu == k]].T, thetah_cv)) score_cv[sigma_index, :] = mean(score_tmp, 0) score_cv_tmp = score_cv.min(1) lambda_chosen_index = score_cv.argmin(1) score = score_cv_tmp.min() sigma_chosen_index = score_cv_tmp.argmin() lambda_chosen = lambda_list[lambda_chosen_index[sigma_chosen_index]] sigma_chosen = sigma_list[sigma_chosen_index] # compute coe K_de = Classification.kernel_Gaussian(x_de, x_ce, sigma_chosen).T K_nu = Classification.kernel_Gaussian(x_nu, x_ce, sigma_chosen).T coe = alpha * np.dot(K_nu, K_nu.T) / n_nu \ + (1 - alpha) * np.dot(K_de, K_de.T) / n_de \ + lambda_chosen * np.eye(b) var = np.mean(K_nu, 1) # solve theta thetat = linalg.solve(coe, var) thetatTranspose = thetat.transpose() # compute loss loss1 = dot(thetat.T, (alpha * dot(K_nu, K_nu.T) / n_nu - (1 - alpha) * dot(K_de, K_de.T) / n_de)) loss_bias = 0.5 * dot(loss1, thetat) - dot(var.T, thetat) + 0.5 * lambda_chosen * dot(thetat.T, thetat) print("part 2 loss:", loss_bias) if alpha < 0: loss_alpha = -1 elif alpha > 1: loss_alpha = 1 else: loss_alpha = 0 print("alpha loss:", loss_alpha) loss_new = loss_alpha + 1.0 * loss_bias # gradient result = dot(thetatTranspose, (dot(K_nu, K_nu.T) / n_nu - dot(K_de, K_de.T) / n_de)) loss2change = 0.5 * dot(result, thetat) print("loss bias change:", loss2change) # update alpha alpha_old = alpha print("alpha old:", alpha_old) while True: mu = mu * exp(-k1 * i) if alpha < 0: alpha = alpha - mu * (-1 + loss2change) if alpha > 1: alpha = alpha - mu * (1 + loss2change) if 0 <= alpha <= 1: alpha = alpha - mu * loss2change if alpha < 0 or alpha >= 1: k1 = 2 * k1 alpha = alpha_old else: k1 = 0.1 break print("mu:", mu) if abs(loss_old - loss_new) < 1e-7: break print("Old loss:", loss_old) print("new loss:", loss_new) print("alpha updated:", alpha) print("alpha change:", alpha_old - alpha) print("count", count) print() loss_old = loss_new # return result thetah = thetat wh_x_de = np.dot(K_de.T, thetah).T wh_x_nu = np.dot(K_nu.T, thetah).T print("wh_x_de:", wh_x_de) print("wh_x_de len:", len(wh_x_de)) print("wh_x_nu:", wh_x_nu) print("wh_x_nu len:", len(wh_x_nu)) wh_x_de[wh_x_de < 0] = 0 return (thetah, wh_x_de, x_ce, sigma_chosen) @staticmethod def compute_target_weight(thetah, x_ce, sigma, x_nu): K_nu = Classification.kernel_Gaussian(x_nu, x_ce, sigma).T wh_x_nu = dot(K_nu.T, thetah).T wh_x_nu[wh_x_nu < 0.00000001] = 0.00000001 return wh_x_nu @staticmethod def sigma_list(x_nu: np.array, x_de: np.array) -> ndarray: # concatenate tow ndarrays along columns x: np.array = c_[x_nu, x_de] med = Classification.compmedDist(x.T) return med * array([0.6, 0.8, 1, 1.2, 1.4]) @staticmethod def lambda_list() -> ndarray: return array([10 ** (-3), 10 ** (-2), 10 ** (-1), 10 ** (0), 10 ** (1)]) @staticmethod def read_csv(path: str, size=None, delimiter=",", header=None) -> Tuple[matrix, ndarray]: data: ndarray = None data_label: ndarray = None with open(path) as csvfile: count = 0 if not header: reader = csv.reader(csvfile, delimiter=delimiter) else: reader = csv.DictReader(csvfile, fieldnames=header, delimiter=delimiter) for row in reader: tmp = [float(x) for x in row[:-1]] label = row[-1] if data is None: data = np.array(tmp) else: data = np.vstack((data, tmp)) if data_label is None: data_label = np.array(label) else: data_label = np.vstack((data_label, label)) count += 1 if size and count > size: break data: matrix =
np.matrix(data, dtype=np.float64)
numpy.matrix
# -*- coding: utf-8 -*- """ ============================================================================== @author: <NAME> @date: Thu May 13 09:50:26 2021 @reference: Ojala, A Comparative Study of Texture Measures with Classification on Feature Distributions Ojala, Gray Scale and Roation Invariaant Texture Classification with Local Binary Patterns ============================================================================== """ import numpy as np from skimage import feature def _energy(x): return np.multiply(x,x).sum() def _entropy(x): return -np.multiply(x, np.log(x+1e-16)).sum() def lbp_features(f, mask, P=[8,16,24], R=[1,2,3]): ''' Parameters ---------- f : numpy ndarray Image of dimensions N1 x N2. mask : numpy ndarray Mask image N1 x N2 with 1 if pixels belongs to ROI, 0 else. Give None if you want to consider ROI the whole image. P : list, optional Number of points in neighborhood. The default is [8,16,24]. R : list, optional Radius/Radii. The default is [1,2,3]. Returns ------- features : numpy ndarray Energy and entropy of LBP image (2 x 1). labels : list Labels of features. ''' if mask is None: mask = np.ones(f.shape) P =
np.array(P)
numpy.array
import numpy as np import datetime import time ts = time.time() timestamp = datetime.datetime.fromtimestamp(ts).strftime('%Y-%m-%d %H:%M:%S').replace(' ', '-').replace(':', '-') import os os.environ["OMP_NUM_THREADS"] = "4" # export OMP_NUM_THREADS=4 os.environ["OPENBLAS_NUM_THREADS"] = "4" # export OPENBLAS_NUM_THREADS=4 os.environ["MKL_NUM_THREADS"] = "6" # export MKL_NUM_THREADS=6 os.environ["VECLIB_MAXIMUM_THREADS"] = "4" # export VECLIB_MAXIMUM_THREADS=4 os.environ["NUMEXPR_NUM_THREADS"] = "6" # export NUMEXPR_NUM_THREADS=6 from auxiliaryFunctions import project_onto_simplex, performUpdate, exitCriterion, stepSize """## Away FW or Pairwise FW""" #Maintains active list of weights and vertices. def runFWSimplex(x0, function, feasibleReg, tolerance, maxTime, FWVariant = "AFW", typeStep = "SS", criterion = "PG", criterionRef = 0.0): #Quantities we want to output. grad = function.fEvalGrad(x0) FWGap = [np.dot(grad, x0 - feasibleReg.LPOracle(grad))] fVal = [function.fEval(x0)] timing = [time.time()] x = x0.copy() itCount = 1 while(True): if(FWVariant == "AFW"): x, vertvar, gap = awayStepFWSimplex(function, feasibleReg, x, typeStep) else: x, vertvar, gap = pairwiseStepFWSimplex(function, feasibleReg, x, typeStep) performUpdate(function, x, FWGap, fVal, timing, gap) if(exitCriterion(itCount, fVal[-1], FWGap[-1], criterion = criterion, numCriterion = tolerance, critRef = criterionRef) or timing[-1] - timing[0] > maxTime): timing[:] = [t - timing[0] for t in timing] return x, FWGap, fVal, timing itCount += 1 def awayStepFWSimplex(function, feasibleReg, x, typeStep): grad = function.fEvalGrad(x) v = feasibleReg.LPOracle(grad) a, indexMax = feasibleReg.AwayOracle(grad, x) vertvar = 0 #Choose FW direction, can overwrite index. if(np.dot(grad, x - v) > np.dot(grad, a - x)): d = v - x alphaMax = 1.0 optStep = stepSize(function, d, grad, typeStep) alpha = min(optStep, alphaMax) #Less than maxStep if(alpha != alphaMax): #newVertex returns true if vertex is new. if(np.dot(v, x) == 0.0): vertvar = 1 #Max step length away step, only one vertex now. else: vertvar = -1 else: d = x - a alphaMax = x[indexMax]/(1.0 - x[indexMax]) optStep = stepSize(function, d, grad, typeStep) alpha = min(optStep, alphaMax) #Max step, need to delete a vertex. if(alpha == alphaMax): vertvar = -1 return x + alpha*d, vertvar, np.dot(grad, x - v) #Perform one step of the Pairwise FW algorithm #Also specifies if the number of vertices has decreased var = -1 or #if it has increased var = +1. Otherwise 0. def pairwiseStepFWSimplex(function, feasibleReg, x, typeStep): grad = function.fEvalGrad(x) v = feasibleReg.LPOracle(grad) a, index = feasibleReg.AwayOracle(grad, x) vertVar = 0 #Find the weight of the extreme point a in the decomposition. alphaMax = x[index] #Update weight of away vertex. d = v - a optStep = stepSize(function, d, grad, typeStep) alpha = min(optStep, alphaMax) if(alpha == alphaMax): vertVar = -1 #Update the FW vertex if(np.dot(v, x) == 0.0): vertVar = 1 return x + alpha*d, vertVar,
np.dot(grad, x - v)
numpy.dot
#!/usr/bin/env python """ Does some simple calculations to test trace gas PACE calculations Adapted from benchmark4Amir.py <NAME>, April 2020 """ import os import sys from netCDF4 import Dataset from netCDF4 import Dataset as ncread import numpy as np from MAPL.constants import * from py_leo_vlidort import VLIDORT_POLAR_ from scipy.interpolate import interp1d import scipy.integrate as integrate from pyhdf.SD import SD, SDC from multiprocessing import Pool from hyperTest import get_channels,get_geom,get_ROT,get_TOA_unpack,get_TOA from hyperTest import get_PTWV_profile, writenc format = 'NETCDF4_CLASSIC' MISSING = -1.e+20 def get_kg(inFile): """ Read c-k distribution coefficients from Amir's calculations """ nc = Dataset(inFile) # wavelength [nm] wav_abs = np.array(nc.variables['wavelengths'][:]) # c-k coefficients [not sure about units] kg_o2 = nc.variables['kg_o2'][:].T kg_h2o = nc.variables['kg_h2o'][:].T kg_co = nc.variables['kg_co'][:].T kg_co2 = nc.variables['kg_co2'][:].T kg_ch4 = nc.variables['kg_ch4'][:].T kg_n2o = nc.variables['kg_n2o'][:].T g_bins = nc.variables['g_bins'][:] nc.close() return kg_o2, kg_h2o, kg_co, kg_co2, kg_ch4, kg_n2o, g_bins, wav_abs def get_alpha(A,VMR,rhoe,ze): """ Calculate Absorption optical depth profile A - absorption coefficient [m2/molecule] VMR - trace gas mixing ratio [vol/vol, dimensionless] rhoe - air number density [molecules/m3] ze - profile altitude [m] """ # convert vmr to molecules/m3 nxe = VMR*rhoe # integrate to get the optical depth subcolumns km, nbin, nch = A.shape alpha = np.zeros([km,nbin,nch]) for i in range(km): for b in range(nbin): c1 = A[i,b,:]*nxe[i] c2 = A[i,b,:]*nxe[i+1] c1.shape = (1, nch) c2.shape = (1, nch) c = np.append(c1,c2,axis=0) alpha[i,b,:] = np.trapz(c,ze[i:i+2],axis=0) #alpha = np.trapz(A*nxe,ze) return alpha #------------------------------------ M A I N ------------------------------------ if __name__ == "__main__": outRoot = 'hyperTest/' # Pressure [Pa], temperature [K], height [m], water vapor [ppm] profile - standard atmosphere # used to make OCI look up tables inFile = '{}/atrem_tpvmr.nc'.format(outRoot) km, pe, te, ze, rhoe, h2oe, DP = get_PTWV_profile(inFile) # Read in Amir's c-k distribution coefficients wavelengths # kg has dimensions km,ngbins,nwav. ngbins = 10 inFile = 'correlated_k/kg_gas_refined_v2_with_RSR_v0.nc' kg_o2, kg_h2o, kg_co, kg_co2, kg_ch4, kg_n2o, g_bins, wav_abs = get_kg(inFile) ngbin = len(g_bins) # convert kg from pressure space to z space # --------------------------------------------------- Q = 2.15199993E+25 C = (Q*28.966) / 6.0225e23 / 1e-6 # integrate air density in each layer rhoint = np.zeros(km) for i in range(km): rhoint[i] = np.trapz(rhoe[i:i+2],ze[i:i+2]) DP.shape = (km,1,1) rhoint.shape = (km,1,1) for ibin in range(ngbin-1): DP = np.append(DP,DP[:,0:1,:],axis=1) rhoint = np.append(rhoint,rhoint[:,0:1,:],axis=1) kg_o2_z = kg_o2*C*DP/rhoint kg_co_z = kg_co*C*DP/rhoint kg_co2_z = kg_co2*C*DP/rhoint kg_ch4_z = kg_ch4*C*DP/rhoint kg_n2o_z = kg_n2o*C*DP/rhoint kg_h2o_z = kg_h2o*C*DP/rhoint # get absorption optical depth with new aborption coefficient co_vmr = 0.1*1e-6 alpha_co = get_alpha(kg_co_z,co_vmr,rhoe,ze) o2_vmr = 0.21 alpha_o2 = get_alpha(kg_o2_z,o2_vmr,rhoe,ze) co2_vmr = 400.*1.0E-06 alpha_co2 = get_alpha(kg_co2_z,co2_vmr,rhoe,ze) ch4_vmr = 1.8*1.0E-06 alpha_ch4 = get_alpha(kg_ch4_z,ch4_vmr,rhoe,ze) n2o_vmr = 0.3*1.0E-06 alpha_n2o = get_alpha(kg_n2o_z,n2o_vmr,rhoe,ze) sys.exit('stop') # scale water vapor so total precipitable water # is equal to 1 cm # ---------------- # first calculate water vapor column [molecules/m2] h2ocol = np.trapz(h2oe*1e-6*rhoe,ze) # normalize profile so water vapor column expressed as total precipitable water is equal to 1 cm # use 1 mm of rainfall = 1 kg/m2 # or 1 cm = 10 kg/m2 # 10 kg/m2 is equal to 3.34e22 water molecules/cm2 h2ocolnew = 3.34e22 # convert to meters h2ocolnew = h2ocolnew*1e4 h2oenew = h2oe*(h2ocolnew/h2ocol) # get in vmr units h2oe_vmr = 1e-6*h2oenew alpha_h2o = get_alpha(kg_h2o_z,h2oe_vmr,rhoe,ze) # add up all the alphas alpha = alpha_h2o + alpha_n2o + alpha_ch4 + alpha_co2 + alpha_o2 + alpha_co # append zeros down to wavelength equal to 299.91 nm # this is because ozone is not being considered right now # eventualy will add O3 cross sections from <NAME> # new_wl = np.arange(wav_abs.min()-0.1,299.91,-0.1) # all_wl = np.append(wav_abs,new_wl) all_wl = wav_abs # nnew = len(new_wl) # alpha = np.append(alpha,np.zeros([km,nnew]),axis=1) # flip everything vertically so going from top of atmosphere to surface pe = pe[-1::-1] te = te[-1::-1] ze = ze[-1::-1] alpha = alpha[-1::-1,:,:] # add dimension to be in km+1,nobs pe.shape = (km+1,1) te.shape = (km+1,1) ze.shape = (km+1,1) # read in granule geometry Iscan = 600 Icross = 1000 SZA,VZA,RAA,SAA,VAA = get_geom(Iscan,Icross) # Read in solar irradiance spectrum # second dim = wavelength, irradiance # units=nm, uW/cm^2/nm inFile = '{}/Thuillier_F0.npy'.format(outRoot) F0 =
np.load(inFile)
numpy.load
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Aug 3 08:33:16 2021 @author: athulsun """ from mat4py import loadmat from scipy.signal import filtfilt import numpy as np from scipy.interpolate import interp1d,PchipInterpolator import matplotlib.pyplot as plt import os import sys from dtqpy.src.classes.DTQPy_CLASS_OPTS import * from dtqpy.src.classes.DTQPy_CLASS_SETUP import * from dtqpy.src.DTQPy_solve import DTQPy_solve def f_dtqp_fowt(LinearModels,disturbance): # load linear models Chan = LinearModels['Chan'] #breakpoint() # obtain the size of the arrays nl = len(Chan) nx,nx = np.shape(Chan[0]['A']) nx,nu = np.shape(Chan[0]['B']) ny = len(LinearModels['OutName']) OutputName = LinearModels['OutName'] # initialize Aw = np.zeros((nl,nx,nx)) Bw = np.zeros((nl,nx,nu)) Cw = np.zeros((nl,ny,nx)) Dw = np.zeros((nl,ny,nu)) xw = np.zeros((nx,nl)) uw = np.zeros((nu,nl)) yw = np.zeros((nl,ny)) ws = np.zeros((nl)) # collect for i in range(nl): Aw[i,:,:] = np.array(Chan[i]['A']) Bw[i,:,:] = np.array(Chan[i]['B']) Cw[i,:,:] = np.array(Chan[i]['C']) Dw[i,:,:] = np.array(Chan[i]['D']) xw[:,i] = np.squeeze(np.array(Chan[i]['xop'])) uw[:,i] = np.squeeze(np.array(Chan[i]['uop'])) yw[i,:] = np.squeeze(np.array(Chan[i]['yop'])) ws[i] = Chan[i]['WindSpeed'] # construct LPV models # A matrix A_op_pp = PchipInterpolator(ws, Aw, axis = 0) A_op = lambda w: A_op_pp(w) # Bmatrix B_op_pp = PchipInterpolator(ws, Bw, axis = 0) B_op = lambda w: B_op_pp(w) # Cmatrix C_op_pp = PchipInterpolator(ws,Cw,axis = 0) C_op = lambda w: C_op_pp(w) # Dmatrix D_op_pp = PchipInterpolator(ws,Dw,axis = 0) D_op = lambda w: D_op_pp(w) # control operating points Uo_pp = PchipInterpolator(ws,uw,axis = 1) Uo_fun = lambda w: Uo_pp(w) # state operating points Xo_pp = PchipInterpolator(ws, xw, axis = 1) Xo_fun = lambda w: Xo_pp(w) # outputs Yo_pp = PchipInterpolator(ws, yw, axis = 0) Yo_fun = lambda w: Yo_pp(w) # first time derivative of state operating points DXo_pp = Xo_pp.derivative DXo_pp = DXo_pp(nu=1) DXo_fun = lambda w: DXo_pp(w) Wind_o = disturbance['Chan'] Wind_speed = np.array(Wind_o['RtVAvgxh']) tt = np.array(Wind_o['tt']) filterflag = 1 if filterflag: t_f = 1 dt = tt[2,0]-tt[1,0] nb = int(np.floor(t_f/dt)) b = np.ones((nb,))/nb a = b*nb Wind_speed = filtfilt(b,1,Wind_speed,axis = 0) opts = options() opts.dt.nt = 1000 opts.solver.tolerence = 1e-16 opts.solver.maxiters = 1000000 opts.solver.function = 'pyoptsparse' time = np.linspace(tt[0],tt[-1],opts.dt.nt) W_pp = PchipInterpolator(np.squeeze(tt),np.squeeze(Wind_speed)) dW_pp = W_pp.derivative dW_pp = dW_pp(nu = 1) DW_fun = lambda t: dW_pp(t) W_fun = lambda t: W_pp(t) DXoDt_fun = lambda t: (-DXo_fun(W_fun(t)).T*DW_fun(t)).T def BuildLambda(Ax): return lambda t: Ax(t) def TVmat2cell(f,time): """ function to convert nt*nx*nz matrix to nx*nx cell """ # evaluate function At = f(time) s = np.shape(At) if len(s) ==4: At = np.squeeze(At) elif len(s) == 3: At = np.squeeze(At) At= At.T # get size try: null,m,n = np.shape(At) except: null,m = np.shape(At) n = 1 # initialize storage A = np.empty((m,n),dtype = 'O') Aval = np.empty((8,8)) #breakpoint() for i in range(m): for j in range(n): try: Ax = PchipInterpolator(np.squeeze(time),At[:,i,j],axis = 0) except: Ax = PchipInterpolator(np.squeeze(time),At[:,i],axis = 0) # work around, as defining lambda functions in a loop in python is tricky A[i,j] = BuildLambda(Ax) return A ## Disc2 cont def BuildFunction(w_ops,X): Xpp = PchipInterpolator(w_ops,X) return lambda w: Xpp(w) # Generator speed function GS_fun = BuildFunction(ws,xw[4,:]) # -1*GS function GSn_fun = BuildFunction(ws,-xw[4,:]) # Generator torque GT_fun = BuildFunction(ws,uw[1,:]) # -Generator torque GTn_fun = BuildFunction(ws,-uw[1,:]) # Blade pitch BP_fun = BuildFunction(ws,uw[2,:]) # Generator power GP_fun = BuildFunction(ws,-uw[1,:]*xw[4,:]) # State operating point values r = Xo_fun(ws) # lambda function to find the values of lambda function at specific indices indexat = lambda expr,index: expr[index,:] # get shape nws,nx,nu = np.shape(Bw) # initialize ub = np.ones((nx,1))*np.inf lb = -np.ones((nx,1))*np.inf # set ub values for PtfmPitch and Genspeed ub[0] = np.deg2rad(6) ub[4] = 0.7913+0.0001 # initialize UBx = np.empty((nx,1),dtype = 'O') LBx = np.empty((nx,1),dtype = 'O') # need this function to define anaonymous functions in a loop in python def BuildLambdaUB(ub,indexat,Xo_fun,W_fun,i): return lambda t: ub - indexat(Xo_fun(W_fun(t)),i) # build ub and lb functions for i in range(nx): UBx[i,0] = BuildLambdaUB(ub[i],indexat,Xo_fun,W_fun,i) LBx[i,0] = BuildLambdaUB(lb[i],indexat,Xo_fun,W_fun,i) # control bounds UBc = np.array([[lambda t: W_fun(t)-W_fun(t)], [lambda t: max(uw[1,:])-GT_fun(W_fun(t))], [lambda t: max(uw[2,:])-BP_fun(W_fun(t))]]) LBc = np.array([[lambda t: W_fun(t)-W_fun(t)], [lambda t: min(uw[1,:])-GT_fun(W_fun(t))], [lambda t: min(uw[2,:])-BP_fun(W_fun(t))]]) # initial state X0_n = np.array( [[0.0493], [0.1957], [0.0000], [0.0001], [0.7913], [0], [0], [0]]) UBs = X0_n - Xo_fun(W_fun(0))[None].T LBs = X0_n - Xo_fun(W_fun(0))[None].T # UB,LB UB = [Simple_Bounds() for n in range(3)] LB = [Simple_Bounds() for n in range(3)] # states UB[0].right = 2 UB[0].matrix = UBx LB[0].right = 2 LB[0].matrix = LBx # control bounds UB[1].right = 1 UB[1].matrix = UBc LB[1].right = 1 LB[1].matrix = LBc # initial state UB[2].right = 4 UB[2].matrix = UBs LB[2].right = 4 LB[2].matrix = LBs # lagrange terms R1 = 1e-0; R2 = 1e+8 lx = 0 L = [LQ_objective() for n in range(5)] # uRu L[lx].left = 1 L[lx].right = 1 L[lx].matrix =
np.diag([0,R1,R2])
numpy.diag
""" Homemade implementation for inferencing using 'model.tflite' compares 'My Accuracy' with Tensorflow's implementation """ import tensorflow as tf from tensorflow import keras import numpy as np import offline import integer_inference from PIL import Image IMG_SIZE = (14, 14) mnist = keras.datasets.mnist (train_images, train_labels), (test_images, test_labels) = mnist.load_data() train_imgs_resize = [] test_imgs_resize = [] for img in train_images: res = np.array(Image.fromarray(img).resize(size=IMG_SIZE)) train_imgs_resize.append(res) train_imgs_resize = np.asarray(train_imgs_resize) for img in test_images: res = np.array(Image.fromarray(img).resize(size=IMG_SIZE)) test_imgs_resize.append(res) test_imgs_resize = np.asarray(test_imgs_resize) train_imgs_resize = train_imgs_resize / 255.0 test_imgs_resize = test_imgs_resize / 255.0 flat_train = [] flat_test = [] for i, img in enumerate(train_imgs_resize): flat_train.append(img.flatten()) flat_train = np.asarray(flat_train) for i, img in enumerate(test_imgs_resize): flat_test.append(img.flatten()) flat_test = np.asarray(flat_test) flat_train = flat_train[..., np.newaxis] flat_test = flat_test[..., np.newaxis] # load TFLite file interpreter = tf.lite.Interpreter(model_path=f'model.tflite') # Allocate memory. interpreter.allocate_tensors() input_details = interpreter.get_input_details() output_details = interpreter.get_output_details() inter_layer = interpreter.get_tensor_details() tensorflow_no_softmax_acc = 0 tensorflow_softmax_acc = 0 homemade_acc = 0 num_test_imgs = 10000 # Conv1D offline parameters # Hardcoded values for specific weights/biases ect. The application Netron was very helpful in understanding # inputs and outputs to different layers. Netron gives a good overview of what a model looks like weight_index = 4 bias_index = 6 output_index = 1 input_index = 7 quantized_weight_conv = interpreter.get_tensor(inter_layer[weight_index]['index']) quantized_bias_conv = interpreter.get_tensor(inter_layer[bias_index]['index']) weight_scale_conv, weight_offset_conv = inter_layer[weight_index]['quantization'] input_scale_conv, input_offset_conv = inter_layer[input_index]['quantization'] output_scale_conv, output_offset_conv = inter_layer[output_index]['quantization'] M_conv = (input_scale_conv * weight_scale_conv) / output_scale_conv right_shift_conv, M_0_conv = offline.quantize_mult_smaller_one(M_conv) # hidden dense layer offline parameters weight_index = 10 bias_index = 8 output_index = 9 input_index = 0 quantized_weight_dense = interpreter.get_tensor(inter_layer[weight_index]['index']) quantized_bias_dense = interpreter.get_tensor(inter_layer[bias_index]['index']) weight_scale_dense, weight_offset_dense = inter_layer[weight_index]['quantization'] input_scale_dense, input_offset_dense = inter_layer[input_index]['quantization'] output_scale_dense, output_offset_dense = inter_layer[output_index]['quantization'] M_dense = (input_scale_dense * weight_scale_dense) / output_scale_dense right_shift_dense, M_0_dense = offline.quantize_mult_smaller_one(M_dense) # prediction layer offline parameters weight_index = 14 bias_index = 12 output_index = 11 input_index = 9 quantized_weight_pred = interpreter.get_tensor(inter_layer[weight_index]['index']) quantized_bias_pred = interpreter.get_tensor(inter_layer[bias_index]['index']) weight_scale_pred, weight_offset_pred = inter_layer[weight_index]['quantization'] input_scale_pred, input_offset_pred = inter_layer[input_index]['quantization'] output_scale_pred, output_offset_pred = inter_layer[output_index]['quantization'] M_pred = (input_scale_pred * weight_scale_pred) / output_scale_pred right_shift_pred, M_0_pred = offline.quantize_mult_smaller_one(M_pred) avg_num_skip_dyn = 0 avg_num_skip_static = 0 total_exc = 0 for i in range(num_test_imgs): # set up img to be infered on... quantized_input = offline.quantize(input_details[0], flat_test[i:i+1]) interpreter.set_tensor(input_details[0]['index'], quantized_input) # let tensorflow do the math interpreter.invoke() # save layer before softmax because softmax too hard for now quantized_output_no_softmax = interpreter.get_tensor(inter_layer[output_index]['index']) # Output with softmax quantized_output_softmax = interpreter.get_tensor(output_details[0]['index']) num_skip_dyn = 0 num_skip_static = 0 total_exc = 0 # Homemade inference time! output_conv_arr, num_skip_dyn, num_skip_static, total_exc = (integer_inference.Conv(quantized_input, input_offset_conv, quantized_weight_conv, weight_offset_conv, quantized_bias_conv, output_offset_conv, M_0_conv, right_shift_conv, (IMG_SIZE[0] * IMG_SIZE[1], 8), num_skip_dyn, num_skip_static, total_exc)) # to do move to Conv function output_conv_arr = output_conv_arr.flatten() output_conv_arr = output_conv_arr[np.newaxis, ...] output_full_conn_arr, num_skip_dyn, num_skip_static, total_exc = (integer_inference.FullyConnected(output_conv_arr, input_offset_dense, quantized_weight_dense, weight_offset_dense, quantized_bias_dense, output_offset_dense, M_0_dense, right_shift_dense, (1, 16), num_skip_dyn, num_skip_static, total_exc)) output_full_conn_arr_2, num_skip_dyn, num_skip_static, total_exc = (integer_inference.FullyConnected(output_full_conn_arr, input_offset_pred, quantized_weight_pred, weight_offset_pred, quantized_bias_pred, output_offset_pred, M_0_pred, right_shift_pred, (1, 10), num_skip_dyn, num_skip_static, total_exc)) avg_num_skip_dyn += num_skip_dyn avg_num_skip_static += num_skip_static if test_labels[i] == np.argmax(quantized_output_softmax): tensorflow_softmax_acc += 1 if test_labels[i] ==
np.argmax(quantized_output_no_softmax)
numpy.argmax
""" PRCAUCEvaluator uses `sklearn.metrics.precision_recall_curve` and `sklearn.metrics.auc` internally. Refer: http://scikit-learn.org/stable/modules/generated/sklearn.metrics.\ prc_auc_score.html """ import numpy import pytest import chainer from chainer.iterators import SerialIterator from chainer_chemistry.datasets.numpy_tuple_dataset import NumpyTupleDataset # NOQA from chainer_chemistry.training.extensions.prc_auc_evaluator import PRCAUCEvaluator # NOQA @pytest.fixture def data0(): # `t` is correct label, `y` is dummy predict value by predictor t =
numpy.array([0, 0, 1, 1], dtype=numpy.int32)
numpy.array
""" Script entry point """ from src.calrissian.particle333_network import Particle333Network from src.calrissian.layers.particle333 import Particle333 from src.calrissian.optimizers.particle333_sgd import Particle333SGD from multiprocessing import Pool import numpy as np import time import pandas as pd import pickle def main(): train_X = np.asarray([[0.45, 3.33], [0.0, 2.22], [0.45, -0.54]]) train_Y = np.asarray([[1.0], [0.0], [0.0]]) net = Particle333Network(cost="mse") net.append(Particle333(2, 5, activation="sigmoid", nr=4, nc=6)) net.append(Particle333(5, 1, activation="sigmoid", nr=4, nc=6)) print(net.predict(train_X)) print(net.cost(train_X, train_Y)) print(net.cost_gradient(train_X, train_Y)) def main2(): train_X = np.random.normal(0.0, 0.1, (3, 4*4)) train_Y = np.random.normal(0.0, 0.1, (3, 1)) nr = 3 nc = 3 net = Particle333Network(cost="mse") net.append(Particle333(activation="sigmoid", nr=nr, nc=nc, apply_convolution=True, input_shape=(4, 4, 1), output_shape=(2, 2, 3), input_delta=(0.5, 0.5, 0.5), output_delta=(0.5, 0.5, 0.5))) net.append(Particle333(activation="sigmoid", nr=nr, nc=nc, apply_convolution=True, input_shape=(2, 2, 3), output_shape=(2, 2, 1), input_delta=(0.5, 0.5, 0.5), output_delta=(0.5, 0.5, 0.5))) net.append(Particle333(4, 1, activation="sigmoid", nr=nr, nc=nc)) print(net.predict(train_X)) print(net.cost(train_X, train_Y)) def main3(): train_X = np.random.normal(0.0, 0.1, (3, 4*4)) train_Y =
np.random.normal(0.0, 0.1, (3, 1))
numpy.random.normal
from sklearn.base import BaseEstimator from ..utils.projection import Raw, RandomProjection, RandomMaclaurinProjection, TensorSketchProjection import numpy as np import numpy.linalg as ln import scipy.sparse as sp from sklearn import preprocessing class OnlineSketch(BaseEstimator): """Matrix-sketching-based online item recommender <NAME>. "Sketching Dynamic User-Item Interactions for Online Item Recommendation" In Proceedings of CHIIR 2017, March 2017. """ def __init__(self, p=None, k=40, ell=-1, r=-1, proj='Raw'): assert p is not None # number of dimensions of input vectors self.p = p # dimension of projected vectors # for `Raw` (i.e. w/o projection), k must equat to p self.k = self.p if proj == 'Raw' else k # if there is no preference for ell, # this will be sqrt(k) similarly to what the original streaming anomaly detection paper did self.ell = int(np.sqrt(self.k)) if ell < 1 else ell # number of tracked orthogonal bases # * upper bound of r is ell (r <= ell) because U_r is obtained from SVD(B) (or SVD(E)), and # B and E always have ell columns self.r = int(np.ceil(self.ell / 2)) if r < 1 else np.min(r, self.ell) # initialize projection instance which is specified by `proj` argument if proj == 'Raw': self.proj = Raw(self.k, self.p) elif proj == 'RandomProjection': self.proj = RandomProjection(self.k, self.p) elif proj == 'RandomMaclaurinProjection': self.proj = RandomMaclaurinProjection(self.k, self.p) elif proj == 'TensorSketchProjection': self.proj = TensorSketchProjection(self.k, self.p) self.i_mat = sp.csr_matrix([]) def update_model(self, y): y = self.proj.reduce(np.array([y]).T) y = np.ravel(preprocessing.normalize(y, norm='l2', axis=0)) if not hasattr(self, 'B'): self.B = np.zeros((self.k, self.ell)) # combine current sketched matrix with input at time t zero_cols = np.nonzero([np.isclose(s_col, 0.0) for s_col in np.sum(self.B, axis=0)])[0] j = zero_cols[0] if zero_cols.size != 0 else self.ell - 1 # left-most all-zero column in B self.B[:, j] = y U, s, V = ln.svd(self.B, full_matrices=False) # update the tracked orthonormal bases self.U_r = U[:, :self.r] # update ell orthogonal bases U_ell = U[:, :self.ell] s_ell = s[:self.ell] # shrink step in the Frequent Directions algorithm # (shrink singular values based on the squared smallest singular value) delta = s_ell[-1] ** 2 s_ell = np.sqrt(s_ell ** 2 - delta) self.B = np.dot(U_ell, np.diag(s_ell)) class OnlineRandomSketch(OnlineSketch): """Inspired by: Streaming Anomaly Detection using Randomized Matrix Sketching [WIP] many matrix multiplications are computational heavy """ def update_model(self, y): y = self.proj.reduce(np.array([y]).T) y = np.ravel(preprocessing.normalize(y, norm='l2', axis=0)) if not hasattr(self, 'E'): self.E = np.zeros((self.k, self.ell)) # combine current sketched matrix with input at time t zero_cols = np.nonzero([np.isclose(s_col, 0.0) for s_col in np.sum(self.E, axis=0)])[0] j = zero_cols[0] if zero_cols.size != 0 else self.ell - 1 # left-most all-zero column in B self.E[:, j] = y Gaussian = np.random.normal(0., 0.1, (self.k, 100 * self.ell)) MM = np.dot(self.E, self.E.T) Q, R = ln.qr(np.dot(MM, Gaussian)) # eig() returns eigen values/vectors with unsorted order s, A = ln.eig(np.dot(np.dot(Q.T, MM), Q)) order = np.argsort(s)[::-1] s = s[order] A = A[:, order] U = np.dot(Q, A) # update the tracked orthonormal bases self.U_r = U[:, :self.r] # update ell orthogonal bases U_ell = U[:, :self.ell] s_ell = s[:self.ell] # shrink step in the Frequent Directions algorithm delta = s_ell[-1] s_ell = np.sqrt(s_ell - delta) self.E = np.dot(U_ell, np.diag(s_ell)) class OnlineSparseSketch(OnlineSketch): """Inspired by: Efficient Frequent Directions Algorithm for Sparse Matrices """ def update_model(self, y): y = self.proj.reduce(np.array([y]).T) y = preprocessing.normalize(y, norm='l2', axis=0) # (k, 1) if not hasattr(self, 'B'): self.p_failure = 0.1 self.B = np.zeros((self.k, self.ell)) self.A = np.array([]) U, s, V = ln.svd(self.B, full_matrices=False) # update the tracked orthonormal bases self.U_r = U[:, :self.r] if self.A.size == 0: self.A = np.empty_like(y) self.A[:] = y[:] else: self.A =
np.concatenate((self.A, y), axis=1)
numpy.concatenate
#!/usr/bin/env python """ Use muon flux weights to calculate an effective livetime for combined CORSIKA samples as a function of energy. """ from argparse import ArgumentParser from os.path import expandvars parser = ArgumentParser() parser.add_argument("outfile", help="save plot to file") args = parser.parse_args() import matplotlib matplotlib.use('agg') import pylab, numpy from icecube import dataclasses, MuonGun surface = MuonGun.Cylinder(1600, 800) area = numpy.pi**2*surface.radius*(surface.radius+surface.length) # 1 file of E^-2.6 5-component 3e4-1e9 GeV (3:2:1:1:1) soft = 4e5*MuonGun.corsika_genprob('CascadeOptimized5Comp') # 1 file of E^-2 5-component 6e2-1e11 GeV (10:5:3:2:1) hard = 2.5e6*MuonGun.corsika_genprob('Standard5Comp') # In order to compare to "unweighted" CORSIKA, turn the Hoerandel flux # into a probability (since we happen to know the integral) areanorm = 0.131475115*area # 1 file of natural-spectrum ("unweighted") CORSIKA unweighted = (2.5e7/areanorm)*MuonGun.corsika_genprob('Hoerandel5') model = MuonGun.load_model('GaisserH4a_atmod12_SIBYLL') model.flux.min_multiplicity = 1 model.flux.max_multiplicity = 1 # spectrum = MuonGun.OffsetPowerLaw(5.0, 5e2, 8e2, 10**4.5) spectrum = MuonGun.OffsetPowerLaw(5, 8e2, 2e3, 1e5) # spectrum = MuonGun.OffsetPowerLaw(1.1, 650, 800, 1e8) gun = 1e5*MuonGun.EnergyDependentSurfaceInjector(surface, model.flux, spectrum, model.radius) # gun = 1e5*MuonGun.StaticSurfaceInjector(surface, model.flux, spectrum, model.radius) # gun.target_surface = lambda e: surface def get_weight(weighter, energy, zenith=numpy.pi/8, scale=True): shape = energy.shape if scale: x = numpy.array([gun.target_surface(e).radius - 1 for e in energy]) else: # x = numpy.ones(shape[0])*surface.radius - 1 x = numpy.ones(shape[0])*surface.radius - 1 # x = surface.radius*numpy.ones(shape) - 1 y = numpy.zeros(shape) # z = z*numpy.ones(shape) if scale: z = numpy.array([gun.target_surface(e).center.z + gun.target_surface(e).length/2. for e in energy]) else: z = numpy.ones(shape[0])*(surface.center.z + surface.length/2.) azimuth =
numpy.zeros(shape)
numpy.zeros
""" Unsupervised MoE Variational AutoEncoder (VAE) ============================================== Credit: <NAME> Based on: - https://towardsdatascience.com/mixture-of-variational-autoencoders- a-fusion-between-moe-and-vae-22c0901a6675 The Variational Autoencoder (VAE) is a neural networks that try to learn the shape of the input space. Once trained, the model can be used to generate new samples from the input space. If we have labels for our input data, it’s also possible to condition the generation process on the label. The idea here is to achieve the same results using an unsupervised approach. Mixture of Experts ------------------ MoE is a supervised learning framework. MoE relies on the possibility that the input might be segmented according to the x->y mapping. How can we train a model that learns the split points while at the same time learns the mapping that defines the split points. MoE does so using an architecture of multiple subnetworks - one manager and multiple experts. The manager maps the input into a soft decision over the experts, which is used in two contexts: 1. The output of the network is a weighted average of the experts' outputs, where the weights are the manager's output. 2. The loss function is $\sum_i p_i(y - \bar{y_i})^2$. y is the label, $\bar{y_i}$ is the output of the i'th expert, $p_i$ is the i'th entry of the manager's output. When you differentiate the loss, you get these results: a) the manager decides for each expert how much it contributes to the loss. In other words, the manager chooses which experts should tune their weights according to their error, and b) the manager tunes the probabilities it outputs in such a way that the experts that got it right will get higher probabilities than those that didn’t. This loss function encourages the experts to specialize in different kinds of inputs. MoE is a framework for supervised learning. Surely we can change y to be x for the unsupervised case, right? MoE's power stems from the fact that each expert specializes in a different segment of the input space with a unique mapping x ->y. If we use the mapping x->x, each expert will specialize in a different segment of the input space with unique patterns in the input itself. We'll use VAEs as the experts. Part of the VAE’s loss is the reconstruction loss, where the VAE tries to reconstruct the original input image x. A cool byproduct of this architecture is that the manager can classify the digit found in an image using its output vector! One thing we need to be careful about when training this model is that the manager could easily degenerate into outputting a constant vector - regardless of the input in hand. This results in one VAE specialized in all digits, and nine VAEs specialized in nothing. One way to mitigate it, which is described in the MoE paper, is to add a balancing term to the loss. It encourages the outputs of the manager over a batch of inputs to be balanced: $\sum_\text{examples in batch} \vec{p} \approx Uniform$. Let's begin with importing stuffs: """ import os import sys if "CI_MODE" in os.environ: sys.exit() import numpy as np from scipy import ndimage import matplotlib.pyplot as plt import torch import torch.nn as nn import torch.nn.functional as func from torch.distributions import Normal, kl_divergence from pynet.datasets import DataManager, fetch_minst from pynet.interfaces import DeepLearningInterface from pynet.plotting import Board, update_board ############################################################################# # The model will be trained on MNIST - handwritten digits dataset. The input # is an image in R(28×28). def flatten(arr): return arr.flatten() data = fetch_minst(datasetdir="/neurospin/nsap/datasets/minst") manager = DataManager( input_path=data.input_path, metadata_path=data.metadata_path, stratify_label="label", number_of_folds=10, batch_size=100, test_size=0, input_transforms=[flatten], add_input=True, sample_size=1) ############################################################################# # The Model # --------- # # The model is composed of two sub-networks: # # 1. Given x (image), encode it into a distribution over the latent space - # referred to as Q(z|x). # 2. Given z in latent space (code representation of an image), decode it into # the image it represents - referred to as f(z). class Encoder(nn.Module): """ The encoder part of VAE. """ def __init__(self, input_dim, hidden_dim, latent_dim): """ Init class. Parameters ---------- input_dim: int the size of input (in case of MNIST 28 * 28). hidden_dim: int the size of hidden dimension. latent_dim: int the latent dimension. """ super().__init__() self.linear = nn.Linear(input_dim, hidden_dim) self.mu = nn.Linear(hidden_dim, latent_dim) self.logvar = nn.Linear(hidden_dim, latent_dim) def forward(self, x): hidden = torch.sigmoid(self.linear(x)) z_mu = self.mu(hidden) z_logvar = self.logvar(hidden) return z_mu, z_logvar class Decoder(nn.Module): """ The decoder part of VAE """ def __init__(self, latent_dim, hidden_dim, output_dim): """ Init class. Parameters ---------- latent_dim: int the latent size. hidden_dim: int the size of hidden dimension. output_dim: int the output dimension (in case of MNIST it is 28 * 28). """ super().__init__() self.latent_to_hidden = nn.Linear(latent_dim, hidden_dim) self.hidden_to_out = nn.Linear(hidden_dim, output_dim) def forward(self, x): hidden = torch.sigmoid(self.latent_to_hidden(x)) predicted = torch.sigmoid(self.hidden_to_out(hidden)) return predicted class VAE(nn.Module): """ This is the VAE. """ def __init__(self, input_dim, hidden_dim, latent_dim): """ Init class. Parameters ---------- input_dim: int the size of input (in case of MNIST 28 * 28). hidden_dim: int the size of hidden dimension. latent_dim: int the latent dimension. """ super(VAE, self).__init__() self.encoder = Encoder(input_dim, hidden_dim, latent_dim) self.decoder = Decoder(latent_dim, hidden_dim, input_dim) def forward(self, x): # encode an image into a distribution over the latent space z_mu, z_logvar = self.encoder(x) # sample a latent vector from the latent space - using the # reparameterization trick # sample from the distribution having latent parameters z_mu, z_var z_var = torch.exp(z_logvar) + 1e-5 std = torch.sqrt(z_var) eps = torch.randn_like(std) x_sample = eps.mul(std).add_(z_mu) # decode the latent vector predicted = self.decoder(x_sample) return predicted, {"z_mu": z_mu, "z_var": z_var} class VAELoss(object): def __init__(self, use_distributions=True): super(VAELoss, self).__init__() self.layer_outputs = None self.use_distributions = use_distributions def __call__(self, x_sample, x): if self.layer_outputs is None: raise ValueError("The model needs to return the latent space " "distribution parameters z_mu, z_var.") if self.use_distributions: p = x_sample q = self.layer_outputs["q"] else: z_mu = self.layer_outputs["z_mu"] z_var = self.layer_outputs["z_var"] p = Normal(x_sample, 0.5) q = Normal(z_mu, z_var.pow(0.5)) # reconstruction loss: log likelihood ll_loss = - p.log_prob(x).sum(-1, keepdim=True) # regularization loss: KL divergence kl_loss = kl_divergence(q, Normal(0, 1)).sum(-1, keepdim=True) combined_loss = ll_loss + kl_loss return combined_loss, {"ll_loss": ll_loss, "kl_loss": kl_loss} class Manager(nn.Module): def __init__(self, input_dim, hidden_dim, experts, latent_dim, log_alpha=None): """ Init class. Parameters ---------- input_dim: int the size of input (in case of MNIST 28 * 28). hidden_dim: int the size of hidden dimension. experts: list of VAE the manager experts. """ super(Manager, self).__init__() self._experts = nn.ModuleList(experts) self.latent_dim = latent_dim self._experts_results = [] self.linear1 = nn.Linear(input_dim, hidden_dim) self.linear2 = nn.Linear(hidden_dim, len(experts)) def forward(self, x): hidden = torch.sigmoid(self.linear1(x)) logits = self.linear2(hidden) probs = func.softmax(logits) self._experts_results = [] for net in self._experts: self._experts_results.append(net(x)) return probs, {"experts_results": self._experts_results} class ManagerLoss(object): def __init__(self, balancing_weight=0.1): """ Init class. Parameters ---------- balancing_weight: float, default 0.1 how much the balancing term will contribute to the loss. """ super(ManagerLoss, self).__init__() self.layer_outputs = None self.balancing_weight = balancing_weight self.criterion = VAELoss(use_distributions=False) def __call__(self, probs, x): if self.layer_outputs is None: raise ValueError("The model needs to return the latent space " "distribution parameters z_mu, z_var.") losses = [] for result in self.layer_outputs["experts_results"]: self.criterion.layer_outputs = result[1] loss, extra_loss = self.criterion(result[0], x) losses.append(loss.view(-1, 1)) losses = torch.cat(losses, dim=1) expected_expert_loss = torch.mean( torch.sum(losses * probs, dim=1), dim=0) experts_importance = torch.sum(probs, dim=0) # Remove effect of Bessel correction experts_importance_std = experts_importance.std(dim=0, unbiased=False) balancing_loss = torch.pow(experts_importance_std, 2) combined_loss = ( expected_expert_loss + self.balancing_weight * balancing_loss) return combined_loss, {"expected_expert_loss": expected_expert_loss, "balancing_loss": balancing_loss} ############################################################################# # Training # -------- # # We'll train the model to optimize the losses using Adam optimizer. def sampling(signal): """ Sample from the distribution and generate a image. """ device = signal.object.device experts = signal.object.model._experts latent_dim = signal.object.model.latent_dim board = signal.object.board # sample and generate a image z = torch.randn(1, latent_dim).to(device) # run only the decoder images = [] for model in experts: model.eval() with torch.no_grad(): reconstructed_img = model.decoder(z) img = reconstructed_img.view(-1, 28, 28).cpu().detach().numpy() img = np.asarray([ndimage.zoom(arr, 5, order=0) for arr in img]) images.append(img) # display result images =
np.asarray(images)
numpy.asarray
''' ############################################################################### "MajoranaNanowire" Python3 Module v 1.0 (2020) Created by <NAME> (2018) ############################################################################### "H_class/Lutchyn_Oreg/builders" submodule This sub-package builds Lutchyn-Oreg Hamiltonians. ############################################################################### ''' #%%############################################################################ ######################## Required Packages ############################ ############################################################################### import numpy as np import scipy.sparse import scipy.sparse.linalg import scipy.linalg import scipy.constants as cons from MajoranaNanowires.Functions import diagonal #%% def LO_1D_builder(N,dis,m_eff,mu,B,aR,d, space='position', k_vec=np.nan ,sparse='no'): """ 1D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 1D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is an array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is an array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones(N) if np.isscalar(mu): mu = mu * np.ones(N) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRy=np.zeros(N) aRz=aR*np.ones(N)/(2*dis) elif np.ndim(aR)==1: if len(aR)==3: aRy=aR[1]*np.ones(N)/(2*dis) aRz=aR[2]*np.ones(N)/(2*dis) else: aRy=np.zeros(N) aRz=aR/(2*dis) else: aRy=aR[1]/(2*dis) aRz=aR[2]/(2*dis) if np.isscalar(d): d = d * np.ones(N) if space=='momentum': n_k=len(k_vec) #Obtain the hopping and on-site energies: t=cons.hbar**2/(2*m_eff*cons.m_e*(dis*1e-9)**2)/cons.e*1e3 e = 2 * t - mu ##Build the Hamiltonian: if sparse=='no': H = np.zeros((int(4 * N), int(4 * N)),dtype=complex) elif sparse=='yes': H=scipy.sparse.dok_matrix((int(4*N),int(4*N)),dtype=complex) t, aRy, Bz = np.repeat(t,2), np.repeat(aRy,2), np.repeat(Bz,2) Bz[1::2], aRy[1::2] = -Bz[::2], -aRy[::2] for i in range(2): H[diagonal(2*N*(i+1),init=2*N*i,k=1,step=2)], H[diagonal(2*N*(i+1),init=2*N*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(2*N*(i+1),init=2*N*i)] = (-1)**i*(Bz+np.repeat(e,2)) H[diagonal(2*N*(i+1),init=2*N*i,k=-2)] = -1*(-1)**i*t[2::]+1j*aRy[2::] H[diagonal(2*N*(i+1),init=2*N*i,k=2)] = -1*(-1)**i*t[2::]-1j*aRy[2::] H[diagonal(2*N*(i+1),k=1,step=2,init=1+2*N*i)] += -1*(-1)**i*aRz[1::] H[diagonal(2*N*(i+1),k=-1,step=2,init=1+2*N*i)] += -1*(-1)**i*aRz[1::] H[diagonal(2*N*(i+1),init=2*N*i,k=3,step=2)] += (-1)**i*aRz[1::] H[diagonal(2*N*(i+1),init=2*N*i,k=-3,step=2)] += (-1)**i*aRz[1::] H[diagonal(4*N,k=2*N+1,step=2)], H[diagonal(4*N,k=-2*N-1,step=2)] = -np.conj(d), -d H[diagonal(4*N,k=2*N-1,step=2,init=1)], H[diagonal(4*N,k=-2*N+1,step=2,init=1)] = np.conj(d), d #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(4 * N), int(4 * N), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i]=H H_k[2 * (N - 1):2 * (N - 1) + 2, 0: 2,i] += np.array([[-t[2]-1j*aRy[2], aRz[1]], [-aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) H_k[2 * (N - 1)+2*N:2 * (N - 1) + 2+2*N, 2*N: 2+2*N,i] += -np.array([[-t[2]+1j*aRy[2], aRz[1]], [-aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) H_k[0: 2, 2 * (N - 1):2 * (N - 1) + 2,i] += np.array([[-t[2]+1j*aRy[2], -aRz[1]], [aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) H_k[2*N: 2+2*N, 2 * (N - 1)+2*N:2 * (N - 1) + 2+2*N,i] += -np.array([[-t[2]-1j*aRy[2], -aRz[1]], [aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) return (H_k) elif sparse=='yes': return(H) else: return (H) #%% def LO_1D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 1D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 1D Lutchy-Oreg chain without superconductivity. Parameters ---------- N: int or arr Number of sites. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is an array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is an array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones(N) if np.isscalar(mu): mu = mu * np.ones(N) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRy=np.zeros(N) aRz=aR*np.ones(N)/(2*dis) elif np.ndim(aR)==1: if len(aR)==3: aRy=aR[1]*np.ones(N)/(2*dis) aRz=aR[2]*np.ones(N)/(2*dis) else: aRy=np.zeros(N) aRz=aR/(2*dis) else: aRy=aR[1]/(2*dis) aRz=aR[2]/(2*dis) if space=='momentum': n_k=len(k_vec) #Obtain the hopping and the on-site energies: t=cons.hbar**2/(2*m_eff*cons.m_e*(dis*1e-9)**2)/cons.e*1e3 e = 2 * t - mu ##Build the Hamiltonian: if sparse=='no': H = np.zeros((int(2 * N), int(2 * N)),dtype=complex) elif sparse=='yes': H=scipy.sparse.dok_matrix((int(2*N),int(2*N)),dtype=complex) Bz,Bx,By=np.repeat(Bz,2),np.repeat(Bx,2), 1j*np.repeat(By,2) Bx[1::2], By[1::2], Bz[1::2] = 0, 0, -Bz[::2] H[diagonal(2*N,k=1)], H[diagonal(2*N,k=-1)] = Bx[:-1]-By[:-1], Bx[:-1]+By[:-1] H[diagonal(2*N)]=Bz+np.repeat(e,2) t=-np.repeat(t,2) aRy=np.repeat(aRy,2) aRy[1::2]= -aRy[::2] H[diagonal(2*N,k=-2)], H[diagonal(2*N,k=2)] = t[2::]+1j*aRy[2::], t[2::]-1j*aRy[2::] H[diagonal(2*N,k=1,step=2,init=1)] += -aRz[1::] H[diagonal(2*N,k=-1,step=2,init=1)] += -aRz[1::] H[diagonal(2*N,k=3,step=2)] += aRz[1::] H[diagonal(2*N,k=-3,step=2)] += aRz[1::] #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(2 * N), int(2 * N), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i]=H H_k[2 * (N - 1):2 * (N - 1) + 2, 0: 2,i] += np.array([[-t[2]-1j*aRy[2], aRz[1]], [-aRz[1], -t[2]+1j*aRy[2]]])*np.exp(-1j*k_vec[i]*N) H_k[0: 2, 2 * (N - 1):2 * (N - 1) + 2,i] += np.array([[-t[2]+1j*aRy[2], -aRz[1]], [aRz[1], -t[2]-1j*aRy[2]]])*np.exp(1j*k_vec[i]*N) return (H_k) elif sparse=='yes': return (H) else: return (H) #%% def LO_2D_builder(N,dis,m_eff,mu,B,aR, d, space='position', k_vec=np.nan ,sparse='no'): """ 2D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 2D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 2D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 2D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 2D array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is a 2D array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Ny, Nz = N[0], N[1] if np.ndim(dis)==0: dis_y, dis_z = dis, dis else: dis_y, dis_z = dis[0], dis[1] m = 4 * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones(N) aRy=aR[1]*np.ones(N) aRz=aR[2]*np.ones(N) else: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] if np.isscalar(d): d = d * np.ones(N) #Obtain the eigenenergies: ty=cons.hbar**2/(2*(m_eff[1::,:]+m_eff[:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,1::]+m_eff[:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*ty[0,:].reshape(1,Nz),np.append(ty[1::,:]+ty[:-1,:],2*ty[-1,:].reshape(1,Nz),axis=0),axis=0) e += np.append(2*tz[:,0].reshape(Ny,1),np.append(tz[:,1::]+tz[:,:-1],2*tz[:,-1].reshape(Ny,1),axis=1),axis=1) #Build the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,d,Bx,By,Bz=e.flatten(),d.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[1::,:]+aRx[:-1,:])/(4*dis_y)).flatten(),2), ((aRz[1::,:]+aRz[:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,1::]+aRx[:,:-1])/(4*dis_z)).flatten(), ((aRy[:,1::]+aRy[:,:-1])/(4*dis_z)).flatten() aRx_ky[1::2] = -aRx_ky[::2] tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny,2*(Nz-1)),2),np.zeros(2*(Ny-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))) for i in range(2): H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1,step=2)], H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(int(m/2)*(i+1),init=int(m/2)*i)] = (-1)**(i)*(np.repeat(e,2) + Bz) H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Nz)] = -1*(-1)**(i)*ty+1j*aRx_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Nz)] = -1*(-1)**(i)*ty-1j*aRx_ky H[diagonal(int(m/2)*(i+1),k=2*Nz-1,step=2,init=1+int(m/2)*i)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),k=-2*Nz+1,step=2,init=1+int(m/2)*i)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Nz,step=2)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),k=1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),k=-1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=3,step=2)] += -1*(-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-3,step=2)] += -1*(-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(m,k=int(m/2)+1,step=2)], H[diagonal(m,k=-int(m/2)-1,step=2)] = -np.conj(d), -d H[diagonal(m,k=int(m/2)-1,step=2,init=1)], H[diagonal(m,k=-int(m/2)+1,step=2,init=1)] = np.conj(d), d return (H) #%% def LO_2D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 2D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 2D Lutchy-Oreg chain without superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 2D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 2D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 2D array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Ny, Nz = N[0], N[1] if np.ndim(dis)==0: dis_y, dis_z = dis, dis else: dis_y, dis_z = dis[0], dis[1] m = 2 * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones(N) aRy=aR[1]*np.ones(N) aRz=aR[2]*np.ones(N) else: aRx=np.zeros(N) aRy=np.zeros(N) aRz=aR*np.ones(N) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] #Obtain the eigenenergies: ty=cons.hbar**2/(2*(m_eff[1::,:]+m_eff[:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,1::]+m_eff[:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*ty[0,:].reshape(1,Nz),np.append(ty[1::,:]+ty[:-1,:],2*ty[-1,:].reshape(1,Nz),axis=0),axis=0) e += np.append(2*tz[:,0].reshape(Ny,1),np.append(tz[:,1::]+tz[:,:-1],2*tz[:,-1].reshape(Ny,1),axis=1),axis=1) #Build the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,Bx,By,Bz=e.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[1::,:]+aRx[:-1,:])/(4*dis_y)).flatten(),2), ((aRz[1::,:]+aRz[:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,1::]+aRx[:,:-1])/(4*dis_z)).flatten(), ((aRy[:,1::]+aRy[:,:-1])/(4*dis_z)).flatten() aRx_ky[1::2] = -aRx_ky[::2] H[diagonal(m,k=1,step=2)], H[diagonal(m,k=-1,step=2)] = Bx-1j*By, Bx+1j*By H[diagonal(m)] = np.repeat(e,2) + Bz H[diagonal(m,k=2*Nz)] = -ty+1j*aRx_ky H[diagonal(m,k=-2*Nz)] = -ty-1j*aRx_ky H[diagonal(m,k=2*Nz-1,step=2,init=1)] += -1j*aRz_ky H[diagonal(m,k=-2*Nz+1,step=2,init=1)] += 1j*aRz_ky H[diagonal(m,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(m,k=-1-2*Nz,step=2)] += 1j*aRz_ky tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny,2*(Nz-1)),2),np.zeros(2*(Ny-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny,(Nz-1)),np.zeros((Ny-1))) H[diagonal(m,k=2)] = -tz H[diagonal(m,k=-2)] = -tz H[diagonal(m,k=1,step=2,init=1)] += aRx_kz+1j*aRy_kz H[diagonal(m,k=-1,step=2,init=1)] += aRx_kz-1j*aRy_kz H[diagonal(m,k=3,step=2)] += -aRx_kz+1j*aRy_kz H[diagonal(m,k=-3,step=2)] += -aRx_kz-1j*aRy_kz return (H) #%% def LO_3D_builder(N,dis,m_eff,mu,B,aR,d, space='position', k_vec=np.nan ,sparse='yes'): """ 3D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 3D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 3D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 3D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 3D array with the on-site Rashba couplings in the direction i. d: float or arr Superconductor paring amplitud. -If d is a float, d is the Rashba coupling along the y-direction, with the same value in every site. -If d is a 3D array, each element of the array is the on-site superconducting paring amplitud space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Nx, Ny, Nz = N[0], N[1], N[2] if np.ndim(dis)==0: dis_x, dis_y, dis_z = dis, dis, dis else: dis_x, dis_y, dis_z = dis[0], dis[1], dis[2] m = 4 * Nx * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Nx,Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Nx,Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones((Nx,Ny,Nz)) aRy=aR[1]*np.ones((Nx,Ny,Nz)) aRz=aR[2]*np.ones((Nx,Ny,Nz)) else: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] if np.isscalar(d): d = d * np.ones((Nx,Ny,Nz)) if space=='momentum': n_k=len(k_vec) #Obtain the hoppings and the on-site energies: tx=cons.hbar**2/(2*(m_eff[1::,:,:]+m_eff[:-1,:,:])/2*cons.m_e*(dis_x*1e-9)**2)/cons.e*1e3 ty=cons.hbar**2/(2*(m_eff[:,1::,:]+m_eff[:,:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,:,1::]+m_eff[:,:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*tx[0,:,:].reshape(1,Ny,Nz),np.append(tx[1::,:,:]+tx[:-1,:,:],2*tx[-1,:,:].reshape(1,Ny,Nz),axis=0),axis=0) e += np.append(2*ty[:,0,:].reshape(Nx,1,Nz),np.append(ty[:,1::,:]+ty[:,:-1,:],2*ty[:,-1,:].reshape(Nx,1,Nz),axis=1),axis=1) e += np.append(2*tz[:,:,0].reshape(Nx,Ny,1),np.append(tz[:,:,1::]+tz[:,:,:-1],2*tz[:,:,-1].reshape(Nx,Ny,1),axis=2),axis=2) #Built the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,d,Bx,By,Bz=e.flatten(),d.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] tx, aRy_kx, aRz_kx = np.repeat(tx.flatten(),2), np.repeat(((aRy[1::,:,:]+aRy[:-1,:,:])/(4*dis_x)).flatten(),2), ((aRz[1::,:,:]+aRz[:-1,:,:])/(4*dis_x)).flatten() ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[:,1::,:]+aRx[:,:-1,:])/(4*dis_y)).flatten(),2), ((aRz[:,1::,:]+aRz[:,:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,:,1::]+aRx[:,:,:-1])/(4*dis_z)).flatten(), ((aRy[:,:,1::]+aRy[:,:,:-1])/(4*dis_z)).flatten() aRy_kx[1::2], aRx_ky[1::2] = -aRy_kx[::2], -aRx_ky[::2] ty, aRx_ky, aRz_ky = np.insert(ty,np.repeat(np.arange(2*(Nz*Ny-Nz),2*(Ny*Nz-Nz)*Nx,2*(Ny*Nz-Nz)),2*Nz),np.zeros(2*Nz*(Nx-1))), np.insert(aRx_ky,np.repeat(np.arange(2*(Nz*Ny-Nz),2*(Ny*Nz-Nz)*Nx,2*(Ny*Nz-Nz)),2*Nz),np.zeros(2*Nz*(Nx-1))),np.insert(aRz_ky,np.repeat(np.arange((Nz*Ny-Nz),(Ny*Nz-Nz)*Nx,(Ny*Nz-Nz)),Nz),np.zeros(Nz*(Nx-1))) tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny*Nx,2*(Nz-1)),2),np.zeros(2*Nx*(Ny-1)+2*(Nx-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny*Nx,(Nz-1)),np.zeros(Nx*(Ny-1)+(Nx-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny*Nx,(Nz-1)),np.zeros(Nx*(Ny-1)+(Nx-1))) for i in range(2): H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1,step=2)], H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1,step=2)] = (-1)**(i)*Bx-1j*By, (-1)**(i)*Bx+1j*By H[diagonal(int(m/2)*(i+1),init=int(m/2)*i)] = (-1)**(i)*np.repeat(e,2) + (-1)**(i)*Bz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Ny*Nz)] = -1*(-1)**(i)*tx-1j*aRy_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Ny*Nz)] = -1*(-1)**(i)*tx+1j*aRy_kx H[diagonal(int(m/2)*(i+1),k=2*Ny*Nz-1,step=2,init=1+int(m/2)*i)] += -1*(-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),k=-2*Ny*Nz+1,step=2,init=1+int(m/2)*i)] += -1*(-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Ny*Nz,step=2)] += (-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Ny*Nz,step=2)] += (-1)**(i)*aRz_kx H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2*Nz)] = -1*(-1)**(i)*ty+1j*aRx_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2*Nz)] = -1*(-1)**(i)*ty-1j*aRx_ky H[diagonal(int(m/2)*(i+1),k=2*Nz-1,step=2,init=1+int(m/2)*i)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),k=-2*Nz+1,step=2,init=1+int(m/2)*i)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-1-2*Nz,step=2)] += 1j*aRz_ky H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-2)] = -1*(-1)**(i)*tz H[diagonal(int(m/2)*(i+1),k=1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),k=-1,step=2,init=1+int(m/2)*i)] += (-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=3,step=2)] += -1*(-1)**(i)*aRx_kz+1j*aRy_kz H[diagonal(int(m/2)*(i+1),init=int(m/2)*i,k=-3,step=2)] += -1*(-1)**(i)*aRx_kz-1j*aRy_kz H[diagonal(m,k=int(m/2)+1,step=2)], H[diagonal(m,k=-int(m/2)-1,step=2)] = -np.conj(d), -d H[diagonal(m,k=int(m/2)-1,step=2,init=1)], H[diagonal(m,k=-int(m/2)+1,step=2,init=1)] = np.conj(d), d #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(m), int(m), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i] = H for j in range(2): H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=m-2*Ny*Nz),i] = (-1*(-1)**(j)*tx-1j*aRy_kx)*np.exp(-1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=-m+2*Ny*Nz),i] = (-1*(-1)**(j)*tx+1j*aRy_kx)*np.exp(1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),k=m-2*Ny*Nz-1,step=2,init=1+int(m/2)*j),i] += (-1)**(j)*(-aRz_kx)*np.exp(-1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),k=-m+2*Ny*Nz+1,step=2,init=1+int(m/2)*j),i] += (-1)**(j)*(-aRz_kx)*np.exp(1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=m+1-2*Ny*Nz,step=2),i] += (-1)**(j)*(aRz_kx)*np.exp(-1j*(-1)**(i)*k_vec[i]*Nx) H_k[diagonal(int(m/2)*(j+1),init=int(m/2)*j,k=-m-1+2*Ny*Nz,step=2),i] += (-1)**(j)*(aRz_kx)*np.exp(1j*(-1)**(i)*k_vec[i]*Nx) return (H_k) elif sparse=='yes': return(H) else: return (H) #%% def LO_3D_builder_NoSC(N,dis,m_eff,mu,B,aR, space='position', k_vec=np.nan ,sparse='no'): """ 3D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 3D Lutchy-Oreg chain with superconductivity. Parameters ---------- N: arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites. m_eff: int or arr Effective mass. If it is a 3D array, each element is the on-site effective mass. mu: float or arr Chemical potential. If it is a 3D array, each element is the on-site chemical potential B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is a 3D array with the on-site Rashba couplings in the direction i. space: {"position","momentum"} Space in which the Hamiltonian is built. "position" means real-space (r-space). In this case the boundary conditions are open. On the other hand, "momentum" means reciprocal space (k-space). In this case the built Hamiltonian corresponds to the Hamiltonian of the unit cell, with periodic boundary conditions along the x-direction. k_vec: arr If space=='momentum', k_vec is the (discretized) momentum vector, usually in the First Brillouin Zone. sparse: {"yes","no"} Sparsety of the built Hamiltonian. "yes" builds a dok_sparse matrix, while "no" builds a dense matrix. Returns ------- H: arr Hamiltonian matrix. """ #Obtain the dimensions: Nx, Ny, Nz = N[0], N[1], N[2] if np.ndim(dis)==0: dis_x, dis_y, dis_z = dis, dis, dis else: dis_x, dis_y, dis_z = dis[0], dis[1], dis[2] m = 2 * Nx * Ny * Nz #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff * np.ones((Nx,Ny,Nz)) if np.isscalar(mu): mu = mu * np.ones((Nx,Ny,Nz)) if np.isscalar(B): Bx=B By=0 Bz=0 Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) elif np.ndim(B)==1 and len(B)==3: Bx=B[0] By=B[1] Bz=B[2] Bx,By,Bz=Bx*np.ones(N),By*np.ones(N),Bz*np.ones(N) if np.ndim(aR)==0: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) elif np.ndim(aR)==1: if len(aR)==3: aRx=aR[0]*np.ones((Nx,Ny,Nz)) aRy=aR[1]*np.ones((Nx,Ny,Nz)) aRz=aR[2]*np.ones((Nx,Ny,Nz)) else: aRx=np.zeros((Nx,Ny,Nz)) aRy=np.zeros((Nx,Ny,Nz)) aRz=aR*np.ones((Nx,Ny,Nz)) else: aRx=aR[0] aRy=aR[1] aRz=aR[2] if space=='momentum': n_k=len(k_vec) #Obtain the hoppings and the on-site energies: tx=cons.hbar**2/(2*(m_eff[1::,:,:]+m_eff[:-1,:,:])/2*cons.m_e*(dis_x*1e-9)**2)/cons.e*1e3 ty=cons.hbar**2/(2*(m_eff[:,1::,:]+m_eff[:,:-1,:])/2*cons.m_e*(dis_y*1e-9)**2)/cons.e*1e3 tz=cons.hbar**2/(2*(m_eff[:,:,1::]+m_eff[:,:,:-1])/2*cons.m_e*(dis_z*1e-9)**2)/cons.e*1e3 e = - mu e += np.append(2*tx[0,:,:].reshape(1,Ny,Nz),np.append(tx[1::,:,:]+tx[:-1,:,:],2*tx[-1,:,:].reshape(1,Ny,Nz),axis=0),axis=0) e += np.append(2*ty[:,0,:].reshape(Nx,1,Nz),np.append(ty[:,1::,:]+ty[:,:-1,:],2*ty[:,-1,:].reshape(Nx,1,Nz),axis=1),axis=1) e += np.append(2*tz[:,:,0].reshape(Nx,Ny,1),np.append(tz[:,:,1::]+tz[:,:,:-1],2*tz[:,:,-1].reshape(Nx,Ny,1),axis=2),axis=2) #Built the Hamiltonian: if sparse=='no': H = np.zeros((int(m), int(m)),dtype=complex) elif sparse=='yes': H = scipy.sparse.dok_matrix((int(m),int(m)),dtype=complex) e,Bx,By,Bz=e.flatten(),Bx.flatten(),By.flatten(),Bz.flatten() Bz=np.repeat(Bz,2) Bz[1::2] = -Bz[::2] tx, aRy_kx, aRz_kx = np.repeat(tx.flatten(),2), np.repeat(((aRy[1::,:,:]+aRy[:-1,:,:])/(4*dis_x)).flatten(),2), ((aRz[1::,:,:]+aRz[:-1,:,:])/(4*dis_x)).flatten() ty, aRx_ky, aRz_ky = np.repeat(ty.flatten(),2), np.repeat(((aRx[:,1::,:]+aRx[:,:-1,:])/(4*dis_y)).flatten(),2), ((aRz[:,1::,:]+aRz[:,:-1,:])/(4*dis_y)).flatten() tz, aRx_kz, aRy_kz = np.repeat(tz.flatten(),2), ((aRx[:,:,1::]+aRx[:,:,:-1])/(4*dis_z)).flatten(), ((aRy[:,:,1::]+aRy[:,:,:-1])/(4*dis_z)).flatten() aRy_kx[1::2], aRx_ky[1::2] = -aRy_kx[::2], -aRx_ky[::2] H[diagonal(m,k=1,step=2)], H[diagonal(m,k=-1,step=2)] = Bx-1j*By, Bx+1j*By H[diagonal(m)] = np.repeat(e,2) + Bz H[diagonal(m,k=2*Ny*Nz)] = -tx-1j*aRy_kx H[diagonal(m,k=-2*Ny*Nz)] = -tx+1j*aRy_kx H[diagonal(m,k=2*Ny*Nz-1,step=2,init=1)] += -aRz_kx H[diagonal(m,k=-2*Ny*Nz+1,step=2,init=1)] += -aRz_kx H[diagonal(m,k=1+2*Ny*Nz,step=2)] += aRz_kx H[diagonal(m,k=-1-2*Ny*Nz,step=2)] += aRz_kx ty, aRx_ky, aRz_ky = np.insert(ty,np.repeat(np.arange(2*(Nz*Ny-Nz),2*(Ny*Nz-Nz)*Nx,2*(Ny*Nz-Nz)),2*Nz),np.zeros(2*Nz*(Nx-1))), np.insert(aRx_ky,np.repeat(np.arange(2*(Nz*Ny-Nz),2*(Ny*Nz-Nz)*Nx,2*(Ny*Nz-Nz)),2*Nz),np.zeros(2*Nz*(Nx-1))),np.insert(aRz_ky,np.repeat(np.arange((Nz*Ny-Nz),(Ny*Nz-Nz)*Nx,(Ny*Nz-Nz)),Nz),np.zeros(Nz*(Nx-1))) H[diagonal(m,k=2*Nz)] = -ty+1j*aRx_ky H[diagonal(m,k=-2*Nz)] = -ty-1j*aRx_ky H[diagonal(m,k=2*Nz-1,step=2,init=1)] += -1j*aRz_ky H[diagonal(m,k=-2*Nz+1,step=2,init=1)] += 1j*aRz_ky H[diagonal(m,k=1+2*Nz,step=2)] += -1j*aRz_ky H[diagonal(m,k=-1-2*Nz,step=2)] += 1j*aRz_ky tz, aRx_kz, aRy_kz=np.insert(tz,np.repeat(np.arange(2*(Nz-1),2*(Nz-1)*Ny*Nx,2*(Nz-1)),2),np.zeros(2*Nx*(Ny-1)+2*(Nx-1))), np.insert(aRx_kz,np.arange((Nz-1),(Nz-1)*Ny*Nx,(Nz-1)),np.zeros(Nx*(Ny-1)+(Nx-1))), np.insert(aRy_kz,np.arange((Nz-1),(Nz-1)*Ny*Nx,(Nz-1)),np.zeros(Nx*(Ny-1)+(Nx-1))) H[diagonal(m,k=2)] = -tz H[diagonal(m,k=-2)] = -tz H[diagonal(m,k=1,step=2,init=1)] += aRx_kz+1j*aRy_kz H[diagonal(m,k=-1,step=2,init=1)] += aRx_kz-1j*aRy_kz H[diagonal(m,k=3,step=2)] += -aRx_kz+1j*aRy_kz H[diagonal(m,k=-3,step=2)] += -aRx_kz-1j*aRy_kz #Build it in momentum space if required: if space=='momentum': if sparse=='no': H_k = np.zeros((int(m), int(m), int(n_k)),dtype=complex) for i in range(n_k): H_k[:,:,i] = H H_k[diagonal(m,k=m-2*Ny*Nz),i] = (-tx-1j*aRy_kx)*np.exp(-1j*k_vec[i]*Nx) H_k[diagonal(m,k=-m+2*Ny*Nz),i] = (-tx+1j*aRy_kx)*np.exp(1j*k_vec[i]*Nx) H_k[diagonal(m,k=m-2*Ny*Nz-1,step=2,init=1),i] += (-aRz_kx)*np.exp(-1j*k_vec[i]*Nx) H_k[diagonal(m,k=-m+2*Ny*Nz+1,step=2,init=1),i] += (-aRz_kx)*np.exp(1j*k_vec[i]*Nx) H_k[diagonal(m,k=m+1-2*Ny*Nz,step=2),i] += (aRz_kx)*np.exp(-1j*k_vec[i]*Nx) H_k[diagonal(m,k=-m-1+2*Ny*Nz,step=2),i] += (aRz_kx)*np.exp(1j*k_vec[i]*Nx) return (H_k) elif sparse=='yes': return(H) else: return (H) #%% def LO_3D_builder_MO(N,dis,m_eff, mu,B,aR,d=0, BdG='yes', Nxp=None): """ 3D Lutchy-Oreg Hamiltonian builder. It obtaines the Hamiltoninan for a 3D Lutchy-Oreg chain with the method of <NAME>. Parameters ---------- N: int or arr Number of sites in each direction. dis: int or arr Distance (in nm) between sites in each direction. m_eff: int or arr Effective mass. If it is a 3D array, each element is the effective mass on each site of the lattice. mu: float or arr Chemical potential. If it is a 3D array, each element is the chemical potential on each site of the lattice. B: float or arr Zeeman splitting. If it is an array, each element is the Zeeman splitting in each direction. aR: float or arr Rashba coupling. -If aR is a float, aR is the Rashba coupling along the z-direction, with the same value in every site. -If aR is a 1D array with length=3, each element of the array is the rashba coupling in each direction. -If aR is an array of arrays (3 x N), each element of aR[i] is an array (1D, 2D or 3D) with the on-site Rashba couplings in the direction i. d: float or arr On-site supercondcuting pairing amplitude. If it is float, the pairing is the same in every site, while if it is a 3D array, it is the on-site pairing. Nxp: int Number of points to compute the molecular orbitals of the H_2D. For the remaining (N[0]-Nxp) slices, it is considered that the molecular orbitals corresponding to the first (N[0]-Nxp)/2 slices are the same than for the slice N[Nxp]. Similarly, it is considered that for the last (N[0]-Nxp)/2 slices, the molecular orbitals are the same than that of N[N[0]-Nxp]. Returns ------- H: tuple of arr H[0]: A 1D array whose elements H[0][i] are 2D arrays describing the cross-section Hamiltonian at the position x[i] of the wire. H[1]: the 3D Hamiltonian which includes the orbital-coupling terms. H[2]: the 3D Hamiltonian which includes the SC-coupling terms """ #Obtain dimensions: Nx, Ny, Nz = N[0], N[1], N[2] if np.ndim(dis)==0: dis_x, dis_y, dis_z = dis, dis, dis else: dis_x, dis_y, dis_z = dis[0], dis[1], dis[2] if not(Nxp==None or Nxp==N[0]): N_dif=np.int((Nx-Nxp)/2) else: Nxp, N_dif = Nx, 0 m = int(2 * Nx * Ny * Nz) #Make sure that the onsite parameters are arrays: if np.isscalar(m_eff): m_eff = m_eff *
np.ones((Nx,Ny,Nz))
numpy.ones
# Author: <NAME> <<EMAIL>> # # License: BSD 3 clause import time import numpy as np import numba from sklearn.utils.validation import check_is_fitted import scipy.sparse @numba.njit(parallel=True) def fast_knn_indices(X, n_neighbors): """A fast computation of knn indices. Parameters ---------- X: array of shape (n_samples, n_features) The input data to compute the k-neighbor indices of. n_neighbors: int The number of nearest neighbors to compute for each sample in ``X``. Returns ------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset. """ knn_indices =
np.empty((X.shape[0], n_neighbors), dtype=np.int32)
numpy.empty
#!/usr/bin/env python #coding:utf-8 from __future__ import division from __future__ import print_function import numpy as np import math from PIL import Image import cv2 def resize_short(img, target_size): percent = float(target_size) / min(img.shape[0], img.shape[1]) resize_width = int(round(img.shape[1] * percent)) resize_height = int(round(img.shape[0] * percent)) img = cv2.resize(img, (resize_width, resize_height), interpolation=cv2.INTER_LINEAR) return img def crop_image(img, target_size, center=True): width, height = img.shape[1], img.shape[0] size = target_size if center: w_start = (width - size) // 2 h_start = (height - size) // 2 else: w_start =
np.random.randint(0, width - size + 1)
numpy.random.randint
from keras.datasets import mnist from keras.datasets import cifar10 from keras.utils import to_categorical import numpy as np def get_keras_cifar10(): print("# Dataset") print('## load data') (train_X, train_y), (test_X, test_y) = cifar10.load_data() print('## normalize data') train_X = ((train_X - 127).astype('float32') / 128) test_X = ((test_X - 127).astype('float32') / 128) print('## perform one-hot encoding on the classes') train_y = to_categorical(train_y, num_classes=10) test_y = to_categorical(test_y, num_classes=10) data_shape = (32, 32, 3) labels = [str(v) for v in range(10)] return train_X, train_y, test_X, test_y, data_shape, labels #---------------------------------------------------------------------- class KerasMNISTDataset: def __init__(self): self._expected_shape = (28, 28, 1) (train_X, train_y), (test_X, test_y) = mnist.load_data() self._images = (np.vstack([train_X, test_X]) - 127.0) / 128.0 self._codes = np.hstack([train_y, test_y]) self._set_of_labels = np.array([str(v) for v in range(10)]) self._onehots = to_categorical(self._codes, num_classes=10) self._labels = self.set_of_labels[self._codes] @property def expected_shape(self): return self._expected_shape @property def images(self): return self._images @property def labels(self): return self._labels @property def codes(self): return self._codes @property def onehots(self): return self._onehots @property def set_of_labels(self): return self._set_of_labels def get_label(self, onehot): if len(onehot) == len(self.set_of_labels): return self.set_of_labels[onehot.argmax()] else: return "onehot.error" def get(self, branch=0.20, random_state=42): np.random.seed(random_state) train_X = list() train_y = list() validation_X = list() validation_y = list() test_X = list() test_y = list() train_branch = 1.0 - branch validation_branch = train_branch**2 for image, onehot in zip(self.images, self.onehots): die = np.random.uniform() if die < validation_branch: train_X.append(image) train_y.append(onehot) elif die < train_branch: validation_X.append(image) validation_y.append(onehot) else: test_X.append(image) test_y.append(onehot) train_X = np.array(train_X) train_y = np.array(train_y) validation_X = np.array(validation_X) validation_y = np.array(validation_y) test_X = np.array(test_X) test_y = np.array(test_y) return train_X, train_y, validation_X, validation_y, test_X, test_y, self.expected_shape, self.set_of_labels class ReshapedKerasMNISTDataset: def __init__(self): keras_mnist_dataset = KerasMNISTDataset() original_shape = keras_mnist_dataset.images.shape expected_shape = (original_shape[1]*original_shape[2],) images = keras_mnist_dataset.images.reshape((original_shape[0], expected_shape[0])) self._expected_shape = expected_shape self._images = images self._codes = keras_mnist_dataset.codes self._set_of_labels = keras_mnist_dataset.set_of_labels self._onehots = keras_mnist_dataset.onehots self._labels = keras_mnist_dataset.labels @property def expected_shape(self): return self._expected_shape @property def images(self): return self._images @property def labels(self): return self._labels @property def codes(self): return self._codes @property def onehots(self): return self._onehots @property def set_of_labels(self): return self._set_of_labels def get_label(self, onehot): if len(onehot) == len(self.set_of_labels): return self.set_of_labels[onehot.argmax()] else: return "onehot.error" def get(self, branch=0.20, random_state=42): np.random.seed(random_state) train_X = list() train_y = list() validation_X = list() validation_y = list() test_X = list() test_y = list() train_branch = 1.0 - branch validation_branch = train_branch**2 for image, onehot in zip(self.images, self.onehots): die = np.random.uniform() if die < validation_branch: train_X.append(image) train_y.append(onehot) elif die < train_branch: validation_X.append(image) validation_y.append(onehot) else: test_X.append(image) test_y.append(onehot) train_X = np.array(train_X) train_y = np.array(train_y) validation_X = np.array(validation_X) validation_y = np.array(validation_y) test_X = np.array(test_X) test_y =
np.array(test_y)
numpy.array
# # # 0=================================0 # | Kernel Point Convolutions | # 0=================================0 # # # ---------------------------------------------------------------------------------------------------------------------- # # Class handling the visualization # # ---------------------------------------------------------------------------------------------------------------------- # # <NAME> - 11/06/2018 # # ---------------------------------------------------------------------------------------------------------------------- # # Imports and global variables # \**********************************/ # # Basic libs import torch import os os.environ.update(OMP_NUM_THREADS='1', OPENBLAS_NUM_THREADS='1', NUMEXPR_NUM_THREADS='1', MKL_NUM_THREADS='1',) import numpy as np from sklearn.neighbors import KDTree from os import makedirs, remove, rename, listdir from os.path import exists, join import time from mayavi import mlab import sys from models.blocks import KPConv # PLY reader from utils.ply import write_ply, read_ply # Configuration class from utils.config import Config, bcolors # ---------------------------------------------------------------------------------------------------------------------- # # Trainer Class # \*******************/ # class ModelVisualizer: # Initialization methods # ------------------------------------------------------------------------------------------------------------------ def __init__(self, net, config, chkp_path, on_gpu=True): """ Initialize training parameters and reload previous model for restore/finetune :param net: network object :param config: configuration object :param chkp_path: path to the checkpoint that needs to be loaded (None for new training) :param finetune: finetune from checkpoint (True) or restore training from checkpoint (False) :param on_gpu: Train on GPU or CPU """ ############ # Parameters ############ # Choose to train on CPU or GPU if on_gpu and torch.cuda.is_available(): self.device = torch.device("cuda:0") else: self.device = torch.device("cpu") net.to(self.device) ########################## # Load previous checkpoint ########################## checkpoint = torch.load(chkp_path) new_dict = {} for k, v in checkpoint['model_state_dict'].items(): if 'blocs' in k: k = k.replace('blocs', 'blocks') new_dict[k] = v net.load_state_dict(new_dict) self.epoch = checkpoint['epoch'] net.eval() print("\nModel state restored from {:s}.".format(chkp_path)) return # Main visualization methods # ------------------------------------------------------------------------------------------------------------------ def top_relu_activations(self, model, dataset, relu_idx=0, top_num=5): """ Test the model on test dataset to see which points activate the most each neurons in a relu layer :param model: model used at training :param dataset: dataset used at training :param relu_idx: which features are to be visualized :param top_num: how many top candidates are kept per features """ ##################################### # First choose the visualized feature ##################################### # List all relu ops all_ops = [op for op in tf.get_default_graph().get_operations() if op.name.startswith('KernelPointNetwork') and op.name.endswith('LeakyRelu')] # List all possible Relu indices print('\nPossible Relu indices:') for i, t in enumerate(all_ops): print(i, ': ', t.name) # Print the chosen one if relu_idx is not None: features_tensor = all_ops[relu_idx].outputs[0] else: relu_idx = int(input('Choose a Relu index: ')) features_tensor = all_ops[relu_idx].outputs[0] # Get parameters layer_idx = int(features_tensor.name.split('/')[1][6:]) if 'strided' in all_ops[relu_idx].name and not ('strided' in all_ops[relu_idx+1].name): layer_idx += 1 features_dim = int(features_tensor.shape[1]) radius = model.config.first_subsampling_dl * model.config.density_parameter * (2 ** layer_idx) print('You chose to compute the output of operation named:\n' + all_ops[relu_idx].name) print('\nIt contains {:d} features.'.format(int(features_tensor.shape[1]))) print('\n****************************************************************************') ####################### # Initialize containers ####################### # Initialize containers self.top_features = -np.ones((top_num, features_dim)) self.top_classes = -np.ones((top_num, features_dim), dtype=np.int32) self.saving = model.config.saving # Testing parameters num_votes = 3 # Create visu folder self.visu_path = None self.fmt_str = None if model.config.saving: self.visu_path = join('visu', 'visu_' + model.saving_path.split('/')[-1], 'top_activations', 'Relu{:02d}'.format(relu_idx)) self.fmt_str = 'f{:04d}_top{:02d}.ply' if not exists(self.visu_path): makedirs(self.visu_path) # ******************* # Network predictions # ******************* mean_dt = np.zeros(2) last_display = time.time() for v in range(num_votes): # Run model on all test examples # ****************************** # Initialise iterator with test data if model.config.dataset.startswith('S3DIS'): self.sess.run(dataset.val_init_op) else: self.sess.run(dataset.test_init_op) count = 0 while True: try: if model.config.dataset.startswith('ShapeNetPart'): if model.config.dataset.split('_')[1] == 'multi': label_op = model.inputs['super_labels'] else: label_op = model.inputs['point_labels'] elif model.config.dataset.startswith('S3DIS'): label_op = model.inputs['point_labels'] elif model.config.dataset.startswith('Scannet'): label_op = model.inputs['point_labels'] elif model.config.dataset.startswith('ModelNet40'): label_op = model.inputs['labels'] else: raise ValueError('Unsupported dataset') # Run one step of the model t = [time.time()] ops = (all_ops[-1].outputs[0], features_tensor, label_op, model.inputs['points'], model.inputs['pools'], model.inputs['in_batches']) _, stacked_features, labels, all_points, all_pools, in_batches = self.sess.run(ops, {model.dropout_prob: 1.0}) t += [time.time()] count += in_batches.shape[0] # Stack all batches max_ind = np.max(in_batches) stacked_batches = [] for b_i, b in enumerate(in_batches): stacked_batches += [b[b < max_ind - 0.5]*0+b_i] stacked_batches = np.hstack(stacked_batches) # Find batches at wanted layer for l in range(model.config.num_layers - 1): if l >= layer_idx: break stacked_batches = stacked_batches[all_pools[l][:, 0]] # Get each example and update top_activations for b_i, b in enumerate(in_batches): b = b[b < max_ind - 0.5] in_points = all_points[0][b] features = stacked_features[stacked_batches == b_i] points = all_points[layer_idx][stacked_batches == b_i] if model.config.dataset in ['ShapeNetPart_multi', 'ModelNet40_classif']: l = labels[b_i] else: l = np.argmax(np.bincount(labels[b])) self.update_top_activations(features, labels[b_i], points, in_points, radius) # Average timing t += [time.time()] mean_dt = 0.95 * mean_dt + 0.05 * (np.array(t[1:]) - np.array(t[:-1])) # Display if (t[-1] - last_display) > 1.0: last_display = t[-1] if model.config.dataset.startswith('S3DIS'): completed = count / (model.config.validation_size * model.config.batch_num) else: completed = count / dataset.num_test message = 'Vote {:d} : {:.1f}% (timings : {:4.2f} {:4.2f})' print(message.format(v, 100 * completed, 1000 * (mean_dt[0]), 1000 * (mean_dt[1]))) #class_names = np.array([dataset.label_to_names[i] for i in range(dataset.num_classes)]) #print(class_names[self.top_classes[:, :20]].T) except tf.errors.OutOfRangeError: break return relu_idx def update_top_activations(self, features, label, l_points, input_points, radius, max_computed=60): top_num = self.top_features.shape[0] # Compute top indice for each feature max_indices = np.argmax(features, axis=0) # get top_point neighborhoods for features_i, idx in enumerate(max_indices[:max_computed]): if features[idx, features_i] <= self.top_features[-1, features_i]: continue if label in self.top_classes[:, features_i]: ind0 = np.where(self.top_classes[:, features_i] == label)[0][0] if features[idx, features_i] <= self.top_features[ind0, features_i]: continue elif ind0 < top_num - 1: self.top_features[ind0:-1, features_i] = self.top_features[ind0+1:, features_i] self.top_classes[ind0:-1, features_i] = self.top_classes[ind0+1:, features_i] for next_i in range(ind0 + 1, top_num): old_f = join(self.visu_path, self.fmt_str.format(features_i, next_i + 1)) new_f = join(self.visu_path, self.fmt_str.format(features_i, next_i)) if exists(old_f): if exists(new_f): remove(new_f) rename(old_f, new_f) # Find indice where new top should be placed top_i = np.where(features[idx, features_i] > self.top_features[:, features_i])[0][0] # Update top features if top_i < top_num - 1: self.top_features[top_i + 1:, features_i] = self.top_features[top_i:-1, features_i] self.top_features[top_i, features_i] = features[idx, features_i] self.top_classes[top_i + 1:, features_i] = self.top_classes[top_i:-1, features_i] self.top_classes[top_i, features_i] = label # Find in which batch lays the point if self.saving: # Get inputs l_features = features[:, features_i] point = l_points[idx, :] dist = np.linalg.norm(input_points - point, axis=1) influence = (radius - dist) / radius # Project response on input cloud if l_points.shape[0] == input_points.shape[0]: responses = l_features else: tree = KDTree(l_points, leaf_size=50) nn_k = min(l_points.shape[0], 10) interp_dists, interp_inds = tree.query(input_points, nn_k, return_distance=True) tukeys = np.square(1 - np.square(interp_dists / radius)) tukeys[interp_dists > radius] = 0 responses = np.sum(l_features[interp_inds] * tukeys, axis=1) # Handle last examples for next_i in range(top_num - 1, top_i, -1): old_f = join(self.visu_path, self.fmt_str.format(features_i, next_i)) new_f = join(self.visu_path, self.fmt_str.format(features_i, next_i + 1)) if exists(old_f): if exists(new_f): remove(new_f) rename(old_f, new_f) # Save filename = join(self.visu_path, self.fmt_str.format(features_i, top_i + 1)) write_ply(filename, [input_points, influence, responses], ['x', 'y', 'z', 'influence', 'responses']) def show_deformable_kernels_old(self, model, dataset, deform_idx=0): ########################################## # First choose the visualized deformations ########################################## # List all deformation ops all_ops = [op for op in tf.get_default_graph().get_operations() if op.name.startswith('KernelPointNetwork') and op.name.endswith('deformed_KP')] print('\nPossible deformed indices:') for i, t in enumerate(all_ops): print(i, ': ', t.name) # Chosen deformations deformed_KP_tensor = all_ops[deform_idx].outputs[0] # Layer index layer_idx = int(all_ops[deform_idx].name.split('/')[1].split('_')[-1]) # Original kernel point positions KP_vars = [v for v in tf.global_variables() if 'kernel_points' in v.name] tmp = np.array(all_ops[deform_idx].name.split('/')) test = [] for v in KP_vars: cmp = np.array(v.name.split('/')) l = min(len(cmp), len(tmp)) cmp = cmp[:l] tmp = tmp[:l] test += [np.sum(cmp == tmp)] chosen_KP = np.argmax(test) print('You chose to visualize the output of operation named: ' + all_ops[deform_idx].name) print('\n****************************************************************************') # Run model on all test examples # ****************************** # Initialise iterator with test data if model.config.dataset.startswith('S3DIS'): self.sess.run(dataset.val_init_op) else: self.sess.run(dataset.test_init_op) count = 0 while True: try: # Run one step of the model t = [time.time()] ops = (deformed_KP_tensor, model.inputs['points'], model.inputs['features'], model.inputs['pools'], model.inputs['in_batches'], KP_vars) stacked_deformed_KP, \ all_points, \ all_colors, \ all_pools, \ in_batches, \ original_KPs = self.sess.run(ops, {model.dropout_prob: 1.0}) t += [time.time()] count += in_batches.shape[0] # Stack all batches max_ind = np.max(in_batches) stacked_batches = [] for b_i, b in enumerate(in_batches): stacked_batches += [b[b < max_ind - 0.5] * 0 + b_i] stacked_batches = np.hstack(stacked_batches) # Find batches at wanted layer for l in range(model.config.num_layers - 1): if l >= layer_idx: break stacked_batches = stacked_batches[all_pools[l][:, 0]] # Get each example and update top_activations in_points = [] in_colors = [] deformed_KP = [] points = [] lookuptrees = [] for b_i, b in enumerate(in_batches): b = b[b < max_ind - 0.5] in_points += [all_points[0][b]] deformed_KP += [stacked_deformed_KP[stacked_batches == b_i]] points += [all_points[layer_idx][stacked_batches == b_i]] lookuptrees += [KDTree(points[-1])] if all_colors.shape[1] == 4: in_colors += [all_colors[b, 1:]] else: in_colors += [None] print('New batch size : ', len(in_batches)) ########################### # Interactive visualization ########################### # Create figure for features fig1 = mlab.figure('Features', bgcolor=(1.0, 1.0, 1.0), size=(1280, 920)) fig1.scene.parallel_projection = False # Indices global obj_i, point_i, plots, offsets, p_scale, show_in_p, aim_point p_scale = 0.03 obj_i = 0 point_i = 0 plots = {} offsets = False show_in_p = 2 aim_point = np.zeros((1, 3)) def picker_callback(picker): """ Picker callback: this get called when on pick events. """ global plots, aim_point if 'in_points' in plots: if plots['in_points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]: point_rez = plots['in_points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0] new_point_i = int(np.floor(picker.point_id / point_rez)) if new_point_i < len(plots['in_points'].mlab_source.points): # Get closest point in the layer we are interested in aim_point = plots['in_points'].mlab_source.points[new_point_i:new_point_i + 1] update_scene() if 'points' in plots: if plots['points'].actor.actor._vtk_obj in [o._vtk_obj for o in picker.actors]: point_rez = plots['points'].glyph.glyph_source.glyph_source.output.points.to_array().shape[0] new_point_i = int(np.floor(picker.point_id / point_rez)) if new_point_i < len(plots['points'].mlab_source.points): # Get closest point in the layer we are interested in aim_point = plots['points'].mlab_source.points[new_point_i:new_point_i + 1] update_scene() def update_scene(): global plots, offsets, p_scale, show_in_p, aim_point, point_i # Get the current view v = mlab.view() roll = mlab.roll() # clear figure for key in plots.keys(): plots[key].remove() plots = {} # Plot new data feature p = points[obj_i] # Rescale points for visu p = (p * 1.5 / model.config.in_radius) # Show point cloud if show_in_p <= 1: plots['points'] = mlab.points3d(p[:, 0], p[:, 1], p[:, 2], resolution=8, scale_factor=p_scale, scale_mode='none', color=(0, 1, 1), figure=fig1) if show_in_p >= 1: # Get points and colors in_p = in_points[obj_i] in_p = (in_p * 1.5 / model.config.in_radius) # Color point cloud if possible in_c = in_colors[obj_i] if in_c is not None: # Primitives scalars = np.arange(len(in_p)) # Key point: set an integer for each point # Define color table (including alpha), which must be uint8 and [0,255] colors = np.hstack((in_c, np.ones_like(in_c[:, :1]))) colors = (colors * 255).astype(np.uint8) plots['in_points'] = mlab.points3d(in_p[:, 0], in_p[:, 1], in_p[:, 2], scalars, resolution=8, scale_factor=p_scale*0.8, scale_mode='none', figure=fig1) plots['in_points'].module_manager.scalar_lut_manager.lut.table = colors else: plots['in_points'] = mlab.points3d(in_p[:, 0], in_p[:, 1], in_p[:, 2], resolution=8, scale_factor=p_scale*0.8, scale_mode='none', figure=fig1) # Get KP locations rescaled_aim_point = aim_point * model.config.in_radius / 1.5 point_i = lookuptrees[obj_i].query(rescaled_aim_point, return_distance=False)[0][0] if offsets: KP = points[obj_i][point_i] + deformed_KP[obj_i][point_i] scals = np.ones_like(KP[:, 0]) else: KP = points[obj_i][point_i] + original_KPs[chosen_KP] scals = np.zeros_like(KP[:, 0]) KP = (KP * 1.5 / model.config.in_radius) plots['KP'] = mlab.points3d(KP[:, 0], KP[:, 1], KP[:, 2], scals, colormap='autumn', resolution=8, scale_factor=1.2*p_scale, scale_mode='none', vmin=0, vmax=1, figure=fig1) if True: plots['center'] = mlab.points3d(p[point_i, 0], p[point_i, 1], p[point_i, 2], scale_factor=1.1*p_scale, scale_mode='none', color=(0, 1, 0), figure=fig1) # New title plots['title'] = mlab.title(str(obj_i), color=(0, 0, 0), size=0.3, height=0.01) text = '<--- (press g for previous)' + 50 * ' ' + '(press h for next) --->' plots['text'] = mlab.text(0.01, 0.01, text, color=(0, 0, 0), width=0.98) plots['orient'] = mlab.orientation_axes() # Set the saved view mlab.view(*v) mlab.roll(roll) return def animate_kernel(): global plots, offsets, p_scale, show_in_p # Get KP locations KP_def = points[obj_i][point_i] + deformed_KP[obj_i][point_i] KP_def = (KP_def * 1.5 / model.config.in_radius) KP_def_color = (1, 0, 0) KP_rigid = points[obj_i][point_i] + original_KPs[chosen_KP] KP_rigid = (KP_rigid * 1.5 / model.config.in_radius) KP_rigid_color = (1, 0.7, 0) if offsets: t_list =
np.linspace(0, 1, 150, dtype=np.float32)
numpy.linspace
import numpy as np from gym import spaces from gym import Env class PointEnv(Env): """ point mass on a 2-D plane goals are sampled randomly from a square """ def __init__(self, num_tasks=1, checkerboard_size=0.1): self.checkerboard_size = checkerboard_size self.reset_task() self.reset() self.observation_space = spaces.Box(low=-np.inf, high=np.inf, shape=(2,), dtype=np.float32) self.action_space = spaces.Box(low=-0.1, high=0.1, shape=(2,), dtype=np.float32) self._state = None def reset_task(self, is_evaluation=False): ''' sample a new task randomly Problem 3: make training and evaluation goals disjoint sets if `is_evaluation` is true, sample from the evaluation set, otherwise sample from the training set ''' # ==================================================================== # # ----------PROBLEM 3---------- # ==================================================================== # STATIC_SIZE = 10 # final normalized board range: -10..10 x_cell = np.random.uniform(0, 1) y_cell = np.random.uniform(0, 1) if self.checkerboard_size == 0: # normalize to -10..10 self._goal = np.array([x_cell, y_cell]) * STATIC_SIZE * 2 - STATIC_SIZE else: # NB, size of the checkerboard should be quadratic and even to stay fair WIDTH = HEIGHT = int(1. / self.checkerboard_size) BLACK = int(np.ceil(WIDTH * HEIGHT / 2.)) # evaluation WHITE = int(np.floor(WIDTH * HEIGHT / 2.)) # train ROW_WIDTH = int(np.ceil(WIDTH / 2)) if is_evaluation: pos = np.random.randint(0, BLACK) y_pos = 2 * int(pos / WIDTH) + int((pos % WIDTH) / ROW_WIDTH) x_pos = 2 * ((pos % WIDTH) % ROW_WIDTH) + (y_pos % 2) else: pos = np.random.randint(0, WHITE) y_pos = 2 * int(pos / WIDTH) + int((pos % WIDTH) / ROW_WIDTH) x_pos = 2 * ((pos % WIDTH) % ROW_WIDTH) + (1 - (y_pos % 2)) y = y_cell + y_pos x = x_cell + x_pos # normalize to -10..10 self._goal = np.array([x, y]) * STATIC_SIZE * 2 / WIDTH - STATIC_SIZE def reset(self): self._state =
np.array([0, 0], dtype=np.float32)
numpy.array
import numpy as np import openvino.runtime.opset8 as ov import pytest from openvino.runtime.utils.tensor_iterator_types import ( GraphBody, TensorIteratorInvariantInputDesc, TensorIteratorBodyOutputDesc, ) from tests.runtime import get_runtime def create_simple_if_with_two_outputs(condition_val): condition = ov.constant(condition_val, dtype=np.bool) # then_body X_t = ov.parameter([], np.float32, "X") Y_t = ov.parameter([], np.float32, "Y") Z_t = ov.parameter([], np.float32, "Z") add_t = ov.add(X_t, Y_t) mul_t = ov.multiply(Y_t, Z_t) then_body_res_1 = ov.result(add_t) then_body_res_2 = ov.result(mul_t) then_body = GraphBody([X_t, Y_t, Z_t], [then_body_res_1, then_body_res_2]) then_body_inputs = [TensorIteratorInvariantInputDesc(1, 0), TensorIteratorInvariantInputDesc(2, 1), TensorIteratorInvariantInputDesc(3, 2)] then_body_outputs = [TensorIteratorBodyOutputDesc(0, 0), TensorIteratorBodyOutputDesc(1, 1)] # else_body X_e = ov.parameter([], np.float32, "X") Z_e = ov.parameter([], np.float32, "Z") W_e = ov.parameter([], np.float32, "W") add_e = ov.add(X_e, W_e) pow_e = ov.power(W_e, Z_e) else_body_res_1 = ov.result(add_e) else_body_res_2 = ov.result(pow_e) else_body = GraphBody([X_e, Z_e, W_e], [else_body_res_1, else_body_res_2]) else_body_inputs = [TensorIteratorInvariantInputDesc(1, 0), TensorIteratorInvariantInputDesc(3, 1), TensorIteratorInvariantInputDesc(4, 2)] else_body_outputs = [TensorIteratorBodyOutputDesc(0, 0), TensorIteratorBodyOutputDesc(1, 1)] X = ov.constant(15.0, dtype=np.float32) Y = ov.constant(-5.0, dtype=np.float32) Z = ov.constant(4.0, dtype=np.float32) W = ov.constant(2.0, dtype=np.float32) if_node = ov.if_op(condition, [X, Y, Z, W], (then_body, else_body), (then_body_inputs, else_body_inputs), (then_body_outputs, else_body_outputs)) return if_node def create_diff_if_with_two_outputs(condition_val): condition = ov.constant(condition_val, dtype=np.bool) # then_body X_t = ov.parameter([2], np.float32, "X") Y_t = ov.parameter([2], np.float32, "Y") mmul_t = ov.matmul(X_t, Y_t, False, False) mul_t = ov.multiply(Y_t, X_t) then_body_res_1 = ov.result(mmul_t) then_body_res_2 = ov.result(mul_t) then_body = GraphBody([X_t, Y_t], [then_body_res_1, then_body_res_2]) then_body_inputs = [TensorIteratorInvariantInputDesc(1, 0), TensorIteratorInvariantInputDesc(2, 1)] then_body_outputs = [TensorIteratorBodyOutputDesc(0, 0), TensorIteratorBodyOutputDesc(1, 1)] # else_body X_e = ov.parameter([2], np.float32, "X") Z_e = ov.parameter([], np.float32, "Z") mul_e = ov.multiply(X_e, Z_e) else_body_res_1 = ov.result(Z_e) else_body_res_2 = ov.result(mul_e) else_body = GraphBody([X_e, Z_e], [else_body_res_1, else_body_res_2]) else_body_inputs = [TensorIteratorInvariantInputDesc(1, 0), TensorIteratorInvariantInputDesc(3, 1)] else_body_outputs = [TensorIteratorBodyOutputDesc(0, 0), TensorIteratorBodyOutputDesc(1, 1)] X = ov.constant([3, 4], dtype=np.float32) Y = ov.constant([2, 1], dtype=np.float32) Z = ov.constant(4.0, dtype=np.float32) if_node = ov.if_op(condition, [X, Y, Z], (then_body, else_body), (then_body_inputs, else_body_inputs), (then_body_outputs, else_body_outputs)) return if_node def simple_if(condition_val): condition = ov.constant(condition_val, dtype=np.bool) # then_body X_t = ov.parameter([2], np.float32, "X") Y_t = ov.parameter([2], np.float32, "Y") then_mul = ov.multiply(X_t, Y_t) then_body_res_1 = ov.result(then_mul) then_body = GraphBody([X_t, Y_t], [then_body_res_1]) then_body_inputs = [TensorIteratorInvariantInputDesc(1, 0), TensorIteratorInvariantInputDesc(2, 1)] then_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)] # else_body X_e = ov.parameter([2], np.float32, "X") Y_e = ov.parameter([2], np.float32, "Y") add_e = ov.add(X_e, Y_e) else_body_res_1 = ov.result(add_e) else_body = GraphBody([X_e, Y_e], [else_body_res_1]) else_body_inputs = [TensorIteratorInvariantInputDesc(1, 0), TensorIteratorInvariantInputDesc(2, 1)] else_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)] X = ov.constant([3, 4], dtype=np.float32) Y = ov.constant([2, 1], dtype=np.float32) if_node = ov.if_op(condition, [X, Y], (then_body, else_body), (then_body_inputs, else_body_inputs), (then_body_outputs, else_body_outputs)) relu = ov.relu(if_node) return relu def simple_if_without_parameters(condition_val): condition = ov.constant(condition_val, dtype=np.bool) # then_body then_constant = ov.constant(0.7, dtype=np.float) then_body_res_1 = ov.result(then_constant) then_body = GraphBody([], [then_body_res_1]) then_body_inputs = [] then_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)] # else_body else_const = ov.constant(9.0, dtype=np.float) else_body_res_1 = ov.result(else_const) else_body = GraphBody([], [else_body_res_1]) else_body_inputs = [] else_body_outputs = [TensorIteratorBodyOutputDesc(0, 0)] if_node = ov.if_op(condition, [], (then_body, else_body), (then_body_inputs, else_body_inputs), (then_body_outputs, else_body_outputs)) relu = ov.relu(if_node) return relu def check_results(results, expected_results): assert len(results) == len(expected_results) for id_result, res in enumerate(results): assert np.allclose(res, expected_results[id_result]) def check_if(if_model, cond_val, exp_results): last_node = if_model(cond_val) runtime = get_runtime() computation = runtime.computation(last_node) results = computation() check_results(results, exp_results) # After deleting evalute method for if, constant folding stopped working. # As result bug with id 67255 began to appear @pytest.mark.xfail(reason="bug 67255") def test_if_with_two_outputs(): check_if(create_simple_if_with_two_outputs, True, [np.array([10], dtype=np.float32), np.array([-20], dtype=np.float32)]) check_if(create_simple_if_with_two_outputs, False, [np.array([17], dtype=np.float32), np.array([16], dtype=np.float32)]) @pytest.mark.xfail(reason="bug 67255") def test_diff_if_with_two_outputs(): check_if(create_diff_if_with_two_outputs, True, [np.array([10], dtype=np.float32), np.array([6, 4], dtype=np.float32)]) check_if(create_diff_if_with_two_outputs, False, [np.array([4], dtype=np.float32), np.array([12, 16], dtype=np.float32)]) def test_simple_if(): check_if(simple_if, True, [np.array([6, 4], dtype=np.float32)]) check_if(simple_if, False, [
np.array([5, 5], dtype=np.float32)
numpy.array
import numpy as np from .. import BaseModel, register_model from ._graphwave import graphwave_alg from .prone import ProNE @register_model("graphwave") class GraphWave(BaseModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument("--scale", type=float, default=100) # fmt: on @classmethod def build_model_from_args(cls, args): return cls(args.hidden_size, args.scale, args) def __init__(self, dimension, scale, args): super(GraphWave, self).__init__() self.dimension = dimension self.scale = scale self.whitening = args.task == "unsupervised_node_classification" def train(self, G): chi, heat_print, taus = graphwave_alg( G, np.linspace(0, self.scale, self.dimension // 4) ) # if self.whitening: # chi = (chi - chi.mean(axis=0)) / (chi.std(axis=0) + 1e-8) return chi @register_model("graphwave_cat_prone") class GraphwaveCatProne(BaseModel): @staticmethod def add_args(parser): """Add model-specific arguments to the parser.""" # fmt: off parser.add_argument("--scale", type=float, default=1e5) ProNE.add_args(parser) # fmt: on @classmethod def build_model_from_args(cls, args): return cls(args.hidden_size, args.scale, args) def __init__(self, dimension, scale, args): super(GraphwaveCatProne, self).__init__() self.dimension = dimension // 2 self.scale = scale self.whitening = args.task == "unsupervised_node_classification" # HACK args.hidden_size //= 2 self.prone = ProNE.build_model_from_args(args) args.hidden_size *= 2 def train(self, G): chi, heat_print, taus = graphwave_alg( G, np.linspace(0, self.scale, self.dimension // 4) ) # if self.whitening: # chi = (chi - chi.mean(axis=0)) / (chi.std(axis=0) + 1e-8) prone_embeddings = self.prone.train(G) return
np.concatenate([chi, prone_embeddings], axis=1)
numpy.concatenate
"""Probability distributions and auxiliary functions to deal with them.""" import numpy as np import scipy.stats from scipy.interpolate import interp1d, RegularGridInterpolator import scipy.signal import math from flavio.math.functions import normal_logpdf, normal_pdf from flavio.statistics.functions import confidence_level import warnings import inspect from collections import OrderedDict import yaml import re def _camel_to_underscore(s): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', s) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() def string_to_class(string): """Get a ProbabilityDistribution subclass from a string. This can either be the class name itself or a string in underscore format as returned from `class_to_string`.""" try: return eval(string) except NameError: pass for c in ProbabilityDistribution.get_subclasses(): if c.class_to_string() == string: return c raise NameError("Distribution " + string + " not found.") class ProbabilityDistribution(object): """Common base class for all probability distributions""" def __init__(self, central_value, support): self.central_value = central_value self.support = support @classmethod def get_subclasses(cls): """Return all subclasses (including subclasses of subclasses).""" for subclass in cls.__subclasses__(): yield from subclass.get_subclasses() yield subclass def get_central(self): return self.central_value @property def error_left(self): """Return the lower error""" return self.get_error_left() @property def error_right(self): """Return the upper error""" return self.get_error_right() @classmethod def class_to_string(cls): """Get a string name for a given ProbabilityDistribution subclass. This converts camel case to underscore and removes the word 'distribution'. Example: class_to_string(AsymmetricNormalDistribution) returns 'asymmetric_normal'. """ name = _camel_to_underscore(cls.__name__) return name.replace('_distribution', '') def get_dict(self, distribution=False, iterate=False, arraytolist=False): """Get an ordered dictionary with arguments and values needed to the instantiate the distribution. Optional arguments (default to False): - `distribution`: add a 'distribution' key to the dictionary with the value being the string representation of the distribution's name (e.g. 'asymmetric_normal'). - `iterate`: If ProbabilityDistribution instances are among the arguments (e.g. for KernelDensityEstimate), return the instance's get_dict instead of the instance as value. - `arraytolist`: convert numpy arrays to lists """ args = inspect.signature(self.__class__).parameters.keys() d = self.__dict__ od = OrderedDict() if distribution: od['distribution'] = self.class_to_string() od.update(OrderedDict((a, d[a]) for a in args)) if iterate: for k in od: if isinstance(od[k], ProbabilityDistribution): od[k] = od[k].get_dict(distribution=True) if arraytolist: for k in od: if isinstance(od[k], np.ndarray): od[k] = od[k].tolist() if isinstance(od[k], list): for i, x in enumerate(od[k]): if isinstance(x, np.ndarray): od[k][i] = od[k][i].tolist() for k in od: if isinstance(od[k], np.int): od[k] = int(od[k]) elif isinstance(od[k], np.float): od[k] = float(od[k]) if isinstance(od[k], list): for i, x in enumerate(od[k]): if isinstance(x, np.float): od[k][i] = float(od[k][i]) elif isinstance(x, np.int): od[k][i] = int(od[k][i]) return od def get_yaml(self, *args, **kwargs): """Get a YAML string representing the dictionary returned by the get_dict method. Arguments will be passed to `yaml.dump`.""" od = self.get_dict(distribution=True, iterate=True, arraytolist=True) return yaml.dump(od, *args, **kwargs) def delta_logpdf(self, x, **kwargs): exclude = kwargs.get('exclude', None) if exclude is not None: d = len(self.central_value) cv = [self.central_value[i] for i in range(d) if i not in exclude] else: cv = self.central_value return self.logpdf(x, **kwargs) - self.logpdf(cv, **kwargs) class UniformDistribution(ProbabilityDistribution): """Distribution with constant PDF in a range and zero otherwise.""" def __init__(self, central_value, half_range): """Initialize the distribution. Parameters: - central_value: arithmetic mean of the upper and lower range boundaries - half_range: half the difference of upper and lower range boundaries Example: central_value = 5 and half_range = 3 leads to the range [2, 8]. """ self.half_range = half_range self.range = (central_value - half_range, central_value + half_range) super().__init__(central_value, support=self.range) def __repr__(self): return 'flavio.statistics.probability.UniformDistribution' + \ '({}, {})'.format(self.central_value, self.half_range) def get_random(self, size=None): return np.random.uniform(self.range[0], self.range[1], size) def _logpdf(self, x): if x < self.range[0] or x >= self.range[1]: return -np.inf else: return -math.log(2 * self.half_range) def logpdf(self, x): _lpvect = np.vectorize(self._logpdf) return _lpvect(x) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" return confidence_level(nsigma) * self.half_range def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" return confidence_level(nsigma) * self.half_range class DeltaDistribution(ProbabilityDistribution): """Delta Distrubution that is non-vanishing only at a single point.""" def __init__(self, central_value): """Initialize the distribution. Parameters: - central_value: point where the PDF does not vanish. """ super().__init__(central_value, support=(central_value, central_value)) def __repr__(self): return 'flavio.statistics.probability.DeltaDistribution' + \ '({})'.format(self.central_value) def get_random(self, size=None): if size is None: return self.central_value else: return self.central_value * np.ones(size) def logpdf(self, x): if np.ndim(x) == 0: if x == self.central_value: return 0. else: return -np.inf y = -np.inf*np.ones(np.asarray(x).shape) y[np.asarray(x) == self.central_value] = 0 return y def get_error_left(self, *args, **kwargs): return 0 def get_error_right(self, *args, **kwargs): return 0 class NormalDistribution(ProbabilityDistribution): """Univariate normal or Gaussian distribution.""" def __init__(self, central_value, standard_deviation): """Initialize the distribution. Parameters: - central_value: location (mode and mean) - standard_deviation: standard deviation """ super().__init__(central_value, support=(central_value - 6 * standard_deviation, central_value + 6 * standard_deviation)) if standard_deviation <= 0: raise ValueError("Standard deviation must be positive number") self.standard_deviation = standard_deviation def __repr__(self): return 'flavio.statistics.probability.NormalDistribution' + \ '({}, {})'.format(self.central_value, self.standard_deviation) def get_random(self, size=None): return np.random.normal(self.central_value, self.standard_deviation, size) def logpdf(self, x): return normal_logpdf(x, self.central_value, self.standard_deviation) def pdf(self, x): return normal_pdf(x, self.central_value, self.standard_deviation) def cdf(self, x): return scipy.stats.norm.cdf(x, self.central_value, self.standard_deviation) def ppf(self, x): return scipy.stats.norm.ppf(x, self.central_value, self.standard_deviation) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" return nsigma * self.standard_deviation def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" return nsigma * self.standard_deviation class LogNormalDistribution(ProbabilityDistribution): """Univariate log-normal distribution.""" def __init__(self, central_value, factor): r"""Initialize the distribution. Parameters: - central_value: median of the distribution (neither mode nor mean!). Can be positive or negative, but must be nonzero. - factor: must be larger than 1. 68% of the probability will be between `central_value * factor` and `central_value / factor`. The mean and standard deviation of the underlying normal distribution correspond to `log(abs(central_value))` and `log(factor)`, respectively. Example: `LogNormalDistribution(central_value=3, factor=2)` corresponds to the distribution of the exponential of a normally distributed variable with mean ln(3) and standard deviation ln(2). 68% of the probability is within 6=3*2 and 1.5=4/2. """ if central_value == 0: raise ValueError("Central value must not be zero") if factor <= 1: raise ValueError("Factor must be bigger than 1") self.factor = factor self.log_standard_deviation = np.log(factor) self.log_central_value = math.log(abs(central_value)) if central_value < 0: self.central_sign = -1 slim = math.exp(math.log(abs(central_value)) - 6 * self.log_standard_deviation) super().__init__(central_value, support=(slim, 0)) else: self.central_sign = +1 slim = math.exp(math.log(abs(central_value)) + 6 * self.log_standard_deviation) super().__init__(central_value, support=(0, slim)) def __repr__(self): return 'flavio.statistics.probability.LogNormalDistribution' + \ '({}, {})'.format(self.central_value, self.factor) def get_random(self, size=None): s = self.central_sign return s * np.random.lognormal(self.log_central_value, self.log_standard_deviation, size) def logpdf(self, x): s = self.central_sign return scipy.stats.lognorm.logpdf(s * x, scale=np.exp(self.log_central_value), s=self.log_standard_deviation) def pdf(self, x): s = self.central_sign return scipy.stats.lognorm.pdf(s * x, scale=np.exp(self.log_central_value), s=self.log_standard_deviation) def cdf(self, x): if self.central_sign == -1: return 1 - scipy.stats.lognorm.cdf(-x, scale=np.exp(self.log_central_value), s=self.log_standard_deviation) else: return scipy.stats.lognorm.cdf(x, scale=np.exp(self.log_central_value), s=self.log_standard_deviation) def ppf(self, x): if self.central_sign == -1: return -scipy.stats.lognorm.ppf(1 - x, scale=np.exp(self.log_central_value), s=self.log_standard_deviation) else: return scipy.stats.lognorm.ppf(x, scale=np.exp(self.log_central_value), s=self.log_standard_deviation) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" cl = confidence_level(nsigma) return self.central_value - self.ppf(0.5 - cl/2.) def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" cl = confidence_level(nsigma) return self.ppf(0.5 + cl/2.) - self.central_value class AsymmetricNormalDistribution(ProbabilityDistribution): """An asymmetric normal distribution obtained by gluing together two half-Gaussians and demanding the PDF to be continuous.""" def __init__(self, central_value, right_deviation, left_deviation): """Initialize the distribution. Parameters: - central_value: mode of the distribution (not equal to its mean!) - right_deviation: standard deviation of the upper half-Gaussian - left_deviation: standard deviation of the lower half-Gaussian """ super().__init__(central_value, support=(central_value - 6 * left_deviation, central_value + 6 * right_deviation)) if right_deviation <= 0 or left_deviation <= 0: raise ValueError( "Left and right standard deviations must be positive numbers") self.right_deviation = right_deviation self.left_deviation = left_deviation self.p_right = normal_pdf( self.central_value, self.central_value, self.right_deviation) self.p_left = normal_pdf( self.central_value, self.central_value, self.left_deviation) def __repr__(self): return 'flavio.statistics.probability.AsymmetricNormalDistribution' + \ '({}, {}, {})'.format(self.central_value, self.right_deviation, self.left_deviation) def get_random(self, size=None): if size is None: return self._get_random() else: return np.array([self._get_random() for i in range(size)]) def _get_random(self): r = np.random.uniform() a = abs(self.left_deviation / (self.right_deviation + self.left_deviation)) if r > a: x = abs(np.random.normal(0, self.right_deviation)) return self.central_value + x else: x = abs(np.random.normal(0, self.left_deviation)) return self.central_value - x def _logpdf(self, x): # values of the PDF at the central value if x < self.central_value: # left-hand side: scale factor r = 2 * self.p_right / (self.p_left + self.p_right) return math.log(r) + normal_logpdf(x, self.central_value, self.left_deviation) else: # left-hand side: scale factor r = 2 * self.p_left / (self.p_left + self.p_right) return math.log(r) + normal_logpdf(x, self.central_value, self.right_deviation) def logpdf(self, x): _lpvect = np.vectorize(self._logpdf) return _lpvect(x) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" return nsigma * self.left_deviation def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" return nsigma * self.right_deviation class HalfNormalDistribution(ProbabilityDistribution): """Half-normal distribution with zero PDF above or below the mode.""" def __init__(self, central_value, standard_deviation): """Initialize the distribution. Parameters: - central_value: mode of the distribution. - standard_deviation: If positive, the PDF is zero below central_value and (twice) that of a Gaussian with this standard deviation above. If negative, the PDF is zero above central_value and (twice) that of a Gaussian with standard deviation equal to abs(standard_deviation) below. """ super().__init__(central_value, support=sorted((central_value, central_value + 6 * standard_deviation))) if standard_deviation == 0: raise ValueError("Standard deviation must be non-zero number") self.standard_deviation = standard_deviation def __repr__(self): return 'flavio.statistics.probability.HalfNormalDistribution' + \ '({}, {})'.format(self.central_value, self.standard_deviation) def get_random(self, size=None): return self.central_value + np.sign(self.standard_deviation) * abs(np.random.normal(0, abs(self.standard_deviation), size)) def _logpdf(self, x): if np.sign(self.standard_deviation) * (x - self.central_value) < 0: return -np.inf else: return math.log(2) + normal_logpdf(x, self.central_value, abs(self.standard_deviation)) def logpdf(self, x): _lpvect = np.vectorize(self._logpdf) return _lpvect(x) def cdf(self, x): if np.sign(self.standard_deviation) == -1: return 1 - scipy.stats.halfnorm.cdf(-x, loc=-self.central_value, scale=-self.standard_deviation) else: return scipy.stats.halfnorm.cdf(x, loc=self.central_value, scale=self.standard_deviation) def ppf(self, x): if np.sign(self.standard_deviation) == -1: return -scipy.stats.halfnorm.ppf(1 - x, loc=-self.central_value, scale=-self.standard_deviation) else: return scipy.stats.halfnorm.ppf(x, loc=self.central_value, scale=self.standard_deviation) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" if self.standard_deviation >= 0: return 0 else: return nsigma * (-self.standard_deviation) # return a positive value! def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" if self.standard_deviation <= 0: return 0 else: return nsigma * self.standard_deviation class GaussianUpperLimit(HalfNormalDistribution): """Upper limit defined as a half-normal distribution.""" def __init__(self, limit, confidence_level): """Initialize the distribution. Parameters: - limit: value of the upper limit - confidence_level: confidence_level of the upper limit. Float between 0 and 1. """ if confidence_level > 1 or confidence_level < 0: raise ValueError("Confidence level should be between 0 und 1") if limit <= 0: raise ValueError("The upper limit should be a positive number") super().__init__(central_value=0, standard_deviation=self.get_standard_deviation(limit, confidence_level)) self.limit = limit self.confidence_level = confidence_level def __repr__(self): return 'flavio.statistics.probability.GaussianUpperLimit' + \ '({}, {})'.format(self.limit, self.confidence_level) def get_standard_deviation(self, limit, confidence_level): """Convert the confidence level into a Gaussian standard deviation""" return limit / scipy.stats.norm.ppf(0.5 + confidence_level / 2.) class GammaDistribution(ProbabilityDistribution): r"""A Gamma distribution defined like the `gamma` distribution in `scipy.stats` (with parameters `a`, `loc`, `scale`). The `central_value` attribute returns the location of the mode. """ def __init__(self, a, loc, scale): if loc > 0: raise ValueError("loc must be negative or zero") # "frozen" scipy distribution object self.scipy_dist = scipy.stats.gamma(a=a, loc=loc, scale=scale) mode = loc + (a-1)*scale # support extends until the CDF is roughly "6 sigma" support_limit = self.scipy_dist.ppf(1-2e-9) super().__init__(central_value=mode, # the mode support=(loc, support_limit)) self.a = a self.loc = loc self.scale = scale def __repr__(self): return 'flavio.statistics.probability.GammaDistribution' + \ '({}, {}, {})'.format(self.a, self.loc, self.scale) def get_random(self, size): return self.scipy_dist.rvs(size=size) def cdf(self, x): return self.scipy_dist.cdf(x) def ppf(self, x): return self.scipy_dist.ppf(x) def logpdf(self, x): return self.scipy_dist.logpdf(x) def _find_error_cdf(self, confidence_level): # find the value of the CDF at the position of the left boundary # of the `confidence_level`% CL range by demanding that the value # of the PDF is the same at the two boundaries def x_left(a): return self.ppf(a) def x_right(a): return self.ppf(a + confidence_level) def diff_logpdf(a): logpdf_x_left = self.logpdf(x_left(a)) logpdf_x_right = self.logpdf(x_right(a)) return logpdf_x_left - logpdf_x_right return scipy.optimize.brentq(diff_logpdf, 0, 1 - confidence_level-1e-6) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" a = self._find_error_cdf(confidence_level(nsigma)) return self.central_value - self.ppf(a) def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" a = self._find_error_cdf(confidence_level(nsigma)) return self.ppf(a + confidence_level(nsigma)) - self.central_value class GammaDistributionPositive(ProbabilityDistribution): r"""A Gamma distribution defined like the `gamma` distribution in `scipy.stats` (with parameters `a`, `loc`, `scale`), but restricted to positive values for x and correspondingly rescaled PDF. The `central_value` attribute returns the location of the mode. """ def __init__(self, a, loc, scale): if loc > 0: raise ValueError("loc must be negative or zero") # "frozen" scipy distribution object (without restricting x>0!) self.scipy_dist = scipy.stats.gamma(a=a, loc=loc, scale=scale) mode = loc + (a-1)*scale if mode < 0: mode = 0 # support extends until the CDF is roughly "6 sigma", assuming x>0 support_limit = self.scipy_dist.ppf(1-2e-9*(1-self.scipy_dist.cdf(0))) super().__init__(central_value=mode, # the mode support=(0, support_limit)) self.a = a self.loc = loc self.scale = scale # scale factor for PDF to account for x>0 self._pdf_scale = 1/(1 - self.scipy_dist.cdf(0)) def __repr__(self): return 'flavio.statistics.probability.GammaDistributionPositive' + \ '({}, {}, {})'.format(self.a, self.loc, self.scale) def get_random(self, size=None): if size is None: return self._get_random(size=size) else: # some iteration necessary as discarding negative values # might lead to too small size r = np.array([], dtype=float) while len(r) < size: r = np.concatenate((r, self._get_random(size=2*size))) return r[:size] def _get_random(self, size): r = self.scipy_dist.rvs(size=size) return r[(r >= 0)] def cdf(self, x): cdf0 = self.scipy_dist.cdf(0) cdf = (self.scipy_dist.cdf(x) - cdf0)/(1-cdf0) return np.piecewise( np.asarray(x, dtype=float), [x<0, x>=0], [0., cdf]) # return 0 for negative x def ppf(self, x): cdf0 = self.scipy_dist.cdf(0) return self.scipy_dist.ppf((1-cdf0)*x + cdf0) def logpdf(self, x): # return -inf for negative x values inf0 = np.piecewise(np.asarray(x, dtype=float), [x<0, x>=0], [-np.inf, 0.]) return inf0 + self.scipy_dist.logpdf(x) + np.log(self._pdf_scale) def _find_error_cdf(self, confidence_level): # find the value of the CDF at the position of the left boundary # of the `confidence_level`% CL range by demanding that the value # of the PDF is the same at the two boundaries def x_left(a): return self.ppf(a) def x_right(a): return self.ppf(a + confidence_level) def diff_logpdf(a): logpdf_x_left = self.logpdf(x_left(a)) logpdf_x_right = self.logpdf(x_right(a)) return logpdf_x_left - logpdf_x_right return scipy.optimize.brentq(diff_logpdf, 0, 1 - confidence_level-1e-6) def get_error_left(self, nsigma=1, **kwargs): """Return the lower error""" if self.logpdf(0) > self.logpdf(self.ppf(confidence_level(nsigma))): # look at a one-sided 1 sigma range. If the PDF at 0 # is smaller than the PDF at the boundary of this range, it means # that the left-hand error is not meaningful to define. return self.central_value else: a = self._find_error_cdf(confidence_level(nsigma)) return self.central_value - self.ppf(a) def get_error_right(self, nsigma=1, **kwargs): """Return the upper error""" one_sided_error = self.ppf(confidence_level(nsigma)) if self.logpdf(0) > self.logpdf(one_sided_error): # look at a one-sided 1 sigma range. If the PDF at 0 # is smaller than the PDF at the boundary of this range, return the # boundary of the range as the right-hand error return one_sided_error else: a = self._find_error_cdf(confidence_level(nsigma)) return self.ppf(a + confidence_level(nsigma)) - self.central_value class GammaUpperLimit(GammaDistributionPositive): r"""Gamma distribution with x restricted to be positive appropriate for a positive quantitity obtained from a low-statistics counting experiment, e.g. a rare decay rate, given an upper limit on x.""" def __init__(self, counts_total, counts_background, limit, confidence_level): r"""Initialize the distribution. Parameters: - counts_total: observed total number (signal and background) of counts. - counts_background: number of expected background counts, assumed to be known. - limit: upper limit on x, which is proportional (with a positive proportionality factor) to the number of signal events. - confidence_level: confidence level of the upper limit, i.e. the value of the CDF at the limit. Float between 0 and 1. Frequently used values are 0.90 and 0.95. """ if confidence_level > 1 or confidence_level < 0: raise ValueError("Confidence level should be between 0 und 1") if limit <= 0: raise ValueError("The upper limit should be a positive number") if counts_total < 0: raise ValueError("counts_total should be a positive number or zero") if counts_background < 0: raise ValueError("counts_background should be a positive number or zero") self.limit = limit self.confidence_level = confidence_level self.counts_total = counts_total self.counts_background = counts_background a, loc, scale = self._get_a_loc_scale() super().__init__(a=a, loc=loc, scale=scale) def __repr__(self): return 'flavio.statistics.probability.GammaUpperLimit' + \ '({}, {}, {}, {})'.format(self.counts_total, self.counts_background, self.limit, self.confidence_level) def _get_a_loc_scale(self): """Convert the counts and limit to the input parameters needed for GammaDistributionPositive""" a = self.counts_total + 1 loc_unscaled = -self.counts_background dist_unscaled = GammaDistributionPositive(a=a, loc=loc_unscaled, scale=1) limit_unscaled = dist_unscaled.ppf(self.confidence_level) # rescale scale = self.limit/limit_unscaled loc = -self.counts_background*scale return a, loc, scale class NumericalDistribution(ProbabilityDistribution): """Univariate distribution defined in terms of numerical values for the PDF.""" def __init__(self, x, y, central_value=None): """Initialize a 1D numerical distribution. Parameters: - `x`: x-axis values. Must be a 1D array of real values in strictly ascending order (but not necessarily evenly spaced) - `y`: PDF values. Must be a 1D array of real positive values with the same length as `x` - central_value: if None (default), will be set to the mode of the distribution, i.e. the x-value where y is largest (by looking up the input arrays, i.e. without interpolation!) """ self.x = x self.y = y if central_value is not None: if x[0] <= central_value <= x[-1]: super().__init__(central_value=central_value, support=(x[0], x[-1])) else: raise ValueError("Central value must be within range provided") else: mode = x[np.argmax(y)] super().__init__(central_value=mode, support=(x[0], x[-1])) self.y_norm = y / np.trapz(y, x=x) # normalize PDF to 1 self.y_norm[self.y_norm < 0] = 0 self.pdf_interp = interp1d(x, self.y_norm, fill_value=0, bounds_error=False) _cdf = np.zeros(len(x)) _cdf[1:] = np.cumsum(self.y_norm[:-1] * np.diff(x)) _cdf = _cdf/_cdf[-1] # normalize CDF to 1 self.ppf_interp = interp1d(_cdf, x) self.cdf_interp = interp1d(x, _cdf) def __repr__(self): return 'flavio.statistics.probability.NumericalDistribution' + \ '({}, {})'.format(self.x, self.y) def get_random(self, size=None): """Draw a random number from the distribution. If size is not None but an integer N, return an array of N numbers.""" r = np.random.uniform(size=size) return self.ppf_interp(r) def ppf(self, x): return self.ppf_interp(x) def cdf(self, x): return self.cdf_interp(x) def pdf(self, x): return self.pdf_interp(x) def logpdf(self, x): # ignore warning from log(0)=-np.inf with np.errstate(divide='ignore', invalid='ignore'): return np.log(self.pdf_interp(x)) def _find_error_cdf(self, confidence_level): # find the value of the CDF at the position of the left boundary # of the `confidence_level`% CL range by demanding that the value # of the PDF is the same at the two boundaries def x_left(a): return self.ppf(a) def x_right(a): return self.ppf(a + confidence_level) def diff_logpdf(a): logpdf_x_left = self.logpdf(x_left(a)) logpdf_x_right = self.logpdf(x_right(a)) return logpdf_x_left - logpdf_x_right return scipy.optimize.brentq(diff_logpdf, 0, 1 - confidence_level-1e-6) def get_error_left(self, nsigma=1, method='central'): """Return the lower error. 'method' should be one of: - 'central' for a central interval (same probability on both sides of the central value) - 'hpd' for highest posterior density, i.e. probability is larger inside the interval than outside - 'limit' for a one-sided error, i.e. a lower limit""" if method == 'limit': return self.central_value - self.ppf(1 - confidence_level(nsigma)) cdf_central = self.cdf(self.central_value) err_left = self.central_value - self.ppf(cdf_central * (1 - confidence_level(nsigma))) if method == 'central': return err_left elif method == 'hpd': if self.pdf(self.central_value + self.get_error_right(method='central')) == self.pdf(self.central_value - err_left): return err_left try: a = self._find_error_cdf(confidence_level(nsigma)) except ValueError: return np.nan return self.central_value - self.ppf(a) else: raise ValueError("Method " + str(method) + " unknown") def get_error_right(self, nsigma=1, method='central'): """Return the upper error 'method' should be one of: - 'central' for a central interval (same probability on both sides of the central value) - 'hpd' for highest posterior density, i.e. probability is larger inside the interval than outside - 'limit' for a one-sided error, i.e. an upper limit""" if method == 'limit': return self.ppf(confidence_level(nsigma)) - self.central_value cdf_central = self.cdf(self.central_value) err_right = self.ppf(cdf_central + (1 - cdf_central) * confidence_level(nsigma)) - self.central_value if method == 'central': return err_right elif method == 'hpd': if self.pdf(self.central_value - self.get_error_left(method='central')) == self.pdf(self.central_value + err_right): return err_right try: a = self._find_error_cdf(confidence_level(nsigma)) except ValueError: return np.nan return self.ppf(a + confidence_level(nsigma)) - self.central_value else: raise ValueError("Method " + str(method) + " unknown") @classmethod def from_pd(cls, pd, nsteps=1000): if isinstance(pd, NumericalDistribution): return pd _x = np.linspace(pd.support[0], pd.support[-1], nsteps) _y = np.exp(pd.logpdf(_x)) return cls(central_value=pd.central_value, x=_x, y=_y) class GeneralGammaDistributionPositive(NumericalDistribution): r"""Distribution appropriate for a positive quantitity obtained from a low-statistics counting experiment, e.g. a rare decay rate. The difference to `GammaUpperLimit` is that this class also allows to specify an uncertainty on the number of background events. The result is a numerical distribution obtained from the convolution of a normal distribution (for the background uncertainty) and a gamma distribution, restricted to positive values. In contrast to `GammaUpperLimit`, the scale factor (the relational between the observable of interest and the raw number of counts) is not determined from a limit and a confidence level, but specified explicitly. For the case of a limit, see `GeneralGammaUpperLimit`. """ def __init__(self, scale_factor=1, counts_total=None, counts_background=None, counts_signal=None, background_variance=0): r"""Initialize the distribution. Parameters: Parameters: - `scale_factor`: scale factor by which the number of counts is multiplied to get the observable of interest. - `counts_total`: observed total number (signal and background) of counts. - `counts_background`: expected mean number of expected background counts - `counts_signal`: mean obseved number of signal events - `background_variance`: standard deviation of the expected number of background events Of the three parameters `counts_total`, `counts_background`, and `counts_signal`, only two must be specified. The third one will be determined from the relation `counts_total = counts_signal + counts_background` Note that if `background_variance=0`, it makes more sense to use `GammaUpperLimit`, which is equivalent but analytical rather than numerical. """ if scale_factor <= 0: raise ValueError("Scale factor should be positive") self.scale_factor = scale_factor if counts_total is not None and counts_total < 0: raise ValueError("counts_total should be a positive number, zero, or None") if counts_background is not None and counts_background <= 0: raise ValueError("counts_background should be a positive number or None") if background_variance < 0: raise ValueError("background_variance should be a positive number") if [counts_total, counts_signal, counts_background].count(None) == 0: # if all three are specified, check the relation holds! if counts_background != counts_total - counts_signal: raise ValueError("The relation `counts_total = counts_signal + counts_background` is not satisfied") if counts_background is None: self.counts_background = counts_total - counts_signal else: self.counts_background = counts_background if counts_signal is None: self.counts_signal = counts_total - counts_background else: self.counts_signal = counts_signal if counts_total is None: self.counts_total = counts_signal + counts_background else: self.counts_total = counts_total self.background_variance = background_variance x, y = self._get_xy() if self.counts_total != 0 and self.background_variance/self.counts_total <= 1/100.: warnings.warn("For vanishing or very small background variance, " "it is safer to use GammaUpperLimit instead of " "GeneralGammaUpperLimit to avoid numerical " "instability.") super().__init__(x=x, y=y) def __repr__(self): return ('flavio.statistics.probability.GeneralGammaDistributionPositive' '({}, counts_total={}, counts_signal={}, ' 'background_variance={})').format(self.scale_factor, self.counts_total, self.counts_signal, self.background_variance) def _get_xy(self): if self.background_variance == 0: # this is a bit pointless as in this case it makes more # sense to use GammaUpperLimit itself gamma_unscaled = GammaDistributionPositive(a = self.counts_total + 1, loc = -self.counts_background, scale = 1) num_unscaled = NumericalDistribution.from_pd(gamma_unscaled) else: # define a gamma distribution (with x>loc, not x>0!) and convolve # it with a Gaussian gamma_unscaled = GammaDistribution(a = self.counts_total + 1, loc = -self.counts_background, scale = 1) norm_bg = NormalDistribution(0, self.background_variance) num_unscaled = convolve_distributions([gamma_unscaled, norm_bg], central_values='sum') # now that we have convolved, cut off anything below x=0 x = num_unscaled.x y = num_unscaled.y_norm y = y[np.where(x >= 0)] x = x[np.where(x >= 0)] if x[0] != 0: # make sure the PDF at 0 exists x = np.insert(x, 0, 0.) # add 0 as first element y = np.insert(y, 0, y[0]) # copy first element y[0] num_unscaled = NumericalDistribution(x, y) x = x * self.scale_factor return x, y class GeneralGammaUpperLimit(GeneralGammaDistributionPositive): r"""Distribution appropriate for a positive quantitity obtained from a low-statistics counting experiment, e.g. a rare decay rate, given an upper limit on x. The difference to `GammaUpperLimit` is that this class also allows to specify an uncertainty on the number of background events. The result is a numerical distribution obtained from the convolution of a normal distribution (for the background uncertainty) and a gamma distribution, restricted to positive values. The only difference to `GeneralGammaDistributionPositive` is that the scale factor is determined from the limit and confidence level. """ def __init__(self, limit, confidence_level, counts_total=None, counts_background=None, counts_signal=None, background_variance=0): r"""Initialize the distribution. Parameters: Parameters: - `limit`: upper limit on x, which is proportional (with a positive proportionality factor) to the number of signal events. - `confidence_level`: confidence level of the upper limit, i.e. the value of the CDF at the limit. Float between 0 and 1. Frequently used values are 0.90 and 0.95. - `counts_total`: observed total number (signal and background) of counts. - `counts_background`: expected mean number of expected background counts - `counts_signal`: mean obseved number of signal events - `background_variance`: standard deviation of the expected number of background events Of the three parameters `counts_total`, `counts_background`, and `counts_signal`, only two must be specified. The third one will be determined from the relation `counts_total = counts_signal + counts_background` Note that if `background_variance=0`, it makes more sense to use `GammaUpperLimit`, which is equivalent but analytical rather than numerical. """ self.limit = limit self.confidence_level = confidence_level _d_unscaled = GeneralGammaDistributionPositive( scale_factor=1, counts_total=counts_total, counts_background=counts_background, counts_signal=counts_signal, background_variance=background_variance) limit_unscaled = _d_unscaled.ppf(self.confidence_level) # use the value of the limit to determine the scale factor scale_factor = self.limit / limit_unscaled super().__init__( scale_factor=scale_factor, counts_total=counts_total, counts_background=counts_background, counts_signal=counts_signal, background_variance=background_variance) def __repr__(self): return ('flavio.statistics.probability.GeneralGammaUpperLimit' '({}, {}, counts_total={}, counts_signal={}, ' 'background_variance={})').format(self.limit, self.confidence_level, self.counts_total, self.counts_signal, self.background_variance) class KernelDensityEstimate(NumericalDistribution): """Univariate kernel density estimate. Parameters: - `data`: 1D array - `kernel`: instance of `ProbabilityDistribution` used as smoothing kernel - `n_bins` (optional): number of bins used in the intermediate step. This normally does not have to be changed. """ def __init__(self, data, kernel, n_bins=None): self.data = data assert kernel.central_value == 0, "Kernel density must have zero central value" self.kernel = kernel self.n = len(data) if n_bins is None: self.n_bins = min(1000, self.n) else: self.n_bins = n_bins y, x_edges = np.histogram(data, bins=self.n_bins, density=True) x = (x_edges[:-1] + x_edges[1:])/2. self.y_raw = y self.raw_dist = NumericalDistribution(x, y) cdist = convolve_distributions([self.raw_dist, self.kernel], 'sum') super().__init__(cdist.x, cdist.y) def __repr__(self): return 'flavio.statistics.probability.KernelDensityEstimate' + \ '({}, {}, {})'.format(self.data, repr(self.kernel), self.n_bins) class GaussianKDE(KernelDensityEstimate): """Univariate Gaussian kernel density estimate. Parameters: - `data`: 1D array - `bandwidth` (optional): standard deviation of the Gaussian smoothing kernel. If not provided, Scott's rule is used to estimate it. - `n_bins` (optional): number of bins used in the intermediate step. This normally does not have to be changed. """ def __init__(self, data, bandwidth=None, n_bins=None): if bandwidth is None: self.bandwidth = len(data)**(-1/5.) * np.std(data) else: self.bandwidth = bandwidth super().__init__(data=data, kernel = NormalDistribution(0, self.bandwidth), n_bins=n_bins) def __repr__(self): return 'flavio.statistics.probability.GaussianKDE' + \ '({}, {}, {})'.format(self.data, self.bandwidth, self.n_bins) class MultivariateNormalDistribution(ProbabilityDistribution): """A multivariate normal distribution. Parameters: - central_value: the location vector - covariance: the covariance matrix - standard_deviation: the square root of the variance vector - correlation: the correlation matrix If the covariance matrix is not specified, standard_deviation and the correlation matrix have to be specified. Methods: - get_random(size=None): get `size` random numbers (default: a single one) - logpdf(x, exclude=None): get the logarithm of the probability density function. If an iterable of integers is given for `exclude`, the parameters at these positions will be removed from the covariance before evaluating the PDF, effectively ignoring certain dimensions. Properties: - error_left, error_right: both return the vector of standard deviations """ def __init__(self, central_value, covariance=None, standard_deviation=None, correlation=None): """Initialize PDF instance. Parameters: - central_value: vector of means, shape (n) - covariance: covariance matrix, shape (n,n) """ if covariance is not None: self.covariance = covariance self.standard_deviation = np.sqrt(np.diag(self.covariance)) self.correlation = self.covariance/np.outer(self.standard_deviation, self.standard_deviation) np.fill_diagonal(self.correlation, 1.) else: if standard_deviation is None: raise ValueError("You must specify either covariance or standard_deviation") self.standard_deviation = np.array(standard_deviation) if correlation is None: self.correlation = np.eye(len(self.standard_deviation)) else: if isinstance(correlation, (int, float)): # if it's a number, return delta_ij + (1-delta_ij)*x n_dim = len(central_value) self.correlation = np.eye(n_dim) + (np.ones((n_dim, n_dim))-np.eye(n_dim))*float(correlation) else: self.correlation = np.array(correlation) self.covariance = np.outer(self.standard_deviation, self.standard_deviation)*self.correlation super().__init__(central_value, support=np.array([ np.asarray(central_value) - 6*self.standard_deviation, np.asarray(central_value) + 6*self.standard_deviation ])) # to avoid ill-conditioned covariance matrices, all data are rescaled # by the inverse variances self.err = np.sqrt(np.diag(self.covariance)) self.scaled_covariance = self.covariance / np.outer(self.err, self.err) assert np.all(np.linalg.eigvals(self.scaled_covariance) > 0), "The covariance matrix is not positive definite!" + str(covariance) def __repr__(self): return 'flavio.statistics.probability.MultivariateNormalDistribution' + \ '({}, {})'.format(self.central_value, self.covariance) def get_random(self, size=None): """Get `size` random numbers (default: a single one)""" return np.random.multivariate_normal(self.central_value, self.covariance, size) def reduce_dimension(self, exclude=None): """Return a different instance where certain dimensions, specified by the iterable of integers `exclude`, are removed from the covariance. If `exclude` contains all indices but one, an instance of `NormalDistribution` will be returned. """ if not exclude: return self # if parameters are to be excluded, construct a # distribution with reduced mean vector and covariance matrix _cent_ex = np.delete(self.central_value, exclude) _cov_ex = np.delete( np.delete(self.covariance, exclude, axis=0), exclude, axis=1) if len(_cent_ex) == 1: # if only 1 dimension remains, can use a univariate Gaussian _dist_ex = NormalDistribution( central_value=_cent_ex[0], standard_deviation=np.sqrt(_cov_ex[0, 0])) else: # if more than 1 dimension remains, use a (smaller) # multivariate Gaussian _dist_ex = MultivariateNormalDistribution( central_value=_cent_ex, covariance=_cov_ex) return _dist_ex def logpdf(self, x, exclude=None): """Get the logarithm of the probability density function. Parameters: - x: vector; position at which PDF should be evaluated - exclude: optional; if an iterable of integers is given, the parameters at these positions will be removed from the covariance before evaluating the PDF, effectively ignoring certain dimensions. """ if exclude is not None: # if parameters are to be excluded, construct a temporary # distribution with reduced mean vector and covariance matrix # and call its logpdf method _dist_ex = self.reduce_dimension(exclude=exclude) return _dist_ex.logpdf(x) # undoing the rescaling of the covariance pdf_scaled = scipy.stats.multivariate_normal.logpdf( x / self.err, self.central_value / self.err, self.scaled_covariance) sign, logdet = np.linalg.slogdet(self.covariance) return pdf_scaled + (np.linalg.slogdet(self.scaled_covariance)[1] - np.linalg.slogdet(self.covariance)[1]) / 2. def get_error_left(self, nsigma=1): """Return the lower errors""" return nsigma * self.err def get_error_right(self, nsigma=1): """Return the upper errors""" return nsigma * self.err def get_cov_mat(self): """Return the covariance matrix""" return self.covariance class MultivariateNumericalDistribution(ProbabilityDistribution): """A multivariate distribution with PDF specified numerically.""" def __init__(self, xi, y, central_value=None): """Initialize a multivariate numerical distribution. Parameters: - `xi`: for an N-dimensional distribution, a list of N 1D arrays specifiying the grid in N dimensions. The 1D arrays must contain real, evenly spaced values in strictly ascending order (but the spacing can be different for different dimensions). Any of the 1D arrays can also be given alternatively as a list of two numbers, which will be assumed to be the upper and lower boundaries, while the spacing will be determined from the shape of `y`. - `y`: PDF values on the grid defined by the `xi`. If the N `xi` have length M1, ..., MN, `y` has dimension (M1, ..., MN). This is the same shape as the grid obtained from `numpy.meshgrid(*xi, indexing='ij')`. - central_value: if None (default), will be set to the mode of the distribution, i.e. the N-dimensional xi-vector where y is largest (by looking up the input arrays, i.e. without interpolation!) """ for x in xi: # check that grid spacings are even up to per mille precision d = np.diff(x) if abs(np.min(d)/np.max(d)-1) > 1e-3: raise ValueError("Grid must be evenly spaced per dimension") self.xi = [np.asarray(x) for x in xi] self.y = np.asarray(y) for i, x in enumerate(xi): if len(x) == 2: self.xi[i] = np.linspace(x[0], x[1], self.y.shape[i]) if central_value is not None: super().__init__(central_value=central_value, support=(np.asarray(self.xi).T[0], np.asarray(self.xi).T[-1])) else: # if no central value is specified, set it to the mode mode_index = (slice(None),) + np.unravel_index(self.y.argmax(), self.y.shape) mode = np.asarray(np.meshgrid(*self.xi, indexing='ij'))[mode_index] super().__init__(central_value=mode, support=None) _bin_volume = np.prod([x[1] - x[0] for x in self.xi]) self.y_norm = self.y / np.sum(self.y) / _bin_volume # normalize PDF to 1 # ignore warning from log(0)=-np.inf with np.errstate(divide='ignore', invalid='ignore'): # logy = np.nan_to_num(np.log(self.y_norm)) logy = np.log(self.y_norm) logy[np.isneginf(logy)] = -1e100 self.logpdf_interp = RegularGridInterpolator(self.xi, logy, fill_value=-np.inf, bounds_error=False) # the following is needed for get_random: initialize to None self._y_flat = None self._cdf_flat = None def __repr__(self): return 'flavio.statistics.probability.MultivariateNumericalDistribution' + \ '({}, {}, {})'.format([x.tolist() for x in self.xi], self.y.tolist(), list(self.central_value)) def get_random(self, size=None): """Draw a random number from the distribution. If size is not None but an integer N, return an array of N numbers. For the MultivariateNumericalDistribution, the PDF from which the random numbers are drawn is approximated to be piecewise constant in hypercubes around the points of the lattice spanned by the `xi`. A finer lattice spacing will lead to a smoother distribution of random numbers (but will also be slower). """ if size is None: return self._get_random() else: return np.array([self._get_random() for i in range(size)]) def _get_random(self): # if these have not been initialized, do it (once) if self._y_flat is None: # get a flattened array of the PDF self._y_flat = self.y.flatten() if self._cdf_flat is None: # get the (discrete) 1D CDF _cdf_flat = np.cumsum(self._y_flat) # normalize to 1 self._cdf_flat = _cdf_flat/_cdf_flat[-1] # draw a number between 0 and 1 r = np.random.uniform() # find the index of the CDF-value closest to r i_r = np.argmin(np.abs(self._cdf_flat-r)) indices = np.where(self.y == self._y_flat[i_r]) i_bla = np.random.choice(len(indices[0])) index = tuple([a[i_bla] for a in indices]) xi_r = [ self.xi[i][index[i]] for i in range(len(self.xi)) ] xi_diff = np.array([ X[1]-X[0] for X in self.xi ]) return xi_r + np.random.uniform(low=-0.5, high=0.5, size=len(self.xi)) * xi_diff def reduce_dimension(self, exclude=None): """Return a different instance where certain dimensions, specified by the iterable of integers `exclude`, are removed from the covariance. If `exclude` contains all indices but one, an instance of `NumericalDistribution` will be returned. """ if not exclude: return self # if parameters are to be excluded, construct a # distribution with reduced mean vector and covariance matrix try: exclude = tuple(exclude) except TypeError: exclude = (exclude,) xi = np.delete(self.xi, tuple(exclude), axis=0) y = np.amax(self.y_norm, axis=tuple(exclude)) cv = np.delete(self.central_value, tuple(exclude)) if len(xi) == 1: # if there is just 1 dimension left, use univariate dist = NumericalDistribution(xi[0], y, cv) else: dist = MultivariateNumericalDistribution(xi, y, cv) return dist def logpdf(self, x, exclude=None): """Get the logarithm of the probability density function. Parameters: - x: vector; position at which PDF should be evaluated - exclude: optional; if an iterable of integers is given, the parameters at these positions will be ignored by maximizing the likelihood along the remaining directions, i.e., they will be "profiled out". """ if exclude is not None: # if parameters are to be excluded, construct a temporary # distribution with reduced mean vector and covariance matrix # and call its logpdf method dist = self.reduce_dimension(exclude=exclude) return dist.logpdf(x) if np.asarray(x).shape == (len(self.central_value),): # return a scalar return self.logpdf_interp(x)[0] else: return self.logpdf_interp(x) def get_error_left(self, *args, **kwargs): raise NotImplementedError( "1D errors not implemented for multivariate numerical distributions") def get_error_right(self, *args, **kwargs): raise NotImplementedError( "1D errors not implemented for multivariate numerical distributions") @classmethod def from_pd(cls, pd, nsteps=100): if isinstance(pd, cls): # nothing to do return pd _xi = np.array([np.linspace(pd.support[0][i], pd.support[-1][i], nsteps) for i in range(len(pd.central_value))]) ndim = len(_xi) _xlist = np.array(np.meshgrid(*_xi, indexing='ij')).reshape(ndim, nsteps**ndim).T _ylist = np.exp(pd.logpdf(_xlist)) _y = _ylist.reshape(tuple(nsteps for i in range(ndim))) return cls(central_value=pd.central_value, xi=_xi, y=_y) # Auxiliary functions def convolve_distributions(probability_distributions, central_values='same'): """Combine a set of probability distributions by convoluting the PDFs. This function can be used in two different ways: - for `central_values='same'`, it can be used to combine uncertainties on a single parameter/observable expressed in terms of probability distributions with the same central value. - for `central_values='sum'`, it can be used to determine the probability distribution of a sum of random variables. The only difference between the two cases is a shift: for 'same', the central value of the convolution is the same as the original central value, for 'sum', it is the sum of the individual central values. `probability_distributions` must be a list of instances of descendants of `ProbabilityDistribution`. """ if central_values not in ['same', 'sum']: raise ValueError("central_values must be either 'same' or 'sum'") def dim(x): # 1 for floats and length for arrays try: float(x) except: return len(x) else: return 1 dims = [dim(p.central_value) for p in probability_distributions] assert all([d == dims[0] for d in dims]), "All distributions must have the same number of dimensions" if dims[0] == 1: return _convolve_distributions_univariate(probability_distributions, central_values) else: return _convolve_distributions_multivariate(probability_distributions, central_values) def _convolve_distributions_univariate(probability_distributions, central_values='same'): """Combine a set of univariate probability distributions.""" # if there's just one: return it immediately if len(probability_distributions) == 1: return probability_distributions[0] if central_values == 'same': central_value = probability_distributions[0].central_value assert all(p.central_value == central_value for p in probability_distributions), \ "Distributions must all have the same central value" # all delta dists deltas = [p for p in probability_distributions if isinstance( p, DeltaDistribution)] if central_values == 'sum' and deltas: raise NotImplementedError("Convolution of DeltaDistributions only implemented for equal central values") # central_values is 'same', we can instead just ignore the delta distributions! # all normal dists gaussians = [p for p in probability_distributions if isinstance( p, NormalDistribution)] # all other univariate dists others = [p for p in probability_distributions if not isinstance(p, NormalDistribution) and not isinstance(p, DeltaDistribution)] if not others and not gaussians: # if there is only a delta (or more than one), just return it if central_values == 'same': return deltas[0] elif central_values == 'same': return DeltaDistribution(sum([p.central_value for p in deltas])) # let's combine the normal distributions into 1 if gaussians: gaussian = _convolve_gaussians(gaussians, central_values=central_values) if gaussians and not others: # if there are only the gaussians, we are done. return gaussian else: # otherwise, we need to combine the (combined) gaussian with the others if gaussians: to_be_combined = others + [gaussian] else: to_be_combined = others # turn all distributions into numerical distributions! numerical = [NumericalDistribution.from_pd(p) for p in to_be_combined] return _convolve_numerical(numerical, central_values=central_values) def _convolve_distributions_multivariate(probability_distributions, central_values='same'): """Combine a set of multivariate probability distributions.""" # if there's just one: return it immediately if len(probability_distributions) == 1: return probability_distributions[0] if central_values == 'same': central_value = probability_distributions[0].central_value assert all(p.central_value[i] == central_value[i] for p in probability_distributions for i in range(len(central_value))), \ "Distributions must all have the same central value" for p in probability_distributions: if not ( isinstance(p, MultivariateNormalDistribution) or isinstance(p, MultivariateNumericalDistribution) ): raise ValueError("Multivariate convolution only implemented " "for normal and numerical distributions") # all normal dists gaussians = [p for p in probability_distributions if isinstance( p, MultivariateNormalDistribution)] # all numerical dists others = [p for p in probability_distributions if isinstance( p, MultivariateNumericalDistribution)] # let's combine the normal distributions into 1 if gaussians: gaussian = _convolve_multivariate_gaussians(gaussians, central_values=central_values) if gaussians and not others: # if there are only the gaussians, we are done. return gaussian else: # otherwise, we need to combine the (combined) gaussian with the others if len(others) > 1: NotImplementedError("Combining multivariate numerical distributions not implemented") else: num = _convolve_multivariate_gaussian_numerical(gaussian, others[0], central_values=central_values) return num def _convolve_gaussians(probability_distributions, central_values='same'): # if there's just one: return it immediately if len(probability_distributions) == 1: return probability_distributions[0] assert all(isinstance(p, NormalDistribution) for p in probability_distributions), \ "Distributions should all be instances of NormalDistribution" if central_values == 'same': central_value = probability_distributions[0].central_value # central value of the first dist assert all(p.central_value == central_value for p in probability_distributions), \ "Distrubtions must all have the same central value" elif central_values == 'sum': central_value = sum([p.central_value for p in probability_distributions]) sigmas = np.array( [p.standard_deviation for p in probability_distributions]) sigma = math.sqrt(np.sum(sigmas**2)) return NormalDistribution(central_value=central_value, standard_deviation=sigma) def _convolve_multivariate_gaussians(probability_distributions, central_values='same'): # if there's just one: return it immediately if len(probability_distributions) == 1: return probability_distributions[0] assert all(isinstance(p, MultivariateNormalDistribution) for p in probability_distributions), \ "Distributions should all be instances of MultivariateNormalDistribution" if central_values == 'same': central_value = probability_distributions[0].central_value # central value of the first dist assert all(p.central_value == central_value for p in probability_distributions), \ "Distrubtions must all have the same central value" elif central_values == 'sum': central_value = np.sum([p.central_value for p in probability_distributions], axis=0) cov = np.sum([p.covariance for p in probability_distributions], axis=0) return MultivariateNormalDistribution(central_value=central_value, covariance=cov) def _convolve_numerical(probability_distributions, nsteps=10000, central_values='same'): # if there's just one: return it immediately if len(probability_distributions) == 1: return probability_distributions[0] assert all(isinstance(p, NumericalDistribution) for p in probability_distributions), \ "Distributions should all be instances of NumericalDistribution" if central_values == 'same': central_value = probability_distributions[0].central_value # central value of the first dist assert all(p.central_value == central_value for p in probability_distributions), \ "Distrubtions must all have the same central value" elif central_values == 'sum': central_value = sum([p.central_value for p in probability_distributions]) # differences of individual central values from combined central value central_diffs = [central_value - p.central_value for p in probability_distributions] # (shifted appropriately) supports = (np.array([p.support for p in probability_distributions]).T + central_diffs).T support = (central_value - (central_value - supports[:, 0]).sum(), central_value - (central_value - supports[:, 1]).sum()) delta = (support[1] - support[0]) / (nsteps - 1) x = np.linspace(support[0], support[1], nsteps) # position of the central value n_x_central = math.floor((central_value - support[0]) / delta) y = None for i, pd in enumerate(probability_distributions): y1 = np.exp(pd.logpdf(x - central_diffs[i])) * delta if y is None: # first step y = y1 else: # convolution y = scipy.signal.fftconvolve(y, y1, 'full') # cut out the convolved signal at the right place y = y[n_x_central:nsteps + n_x_central] return NumericalDistribution(central_value=central_value, x=x, y=y) def _convolve_multivariate_gaussian_numerical(mvgaussian, mvnumerical, central_values='same'): assert isinstance(mvgaussian, MultivariateNormalDistribution), \ "mvgaussian must be a single instance of MultivariateNormalDistribution" assert isinstance(mvnumerical, MultivariateNumericalDistribution), \ "mvgaussian must be a single instance of MultivariateNumericalDistribution" nsteps = max(200, *[len(x) for x in mvnumerical.xi]) xi = np.zeros((len(mvnumerical.xi), nsteps)) for i, x in enumerate(mvnumerical.xi): # enlarge the support cvn = mvnumerical.central_value[i] cvg = mvgaussian.central_value[i] supp = [s[i] for s in mvgaussian.support] x_max = cvn + (x[-1] - cvn) + (supp[-1] - cvn) + np.mean(x) - cvg x_min = cvn + (x[0] - cvn) + (supp[0] - cvn) + np.mean(x) - cvg xi[i] = np.linspace(x_min, x_max, nsteps) xi_grid = np.array(np.meshgrid(*xi, indexing='ij')) # this will transpose from shape (0, 1, 2, ...) to (1, 2, ..., 0) xi_grid = np.transpose(xi_grid, tuple(range(1, xi_grid.ndim)) + (0,)) y_num = np.exp(mvnumerical.logpdf(xi_grid)) # shift Gaussian to the mean of the support xi_grid = xi_grid - np.array([np.mean(x) for x in xi]) + np.array(mvgaussian.central_value) y_gauss = np.exp(mvgaussian.logpdf(xi_grid)) f = scipy.signal.fftconvolve(y_num, y_gauss, mode='same') f[f < 0] = 0 f = f/f.sum() if central_values == 'sum': # shift back xi = (xi.T + np.array(mvgaussian.central_value)).T return MultivariateNumericalDistribution(xi, f) def combine_distributions(probability_distributions): """Combine a set of probability distributions by multiplying the PDFs. `probability_distributions` must be a list of instances of descendants of `ProbabilityDistribution`. """ def dim(x): # 1 for floats and length for arrays try: float(x) except: return len(x) else: return 1 dims = [dim(p.central_value) for p in probability_distributions] assert all([d == dims[0] for d in dims]), "All distributions must have the same number of dimensions" if dims[0] == 1: return _combine_distributions_univariate(probability_distributions) else: return _combine_distributions_multivariate(probability_distributions) def _combine_distributions_univariate(probability_distributions): # if there's just one: return it immediately if len(probability_distributions) == 1: return probability_distributions[0] # all delta dists deltas = [p for p in probability_distributions if isinstance( p, DeltaDistribution)] if len(deltas) > 1: # for multiple delta dists, check if central values are the same cvs = set([p.central_value for p in deltas]) if len(cvs) > 1: raise ValueError("Combining multiple delta distributions with different central values yields zero PDF") else: return deltas[0] elif len(deltas) == 1: # for single delta dist, nothing to combine: delta always wins! return deltas[0] # all normal dists gaussians = [p for p in probability_distributions if isinstance( p, NormalDistribution)] # all other univariate dists others = [p for p in probability_distributions if not isinstance(p, NormalDistribution) and not isinstance(p, DeltaDistribution)] # let's combine the normal distributions into 1 if gaussians: gaussian = _combine_gaussians(gaussians) if gaussians and not others: # if there are only the gaussians, we are done. return gaussian else: # otherwise, we need to combine the (combined) gaussian with the others if gaussians: to_be_combined = others + [gaussian] else: to_be_combined = others # turn all distributions into numerical distributions! numerical = [NumericalDistribution.from_pd(p) for p in to_be_combined] return _combine_numerical(numerical) def weighted_average(central_values, standard_deviations): """Return the central value and standard deviation of the weighted average if a set of normal distributions specified by a list of central values and standard deviations""" c = np.average(central_values, weights=1 /
np.asarray(standard_deviations)
numpy.asarray
import copy import warnings import pandas as pd import numpy as np from scipy.optimize import fmin import os CWD = os.path.dirname(os.path.abspath(__file__)) class FFD(object): """Flare frequency distribution. alpha and beta refer to a power law that can be used to model the FFD. dN/dE = beta * E^(-alpha) N - number of flares E - energy or equivalent duration Attributes: ----------- f : DataFrame flare table in the FlareLightCurve.flares format with extra columns for flare target identifiers alpha : float power law exponent alpha_err : float power law exponent uncertainty beta : float power law intercept beta_err : float power law intercept uncertainty tot_obs_time: float total observing time during which the flares in f were detected ID : str column name in f for the flare target identifier ed : array EDs in cumulative FFD, sorted freq : array frequencies of EDs in cumulative FFD, sorted like ed count_ed : array frequency adjusted ed sample multiple_stars : bool True when ed_and_freq was called with multiple_stars flag set """ def __init__(self, f=None, alpha=None, alpha_err=None, beta=None, beta_err=None, tot_obs_time=1., ID=None, multiple_stars=False): self.f = f self.alpha = alpha self.alpha_err = alpha_err self.beta = beta self.beta_err = beta_err self.tot_obs_time = tot_obs_time self._ed = None self._freq = None self._count_ed = None self.ID = ID self._multiple_stars = multiple_stars # Set all the setters and getters for attributes # that only methods should be allowed to change: @property def multiple_stars(self): return self._multiple_stars @multiple_stars.setter def multiple_stars(self, multiple_stars): print(f"Setting multiple_stars flag with {multiple_stars}.") self._multiple_stars = multiple_stars @property def ed(self): return self._ed @ed.setter def ed(self, ed): print(f"Setting ED with new values, size {len(ed)}.") self._ed = ed @property def freq(self): return self._freq @freq.setter def freq(self, freq): print(f"Setting frequency values with new values, size {len(freq)}.") self._freq = freq @property def count_ed(self): return self._count_ed @count_ed.setter def count_ed(self, count_ed): print(f"Setting frequency adjusted count values " f"with new values, size {len(count_ed)}.") self._count_ed = count_ed # ----------------------------------------------------------------------- def ed_and_freq(self, energy_correction=False, recovery_probability_correction=False, multiple_stars=False): """Take the flare table and return the FFD with different or no corrections. tot_obs_time is used to convert counts to frequencies and defines its unit. Parameters: ------------ energy_correction: bool, default False use ed_corr instead of ed_rec recovery_probability_correction: bool, default False multiply inverse recovery probabilities instead of assuming the recovery probability was 1 multiple_stars: bool, default False apply a first order approximation to account for the effects of stacking FFDs of stars with different detection thresholds Return: ------- ed, freq, count_ed - equivalent durations and corresponding cumulative frequencies, and frequency adjusted event sample. See `_ed_and_counts` method for details. """ # Convert human readable cases to keywords if ((energy_correction is False) & (recovery_probability_correction is False)): key = "no_corr" elif ((energy_correction is True) & (recovery_probability_correction is False)): key = "ed_corr" elif ((energy_correction is True) & (recovery_probability_correction is True)): key = "edrecprob_corr" else: raise KeyError("This set of parameters for energy " "correction, recovery probability " "correction is not implemented. You must" " set energy_correction=True if you wish to " "set recovery_probability_correction=True.") return self._ed_and_counts(key, multiple_stars) def _ed_and_counts(self, key, multiple_stars): """Sub function to ed_and_func. Parameters: ------------ key : str defines type of correction to apply to FFD multiple_stars: bool if True will use a first order approximation to account for stacking FFDs of multiple stars Return: ------- ed, freq, count_ed - equivalent durations and corresponding cumulative frequencies, and frequency adjusted event sample """ # df, ID, col are flare table, identifier column name in df, # and column name for the ED array in df in each of the # functions below. # Each function return two arrays: sorted flare EDs or energies, # and their respective frequencies. def cum_dist(df, col, ID): """simple cumulative distribution.""" return (np.arange(1, df[col].shape[0] + 1, 1) / self.tot_obs_time, np.ones_like(df[col].values)) def get_msf_cum_dist(df, col, ID): """simple cumulative distribution accounting for multiple stars with different detection thresholds in FFDs""" freq = _get_multistar_factors(df, ID, col) self.multiple_stars = True return (np.cumsum(1 / freq) / self.tot_obs_time, 1 / freq) def cum_dist_rec_prob(df, col, ID): """cumulative distribution accounting for recovery probabilities of individual flares""" freq = (np.cumsum(1. / df.recovery_probability.values) / self.tot_obs_time) return freq, 1. / df.recovery_probability.values def get_msf_cumdist_recprob(df, col, ID): """cumulative distribution accounting for recovery probabilities of individual flares and multiple stars with different detection thresholds in FFDs""" freq_ = _get_multistar_factors(df, ID, col) self.multiple_stars = True cfreq = (np.cumsum(1. / df.recovery_probability.values / freq_) / self.tot_obs_time) return cfreq, 1. / df.recovery_probability.values / freq_ # Different keys call different correction procedures vals = {"no_corr": {False: ["ed_rec", cum_dist], True: ["ed_rec", get_msf_cum_dist]}, "ed_corr": {False: ["ed_corr", cum_dist], True: ["ed_corr", get_msf_cum_dist]}, "edrecprob_corr": {False: ["ed_corr", cum_dist_rec_prob], True: ["ed_corr", get_msf_cumdist_recprob]} } # make a copy to sort safely without affecting self.f df = self.f.copy(deep=True) # retrieve ED type (corrected or not), and function for counts col, func = vals[key][multiple_stars] df = df.sort_values(by=col, ascending=False) ed = df[col].values # get the right EDs # get the (corrected) flare counts freq, counts = func(df, col, self.ID) self.ed = ed self.freq = freq self.count_ed = _get_frequency_corrected_ed_sample(ed, counts) return self.ed, self.freq, self.count_ed def fit_beta_to_powerlaw(self, mode="ED"): '''Fit beta via non-linear least squares to a power law with given alpha using the cumulative FFD. Generate uncertainty using jackknife algorithm. Parameters: ----------- mode : str ED or energy will set the starting value for the least square minimization Return: ------- _beta, beta, beta_err - array, float, float jackknife sample of beta values, mean beta, beta uncertainty ''' def LSQ(x0, ed, freq, alpha): zw = ((x0 / (np.power(ed, alpha - 1.) * (alpha - 1.)) - freq)**2).sum() return np.sqrt(zw) N = len(self.ed) if N == 0: raise ValueError('No data.') # jackknife uncertainty x0starts = {'ED': 10, 'energy': 1e25} _beta = np.array([fmin(LSQ, x0=x0starts[mode], args=(np.delete(self.ed, i), np.delete(self.freq, i), self.alpha), disp=0)[0] for i in range(N)]) # cumulative beta = beta_cum beta = _beta.mean() beta_err = np.sqrt((N - 1) / N * ((_beta - beta)**2).sum()) # propagate errors on alpha to beta beta_err = (np.sqrt(beta_err**2 * (self.alpha - 1.)**2 + beta**2 * self.alpha_err**2)) # set attributes self.beta = beta self.beta_err = beta_err return _beta, self.beta, self.beta_err def plot_powerlaw(self, ax, custom_xlim=None, **kwargs): ''' Plot the power law fit to the FFD. [No tests] Parameters: ----------- ax : matplotlibe Axes object plot to insert the power law in to custom_xlim : 2-tuple minimum, maximum ED/energy value for power law kwargs : dict Keyword arguments to pass to plt.plot() Return: -------- 3 power law points to construct a line in log-log representation. ''' if custom_xlim is None: x = np.linspace(np.nanmin(self.ed), np.nanmax(self.ed), 3) else: mi, ma = custom_xlim x = np.linspace(mi, ma, 3) y = self.beta / np.abs(self.alpha - 1.) * np.power(x, -self.alpha + 1.) a = ax.plot(x, y, **kwargs) return a, x, y def fit_powerlaw(self, alims=[1.01, 3.]): ''' Calculate the un-biased ML power law estimator from Maschberger and Kroupa (2009), sections 3.1.4. and 3.1.5. by simply minimizing the equation in ML_powerlaw_estimator. Parameters: ------------ alims: parameter range for power law exponent Return: ------- alpha, alpha_err - float, float power law exponent and its jackknife uncertainty ''' # use frequency adjusted ED sample? ed = self._get_ed() # solve eq. 9 using scipy.fmin, define jacknife uncertainty N = len(ed) _alpha = np.array([fmin(_ML_powerlaw_estimator, x0=2., args=(np.delete(ed, i),), disp=0)[0] for i in range(N)]) # alpha is the mean value alpha = _alpha.mean() # uncertainty is the standard deviation sig_alpha = np.sqrt((N - 1) / N * ((_alpha - alpha)**2).sum()) self.alpha = alpha self.alpha_err = sig_alpha return self.alpha, self.alpha_err def is_powerlaw_truncated(self, rejection=(.15, .05), nthresh=100): ''' Apply the exceedance test recommended by Maschberger and Kroupa 2009. Parameters: ------------ rejection : tuple of floats < 1. above these thresholds the distribution can be suspected to be truncated nthresh : int Number at which to use the more permissive or more restrictive truncation rejection limit, i.e. value 0 or 1 in `rejection` Return: --------- True if power law not consistent with an un-truncated power law False if power law is consitent with an un-truncated power law ''' ed = self._get_ed() mean, std = _calculate_average_number_of_exceeding_values(ed, self.alpha, 500) if self.alpha > 2.: warnings.warn('Power law exponent is steep. ' 'Power of statistical tests decreases ' 'according to Maschberger and Kroupa 2009.') if len(ed) >= nthresh: truncation_limit = rejection[1] else: truncation_limit = rejection[0] truncated = (mean / len(ed) > truncation_limit) return truncated def is_powerlaw(self, sig_level=0.05): ''' Test if we must reject the power law hypothesis judging by the stabilised Kolmogorov-Smirnov statistic, suggested by Maschberger and Kroupa 2009. Parameters: ----------- sig_level : float < 1. significance level for the hypothesis test Returns: --------- True if we cannot reject the power law hypothesis. False if we must reject the power law hypothesis. ''' ed = self._get_ed() truncated = self.is_powerlaw_truncated() KS = _stabilised_KS_statistic(ed, alpha=self.alpha, truncated=truncated) limit = _calculate_KS_acceptance_limit(len(self.ed), sig_level=sig_level) ispowerlaw = KS < limit if ispowerlaw is False: warnings.warn('Kolmogorov-Smirnov tells us to reject' r' the power law hypothesis at p={}.' ' KS={}, limit={}'.format(sig_level, KS, limit)) return ispowerlaw def _get_ed(self): """Get ED array either for a single star sample or a multiple stars sample, depending on `multiple_stars` flag. Return: ------- ed - sample of flare energies """ if self.multiple_stars is True: ed = self.count_ed elif self.multiple_stars is False: ed = self.ed return ed def _calculate_average_number_of_exceeding_values(data, alpha, n, **kwargs): ''' Parameters: ----------- ffd : FFD object n : int number of samples to average kwargs : dict Keyword arguments to pass to :func:calculate_number_of_exceeding_values Returns: -------- (mean, std) : (float, float) average number number of exceeding values and standard deviation ''' assert alpha is not None assert data is not None exceedance_statistic = [_calculate_number_of_exceeding_values(data, alpha, **kwargs) for i in range(n)] exceedance_statistic = np.array(exceedance_statistic) return np.nanmean(exceedance_statistic), np.nanstd(exceedance_statistic) def _calculate_number_of_exceeding_values(data, alpha, maxlim=1e8, **kwargs): ''' Helper function that mimicks data similar to the observations (same alpha and size) and returns a sample from an untruncated distribution. The number of values that exceeds the maximum in the actual data is returned. Parameters: ----------- data : array observed values alpha : float best-fit power law exponent to the data maxlim : float > 1. factor to simulate an untruncated version of the given power law distribution kwargs : dict Keyword arguments to pass to :func:generate_random_power_law_distribution Return: -------- int : number of exceeding values ''' pdist = generate_random_power_law_distribution(np.min(data), np.max(data) * maxlim, -alpha + 1, size=data.shape[0], **kwargs) if np.isnan(pdist).any(): raise ValueError('Fake power law distribution for the' ' exceedance test could not be generated.' ' Check your inputs.') return len(np.where(pdist > np.max(data))[0]) def _get_multistar_factors(dataframe, ID, sort): """Returns an array of factors to apply to the detected flares. Accounts for the number of targets with different detection thresholds that contribute to the sample factor = 1 / number of targets that contribute their flares above a given flare energy. This is a first order approximation that is assuming that the least energetic flare in a light curve is just above the detection limit. If the smallest flare is significantly above the detection limit of a target's light curve small energy flare frequencies will be overestimated. The steeper the FFD the better the approximation. Parameters: ----------- dataframe: DataFrame flare table with ID and sort columns ID: str column name for star ID in dataframe sort: str column name for energies or EDs dataframe Return: ------- multistar factor array """ freq = [] # make a copy to safely sort the dataframe df = dataframe.copy(deep=True) # check if sort exists, otherwise throw error try: df = df.sort_values(by=sort, ascending=True) except: raise KeyError(f"The flare table needs a {sort} column.") # loop over sorted dataframe and find the number of targets # that contribution to the sub-frame for i in range(df.shape[0]): try: f = df.iloc[:i + 1] # sub-frame freq.append(len(set(f[ID].values))) # append number of targets except KeyError: # where are the unique target ID raise KeyError("Pass the column name of target IDs " "to the FFD constructor: ID = ???.") # factor for maximum energy goes first and must be 1, the rest < 1 return np.array(freq[::-1]) / freq[-1] def _ML_powerlaw_estimator(alpha, ed): ''' Power law maximum likelihood estimator from Maschberger and Kroupa (2009), formula (9). Parameters: ----------- alpha : float approximate value for power law exponent ed : array ED or energy array Return: -------- absolute value of left side of formula (9) To find MLE for alpha, minimize this term. ''' if np.array(alpha <= 1.).any(): # Power law exponent must be >1. return np.nan n = len(ed) if n == 0: raise ValueError('No data.') # Calculate Y variable in formula (9) Y = ed.min() if Y < 0: raise ValueError('Negative value encountered in data.') # De-bias alpha following Maschberger and Kroupa 2009 alpha = _de_bias_alpha(n, alpha) # Calculate the remaining variables in formula (9) Yexp = (np.power(Y, 1 - alpha)) T = np.log(ed).sum() Z = _de_biased_upper_limit(ed, alpha) Zexp = (np.power(Z, 1 - alpha)) return (np.abs(n / (alpha - 1) + n * ((Zexp * np.log(Z) - Yexp * np.log(Y)) / (Zexp - Yexp)) - T)) def _de_biased_upper_limit(data, a): ''' De-biases the upper limits for a ML power law exponent estimator. Uses formular (13) (and (14)) from Maschberger and Kroupa (2009). Parameters: ----------- data : Series or array data that is suspected to follow a power law relation a : float or array of floats quasi de-biased ML estimator for alpha (de_bias_alpha before inserting here!) Returns: --------- Quasi de-biased upper limit. ''' if len(data) == 0: raise ValueError('No data.') if (data < 0).any(): raise ValueError('Negative values ' 'encountered in data.') Xn = data.max() X1 = data.min() if Xn == X1: raise ValueError('Data range is zero.') n = len(data) G = (1. - a) * np.log(Xn / X1) # (14) base = 1. + (np.exp(G) - 1.) / n exponent = 1. / (1. - a) return Xn * np.power(base, exponent) def _de_bias_alpha(n, alpha): ''' De-biases the power law value according to Maschberger and Kroupa (2009), formula (12). Paramaters: ------------ n : int Size of the data alpha : float or array of floats Power law exponent value from ML estimator Returns: ----------- quasi de-biased ML estimator for alpha ''' if np.array(np.isnan(n) | np.isnan(np.array(alpha)).any()): raise ValueError('de_bias_alpha: one or ' 'both arg(s) is/are NaN') return (alpha - 1.) * n / (n - 2) + 1. def _stabilised_KS_statistic(data, alpha, truncated): ''' Calculate the stabilised KS statistic from Maschberger and Kroupa 2009, Eqn. (21) orginally from Michael 1983, and Kimber 1985. Parameters: -------------- data : array observed values that are suspected to follow a power law relation kwargs : dict Keyword arguments to pass to :func:calculate_cumulative_powerlaw_distribution Return: -------- float - stablised KS statistic ''' sorted_data = np.sort(data) pp = _calculate_cumulative_powerlaw_distribution(sorted_data, alpha, truncated) y = (np.arange(1, len(pp) + 1) - .5) / len(pp) argument = (_apply_stabilising_transformation(y) - _apply_stabilising_transformation(pp)) return np.max(np.abs(argument)) def _calculate_cumulative_powerlaw_distribution(data, alpha, truncated): ''' Calculates the cumulative powerlaw distribution from the data, given the best fit power law exponent for y(x) ~ x^(-alpha). Eq. (2) in Maschberger and Kroupa 2009. Parameters: ----------- data : array observed values that are suspected to follow a power law relation, sorted in ascending order alpha : float best-fit power law exponent truncated : bool True if the power law distribution is truncated Returns: --------- array : cumulative distribution ''' if alpha <= 1.: raise ValueError('This distribution function is only' ' valid for alpha > 1., see also ' 'Maschberger and Kroupa 2009.') data = np.sort(data) def expa(x, alpha): return
np.power(x, 1. - alpha)
numpy.power
#! /usr/bin/env python # -*- coding: utf-8 -*- """ ======================================= Visualizing the stock market structure ======================================= This example employs several unsupervised learning techniques to extract the stock market structure from variations in historical quotes. The quantity that we use is the daily variation in quote price: quotes that are linked tend to cofluctuate during a day. .. _stock_market: Learning a graph structure -------------------------- We use sparse inverse covariance estimation to find which quotes are correlated conditionally on the others. Specifically, sparse inverse covariance gives us a graph, that is a list of connection. For each symbol, the symbols that it is connected too are those useful to explain its fluctuations. Clustering ---------- We use clustering to group together quotes that behave similarly. Here, amongst the :ref:`various clustering techniques <clustering>` available in the scikit-learn, we use :ref:`affinity_propagation` as it does not enforce equal-size clusters, and it can choose automatically the number of clusters from the data. Note that this gives us a different indication than the graph, as the graph reflects conditional relations between variables, while the clustering reflects marginal properties: variables clustered together can be considered as having a similar impact at the level of the full stock market. Embedding in 2D space --------------------- For visualization purposes, we need to lay out the different symbols on a 2D canvas. For this we use :ref:`manifold` techniques to retrieve 2D embedding. Visualization ------------- The output of the 3 models are combined in a 2D graph where nodes represents the stocks and edges the: - cluster labels are used to define the color of the nodes - the sparse covariance model is used to display the strength of the edges - the 2D embedding is used to position the nodes in the plan This example has a fair amount of visualization-related code, as visualization is crucial here to display the graph. One of the challenge is to position the labels minimizing overlap. For this we use an heuristic based on the direction of the nearest neighbor along each axis. """ print(__doc__) # Author: <NAME> <EMAIL> # License: BSD 3 clause # Modified by MDA (<EMAIL>) from datetime import datetime from datetime import date import numpy as np from matplotlib import rcParams from matplotlib import pyplot as plt from matplotlib.collections import LineCollection from six.moves.urllib.request import urlopen from six.moves.urllib.parse import urlencode from sklearn import cluster, covariance, manifold import quandl from quandl_config import API_CONFIG_KEY quandl.ApiConfig.api_key = API_CONFIG_KEY rcParams.update({'font.size': 8}) ############################################################################### # Retrieve the data from Internet def quotes_historical_google(symbol, date1, date2): """Get the historical data from Google finance. Parameters ---------- symbol : str Ticker symbol to query for, for example ``"DELL"``. date1 : datetime.datetime Start date. date2 : datetime.datetime End date. Returns ------- X : array The columns are ``date`` -- datetime, ``open``, ``high``, ``low``, ``close`` and ``volume`` of type float. """ params = urlencode({ 'q': symbol, 'startdate': date1.strftime('%b %d, %Y'), 'enddate': date2.strftime('%b %d, %Y'), 'output': 'csv' }) url = 'http://www.google.com/finance/historical?' + params with urlopen(url) as response: # print(response, symbol) dtype = { 'names': ['date', 'open', 'high', 'low', 'close', 'volume'], 'formats': ['object', 'f4', 'f4', 'f4', 'f4', 'f4'] } converters = {0: lambda s: datetime.strptime(s.decode(), '%d-%b-%y')} return np.genfromtxt(response, delimiter=',', skip_header=1, dtype=dtype, converters=converters, missing_values='-', filling_values=-1) # We are looking for 2y max d1 = datetime(2017, 1, 1) d2 = datetime(2017, 7, 10) # d1 = today = datetime.datetime(2016, 1, 1) # d1 = today = date.today() # d2 = start = datetime.datetime(2017, 5, 10) # start = (today.day, today.month, today.year - 1) # start = str(start[0]) + '-' + str(start[1]) + '-' + str(start[2]) def make_symbol_dic(stocks, **kwargs): symbol_dict = {} if not kwargs: F = open(stocks, 'r') stocks = set(F.readlines()) for symbol in stocks: try: qnd_symbol = 'WIKI/' + symbol.strip() stock = quandl.Dataset(qnd_symbol).name symbol_dict.setdefault(symbol.strip(), stock.split(' (', 1)[0]) except: pass return symbol_dict shortlist = [ 'MMM', 'CVX', 'PTEN', 'NVDA', 'TDG', 'JNJ', 'TSLA', 'F', 'NFLX', 'AMD', 'MU', 'AMZN', 'AAPL', 'FB', 'BA', 'TDG', 'BA', 'GOOGL', 'STX', 'WDC', 'TXN', 'AMS', 'WLM', 'BK', 'WMT' ] longlist = [ 'AMZN', 'GOOGL', 'TSLA', 'FB', 'GLD', 'NVDA', 'GILD', 'NESN', 'MSFT', 'BBY', 'INTC', 'AMD', 'IMGN', 'HBI', 'DIS', 'MEET', 'MCD', 'TWTR', 'NFLX', 'NXPI', 'BABA', 'JNJ', 'T', 'PG', 'MA', 'WMT', 'IBM', 'AAPL', 'BBBY', 'MRK', 'GS', 'CRM', 'MS', 'TDG', 'BA', 'MU', 'MMM', 'ILMN', 'LPL', 'SNE', 'BAC', 'FOXA', 'GPRO', 'GILD', 'SNAP', 'FIT', 'TXN', 'STX', 'WDC' ] pipeline = ['LB', 'FL', 'COL','VXX', 'TVIX', 'XIV', 'SVXY', 'UVXY', 'SNAP', 'AMD'] symbol_dict = make_symbol_dic(pipeline, t=list) symbols, names = np.array(list(symbol_dict.items())).T ''' quotes = [] for symbol in symbols: try: quote = quotes_historical_google(symbol, d1, d2) quotes.append(quote) except Exception as e: print(e) close_prices = np.stack([q['close'] for q in quotes]) open_prices = np.stack([q['open'] for q in quotes]) ''' for symbol in symbols: try: quotes = [quandl.get('WIKI/' + symbol, start_date=d1, end_date=d2, returns='numpy') for symbol in symbols] except Exception as e: print(e) close_prices = np.stack([q['Close'] for q in quotes]) open_prices = np.stack([q['Open'] for q in quotes]) # The daily variations of the quotes are what carry most information variation = close_prices - open_prices ############################################################################### # Learn a graphical structure from the correlations edge_model = covariance.GraphLassoCV() # standardize the time series: using correlations rather than covariance # is more efficient for structure recovery X = variation.copy().T X /= X.std(axis=0) edge_model.fit(X) ############################################################################### # Cluster using affinity propagation _, labels = cluster.affinity_propagation(edge_model.covariance_) n_labels = labels.max() for i in range(n_labels + 1): print('Cluster %i: %s' % ((i + 1), ', '.join(names[labels == i]))) ############################################################################### # Find a low-dimension embedding for visualization: find the best position of # the nodes (the stocks) on a 2D plane # We use a dense eigen_solver to achieve reproducibility (arpack is # initiated with random vectors that we don't control). In addition, we # use a large number of neighbors to capture the large-scale structure. node_position_model = manifold.LocallyLinearEmbedding( n_components=2, eigen_solver='dense', n_neighbors=6) embedding = node_position_model.fit_transform(X.T).T ############################################################################### # Visualization plt.figure(1, facecolor='w', figsize=(10, 8)) plt.clf() ax = plt.axes([0., 0., 1., 1.]) plt.axis('off') # Display a graph of the partial correlations partial_correlations = edge_model.precision_.copy() d = 1 / np.sqrt(np.diag(partial_correlations)) partial_correlations *= d partial_correlations *= d[:, np.newaxis] non_zero = (np.abs(np.triu(partial_correlations, k=1)) > 0.02) # Plot the nodes using the coordinates of our embedding plt.scatter(embedding[0], embedding[1], s=100 * d ** 2, c=labels, cmap=plt.cm.spectral) # Plot the edges start_idx, end_idx =
np.where(non_zero)
numpy.where
from __future__ import division import copy import itertools import math import numpy as np import torch from mmcv.runner import get_dist_info from mmdet.datasets import ConcatDataset from torch.utils.data import Sampler, WeightedRandomSampler from ssod.utils import get_root_logger from ..builder import SAMPLERS def chain(iter_obj): tmp = [] for s in iter_obj: tmp.extend(s) return tmp @SAMPLERS.register_module() class DistributedGroupFixRatioSampler(Sampler): def __init__( self, dataset: ConcatDataset, samples_per_gpu=1, num_replicas=None, rank=None, sample_ratio=None, by_prob=True, at_least_one=False, seed=0, max_iters=None, ): _rank, _num_replicas = get_dist_info() if num_replicas is None: num_replicas = _num_replicas if rank is None: rank = _rank assert isinstance( dataset, ConcatDataset ), "The dataset must contains multiple sub datasets" self.dataset = dataset self.samples_per_gpu = samples_per_gpu if at_least_one: assert self.samples_per_gpu >= len(self.dataset.datasets) self.num_replicas = num_replicas self.rank = rank self.epoch = 0 self.seed = seed if seed is not None else 0 self.sample_ratio = ( sample_ratio if sample_ratio is not None else [1] * len(self.dataset.datasets) ) assert len(self.sample_ratio) == len(self.dataset.datasets) self.by_prob = by_prob self.at_least_one = at_least_one self.base_indices = [ self._get_sub_seq( d, offset=self.dataset.cumulative_sizes[i - 1] if i > 0 else 0 ) for i, d in enumerate(self.dataset.datasets) ] self.set_num = len(self.base_indices) group_num_per_set = [len(self.base_indices[i]) for i in range(self.set_num)] if not all([num == max(group_num_per_set) for num in group_num_per_set]): self.logger.warn( "The number of groups in each set is not same. Ignoring the group flag...." ) self.base_indices = [ np.concatenate(indices) for indices in self.base_indices ] self.group_num = 1 else: self.group_num = len(self.base_indices[0]) self.max_iters = max_iters self._compute_samples() def __iter__(self): self._compute_samples() # deterministically shuffle based on epoch g = torch.Generator() g.manual_seed(self.epoch + self.seed) indices = copy.deepcopy(self.base_indices) cumulated_indices = [] for i in range(self.group_num): _indices = [ itertools.cycle( indice[i][ list(torch.randperm(len(indice[i]), generator=g).numpy()) ].tolist() ) for indice in indices ] for _ in range(self.iter_per_group[i]): size_per_bucket = self._sample(g) samples_per_batch = [ [next(_indices[j]) for _ in range(size_per_bucket[j])] for j in range(self.set_num) ] # print(samples_per_batch) # shuffle across process if self.at_least_one: for s in samples_per_batch: assert ( len(s) >= self.num_replicas ), "When `at_least_one` set to `True`, size of each set must be larger than world_size." base = chain( [ np.asarray(s[: self.num_replicas])[ list( torch.randperm( self.num_replicas, generator=g ).numpy() ) ].tolist() for s in samples_per_batch ] ) extra = np.array( chain( [ s[self.num_replicas :] for s in samples_per_batch if len(s) > self.num_replicas ] ) ) if len(extra) > 0: extra = extra[ list(torch.randperm(len(extra), generator=g,).numpy()) ] extra = extra.tolist() samples_per_batch = base + extra else: samples_per_batch = np.array(chain(samples_per_batch))[ list( torch.randperm( self.samples_per_gpu * self.num_replicas, generator=g ).numpy() ) ].tolist() cumulated_indices.append(samples_per_batch) cumulated_indices = ( np.asarray(cumulated_indices)[ list(torch.randperm(len(cumulated_indices), generator=g).numpy()) ] .reshape((-1,)) .tolist() ) assert len(cumulated_indices) == len(self) * self.num_replicas # subsample cumulated_indices = cumulated_indices[ self.rank : self.rank + self.num_replicas * len(self) : self.num_replicas ] assert len(cumulated_indices) == len(self) return iter(cumulated_indices) def _sample(self, generator=None): total_batch_size = self.num_replicas * self.samples_per_gpu # normalize sample_prob = [s / sum(self.sample_ratio) for s in self.sample_ratio] if (not self.by_prob) or (generator is None): size_per_bucket = [int(total_batch_size * p) for p in sample_prob] size_per_bucket[-1] = total_batch_size - sum(size_per_bucket[:-1]) else: if self.at_least_one: extra_size = total_batch_size - self.num_replicas * self.set_num if extra_size > 0: sample_seq = list( WeightedRandomSampler( sample_prob, extra_size, replacement=True, generator=generator, ) ) else: sample_seq = [] for i in range(self.set_num): sample_seq = sample_seq + [i for _ in range(self.num_replicas)] _, size_per_bucket =
np.unique(sample_seq, return_counts=True)
numpy.unique
import numpy import xraylib import scipy.constants as codata # needed by bragg_calc from xoppylib.crystals.bragg_preprocessor_file_io import bragg_preprocessor_file_v2_write from dabax.common_tools import f0_xop, f0_xop_with_fractional_charge from dabax.common_tools import bragg_metrictensor, lorentz, atomic_symbols import sys import os import platform from xoppylib.xoppy_util import locations from dabax.dabax_xraylib import DabaxXraylib # # # def bragg_metrictensor(a,b,c,a1,a2,a3,RETURN_REAL_SPACE=0,RETURN_VOLUME=0,HKL=None): """ Returns the metric tensor in the reciprocal space :param a: unit cell a :param b: unit cell b :param c: unit cell c :param a1: unit cell alpha :param a2: unit cell beta :param a3: unit cell gamma :param RETURN_REAL_SPACE: set to 1 for returning metric tensor in real space :param RETURN_VOLUME: set to 1 to return the unit cell volume in Angstroms^3 :param HKL: if !=None, returns the d-spacing for the corresponding [H,K,L] reflection :return: the returned value depends on the keywords used. If RETURN_REAL_SPACE=0,RETURN_VOLUME=0, and HKL=None then retuns the metric tensor in reciprocal space. """ # input cell a,b,c,alpha,beta,gamma; angles in degrees a1 *= numpy.pi / 180.0 a2 *= numpy.pi / 180.0 a3 *= numpy.pi / 180.0 # ; # ; tensor in real space # ; g = numpy.array( [ [a*a, a*b*numpy.cos(a3), a*c*numpy.cos(a2)], \ [a*b*numpy.cos(a3), b*b, b*c*numpy.cos(a1)], \ [a*c*numpy.cos(a2), b*c*numpy.cos(a1), c*c]] ) if RETURN_REAL_SPACE: return g # print("g: ",g) # ; # ; volume of the lattice # ; volume2 = numpy.linalg.det(g) volume = numpy.sqrt(volume2) # print("Volume of unit cell: %g A^3",volume) if RETURN_VOLUME: return volume # ; # ; tensor in reciprocal space # ; ginv = numpy.linalg.inv(g) # ;print,gInv # # itmp = where(abs(ginv) LT 1d-8) # IF itmp[0] NE -1 THEN ginv[itmp]=0D itmp = numpy.where(numpy.abs(ginv) < 1e-8) ginv[itmp] = 0.0 # print("ginv: ",ginv) if HKL != None: # ; computes d-spacing dd = numpy.dot( numpy.array(HKL) , numpy.dot( ginv , numpy.array(HKL))) # # print("DD: ", dd) dd1 = 1.0 / numpy.sqrt(dd) # print("D-spacing: ",dd1) return dd1 else: return ginv def lorentz(theta_bragg_deg,return_what=0): """ This function returns the Lorentz factor, polarization factor (unpolarized beam), geometric factor, or a combination of them. :param theta_bragg_deg: Bragg angle in degrees :param return_what: A flag indicating the returned variable: 0: (default) PolFac*lorentzFac 1: PolFac 2: lorentzFac 3: geomFac :return: a scalar value """ tr = theta_bragg_deg * numpy.pi / 180. polarization_factor = 0.5 * (1.0 + (numpy.cos(2.0 * tr))**2) lorentz_factor = 1.0 / numpy.sin(2.0 * tr) geometrical_factor = 1.0 * numpy.cos(tr) / numpy.sin(2.0 * tr) if return_what == 0: return polarization_factor*lorentz_factor elif return_what == 1: return polarization_factor elif return_what == 2: return lorentz_factor elif return_what == 3: return geometrical_factor elif return_what == 4: return polarization_factor*lorentz_factor*geometrical_factor # OBSOLETE.... USE bragg_calc2() INSTEAD! def bragg_calc(descriptor="Si",hh=1,kk=1,ll=1,temper=1.0,emin=5000.0,emax=15000.0,estep=100.0,fileout=None, material_constants_library=xraylib): """ Preprocessor for Structure Factor (FH) calculations. It calculates the basic ingredients of FH. :param descriptor: crystal name (as in xraylib) :param hh: miller index H :param kk: miller index K :param ll: miller index L :param temper: temperature factor (scalar <=1.0 ) :param emin: photon energy minimum :param emax: photon energy maximum :param estep: photon energy step :param fileout: name for the output file (default=None, no output file) :return: a dictionary with all ingredients of the structure factor. """ output_dictionary = {} codata_e2_mc2 = codata.e**2 / codata.m_e / codata.c**2 / (4*numpy.pi*codata.epsilon_0) # in m # f = open(fileout,'w') version = "2.5" output_dictionary["version"] = version # todo: txt not longer used here... can be removed txt = "" txt += "# Bragg version, Data file type\n" txt += "%s 1\n" % version cryst = material_constants_library.Crystal_GetCrystal(descriptor) if cryst is None: raise Exception("Crystal not found in xraylib: %s" % descriptor ) volume = cryst['volume'] # crystal data - not needed icheck = 0 if icheck: print (" Unit cell dimensions are %f %f %f" % (cryst['a'],cryst['b'],cryst['c'])) print (" Unit cell angles are %f %f %f" % (cryst['alpha'],cryst['beta'],cryst['gamma'])) print (" Unit cell volume is %f A^3" % volume ) print (" Atoms at:") print (" Z fraction X Y Z") for i in range(cryst['n_atom']): atom = cryst['atom'][i] print (" %3i %f %f %f %f" % (atom['Zatom'], atom['fraction'], atom['x'], atom['y'], atom['z']) ) print (" ") volume = volume*1e-8*1e-8*1e-8 # in cm^3 dspacing = material_constants_library.Crystal_dSpacing(cryst, hh, kk, ll) rn = (1e0/volume)*(codata_e2_mc2*1e2) dspacing *= 1e-8 # in cm txt += "# RN = (e^2/(m c^2))/V) [cm^-2], d spacing [cm]\n" txt += "%e %e \n" % (rn , dspacing) output_dictionary["rn"] = rn output_dictionary["dspacing"] = dspacing atom = cryst['atom'] list_Zatom = [ atom[i]['Zatom'] for i in range(len(atom))] number_of_atoms = len(list_Zatom) list_fraction = [ atom[i]['fraction'] for i in range(len(atom))] try: list_charge = [atom[i]['charge'] for i in range(len(atom))] except: list_charge = [0.0] * number_of_atoms list_x = [ atom[i]['x'] for i in range(len(atom))] list_y = [ atom[i]['y'] for i in range(len(atom))] list_z = [ atom[i]['z'] for i in range(len(atom))] # creates an is that contains Z, occupation and charge, that will # define the different sites. IDs = [] number_of_atoms = len(list_Zatom) for i in range(number_of_atoms): IDs.append("Z:%2d-F:%g-C:%g" % (list_Zatom[i],list_fraction[i], list_charge[i])) # calculate indices of uniqte Id's sorted by Z unique_indexes1 = numpy.unique(IDs, return_index=True) [1] unique_Zatom1 = [list_Zatom[i] for i in unique_indexes1] # sort by Z ii = numpy.argsort(unique_Zatom1) unique_indexes = unique_indexes1[ii] unique_Zatom = [list_Zatom[i] for i in unique_indexes] unique_charge = [list_charge[i] for i in unique_indexes] unique_scattering_electrons = [] for i, Zi in enumerate(unique_Zatom): unique_scattering_electrons.append(Zi - unique_charge[i]) nbatom = (len(unique_Zatom)) txt += "# Number of different element-sites in unit cell NBATOM:\n%d \n" % nbatom output_dictionary["nbatom"] = nbatom txt += "# for each element-site, the number of scattering electrons (Z_i + charge_i)\n" for i in unique_Zatom: txt += "%d "%i txt += "\n" output_dictionary["atnum"] = list(unique_scattering_electrons) txt += "# for each element-site, the occupation factor\n" unique_fraction = [] for i in range(len(unique_indexes)): unique_fraction.append(list_fraction[unique_indexes[i]]) txt += "%g "%(unique_fraction[i]) txt += "\n" output_dictionary["fraction"] = unique_fraction txt += "# for each element-site, the temperature factor\n" # temperature parameter list_temper = [] for i in range(len(unique_indexes)): txt += "%5.3f "%temper list_temper.append(temper) txt += "\n" output_dictionary["temper"] = list_temper # # Geometrical part of structure factor: G and G_BAR # txt += "# for each type of element-site, COOR_NR=G_0\n" list_multiplicity = [] for i in range(len(unique_indexes)): id = IDs[unique_indexes[i]] txt += "%d "%IDs.count(id) list_multiplicity.append(IDs.count(id)) txt += "\n" output_dictionary["G_0"] = list_multiplicity txt += "# for each type of element-site, G and G_BAR (both complex)\n" list_g = [] list_g_bar = [] for i in range(len(unique_indexes)): id = IDs[unique_indexes[i]] ga = 0.0 + 0j for i,zz in enumerate(IDs): if zz == id: ga += numpy.exp(2j*numpy.pi*(hh*list_x[i]+kk*list_y[i]+ll*list_z[i])) txt += "(%g,%g) \n"%(ga.real,ga.imag) txt += "(%g,%g) \n"%(ga.real,-ga.imag) list_g.append(ga) list_g_bar.append(ga.conjugate()) output_dictionary["G"] = list_g output_dictionary["G_BAR"] = list_g_bar # # F0 part # txt += "# for each type of element-site, the number of f0 coefficients followed by them\n" list_f0 = [] for i in range(len(unique_indexes)): zeta = list_Zatom[unique_indexes[i]] tmp = f0_xop(zeta) txt += ("11 "+"%g "*11+"\n")%(tuple(tmp)) list_f0.append(tmp.tolist()) output_dictionary["f0coeff"] = list_f0 npoint = int( (emax - emin)/estep + 1 ) txt += "# The number of energy points NPOINT: \n" txt += ("%i \n") % npoint output_dictionary["npoint"] = npoint txt += "# for each energy point, energy, F1(1),F2(1),...,F1(nbatom),F2(nbatom)\n" list_energy = [] out_f1 = numpy.zeros( (len(unique_indexes),npoint), dtype=float) out_f2 = numpy.zeros( (len(unique_indexes),npoint), dtype=float) out_fcompton = numpy.zeros( (len(unique_indexes),npoint), dtype=float) # todo is complex? for i in range(npoint): energy = (emin+estep*i) txt += ("%20.11e \n") % (energy) list_energy.append(energy) for j in range(len(unique_indexes)): zeta = list_Zatom[unique_indexes[j]] f1a = material_constants_library.Fi(int(zeta),energy*1e-3) f2a = -material_constants_library.Fii(int(zeta),energy*1e-3) # TODO: check the sign!! txt += (" %20.11e %20.11e 1.000 \n")%(f1a, f2a) out_f1[j,i] = f1a out_f2[j,i] = f2a out_fcompton[j,i] = 1.0 output_dictionary["energy"] = list_energy output_dictionary["f1"] = out_f1 output_dictionary["f2"] = out_f2 output_dictionary["fcompton"] = out_fcompton if fileout != None: bragg_preprocessor_file_v2_write(output_dictionary, fileout) # with open(fileout,"w") as f: # f.write(txt) # print("File written to disk: %s" % fileout) return output_dictionary # # # def crystal_fh(input_dictionary,phot_in,theta=None,forceratio=0): """ :param input_dictionary: as resulting from bragg_calc() :param phot_in: photon energy in eV :param theta: incident angle (half of scattering angle) in rad :return: a dictionary with structure factor """ # outfil = input_dictionary["outfil"] # fract = input_dictionary["fract"] rn = input_dictionary["rn"] dspacing = numpy.array(input_dictionary["dspacing"]) nbatom = numpy.array(input_dictionary["nbatom"]) atnum = numpy.array(input_dictionary["atnum"]) temper = numpy.array(input_dictionary["temper"]) G_0 = numpy.array(input_dictionary["G_0"]) G = numpy.array(input_dictionary["G"]) G_BAR = numpy.array(input_dictionary["G_BAR"]) f0coeff = numpy.array(input_dictionary["f0coeff"]) npoint = numpy.array(input_dictionary["npoint"]) energy = numpy.array(input_dictionary["energy"]) fp = numpy.array(input_dictionary["f1"]) fpp = numpy.array(input_dictionary["f2"]) fraction = numpy.array(input_dictionary["fraction"]) phot_in = numpy.array(phot_in,dtype=float).reshape(-1) toangstroms = codata.h * codata.c / codata.e * 1e10 itheta = numpy.zeros_like(phot_in) for i,phot in enumerate(phot_in): if theta is None: itheta[i] = numpy.arcsin(toangstroms*1e-8/phot/2/dspacing) else: itheta[i] = theta # print("energy= %g eV, theta = %15.13g deg"%(phot,itheta[i]*180/numpy.pi)) if phot < energy[0] or phot > energy[-1]: raise Exception("Photon energy %g eV outside of valid limits [%g,%g]"%(phot,energy[0],energy[-1])) if forceratio == 0: ratio = numpy.sin(itheta[i]) / (toangstroms / phot) else: ratio = 1 / (2 * dspacing * 1e8) # print("Ratio: ",ratio) F0 = numpy.zeros(nbatom) F000 = numpy.zeros(nbatom) for j in range(nbatom): #icentral = int(f0coeff.shape[1]/2) #F0[j] = f0coeff[j,icentral] icentral = int(len(f0coeff[j])/2) F0[j] = f0coeff[j][icentral] # F000[j] = F0[j] for i in range(icentral): #F0[j] += f0coeff[j,i] * numpy.exp(-1.0*f0coeff[j,i+icentral+1]*ratio**2) F0[j] += f0coeff[j][i] * numpy.exp(-1.0*f0coeff[j][i+icentral+1]*ratio**2) #srio F000[j] += f0coeff[j][i] #actual number of electrons carried by each atom, <NAME>, <EMAIL> F000[j] = atnum[j] # srio # ;C # ;C Interpolate for the atomic scattering factor. # ;C for j,ienergy in enumerate(energy): if ienergy > phot: break nener = j - 1 F1 = numpy.zeros(nbatom,dtype=float) F2 = numpy.zeros(nbatom,dtype=float) F = numpy.zeros(nbatom,dtype=complex) for j in range(nbatom): F1[j] = fp[j,nener] + (fp[j,nener+1] - fp[j,nener]) * \ (phot - energy[nener]) / (energy[nener+1] - energy[nener]) F2[j] = fpp[j,nener] + (fpp[j,nener+1] - fpp[j,nener]) * \ (phot - energy[nener]) / (energy[nener+1] - energy[nener]) r_lam0 = toangstroms * 1e-8 / phot for j in range(nbatom): F[j] = F0[j] + F1[j] + 1j * F2[j] # print("F",F) F_0 = 0.0 + 0.0j FH = 0.0 + 0.0j FH_BAR = 0.0 + 0.0j FHr = 0.0 + 0.0j FHi = 0.0 + 0.0j FH_BARr = 0.0 + 0.0j FH_BARi = 0.0 + 0.0j TEMPER_AVE = 1.0 for j in range(nbatom): FH += fraction[j] * (G[j] * F[j] * 1.0) * temper[j] FHr += fraction[j] * (G[j] * (F0[j] + F1[j])* 1.0) * temper[j] FHi += fraction[j] * (G[j] * F2[j] * 1.0) * temper[j] FN = F000[j] + F1[j] + 1j * F2[j] F_0 += fraction[j] * (G_0[j] * FN * 1.0) # TEMPER_AVE *= (temper[j])**(G_0[j]/(G_0.sum())) FH_BAR += fraction[j] * ((G_BAR[j] * F[j] * 1.0)) * temper[j] FH_BARr += fraction[j] * ((G_BAR[j] * (F0[j] + F1[j]) *1.0)) * temper[j] FH_BARi += fraction[j] * ((G_BAR[j] * F2[j] * 1.0)) * temper[j] # print("TEMPER_AVE: ",TEMPER_AVE) # ;C # ;C multiply by the average temperature factor # ;C # FH *= TEMPER_AVE # FHr *= TEMPER_AVE # FHi *= TEMPER_AVE # FH_BAR *= TEMPER_AVE # FH_BARr *= TEMPER_AVE # FH_BARi *= TEMPER_AVE STRUCT = numpy.sqrt(FH * FH_BAR) # ;C # ;C PSI_CONJ = F*( note: PSI_HBAR is PSI at -H position and is # ;C proportional to fh_bar but PSI_CONJ is complex conjugate os PSI_H) # ;C psi_over_f = rn * r_lam0**2 / numpy.pi psi_h = rn * r_lam0**2 / numpy.pi * FH psi_hr = rn * r_lam0**2 / numpy.pi * FHr psi_hi = rn * r_lam0**2 / numpy.pi * FHi psi_hbar = rn * r_lam0**2 / numpy.pi * FH_BAR psi_hbarr = rn * r_lam0**2 / numpy.pi * FH_BARr psi_hbari = rn * r_lam0**2 / numpy.pi * FH_BARi psi_0 = rn * r_lam0**2 / numpy.pi * F_0 psi_conj = rn * r_lam0**2 / numpy.pi * FH.conjugate() # ; # ; Darwin width # ; # print(rn,r_lam0,STRUCT,itheta) ssvar = rn * (r_lam0**2) * STRUCT / numpy.pi /
numpy.sin(2.0*itheta)
numpy.sin
# -*- coding: utf-8 -*- """ Created on Thu May 18 11:52:51 2017 @author: student """ import pandas as pd import numpy as np import utm import collections import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import sys from terrain import cropTerrainBB import glob import os from PIL import Image def loadCameras(directory_images,directory_metadata,metaDataType,terrain): ''' loadCameras loads camera locations and orientations from a set of images and matching metadata This is a variation specifically for the Medina Wasl images and metadata INPUTS directory_images - Location of folder holding images directory_metadata - Location of folder holding matching mark_1_pva metadata in csv format OUTPUTS cn, ce, ce - camera north east and down positions (m) cor_n, cor_e, cor_d - camera center orientation vector, or pointing direction (m) cup_n, cup_e, cup_d - camera up vector, or the vector pointing out the top of the camera (m) alphax - camera horizontal field of view (degrees) alphay - camera vertical field of view (degrees) df_all - camera metadata read from mark_1_pva.csv ''' # Load metadata if(metaDataType=='Muscat'): df_all = readMetaDataMuscat(directory_images,directory_metadata) elif(metaDataType=='Medina'): df_all = readMetaDataMedina(directory_images,directory_metadata) else: print('Invalid Metadata Type.') sys.exit() # Convert lat/lon to UTM coordinates lat = df_all['field.lat'].values lon = df_all['field.lon'].values cn = [] ce = [] for row in np.c_[lat,lon]: east,north,zone,zone_letter = utmConversion(row) cn.append(north) ce.append(east) cn = np.asarray(cn) ce = np.asarray(ce) cd = df_all['field.height'].values if(metaDataType=='Muscat'): # Load sensor parameters from parameter file SensorYaw, SensorPitch, SensorRoll, ImageHeight, ImageWidth, FocalLength = getSensorParamsMuscat(directory_images,directory_metadata) df_all['sensor_yaw'] = SensorYaw df_all['sensor_pitch'] = SensorPitch df_all['sensor_roll'] = SensorRoll df_all['focal_length'] = FocalLength df_all['ImageHeight'] = ImageHeight df_all['ImageWidth'] = ImageWidth # Get field of view angles alphax_val = np.rad2deg(2*np.arctan(ImageWidth/(2*FocalLength))) alphay_val = np.rad2deg(2*np.arctan(ImageHeight/(2*FocalLength))) alphax = np.ones(len(df_all))*alphax_val alphay = np.ones(len(df_all))*alphay_val elif(metaDataType=='Medina'): ImageHeight, ImageWidth = getSensorParamsMedina(directory_images) df_all['ImageHeight'] = ImageHeight df_all['ImageWidth'] = ImageWidth alphax = df_all['HorizontalFOV'] alphay = df_all['VerticalFOV'] #TODO: Check on focal length for Medina data # Loop through all cameras and compute their orientations cor_n = np.zeros(len(df_all)) cor_e = np.zeros(len(df_all)) cor_d = np.zeros(len(df_all)) cup_n = np.zeros(len(df_all)) cup_e = np.zeros(len(df_all)) cup_d = np.zeros(len(df_all)) if(metaDataType=='Muscat'): for i,row in enumerate(df_all['field.azimuth'].values): Yaw = np.deg2rad(df_all['field.azimuth'][i]) Pitch = np.deg2rad(df_all['field.pitch'][i]) Roll = np.deg2rad(df_all['field.roll'][i]) SensorYaw = df_all['sensor_yaw'][i] SensorPitch = df_all['sensor_pitch'][i] SensorRoll = df_all['sensor_roll'][i] ImageHeight = df_all['ImageHeight'][i] ImageWidth = df_all['ImageWidth'][i] FocalLength = df_all['focal_length'][i] projectionContext = collections.namedtuple('projectionContext',' \ Yaw, Pitch, Roll, SensorYaw, SensorPitch, SensorRoll, ImageHeight, \ ImageWidth,FocalLength') pc = projectionContext(Yaw,Pitch,Roll, SensorYaw,SensorPitch,SensorRoll,ImageHeight, ImageWidth,FocalLength) cor_n[i],cor_e[i],cor_d[i],cup_n[i],cup_e[i],cup_d[i] = cameraOrientations(pc) elif(metaDataType=='Medina'): # Get average height of ground in flight area nn_cropped,ee_cropped,dd_cropped = cropTerrainBB(terrain, cn, ce, 0) #TODO: This should probably be on a per image basis ground_z = np.mean(dd_cropped) for i,row in df_all.iterrows(): # Get four corners tl = row[['image corners tl_latitude','tl_longitude']].values tr = row[['tr_latitude','tr_longitude']].values bl = row[['bl_latitude','bl_longitude']].values br = row[['br_latitude','br_longitude']].values # Convert four corners to UTM tle,tln,z,zl = utmConversion(tl) tre,trn,z,zl = utmConversion(tr) ble,bln,z,zl = utmConversion(bl) bre,brn,z,zl = utmConversion(br) # Get camera location cam = np.r_[cn[i],ce[i],cd[i]] # Get image center point center = np.r_[np.mean([tln,trn,bln,brn]),np.mean([tle,tre,ble,bre]),ground_z] # Get point on side of image side = np.r_[np.mean([trn,brn]),np.mean([tre,bre]),ground_z] # Vector from center of image to camera location cor_vector = center - cam cor_vector = cor_vector/np.linalg.norm(cor_vector) # Vector from side of image to camera location cside_vector = side - cam cside_vector = cside_vector/np.linalg.norm(cside_vector) # Get camera up vector using cross product of side and center vectors cup_vector = np.cross(cor_vector,cside_vector) if(cup_vector[2]<0): # Make sure we get the up vector and not the down vector cup_vector = np.cross(cside_vector,cor_vector) cor_n[i],cor_e[i],cor_d[i] = cor_vector cup_n[i],cup_e[i],cup_d[i] = cup_vector else: print('Invalid MetaData Type') sys.exit() # Pack camera information cameras = pd.DataFrame({'cn':cn, 'ce':ce, 'cd':cd, 'cor_n':cor_n, 'cor_e':cor_e, 'cor_d':cor_d, 'cup_n':cup_n, 'cup_e':cup_e, 'cup_d':cup_d, 'alphax':alphax, 'alphay':alphay}) return cameras,df_all def utmConversion(row): ''' Converts from lat lon coordinates to UTM coordinates ''' east, north, zone, zone_letter = utm.from_latlon(row[0],row[1]) return east, north, zone, zone_letter def cameraOrientations(pc,plotCorners=False): ''' Applies rotation matrices to calculate the vector along which a camera is pointing ''' # form the rotation matrix for the platform roll, pitch, yaw pr = np.array([[1, 0, 0], [0, np.cos(pc.Roll), np.sin(pc.Roll)], [0, -np.sin(pc.Roll), np.cos(pc.Roll)]]) pp = np.array([[np.cos(pc.Pitch), 0, -np.sin(pc.Pitch)], [0, 1, 0], [np.sin(pc.Pitch), 0, np.cos(pc.Pitch)]]) py = np.array([[np.cos(pc.Yaw),
np.sin(pc.Yaw)
numpy.sin
# This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import scipy.sparse as sps import time RM_train=pd.read_csv('./input/data_train.csv') R_test=pd.read_csv('./input/data_target_users_test.csv') URM=pd.read_csv('./input/data_train.csv') ICM = pd.read_csv('./input/data_ICM_title_abstract.csv') ##### URM URM_tuples = [tuple(x) for x in URM.to_numpy()] userList, itemList, ratingList = zip(*URM_tuples) userList = list(userList) userList=np.array(userList,dtype=np.int64) itemList = list(itemList) itemList=np.array(itemList,dtype=np.int64) ratingList = list(ratingList) #not needed ratingList=np.array(ratingList,dtype=np.int64) #not needed URM_all = sps.coo_matrix((ratingList, (userList, itemList))) URM_all = URM_all.tocsr() #### ICM ICM_tuples = [tuple(x) for x in ICM.to_numpy()] itemList_icm, featureList_icm, scoreList_icm = zip(*ICM_tuples) itemList_icm = list(itemList_icm) itemList_icm = np.array(itemList_icm,dtype=np.int64) featureList_icm = list(featureList_icm) featureList_icm = np.array(featureList_icm,dtype=np.int64) scoreList_icm = list(scoreList_icm) scoreList_icm = np.array(scoreList_icm,dtype=np.float64) ICM_all = sps.coo_matrix((scoreList_icm, (itemList_icm, featureList_icm))) #### Test userTestList = [x for x in R_test.to_numpy()] userTestList = zip(*userTestList) userTestList = [list(a) for a in userTestList][0] #### make validation and test from Base.Evaluation.Evaluator import EvaluatorHoldout from Data_manager.split_functions.split_train_validation_random_holdout import split_train_in_two_percentage_global_sample URM_train, URM_test = split_train_in_two_percentage_global_sample(URM_all, train_percentage = 0.80) URM_train, URM_validation = split_train_in_two_percentage_global_sample(URM_train, train_percentage = 0.80) evaluator_validation = EvaluatorHoldout(URM_validation, cutoff_list=[10]) evaluator_test = EvaluatorHoldout(URM_test, cutoff_list=[10]) ### hybrid recommender ### Usinng TF IDF ICM_all = ICM_all.tocsr() num_tot_items = ICM_all.shape[0] # let's count how many items have a certain feature items_per_feature = np.ediff1d(ICM_all.indptr) + 1 # print(items_per_feature) IDF = np.array(np.log(num_tot_items / items_per_feature)) from scipy.sparse import diags diags(IDF) ICM_idf = ICM_all.copy() ICM_idf = diags(IDF)*ICM_idf ############## top pop item_popularity = np.ediff1d(URM_all.tocsc().indptr) popular_items =
np.argsort(item_popularity)
numpy.argsort
# coding=utf8 # -------------------------------------------------------- # Scene Graph Generation by Iterative Message Passing # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- import argparse, json, string from collections import Counter import math import os from math import floor import h5py as h5 import numpy as np import pprint import xml.etree.ElementTree as ET """ A script for generating an hdf5 ROIDB from the VisualGenome dataset """ def preprocess_object_labels(data, alias_dict={}): for img in data: for obj in img['objects']: obj['ids'] = [obj['object_id']] names = [] for name in obj['names']: label = sentence_preprocess(name) if label in alias_dict: label = alias_dict[label] names.append(label) obj['names'] = names def preprocess_predicates(data, alias_dict={}): for img in data: for relation in img['relationships']: predicate = sentence_preprocess(relation['predicate']) if predicate in alias_dict: predicate = alias_dict[predicate] relation['predicate'] = predicate def extract_object_token(data, obj_list=[], verbose=True): """ Builds a set that contains the object names. Filters infrequent tokens. """ token_counter = Counter() for img in data: for region in img['objects']: for name in region['names']: if not obj_list or name in obj_list: token_counter.update([name]) tokens = set() # pick top N tokens token_counter_return = {} for token, count in token_counter.most_common(): tokens.add(token) token_counter_return[token] = count if verbose: print(('Keeping %d / %d objects' % (len(tokens), len(token_counter)))) return tokens, token_counter_return def extract_predicate_token(data, pred_list=[], verbose=True): """ Builds a set that contains the relationship predicates. Filters infrequent tokens. """ token_counter = Counter() total = 0 for img in data: for relation in img['relationships']: predicate = relation['predicate'] if not pred_list or predicate in pred_list: token_counter.update([predicate]) total += 1 tokens = set() token_counter_return = {} for token, count in token_counter.most_common(): tokens.add(token) token_counter_return[token] = count if verbose: print(('Keeping %d / %d predicates with enough instances' % (len(tokens), len(token_counter)))) return tokens, token_counter_return def merge_duplicate_boxes(data): def IoU(b1, b2): if b1[2] <= b2[0] or \ b1[3] <= b2[1] or \ b1[0] >= b2[2] or \ b1[1] >= b2[3]: return 0 b1b2 = np.vstack([b1,b2]) minc = np.min(b1b2, 0) maxc = np.max(b1b2, 0) union_area = (maxc[2]-minc[0])*(maxc[3]-minc[1]) int_area = (minc[2]-maxc[0])*(minc[3]-maxc[1]) return float(int_area)/float(union_area) def to_x1y1x2y2(obj): x1 = obj['x'] y1 = obj['y'] x2 = obj['x'] + obj['w'] y2 = obj['y'] + obj['h'] return np.array([x1, y1, x2, y2], dtype=np.int32) def inside(b1, b2): return b1[0] >= b2[0] and b1[1] >= b2[1] \ and b1[2] <= b2[2] and b1[3] <= b2[3] def overlap(obj1, obj2): b1 = to_x1y1x2y2(obj1) b2 = to_x1y1x2y2(obj2) iou = IoU(b1, b2) if all(b1 == b2) or iou > 0.9: # consider as the same box return 1 elif (inside(b1, b2) or inside(b2, b1))\ and obj1['names'][0] == obj2['names'][0]: # same object inside the other return 2 elif iou > 0.6 and obj1['names'][0] == obj2['names'][0]: # multiple overlapping same object return 3 else: return 0 # no overlap num_merged = {1:0, 2:0, 3:0} print('merging boxes..') for img in data: # mark objects to be merged and save their ids objs = img['objects'] num_obj = len(objs) for i in range(num_obj): if 'M_TYPE' in objs[i]: # has been merged continue merged_objs = [] # circular refs, but fine for j in range(i+1, num_obj): if 'M_TYPE' in objs[j]: # has been merged continue overlap_type = overlap(objs[i], objs[j]) if overlap_type > 0: objs[j]['M_TYPE'] = overlap_type merged_objs.append(objs[j]) objs[i]['mobjs'] = merged_objs # merge boxes filtered_objs = [] merged_num_obj = 0 for obj in objs: if 'M_TYPE' not in obj: ids = [obj['object_id']] dims = [to_x1y1x2y2(obj)] prominent_type = 1 for mo in obj['mobjs']: ids.append(mo['object_id']) obj['names'].extend(mo['names']) dims.append(to_x1y1x2y2(mo)) if mo['M_TYPE'] > prominent_type: prominent_type = mo['M_TYPE'] merged_num_obj += len(ids) obj['ids'] = ids mdims =
np.zeros(4)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Tue Dec 15 08:40:18 2020 @author: xie(508) """ # Electronic band structures and optiacal properities of type-2 superlattice photodectors with interfacial effect. Optical Express. Vol,20,No,2(2012).PengFei Qiao. import re import sys import csv import numpy as np ######################################### def _init(): global _global_dict _global_dict = {} def set_value(key,value): _global_dict[key] = value def get_value(key, defValue = None): try: return _global_dict[key] except KeyError: return key+" Error" def MaterParam(MatersCsv): Maters = {} Params = {} material = "" with open (MatersCsv,'r') as csvfile: Info = csv.reader(csvfile,delimiter = ",") for lines in Info: if len(lines) == 1: if len(material) != 0: Maters[material[0]] = Params Params = {} material = re.findall(r'[A-z]+',lines[0]) elif len(lines) == 0: continue else: for item in lines: Temp_0 = re.split(r'\s+',item) for i,Temp_1 in enumerate(Temp_0): if len(Temp_1) == 0: del Temp_0[i] if len(Temp_0) == 2: Params[Temp_0[0]] = float(Temp_0[1]) return Maters ######################################### global a0; global hbar; global m0; global q0; q0 = 1.602176462e-19 #electron charge(C); unit energy in eV(J) hbar = 1.05457266e-34/q0 # reduced Planck const(eV*s) m0 = (9.10956e-31)*(1e-18)/q0 #kg;ev*s^2/nm^2 def _initLoop(): global _global_dictloop _global_dictloop = {} def set_valueloop(key,value): _global_dictloop[key] = value def get_valueloop(key,defValue = None): try: return _global_dictloop[key] except KeyError: return key+" Error" def ShowPara(material): ac = get_value('ac_'+material); av = get_value("av_"+material) b = get_value("b_"+material); C11 = get_value("C11_"+material) C12 = get_value("C12_"+material); Eg0 = get_value("Eg0_"+material) Eg77 = get_value("Eg77_"+material); a = get_value("Lattice_"+material) mc = get_value("mc_"+material); mcc = get_value("mcc_"+material) r1 = get_value("r1_"+material); r2 = get_value("r2_"+material) r3 = get_value("r3_"+material); r1c = get_value("r1c_"+material) r2c = get_value("r2c_"+material); r3c = get_value("r3c_"+material) Ep = get_value("Ep_"+material); spin = get_value("spin_"+material) VBO = get_value("VBO_"+material); Ev = get_value('Ev_'+material); Ec = get_value("Ec_"+material) Ae = get_value("Ae_"+material); At = get_value("At_"+material) Pe = get_value("Pe_"+material); Pt = get_value("Pt_"+material) Qe = get_value("Qe_"+material); Qt = get_value("Qt_"+material) Rp = get_value("Rp_"+material); Sp = get_value("Sp_"+material) Vp = get_value("Vp_"+material); U = get_value("U_"+material) spin = get_value("spin_"+material); Pcv = get_value('Pcv_'+material) HamBulk = get_value("HamBulk_"+material) BulkH = get_value("BulkH_"+material) Para_bulk = {} Para_bulk['ac'] = ac; Para_bulk['av'] = av; Para_bulk['b'] = b Para_bulk['C11'] = C11; Para_bulk['C12'] = C12; Para_bulk['Eg0'] = Eg0 Para_bulk['Eg77'] = Eg77; Para_bulk['a'] = a; Para_bulk['mc'] = mc; Para_bulk['mcc'] = mcc; Para_bulk['r1'] = r1; Para_bulk['r2'] = r2; Para_bulk['r3'] = r3; Para_bulk['r1c'] = r1c; Para_bulk['r2c'] = r2c; Para_bulk['r3c'] = r3c; Para_bulk['Ep'] = Ep; Para_bulk['spin'] = spin; Para_bulk['VBO'] = VBO; return Para_bulk def MatSetVal(material): # ============================================================================= ac = get_value('ac_'+material); av = get_value("av_"+material) b = get_value("b_"+material); C11 = get_value("C11_"+material) C12 = get_value("C12_"+material); Eg0 = get_value("Eg0_"+material) Eg77 = get_value("Eg77_"+material); a = get_value("Lattice_"+material) mc = get_value("mc_"+material); mcc = get_value("mcc_"+material) r1 = get_value("r1_"+material); r2 = get_value("r2_"+material) r3 = get_value("r3_"+material); r1c = get_value("r1c_"+material) r2c = get_value("r2c_"+material); r3c = get_value("r3c_"+material) Ep = get_value("Ep_"+material); spin = get_value("spin_"+material) VBO = get_value("VBO_"+material); a0 = get_value("Lattice_GaSb") # ============================================================================= Ev = VBO Ec = Ev + Eg0 exx = (a0-a)/a; eyy = exx; ezz = (-2*C12/C11)*exx Ae = ac*(exx+eyy+ezz); At = hbar*hbar/(2*mcc) Pe = -av*(exx+eyy+ezz); Pt = hbar*hbar*r1c/(2*m0) Qe = -b/2*(exx+eyy-2*ezz); Qt = hbar*hbar*r2c/(2*m0) Pcv = np.sqrt(Ep*hbar*hbar/(2*m0)) Rp = -(hbar*hbar/(2*m0))*np.sqrt(3)*((r2c+r3c)/2) Sp = (hbar*hbar/(2*m0))*2*np.sqrt(3)*r3c Vp = Pcv/np.sqrt(6) U = Pcv/np.sqrt(3) # ============================================================================= set_value('Ev_'+material,Ev); set_value('Ec_'+material,Ec) set_value('exx_'+material,exx); set_value('eyy_'+material,eyy) set_value('ezz_'+material,ezz); set_value('Ae_'+material,Ae) set_value('At_'+material,At); set_value('Pe_'+material,Pe) set_value('Pt_'+material,Pt); set_value('Qe_'+material,Qe) set_value('Qt_'+material,Qt); set_value('Rp_'+material,Rp) set_value('Sp_'+material,Sp); set_value('Vp_'+material,Vp) set_value('U_'+material,U); set_value('Pcv_'+material,Pcv) # ============================================================================= def Ham(kt,material): # ============================================================================= Ev = get_value('Ev_'+material); Ec = get_value("Ec_"+material) Ae = get_value("Ae_"+material); At = get_value("At_"+material) Pe = get_value("Pe_"+material); Pt = get_value("Pt_"+material) Qe = get_value("Qe_"+material); Qt = get_value("Qt_"+material) Rp = get_value("Rp_"+material); Sp = get_value("Sp_"+material); Vp = get_value("Vp_"+material); U = get_value("U_"+material); spin = get_value("spin_"+material) # ============================================================================= MatrixU0 = np.zeros((4,4),dtype=complex) MatrixU0[0] = [Ec+Ae+At*kt*kt, -np.sqrt(3)*Vp*kt, -Vp*kt, -np.sqrt(2)*Vp*kt] MatrixU0[1] = [np.conj(MatrixU0[0,1]), Ev-Pe-Pt*kt*kt-Qe-Qt*kt*kt, Rp*kt*kt, np.sqrt(2)*Rp*kt*kt] MatrixU0[2] = [np.conj(MatrixU0[0,2]), np.conj(MatrixU0[1,2]), Ev-Pe-Pt*kt*kt+Qe+Qt*kt*kt, -np.sqrt(2)*(Qe+Qt*kt*kt)] MatrixU0[3] = [np.conj(MatrixU0[0,3]), np.conj(MatrixU0[1,3]), np.conj(MatrixU0[2,3]), Ev-Pe-Pt*kt*kt-spin] MatrixU1 = np.zeros((4,4),dtype=complex) MatrixU1[0] = [0, 0, complex(0,np.sqrt(2)*U), complex(0,-U)] MatrixU1[1] = [np.conj(MatrixU1[0,1]), 0, complex(0,Sp*kt), complex(0,-Sp*kt/np.sqrt(2))] MatrixU1[2] = [np.conj(MatrixU1[0,2]), np.conj(MatrixU1[1,2]), 0, complex(0,-Sp*kt*np.sqrt(3/2))] MatrixU1[3] = [np.conj(MatrixU1[0,3]), np.conj(MatrixU1[1,3]),
np.conj(MatrixU1[2,3])
numpy.conj
#!/usr/bin/env python # -*- coding: utf-8 -*- # The MIT License (MIT) # Copyright (c) 2020 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. __all__ = ['Xray', 'XrayKin', 'XrayDyn', 'XrayDynMag'] __docformat__ = 'restructuredtext' from .simulation import Simulation from ..structures.layers import AmorphousLayer, UnitCell from .. import u, Q_ from ..helpers import make_hash_md5, m_power_x, m_times_n, finderb import numpy as np import scipy.constants as constants from time import time from os import path from tqdm.notebook import trange r_0 = constants.physical_constants['classical electron radius'][0] class Xray(Simulation): r"""Xray Base class for all X-ray scattering simulations. Args: S (Structure): sample to do simulations with. force_recalc (boolean): force recalculation of results. Keyword Args: save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. Attributes: S (Structure): sample structure to calculate simulations on. force_recalc (boolean): force recalculation of results. save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. energy (ndarray[float]): photon energies :math:`E` of scattering light wl (ndarray[float]): wavelengths :math:`\lambda` of scattering light k (ndarray[float]): wavenumber :math:`k` of scattering light theta (ndarray[float]): incidence angles :math:`\theta` of scattering light qz (ndarray[float]): scattering vector :math:`q_z` of scattering light polarizations (dict): polarization states and according names. pol_in_state (int): incoming polarization state as defined in polarizations dict. pol_out_state (int): outgoing polarization state as defined in polarizations dict. pol_in (float): incoming polarization factor (can be a complex ndarray). pol_out (float): outgoing polarization factor (can be a complex ndarray). """ def __init__(self, S, force_recalc, **kwargs): super().__init__(S, force_recalc, **kwargs) self._energy = np.array([]) self._wl = np.array([]) self._k = np.array([]) self._theta = np.zeros([1, 1]) self._qz = np.zeros([1, 1]) self.polarizations = {0: 'unpolarized', 1: 'circ +', 2: 'circ -', 3: 'sigma', 4: 'pi'} self.pol_in_state = 3 # sigma self.pol_out_state = 0 # no-analyzer self.pol_in = None self.pol_out = None self.set_polarization(self.pol_in_state, self.pol_out_state) def __str__(self, output=[]): """String representation of this class""" output = [['energy', self.energy[0] if np.size(self.energy) == 1 else '{:f} .. {:f}'.format(np.min(self.energy), np.max(self.energy))], ['wavelength', self.wl[0] if np.size(self.wl) == 1 else '{:f} .. {:f}'.format(np.min(self.wl), np.max(self.wl))], ['wavenumber', self.k[0] if np.size(self.k) == 1 else '{:f} .. {:f}'.format(np.min(self.k), np.max(self.k))], ['theta', self.theta[0] if np.size(self.theta) == 1 else '{:f} .. {:f}'.format(np.min(self.theta), np.max(self.theta))], ['q_z', self.qz[0] if np.size(self.qz) == 1 else '{:f} .. {:f}'.format(np.min(self.qz), np.max(self.qz))], ['incoming polarization', self.polarizations[self.pol_in_state]], ['analyzer polarization', self.polarizations[self.pol_out_state]], ] + output return super().__str__(output) def set_incoming_polarization(self, pol_in_state): """set_incoming_polarization Must be overwritten by child classes. Args: pol_in_state (int): incoming polarization state id. """ raise NotImplementedError def set_outgoing_polarization(self, pol_out_state): """set_outgoing_polarization Must be overwritten by child classes. Args: pol_out_state (int): outgoing polarization state id. """ raise NotImplementedError def set_polarization(self, pol_in_state, pol_out_state): """set_polarization Sets the incoming and analyzer (outgoing) polarization. Args: pol_in_state (int): incoming polarization state id. pol_out_state (int): outgoing polarization state id. """ self.set_incoming_polarization(pol_in_state) self.set_outgoing_polarization(pol_out_state) def get_hash(self, strain_vectors, **kwargs): """get_hash Calculates an unique hash given by the energy :math:`E`, :math:`q_z` range, polarization states and the ``strain_vectors`` as well as the sample structure hash for relevant x-ray parameters. Optionally, part of the strain_map is used. Args: strain_vectors (dict{ndarray[float]}): reduced strains per unique layer. **kwargs (ndarray[float]): spatio-temporal strain profile. Returns: hash (str): unique hash. """ param = [self.pol_in_state, self.pol_out_state, self._qz, self._energy, strain_vectors] if 'strain_map' in kwargs: strain_map = kwargs.get('strain_map') if np.size(strain_map) > 1e6: strain_map = strain_map.flatten()[0:1000000] param.append(strain_map) return self.S.get_hash(types='xray') + '_' + make_hash_md5(param) def get_polarization_factor(self, theta): r"""get_polarization_factor Calculates the polarization factor :math:`P(\vartheta)` for a given incident angle :math:`\vartheta` for the case of `s`-polarization (pol = 0), or `p`-polarization (pol = 1), or unpolarized X-rays (pol = 0.5): .. math:: P(\vartheta) = \sqrt{(1-\mbox{pol}) + \mbox{pol} \cdot \cos(2\vartheta)} Args: theta (ndarray[float]): incidence angle. Returns: P (ndarray[float]): polarization factor. """ return np.sqrt((1-self.pol_in) + self.pol_in*np.cos(2*theta)**2) def update_experiment(self, caller): r"""update_experiment Recalculate energy, wavelength, and wavevector as well as theta and the scattering vector in case any of these has changed. .. math:: \lambda & = \frac{hc}{E} \\ E & = \frac{hc}{\lambda} \\ k & = \frac{2\pi}{\lambda} \\ \vartheta & = \arcsin{\frac{\lambda q_z}{4\pi}} \\ q_z & = 2k \sin{\vartheta} Args: caller (str): name of calling method. """ from scipy import constants if caller != 'energy': if caller == 'wl': # calc energy from wavelength self._energy = Q_((constants.h*constants.c)/self._wl, 'J').to('eV').magnitude elif caller == 'k': # calc energy von wavevector self._energy = \ Q_((constants.h*constants.c)/(2*np.pi/self._k), 'J').to('eV').magnitude if caller != 'wl': if caller == 'energy': # calc wavelength from energy self._wl = (constants.h*constants.c)/self.energy.to('J').magnitude elif caller == 'k': # calc wavelength from wavevector self._wl = 2*np.pi/self._k if caller != 'k': if caller == 'energy': # calc wavevector from energy self._k = 2*np.pi/self._wl elif caller == 'wl': # calc wavevector from wavelength self._k = 2*np.pi/self._wl if caller != 'theta': self._theta = np.arcsin(np.outer(self._wl, self._qz[0, :])/np.pi/4) if caller != 'qz': self._qz = np.outer(2*self._k, np.sin(self._theta[0, :])) @property def energy(self): return Q_(self._energy, u.eV) @energy.setter def energy(self, energy): self._energy = np.array(energy.to('eV').magnitude, ndmin=1) self.update_experiment('energy') @property def wl(self): return Q_(self._wl, u.m).to('nm') @wl.setter def wl(self, wl): self._wl = np.array(wl.to_base_units().magnitude, ndmin=1) self.update_experiment('wl') @property def k(self): return Q_(self._k, 1/u.m).to('1/nm') @k.setter def k(self, k): self._k = np.array(k.to_base_units().magnitude, ndmin=1) self.update_experiment('k') @property def theta(self): return Q_(self._theta, u.rad).to('deg') @theta.setter def theta(self, theta): self._theta = np.array(theta.to_base_units().magnitude, ndmin=1) if self._theta.ndim < 2: self._theta = np.tile(self._theta, (len(self._energy), 1)) self.update_experiment('theta') @property def qz(self): return Q_(self._qz, 1/u.m).to('1/nm') @qz.setter def qz(self, qz): self._qz = np.array(qz.to_base_units().magnitude, ndmin=1) if self._qz.ndim < 2: self._qz = np.tile(self._qz, (len(self._energy), 1)) self.update_experiment('qz') class XrayKin(Xray): r"""XrayKin Kinetic X-ray scattering simulations. Args: S (Structure): sample to do simulations with. force_recalc (boolean): force recalculation of results. Keyword Args: save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. Attributes: S (Structure): sample structure to calculate simulations on. force_recalc (boolean): force recalculation of results. save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. energy (ndarray[float]): photon energies :math:`E` of scattering light wl (ndarray[float]): wavelengths :math:`\lambda` of scattering light k (ndarray[float]): wavenumber :math:`k` of scattering light theta (ndarray[float]): incidence angles :math:`\theta` of scattering light qz (ndarray[float]): scattering vector :math:`q_z` of scattering light polarizations (dict): polarization states and according names. pol_in_state (int): incoming polarization state as defined in polarizations dict. pol_out_state (int): outgoing polarization state as defined in polarizations dict. pol_in (float): incoming polarization factor (can be a complex ndarray). pol_out (float): outgoing polarization factor (can be a complex ndarray). References: .. [9] <NAME> (1990). *X-ray diffraction*. New York: Dover Publications """ def __init__(self, S, force_recalc, **kwargs): super().__init__(S, force_recalc, **kwargs) def __str__(self): """String representation of this class""" class_str = 'Kinematical X-Ray Diffraction simulation properties:\n\n' class_str += super().__str__() return class_str def set_incoming_polarization(self, pol_in_state): """set_incoming_polarization Sets the incoming polarization factor for sigma, pi, and unpolarized polarization. Args: pol_in_state (int): incoming polarization state id. """ self.pol_in_state = pol_in_state if (self.pol_in_state == 1): # circ + self.disp_message('incoming polarizations {:s} not implemented'.format( self.polarizations[self.pol_in_state])) self.set_incoming_polarization(3) return elif (self.pol_in_state == 2): # circ- self.disp_message('incoming polarizations {:s} not implemented'.format( self.polarizations[self.pol_in_state])) self.set_incoming_polarization(3) return elif (self.pol_in_state == 3): # sigma self.pol_in = 0 elif (self.pol_in_state == 4): # pi self.pol_in = 1 else: # unpolarized self.pol_in_state = 0 self.pol_in = 0.5 self.disp_message('incoming polarizations set to: {:s}'.format( self.polarizations[self.pol_in_state])) def set_outgoing_polarization(self, pol_out_state): """set_outgoing_polarization For kinematical X-ray simulation only "no analyzer polarization" is allowed. Args: pol_out_state (int): outgoing polarization state id. """ self.pol_out_state = pol_out_state if self.pol_out_state == 0: self.disp_message('analyzer polarizations set to: {:s}'.format( self.polarizations[self.pol_out_state])) else: self.disp_message('XrayDyn does only allow for NO analyzer polarizations') self.set_outgoing_polarization(0) @u.wraps(None, (None, 'eV', 'm**-1', None), strict=False) def get_uc_atomic_form_factors(self, energy, qz, uc): """ get_uc_atomic_form_factors Returns the energy- and angle-dependent atomic form factors :math: `f(q_z, E)` of all atoms in the unit cell as a vector. Args: energy (float, Quantity): photon energy. qz (ndarray[float, Quantity]): scattering vectors. uc (UnitCell): unit cell object. Returns: f (ndarray[complex]): unit cell atomic form factors. """ if (not np.isscalar(energy)) and (not isinstance(energy, object)): raise TypeError('Only scalars or Quantities are allowed for the energy!') f = np.zeros([uc.num_atoms, len(qz)], dtype=complex) for i in range(uc.num_atoms): f[i, :] = uc.atoms[i][0].get_cm_atomic_form_factor(energy, qz) return f @u.wraps(None, (None, 'eV', 'm**-1', None, None), strict=False) def get_uc_structure_factor(self, energy, qz, uc, strain=0): r"""get_uc_structure_factor Calculates the energy-, angle-, and strain-dependent structure factor .. math: `S(E,q_z,\epsilon)` of the unit cell: .. math:: S(E,q_z,\epsilon) = \sum_i^N f_i \, \exp(-i q_z z_i(\epsilon)) Args: energy (float, Quantity): photon energy. qz (ndarray[float, Quantity]): scattering vectors. uc (UnitCell): unit cell object. strain (float, optional): strain of the unit cell 0 .. 1. Defaults to 0. Returns: S (ndarray[complex]): unit cell structure factor. """ if (not np.isscalar(energy)) and (not isinstance(energy, object)): raise TypeError('Only scalars or Quantities for the energy are allowed!') if np.isscalar(qz): qz = np.array([qz]) S = np.sum(self.get_uc_atomic_form_factors(energy, qz, uc) * np.exp(1j * uc._c_axis * np.outer(uc.get_atom_positions(strain), qz)), 0) return S def homogeneous_reflectivity(self, strains=0): r"""homogeneous_reflectivity Calculates the reflectivity :math:`R = E_p^t\,(E_p^t)^*` of a homogeneous sample structure as well as the reflected field :math:`E_p^N` of all substructures. Args: strains (ndarray[float], optional): strains of each sub-structure 0 .. 1. Defaults to 0. Returns: (tuple): - *R (ndarray[complex])* - homogeneous reflectivity. - *A (ndarray[complex])* - reflected fields of sub-structures. """ if strains == 0: strains = np.zeros([self.S.get_number_of_sub_structures(), 1]) t1 = time() self.disp_message('Calculating _homogenous_reflectivity_ ...') # get the reflected field of the structure for each energy R = np.zeros_like(self._qz) for i, energy in enumerate(self._energy): qz = self._qz[i, :] theta = self._theta[i, :] Ept, A = self.homogeneous_reflected_field(self.S, energy, qz, theta, strains) # calculate the real reflectivity from Ef R[i, :] = np.real(Ept*np.conj(Ept)) self.disp_message('Elapsed time for _homogenous_reflectivity_: {:f} s'.format(time()-t1)) return R, A @u.wraps((None, None), (None, None, 'eV', 'm**-1', 'rad', None), strict=False) def homogeneous_reflected_field(self, S, energy, qz, theta, strains=0): r"""homogeneous_reflected_field Calculates the reflected field :math:`E_p^t` of the whole sample structure as well as for each sub-structure (:math:`E_p^N`). The reflected wave field :math:`E_p` from a single layer of unit cells at the detector is calculated according to Ref. [9]_: .. math:: E_p = \frac{i}{\varepsilon_0}\frac{e^2}{m_e c_0^2} \frac{P(\vartheta) S(E,q_z,\epsilon)}{A q_z} For the case of :math:`N` similar planes of unit cells one can write: .. math:: E_p^N = \sum_{n=0}^{N-1} E_p \exp(i q_z z n ) where :math:`z` is the distance between the planes (c-axis). The above equation can be simplified to: .. math:: E_p^N = E_p \psi(q_z,z,N) introducing the interference function .. math:: \psi(q_z,z,N) & = \sum_{n=0}^{N-1} \exp(i q_z z n) \\ & = \frac{1- \exp(i q_z z N)}{1- \exp(i q_z z)} The total reflected wave field of all :math:`i = 1\ldots M` homogeneous layers (:math:`E_p^t`) is the phase-correct summation of all individual :math:`E_p^{N,i}`: .. math:: E_p^t = \sum_{i=1}^M E_p^{N,i} \exp(i q_z Z_i) where :math:`Z_i = \sum_{j=1}^{i-1} N_j z_j` is the distance of the :math:`i`-th layer from the surface. Args: S (Structure, UnitCell): structure or sub-structure to calculate on. energy (float, Quantity): photon energy. qz (ndarray[float, Quantity]): scattering vectors. theta (ndarray[float, Quantity]): scattering incidence angle. strains (ndarray[float], optional): strains of each sub-structure 0 .. 1. Defaults to 0. Returns: (tuple): - *Ept (ndarray[complex])* - reflected field. - *A (ndarray[complex])* - reflected fields of substructures. """ # if no strains are given we assume no strain (1) if np.isscalar(strains) and strains == 0: strains = np.zeros([self.S.get_number_of_sub_structures(), 1]) N = len(qz) # nb of qz Ept = np.zeros([1, N]) # total reflected field Z = 0 # total length of the substructure from the surface A = list([0, 2]) # cell matrix of reflected fields EpN of substructures strainCounter = 0 # the is the index of the strain vector if applied # traverse substructures for sub_structures in S.sub_structures: if isinstance(sub_structures[0], UnitCell): # the substructure is an unit cell and we can calculate # Ep directly Ep = self.get_Ep(energy, qz, theta, sub_structures[0], strains[strainCounter]) z = sub_structures[0]._c_axis strainCounter = strainCounter+1 elif isinstance(sub_structures[0], AmorphousLayer): raise ValueError('The substructure cannot be an AmorphousLayer!') else: # the substructure is a structure, so we do a recursive # call of this method d = sub_structures[0].get_number_of_sub_structures() Ep, temp = self.homogeneous_reflected_field( sub_structures[0], energy, qz, theta, strains[strainCounter:(strainCounter + d)]) z = sub_structures[0].get_length().magnitude strainCounter = strainCounter + d A.append([temp, [sub_structures[0].name + ' substructures']]) A.append([Ep, '{:d}x {:s}'.format(1, sub_structures[0].name)]) # calculate the interference function for N repetitions of # the substructure with the length z psi = self.get_interference_function(qz, z, sub_structures[1]) # calculate the reflected field for N repetitions of # the substructure with the length z EpN = Ep * psi # remember the result A.append([EpN, '{:d}x {:s}'.format(sub_structures[1], sub_structures[0].name)]) # add the reflected field of the current substructure # phase-correct to the already calculated substructures Ept = Ept+(EpN*np.exp(1j*qz*Z)) # update the total length $Z$ of the already calculated # substructures Z = Z + z*sub_structures[1] # add static substrate to kinXRD if S.substrate != []: temp, temp2 = self.homogeneous_reflected_field(S.substrate, energy, qz, theta) A.append([temp2, 'static substrate']) Ept = Ept+(temp*np.exp(1j*qz*Z)) return Ept, A @u.wraps(None, (None, 'm**-1', 'm', None), strict=False) def get_interference_function(self, qz, z, N): r"""get_interference_function Calculates the interference function for :math:`N` repetitions of the structure with the length :math:`z`: .. math:: \psi(q_z,z,N) & = \sum_{n=0}^{N-1} \exp(i q_z z n) \\ & = \frac{1- \exp(i q_z z N)}{1- \exp(i q_z z)} Args: qz (ndarray[float, Quantity]): scattering vectors. z (float): thickness/length of the structure. N (int): repetitions of the structure. Returns: psi (ndarray[complex]): interference function. """ psi = (1-np.exp(1j*qz*z*N)) / (1 - np.exp(1j*qz*z)) return psi @u.wraps(None, (None, 'eV', 'm**-1', 'rad', None, None), strict=False) def get_Ep(self, energy, qz, theta, uc, strain): r"""get_Ep Calculates the reflected field :math:`E_p` for one unit cell with a given strain :math:`\epsilon`: .. math:: E_p = \frac{i}{\varepsilon_0} \frac{e^2}{m_e c_0^2} \frac{P S(E,q_z,\epsilon)}{A q_z} with :math:`e` as electron charge, :math:`m_e` as electron mass, :math:`c_0` as vacuum light velocity, :math:`\varepsilon_0` as vacuum permittivity, :math:`P` as polarization factor and :math:`S(E,q_z,\sigma)` as energy-, angle-, and strain-dependent unit cell structure factor. Args: energy (float, Quantity): photon energy. qz (ndarray[float, Quantity]): scattering vectors. theta (ndarray[float, Quantity]): scattering incidence angle. uc (UnitCell): unit cell object. strain (float, optional): strain of the unit cell 0 .. 1. Defaults to 0. Returns: Ep (ndarray[complex]): reflected field. """ import scipy.constants as c Ep = 1j/c.epsilon_0*c.elementary_charge**2/c.electron_mass/c.c**2 \ * (self.get_polarization_factor(theta) * self.get_uc_structure_factor(energy, qz, uc, strain) / uc._area) / qz return Ep class XrayDyn(Xray): r"""XrayDyn Dynamical X-ray scattering simulations. Args: S (Structure): sample to do simulations with. force_recalc (boolean): force recalculation of results. Keyword Args: save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. Attributes: S (Structure): sample structure to calculate simulations on. force_recalc (boolean): force recalculation of results. save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. energy (ndarray[float]): photon energies :math:`E` of scattering light wl (ndarray[float]): wavelengths :math:`\lambda` of scattering light k (ndarray[float]): wavenumber :math:`k` of scattering light theta (ndarray[float]): incidence angles :math:`\theta` of scattering light qz (ndarray[float]): scattering vector :math:`q_z` of scattering light polarizations (dict): polarization states and according names. pol_in_state (int): incoming polarization state as defined in polarizations dict. pol_out_state (int): outgoing polarization state as defined in polarizations dict. pol_in (float): incoming polarization factor (can be a complex ndarray). pol_out (float): outgoing polarization factor (can be a complex ndarray). last_atom_ref_trans_matrices (list): remember last result of atom ref_trans_matrices to speed up calculation. """ def __init__(self, S, force_recalc, **kwargs): super().__init__(S, force_recalc, **kwargs) self.last_atom_ref_trans_matrices = {'atom_ids': [], 'hashes': [], 'H': []} def __str__(self): """String representation of this class""" class_str = 'Dynamical X-Ray Diffraction simulation properties:\n\n' class_str += super().__str__() return class_str def set_incoming_polarization(self, pol_in_state): """set_incoming_polarization Sets the incoming polarization factor for sigma, pi, and unpolarized polarization. Args: pol_in_state (int): incoming polarization state id. """ self.pol_in_state = pol_in_state if (self.pol_in_state == 1): # circ + self.disp_message('incoming polarizations {:s} not implemented'.format( self.polarizations[self.pol_in_state])) self.set_incoming_polarization(3) return elif (self.pol_in_state == 2): # circ- self.disp_message('incoming polarizations {:s} not implemented'.format( self.polarizations[self.pol_in_state])) self.set_incoming_polarization(3) return elif (self.pol_in_state == 3): # sigma self.pol_in = 0 elif (self.pol_in_state == 4): # pi self.pol_in = 1 else: # unpolarized self.pol_in_state = 0 self.pol_in = 0.5 self.disp_message('incoming polarizations set to: {:s}'.format( self.polarizations[self.pol_in_state])) def set_outgoing_polarization(self, pol_out_state): """set_outgoing_polarization For dynamical X-ray simulation only "no analyzer polarization" is allowed. Args: pol_out_state (int): outgoing polarization state id. """ self.pol_out_state = pol_out_state if self.pol_out_state == 0: self.disp_message('analyzer polarizations set to: {:s}'.format( self.polarizations[self.pol_out_state])) else: self.disp_message('XrayDyn does only allow for NO analyzer polarizations') self.set_outgoing_polarization(0) def homogeneous_reflectivity(self, *args): r"""homogeneous_reflectivity Calculates the reflectivity :math:`R` of the whole sample structure and the reflectivity-transmission matrices :math:`M_{RT}` for each substructure. The reflectivity of the :math:`2\times 2` matrices for each :math:`q_z` is calculates as follow: .. math:: R = \left|M_{RT}^t(0,1)/M_{RT}^t(1,1)\right|^2 Args: *args (ndarray[float], optional): strains for each substructure. Returns: (tuple): - *R (ndarray[float])* - homogeneous reflectivity. - *A (ndarray[complex])* - reflectivity-transmission matrices of sub-structures. """ # if no strains are given we assume no strain if len(args) == 0: strains = np.zeros([self.S.get_number_of_sub_structures(), 1]) else: strains = args[0] t1 = time() self.disp_message('Calculating _homogenous_reflectivity_ ...') # get the reflectivity-transmission matrix of the structure RT, A = self.homogeneous_ref_trans_matrix(self.S, strains) # calculate the real reflectivity from the RT matrix R = self.calc_reflectivity_from_matrix(RT) self.disp_message('Elapsed time for _homogenous_reflectivity_: {:f} s'.format(time()-t1)) return R, A def homogeneous_ref_trans_matrix(self, S, *args): r"""homogeneous_ref_trans_matrix Calculates the reflectivity-transmission matrices :math:`M_{RT}` of the whole sample structure as well as for each sub-structure. The reflectivity-transmission matrix of a single unit cell is calculated from the reflection-transmission matrices :math:`H_i` of each atom and the phase matrices between the atoms :math:`L_i`: .. math:: M_{RT} = \prod_i H_i \ L_i For :math:`N` similar layers of unit cells one can calculate the :math:`N`-th power of the unit cell :math:`\left(M_{RT}\right)^N`. The reflection-transmission matrix for the whole sample :math:`M_{RT}^t` consisting of :math:`j = 1\ldots M` sub-structures is then again: .. math:: M_{RT}^t = \prod_{j=1}^M \left(M_{RT^,j}\right)^{N_j} Args: S (Structure, UnitCell): structure or sub-structure to calculate on. *args (ndarray[float], optional): strains for each substructure. Returns: (tuple): - *RT (ndarray[complex])* - reflectivity-transmission matrix. - *A (ndarray[complex])* - reflectivity-transmission matrices of sub-structures. """ # if no strains are given we assume no strain (1) if len(args) == 0: strains = np.zeros([S.get_number_of_sub_structures(), 1]) else: strains = args[0] # initialize RT = np.tile(np.eye(2, 2)[np.newaxis, np.newaxis, :, :], (np.size(self._qz, 0), np.size(self._qz, 1), 1, 1)) # ref_trans_matrix A = [] # list of ref_trans_matrices of substructures strainCounter = 0 # traverse substructures for sub_structure in S.sub_structures: if isinstance(sub_structure[0], UnitCell): # the sub_structure is an unitCell # calculate the ref-trans matrices for N unitCells temp = m_power_x(self.get_uc_ref_trans_matrix( sub_structure[0], strains[strainCounter]), sub_structure[1]) strainCounter += 1 # remember the result A.append([temp, '{:d}x {:s}'.format(sub_structure[1], sub_structure[0].name)]) elif isinstance(sub_structure[0], AmorphousLayer): raise ValueError('The substructure cannot be an AmorphousLayer!') else: # its a structure # make a recursive call temp, temp2 = self.homogeneous_ref_trans_matrix( sub_structure[0], strains[strainCounter:(strainCounter + sub_structure[0].get_number_of_sub_structures())]) A.append([temp2, sub_structure[0].name + ' substructures']) strainCounter = strainCounter+sub_structure[0].get_number_of_sub_structures() A.append([temp, '{:d}x {:s}'.format(sub_structure[1], sub_structure[0].name)]) # calculate the ref-trans matrices for N sub structures temp = m_power_x(temp, sub_structure[1]) A.append([temp, '{:d}x {:s}'.format(sub_structure[1], sub_structure[0].name)]) # multiply it to the output RT = m_times_n(RT, temp) # if a substrate is included add it at the end if S.substrate != []: temp, temp2 = self.homogeneous_ref_trans_matrix(S.substrate) A.append([temp2, 'static substrate']) RT = m_times_n(RT, temp) return RT, A def inhomogeneous_reflectivity(self, strain_map, strain_vectors, **kwargs): """inhomogeneous_reflectivity Returns the reflectivity of an inhomogeneously strained sample structure for a given ``strain_map`` in position and time, as well as for a given set of possible strains for each unit cell in the sample structure (``strain_vectors``). If no reflectivity is saved in the cache it is caluclated. Providing the ``calc_type`` for the calculation the corresponding sub-routines for the reflectivity computation are called: * ``parallel`` parallelization over the time steps utilizing `Dask <https://dask.org/>`_ * ``distributed`` not implemented in Python, but should be possible with `Dask <https://dask.org/>`_ as well * ``sequential`` no parallelization at all Args: strain_map (ndarray[float]): spatio-temporal strain profile. strain_vectors (list[ndarray[float]]): reduced strains per unique layer. **kwargs: - *calc_type (str)* - type of calculation. - *dask_client (Dask.Client)* - Dask client. - *job (Dask.job)* - Dask job. - *num_workers (int)* - Dask number of workers. Returns: R (ndarray[float]): inhomogeneous reflectivity. """ # create a hash of all simulation parameters filename = 'inhomogeneous_reflectivity_dyn_' \ + self.get_hash(strain_vectors, strain_map=strain_map) \ + '.npz' full_filename = path.abspath(path.join(self.cache_dir, filename)) # check if we find some corresponding data in the cache dir if path.exists(full_filename) and not self.force_recalc: # found something so load it tmp = np.load(full_filename) R = tmp['R'] self.disp_message('_inhomogeneous_reflectivity_ loaded from file:\n\t' + filename) else: t1 = time() self.disp_message('Calculating _inhomogeneousReflectivity_ ...') # parse the input arguments if not isinstance(strain_map, np.ndarray): raise TypeError('strain_map must be a numpy ndarray!') if not isinstance(strain_vectors, list): raise TypeError('strain_vectors must be a list!') dask_client = kwargs.get('dask_client', []) calc_type = kwargs.get('calc_type', 'sequential') if calc_type not in ['parallel', 'sequential', 'distributed']: raise TypeError('calc_type must be either _parallel_, ' '_sequential_, or _distributed_!') job = kwargs.get('job') num_workers = kwargs.get('num_workers', 1) # All ref-trans matrices for all unique unitCells and for all # possible strains, given by strainVectors, are calculated in # advance. RTM = self.get_all_ref_trans_matrices(strain_vectors) # select the type of computation if calc_type == 'parallel': R = self.parallel_inhomogeneous_reflectivity(strain_map, strain_vectors, RTM, dask_client) elif calc_type == 'distributed': R = self.distributed_inhomogeneous_reflectivity(strain_map, strain_vectors, job, num_workers, RTM) else: # sequential R = self.sequential_inhomogeneous_reflectivity(strain_map, strain_vectors, RTM) self.disp_message('Elapsed time for _inhomogeneous_reflectivity_:' ' {:f} s'.format(time()-t1)) self.save(full_filename, {'R': R}, '_inhomogeneous_reflectivity_') return R def sequential_inhomogeneous_reflectivity(self, strain_map, strain_vectors, RTM): """sequential_inhomogeneous_reflectivity Returns the reflectivity of an inhomogeneously strained sample structure for a given ``strain_map`` in position and time, as well as for a given set of possible strains for each unit cell in the sample structure (``strain_vectors``). The function calculates the results sequentially without parallelization. Args: strain_map (ndarray[float]): spatio-temporal strain profile. strain_vectors (list[ndarray[float]]): reduced strains per unique layer. RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. Returns: R (ndarray[float]): inhomogeneous reflectivity. """ # initialize M = np.size(strain_map, 0) # delay steps R = np.zeros([M, np.size(self._qz, 0), np.size(self._qz, 1)]) if self.progress_bar: iterator = trange(M, desc='Progress', leave=True) else: iterator = range(M) # get the inhomogeneous reflectivity of the sample # structure for each time step of the strain map for i in iterator: R[i, :, :] = self.calc_inhomogeneous_reflectivity(strain_map[i, :], strain_vectors, RTM) return R def parallel_inhomogeneous_reflectivity(self, strain_map, strain_vectors, RTM, dask_client): """parallel_inhomogeneous_reflectivity Returns the reflectivity of an inhomogeneously strained sample structure for a given ``strain_map`` in position and time, as well as for a given set of possible strains for each unit cell in the sample structure (``strain_vectors``). The function parallelizes the calculation over the time steps, since the results do not depend on each other. Args: strain_map (ndarray[float]): spatio-temporal strain profile. strain_vectors (list[ndarray[float]]): reduced strains per unique layer. RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. dask_client (Dask.Client): Dask client. Returns: R (ndarray[float]): inhomogeneous reflectivity. """ if not dask_client: raise ValueError('no dask client set') from dask import delayed # to allow parallel computation # initialize res = [] M = np.size(strain_map, 0) # delay steps N = np.size(self._qz, 0) # energy steps K = np.size(self._qz, 1) # qz steps R = np.zeros([M, N, K]) uc_indices, _, _ = self.S.get_layer_vectors() # init unity matrix for matrix multiplication RTU = np.tile(np.eye(2, 2)[np.newaxis, np.newaxis, :, :], (N, K, 1, 1)) # make RTM available for all works remote_RTM = dask_client.scatter(RTM) remote_RTU = dask_client.scatter(RTU) remote_uc_indices = dask_client.scatter(uc_indices) remote_strain_vectors = dask_client.scatter(strain_vectors) # precalculate the substrate ref_trans_matrix if present if self.S.substrate != []: RTS, _ = self.homogeneous_ref_trans_matrix(self.S.substrate) else: RTS = RTU # create dask.delayed tasks for all delay steps for i in range(M): RT = delayed(XrayDyn.calc_inhomogeneous_ref_trans_matrix)( remote_uc_indices, remote_RTU, strain_map[i, :], remote_strain_vectors, remote_RTM) RT = delayed(m_times_n)(RT, RTS) Ri = delayed(XrayDyn.calc_reflectivity_from_matrix)(RT) res.append(Ri) # compute results res = dask_client.compute(res, sync=True) # reorder results to reflectivity matrix for i in range(M): R[i, :, :] = res[i] return R def distributed_inhomogeneous_reflectivity(self, strain_map, strain_vectors, RTM, job, num_worker): """distributed_inhomogeneous_reflectivity This is a stub. Not yet implemented in python. Args: strain_map (ndarray[float]): spatio-temporal strain profile. strain_vectors (list[ndarray[float]]): reduced strains per unique layer. RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. job (Dask.job): Dask job. num_workers (int): Dask number of workers. Returns: R (ndarray[float]): inhomogeneous reflectivity. """ raise NotImplementedError def calc_inhomogeneous_reflectivity(self, strains, strain_vectors, RTM): r"""calc_inhomogeneous_reflectivity Calculates the reflectivity of a inhomogeneous sample structure for given ``strain_vectors`` for a single time step. Similar to the homogeneous sample structure, the reflectivity of an unit cell is calculated from the reflection-transmission matrices :math:`H_i` of each atom and the phase matrices between the atoms :math:`L_i` in the unit cell: .. math:: M_{RT} = \prod_i H_i \ L_i Since all layers are generally inhomogeneously strained we have to traverse all individual unit cells (:math:`j = 1\ldots M`) in the sample to calculate the total reflection-transmission matrix :math:`M_{RT}^t`: .. math:: M_{RT}^t = \prod_{j=1}^M M_{RT,j} The reflectivity of the :math:`2\times 2` matrices for each :math:`q_z` is calculates as follow: .. math:: R = \left|M_{RT}^t(1,2)/M_{RT}^t(2,2)\right|^2 Args: strain_map (ndarray[float]): spatio-temporal strain profile. strain_vectors (list[ndarray[float]]): reduced strains per unique layer. RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. Returns: R (ndarray[float]): inhomogeneous reflectivity. """ # initialize ref_trans_matrix N = np.shape(self._qz)[1] # number of q_z M = np.shape(self._qz)[0] # number of energies uc_indices, _, _ = self.S.get_layer_vectors() # initialize ref_trans_matrix RTU = np.tile(np.eye(2, 2)[np.newaxis, np.newaxis, :, :], (M, N, 1, 1)) RT = XrayDyn.calc_inhomogeneous_ref_trans_matrix(uc_indices, RTU, strains, strain_vectors, RTM) # if a substrate is included add it at the end if self.S.substrate != []: RTS, _ = self.homogeneous_ref_trans_matrix(self.S.substrate) RT = m_times_n(RT, RTS) # calculate reflectivity from ref-trans matrix R = self.calc_reflectivity_from_matrix(RT) return R @staticmethod def calc_inhomogeneous_ref_trans_matrix(uc_indices, RT, strains, strain_vectors, RTM): r"""calc_inhomogeneous_ref_trans_matrix Sub-function of :meth:`calc_inhomogeneous_reflectivity` and for parallel computing (needs to be static) only for calculating the total reflection-transmission matrix :math:`M_{RT}^t`: .. math:: M_{RT}^t = \prod_{j=1}^M M_{RT,j} Args: uc_indices (ndarray[float]): unit cell indices. RT (ndarray[complex]): reflection-transmission matrix. strains (ndarray[float]): spatial strain profile for single time step. strain_vectors (list[ndarray[float]]): reduced strains per unique layer. RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. Returns: RT (ndarray[complex]): reflection-transmission matrix. """ # traverse all unit cells in the sample structure for i, uc_index in enumerate(uc_indices): # Find the ref-trans matrix in the RTM cell array for the # current unit_cell ID and applied strain. Use the # ``knnsearch`` function to find the nearest strain value. strain_index = finderb(strains[i], strain_vectors[int(uc_index)])[0] temp = RTM[int(uc_index)][strain_index] if temp is not []: RT = m_times_n(RT, temp) else: raise ValueError('RTM not found') return RT def get_all_ref_trans_matrices(self, *args): """get_all_ref_trans_matrices Returns a list of all reflection-transmission matrices for each unique unit cell in the sample structure for a given set of applied strains for each unique unit cell given by the ``strain_vectors`` input. If this data was saved on disk before, it is loaded, otherwise it is calculated. Args: args (list[ndarray[float]], optional): reduced strains per unique layer. Returns: RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. """ if len(args) == 0: strain_vectors = [np.array([1])]*self.S.get_number_of_unique_layers() else: strain_vectors = args[0] # create a hash of all simulation parameters filename = 'all_ref_trans_matrices_dyn_' \ + self.get_hash(strain_vectors) + '.npz' full_filename = path.abspath(path.join(self.cache_dir, filename)) # check if we find some corresponding data in the cache dir if path.exists(full_filename) and not self.force_recalc: # found something so load it tmp = np.load(full_filename) RTM = tmp['RTM'] self.disp_message('_all_ref_trans_matrices_dyn_ loaded from file:\n\t' + filename) else: # nothing found so calculate it and save it RTM = self.calc_all_ref_trans_matrices(strain_vectors) self.save(full_filename, {'RTM': RTM}, '_all_ref_trans_matrices_dyn_') return RTM def calc_all_ref_trans_matrices(self, *args): """calc_all_ref_trans_matrices Calculates a list of all reflection-transmission matrices for each unique unit cell in the sample structure for a given set of applied strains to each unique unit cell given by the ``strain_vectors`` input. Args:: args (list[ndarray[float]], optional): reduced strains per unique layer. Returns: RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. """ t1 = time() self.disp_message('Calculate all _ref_trans_matrices_ ...') # initialize uc_ids, uc_handles = self.S.get_unique_layers() # if no strain_vectors are given we just do it for no strain (1) if len(args) == 0: strain_vectors = [np.array([1])]*len(uc_ids) else: strain_vectors = args[0] # check if there are strains for each unique unitCell if len(strain_vectors) is not len(uc_ids): raise TypeError('The strain vector has not the same size ' 'as number of unique unit cells') # initialize ref_trans_matrices RTM = [] # traverse all unique unit_cells for i, uc in enumerate(uc_handles): # traverse all strains in the strain_vector for this unique # unit_cell if not isinstance(uc, UnitCell): raise ValueError('All layers must be UnitCells!') temp = [] for strain in strain_vectors[i]: temp.append(self.get_uc_ref_trans_matrix(uc, strain)) RTM.append(temp) self.disp_message('Elapsed time for _ref_trans_matrices_: {:f} s'.format(time()-t1)) return RTM def get_uc_ref_trans_matrix(self, uc, *args): r"""get_uc_ref_trans_matrix Returns the reflection-transmission matrix of a unit cell: .. math:: M_{RT} = \prod_i H_i \ L_i where :math:`H_i` and :math:`L_i` are the atomic reflection- transmission matrix and the phase matrix for the atomic distances, respectively. Args: uc (UnitCell): unit cell object. args (float, optional): strain of unit cell. Returns: RTM (list[ndarray[complex]]): reflection-transmission matrices for all given strains per unique layer. """ if len(args) == 0: strain = 0 # set the default strain to 0 else: strain = args[0] M = len(self._energy) # number of energies N = np.shape(self._qz)[1] # number of q_z K = uc.num_atoms # number of atoms # initialize matrices RTM = np.tile(np.eye(2, 2)[np.newaxis, np.newaxis, :, :], (M, N, 1, 1)) # traverse all atoms of the unit cell for i in range(K): # Calculate the relative distance between the atoms. # The relative position is calculated by the function handle # stored in the atoms list as 3rd element. This # function returns a relative postion dependent on the # applied strain. if i == (K-1): # its the last atom del_dist = (strain+1)-uc.atoms[i][1](strain) else: del_dist = uc.atoms[i+1][1](strain)-uc.atoms[i][1](strain) # get the reflection-transmission matrix and phase matrix # from all atoms in the unit cell and multiply them # together RTM = m_times_n(RTM, self.get_atom_ref_trans_matrix(uc.atoms[i][0], uc._area, uc._deb_wal_fac)) RTM = m_times_n(RTM, self.get_atom_phase_matrix(del_dist*uc._c_axis)) return RTM def get_atom_ref_trans_matrix(self, atom, area, deb_wal_fac): r"""get_atom_ref_trans_matrix Calculates the reflection-transmission matrix of an atom from dynamical x-ray theory: .. math:: H = \frac{1}{\tau} \begin{bmatrix} \left(\tau^2 - \rho^2\right) & \rho \\ -\rho & 1 \end{bmatrix} Args: atom (Atom, AtomMixed): atom or mixed atom area (float): area of the unit cell [m²] deb_wal_fac (float): Debye-Waller factor for unit cell Returns: H (ndarray[complex]): reflection-transmission matrix """ # check for already calculated data _hash = make_hash_md5([self._energy, self._qz, self.pol_in_state, self.pol_out_state, area, deb_wal_fac]) try: index = self.last_atom_ref_trans_matrices['atom_ids'].index(atom.id) except ValueError: index = -1 if (index >= 0) and (_hash == self.last_atom_ref_trans_matrices['hashes'][index]): # These are the same X-ray parameters as last time so we # can use the same matrix again for this atom H = self.last_atom_ref_trans_matrices['H'][index] else: # These are new parameters so we have to calculate. # Get the reflection-transmission-factors rho = self.get_atom_reflection_factor(atom, area, deb_wal_fac) tau = self.get_atom_transmission_factor(atom, area, deb_wal_fac) # calculate the reflection-transmission matrix H = np.zeros([np.shape(self._qz)[0], np.shape(self._qz)[1], 2, 2], dtype=np.cfloat) H[:, :, 0, 0] = (1/tau)*(tau**2-rho**2) H[:, :, 0, 1] = (1/tau)*(rho) H[:, :, 1, 0] = (1/tau)*(-rho) H[:, :, 1, 1] = (1/tau) # remember this matrix for next use with the same # parameters for this atom if index >= 0: self.last_atom_ref_trans_matrices['atom_ids'][index] = atom.id self.last_atom_ref_trans_matrices['hashes'][index] = _hash self.last_atom_ref_trans_matrices['H'][index] = H else: self.last_atom_ref_trans_matrices['atom_ids'].append(atom.id) self.last_atom_ref_trans_matrices['hashes'].append(_hash) self.last_atom_ref_trans_matrices['H'].append(H) return H def get_atom_reflection_factor(self, atom, area, deb_wal_fac): r"""get_atom_reflection_factor Calculates the reflection factor from dynamical x-ray theory: .. math:: \rho = \frac{-i 4 \pi \ r_e \ f(E,q_z) \ P(\theta) \exp(-M)}{q_z \ A} - :math:`r_e` is the electron radius - :math:`f(E,q_z)` is the energy and angle dispersive atomic form factor - :math:`P(q_z)` is the polarization factor - :math:`A` is the area in :math:`x-y` plane on which the atom is placed - :math:`M = 0.5(\mbox{dbf} \ q_z)^2)` where :math:`\mbox{dbf}^2 = \langle u^2\rangle` is the average thermal vibration of the atoms - Debye-Waller factor Args: atom (Atom, AtomMixed): atom or mixed atom area (float): area of the unit cell [m²] deb_wal_fac (float): Debye-Waller factor for unit cell Returns: rho (complex): reflection factor """ rho = (-4j*np.pi*r_0 * atom.get_cm_atomic_form_factor(self._energy, self._qz) * self.get_polarization_factor(self._theta) * np.exp(-0.5*(deb_wal_fac*self._qz)**2))/(self._qz*area) return rho def get_atom_transmission_factor(self, atom, area, deb_wal_fac): r"""get_atom_transmission_factor Calculates the transmission factor from dynamical x-ray theory: .. math:: \tau = 1 - \frac{i 4 \pi r_e f(E,0) \exp(-M)}{q_z A} - :math:`r_e` is the electron radius - :math:`f(E,0)` is the energy dispersive atomic form factor (no angle correction) - :math:`A` is the area in :math:`x-y` plane on which the atom is placed - :math:`M = 0.5(\mbox{dbf} \ q_z)^2` where :math:`\mbox{dbf}^2 = \langle u^2\rangle` is the average thermal vibration of the atoms - Debye-Waller factor Args: atom (Atom, AtomMixed): atom or mixed atom area (float): area of the unit cell [m²] deb_wal_fac (float): Debye-Waller factor for unit cell Returns: tau (complex): transmission factor """ tau = 1 - (4j*np.pi*r_0 * atom.get_cm_atomic_form_factor(self._energy, np.zeros_like(self._qz)) * np.exp(-0.5*(deb_wal_fac*self._qz)**2))/(self._qz*area) return tau def get_atom_phase_matrix(self, distance): r"""get_atom_phase_matrix Calculates the phase matrix from dynamical x-ray theory: .. math:: L = \begin{bmatrix} \exp(i \phi) & 0 \\ 0 & \exp(-i \phi) \end{bmatrix} Args: distance (float): distance between atomic planes Returns: L (ndarray[complex]): phase matrix """ phi = self.get_atom_phase_factor(distance) L = np.zeros([np.shape(self._qz)[0], np.shape(self._qz)[1], 2, 2], dtype=np.cfloat) L[:, :, 0, 0] = np.exp(1j*phi) L[:, :, 1, 1] = np.exp(-1j*phi) return L def get_atom_phase_factor(self, distance): r"""get_atom_phase_factor Calculates the phase factor :math:`\phi` for a distance :math:`d` from dynamical x-ray theory: .. math:: \phi = \frac{d \ q_z}{2} Args: distance (float): distance between atomic planes Returns: phi (float): phase factor """ phi = distance * self._qz/2 return phi @staticmethod def calc_reflectivity_from_matrix(M): r"""calc_reflectivity_from_matrix Calculates the reflectivity from an :math:`2\times2` matrix of transmission and reflectivity factors: .. math:: R = \left|M(0,1)/M(1,1)\right|^2 Args: M (ndarray[complex]): reflection-transmission matrix Returns: R (ndarray[float]): reflectivity """ return np.abs(M[:, :, 0, 1]/M[:, :, 1, 1])**2 class XrayDynMag(Xray): r"""XrayDynMag Dynamical magnetic X-ray scattering simulations. Adapted from Elzo et.al. [10]_ and initially realized in `Project Dyna <http://dyna.neel.cnrs.fr>`_. Original copyright notice: *Copyright Institut Neel, CNRS, Grenoble, France* **Project Collaborators:** - <NAME>, <EMAIL> - <NAME> (PhD, 2009-2012) - <NAME> Sextants beamline, Synchrotron Soleil, <EMAIL> - <NAME> (PhD, 2010-2013) now at `LCPMR CNRS, Paris <https://lcpmr.cnrs.fr/content/emmanuelle-jal>`_ - <NAME>, <EMAIL> - <NAME> - Padraic Shaffer’s group - Berkeley Nat. Lab. **Questions to:** - <NAME>, <EMAIL> Args: S (Structure): sample to do simulations with. force_recalc (boolean): force recalculation of results. Keyword Args: save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. Attributes: S (Structure): sample structure to calculate simulations on. force_recalc (boolean): force recalculation of results. save_data (boolean): true to save simulation results. cache_dir (str): path to cached data. disp_messages (boolean): true to display messages from within the simulations. progress_bar (boolean): enable tqdm progress bar. energy (ndarray[float]): photon energies :math:`E` of scattering light wl (ndarray[float]): wavelengths :math:`\lambda` of scattering light k (ndarray[float]): wavenumber :math:`k` of scattering light theta (ndarray[float]): incidence angles :math:`\theta` of scattering light qz (ndarray[float]): scattering vector :math:`q_z` of scattering light polarizations (dict): polarization states and according names. pol_in_state (int): incoming polarization state as defined in polarizations dict. pol_out_state (int): outgoing polarization state as defined in polarizations dict. pol_in (float): incoming polarization factor (can be a complex ndarray). pol_out (float): outgoing polarization factor (can be a complex ndarray). last_atom_ref_trans_matrices (list): remember last result of atom ref_trans_matrices to speed up calculation. References: .. [10] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>. Ramos, <NAME>, <NAME> & <NAME>, *X-ray resonant magnetic reflectivity of stratified magnetic structures: Eigenwave formalism and application to a W/Fe/W trilayer*, `<NAME>. Mater. 324, 105 (2012). <http://www.doi.org/10.1016/j.jmmm.2011.07.019>`_ """ def __init__(self, S, force_recalc, **kwargs): super().__init__(S, force_recalc, **kwargs) self.last_atom_ref_trans_matrices = {'atom_ids': [], 'hashes': [], 'A': [], 'A_phi': [], 'P': [], 'P_phi': [], 'A_inv': [], 'A_inv_phi': [], 'k_z': []} def __str__(self): """String representation of this class""" class_str = 'Dynamical Magnetic X-Ray Diffraction simulation properties:\n\n' class_str += super().__str__() return class_str def get_hash(self, **kwargs): """get_hash Calculates an unique hash given by the energy :math:`E`, :math:`q_z` range, polarization states as well as the sample structure hash for relevant x-ray and magnetic parameters. Optionally, part of the ``strain_map`` and ``magnetization_map`` are used. Args: **kwargs (ndarray[float]): spatio-temporal strain and magnetization profile. Returns: hash (str): unique hash. """ param = [self.pol_in_state, self.pol_out_state, self._qz, self._energy] if 'strain_map' in kwargs: strain_map = kwargs.get('strain_map') if np.size(strain_map) > 1e6: strain_map = strain_map.flatten()[0:1000000] param.append(strain_map) if 'magnetization_map' in kwargs: magnetization_map = kwargs.get('magnetization_map') if np.size(magnetization_map) > 1e6: magnetization_map = magnetization_map.flatten()[0:1000000] param.append(magnetization_map) return self.S.get_hash(types=['xray', 'magnetic']) + '_' + make_hash_md5(param) def set_incoming_polarization(self, pol_in_state): """set_incoming_polarization Sets the incoming polarization factor for circular +, circular -, sigma, pi, and unpolarized polarization. Args: pol_in_state (int): incoming polarization state id. """ self.pol_in_state = pol_in_state if (self.pol_in_state == 1): # circ + self.pol_in = np.array([-
np.sqrt(.5)
numpy.sqrt
""" Calculating SNR of the GC candidates """ import os import numpy as np import astropy.units as u import astropy.constants as const from astropy.table import Table, vstack import matplotlib.pyplot as plt from spectres import spectres from tqdm import tqdm import context import misc def der_snr(flux, axis=1, full_output=False): """ Calculates the S/N ratio of a spectra. Translated from the IDL routine der_snr.pro """ signal = np.nanmean(flux, axis=axis) noise = 1.482602 /
np.sqrt(6.)
numpy.sqrt
import numpy as np import pyximport pyximport.install(setup_args={'include_dirs':[np.get_include()]}) def anglescan(S, phi, theta, z_profile, wind=True, debug=True, trace=False): # switched positions (Jun 2019) # This function should be called for every station # Original Author: <NAME> # Theta is vertical # phi is horizontal """ Finds an optimal ray from the source of the Supracenter to the detector, by making a guess, and checking for the angle of minimum error. This is repeated with better guesses by taking angles around the best angle of the previous step. Arguments: supra_pos: [array] 3-D local coordinates of the source of the sound. Given as: [x, y, Elevation] detec_pos: [array] 3-D local coordinates of the detector. Given as: [x, y, Elevation] zProfile: [array] The given atmospheric profile between the source and the detector. Given as: [Height, Temperature, Wind Speed, Wind Direction] for different values of height wind: [int] 0 - disable winds, 1 - enable winds. Temperature is still used. n_theta, n_phi: [int] angle grid spacing of the takeoff, azimuth angles tol: [float] Tolerance on the error of the takeoff angle precision: [double] minimum resolution of angles Returns: t_arrival: [float] Direct arrival time between source and detector Azimuth: [float] The initial azimuthal angle for the source to the detector in degrees Takeoff: [float] The initial takeoff angle from the source to the detector in degrees See diagram on pg 34 of SUPRACENTER for more information """ # Azimuths and Wind directions are measured as angles from north, and increasing clockwise to the East phi = (phi - 90)%360 # Flip coordinate system horizontally phi = (360 - phi)%360 phi = np.radians(phi) theta = np.radians(theta) # Switch to turn off winds if not wind: z_profile[:, 2] = 0 z_profile[:, 1] = 330 # The number of layers in the integration region n_layers = len(z_profile) # Slowness, as defined in SUPRACENTER on pg 35, s = 1/c s = 1.0/z_profile[0:n_layers, 1] # Elevation for that layer z = z_profile[0:n_layers, 0] # Component of wind vector in the direction of phi and phi + pi/2 respectively u = z_profile[:, 2]*np.sin(z_profile[:, 3])*np.cos(phi) + z_profile[:, 2]*np.cos(z_profile[:, 3])*np.sin(phi) v = z_profile[:, 2]*np.sin(z_profile[:, 3])*np.cos(phi+np.pi/2) + z_profile[:, 2]*np.cos(z_profile[:, 3])*np.sin(phi+np.pi/2) s_val = s[n_layers-1] # ray parameter p = s_val*np.sin(theta)/(1 + s_val*u[n_layers - 1]*np.sin(theta)) X = 0 Y = 0 #Travel time t_arrival = 0 if trace: T = [] T.append([S[0], S[1], S[2], t_arrival]) # ignore negative roots
np.seterr(divide='ignore', invalid='ignore')
numpy.seterr
import numpy as np import csv from scipy.optimize import minimize from scipy.spatial.transform import Rotation as R ID = np.array([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ]) def random_unit_vector(): """Generate a random 3D unit vector Returns: np.array: a random 3D unit vector """ z = np.random.uniform(-1, 1) theta = np.random.uniform(0, 2*np.pi) return(np.array([ np.sqrt(1-z**2)*np.cos(theta), np.sqrt(1-z**2)*np.sin(theta), z ])) def gen_observation(p, u, a, d, epsilon=1e-6): """Generate an observation from a point looking at a plane. Generates an observation (distance and observation point) for a sensor at location p looking in the direction given by the vector u looking at the plane defined by a[0]x + a[1]y + a[2]z + d = 0. https://rosettacode.org/wiki/Find_the_intersection_of_a_line_with_a_plane#Python Args: p (3-tuple of floats): the position of the sensor (x, y, z). u (3-tuple of floats): the orientation of the sensor (x, y, z). Does not have to be a unit vector. a (3-tuple of floats): the equation for the line where a[0]x + a[1]y + a[2]z + d = 0. d (float) the c portion of the line equation. Returns: The distance and intersection point as a tuple, for example, with distance 5.2 and intersection point (8.1, 0.3, 4): (5.2, (8.1, 0.3, 4)) or float('inf') if the sensor does not see the plane. Raises: ValueError: The line is undefined. """ a = np.array(a) p = np.array(p) u = np.array(u) if(a[0] != 0): plane_point = np.array([-d/a[0], 0, 0]) elif(a[1] != 0): plane_point = np.array([0, -d/a[1], 0]) elif(a[2] != 0): plane_point = np.array([0, 0, -d/a[2]]) else: raise ValueError("The plane with normal a=[0,0,0] is undefined") ndotu = a.dot(u) if abs(ndotu) < epsilon: return float('inf') w = p - plane_point si = -a.dot(w) / ndotu Psi = w + si * u + plane_point dist = np.linalg.norm(Psi - p) if(np.allclose((dist * u) + p, Psi)): return (dist, Psi) else: return float('inf') def angle_between(u1, u2): """Get the angle between two unit vectors, in radians Args: u1: unit vector u2: unit vector Returns: (float): angle between u1 and u2, in radians """ u1 = np.array(u1) u2 = np.array(u2) assert( np.abs(np.linalg.norm(u1) - 1 < 0.0001) and np.abs(np.linalg.norm(u1) - 1 < 0.0001) ) angle = np.arccos(np.dot(u1, u2) / (np.linalg.norm(u1) * np.linalg.norm(u2))) return angle def generate_motions(p, u, a, d, plane_center, bbox, radius=500, n=32): """Generate random robot motions that point sensor at plane Generate n motions that keep the sensor at position p and orientation u pointing at the plane given by a[0] + a[1] + a[2] + d = 0 Args: p: 3D position of sensor on robot segment u: heading unit vector for sensor a: a vector for plane in equation ax+d=0 d: d scalar for plane in equation ax+d=0 plane_center: where on the plane to center the points you're aiming for around bbox: bounding box for the sensor, given as a 2D array with like so: [ [xmin, xmax], [ymin, ymax], [zmin, zmax] ] radius (default 500): how far from the center intersection points on the plane should be n (default 32): how many motions to generate Returns: (n x 4 x 4 array): robot motions as transforms in homogenous coordinates """ p = np.array(p) u = np.array(u) a = np.array(a) # generate points on plane xs = scattered_on_plane(a, d, plane_center.reshape(3), radius, n) # generate positions for sensor in space ps = [] while (len(ps) < len(xs)): pt = np.array([ np.random.uniform(*bbox[0]), np.random.uniform(*bbox[1]), np.random.uniform(*bbox[2]) ]) # check that pt is on the same side of the plane as the center of the robot if (np.sign(np.dot(a,pt)+d) == np.sign(np.dot(a, np.array([0, 0, 0]))+d)): # check that pt is at least 10cm away from the plane if (np.abs(np.dot(a,pt)+d) > 100): ps.append(pt) # generate unit vectors that point sensor points to plane points us = [(p - s) / np.linalg.norm(p - s) for p, s in zip(xs, ps)] # convert list of points and unit vectors to list of transforms tfs = points_to_transforms([p, *ps], [u, *us]) return tfs def scattered_on_plane(a, d, center, radius, num_points): """Generate points scattered on the plane given by a, d Args: a: a parameter for plane (3D vector) d: d parameter for plane center: center point from which points are scattered radius: radius of scattered points num_points: number of scattered points Returns: (num_points x 3 array): coordinates of points on plane """ if(np.dot(a, center)+d > 0.00001): raise ValueError("center is not on plane given by ax+d=0") # generate a random vector and make it orthogonal to a # https://stackoverflow.com/questions/33658620/generating-two-orthogonal-vectors-that-are-orthogonal-to-a-particular-direction xvec = np.random.randn(3) xvec -= xvec.dot(a) * a / np.linalg.norm(a)**2 xvec /= np.linalg.norm(xvec) yvec = np.cross(a, xvec) points = [] for _ in range(num_points): xcomp = np.random.uniform(-radius, radius) ycomp = np.random.uniform(-radius, radius) points.append(center + (xcomp*xvec + ycomp*yvec)) return points def points_to_transforms(points, units): """Convert a set of points to a set of transforms Arguments: points (list of 3-tuples): point positions (first is starting pos) units (list of 3-tuples): unit vector directions (first is starting) Returns: (list of 4x4 np.array): transformations leading from starting point to each other point (first will be identity) """ return([get_transform(points[0], units[0], pt, u) for pt, u in zip(points[1:], units[1:])]) def to_hom(vec): """Takes a numpy array and adds a 1 to the end of it """ return np.append(vec, [1]) def from_hom(vec): """Takes a numpy array and removes a 1 from the end of it """ return vec[:-1] def get_transform(p1, u1, p2, u2): """Get the transform from pos. p1, rot. u1 to pos. p2, rot. u2 Arguments: p1 (3-tuple): x, y, z coordinates of starting position u1 (3-tuple): x, y, z coordinates of starting unit vector orientation p2 (3-tuple): x, y, z coordinates of final position u2 (3-tuple): x, y, z coordinates of final unit vector orientation Returns: (4x4 np.array): the transform from p1, u1 to p2, u2 in homogenous coord. https://math.stackexchange.com/questions/180418/calculate-rotation-matrix-to-align-vector-a-to-vector-b-in-3d/476311#476311 """ u1 = np.array(u1) u2 = np.array(u2) p1 = np.array(p1) p2 = np.array(p2) if(np.allclose(u1, u2)): R = np.identity(3) else: v = np.cross(u1, u2) s = np.linalg.norm(v) if(s == 0): if(u1[0] == u2[1] and u1[1] == u2[0]): #BUG there are other cases like this that aren't covered R = np.array([ [0, 1, 0], [1, 0, 1], [0, 0, 1] ]) else: c = np.dot(u1, u2) vx = np.array([ [0, -v[2], v[1]], [v[2], 0, -v[0]], [-v[1], v[0], 0] ]) R = np.identity(3) + vx + (vx @ vx) * ((1 - c)/(s*s)) new_p = R @ p1 t = p2 - new_p tf = np.array([ [R[0][0], R[0][1], R[0][2], t[0]], [R[1][0], R[1][1], R[1][2], t[1]], [R[2][0], R[2][1], R[2][2], t[2]], [0, 0, 0, 1] ]) # tf * p1 should = p2 assert(np.allclose(tf @ np.append(p1, 1), np.append(p2, 1))) # tf * u1 (with 0 for third coordinate - no translation) should = u2 assert(np.allclose(tf @ np.append(u1, 0), np.append(u2, 0))) return tf def read_data(data_path): """Read real-world trial data from given folder Arguments: data_path (string): path to folder containing measurements.csv and transforms.csv files to be read in Returns: (tuple of arrays): measurements array and transforms array populated with data from data_path/measurements.csv and data_path/transforms.csv """ with open(data_path + "/measurements.csv") as f: csvfile = csv.reader(f) measurements = [] for line in csvfile: measurements.append(np.average([float(x) for x in line[1:]])) measurements = np.array(measurements) with open(data_path + "/transforms.csv") as f: csvfile = csv.reader(f) raw_transforms = [] for line in csvfile: items = [] for item in line: if(item != ' '): items.append(float(item)) raw_transforms.append(np.reshape(
np.array(items)
numpy.array
import sys import numpy as np from matplotlib import pyplot as pl from scipy.spatial.distance import pdist, squareform from scipy.spatial import cKDTree as kdtree def FitPlane(pnts): """ Given a set of 3D points pnts.shape = (x, 3), return the normal vector (nx, ny, nz) """ c = pnts.mean(axis = 0) x = pnts - c M = np.dot(x.T, x) return np.linalg.svd(M)[0][:,-1] def main(n, r = 0.1): x = (np.random.random(n) - 0.5) * 4 y = (np.random.random(n) - 0.5) * 3 z = np.exp(-x*x-y*y) tree = kdtree(np.transpose((x, y))) slp = np.zeros(n) for i in range(n): nb = tree.query_ball_point((x[i], y[i]), r) pts = np.transpose((x[nb], y[nb], z[nb])) nx, ny, nz = FitPlane(pts) slp[i] = np.sqrt(nx*nx+ny*ny) / nz slp = np.arctan(slp) * 180 / np.pi pl.title('Numerical') pl.scatter(x, y, c = slp) pl.colorbar() pl.axes().set_aspect('equal') pl.show() # theoretical results rp =
np.sqrt(x*x+y*y)
numpy.sqrt
import bayesiancoresets as bc import numpy as np import warnings warnings.filterwarnings('ignore', category=UserWarning) #tests will generate warnings (due to pathological data design for testing), just ignore them np.seterr(all='raise') np.set_printoptions(linewidth=500) np.random.seed(100) tol = 1e-9 def test_empty(): x = np.random.randn(0, 0) fd = bc.FullDataset(x) for m in [1, 10, 100]: fd.run(m) assert fd.error() < tol, "full wts failed: error not 0" assert np.all(fd.weights() ==
np.ones(x.shape[0])
numpy.ones
#!/usr/bin/env python # -*- coding: utf-8 -*- # 3rd party imports import numpy as np from scipy import constants __author__ = "<NAME>" __email__ = "<EMAIL>" __copyright__ = "Copyright 2020-2021" __license__ = "MIT" __version__ = "2.3.7" __status__ = "Prototype" def _mass_ratio(specie): if specie in ["ions", "i"]: mass_ratio = 1 elif specie in ["electrons", "e"]: mass_ratio = constants.electron_mass / constants.proton_mass else: raise ValueError("Invalid specie") return mass_ratio def _convert(vdf, mass_ratio): if vdf.attrs["UNITS"].lower() == "s^3/cm^6": out = vdf.data.data * 1e30 / (1e6 * 0.53707 * mass_ratio ** 2) elif vdf.attrs["UNITS"].lower() == "s^3/m^6": out = vdf.data.data * 1e18 / (1e6 * 0.53707 * mass_ratio ** 2) elif vdf.attrs["UNITS"].lower() == "s^3/km^6": out = vdf.data.data / (1e6 * 0.53707 * mass_ratio ** 2) else: raise ValueError("Invalid unit") return out def psd2def(vdf): r"""Changes units to differential energy flux. Parameters ---------- vdf : xarray.Dataset Time series of the 3D velocity distribution with : * time : Time samples. * data : 3D velocity distribution. * energy : Energy levels. * phi : Azimuthal angles. * theta : Elevation angle. Returns ------- out : xarray.Dataset Time series of the 3D differential energy flux with : * time : Time samples. * data : 3D density energy flux. * energy : Energy levels. * phi : Azimuthal angles. * theta : Elevation angle. """ mass_ratio = _mass_ratio(vdf.attrs["species"]) tmp_data = _convert(vdf, mass_ratio) energy = vdf.energy.data if tmp_data.ndim == 2: tmp_data = tmp_data[:, :, None, None] data_r = np.reshape(tmp_data, (tmp_data.shape[0], tmp_data.shape[1],
np.prod(tmp_data.shape[2:])
numpy.prod
""" Copyright 2013 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from multiprocessing import Pool import numpy as np from cvxpy import norm, Minimize, Problem, square, Variable def solveX(data): a = data[0:3] u = data[3:6] z = data[6:9] rho = data[9] x = Variable(3,1) g = square(norm(x - a)) + rho/2*square(norm(x - z + u)) objective = Minimize(g) p = Problem(objective, []) result = p.solve() return x.value def main(): #Solve the following consensus problem using ADMM: #Minimize sum(f_i(x)), where f_i(x) = square(norm(x - a_i)) #Generate a_i's np.random.seed(0) a = np.random.randn(3, 10) #Initialize variables to zero x = np.zeros((3,10)) u = np.zeros((3,10)) z = np.zeros((3,1)) rho = 5 #Run 50 steps of ADMM iters = 0 pool = Pool(processes = 10) while(iters < 50): #x-update: update each x_i in parallel temp = np.concatenate((a,u,np.tile(z, (1,10)),np.tile(rho, (10,1)).transpose()), axis=0) xnew = pool.map(solveX, temp.transpose()) x = np.array(xnew).transpose()[0] #z-update znew = Variable(3,1) h = 0 for i in range(10): h = h + rho/2*square(norm(x[:,i] - znew + u[:,i])) objective = Minimize(h) p = Problem(objective, []) result = p.solve() z =
np.array(znew.value)
numpy.array
import argparse import numpy as np import matplotlib.pyplot as plt import tensorflow as tf import time from scipy import stats from sklearn.metrics import r2_score import math # Force using CPU globally by hiding GPU(s) tf.config.set_visible_devices([], 'GPU') # import edl import evidential_deep_learning as edl import data_loader import trainers import models from models.toy.h_params import h_params import itertools tf.config.threading.set_intra_op_parallelism_threads(1) import random data_name = 'flight_delay' original_data_path = '../flight_delay_data/' results_path = './Results_DER/'+data_name + '_DER_results.txt' save_loss_history = False save_loss_history_path = './Results_DER/loss_history/' plot_loss_history = False plot_loss_history_path = './Results_DER/loss_curves/' parser = argparse.ArgumentParser() parser.add_argument("--num-trials", default=1, type=int, help="Number of trials to repreat training for \ statistically significant results.") parser.add_argument("--num-epochs", default=100, type=int) parser.add_argument('--datasets', nargs='+', default=["flight_delay"], choices=['flight_delay']) dataset = data_name # learning_rate = h_params[dataset]["learning_rate"] # batch_size = h_params[dataset]["batch_size"] learning_rate = 1e-4 batch_size = 512 neurons = 100 ### New flight delay data loader for customized train/test data same with PI3NN method xTrain, yTrain, yTrain_scale, test_data_list = data_loader.load_flight_delays('../flight_delay_data/') # '''choose the train/test dataset ''' x_train = xTrain y_train = yTrain y_scale = yTrain_scale test_idx = 0 # [0, 1, 2, 3] for test 1,2,3,4 x_test = test_data_list[test_idx][0] y_test = test_data_list[test_idx][1] seed = 12345 random.seed(seed) np.random.seed(seed) tf.random.set_seed(seed) args = parser.parse_args() args.datasets[0] = data_name training_schemes = [trainers.Evidential] datasets = args.datasets print('--- Printing datasets:') print(datasets) num_trials = args.num_trials print('num_trials:{}'.format(num_trials)) # num_trials = 3 num_epochs = args.num_epochs dev = "/cpu:0" # for small datasets/models cpu is faster than gpu """" ================================================""" RMSE = np.zeros((len(datasets), len(training_schemes), num_trials)) NLL = np.zeros((len(datasets), len(training_schemes), num_trials)) PICP_arr = np.zeros(num_trials) MPIW_arr = np.zeros(num_trials) R2_arr = np.zeros(num_trials) for di, dataset in enumerate(datasets): # print(di) # print(dataset) for ti, trainer_obj in enumerate(training_schemes): for n in range(num_trials): print('*********************************************') print('--- data: {}, trial: {}'.format(data_name, n+1)) print('*********************************************') # batch_size = h_params[dataset]["batch_size"] num_iterations = num_epochs * x_train.shape[0]//batch_size print('num_epochs: {}, num_x_data: {}, batch_size: {}, total iters {} = {} * {} // {}'.format(num_epochs, x_train.shape[0], batch_size, num_iterations, num_epochs, x_train.shape[0], batch_size)) done = False while not done: with tf.device(dev): model_generator = models.get_correct_model(dataset="toy", trainer=trainer_obj) model, opts = model_generator.create(input_shape=x_train.shape[1:], num_neurons=neurons, tf_seed=seed) trainer = trainer_obj(model, opts, dataset, learning_rate=learning_rate) model, rmse, nll, loss = trainer.train(x_train, y_train, x_test, y_test, y_scale, batch_size=batch_size, iters=num_iterations, verbose=True, data_name=data_name, rnd_seed=seed, trial_num=n, bool_plot_loss=False, bool_save_loss=True, save_loss_path=save_loss_history_path, plot_loss_path=plot_loss_history_path) ''' Evaluate the PICP and MPIW for each trial ''' ### taken from the 'plot_ng' function from the original evidential regression code x_test_input_tf = tf.convert_to_tensor(x_test, tf.float32) outputs = model(x_test_input_tf) mu, v, alpha, beta = tf.split(outputs, 4, axis=1) epistemic_var = np.sqrt(beta / (v * (alpha - 1))) epistemic_var = np.minimum(epistemic_var, 1e3) y_pred_U = mu.numpy() + epistemic_var * 1.96 y_pred_L = mu.numpy() - epistemic_var * 1.96 # print('y_pred_U: {}'.format(y_pred_U)) # print('y_pred_L: {}'.format(y_pred_L)) ''' Do same thing for training data in order to do OOD analysis ''' x_train_input_tf = tf.convert_to_tensor(x_train, tf.float32) outputs_train = model(x_train_input_tf) mu_train, v_train, alpha_train, beta_train = tf.split(outputs_train, 4, axis=1) epistemic_var_train = np.sqrt(beta_train / (v_train * (alpha_train - 1))) epistemic_var_train = np.minimum(epistemic_var_train, 1e3) y_pred_U_train = mu_train.numpy() + epistemic_var_train * 1.96 y_pred_L_train = mu_train.numpy() - epistemic_var_train * 1.96 if np.isnan(y_pred_U).any() or np.isnan(y_pred_L).any(): PICP = math.nan MPIW = math.nan R2 = math.nan rmse = math.nan nll = math.nan print('--- the y_pred_U/L contains NaN(s) in current trial') else: ''' Calculate the confidence scores (y-axis) range from 0-1''' y_U_cap_train = y_pred_U_train.flatten() > y_train y_L_cap_train = y_pred_L_train.flatten() < y_train MPIW_array_train = y_pred_U_train.flatten() - y_pred_L_train.flatten() MPIW_train = np.mean(MPIW_array_train) #### for test (evaluate each y_U_cap - y_L_cap in the pre-calculated MPIW_train single value # for the confidence score) print(y_pred_U.shape) print(y_pred_L.shape) print(y_test.reshape(-1).shape) y_pred_U = y_pred_U.reshape(-1) y_pred_L = y_pred_L.reshape(-1) y_U_cap = y_pred_U > y_test y_L_cap = y_pred_L < y_test # print('y_U_cap: {}'.format(y_U_cap)) # print('y_L_cap: {}'.format(y_L_cap)) # print('y_L_cap: {}'.format(y_L_cap)) y_all_cap = y_U_cap * y_L_cap PICP = np.sum(y_all_cap) / y_L_cap.shape[0] MPIW_array = y_pred_U - y_pred_L MPIW = np.mean(MPIW_array) confidence_arr_test = [min(MPIW_train / test_width, 1.0) for test_width in MPIW_array] confidence_arr_train = [min(MPIW_train / train_width, 1.0) for train_width in MPIW_array_train] print('----------- OOD analysis --- confidence scores ----------------') print('--- Train conf_scores MEAN: {}, STD: {}'.format(np.mean(confidence_arr_train), np.std(confidence_arr_train))) print('--- Test: {} rank: {} conf_scores MEAN: {}, STD: {}'.format(test_idx+1, test_idx+1, np.mean(confidence_arr_test), np.std(confidence_arr_test))) ''' Calculate the L2 distance to the mean of training data (x-axis), range from 0-30''' dist_arr_train = np.sqrt(
np.sum(x_train ** 2.0, axis=1)
numpy.sum
import cv2 import numpy as np import imutils from collections import defaultdict # mouse callback function def define_points(target_img): corners = [] refPt = [] def draw_circle(event,x,y,flags,param): global refPt if event == cv2.EVENT_LBUTTONDBLCLK: cv2.circle(param,(x,y),5,(255,0,0),-1) refPt = [x,y] print(type(refPt)) corners.append(refPt) cv2.namedWindow('image') cv2.setMouseCallback('image',draw_circle, target_img) while(1): cv2.imshow('image',target_img) k = cv2.waitKey(20) & 0xFF # corners.append(refPt) if k == 27: break cv2.destroyAllWindows() print (corners) new_corners = np.array(corners) return new_corners def order_points(pts): # initialzie a list of coordinates that will be ordered # such that the first entry in the list is the top-left, # the second entry is the top-right, the third is the # bottom-right, and the fourth is the bottom-left rect = np.zeros((4, 2), dtype = "float32") # the top-left point will have the smallest sum, whereas # the bottom-right point will have the largest sum s = pts.sum(axis = 1) rect[0] = pts[np.argmin(s)] rect[2] = pts[np.argmax(s)] # now, compute the difference between the points, the # top-right point will have the smallest difference, # whereas the bottom-left will have the largest difference diff = np.diff(pts, axis = 1) rect[1] = pts[np.argmin(diff)] rect[3] = pts[np.argmax(diff)] # return the ordered coordinates return rect def segment_by_angle_kmeans(lines,k=2, **kwargs): """Groups lines based on angle with k-means. Uses k-means on the coordinates of the angle on the unit circle to segment `k` angles inside `lines`. """ # Define criteria = (type, max_iter, epsilon) default_criteria_type = cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER criteria = kwargs.get('criteria', (default_criteria_type, 10, 1.0)) flags = kwargs.get('flags', cv2.KMEANS_RANDOM_CENTERS) attempts = kwargs.get('attempts', 10) # returns angles in [0, pi] in radians angles = np.array([line[0][1] for line in lines]) # multiply the angles by two and find coordinates of that angle pts = np.array([[np.cos(2*angle), np.sin(2*angle)] for angle in angles], dtype=np.float32) # run kmeans on the coords labels, centers = cv2.kmeans(pts, k, None, criteria, attempts, flags)[1:] labels = labels.reshape(-1) # transpose to row vec # segment lines based on their kmeans label segmented = defaultdict(list) for i, line in zip(range(len(lines)), lines): segmented[labels[i]].append(line) segmented = list(segmented.values()) return segmented def intersection(line1, line2): """Finds the intersection of two lines given in Hesse normal form. Returns closest integer pixel locations. See https://stackoverflow.com/a/383527/5087436 """ rho1, theta1 = line1[0] rho2, theta2 = line2[0] A = np.array([ [np.cos(theta1), np.sin(theta1)], [np.cos(theta2), np.sin(theta2)] ]) b = np.array([[rho1], [rho2]]) x0, y0 = np.linalg.solve(A, b) x0, y0 = int(np.round(x0)), int(np.round(y0)) return [[x0, y0]] def segmented_intersections(lines): """Finds the intersections between groups of lines.""" intersections = [] for i, group in enumerate(lines[:-1]): for next_group in lines[i+1:]: for line1 in group: for line2 in next_group: intersections.append(intersection(line1, line2)) return intersections def isEqual(l1, l2): length1 = sqrtf((l1[2] - l1[0])*(l1[2] - l1[0]) + (l1[3] - l1[1])*(l1[3] - l1[1])) length2 = sqrtf((l2[2] - l2[0])*(l2[2] - l2[0]) + (l2[3] - l2[1])*(l2[3] - l2[1])) product = (l1[2] - l1[0])*(l2[2] - l2[0]) + (l1[3] - l1[1])*(l2[3] - l2[1]) if (fabs(product / (length1 * length2)) < cos(CV_PI / 30)): return false mx1 = (l1[0] + l1[2]) * 0.5 mx2 = (l2[0] + l2[2]) * 0.5 my1 = (l1[1] + l1[3]) * 0.5 my2 = (l2[1] + l2[3]) * 0.5 dist = sqrtf((mx1 - mx2)*(mx1 - mx2) + (my1 - my2)*(my1 - my2)) if (dist > max(length1, length2) * 0.5): return false return true def birdseye_correction(img = "angled.jpg"): img = cv2.imread(img,0) resized = imutils.resize(img, height = 1000) copy = resized.copy() rect = order_points(define_points(copy)) print (rect) (tl, tr, br, bl) = rect # compute the width of the new image, which will be the # maximum distance between bottom-right and bottom-left # x-coordiates or the top-right and top-left x-coordinates widthA = np.sqrt(((br[0]-bl[0])**2)+((br[1]-bl[1])**2)) widthB = np.sqrt(((tr[0]-tl[0])**2)+((tr[1]-tl[1])**2)) maxWidth = max(int(widthA), int(widthB)) # compute the height of the new image, which will be the # maximum distance between the top-right and bottom-right # y-coordinates or the top-left and bottom-left y-coordinates heightA = np.sqrt(((tr[0]-br[0])**2)+((tr[1]-br[1])**2)) heightB = np.sqrt(((tl[0]-bl[0])**2)+((tl[1]-bl[1])**2)) maxHeight = max(int(heightA), int(heightB)) dst = np.array([[0, 0], \ [maxWidth - 1, 0], \ [maxWidth - 1, maxHeight - 1], \ [0, maxHeight - 1]], dtype = "float32") # compute the perspective transform matrix and then apply it M = cv2.getPerspectiveTransform(rect, dst) warped = cv2.warpPerspective(resized, M, (maxWidth, maxHeight)) cv2.imshow("warped", warped) cv2.waitKey(0) cv2.destroyAllWindows() # gray = cv2.cvtColor(warped, cv2.COLOR_BGR2GRAY) blurred_img = cv2.GaussianBlur(warped,(3,3),0) binary = cv2.adaptiveThreshold(blurred_img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\ cv2.THRESH_BINARY,31,2) # noise removal kernel = np.ones((3,3),np.uint8) opening = cv2.morphologyEx(binary,cv2.MORPH_OPEN,kernel, iterations = 2) # Apply edge detection method on the image edges = cv2.Canny(warped,50,150,apertureSize = 3) # cv2.imshow("edges", edges) cv2.waitKey(0) cv2.destroyAllWindows() # This returns an array of r and theta values lines = cv2.HoughLines(edges,1,np.pi/180, 140) # The below for loop runs till r and theta values # are in the range of the 2d array for line in lines: for r,theta in line: # Stores the value of cos(theta) in a a =
np.cos(theta)
numpy.cos
# Copyright (c) 2020 Huawei Technologies Co., Ltd # Copyright (c) 2019, Facebook CORPORATION. # All rights reserved. # # Licensed under the BSD 3-Clause License (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # coding: utf8 import argparse import os import random import shutil import time import warnings #from __future__ import division import torch import torch.nn as nn import torch.nn.parallel import torch.backends.cudnn as cudnn import torch.distributed as dist import torch.optim import torch.multiprocessing as mp import torch.utils.data import torch.utils.data.distributed import torchvision import torchvision.transforms as transforms import torchvision.datasets as datasets import torchvision.models as models from apex import amp import numpy as np import onnx import onnxruntime as ort from export.onnx_parser import * from export.cp_parser import * from onnx import numpy_helper import urllib.request import json import time # display images in notebook import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont #%matplotlib inline #G_ONNX_FILEPATH = './densenet121.onnx' class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=':f'): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})' return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print("[gpu id:",os.environ['KERNEL_NAME_ID'],"]",'\t'.join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = '{:' + str(num_digits) + 'd}' return '[' + fmt + '/' + fmt.format(num_batches) + ']' def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res def load_labels(path): with open(path) as f: # content = f.read() # if content.startswith(u'\ufeff'): # content = content.encode('utf8')[3:].decode('utf8') data = json.load(f) return np.asarray(data) def preprocess(input_data,dimx=1): # convert the input data into the float32 input img_data = input_data.astype('float32') #normalize mean_vec = np.array([0.485, 0.456, 0.406]) stddev_vec = np.array([0.229, 0.224, 0.225]) norm_img_data = np.zeros(img_data.shape).astype('float32') for i in range(img_data.shape[0]): norm_img_data[i,:,:] = (img_data[i,:,:]/255 - mean_vec[i]) / stddev_vec[i] #add batch channel print(norm_img_data.shape) #norm_img_data = norm_img_data.reshape(1, 3, 224, 224).astype('float32') norm_img_data.resize(dimx, 3, 224, 224) norm_img_data = norm_img_data.astype('float32') return norm_img_data def softmax(x): x = x.reshape(-1) e_x = np.exp(x - np.max(x)) return e_x / e_x.sum(axis=0) def postprocess(result): return softmax(np.array(result)).tolist() test_data_dir = 'resnet50v2/test_data_set' test_data_num = 3 import glob import os def load_IOPuts(): # Load inputs inputs = [] for i in range(test_data_num): input_file = os.path.join(test_data_dir + '_{}'.format(i), 'input_0.pb') tensor = onnx.TensorProto() with open(input_file, 'rb') as f: tensor.ParseFromString(f.read()) inputs.append(numpy_helper.to_array(tensor)) print('Loaded {} inputs successfully.'.format(test_data_num)) # Load reference outputs ref_outputs = [] for i in range(test_data_num): output_file = os.path.join(test_data_dir + '_{}'.format(i), 'output_0.pb') tensor = onnx.TensorProto() with open(output_file, 'rb') as f: tensor.ParseFromString(f.read()) ref_outputs.append(numpy_helper.to_array(tensor)) print('Loaded {} reference outputs successfully.'.format(test_data_num)) return inputs,ref_outputs def onnxrt_run_resnet50(onnx_path,inputs,ref_outputs): sess = ort.InferenceSession(onnx_path, None) input_name = sess.get_inputs()[0].name print('Input Name:', input_name) # img_height = 224 # img_width = 224 #sess.run(None, {'input_1': np.random.rand(2, 3, img_height, img_width).astype('float32')}) # rtn = sess.run(None, {'actual_input_1': np.random.rand(10, 3, img_height, img_width).astype('float32')}) # return rtn #%%time print(onnx_path) print(type(inputs[0]),np.size(inputs[0])) outputs = [sess.run([], {input_name: inputs[i]})[0] for i in range(test_data_num)] print('Predicted {} results.'.format(len(outputs))) # Compare the results with reference outputs up to 4 decimal places for ref_o, o in zip(ref_outputs, outputs): np.testing.assert_almost_equal(ref_o, o, 4) print('ONNX Runtime outputs are similar to reference outputs!') return outputs def onnxrt_runeval_resnet50(cp_path,onnx_path): # Load the ONNX model #onnx_model = onnx.load(onnx_path) #cp_model = cp_load(torchvision.models.resnet50(pretrained=False),cp_path) print(onnx_path) inputs,ref_outputs = load_IOPuts() onnxrt_result = onnxrt_run(onnx_path,inputs,ref_outputs) # compare ONNX Runtime and PyTorch results #np.testing.assert_allclose(to_numpy(torch_out), onnxrt_result[0], rtol=1e-03, atol=1e-05) #print("Exported model has been tested with ONNXRuntime, and the result looks good!") def onnxrt_runeval_resnet50_pic(cp_path,onnx_path,dimx=1): session = ort.InferenceSession(onnx_path, None) labels = load_labels('resnet50v2/imagenet-simple-labels.json') image = Image.open('resnet50v2/dog224.224.jpg') #image = Image.open('resnet50v2/dog.jpg') #image = Image.open('resnet50v2/dog.png') # image = Image.open('images/plane.jpg') input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name print("input_name: ", input_name, "output_name: ", output_name) print("Image size: ", image.size) plt.axis('off') display_image = plt.imshow(image) image_data = np.array(image).transpose(2, 0, 1) input_data = preprocess(image_data,dimx=dimx) start = time.time() raw_result = session.run([output_name], {input_name: input_data}) end = time.time() res = postprocess(raw_result) inference_time = np.round((end - start) * 1000, 2) idx = np.argmax(res) print('========================================') print('Final top prediction is: ' + labels[idx]) print('========================================') print('========================================') print('Inference time: ' + str(inference_time) + " ms") print('========================================') sort_idx = np.flip(np.squeeze(np.argsort(res))) print('============ Top 5 labels are: ============================') print(labels[sort_idx[:5]]) print('===========================================================') plt.axis('off') display_image = plt.imshow(image) def resnet50_eval(cp_path,dimx=1): resnet50 = torchvision.models.resnet50(pretrained=False) model = cp_load(resnet50,cp_path) model.eval() image = Image.open('resnet50v2/dog224.224.jpg') image_data = np.array(image).transpose(2, 0, 1) input_data = preprocess(image_data, dimx=dimx) image_tensor = torch.from_numpy(input_data) out = model(image_tensor) _, indices = torch.sort(out, descending=True) return indices[0] def onnxrt_resnet50_eval(onnx_path,dimx=1): #print('-------------cp_path-------------',cp_path) session = ort.InferenceSession(onnx_path, None) image = Image.open('resnet50v2/dog224.224.jpg') #image = Image.open('resnet50v2/dog.jpg') #image = Image.open('resnet50v2/dog.png') # image = Image.open('images/plane.jpg') input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name print("input_name: ", input_name, "output_name: ", output_name) print("Image size: ", image.size) plt.axis('off') image_data =
np.array(image)
numpy.array
import numpy as np import h5py import json import sys sys.path.append("C:/Users/qq651/OneDrive/Codes/") sys.path.append("C:/Users/qq651/OneDrive/Codes/A2project") import illustris_python as il import matplotlib.pyplot as plt from plotTools.plot import * import illustrisAPI as iapi def logMasSun(data): if type(data) != type(np.array(0)): data = np.array(data) data = np.log10(data * 10 ** 10) data[np.isinf(data)] = 0 return data def logmass(data): if type(data) != type(np.array(0)): data = np.array(data) data =
np.log10(data)
numpy.log10
from __future__ import print_function from __future__ import division from builtins import range from past.utils import old_div from future.utils import raise_ import unittest import copy import os import numpy as num from anuga.coordinate_transforms.geo_reference import Geo_reference from anuga.geometry.polygon import is_inside_polygon from anuga.abstract_2d_finite_volumes.util import file_function from anuga.config import netcdf_mode_r, netcdf_mode_w, netcdf_mode_a from anuga.config import g from anuga.shallow_water.boundaries import Reflective_boundary, \ Field_boundary, Transmissive_momentum_set_stage_boundary, \ Transmissive_stage_zero_momentum_boundary from anuga.abstract_2d_finite_volumes.generic_boundary_conditions\ import Transmissive_boundary, Dirichlet_boundary, \ Time_boundary, File_boundary, AWI_boundary from anuga.file.sww import get_mesh_and_quantities_from_file from anuga.shallow_water.shallow_water_domain import Domain from anuga.abstract_2d_finite_volumes.mesh_factory \ import rectangular_cross, rectangular from anuga.shallow_water.sww_interrogate import get_maximum_inundation_elevation, \ get_maximum_inundation_location, get_maximum_inundation_data, \ get_flow_through_cross_section, get_energy_through_cross_section class Test_sww_Interrogate(unittest.TestCase): def setUp(self): pass def tearDown(self): for file in ['flowtest.sww', 'flowtest_uniquely.sww', 'runup_test_2.sww']: try: os.remove(file) except: pass def test_get_maximum_inundation_de0(self): """Test that sww information can be converted correctly to maximum runup elevation and location (without and with georeferencing) This test creates a slope and a runup which is maximal (~11m) at around 10s and levels out to the boundary condition (1m) at about 30s. """ import time, os from anuga.file.netcdf import NetCDFFile verbose = False #Setup #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular # Create basic mesh (100m x 100m) points, vertices, boundary = rectangular(20, 5, 100, 50) # Create shallow water domain domain = Domain(points, vertices, boundary) domain.set_flow_algorithm('DE0') domain.set_low_froude(0) domain.set_minimum_storable_height(0.01) filename = 'runup_test_3' domain.set_name(filename) swwfile = domain.get_name() + '.sww' domain.set_datadir('.') domain.format = 'sww' domain.smooth = True # FIXME (Ole): Backwards compatibility # Look at sww file and see what happens when # domain.tight_slope_limiters = 1 domain.tight_slope_limiters = 0 domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([1.0,0,0]) #---------- First run without geo referencing domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope domain.set_quantity('stage', -6) domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) for t in domain.evolve(yieldstep=1, finaltime = 50): pass # Check maximal runup runup, location, max_time = get_maximum_inundation_data(swwfile, return_time=True) if verbose: print('Runup, location', runup, location, max_time) assert num.allclose(runup, 3.33333325386) assert num.allclose(location, [53.333332, 43.333332]) assert num.allclose(max_time, 10.0) # Check runup in restricted time interval runup, location, max_time = get_maximum_inundation_data(swwfile, time_interval=[0,9], return_time=True) if verbose: print('Runup, location:',runup, location, max_time) assert num.allclose(runup, 2.66666674614) assert num.allclose(location, [56.666668, 16.666666]) assert num.allclose(max_time, 9.0) # Check final runup runup, location = get_maximum_inundation_data(swwfile, time_interval=[45,50]) if verbose: print('Runup, location:',runup, location, max_time) assert num.allclose(runup, 3.33333325386) assert num.allclose(location, [53.333332, 33.333332]) #assert num.allclose(max_time, 45.0) # Check runup restricted to a polygon p = [[50,1], [99,1], [99,40], [50,40]] runup, location = get_maximum_inundation_data(swwfile, polygon=p) #runup = get_maximum_inundation_elevation(swwfile, polygon=p) #location = get_maximum_inundation_location(swwfile, polygon=p) #print runup, location, max_time assert num.allclose(runup, 3.33333325386) assert num.allclose(location, [53.333332, 33.333332]) #assert num.allclose(max_time, 11.0) # Check that mimimum_storable_height works fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file stage = fid.variables['stage_c'][:] z = fid.variables['elevation_c'][:] xmomentum = fid.variables['xmomentum_c'][:] ymomentum = fid.variables['ymomentum_c'][:] for i in range(stage.shape[0]): h = stage[i]-z # depth vector at time step i # Check every node location for j in range(stage.shape[1]): # Depth being either exactly zero implies # momentum being zero. # Or else depth must be greater than or equal to # the minimal storable height if h[j] == 0.0: assert xmomentum[i,j] == 0.0 assert ymomentum[i,j] == 0.0 else: assert h[j] >= 0.0 fid.close() # Cleanup os.remove(swwfile) #------------- Now the same with georeferencing domain.time=0.0 E = 308500 N = 6189000 #E = N = 0 domain.geo_reference = Geo_reference(56, E, N) domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope domain.set_quantity('stage', -6) domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) for t in domain.evolve(yieldstep=1, finaltime = 50): pass # Check maximal runup runup, location = get_maximum_inundation_data(swwfile) #print 'Runup, location', runup, location, max_time assert num.allclose(runup, 3.33333325386) assert num.allclose(location, [53.333332+E, 43.333332+N]) #assert num.allclose(max_time, 10.0) # Check runup in restricted time interval runup, location = get_maximum_inundation_data(swwfile, time_interval=[0,9]) #print 'Runup, location:',runup, location, max_time assert num.allclose(runup, 2.66666674614) assert num.allclose(location, [56.666668+E, 16.666666+N]) #assert num.allclose(max_time, 9.0) # Check final runup runup, location = get_maximum_inundation_data(swwfile, time_interval=[45,50]) #print 'Runup, location:',runup, location, max_time assert num.allclose(runup, 3.33333325386) assert num.allclose(location, [53.333332+E, 33.333332+N]) #assert num.allclose(max_time, 45.0) # Check runup restricted to a polygon p = num.array([[50,1], [99,1], [99,40], [50,40]], num.int) + num.array([E, N], num.int) runup, location = get_maximum_inundation_data(swwfile, polygon=p) #print runup, location, max_time assert num.allclose(runup, 3.33333325386) assert num.allclose(location, [53.333332+E, 33.333332+N]) #assert num.allclose(max_time, 11.0) # Cleanup os.remove(swwfile) def test_get_maximum_inundation_1_5(self): """Test that sww information can be converted correctly to maximum runup elevation and location (without and with georeferencing) This test creates a slope and a runup which is maximal (~11m) at around 10s and levels out to the boundary condition (1m) at about 30s. """ import time, os from anuga.file.netcdf import NetCDFFile #Setup #from anuga.abstract_2d_finite_volumes.mesh_factory import rectangular # Create basic mesh (100m x 100m) points, vertices, boundary = rectangular(20, 5, 100, 50) # Create shallow water domain domain = Domain(points, vertices, boundary) domain.set_flow_algorithm('1_5') domain.default_order = 2 domain.set_minimum_storable_height(0.01) filename = 'runup_test_3' domain.set_name(filename) swwfile = domain.get_name() + '.sww' domain.set_datadir('.') domain.format = 'sww' domain.smooth = True # FIXME (Ole): Backwards compatibility # Look at sww file and see what happens when # domain.tight_slope_limiters = 1 domain.tight_slope_limiters = 0 domain.use_centroid_velocities = 0 # Backwards compatibility (7/5/8) Br = Reflective_boundary(domain) Bd = Dirichlet_boundary([1.0,0,0]) #---------- First run without geo referencing domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope domain.set_quantity('stage', -6) domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) for t in domain.evolve(yieldstep=1, finaltime = 50): pass # Check maximal runup runup = get_maximum_inundation_elevation(swwfile) location = get_maximum_inundation_location(swwfile) #print 'Runup, location', runup, location assert num.allclose(runup, 6.33333333) or \ num.allclose(runup, 6) or \ num.allclose(runup, 12) # old limiters assert num.allclose(location[0], 38.33333333) or \ num.allclose(location[0], 40.0) or \ num.allclose(location[0], 10) # Check final runup runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50]) location = get_maximum_inundation_location(swwfile, time_interval=[45,50]) #print 'Runup, location:',runup, location assert num.allclose(runup, 1.666666666) assert num.allclose(location[0], 61.666666) # Check runup restricted to a polygon p = [[50,1], [99,1], [99,49], [50,49]] runup = get_maximum_inundation_elevation(swwfile, polygon=p) location = get_maximum_inundation_location(swwfile, polygon=p) #print runup, location assert num.allclose(runup, 3.6666666) assert num.allclose(location[0], 51.6666666) # Check that mimimum_storable_height works fid = NetCDFFile(swwfile, netcdf_mode_r) # Open existing file stage = fid.variables['stage'][:] z = fid.variables['elevation'][:] xmomentum = fid.variables['xmomentum'][:] ymomentum = fid.variables['ymomentum'][:] for i in range(stage.shape[0]): h = stage[i]-z # depth vector at time step i # Check every node location for j in range(stage.shape[1]): # Depth being either exactly zero implies # momentum being zero. # Or else depth must be greater than or equal to # the minimal storable height if h[j] == 0.0: assert xmomentum[i,j] == 0.0 assert ymomentum[i,j] == 0.0 else: assert h[j] >= domain.minimum_storable_height fid.close() # Cleanup os.remove(swwfile) #------------- Now the same with georeferencing domain.time=0.0 E = 308500 N = 6189000 #E = N = 0 domain.geo_reference = Geo_reference(56, E, N) domain.set_quantity('elevation', lambda x,y: -0.2*x + 14) # Slope domain.set_quantity('stage', -6) domain.set_boundary( {'left': Br, 'right': Bd, 'top': Br, 'bottom': Br}) for t in domain.evolve(yieldstep=1, finaltime = 50): pass # Check maximal runup runup = get_maximum_inundation_elevation(swwfile) location = get_maximum_inundation_location(swwfile) #print runup, location assert num.allclose(runup,6.33333333) or \ num.allclose(runup, 6) or \ num.allclose(runup, 12) # old limiters assert num.allclose(location[0], 38.34+E) or \ num.allclose(location[0], 40+E) or \ num.allclose(location[0], 10+E) # Check final runup runup = get_maximum_inundation_elevation(swwfile, time_interval=[45,50]) location = get_maximum_inundation_location(swwfile, time_interval=[45,50]) #print runup, location #1.66666666667 [308561.66, 6189006.5] assert num.allclose(runup, 1.666666666) assert num.allclose(location[0], 61.66+E) # Check runup restricted to a polygon p = num.array([[50,1], [99,1], [99,49], [50,49]], num.int) + num.array([E, N], num.int) #array default# runup = get_maximum_inundation_elevation(swwfile, polygon=p) location = get_maximum_inundation_location(swwfile, polygon=p) #print runup, location assert num.allclose(runup, 3.66666666) assert
num.allclose(location[0], 51.66+E)
numpy.allclose
#!/usr/bin/env python # -*- coding: utf-8 -*- # @Date : 2020-07-19 17:45:06 # @Author : helingjie-maskmind (<EMAIL>) # @Link : ${link} # @Version : $Id$ import os import numpy as np import sys from matplotlib.pyplot import plot from matplotlib.pyplot import show N = int(input("please input N")) weights = np.ones(N) / N print("Weights", weights) c = np.loadtxt('data.csv', delimiter=',', usecols=(6,), unpack=True) sma = np.convolve(weights, c)[N-1:-N+1] deviation=[] c_length=len(c) for i in range(N-1,c_length): if i+N<c_length: dev=c[i:i+N] else: dev=c[-N:] averages=np.zeros(N) # fill 构造元素值相同的数组 averages.fill(sma[i-N-1]) dev = dev - averages dev = dev ** 2 dev = np.sqrt(np.mean(dev)) deviation.append(dev) deviation = 2 *
np.array(deviation)
numpy.array
import os import yaml import random import argparse import numpy as np import torch import tqdm from os import path as osp from dataloader.video_loader import DecordVideoReader from utils.data_processing import * def evaluate_video(models, mids, dataloader): for model in models: model.eval() mdn_loss_list = [0] * len(models) num_loss_list = [0] * len(models) mean_dict_list = [{} for m in models] var_dict_list = [{} for m in models] for imgs, scores in tqdm.tqdm(dataloader, desc="Detecting objects"): scores_cpu = scores.cpu() with torch.no_grad(): for i, (mean_dict, var_dict, model) in enumerate(zip(mean_dict_list, var_dict_list, models)): _, mdn_output = model(imgs, scores=scores) pi, sigma, mu = mdn_output[2], mdn_output[3], mdn_output[4] mdn_loss_list[i] += mdn_output[1].item() num_loss_list[i] += 1 mean = (mu * pi).sum(-1) var = ((sigma**2 + mu**2 - mean.unsqueeze(-1)**2) * pi).sum(-1) for i in range(len(mean)): lab = scores_cpu[i].item() if lab not in mean_dict: mean_dict[lab] = [mean[i].item()] var_dict[lab] = [var[i].item()] else: mean_dict[lab] += [mean[i].item()] var_dict[lab] += [var[i].item()] for i, (mean_dict, var_dict) in enumerate(zip(mean_dict_list, var_dict_list)): print("profile of Model %d" % mids[i]) print('K N Mean Var MSE') se_dict = dict() count_dict = dict() keys = [int(k) for k in mean_dict.keys()] keys.sort() for k in keys: samples = len(mean_dict[k]) se = ((np.array(mean_dict[k]) - k) ** 2).sum() mean = np.mean(mean_dict[k]) var = np.mean(var_dict[k]) se_dict[k] = se count_dict[k] = samples print('{}: {} {:.2f} {:.2F} {:.2f}'.format(k, samples, mean, var, se / samples)) se = np.array(list(se_dict.values())) count = np.array(list(count_dict.values())) print('MSE: {:.2f}'.format(se.sum() / count.sum())) print('NLL: {:.2f}'.format(mdn_loss_list[i] / num_loss_list[i])) mdn_loss_list[i] /= num_loss_list[i] return mdn_loss_list def train_models(epochs, model_configs, mids, train_dataloader, valid_dataloader, weight, checkpoint_dir): for i, model_config in enumerate(model_configs): for module_def in model_config: if module_def["type"] == "hmdn": print("Model_%d: M: %s, H: %s, eps: %s" % (mids[i], module_def["M"], module_def["num_h"], module_def["eps"])) break models = [Darknet(model_config, weight).to(config.device) for model_config in model_configs] parameters = [] for model in models: model.apply(weights_init_normal) model.load_darknet_weights("weights/yolov3-tiny.weights") model.train() parameters += model.parameters() optimizer = torch.optim.Adam(parameters, lr=0.001) for epoch in range(epochs): total_loss = 0 num_batchs = 0 for imgs, scores in tqdm.tqdm(train_dataloader, desc="epoch %d/%d" % (epoch+1, epochs)): loss = 0.0 for model in models: _, mdn_output = model(imgs, scores=scores) wta_loss = mdn_output[0] mdn_loss = mdn_output[1] if epoch < 5: loss += wta_loss + 0.0 * mdn_loss else: loss += 0.5 * wta_loss + mdn_loss # mdn metric total_loss += mdn_loss.item() num_batchs += 1 model.seen += imgs.size(0) loss.backward() optimizer.step() optimizer.zero_grad() print("mdn_loss: %.3f" % (total_loss / num_batchs)) nlls = evaluate_video(models, mids, valid_dataloader) for i, model in enumerate(models): torch.save(model.state_dict(), os.path.join(checkpoint_dir, f"cmdn_{mids[i]}.pth")) return np.array(nlls) def train_cmdn(opt, vr, lr, train_idxs, valid_idxs, score_weight): torch.manual_seed(opt.random_seed) np.random.seed(opt.random_seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False random.seed(opt.random_seed) # Get data configuration model_group_config = parse_model_config(config.cmdn_config) model_configs = parse_model_group(model_group_config) checkpoint_dir = get_checkpoint_dir(opt) os.makedirs(checkpoint_dir, exist_ok=True) train_video_loader = VideoLoader(vr, train_idxs, lr, batch_size=opt.cmdn_train_batch) valid_video_loader = VideoLoader(vr, valid_idxs, lr, batch_size=opt.cmdn_train_batch) nlls = np.zeros([len(model_configs)]) model_batch = len(model_configs) for i in range(int(math.ceil(len(model_configs) / model_batch))): model_config_batch = model_configs[i*model_batch: (i+1) * model_batch] nlls[i*model_batch: (i+1)*model_batch] = train_models(opt.cmdn_train_epochs, model_config_batch, range(i*model_batch, (i+1)*model_batch), train_video_loader, valid_video_loader, score_weight, checkpoint_dir) best_model =
np.argmin(nlls)
numpy.argmin
from __future__ import print_function import inspect from math import pi, sqrt, factorial import qutip import numpy as np import matplotlib.pyplot as plt from matplotlib import patches as mpatches from matplotlib.gridspec import GridSpec from os import path from scipy.special import genlaguerre from scipy.linalg import svd, expm from scipy.optimize import brute from scipy import signal from mpl_toolkits.axes_grid1 import ImageGrid import shutil __all__ = [ 'Reporter', 'print_costs', 'print_grads', 'save_waves', 'plot_waves', 'save_script', 'liveplot_waves', 'liveplot_prop', 'plot_fidelity', 'plot_unitary', 'plot_cwigs', 'verify_from_setup', 'verify_master_equation', 'plot_matrix', 'plot_states', 'verify_sensitivity', 'verify_dispersion_sensitivity', 'verify_with_response', 'set_output_fmt', 'plot_penalties', 'plot_trajectories', 'cutoff' ] def run_reporter(fn, data): args = [data[k] for k in inspect.getargspec(fn).args if k != 'self'] fn(*args) OUTPUT_FMT = 'pdf' def set_output_fmt(fmt): """ Set the file suffix used for matplotlib.savefig. By default this is pdf """ global OUTPUT_FMT OUTPUT_FMT = fmt class Reporter(object): """ Base reporter class. Subclass and implement run method to use Parameters ---------- spacing : int Number of iterations to perform between evaluations of this reporter """ def __init__(self, spacing=1): self.spacing = spacing self.n_call = 0 def __call__(self, force=False, **kwargs): if force or self.n_call % self.spacing == 0: args = [kwargs[k] for k in inspect.getargspec(self.run).args[1:]] self.run(*args) self.n_call += 1 def run(self, *args): raise NotImplementedError class print_costs(Reporter): """ Prints the current fidelity from each setup, and the cost from each penalty """ # TODO: Replace this with a Logging solution for better support of # multiprocessing in Spyder (which dosn't let children print # to STDOUT) def run(self, fids, pen_costs, n_iter): print(n_iter, '- Fids:', end=' ') print(' '.join(['%.7g' % c for c in fids]), end=' ') if len(pen_costs): print('Penalties:', end=' ') print(' '.join(['%.7g' % c for c in pen_costs])) class cutoff(Reporter): """ Raise exception is we go too many rounds without going over a threshold """ def __init__(self, cut_rounds=10, cut_fid=.715): super(cutoff, self).__init__() self.cut_rounds = cut_rounds self.cut_fid = cut_fid def run(self, fids, pen_costs, n_iter): if np.mean(fids) < self.cut_fid and n_iter>self.cut_rounds: txt = 'Failed to get fid > %.3f in %d rounds' % (self.cut_fid, self.cut_rounds) raise Exception(txt) class print_grads(Reporter): """ Prints the maximum gradient value for both the control and auxiliary parameters """ def run(self, fid_grads, aux_fid_grads): print('Max Fid Grad:', abs(fid_grads).max(), end=' ') if aux_fid_grads.size: print('Max Aux Grad:', abs(aux_fid_grads).max()) else: print('') class save_waves(Reporter): """ Saves the controls in a .npz file. To retrieve the data, use ``np.load('waves.npz')``, which returns a dictionary-like object. Parameters ---------- wave_names : List of str Names of the controls when saved in dictionary. There should be N_CTRLS entries in this list. """ def __init__(self, wave_names, spacing): super(save_waves, self).__init__(spacing) self.wave_names = wave_names def run(self, outdir, sim_controls, dt, n_ss, raw_controls, shape_func, response, tot_cost): print('saving...') wave_dict = {'sim_'+k:w for k, w in zip(self.wave_names, sim_controls)} wave_dict.update({'raw_'+k:w for k, w in zip(self.wave_names, raw_controls)}) if response is not None: pad = np.zeros((len(raw_controls), len(response))) awg_controls = np.hstack([raw_controls * shape_func, pad]) else: awg_controls = raw_controls * shape_func wave_dict.update({k:w for k, w in zip(self.wave_names, awg_controls)}) wave_dict['sim_dt'] = dt / float(n_ss) wave_dict['dt'] = dt wave_dict['n_ss'] = n_ss wave_dict['response'] = response np.savez(path.join(outdir, 'waves.npz'), **wave_dict) class plot_waves(Reporter): """ Uses matplotlib to plot the current waves, and saves them under waves.pdf in the output directory. Since plotting with matplotlib can be slow, make sure the spacing is set reasonably so plotting does not dominate the execution time. """ def __init__(self, wave_names, spacing=5, iq_pairs=False, last_only=False): super(plot_waves, self).__init__(spacing) self.wave_names = wave_names self.iq_pairs = iq_pairs self.last_only = last_only n_ax = len(wave_names) if iq_pairs: n_ax //= 2 self.fft_fig, self.fft_axes = plt.subplots(n_ax, 1) else: self.fig = plt.figure() gs1 = GridSpec(n_ax, 2) for i in range(n_ax/2): self.fig.add_subplot(gs1[i*2, 0]) self.fig.add_subplot(gs1[i*2+1, 0]) self.fig.add_subplot(gs1[i*2:i*2+2, 1]) self.axes = self.fig.axes def run(self, outdir, full_controls, dt, n_ss): print('Plotting...') sim_dt = dt / n_ss wave_axes = [ax for idx,ax in enumerate(self.axes) if idx%3 in [0,1]] fft_axes = [ax for idx,ax in enumerate(self.axes) if idx%3 in [2,]] if 1: #for ax_row in self.axes: # for ax in ax_row: for ax in self.axes: lines = ax.get_lines() ax.clear() nlines = len(lines) for idx, line in enumerate(lines): xs = line.get_xdata() ys = line.get_ydata() alpha = (0.5*idx)/nlines + 0.2 ax.plot(xs, ys, 'k-', alpha=alpha) # if self.last_only: # for ax in self.axes: # ax.clear() if self.iq_pairs: for ax, wave in zip(self.axes, full_controls[::2]): ax.clear() ax.plot(wave, label='I') for ax, wave, name in zip(self.axes, full_controls[1::2], self.wave_names): ax.plot(wave, label='Q') ax.set_ylabel(name) c_waves = full_controls[::2] + 1j*full_controls[1::2] fft_waves = np.fft.fftshift(abs(np.fft.fft(c_waves, axis=1))**2) fft_freqs = 1e3 * np.fft.fftshift(np.fft.fftfreq(c_waves.shape[1], sim_dt)) for ax, fft in zip(self.fft_axes, fft_waves): ax.clear() ax.plot(fft_freqs, fft) ax.set_xlim(-80, 80) self.fft_fig.savefig(path.join(outdir, 'waves_fft.%s' % OUTPUT_FMT)) else: for idx, (ax, wave) in enumerate(zip(wave_axes, full_controls)): ax.set_yticks(np.linspace(min(int(np.floor(min(wave))), -1), max(int( np.ceil(max(wave))), 1), 5)) if idx != len(self.axes)-1: ax.set_xticks([]) else: ax.set_xticks(range(0, len(wave)+1, 100)) ax.plot([0, len(wave)], [0,0], 'k--', lw=0.5) ax.set_xlim(0, len(wave)) ax.plot(wave, 'r-') for idx, ax in enumerate(fft_axes): c_waves = full_controls[2*idx] + 1j*full_controls[2*idx+1] fft_wave = np.fft.fftshift(abs(np.fft.fft(c_waves))**2) fft_freqs = 1e3 * np.fft.fftshift(np.fft.fftfreq(len(c_waves), sim_dt)) start = len(fft_wave) * (0.5 - .1) #p/m 50 MHz stop = len(fft_wave) * (0.5 + .1) ax.plot(fft_freqs[start:stop], fft_wave[start:stop], 'r-') ax.set_yticklabels([]) if idx == 0: ax.set_xticklabels([]) for ax, wave_name in zip(wave_axes, self.wave_names): ax.set_title(wave_name, x=-0.075, y=0.25) try: self.fig.savefig(path.join(outdir, 'waves.%s' % OUTPUT_FMT)) except IOError: print('*** Unable to save waves fig. Is it open?') class save_script(Reporter): """ Saves the script calling this function in the output directory. Is only ever evaluated once """ def __init__(self, script_name): super(save_script, self).__init__() self.script_name = script_name self.copied = False def run(self, outdir): if not self.copied: shutil.copy(self.script_name, outdir + '/script.py') self.copied = True class liveplot_waves(Reporter): """ Use the liveplot module to plot waves. Requires liveplot to be installed and active:: pip install liveplot python -m liveplot """ def __init__(self, wave_names, spacing=1): super(liveplot_waves, self).__init__(spacing) from liveplot import LivePlotClient self.client = LivePlotClient() self.client.clear() self.wave_names = wave_names def run(self, sim_controls, fids): for wave, name in zip(sim_controls, self.wave_names): self.client.plot_y(name, wave) for i, fid in enumerate(fids): self.client.append_y('fid%d' % i, fid) self.client.append_y('log_infid%d' % i, np.log(1 - fid)) class liveplot_prop(Reporter): """ Use the liveplot module to plot waves. Requires liveplot to be installed and active:: pip install liveplot python -m liveplot """ def __init__(self, spacing=1): super(liveplot_prop, self).__init__(spacing) from liveplot import LivePlotClient self.client = LivePlotClient() self.client.clear() def run(self, props): for i, prop in enumerate(props): self.client.plot_z('prop%d' % i, abs(prop)) class plot_fidelity(Reporter): """ Plots the progress of the fidelity as a function of iteration """ def __init__(self, spacing=1): super(plot_fidelity, self).__init__(spacing) self.all_fids = None def run(self, outdir, fids): n_fids = len(fids) if self.all_fids is None: self.all_fids = [[] for _ in range(n_fids)] f1, ax1 = plt.subplots(1, 1) f2, ax2 = plt.subplots(1, 1) for fid_list, fid in zip(self.all_fids, fids): fid_list.append(fid) ax1.plot(range(len(fid_list)), fid_list, 's-') ax2.plot(range(len(fid_list)),1 - np.array(fid_list), 's-') ax2.set_yscale('log') try: f1.savefig(path.join(outdir, 'fidelity.%s' % OUTPUT_FMT)) f2.savefig(path.join(outdir, 'infidelity.%s' % OUTPUT_FMT)) except IOError: print('*** Figure saving failed, is the pdf open elsewhere?') plt.close(f1) plt.close(f2) class plot_penalties(Reporter): """ Plots the progress of the fidelity as a function of iteration """ def __init__(self, spacing=1): super(plot_penalties, self).__init__(spacing) def run(self, outdir, pen_hist): if len(pen_hist) == 0: return pen_hist = np.array(pen_hist) f, axes = plt.subplots(pen_hist.shape[1], 1) for ax, pens in zip(axes, pen_hist.T): ax.plot(pens) f.savefig(path.join(outdir, 'penalties.%s' % OUTPUT_FMT)) plt.close(f) class plot_unitary(Reporter): def run(self, outdir, setups, props, fids, **kwargs): U_target = setups[0].U_target U_total = props[0] fid = fids[0] if U_target.shape[0] != U_target.shape[1]: U_target = U_target.T f, (ax1, ax2) = plt.subplots(1, 2) plot_matrix(U_target, ax=ax1) ax1.set_title('Target') plot_matrix(U_total, ax=ax2) ax2.set_title('Actual (fid = %.04f)' % fids[0]) f.savefig(path.join(outdir, 'unitary.%s' % OUTPUT_FMT)) plt.close(f) class plot_states(Reporter): def run(self, outdir, setups, props, fids, **kwargs): f, (ax1, ax2, ax3) = plt.subplots(1, 3) plot_matrix(setups[0].inits.T, ax=ax1) ax1.set_title('Initial') plot_matrix(setups[0].finals.T, ax=ax2) ax2.set_title('Final') plot_matrix(props[0], ax=ax3) ax3.set_title('Actual (fid = %.04f)' % fids[0]) f.savefig(path.join(outdir, 'states.%s' % OUTPUT_FMT)) plt.close(f) class plot_trajectories(Reporter): """ Plot probability trajectories for a given setup. """ def __init__(self, setup, spacing, taylor_order=20): super(plot_trajectories, self).__init__(spacing) self.setup = setup self.taylor_order = taylor_order def run(self, outdir, sim_controls, aux_params, dt, n_ss): print('Plotting trajectories...') dt = dt / float(n_ss) setup = self.setup t_order = self.taylor_order f, axes = plt.subplots(len(self.setup.inits), 1) for i_state, (init, final, ax) in enumerate(zip(self.setup.inits, self.setup.finals, axes)): probs = [] psi = init.copy() for i, time_slice in enumerate(sim_controls.T): L = -1j * dt * (setup.H0 + sum(c*Hc for c,Hc in zip(time_slice, setup.Hcs))) psi_k = psi for k in range(1, t_order+1): psi_k = L.dot(psi_k) / k psi += psi_k probs.append(np.abs(psi)**2) ovlp = np.abs(np.sum(final.conj() * psi))**2 ax.imshow(np.array(probs).T, interpolation='nearest', aspect='auto', origin='lower') ax.set_xlim(-0.5, len(probs)) ax.set_ylim(-0.5, len(psi)) ax.set_title('State %d, ovlp: %.04f' % (i_state, ovlp)) f.tight_layout() f.savefig(path.join(outdir, 'trajectories.%s' % OUTPUT_FMT)) plt.close(f) class plot_cwigs(Reporter): def __init__(self, dim, spacing=5, indices=None, max_alpha=3.5, n_pts=100): super(plot_cwigs, self).__init__(spacing) xs = np.linspace(-3.5, 3.5, 100) X, Y = np.meshgrid(xs, xs) disps = (X + 1j*Y).flatten() self.dim = dim self.n_pts = n_pts self.M = wigner_mat(disps, dim) self.paulis = [ qutip.qeye(2), qutip.sigmax(), qutip.sigmay(), qutip.sigmaz() ] self.paulis = [qutip.tensor(p, qutip.qeye(dim)).full() for p in self.paulis] self.indices = indices if indices is None: self.indices = slice(None, None) self.fig = None self.grid = None def run(self, setups, props, aux_params, outdir): print('plotting wigners...') finals = setups[0].finals[self.indices] prop_inits = props[0].T[self.indices] if setups[0].gauge_ops is not None: gauge_prop = expm(-1j*sum(gv*gop for gv, gop in zip(aux_params, setups[0].gauge_ops))) finals = finals.dot(gauge_prop.conj()) # finals = gauge_prop.dot(finals.T).T prop_inits = gauge_prop.conj().T.dot(prop_inits.T).T if self.fig is None: self.fig = plt.figure() self.grid = ImageGrid(self.fig, 111, nrows_ncols=(2*len(finals), 4), axes_pad=0) for ax in self.grid: ax.set_xticks([]) ax.set_yticks([]) for ax, name in zip(self.grid, 'I,X,Y,Z'.split(',')): ax.set_title(name) fig, grid = self.fig, self.grid i = 0 for k, (prop_init, final) in enumerate(zip(prop_inits, finals)): grid[i].set_ylabel('Prop*Init[%d]' % k, rotation='horizontal', ha='right') for wig in self.cond_wigs(prop_init): grid[i].imshow(wig, vmin=-1, vmax=1) i += 1 grid[i].set_ylabel('Final[%d]' % k, rotation='horizontal', ha='right') for wig in self.cond_wigs(final): grid[i].imshow(wig, vmin=-1, vmax=1) i += 1 fig.savefig(path.join(outdir, 'cwigs.%s' % OUTPUT_FMT)) def cond_wigs(self, psi): d = psi.shape[0] / 2 rho = np.outer(psi, psi.conj()) for op in self.paulis: op_rho = op.dot(rho) ptrace_op_rho = op_rho[:d,:d] + op_rho[d:,d:] yield self.M.dot(vectorize(ptrace_op_rho)).reshape((self.n_pts, self.n_pts)) class verify_from_setup(Reporter): """ Evaluate the fidelity from the given setup. This can serve as a consistency check, for instance to ensure the fidelity is unchanged by introducing the F state """ def __init__(self, setup, spacing): super(verify_from_setup, self).__init__(spacing) self.setup = setup def run(self, sim_controls, aux_params, dt, n_ss): dt = dt / float(n_ss) print('*' * 80) print('verifying...', end=' ') _, fid, _, _ = self.setup.get_fids(sim_controls, aux_params, dt) print('fid = %.7g' % fid) print('*' * 80) class verify_with_response(Reporter): def __init__(self, setup, spacing, response): super(verify_with_response, self).__init__(spacing) self.setup = setup self.response = response def run(self, awg_controls, aux_params, dt, n_ss): dt = dt / float(n_ss) f = plt.figure() controls = np.kron(awg_controls, np.identity(n_ss)[:,0]) plt.plot(controls[0,:], 'ks') controls = np.array([ np.convolve(controls[i,:], self.response, mode='full') for i in range(controls.shape[0])]) plt.plot(controls[0,:]) plt.plot(controls[1,:]) plt.savefig('new_waves.%s' % OUTPUT_FMT) print('Verifying with alternate response function...', end=' ') _, fid, _, _ = self.setup.get_fids(controls, aux_params, dt) print('fid = %.7g' % fid) plt.close(f) class verify_master_equation(Reporter): def __init__(self, setup, c_ops, spacing): super(verify_master_equation, self).__init__(spacing) self.setup = setup self.c_ops = c_ops def run(self, sim_controls, dt, n_ss): print('='*80) print('verifying with qutip...') dt = dt / float(n_ss) H0_arr, Hcs_arr = self.setup.H0, self.setup.Hcs inits, finals = self.setup.inits, self.setup.finals dims = [H0_arr.shape[0]] H0 = qutip.Qobj(H0_arr, dims=[dims, dims]) Hcs = [qutip.Qobj(Hc, dims=[dims, dims]) for Hc in Hcs_arr] c_ops = [qutip.Qobj(op, dims=[dims, dims]) for op in self.c_ops] inits = [qutip.Qobj(s, dims=[dims, [1]]) for s in inits] finals = [qutip.Qobj(s, dims=[dims, [1]]) for s in finals] n_states = len(inits) H = [H0] + [[Hc, w] for Hc, w in zip(Hcs, sim_controls)] tlist = dt * np.arange(sim_controls.shape[1]) fid = 0 for i in range(n_states): for j in range(i, n_states): init = inits[i] * inits[j].dag() final = finals[i] * finals[j].dag() prop_init = qutip.mesolve(H, init, tlist, c_ops, {}).states[-1] sub_fid = (final * prop_init.dag()).tr() print('sub_fid', i, j, sub_fid) if i != j: sub_fid *= 2 fid += sub_fid.real fid = np.sqrt(fid) / n_states print('tot fid', fid) print('='*80) class verify_sensitivity(Reporter): """ Evaluate the fidelity from the given setup varying some parameters. delta_list is a tuple/list containing a tuple of (name, H, amps), e.g. [('sz', Hsigmaz, np.linspace(-1e-4, 1e-4, 5))] """ def __init__(self, setup, spacing, delta_list): super(verify_sensitivity, self).__init__(spacing) self.setup = setup self.delta_list = delta_list def run(self, sim_controls, aux_params, dt, n_ss, outdir): dt = dt / float(n_ss) _, fid0, _, _ = self.setup.get_fids(sim_controls, aux_params, dt) for name, dH, amps in self.delta_list: if isinstance(dH, qutip.Qobj): dH = dH.full() print('Varying', name) fids = [] orig_H0 = self.setup.H0.copy() for amp in amps: if amp == 0: fid = fid0 else: self.setup.H0 = orig_H0 + amp * dH _, fid, _, _ = self.setup.get_fids(sim_controls, aux_params, dt) print('\t%.4g: %.4g' % (amp, fid)) fids.append(fid) self.setup.H0 = orig_H0 f, ax = plt.subplots(1, 1) ax.plot(np.array(amps) / 2 / np.pi * 1e6, 1 - np.array(fids), 'ks') ax.set_xlabel('Amplitude / 2pi [kHz]') ax.set_ylabel('Infidelity') ax.set_title('Sensitivity to ' + name) f.savefig(path.join(outdir, 'sens_%s.%s' % (name, OUTPUT_FMT))) plt.close(f) class verify_dispersion_sensitivity(Reporter): """ Evaluate the fidelity from the given setup varying dispersion. disp_list specifies the dispersions to use, in fractional change / GHz. """ def __init__(self, setup, spacing, disp_list): super(verify_dispersion_sensitivity, self).__init__(spacing) self.setup = setup self.disp_list = disp_list def run(self, sim_controls, aux_params, dt, n_ss, outdir): dt = dt / float(n_ss) n_ctrls = sim_controls.shape[0] controlsF = [np.fft.rfft(sim_controls[i,:]) for i in range(n_ctrls)] freqs = np.fft.rfftfreq(sim_controls.shape[1], dt) print('Varying dispersion') fids = [] for amp in self.disp_list: filt = (1 + freqs * amp) filt[filt<0] = 0 filt[filt>2] = 2 controls = np.array([ np.fft.irfft(controlsF[i] * filt) for i in range(n_ctrls)]) _, fid, _, _ = self.setup.get_fids(controls, aux_params, dt) print('\t%.4g: %.4g' % (amp, fid)) fids.append(fid) f, ax = plt.subplots(1, 1) ax.plot(np.array(self.disp_list) * 10, 1 - np.array(fids), 'ks') ax.set_xlabel('pct change @ 100 MHz') ax.set_ylabel('Infidelity') ax.set_title('Dispersion sensitivity') f.savefig(path.join(outdir, 'sens_dispersion.%s' % OUTPUT_FMT)) plt.close(f) def plot_matrix(M, ax=None, smap=None, labels=None): yshape, xshape = M.shape if max(xshape, yshape) < 8: lw = 1 else: lw = 0.5 R = 0.4 if ax is None: f = plt.figure() ax = f.add_subplot(111) ax.set_aspect('equal') ax.set_xlim(0, xshape) ax.set_ylim(0, yshape) for x in range(xshape): ax.plot([x, x], [0, yshape], 'k', lw=lw) for y in range(yshape): ax.plot([0, xshape], [y, y], 'k', lw=lw) for i in range(yshape): for j in range(xshape): vec = M[i,j] if np.abs(vec)**2 < 1e-3: continue if smap: fc = smap.to_rgba(np.abs(vec)**2) else: fc = 'None' x = j y = yshape - i - 1 ax.add_patch(mpatches.Circle([x+0.5,y+0.5], R*np.abs(vec), fc=fc, lw=lw)) ax.plot([x+0.5, x+0.5+R*vec.real], [y+0.5,y+0.5+R*vec.imag], 'k', lw=lw) if labels is None: ax.set_xticks([]) ax.set_yticks([]) else: ax.set_xticks(np.arange(xshape)+0.5) ax.set_yticks(np.arange(yshape)+0.5) labels = ['$|%s\\rangle$' % s for s in labels] ax.set_xticklabels(labels) ax.set_yticklabels(list(reversed(labels))) return ax def cond_wigs(state, xs): mat = state.data.todense().reshape(state.dims[0]) mat = mat[:2, :] q_vecs_t, coefs, c_vecs = svd(mat, full_matrices=False) q_vecs = q_vecs_t.T assert len(q_vecs) == len(c_vecs) == 2, (c_vecs.shape, q_vecs.shape) c_vecs = np.diag(coefs).dot(c_vecs) q_vecs = list(map(qutip.Qobj, q_vecs)) c_vecs = list(map(qutip.Qobj, c_vecs)) # assert q.tensor(q_vecs[0], c_vecs[0]) + q.tensor(q_vecs[1], c_vecs[1]) == state paulis = [qutip.qeye(2), qutip.sigmax(), qutip.sigmay(), qutip.sigmaz()] wigs = [] for q_op in paulis: wig = 0 for j in range(2): wig += (q_vecs[j].dag() * q_op * q_vecs[j])[0,0] * qutip.wigner(c_vecs[j] * c_vecs[j].dag(), xs, xs, g=2) od_coef = (q_vecs[0].dag() * q_op * q_vecs[1])[0,0] od_wig = wig_imag(c_vecs[0] * c_vecs[1].dag(), xs, xs, g=2) wig += od_coef * od_wig wig += od_coef.conj() * od_wig.conj() wigs.append(wig.real) return wigs def wig_imag(rho, xvec, yvec, g=2): """ Using Laguerre polynomials from scipy to evaluate the Wigner function for the density matrices :math:`|m><n|`, :math:`W_{mn}`. The total Wigner function is calculated as :math:`W = \sum_{mn} \\rho_{mn} W_{mn}`. """ M = np.prod(rho.shape[0]) X, Y = np.meshgrid(xvec, yvec) A = 0.5 * g * (X + 1.0j * Y) W = np.zeros(np.shape(A), dtype=np.complex) B = 4 * abs(A) ** 2 for m in range(M): if abs(rho[m, m]) > 0.0: W += np.real(rho[m, m] * (-1) ** m * genlaguerre(m, 0)(B)) for n in range(m + 1, M): if abs(rho[m, n]) > 0.0: W += 2.0 * rho[m, n] * (-1)**m * (2*A)**(n-m) * sqrt(factorial(m)/factorial(n)) * genlaguerre(m, n-m)(B) return 0.5 * W * g ** 2 * np.exp(-B / 2) / pi def optimize_gauge(props, targets, gauge_ops): ''' Optimize a set of gauge transformation given by gauge_ops. The parameters are lists with one element for each setup. ''' n_gauge = len(gauge_ops[0]) def gauge_transform(g_vals, g_ops): total = None if n_gauge == 1: g_vals = [g_vals] for g_val, g_op in zip(g_vals, g_ops): g_prop = expm(-1j * g_val * g_op) if total is None: total = g_prop else: total = total.dot(g_prop) return total def apply_gauges(gauge_vals, g_ops_row, targ): t = gauge_transform(gauge_vals, g_ops_row) return np.dot(targ, t) def gauge_cost(gauge_vals): cost = 0 for prop, targ, g_ops_row in zip(props, targets, gauge_ops): norm = np.sum(abs(targ)**2) targ_after = apply_gauges(gauge_vals, g_ops_row, targ) if targ_after.shape == prop.shape: overlap = np.sum(targ_after.conj() * prop) / norm else: overlap = np.sum(targ_after.T.conj() * prop) / norm fid = abs(overlap) cost += 1 - fid cost = cost / len(props) return cost ranges = [slice(0, 2*np.pi, .2)] * n_gauge g_vals = brute(gauge_cost, ranges) return g_vals, [apply_gauges(g_vals, g_ops, targ) for g_ops, targ in zip(gauge_ops, targets)] def wigner_mat(disps, d): """ Construct the matrix M such that M(alpha)*vec(rho) = Wigner(alpha) The matrix M will be of dimension (N, d^2) where N is the number of displacements and d is the maximum photon number. Here vec(rho) deconstructs rho into a basis of d^2 hermitian operators. The first d elements of vec(rho) are the diagonal elements of rho, the next d*(d-1)/2 elements are the real parts of the upper triangle, and the last d*(d-1)/2 elements are the imaginary parts of the upper triangle. Elements of M are then M(a, (i, j)) = <j|D(-a) P D(a) |i> with displacement operator D and parity operator P. See http://dx.doi.org/10.1103/PhysRev.177.1882, esp. eq. 7.15 """ n_disp = len(disps) n_offd = (d * (d - 1)) // 2 dm =
np.zeros((n_disp, d * d))
numpy.zeros
# coding: utf-8 import warnings import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.utils import check_array from sklearn.utils.validation import FLOAT_DTYPES DEPRECATION_MSG_1D = ( "Passing 1d arrays as data is deprecated in 0.17 and will " "raise ValueError in 0.19. Reshape your data either using " "X.reshape(-1, 1) if your data has a single feature or " "X.reshape(1, -1) if it contains a single sample." ) class CutOff(BaseEstimator, TransformerMixin): """Transform features cutting values out of established range Args: feature_range: Range of allowed values, default=`(0,1)` Usage: The recommended way of using this is:: from sklearn.pipeline import Pipeline minmax_scaler = preprocessing.MinMaxScaler() dsapp_cutoff = CutOff() lr = linear_model.LogisticRegression() pipeline =Pipeline([ ('minmax_scaler',minmax_scaler), ('dsapp_cutoff', dsapp_cutoff), ('lr', lr) ]) pipeline.fit(X_train, y_train) pipeline.predict(X_test) """ def __init__(self, feature_range=(0, 1), copy=True): self.feature_range = feature_range self.copy = copy def fit(self, X, y=None): return self def transform(self, X): feature_range = self.feature_range X = check_array(X, copy=self.copy, ensure_2d=False, dtype=FLOAT_DTYPES) if X.ndim == 1: warnings.warn(DEPRECATION_MSG_1D, DeprecationWarning) if
np.any(X > feature_range[1])
numpy.any
import numpy as np from scipy.stats.mstats import pearsonr from sciunit import scores from sciunit import errors from cognibench.capabilities import PredictsLogpdf, ReturnsNumParams from overrides import overrides from cognibench.utils import negloglike class BoundedScore(scores.FloatScore): @overrides def __init__(self, *args, min_score, max_score, **kwargs): """ Initialize the score. This class requires two mandatory keyword-only arguments. Parameters ---------- score : float Score value. min_score : float This value is used to clip the score value when coloring the scores in a notebook environment. This is necessary to avoid using very small/large values during coloring which crashes sciunit. However, this value does not affect the original score value or their ordering in any way. max_score : float This value is used to clip the score value when coloring the scores in a notebook environment. This is necessary to avoid using very small/large values during coloring which crashes sciunit. However, this value does not affect the original score value or their ordering in any way. """ super().__init__(*args, **kwargs) self.min_score = min_score self.max_score = max_score class HigherBetterScore(BoundedScore): _description = "Score values where higher is better" @overrides def color(self, value=None): """ Ensure that a normalized value is passed to parent class' color method which does the real work. Parameters ---------- value : float Score value to color. If None, function uses `self.score` See Also -------- :py:mod:`sciunit.scores` """ return super().color(self.norm_score) @property @overrides def norm_score(self): """ Used for sorting. Lower is better. Returns ------- float Score value normalized to 0-1 range computed by clipping self.score to the min/max range and then transforming to a value in [0, 1]. """ clipped = min(self.max_score, max(self.min_score, self.score)) normalized = (clipped - self.min_score) / (self.max_score - self.min_score) return normalized class LowerBetterScore(BoundedScore): """ LowerBetterScore is a score type where lower values are better than larger values (e.g. mean squared error). This property is used by sciunit library when sorting or color coding the scores. """ _description = "Score values where lower is better" @overrides def color(self, value=None): """ Ensure that a normalized value is passed to parent class' color method which does the real work. Parameters ---------- value : float Score value to color. If None, function uses `self.score` See Also -------- :py:mod:`sciunit.scores` """ return super().color(self.norm_score) @property @overrides def norm_score(self): """ Used for sorting. Lower is better. Returns ------- float Score value normalized to 0-1 range computed by clipping self.score to the min/max range and then transforming to a value in [0, 1]. """ neg_min = -self.min_score neg_max = -self.max_score clipped = max(neg_max, min(neg_min, -self.score)) normalized = 1 - (clipped - neg_min) / (neg_max - neg_min) return normalized class NLLScore(LowerBetterScore): """ Negative log-likelihood score object. This score object requires a corresponding test model to predict logpdf (or logpmf). """ required_capabilities = (PredictsLogpdf,) @classmethod def compute(cls, actions, predictions): """ Return NLL score as a Score object from a sequence of actions and logpdf/logpmf predictions. """ nll = negloglike(actions, predictions) return cls(nll) class AICScore(LowerBetterScore): """ Akaike Information Criterion score object. This score object requires a corresponding test model - to predict logpdf (or logpmf), - to be able to return its number of parameters. """ required_capabilities = (PredictsLogpdf, ReturnsNumParams) @classmethod def compute(cls, actions, predictions, *args, n_model_params): """ Return AIC score as a Score object from a sequence of actions and logpdf/logpmf predictions. """ nll = negloglike(actions, predictions) return cls(2 * nll + 2 * n_model_params) class BICScore(LowerBetterScore): """ Bayesian Information Criterion score object. This score object requires a corresponding test model - to predict logpdf (or logpmf), - to be able to return its number of parameters. """ required_capabilities = (PredictsLogpdf, ReturnsNumParams) @classmethod def compute(cls, actions, predictions, *args, n_model_params, n_samples): """ Return BIC score as a Score object from a sequence of actions and logpdf/logpmf predictions. """ nll = negloglike(actions, predictions) regularizer =
np.dot(n_model_params, n_samples)
numpy.dot
# -*- coding: utf-8 -*- """ Created on Fri Nov 25 12:18:37 2016 @author: virati This script will try to import raw hdEEG data in a continuous way, preprocess it, and generate the figures needed for "Aim 2" - Mapping Cortical Responses/Signatures to Stimulation Parameters THIS IS AN UPDATED FILE NOW SPECIFIC TO 906 until I fix the code to be modular/OOP """ import scipy import scipy.io as sio import scipy.signal as sig import numpy as np import matplotlib import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import scipy.stats as stats import mne import pdb import h5py from collections import defaultdict from DBSpace.visualizations import EEG_Viz as EEG_Viz plt.rcParams['image.cmap'] = 'jet' font = {'family' : 'normal', 'weight' : 'bold', 'size' : 30} matplotlib.rc('font', **font) plt.close('all') #%% #data_dir = '/run/media/virati/Stokes/MDD_Data/hdEEG/Continuous/CHIRPS/' data_dir = '/home/virati/MDD_Data/hdEEG/Continuous/CHIRPS/' def extract_raw_mat(fname=[]): if fname == []: pt_dir = 'DBS906/' file = 'DBS906_TurnOn_Day1_Sess1_20150827_024013.mat' data_dir = '/home/virati/B04/' Inp = sio.loadmat(data_dir + pt_dir + file) else: Inp = sio.loadmat(fname) #Find the key corresponding to the data data_key = [key for key in Inp.keys() if key[0:3] == 'DBS'] #Spectrogram of the first channel to see chann = 32 #sg_sig = sig.decimate(Inp[data_key[0]][chann,:],q=10) sg_sig = Inp[data_key[0]][chann,:] #do filtering here sos_lpf = sig.butter(10,20,fs=1000,output='sos') fsg_sig = sig.sosfilt(sos_lpf,sg_sig) T,F,SG = sig.spectrogram(sg_sig,nfft=2**10,window='blackmanharris',nperseg=1024,noverlap=500,fs=1000) fig,ax1 = plt.subplots() ax1.pcolormesh(F,T,10*np.log10(SG)) ax2 = ax1.twinx() ax2.plot(np.linspace(0,fsg_sig.shape[0]/1000,fsg_sig.shape[0]),fsg_sig) #Data matrix generation Data_matr = Inp[data_key[0]] #Spectrogram of the first channel to see t_bounds = {'Pre_STIM':(760,780), 'BL_STIM':(790,810)} t_vect = np.linspace(0,Data_matr.shape[1]/1000,Data_matr.shape[1]) signal = defaultdict(dict) for ts, tt in t_bounds.items(): t_loc = np.where(np.logical_and(t_vect > tt[0],t_vect < tt[1]))[0] signal[ts] = Inp[data_key[0]][:,t_loc] - np.mean(Inp[data_key[0]][:,t_loc],0) #Save DataStructure sio.savemat('/tmp/test',signal) #%% def load_raw_mat(fname): signal = sio.loadmat(fname) return signal['EXPORT']['chann'][0][0] #for condit in ['OnTarget','OffTarget']: for condit in ['OnTarget']: pt = 'DBS906' #condit = 'OffTarget' file = data_dir + pt + '_Sample_Chirp_template/' + pt + '_' + condit + '_all.mat' signal = load_raw_mat(fname=file) def EEG_to_Matr(signal): data = [] for ch in range(257): data.append(signal[:,ch][0][0][0][0][0]) data = np.array(data) return data #%% data = EEG_to_Matr(signal) mean_sig = np.mean(data,0) #Re-reference to mean for ch in range(257): data[ch] = data[ch] - mean_sig #Decimate down all the data test_dec = sig.decimate(data,10,zero_phase=True) plt.plot(test_dec.T) plt.title('Plotting the decimated Data') #%% ds_fact = 1 fs = 500 epoch = defaultdict(dict) alpha_t = defaultdict(dict) nfft=512 #calculate PSD of each channel snippets = {'Baseline':(0,21000),'EarlyStim':(27362,27362+21000)} for elabel,ebos in snippets.items(): #channel x NFFT below P = np.zeros((257,257)) alpha_pow = np.zeros((257,85)) for ch in range(257): sig_filt = sig.decimate(data[ch][ebos[0]:ebos[1]],ds_fact,zero_phase=True) #just do a welch estimate f,Pxx = sig.welch(sig_filt,fs=fs/ds_fact,window='blackmanharris',nperseg=512,noverlap=128,nfft=2**10) #First, we're going to go through the timseries, segment it out, and classify each segment in a partial-responsive GMM model #do a spectrogram and then find median F,T,SG = sig.spectrogram(sig_filt,nperseg=256,noverlap=10,window=sig.get_window('blackmanharris',256),fs=fs/ds_fact,nfft=512) #Take the median along the time axis of the SG to find the median PSD for the epoch label Pxx = np.median(SG,axis=1) #find timeseries of alpha oscillatory power falpha = np.where(np.logical_and(F > 8,F < 14)) #Frequency is what dimension?? probably 1 alpha_tcourse = np.median(SG[falpha,:],1) P[ch,:] = Pxx alpha_pow[ch,:] = alpha_tcourse epoch[elabel] = P alpha_t[elabel] = alpha_pow #Compute diff PSD diff_PSD = 10*np.log10(epoch['EarlyStim']) - 10*np.log10(epoch['Baseline']) #%% plt.figure() _ = plt.plot(F,diff_PSD.T,alpha=0.2) plt.axhline(y=0,linewidth=5) plt.title('Plotting the change in PSD from Baseline to Early Stim') #%% def plot_ts_chann(data,ch,ds_fact=1): plt.figure() sel_sig = sig.decimate(data[ch][:],ds_fact,zero_phase=True) plt.plot(sel_sig) #%% fig,ax = plt.subplots() P = epoch['EarlyStim'] ax.axhline(y=0) ax.plot(F,10*np.log10(P.T)) # Only draw spine between the y-ticks ax.spines['left'].set_bounds(-1, 1) # Hide the right and top spines ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) # Only show ticks on the left and bottom spines ax.yaxis.set_ticks_position('left') ax.xaxis.set_ticks_position('bottom') plt.title('Plotting the Early Stim Epoch Alone') #%% # Here we'll plot the decimates ts # choose a random subsample of channels from numpy.random import default_rng #rand_channs = default_rng().choice(257,size=5,replace=False) rand_channs = [32] ds_fact=5 decimated_sigs = sig.decimate(data[rand_channs][:],ds_fact,zero_phase=True) plt.figure() plt.plot(decimated_sigs.T) #%% #%% #Do a spectrogram of one of the channels ds_fact = 1 ch = [225] if len(ch) == 1: sel_sig = sig.decimate(data[ch[0]][:],ds_fact,zero_phase=True) else: sel_sig = sig.decimate(data[ch[0]][:] - data[ch[1]][:],ds_fact,zero_phase=True) plt.figure() F,T,SG = sig.spectrogram(sel_sig,nperseg=512,noverlap=500,window=sig.get_window('blackmanharris',512),fs=fs/ds_fact) def poly_sub(fVect,psd,order=1): polyCoeff = np.polyfit(fVect,10*np.log10(psd),order) polyfunc = np.poly1d(polyCoeff) polyitself = polyfunc(fVect) postpsd = 10**(10*np.log10(psd) - polyitself) if (postpsd == 0).any(): raise Exception; #plt.figure() #plt.plot(10*np.log10(psd)) #plt.plot(polyitself);pdb.set_trace() return postpsd def poly_sub_SG(f,SG): post_SG = np.zeros_like(SG) for ii in range(SG.shape[1]): post_SG[:,ii] = poly_sub(f,SG[:,ii]) return post_SG #pSG = poly_sub_SG(F,SG) def norm_SG(f,SG): baseline = np.mean(SG[:,0:1000],axis=1) plt.plot(baseline) post_SG = np.zeros_like(SG) for ii in range(SG.shape[1]): post_SG[:,ii] = SG[:,ii]/baseline return post_SG nSG = norm_SG(F,SG) plt.figure() plt.pcolormesh(T,F,10*np.log10(SG),rasterized=True) alpha_idxs = np.where(np.logical_and(F < 7,F>2)) plt.plot(T,10*np.log10(np.mean(nSG[alpha_idxs,:].squeeze(),axis=0))) plt.title('TimeFrequency Signal of Channel ' + str(ch)) #%% plt.figure() plt.plot(sel_sig) #take out sel_sig and sweep the chirp through it #%% #Do Chirplet Search here tvect = np.linspace(0,5,5*1000) simil = np.zeros((20,20)) index =
np.zeros((20,20))
numpy.zeros
from typing import Optional, List, Callable, Dict import abc import numpy as np from acme import types, specs from mtsgi.utils.graph_utils import SubtaskGraph from mtsgi.envs.base_config import WobConfig # only for typing class BaseWoBEnv(abc.ABC): def __init__( self, rank: int, config_factory: List[Callable[[], WobConfig]], keep_pristine: bool, verbose_level: Optional[int] = 0, ): # Set environment configurations self.rank = rank # Set task-info. (For multi-task env, set this in reset_task()) self._configs = config_factory self._keep_pristine = keep_pristine assert all([callable(config) for config in self._configs]) # Sample at least one valid task config (default seed = 0). self.reset_task(task_index=0) # params self.env_done = False self.step_count = 0 # TODO: Do we need action mask? self.action_mask = False self._verbose_level = verbose_level # Set observation specs. observation = self.reset() self._observation_specs = { k: specs.Array(shape=v.shape, dtype=v.dtype, name=k) \ for k, v in observation.items() } def reset_task(self, task_index: Optional[int] = None): # TODO: Remove the assertion and support random task sampling when different # graph across the batch is supported. (See environment_loop.py L225) assert task_index is not None config_factory = self._configs[task_index % len(self._configs)] self.config: WobConfig = config_factory(seed=task_index, keep_pristine=self._keep_pristine) from mtsgi.envs import base_config as bc self._subtask_pool_name_to_id = bc.SUBTASK_POOL_NAME_TO_ID self._option_id_to_name = bc.OPTION_ID_TO_NAME self._option_name_to_id = bc.OPTION_NAME_TO_ID return self.config @property def num_total_subtasks(self): return len(self._subtask_pool_name_to_id) @property def action_dim(self): # TODO: This might differ from num_total_subtasks. return len(self._option_id_to_name) @property def num_graphs(self): return self.config.num_graphs @property def graph(self): return self.config.graph @property def subtasks(self): return self.config.subtasks @property def subtask_reward(self): return self.config.subtask_reward @property def num_subtasks(self): return len(self.subtasks) @property def max_step(self): return self.config.max_step @property def task(self): return self.config @property def pool_to_index(self): return self.config._pool_to_index @property def index_to_pool(self): return self.config._index_to_pool ### Communicating with the agent (actor) --> should be id-based @property def task_embedding(self) -> SubtaskGraph: reward_vec = np.zeros((self.num_subtasks,), dtype=np.float) for i, subtask in enumerate(self.subtasks): reward_vec[i] = self.subtask_reward[subtask] # TODO: generate ground truth graph information that GRProp can interpret. return SubtaskGraph( numP=None, numA=None, index_to_pool=self.index_to_pool, pool_to_index=self.pool_to_index, subtask_reward=reward_vec, # index-based W_a=None, W_o=None, ORmat=None, ANDmat=None, tind_by_layer=None ) ### For connecting adaptation-test envs ~~ ### def set_task(self, task): """fixed the current task to the given task. used for aligning the task between the adaptation & test environments. """ self.config = task def reset(self): # Reset episode-based internal states self.step_count = 0 # TODO: Do we need action mask? self.action_mask = False # XXX (prev) action is not valid when env resets self.done = False self.step_done = False self.mask = None self.completion = None self.eligibility = None # Reset & update batch_params self._update_batch_params(reset=True) assert not self.done, "done cannot be True here" observation = self._get_observation() return observation def _update_batch_params(self, action=None, step=None, reset=False): '''Reset & Update mask, completion, and eligibility. ''' if reset: completion = {name: False for name in self.subtasks} else: completion = self._update_completion(action) self.eligibility = self._update_eligibility(completion) self.mask = self._update_mask(completion) self.completion = completion # 2. time_over if step is not None: self.step_count += step time_over = self.step_count >= self.max_step # Time exceeds episode limit agent_over = not any([m and e for m, e in zip(self.mask, self.eligibility)]) # No more action (option) left to execute action_over = self._check_environment_done(action) # Current action terminates environment self.done = time_over or agent_over or action_over self.step_done = time_over if self._verbose_level > 1 and self.rank == 0: print('='*40) print('[%d] Available options:'%(self.step_count)) for subtask_name in self.eligibility: if self.eligibility[subtask_name] and self.mask[subtask_name]: print(subtask_name) def _get_observation(self): # Comprehensive version. slower. completion = self._dict_to_array( input=self.completion, dim=self.num_total_subtasks, mapping=self._subtask_pool_name_to_id ) # Note: the dimension (action_dim) should be consistent with # WobConfig's pool_to_index (_construct_mappings). mask = self._dict_to_array( input=self.mask, dim=self.action_dim, # TODO: This had different number of subtasks from SUBTASK_POOL_NAME_TO_ID, # which results in differnt dimension (completion.shape != mask) mapping=self._option_name_to_id ) eligibility = self._dict_to_array( input=self.eligibility, dim=self.action_dim, # TODO: This had different number of subtasks from SUBTASK_POOL_NAME_TO_ID, # which results in differnt dimension (completion.shape != eligibility) mapping=self._option_name_to_id ) # Faster version. Use it if this is a bottleneck #completion = np.array([self.completion[name] if name in self.completion else 0 for name in SUBTASK_POOL_NAME_TO_ID], dtype=np.float32) #mask = np.array([self.mask[name] if name in self.mask else 0 for name in OPTION_NAME_TO_ID], dtype=np.float32) #eligibility = np.array([self.eligibility[name] if name in self.eligibility else 0 for name in OPTION_NAME_TO_ID], dtype=np.float32) observation = { 'mask': mask, 'completion': completion, 'eligibility': eligibility, 'option_success': np.asarray(True), } # Remaining episode step. remaining_steps = (self.max_step + 1 - self.step_count) observation.update( # TODO: Do we need action mask? action_mask=np.array(self.action_mask, dtype=np.float32), remaining_steps=np.array(remaining_steps, dtype=np.int32), termination=
np.array(self.done, dtype=np.bool)
numpy.array
""" This is the main script of main GUI of the OXCART Atom Probe. @author: <NAME> <<EMAIL>> """ import sys import numpy as np import nidaqmx import time import threading import datetime import os # PyQt and PyQtgraph libraries from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtCore import QThread, pyqtSignal from PyQt5.QtWidgets import QApplication from PyQt5.QtGui import QScreen, QPixmap, QImage import pyqtgraph as pg import pyqtgraph.exporters # Serial ports and Camera libraries import serial.tools.list_ports from pypylon import pylon # Local project scripts import oxcart import variables from devices.camera import Camera from devices import initialize_devices class Ui_OXCART(Camera, object): """ The GUI class of the Oxcart """ def __init__(self, devices, tlFactory, cameras, converter, lock): super().__init__(devices, tlFactory, cameras, converter) # Cameras variables and converter self.lock = lock # Lock for thread ... def setupUi(self, OXCART): OXCART.setObjectName("OXCART") OXCART.resize(3400, 1800) self.centralwidget = QtWidgets.QWidget(OXCART) self.centralwidget.setObjectName("centralwidget") # self.vdc_time = QtWidgets.QWidget(self.centralwidget) self.vdc_time = pg.PlotWidget(self.centralwidget) self.vdc_time.setGeometry(QtCore.QRect(530, 260, 500, 500)) self.vdc_time.setObjectName("vdc_time") self.label_7 = QtWidgets.QLabel(self.centralwidget) self.label_7.setGeometry(QtCore.QRect(730, 210, 80, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_7.setFont(font) self.label_7.setObjectName("label_7") self.layoutWidget = QtWidgets.QWidget(self.centralwidget) self.layoutWidget.setGeometry(QtCore.QRect(3030, 1520, 314, 106)) self.layoutWidget.setObjectName("layoutWidget") self.gridLayout_2 = QtWidgets.QGridLayout(self.layoutWidget) self.gridLayout_2.setContentsMargins(0, 0, 0, 0) self.gridLayout_2.setObjectName("gridLayout_2") self.start_button = QtWidgets.QPushButton(self.layoutWidget) self.start_button.setObjectName("start_button") self.gridLayout_2.addWidget(self.start_button, 1, 0, 1, 1) self.stop_button = QtWidgets.QPushButton(self.layoutWidget) self.stop_button.setObjectName("stop_button") self.gridLayout_2.addWidget(self.stop_button, 2, 0, 1, 1) self.label_10 = QtWidgets.QLabel(self.centralwidget) self.label_10.setGeometry(QtCore.QRect(1230, 210, 156, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_10.setFont(font) self.label_10.setObjectName("label_10") # self.detection_rate_viz = QtWidgets.QWidget(self.centralwidget) self.detection_rate_viz = pg.PlotWidget(self.centralwidget) self.detection_rate_viz.setGeometry(QtCore.QRect(1080, 260, 500, 500)) self.detection_rate_viz.setObjectName("detection_rate_viz") self.label_19 = QtWidgets.QLabel(self.centralwidget) self.label_19.setGeometry(QtCore.QRect(710, 830, 134, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_19.setFont(font) self.label_19.setObjectName("label_19") ### # self.visualization = QtWidgets.QWidget(self.centralwidget) self.visualization = pg.PlotWidget(self.centralwidget) self.visualization.setGeometry(QtCore.QRect(530, 870, 500, 500)) self.visualization.setObjectName("visualization") self.detector_circle = pg.QtGui.QGraphicsEllipseItem(0, 0, 2400, 2400) # x, y, width, height self.detector_circle.setPen(pg.mkPen(color=(255, 0, 0), width=1)) self.visualization.addItem(self.detector_circle) ### self.label_24 = QtWidgets.QLabel(self.centralwidget) self.label_24.setGeometry(QtCore.QRect(1280, 820, 51, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_24.setFont(font) self.label_24.setObjectName("label_24") # self.temperature = QtWidgets.QWidget(self.centralwidget) self.temperature = pg.PlotWidget(self.centralwidget) self.temperature.setGeometry(QtCore.QRect(2530, 1400, 411, 311)) self.temperature.setObjectName("temperature") self.label_18 = QtWidgets.QLabel(self.centralwidget) self.label_18.setGeometry(QtCore.QRect(10, 1150, 101, 41)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_18.setFont(font) self.label_18.setObjectName("label_18") self.Error = QtWidgets.QLabel(self.centralwidget) self.Error.setGeometry(QtCore.QRect(530, 1400, 1241, 51)) font = QtGui.QFont() font.setPointSize(13) font.setBold(True) font.setWeight(75) font.setStrikeOut(False) self.Error.setFont(font) self.Error.setAlignment(QtCore.Qt.AlignCenter) self.Error.setTextInteractionFlags(QtCore.Qt.LinksAccessibleByMouse) self.Error.setObjectName("Error") self.diagram = QtWidgets.QLabel(self.centralwidget) self.diagram.setGeometry(QtCore.QRect(10, 1190, 481, 371)) self.diagram.setText("") self.diagram.setObjectName("diagram") self.label_29 = QtWidgets.QLabel(self.centralwidget) self.label_29.setGeometry(QtCore.QRect(1810, 830, 110, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_29.setFont(font) self.label_29.setObjectName("label_29") self.label_30 = QtWidgets.QLabel(self.centralwidget) self.label_30.setGeometry(QtCore.QRect(1810, 230, 110, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_30.setFont(font) self.label_30.setObjectName("label_30") self.label_31 = QtWidgets.QLabel(self.centralwidget) self.label_31.setGeometry(QtCore.QRect(2700, 840, 110, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_31.setFont(font) self.label_31.setObjectName("label_31") self.label_32 = QtWidgets.QLabel(self.centralwidget) self.label_32.setGeometry(QtCore.QRect(2700, 220, 110, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_32.setFont(font) self.label_32.setObjectName("label_32") self.label_33 = QtWidgets.QLabel(self.centralwidget) self.label_33.setGeometry(QtCore.QRect(2220, 800, 171, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_33.setFont(font) self.label_33.setObjectName("label_33") self.label_34 = QtWidgets.QLabel(self.centralwidget) self.label_34.setGeometry(QtCore.QRect(2200, 190, 171, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_34.setFont(font) self.label_34.setObjectName("label_34") self.light = QtWidgets.QPushButton(self.centralwidget) self.light.setGeometry(QtCore.QRect(3120, 50, 101, 46)) self.light.setObjectName("light") self.led_light = QtWidgets.QLabel(self.centralwidget) self.led_light.setGeometry(QtCore.QRect(3240, 40, 111, 61)) self.led_light.setAlignment(QtCore.Qt.AlignCenter) self.led_light.setObjectName("led_light") self.vacuum_main = QtWidgets.QLCDNumber(self.centralwidget) self.vacuum_main.setGeometry(QtCore.QRect(2270, 1510, 231, 91)) font = QtGui.QFont() font.setBold(False) font.setWeight(50) self.vacuum_main.setFont(font) self.vacuum_main.setObjectName("vacuum_main") self.vacuum_buffer = QtWidgets.QLCDNumber(self.centralwidget) self.vacuum_buffer.setGeometry(QtCore.QRect(1780, 1500, 231, 91)) font = QtGui.QFont() font.setPointSize(8) self.vacuum_buffer.setFont(font) self.vacuum_buffer.setObjectName("vacuum_buffer") self.vacuum_load_lock = QtWidgets.QLCDNumber(self.centralwidget) self.vacuum_load_lock.setGeometry(QtCore.QRect(1190, 1500, 231, 91)) self.vacuum_load_lock.setObjectName("vacuum_load_lock") self.label_35 = QtWidgets.QLabel(self.centralwidget) self.label_35.setGeometry(QtCore.QRect(2020, 1540, 241, 31)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_35.setFont(font) self.label_35.setObjectName("label_35") self.label_36 = QtWidgets.QLabel(self.centralwidget) self.label_36.setGeometry(QtCore.QRect(1490, 1540, 251, 31)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_36.setFont(font) self.label_36.setObjectName("label_36") self.label_37 = QtWidgets.QLabel(self.centralwidget) self.label_37.setGeometry(QtCore.QRect(980, 1540, 181, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_37.setFont(font) self.label_37.setObjectName("label_37") self.label_38 = QtWidgets.QLabel(self.centralwidget) self.label_38.setGeometry(QtCore.QRect(2050, 1650, 191, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_38.setFont(font) self.label_38.setObjectName("label_38") self.temp = QtWidgets.QLCDNumber(self.centralwidget) self.temp.setGeometry(QtCore.QRect(2270, 1620, 231, 91)) self.temp.setObjectName("temp") #### # self.cam_s_o = QtWidgets.QLabel(self.centralwidget) self.cam_s_o = pg.ImageView(self.centralwidget) self.cam_s_o.adjustSize() self.cam_s_o.ui.histogram.hide() self.cam_s_o.ui.roiBtn.hide() self.cam_s_o.ui.menuBtn.hide() self.cam_s_o.setGeometry(QtCore.QRect(1630, 260, 500, 500)) # self.cam_s_o.setText("") self.cam_s_o.setObjectName("cam_s_o") # self.cam_b_o = QtWidgets.QLabel(self.centralwidget) self.cam_b_o = pg.ImageView(self.centralwidget) self.cam_b_o.adjustSize() self.cam_b_o.ui.histogram.hide() self.cam_b_o.ui.roiBtn.hide() self.cam_b_o.ui.menuBtn.hide() self.cam_b_o.setGeometry(QtCore.QRect(1630, 870, 500, 500)) # self.cam_b_o.setText("") #### self.cam_b_o.setObjectName("cam_b_o") self.cam_s_d = QtWidgets.QLabel(self.centralwidget) self.cam_s_d.setGeometry(QtCore.QRect(2150, 260, 1200, 500)) self.cam_s_d.setText("") self.cam_s_d.setObjectName("cam_s_d") self.cam_b_d = QtWidgets.QLabel(self.centralwidget) self.cam_b_d.setGeometry(QtCore.QRect(2150, 870, 1200, 500)) self.cam_b_d.setText("") self.cam_b_d.setObjectName("cam_b_d") self.layoutWidget1 = QtWidgets.QWidget(self.centralwidget) self.layoutWidget1.setGeometry(QtCore.QRect(650, 1580, 235, 131)) self.layoutWidget1.setObjectName("layoutWidget1") self.gridLayout_6 = QtWidgets.QGridLayout(self.layoutWidget1) self.gridLayout_6.setContentsMargins(0, 0, 0, 0) self.gridLayout_6.setObjectName("gridLayout_6") self.led_pump_load_lock = QtWidgets.QLabel(self.layoutWidget1) self.led_pump_load_lock.setAlignment(QtCore.Qt.AlignCenter) self.led_pump_load_lock.setObjectName("led_pump_load_lock") self.gridLayout_6.addWidget(self.led_pump_load_lock, 0, 0, 2, 1) self.pump_load_lock_switch = QtWidgets.QPushButton(self.layoutWidget1) self.pump_load_lock_switch.setObjectName("pump_load_lock_switch") self.gridLayout_6.addWidget(self.pump_load_lock_switch, 2, 0, 1, 1) # self.histogram = QtWidgets.QWidget(self.centralwidget) self.histogram = pg.PlotWidget(self.centralwidget) self.histogram.setGeometry(QtCore.QRect(1080, 870, 500, 500)) self.histogram.setObjectName("histogram") self.label_40 = QtWidgets.QLabel(self.centralwidget) self.label_40.setGeometry(QtCore.QRect(1480, 1640, 291, 31)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_40.setFont(font) self.label_40.setObjectName("label_40") self.vacuum_buffer_back = QtWidgets.QLCDNumber(self.centralwidget) self.vacuum_buffer_back.setGeometry(QtCore.QRect(1780, 1610, 231, 91)) font = QtGui.QFont() font.setPointSize(8) self.vacuum_buffer_back.setFont(font) self.vacuum_buffer_back.setObjectName("vacuum_buffer_back") self.vacuum_load_lock_back = QtWidgets.QLCDNumber(self.centralwidget) self.vacuum_load_lock_back.setGeometry(QtCore.QRect(1190, 1610, 231, 91)) self.vacuum_load_lock_back.setObjectName("vacuum_load_lock_back") self.label_39 = QtWidgets.QLabel(self.centralwidget) self.label_39.setGeometry(QtCore.QRect(950, 1640, 231, 25)) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_39.setFont(font) self.label_39.setObjectName("label_39") self.layoutWidget2 = QtWidgets.QWidget(self.centralwidget) self.layoutWidget2.setGeometry(QtCore.QRect(20, 1580, 476, 131)) self.layoutWidget2.setObjectName("layoutWidget2") self.gridLayout = QtWidgets.QGridLayout(self.layoutWidget2) self.gridLayout.setContentsMargins(0, 0, 0, 0) self.gridLayout.setObjectName("gridLayout") self.led_main_chamber = QtWidgets.QLabel(self.layoutWidget2) self.led_main_chamber.setAlignment(QtCore.Qt.AlignCenter) self.led_main_chamber.setObjectName("led_main_chamber") self.gridLayout.addWidget(self.led_main_chamber, 0, 0, 1, 1) self.led_load_lock = QtWidgets.QLabel(self.layoutWidget2) self.led_load_lock.setAlignment(QtCore.Qt.AlignCenter) self.led_load_lock.setObjectName("led_load_lock") self.gridLayout.addWidget(self.led_load_lock, 0, 1, 1, 1) self.led_cryo = QtWidgets.QLabel(self.layoutWidget2) self.led_cryo.setAlignment(QtCore.Qt.AlignCenter) self.led_cryo.setObjectName("led_cryo") self.gridLayout.addWidget(self.led_cryo, 0, 2, 1, 1) self.main_chamber_switch = QtWidgets.QPushButton(self.layoutWidget2) self.main_chamber_switch.setObjectName("main_chamber_switch") self.gridLayout.addWidget(self.main_chamber_switch, 1, 0, 1, 1) self.load_lock_switch = QtWidgets.QPushButton(self.layoutWidget2) self.load_lock_switch.setObjectName("load_lock_switch") self.gridLayout.addWidget(self.load_lock_switch, 1, 1, 1, 1) self.cryo_switch = QtWidgets.QPushButton(self.layoutWidget2) self.cryo_switch.setObjectName("cryo_switch") self.gridLayout.addWidget(self.cryo_switch, 1, 2, 1, 1) self.textEdit = QtWidgets.QTextEdit(self.centralwidget) self.textEdit.setGeometry(QtCore.QRect(530, 30, 2581, 140)) self.textEdit.setObjectName("textEdit") self.layoutWidget3 = QtWidgets.QWidget(self.centralwidget) self.layoutWidget3.setGeometry(QtCore.QRect(10, 890, 436, 242)) self.layoutWidget3.setObjectName("layoutWidget3") self.gridLayout_4 = QtWidgets.QGridLayout(self.layoutWidget3) self.gridLayout_4.setContentsMargins(0, 0, 0, 0) self.gridLayout_4.setObjectName("gridLayout_4") self.label_11 = QtWidgets.QLabel(self.layoutWidget3) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label_11.setFont(font) self.label_11.setObjectName("label_11") self.gridLayout_4.addWidget(self.label_11, 0, 0, 1, 1) self.label_12 = QtWidgets.QLabel(self.layoutWidget3) self.label_12.setObjectName("label_12") self.gridLayout_4.addWidget(self.label_12, 1, 0, 1, 1) self.elapsed_time = QtWidgets.QLineEdit(self.layoutWidget3) self.elapsed_time.setText("") self.elapsed_time.setObjectName("elapsed_time") self.gridLayout_4.addWidget(self.elapsed_time, 1, 1, 1, 1) self.label_13 = QtWidgets.QLabel(self.layoutWidget3) self.label_13.setObjectName("label_13") self.gridLayout_4.addWidget(self.label_13, 2, 0, 1, 1) self.total_ions = QtWidgets.QLineEdit(self.layoutWidget3) self.total_ions.setText("") self.total_ions.setObjectName("total_ions") self.gridLayout_4.addWidget(self.total_ions, 2, 1, 1, 1) self.label_14 = QtWidgets.QLabel(self.layoutWidget3) self.label_14.setObjectName("label_14") self.gridLayout_4.addWidget(self.label_14, 3, 0, 1, 1) self.speciemen_voltage = QtWidgets.QLineEdit(self.layoutWidget3) self.speciemen_voltage.setText("") self.speciemen_voltage.setObjectName("speciemen_voltage") self.gridLayout_4.addWidget(self.speciemen_voltage, 3, 1, 1, 1) self.label_16 = QtWidgets.QLabel(self.layoutWidget3) self.label_16.setObjectName("label_16") self.gridLayout_4.addWidget(self.label_16, 4, 0, 1, 1) self.pulse_voltage = QtWidgets.QLineEdit(self.layoutWidget3) self.pulse_voltage.setText("") self.pulse_voltage.setObjectName("pulse_voltage") self.gridLayout_4.addWidget(self.pulse_voltage, 4, 1, 1, 1) self.label_15 = QtWidgets.QLabel(self.layoutWidget3) self.label_15.setObjectName("label_15") self.gridLayout_4.addWidget(self.label_15, 5, 0, 1, 1) self.detection_rate = QtWidgets.QLineEdit(self.layoutWidget3) self.detection_rate.setText("") self.detection_rate.setObjectName("detection_rate") self.gridLayout_4.addWidget(self.detection_rate, 5, 1, 1, 1) self.criteria_ions = QtWidgets.QCheckBox(self.centralwidget) self.criteria_ions.setGeometry(QtCore.QRect(500, 190, 31, 29)) font = QtGui.QFont() font.setItalic(False) self.criteria_ions.setFont(font) self.criteria_ions.setMouseTracking(True) self.criteria_ions.setText("") self.criteria_ions.setChecked(True) self.criteria_ions.setObjectName("criteria_ions") self.criteria_vdc = QtWidgets.QCheckBox(self.centralwidget) self.criteria_vdc.setGeometry(QtCore.QRect(500, 320, 31, 29)) font = QtGui.QFont() font.setItalic(False) self.criteria_vdc.setFont(font) self.criteria_vdc.setMouseTracking(True) self.criteria_vdc.setText("") self.criteria_vdc.setChecked(True) self.criteria_vdc.setObjectName("criteria_vdc") self.criteria_time = QtWidgets.QCheckBox(self.centralwidget) self.criteria_time.setGeometry(QtCore.QRect(500, 150, 31, 29)) font = QtGui.QFont() font.setItalic(False) self.criteria_time.setFont(font) self.criteria_time.setMouseTracking(True) self.criteria_time.setText("") self.criteria_time.setChecked(True) self.criteria_time.setObjectName("criteria_time") self.widget = QtWidgets.QWidget(self.centralwidget) self.widget.setGeometry(QtCore.QRect(11, 16, 490, 850)) self.widget.setObjectName("widget") self.gridLayout_3 = QtWidgets.QGridLayout(self.widget) self.gridLayout_3.setContentsMargins(0, 0, 0, 0) self.gridLayout_3.setObjectName("gridLayout_3") self.label = QtWidgets.QLabel(self.widget) font = QtGui.QFont() font.setBold(True) font.setWeight(75) self.label.setFont(font) self.label.setObjectName("label") self.gridLayout_3.addWidget(self.label, 0, 0, 1, 2) self.parameters_source = QtWidgets.QComboBox(self.widget) self.parameters_source.setObjectName("parameters_source") self.parameters_source.addItem("") self.parameters_source.addItem("") self.gridLayout_3.addWidget(self.parameters_source, 0, 2, 1, 1) self.label_43 = QtWidgets.QLabel(self.widget) self.label_43.setObjectName("label_43") self.gridLayout_3.addWidget(self.label_43, 1, 0, 1, 1) self.ex_user = QtWidgets.QLineEdit(self.widget) self.ex_user.setObjectName("ex_user") self.gridLayout_3.addWidget(self.ex_user, 1, 2, 1, 1) self.label_21 = QtWidgets.QLabel(self.widget) self.label_21.setObjectName("label_21") self.gridLayout_3.addWidget(self.label_21, 2, 0, 1, 1) self.ex_name = QtWidgets.QLineEdit(self.widget) self.ex_name.setObjectName("ex_name") self.gridLayout_3.addWidget(self.ex_name, 2, 2, 1, 1) self.label_2 = QtWidgets.QLabel(self.widget) self.label_2.setObjectName("label_2") self.gridLayout_3.addWidget(self.label_2, 3, 0, 1, 2) self.ex_time = QtWidgets.QLineEdit(self.widget) self.ex_time.setObjectName("ex_time") self.gridLayout_3.addWidget(self.ex_time, 3, 2, 1, 1) self.label_41 = QtWidgets.QLabel(self.widget) self.label_41.setObjectName("label_41") self.gridLayout_3.addWidget(self.label_41, 4, 0, 1, 2) self.max_ions = QtWidgets.QLineEdit(self.widget) self.max_ions.setObjectName("max_ions") self.gridLayout_3.addWidget(self.max_ions, 4, 2, 1, 1) self.label_3 = QtWidgets.QLabel(self.widget) self.label_3.setObjectName("label_3") self.gridLayout_3.addWidget(self.label_3, 5, 0, 1, 2) self.ex_freq = QtWidgets.QLineEdit(self.widget) self.ex_freq.setObjectName("ex_freq") self.gridLayout_3.addWidget(self.ex_freq, 5, 2, 1, 1) self.label_4 = QtWidgets.QLabel(self.widget) self.label_4.setObjectName("label_4") self.gridLayout_3.addWidget(self.label_4, 6, 0, 1, 2) self.vdc_min = QtWidgets.QLineEdit(self.widget) self.vdc_min.setObjectName("vdc_min") self.gridLayout_3.addWidget(self.vdc_min, 6, 2, 1, 1) self.label_5 = QtWidgets.QLabel(self.widget) self.label_5.setObjectName("label_5") self.gridLayout_3.addWidget(self.label_5, 7, 0, 1, 2) self.vdc_max = QtWidgets.QLineEdit(self.widget) self.vdc_max.setObjectName("vdc_max") self.gridLayout_3.addWidget(self.vdc_max, 7, 2, 1, 1) self.label_6 = QtWidgets.QLabel(self.widget) self.label_6.setObjectName("label_6") self.gridLayout_3.addWidget(self.label_6, 8, 0, 1, 1) self.vdc_steps_up = QtWidgets.QLineEdit(self.widget) self.vdc_steps_up.setObjectName("vdc_steps_up") self.gridLayout_3.addWidget(self.vdc_steps_up, 8, 2, 1, 1) self.label_28 = QtWidgets.QLabel(self.widget) self.label_28.setObjectName("label_28") self.gridLayout_3.addWidget(self.label_28, 9, 0, 1, 1) self.vdc_steps_down = QtWidgets.QLineEdit(self.widget) self.vdc_steps_down.setObjectName("vdc_steps_down") self.gridLayout_3.addWidget(self.vdc_steps_down, 9, 2, 1, 1) self.label_20 = QtWidgets.QLabel(self.widget) self.label_20.setObjectName("label_20") self.gridLayout_3.addWidget(self.label_20, 10, 0, 1, 2) self.cycle_avg = QtWidgets.QLineEdit(self.widget) self.cycle_avg.setObjectName("cycle_avg") self.gridLayout_3.addWidget(self.cycle_avg, 10, 2, 1, 1) self.label_8 = QtWidgets.QLabel(self.widget) self.label_8.setObjectName("label_8") self.gridLayout_3.addWidget(self.label_8, 11, 0, 1, 2) self.vp_min = QtWidgets.QLineEdit(self.widget) self.vp_min.setObjectName("vp_min") self.gridLayout_3.addWidget(self.vp_min, 11, 2, 1, 1) self.label_9 = QtWidgets.QLabel(self.widget) self.label_9.setObjectName("label_9") self.gridLayout_3.addWidget(self.label_9, 12, 0, 1, 2) self.vp_max = QtWidgets.QLineEdit(self.widget) self.vp_max.setObjectName("vp_max") self.gridLayout_3.addWidget(self.vp_max, 12, 2, 1, 1) self.label_25 = QtWidgets.QLabel(self.widget) self.label_25.setObjectName("label_25") self.gridLayout_3.addWidget(self.label_25, 13, 0, 1, 2) self.pulse_fraction = QtWidgets.QLineEdit(self.widget) self.pulse_fraction.setObjectName("pulse_fraction") self.gridLayout_3.addWidget(self.pulse_fraction, 13, 2, 1, 1) self.label_23 = QtWidgets.QLabel(self.widget) self.label_23.setObjectName("label_23") self.gridLayout_3.addWidget(self.label_23, 14, 0, 1, 2) self.pulse_frequency = QtWidgets.QLineEdit(self.widget) self.pulse_frequency.setObjectName("pulse_frequency") self.gridLayout_3.addWidget(self.pulse_frequency, 14, 2, 1, 1) self.label_17 = QtWidgets.QLabel(self.widget) self.label_17.setObjectName("label_17") self.gridLayout_3.addWidget(self.label_17, 15, 0, 1, 2) self.detection_rate_init = QtWidgets.QLineEdit(self.widget) self.detection_rate_init.setObjectName("detection_rate_init") self.gridLayout_3.addWidget(self.detection_rate_init, 15, 2, 1, 1) self.label_22 = QtWidgets.QLabel(self.widget) self.label_22.setObjectName("label_22") self.gridLayout_3.addWidget(self.label_22, 16, 0, 1, 1) self.doubleSpinBox = QtWidgets.QDoubleSpinBox(self.widget) self.doubleSpinBox.setObjectName("doubleSpinBox") self.doubleSpinBox.setMinimum(1.) self.doubleSpinBox.setMaximum(3.) self.doubleSpinBox.setSingleStep(0.1) self.doubleSpinBox.setValue(1) self.gridLayout_3.addWidget(self.doubleSpinBox, 16, 1, 1, 1) self.hit_displayed = QtWidgets.QLineEdit(self.widget) self.hit_displayed.setObjectName("hit_displayed") self.gridLayout_3.addWidget(self.hit_displayed, 16, 2, 1, 1) self.label_26 = QtWidgets.QLabel(self.widget) self.label_26.setObjectName("label_26") self.gridLayout_3.addWidget(self.label_26, 17, 0, 1, 1) self.email = QtWidgets.QLineEdit(self.widget) self.email.setText("") self.email.setObjectName("email") self.gridLayout_3.addWidget(self.email, 17, 2, 1, 1) self.label_27 = QtWidgets.QLabel(self.widget) self.label_27.setObjectName("label_27") self.gridLayout_3.addWidget(self.label_27, 18, 0, 1, 1) self.tweet = QtWidgets.QComboBox(self.widget) self.tweet.setObjectName("tweet") self.tweet.addItem("") self.tweet.addItem("") self.gridLayout_3.addWidget(self.tweet, 18, 2, 1, 1) self.label_42 = QtWidgets.QLabel(self.widget) self.label_42.setObjectName("label_42") self.gridLayout_3.addWidget(self.label_42, 19, 0, 1, 1) self.counter_source = QtWidgets.QComboBox(self.widget) self.counter_source.setObjectName("counter_source") self.counter_source.addItem("") self.counter_source.addItem("") self.counter_source.addItem("") self.counter_source.addItem("") self.gridLayout_3.addWidget(self.counter_source, 19, 2, 1, 1) OXCART.setCentralWidget(self.centralwidget) self.menubar = QtWidgets.QMenuBar(OXCART) self.menubar.setGeometry(QtCore.QRect(0, 0, 3400, 38)) self.menubar.setObjectName("menubar") self.menuFile = QtWidgets.QMenu(self.menubar) self.menuFile.setObjectName("menuFile") OXCART.setMenuBar(self.menubar) self.statusbar = QtWidgets.QStatusBar(OXCART) self.statusbar.setObjectName("statusbar") OXCART.setStatusBar(self.statusbar) self.actionExit = QtWidgets.QAction(OXCART) self.actionExit.setObjectName("actionExit") self.menuFile.addAction(self.actionExit) self.menubar.addAction(self.menuFile.menuAction()) self.retranslateUi(OXCART) QtCore.QMetaObject.connectSlotsByName(OXCART) #### Set 8 digits for each LCD to show self.vacuum_main.setDigitCount(8) self.vacuum_buffer.setDigitCount(8) self.vacuum_buffer_back.setDigitCount(8) self.vacuum_load_lock.setDigitCount(8) self.vacuum_load_lock_back.setDigitCount(8) self.temp.setDigitCount(8) arrow1 = pg.ArrowItem(pos=(100, 1700), angle=-90) # arrow2 = pg.ArrowItem(pos=(100, 2100), angle=90) arrow3 = pg.ArrowItem(pos=(130, 1800), angle=0) self.cam_b_o.addItem(arrow1) # self.cam_b_o.addItem(arrow2) self.cam_b_o.addItem(arrow3) arrow1 = pg.ArrowItem(pos=(590, 620), angle=-90) arrow2 = pg.ArrowItem(pos=(570, 1120), angle=90) # arrow3 = pg.ArrowItem(pos=(890, 1100), angle=0) self.cam_s_o.addItem(arrow1) self.cam_s_o.addItem(arrow2) # self.cam_s_o.addItem(arrow3) #### def retranslateUi(self, OXCART): _translate = QtCore.QCoreApplication.translate OXCART.setWindowTitle(_translate("OXCART", "PyOXCART")) ### OXCART.setWindowIcon(QtGui.QIcon('./png/logo3.png')) ### self.label_7.setText(_translate("OXCART", "Voltage")) self.start_button.setText(_translate("OXCART", "Start")) ### self._translate = QtCore.QCoreApplication.translate self.start_button.clicked.connect(self.thread_main) self.thread = MainThread() self.thread.signal.connect(self.finished_thread_main) self.stop_button.setText(_translate("OXCART", "Stop")) self.stop_button.clicked.connect(self.stop_ex) ### self.label_10.setText(_translate("OXCART", "Detection Rate")) self.label_19.setText(_translate("OXCART", "Visualization")) self.label_24.setText(_translate("OXCART", "TOF")) self.label_18.setText(_translate("OXCART", "Diagram")) self.Error.setText(_translate("OXCART", "<html><head/><body><p><br/></p></body></html>")) self.label_29.setText(_translate("OXCART", "Overview")) self.label_30.setText(_translate("OXCART", "Overview")) self.label_31.setText(_translate("OXCART", "Detail")) self.label_32.setText(_translate("OXCART", "Detail")) self.label_33.setText(_translate("OXCART", "Camera Bottom")) self.label_34.setText(_translate("OXCART", "Camera Side")) self.light.setText(_translate("OXCART", "Light")) self.led_light.setText(_translate("OXCART", "light")) self.label_35.setText(_translate("OXCART", "Main Chamber (mBar)")) self.label_36.setText(_translate("OXCART", "Buffer Chamber (mBar)")) self.label_37.setText(_translate("OXCART", "Load lock (mBar)")) ### self.main_chamber_switch.clicked.connect(lambda: self.gates(1)) self.load_lock_switch.clicked.connect(lambda: self.gates(2)) self.cryo_switch.clicked.connect(lambda: self.gates(3)) self.light.clicked.connect(lambda: self.light_switch()) self.pump_load_lock_switch.clicked.connect(lambda: self.pump_switch()) ### self.label_38.setText(_translate("OXCART", "Temperature (K)")) self.led_pump_load_lock.setText(_translate("OXCART", "pump")) self.pump_load_lock_switch.setText(_translate("OXCART", "Load Lock Pump")) self.label_40.setText(_translate("OXCART", "Buffer Chamber Pre (mBar)")) self.label_39.setText(_translate("OXCART", "Load Lock Pre(mBar)")) self.led_main_chamber.setText(_translate("OXCART", "Main")) self.led_load_lock.setText(_translate("OXCART", "Load")) self.led_cryo.setText(_translate("OXCART", "Cryo")) self.main_chamber_switch.setText(_translate("OXCART", "Main Chamber")) self.load_lock_switch.setText(_translate("OXCART", "Load Lock")) self.cryo_switch.setText(_translate("OXCART", "Cryo")) self.textEdit.setHtml(_translate("OXCART", "<!DOCTYPE HTML PUBLIC \"-//W3C//DTD HTML 4.0//EN\" \"http://www.w3.org/TR/REC-html40/strict.dtd\">\n" "<html><head><meta name=\"qrichtext\" content=\"1\" /><style type=\"text/css\">\n" "p, li { white-space: pre-wrap; }\n" "</style></head><body style=\" font-family:\'MS Shell Dlg 2\'; font-size:7.875pt; font-weight:400; font-style:normal;\">\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'JetBrains Mono,monospace\'; font-size:8pt; color:#000000;\">ex_user=user1;</span>ex_name=test1;ex_time=90;max_ions=2000;ex_freq=10;vdc_min=500;vdc_max=4000;vdc_steps_up=100;vdc_steps_down=100;vp_min=328;vp_max=3281;pulse_fraction=20;pulse_frequency=200;detection_rate_init=1;hit_displayed=20000;email=;tweet=No;counter_source=TDC<span style=\" font-family:\'JetBrains Mono,monospace\'; font-size:8pt; color:#000000;\">;criteria_time=True;criteria_ions=False;criteria_vdc=False</span></p>\n" "<p style=\" margin-top:0px; margin-bottom:0px; margin-left:0px; margin-right:0px; -qt-block-indent:0; text-indent:0px;\"><span style=\" font-family:\'JetBrains Mono,monospace\'; font-size:8pt; color:#000000;\">ex_user=user2;ex_name=test2;ex_time=100;max_ions=3000;ex_freq=5;vdc_min=1000;vdc_max=3000;vdc_steps_up=50;vdc_steps_down=50;vp_min=400;vp_max=2000;pulse_fraction=15;pulse_frequency=200;detection_rate_init=2;hit_displayed=40000;email=;tweet=No;counter_source=Pulse Counter;criteria_time=False;criteria_ions=False;criteria_vdc=True</span></p></body></html>")) self.label_11.setText(_translate("OXCART", "Run Statistics")) self.label_12.setText(_translate("OXCART", "Elapsed Time (S):")) self.label_13.setText(_translate("OXCART", "Total Ions")) self.label_14.setText(_translate("OXCART", "Specimen Voltage (V)")) self.label_16.setText(_translate("OXCART", "Pulse Voltage (V)")) self.label_15.setText(_translate("OXCART", "Detection Rate (%)")) self.label.setText(_translate("OXCART", "Setup Parameters")) self.parameters_source.setItemText(0, _translate("OXCART", "TextBox")) self.parameters_source.setItemText(1, _translate("OXCART", "TextLine")) self.label_43.setText(_translate("OXCART", "Experiment User")) self.ex_user.setText(_translate("OXCART", "user")) self.label_21.setText(_translate("OXCART", "Experiment Name")) self.ex_name.setText(_translate("OXCART", "test")) self.label_2.setText(_translate("OXCART", "Max. Experiment Time (S)")) self.ex_time.setText(_translate("OXCART", "90")) self.label_41.setText(_translate("OXCART", "Max. Number of Ions")) self.max_ions.setText(_translate("OXCART", "2000")) self.label_3.setText(_translate("OXCART", "Control refresh Freq.(Hz)")) self.ex_freq.setText(_translate("OXCART", "10")) self.label_4.setText(_translate("OXCART", "Specimen Start Voltage (V)")) self.vdc_min.setText(_translate("OXCART", "500")) self.label_5.setText(_translate("OXCART", "Specimen Stop Voltage (V)")) self.vdc_max.setText(_translate("OXCART", "4000")) self.label_6.setText(_translate("OXCART", "K_p Upwards")) self.vdc_steps_up.setText(_translate("OXCART", "100")) self.label_28.setText(_translate("OXCART", "K_p Downwards")) self.vdc_steps_down.setText(_translate("OXCART", "100")) self.label_20.setText(_translate("OXCART", "Cycle for Avg. (Hz)")) self.cycle_avg.setText(_translate("OXCART", "10")) self.label_8.setText(_translate("OXCART", "Pulse Min. Voltage (V)")) self.vp_min.setText(_translate("OXCART", "328")) self.label_9.setText(_translate("OXCART", "Pulse Max. Voltage (V)")) self.vp_max.setText(_translate("OXCART", "3281")) self.label_25.setText(_translate("OXCART", "Pulse Fraction (%)")) self.pulse_fraction.setText(_translate("OXCART", "20")) self.label_23.setText(_translate("OXCART", "Pulse Frequency (KHz)")) self.pulse_frequency.setText(_translate("OXCART", "200")) self.label_17.setText(_translate("OXCART", "Detection Rate (%)")) self.detection_rate_init.setText(_translate("OXCART", "1")) self.label_22.setText(_translate("OXCART", "# Hits Displayed")) self.hit_displayed.setText(_translate("OXCART", "20000")) self.label_26.setText(_translate("OXCART", "Email")) self.label_27.setText(_translate("OXCART", "Twitter")) self.tweet.setItemText(0, _translate("OXCART", "No")) self.tweet.setItemText(1, _translate("OXCART", "Yes")) self.label_42.setText(_translate("OXCART", "Counter Source")) self.counter_source.setItemText(0, _translate("OXCART", "TDC")) self.counter_source.setItemText(1, _translate("OXCART", "TDC_Raw")) self.counter_source.setItemText(2, _translate("OXCART", "Pulse Counter")) self.counter_source.setItemText(3, _translate("OXCART", "DRS")) self.menuFile.setTitle(_translate("OXCART", "File")) self.actionExit.setText(_translate("OXCART", "Exit")) # High Voltage visualization ################ self.x_vdc = np.arange(1000) # 1000 time points self.y_vdc = np.zeros(1000) # 1000 data points self.y_vdc[:] = np.nan self.y_vps = np.zeros(1000) # 1000 data points self.y_vps[:] = np.nan # Add legend self.vdc_time.addLegend() pen_vdc = pg.mkPen(color=(255, 0, 0), width=6) pen_vps = pg.mkPen(color=(0, 0, 255), width=3) self.data_line_vdc = self.vdc_time.plot(self.x_vdc, self.y_vdc, name="High Vol.", pen=pen_vdc) self.data_line_vps = self.vdc_time.plot(self.x_vdc, self.y_vps, name="Pulse Vol.", pen=pen_vps) self.vdc_time.setBackground('w') # Add Axis Labels styles = {"color": "#f00", "font-size": "20px"} self.vdc_time.setLabel("left", "High Voltage (v)", **styles) self.vdc_time.setLabel("bottom", "Time (s)", **styles) # Add grid self.vdc_time.showGrid(x=True, y=True) # Add Range self.vdc_time.setXRange(0, 1000, padding=0.05) self.vdc_time.setYRange(0, 15000, padding=0.05) # Detection Visualization ######################### self.x_dtec = np.arange(1000) # 1000 time points self.y_dtec = np.zeros(1000) # 1000 data points self.y_dtec[:] = np.nan pen_dtec = pg.mkPen(color=(255, 0, 0), width=6) self.data_line_dtec = self.detection_rate_viz.plot(self.x_dtec, self.y_dtec, pen=pen_dtec) self.detection_rate_viz.setBackground('w') # Add Axis Labels styles = {"color": "#f00", "font-size": "20px"} self.detection_rate_viz.setLabel("left", "Counts", **styles) self.detection_rate_viz.setLabel("bottom", "Time (s)", **styles) # Add grid self.detection_rate_viz.showGrid(x=True, y=True) # Add Range self.detection_rate_viz.setXRange(0, 1000, padding=0.05) self.detection_rate_viz.setYRange(0, 4000, padding=0.05) # Temperature ######################### # Add Axis Labels styles = {"color": "#f00", "font-size": "20px"} self.histogram.setLabel("left", "Frequency (counts)", **styles) self.histogram.setLabel("bottom", "Time (ns)", **styles) # Temperature ######################### self.x_tem = np.arange(100) # 1000 time points self.y_tem = np.zeros(100) # 1000 data points self.y_tem[:] = np.nan pen_dtec = pg.mkPen(color=(255, 0, 0), width=6) self.data_line_tem = self.temperature.plot(self.x_tem, self.y_tem, pen=pen_dtec) self.temperature.setBackground('b') # Add Axis Labels styles = {"color": "#f00", "font-size": "20px"} self.temperature.setLabel("left", "Temperature (K)", **styles) self.temperature.setLabel("bottom", "Time (s)", **styles) # Add grid self.temperature.showGrid(x=True, y=True) # Add Range self.temperature.setYRange(0, 100, padding=0.1) # Visualization ##################### self.scatter = pg.ScatterPlotItem( size=self.doubleSpinBox.value(), brush=pg.mkBrush(255, 255, 255, 120)) self.visualization.getPlotItem().hideAxis('bottom') self.visualization.getPlotItem().hideAxis('left') # timer plot, variables, and cameras self.timer1 = QtCore.QTimer() self.timer1.setInterval(1000) self.timer1.timeout.connect(self.update_cameras) self.timer1.start() self.timer2 = QtCore.QTimer() self.timer2.setInterval(1000) self.timer2.timeout.connect(self.update_plot_data) self.timer2.start() self.timer3 = QtCore.QTimer() self.timer3.setInterval(2000) self.timer3.timeout.connect(self.statistics) self.timer3.start() # Diagram and LEDs ############## self.diagram_close_all = QPixmap('.\png\close_all.png') self.diagram_main_open = QPixmap('.\png\main_open.png') self.diagram_load_open = QPixmap('.\png\load_open.png') self.diagram_cryo_open = QPixmap('.\png\cryo_open.png') self.led_red = QPixmap('.\png\led-red-on.png') self.led_green = QPixmap('.\png\green-led-on.png') self.diagram.setPixmap(self.diagram_close_all) self.led_main_chamber.setPixmap(self.led_red) self.led_load_lock.setPixmap(self.led_red) self.led_cryo.setPixmap(self.led_red) self.led_light.setPixmap(self.led_red) self.led_pump_load_lock.setPixmap(self.led_green) def thread_main(self): """ Main thread for running experiment """ def read_update(text_line, index_line): """ Function for reading the Textline box This function is only run if Textline is selected in the GUI The function read the the text line and put it in the Qboxes """ _translate = QtCore.QCoreApplication.translate text_line = text_line[index_line].split(';') text_line_b = [] for i in range(len(text_line)): text_line_b.append(text_line[i].split('=')) for i in range(len(text_line_b)): if text_line_b[i][0] == 'ex_user': self.ex_user.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'ex_name': self.ex_name.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'ex_time': self.ex_time.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'ex_freq': self.ex_freq.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'max_ions': self.max_ions.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'vdc_min': self.vdc_min.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'vdc_max': self.vdc_max.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'detection_rate_init': self.detection_rate_init.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'pulse_fraction': self.pulse_fraction.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'pulse_frequency': self.pulse_frequency.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'hit_displayed': self.hit_displayed.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'hdf5_path': self.ex_name.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'email': self.email.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'cycle_avg': self.cycle_avg.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'vdc_steps_up': self.vdc_steps_up.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'vdc_steps_down': self.vdc_steps_down.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'vp_min': self.vp_min.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'vp_max': self.vp_max.setText(_translate("OXCART", text_line_b[i][1])) if text_line_b[i][0] == 'counter_source': if text_line_b[i][1] == 'TDC': self.counter_source.setCurrentIndex(0) if text_line_b[i][1] == 'TDC_Raw': self.counter_source.setCurrentIndex(1) if text_line_b[i][1] == 'Pulse Counter': self.counter_source.setCurrentIndex(2) if text_line_b[i][1] == 'DRS': self.counter_source.setCurrentIndex(3) if text_line_b[i][0] == 'tweet': if text_line_b[i][1] == 'NO': self.tweet.setCurrentIndex(0) if text_line_b[i][1] == 'Yes': self.tweet.setCurrentIndex(1) if text_line_b[i][0] == 'criteria_time': if text_line_b[i][1] == 'True': self.criteria_time.setChecked(True) elif text_line_b[i][1] == 'False': self.criteria_time.setChecked(False) if text_line_b[i][0] == 'criteria_ions': if text_line_b[i][1] == 'True': self.criteria_ions.setChecked(True) elif text_line_b[i][1] == 'False': self.criteria_ions.setChecked(False) if text_line_b[i][0] == 'criteria_vdc': if text_line_b[i][1] == 'True': self.criteria_vdc.setChecked(True) elif text_line_b[i][1] == 'False': self.criteria_vdc.setChecked(False) # check if the gates are closed if not variables.flag_main_gate and not variables.flag_load_gate and not variables.flag_cryo_gate: if self.parameters_source.currentText() == 'TextLine' and variables.index_line == 0: lines = self.textEdit.toPlainText() # Copy all the lines in TextLine self.text_line = lines.splitlines() # Seperate the lines in TextLine self.num_line = len(self.text_line) # count number of line in TextLine (Number of experiments that have to be done) elif self.parameters_source.currentText() != 'TextLine' and variables.index_line == 0: self.num_line = 0 self.start_button.setEnabled(False) # Disable the start button in the GUI variables.plot_clear_flag = True # Change the flag to clear the plots in GUI # If the TextLine is selected the read_update function is run if self.parameters_source.currentText() == 'TextLine': read_update(self.text_line, variables.index_line) # Update global variables to do the experiments variables.user_name = self.ex_user.text() variables.ex_time = int(float(self.ex_time.text())) variables.ex_freq = int(float(self.ex_freq.text())) variables.max_ions = int(float(self.max_ions.text())) variables.vdc_min = int(float(self.vdc_min.text())) variables.detection_rate = float(self.detection_rate_init.text()) variables.hit_display = int(float(self.hit_displayed.text())) variables.pulse_fraction = int(float(self.pulse_fraction.text())) / 100 variables.pulse_frequency = float(self.pulse_frequency.text()) variables.hdf5_path = self.ex_name.text() variables.email = self.email.text() variables.cycle_avg = int(float(self.cycle_avg.text())) variables.vdc_step_up = int(float(self.vdc_steps_up.text())) variables.vdc_step_down = int(float(self.vdc_steps_down.text())) variables.v_p_min = int(float(self.vp_min.text())) variables.v_p_max = int(float(self.vp_max.text())) variables.counter_source = str(self.counter_source.currentText()) if self.criteria_time.isChecked(): variables.criteria_time = True elif not self.criteria_time.isChecked(): variables.criteria_time = False if self.criteria_ions.isChecked(): variables.criteria_ions = True elif not self.criteria_ions.isChecked(): variables.criteria_ions = False if self.criteria_vdc.isChecked(): variables.criteria_vdc = True elif not self.criteria_vdc.isChecked(): variables.criteria_vdc = False if variables.counter_source == 'TDC_Raw': variables.raw_mode = True if self.tweet.currentText() == 'Yes': variables.tweet = True # Read the experiment counter with open('./png/counter.txt') as f: variables.counter = int(f.readlines()[0]) # Current time and date now = datetime.datetime.now() exp_name = "%s_" % variables.counter + \ now.strftime("%b-%d-%Y_%H-%M") + "_%s" % variables.hdf5_path variables.path = 'D:\\pyoxcart\\data\\%s' % exp_name # Create folder to save the data if not os.path.isdir(variables.path): os.makedirs(variables.path, mode=0o777, exist_ok=True) # start the run methos of MainThread Class, which is main function of oxcart.py self.thread.start() if self.parameters_source.currentText() == 'TextLine': variables.index_line += 1 # increase the index line of TextLine to read the second line in next step else: _translate = QtCore.QCoreApplication.translate self.Error.setText(_translate("OXCART", "<html><head/><body><p><span style=\" color:#ff0000;\">!!! First Close all " "Gates !!!</span></p></body></html>")) def finished_thread_main(self): """ The function that is run after end of experiment(MainThread) """ self.start_button.setEnabled(True) self.stop_button.setEnabled(True) QScreen.grabWindow(app.primaryScreen(), QApplication.desktop().winId()).save(variables.path + '\\screenshot.png') if variables.index_line < self.num_line: # Do next experiment in case of TextLine self.thread_main() else: variables.index_line = 0 def stop_ex(self): """ The function that is run if STOP button is pressed """ if variables.start_flag == True: variables.stop_flag = True # Set the STOP flag self.stop_button.setEnabled(False) # Disable the stop button print('STOP Flag is set:', variables.stop_flag) def gates(self, gate_num): """ The function for closing or opening gates """ def switch_gate(num): """ The function for applying the command of closing or opening gate """ with nidaqmx.Task() as task: task.do_channels.add_do_chan('Dev2/port0/line%s' % num) task.start() task.write([True]) time.sleep(.5) task.write([False]) # Main gate if not variables.start_flag and gate_num == 1 and not variables.flag_load_gate and not variables.flag_cryo_gate and variables.flag_pump_load_lock: if not variables.flag_main_gate: # Open the main gate switch_gate(0) self.led_main_chamber.setPixmap(self.led_green) self.diagram.setPixmap(self.diagram_main_open) variables.flag_main_gate = True elif variables.flag_main_gate: # Close the main gate switch_gate(1) self.led_main_chamber.setPixmap(self.led_red) self.diagram.setPixmap(self.diagram_close_all) variables.flag_main_gate = False # Buffer gate elif not variables.start_flag and gate_num == 2 and not variables.flag_main_gate and not variables.flag_cryo_gate and variables.flag_pump_load_lock: if not variables.flag_load_gate: # Open the main gate switch_gate(2) self.led_load_lock.setPixmap(self.led_green) self.diagram.setPixmap(self.diagram_load_open) variables.flag_load_gate = True elif variables.flag_load_gate: # Close the main gate switch_gate(3) self.led_load_lock.setPixmap(self.led_red) self.diagram.setPixmap(self.diagram_close_all) variables.flag_load_gate = False # Cryo gate elif not variables.start_flag and gate_num == 3 and not variables.flag_main_gate and not variables.flag_load_gate and variables.flag_pump_load_lock: if not variables.flag_cryo_gate: # Open the main gate switch_gate(4) self.led_cryo.setPixmap(self.led_green) self.diagram.setPixmap(self.diagram_cryo_open) variables.flag_cryo_gate = True elif variables.flag_cryo_gate: # Close the main gate switch_gate(5) self.led_cryo.setPixmap(self.led_red) self.diagram.setPixmap(self.diagram_close_all) variables.flag_cryo_gate = False # Show the error message in the GUI else: _translate = QtCore.QCoreApplication.translate self.Error.setText(_translate("OXCART", "<html><head/><body><p><span style=\" color:#ff0000;\">!!! First Close all " "the Gates and switch on the pump !!!</span></p></body></html>")) def pump_switch(self): """ The function for Switching the Load Lock pump """ if not variables.start_flag and not variables.flag_main_gate and not variables.flag_cryo_gate \ and not variables.flag_load_gate: if variables.flag_pump_load_lock: variables.flag_pump_load_lock_click = True self.pump_load_lock_switch.setEnabled(False) elif not variables.flag_pump_load_lock: variables.flag_pump_load_lock_click = True self.pump_load_lock_switch.setEnabled(False) else: # SHow error message in the GUI _translate = QtCore.QCoreApplication.translate self.Error.setText(_translate("OXCART", "<html><head/><body><p><span style=\" color:#ff0000;\">!!! First Close all " "the Gates !!!</span></p></body></html>")) def light_switch(self): """ The function for switching the exposure time of cameras in case of swithching the light """ if not variables.light: self.led_light.setPixmap(self.led_green) Camera.light_switch(self) self.timer1.setInterval(500) variables.light = True variables.sample_adjust = True variables.light_swich = True elif variables.light: self.led_light.setPixmap(self.led_red) Camera.light_switch(self) self.timer1.setInterval(500) variables.light = False variables.sample_adjust = False variables.light_swich = False def thread_worker(self, target): """ The function for creating workers """ return threading.Thread(target=target) def update_plot_data(self): """ The function for updating plots """ # Temperature self.x_tem = self.x_tem[1:] # Remove the first element. self.x_tem = np.append(self.x_tem, self.x_tem[-1] + 1) # Add a new value 1 higher than the last. self.y_tem = self.y_tem[1:] # Remove the first element. try: self.y_tem = np.append(self.y_tem, int(variables.temperature)) self.data_line_tem.setData(self.x_tem, self.y_tem) except: print( f"{initialize_devices.bcolors.FAIL}Error: Cannot read the temperature{initialize_devices.bcolors.ENDC}") if variables.index_auto_scale_graph == 30: self.temperature.enableAutoRange(axis='x') self.vdc_time.enableAutoRange(axis='x') self.detection_rate_viz.enableAutoRange(axis='x') variables.index_auto_scale_graph = 0 self.temperature.disableAutoRange() self.vdc_time.disableAutoRange() self.detection_rate_viz.disableAutoRange() variables.index_auto_scale_graph += 1 if variables.plot_clear_flag: self.x_vdc = np.arange(1000) # 1000 time points self.y_vdc = np.zeros(1000) # 1000 data points self.y_vdc[:] = np.nan self.y_vps = np.zeros(1000) # 1000 data points self.y_vps[:] = np.nan self.data_line_vdc.setData(self.x_vdc, self.y_vdc) self.data_line_vps.setData(self.x_vdc, self.y_vps) self.x_dtec = np.arange(1000) self.y_dtec = np.zeros(1000) self.y_dtec[:] = np.nan self.data_line_dtec.setData(self.x_dtec, self.y_dtec) self.histogram.clear() self.scatter.clear() self.visualization.clear() self.visualization.addItem(self.detector_circle) variables.plot_clear_flag = False variables.specimen_voltage = 0 variables.pulse_voltage = 0 variables.elapsed_time = 0 variables.total_ions = 0 variables.avg_n_count = 0 if variables.start_flag: if variables.index_wait_on_plot_start <= 16: variables.index_wait_on_plot_start += 1 if variables.index_wait_on_plot_start >= 8: # V_dc and V_p if variables.index_plot <= 999: self.y_vdc[variables.index_plot] = int(variables.specimen_voltage) # Add a new value. self.y_vps[variables.index_plot] = int(variables.pulse_voltage) # Add a new value. else: self.x_vdc = np.append(self.x_vdc, self.x_vdc[-1] + 1) # Add a new value 1 higher than the last. self.y_vdc = np.append(self.y_vdc, int(variables.specimen_voltage)) # Add a new value. self.y_vps = np.append(self.y_vps, int(variables.pulse_voltage)) # Add a new value. self.data_line_vdc.setData(self.x_vdc, self.y_vdc) self.data_line_vps.setData(self.x_vdc, self.y_vps) # Detection Rate Visualization if variables.index_plot <= 999: self.y_dtec[variables.index_plot] = int(variables.avg_n_count) # Add a new value. else: self.x_dtec = self.x_dtec[1:] # Remove the first element. self.x_dtec = np.append(self.x_dtec, self.x_dtec[-1] + 1) # Add a new value 1 higher than the last. self.y_dtec = self.y_dtec[1:] self.y_dtec = np.append(self.y_dtec, int(variables.avg_n_count)) self.data_line_dtec.setData(self.x_dtec, self.y_dtec) # Increase the index variables.index_plot += 1 # Time of Flight if variables.counter_source == 'TDC' and variables.total_ions > 0 and variables.index_wait_on_plot_start > 16 \ and variables.index_wait_on_plot_start > 16 and not variables.raw_mode: if variables.index_wait_on_plot_start > 16: try: def replaceZeroes(data): min_nonzero = np.min(data[np.nonzero(data)]) data[data == 0] = min_nonzero return data math_to_charge = variables.t * 27.432/(1000 * 4) # Time in ns math_to_charge = math_to_charge[math_to_charge < 5000] # max_lenght = max(len(variables.x), len(variables.y), # len(variables.t), len(variables.main_v_dc_dld)) # d_0 = 110 * 0.001 # e = 1.602 * 10 ** (-19) # x_n = (((variables.x[:max_lenght]) - 1225) * (78/2450)) # y_n = (((variables.y[:max_lenght]) - 1225) * (78/2450)) # t_n = variables.t[:max_lenght] * 27.432 * 10**(-12) / 4 # # l = np.sqrt(d_0 ** 2 + x_n ** 2 + y_n ** 2) # # math_to_charge = (2 * variables.main_v_dc_dld[:max_lenght] * e * t_n**2) / (l**2) self.y_tof, self.x_tof =
np.histogram(math_to_charge, bins=512)
numpy.histogram
import numpy as np from scipy.linalg import block_diag from numpy.linalg import matrix_power from scipy.optimize import minimize import picos as pic def state_covariance(A, B, K, V): A_cl = A + B @ K d = A.shape X_V = pic.SymmetricVariable('X_V', shape=d) F = pic.Problem() F.set_objective('min', pic.trace(X_V)) F.add_constraint(A_cl.T * X_V * A_cl - X_V + V == 0) F.add_constraint(X_V >> 0) F.solve(verbosity=0, primals=None) # Unstable, so expected variance is infinite if F.status != 'optimal': return np.Inf X_V = np.atleast_2d(X_V.value) return X_V # E is the steady state state covariance def bounds(E, Q, R, A, B, K, n, p): Q_ = Q + K.T @ R @ K A_ = A + B @ K omega = block_diag(*list(Q_ for i in range(n))) column_list = list() for i in range(n): entry_list = list() for j in range(n): exp = np.abs(j-i) if j >= i: entry = matrix_power(A_, exp) @ E else: entry = E @ matrix_power(A_, exp).T entry_list.append(entry) column = np.vstack(entry_list) column_list.append(column) cov = np.hstack(column_list) assert np.allclose(cov, cov.T) M = omega @ cov eig = np.linalg.eigvals(M + np.eye(M.shape[0]) * 1e-9) assert 0 < p < 1 beta = p # assert np.alltrue(0 < eig < 1) def x(eta): return - 1/eta * np.log(beta/2) - 1/(2*eta) * np.sum(np.log(1 - 2 * eta * eig)) test = np.linspace(-1000., 0., 10000, endpoint=False) f = lambda eta: -x(eta) xs = list(f(eta) for eta in test) # import matplotlib.pyplot as plt # plt.plot(test, xs) # plt.show() # lower Bound bnds = ((None, -1e-6),) res = minimize(fun=lambda eta: -x(eta), x0=test[np.argmin(xs)], bounds=bnds) k_m = x(res.x) max = 1/(2 * np.max(eig)) test =
np.linspace(0.0001, max, 1000, endpoint=False)
numpy.linspace
# Licensed under a 3-clause BSD style license - see LICENSE.rst import itertools import inspect import numpy as np from numpy.testing import assert_array_equal import pytest from astropy import units as u from astropy.units.quantity_helper.function_helpers import ( ARRAY_FUNCTION_ENABLED, SUBCLASS_SAFE_FUNCTIONS, UNSUPPORTED_FUNCTIONS, FUNCTION_HELPERS, DISPATCHED_FUNCTIONS, IGNORED_FUNCTIONS) from astropy.utils.compat import ( NUMPY_LT_1_14, NUMPY_LT_1_15, NUMPY_LT_1_16, NUMPY_LT_1_18) NO_ARRAY_FUNCTION = not ARRAY_FUNCTION_ENABLED # To get the functions that could be covered, we look for those that # are wrapped. Of course, this does not give a full list pre-1.17. all_wrapped_functions = {name: f for name, f in np.__dict__.items() if callable(f) and hasattr(f, '__wrapped__') and (NUMPY_LT_1_15 or f is not np.printoptions)} all_wrapped = set(all_wrapped_functions.values()) class CoverageMeta(type): """Meta class that tracks which functions are covered by tests. Assumes that a test is called 'test_<function_name>'. """ covered = set() def __new__(mcls, name, bases, members): for k, v in members.items(): if inspect.isfunction(v) and k.startswith('test'): f = k.replace('test_', '') if f in all_wrapped_functions: mcls.covered.add(all_wrapped_functions[f]) return super().__new__(mcls, name, bases, members) class BasicTestSetup(metaclass=CoverageMeta): """Test setup for functions that should not change the unit. Also provides a default Quantity with shape (3, 3) and units of m. """ def setup(self): self.q = np.arange(9.).reshape(3, 3) / 4. * u.m class InvariantUnitTestSetup(BasicTestSetup): def check(self, func, *args, **kwargs): o = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, **kwargs) * self.q.unit assert o.shape == expected.shape assert np.all(o == expected) class NoUnitTestSetup(BasicTestSetup): def check(self, func, *args, **kwargs): out = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, *kwargs) assert type(out) is type(expected) if isinstance(expected, tuple): assert all(np.all(o == x) for o, x in zip(out, expected)) else: assert np.all(out == expected) class TestShapeInformation(BasicTestSetup): # alen is deprecated in Numpy 1.8 if NUMPY_LT_1_18: def test_alen(self): assert np.alen(self.q) == 3 def test_shape(self): assert np.shape(self.q) == (3, 3) def test_size(self): assert np.size(self.q) == 9 def test_ndim(self): assert np.ndim(self.q) == 2 class TestShapeManipulation(InvariantUnitTestSetup): # Note: do not parametrize the below, since test names are used # to check coverage. def test_reshape(self): self.check(np.reshape, (9, 1)) def test_ravel(self): self.check(np.ravel) def test_moveaxis(self): self.check(np.moveaxis, 0, 1) def test_rollaxis(self): self.check(np.rollaxis, 0, 2) def test_swapaxes(self): self.check(np.swapaxes, 0, 1) def test_transpose(self): self.check(np.transpose) def test_atleast_1d(self): q = 1. * u.m o, so = np.atleast_1d(q, self.q) assert o.shape == (1,) assert o == q expected = np.atleast_1d(self.q.value) * u.m assert np.all(so == expected) def test_atleast_2d(self): q = 1. * u.m o, so = np.atleast_2d(q, self.q) assert o.shape == (1, 1) assert o == q expected = np.atleast_2d(self.q.value) * u.m assert np.all(so == expected) def test_atleast_3d(self): q = 1. * u.m o, so = np.atleast_3d(q, self.q) assert o.shape == (1, 1, 1) assert o == q expected = np.atleast_3d(self.q.value) * u.m assert np.all(so == expected) @pytest.mark.xfail(NUMPY_LT_1_16, reason="expand_dims used asarray in numpy <1.16") def test_expand_dims(self): self.check(np.expand_dims, 1) def test_squeeze(self): o = np.squeeze(self.q[:, np.newaxis, :]) assert o.shape == (3, 3) assert np.all(o == self.q) @pytest.mark.xfail(NUMPY_LT_1_15, reason="flip needs axis argument in numpy <1.15") def test_flip(self): self.check(np.flip) def test_fliplr(self): self.check(np.fliplr) def test_flipud(self): self.check(np.flipud) def test_rot90(self): self.check(np.rot90) def test_broadcast_to(self): # TODO: should we change the default for subok? self.check(np.broadcast_to, (3, 3, 3), subok=True) def test_broadcast_arrays(self): # TODO: should we change the default for subok? q2 = np.ones((3, 3, 3)) / u.s o1, o2 = np.broadcast_arrays(self.q, q2, subok=True) assert isinstance(o1, u.Quantity) assert isinstance(o2, u.Quantity) assert o1.shape == o2.shape == (3, 3, 3) assert np.all(o1 == self.q) assert np.all(o2 == q2) class TestArgFunctions(NoUnitTestSetup): def test_argmin(self): self.check(np.argmin) def test_argmax(self): self.check(np.argmax) def test_argsort(self): self.check(np.argsort) def test_lexsort(self): self.check(np.lexsort) def test_searchsorted(self): q = self.q.ravel() q2 = np.array([150., 350.]) * u.cm out = np.searchsorted(q, q2) expected = np.searchsorted(q.value, q2.to_value(q.unit)) assert np.all(out == expected) def test_nonzero(self): self.check(np.nonzero) def test_argwhere(self): self.check(np.argwhere) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_argpartition(self): self.check(np.argpartition, 2) def test_flatnonzero(self): self.check(np.flatnonzero) class TestAlongAxis(BasicTestSetup): @pytest.mark.skip(NUMPY_LT_1_15, reason="take_long_axis added in numpy 1.15") def test_take_along_axis(self): indices = np.expand_dims(np.argmax(self.q, axis=0), axis=0) out = np.take_along_axis(self.q, indices, axis=0) expected = np.take_along_axis(self.q.value, indices, axis=0) * self.q.unit assert np.all(out == expected) @pytest.mark.skip(NUMPY_LT_1_15, reason="put_long_axis added in numpy 1.15") def test_put_along_axis(self): q = self.q.copy() indices = np.expand_dims(np.argmax(self.q, axis=0), axis=0) np.put_along_axis(q, indices, axis=0, values=-100 * u.cm) expected = q.value.copy() np.put_along_axis(expected, indices, axis=0, values=-1) expected = expected * q.unit assert np.all(q == expected) @pytest.mark.parametrize('axis', (0, 1)) def test_apply_along_axis(self, axis): out = np.apply_along_axis(np.square, axis, self.q) expected = np.apply_along_axis(np.square, axis, self.q.value) * self.q.unit ** 2 assert_array_equal(out, expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") @pytest.mark.parametrize('axes', ((1,), (0,), (0, 1))) def test_apply_over_axes(self, axes): def function(x, axis): return np.sum(np.square(x), axis) out = np.apply_over_axes(function, self.q, axes) expected = np.apply_over_axes(function, self.q.value, axes) expected = expected * self.q.unit ** (2 * len(axes)) assert_array_equal(out, expected) class TestIndicesFrom(NoUnitTestSetup): def test_diag_indices_from(self): self.check(np.diag_indices_from) def test_triu_indices_from(self): self.check(np.triu_indices_from) def test_tril_indices_from(self): self.check(np.tril_indices_from) class TestRealImag(InvariantUnitTestSetup): def setup(self): self.q = (np.arange(9.).reshape(3, 3) + 1j) * u.m def test_real(self): self.check(np.real) def test_imag(self): self.check(np.imag) class TestCopyAndCreation(InvariantUnitTestSetup): @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_copy(self): self.check(np.copy) # Also as kwarg copy = np.copy(a=self.q) assert_array_equal(copy, self.q) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_asfarray(self): self.check(np.asfarray) farray = np.asfarray(a=self.q) assert_array_equal(farray, self.q) def test_empty_like(self): o = np.empty_like(self.q) assert o.shape == (3, 3) assert isinstance(o, u.Quantity) assert o.unit == self.q.unit o2 = np.empty_like(prototype=self.q) assert o2.shape == (3, 3) assert isinstance(o2, u.Quantity) assert o2.unit == self.q.unit o3 = np.empty_like(self.q, subok=False) assert type(o3) is np.ndarray def test_zeros_like(self): self.check(np.zeros_like) o2 = np.zeros_like(a=self.q) assert_array_equal(o2, self.q * 0.) def test_ones_like(self): self.check(np.ones_like) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_full_like(self): o = np.full_like(self.q, 0.5 * u.km) expected = np.empty_like(self.q.value) * u.m expected[...] = 0.5 * u.km assert np.all(o == expected) with pytest.raises(u.UnitsError): np.full_like(self.q, 0.5 * u.s) class TestAccessingParts(InvariantUnitTestSetup): def test_diag(self): self.check(np.diag) def test_diagonal(self): self.check(np.diagonal) def test_diagflat(self): self.check(np.diagflat) def test_compress(self): o = np.compress([True, False, True], self.q, axis=0) expected = np.compress([True, False, True], self.q.value, axis=0) * self.q.unit assert np.all(o == expected) def test_extract(self): o = np.extract([True, False, True], self.q) expected = np.extract([True, False, True], self.q.value) * self.q.unit assert np.all(o == expected) def test_delete(self): self.check(np.delete, slice(1, 2), 0) self.check(np.delete, [0, 2], 1) def test_trim_zeros(self): q = self.q.ravel() out = np.trim_zeros(q) expected = np.trim_zeros(q.value) * u.m assert np.all(out == expected) def test_roll(self): self.check(np.roll, 1) self.check(np.roll, 1, axis=0) def test_take(self): self.check(np.take, [0, 1], axis=1) self.check(np.take, 1) class TestSettingParts(metaclass=CoverageMeta): def test_put(self): q = np.arange(3.) * u.m np.put(q, [0, 2], [50, 150] * u.cm) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_putmask(self): q = np.arange(3.) * u.m mask = [True, False, True] values = [50, 0, 150] * u.cm np.putmask(q, mask, values) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) with pytest.raises(u.UnitsError): np.putmask(q, mask, values.value) with pytest.raises(u.UnitsError): np.putmask(q.value, mask, values) a = np.arange(3.) values = [50, 0, 150] * u.percent np.putmask(a, mask, values) expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_place(self): q = np.arange(3.) * u.m np.place(q, [True, False, True], [50, 150] * u.cm) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) a = np.arange(3.) np.place(a, [True, False, True], [50, 150] * u.percent) assert type(a) is np.ndarray expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_copyto(self): q = np.arange(3.) * u.m np.copyto(q, [50, 0, 150] * u.cm, where=[True, False, True]) assert q.unit == u.m expected = [50, 100, 150] * u.cm assert np.all(q == expected) a = np.arange(3.) np.copyto(a, [50, 0, 150] * u.percent, where=[True, False, True]) assert type(a) is np.ndarray expected = np.array([0.5, 1., 1.5]) assert np.all(a == expected) def test_fill_diagonal(self): q = np.arange(9.).reshape(3, 3) * u.m expected = q.value.copy() np.fill_diagonal(expected, 0.25) expected = expected * u.m np.fill_diagonal(q, 25. * u.cm) assert q.unit == u.m assert np.all(q == expected) class TestRepeat(InvariantUnitTestSetup): def test_tile(self): self.check(np.tile, 2) def test_repeat(self): self.check(np.repeat, 2) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_resize(self): self.check(np.resize, (4, 4)) class TestConcatenate(metaclass=CoverageMeta): def setup(self): self.q1 = np.arange(6.).reshape(2, 3) * u.m self.q2 = self.q1.to(u.cm) def check(self, func, *args, **kwargs): q_list = kwargs.pop('q_list', [self.q1, self.q2]) o = func(q_list, *args, **kwargs) unit = q_list[0].unit v_list = [q.to_value(unit) for q in q_list] expected = func(v_list, *args, **kwargs) * unit assert o.shape == expected.shape assert np.all(o == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_concatenate(self): self.check(np.concatenate) self.check(np.concatenate, axis=1) out = np.empty((4, 3)) * u.dimensionless_unscaled result = np.concatenate([self.q1, self.q2], out=out) assert out is result assert out.unit == self.q1.unit expected = np.concatenate( [self.q1.value, self.q2.to_value(self.q1.unit)]) * self.q1.unit assert np.all(result == expected) with pytest.raises(TypeError): np.concatenate([self.q1, object()]) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_stack(self): self.check(np.stack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_column_stack(self): self.check(np.column_stack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_hstack(self): self.check(np.hstack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_vstack(self): self.check(np.vstack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_dstack(self): self.check(np.dstack) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_block(self): self.check(np.block) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_append(self): out = np.append(self.q1, self.q2, axis=0) assert out.unit == self.q1.unit expected = np.append(self.q1.value, self.q2.to_value(self.q1.unit), axis=0) * self.q1.unit assert np.all(out == expected) a = np.arange(3.) result = np.append(a, 50. * u.percent) assert isinstance(result, u.Quantity) assert result.unit == u.dimensionless_unscaled expected = np.append(a, 0.5) * u.dimensionless_unscaled assert np.all(result == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_insert(self): # Unit of inserted values is ignored. q = np.arange(12.).reshape(6, 2) * u.m out = np.insert(q, (3, 5), [50., 25.] * u.cm) assert isinstance(out, u.Quantity) assert out.unit == q.unit expected = np.insert(q.value, (3, 5), [0.5, 0.25]) * u.m assert np.all(out == expected) a = np.arange(3.) result = np.insert(a, (2,), 50. * u.percent) assert isinstance(result, u.Quantity) assert result.unit == u.dimensionless_unscaled expected = np.insert(a, (2,), 0.5) * u.dimensionless_unscaled assert np.all(result == expected) with pytest.raises(TypeError): np.insert(q, 3 * u.cm, 50. * u.cm) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_pad(self): q = np.arange(1., 6.) * u.m out = np.pad(q, (2, 3), 'constant', constant_values=(0., 150.*u.cm)) assert out.unit == q.unit expected = np.pad(q.value, (2, 3), 'constant', constant_values=(0., 1.5)) * q.unit assert np.all(out == expected) out2 = np.pad(q, (2, 3), 'constant', constant_values=150.*u.cm) assert out2.unit == q.unit expected2 = np.pad(q.value, (2, 3), 'constant', constant_values=1.5) * q.unit assert np.all(out2 == expected2) out3 = np.pad(q, (2, 3), 'linear_ramp', end_values=(25.*u.cm, 0.)) assert out3.unit == q.unit expected3 = np.pad(q.value, (2, 3), 'linear_ramp', end_values=(0.25, 0.)) * q.unit assert np.all(out3 == expected3) class TestSplit(metaclass=CoverageMeta): def setup(self): self.q = np.arange(54.).reshape(3, 3, 6) * u.m def check(self, func, *args, **kwargs): out = func(self.q, *args, **kwargs) expected = func(self.q.value, *args, **kwargs) expected = [x * self.q.unit for x in expected] assert len(out) == len(expected) assert all(o.shape == x.shape for o, x in zip(out, expected)) assert all(np.all(o == x) for o, x in zip(out, expected)) def test_split(self): self.check(np.split, [1]) def test_array_split(self): self.check(np.array_split, 2) def test_hsplit(self): self.check(np.hsplit, [1, 4]) def test_vsplit(self): self.check(np.vsplit, [1]) def test_dsplit(self): self.check(np.dsplit, [1]) class TestUfuncReductions(InvariantUnitTestSetup): def test_amax(self): self.check(np.amax) def test_amin(self): self.check(np.amin) def test_sum(self): self.check(np.sum) def test_cumsum(self): self.check(np.cumsum) def test_any(self): with pytest.raises(NotImplementedError): np.any(self.q) def test_all(self): with pytest.raises(NotImplementedError): np.all(self.q) def test_sometrue(self): with pytest.raises(NotImplementedError): np.sometrue(self.q) def test_alltrue(self): with pytest.raises(NotImplementedError): np.alltrue(self.q) def test_prod(self): with pytest.raises(u.UnitsError): np.prod(self.q) def test_product(self): with pytest.raises(u.UnitsError): np.product(self.q) def test_cumprod(self): with pytest.raises(u.UnitsError): np.cumprod(self.q) def test_cumproduct(self): with pytest.raises(u.UnitsError): np.cumproduct(self.q) class TestUfuncLike(InvariantUnitTestSetup): def test_ptp(self): self.check(np.ptp) self.check(np.ptp, axis=0) def test_round_(self): self.check(np.round_) def test_around(self): self.check(np.around) def test_fix(self): self.check(np.fix) @pytest.mark.xfail(NUMPY_LT_1_16, reason="angle used asarray in numpy <1.16") def test_angle(self): q = np.array([1+0j, 0+1j, 1+1j, 0+0j]) * u.m out = np.angle(q) expected = np.angle(q.value) * u.radian assert np.all(out == expected) def test_i0(self): q = np.array([0., 10., 20.]) * u.percent out = np.i0(q) expected = np.i0(q.to_value(u.one)) * u.one assert isinstance(out, u.Quantity) assert np.all(out == expected) with pytest.raises(u.UnitsError): np.i0(self.q) def test_clip(self): qmin = 200 * u.cm qmax = [270, 280, 290] * u.cm out = np.clip(self.q, qmin, qmax) expected = np.clip(self.q.value, qmin.to_value(self.q.unit), qmax.to_value(self.q.unit)) * self.q.unit assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_sinc(self): q = [0., 3690., -270., 690.] * u.deg out = np.sinc(q) expected = np.sinc(q.to_value(u.radian)) * u.one assert isinstance(out, u.Quantity) assert np.all(out == expected) with pytest.raises(u.UnitsError): np.sinc(1.*u.one) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_where(self): out = np.where([True, False, True], self.q, 1. * u.km) expected = np.where([True, False, True], self.q.value, 1000.) * self.q.unit assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_choose(self): # from np.choose docstring a = np.array([0, 1]).reshape((2, 1, 1)) q1 = np.array([1, 2, 3]).reshape((1, 3, 1)) * u.cm q2 = np.array([-1, -2, -3, -4, -5]).reshape((1, 1, 5)) * u.m out = np.choose(a, (q1, q2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2 expected = np.choose(a, (q1.value, q2.to_value(q1.unit))) * u.cm assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_select(self): q = self.q out = np.select([q < 0.55 * u.m, q > 1. * u.m], [q, q.to(u.cm)], default=-1. * u.km) expected = np.select([q.value < 0.55, q.value > 1], [q.value, q.value], default=-1000) * u.m assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_real_if_close(self): q = np.array([1+0j, 0+1j, 1+1j, 0+0j]) * u.m out = np.real_if_close(q) expected = np.real_if_close(q.value) * u.m assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_tril(self): self.check(np.tril) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_triu(self): self.check(np.triu) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_unwrap(self): q = [0., 3690., -270., 690.] * u.deg out = np.unwrap(q) expected = (np.unwrap(q.to_value(u.rad)) * u.rad).to(q.unit) assert out.unit == expected.unit assert np.allclose(out, expected, atol=1*u.urad, rtol=0) with pytest.raises(u.UnitsError): np.unwrap([1., 2.]*u.m) with pytest.raises(u.UnitsError): np.unwrap(q, discont=1.*u.m) def test_nan_to_num(self): q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m out = np.nan_to_num(q) expected = np.nan_to_num(q.value) * q.unit assert np.all(out == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_nan_to_num_complex(self): q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m out = np.nan_to_num(q, nan=1.*u.km, posinf=2.*u.km, neginf=-2*u.km) expected = [-2000., 2000., 1000., 3., 4.] * u.m assert np.all(out == expected) class TestUfuncLikeTests(metaclass=CoverageMeta): def setup(self): self.q = np.array([-np.inf, +np.inf, np.nan, 3., 4.]) * u.m def check(self, func): out = func(self.q) expected = func(self.q.value) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) def test_isposinf(self): self.check(np.isposinf) def test_isneginf(self): self.check(np.isneginf) def test_isreal(self): self.check(np.isreal) assert not np.isreal([1. + 1j]*u.m) def test_iscomplex(self): self.check(np.iscomplex) assert np.iscomplex([1. + 1j]*u.m) def test_isclose(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 102., 199.]) * u.cm atol = 1.5 * u.cm rtol = 1. * u.percent out = np.isclose(q1, q2, atol=atol) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=atol.to_value(q1.unit)) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) out = np.isclose(q1, q2, atol=0, rtol=rtol) expected = np.isclose(q1.value, q2.to_value(q1.unit), atol=0, rtol=0.01) assert type(out) is np.ndarray assert out.dtype.kind == 'b' assert np.all(out == expected) @pytest.mark.xfail def test_isclose_failure(self): q_cm = self.q.to(u.cm) # atol does not have units; TODO: should this work by default? out = np.isclose(self.q, q_cm) expected = np.isclose(self.q.value, q_cm.to_value(u.m)) assert np.all(out == expected) class TestReductionLikeFunctions(InvariantUnitTestSetup): def test_average(self): q1 = np.arange(9.).reshape(3, 3) * u.m q2 = np.eye(3) / u.s o = np.average(q1, weights=q2) expected = np.average(q1.value, weights=q2.value) * u.m assert np.all(o == expected) def test_mean(self): self.check(np.mean) def test_std(self): self.check(np.std) def test_var(self): o = np.var(self.q) expected = np.var(self.q.value) * self.q.unit ** 2 assert np.all(o == expected) def test_median(self): self.check(np.median) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_quantile(self): self.check(np.quantile, 0.5) o = np.quantile(self.q, 50 * u.percent) expected = np.quantile(self.q.value, 0.5) * u.m assert np.all(o == expected) # For ndarray input, we return a Quantity. o2 = np.quantile(self.q.value, 50 * u.percent) assert o2.unit == u.dimensionless_unscaled assert np.all(o2 == expected.value) o3 = 0 * o2 result = np.quantile(self.q, 50 * u.percent, out=o3) assert result is o3 assert np.all(o3 == expected) o4 = 0 * o2 result = np.quantile(self.q, 50 * u.percent, None, o4) assert result is o4 assert np.all(o4 == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_percentile(self): self.check(np.percentile, 0.5) o = np.percentile(self.q, 0.5 * u.one) expected = np.percentile(self.q.value, 50) * u.m assert np.all(o == expected) def test_trace(self): self.check(np.trace) @pytest.mark.xfail(NO_ARRAY_FUNCTION and not NUMPY_LT_1_14, reason=("Needs __array_function__ support " "(or numpy < 1.14)")) def test_count_nonzero(self): q1 = np.arange(9.).reshape(3, 3) * u.m o = np.count_nonzero(q1) assert type(o) is not u.Quantity assert o == 8 o = np.count_nonzero(q1, axis=1) # Returns integer Quantity with units of m assert type(o) is np.ndarray assert np.all(o == np.array([2, 3, 3])) def test_allclose(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 101., 199.]) * u.cm atol = 2 * u.cm rtol = 1. * u.percent assert np.allclose(q1, q2, atol=atol) assert np.allclose(q1, q2, atol=0., rtol=rtol) def test_allclose_failures(self): q1 = np.arange(3.) * u.m q2 = np.array([0., 101., 199.]) * u.cm with pytest.raises(u.UnitsError): # Default atol breaks code; TODO: should this work? assert np.allclose(q1, q2) with pytest.raises(u.UnitsError): np.allclose(q1, q2, atol=2, rtol=0) with pytest.raises(u.UnitsError): np.allclose(q1, q2, atol=0, rtol=1. * u.s) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_array_equal(self): q1 = np.arange(3.) * u.m q2 = q1.to(u.cm) assert np.array_equal(q1, q2) q3 = q1.value * u.cm assert not np.array_equal(q1, q3) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_array_equiv(self): q1 = np.array([[0., 1., 2.]]*3) * u.m q2 = q1[0].to(u.cm) assert np.array_equiv(q1, q2) q3 = q1[0].value * u.cm assert not np.array_equiv(q1, q3) class TestNanFunctions(InvariantUnitTestSetup): def setup(self): super().setup() self.q[1, 1] = np.nan def test_nanmax(self): self.check(np.nanmax) def test_nanmin(self): self.check(np.nanmin) def test_nanargmin(self): out = np.nanargmin(self.q) expected = np.nanargmin(self.q.value) assert out == expected def test_nanargmax(self): out = np.nanargmax(self.q) expected = np.nanargmax(self.q.value) assert out == expected def test_nanmean(self): self.check(np.nanmean) def test_nanmedian(self): self.check(np.nanmedian) def test_nansum(self): self.check(np.nansum) def test_nancumsum(self): self.check(np.nancumsum) def test_nanstd(self): self.check(np.nanstd) def test_nanvar(self): out = np.nanvar(self.q) expected = np.nanvar(self.q.value) * self.q.unit ** 2 assert np.all(out == expected) def test_nanprod(self): with pytest.raises(u.UnitsError): np.nanprod(self.q) def test_nancumprod(self): with pytest.raises(u.UnitsError): np.nancumprod(self.q) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_nanquantile(self): self.check(np.nanquantile, 0.5) o = np.nanquantile(self.q, 50 * u.percent) expected = np.nanquantile(self.q.value, 0.5) * u.m assert np.all(o == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_nanpercentile(self): self.check(np.nanpercentile, 0.5) o = np.nanpercentile(self.q, 0.5 * u.one) expected = np.nanpercentile(self.q.value, 50) * u.m assert np.all(o == expected) class TestVariousProductFunctions(metaclass=CoverageMeta): """ Test functions that are similar to gufuncs """ @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_cross(self): q1 = np.arange(6.).reshape(2, 3) * u.m q2 = np.array([4., 5., 6.]) / u.s o = np.cross(q1, q2) expected = np.cross(q1.value, q2.value) * u.m / u.s assert np.all(o == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_outer(self): q1 = np.array([1, 2, 3]) * u.m q2 = np.array([1, 2]) / u.s o = np.outer(q1, q2) assert np.all(o == np.array([[1, 2], [2, 4], [3, 6]]) * u.m / u.s) o2 = 0 * o result = np.outer(q1, q2, out=o2) assert result is o2 assert np.all(o2 == o) with pytest.raises(TypeError): np.outer(q1, q2, out=object()) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_inner(self): q1 = np.array([1, 2, 3]) * u.m q2 = np.array([4, 5, 6]) / u.s o = np.inner(q1, q2) assert o == 32 * u.m / u.s @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_dot(self): q1 = np.array([1., 2., 3.]) * u.m q2 = np.array([4., 5., 6.]) / u.s o = np.dot(q1, q2) assert o == 32. * u.m / u.s @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_vdot(self): q1 = np.array([1j, 2j, 3j]) * u.m q2 = np.array([4j, 5j, 6j]) / u.s o = np.vdot(q1, q2) assert o == (32. + 0j) * u.m / u.s @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_tensordot(self): # From the docstring example a = np.arange(60.).reshape(3, 4, 5) * u.m b = np.arange(24.).reshape(4, 3, 2) / u.s c = np.tensordot(a, b, axes=([1, 0], [0, 1])) expected = np.tensordot(a.value, b.value, axes=([1, 0], [0, 1])) * u.m / u.s assert np.all(c == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_kron(self): q1 = np.eye(2) * u.m q2 = np.ones(2) / u.s o = np.kron(q1, q2) expected = np.kron(q1.value, q2.value) * u.m / u.s assert np.all(o == expected) @pytest.mark.xfail(NO_ARRAY_FUNCTION, reason="Needs __array_function__ support") def test_einsum(self): q1 = np.arange(9.).reshape(3, 3) * u.m o = np.einsum('...i', q1) assert np.all(o == q1) o = np.einsum('ii', q1) expected = np.einsum('ii', q1.value) * u.m assert np.all(o == expected) q2 = np.eye(3) / u.s o2 = np.einsum('ij,jk', q1, q2) assert np.all(o2 == q1 / u.s) o3 = 0 * o2 result = np.einsum('ij,jk', q1, q2, out=o3) assert result is o3 assert np.all(o3 == o2) def test_einsum_path(self): q1 = np.arange(9.).reshape(3, 3) * u.m o = np.einsum_path('...i', q1) assert o[0] == ['einsum_path', (0,)] o = np.einsum_path('ii', q1) assert o[0] == ['einsum_path', (0,)] q2 = np.eye(3) / u.s o = np.einsum_path('ij,jk', q1, q2) assert o[0] == ['einsum_path', (0, 1)] class TestIntDiffFunctions(metaclass=CoverageMeta): def test_trapz(self): y = np.arange(9.) * u.m / u.s out = np.trapz(y) expected = np.trapz(y.value) * y.unit assert np.all(out == expected) dx = 10. * u.s out = np.trapz(y, dx=dx) expected = np.trapz(y.value, dx=dx.value) * y.unit * dx.unit assert np.all(out == expected) x = np.arange(9.) * u.s out = np.trapz(y, x) expected = np.trapz(y.value, x.value) * y.unit * x.unit assert np.all(out == expected) def test_diff(self): # Simple diff works out of the box. x = np.arange(10.) * u.m out = np.diff(x) expected = np.diff(x.value) * u.m assert
np.all(out == expected)
numpy.all
""" A collection of some useful ocean functions. These are taken from a range of MATLAB toolboxes as well as from ocean_funcs.ncl, which in turn has taken them from the CSIRO SEAWATER (now GSW) MATLAB toolbox. The NCL code can be found at: http://www.ncl.ucar.edu/Support/talk_archives/2013/att-1501/ocean_funcs.ncl__size_15540__creation-date_ The MATLAB toolboxes used includes: http://www.cmar.csiro.au/datacentre/ext_docs/seawater.htm http://mooring.ucsd.edu/software/matlab/doc/toolbox/ocean/ http://www.mbari.org/staff/etp3/ocean1.htm See also: <NAME>., A new extended Gibbs thermodynamic potential of seawater, Prog. Oceanogr., 58, 43-115, http://authors.elsevier.com/sd/article/S0079661103000880 corrigendum 61 (2004) 99, 2003. <NAME>. & Millard, R.C. Unesco 1983. Algorithms for computation of fundamental properties of seawater, 1983. Unesco Tech. Pap. in Mar. Sci., No. 44. <NAME>., <NAME>, <NAME>, <NAME>, and <NAME>, Updated algorithms for density, potential temperature, conservative temperature and freezing temperature of seawater, Journal of Atmospheric and Oceanic Technology, submitted, 2005. The Simpson-Hunter parameter is described in: Simpson, JH, and JR Hunter. "Fronts in the Irish Sea." Nature 250 (1974): 404-6. The relative humidity from dew point temperature and ambient temperature is taken from: http://www.vaisala.com/Vaisala%20Documents/Application%20notes/Humidity_Conversion_Formulas_B210973EN-F.pdf Provides functions: - pressure2depth : convert pressure (decibars) to depth in metres - depth2pressure : convert depth in metres to pressure in decibars - dT_adiab_sw : calculate adiabatic temperature gradient - theta_sw : calculate potential temperature for sea water - cp_sw : calculate constant pressure specific heat for seawater - sw_smow : calculate density of Standard Mean Ocean Water - sw_dens0 : calculate seawater density at atmospheric surface pressure - sw_seck : calculate Secant Bulk Modulus (K) of seawater - sw_dens : calculate density from temperature, salinity and pressure - sw_svan : calculate specific volume anomaly (only use if you don't already have density) - sw_sal78 : calculate salinity from conductivity, temperature and pressure based on the Fofonoff and Millard (1983) SAL78 FORTRAN function - sw_sal80 : calculate salinity from conductivity, temperature and pressure based on the UCSD sal80.m function (identical approach in sw_salinity) - sw_salinity : calculate salinity from conductivity, temperature and pressure (identical approach in sw_sal80) - dens_jackett : alternative formulation for calculating density from temperature and salinity (after Jackett et al. (2005) - pea: calculate the potential energy anomaly (stratification index). - simpsonhunter : calculate the Simpson-Hunter parameter to predict frontal locations. - mixedlayerdepth : calculate the mixed layer depth using the ERSEM definition. - stokes : calculate the Stokes parameter. - dissipation : calculate the tidal dissipation from a current speed. - calculate_rhum : calculate relative humidity from dew point temperature and ambient temperature. <NAME> (Plymouth Marine Laboratory) """ import numpy as np import matplotlib.pyplot as plt # Define some commonly used constants. c68 = 1.00024 # conversion constant to T68 temperature scale. c90 = 0.99976 # conversion constant to T90 temperature scale. def _tests(): """ Put some (sort of) unit tests in here to make sure the functions work as expected. """ test_lat = 30 test_z = np.logspace(0.1, 4, 50) # log depth distribution test_p = np.logspace(0.1, 4, 50) # log pressure distribution res_p1 = depth2pressure(test_z, test_lat) res_z1 = pressure2depth(res_p1, test_lat) res_z2 = pressure2depth(test_p, test_lat) res_p2 = depth2pressure(res_z2, test_lat) # Graph the differences if False: fig0 = plt.figure(figsize=(12, 10)) ax0 = fig0.add_subplot(1, 2, 1) ax0.loglog(test_z, res_z1 - test_z, '.') ax0.set_xlabel('Depth (m)') ax0.set_ylabel('Difference (m)') ax0.set_title('depth2pressure <-> pressure2depth') ax1 = fig0.add_subplot(1, 2, 2) ax1.loglog(test_p, res_p2 - test_p, '.') ax1.set_xlabel('Pressure (dbar)') ax1.set_ylabel('Difference (dbar)') ax1.set_title('pressure2depth <-> depth2pressure ') fig0.show() # Input parameters test_t = np.array(40) test_s = np.array(40) test_p = np.array(10000) test_pr = np.array(0) test_c = np.array(1.888091) test_td = np.array(20) # for dens_jackett test_sd = np.array(20) # for dens_jackett test_pd = np.array(1000) # for dens_jackett test_cond = np.array([100, 65000]) # for cond2salt test_h = np.array((10, 20, 30, 100)) # depths for stokes test_U = 0.25 # U for stokes and dissipation test_omega = 1 / 44714.1647021416 # omega for stokes test_z0 = np.array((0.0025)) # z0 for stokes test_rho = 1025 test_temp = np.arange(-20, 50, 10) test_dew = np.linspace(0, 20, len(test_temp)) # Use some of the Fofonoff and Millard (1983) checks. res_svan = sw_svan(test_t, test_s, test_p) print('Steric anomaly\nFofonoff and Millard (1983):\t9.8130210e-6\nsw_svan:\t\t\t{}\n'.format(res_svan)) res_z = pressure2depth(test_p, test_lat) print('Pressure to depth\nFofonoff and Millard (1983):\t9712.653\npressure2depth:\t\t\t{}\n'.format(res_z)) # The return to depth is a bit inaccurate, not sure why. res_pres = depth2pressure(res_z, test_lat) print('Depth to pressure\nFofonoff and Millar (1983):\t9712.653\ndepth2pressure:\t\t\t{}\n'.format(res_pres)) res_cp = cp_sw(test_t, test_s, test_p) print('Specific heat of seawater\nFofonoff and Millard (1983):\t3849.500\ncp_sw:\t\t\t\t{}\n'.format(res_cp)) res_atg = dT_adiab_sw(test_t, test_s, test_p) print('Adiabatic temperature gradient\nFofonoff and Millard (1983):\t0.0003255976\ndT_adiab_sw:\t\t\t{}\n'.format(res_atg)) res_theta = theta_sw(test_t, test_s, test_p, test_pr) print('Potential temperature\nFofonoff and Millard (1983):\t36.89073\ntheta_sw:\t\t\t{}\n'.format(res_theta)) # Haven't got the right input values for sal78 and sw_salinity, but the # outputs match the MATLAB functions, so I'm assuming they're OK... # res_salinity = sw_salinity(test_c, test_t, test_p) # print('Salinity\nFofonoff and Millard (1983):\t40\nsw_salinity:\t\t\t{}\n'.format(res_salinity)) res_sal78 = sw_sal78(test_c, test_t, test_p) print('Salinity\nFofonoff and Millard (1983):\t40\nsw_sal78:\t\t\t{}\n'.format(res_sal78)) # Haven't got the right input values for sal78 and sw_salinity, but the # outputs match the MATLAB functions, so I'm assuming they're OK... # test_c, test_t, test_p = np.array(1.888091), np.array(40), np.array(10000) # res_sal80 = sw_sal80(test_c, test_t, test_p) # print('Salinity\nFofonoff and Millard (1983):\t40\nsw_sal80:\t\t\t{}\n'.format(res_sal80)) res_dens = dens_jackett(test_td, test_sd, test_pd) print('Jackett density\nJackett et al. (2005):\t1017.728868019642\ndens_jackett:\t\t{}\n'.format(res_dens)) res_salt = cond2salt(test_cond) print('Conductivity to salinity\nUSGS:\t\t0.046,\t\t\t44.016\ncond2salt:\t{},\t{}'.format(res_salt[0], res_salt[1])) res_stokes, res_u_star, res_delta = stokes(test_h, test_U, test_omega, test_z0, U_star=True, delta=True) print('Stokes number\nSouza (2013):\tS:\tTEST\tstokes:\tS:{}\n\t\t\tSouza (2013):\tU*:\tTEST\t{}\n\t\t\tSouza (2013):\tdelta:\tTEST\t{}\n'.format(res_stokes, res_u_star, res_delta)) res_dissipation = dissipation(test_rho, test_U) print('Tidal dissipation\nKnown good:\t0.0400390625\ndissipation():\t{}'.format(res_dissipation)) valid_rhum = np.array((487.36529085, 270.83391406, 160.16590946, 100.0, 65.47545095, 44.70251971, 31.67003471)) rhum = calculate_rhum(test_dew, test_temp) for hum in zip(rhum, valid_rhum): print('Relative humidity:\tvalid: {:.3f}\tcalculate_rhum: {:.3f}\t(difference = {:.3f})'.format(hum[1], hum[0], np.diff(hum)[0])) def pressure2depth(p, lat): """ Convert from pressure in decibars to depth in metres. Parameters ---------- p : ndarray Pressure (1D array) in decibars. lat : ndarray Latitudes for samples in p. Returns ------- z : ndarray Water depth in metres. """ c1 = 9.72659 c2 = -2.1512e-5 c3 = 2.279e-10 c4 = -1.82e-15 gam = 2.184e-6 y = np.abs(lat) rad = np.sin(np.deg2rad(y))**2 gy = 9.780318 * (1.0 + (rad * 5.2788e-3) + (rad**2 * 2.36e-5)) bline = gy + (gam * 0.5 * p) tline = (c1 * p) + (c2 * p**2.0) + (c3 * p**3.0) + (c4 * p**4.0) z = tline / bline return z def depth2pressure(z, lat): """ Convert from depth in metres to pressure in decibars. Parameters ---------- z : ndarray Depth (1D array) in metres. Must be positive down (negative values are set to zero before conversion to pressure). lat : ndarray Latitudes for samples in z. Returns ------- p : ndarray Pressure in decibars. """ # Set negative depths to 0. We assume positive depth values (as in the # docstring). pz = z.copy() if isinstance(pz, np.ndarray): pz[z < 0] = 0 c2 = 2.21e-6 Y = np.sin(np.deg2rad(np.abs(lat))) c1 = (5.92 + (5.25 * Y**2.0)) * 1.e-3 p = ((1.0 - c1) - np.sqrt((1.0 - c1)**2.0 - (4.0 * c2 * pz))) / (2.0 * c2) return p def dT_adiab_sw(t, s, p): """ Calculate adiabatic temperature gradient (degrees Celsius dbar^{-1}) Parameters ---------- t : ndarray Temperature (Celsius) s : ndarray Salinity (PSU) p : ndarray Pressure (decibars) All three arrays must have the same shape. Returns ------- atg : ndarray Adiabatic temperature gradient """ # Constants a0 = 3.5803e-5 a1 = 8.5258e-6 a2 = -6.836e-8 a3 = 6.6228e-10 b0 = 1.8932e-6 b1 = -4.2393e-8 c0 = 1.8741e-8 c1 = -6.7795e-10 c2 = 8.733e-12 c3 = -5.4481e-14 d0 = -1.1351e-10 d1 = 2.7759e-12 e0 = -4.6206e-13 e1 = 1.8676e-14 e2 = -2.1687e-16 T68 = t * c68 # convert to 1968 temperature scale atg = a0 + (a1 + (a2 + a3 * T68) * T68) * T68 + (b0 + b1 * T68) * (s - 35) + \ ((c0 + (c1 + (c2 + c3 * T68) * T68) * T68) + (d0 + d1 * T68) * (s - 35)) * p + (e0 + (e1 + e2 * T68) * T68) * p * p return atg def theta_sw(t, s, p, pr): """ Calculate potential temperature for seawater from temperature, salinity and pressure. Parameters ---------- t : ndarray Temperature (1D array) in degrees Celsius. s : ndarray Salinity (1D array) in practical salinity units (unitless). Must be the same shape as t. p : ndarray Pressure (1D array) in decibars. Must be the same shape as t. pr : ndarray Reference pressure (decibars) either a scalar or the same shape as t. Returns ------- th : ndarray Potential temperature (Celsius) """ dP = pr - p # pressure difference. # 1st iteration dth = dP * dT_adiab_sw(t, s, p) th = (t * c68) + (0.5 * dth) q = dth # 2nd interation dth = dP * dT_adiab_sw(th / c68, s, (p + (0.5 * dP))) th = th + ((1 - (1 / np.sqrt(2))) * (dth - q)) q = ((2 - np.sqrt(2)) * dth) + (((3 / np.sqrt(2)) - 2) * q) # 3rd iteration dth = dP * dT_adiab_sw(th / c68, s, (p + (0.5 * dP))) th = th + ((1 + (1 / np.sqrt(2))) * (dth - q)) q = ((2 + np.sqrt(2)) * dth) + (((-3 / np.sqrt(2)) - 2) * q) # 4th interation dth = dP * dT_adiab_sw(th / c68, s, (p + dP)) th = (th + (dth - (2 * q)) / 6) / c68 return th def cp_sw(t, s, p): """ Calculate constant pressure specific heat (cp) for seawater, from temperature, salinity and pressure. Parameters ---------- t : ndarray Temperature (1D array) in degrees Celsius. s : ndarray Salinity (1D array) in practical salinity units (unitless). Must be the same shape as t. p : ndarray Pressure (1D array) in decibars. Must be the same shape as t. Returns ------- cp : ndarray Constant pressure specific heat (Celsius). Notes ----- Valid temperature range is -2 to 40C and salinity is 0-42 PSU. Warnings are issued if the data fall outside these ranges. """ # Check for values outside the valid ranges. if t.min() < -2: n = np.sum(t < -2) print('WARNING: {} values below minimum value temperature (-2C)'.format(n)) if t.max() > 40: n = np.sum(t > 40) print('WARNING: {} values above maximum value temperature (40C)'.format(n)) if s.min() < 0: n = np.sum(s < 0) print('WARNING: {} values below minimum salinity value (0 PSU)'.format(n)) if s.max() > 42: n = np.sum(s > 42) print('WARNING: {} values above maximum salinity value (42C)'.format(n)) # Convert from decibar to bar and temperature to the 1968 temperature scale. pbar = p / 10.0 T1 = t * c68 # Specific heat at p = 0 # Temperature powers T2 = T1**2 T3 = T1**3 T4 = T1**4 # Empirical constants c0 = 4217.4 c1 = -3.720283 c2 = 0.1412855 c3 = -2.654387e-3 c4 = 2.093236e-5 a0 = -7.643575 a1 = 0.1072763 a2 = -1.38385e-3 b0 = 0.1770383 b1 = -4.07718e-3 b2 = 5.148e-5 cp_0t0 = c0 + (c1 * T1) + (c2 * T2) + (c3 * T3) + (c4 * T4) A = a0 + (a1 * T1) + (a2 * T2) B = b0 + (b1 * T1) + (b2 * T2) cp_st0 = cp_0t0 + (A * s) + (B * s**1.5) # Pressure dependance a0 = -4.9592e-1 a1 = 1.45747e-2 a2 = -3.13885e-4 a3 = 2.0357e-6 a4 = 1.7168e-8 b0 = 2.4931e-4 b1 = -1.08645e-5 b2 = 2.87533e-7 b3 = -4.0027e-9 b4 = 2.2956e-11 c0 = -5.422e-8 c1 = 2.6380e-9 c2 = -6.5637e-11 c3 = 6.136e-13 d1_cp = (pbar * (a0 + (a1 * T1) + (a2 * T2) + (a3 * T3) + (a4 * T4))) + \ (pbar**2 * (b0 + (b1 * T1) + (b2 * T2) + (b3 * T3) + (b4 * T4))) + \ (pbar**3 * (c0 + (c1 * T1) + (c2 * T2) + (c3 * T3))) d0 = 4.9247e-3 d1 = -1.28315e-4 d2 = 9.802e-7 d3 = 2.5941e-8 d4 = -2.9179e-10 e0 = -1.2331e-4 e1 = -1.517e-6 e2 = 3.122e-8 f0 = -2.9558e-6 f1 = 1.17054e-7 f2 = -2.3905e-9 f3 = 1.8448e-11 g0 = 9.971e-8 h0 = 5.540e-10 h1 = -1.7682e-11 h2 = 3.513e-13 j1 = -1.4300e-12 d2_cp = pbar * \ ((s * (d0 + (d1 * T1) + (d2 * T2) + (d3 * T3) + (d4 * T4))) + (s**1.5 * (e0 + (e1 * T1) + (e2 * T2)))) + \ (pbar**2 * ((s * (f0 + (f1 * T1) + (f2 * T2) + (f3 * T3))) + (g0 * s**1.5))) + (pbar**3 * ((s * (h0 + (h1 * T1) + (h2 * T2))) + (j1 * T1 * s**1.5))) cp = cp_st0 + d1_cp + d2_cp return(cp) def sw_smow(t): """ Calculate the density of Standard Mean Ocean Water (pure water). Parameters ---------- t : ndarray Temperature (1D array) in degrees Celsius. Returns ------- rho : ndarray Density in kg m^{-3}. """ # Coefficients a0 = 999.842594 a1 = 6.793952e-2 a2 = -9.095290e-3 a3 = 1.001685e-4 a4 = -1.120083e-6 a5 = 6.536332e-9 T68 = t * c68 dens = a0 + (a1 * T68) + (a2 * T68**2) + (a3 * T68**3) \ + (a4 * T68**4) + (a5 * T68**5) return dens def sw_dens0(t, s): """ Calculate sea water density at atmospheric surface pressure. Parameters ---------- t : ndarray Temperature (1D array) in degrees Celsius. s: ndarray Salinity (PSU). Must be the same size as t. Returns ------- dens : ndarray Seawater density at atmospheric surface pressure (kg m^{-1}). """ b0 = 8.24493e-1 b1 = -4.0899e-3 b2 = 7.6438e-5 b3 = -8.2467e-7 b4 = 5.3875e-9 c0 = -5.72466e-3 c1 = 1.0227e-4 c2 = -1.6546e-6 d0 = 4.8314e-4 t68 = t * c68 dens = s * (b0 + (b1 * t68) + (b2 * t68**2) + (b3 * t68**3) + (b4 * t68**4)) + \ s**1.5 * (c0 + (c1 * t68) + (c2 * t68**2)) + (d0 * s**2) dens = dens + sw_smow(t68) return dens def sw_seck(t, s, p): """ Calculate Secant Bulk Modulus (K) of seawater. Parameters ---------- t : ndarray Temperature (1D array) in degrees Celsius. s : ndarray Salinity (1D array) in practical salinity units (unitless). Must be the same shape as t. p : ndarray Pressure (1D array) in decibars. Must be the same shape as t. Returns ------- k : ndarray Secant Bulk Modulus of seawater. """ # Compression terms T68 = t * c68 Patm = p / 10.0 # convert to bar h3 = -5.77905e-7 h2 = 1.16092e-4 h1 = 1.43713e-3 h0 = 3.239908 AW = h0 + (h1 * T68) + (h2 * T68**2) + (h3 * T68**3) k2 = 5.2787e-8 k1 = -6.12293e-6 k0 = 8.50935e-5 BW = k0 + (k1 + k2 * T68) * T68 e4 = -5.155288e-5 e3 = 1.360477e-2 e2 = -2.327105 e1 = 148.4206 e0 = 19652.21 KW = e0 + (e1 + (e2 + (e3 + e4 * T68) * T68) * T68) * T68 # K at atmospheric pressure j0 = 1.91075e-4 i2 = -1.6078e-6 i1 = -1.0981e-5 i0 = 2.2838e-3 A = AW + s * (i0 + (i1 * T68) + (i2 * T68**2)) + (j0 * s**1.5) m2 = 9.1697e-10 m1 = 2.0816e-8 m0 = -9.9348e-7 # Equation 18 B = BW + (m0 + (m1 * T68) + (m2 * T68**2)) * s f3 = -6.1670e-5 f2 = 1.09987e-2 f1 = -0.603459 f0 = 54.6746 g2 = -5.3009e-4 g1 = 1.6483e-2 g0 = 7.944e-2 # Equation 16 K0 = KW + s * (f0 + (f1 * T68) + (f2 * T68**2) + (f3 * T68**3)) + \ s**1.5 * (g0 + (g1 * T68) + (g2 * T68**2)) # K at t, s, p K = K0 + (A * Patm) + (B * Patm**2) # Equation 15 return K def sw_dens(t, s, p): """ Convert temperature, salinity and pressure to density. Parameters ---------- t : ndarray Temperature (1D array) in degrees Celsius. s : ndarray Salinity (1D array) in practical salinity units (unitless). Must be the same shape as t. p : ndarray Pressure (1D array) in decibars. Must be the same shape as t. Returns ------- rho : ndarray Density in kg m^{-3}. Notes ----- Valid temperature range is -2 to 40C, salinity is 0-42 and pressure is 0-10000 decibars. Warnings are issued if the data fall outside these ranges. """ # Check for values outside the valid ranges. if t.min() < -2: n = np.sum(t < -2) print('WARNING: {} values below minimum value temperature (-2C)'.format(n)) if t.max() > 40: n = np.sum(t > 40) print('WARNING: {} values above maximum value temperature (40C)'.format(n)) if s.min() < 0: n = np.sum(s < 0) print('WARNING: {} values below minimum salinity value (0 PSU)'.format(n)) if s.max() > 42: n = np.sum(s > 42) print('WARNING: {} values above maximum salinity value (42C)'.format(n)) if p.min() < 0: n = np.sum(p < 0) print('WARNING: {} values below minimum pressure value (0 decibar)'.format(n)) if p.max() > 10000: n =
np.sum(p > 10000)
numpy.sum
import numpy as np import pandas as pd from scipy.spatial.transform import Rotation as R from scipy import interpolate def get_matrix_from_ext(ext): N = np.size(ext,0) if ext.ndim==2: rot = R.from_euler('ZYX', ext[:,3:], degrees=True) rot_m = rot.as_matrix() tr = np.zeros((N,4,4)) tr[:,:3,:3] = rot_m tr[:,:3, 3] = ext[:,:3] tr[:, 3, 3] = 1 if ext.ndim==1: rot = R.from_euler('ZYX', ext[3:], degrees=True) rot_m = rot.as_matrix() tr = np.zeros((4,4)) tr[:3,:3] = rot_m tr[:3, 3] = ext[:3] tr[ 3, 3] = 1 return tr def xyz2blh(x, y, z): """Convert XYZ coordinates to BLH, return tuple(latitude, longitude, height). """ A = 6378137.0 B = 6356752.314245 e = np.sqrt(1 - (B**2)/(A**2)) # calculate longitude, in radians longitude = np.arctan2(y, x) # calculate latitude, in radians xy_hypot = np.hypot(x, y) lat0 = 0 latitude = np.arctan(z / xy_hypot) while abs(latitude - lat0) > 1E-9: lat0 = latitude N = A / np.sqrt(1 - e**2 * np.sin(lat0)**2) latitude = np.arctan((z + e**2 * N * np.sin(lat0)) / xy_hypot) # calculate height, in meters N = A / np.sqrt(1 - e**2 * np.sin(latitude)**2) if abs(latitude) < np.pi / 4: R, phi = np.hypot(xy_hypot, z), np.arctan(z / xy_hypot) height = R * np.cos(phi) / np.cos(latitude) - N else: height = z / np.sin(latitude) - N * (1 - e**2) # convert angle unit to degrees longitude = np.degrees(longitude) latitude = np.degrees(latitude) return latitude, longitude, height def blh2xyz(latitude, longitude, height): """Convert BLH coordinates to XYZ. return [X, Y, Z]. """ A = 6378137.0 B = 6356752.314245 # convert angle unit to radians latitude = np.radians(latitude) longitude = np.radians(longitude) e = np.sqrt(1 - (B**2)/(A**2)) N = A / np.sqrt(1 - e**2 *
np.sin(latitude)
numpy.sin
import numpy as np from astropy.wcs.wcsapi.wrappers.base import BaseWCSWrapper __all__ = ['ResampledLowLevelWCS'] class ResampledLowLevelWCS(BaseWCSWrapper): """ A wrapper for a low-level WCS object that has down- or up-sampled pixel axes. Parameters ---------- wcs : `~astropy.wcs.wcsapi.BaseLowLevelWCS` The original WCS for which to reorder axes factor : `int` or `float` or iterable of the same The factor by which to increase the pixel size for each pixel axis. If a scalar, the same factor is used for all axes. offset: `int` or `float` or iterable of the same The location on the underlying pixel grid which corresponds to zero on the top level pixel grid. If a scalar, the grid will be shifted by the same amount in all dimensions. """ def __init__(self, wcs, factor, offset=0): self._wcs = wcs if np.isscalar(factor): factor = [factor] * self.pixel_n_dim self._factor = np.array(factor) if len(self._factor) != self.pixel_n_dim: raise ValueError(f"Length of factor must equal number of dimensions {self.pixel_n_dim}.") if np.isscalar(offset): offset = [offset] * self.pixel_n_dim self._offset =
np.array(offset)
numpy.array
#global: dictionary, docs #type of model: z, nd, nw #pull: subset of z, nd, nw #push: diff of subset of z, nd, nw import numpy as np import random import time from joblib import Parallel, delayed """ Configuration """ K = 10 class LDADictionary: def __init__(self): self.word2id = dict() self.id2word = dict() self.stop_list = set('for a of the and to in'.split()) def num_words(self): return len(self.word2id) def get_word(self, word_id): return self.id2word[word_id] def get_id(self, word): return self.word2id[word] def contains_word(self, word): return True if word in self.word2id else False def contains_id(self, word_id): return True if word_id in self.id2word else False def add_word(self, word): if not self.contains_word(word) and word not in self.stop_list: word_id = len(self.word2id) self.word2id[word] = word_id self.id2word[word_id] = word return word_id else: return self.get_id(word) """ Preprocess Data """ #==================== # Dataset 1 dictionary = LDADictionary() raw_docs = [] with open('data/lda_data.txt', 'r') as f: for line in f: raw_docs.append(line) D = int(raw_docs[0]) raw_docs = raw_docs[1:] docs =[None] * D def set_doc(raw_str, idx): words = raw_str.lower().split() tokens = [] for w in words: if dictionary.contains_word(w): wid = dictionary.get_id(w) else: wid = dictionary.add_word(w) tokens.append(wid) docs[idx] = tokens for idx, raw_doc in enumerate(raw_docs): set_doc(raw_doc, idx) W = dictionary.num_words() # W = 8211, D = 10768 #==================== #==================== # Dataset 2 # Src: https://towardsdatascience.com/topic-modeling-for-the-new-york-times-news-dataset-1f643e15caac """ docs = [] with open('data/lda_nyt_small.txt', 'r') as f: for l in f.readlines(): line = [int(x.split(':')[0]) - 1 for x in l.split(',')] docs.append(line) D = 8447 W = 3012 """ #==================== #==================== # Dataset 3: Blei # Src: http://www.cs.columbia.edu/~blei/lda-c/ """ docs = [] with open('data/lda_ap.txt', 'r') as f: for l in f.readlines(): line = [int(x.split(':')[0]) for x in l.split(' ')[1:]] docs.append(line) D = 2246 W = 10473 """ #==================== batch_size = int(D / 32) alpha = 50. / K beta = 200. / W # Reference: https://blog.csdn.net/pipisorry/article/details/42129099 v_beta = float(W * beta) k_alpha = float(K * alpha) """ Utilities """ train_len = len(docs) def get_next_batch(i, n, clock): size = batch_size slicelen = int((train_len - size - 1) / n) #idx = i * slicelen + (clock * data_select_step) % slicelen #idx = random.randint(i * slicelen, i * slicelen + slicelen - 1) idx = i * slicelen return list(range(idx, idx+size+1)) """ Interfaces """ def make_optimiser(): return None def build_model(opt, accuracy=True): nd = dict() nw = dict() z = dict() t_init = [0 for x in range(K)] for i in range(D): nd[i] = t_init.copy() for i in range(W): nw[i] = t_init.copy() for i in range(D): z[i] = [] nwsum = [0 for x in range(K)] for d in range(D): l = len(docs[d]) for i in range(l): topic = random.randint(0, K - 1) z[d].append(topic) tok_i = docs[d][i] nw[tok_i][topic] += 1 nd[d][topic] += 1 nwsum[topic] += 1 return z, nd, nw, nwsum def build_update(): return {}, {}, {}, [0] * K def update_model(model, u): (z0, nd0, nw0, nws0) = model (z1, nd1, nw1, nws1) = u for k, v in z1.items(): z0[k] = np.add(z0[k], v) for k, v in nd1.items(): nd0[k] = np.add(nd0[k], v) for k, v in nw1.items(): nw0[k] = np.add(nw0[k], v) nws0 = np.add(nws0, nws1) return (z0, nd0, nw0, nws0) def compute_updates(model, i, n, step): z, nd, nw, nwsum = model local_z, local_nd, local_nw, local_nwsum = z.copy(), nd.copy(), nw.copy(), nwsum.copy() docs_index = get_next_batch(i, n, step) for m in docs_index: ndsum_m = len(docs[m]) for n in range(len(docs[m])): topic = local_z[m][n] w = docs[m][n] local_nw[w][topic] -= 1 local_nd[m][topic] -= 1 local_nwsum[topic] -= 1 p = [0.0 for _ in range(K)] for k in range(K): #p[k] = (local_nw[w][k] + beta) / (nwsum[k] + v_beta) * \ p[k] = (local_nw[w][k] + beta) / (local_nwsum[k] + v_beta) * \ (local_nd[m][k] + alpha) / (ndsum_m + k_alpha) t = np.random.multinomial(1, np.divide(p, np.sum(p))).argmax() local_nw[w][t] += 1 local_nd[m][t] += 1 local_nwsum[t] += 1 local_z[m][n] = t diff_z = {}; diff_nd = {}; diff_nw = {} diff_nwsum = np.subtract(local_nwsum, nwsum) for m in docs_index: diff_z[m] =
np.subtract(local_z[m], z[m])
numpy.subtract
import numpy as np import pytest import snc.agents.hedgehog.strategic_idling.strategic_idling_utils from snc.agents.hedgehog.asymptotic_workload_cov.\ compute_asymptotic_cov_bernoulli_service_and_arrivals \ import ComputeAsymptoticCovBernoulliServiceAndArrivals import snc.agents.hedgehog.strategic_idling.hedging_utils as hedging_utils import snc.agents.hedgehog.workload.workload as wl from snc.agents.hedgehog.params import StrategicIdlingParams from snc.agents.hedgehog.strategic_idling.strategic_idling import StrategicIdlingCore from snc.agents.hedgehog.strategic_idling.strategic_idling_hedgehog_gto import \ StrategicIdlingGTO, StrategicIdlingHedgehogGTO from snc.agents.hedgehog.strategic_idling.strategic_idling_hedging import StrategicIdlingHedging from snc.agents.hedgehog.strategic_idling.strategic_idling_utils import get_dynamic_bottlenecks import snc.environments.examples as examples import snc.utils.alt_methods_test as alt_methods_test import snc.utils.exceptions as exceptions def test_create_strategic_idling_get_dynamic_bottlenecks(): neg_log_discount_factor = - np.log(0.99999) env = examples.simple_reentrant_line_model(alpha1=0.33, mu1=0.69, mu2=0.35, mu3=0.69, cost_per_buffer=np.array([1, 1, 1])[:, None]) num_wl_vec = 2 load, workload_mat, _ = wl.compute_load_workload_matrix(env, num_wl_vec) strategic_idling_params = StrategicIdlingParams() gto_object = StrategicIdlingGTO(workload_mat=workload_mat, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type, strategic_idling_params=strategic_idling_params) x = np.array([[158], [856], [0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([1]) assert set(gto_object.get_allowed_idling_directions(x).k_idling_set) == set([0]) x = np.array([[493], [476], [0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0,1]) assert set(gto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) x = np.array([[631], [338], [0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0]) assert set(gto_object.get_allowed_idling_directions(x).k_idling_set) == set([1]) def test_create_strategic_idling_hedgehog_gto_normal_hedging(): neg_log_discount_factor = - np.log(0.99999) env = examples.simple_reentrant_line_model(alpha1=0.33, mu1=0.69, mu2=0.35, mu3=0.69, cost_per_buffer=np.array([1.5, 1, 2])[:, None]) num_wl_vec = 2 load, workload_mat, _ = wl.compute_load_workload_matrix(env, num_wl_vec) strategic_idling_params = StrategicIdlingParams() workload_cov = np.array([[2, 0.5], [0.5, 3]]) hgto_object = StrategicIdlingHedgehogGTO(workload_mat=workload_mat, neg_log_discount_factor=neg_log_discount_factor, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type, strategic_idling_params=strategic_idling_params, workload_cov=workload_cov) # this case corresponds to normal hedging regime below hedging threshold x = np.array([[631], [338], [0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) # this case corresponds to normal hedging regime above hedging threshold x = np.array([[969], [ 0], [351]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([1]) # this case corresponds to monotone region x = np.array([[493], [476], [ 0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0,1]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) # this case corresponds to monotone region x = np.array([[100], [476], [ 0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([1]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) assert hgto_object._min_drain_lp is None def test_create_strategic_idling_hedgehog_gto_switching_curve(): neg_log_discount_factor = - np.log(0.99999) env = examples.simple_reentrant_line_model(alpha1=0.33, mu1=0.7, mu2=0.345, mu3=0.7, cost_per_buffer=np.array([1.5, 1, 2])[:, None]) num_wl_vec = 2 load, workload_mat, _ = wl.compute_load_workload_matrix(env, num_wl_vec) strategic_idling_params = StrategicIdlingParams() workload_cov = np.array([[2, 0.5], [0.5, 3]]) h_object = StrategicIdlingHedging(workload_mat=workload_mat, neg_log_discount_factor=neg_log_discount_factor, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type, strategic_idling_params=strategic_idling_params, workload_cov=workload_cov) hgto_object = StrategicIdlingHedgehogGTO(workload_mat=workload_mat, neg_log_discount_factor=neg_log_discount_factor, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type, strategic_idling_params=strategic_idling_params, workload_cov=workload_cov) # This case corresponds to switching curve regime, i.e. minimum cost # effective state can only be reached by extending the minimum draining time. # `w` is below the hedging threshold so standard Hedgehog would allow one # resource to idle, but it turns out that this resource is a dynamic # bottleneck for the current `w`. x = np.array(([[955], [ 0], [202]])) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) assert set(h_object.get_allowed_idling_directions(x).k_idling_set) == set([0]) # This case corresponds to switching curve regime (i.e., drift @ psi_plus < 0), # `w` is below the hedging threshold so standard Hedgehog would allow one resource to idle. # Since this resource is not a dynamic bottleneck the GTO constraint also allows it to idle. x = np.array([[ 955], [ 0], [1112]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([1]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([0]) assert set(h_object.get_allowed_idling_directions(x).k_idling_set) == set([0]) # This case corresponds to switching curve regime (i.e., drift @ psi_plus < 0), # `w` is below the hedging threshold so standard Hedgehog would allow the # less loaded resource to idle. This is similar to the first case, but when both # resources are dynamic bottlenecks for the current `w`. x = np.array([[759], [ 0], [595]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0,1]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) assert set(h_object.get_allowed_idling_directions(x).k_idling_set) == set([0]) # this case corresponds to monotone region so both bottlenecks are not # allowed to idle under both standard Hedgehog and GTO policy x = np.array([[283], [672], [ 0]]) w = workload_mat @ x assert get_dynamic_bottlenecks(w, workload_mat, load) == set([0]) assert set(hgto_object.get_allowed_idling_directions(x).k_idling_set) == set([]) assert set(h_object.get_allowed_idling_directions(x).k_idling_set) == set([]) assert hgto_object._min_drain_lp is not None def test_create_strategic_idling_no_hedging_object_with_no_asymptotic_covariance(): """ Raise exception if asymptotic covariance is tried to be updated. """ env = examples.simple_reentrant_line_model(alpha1=9, mu1=22, mu2=10, mu3=22, cost_per_buffer=np.ones((3, 1))) num_wl_vec = 2 load, workload_mat, nu = wl.compute_load_workload_matrix(env, num_wl_vec) strategic_idling_params = StrategicIdlingParams() x = np.array([[413], [ 0], [100]]) si_object = StrategicIdlingCore(workload_mat=workload_mat, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type, strategic_idling_params=strategic_idling_params) # these methods should not fail si_object.get_allowed_idling_directions(x) def test_create_strategic_idling_object_with_no_asymptotic_covariance(): """ Check asymptotic covariance is passed before querying the idling decision """ neg_log_discount_factor = - np.log(0.95) env = examples.simple_reentrant_line_model(alpha1=9, mu1=22, mu2=10, mu3=22, cost_per_buffer=np.ones((3, 1))) num_wl_vec = 2 load, workload_mat, nu = wl.compute_load_workload_matrix(env, num_wl_vec) strategic_idling_params = StrategicIdlingParams() x = np.array([[413], [ 0], [100]]) si_object = StrategicIdlingHedging(workload_mat=workload_mat, neg_log_discount_factor=neg_log_discount_factor, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type, strategic_idling_params=strategic_idling_params) with pytest.raises(AssertionError): si_object._verify_offline_preliminaries() with pytest.raises(AssertionError): si_object.get_allowed_idling_directions(x) def create_strategic_idling_object( workload_mat=np.ones((2, 2)), workload_cov=None, neg_log_discount_factor=None, load=None, cost_per_buffer=np.ones((2, 1)), model_type='push', strategic_idling_params=None): if strategic_idling_params is None: strategic_idling_params = StrategicIdlingParams() return StrategicIdlingHedging(workload_mat=workload_mat, workload_cov=workload_cov, neg_log_discount_factor=neg_log_discount_factor, load=load, cost_per_buffer=cost_per_buffer, model_type=model_type, strategic_idling_params=strategic_idling_params) def test_create_strategic_idling_object_without_strategic_idling_params(): """ Check assert `strategic_idling_params is not None` in constructor. """ neg_log_discount_factor = - np.log(0.95) env = examples.simple_reentrant_line_model(alpha1=9, mu1=22, mu2=10, mu3=22, cost_per_buffer=np.ones((3, 1))) num_wl_vec = 2 load, workload_mat, nu = wl.compute_load_workload_matrix(env, num_wl_vec) with pytest.raises(AssertionError): _ = StrategicIdlingHedging(workload_mat=workload_mat, neg_log_discount_factor=neg_log_discount_factor, load=load, cost_per_buffer=env.cost_per_buffer, model_type=env.model_type) def test_is_negative_orthant_true(): w = np.zeros((3, 1)) w[0] = -1 assert StrategicIdlingHedging._is_negative_orthant(w) def test_is_negative_orthant_false(): w = np.zeros((3, 1)) w[0] = 1 assert not StrategicIdlingHedging._is_negative_orthant(w) def test_is_negative_orthant_false_since_zero_w(): w = np.zeros((3, 1)) assert not StrategicIdlingHedging._is_negative_orthant(w) def check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer): si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) barc_a, _, eff_cost_a_1 = si_object.c_bar_solver.solve(w) _, x_a, eff_cost_a_2 = alt_methods_test.compute_effective_cost_scipy(w, workload_mat, cost_per_buffer) barc_b, x_b, eff_cost_b = alt_methods_test.compute_effective_cost_cvxpy(w, workload_mat, cost_per_buffer) barc_c, x_c, eff_cost_c = alt_methods_test.compute_dual_effective_cost_cvxpy(w, workload_mat, cost_per_buffer) np.testing.assert_almost_equal(barc_a, barc_b) np.testing.assert_almost_equal(barc_a, barc_c) np.testing.assert_almost_equal(x_a, x_b) np.testing.assert_almost_equal(x_a, x_c) np.testing.assert_almost_equal(eff_cost_a_1, eff_cost_b) np.testing.assert_almost_equal(eff_cost_a_1, eff_cost_c) np.testing.assert_almost_equal(eff_cost_a_1, eff_cost_a_2) return barc_a def test_effective_cost_superfluous_inequalities(): """We check that Scipy linprog() used in compute_dual_effective_cost() does not return a status 4 (encountered numerical difficulties)""" # This example was known to return this status 4 before the fix env = examples.simple_reentrant_line_with_demand_model(alpha_d=2, mu1=3, mu2=2.5, mu3=3, mus=1e3, mud=1e3, cost_per_buffer=np.ones((5, 1)), initial_state=np.array([10, 25, 55, 0, 100])[:, None], capacity=np.ones((5, 1)) * np.inf, job_conservation_flag=True) load, workload_mat, _ = wl.compute_load_workload_matrix(env, num_wl_vec=2, load_threshold=None) w = np.array([[1.], [0.]]) try: si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=env.cost_per_buffer,) c_bar, _, eff_cost = si_object.c_bar_solver.solve(w) except exceptions.ScipyLinprogStatusError: pytest.fail() def test_effective_cost_ksrs_network_model_case_1(): """Example 5.3.3 case 1 from CTCN book (online version).""" mu1 = 1 mu3 = 1 mu2 = 1 / 3 mu4 = 1 / 3 alpha1 = 0.9 alpha3 = 0.9 cost_per_buffer = np.ones((4, 1)) env = examples.ksrs_network_model(alpha1, alpha3, mu1, mu2, mu3, mu4, cost_per_buffer) load, workload_mat, nu = wl.compute_load_workload_matrix(env) # Region 1 = {0 < 3 * w1 < w2 < inf} w1 = 1 w2 = 4 w = np.array([[w1], [w2]]) barc_1 = check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer) # Different from CTCN book, [1, 0] np.testing.assert_almost_equal(barc_1, 1 / 3 * np.array([[0], [1]])) # Region 2 = = {0 < w1 < 3 * w2 < 9 * w1} w1 = 2 w2 = 1 w = np.array([[w1], [w2]]) barc_2 = check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer) np.testing.assert_almost_equal(barc_2, 1 / 4 * np.ones((2, 1))) # Region 3 = {0 < 3 * w2 < w1} w1 = 4 w2 = 1 w = np.array([[w1], [w2]]) barc_3 = check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer) # Different from CTCN book, [1, 0] np.testing.assert_almost_equal(barc_3, 1 / 3 * np.array([[1], [0]])) def test_effective_cost_ksrs_network_model_case_2(): """Example 5.3.3 case 2 from CTCN book (online version).""" mu1 = 1 / 3 mu3 = 1 / 3 mu2 = 1 mu4 = 1 alpha1 = 0.9 alpha3 = 0.9 cost_per_buffer = np.ones((4, 1)) env = examples.ksrs_network_model(alpha1, alpha3, mu1, mu2, mu3, mu4, cost_per_buffer) load, workload_mat, nu = wl.compute_load_workload_matrix(env) # Region 1 = {0 < 3 * w1 < w2 < inf} w1 = 1 w2 = 4 w = np.array([[w1], [w2]]) barc_1 = check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer) # Different from CTCN book, [1, -2] np.testing.assert_almost_equal(barc_1, np.array([[-2], [1]])) # Region 2 = = {0 < w1 < 3 * w2 < 9 * w1} w1 = 2 w2 = 1 w = np.array([[w1], [w2]]) barc_2 = check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer) np.testing.assert_almost_equal(barc_2, 1 / 4 * np.ones((2, 1))) # Region 3 = {0 < 3 * w2 < w1} w1 = 4 w2 = 1 w = np.array([[w1], [w2]]) barc_3 = check_equal_effective_cost_multiple_methods(w, workload_mat, cost_per_buffer) # Different from CTCN book, [-2, 1] np.testing.assert_almost_equal(barc_3, np.array([[1], [-2]])) def test_all_effective_cost_vectors_ksrs_network_model_case_1(): """Example 5.3.3 from CTCN book (online version).""" mu1 = 1 mu3 = 1 mu2 = 1 / 3 mu4 = 1 / 3 alpha1 = 0.9 alpha3 = 0.9 cost_per_buffer = np.ones((4, 1)) env = examples.ksrs_network_model(alpha1, alpha3, mu1, mu2, mu3, mu4, cost_per_buffer) load, workload_mat, nu = wl.compute_load_workload_matrix(env) # Compute cost vectors. barc_vectors = alt_methods_test.get_all_effective_cost_linear_vectors(workload_mat, cost_per_buffer) barc_vectors_theory = np.array([[1 / 3, 0], [0, 1 / 3], [0.25, 0.25]]) # Due to numerical noise, different computers can obtain the barc vectors in different order. # So we will compare sets instead of ndarrays. np.around(barc_vectors, decimals=7, out=barc_vectors) np.around(barc_vectors_theory, decimals=7, out=barc_vectors_theory) barc_vectors_set = set(map(tuple, barc_vectors)) barc_vectors_theory_set = set(map(tuple, barc_vectors_theory)) assert barc_vectors_set == barc_vectors_theory_set def test_all_effective_cost_vectors_ksrs_network_model_case_2(): """Example 5.3.3 case 2 from CTCN book (online version).""" mu1 = 1 / 3 mu3 = 1 / 3 mu2 = 1 mu4 = 1 alpha1 = 0.9 alpha3 = 0.9 cost_per_buffer = np.ones((4, 1)) env = examples.ksrs_network_model(alpha1, alpha3, mu1, mu2, mu3, mu4, cost_per_buffer) load, workload_mat, nu = wl.compute_load_workload_matrix(env) # Compute cost vectors. barc_vectors = alt_methods_test.get_all_effective_cost_linear_vectors(workload_mat, cost_per_buffer) # Order of the vectors not relevant, just made up for easy comparison. barc_vectors_theory = np.array([[1, -2], [-2, 1], [0.25, 0.25]]) # Due to numerical noise, different computers can obtain the barc vectors in different order. # So we will compare sets instead of ndarrays. np.around(barc_vectors, decimals=7, out=barc_vectors) np.around(barc_vectors_theory, decimals=7, out=barc_vectors_theory) barc_vectors_set = set(map(tuple, barc_vectors)) barc_vectors_theory_set = set(map(tuple, barc_vectors_theory)) assert barc_vectors_set == barc_vectors_theory_set def test_get_vector_defining_possible_idling_direction_1(): w = np.array([[1], [0]]) w_star = np.array([[1], [1]]) v_star = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star, w) np.testing.assert_almost_equal(v_star, np.array([[0], [1]])) def test_get_vector_defining_possible_idling_direction_2(): w = np.array([[0], [1]]) w_star = np.array([[1], [1]]) v_star = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star, w) np.testing.assert_almost_equal(v_star, np.array([[1], [0]])) def test_get_vector_defining_possible_idling_direction_3(): # Although this w_star is impossible since w_star >= w, we can still calculate v_star. w = np.array([[1], [1]]) w_star = np.array([[1], [0]]) v_star = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star, w) np.testing.assert_almost_equal(v_star, np.array([[0], [-1]])) def test_get_vector_defining_possible_idling_direction_4(): # Although this w_star is impossible since w_star >= w, we can still calculate v_star. w = np.array([[1], [1]]) w_star = np.array([[0], [1]]) v_star = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star, w) np.testing.assert_almost_equal(v_star, np.array([[-1], [0]])) def test_project_workload_on_monotone_region_along_minimal_cost_negative_w(): """We use the single server queue with demand model. The expected result when we project negative workload with the effective cost LP is zero.""" env = examples.single_station_demand_model(alpha_d=9, mu=10, mus=1e3, mud=1e2) _, workload_mat, _ = wl.compute_load_workload_matrix(env) num_wl = workload_mat.shape[0] w = - np.ones((num_wl, 1)) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=env.cost_per_buffer) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) np.testing.assert_almost_equal(w_star, np.zeros((num_wl, 1))) def test_project_workload_on_monotone_region_along_minimal_cost_w_equal_w_star_ksrs_region_2(): """We use the KSRS model, for which we know the boundary of the monotone region. Therefore, if we set w in the boundary, we should get w_star = w.""" mu1 = 1 / 3 mu3 = 1 / 3 mu2 = 1 mu4 = 1 workload_mat = np.array([[1 / mu1, 0, 1 / mu4, 1 / mu4], [1 / mu2, 1 / mu2, 1 / mu3, 0]]) cost_per_buffer = np.ones((4, 1)) # Region 1 = {0 < 3 * w1 < w2 < inf}, and Region 2 = {0 < w1 < 3 * w2 < 9 * w1}, so w = (1, 3) # is already right in the boundary. w1 = 1 w2 = 3 w = np.array([[w1], [w2]]) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) np.testing.assert_almost_equal(w, w_star) def test_project_workload_on_monotone_region_along_minimal_cost_ksrs_region_1(): """We use the KSRS model, for which we know the boundary of the monotone region.""" mu1 = 1 / 3 mu3 = 1 / 3 mu2 = 1 mu4 = 1 workload_mat = np.array([[1 / mu1, 0, 1 / mu4, 1 / mu4], [1 / mu2, 1 / mu2, 1 / mu3, 0]]) cost_per_buffer = np.ones((4, 1)) # Region 1 = {0 < 3 * w1 < w2 < inf}, so w = (0.5, 3) should be projected to w_star = (1, 3) w1 = 0.5 w2 = 3 w = np.array([[w1], [w2]]) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) np.testing.assert_almost_equal(w_star, np.array([[1], [3]])) def test_project_workload_on_monotone_region_along_minimal_cost_ksrs_region_3(): """We use the KSRS model, for which we know the boundary of the monotone region.""" mu1 = 1 / 3 mu3 = 1 / 3 mu2 = 1 mu4 = 1 workload_mat = np.array([[1 / mu1, 0, 1 / mu4, 1 / mu4], [1 / mu2, 1 / mu2, 1 / mu3, 0]]) cost_per_buffer = np.ones((4, 1)) # Region 3 = {0 < 3 * w2 < w1}, so w = (3, 0.5) should be projected to w_star = (3, 1) w1 = 3 w2 = 0.5 w = np.array([[w1], [w2]]) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) np.testing.assert_almost_equal(w_star, np.array([[3], [1]])) def test_project_workload_on_monotone_region_along_minimal_cost_pseudorandom_values(): """Since this uses random values, it could happen that the simplex (SciPy-LinProg) and SCS (CVX) solvers give different solutions. This is uncommon, but possible.""" np.random.seed(42) num_buffers = 4 num_wl = 3 num_tests = 1e3 strategic_idling_params = StrategicIdlingParams() discrepancy = 0 for i in range(int(num_tests)): w = np.random.random_sample((num_wl, 1)) cost_per_buffer = np.random.random_sample((num_buffers, 1)) workload_mat = np.random.random_sample((num_wl, num_buffers)) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer, strategic_idling_params=strategic_idling_params) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) w_star_b = alt_methods_test.find_workload_with_min_eff_cost_by_idling_scipy( w, workload_mat, cost_per_buffer, "revised simplex") if not np.allclose(w_star, w_star_b): discrepancy += 1 assert discrepancy < 5 def test_project_workload_when_monotone_region_is_a_ray(): """We use the simple re-entrant line model.""" c_1 = 1 c_2 = 2 c_3 = 3 cost_per_buffer = np.array([[c_1], [c_2], [c_3]]) mu_1 = 2 mu_2 = 1 mu_3 = 2 workload_mat = np.array([[1 / mu_1 + 1 / mu_3, 1 / mu_3, 1 / mu_3], [1 / mu_2, 1 / mu_2, 0]]) c_plus = np.array([[mu_1 * (c_1 - c_2)], [mu_2 * c_2 + (mu_1 * mu_2) / mu_3 * (c_2 - c_1)]]) c_minus = np.array([[c_3 * mu_3], [mu_2 * c_1 - c_3 * mu_2 * (mu_3 / mu_1 + 1)]]) psi_plus = c_plus - c_minus w = np.array([[1], [0.]]) # Got from x = np.array([[0.9], [0], [0.2]]) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) w_star_theory = np.array([w[0], - w[0] * psi_plus[0] / psi_plus[1]]) np.testing.assert_almost_equal(w_star, w_star_theory) def test_project_workload_when_idling_direction_lies_in_c_plus_level_set_zero_penalty(): """We use the simple re-entrant line model.""" c_1 = 2 c_2 = 1 c_3 = 2 cost_per_buffer = np.array([[c_1], [c_2], [c_3]]) mu_1 = 2 mu_2 = 1 mu_3 = 2 workload_mat = np.array([[1 / mu_1 + 1 / mu_3, 1 / mu_3, 1 / mu_3], [1 / mu_2, 1 / mu_2, 0]]) c_plus = np.array([[mu_1 * (c_1 - c_2)], [mu_2 * (c_2 * (1 + mu_1/mu_3) - c_1 * mu_1 / mu_3)]]) c_minus = np.array([[mu_3 * c_3], [mu_2 * (c_1 - c_3 * (1 + mu_3/mu_1))]]) psi_plus = c_plus - c_minus w = np.array([[1], [0.]]) # Got from x = np.array([[0.9], [0], [0.2]]) strategic_idling_params = StrategicIdlingParams(penalty_coeff_w_star=0) si_object = create_strategic_idling_object( workload_mat=workload_mat, cost_per_buffer=cost_per_buffer, strategic_idling_params=strategic_idling_params) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) w_star_theory = np.array([w[0], - w[0] * psi_plus[0] / psi_plus[1]]) with pytest.raises(AssertionError): np.testing.assert_almost_equal(w_star, w_star_theory) def test_project_workload_when_idling_direction_lies_in_c_plus_level_set(): """We use the simple re-entrant line model.""" c_1 = 2 c_2 = 1 c_3 = 2 cost_per_buffer = np.array([[c_1], [c_2], [c_3]]) mu_1 = 2 mu_2 = 1 mu_3 = 2 workload_mat = np.array([[1 / mu_1 + 1 / mu_3, 1 / mu_3, 1 / mu_3], [1 / mu_2, 1 / mu_2, 0]]) c_plus = np.array([[mu_1 * (c_1 - c_2)], [mu_2 * (c_2 * (1 + mu_1/mu_3) - c_1 * mu_1 / mu_3)]]) c_minus = np.array([[mu_3 * c_3], [mu_2 * (c_1 - c_3 * (1 + mu_3/mu_1))]]) psi_plus = c_plus - c_minus w = np.array([[1], [0.]]) # Got from x = np.array([[0.9], [0], [0.2]]) si_object = create_strategic_idling_object( workload_mat=workload_mat, cost_per_buffer=cost_per_buffer, strategic_idling_params=StrategicIdlingParams(penalty_coeff_w_star=1e-5)) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) w_star_theory = np.array([w[0], - w[0] * psi_plus[0] / psi_plus[1]]) np.testing.assert_almost_equal(w_star, w_star_theory, decimal=5) def test_is_w_inside_monotone_region_ksrs_network_model_case_1(): """Example 5.3.3 case 1 from CTCN book (online version).""" mu1 = 1 mu3 = 1 mu2 = 1 / 3 mu4 = 1 / 3 alpha1 = 0.3 alpha3 = 0.3 cost_per_buffer = np.ones((4, 1)) env = examples.ksrs_network_model(alpha1, alpha3, mu1, mu2, mu3, mu4, cost_per_buffer) load, workload_mat, nu = wl.compute_load_workload_matrix(env) # Since w is already in \W^+ in any of the 3 regions, any increment in w will increase the cost, # so w_star should equal w. Thus, v_star should be a vector of nan, in every case. # Region 1 = {0 < 3 * w1 < w2 < inf} w1_1 = 1 w1_2 = 4 w_1 = np.array([[w1_1], [w1_2]]) si_object_1 = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star_1 = si_object_1._find_workload_with_min_eff_cost_by_idling(w_1) c_bar_1 = si_object_1._get_level_set_for_current_workload(w_1) assert StrategicIdlingHedging._is_w_inside_monotone_region(w_1, w_star_1, c_bar_1) # Region 2 = = {0 < w1 < 3 * w2 < 9 * w1} w2_1 = 2 w2_2 = 1 w_2 = np.array([[w2_1], [w2_2]]) si_object_2 = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star_2 = si_object_2._find_workload_with_min_eff_cost_by_idling(w_2) c_bar_2 = si_object_2._get_level_set_for_current_workload(w_2) assert StrategicIdlingHedging._is_w_inside_monotone_region(w_2, w_star_2, c_bar_2) # Region 3 = {0 < 3 * w2 < w1} w3_1 = 4 w3_2 = 0.05 w_3 = np.array([[w3_1], [w3_2]]) si_object_3 = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer) w_star_3 = si_object_3._find_workload_with_min_eff_cost_by_idling(w_3) c_bar_3 = si_object_3._get_level_set_for_current_workload(w_3) assert StrategicIdlingHedging._is_w_inside_monotone_region(w_3, w_star_3, c_bar_3) def test_closest_face_ksrs_network_model_case_2(): """Example 5.3.3 case 2 from CTCN book (online version).""" mu1 = 1 / 3 mu3 = 1 / 3 mu2 = 1 mu4 = 1 alpha1 = 0.3 alpha3 = 0.3 cost_per_buffer = np.ones((4, 1)) env = examples.ksrs_network_model(alpha1, alpha3, mu1, mu2, mu3, mu4, cost_per_buffer) strategic_idling_params = StrategicIdlingParams() load, workload_mat, nu = wl.compute_load_workload_matrix(env) # Region 1 = {0 < 3 * w1 < w2 < inf} w1_1 = 1 w1_2 = 4 w_1 = np.array([[w1_1], [w1_2]]) si_object_1 = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer, strategic_idling_params=strategic_idling_params) w_star_1 = si_object_1._find_workload_with_min_eff_cost_by_idling(w_1) w_star_1b = alt_methods_test.find_workload_with_min_eff_cost_by_idling_scipy( w_1, workload_mat, cost_per_buffer, "revised simplex") np.testing.assert_almost_equal(w_star_1, w_star_1b) v_star_1 = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star_1, w_1) psi_plus_1, c_plus_1, c_minus_1 = si_object_1._get_closest_face_and_level_sets(w_star_1, v_star_1) np.testing.assert_almost_equal(c_minus_1, np.array([[-2], [1]]), decimal=5) np.testing.assert_almost_equal(c_plus_1, np.array([[0.25], [0.25]]), decimal=5) # Region 2 = = {0 < w1 < 3 * w2 < 9 * w1} w2_1 = 2 w2_2 = 1 w_2 = np.array([[w2_1], [w2_2]]) si_object_2 = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer, strategic_idling_params=strategic_idling_params) w_star_2 = si_object_2._find_workload_with_min_eff_cost_by_idling(w_2) w_star_2b = alt_methods_test.find_workload_with_min_eff_cost_by_idling_scipy( w_2, workload_mat, cost_per_buffer, "revised simplex") np.testing.assert_almost_equal(w_star_2, w_star_2b) # Region 2 is in the monotone region W^+ c_bar_2 = si_object_2._get_level_set_for_current_workload(w_2) assert StrategicIdlingHedging._is_w_inside_monotone_region(w_2, w_star_2, c_bar_2) # Region 3 = {0 < 3 * w2 < w1} w3_1 = 4 w3_2 = 0.05 w_3 = np.array([[w3_1], [w3_2]]) si_object_3 = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=cost_per_buffer, strategic_idling_params=strategic_idling_params) w_star_3 = si_object_3._find_workload_with_min_eff_cost_by_idling(w_3) w_star_3b = alt_methods_test.find_workload_with_min_eff_cost_by_idling_scipy( w_3, workload_mat, cost_per_buffer, "revised simplex") np.testing.assert_almost_equal(w_star_3, w_star_3b) v_star_3 = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star_3, w_3) psi_plus_3, c_plus_3, c_minus_3 = si_object_3._get_closest_face_and_level_sets(w_star_3, v_star_3) np.testing.assert_almost_equal(c_minus_3, np.array([[1], [-2]]), decimal=5) np.testing.assert_almost_equal(c_plus_3, np.array([[0.25], [0.25]]), decimal=5) def test_is_monotone_region_a_ray_negative_c_plus(): c_plus = - np.ones((3, 1)) assert not StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_a_ray_nonpositive_c_plus(): c_plus = np.array([[-1], [-1], [0]]) assert not StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_a_ray_zero_c_plus(): c_plus = np.zeros((3, 1)) assert not StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_a_ray_positive_c_plus(): c_plus = np.ones((3, 1)) assert not StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_a_ray_c_plus_with_positive_negative_and_zero_components(): c_plus = np.array([[1], [-1], [0]]) assert StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_a_ray_c_plus_with_positive_and_negative_components(): c_plus = np.array([[1], [-1], [-1]]) assert StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_a_ray_simple_reentrant_line(): """We use the simple re-entrant line with parameters that make monotone region to be a ray.""" w = np.array([[1], [0]]) env = examples.simple_reentrant_line_model(mu1=2, mu2=1, mu3=2, cost_per_buffer=np.array([[1], [2], [3]])) load, workload_mat, nu = wl.compute_load_workload_matrix(env) si_object = create_strategic_idling_object(workload_mat=workload_mat, cost_per_buffer=env.cost_per_buffer) w_star = si_object._find_workload_with_min_eff_cost_by_idling(w) v_star = StrategicIdlingHedging._get_vector_defining_possible_idling_direction(w_star, w) psi_plus, c_plus, c_minus = si_object._get_closest_face_and_level_sets(w_star, v_star) assert StrategicIdlingHedging._is_monotone_region_a_ray(c_plus) def test_is_monotone_region_infeasible_with_real_c_plus(): c_plus = np.array([[1], [-1], [-1]]) assert not StrategicIdlingHedging._is_infeasible(c_plus) def test_is_monotone_region_infeasible(): c_plus = None assert StrategicIdlingHedging._is_infeasible(c_plus) def test_is_w_inside_monotone_region_when_small_tolerance(): w = np.random.random_sample((3, 1)) w_star = w + 1e-4 c_bar = np.ones((3, 1)) assert StrategicIdlingHedging._is_w_inside_monotone_region(w, w_star, c_bar) def test_is_w_inside_monotone_region_false(): w = np.random.random_sample((3, 1)) w_star = w + 1e-2 c_bar = np.ones((3, 1)) assert not StrategicIdlingHedging._is_w_inside_monotone_region(w, w_star, c_bar) def check_lambda_star(w, c_plus, psi_plus, w_star, test_strong_duality_flag=True): lambda_star = StrategicIdlingHedging._get_price_lambda_star(c_plus, psi_plus) lambda_star_b = alt_methods_test.get_price_lambda_star_lp_1_cvxpy(w, c_plus, psi_plus) lambda_star_c = alt_methods_test.get_price_lambda_star_lp_2_cvxpy(w, c_plus, psi_plus) lambda_star_d = alt_methods_test.get_price_lambda_star_lp_scipy(w, c_plus, psi_plus) if test_strong_duality_flag: lambda_star_a = alt_methods_test.get_price_lambda_star_strong_duality(w, w_star, c_plus, psi_plus) np.testing.assert_almost_equal(lambda_star, lambda_star_a, decimal=5) if lambda_star_b is not None: # If primal is not accurately solved with CVX np.testing.assert_almost_equal(lambda_star, lambda_star_b, decimal=5) if lambda_star_c is not None: np.testing.assert_almost_equal(lambda_star, lambda_star_c, decimal=5) np.testing.assert_almost_equal(lambda_star, lambda_star_d) return lambda_star def test_get_price_lambda_star_when_c_plus_is_positive(): """lambda_star depends on the ratio over the positive components of psi_plus.""" c_plus = np.array([[1], [1]]) w = np.array([[3], [0.1]]) psi_plus = np.array([[-.1], [0.5]]) check_lambda_star(w, c_plus, psi_plus, None, False) def test_get_price_lambda_star_when_c_plus_is_negative(): """c_plus should always be nonnegative""" c_plus = np.array([[-1], [1]]) psi_plus = np.array([[-1], [0.5]]) with pytest.raises(exceptions.ArraySignError) as excinfo: _ = StrategicIdlingHedging._get_price_lambda_star(c_plus, psi_plus) assert (excinfo.value.array_name == "c_plus" and excinfo.value.all_components and excinfo.value.positive and not excinfo.value.strictly) def test_get_price_lambda_star_when_c_plus_is_zero(): """c_plus should always have at least one strictly positive component""" c_plus = np.array([[0], [0]]) psi_plus = np.array([[-1], [0.5]]) with pytest.raises(exceptions.ArraySignError) as excinfo: _ = StrategicIdlingHedging._get_price_lambda_star(c_plus, psi_plus) assert (excinfo.value.array_name == "c_plus" and not excinfo.value.all_components and excinfo.value.positive and excinfo.value.strictly) def test_get_price_lambda_star_when_c_plus_has_zero_components(): """lambda_star only depends on the ratio over the positive components of psi_plus.""" c_plus = np.array([[0], [1]]) w = np.array([[3], [0.1]]) psi_plus = np.array([[-.1], [0.5]]) check_lambda_star(w, c_plus, psi_plus, None, False) def test_get_price_lambda_star_when_c_plus_has_zero_components_with_positive_psi_plus(): """lambda_star only depends on the ratio over the positive components of psi_plus.""" c_plus = np.array([[0], [1]]) w = np.array([[-3], [0.1]]) psi_plus = np.array([[0.5], [0.5]]) check_lambda_star(w, c_plus, psi_plus, None, False) def test_get_price_lambda_star_when_psi_plus_is_negative(): c_plus =
np.array([[1], [1]])
numpy.array
import cv2 import numpy as np from progress.bar import Bar from mtcnn import p_net, o_net, r_net from .log import logger from .utils import load_weights, process_image, generate_bbox, py_nms, bbox_2_square, pad, calibrate_bbox class Detector: def __init__(self, weight_dir, min_face_size=24, threshold=None, scale_factor=0.79, mode=3): assert mode in [1, 2, 3] assert scale_factor < 1 self.min_face_size = min_face_size self.threshold = [0.6, 0.7, 0.7] if threshold is None else threshold self.scale_factor = scale_factor self.p_net = None self.r_net = None self.o_net = None self.init_network(mode, weight_dir) def init_network(self, mode, weight_dir): p_weights, r_weights, o_weights = load_weights(weight_dir) logger.info('Loading PNet weight file is: {}'.format(p_weights)) self.p_net = p_net() self.p_net.load_weights(p_weights) if mode > 1: logger.info('Loading RNet weight file: {}'.format(r_weights)) self.r_net = r_net() self.r_net.load_weights(r_weights) if mode > 2: logger.info('Loading ONet weight file: {}'.format(o_weights)) self.o_net = o_net() self.o_net.load_weights(o_weights) def predict(self, np_images, verbose=False): all_boxes = [] # save each image's bboxes landmarks = [] bar = None if verbose: bar = Bar('Detecting...', max=len(np_images)) for im in np_images: if bar: bar.next() boxes, boxes_c, landmark = self.predict_with_p_net(im) if boxes_c is None: logger.info('Bounding boxes is None, after PNet') all_boxes.append(np.array([])) landmarks.append(
np.array([])
numpy.array
import numpy as np import pycuda.autoinit import pycuda.driver as cu import pycuda.gpuarray as gpu import pycuda.compiler as nvcc import matplotlib.image as img from pycuda.elementwise import ElementwiseKernel import matplotlib from PIL import Image, ImageDraw import copy import scipy import time pycuda_seaming = \ """ __global__ void convolution(int* red, int* green, int* blue, int* filter, int* energy_map, int height, int width){ int col = blockIdx.x * blockDim.x + threadIdx.x; int row = blockIdx.y * blockDim.y + threadIdx.y; int index_pixel = row * width + col; int size = height * width; if(col < width - 1 && row < height - 1 && col > 0 && row > 0){ int r = (red[index_pixel] * filter[4]) + (red[index_pixel - 1] * filter[3]) + (red[index_pixel + 1] * filter[5]) + (red[index_pixel - width] * filter[1]) + (red[index_pixel + width] * filter[7]) + (red[index_pixel - width - 1] * filter[0]) + (red[index_pixel - width + 1] * filter[2]) + (red[index_pixel + width - 1] * filter[6]) + (red[index_pixel + width + 1] * filter[8]); int g = (green[index_pixel] * filter[4]) + (green[index_pixel - 1] * filter[3]) + (green[index_pixel + 1] * filter[5]) + (green[index_pixel - width] * filter[1]) + (green[index_pixel + width] * filter[7]) + (green[index_pixel - width - 1] * filter[0]) + (green[index_pixel - width + 1] * filter[2]) + (green[index_pixel + width - 1] * filter[6]) + (green[index_pixel + width + 1] * filter[8]); int b = (blue[index_pixel] * filter[4]) + (blue[index_pixel - 1] * filter[3]) + (blue[index_pixel + 1] * filter[5]) + (blue[index_pixel - width] * filter[1]) + (blue[index_pixel + width] * filter[7]) + (blue[index_pixel - width - 1] * filter[0]) + (blue[index_pixel - width + 1] * filter[2]) + (blue[index_pixel + width - 1] * filter[6]) + (blue[index_pixel + width + 1] * filter[8]); energy_map[index_pixel] = r; energy_map[size+index_pixel] = g; energy_map[size*2+index_pixel] = b; } } __global__ void suma(int* x, int* y, int height, int width){ int col = blockIdx.x * blockDim.x + threadIdx.x; int row = blockIdx.y * blockDim.y + threadIdx.y; int index_pixel = row * width + col; int new_index_pixel = (row-1)*(width-2) + (col-1); int size = height * width; if(col<width-1 && row<height-1 && col>0 && row>0){ y[new_index_pixel]=x[index_pixel]+x[size+index_pixel]+x[2*size + index_pixel]; } } __global__ void find_min(int* energy_map, int height, int width, int* backtrack){ int col = blockIdx.x * blockDim.x + threadIdx.x; int row = blockIdx.y * blockDim.y + threadIdx.y; int index_pixel = row * width + col; int size = height * width; int val = 9999999; int idx; if(col<width && row<height-1){ if(col == 0){ for(int i = 0; i < 2; i = i + 1){ if(val > energy_map[index_pixel + width + i]){ idx = i; val = energy_map[index_pixel + i + width]; } } backtrack[index_pixel] = index_pixel+width+idx; } else if(col==width-1){ for(int i = 0; i < 2; i = i + 1){ if(val > energy_map[index_pixel + width + i - 1]){ idx = i; val = energy_map[index_pixel + i + width - 1]; } } backtrack[index_pixel] = index_pixel+width+idx-1; } else{ for(int i = 0; i < 3; i = i + 1){ if(val > energy_map[index_pixel + width + i - 1]){ idx = i; val = energy_map[index_pixel + i + width - 1]; } } backtrack[index_pixel] = index_pixel+width+idx-1; } } } __global__ void get_sum_map(int* sum_map, int* next_sum_map, int* offset_map, int* next_offset,int height, int width, int n){ int col = blockIdx.x * blockDim.x + threadIdx.x; int row = blockIdx.y * blockDim.y + threadIdx.y; int index_pixel = row * width + col; int size=height*width; if(col < width && row < height && row%(2*n)==0 && offset_map[index_pixel]>=0 && offset_map[index_pixel]<=width*height){ next_sum_map[index_pixel] = sum_map[index_pixel]+sum_map[offset_map[index_pixel]]; __syncthreads(); next_offset[index_pixel]=offset_map[offset_map[index_pixel]]; __syncthreads(); } } __global__ void extract_seam_path(int* backtrack, int index,int height, int width, int* path){ int tid=blockIdx.x * blockDim.x + threadIdx.x; if(tid==0){ path[0]=index; path[1]=index; for(int i=1;i<height-1;++i){ path[i+1]=backtrack[index]%(width-2); index=backtrack[index]; } path[height-1]=path[height-2]; } } __global__ void remove_seam(int* red, int* green, int* blue, int* new_red, int* new_green, int* new_blue,int* path, int height, int width){ int col = blockIdx.x * blockDim.x + threadIdx.x; int row = blockIdx.y * blockDim.y + threadIdx.y; int new_index_pixel = row *(width-1) + col; int index_pixel = row*width+col; if(col<width-1 && row<height){ if(col>=path[row]){ new_red[new_index_pixel]=red[index_pixel+1]; new_green[new_index_pixel]=green[index_pixel+1]; new_blue[new_index_pixel]=blue[index_pixel+1]; } else{ new_red[new_index_pixel] = red[index_pixel]; new_green[new_index_pixel] = green[index_pixel]; new_blue[new_index_pixel] = blue[index_pixel]; } } } """ if __name__ == '__main__': start = time.time() # Kernels de CUDA module = nvcc.SourceModule(pycuda_seaming) convolution_kernel = module.get_function("convolution") suma=module.get_function("suma") find_min = module.get_function("find_min") get_sum_map = module.get_function("get_sum_map") extract_seam_path = module.get_function("extract_seam_path") remove_seam = module.get_function("remove_seam") # Leer imagen h_img_in = np.array(img.imread('img.jpg'), dtype=np.int32) height, width, channels = np.int32(h_img_in.shape) block = (32, 32, 1) grid = (int(np.ceil(width/block[0])), int(np.ceil(height/block[1]))) #Partiendo la imagen en sus canales y comunicandolos (esto simplificara el algoritmo) red_cpu = np.array(copy.deepcopy(h_img_in[:,:,0]), dtype=np.int32) green_cpu = np.array(copy.deepcopy(h_img_in[:,:,1]), dtype=np.int32) blue_cpu = np.array(copy.deepcopy(h_img_in[:,:,2]), dtype=np.int32) red_gpu = gpu.to_gpu(red_cpu) green_gpu = gpu.to_gpu(green_cpu) blue_gpu = gpu.to_gpu(blue_cpu) filterdu_cpu = np.array([ [1.0, 2.0, 1.0], [0.0, 0.0, 0.0], [-1.0, -2.0, -1.0], ], dtype = np.int32) filterdv_cpu = np.array([ [1.0, 0.0, -1.0], [2.0, 0.0, -2.0], [1.0, 0.0, -1.0] ], dtype = np.int32) filterdu_gpu = gpu.to_gpu(filterdu_cpu) filterdv_gpu = gpu.to_gpu(filterdv_cpu) # Transferir al GPU d_img_in = gpu.to_gpu(h_img_in) seams=600 for i in range(seams): #print(i) # Aplicar convolucion para determinar las energias width2=np.int32(width-2) height2=np.int32(height-2) energy_mapdu = gpu.empty((3,height, width), dtype=np.int32) energy_mapdv = gpu.empty((3,height, width), dtype=np.int32) convolution_kernel(red_gpu, green_gpu, blue_gpu, filterdu_gpu, energy_mapdu, height, width, block = block, grid = grid) convolution_kernel(red_gpu, green_gpu, blue_gpu, filterdv_gpu, energy_mapdv, height, width, block = block, grid = grid) energy_map = energy_mapdu.__abs__() + energy_mapdv.__abs__() # Los bordes se eliminan con la convolucion, asi que el energy map es de estas dimensiones energy_map2 = gpu.empty((height2, width2), dtype=np.int32) suma(energy_map, energy_map2, height, width, block = block, grid = grid) # Guardar los posibles caminos en backtrack que podriamos seguir con un enfoque greedy (nos vamos por la menor energia cada vez) backtrack = gpu.empty((height2, width2), dtype = np.int32) find_min(energy_map2, height2, width2, backtrack, block = block, grid = grid) offset_map = backtrack.copy() sum_map = energy_map2.copy() # Calcular el sum_top de las energias cumulativas de todos los caminos por reduccion n=np.int32(1) while n<height2/2: next_sum_map = gpu.empty_like(sum_map) next_offset = gpu.empty_like(offset_map) get_sum_map(sum_map, next_sum_map,offset_map, next_offset,height2, width2, n,block = block, grid = grid) #print(next_offset) sum_map = next_sum_map.copy() offset_map = next_offset.copy() n=n*2 # Indice minimo de sum_top para iniciar el corte, este sera nuestro seam optimo indexs=gpu.arange(0,width2, dtype=np.int32) sum_top = gpu.take(sum_map, indexs) sum_cpu = np.zeros(width2, dtype=np.int32) cu.memcpy_dtoh(sum_cpu, sum_top.gpudata) indice=np.argmin(sum_cpu) # Extrayendo y removiendo el seam optimo encontrado path = gpu.empty(height, dtype=np.int32) extract_seam_path(backtrack, np.int32(indice), height, width, path, block = (1,1,1), grid = (1,1)) new_red_gpu=gpu.empty((height,width-1), dtype=np.int32) new_green_gpu=gpu.empty((height,width-1), dtype=np.int32) new_blue_gpu=gpu.empty((height,width-1), dtype=np.int32) remove_seam(red_gpu, green_gpu, blue_gpu, new_red_gpu, new_green_gpu, new_blue_gpu, path, height, width, block = block, grid = grid) # El width se decrementa en uno tras haber removido el seam, guardando los resultados para volver a iterar width=np.int32(width-1) red_gpu, green_gpu, blue_gpu = new_red_gpu, new_green_gpu, new_blue_gpu # Comunicando canales red_cpu=np.zeros((height,width), dtype=np.int32) green_cpu=
np.zeros((height,width), dtype=np.int32)
numpy.zeros
import CandyCrashSimulation3X3_2 as f import random import copy import numpy as np width = height = 3 s = 2 ** (width * height) num_candy = 2 N = 100000 print("size: {} * {}".format(width,height)) w_score = np.zeros(s*N).reshape(s,N) for i in range(s): board = f.buildboard(i, height, width) for c in range(N): newboard,tmp,score = f.eliminate_to_static(board,height,width) w_score[i][c] = score mean =
np.mean(w_score,axis=1)
numpy.mean
''' function result = johansen(x,p,k) % PURPOSE: perform Johansen cointegration tests % ------------------------------------------------------- % USAGE: result = johansen(x,p,k) % where: x = input matrix of time-series in levels, (nobs x m) % p = order of time polynomial in the null-hypothesis % p = -1, no deterministic part % p = 0, for constant term % p = 1, for constant plus time-trend % p > 1, for higher order polynomial % k = number of lagged difference terms used when % computing the estimator % ------------------------------------------------------- % RETURNS: a results structure: % result.eig = eigenvalues (m x 1) % result.evec = eigenvectors (m x m), where first % r columns are normalized coint vectors % result.lr1 = likelihood ratio trace statistic for r=0 to m-1 % (m x 1) vector % result.lr2 = maximum eigenvalue statistic for r=0 to m-1 % (m x 1) vector % result.cvt = critical values for trace statistic % (m x 3) vector [90% 95% 99%] % result.cvm = critical values for max eigen value statistic % (m x 3) vector [90% 95% 99%] % result.ind = index of co-integrating variables ordered by % size of the eigenvalues from large to small % ------------------------------------------------------- % NOTE: c_sja(), c_sjt() provide critical values generated using % a method of MacKinnon (1994, 1996). % critical values are available for n<=12 and -1 <= p <= 1, % zeros are returned for other cases. % ------------------------------------------------------- % SEE ALSO: prt_coint, a function that prints results % ------------------------------------------------------- % References: Johansen (1988), 'Statistical Analysis of Co-integration % vectors', Journal of Economic Dynamics and Control, 12, pp. 231-254. % MacKinnon, <NAME> (1996) 'Numerical distribution % functions of likelihood ratio tests for cointegration', % Queen's University Institute for Economic Research Discussion paper. % (see also: MacKinnon's JBES 1994 article % ------------------------------------------------------- % written by: % <NAME>, Dept of Economics % University of Toledo % 2801 <NAME> St, % Toledo, OH 43606 % <EMAIL> % **************************************************************** % NOTE: <NAME> provided some bug fixes and corrections that % she notes below in comments. 4/10/2000 % **************************************************************** ''' import numpy as np from numpy import zeros, ones, flipud, log from numpy.linalg import inv, eig, cholesky as chol from statsmodels.regression.linear_model import OLS tdiff = np.diff class Holder(object): pass def rows(x): return x.shape[0] def trimr(x, front, end): if end > 0: return x[front:-end] else: return x[front:] import statsmodels.tsa.tsatools as tsat mlag = tsat.lagmat def mlag_(x, maxlag): '''return all lags up to maxlag ''' return x[:-lag] def lag(x, lag): return x[:-lag] def detrend(y, order): if order == -1: return y return OLS(y, np.vander(np.linspace(-1, 1, len(y)), order + 1)).fit().resid def resid(y, x): r = y - np.dot(x, np.dot(np.linalg.pinv(x), y)) return r def coint_johansen(x, p, k, print_on_console=True): # % error checking on inputs # if (nargin ~= 3) # error('Wrong # of inputs to johansen') # end nobs, m = x.shape # why this? f is detrend transformed series, p is detrend data if (p > -1): f = 0 else: f = p x = detrend(x, p) dx = tdiff(x, 1, axis=0) # dx = trimr(dx,1,0) z = mlag(dx, k) # [k-1:] # print z.shape z = trimr(z, k, 0) z = detrend(z, f) # print dx.shape dx = trimr(dx, k, 0) dx = detrend(dx, f) # r0t = dx - z*(z\dx) r0t = resid(dx, z) # diff on lagged diffs # lx = trimr(lag(x,k),k,0) lx = lag(x, k) lx = trimr(lx, 1, 0) dx = detrend(lx, f) # print 'rkt', dx.shape, z.shape # rkt = dx - z*(z\dx) rkt = resid(dx, z) # level on lagged diffs skk = np.dot(rkt.T, rkt) / rows(rkt) sk0 = np.dot(rkt.T, r0t) / rows(rkt) s00 = np.dot(r0t.T, r0t) / rows(r0t) sig = np.dot(sk0, np.dot(inv(s00), (sk0.T))) tmp = inv(skk) # du, au = eig(np.dot(tmp, sig)) au, du = eig(np.dot(tmp, sig)) # au is eval, du is evec # orig = np.dot(tmp, sig) # % Normalize the eigen vectors such that (du'skk*du) = I temp = inv(chol(np.dot(du.T, np.dot(skk, du)))) dt = np.dot(du, temp) # JP: the next part can be done much easier # % NOTE: At this point, the eigenvectors are aligned by column. To # % physically move the column elements using the MATLAB sort, # % take the transpose to put the eigenvectors across the row # dt = transpose(dt) # % sort eigenvalues and vectors # au, auind = np.sort(diag(au)) auind = np.argsort(au) # a = flipud(au) aind = flipud(auind) a = au[aind] # d = dt[aind,:] d = dt[:, aind] # %NOTE: The eigenvectors have been sorted by row based on auind and moved to array "d". # % Put the eigenvectors back in column format after the sort by taking the # % transpose of "d". Since the eigenvectors have been physically moved, there is # % no need for aind at all. To preserve existing programming, aind is reset back to # % 1, 2, 3, .... # d = transpose(d) # test = np.dot(transpose(d), np.dot(skk, d)) # %EXPLANATION: The MATLAB sort function sorts from low to high. The flip realigns # %auind to go from the largest to the smallest eigenvalue (now aind). The original procedure # %physically moved the rows of dt (to d) based on the alignment in aind and then used # %aind as a column index to address the eigenvectors from high to low. This is a double # %sort. If you wanted to extract the eigenvector corresponding to the largest eigenvalue by, # %using aind as a reference, you would get the correct eigenvector, but with sorted # %coefficients and, therefore, any follow-on calculation would seem to be in error. # %If alternative programming methods are used to evaluate the eigenvalues, e.g. Frame method # %followed by a root extraction on the characteristic equation, then the roots can be # %quickly sorted. One by one, the corresponding eigenvectors can be generated. The resultant # %array can be operated on using the Cholesky transformation, which enables a unit # %diagonalization of skk. But nowhere along the way are the coefficients within the # %eigenvector array ever changed. The final value of the "beta" array using either method # %should be the same. # % Compute the trace and max eigenvalue statistics */ lr1 = zeros(m) lr2 = zeros(m) cvm = zeros((m, 3)) cvt = zeros((m, 3)) iota = ones(m) t, junk = rkt.shape for i in range(0, m): tmp = trimr(log(iota - a), i , 0) lr1[i] = -t * np.sum(tmp, 0) # columnsum ? # tmp = np.log(1-a) # lr1[i] = -t * np.sum(tmp[i:]) lr2[i] = -t *
log(1 - a[i])
numpy.log
# -*- coding: utf-8 -*- """ .. Authors <NAME> <<EMAIL>> <NAME> <<EMAIL>> <NAME> <<EMAIL>> A set of mathematical utilities and vector convenience functions for XICSRT. """ import numpy as np def distance_point_to_line(origin, normal, point): o = origin n = normal p = point t = np.dot(p - o, n) / np.dot(n, n) d = np.linalg.norm(np.outer(t, n) + o - p, axis=1) return d def toarray_1d(a): """ Convert the input to a ndarray with at least 1 dimension. This is similar to the numpy function atleast_1d, but has less overhead and is jax compatible. """ a = np.asarray(a) if a.ndim == 0: a = a.reshape(1) return a def vector_angle(a, b): """ Find the angle between two vectors. """ a_mod = np.linalg.norm(a) b_mod = np.linalg.norm(b) if a.ndim == 2 & b.ndim == 2: dot = np.einsum('ij,ik->i', a/a_mod, b/b_mod, optimize=True) elif a.ndim == 1 & b.ndim == 1: dot = np.dot(a/a_mod, b/b_mod) else: raise Exception('Input must have 1 or 2 dimensions.') angle = np.arccos(dot) return angle def vector_rotate(a, b, theta): """ Rotate vector a around vector b by an angle theta (radians) Programming Notes: u: parallel projection of a on b_hat. v: perpendicular projection of a on b_hat. w: a vector perpendicular to both a and b. """ if a.ndim == 2: b_hat = b / np.linalg.norm(b) dot = np.einsum('ij,j->i', a, b_hat, optimize=True) u = np.einsum('i,j->ij', dot, b_hat, optimize=True) v = a - u w = np.cross(b_hat, v) c = u + v * np.cos(theta) + w * np.sin(theta) elif a.ndim == 1: b_hat = b / np.linalg.norm(b) u = b_hat * np.dot(a, b_hat) v = a - u w = np.cross(b_hat, v) c = u + v * np.cos(theta) + w * np.sin(theta) else: raise Exception('Input array must be 1d (vector) or 2d (array of vectors)') return c def magnitude(vector): """ Calculate magnitude of a vector or array of vectors. """ if vector.ndim > 1: mag = np.linalg.norm(vector, axis=1) else: mag = np.linalg.norm(vector) return mag def normalize(vector): """ Normalize a vector or an array of vectors. If an array of vectors is given it should have the shape (N,M) where | N: Number of vectors | M: Vector length """ if vector.ndim > 1: norm = np.linalg.norm(vector, axis=1) vector /= np.expand_dims(norm, 1) else: norm = np.linalg.norm(vector) vector /= norm return vector def sinusoidal_spiral(phi, b, r0, theta0): r = r0 * (np.sin(theta0 + (b-1)*phi)/np.sin(theta0))**(1/(b-1)) return r def rotation_matrix(axis, theta): """ Return the rotation matrix associated with counterclockwise rotation about the given axis by theta radians. """ axis = np.asarray(axis) axis = axis/np.sqrt(np.dot(axis, axis)) a = np.cos(theta/2.0) b, c, d = -axis*np.sin(theta/2.0) aa, bb, cc, dd = a*a, b*b, c*c, d*d bc, ad, ac, ab, bd, cd = b*c, a*d, a*c, a*b, b*d, c*d matrix = np.array( [[aa + bb - cc - dd, 2 * (bc + ad), 2 * (bd - ac)] ,[2 * (bc - ad), aa + cc - bb - dd, 2 * (cd + ab)] ,[2 * (bd + ac), 2 * (cd - ab), aa + dd - bb - cc]]) return matrix def bragg_angle(wavelength, crystal_spacing): """ The Bragg angle calculation is used so often that it deserves its own function. .. Note:: The crystal_spacing here is the true spacing, not the 2d spacing that is sometimes used in the literature. """ bragg_angle = np.arcsin(wavelength / (2 * crystal_spacing)) return bragg_angle def cyl_from_car(point_car): """ Convert from cartesian to cylindrical coordinates. """ if not isinstance(point_car, np.ndarray): point_car = np.array(point_car) point_cyl = np.empty(point_car.shape) if point_car.ndim == 2: point_cyl[:, 0] = np.sqrt(np.sum(point_car[:, 0:2]**2, 1)) point_cyl[:, 1] = np.arctan2(point_car[:, 1], point_car[:, 0]) point_cyl[:, 2] = point_car[:, 2] else: point_cyl[0] = np.sqrt(np.sum(point_car[0:2]**2)) point_cyl[1] = np.arctan2(point_car[1], point_car[0]) point_cyl[2] = point_car[2] return point_cyl def car_from_cyl(point_cyl): """ Convert from cylindrical to cartesian coordinates. """ if not isinstance(point_cyl, np.ndarray): point_cyl = np.array(point_cyl) point_car = np.empty(point_cyl.shape) if point_cyl.ndim == 2: point_car[:, 0] = point_cyl[:, 0]*np.cos(point_cyl[:, 1]) point_car[:, 1] = point_cyl[:, 0]*np.sin(point_cyl[:, 1]) point_car[:, 2] = point_cyl[:, 2] else: point_car[0] = point_cyl[0]*np.cos(point_cyl[1]) point_car[1] = point_cyl[0]*np.sin(point_cyl[1]) point_car[2] = point_cyl[2] return point_car def tor_from_car(point_car, major_radius): """ Convert from cartesian to toroidal coordinates. Arguments --------- point_car: array [meters] Cartesian coordinates [x,y,z] major_radius: float [meters] Torus Major Radius Returns ------- point_tor: array [meters] Toroidal coordinates [r_min, theta_poloidal, theta_toroidal] """ if not isinstance(point_car, np.ndarray): point_car = np.array(point_car) point_tor = np.empty(point_car.shape) if point_tor.ndim == 2: d = np.linalg.norm(point_car[:, 0:2], axis=1) - major_radius point_tor[:, 2] = np.arctan2(point_car[:, 1], point_car[:, 0]) point_tor[:, 1] = np.arctan2(point_car[:, 2], d) point_tor[:, 0] = np.sqrt(np.power(point_car[:, 2], 2) + np.power(d, 2)) else: d = np.linalg.norm(point_car[0:2]) - major_radius point_tor[2] = np.arctan2(point_car[1], point_car[0]) point_tor[1] = np.arctan2(point_car[2], d) point_tor[0] = np.sqrt(np.power(point_car[2], 2) + np.power(d, 2)) return point_tor def car_from_tor(point_tor, major_radius): """ Convert from toroidal to cartesian coordinates. Arguments --------- point_tor: array [meters] Toroidal coordinates [r_min, theta_poloidal, theta_toroidal] major_radius: float [meters] Torus Major Radius Returns ------- point_car: array [meters] Cartesian coordinates [x,y,z] """ if not isinstance(point_tor, np.ndarray): point_tor = np.array(point_tor) point_car = np.empty(point_tor.shape) if point_tor.ndim == 2: point_car[:, 0] = major_radius*np.cos(point_tor[:, 2]) point_car[:, 1] = major_radius*np.sin(point_tor[:, 2]) vector = point_car[:, 0:2]/np.linalg.norm(point_car[:, 0:2], axis=1) point_car[:, 0] = point_car[:, 0] + vector[:, 0]*point_tor[:, 0]*np.cos(point_tor[:, 1]) point_car[:, 1] = point_car[:, 1] + vector[:, 1]*point_tor[:, 0]*np.cos(point_tor[:, 1]) point_car[:, 2] = point_tor[:, 0]*np.sin(point_tor[:, 1]) else: point_car[0] = major_radius*
np.cos(point_tor[2])
numpy.cos
import numpy as np, pandas as pd import torch, dataclasses, warnings, operator, builtins, numbers, os from typing import List from torch.utils.data import DataLoader import scipy.sparse as sps def get_batch_size(shape, frac=float(os.environ.get("BATCH_SIZE_FRAC", 0.1))): """ round to similar batch sizes """ n_users, n_items = shape if torch.cuda.device_count(): total_memory = torch.cuda.get_device_properties(0).total_memory else: total_memory = 16e9 max_batch_size = total_memory / 8 / n_items * frac n_batches = int(n_users / max_batch_size) + 1 return int(np.ceil(n_users / n_batches)) def matrix_reindex(csr, old_index, new_index, axis, fill_value=0): """ pandas.reindex functionality on sparse or dense matrices as well as 1d arrays """ if axis == 1: return matrix_reindex(csr.T, old_index, new_index, 0, fill_value).T.copy() assert axis == 0, "axis must be 0 or 1" assert csr.shape[0] == len(old_index), "shape must match between csr and old_index" if sps.issparse(csr): csr = sps.vstack([csr, csr[:1] * 0 + fill_value], "csr") csr.eliminate_zeros() else: csr = np.concatenate([csr, csr[:1] * 0 + fill_value], axis=0) iloc = pd.Series( np.arange(len(old_index)), index=old_index ).reindex(new_index, fill_value=-1).values return csr[iloc].copy() def sps_to_torch(x, device): """ convert scipy.sparse to torch.sparse """ coo = x.tocoo() values = coo.data indices = np.vstack((coo.row, coo.col)) return torch.sparse_coo_tensor(indices, values, coo.shape, device=device) class LazyScoreBase: """ Lazy element-wise A*B+C for sparse and low-rank matrices. The base class wraps over scalar, scipy.sparse, and numpy dense. Methods to overload include: eval, T, __getitem__, collate_fn. Method `reindex` is only supported in the derived LowRankDataFrame subclass. """ def eval(self, device): """ LazyScoreBase -> scalar, numpy (device is None), or torch (device) """ raise NotImplementedError def T(self): """ LazyScoreBase -> LazyScoreBase(transposed) """ raise NotImplementedError def __getitem__(self, key): """ LazyScoreBase -> LazyScoreBase(sub-rows); used in pytorch dataloader """ raise NotImplementedError @classmethod def collate_fn(cls, D): """ List[LazyScoreBase] -> LazyScoreBase; used in pytorch dataloader """ raise NotImplementedError def __len__(self): return self.shape[0] @property def size(self): return np.prod(self.shape) @property def batch_size(self): return get_batch_size(self.shape) def _wrap_and_check(self, other): other = auto_cast_lazy_score(other) if not isinstance(self, _LazyScoreScalar) and not isinstance(other, _LazyScoreScalar): assert np.allclose(self.shape, other.shape), "shape must be compatible" return other def __add__(self, other): other = self._wrap_and_check(other) return LazyScoreExpression(operator.add, [self, other]) def __mul__(self, other): other = self._wrap_and_check(other) return LazyScoreExpression(operator.mul, [self, other]) def auto_cast_lazy_score(other): if other is None: return None # prior_score=None -> None elif isinstance(other, LazyScoreBase): return other elif isinstance(other, numbers.Number): return _LazyScoreScalar(other) elif sps.issparse(other): return LazyScoreSparseMatrix(other) elif isinstance(other, pd.DataFrame): return LazyScoreDenseMatrix(other.values) elif np.ndim(other) == 2: return LazyScoreDenseMatrix(other) else: raise NotImplementedError(f"type {type(other)} is not supported") class _LazyScoreScalar(LazyScoreBase): def __init__(self, c): self.c = c self.shape = () def eval(self, device): return self.c @property def T(self): return self def __getitem__(self, key): return self @classmethod def collate_fn(cls, D): return D[0] class LazyScoreSparseMatrix(LazyScoreBase): def __init__(self, c): self.c = c.tocsr() self.shape = c.shape def eval(self, device): return self.c.toarray() if device is None else \ sps_to_torch(self.c, device).to_dense() @property def T(self): return self.__class__(self.c.T) def __getitem__(self, key): if np.isscalar(key): slc = slice(self.c.indptr[key], self.c.indptr[key + 1]) _dict = { "values": self.c.data[slc], "keys": self.c.indices[slc], "shape": self.c.shape[1], } return _LazyScoreSparseDictFast(_dict) else: return self.__class__(self.c[key]) @classmethod def collate_fn(cls, D): return cls(sps.vstack([d.c for d in D])) class _LazyScoreSparseDictFast(LazyScoreBase): def __init__(self, c): self.c = c self.shape = (1, self.c['shape']) @classmethod def collate_fn(cls, D): C = [d.c for d in D] csr = sps.csr_matrix(( np.hstack([c['values'] for c in C]), # data np.hstack([c['keys'] for c in C]), # indices np.hstack([[0], np.cumsum([len(c['keys']) for c in C])]), # indptr ), shape=(len(C), C[0]['shape'])) return LazyScoreSparseMatrix(csr) class LazyScoreDenseMatrix(LazyScoreBase): def __init__(self, c): self.c = c self.shape = c.shape def eval(self, device): return self.c if device is None else torch.as_tensor(self.c, device=device) @property def T(self): return self.__class__(self.c.T) def __getitem__(self, key): if np.isscalar(key): key = [key] # list or slice return self.__class__(self.c[key]) @classmethod def collate_fn(cls, D): return cls(np.vstack([d.c for d in D])) class LazyScoreExpression(LazyScoreBase): """ Tree representation of score expression until final eval """ def __init__(self, op, children): self.op = op self.children = children for c in children: assert isinstance(c, LazyScoreBase), f"please wrap {c} in LazyScoreBase" self.shape = children[0].shape def eval(self, device=None): children = [c.eval(device) for c in self.children] return self.op(*children) @property def T(self): children = [c.T for c in self.children] return self.__class__(self.op, children) def __getitem__(self, key): children = [c[key] for c in self.children] return self.__class__(self.op, children) @classmethod def collate_fn(cls, batch): first = batch[0] data = zip(*[b.children for b in batch]) children = [c.collate_fn(D) for c, D in zip(first.children, data)] return cls(first.op, children) @dataclasses.dataclass(repr=False) class RandScore(LazyScoreBase): """ add random noise to break ties """ row_seeds: list # np.array for fast indexing col_seeds: list # np.array for fast indexing @property def shape(self): return (len(self.row_seeds), len(self.col_seeds)) @classmethod def like(cls, other): return cls(np.arange(other.shape[0]), np.arange(other.shape[1])) def eval(self, device=None): d1 = len(self.col_seeds) if device is None: return np.vstack([ np.random.RandomState(int(s)).rand(d1) for s in self.row_seeds]) else: rows = [] for s in self.row_seeds: generator = torch.Generator(device).manual_seed(int(s)) new = torch.rand(d1, device=device, generator=generator) rows.append(new) return torch.vstack(rows) @property def T(self): warnings.warn("transpose changes rand seed; only for evaluate_user_rec") return self.__class__(self.col_seeds, self.row_seeds) def __getitem__(self, key): if np.isscalar(key): key = [key] row_seeds = self.row_seeds[key] return self.__class__(row_seeds, self.col_seeds) @classmethod def collate_fn(cls, batch): return cls(np.hstack([b.row_seeds for b in batch]), batch[0].col_seeds) @dataclasses.dataclass(repr=False) class LowRankDataFrame(LazyScoreBase): """ mimics a pandas dataframe with low-rank structures and nonnegative exp / softplus / sigmoid activation """ ind_logits: List[list] col_logits: List[list] index: list # np.array for fast indexing columns: list # np.array for fast indexing act: str ind_default: list = None col_default: list = None def __post_init__(self): if self.ind_default is None: self.ind_default = np.zeros_like(self.ind_logits[0]) if self.col_default is None: self.col_default = np.zeros_like(self.col_logits[0]) assert self.ind_logits.shape[1] == self.col_logits.shape[1], "check hidden" assert self.ind_logits.shape[0] == len(self.index), "check index" assert self.col_logits.shape[0] == len(self.columns), "check columns" assert self.act in ['exp', 'softplus', 'sigmoid', '_nnmf'], \ "requires nonnegative act to model intensity score" def eval(self, device=None): if device is None: z = self.ind_logits @ self.col_logits.T assert not np.isnan(z).any(), "low rank score must be valid" if self.act == 'exp': return np.exp(z) elif self.act == 'softplus': with warnings.catch_warnings(): warnings.filterwarnings('ignore', 'overflow encountered in exp') return np.where(z > 0, z + np.log(1 + np.exp(-z)), np.log(1 + np.exp(z))) elif self.act == 'sigmoid': return 1. / (1 + np.exp(-z)) elif self.act == '_nnmf': return z else: raise NotImplementedError else: ind_logits = torch.as_tensor(self.ind_logits, device=device) col_logits = torch.as_tensor(self.col_logits, device=device) z = ind_logits @ col_logits.T assert not torch.isnan(z).any(), "low rank score must be valid" if self.act == 'exp': return z.exp() elif self.act == 'softplus': return torch.nn.functional.softplus(z) elif self.act == 'sigmoid': return z.sigmoid() elif self.act == '_nnmf': return z else: raise NotImplementedError @property def shape(self): return (len(self.ind_logits), len(self.col_logits)) def __getitem__(self, key): if np.isscalar(key): key = [key] return self.__class__( self.ind_logits[key], self.col_logits, self.index[key], self.columns, self.act, self.ind_default, self.col_default) @property def T(self): return self.__class__( self.col_logits, self.ind_logits, self.columns, self.index, self.act, self.col_default, self.ind_default) @classmethod def collate_fn(cls, batch): first = batch[0] ind_logits = [] index = [] for elm in batch: ind_logits.append(elm.ind_logits) index.extend(elm.index) return cls(
np.vstack(ind_logits)
numpy.vstack
""" fastspecfit.templates.qa ======================== QA for templates """ import pdb import os import numpy as np from astropy.table import Table from scipy.ndimage import median_filter from fastspecfit.util import ivar2var, C_LIGHT from fastspecfit.templates.templates import rebuild_fastspec_spectrum import matplotlib.pyplot as plt import matplotlib.ticker as ticker from matplotlib.patches import Rectangle from desiutil.log import get_logger log = get_logger() def plot_style(font_scale=1.2): import seaborn as sns sns.set(context='talk', style='ticks', palette='deep', font_scale=font_scale)#, rc=rc) colors = sns.color_palette() return sns, colors def qa_bpt(targetclass, fastspecfile=None, png=None): """QA of the fastspec emission-line spectra. """ from fastspecfit.templates.templates import remove_undetected_lines, read_stacked_fastspec sns, _ = plot_style() fastmeta, _fastspec = read_stacked_fastspec(fastspecfile, read_spectra=False) fastspec = remove_undetected_lines(_fastspec) nobj = len(fastmeta) def oplot_class(ax, kewley=False, **kwargs): if kewley: niiha = np.linspace(-1.9, 0.4, 1000) oiiihb = 0.61 / (niiha-0.47) + 1.19 else: niiha = np.linspace(-1.9, -0.1, 1000) oiiihb = 0.61 / (niiha-0.05) + 1.3 ax.plot(niiha, oiiihb, **kwargs) def _bpt(cc, cclabel='Redshift', vmin=None, vmax=None, png=None): fig, ax = plt.subplots(figsize=(10, 7)) cb = ax.scatter(niiha, oiiihb, c=cc, cmap='jet', vmin=vmin, vmax=vmax) oplot_class(ax, kewley=True, color='k', ls='--', lw=3, label='Kewley+01') oplot_class(ax, kewley=False, color='k', lw=3, label='Kauffmann+03') plt.colorbar(cb, label=cclabel) ax.set_xlim(-1.9, 0.7) ax.set_ylim(-1.2, 1.5) ax.set_xlabel(r'$\log_{10}$ ([NII] $\lambda6584$ / H$\alpha$)') ax.set_ylabel(r'$\log_{10}$ ([OIII] $\lambda5007$ / H$\beta$)') ax.xaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f')) ax.yaxis.set_major_formatter(ticker.FormatStrFormatter('%.1f')) ax.xaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) ax.legend(fontsize=16, loc='lower left')#, ncol=2) plt.subplots_adjust(bottom=0.15, left=0.18, top=0.95, right=0.95) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() good = np.where( (fastspec['HALPHA_FLUX'] > 0) * (fastspec['HBETA_FLUX'] > 0) * (fastspec['NII_6584_FLUX'] > 0) * (fastspec['OIII_5007_FLUX'] > 0) #(fastspec['HALPHA_CHI2'] < 1e4) )[0] niiha = np.log10(fastspec['NII_6584_FLUX'][good] / fastspec['HALPHA_FLUX'][good]) oiiihb = np.log10(fastspec['OIII_5007_FLUX'][good] / fastspec['HBETA_FLUX'][good]) ww = np.where((niiha > -0.05) * (niiha < 0.05) * (oiiihb < -0.5))[0] #log.info(fastspec[good][ww]['HALPHA_FLUX', 'NII_6584_FLUX']) zz = fastspec['CONTINUUM_Z'][good] ewhb = fastspec['HBETA_EW'][good] #rW1 = fastmeta['RW1'][good] #gr = fastmeta['GR'][good] _bpt(zz, 'Redshift', vmin=0, vmax=0.5, png=png.replace('.png', '-redshift.png')) _bpt(np.log10(ewhb), r'$\log_{10}\,\mathrm{EW}(\mathrm{H}\beta)$', png=png.replace('.png', '-ewhb.png')) #_bpt(rW1, r'$r-W1$', vmin=-0.3, vmax=0.9, png=png.replace('.png', '-rW1.png')) #_bpt(gi, r'$g-i$', vmin=0.6, vmax=1.3, png=png.replace('.png', '-gi.png')) def qa_fastspec_fullspec(targetclass, fastwave=None, fastflux=None, fastivar=None, fastmeta=None, fastspec=None, fastspecfile=None, CFit=None, EMFit=None, ncol=3, nrow=5, photometric_models=False, pdffile=None): """Full-spectrum QA. photometric_models - use the fits to the broadband continuum """ from fastspecfit.util import ivar2var, C_LIGHT from fastspecfit.templates.sample import SAMPLE_PROPERTIES as props from fastspecfit.templates.templates import rebuild_fastspec_spectrum, read_stacked_fastspec sns, _ = plot_style() if CFit is None or EMFit is None: from fastspecfit.continuum import ContinuumFit from fastspecfit.emlines import EMLineFit CFit = ContinuumFit() EMFit = EMLineFit() if fastwave is None: fastwave, fastflux, fastivar, fastmeta, fastspec = read_stacked_fastspec(fastspecfile) #fastspec = remove_undetected_lines(fastspec, EMFit.linetable, devshift=False) absmaglabel = props[targetclass]['absmag_label'] colorlabel = props[targetclass]['color_label'] nobj = len(fastmeta) icam = 0 zobj = np.unique(fastmeta['ZOBJ']) npage = len(zobj) inches_wide_perpanel = 4.0 inches_tall_perpanel = 3.0 if npage == 1: png = True else: png = False if pdffile: if png: pdffile = pdffile.replace('.pdf', '.png') else: from matplotlib.backends.backend_pdf import PdfPages pdf = PdfPages(pdffile) for ipage in [0]:#np.arange(npage): log.info('Building page {}/{}'.format(ipage+1, npage)) pageindx = np.where(zobj[ipage] == fastmeta['ZOBJ'])[0] absmag = sorted(set(fastmeta['ABSMAG'][pageindx])) # subpage nsubpage = len(absmag) for isubpage in [6]:#np.arange(nsubpage): subpageindx = np.where((absmag[isubpage] == fastmeta['ABSMAG'][pageindx]))[0] fig, allax = plt.subplots(nrow, ncol, figsize=(inches_wide_perpanel*ncol, inches_tall_perpanel*nrow), sharex=True, sharey=False)#True) for iplot, (indx, ax) in enumerate(zip(pageindx[subpageindx], allax.flatten())): #log.info(ipage, isubpage, iplot, len(pageindx), len(subpageindx)) # rebuild the best-fitting spectrum; these models have been # normalized already in iterative_stack modelwave, continuum, smooth_continuum, emlinemodel, data = rebuild_fastspec_spectrum( fastspec[indx], fastwave, fastflux[indx, :], fastivar[indx, :], CFit, EMFit) # rest-frame if photometric_models: modelwave_phot, continuum_phot = rebuild_fastspec_spectrum(fastspec[indx], _, _, _, CFit, EMFit, full_resolution=True, normalize_wave=props[targetclass]['normwave']) #modelwave_phot *= (1 + data['zredrock']) #continuum_phot /= (1 + data['zredrock']) zfact = (1 + data['zredrock']) #ax.plot(data['wave'][icam]/zfact, data['flux'][icam], color='skyblue') ax.plot(modelwave_phot, continuum_phot, color='gray') ax.plot(modelwave/zfact, (continuum+emlinemodel), color='firebrick', alpha=0.7) xmin, xmax = 900, 4e4 ww = np.where((modelwave_phot > xmin) * (modelwave_phot < xmax))[0] ymin, ymax = np.min(continuum_phot[ww]), np.max(continuum_phot[ww]) if np.max(emlinemodel) > ymax: pdb.set_trace() ymax = np.max(emlinemodel) else: # observed frame ax.plot(data['wave'][icam], data['flux'][icam], color='skyblue') ax.plot(modelwave, continuum+emlinemodel, color='firebrick', alpha=0.5) ax.plot(modelwave, continuum, color='blue', alpha=0.5) #ax.plot(modelwave, continuum+smooth_continuum, color='gray', alpha=0.3) ax.plot(modelwave, smooth_continuum, color='gray', alpha=0.7) xmin, xmax = modelwave.min(), modelwave.max() ymin, ymax = 1e6, -1e6 filtflux = median_filter(data['flux'][icam], 51, mode='nearest') sigflux = np.std(data['flux'][icam][data['ivar'][icam] > 0]) if -2 * sigflux < ymin: ymin = -2 * sigflux if sigflux * 5 > ymax: ymax = sigflux * 5 if np.max(filtflux) > ymax: ymax = np.max(filtflux) * 1.4 ax.text(0.96, 0.06, r'${:.2f}<{}<{:.2f}$'.format( fastmeta['COLORMIN'][indx], colorlabel, fastmeta['COLORMAX'][indx]), ha='right', va='bottom', transform=ax.transAxes, fontsize=10, bbox=dict(boxstyle='round', facecolor='gray', alpha=0.25)) ax.text(0.04, 0.96, '\n'.join(( 'N={}, S/N={:.1f}'.format( fastmeta['NOBJ'][indx], fastspec['CONTINUUM_SNR_ALL'][indx]), )), ha='left', va='top', transform=ax.transAxes, fontsize=10, bbox=dict(boxstyle='round', facecolor='gray', alpha=0.25)) print(ymin, ymax) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xticklabels([]) ax.set_yticklabels([]) if photometric_models: ax.set_xscale('log') plt.subplots_adjust(wspace=0.05, hspace=0.05, left=0.07, right=0.95, top=0.95, bottom=0.1) if iplot == ncol*nrow-1: break fig.text(0.52, 0.968, r'${:.2f}<z<{:.2f}\ {:.1f}<{}<{:.1f}$'.format( fastmeta['ZOBJMIN'][indx], fastmeta['ZOBJMAX'][indx], fastmeta['{}MIN'.format('ABSMAG')][indx], absmaglabel, fastmeta['{}MAX'.format('ABSMAG')][indx]), ha='center', va='center', fontsize=22) for rem in np.arange(ncol*nrow-iplot-1)+iplot+1: allax.flatten()[rem].axis('off') if pdffile and png is False: pdf.savefig(fig) plt.close() if pdffile: log.info('Writing {}'.format(pdffile)) if png: fig.savefig(pdffile) plt.close() else: pdf.close() def qa_fastspec_emlinespec(targetclass, fastwave=None, fastflux=None, fastivar=None, fastmeta=None, fastspec=None, fastspecfile=None, CFit=None, EMFit=None, ncol=3, nrow=5, pdffile=None): """QA of the fastspec emission-line spectra. """ from matplotlib.colors import Normalize from fastspecfit.templates.templates import remove_undetected_lines from fastspecfit.util import ivar2var, C_LIGHT from fastspecfit.templates.sample import SAMPLE_PROPERTIES as props from fastspecfit.templates.templates import rebuild_fastspec_spectrum, read_stacked_fastspec sns, _ = plot_style() if CFit is None or EMFit is None: from fastspecfit.continuum import ContinuumFit from fastspecfit.emlines import EMLineFit CFit = ContinuumFit() EMFit = EMLineFit() if fastwave is None: fastwave, fastflux, fastivar, fastmeta, fastspec = read_stacked_fastspec(fastspecfile) fastspec_fix = remove_undetected_lines(fastspec, EMFit.linetable, devshift=False) # plotting preferences cmap = plt.cm.get_cmap('jet') #cmap = sns.color_palette(as_cmap=True) cnorm = Normalize(vmin=np.min(fastmeta['ZOBJ']), vmax=np.max(fastmeta['ZOBJ'])) inches_wide = 16 inches_fullspec = 6 inches_perline = inches_fullspec / 2.0 nlinepanels = 4 nline = len(set(EMFit.linetable['plotgroup'])) nlinerows = np.ceil(nline / nlinepanels).astype(int) nrows = 1 + nlinerows height_ratios = np.hstack([1, [0.5]*nlinerows]) plotsig_default = 150.0 # 300.0 # [km/s] meanwaves, deltawaves, sigmas, linenames = [], [], [], [] for plotgroup in set(EMFit.linetable['plotgroup']): I = np.where(plotgroup == EMFit.linetable['plotgroup'])[0] linenames.append(EMFit.linetable['nicename'][I[0]]) meanwaves.append(np.mean(EMFit.linetable['restwave'][I])) deltawaves.append((np.max(EMFit.linetable['restwave'][I]) - np.min(EMFit.linetable['restwave'][I])) / 2) sigmas.append(plotsig_default) srt = np.argsort(meanwaves) meanwaves = np.hstack(meanwaves)[srt] deltawaves = np.hstack(deltawaves)[srt] sigmas = np.hstack(sigmas)[srt] linenames = np.hstack(linenames)[srt] absmaglabel = props[targetclass]['absmag_label'] colorlabel = props[targetclass]['color_label'] # how many pages? nobj = len(fastmeta) icam = 0 restcolor = np.unique(fastmeta['COLOR']) npage = len(restcolor) if npage == 1: png = True else: png = False if pdffile: if png: pdffile = pdffile.replace('.pdf', '.png') else: from matplotlib.backends.backend_pdf import PdfPages pdf = PdfPages(pdffile) # make the plot! for ipage in np.arange(npage): log.info('Building page {}/{}'.format(ipage+1, npage)) pageindx = np.where(restcolor[ipage] == fastmeta['COLOR'])[0] absmag = sorted(set(fastmeta['ABSMAG'][pageindx])) # subpage nsubpage = len(absmag) for isubpage in np.arange(nsubpage):#[:1]:#[::2]: subpageindx = np.where((absmag[isubpage] == fastmeta['ABSMAG'][pageindx]))[0] fig = plt.figure(figsize=(inches_wide, 2*inches_fullspec + inches_perline*nlinerows)) gs = fig.add_gridspec(nrows, nlinepanels, height_ratios=height_ratios) bigax = fig.add_subplot(gs[0, :]) ax, irow, icol = [], 1, 0 for iax in np.arange(nline): icol = iax % nlinepanels if iax > 0 and iax % nlinepanels == 0: irow += 1 xx = fig.add_subplot(gs[irow, icol]) ax.append(xx) bigymin, bigymax = 1e6, -1e6 lineymin, lineymax = np.zeros(nline)+1e6, np.zeros(nline)-1e6 removelabels = np.ones(nline, bool) for iplot, indx in enumerate(pageindx[subpageindx]): #log.info(ipage, isubpage, iplot, len(pageindx), len(subpageindx)) modelwave, continuum, smooth_continuum, emlinemodel, data = rebuild_fastspec_spectrum( fastspec[indx], fastwave, fastflux[indx, :], fastivar[indx, :], CFit, EMFit) #if fastmeta['IBIN'][indx] == 1262: # pdb.set_trace() redshift = data['zredrock'] emlineflux = data['flux'][icam] - continuum - smooth_continuum modelwave /= (1+redshift) # rest-frame label = 'z=[{:.2f}-{:.2f}] (N={})'.format( fastmeta['ZOBJMIN'][indx], fastmeta['ZOBJMAX'][indx], np.sum(fastmeta['ZOBJ'][pageindx[subpageindx]] == fastmeta['ZOBJ'][indx])) #bigax.plot(modelwave/(1+redshift), emlineflux, color='gray') bigax.plot(modelwave, emlinemodel, label=label, color=cmap(cnorm(fastmeta['ZOBJ'][indx]))) if -np.max(emlinemodel)*0.05 < bigymin: bigymin = -np.max(emlinemodel)*0.05 if np.max(emlinemodel)*1.1 > bigymax: bigymax = np.max(emlinemodel)*1.1 if np.max(emlinemodel) == 0.0: bigymin, bigymax = 0.0, 1.0 # zoom in on individual emission lines for iax, (meanwave, deltawave, sig, linename) in enumerate(zip( meanwaves, deltawaves, sigmas, linenames)): wmin = (meanwave - deltawave) - 8 * sig * meanwave / C_LIGHT wmax = (meanwave + deltawave) + 8 * sig * meanwave / C_LIGHT lineindx = np.where((modelwave > wmin) * (modelwave < wmax))[0] if len(lineindx) > 1: if np.min(emlinemodel[lineindx]) > 0.0: # at least one line kept (snr>3) removelabels[iax] = False ax[iax].plot(modelwave[lineindx], emlinemodel[lineindx], color=cmap(cnorm(fastmeta['ZOBJ'][indx]))) if -np.max(emlinemodel[lineindx])*0.05 < lineymin[iax]: lineymin[iax] = -np.max(emlinemodel[lineindx])*0.05 if np.max(emlinemodel[lineindx]) * 1.1 > lineymax[iax]: lineymax[iax] = np.max(emlinemodel[lineindx]) * 1.1 if np.abs(lineymax[iax]-lineymin[iax]) < 1e-2: removelabels[iax] = False for iax, xx in enumerate(ax): xx.text(0.08, 0.89, linenames[iax], ha='left', va='center', transform=xx.transAxes, fontsize=20) if removelabels[iax]: xx.set_ylim(0, 1) xx.set_xticklabels([]) xx.set_yticklabels([]) else: if lineymax[iax] == lineymin[iax]: lineymax[iax] = 1.0 xx.set_ylim(lineymin[iax], lineymax[iax]) xlim = xx.get_xlim() xx.xaxis.set_major_locator(ticker.MaxNLocator(2)) # don't repeat the legend labels hand, lab = bigax.get_legend_handles_labels() ulabels = dict(zip(lab, hand)) bigax.legend(ulabels.values(), ulabels.keys(), fontsize=18, loc='upper left') #bigax.legend(fontsize=18, loc='upper left') bigax.set_ylim(bigymin, bigymax) bigax.set_xlim(2600, 7200) # 3500, 9300) bigax.set_title(r'${:.2f}<{}<{:.2f}\ {:.1f}<{}<{:.1f}$'.format( fastmeta['COLORMIN'][indx], colorlabel, fastmeta['COLORMAX'][indx], fastmeta['ABSMAGMIN'][indx], absmaglabel, fastmeta['ABSMAGMAX'][indx])) #bigax.set_xlabel('Observed-frame Wavelength ($\AA$)') plt.subplots_adjust(wspace=0.28, left=0.07, right=0.95, top=0.95, bottom=0.1) if pdffile and png is False: pdf.savefig(fig) plt.close() if pdffile: log.info('Writing {}'.format(pdffile)) if png: fig.savefig(pdffile) plt.close() else: pdf.close() def qa_photometry_templates(targetclass, samplefile=None, templatefile=None, ntspace=5, png=None): """Compare the color-color tracks of the templates to the data. """ from fastspecfit.templates.sample import read_parent_sample from fastspecfit.templates.templates import read_templates if ntspace == 1: prefix = 'All ' else: prefix = '' sns, _ = plot_style() cmap = plt.cm.get_cmap('RdYlBu') mincnt = 1 phot, spec, meta = read_parent_sample(samplefile) def template_colors_zgrid(templatefile, targetclass): """Compute the colors of the templates on a fixed redshift grid. """ from speclite import filters filt = filters.load_filters('decam2014-g', 'decam2014-r', 'decam2014-z', 'wise2010-W1') wave, flux, meta = read_templates(templatefile) nt = len(meta) print('Number of templates = {}'.format(nt)) print(wave.min(), wave.max()) dz = 0.1 if targetclass == 'lrg': zmin, zmax = 0.0, 1.4 elif targetclass == 'elg': zmin, zmax = 0.0, 1.7 elif targetclass == 'bgs': zmin, zmax = 0.0, 0.6 else: pass nz = np.round( (zmax - zmin) / dz ).astype('i2') print('Number of redshift points = {}'.format(nz)) cc = dict( redshift = np.linspace(zmin, zmax, nz), gr = np.zeros((nt, nz), 'f4'), rz = np.zeros((nt, nz), 'f4'), rW1 = np.zeros((nt, nz), 'f4'), zW1 = np.zeros((nt, nz), 'f4') ) for iz, red in enumerate(cc['redshift']): zwave = wave.astype('float') * (1 + red) maggies = filt.get_ab_maggies(flux, zwave, mask_invalid=False) cc['gr'][:, iz] = -2.5 * np.log10(maggies['decam2014-g'] / maggies['decam2014-r'] ) cc['rz'][:, iz] = -2.5 * np.log10(maggies['decam2014-r'] / maggies['decam2014-z'] ) cc['rW1'][:, iz] = -2.5 * np.log10(maggies['decam2014-r'] / maggies['wise2010-W1'] ) cc['zW1'][:, iz] = -2.5 * np.log10(maggies['decam2014-z'] / maggies['wise2010-W1'] ) return cc # compute colors on a grid log.info('Reading {}'.format(templatefile)) template_colors = template_colors_zgrid(templatefile, targetclass) nt, nz = template_colors['gr'].shape zmin = '{:.1f}'.format(template_colors['redshift'].min()) zmax = '{:.1f}'.format(template_colors['redshift'].max()) dz = '{:.1f}'.format(template_colors['redshift'][1] - template_colors['redshift'][0]) def elg_obs(phot, png=None): grobslim = (-0.8, 1.8) rzobslim = (-1, 2.2) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) ax1.text(0.05, 0.9, 'Data', ha='left', va='bottom', transform=ax1.transAxes, fontsize=14) for tt in np.arange(0, nt, ntspace): ax2.plot(template_colors['rz'][tt, :], template_colors['gr'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax2.scatter(template_colors['rz'][tt, 0], template_colors['gr'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax2.text(0.17, 0.42, 'z=0.0', ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.yaxis.set_label_position('right') ax2.yaxis.tick_right() ax2.set_xlabel(r'$(r - z)_{\rm obs}$') ax2.set_ylabel(r'$(g - r)_{\rm obs}$') ax2.set_xlim(rzobslim) ax2.set_ylim(grobslim) for aa in (ax1, ax2): aa.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.87, bottom=0.19, wspace=0.05) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def bgs_obs(phot, png=None): grobslim = (-0.5, 2.5) rzobslim = (-0.5, 1.5) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) ax1.grid(True) ax1.text(0.05, 0.9, 'Data', ha='left', va='bottom', transform=ax1.transAxes, fontsize=14) for tt in np.arange(0, nt, ntspace): ax2.plot(template_colors['rz'][tt, :], template_colors['gr'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax2.scatter(template_colors['rz'][tt, 0], template_colors['gr'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax2.text(0.2, 0.1, 'z=0.0', ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.set_xlim(rzobslim) ax2.set_ylim(grobslim) ax2.set_xlabel(r'$(r - z)_{\rm obs}$') ax2.set_ylabel(r'$(g - r)_{\rm obs}$') ax2.yaxis.set_label_position('right') ax2.yaxis.tick_right() ax2.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.87, bottom=0.19, wspace=0.05) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def lrg_obs(phot, png=None): grobslim = (-0.2, 3) rzobslim = (0.0, 3) rW1obslim = (-0.3, 5.5) zW1obslim = (-0.5, 3) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(phot['RMAG']-phot['W1MAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, #norm=LogNorm(vmin=1, vmax=100), extent=np.hstack((rW1obslim, grobslim))) ax1.set_xlabel(r'$(r - W1)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rW1obslim) ax1.set_ylim(grobslim) ax1.text(0.05, 0.9, 'Data', ha='left', va='bottom', transform=ax1.transAxes, fontsize=14) for tt in np.arange(0, nt, ntspace): ax2.plot(template_colors['rW1'][tt, :], template_colors['gr'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax2.scatter(template_colors['rW1'][tt, 0], template_colors['gr'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax2.text(0.1, 0.05, 'z=0.0', ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), ha='left', va='bottom', transform=ax2.transAxes, fontsize=14) ax2.yaxis.set_label_position('right') ax2.yaxis.tick_right() ax2.set_xlabel(r'$(r - W1)_{\rm obs}$') ax2.set_ylabel(r'$(g - r)_{\rm obs}$') ax2.set_xlim(rW1obslim) ax2.set_ylim(grobslim) ax3.hexbin(phot['ZMAG']-phot['W1MAG'], phot['RMAG']-phot['ZMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zW1obslim, rzobslim))) ax3.set_ylabel(r'$(r - z)_{\rm obs}$') ax3.set_xlabel(r'$(z - W1)_{\rm obs}$') ax3.set_xlim(zW1obslim) ax3.set_ylim(rzobslim) ax3.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax3.yaxis.set_major_locator(ticker.MultipleLocator(1)) for tt in np.arange(0, nt, ntspace): ax4.plot(template_colors['zW1'][tt, :], template_colors['rz'][tt, :], marker='s', markersize=5, ls='-', alpha=0.5) for tt in np.arange(0, nt, ntspace): ax4.scatter(template_colors['zW1'][tt, 0], template_colors['rz'][tt, 0], marker='o', facecolors='none', s=40, edgecolors='k', linewidth=1, zorder=10) ax4.text(0.05, 0.3, 'z=0.0', ha='left', va='bottom', transform=ax4.transAxes, fontsize=14) #ax4.text(0.05, 0.9, '{}Models (z={}-{}, dz={})'.format(prefix, zmin, zmax, dz), # ha='left', va='bottom', # transform=ax4.transAxes, fontsize=14) ax4.yaxis.set_label_position('right') ax4.yaxis.tick_right() ax4.set_ylabel(r'$(r - z)_{\rm obs}$') ax4.set_xlabel(r'$(z - W1)_{\rm obs}$') ax4.set_xlim(zW1obslim) ax4.set_ylim(rzobslim) ax4.xaxis.set_major_locator(ticker.MultipleLocator(1)) ax4.yaxis.set_major_locator(ticker.MultipleLocator(1)) for aa in (ax1, ax2, ax3, ax4): aa.grid(True) plt.subplots_adjust(top=0.95, left=0.1, right=0.9, bottom=0.13, wspace=0.05, hspace=0.28) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() # make the plots! if targetclass == 'lrg': lrg_obs(phot, png=png) elif targetclass == 'elg': elg_obs(phot, png=png) elif targetclass == 'bgs': bgs_obs(phot, png=png) else: pass def qa_photometry(targetclass, samplefile=None, png_obs=None, png_rest=None, png_rest_bins=None): """QA of the observed- and rest-frame photometry. """ from matplotlib.colors import LogNorm from fastspecfit.templates.sample import read_parent_sample, stacking_bins sns, _ = plot_style() cmap = plt.cm.get_cmap('RdYlBu') mincnt = 1 phot, spec, meta = read_parent_sample(samplefile) bins = stacking_bins(targetclass, verbose=True) def bgs_obs(phot, png=None): robslim = (15, 21.0) grobslim = (-0.2, 2.5) rzobslim = (-0.5, 1.5) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5), sharey=True) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) hb = ax2.hexbin(phot['RMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((robslim, grobslim))) ax2.set_xlabel(r'$r_{\rm obs}$') ax2.set_ylim(grobslim) ax2.set_xlim(robslim) cax = fig.add_axes([0.88, 0.12, 0.02, 0.83]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, cax=cax, format=formatter, label='Number of Galaxies') for aa in (ax1, ax2): aa.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.85, bottom=0.19, wspace=0.07) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def bgs_rest(phot, meta, bins=None, png=None): zlim = (0.0, 0.6) Mrlim = (-16, -25) grlim = (-0.2, 1.2) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(meta['Z'], phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, Mrlim))) ax1.set_ylim(Mrlim) ax1.set_xlim(zlim) ax1.set_xlabel('Redshift') ax1.set_ylabel(r'$M_{0.0r}$') #ax1.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0] [ax1.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['ABSMAGMIN'])] ax2.hexbin(meta['Z'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, grlim))) ax2.set_xlim(zlim) ax2.set_ylim(grlim) ax2.set_xlabel('Redshift') ax2.set_ylabel(r'$^{0.0}(g - r)$')#, labelpad=-10) #ax2.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) #ax2.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['COLORMAX'][0]-bins['COLORMIN'][0] [ax2.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['COLORMIN'])] hb = ax3.hexbin(phot['ABSMAG_R'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((Mrlim, grlim))) ax3.set_xlabel(r'$M_{0.0r}$') ax3.set_ylabel(r'$^{0.0}(g - r)$')#, labelpad=-10) ax3.set_xlim(Mrlim) ax3.set_ylim(grlim) #ax3.yaxis.set_major_locator(ticker.MultipleLocator(0.5)) if bins: dx, dy = bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0], bins['COLORMAX'][0]-bins['COLORMIN'][0] [ax3.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ABSMAGMIN'], bins['COLORMIN'])] ax4.axis('off') cax = fig.add_axes([0.49, 0.12, 0.02, 0.36]) #cax = fig.add_axes([0.54, 0.4, 0.35, 0.03]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, format=formatter, label='Number of Galaxies', cax=cax)#, orientation='horizontal') for aa in (ax1, ax2, ax3): aa.grid(True) plt.subplots_adjust(left=0.1, top=0.95, wspace=0.3, hspace=0.3, right=0.88, bottom=0.13) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def elg_obs(phot, png=None): gobslim = (19.5, 24.5) grobslim = (-1.2, 1.2) rzobslim = (-1.5, 2.2) fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5), sharey=True) ax1.hexbin(phot['RMAG']-phot['ZMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((rzobslim, grobslim))) ax1.set_xlabel(r'$(r - z)_{\rm obs}$') ax1.set_ylabel(r'$(g - r)_{\rm obs}$') ax1.set_xlim(rzobslim) ax1.set_ylim(grobslim) hb = ax2.hexbin(phot['GMAG'], phot['GMAG']-phot['RMAG'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((gobslim, grobslim))) ax2.set_xlabel(r'$g_{\rm obs}$') ax2.set_ylim(grobslim) ax2.set_xlim(gobslim) cax = fig.add_axes([0.88, 0.12, 0.02, 0.83]) formatter = ticker.LogFormatter(10, labelOnlyBase=False) fig.colorbar(hb, cax=cax, format=formatter, label='Number of Galaxies') for aa in (ax1, ax2): aa.grid(True) plt.subplots_adjust(left=0.12, top=0.95, right=0.85, bottom=0.19, wspace=0.07) if png: log.info('Writing {}'.format(png)) fig.savefig(png) plt.close() def elg_rest(phot, meta, bins=None, png=None): zlim = (0.5, 1.6) Mglim = (-18, -25) grlim = (-0.5, 1.0) fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(14, 10)) ax1.hexbin(meta['Z'], phot['ABSMAG_G'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=np.hstack((zlim, Mglim))) ax1.set_ylim(Mglim) ax1.set_xlim(zlim) ax1.set_xlabel('Redshift') ax1.set_ylabel(r'$M_{0.0g}$') ax1.xaxis.set_major_locator(ticker.MultipleLocator(0.2)) if bins: dx, dy = bins['ZOBJMAX'][0]-bins['ZOBJMIN'][0], bins['ABSMAGMAX'][0]-bins['ABSMAGMIN'][0] [ax1.add_patch(Rectangle((xx, yy), dx, dy, facecolor='none', edgecolor='k')) for xx, yy in zip(bins['ZOBJMIN'], bins['ABSMAGMIN'])] ax2.hexbin(meta['Z'], phot['ABSMAG_G']-phot['ABSMAG_R'], mincnt=mincnt, bins='log', cmap=cmap, #C=cat['weight'], reduce_C_function=np.sum, extent=
np.hstack((zlim, grlim))
numpy.hstack
from __future__ import print_function import numpy as np import os import pickle as pk import pyfftw from lensit.sims.sims_generic import hash_check from lensit.misc.misc_utils import npy_hash, Freq from lensit.misc.rfft2_utils import udgrade_rfft2, supersample from lensit.pbs import pbs class ell_mat: """Library helping with flat-sky patch discretization and harmonic mode structure. This handles Fourier mode structure on the flat sky, at the given resolution and size of specified rectangular box. Args: lib_dir: various things might be cached there (unlens *cache* is set to 0, in which case only a hashdict is put there at instantiation) shape(2-tuple): pair of int defining the number of pixels on each side of the box lsides(2-tuple): physical size (in radians) of the box sides cache(optional): if non-zero, a bunch of matrices might be cached to speed up some calculations. """ def __init__(self, lib_dir, shape, lsides, cache=1): assert len(shape) == 2 and len(lsides) == 2 assert shape[0] % 2 == 0 and shape[1] % 2 == 0 assert shape[0] < 2 ** 16 and shape[1] < 2 ** 16 self.shape = tuple(shape) self.rshape = (shape[0], shape[1] // 2 + 1) self.lsides = tuple(lsides) self.lib_dir = lib_dir self.mmap_mode = None self.cache=cache fn_hash = os.path.join(lib_dir, "ellmat_hash.pk") if pbs.rank == 0 and self.cache > 0: if not os.path.exists(lib_dir): os.makedirs(lib_dir) if not os.path.exists(fn_hash): pk.dump(self.hash_dict(), open(fn_hash, 'wb'), protocol=2) pbs.barrier() if self.cache > 0: hash_check(pk.load(open(fn_hash, 'rb')), self.hash_dict()) if pbs.rank == 0 and self.cache > 0 and not os.path.exists(os.path.join(self.lib_dir, 'ellmat.npy')): print('ell_mat:caching ells in ' + os.path.join(self.lib_dir, 'ellmat.npy')) np.save(os.path.join(self.lib_dir, 'ellmat.npy'), self._build_ellmat()) pbs.barrier() self.ellmax = int(self._get_ellmax()) self._ell_counts = self._build_ell_counts() self._nz_counts = self._ell_counts.nonzero() def __eq__(self, other): return self.shape == other.shape and self.lsides == self.lsides def _build_ellmat(self): kmin = 2. * np.pi / np.array(self.lsides) ky2 = Freq(np.arange(self.shape[0]), self.shape[0]) ** 2 * kmin[0] ** 2 kx2 = Freq(np.arange(self.rshape[1]), self.shape[1]) ** 2 * kmin[1] ** 2 ones = np.ones(np.max(self.shape)) return self.k2ell(np.sqrt(np.outer(ky2, ones[0:self.rshape[1]]) + np.outer(ones[0:self.rshape[0]], kx2))) def hash_dict(self): return {'shape': self.shape, 'lsides': self.lsides} @staticmethod def k2ell(k): r"""Mapping of 2d-frequency :math:`k` to multipole :math:`\ell` :math:`\ell = \rm{int}\left(|k| - \frac 12 \right)` """ ret = np.uint16(np.round(k - 0.5) + 0.5 * ((k - 0.5) < 0)) return ret def __call__(self, *args, **kwargs): return self.get_ellmat(*args, **kwargs) def __getitem__(self, item): return self.get_ellmat()[item] def get_pixwinmat(self): r"""Pixel window function rfft array :math:`\sin(k_x l_{\rm cell, x} / 2) \sin (k_y l_{\rm cell, y} / 2 )` """ ky = (np.pi/self.shape[0]) * Freq(np.arange(self.shape[0]), self.shape[0]) ky[self.shape[0] // 2:] *= -1. kx = (np.pi/self.shape[1]) * Freq(np.arange(self.rshape[1]), self.shape[1]) rety = np.sin(ky) rety[1:] /= ky[1:];rety[0] = 1. retx =
np.sin(kx)
numpy.sin
#!/usr/bin/env python3 # # Evolutionary Algorithms import os import time import numpy as np import matplotlib.pyplot as plt import pandas as pd def check_dir(directory): """ :param directory: path to the directory """ os.makedirs(directory, exist_ok=True) def sphere_test(data): """ :param data: :return: """ f_x = np.sum(np.square(data), axis=-1) return f_x def rastrigin_test(data, A=10): """ :param data: :param A: :return: """ n = data.shape[1] cos = np.cos(2 * np.pi * data) e1 = np.square(data) - np.multiply(A, cos) e2 = np.sum(e1, axis=-1) return np.sum([A * n, e2]) def plot_2d_contour(obj_function): """ :param obj_function: """ x = np.linspace(-5, 5, 100) y = np.linspace(-5, 5, 100) X, Y = np.meshgrid(x, y) data = np.dstack((X, Y)) S = obj_function(data) plt.contour(X, Y, S) def plot_fitness(out_dir, name, algo_name, x, y1, y2, title): """ (d) For each test function, plot the best and the worse fitness for each generation (averaged over 3 runs). :param name: :param x: :param y1: :param y2: :param title: """ plt.figure() plt.grid() # Let x-axis be the generations and y-axis be the fitness values. plt.plot(x, y1, label='avg_' + name.lower() + '_max') plt.plot(x, y2, label='avg_' + name.lower() + '_min') plt.xlabel('generations', fontsize=11) plt.ylabel('fitness values', fontsize=11) plt.gca().set_ylim(bottom=-70) plt.annotate(round(y1[-1], 2), xy=(x[-1], y1[-1]), xycoords='data', xytext=(-40, 15), size=10, textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=10"), ) plt.annotate(round(y2[-1], 2), xy=(x[-1], y2[-1]), xycoords='data', xytext=(-40, 15), textcoords='offset points', arrowprops=dict(arrowstyle="->", connectionstyle="angle,angleA=0,angleB=90,rad=10"), ) plt.legend() plt.title(algo_name + '\n' + title, weight='bold', fontsize=12) plt.savefig(out_dir + 'fitness.pdf') plt.close() def plot_generation(out_dir, name, i, iteration, min, obj_fun, sample): """ :param i: :param iteration: :param min: :param obj_fun: :param sample: :return: """ if i % (iteration / 10) == 0: plt.figure(1) plt.clf() plot_2d_contour(obj_fun) plt.plot(sample[:, 0], sample[:, 1], 'ko') plt.xlim([-5, 5]) plt.ylim([-5, 5]) plt.title(name.upper() + '\ngeneration: ' + str(i + 1) + '\nmin: ' + str(min[i])) # plt.pause(0.1) plt.savefig(out_dir + name + '-generation-contour-' + str(i) + '.pdf') plt.close() def cem(obj_fun, dim_domain, population_size, elite_set_ratio, learning_rate, iteration, out_dir, name, plot_generations): """ :param dim_domain: :param population_size: :param elite_set_ratio: :param obj_fun: :param iter: :return mean: """ # Initialise parameters # Note that you can uniformly sample the initial population parameters as long as they are reasonably far from # the global optimum. mean = np.random.uniform(-5, 5, dim_domain) variance = np.random.uniform(4, 5, dim_domain) max = np.zeros(iteration) min = np.zeros(iteration) for i in range(iteration): # Obtain n sample from a normal distribution sample = np.random.normal(mean, variance, [population_size, dim_domain]) # Evaluate objective function on an objective function fitness = obj_fun(sample) min[i] = np.min(fitness) max[i] = np.max(fitness) # Sort sample by objective function values in descending order idx = np.argsort(fitness) fittest = sample[idx] # Elite set p =
np.rint(population_size * elite_set_ratio)
numpy.rint
import numpy as np from MagniPy.lensdata import Data import subprocess import shutil import scipy.ndimage.filters as sfilt import itertools from copy import deepcopy def dr(x1,x2,y1,y2): return np.sqrt((x1-x2)**2+(y1-y2)**2) def snap_to_bins(data, xbin_centers, dx, ybin_centers, dy, ranges): new_datax = deepcopy(data[:, 0]) new_datay = deepcopy(data[:, 1]) new_datax[np.where(new_datax <= ranges[0][0])] = xbin_centers[0] new_datax[np.where(new_datax >= ranges[0][1])] = xbin_centers[-1] new_datay[np.where(new_datay <= ranges[1][0])] = ybin_centers[0] new_datay[np.where(new_datay >= ranges[1][1])] = ybin_centers[-1] new_data = None xx, yy = np.meshgrid(xbin_centers, ybin_centers) coords = zip(np.round(xx.ravel(), 4), np.round(yy.ravel(), 4)) for i, (cenx, ceny) in enumerate(coords): subx = np.absolute(new_datax - cenx) * dx ** -1 suby = np.absolute(new_datay - ceny) * dy ** -1 inds = np.where(np.logical_and(subx < 1, suby < 1))[0] if len(inds) > 0: new_array = np.column_stack((np.array([cenx] * len(inds)), np.array([ceny] * len(inds)))) if new_data is None: new_data = deepcopy(new_array) else: new_data = np.vstack((new_data, new_array)) return new_data def approx_theta_E(ximg,yimg): dis = [] xinds,yinds = [0,0,0,1,1,2],[1,2,3,2,3,3] for (i,j) in zip(xinds,yinds): dx,dy = ximg[i] - ximg[j], yimg[i] - yimg[j] dr = (dx**2+dy**2)**0.5 dis.append(dr) dis = np.array(dis) greatest = np.argmax(dis) dr_greatest = dis[greatest] dis[greatest] = 0 second_greatest = np.argmax(dis) dr_second = dis[second_greatest] return 0.5*(dr_greatest*dr_second)**0.5 def min_img_sep_ranked(ximg, yimg): ximg, yimg = np.array(ximg), np.array(yimg) d1 = dr(ximg[0], ximg[1:], yimg[0], yimg[1:]) d2 = dr(ximg[1], [ximg[0], ximg[2], ximg[3]], yimg[1], [yimg[0], yimg[2], yimg[3]]) d3 = dr(ximg[2], [ximg[0], ximg[1], ximg[3]], yimg[2], [yimg[0], yimg[1], yimg[3]]) d4 = dr(ximg[3], [ximg[0], ximg[1], ximg[2]], yimg[3], [yimg[0], yimg[1], yimg[2]]) idx1 = np.argmin(d1) idx2 = np.argmin(d2) idx3 = np.argmin(d3) idx4 = np.argmin(d4) x_2, x_3, x_4 = [ximg[0], ximg[2], ximg[3]], [ximg[0], ximg[1], ximg[3]], [ximg[0], ximg[1], ximg[2]] y_2, y_3, y_4 = [yimg[0], yimg[2], yimg[3]], [yimg[0], yimg[1], yimg[3]], [yimg[0], yimg[1], yimg[2]] theta1 = np.arctan((yimg[1:][idx1] - yimg[0])/(ximg[1:][idx1] - ximg[0])) theta2 = np.arctan((y_2[idx2] - yimg[1]) / (x_2[idx2] - ximg[1])) theta3 = np.arctan((y_3[idx3] - yimg[2]) / (x_3[idx3] - ximg[2])) theta4 = np.arctan((y_4[idx4] - yimg[3]) / (x_4[idx4] - ximg[3])) return np.array([np.min(d1), np.min(d2), np.min(d3), np.min(d4)]), np.array([theta1, theta2, theta3, theta4]) def min_img_sep(ximg,yimg): assert len(ximg) == len(yimg) dr = [] if len(ximg) == 1: return 1 elif len(ximg) == 0: return 1 try: for i in range(0,int(len(ximg)-1)): for j in range(i+1,int(len(ximg))): dx = ximg[i] - ximg[j] dy = yimg[i] - yimg[j] dr.append((dx**2 + dy**2)**0.5) return min(dr) except: print('problem with the fit...') return 1 def sort_image_index(ximg,yimg,xref,yref): assert len(xref) == len(ximg) x_self = np.array(list(itertools.permutations(ximg))) y_self = np.array(list(itertools.permutations(yimg))) indexes = [0, 1, 2, 3] index_iterations = list(itertools.permutations(indexes)) delta_r = [] for i in range(0, int(len(x_self))): dr = 0 for j in range(0, int(len(x_self[0]))): dr += (x_self[i][j] - xref[j]) ** 2 + (y_self[i][j] - yref[j]) ** 2 delta_r.append(dr ** .5) min_indexes = np.array(index_iterations[np.argmin(delta_r)]) return min_indexes def coordinates_inbox(box_dx,box_dy,centered_x,centered_y): return np.logical_and(np.logical_and(-0.5*box_dx < centered_x, centered_x < 0.5*box_dx), np.logical_and(-0.5*box_dy < centered_y, centered_y < 0.5*box_dy)) def confidence_interval(percentile,data): data=np.array(data) data.sort() L = len(data) counter = 0 while True: value = data[counter] if counter>=L*percentile: break counter+=1 return value def quick_confidence(centers, heights, percentile): total = np.sum(heights) summ, index = 0, 0 while summ < total * percentile: summ += heights[index] index += 1 return centers[index-1] def read_data(filename='',N=None): with open(filename,'r') as f: lines = f.readlines() dsets = [] for line in lines: line = line.split(' ') n = int(line[0]) try: srcx,srcy = float(line[1]),float(line[2]) except: srcx,srcy = None,None x1,x2,x3,x4,y1,y2,y3,y4 = float(line[3]),float(line[7]),float(line[11]),float(line[15]),float(line[4]),\ float(line[8]),float(line[12]),float(line[16]) m1,m2,m3,m4 = float(line[5]),float(line[9]),float(line[13]),float(line[17]) t1,t2,t3,t4 = float(line[6]),float(line[10]),float(line[14]),float(line[18]) dsets.append(Data(x=[x1,x2,x3,x4],y=[y1,y2,y3,y4],m=[m1,m2,m3,m4], t=[t1,t2,t3,t4],source=[srcx,srcy])) if N is not None and len(dsets)>=N: break return dsets def write_fluxes(filename='',fluxes = [], mode='append',summed_in_quad=True): if summed_in_quad: fluxes = np.squeeze(fluxes) with open(filename,'a') as f: if isinstance(fluxes,float): f.write(str(fluxes)+'\n') else: for val in fluxes: f.write(str(val)+'\n') return fluxes = np.array(fluxes) if mode == 'append': m = 'a' else: m = 'w' if fluxes.ndim == 1: with open(filename, m) as f: for val in fluxes: f.write(str(val) + ' ') f.write('\n') else: N = int(np.shape(fluxes)[0]) with open(filename,m) as f: for n in range(0,N): for val in fluxes[n,:]: f.write(str(val)+' ') f.write('\n') def write_data(filename='',data_list=[],mode='append'): def single_line(dset=classmethod): lines = '' lines += str(dset.nimg)+' '+str(dset.srcx)+' '+str(dset.srcy)+' ' for i in range(0,int(dset.nimg)): for value in [dset.x[i],dset.y[i],dset.m[i],dset.t[i]]: if value is None: lines += '0 ' else: lines += str(value)+' ' return lines+'\n' if mode=='append': with open(filename,'a') as f: for dataset in data_list: f.write(single_line(dataset)) else: with open(filename,'w') as f: for dataset in data_list: f.write(single_line(dataset)) def integrate_profile(profname,limit,inspheres=False,**kwargs): if profname=='nfw': rs=kwargs['rs'] ks=kwargs['ks'] n=limit*rs**-1 if inspheres: rho0 = 86802621404*ks*rs**-1 n*=rs r200 = kwargs['c']*rs return 4*np.pi*rho0*rs**3*(np.log(1+r200*n**-1)- n*(n+r200)**-1) else: return 2*np.pi*rs**2*ks*(np.log(.25*n**2)+2*np.arctanh(np.sqrt(1-n**2))*(np.sqrt(1-n**2))**-1) elif profname=='SIE': b = kwargs['SIE_Rein'] return np.pi*limit*b def rotate(xcoords,ycoords,angle): return xcoords*np.cos(angle)+ycoords*np.sin(angle),-xcoords*np.sin(angle)+ycoords*np.cos(angle) def img_sept(x,y): return np.sort(np.array([dr(x[0],x[1],y[0],y[1]),dr(x[0],x[2],y[0],y[2]),dr(x[0],x[3],y[0],y[3]), dr(x[1],x[2],y[1],y[2]),dr(x[1],x[3],y[1],y[3]),dr(x[2],x[3],y[2],y[3])])) def identify(x,y,RE): separations = img_sept(x,y) if separations[0] > RE: return 0 if separations[1] <= 1.15*RE: return 2 elif separations[0] <= 0.85*RE: return 1 else: return 0 def read_dat_file(fname): x_srcSIE, y_srcSIE = [], [] with open(fname, 'r') as f: nextline = False dosrc = False doimg = False count = 0 readcount = 0 for line in f: row = line.split(" ") #print(row,fname) #row_split = filter(None, row) row_split = list(filter(None, row)) if row_split[0] == 'alpha': macromodel = row_split continue if row_split[0] == 'Source': nextline = True dosrc = True src = [] continue if nextline and dosrc: for item in row: try: src.append(float(item)) except ValueError: continue x_srcSIE.append(src[0]) y_srcSIE.append(src[1]) nextline = False dosrc = False continue if row_split[0] == 'images:\n': nextline = True doimg = True count = 0 x, y, f, t = [], [], [], [] continue if nextline and doimg: count += 1 numbers = [] for item in row: try: numbers.append(float(item)) except ValueError: continue x.append(numbers[4]) y.append(numbers[5]) f.append(numbers[6]) t.append(numbers[7]) if int(count) == 4: t = np.array(t) if min(t) < 0: t += -1 * min(t) xpos = x ypos = y fr = np.array(f) tdel = np.array(t) return xpos, ypos, fr, t, macromodel, [x_srcSIE[0], y_srcSIE[0]] def read_gravlens_out(fnames): vector = [] if isinstance(fnames,list): for fname in fnames: with open(fname, 'r') as f: lines = f.readlines() f.close() imgline = lines[1].split(' ') numimg = int(imgline[1]) xpos, ypos, mag, tdelay = [], [], [], [] for i in range(0, numimg): data = lines[2 + i].split(' ') data = filter(None, data) xpos.append(float(data[0])) ypos.append(float(data[1])) mag.append(np.absolute(float(data[2]))) tdelay.append(float(data[3])) vector.append([np.array(xpos), np.array(ypos), np.array(mag), np.array(tdelay), numimg]) else: with open(fnames, 'r') as f: lines = f.readlines() f.close() imgline = lines[1].split(' ') numimg = int(imgline[1]) xpos, ypos, mag, tdelay = [], [], [], [] for i in range(0, numimg): data = lines[2 + i].split(' ') data = filter(None, data) xpos.append(float(data[0])) ypos.append(float(data[1])) mag.append(np.absolute(float(data[2]))) tdelay.append(float(data[3])) vector.append([np.array(xpos), np.array(ypos), np.array(mag), np.array(tdelay), numimg]) return vector def read_chain_out(fname, N=1): nimg, srcx, srcy, x1, y1, m1, t1, x2, y2, m2, t2, x3, y3, m3, t3, x4, y4, m4, t4 = np.loadtxt(fname, unpack=True) return nimg, [srcx, srcy], [x1, x2, x3, x4], [y1, y2, y3, y4], [m1, m2, m3, m4], [t1, t2, t3, t4] def polar_to_cart(ellip, theta, polar_to_cart = True): xcomp = ellip*np.cos(2*theta*np.pi*180**-1) ycomp = ellip*np.sin(2*theta*np.pi*180**-1) return xcomp,ycomp def cart_to_polar(e1, e2, polar_to_cart = True): if e1==0: return 0,0 else: return np.sqrt(e1**2+e2**2),0.5*np.arctan2(e2,e1)*180*np.pi**-1 def array2image(array, nx=0, ny=0): """ returns the information contained in a 1d array into an n*n 2d array (only works when lenght of array is n**2) :param array: image values :type array: array of size n**2 :returns: 2d array :raises: AttributeError, KeyError """ if nx == 0 or ny == 0: n = int(np.sqrt(len(array))) if n**2 != len(array): raise ValueError("lenght of input array given as %s is not square of integer number!" %(len(array))) nx, ny = n, n image = array.reshape(int(nx), int(ny)) return image def image2array(image): """ returns the information contained in a 2d array into an n*n 1d array :param array: image values :type array: array of size (n,n) :returns: 1d array :raises: AttributeError, KeyError """ nx, ny = image.shape # find the size of the array imgh = np.reshape(image, nx*ny) # change the shape to be 1d return imgh def make_grid(numPix, deltapix, subgrid_res=1, left_lower=False): """ :param numPix: number of pixels per axis :param deltapix: pixel size :param subgrid_res: sub-pixel resolution (default=1) :return: x, y position information in two 1d arrays """ numPix_eff = numPix*subgrid_res deltapix_eff = deltapix/float(subgrid_res) a = np.arange(numPix_eff) matrix = np.dstack(np.meshgrid(a, a)).reshape(-1, 2) if left_lower is True: x_grid = matrix[:, 0]*deltapix y_grid = matrix[:, 1]*deltapix else: x_grid = (matrix[:, 0] - (numPix_eff-1)/2.)*deltapix_eff y_grid = (matrix[:, 1] - (numPix_eff-1)/2.)*deltapix_eff shift = (subgrid_res-1)/(2.*subgrid_res)*deltapix return array2image(x_grid - shift), array2image(y_grid - shift) def filter_by_position(lens_components, x_filter=None, y_filter=None, mindis_front=0.5, mindis_back=0.3, log_masscut_low=7, zmain=None, cosmology=None): """ :param xsub: sub x coords :param ysub: sub y coords :param x_filter: img x coords :param y_filter: img y coords :param mindis: max 2d distance :return: filtered subhalos """ masscut_low = 10**log_masscut_low keep_index = [] for index, deflector in enumerate(lens_components): if not deflector.is_subhalo: keep_index.append(index) continue if zmain >= deflector.redshift: """ for LOS halos; keep if it's rescaled position is near an image """ scale = np.ones_like(x_filter) _mindis = mindis_front else: #zmain < deflector.redshift: """ for halos behind the main lens """ beta = cosmology.beta(deflector.redshift,zmain,cosmology.zsrc) scale = np.ones_like(x_filter)*(1 - beta) _mindis = mindis_back #scale_mindis = 0.5 x, y = deflector.lenstronomy_args['center_x'], deflector.lenstronomy_args['center_y'] for i in range(0, len(x_filter)): dr = ((x - x_filter[i]*scale[i]) ** 2 + (y - y_filter[i]*scale[i]) ** 2) ** .5 if dr <= _mindis or deflector.other_args['mass'] >= masscut_low: keep_index.append(index) break newcomponents = [lens_components[i] for i in keep_index] new_redshift_list = [lens_components[i].redshift for i in keep_index] return newcomponents, new_redshift_list def copy_directory(dirname,location): shutil.copy(dirname,location) def create_directory(dirname=''): proc = subprocess.Popen(['mkdir', dirname]) proc.wait() def delete_dir(dirname=''): shutil.rmtree(dirname) def rebin_image(image,factor): if np.shape(image)[0]%factor != 0: raise ValueError('size of image must be divisible by factor') def rebin(a, shape): sh = shape[0], a.shape[0] // shape[0], shape[1], a.shape[1] // shape[1] return a.reshape(sh).mean(-1).mean(1) size = int(np.shape(image)[0]*factor**-1) return rebin(image,[size,size]) def convolve_image(image,kernel='Gaussian',scale=None): if kernel == 'Gaussian': grid = sfilt.gaussian_filter(image, scale * (2.355) ** -1, mode='constant', cval=0) elif kernel == 'HST': grid = sfilt.gaussian_filter(image, scale * (2.355) ** -1, mode='constant', cval=0) return grid def nfw_kr(X): def f(x): if isinstance(x, int) or isinstance(x, float): if x > 1: return np.arctan((x ** 2 - 1) ** .5) * (x ** 2 - 1) ** -.5 elif x < 1: return np.arctanh((1 - x ** 2) ** .5) * (1 - x ** 2) ** -.5 else: return 1 else: inds1 =
np.where(x < 1)
numpy.where
import pytest from pytest import approx import numpy as np from sklearn.metrics.pairwise import rbf_kernel from simforest.distance import rbf, sqeuclidean from simforest._distance import rbf_sequential as crbf from scipy.spatial.distance import sqeuclidean as refsqeuclidean def test_rbf(): x1 = np.array([1, 0, 0]) x2 = np.array([1, 0, 0]) x3 = np.array([1, 0, 0]) # rbf(x, q) - rbf(x, p) rbf1 = rbf(x1.reshape(1, -1), x2, x3) rbf2 = rbf_kernel(np.vstack([x1, x3]))[1][0] - rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1[0] == approx(rbf2) x1 = np.array([1, 1, 1]) x2 = np.array([1, 2, 2]) x3 = np.array([3, 2, 1]) rbf1 = rbf(x1.reshape(1, -1), x2, x3) rbf2 = rbf_kernel(np.vstack([x1, x3]))[1][0] - rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1[0] == approx(rbf2) x1 = np.array([0.1, 0.01, 1.5]) x2 = np.array([2.1, 0.82, 2.15]) x2 = np.array([5.1, 2.82, 3.15]) rbf1 = rbf(x1.reshape(1, -1), x2, x3) rbf2 = rbf_kernel(np.vstack([x1, x3]))[1][0] - rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1[0] == approx(rbf2) x1 = np.array([0.01, 0.001, 0.000015]) x2 = np.array([0.21, 0.082, 2.15]) x2 = np.array([7.21, 7.082, 1.15]) rbf1 = rbf(x1.reshape(1, -1), x2, x3) rbf2 = rbf_kernel(np.vstack([x1, x3]))[1][0] - rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1[0] == approx(rbf2) def test_crbf(): x1 = np.array([1, 0, 0], dtype=np.float32) x2 = np.array([1, 0, 0], dtype=np.float32) rbf1 = crbf(x1, x2) rbf2 = rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1 == approx(rbf2) x1 = np.array([1, 1, 1], dtype=np.float32) x2 = np.array([1, 2, 2], dtype=np.float32) rbf1 = crbf(x1, x2) rbf2 = rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1 == approx(rbf2) x1 = np.array([0.1, 0.01, 1.5], dtype=np.float32) x2 = np.array([2.1, 0.82, 2.15], dtype=np.float32) rbf1 = crbf(x1, x2) rbf2 = rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1 == approx(rbf2) x1 = np.array([0.01, 0.001, 0.000015], dtype=np.float32) x2 = np.array([0.21, 0.082, 2.15], dtype=np.float32) rbf1 = crbf(x1, x2) rbf2 = rbf_kernel(np.vstack([x1, x2]))[1][0] assert rbf1 == approx(rbf2) def test_squclidean(): """In my implementation, squared euclidean distance - base projection is calculated as dot(X, p - q). This way, I don't compute the projections exactly, but the order of projected points doesn't change. During this test, I make sure that 2 * dot(X, p - q) == sqeuclidean(X, q) - sqeuclidean(X, p). """ x = np.array([1, 0, 0]) p = np.array([1, 0, 0]) q = np.array([1, 0, 0]) res1 = 2 * sqeuclidean(x.reshape(1, -1), p, q) + np.dot(q, q) - np.dot(p, p) res2 = refsqeuclidean(x, q) - refsqeuclidean(x, p) assert res1[0] == approx(res2) x = np.array([1, 1, 1]) p = np.array([1, 2, 2]) q = np.array([3, 2, 1]) res1 = 2 * sqeuclidean(x.reshape(1, -1), p, q) + np.dot(q, q) - np.dot(p, p) res2 = refsqeuclidean(x, q) - refsqeuclidean(x, p) assert res1[0] == approx(res2) x = np.array([0.1, 0.01, 1.5]) p = np.array([2.1, 0.82, 2.15]) q = np.array([5.1, 2.82, 3.15]) res1 = 2 * sqeuclidean(x.reshape(1, -1), p, q) + np.dot(q, q) - np.dot(p, p) res2 = refsqeuclidean(x, q) - refsqeuclidean(x, p) assert res1[0] == approx(res2) x = np.array([0.01, 0.001, 0.000015]) p = np.array([0.21, 0.082, 2.15]) q = np.array([7.21, 7.082, 1.15]) res1 = 2 * sqeuclidean(x.reshape(1, -1), p, q) + np.dot(q, q) -
np.dot(p, p)
numpy.dot
# -*- coding: utf-8 -*- """ pipeline data pipeline from image root folder to processed tensors of train test batches for images and labels """ import os import functools import collections import numpy as np import pandas as pd import tensorflow as tf from sklearn import model_selection, preprocessing def folder_traverse(root_dir, ext=None): """recusively map all image files from root directory""" if not os.path.exists(root_dir): raise RuntimeError('{0} doesn\'t exist.'.format(root_dir)) file_structure = collections.defaultdict(list) for item in os.scandir(root_dir): if item.is_dir(): file_structure.update(folder_traverse(item.path, ext)) elif item.is_file() and item.name.endswith(ext): file_structure[os.path.dirname(item.path)].append(item.name) return file_structure def resample(feature_index, labels, balance='auto'): """use oversampling to balance class, after split of training set.""" from imblearn.over_sampling import RandomOverSampler ros = RandomOverSampler(ratio=balance) feature_index = np.array(feature_index).reshape(-1, 1) resampled_index, _ = ros.fit_sample(feature_index, labels) resampled_index = [i for nested in resampled_index for i in nested] return resampled_index def generate_data_skeleton(root_dir, ext=None, valid_size=None, oversample=False): """turn file structure into human-readable pandas dataframe""" file_structure = folder_traverse(root_dir, ext=ext) reversed_fs = {k + '/' + f: os.path.splitext(f)[0] for k, v in file_structure.items() for f in v} # find the first csv and load it in memory and remove it from dictionary for key in reversed_fs: if key.endswith('.csv'): df_csv = pd.read_csv(key, dtype=np.str) reversed_fs.pop(key) break df = pd.DataFrame.from_dict(data=reversed_fs, orient='index').reset_index() df.rename(columns={'index': 'path_to_file', 0: 'filename'}, inplace=True) df.reset_index(inplace=True, drop=True) df = df_csv.merge(right=df, how='left', left_on='image_name', right_on='filename').dropna(axis=0) discrete_labels = [string.split(' ') for string in df['tags'].tolist()] mlb = preprocessing.MultiLabelBinarizer() mlb.fit(discrete_labels) X = np.array(df['path_to_file']) y = mlb.transform(discrete_labels) X_codified = df['path_to_file'].index y_codified = pd.Categorical(df['tags']).codes if valid_size: print('tags one-hot encoded: \n{0}'.format(mlb.classes_)) X_train_codified, X_valid_codified, y_train_codified,\ y_valid_codified = model_selection.train_test_split( X_codified, y_codified, test_size=valid_size) if oversample: resampled_train_idx = resample(X_train_codified, y_train_codified) resampled_valid_idx = resample(X_valid_codified, y_valid_codified) X_train, y_train = X[resampled_train_idx], y[resampled_train_idx] X_valid, y_valid = X[resampled_valid_idx], y[resampled_valid_idx] print('To balance classes, training data has been oversampled' ' to: {0}'.format(len(resampled_train_idx) + len(resampled_valid_idx))) elif not oversample: X_train, y_train = X[X_train_codified], y[X_train_codified] X_valid, y_valid = X[X_valid_codified], y[X_valid_codified] print('training: {0} samples; validation: {1} samples.'.format( X_train.shape[0], X_valid.shape[0])) return X_train, y_train, X_valid, y_valid elif not valid_size: print('test: {0} samples.'.format(X.shape[0])) return X, y def make_queue(paths_to_image, labels, num_epochs=None, shuffle=True): """returns an Ops Tensor with queued image and label pair""" images = tf.convert_to_tensor(paths_to_image, dtype=tf.string) labels = tf.convert_to_tensor(labels, dtype=tf.float32) input_queue = tf.train.slice_input_producer( tensor_list=[images, labels], num_epochs=num_epochs, shuffle=shuffle) return input_queue def decode_transform(input_queue, shape=None, standardize=True, augmentation=None): """a single decode and transform function that applies standardization with mean centralisation.""" # input_queue allows slicing with 0: path_to_image, 1: encoded label label_queue = input_queue[1] image_queue = tf.read_file(input_queue[0]) # !!! decode_jpeg only accepts RGB jpg but not raising error for CMYK original_image = tf.image.decode_jpeg(contents=image_queue, channels=0) # original_image = tf.cast(tf.image.decode_png(contents=image_queue, # channels=0, # dtype=tf.uint16), # tf.int16) # crop larger images to 256*256, this func doesn't 'resize'. cropped_img = tf.image.resize_image_with_crop_or_pad( image=original_image, target_height=256, target_width=256) # resize cropped images to desired shape img = tf.image.resize_images(images=cropped_img, size=shape[:2]) img.set_shape(shape) if augmentation: img = tf.image.random_flip_up_down(img) img = tf.image.random_flip_left_right(img) img = tf.image.rot90(img, k=
np.random.randint(4)
numpy.random.randint
import warnings from numbers import Number from typing import Iterable, List, Optional, Union import numpy as np from ..C import ( LEN_RGB, LEN_RGBA, RGB, RGB_RGBA, RGBA_ALPHA, RGBA_MAX, RGBA_MIN, RGBA_WHITE, ) from .clust_color import assign_colors_for_list def process_result_list(results, colors=None, legends=None): """ Assign colors and legends to a list of results, check user provided lists. Parameters ---------- results: list or pypesto.Result list of pypesto.Result objects or a single pypesto.Result colors: list, optional list of RGBA colors legends: str or list labels for line plots Returns ------- results: list of pypesto.Result list of pypesto.Result objects colors: list of RGBA One for each element in 'results'. legends: list of str labels for line plots """ # check how many results were passed single_result = False legend_error = False if isinstance(results, list): if len(results) == 1: single_result = True else: single_result = True results = [results] # handle results according to their number if single_result: # assign colors and create list for later handling if colors is None: colors = [colors] else: colors = [np.array(colors)] # create list of legends for later handling if not isinstance(legends, list): legends = [legends] else: # if more than one result is passed, we use one color per result colors = assign_colors_for_list(len(results), colors) # check whether list of legends has the correct length if legends is None: # No legends were passed: create some custom legends legends = [] for i_leg in range(len(results)): legends.append('Result ' + str(i_leg)) else: # legends were passed by user: check length if isinstance(legends, list): if len(legends) != len(results): legend_error = True else: legend_error = True # size of legend list and size of results does not match if legend_error: raise ValueError( 'List of results passed and list of labels do ' 'not have the same length but should. Stopping.' ) return results, colors, legends def process_offset_y( offset_y: Optional[float], scale_y: str, min_val: float ) -> float: """ Compute offset for y-axis, depend on user settings. Parameters ---------- offset_y: value for offsetting the later plotted values, in order to ensure positivity if a semilog-plot is used scale_y: Can be 'lin' or 'log10', specifying whether values should be plotted on linear or on log10-scale min_val: Smallest value to be plotted Returns ------- offset_y: float value for offsetting the later plotted values, in order to ensure positivity if a semilog-plot is used """ # check whether the offset specified by the user is sufficient if offset_y is not None: if (scale_y == 'log10') and (min_val + offset_y <= 0.0): warnings.warn( "Offset specified by user is insufficient. " "Ignoring specified offset and using " + str(np.abs(min_val) + 1.0) + " instead." ) else: return offset_y else: # check whether scaling is lin or log10 if scale_y == 'lin': # linear scaling doesn't need any offset return 0.0 return 1.0 - min_val def process_y_limits(ax, y_limits): """ Apply user specified limits of y-axis. Parameters ---------- ax: matplotlib.Axes, optional Axes object to use. y_limits: ndarray y_limits, minimum and maximum, for current axes object Returns ------- ax: matplotlib.Axes, optional Axes object to use. """ # apply y-limits, if they were specified by the user if y_limits is not None: y_limits = np.array(y_limits) # check validity of bounds if y_limits.size == 0: y_limits = np.array(ax.get_ylim()) elif y_limits.size == 1: # if the user specified only an upper bound tmp_y_limits = ax.get_ylim() y_limits = [tmp_y_limits[0], y_limits] elif y_limits.size > 1: y_limits = [y_limits[0], y_limits[1]] # check validity of bounds if plotting in log-scale if ax.get_yscale() == 'log' and y_limits[0] <= 0.0: tmp_y_limits = ax.get_ylim() if y_limits[1] <= 0.0: y_limits = tmp_y_limits warnings.warn( "Invalid bounds for plotting in " "log-scale. Using defaults bounds." ) else: y_limits = [tmp_y_limits[0], y_limits[1]] warnings.warn( "Invalid lower bound for plotting in " "log-scale. Using only upper bound." ) # set limits ax.set_ylim(y_limits) else: # No limits passed, but if we have a result list: check the limits ax_limits = np.array(ax.get_ylim()) data_limits = ax.dataLim.ymin, ax.dataLim.ymax # Check if data fits to axes and adapt limits, if necessary if ax_limits[0] > data_limits[0] or ax_limits[1] < data_limits[1]: # Get range of data data_range = data_limits[1] - data_limits[0] if ax.get_yscale() == 'log': data_range = np.log10(data_range) new_limits = ( np.power(10, np.log10(data_limits[0]) - 0.02 * data_range), np.power(10,
np.log10(data_limits[1])
numpy.log10
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @authors: <NAME>, <NAME> """ import numpy as np def parse_geometry(path): """ Parse the input geometry file. """ f = open(path, 'r') lines = f.readlines() f.close() vectors =[] frac_coords = [] cartesian_coords = [] types = [] for i, line in enumerate(lines): if "lattice_vector" in line: ls = line.split() vectors.append([float(ls[1]), float(ls[2]), float(ls[3])]) if "atom_frac" in line: ls = line.split() frac_coords.append([float(ls[1]), float(ls[2]), float(ls[3])]) types.append(str(ls[4])) Cartesian=False elif 'atom ' in line: ls = line.split() cartesian_coords.append([float(ls[1]), float(ls[2]), float(ls[3])]) types.append(str(ls[4])) Cartesian=True else: continue if Cartesian == True: return vectors, cartesian_coords, types, Cartesian else: return vectors, frac_coords, types, Cartesian def parse_homo_lumo(path): """ Parse the indices of the HOMO and LUMO. """ for line in open(path): # Start from k-position if " 0.00000 " in line: words = line.split() n_energy=int(words[0]) break n_HOMO = 4 + 2*(n_energy-1)-1 n_LUMO = 4 + 2*n_energy-1 return n_HOMO, n_LUMO def parse_bands(files, band_id, nend=None): """ Parse the energy bands from the `bandxxxx.out` files. :Parameters: files : list List of band energy files. band_id : int Band index. nend : int | None Ending index of the energy band values. """ band = [] n_bands = len(files) for i_band, filename in enumerate(files): data =
np.loadtxt(filename)
numpy.loadtxt
################################################################################# # Copyright (c) 2018-2021, Texas Instruments Incorporated - http://www.ti.com # All Rights Reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################# # Also includes parts from: https://github.com/pytorch/vision # License: License: https://github.com/pytorch/vision/blob/master/LICENSE # BSD 3-Clause License # # Copyright (c) <NAME> 2016, # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ============================================================================== # Some parts of the code are borrowed from: https://github.com/ansleliu/LightNet # with the following license: # # MIT License # # Copyright (c) 2018 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. """ Reference: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>, “The Cityscapes Dataset for Semantic Urban Scene Understanding,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https://www.cityscapes-dataset.com/ """ import os import numpy as np import cv2 import json from torch.utils import data import sys import warnings from torchvision.edgeailite import xnn ########################################### # config settings def get_config(): dataset_config = xnn.utils.ConfigNode() dataset_config.image_folders = ('leftImg8bit',) dataset_config.input_offsets = None dataset_config.load_segmentation = True dataset_config.load_segmentation_five_class = False return dataset_config ########################################### class CityscapesBaseSegmentationLoader(): """CityscapesLoader: Data is derived from CityScapes, and can be downloaded from here: https://www.cityscapes-dataset.com/downloads/ Many Thanks to @fvisin for the loader repo: https://github.com/fvisin/dataset_loaders/blob/master/dataset_loaders/images/cityscapes.py""" colors = [ [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153],[250, 170, 30], [220, 220, 0],[107, 142, 35], [152, 251, 152], [0, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32], [0, 0, 0]] label_colours = dict(zip(range(19), colors)) void_classes = [0, 1, 2, 3, 4, 5, 6, 9, 10, 14, 15, 16, 18, 29, 30, -1] valid_classes = [7, 8, 11, 12, 13, 17, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 31, 32, 33] # class_names = ['unlabelled', 'road', 'sidewalk', 'building', 'wall', 'fence', # 'pole', 'traffic_light', 'traffic_sign', 'vegetation', 'terrain', # 'sky', 'person', 'rider', 'car', 'truck', 'bus', 'train', # 'motorcycle', 'bicycle'] ignore_index = 255 class_map = dict(zip(valid_classes, range(19))) num_classes_ = 19 class_weights_ = np.array([0.05570516, 0.32337477, 0.08998544, 1.03602707, 1.03413147, 1.68195437, 5.58540548, 3.56563995, 0.12704978, 1., 0.46783719, 1.34551528, 5.29974114, 0.28342531, 0.9396095, 0.81551811, 0.42679146, 3.6399074, 2.78376194], dtype=float) @classmethod def decode_segmap(cls, temp): r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, cls.num_classes_): r[temp == l] = cls.label_colours[l][0] g[temp == l] = cls.label_colours[l][1] b[temp == l] = cls.label_colours[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 return rgb @classmethod def encode_segmap(cls, mask): # Put all void classes to zero for _voidc in cls.void_classes: mask[mask == _voidc] = cls.ignore_index for _validc in cls.valid_classes: mask[mask == _validc] = cls.class_map[_validc] return mask @classmethod def class_weights(cls): return cls.class_weights_ ########################################### class CityscapesBaseSegmentationLoaderFiveClasses(): """CityscapesLoader: Data is derived from CityScapes, and can be downloaded from here: https://www.cityscapes-dataset.com/downloads/ Many Thanks to @fvisin for the loader repo: https://github.com/fvisin/dataset_loaders/blob/master/dataset_loaders/images/cityscapes.py""" colors = [ # [ 0, 0, 0], [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [0, 0, 0]] label_colours = dict(zip(range(5), colors)) void_classes = [-1, 255] valid_classes = [0, 1, 2, 3, 4] # class_names = ['road', 'sky', 'pedestrian', 'vehicle', 'background'] ignore_index = 255 class_map = dict(zip(valid_classes, range(5))) num_classes_ = 5 class_weights_ = np.array([0.22567085, 1.89944273, 5.24032014, 1., 0.13516443], dtype=float) @classmethod def decode_segmap(cls, temp): r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, cls.num_classes_): r[temp == l] = cls.label_colours[l][0] g[temp == l] = cls.label_colours[l][1] b[temp == l] = cls.label_colours[l][2] rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 return rgb @classmethod def encode_segmap(cls, mask): # Put all void classes to zero for _voidc in cls.void_classes: mask[mask == _voidc] = cls.ignore_index for _validc in cls.valid_classes: mask[mask == _validc] = cls.class_map[_validc] return mask @classmethod def class_weights(cls): return cls.class_weights_ ########################################### class CityscapesBaseMotionLoader(): """CityscapesLoader: Data is derived from CityScapes, and can be downloaded from here: https://www.cityscapes-dataset.com/downloads/ Many Thanks to @fvisin for the loader repo: https://github.com/fvisin/dataset_loaders/blob/master/dataset_loaders/images/cityscapes.py""" colors = [ # [ 0, 0, 0], [0, 0, 0], [119, 11, 32]] label_colours = dict(zip(range(2), colors)) void_classes = [] valid_classes = [0, 255] # class_names = ['static', 'moving'] ignore_index = 255 class_map = dict(zip(valid_classes, range(2))) num_classes_ = 2 class_weights_ = np.array([0.05, 0.95], dtype=float) #Calculated weights based on mdeian_frequenncy = [ 0.51520306, 16.94405377] @classmethod def decode_segmap(cls, temp): r = temp.copy() g = temp.copy() b = temp.copy() for l in range(0, cls.num_classes_): r[temp == l] = cls.label_colours[l][0] g[temp == l] = cls.label_colours[l][1] b[temp == l] = cls.label_colours[l][2] # rgb = np.zeros((temp.shape[0], temp.shape[1], 3)) rgb[:, :, 0] = r / 255.0 rgb[:, :, 1] = g / 255.0 rgb[:, :, 2] = b / 255.0 return rgb @classmethod def encode_segmap(cls, mask): for _validc in cls.valid_classes: mask[mask == _validc] = cls.class_map[_validc] # Put all void classes to zero for _voidc in cls.void_classes: mask[mask == _voidc] = cls.ignore_index return mask @classmethod def class_weights(cls): return cls.class_weights_ ########################################### class CityscapesDataLoader(data.Dataset): def __init__(self, dataset_config, root, split="train", gt="gtFine", transforms=None, image_folders=('leftImg8bit',), search_images=False, load_segmentation=True, load_depth=False, load_motion=False, load_flow=False, load_segmentation_five_class=False, inference=False, additional_info=False, input_offsets=None): super().__init__() if split not in ['train', 'val', 'test']: warnings.warn(f'unknown split specified: {split}') # self.root = root self.gt = gt self.split = split self.transforms = transforms self.image_folders = image_folders self.search_images = search_images self.files = {} self.additional_info = additional_info self.load_segmentation = load_segmentation self.load_segmentation_five_class = load_segmentation_five_class self.load_depth = load_depth self.load_motion = load_motion self.load_flow = load_flow self.inference = inference self.input_offsets = input_offsets self.image_suffix = (self.image_folders[-1]+'.png') #'.png' self.image_suffix = self.image_suffix.replace('leftImg8bit_sequence.png', 'leftImg8bit.png') self.segmentation_suffix = self.gt+'_labelIds.png' #'.png' if self.load_segmentation_five_class: self.segmentation_suffix = self.gt+'_labelTrainIds.png' self.disparity_suffix = 'disparity.png' self.motion_suffix = self.gt+'_labelTrainIds_motion.png' #'.png' self.image_base = os.path.join(self.root, image_folders[-1], self.split) self.segmentation_base = os.path.join(self.root, gt, self.split) self.disparity_base = os.path.join(self.root, 'disparity', self.split) self.cameracalib_base = os.path.join(self.root, 'camera', self.split) self.motion_base = os.path.join(self.root, gt, self.split) if self.search_images: self.files = xnn.utils.recursive_glob(rootdir=self.image_base, suffix=self.image_suffix) else: self.files = xnn.utils.recursive_glob(rootdir=self.segmentation_base, suffix=self.segmentation_suffix) # self.files = sorted(self.files) if not self.files: raise Exception("> No files for split=[%s] found in %s" % (split, self.segmentation_base)) # self.image_files = [None] * len(image_folders) for image_idx, image_folder in enumerate(image_folders): image_base = os.path.join(self.root, image_folder, self.split) self.image_files[image_idx] = sorted(xnn.utils.recursive_glob(rootdir=image_base, suffix='.png')) assert len(self.image_files[image_idx]) == len(self.image_files[0]), 'all folders should have same number of files' # def __len__(self): return len(self.files) def __getitem__(self, index): if self.search_images: image_path = self.files[index].rstrip() self.check_file_exists(image_path) segmentation_path = image_path.replace(self.image_base, self.segmentation_base).replace(self.image_suffix, self.segmentation_suffix) else: segmentation_path = self.files[index].rstrip() self.check_file_exists(segmentation_path) image_path = segmentation_path.replace(self.segmentation_base, self.image_base).replace(self.segmentation_suffix, self.image_suffix) # images = [] images_path = [] for image_idx, image_folder in enumerate(self.image_folders): sys.stdout.flush() this_image_path = self.image_files[image_idx][index].rstrip() if image_idx == (len(self.image_folders)-1): assert this_image_path == image_path, 'image file name error' # self.check_file_exists(this_image_path) img = cv2.imread(this_image_path)[:,:,::-1] if self.input_offsets is not None: img = img - self.input_offsets[image_idx] # images.append(img) images_path.append(this_image_path) # targets = [] targets_path = [] if self.load_flow and (not self.inference): flow_zero = np.zeros((images[0].shape[0],images[0].shape[1],2), dtype=np.float32) targets.append(flow_zero) if self.load_depth and (not self.inference): disparity_path = image_path.replace(self.image_base, self.disparity_base).replace(self.image_suffix, self.disparity_suffix) self.check_file_exists(disparity_path) depth = self.depth_loader(disparity_path) targets.append(depth) # if self.load_segmentation and (not self.inference): lbl = cv2.imread(segmentation_path,0) lbl = CityscapesBaseSegmentationLoader.encode_segmap(np.array(lbl, dtype=np.uint8)) targets.append(lbl) targets_path.append(segmentation_path) # elif self.load_segmentation_five_class and (not self.inference): lbl = cv2.imread(segmentation_path,0) lbl = CityscapesBaseSegmentationLoaderFiveClasses.encode_segmap(np.array(lbl, dtype=np.uint8)) targets.append(lbl) targets_path.append(segmentation_path) if self.load_motion and (not self.inference): motion_path = image_path.replace(self.image_base, self.motion_base).replace(self.image_suffix, self.motion_suffix) self.check_file_exists(motion_path) motion = cv2.imread(motion_path,0) motion = CityscapesBaseMotionLoader.encode_segmap(np.array(motion, dtype=np.uint8)) targets.append(motion) # #targets = np.stack(targets, axis=2) if (self.transforms is not None): images, targets = self.transforms(images, targets) # if self.additional_info: return images, targets, images_path, targets_path else: return images, targets # def decode_segmap(self, lbl): if self.load_segmentation: return CityscapesBaseSegmentationLoader.decode_segmap(lbl) elif self.load_segmentation_five_class: return CityscapesBaseSegmentationLoaderFiveClasses.decode_segmap(lbl) else: return CityscapesBaseMotionLoader.decode_segmap(lbl) # def check_file_exists(self, file_name): if not os.path.exists(file_name) or not os.path.isfile(file_name): raise Exception("{} is not a file, can not open with imread.".format(file_name)) # def depth_loader(self, disparity_path): eps = (1e-6) disparity_range = (eps, 255.0) depth_range = (1.0, 255.0) disp = cv2.imread(disparity_path, cv2.IMREAD_UNCHANGED) disp_valid = (disp > 0) # 0 values have to be ignored disp = ((disp - 1.0)/256.0) # convert to depth calib_path = disparity_path.replace(self.disparity_base, self.cameracalib_base).replace(self.disparity_suffix, 'camera.json') with open(calib_path) as fp: cameracalib = json.load(fp) extrinsic = cameracalib['extrinsic'] intrinsic = cameracalib['intrinsic'] focal_len = intrinsic['fx'] proj = (focal_len * extrinsic['baseline']) depth = np.divide(proj, disp, out=np.zeros_like(disp), where=(disp!=0)) d_out =
np.clip(depth, depth_range[0], depth_range[1])
numpy.clip
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.path import Path from matplotlib.spines import Spine from matplotlib.projections.polar import PolarAxes from matplotlib.projections import register_projection class RadarAxes(PolarAxes): name = 'radar' def __init__(self, figure=None, rect=None, spoke_count=0, radar_patch_type="polygon", radar_spine_type="circle", *args, **kwargs): resolution = kwargs.pop("resolution", 1) self.spoke_count = spoke_count self.radar_patch_type = radar_patch_type self.radar_spine_type = radar_spine_type if figure == None: figure = plt.gcf() if rect == None: rect = figure.bbox_inches self.radar_theta = ( 1.75 * np.pi * np.linspace(0, 1 - 1.0 / self.spoke_count, self.spoke_count)) self.radar_theta += np.pi / 2 super(RadarAxes, self).__init__(figure, rect, *args, **kwargs) def draw_patch(self): if self.radar_patch_type == "polygon": return self.draw_poly_patch() elif self.radar_patch_type == "circle": return draw_circle_patch() def draw_poly_patch(self): verts = unit_poly_verts(self.radar_theta) return plt.Polygon(verts, closed=True, edgecolor='k') def fill(self, *args, **kwargs): closed = kwargs.pop('closed', True) return super(RadarAxes, self).fill(closed=closed, *args, **kwargs) def plot(self, *args, **kwargs): lines = super(RadarAxes, self).plot(*args, **kwargs) for line in lines: self._close_line(line) def _close_line(self, line): x, y = line.get_data() if x[0] != x[-1]: x = np.concatenate((x, [x[0]])) y = np.concatenate((y, [y[0]])) line.set_data(x, y) def set_varlabels(self, labels): self.set_thetagrids(self.radar_theta * 180 / np.pi, labels) def _gen_axes_patch(self): return self.draw_patch() def _gen_axes_spines(self): if self.radar_patch_type == 'circle': return PolarAxes._gen_axes_spines(self) spine_type = 'circle' verts = unit_poly_verts(self.radar_theta) verts.append(verts[0]) path = Path(verts) spine = Spine(self, self.radar_spine_type, path) spine.set_transform(self.transAxes) return {'polar': spine} def _as_mpl_axes(self): return RadarAxes, {"spoke_count": self.spoke_count, "radar_patch_type": self.radar_patch_type, "radar_spine_type": self.radar_spine_type} def draw_circle_patch(self): return plt.Circle((0.5, 0.5), 0.5) def unit_poly_verts(theta): x0, y0, r = [0.5] * 3 verts = [(r *
np.cos(t)
numpy.cos
import numpy as np import h5py import math import warnings def zero_one(data_column): # ((x - x_min)/(x_max - x_min)) copy = np.empty_like(data_column) copy[:] = data_column max = np.nanmax(copy) min = np.nanmin(copy) def norm(n): if not np.isnan(n): if max == min: return 0 else: return (n - min) / (max - min) return n vfunc = np.vectorize(norm) return vfunc(copy) def percent_change(data_column): # (x[i]): ((x[i] - x[i-1])/x[i-1]); if i == 0: x[i] = 0 copy = np.empty_like(data_column) copy[:] = data_column n = np.empty_like(data_column) n[:] = data_column try: start_point = np.argwhere(np.isnan(copy))[-1][0] + 1 except IndexError: start_point = 0 for i in range(start_point, len(copy)): if i == start_point: copy[i] = 0 else: if n[i - 1] == 0: copy[i] = 0 else: copy[i] = ((n[i] - n[i - 1]) / n[i - 1]) return copy def normal_dist(data_column): # (x - x_mean)/x_std copy = np.empty_like(data_column) copy[:] = data_column mean = np.nanmean(copy) std = np.nanstd(copy) def norm(n): if not np.isnan(n): if std == 0: return 0 return (n - mean) / std return n vfunc = np.vectorize(norm) return vfunc(copy) def linear_residual(data_column, second_norm=None): # line from first to last for column, generate inference_function # x - inference_function(x) copy = np.empty_like(data_column) copy[:] = data_column y = copy[~np.isnan(copy)] x = np.arange(1, len(y) + 1).astype(np.float32) line = np.polyfit(x, y, 1) def norm(n): if not np.isnan(n): return n - ((line[0] * n) + line[1]) return n vfunc = np.vectorize(norm) first_norm = vfunc(copy) if second_norm is not None: return second_norm(first_norm).astype(np.float32) else: return first_norm.astype(np.float32) def exp_residual(data_column, second_norm=None): # CAGR for column, generate inference_function # x - inference_function(x) copy = np.empty_like(data_column) copy[:] = data_column year_dif = int(copy.shape[0] / 12) def cagr_func(f, l, n): if f == 0: return 0 return math.pow((l / f), (1 / n)) - 1 first = copy[0] last = copy[-1] if first == 0: first = np.where(copy != 0)[0][0] if first < 0 < last: first = np.where(copy > 0)[0][0] if first > 0 > last: last = np.where(copy > 0)[0][-1] cagr = cagr_func(first, last, year_dif) def norm(n): if not np.isnan(n): return n - cagr return n vfunc = np.vectorize(norm) first_norm = vfunc(copy) if second_norm is not None: return second_norm(first_norm).astype(np.float32) else: return first_norm.astype(np.float32) def gdp_residual(data_column, gdp_data, second_norm=None): # (x[i]): ((x[i] - x[i-1])/x[i-1]); if i == 0: x[i] = 0 # x[i] - ((gdp[i] - gdp[i-1])/gdp[i-1]); if i == 0: gdp[i] = 0 copy = np.empty_like(data_column) copy[:] = data_column n = percent_change(copy) gdp = gdp_data try: start_point = np.argwhere(np.isnan(copy))[-1][0] + 1 except IndexError: start_point = 0 for i in range(start_point, len(copy)): if i == start_point: copy[i] = 0 else: if gdp[i - 1] == 0: copy[i] = 0 else: copy[i] = (n[i] - ((gdp[i] - gdp[i - 1]) / gdp[i - 1])) if second_norm is not None: return second_norm(copy).astype(np.float32) else: return copy.astype(np.float32) def normalize_dataset(dataset, norm_fn, second_norm=None): """ In pseudocode: If norm_fn is one of the residuals, use lambda to create a new function that takes only data_column as input. Then use np.apply_along_axis to map norm_fn across the vertical axis of the dataset. Return the new array """ copy = np.empty_like(dataset) copy[:] = dataset # hdf5 file with gdp data hdf5 = h5py.File('FREDcast.hdf5') gdp = np.asarray(hdf5['admin/gdp']) hdf5.close() if norm_fn is not None: for i in range(0, copy.shape[1]): if not np.count_nonzero(np.isnan(copy[:, i])) == copy[:, i].size: if norm_fn == gdp_residual: if second_norm is None: copy[:, i] = gdp_residual(copy[:, i], gdp) else: copy[:, i] = gdp_residual(copy[:, i], gdp, second_norm) else: if second_norm is None: copy[:, i] = norm_fn(copy[:, i]) else: copy[:, i] = norm_fn(copy[:, i], second_norm) return copy else: raise ValueError('Missing dataset value!') if __name__ == '__main__': import unittest class UnitTester(unittest.TestCase): def setUp(self): pass def test_zero_one(self): test_data_column = np.array([1, 2, 3, 4, 5], dtype=np.float32) solution = np.array([0, 0.25, 0.5, 0.75, 1], dtype=np.float32) test_result = zero_one(test_data_column) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) def test_percent_change(self): test_data_column = np.array([1, 2, 3, 4, 5], dtype=np.float32) solution = np.array([0, 1, 0.5, 0.33333334, 0.25], dtype=np.float32) test_result = percent_change(test_data_column) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) def test_normal_dist(self): test_data_column = np.array([1, 2, 3, 4, 5], dtype=np.float32) solution = np.array([-1.414214, -0.707107, 0, 0.707107, 1.414214], dtype=np.float32) test_result = normal_dist(test_data_column) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=4) def test_linear_residual(self): test_data_column_a = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([-0.8, -6, -8.6, -9.9, -13.8], dtype=np.float32) test_result = linear_residual(test_data_column_a, second_norm=None) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) test_data_column_b = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([1, 0.6, 0.4, 0.3, 0], dtype=np.float32) test_result = linear_residual(test_data_column_b, second_norm=zero_one) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) test_data_column_c = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([0, 6.5, 0.433333, 0.151163, 0.393939], dtype=np.float32) test_result = linear_residual(test_data_column_c, second_norm=percent_change) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=14) test_data_column_d = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([1.625209, 0.42135, -0.180579, -0.481543, -1.38447], dtype=np.float32) test_result = linear_residual(test_data_column_d, second_norm=normal_dist) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=274) def test_exp_residual(self): test_data_column_a = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([-313.749329, -309.749329, -307.749329, -306.749329, -303.749329], dtype=np.float32) test_result = exp_residual(test_data_column_a, second_norm=None) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) test_data_column_b = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([0, 0.4, 0.6, 0.7, 1], dtype=np.float32) test_result = exp_residual(test_data_column_b, second_norm=zero_one) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) test_data_column_c = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([0, -0.012749, -0.006457, -0.003249, -0.00978], dtype=np.float32) test_result = exp_residual(test_data_column_c, second_norm=percent_change) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=1708) test_data_column_d = np.array([1, 5, 7, 8, 11], dtype=np.float32) solution = np.array([-1.625209, -0.42135, 0.180579, 0.481543, 1.384437], dtype=np.float32) test_result = exp_residual(test_data_column_d, second_norm=normal_dist) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=16) def test_gdp_residual(self): hdf5 = h5py.File('FREDcast.hdf5') gdp = np.asarray(hdf5['admin/gdp']) hdf5.close() test_data_column_a = np.array([1000, 2000, 4000, 3500, 4500], dtype=np.float32) solution = np.array([0, 1, 1, -0.139243, 0.285714], dtype=np.float32) test_result = gdp_residual(test_data_column_a, gdp, second_norm=None) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=26) test_data_column_b = np.array([1000, 2000, 4000, 3500, 4500], dtype=np.float32) solution = np.array([0.122224, 1, 1, 0, 0.373017], dtype=np.float32) test_result = gdp_residual(test_data_column_b, gdp, second_norm=zero_one) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=26) test_data_column_c = np.array([1000, 2000, 4000, 3500, 4500], dtype=np.float32) solution = np.array([0, 0, 0, -1.139243, -3.051917], dtype=np.float32) test_result = gdp_residual(test_data_column_c, gdp, second_norm=percent_change) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=3) test_data_column_d = np.array([1000, 2000, 4000, 3500, 4500], dtype=np.float32) solution = np.array([-0.883856, 1.175002, 1.175002, -1.170537, -0.295611], dtype=np.float32) test_result = gdp_residual(test_data_column_d, gdp, second_norm=normal_dist) self.assertEqual(test_result.shape, (5,)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=5) def test_normalize_dataset(self): test_data_column_1 = np.array([10, 20, 30], dtype=np.float32) test_data_column_1 = test_data_column_1.reshape(test_data_column_1.size, 1) test_data_column_2 = np.array([20, 30, 40], dtype=np.float32) test_data_column_2 = test_data_column_2.reshape(test_data_column_2.size, 1) test_dataset_a = np.hstack((test_data_column_1, test_data_column_2)) # linear residual solution_1 = np.array([-90, -180, -270], dtype=np.float32) solution_1 = solution_1.reshape(solution_1.size, 1) solution_2 = np.array([-190, -280, -370], dtype=np.float32) solution_2 = solution_2.reshape(solution_2.size, 1) solution = np.hstack((solution_1, solution_2)) self.assertRaises(ValueError, lambda: normalize_dataset(test_dataset_a, None)) test_result = normalize_dataset(test_dataset_a, linear_residual) self.assertEqual(test_result.shape, (3, 2)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) # linear residual + zero_one test_dataset_b = np.hstack((test_data_column_1, test_data_column_2)) solution_1 = np.array([1, 0.5, 0], dtype=np.float32) solution_1 = solution_1.reshape(solution_1.size, 1) solution_2 = np.array([1, 0.5, 0], dtype=np.float32) solution_2 = solution_2.reshape(solution_2.size, 1) solution = np.hstack((solution_1, solution_2)) test_result = normalize_dataset(test_dataset_b, linear_residual, zero_one) self.assertEqual(test_result.shape, (3, 2)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) # linear residual + percent_change test_dataset_c = np.hstack((test_data_column_1, test_data_column_2)) solution_1 = np.array([0, 1, 0.5], dtype=np.float32) solution_1 = solution_1.reshape(solution_1.size, 1) solution_2 = np.array([0, 0.473684, 0.321429], dtype=np.float32) solution_2 = solution_2.reshape(solution_2.size, 1) solution = np.hstack((solution_1, solution_2)) test_result = normalize_dataset(test_dataset_c, linear_residual, percent_change) self.assertEqual(test_result.shape, (3, 2)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=15) # linear residual + normal_dist test_dataset_d = np.hstack((test_data_column_1, test_data_column_2)) solution_1 = np.array([1.224745, -3.867705e-16, -1.224745], dtype=np.float32) solution_1 = solution_1.reshape(solution_1.size, 1) solution_2 = np.array([1.224745, 0, -1.224745], dtype=np.float32) solution_2 = solution_2.reshape(solution_2.size, 1) solution = np.hstack((solution_1, solution_2)) test_result = normalize_dataset(test_dataset_d, linear_residual, normal_dist) self.assertEqual(test_result.shape, (3, 2)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_almost_equal_nulp(test_result, solution, nulp=1) # exp residual test_dataset_e = np.hstack((test_data_column_1, test_data_column_2)) solution_1 = np.array([-70, -60, -50], dtype=np.float32) solution_1 = solution_1.reshape(solution_1.size, 1) solution_2 = np.array([5, 15, 25], dtype=np.float32) solution_2 = solution_2.reshape(solution_2.size, 1) solution = np.hstack((solution_1, solution_2)) self.assertRaises(ValueError, lambda: normalize_dataset(test_dataset_a, None)) test_result = normalize_dataset(test_dataset_e, exp_residual) self.assertEqual(test_result.shape, (3, 2)) self.assertEqual(test_result.dtype, np.float32) np.testing.assert_array_equal(test_result, solution) # exp residual + zero_one test_dataset_f = np.hstack((test_data_column_1, test_data_column_2)) solution_1 = np.array([0, 0.5, 1], dtype=np.float32) solution_1 = solution_1.reshape(solution_1.size, 1) solution_2 = np.array([0, 0.5, 1], dtype=np.float32) solution_2 = solution_2.reshape(solution_2.size, 1) solution = np.hstack((solution_1, solution_2)) test_result = normalize_dataset(test_dataset_f, exp_residual, zero_one) self.assertEqual(test_result.shape, (3, 2)) self.assertEqual(test_result.dtype, np.float32)
np.testing.assert_array_equal(test_result, solution)
numpy.testing.assert_array_equal
#!/usr/bin/env python # coding: utf-8 # Solve differential flatness and check feasibility of control command # Use NED coordinate import os, sys, time, copy, yaml import numpy as np from .utils import * # import cupy as cp class QuadModel: def __init__(self, cfg_path=None, drone_model=None): if cfg_path == None: curr_path = os.path.dirname(os.path.abspath(__file__)) cfg_path = curr_path+"/../config/multicopter_model.yaml" if drone_model == None: drone_model="default" with open(cfg_path, 'r') as stream: try: cfg = yaml.safe_load(stream) self.thrustCoef = np.double(cfg['motor_model']['thrust_coefficient']) self.torqueCoef = np.double(cfg['motor_model']['torque_coefficient']) self.armLength = np.double(cfg['motor_model']['moment_arm']) self.mass = np.double(cfg['uav_model'][drone_model]['vehicle_mass']) self.Ixx = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_xx']) self.Iyy = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_yy']) self.Izz = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_zz']) self.w_max = np.double(cfg['motor_model']['max_prop_speed']) self.w_min = np.double(cfg['motor_model']['min_prop_speed']) self.gravity = np.double(cfg['simulation']['gravity']) self.w_sta = np.sqrt(self.mass*self.gravity/self.thrustCoef/4.0) except yaml.YAMLError as exc: print(exc) lt = self.armLength*self.thrustCoef k0 = self.torqueCoef k1 = self.thrustCoef self.G1 = np.array([[lt,-lt,-lt,lt],\ [lt,lt,-lt,-lt],\ [-k0,k0,-k0,k0],\ [-k1,-k1,-k1,-k1]]) self.J = np.diag(np.array([self.Ixx,self.Iyy,self.Izz])) return def getWs(self, status): pos = np.array(status[0:3]) vel = np.array(status[3:6]) acc = np.array(status[6:9]) jer = np.array(status[9:12]) sna = np.array(status[12:15]) yaw = status[15] dyaw = status[16] ddyaw = status[17] # Total thrust tau_v = acc - np.array([0,0,self.gravity]) tau = -np.linalg.norm(tau_v) bz = tau_v/tau Thrust = self.mass*tau # roll & pitch roll = np.arcsin(np.dot(bz,[np.sin(yaw),-np.cos(yaw),0])) pitch = np.arctan(np.dot(bz,[np.cos(yaw),np.sin(yaw),0])/bz[2]) bx = np.array([np.cos(yaw)*np.cos(pitch),np.sin(yaw)*np.cos(pitch),-np.sin(pitch)]) by = np.array([-np.sin(yaw)*np.cos(roll)+np.cos(yaw)*np.sin(pitch)*np.sin(roll),\ np.cos(yaw)*np.cos(roll)+np.sin(yaw)*np.sin(pitch)*np.sin(roll),\ np.cos(pitch)*np.sin(roll)]) # dzhi & Omega dzhi = np.dot(np.array([-1*by,bx/np.cos(roll),np.zeros(3)]),jer)/tau \ +np.array([np.sin(pitch),-np.cos(pitch)*np.tan(roll),1])*dyaw S_inv = np.array([[1,0,-np.sin(pitch)],\ [0,np.cos(roll),np.cos(pitch)*np.sin(roll)],\ [0,-np.sin(roll),np.cos(pitch)*np.cos(roll)]]) Omega = np.dot(S_inv,dzhi) C_inv = np.array([-1*by/tau,bx/np.cos(roll)/tau,bz]) d = np.array([np.cos(yaw)*np.sin(roll)-np.cos(roll)*np.sin(yaw)*np.sin(pitch),\ np.sin(yaw)*np.sin(roll)+np.cos(roll)*np.cos(yaw)*np.sin(pitch),0])*tau dtau = np.dot(bz,jer-dyaw*d) # ddzhi & dOmega dS = np.array([[0,np.cos(roll)*np.tan(pitch),-np.sin(roll)*np.tan(pitch)],\ [0,-np.sin(roll),-np.cos(roll)],\ [0,np.cos(roll)/np.cos(pitch),-np.sin(roll)/np.cos(pitch)]])*dzhi[0]\ +np.array([[0,np.sin(roll)/np.cos(pitch)/np.cos(pitch),np.cos(roll)/np.cos(pitch)/np.cos(pitch)],\ [0,0,0],\ [0,np.sin(roll)*np.tan(pitch)/np.cos(pitch),np.cos(roll)*np.tan(pitch)/np.cos(pitch)]])*dzhi[1] e = 2*dtau*np.dot(np.array([-1*by,bx,0]).T,Omega)\ +tau*np.dot(np.array([bx,by,bz]).T,np.array([Omega[0]*Omega[2],Omega[1]*Omega[2],-Omega[0]*Omega[0]-Omega[1]*Omega[1]]))\ -tau*np.dot(np.array([-1*by,bx,0]).T,np.dot(S_inv,np.dot(dS,Omega))) ddzhi = np.dot(C_inv,sna-ddyaw*d-e) ddzhi[2] = ddyaw dOmega = -np.dot(S_inv,np.dot(dS,Omega))+np.dot(S_inv,ddzhi) Mu = np.dot(self.J,dOmega) + np.cross(Omega,np.dot(self.J,Omega)) MT = np.zeros(4) MT[:3] = Mu MT[3] = Thrust G1_inv = np.linalg.inv(self.G1) Ws2 = np.dot(G1_inv,MT) # Ws2 = np.clip(Ws2, np.power(self.w_min,2), np.power(self.w_max,2)) # Ws = np.sqrt(Ws2) Ws = np.copysign(np.sqrt(np.abs(Ws2)),Ws2) rpy = np.array([roll, pitch, yaw]) rpy_q = Euler2quat(np.array([roll, pitch, yaw])) state = { 'roll':roll, 'pitch':pitch, 'rpy':rpy, 'rpy_q':rpy_q, 'dzhi':dzhi, 'ddzhi':ddzhi, 'ut':MT } return Ws, state def getWs_vector(self, status): pos = np.array(status[:,0:3]) vel = np.array(status[:,3:6]) acc =
np.array(status[:,6:9])
numpy.array
""" Non-Time-Uniform Confidence Intervals for Score Differentials We implement (Lai et al., 2011) as a baseline. Importantly, these confidence intervals are *not* valid at an arbitrary stopping time. """ import logging from typing import Tuple, Union import numpy as np import scipy.stats from comparecast.scoring import ScoringRule, get_scoring_rule def confint_lai( ps: np.ndarray, qs: np.ndarray = None, ys: np.ndarray = None, true_probs: np.ndarray = None, scoring_rule: Union[ScoringRule, str] = "brier", alpha: float = 0.05, ) -> Tuple[np.ndarray, np.ndarray]: """Non-time-uniform & asymptotic confidence intervals for forecast scores & score differentials. See Section 3.2 of (Lai et al., 2011). NOTE: true_probs is optionally used to better estimate the width; it is only available for synthetic data. """ assert ys is not None, "data is not provided (third argument)" if qs is None: logging.info("computing fixed-time asymptotic CI for S(p, y)") raise NotImplementedError else: logging.info("computing fixed-time asymptotic CI for S(p, y) - S(q, y)") assert ps.shape == qs.shape == ys.shape assert 0 <= alpha <= 1 score = get_scoring_rule(scoring_rule) T = len(ps) times = np.arange(1, T + 1) if scoring_rule == "winkler": fsds = np.cumsum(score(ps, ys, cs=qs)) / times else: fsds = np.cumsum(score(ps, ys) - score(qs, ys)) / times # variance: use true_probs if known all_zeros, all_ones = np.repeat(0, T), np.repeat(1, T) dsq = ((score(ps, all_ones) - score(ps, all_zeros)) - (score(qs, all_ones) - score(qs, all_zeros))) ** 2 if scoring_rule == "winkler": # qs is assumed to be the baseline forecaster s = get_scoring_rule("brier") lsq = np.where(ps >= qs, s(ps, all_ones) - s(qs, all_ones), s(ps, all_zeros) - s(qs, all_zeros)) ** 2 lsq =
np.where(lsq != 0, lsq, 1e-8)
numpy.where
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Python 2.7 @author: <NAME> <EMAIL> Last Update: 23.8.2018 Use Generative Model for posture extrapolation """ from datetime import datetime import os, sys, numpy as np, argparse from time import time from tqdm import tqdm, trange import matplotlib.pyplot as plt #from skimage.transform import resize from scipy.io import loadmat from scipy.misc import imread from scipy.spatial.distance import euclidean, cdist from PIL import Image import imageio import matplotlib.gridspec as gridspec from sklearn.preprocessing import normalize try: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA except: from sklearn.lda import LDA from sklearn.svm import LinearSVC import peakutils from utils import load_table,load_features, draw_border sys.path.append('./magnification/') from Generator import Generator, find_differences #import config_pytorch as cfg import config_pytorch_human as cfg parser = argparse.ArgumentParser() parser.add_argument("-p", "--pages",type=int,default=10, help="Number of plots to save") parser.add_argument("-q", "--queries",type=int,default=10, help="Number of queries per plot") parser.add_argument("-n", "--nn",type=int,default=100, help="Number of queries per plot") parser.add_argument("-g", "--gpu",type=int,default=0, help="GPU device to use for image generation") args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"]= str(args.gpu) ############################################ # 0. Functions ############################################ def load_image(v,f,c=None): im_path = (cfg.crops_path+v+'/%06d.jpg'%f) if not os.path.exists(im_path): return 255*np.ones([128,128,3],'uint8') im = Image.open(im_path) return np.array(im.resize((128,128))) ############################################ # 0. Prepare magnifier object ############################################ generator = Generator(z_dim=cfg.vae_encode_dim,path_model=cfg.vae_weights_path) ############################################ # 1. Load sequences and features ############################################ detections = load_table(cfg.detection_file,asDict=False) det_cohort= np.array(detections['cohort']) # Used for classifier and plots det_time =
np.array(detections['time'])
numpy.array
import argparse import torch from torch.nn import functional as F import numpy as np from scipy.stats import sem from pandas import read_csv from torch.utils import data from Model.model import Model from Utils.record import record from DataLoader.dataset import Dataset from DataLoader.collate import custom_collate parser = argparse.ArgumentParser('Predict') parser.add_argument('--job_id', type=int) parser.add_argument('--epoch', type=int) parser.add_argument('--gamma_size', type=int, default = 25) parser.add_argument('--z_size', type=int, default = 20) parser.add_argument('--decoder_size', type=int, default = 65) parser.add_argument('--Nflows', type=int, default = 3) parser.add_argument('--flow_hidden', type=int, default = 24) parser.add_argument('--f_nn_size', type=int, default = 12) parser.add_argument('--W_prior_scale', type=float, default = 0.1) args = parser.parse_args() torch.set_num_threads(6) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') N = 29 sims = 250 dt = 0.5 length = 50 pop_avg = np.load('Data/Population_averages.npy') pop_avg_env = np.load('Data/Population_averages_env.npy') pop_std = np.load('Data/Population_std.npy') pop_avg_ = torch.from_numpy(pop_avg[...,1:]).float() pop_avg_env = torch.from_numpy(pop_avg_env).float() pop_std = torch.from_numpy(pop_std[...,1:]).float() pop_avg_bins = np.arange(40, 105, 3)[:-2] test_name = 'Data/test.csv' test_set = Dataset(test_name, N, pop=False, min_count=10) num_test = 400 test_generator = data.DataLoader(test_set, batch_size = num_test, shuffle = False, collate_fn = lambda x: custom_collate(x, pop_avg_, pop_avg_env, pop_std, 1.0)) mean_T = test_set.mean_T std_T = test_set.std_T mean_deficits = torch.Tensor(read_csv('Data/mean_deficits.txt', index_col=0,sep=',',header=None).values[1:-3].flatten()) std_deficits = torch.Tensor(read_csv('Data/std_deficits.txt', index_col=0,sep=',',header=None, names = ['variable']).values[1:-3].flatten()) model = Model(device, N, args.gamma_size, args.z_size, args.decoder_size, args.Nflows, args.flow_hidden, args.f_nn_size, mean_T, std_T, dt, length).to(device) model.load_state_dict(torch.load('Parameters/train%d_Model_DJIN_epoch%d.params'%(args.job_id, args.epoch),map_location=device)) model = model.eval() mean_results = np.zeros((test_set.__len__(), 100, N+1)) * np.nan std_results = np.zeros((test_set.__len__(), 100, N+1)) * np.nan S_results = np.zeros((test_set.__len__(), 100, 3)) * np.nan with torch.no_grad(): sigma_posterior = torch.distributions.gamma.Gamma(model.logalpha.exp(), model.logbeta.exp()) start = 0 for data in test_generator: size = data['Y'].shape[0] X = torch.zeros(sims, size, int(length/dt), N).to(device) X_std = torch.zeros(sims, size, int(length/dt), N).to(device) S = torch.zeros(sims, size, int(length/dt)).to(device) alive = torch.ones(sims, size, int(length/dt)).to(device) for s in range(sims): sigma_y = sigma_posterior.sample((data['Y'].shape[0], length*2)) pred_X, t, pred_S, pred_logGamma, pred_sigma_X, context, y, times, mask, survival_mask, dead_mask, after_dead_mask, censored, sample_weights, med, env, z_sample, prior_entropy, log_det, recon_mean_x0, drifts, mask0, W = model(data, sigma_y, test=True) X[s] = pred_X X_std[s] = pred_X + sigma_y*torch.randn_like(pred_X) S[s] = pred_S.exp() alive[s,:,1:] = torch.cumprod(torch.bernoulli(torch.exp(-1*pred_logGamma.exp()[:,:-1]*dt)), dim=1) t0 = t[:,0] record_times = [torch.from_numpy(np.arange(t0[b].cpu(), 121, 1)).to(device) for b in range(size)] X_record, S_record = record(t, X, S, record_times, dt) X_std_record, alive_record = record(t, X_std, alive, record_times, dt) t0 = t0.cpu() X_sum = [] X_sum_std = [] X_sum2 = [] X_count = [] for b in range(size): X_sum.append(torch.sum(X_record[b].permute(2,0,1)*alive_record[b], dim = 1).cpu()) X_sum_std.append(torch.sum(X_std_record[b].permute(2,0,1)*alive_record[b], dim = 1).cpu()) X_sum2.append(torch.sum(X_std_record[b].pow(2).permute(2,0,1)*alive_record[b], dim = 1).cpu()) X_count.append(torch.sum(alive_record[b], dim = 0).cpu()) for b in range(size): mean_results[start+b, :len(np.arange(t0[b], 121, 1)), 0] = np.arange(t0[b], 121, 1) std_results[start+b, :len(
np.arange(t0[b], 121, 1)
numpy.arange