prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import numpy as np import pandas as pd import tensorflow as tf from PrognosAIs.IO import utils class LabelLoader: def __init__( self, label_file: str, filter_missing: bool = False, missing_value: int = -1, make_one_hot: bool = False, new_root_path: str = None, ) -> None: """ Create a label loader, that can load the image paths and labels from a text file to be used for a data generator Args: label_file: The label file from which to read the labels filter_missing: Whether missing values should be masked when generating one hot labels and class weights missing_value: If filter_missing is True, this value is used to mask make_one_hot: Whether labels should be transformed to one hot labels new_root_path: If you want to move the files, this will be the new root path """ self.label_file = label_file self.label_data = pd.read_csv(label_file, sep="\t", header=0, index_col=0) self._original_label_data = self.label_data.copy(deep=True) self.filter_missing = filter_missing self.missing_value = missing_value self.make_one_hot = make_one_hot self.one_hot_encoded = False self.new_root_path = new_root_path self.total_weight_sum = 1.0 if self.new_root_path is not None: self.replace_root_path() if self.make_one_hot: self.encode_labels_one_hot() return def get_labels(self) -> list: """Get all labels of all samples Args: None Returns: labels: List of labels """ labels = np.squeeze(self.label_data.values) if isinstance(labels, np.ndarray) and labels.size > 1: labels = labels.tolist() elif isinstance(labels, np.ndarray): # Otherwise if it is 1 element it will remove the list, # and return only a string labels = [labels.tolist()] else: labels = [labels] return labels def get_samples(self) -> list: """Get all labels of all samples Args: None Returns: samples: List of samples """ return self.label_data.index.to_list() def get_data(self) -> dict: """Get all data from the label file Args: None Returns: data: Dictionary mapping each sample to each label """ return self.label_data.to_dict(orient="index") def get_label_from_sample(self, sample: str) -> dict: """Get label from a sample Args: sample: The sample from which to get the label Returns: label: Label of the sample """ return self.label_data.loc[sample].to_dict() def get_label_categories(self) -> list: """Get categories of labels Args: None Returns: label_categories: Category names """ return self.label_data.columns.to_numpy(copy=True).tolist() def get_labels_from_category(self, category_name: str) -> list: """Get labels of a specific category/class Args: category_name: Name of the category/class to get Returns: list: Labels of the category """ return self.label_data[category_name].to_numpy(copy=True).tolist() def get_original_labels_from_category(self, category_name: str) -> list: """Get original labels of a specific category/class Args: category_name: Name of the category/class to get Returns: list: Original labels of the category """ return self._original_label_data[category_name].to_numpy(copy=True).tolist() def get_label_category_type(self, category_name: str) -> type: """Get the type of a label of a specific category/class Args: category_name: Name of the category/class to get type of Returns: type: Type of the labels of the category """ category_label_type = type(self.label_data[category_name][0]) return category_label_type def get_original_label_category_type(self, category_name: str) -> type: """Get the original type of a label of a specific category/class Args: category_name: Name of the category/class to get type of Returns: type: Type of the labels of the category """ category_label_type = type(self._original_label_data[category_name][0]) return category_label_type def encode_labels_one_hot(self) -> None: """Encode sample labels as one hot Args: None Returns: None """ if self.one_hot_encoded: return label_categories = self.get_label_categories() for i_label_category in label_categories: category_type = self.get_label_category_type(i_label_category) if np.issubdtype(category_type, np.integer): category_labels = self.get_labels_from_category(i_label_category) category_labels = np.asarray(category_labels) labels_min = np.amin(category_labels) if self.filter_missing and labels_min == self.missing_value: labels_min = np.amin(category_labels[category_labels != self.missing_value]) N_labels = np.amax(category_labels) - labels_min + 1 category_labels -= labels_min one_hot_labels = tf.one_hot(category_labels, N_labels, dtype=tf.int8).numpy() # We need to replace the one hot labels with the value again missing_label_index = np.sum(one_hot_labels, axis=-1) one_hot_labels[missing_label_index == 0] = self.missing_value self.label_data[i_label_category] = one_hot_labels.tolist() self.one_hot_encoded = True return def replace_root_path(self) -> None: """Replace the root path of the sample files in case they have been moved to a different a different directory. Args: new_root_path: Path in which the files are now located Returns: None """ if self.new_root_path is not None: samples = self.get_samples() new_root_path = utils.normalize_path(self.new_root_path) for i_i_sample, i_sample in enumerate(samples): old_root_path = utils.get_file_path(i_sample) samples[i_i_sample] = i_sample.replace(old_root_path, new_root_path) self.label_data.index = samples label_categories = self.get_label_categories() for i_label_category in label_categories: if self.get_label_category_type(i_label_category) is str: category_labels = self.get_labels_from_category(i_label_category) for i_i_label, i_label in enumerate(category_labels): old_root_path = utils.get_file_path(i_label) category_labels[i_i_label] = i_label.replace(old_root_path, new_root_path) self.label_data[i_label_category] = category_labels return def get_class_weights(self, json_serializable=False) -> dict: """ Get class weights for unbalanced labels Args: None Returns: Scaled_weights: the weights for each class of each label category, scaled such that the total weights*number of samples of each class approximates the total number of samples """ out_scaled_weights = {} for i_label_category in self.get_label_categories(): category_type = self.get_original_label_category_type(i_label_category) if np.issubdtype(category_type, np.integer): category_labels = self.get_original_labels_from_category(i_label_category) category_labels = np.asarray(category_labels) if self.filter_missing: category_labels = category_labels[category_labels != self.missing_value] if self.make_one_hot: category_labels = category_labels - np.amin(category_labels) classes, counts = np.unique(category_labels, return_counts=True) N_samples = len(category_labels) weights = N_samples / (counts * len(classes)) if json_serializable: classes = [str(i_class) for i_class in classes] # Dictionary for each category, with dictionary of weight for each class in that category # This allows for easy input with tensorflow out_scaled_weights[i_label_category] = dict(zip(classes, weights)) else: out_scaled_weights[i_label_category] = None return out_scaled_weights def get_number_of_classes_from_category(self, category_name: str) -> int: """ Get number of classes for a label category Args: category_name: Category to get number of classes for Returns: number_of_classes: The number of classes for the category """ category_type = self.get_original_label_category_type(category_name) if
np.issubdtype(category_type, np.integer)
numpy.issubdtype
# coding: utf8 """ Ensemble de fonctions pour manipuler une instance du problème "Le jardinier et les taupes", dans le cas où l'objectif est : - qu'aucune taupe ne puisse pénétrer dans le jardin ; - que le nombre de pièges soit minimal. """ import os import itertools import numpy as np import pulp def _dimcheck(grid, threshold): """ Indique si la grille dont `grid` est la complémentaire est admissible dans sa dernière dimension. Paramètres : ------------ - grid : tableau numpy Tableau contenant des 0 (espace occupé) et des 1 (espace libre). - threshold : entier positif Nombre d'espaces libres adjacents à partir duquel la grille est considérée comme non admissible. Exemples : ---------- # On crée une grille avec deux espaces libres adjacents : >>> grid = np.array([0, 1, 1, 0, 0]) >>> _dimcheck(grid, 2) False >>> _dimcheck(grid, 3) True """ dsize = grid.shape[-1] if threshold > dsize: return True elif threshold < 0: raise ValueError("threshold must be positive.") check = 0 for start in range(threshold): check += grid[..., start:(dsize - threshold + 1 + start)] if np.any(check >= threshold): return False else: return True def admissible(grid, threshold): """ Indique si la grille `grid` est admissible. Une grille est admissible si elle ne contient jamais plus de `threshold` - 1 espaces libres adjacents. Paramètres : ------------ - grid : tableau numpy Tableau contenant des 0 (espace libre) et des 1 (espace occupé). - threshold : entier positif Nombre d'espaces libres adjacents à partir duquel la grille est considérée comme non admissible. Exemples : ---------- >>> grid = np.array([0, 1, 1, 0, 0, 1]).reshape((2, 3)) >>> admissible(grid, 2) False >>> admissible(grid, 3) True """ # La méthode de calcul est bourrine. comp = np.where(grid, 0, 1) # On travaille sur le complémentaire de grid. res = True for _ in range(comp.ndim): res = (res and _dimcheck(comp, threshold)) if res is False: break # Permutation circulaire des axes : comp = comp.transpose(comp.ndim - 1, *range(comp.ndim - 1)) return res def score(grid, threshold): """ Calcule le score associé à la grille `grid`. Plus le score est faible, meilleur il est ; si la grille n'est pas admissible, renvoie un score égal à l'infini. Paramètres : ------------ - grid : tableau numpy Tableau contenant des 0 (espace libre) et des 1 (espace occupé). - threshold : entier positif Nombre d'espaces libres adjacents à partir duquel la grille est considérée comme non admissible. """ if admissible(grid, threshold): return grid.sum() else: return np.inf def generate(shape, npoints): """ Génère une grille ayant la forme `shape` et contenant `npoints` pièges. Paramètres : ------------ - shape : entier positif, tuple d'entiers positifs Dimensions de la grille. - npoints : entier positif Nombre de pièges imposés à placer aléatoirement dans la grille. """ size = np.product(shape) if size <= 0: raise ValueError("the shape %s should contain positive values only."\ % str(shape)) points = np.random.choice(np.arange(size), npoints, replace=False) grid =
np.zeros(size, dtype=np.int)
numpy.zeros
# Script for Da-Tacos cover song identification from Feature Fused Matrices #Importing import librosa import numpy as np import scipy from scipy.spatial.distance import pdist, squareform from scipy.interpolate import interp2d from scipy.sparse.csgraph import laplacian from scipy.spatial.distance import directed_hausdorff from scipy.cluster import hierarchy from scipy.linalg import eigh from scipy.ndimage import median_filter from sklearn.metrics import average_precision_score from sklearn.preprocessing import normalize import cv2 from sklearn import metrics import dill import sys import glob import os import random import json import deepdish as dd #change matplotlib backend to save rendered plots correctly on linux import matplotlib as mpl mpl.use('Agg') from matplotlib import pyplot as plt # #--supress warnings--# # import warnings # warnings.filterwarnings("ignore") #---Load metadata---# with open('/home/ismir/Documents/ISMIR/Datasets/da-tacos/da-tacos_benchmark_subset_metadata.json') as f: benchmark_metadata = json.load(f) #---Segmentation parameters---# rs_size = 128 kmin = 8 kmax = 12 #---Counters---# count = 0 W_count=0 P_count = 0 #---Loading limits---# min_covers = 5 #load works for which there are at least min_covers performances max_covers = 5 #stop loading performances if over max_covers per work max_works = 15 #---Storage---# all_sets = [] #all_shapeDNAs = [] all_WP = [] y = [] #for all Works for W in benchmark_metadata.keys(): if len(benchmark_metadata[W].keys()) >= min_covers: #if it contains at least 5 covers P_count = 0 #for all performances for P in benchmark_metadata[W].keys(): P_count += 1 #Computations try: SSM = dd.io.load("/home/ismir/Documents/ISMIR/Datasets/da-tacosSSMs/StructureLaplacian_datacos_crema_" + P + ".h5")['WFused'] except: print("Couldn't load " + P + ".") continue N = dd.io.load("/home/ismir/Documents/ISMIR/Datasets/da-tacosSSMs/StructureLaplacian_datacos_crema_" + P + ".h5")['N'] #Construct square matrix from flattened upper triangle A = np.zeros((N,N)) iN = np.triu_indices(N) #return indices for upper-triangle of (N,N) matrix for i in range(len(SSM)): A[iN[0][i]][iN[1][i]] = SSM[i] B = np.transpose(A) square_SSM = A+B #Resample SSM_ds = cv2.resize(square_SSM, (rs_size,rs_size)) #Compute the Laplacian L = laplacian(SSM_ds, normed=True) #Laplacian eigenvalues and eigenvectors evals, evecs = eigh(L) # #Shape DNA # shapeDNA = evals[:30] # all_shapeDNAs.append(shapeDNA) #Hierarchical structure evecs = median_filter(evecs, size=(9, 1)) Cnorm = np.cumsum(evecs**2, axis=1)**0.5 # #temporary replacement for bug # a_min_value = 3.6934424e-08 # Cnorm[Cnorm == 0.0] = a_min_value # if (np.isnan(np.sum(Cnorm))): # print("WOOOOOAH") dist_set = [] for k in range(kmin, kmax): X = evecs[:, :k] / Cnorm[:, k-1:k] distance = squareform(pdist(X, metric='euclidean')) dist_set.append(distance) all_sets.append(dist_set) y.append(W) #append W and P all_WP.append([W, P]) #plt.matshow() #plt.colorbar() #plt.show() if (P_count >=max_covers): break W_count +=1 sys.stdout.write("\rLoading %i works." % W_count) sys.stdout.flush() if (W_count >= max_works): break all_sets = np.asarray(all_sets) file_no = all_sets.shape[0] # all_shapeDNAs = np.asarray(all_shapeDNAs) print("\nLoaded Da-TACOS SMMs.") print("Data shape:", all_sets.shape) #------------# #-Formatting-# #------------# all_flat = [] #kmin-kmin sets each with a flattened matrix all_merged = [] #single concatenated vector with all flattened matrices all_shingled2 = [] #shingle adjacent pairs of flat approoximations all_shingled3 = [] #shingle adjacent triples of flat approoximations #traverse songs for f in range(file_no): #formatting flat_approximations = [] merged_approximations = np.empty((0)) for j in range(kmax-kmin): flat_approximations.append(all_sets[f][j].flatten()) merged_approximations = np.concatenate((merged_approximations, flat_approximations[j])) all_flat.append(np.asarray(flat_approximations)) all_merged.append(merged_approximations) #shingling per 2 shingled = [] for j in range(kmax-kmin-1): #shingled.append(np.array([all_flat[f][j],all_flat[f][j+1]])) shingled.append(np.concatenate((all_flat[f][j],all_flat[f][j+1]), axis=None)) all_shingled2.append(np.asarray(shingled)) #shingling per 3 shingled = [] for j in range(kmax-kmin-2): #shingled.append(np.array([all_flat[f][j],all_flat[f][j+1],all_flat[f][j+2]])) shingled.append(np.concatenate((all_flat[f][j],all_flat[f][j+1],all_flat[f][j+2]), axis=None)) all_shingled3.append(np.asarray(shingled)) #progress sys.stdout.write("\rFormatted %i/%s approximation sets." % ((f+1), str(file_no))) sys.stdout.flush() print('') all_flat = np.asarray(all_flat) all_merged = np.asarray(all_merged) all_shingled2 = np.asarray(all_shingled2) all_shingled3 = np.asarray(all_shingled3) #----------------------# #-Covers vs Non-covers-# #----------------------# #True if cover, False if non-cover covers = np.zeros((len(all_WP), len(all_WP)), dtype=np.bool_) for i in range(len(all_WP)): for j in range(len(all_WP)): if (all_WP[i][0] == all_WP[j][0]): covers[i][j] = True else: covers[i][j] = False #-----------# #-Distances-# #-----------# fig_dir = '/home/ismir/Documents/ISMIR/figures/datacos/' #---L1---# L1_distances = np.zeros((max_works, max_works*max_covers)) for i in range(max_works): for j in range(max_covers*max_works): L1_distances[i][j] = np.linalg.norm(all_merged[i*max_covers]-all_merged[j], ord=1) # #Histogram # L1_distances_covers = [] # L1_distances_noncovers = [] # for i in range(file_no): # for j in range(file_no): # if covers[i][j]: # if (L1_distances[i][j] != 0): # L1_distances_covers.append(L1_distances[i][j]) # else: # L1_distances_noncovers.append(L1_distances[i][j]) # plt.figure() # plt.hist(L1_distances_covers, bins=200, alpha=0.5, label='Covers', density=1) # plt.hist(L1_distances_noncovers, bins=200, alpha=0.5, label='Non-covers', density=1) # plt.title("Histogram of L1 distances between cover and non-cover pairs") # plt.legend(loc='upper right') # plt.savefig(fig_dir+'Histogram-L1norm.png') #Mean position of first hit all_cvrs = [] hit_positions = [] for i in range(max_works): d = L1_distances[i] d = np.argsort(d) hits = [] cvrs = [] for j in range(max_covers-1): cvrs.append((i*max_covers)+j+1) for c in range(len(cvrs)): #traverse covers hits.append(np.where(d==cvrs[c])[0][0]) hit_positions.append(min(hits)) cvrs.insert(0,cvrs[0]-1) all_cvrs.append(cvrs) L1_average_hit = np.mean(hit_positions) print('L1 mean position of first hit:', L1_average_hit) #Mean Average Precision for i in range(max_works): #get all distances to selected song, normalize [0,1], convert to similarity metric, not dissimilarity d = 1-(L1_distances[i]/np.linalg.norm(L1_distances[i])) cr = np.zeros((max_works*max_covers)) #get all cover relationships to selected song for c in all_cvrs[i]: cr[c] = 1 mAP = 0 for j in range(max_works): mAP += average_precision_score(cr, d) mAP = mAP/float(max_works) print('L1 mean average precision:', mAP) #---Frobenius norm---# fro_distances = np.zeros((max_works, max_works*max_covers)) for i in range(max_works): for j in range(max_covers*max_works): fro_distances[i][j] = np.linalg.norm(all_merged[i*max_covers]-all_merged[j]) # #Histogram # fro_distances_covers = [] # fro_distances_noncovers = [] # for i in range(file_no): # for j in range(file_no): # if covers[i][j]: # if (fro_distances[i][j] != 0): # fro_distances_covers.append(fro_distances[i][j]) # else: # fro_distances_noncovers.append(fro_distances[i][j]) # plt.figure() # plt.hist(fro_distances_covers, bins=200, alpha=0.5, label='Covers', density=1) # plt.hist(fro_distances_noncovers, bins=200, alpha=0.5, label='Non-covers', density=1) # plt.title("Histogram of fro distances between cover and non-cover pairs") # plt.legend(loc='upper right') # plt.savefig(fig_dir+'Histogram-fronorm.png') #Mean position of first hit all_cvrs = [] hit_positions = [] for i in range(max_works): d = fro_distances[i] d = np.argsort(d) hits = [] cvrs = [] for j in range(max_covers-1): cvrs.append((i*max_covers)+j+1) for c in range(len(cvrs)): #traverse covers hits.append(np.where(d==cvrs[c])[0][0]) hit_positions.append(min(hits)) cvrs.insert(0,cvrs[0]-1) all_cvrs.append(cvrs) fro_average_hit = np.mean(hit_positions) print('fro mean position of first hit:', fro_average_hit) #Mean Average Precision for i in range(max_works): #get all distances to selected song, normalize [0,1], convert to similarity metric, not dissimilarity d = 1-(fro_distances[i]/np.linalg.norm(fro_distances[i])) cr = np.zeros((max_works*max_covers)) #get all cover relationships to selected song for c in all_cvrs[i]: cr[c] = 1 mAP = 0 for j in range(max_works): mAP += average_precision_score(cr, d) mAP = mAP/float(max_works) print('fro mean average precision:', mAP) #---Sub-sequence Dynamic Time Warping Cost---# dtw_cost = np.zeros((max_works, max_works*max_covers)) for i in range(max_works): for j in range(max_covers*max_works): costs = [] for k in range(kmax-kmin): costs.append(librosa.sequence.dtw(all_sets[i*max_covers][k], all_sets[j][k], subseq=False, metric='euclidean')[0][rs_size-1,rs_size-1]) dtw_cost[i][j] = sum(costs)/len(costs) # dtw_cost_covers = [] # dtw_cost_noncovers = [] # for i in range(file_no): # for j in range(file_no): # if covers[i][j]: # if (dtw_cost[i][j] != 0): # dtw_cost_covers.append(dtw_cost[i][j]) # else: # dtw_cost_noncovers.append(dtw_cost[i][j]) # plt.figure() # plt.hist(dtw_cost_covers, bins=200, alpha=0.5, label='Covers', density=1) # plt.hist(dtw_cost_noncovers, bins=200, alpha=0.5, label='Non-covers', density=1) # plt.title("Histogram of subsequence DTW cost between cover and non-cover pairs") # plt.legend(loc='upper right') # plt.savefig(fig_dir+'Histogram-dtw.png') #Mean position of first hit all_cvrs = [] hit_positions = [] for i in range(max_works): d = dtw_cost[i] d = np.argsort(d) hits = [] cvrs = [] for j in range(max_covers-1): cvrs.append((i*max_covers)+j+1) for c in range(len(cvrs)): #traverse covers hits.append(np.where(d==cvrs[c])[0][0]) hit_positions.append(min(hits)) cvrs.insert(0,cvrs[0]-1) all_cvrs.append(cvrs) dtw_average_hit = np.mean(hit_positions) print('dtw mean position of first hit:', dtw_average_hit) #Mean Average Precision for i in range(max_works): #get all distances to selected song, normalize [0,1], convert to similarity metric, not dissimilarity d = 1-(dtw_cost[i]/np.linalg.norm(dtw_cost[i])) cr = np.zeros((max_works*max_covers)) #get all cover relationships to selected song for c in all_cvrs[i]: cr[c] = 1 mAP = 0 for j in range(max_works): mAP += average_precision_score(cr, d) mAP = mAP/float(max_works) print('dtw mean average precision:', mAP) #---Directed Hausdorff distance---# hausdorff_distances = np.zeros((max_works, max_works*max_covers)) for i in range(max_works): for j in range(max_covers*max_works): hausdorff_distances[i][j] = (directed_hausdorff(all_flat[i*max_covers], all_flat[j]))[0] # hausdorff_distances_covers = [] # hausdorff_distances_noncovers = [] # for i in range(file_no): # for j in range(file_no): # if covers[i][j]: # if (hausdorff_distances[i][j] != 0): # hausdorff_distances_covers.append(hausdorff_distances[i][j]) # else: # hausdorff_distances_noncovers.append(hausdorff_distances[i][j]) # plt.figure() # plt.hist(hausdorff_distances_covers, bins=200, alpha=0.5, label='Covers', density=1) # plt.hist(hausdorff_distances_noncovers, bins=200, alpha=0.5, label='Non-covers', density=1) # plt.title("Histogram of Hausdorff distances between cover and non-cover pairs") # plt.legend(loc='upper right') # plt.savefig(fig_dir+'Histogram-hau.png') #Mean position of first hit all_cvrs = [] hit_positions = [] for i in range(max_works): d = hausdorff_distances[i] d = np.argsort(d) hits = [] cvrs = [] for j in range(max_covers-1): cvrs.append((i*max_covers)+j+1) for c in range(len(cvrs)): #traverse covers hits.append(np.where(d==cvrs[c])[0][0]) hit_positions.append(min(hits)) cvrs.insert(0,cvrs[0]-1) all_cvrs.append(cvrs) hau_average_hit = np.mean(hit_positions) print('hau mean position of first hit:', hau_average_hit) #Mean Average Precision for i in range(max_works): #get all distances to selected song, normalize [0,1], convert to similarity metric, not dissimilarity d = 1-(hausdorff_distances[i]/np.linalg.norm(hausdorff_distances[i])) cr = np.zeros((max_works*max_covers)) #get all cover relationships to selected song for c in all_cvrs[i]: cr[c] = 1 mAP = 0 for j in range(max_works): mAP += average_precision_score(cr, d) mAP = mAP/float(max_works) print('hau mean average precision:', mAP) #---Minimum distance across all pairs---# min_distances = np.zeros((max_works, max_works*max_covers)) for i in range(max_works): for j in range(max_covers*max_works): dists = [] for n in range(kmax-kmin): for m in range(kmax-kmin): dists.append(np.linalg.norm(all_sets[i*max_covers][n]-all_sets[j][m])) min_distances[i][j] = min(dists) # min_distances_covers = [] # min_distances_noncovers = [] # for i in range(file_no): # for j in range(file_no): # if covers[i][j]: # if (min_distances[i][j] != 0): # min_distances_covers.append(min_distances[i][j]) # else: # min_distances_noncovers.append(min_distances[i][j]) # plt.figure() # plt.hist(min_distances_covers, bins=200, alpha=0.5, label='Covers', density=1) # plt.hist(min_distances_noncovers, bins=200, alpha=0.5, label='Non-covers', density=1) # plt.title("Histogram of min pair distances between cover and non-cover pairs") # plt.legend(loc='upper right') # plt.savefig(fig_dir+'Histogram-pair.png') #Mean position of first hit all_cvrs = [] hit_positions = [] for i in range(max_works): d = min_distances[i] d = np.argsort(d) hits = [] cvrs = [] for j in range(max_covers-1): cvrs.append((i*max_covers)+j+1) for c in range(len(cvrs)): #traverse covers hits.append(np.where(d==cvrs[c])[0][0]) hit_positions.append(min(hits)) cvrs.insert(0,cvrs[0]-1) all_cvrs.append(cvrs) pair_average_hit = np.mean(hit_positions) print('pair mean position of first hit:', pair_average_hit) #Mean Average Precision for i in range(max_works): #get all distances to selected song, normalize [0,1], convert to similarity metric, not dissimilarity d = 1-(min_distances[i]/np.linalg.norm(min_distances[i])) cr =
np.zeros((max_works*max_covers))
numpy.zeros
import numpy as np import scipy.stats as t class Variable_selection(): def __init__(self,model,input_data,target_data): self.model = model self.input_data = input_data self.target_data = target_data def Sum_of_SQ(self,model, X, Y): yhat = model.predict(X) SSR = sum((np.mean(Y) - yhat) ** 2) SSE = sum((Y - yhat) ** 2) df_ssr = np.shape(X)[1] df_sse = np.shape(X)[0] - np.shape(X)[1] return SSR, SSE, df_ssr, df_sse def T_statistics(self,model, X, Y): params = np.append(model.intercept_, model.coef_) predictions = model.predict(X) newX = np.append(np.ones((len(X), 1)), X, axis=1) MSE = (sum((Y - predictions) ** 2)) / (len(newX) - len(newX[0])) var_b = MSE * (np.linalg.inv(np.dot(newX.T, newX)).diagonal()) sd_b = np.sqrt(var_b) ts_b = params / sd_b p_values = [2 * (1 - t.cdf(np.abs(i), (len(newX) - 1))) for i in ts_b] return ts_b, p_values def F_statistics(self,model, X, Y): SSR, SSE, df_ssr, df_sse = self.Sum_of_SQ(model, X, Y) F = (SSR / df_ssr) / (SSE / df_sse) return F def R_sq(self,model, X, Y): model_trained = model.fit(X,Y) yhat = model_trained.predict(X) SSR = np.sum((np.mean(Y) - yhat) ** 2) SSE = np.sum((Y - yhat) ** 2) SST = SSR + SSE r_sq = 1 - (float(SSE)) / SST adj_r_sq = 1 - (1 - r_sq) * (len(Y) - 1) / (len(Y) - X.shape[1] - 1) return r_sq, adj_r_sq # selection cells def forward_cell(self, model, candidate_var, X, Y): initial_var = [n for n in range(0, np.shape(X)[1])] possible_list = np.delete(initial_var, candidate_var, 0).tolist() F_list = [] # For all variables are selected if len(possible_list) == 0: tmpX = np.take(X, candidate_var, axis=1) model.fit(tmpX, Y) _, p_selected = self.T_statistics(model, tmpX, Y) return candidate_var, p_selected else: for i in range(len(possible_list)): tmp_variable = candidate_var + possible_list[i:i + 1] tmp_input = np.take(X, tmp_variable, axis=1) model.fit(tmp_input, Y) F = self.F_statistics(model, tmp_input, Y) F_list.append(F) selected_idx = np.argmax(F_list) result = candidate_var + [possible_list[selected_idx]] # for stopping model.fit(np.take(X, result, axis=1), Y) _, p_selected = self.T_statistics(model, np.take(X, result, axis=1), Y) return result, p_selected[1:] def backward_cell(self,model, candidate_var, X, Y): SSR_list = [] for i in range(len(candidate_var)): tmp_var = candidate_var[:i] + candidate_var[i + 1:] tmp_input = np.take(X, tmp_var, axis=1) model.fit(tmp_input, Y) SSR, SSE, _, _ = self.Sum_of_SQ(model, tmp_input, Y) SSR_list.append(SSR) selected_idx =
np.argmax(SSR_list)
numpy.argmax
import numpy as np import torch def normalize(x): s = torch.sum(x) if torch.abs(s) < 1e-10: return torch.ones_like(x) / x.shape[0] else: return x / s def MPE(X, U, qr=True, objective=None): """Minimal polynomial extrapolation :param X: k x n matrix, sequence elements :param U: n x k matrix, differences :param qr: use QR factorization """ n, k = U.shape c = torch.ones(k, device=U.device, dtype=U.dtype) A = U[:, :-1] b = -U[:, [-1]] if qr: Q, R = torch.linalg.qr(A, mode="reduced") c[:-1] = torch.triangular_solve(Q.T @ b, R, upper=True).solution.flatten() else: M = A.T @ A c[:-1] = torch.solve(A.T @ b, M).solution.flatten() gamma = normalize(c) return gamma @ X def RRE(X, U, qr=True, objective=None): """Reduced rank extrapolation :param X: k x n matrix, sequence elements :param U: n x k matrix, differences :param qr: use QR factorization """ n, k = U.shape b = torch.ones((k, 1), device=U.device, dtype=U.dtype) if qr: Q, R = torch.linalg.qr(U, mode="r") y = torch.triangular_solve(b, R.T, upper=False).solution c = torch.triangular_solve(y, R, upper=True).solution else: M = U.T @ U c = torch.solve(b, M).solution gamma = normalize(c) return (gamma.T @ X).flatten() def regularized_RRE(X, U, lambda_, objective=None): """Regularized nonlinear acceleration :param X: k x n matrix, sequence elements :param U: n x k matrix, differences :param lambda_: regularization constant """ n, k = U.shape M = U.T @ U M = M / torch.linalg.norm(M, 2) I = torch.eye(k, device=U.device, dtype=U.dtype) b = torch.ones((k, 1), device=U.device, dtype=U.dtype) c = torch.solve(b, M + lambda_ * I).solution gamma = normalize(c) return (gamma.T @ X).flatten() def MMPE(X, U, objective=None): """Modified MPE :param X: k x n matrix, sequence elements :param U: n x k matrix, differences """ n, k = U.shape c = torch.ones(k, device=U.device, dtype=U.dtype) c[:-1] = torch.solve(-U[:k - 1, [-1]], U[:k - 1, :-1]).solution.flatten() gamma = normalize(c) return gamma @ X def TEA_solve(X, U, q=None, objective=None): """Topological Shanks transformation using matrix inverse :param X: k+1 x n matrix, sequence elements :param U: n x 2k matrix, differences :param q: vector used for scalar product, by default a vector of ones """ n, k2 = U.shape k = k2 // 2 if q is None: q = torch.ones(n, device=U.device, dtype=U.dtype) A = torch.zeros((k, k + 1), device=U.device, dtype=U.dtype) for i in range(k): A[i, :] = q[None, :] @ U[:, i:i + k + 1] c = torch.ones(k + 1, device=U.device, dtype=U.dtype) c[:-1] = torch.solve(-A[:, [-1]], A[:, :-1]).solution.flatten() gamma = normalize(c) return gamma @ X def inv(x): return x / torch.sum(x ** 2, 1, keepdim=True) def vector_epsilon_v1(X, k, U=None, objective=None): """Vector epsilon algorithm using the Moore–Penrose generalized inverse :param X: 2k+1 x n matrix; sequence elements :param k: value of k for the algorithm """ e0 = torch.zeros((X.shape[0] + 1, X.shape[1]), device=X.device, dtype=X.dtype) e1 = X e2 = None for _ in range(2 * k): e2 = e0[1:-1] + inv(e1[1:] - e1[:-1]) e0 = e1 e1 = e2 return e2.flatten() def vector_epsilon_v2(X, k, U=None, objective=None, q=None): """Topological epsilon algorithm :param X: 2k+1 x n matrix; sequence elements :param k: value of k for the algorithm :param q: a vector of size n, used in the scalar product """ n, m = X.shape e_odd = torch.zeros((n + 1, m), device=X.device, dtype=X.dtype) e_even = X.clone() if q is None: q = torch.ones(m, device=X.device, dtype=X.dtype) for i in range(k): for j in range(n - 2 * i - 1): e_odd[j] = e_odd[j + 1] + q / (q @ (e_even[j + 1] - e_even[j])) for j in range(n - 2 * i - 2): e_even[j] = e_even[j + 1] + (e_even[j + 1] - e_even[j]) \ / ((e_odd[j + 1] - e_odd[j]) @ (e_even[j + 1] - e_even[j])) return e_even[:n - 2 * k].flatten() def topological_vector_epsilon(X: torch.Tensor, k, U=None, objective=None, q=None): """Simplified topological epsilon algorithm :param X: 2k+1 x n matrix; sequence elements :param k: value of k for the algorithm :param q: a vector of size n, used in the scalar product """ if q is None: q = torch.ones(X.shape[1], device=X.device, dtype=X.dtype) e = X.clone() eps1 = torch.zeros((X.shape[0] + 1, 1), device=X.device) eps2 = X @ q[:, None] for i in range(k): # scalar update for 2k+1 eps1 = eps1[1:-1] + 1. / (eps2[1:] - eps2[:-1]) # vector update e = e[1:-1] + (e[2:] - e[1:-1]) / ((eps2[2:] - eps2[1:-1]) * (eps1[1:] - eps1[:-1])) # scalar update for 2k+2 eps2 = eps2[1:-1] + 1. / (eps1[1:] - eps1[:-1]) return e.flatten() def RNA(X, U, objective, lambda_range, linesearch=True, norm=True): """Adaptive regularized nonlinear acceleration :param X: k x n matrix, sequence elements :param U: n x k matrix, differences :param objective: objective function to be minimized :param lambda_range: range of tested values of the regularization parameter :param linesearch: if True, linesearch is used to improve the solution :param norm: if True, matrix U^TU is normalized """ n, k = U.shape solutions = [] M = U.T @ U if norm: M /= torch.linalg.norm(M, 2) I = torch.eye(k, device=U.device, dtype=U.dtype) b = torch.ones((k, 1), device=U.device, dtype=U.dtype) for lambda_ in np.geomspace(lambda_range[0], lambda_range[1], k): c = torch.solve(b, M + lambda_ * I).solution gamma = normalize(c.T) solutions.append((gamma @ X).flatten()) values = [objective(x).item() for x in solutions] idx = np.argmin(values) solution = solutions[idx] if linesearch: t = 1 x0 = X[0] ft = objective(x0 + t * (solution - x0)).item() f2t = objective(x0 + 2 * t * (solution - x0)).item() while f2t < ft: t *= 2 ft = f2t f2t = objective(x0 + 2 * t * (solution - x0)).item() return x0 + t * (solution - x0) else: return solution def RNA_cholesky(X, U, objective, lambda_range, linesearch=True, norm=True): """Adaptive regularized nonlinear acceleration using Cholesky decomposition""" n, k = U.shape solutions = [] b = torch.ones((k, 1), device=U.device, dtype=U.dtype) if norm: U_norm = torch.linalg.norm(U, 2).item() else: U_norm = 1. # \|U^T U\| = \|U\|^2 for lambda_ in np.geomspace(lambda_range[0], lambda_range[1], k) * U_norm ** 2: L = torch.zeros((k, k), device=U.device, dtype=U.dtype) L[0, 0] = torch.sqrt(U[:, 0] @ U[:, 0] + lambda_) for i in range(1, k): a = torch.triangular_solve(U[:, :i].T @ U[:, [i]], L[:i, :i], upper=False).solution d = torch.sqrt(U[:, i] @ U[:, i] + lambda_ - a.T @ a).item() assert d != 0, f"L will be singular; lambda={lambda_}, i={i}" L[i, :i] = a.ravel() L[i, i] = d L /= U_norm y = torch.triangular_solve(b, L, upper=False).solution c = torch.triangular_solve(y, L.T, upper=True).solution gamma = normalize(c.T) solutions.append((gamma @ X).flatten()) values = [objective(x).item() for x in solutions] idx = np.argmin(values) solution = solutions[idx] if linesearch: t = 1 x0 = X[0] ft = objective(x0 + t * (solution - x0)).item() f2t = objective(x0 + 2 * t * (solution - x0)).item() while f2t < ft: t *= 2 ft = f2t f2t = objective(x0 + 2 * t * (solution - x0)).item() return x0 + t * (solution - x0) else: return solution def mixing_RNA(X, Y, lambda_, beta, objective=None): """Online RNA from 'Online Regularized Nonlinear Acceleration'""" X = X.T Y = Y.T n, k = X.shape U = X - Y M = U.T @ U M = M / torch.linalg.norm(M, 2) I = torch.eye(k, device=U.device, dtype=U.dtype) b = torch.ones((k, 1), device=U.device, dtype=U.dtype) c = torch.solve(b, M + lambda_ * I).solution gamma = normalize(c) return ((Y - beta * U) @ gamma).flatten() def optimal_RNA(X, Y, lambda_, alpha, beta, objective, f_xi=None): """Algorithm 3 from 'Online Regularized Nonlinear Acceleration'""" y_extr = mixing_RNA(X, Y, lambda_, 0) z = (y_extr + beta * X[-1]) / (1. + beta) if f_xi is None: f_xi = objective(X[-1]).item() if objective(z).item() < f_xi - 0.5 * alpha * f_xi ** 2: return y_extr else: return (1. + beta) * X[-1] - beta * X[-2] def difference_matrix(X): k = len(X) - 1 U = torch.empty((X[0].shape[0], k), dtype=X[0].dtype) for i in range(k): U[:, i] = X[i + 1] - X[i] return U def absmax(x, axis=None): idx = np.argmax(np.abs(x), axis=axis) if axis is None: return x.ravel()[idx] else: idx = np.expand_dims(idx, axis=axis) return np.take_along_axis(x, idx, axis=axis) def safe_div(a, b): return np.divide(a, b, out=np.zeros_like(a), where=b != 0) def levin_remainder(x, type, vector): N = x.shape[0] dx = np.diff(x, axis=0) if type == "t": r = dx elif type == "u": if vector: r = np.arange(1, N) * absmax(dx, 1).ravel() else: r = np.arange(1, N)[:, None] * dx elif type == "v": r = safe_div(dx[:-1] * dx[1:], dx[1:] - dx[:-1]) else: raise RuntimeError("Invalid type") if vector and type != "u": r = absmax(r, 1).ravel() return r def h_algorithm(xt, k, type="t", U=None, objective=None): """ Vector E-algorithm :param xt: k+2 x n matrix for type = "t", "u"; k+3 x n matrix for type = "v"; sequence elements :param k: value of k for the algorithm :param type: remainder estimate, either "t", "u" or "v" """ x = xt.cpu().numpy() r = levin_remainder(x, type, True) N = min(x.shape[0], r.shape[0]) h = x[:N] g = r[:N, None] / (np.arange(N)[:, None] + 1) ** np.arange(k)[None, :] for i in range(k): # i -> k h = h[:-1] - g[:-1, i, None] * np.diff(h, axis=0) / np.diff(g[:, [i]], axis=0) if i < k - 1: g = g[:-1] - g[:-1, [i]] * np.diff(g, axis=0) / np.diff(g[:, [i]], axis=0) return torch.tensor(h.ravel(), dtype=xt.dtype, device=xt.device) def levin_transform(xt, k, type="t", U=None, objective=None): """ Vector transform using the recursive algorithm :param xt: k+2 x n matrix for type = "t", "u"; k+3 x n matrix for type = "v"; sequence elements :param k: value of k for the algorithm :param type: remainder estimate, either "t", "u" or "v" """ def step(s, i): n = s.shape[0] c = np.arange(1, n) # n + \beta if i > 0: c = c * (c + i) ** (i - 1) / (c + i + 1) ** i else: c = np.ones_like(c) return s[1:] - c[:, None] * s[:-1] x = xt.cpu().numpy() r = levin_remainder(x, type, True) N = min(x.shape[0], r.shape[0]) num = x[:N] / r[:N, None] denum = 1 / r[:N, None] for i in range(k): num = step(num, i) denum = step(denum, i) h = num / denum return torch.tensor(h.ravel(), dtype=xt.dtype, device=xt.device) def e_algorithm(xt, k, type="t", U=None, objective=None): """ Scalar E-algorithm performed separately for each input dimension :param xt: k+2 x n matrix for type = "t", "u"; k+3 x n matrix for type = "v"; sequence elements :param k: value of k for the algorithm :param type: remainder estimate, either "t", "u" or "v" """ x = xt.cpu().numpy() r = levin_remainder(x, type, False) N = min(x.shape[0], r.shape[0]) e = x[:N] pow_ = (np.arange(N)[None, :] + 1) ** np.arange(k)[:, None] g = r[None, :N, :] / pow_[:, :, None] for i in range(k): e = e[:-1] - safe_div(g[i, :-1] * np.diff(e, axis=0), np.diff(g[i], axis=0)) if i < k - 1: g = g[:, :-1] - safe_div(g[i, :-1] *
np.diff(g, axis=1)
numpy.diff
# Copyright (c) 2021-2022, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import random import re import numpy as np import pytest from nvflare.apis.dxo import DXO, DataKind, MetaKey, from_shareable from nvflare.apis.fl_constant import ReservedKey from nvflare.apis.fl_context import FLContext from nvflare.apis.shareable import Shareable from nvflare.app_common.aggregators.intime_accumulate_model_aggregator import InTimeAccumulateWeightedAggregator from nvflare.app_common.app_constant import AppConstants class TestInTimeAccumulateWeightedAggregator: @pytest.mark.parametrize( "exclude_vars,aggregation_weights,expected_data_kind,error,error_msg", [ ( 2.0, None, DataKind.WEIGHT_DIFF, ValueError, f"exclude_vars = 2.0 should be a regex string but got {type(2.0)}.", ), ( {"dxo1": 3.0, "dxo2": ""}, None, {"dxo1": DataKind.WEIGHT_DIFF, "dxo2": DataKind.WEIGHT_DIFF}, ValueError, f"exclude_vars[dxo1] = 3.0 should be a regex string but got {type(3.0)}.", ), (None, None, DataKind.ANALYTIC, ValueError, "expected_data_kind = ANALYTIC is not WEIGHT_DIFF or WEIGHTS"), ( None, None, {"dxo1": DataKind.WEIGHT_DIFF, "dxo2": DataKind.ANALYTIC}, ValueError, "expected_data_kind[dxo2] = ANALYTIC is not WEIGHT_DIFF or WEIGHTS", ), ( None, {"dxo1": {"client_0": 1.0, "client_1": 2.0}}, {"dxo1": DataKind.WEIGHT_DIFF, "dxo2": DataKind.WEIGHT_DIFF}, ValueError, "A dict of dict aggregation_weights should specify aggregation_weights " "for every key in expected_data_kind. But missed these keys: ['dxo2']", ), ( {"dxo2": ""}, None, {"dxo1": DataKind.WEIGHT_DIFF, "dxo2": DataKind.WEIGHT_DIFF}, ValueError, "A dict exclude_vars should specify exclude_vars for every key in expected_data_kind. " "But missed these keys: ['dxo1']", ), ], ) def test_invalid_create(self, exclude_vars, aggregation_weights, expected_data_kind, error, error_msg): with pytest.raises(error, match=re.escape(error_msg)): _ = InTimeAccumulateWeightedAggregator( exclude_vars=exclude_vars, aggregation_weights=aggregation_weights, expected_data_kind=expected_data_kind, ) @pytest.mark.parametrize( "exclude_vars,aggregation_weights,expected_data_kind,expected_object", [ ( None, None, DataKind.WEIGHTS, InTimeAccumulateWeightedAggregator( exclude_vars=None, aggregation_weights=None, expected_data_kind=DataKind.WEIGHTS ), ), ( "hello", None, {"dxo1": DataKind.WEIGHTS, "dxo2": DataKind.WEIGHT_DIFF}, InTimeAccumulateWeightedAggregator( exclude_vars={"dxo1": "hello", "dxo2": "hello"}, aggregation_weights=None, expected_data_kind={"dxo1": DataKind.WEIGHTS, "dxo2": DataKind.WEIGHT_DIFF}, ), ), ( None, {"client_0": 1.0, "client_1": 2.0}, {"dxo1": DataKind.WEIGHTS, "dxo2": DataKind.WEIGHT_DIFF}, InTimeAccumulateWeightedAggregator( exclude_vars=None, aggregation_weights={ "dxo1": {"client_0": 1.0, "client_1": 2.0}, "dxo2": {"client_0": 1.0, "client_1": 2.0}, }, expected_data_kind={"dxo1": DataKind.WEIGHTS, "dxo2": DataKind.WEIGHT_DIFF}, ), ), ], ) def test_create(self, exclude_vars, aggregation_weights, expected_data_kind, expected_object): result = InTimeAccumulateWeightedAggregator( exclude_vars=exclude_vars, aggregation_weights=aggregation_weights, expected_data_kind=expected_data_kind ) assert result.exclude_vars == expected_object.exclude_vars assert result.aggregation_weights == expected_object.aggregation_weights assert result.expected_data_kind == expected_object.expected_data_kind @pytest.mark.parametrize("current_round,contribution_round,expected", [(1, 1, True), (2, 1, False)]) def test_accept(self, current_round, contribution_round, expected): aggregation_weights = {f"client_{i}": random.random() for i in range(2)} agg = InTimeAccumulateWeightedAggregator(aggregation_weights=aggregation_weights) client_name = "client_0" iter_number = 1 weights = np.random.random(4) fl_ctx = FLContext() s = Shareable() s.set_peer_props({ReservedKey.IDENTITY_NAME: client_name}) s.set_header(AppConstants.CONTRIBUTION_ROUND, contribution_round) fl_ctx.set_prop(AppConstants.CURRENT_ROUND, current_round) dxo = DXO( DataKind.WEIGHT_DIFF, data={"var1": weights}, meta={ MetaKey.NUM_STEPS_CURRENT_ROUND: iter_number, }, ) assert agg.accept(dxo.update_shareable(s), fl_ctx) == expected @pytest.mark.parametrize( "received,expected", [ ( {"client1": {"weight": 0.5, "iter_number": 1, "aggr_data": {"var1": np.array([2.0, 3.0, 1.1, 0.1])}}}, {"var1": np.array([2.0, 3.0, 1.1, 0.1])}, ), ( {"client1": {"weight": 1.0, "iter_number": 1, "aggr_data": {"var1": np.array([2.0, 3.0, 1.1, 0.1])}}}, {"var1": np.array([2.0, 3.0, 1.1, 0.1])}, ), ( { "client1": {"weight": 0.5, "iter_number": 1, "aggr_data": {"var1": np.array([2.0, 3.0, 1.1, 0.1])}}, "client2": {"weight": 1.0, "iter_number": 1, "aggr_data": {"var1": np.array([1.0, 1.0, 2.1, 0.5])}}, }, { "var1": np.array( [ (0.5 * 2.0 + 1.0 * 1.0) / (0.5 + 1), (0.5 * 3.0 + 1.0 * 1.0) / (0.5 + 1), (0.5 * 1.1 + 1.0 * 2.1) / (0.5 + 1), (0.5 * 0.1 + 1.0 * 0.5) / (0.5 + 1), ] ) }, ), ( { "client1": {"weight": 1.0, "iter_number": 2, "aggr_data": {"var1": np.array([2.0, 3.0, 1.1, 0.1])}}, "client2": {"weight": 1.0, "iter_number": 4, "aggr_data": {"var1": np.array([1.0, 1.0, 2.1, 0.5])}}, }, { "var1": np.array( [ (2 * 2.0 + 4 * 1.0) / (2 + 4), (2 * 3.0 + 4 * 1.0) / (2 + 4), (2 * 1.1 + 4 * 2.1) / (2 + 4), (2 * 0.1 + 4 * 0.5) / (2 + 4), ] ) }, ), ], ) def test_aggregate(self, received, expected): aggregation_weights = {k: v["weight"] for k, v in received.items()} agg = InTimeAccumulateWeightedAggregator(aggregation_weights=aggregation_weights) fl_ctx = FLContext() fl_ctx.set_prop(AppConstants.CURRENT_ROUND, 0) for k, v in received.items(): dxo = DXO( DataKind.WEIGHT_DIFF, data=v["aggr_data"], meta={ MetaKey.NUM_STEPS_CURRENT_ROUND: v["iter_number"], }, ) s = Shareable() s.set_peer_props({ReservedKey.IDENTITY_NAME: k}) s.set_header(AppConstants.CONTRIBUTION_ROUND, 0) agg.accept(dxo.update_shareable(s), fl_ctx) result = agg.aggregate(fl_ctx)
np.testing.assert_allclose(result["DXO"]["data"]["var1"], expected["var1"])
numpy.testing.assert_allclose
''' Code partially copied from python_speech_features package ''' from __future__ import absolute_import from __future__ import division from __future__ import print_function from . import audio_utils as sigproc import os import numpy as np import logging from scipy import signal from scipy.fftpack import dct import librosa class Feature(object): """ Base class for features calculation All children class must implement __str__ and _call function. # Arguments fs: sampling frequency of audio signal. If the audio has not this fs, it will be resampled eps """ def __init__(self, fs=16e3, eps=1e-8, stride=1, num_context=0, mean_norm=True, var_norm=True): self.fs = fs self.eps = eps self.mean_norm = mean_norm self.var_norm = var_norm self.stride = stride self.num_context = num_context self._logger = logging.getLogger('%s.%s' % (__name__, self.__class__.__name__)) def __call__(self, audio): """ This method load the audio and do the transformation of signal # Inputs audio: if audio is a string and the file exists, the wave file will be loaded and resampled (if necessary) to fs if audio is a ndarray or list and is not empty, it will make the transformation without any resampling # Exception TypeError if audio were not recognized """ if ((isinstance(audio, str) or isinstance(audio, unicode)) and os.path.isfile(audio)): audio, current_fs = librosa.audio.load(audio) audio = librosa.core.resample(audio, current_fs, self.fs) feats = self._call(audio) elif type(audio) in (np.ndarray, list) and len(audio) > 1: feats = self._call(audio) else: TypeError("audio type is not support") return self._standarize(self._postprocessing(feats)) def _call(self, data): raise NotImplementedError("__call__ must be overrided") def _standarize(self, feats): if self.mean_norm: feats -= np.mean(feats, axis=0, keepdims=True) if self.var_norm: feats /= (np.std(feats, axis=0, keepdims=True) + self.eps) return feats def _postprocessing(self, feats): # Code adapted from # https://github.com/mozilla/DeepSpeech/blob/master/util/audio.py # We only keep every second feature (BiRNN stride = 2) feats = feats[::self.stride] if self.num_context == 0: return feats num_feats = feats.shape[1] train_inputs = np.array([], np.float32) train_inputs.resize((feats.shape[0], num_feats + 2*num_feats*self.num_context)) # Prepare pre-fix post fix context # (TODO: Fill empty_mfcc with MCFF of silence) empty_mfcc = np.array([]) empty_mfcc.resize((num_feats)) # Prepare train_inputs with past and future contexts time_slices = range(train_inputs.shape[0]) context_past_min = time_slices[0] + self.num_context context_future_max = time_slices[-1] - self.num_context for time_slice in time_slices: # Reminder: array[start:stop:step] # slices from indice |start| up to |stop| (not included), every # |step| # Pick up to self.num_context time slices in the past, and complete # with empty # mfcc features need_empty_past = max(0, (context_past_min - time_slice)) empty_source_past = list(empty_mfcc for empty_slots in range(need_empty_past)) data_source_past = feats[max(0, time_slice - self.num_context):time_slice] assert(len(empty_source_past) + len(data_source_past) == self.num_context) # Pick up to self.num_context time slices in the future, and # complete with empty # mfcc features need_empty_future = max(0, (time_slice - context_future_max)) empty_source_future = list(empty_mfcc for empty_slots in range(need_empty_future)) data_source_future = feats[time_slice + 1:time_slice + self.num_context + 1] assert(len(empty_source_future) + len(data_source_future) == self.num_context) if need_empty_past: past = np.concatenate((empty_source_past, data_source_past)) else: past = data_source_past if need_empty_future: future = np.concatenate((data_source_future, empty_source_future)) else: future = data_source_future past = np.reshape(past, self.num_context*num_feats) now = feats[time_slice] future = np.reshape(future, self.num_context*num_feats) train_inputs[time_slice] = np.concatenate((past, now, future)) assert(len(train_inputs[time_slice]) == num_feats + 2*num_feats*self.num_context) self._num_feats = num_feats + 2*num_feats*self.num_context return train_inputs def __str__(self): raise NotImplementedError("__str__ must be overrided") @property def num_feats(self): return self._num_feats class FBank(Feature): """Compute Mel-filterbank energy features from an audio signal. # Arguments win_len: the length of the analysis window in seconds. Default is 0.025s (25 milliseconds) win_step: the step between successive windows in seconds. Default is 0.01s (10 milliseconds) num_filt: the number of filters in the filterbank, default 40. nfft: the FFT size. Default is 512. low_freq: lowest band edge of mel filters in Hz. Default is 20. high_freq: highest band edge of mel filters in Hz. Default is 7800 pre_emph: apply preemphasis filter with preemph as coefficient. 0 is no filter. Default is 0.97. win_func: the analysis window to apply to each frame. By default hamming window is applied. """ def __init__(self, win_len=0.025, win_step=0.01, num_filt=40, nfft=512, low_freq=20, high_freq=7800, pre_emph=0.97, win_fun=signal.hamming, **kwargs): super(FBank, self).__init__(**kwargs) if high_freq > self.fs / 2: raise ValueError("high_freq must be less or equal than fs/2") self.win_len = win_len self.win_step = win_step self.num_filt = num_filt self.nfft = nfft self.low_freq = low_freq self.high_freq = high_freq or self.fs / 2 self.pre_emph = pre_emph self.win_fun = win_fun self._filterbanks = self._get_filterbanks() self._num_feats = self.num_filt @property def mel_points(self): return np.linspace(self._low_mel, self._high_mel, self.num_filt + 2) @property def low_freq(self): return self._low_freq @low_freq.setter def low_freq(self, value): self._low_mel = self._hz2mel(value) self._low_freq = value @property def high_freq(self): return self._high_freq @high_freq.setter def high_freq(self, value): self._high_mel = self._hz2mel(value) self._high_freq = value def _call(self, signal): """Compute Mel-filterbank energy features from an audio signal. :param signal: the audio signal from which to compute features. Should be an N*1 array Returns: 2 values. The first is a numpy array of size (NUMFRAMES by nfilt) containing features. Each row holds 1 feature vector. The second return value is the energy in each frame (total energy, unwindowed) """ signal = sigproc.preemphasis(signal, self.pre_emph) frames = sigproc.framesig(signal, self.win_len * self.fs, self.win_step * self.fs, self.win_fun) pspec = sigproc.powspec(frames, self.nfft) # this stores the total energy in each frame energy = np.sum(pspec, 1) # if energy is zero, we get problems with log energy = np.where(energy == 0,
np.finfo(float)
numpy.finfo
import sys, os, glob import argparse import time import random from copy import copy, deepcopy from termcolor import colored, cprint import numpy as np from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import roc_auc_score from sklearn.metrics import precision_recall_curve import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torch.autograd import Variable import torch.utils.data as data from torch.utils.tensorboard import SummaryWriter sys.path.append('../') from msda_src.model_utils import get_model_class, get_critic_class from msda_src.model_utils.domain_critic import ClassificationD, MMD, CoralD, WassersteinD from msda_src.utils.io import AmazonDataset, AmazonDomainDataset from msda_src.utils.io import say from msda_src.utils.op import softmax from dataset import ProcessedCNNInputDataset, OAGDomainDataset from models.cnn import CNNMatchModel from sklearn.metrics import confusion_matrix from sklearn.manifold import TSNE from utils import settings import warnings warnings.filterwarnings("ignore") argparser = argparse.ArgumentParser(description="Learning to Adapt from Multi-Source Domains") argparser.add_argument("--cuda", action="store_true") argparser.add_argument("--train", type=str, default="author,paper,aff", help="multi-source domains for training, separated with (,)") argparser.add_argument("--test", type=str, default="venue", help="target domain for testing") argparser.add_argument("--eval_only", action="store_true") argparser.add_argument("--critic", type=str, default="mmd") argparser.add_argument("--batch_size", type=int, default=32) argparser.add_argument("--batch_size_d", type=int, default=32) argparser.add_argument("--max_epoch", type=int, default=500) argparser.add_argument("--lr", type=float, default=1e-4) argparser.add_argument("--lr_d", type=float, default=1e-4) argparser.add_argument("--lambda_critic", type=float, default=0) argparser.add_argument("--lambda_gp", type=float, default=0) argparser.add_argument("--lambda_moe", type=float, default=1) argparser.add_argument("--lambda_mtl", type=float, default=0.3) argparser.add_argument("--lambda_all", type=float, default=0) argparser.add_argument("--lambda_dst", type=float, default=0) argparser.add_argument("--m_rank", type=int, default=10) argparser.add_argument("--lambda_entropy", type=float, default=0.0) argparser.add_argument("--load_model", type=str) argparser.add_argument("--save_model", type=str) argparser.add_argument("--metric", type=str, default="biaffine", help="mahalanobis: mahalanobis distance; biaffine: biaffine distance") argparser.add_argument('--no-cuda', action='store_true', default=False, help='Disables CUDA training.') argparser.add_argument('--matrix-size1', type=int, default=7, help='Matrix size 1.') argparser.add_argument('--matrix-size2', type=int, default=4, help='Matrix size 2.') argparser.add_argument('--mat1-channel1', type=int, default=8, help='Matrix1 number of channels1.') argparser.add_argument('--mat1-kernel-size1', type=int, default=3, help='Matrix1 kernel size1.') argparser.add_argument('--mat1-channel2', type=int, default=16, help='Matrix1 number of channel2.') argparser.add_argument('--mat1-kernel-size2', type=int, default=2, help='Matrix1 kernel size2.') argparser.add_argument('--mat1-hidden', type=int, default=512, help='Matrix1 hidden dim.') argparser.add_argument('--mat2-channel1', type=int, default=8, help='Matrix2 number of channels1.') argparser.add_argument('--mat2-kernel-size1', type=int, default=2, help='Matrix2 kernel size1.') argparser.add_argument('--mat2-hidden', type=int, default=512, help='Matrix2 hidden dim') argparser.add_argument('--build-index-window', type=int, default=5, help='Matrix2 hidden dim') argparser.add_argument('--seed', type=int, default=42, help='Random seed.') argparser.add_argument('--seed-delta', type=int, default=0, help='Random seed.') argparser.add_argument('--initial-accumulator-value', type=float, default=0.01, help='Initial accumulator value.') argparser.add_argument('--weight-decay', type=float, default=1e-3, help='Weight decay (L2 loss on parameters).') # argparser.add_argument('--dropout', type=float, default=0.2, # help='Dropout rate (1 - keep probability).') argparser.add_argument('--attn-dropout', type=float, default=0., help='Dropout rate (1 - keep probability).') argparser.add_argument('--check-point', type=int, default=2, help="Check point") argparser.add_argument('--shuffle', action='store_true', default=True, help="Shuffle dataset") args, _ = argparser.parse_known_args() writer = SummaryWriter('runs/{}_mix_moe_{}'.format(args.test, args.seed_delta)) class WeightScaler(nn.Module): def __init__(self): super(WeightScaler, self).__init__() self.multp = nn.Parameter(torch.rand(1)) # requires_grad is True by default for Parameter class HLoss(nn.Module): def __init__(self): super(HLoss, self).__init__() def forward(self, x): # b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1) b = x * torch.log(x) b = -1.0 * b.sum() return b class L1Norm(nn.Module): def __init__(self): super(L1Norm, self).__init__() def forward(self, x): return torch.norm(x, 1, 1).sum() def domain_encoding(loaders, args, encoders): ''' Compute the encoding of domains, each domain is represented as its mean vector Note: the covariance inverse matrix is learned ''' statistics = [] for load_i, loader in enumerate(loaders): ind = 0 labels = None S = [] for batch1, batch2, label in loader: if args.cuda: batch1 = Variable(batch1.cuda()) batch2 = Variable(batch2.cuda()) _, s_out = encoders[load_i](batch1, batch2) # print("s_out", s_out) S.append(s_out) if ind == 0: labels = label else: labels = torch.cat((labels, label), dim=0) ind += 1 S = torch.cat(S, 0) # print("S", S) neg_index = ((labels == 0).nonzero()) pos_index = ((labels == 1).nonzero()) neg_index = Variable(neg_index.expand(neg_index.size(0), S.size(1))) pos_index = Variable(pos_index.expand(pos_index.size(0), S.size(1))) if args.cuda: pos_index = pos_index.cuda() neg_index = neg_index.cuda() pos_S = torch.gather(S, 0, pos_index) neg_S = torch.gather(S, 0, neg_index) pos_mu_S = torch.mean(pos_S, dim=0, keepdim=True) neg_mu_S = torch.mean(neg_S, dim=0, keepdim=True) mu_S = torch.mean(S, dim=0, keepdim=True) # print("mu_s", mu_S) # print("pos_mu_s", pos_mu_S) # print("neg_mu_s", neg_mu_S) statistics.append((mu_S, pos_mu_S, neg_mu_S)) return statistics TEMPERATURE = 4 def mahalanobis_metric_fast(p, mu, U, pos_mu, pos_U, neg_mu, neg_U): # covi = (cov + I).inverse() # print("p", type(p), p) # print("p", p.shape, p) # print("mu", mu.shape, mu) # # print("p - mu", p - mu) # print("U", U) mahalanobis_distances = (p - mu).mm(U.mm(U.t())).mm((p - mu).t()) pos_mahalanobis_distance = (p - pos_mu).mm(pos_U.mm(pos_U.t())).mm((p - pos_mu).t()).diag().sqrt().data neg_mahalanobis_distance = (p - neg_mu).mm(neg_U.mm(neg_U.t())).mm((p - neg_mu).t()).diag().sqrt().data mahalanobis_ratio1 = pos_mahalanobis_distance - neg_mahalanobis_distance mahalanobis_ratio2 = neg_mahalanobis_distance - pos_mahalanobis_distance max_ratio = torch.max(mahalanobis_ratio1, mahalanobis_ratio2) return max_ratio # / TEMPERATURE # return mahalanobis_distances.diag().sqrt().data def mahalanobis_metric(p, S, L, U, pos_U, neg_U, args, encoder=None): r''' Compute the mahalanobis distance between the encoding of a sample (p) and a set (S). Args: p: tensor (batch_size, dim), a batch of samples S: tensor (size, dim), a domain which contains a set of samples encoder: a module used for encoding p and S Return: mahalanobis_distances: tensor (batch_size) ''' if encoder is not None: p = encoder(p) # (batch_size, dim) S = encoder(S) # (size, dim) neg_index = ((L == 0).nonzero()) pos_index = ((L == 1).nonzero()) neg_index = neg_index.expand(neg_index.size(0), S.data.size(1)) pos_index = pos_index.expand(pos_index.size(0), S.data.size(1)) neg_S = torch.gather(S, 0, neg_index) pos_S = torch.gather(S, 0, pos_index) neg_mu = torch.mean(neg_S, dim=0, keepdim=True) pos_mu = torch.mean(pos_S, dim=0, keepdim=True) pos_mahalanobis_distance = (p - pos_mu).mm(pos_U.mm(pos_U.t())).mm((p - pos_mu).t()).diag().sqrt() neg_mahalanobis_distance = (p - neg_mu).mm(neg_U.mm(neg_U.t())).mm((p - neg_mu).t()).diag().sqrt() mahalanobis_ratio1 = pos_mahalanobis_distance - neg_mahalanobis_distance mahalanobis_ratio2 = neg_mahalanobis_distance - pos_mahalanobis_distance max_ratio = torch.max(mahalanobis_ratio1, mahalanobis_ratio2) return max_ratio.clamp(0.01, 2) # / TEMPERATURE # .clamp(0.001, 1) # mu_S = torch.mean(S, dim=0, keepdim=True) # (1, dim) # mahalanobis_distances = (p - mu_S).mm(U.mm(U.t())).mm((p - mu_S).t()) # return mahalanobis_distances.diag().sqrt().clamp(0.01, 2) def biaffine_metric_fast(p, mu, U): biaffine_distances = p.mm(U).mm(mu.t()) return biaffine_distances.squeeze(1).data def biaffine_metric(p, S, U, W, V, args, encoder=None): ''' Compute the biaffine distance between the encoding of a sample (p) and a set (S). Args: p: tensor (batch_size, dim), a batch of samples U: matrix (dim, dim) S: tensor (size, dim), a domain which contains a set of samples encoder: a module used for encoding p and S Return: biaffine_distance: tensor (batch_size) ''' if encoder is not None: p = encoder(p) S = encoder(S) mu_S = torch.mean(S, dim=0, keepdim=True) biaffine_distances = p.mm(U).mm(mu_S.t()) + p.mm(W) + mu_S.mm(V) # extra components return biaffine_distances.squeeze(1).clamp(-10, 10) DATA_DIR = "../../msda-data/amazon/chen12" def train_epoch(iter_cnt, encoders, classifiers, critic, mats, data_loaders, args, optim_model, epoch): encoders, encoder_dst = encoders classifiers, classifier_dst, classifier_mix = classifiers map(lambda m: m.train(), encoders + [encoder_dst, classifier_dst, critic, classifier_mix] + classifiers) train_loaders, train_loader_dst, unl_loader, valid_loader = data_loaders dup_train_loaders = deepcopy(train_loaders) # mtl_criterion = nn.CrossEntropyLoss() mtl_criterion = nn.NLLLoss() moe_criterion = nn.NLLLoss() # with log_softmax separated kl_criterion = nn.MSELoss() entropy_criterion = HLoss() if args.metric == "biaffine": metric = biaffine_metric Us, Ws, Vs = mats else: metric = mahalanobis_metric Us, Ps, Ns = mats loss_total = 0 total = 0 for batches, batches_dst, unl_batch in zip(zip(*train_loaders), train_loader_dst, unl_loader): train_batches1, train_batches2, train_labels = zip(*batches) # print("train batches1", train_labels[0].size()) # print("train batches2", train_batches2) # print("train labels", train_labels) unl_critic_batch1, unl_critic_batch2, unl_critic_label = unl_batch # print("unl", unl_critic_batch1) batches1_dst, batches2_dst, labels_dst = batches_dst # print("batches1_dst", batches1_dst) # print("batches2_dst", batches2_dst) total += len(batches1_dst) iter_cnt += 1 if args.cuda: train_batches1 = [batch.cuda() for batch in train_batches1] train_batches2 = [batch.cuda() for batch in train_batches2] train_labels = [label.cuda() for label in train_labels] batches1_dst = batches1_dst.cuda() batches2_dst = batches2_dst.cuda() labels_dst = labels_dst.cuda() unl_critic_batch1 = unl_critic_batch1.cuda() unl_critic_batch2 = unl_critic_batch2.cuda() unl_critic_label = unl_critic_label.cuda() # train_batches1 = [Variable(batch) for batch in train_batches1] # train_batches2 = [Variable(batch) for batch in train_batches2] # train_labels = [Variable(label) for label in train_labels] # unl_critic_batch1 = Variable(unl_critic_batch1) # unl_critic_batch2 = Variable(unl_critic_batch2) # unl_critic_label = Variable(unl_critic_label) optim_model.zero_grad() loss_train_dst = [] loss_mtl = [] loss_moe = [] loss_kl = [] loss_entropy = [] loss_dan = [] loss_all = [] ms_outputs = [] # (n_sources, n_classifiers) hiddens = [] hidden_corresponding_labels = [] # labels = [] _, hidden_dst = encoder_dst(batches1_dst, batches2_dst) cur_output_dst = classifier_dst(hidden_dst) cur_output_dst_mem = torch.softmax(cur_output_dst, dim=1) cur_output_dst = torch.log(cur_output_dst_mem) loss_train_dst.append(mtl_criterion(cur_output_dst, labels_dst)) outputs_dst_transfer = [] for i in range(len(train_batches1)): _, cur_hidden = encoders[i](batches1_dst, batches2_dst) cur_output = classifiers[i](cur_hidden) outputs_dst_transfer.append(cur_output) for i, (batch1, batch2, label) in enumerate(zip(train_batches1, train_batches2, train_labels)): # source i _, hidden = encoders[i](batch1, batch2) outputs = [] # create output matrix: # - (i, j) indicates the output of i'th source batch using j'th classifier # print("hidden", hidden) # raise hiddens.append(hidden) for classifier in classifiers: output = classifier(hidden) output = torch.log_softmax(output, dim=1) # print("output", output) outputs.append(output) ms_outputs.append(outputs) hidden_corresponding_labels.append(label) # multi-task loss # print("ms & label", ms_outputs[i][i], label) loss_mtl.append(mtl_criterion(ms_outputs[i][i], label)) # labels.append(label) if args.lambda_critic > 0: # critic_batch = torch.cat([batch, unl_critic_batch]) critic_label = torch.cat([1 - unl_critic_label, unl_critic_label]) # critic_label = torch.cat([1 - unl_critic_label] * len(train_batches) + [unl_critic_label]) if isinstance(critic, ClassificationD): critic_output = critic(torch.cat(hidden, encoders[i](unl_critic_batch1, unl_critic_batch2))) loss_dan.append(critic.compute_loss(critic_output, critic_label)) else: critic_output = critic(hidden, encoders[i](unl_critic_batch1, unl_critic_batch2)) loss_dan.append(critic_output) # critic_output = critic(torch.cat(hiddens), encoder(unl_critic_batch)) # loss_dan = critic_output else: loss_dan = Variable(torch.FloatTensor([0])) # assert (len(outputs) == len(outputs[0])) source_ids = range(len(train_batches1)) # for i in source_ids: # support_ids = [x for x in source_ids if x != i] # experts support_ids = [x for x in source_ids] # experts # i = 0 # support_alphas = [ metric( # hiddens[i], # hiddens[j].detach(), # hidden_corresponding_labels[j], # Us[j], Ps[j], Ns[j], # args) for j in support_ids ] if args.metric == "biaffine": source_alphas = [metric(hidden_dst, hiddens[j].detach(), Us[0], Ws[0], Vs[0], # for biaffine metric, we use a unified matrix args) for j in source_ids] else: source_alphas = [metric(hidden_dst, # i^th source hiddens[j].detach(), hidden_corresponding_labels[j], Us[j], Ps[j], Ns[j], args) for j in source_ids] support_alphas = [source_alphas[x] for x in support_ids] # print torch.cat([ x.unsqueeze(1) for x in support_alphas ], 1) support_alphas = softmax(support_alphas) # print("support_alphas after softmax", support_alphas) # meta-supervision: KL loss over \alpha and real source source_alphas = softmax(source_alphas) # [ 32, 32, 32 ] source_labels = [torch.FloatTensor([x == len(train_batches1)]) for x in source_ids] # one-hot if args.cuda: source_alphas = [alpha.cuda() for alpha in source_alphas] source_labels = [label.cuda() for label in source_labels] source_labels = Variable(torch.stack(source_labels, dim=0)) # 3*1 # print("source labels", source_labels) source_alphas = torch.stack(source_alphas, dim=0) # print("source_alpha after stack", source_alphas) source_labels = source_labels.expand_as(source_alphas).permute(1, 0) source_alphas = source_alphas.permute(1, 0) loss_kl.append(kl_criterion(source_alphas, source_labels)) # entropy loss over \alpha # entropy_loss = entropy_criterion(torch.stack(support_alphas, dim=0).permute(1, 0)) # print source_alphas loss_entropy.append(entropy_criterion(source_alphas)) output_moe_i = sum([alpha.unsqueeze(1).repeat(1, 2) * F.softmax(outputs_dst_transfer[id], dim=1) \ for alpha, id in zip(support_alphas, support_ids)]) # output_moe_full = sum([ alpha.unsqueeze(1).repeat(1, 2) * F.softmax(ms_outputs[i][id], dim=1) \ # for alpha, id in zip(full_alphas, source_ids) ]) # print("output_moe_i & labels", output_moe_i, train_labels[i]) loss_moe.append(moe_criterion(torch.log(output_moe_i), labels_dst)) # loss_moe.append(moe_criterion(torch.log(output_moe_full), train_labels[i])) # print("labels_dst", labels_dst) # upper_out = classifier_mix(torch.cat((cur_output_dst_mem, output_moe_i), dim=1)) upper_out = cur_output_dst_mem + classifier_mix.multp * output_moe_i loss_all = mtl_criterion(torch.log_softmax(upper_out, dim=1), labels_dst) loss_train_dst = sum(loss_train_dst) loss_mtl = sum(loss_mtl) # print("loss mtl", loss_mtl) # loss_mtl = loss_mtl.mean() loss_mtl /= len(source_ids) loss_moe = sum(loss_moe) # if iter_cnt < 400: # lambda_moe = 0 # lambda_entropy = 0 # else: lambda_moe = args.lambda_moe lambda_entropy = args.lambda_entropy # loss = (1 - lambda_moe) * loss_mtl + lambda_moe * loss_moe loss = args.lambda_mtl * loss_mtl + lambda_moe * loss_moe loss_kl = sum(loss_kl) loss_entropy = sum(loss_entropy) loss += args.lambda_entropy * loss_entropy loss += loss_train_dst * args.lambda_dst loss += loss_all * args.lambda_all loss_total += loss if args.lambda_critic > 0: loss_dan = sum(loss_dan) loss += args.lambda_critic * loss_dan loss.backward() optim_model.step() # print("loss entropy", loss_entropy) # print("mats", [Us, Ps, Ns]) # for paras in task_paras: # print(paras) # for name, param in paras: # if param.requires_grad: # print(name, param.data) # for name, param in encoder.named_parameters(): # if param.requires_grad: # # print(name, param.data) # print(name, param.grad) for cls_i, classifier in enumerate(classifiers): for name, param in classifier.named_parameters(): # print(cls_i, name, param.grad) pass if iter_cnt % 5 == 0: # [(mu_i, covi_i), ...] # domain_encs = domain_encoding(dup_train_loaders, args, encoder) if args.metric == "biaffine": mats = [Us, Ws, Vs] else: mats = [Us, Ps, Ns] # evaluate( # # [encoders, encoder_dst], # # [classifiers, classifier_dst, classifier_mix], # # mats, # # [dup_train_loaders, valid_loader], # # True, # # args # # ) # say("\r" + " " * 50) # TODO: print train acc as well # print("loss dan", loss_dan) say("{} MTL loss: {:.4f}, MOE loss: {:.4f}, DAN loss: {:.4f}, " "loss: {:.4f}\n" # ", dev acc/oracle: {:.4f}/{:.4f}" .format(iter_cnt, loss_mtl.item(), loss_moe.item(), loss_dan.item(), loss.item(), # curr_dev, # oracle_curr_dev )) writer.add_scalar('training_loss', loss_total / total, epoch) say("\n") return iter_cnt def compute_oracle(outputs, label, args): ''' Compute the oracle accuracy given outputs from multiple classifiers ''' # oracle = torch.ByteTensor([0] * label.shape[0]) oracle = torch.BoolTensor([0] * label.shape[0]) if args.cuda: oracle = oracle.cuda() for i, output in enumerate(outputs): pred = output.data.max(dim=1)[1] # print("pred", pred) # print("label", label) oracle |= pred.eq(label.byte()) return oracle def evaluate(epoch, encoders, classifiers, mats, loaders, return_best_thrs, args, thr=None): ''' Evaluate model using MOE ''' encoders, encoder_dst = encoders classifiers, classifier_dst, classifier_mix = classifiers map(lambda m: m.eval(), encoders + classifiers + [encoder_dst, classifier_dst, classifier_mix]) if args.metric == "biaffine": Us, Ws, Vs = mats else: Us, Ps, Ns = mats source_loaders, valid_loader = loaders domain_encs = domain_encoding(source_loaders, args, encoders) oracle_correct = 0 correct = 0 tot_cnt = 0 y_true = [] y_pred = [] y_score = [] loss = 0. source_ids = range(len(domain_encs)) for batch1, batch2, label in valid_loader: if args.cuda: batch1 = batch1.cuda() batch2 = batch2.cuda() label = label.cuda() # print("eval labels", label) batch1 = Variable(batch1) batch2 = Variable(batch2) bs = len(batch1) # print("bs", len(batch1)) _, hidden_dst = encoder_dst(batch1, batch2) cur_output_dst = classifier_dst(hidden_dst) cur_output_dst_mem = torch.softmax(cur_output_dst, dim=1) # print("mem", cur_output_dst_mem) cur_output_dst = torch.log(cur_output_dst_mem) outputs_dst_transfer = [] for src_i in range(len(source_loaders)): _, cur_hidden = encoders[src_i](batch1, batch2) cur_output = classifiers[src_i](cur_hidden) outputs_dst_transfer.append(cur_output) # _, hidden = encoders[0](batch1, batch2) # source_ids = range(len(domain_encs)) if args.metric == "biaffine": alphas = [biaffine_metric_fast(hidden_dst, mu[0], Us[0]) \ for mu in domain_encs] else: alphas = [mahalanobis_metric_fast(hidden_dst, mu[0], U, mu[1], P, mu[2], N) \ for (mu, U, P, N) in zip(domain_encs, Us, Ps, Ns)] # # alphas = [ (1 - x / sum(alphas)) for x in alphas ] alphas = softmax(alphas) if args.cuda: alphas = [alpha.cuda() for alpha in alphas] alphas = [Variable(alpha) for alpha in alphas] # # outputs = [F.softmax(classifier(hidden), dim=1) for classifier in classifiers] output_moe = sum([alpha.unsqueeze(1).repeat(1, 2) * output_i \ for (alpha, output_i) in zip(alphas, outputs_dst_transfer)]) # pred = output.data.max(dim=1)[1] # oracle_eq = compute_oracle(outputs, label, args) # outputs = classifier_mix(torch.cat((cur_output_dst_mem, output_moe), dim=1)) outputs = cur_output_dst_mem + classifier_mix.multp * output_moe # print("weight mix", classifier_mix.multp) outputs_upper_logits = torch.log_softmax(outputs, dim=1) # outputs_upper_logits = torch.log(cur_output_dst_mem) outputs_upper_logits = output_moe # print("outputs_upper_logits", outputs_upper_logits) pred = outputs_upper_logits.data.max(dim=1)[1] # oracle_eq = compute_oracle(outputs_upper_logits, label, args) loss_batch = F.nll_loss(outputs_upper_logits, label) loss += bs * loss_batch.item() # if args.eval_only: # for i in range(batch1.shape[0]): # for j in range(len(alphas)): # say("{:.4f}: [{:.4f}, {:.4f}], ".format( # alphas[j].data[i], outputs[j].data[i][0], outputs[j].data[i][1]) # ) # oracle_TF = "T" if oracle_eq[i] == 1 else colored("F", 'red') # say("gold: {}, pred: {}, oracle: {}\n".format(label[i], pred[i], oracle_TF)) # say("\n") # print torch.cat( # [ # torch.cat([ x.unsqueeze(1) for x in alphas ], 1), # torch.cat([ x for x in outputs ], 1) # ], 1 # ) y_true += label.tolist() y_pred += pred.tolist() # print("output", output[:, 1].data.tolist()) y_score += outputs_upper_logits[:, 1].data.tolist() # print("cur y score", y_score) correct += pred.eq(label).sum() # oracle_correct += oracle_eq.sum() tot_cnt += outputs_upper_logits.size(0) # print("y_true", y_true) # print("y_pred", y_pred) if thr is not None: print("using threshold %.4f" % thr) y_score = np.array(y_score) y_pred = np.zeros_like(y_score) y_pred[y_score > thr] = 1 else: # print("y_score", y_score) pass loss /= tot_cnt prec, rec, f1, _ = precision_recall_fscore_support(y_true, y_pred, average="binary") # print("y_score", y_score) auc = roc_auc_score(y_true, y_score) print("Loss: {:.4f}, AUC: {:.2f}, Prec: {:.2f}, Rec: {:.2f}, F1: {:.2f}".format( loss, auc * 100, prec * 100, rec * 100, f1 * 100)) best_thr = None metric = [auc, prec, rec, f1] if return_best_thrs: precs, recs, thrs = precision_recall_curve(y_true, y_score) f1s = 2 * precs * recs / (precs + recs) f1s = f1s[:-1] thrs = thrs[~np.isnan(f1s)] f1s = f1s[~np.isnan(f1s)] best_thr = thrs[
np.argmax(f1s)
numpy.argmax
"""日常的草稿""" import numpy as np import csv import pickle import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf import tqdm from tensorflow.keras import Sequential, layers, losses, optimizers, models import os # 1. 调试early stopping # a = [0.2, 0.3, 0.3, 0.4, 0.4, 0.4, 0.77, 0.77, 0.77, 0.77, 0.77, 0.999] # wait = np.zeros(len(a)) # temp = 0 # i = 0 # # for acc in a: # if acc >= 0.999: # print("The realistic training epochs is: %d" % (i + 1)) # 设置early stopping,打印实际训练次数 # break # if acc - temp <= 0.001: # wait[i] = wait[i] + 1 # if (i >= 4) & (np.sum(wait[(i - 4):i]) >= 3): # print("The realistic training epochs is: %d" % (i + 1)) # break # # i += 1 # temp = acc # 记录SNR=-10dB时,每一次训练的精度,写入csv # accuracy2 = {'model_1': [0, 0.214000, 0.214500, 0.215000, 0.484000, 0.619500, 0.367000, 0.741500, 0.830000, 0.620000, 0.803000, # 0.807500, 0.813500, 0.881500, 0.866000, 0.889000, 0.871000, 0.876500, 0.887500, 0.870500, 0.886500, # 0.888500, 0.865500, 0.866000, 0.887000, 0.879500, 0.869500], # 'model_2': [0, 0.214500, 0.256500, 0.409500, 0.427000, 0.613500, 0.615500, 0.449500, 0.548000, 0.421000, 0.643500, 0.595500], # 'model_3': [0, 0.321500, 0.214500, 0.219500, 0.346000, 0.407000, 0.610500, 0.615500, 0.712500, 0.690000, 0.712000, # 0.737500, 0.650000, 0.718500, 0.734500, 0.640000, 0.672500, 0.702000, 0.746000, 0.719500], # 'model_4': [0, 0.214500, 0.214500, 0.214500, 0.218000, 0.596500, 0.641500, 0.650000, 0.636000, 0.617500, 0.626500, # 0.652500, 0.682500, 0.741500, 0.797000, 0.823000, 0.831500, 0.816500, 0.824500, 0.796000, 0.837500, # 0.797000, 0.791000, 0.812000], # 'model_5': [0, 0.383500, 0.464500, 0.395000, 0.492500, 0.614000, 0.621500, 0.619000, 0.635500, 0.629500, 0.615000, # 0.631500, 0.632500, 0.639500, 0.627500, 0.652000, 0.634500, 0.651000, 0.613000, 0.618500, 0.625500]} # # with open('top5_model_accuracy.csv', mode='a+', newline='') as f: # data = [] # a = [] # for index in accuracy2: # data = accuracy2[index] # a.append([data, [index]]) # # writer = csv.writer(f) # writer.writerow(a) # 2. 从csv文件中画图 lines1 = [] files = ['optimized_model1.csv'] for file in files: with open(file, 'r') as f: for line in f: temp = line.split(',') temp[-1] = temp[-1][:-1] # remove \n temp[0:50] = [float(i) for i in temp[0:50]] # convert accuracy to float lines1.append(temp) lines2 = [] files = ['optimized_model2.csv'] for file in files: with open(file, 'r') as f: for line in f: temp = line.split(',') temp[-1] = temp[-1][:-1] # remove \n temp[0:50] = [float(i) for i in temp[0:50]] # convert accuracy to float lines2.append(temp) high_acc1 = [] for i in range(8): temp = max(lines1[i][0:50]) high_acc1.append(temp) high_acc2 = [] for i in range(8): temp = max(lines2[i][0:50]) high_acc2.append(temp) high_acc1.insert(0, np.nan) high_acc2.insert(0, np.nan) plt.plot(high_acc1, '--k', label='standard NAS') plt.plot(high_acc2, 'r', label='balanced NAS') plt.legend() plt.ylim((0, 1)) plt.xlabel('B') plt.ylabel('Accuracy') # my_x_ticks = np.arange(1, 9, 1) # plt.xticks(my_x_ticks) plt.show() # # plt.plot(lines[0][0:50], label='model_1') # plt.plot(lines[1][0:50], label='model_2') # plt.plot(lines[2][0:50], label='model_3') # plt.plot(lines[3][0:50], label='model_4') # plt.plot(lines[4][0:50], label='model_5') # plt.legend() # plt.show() # 3. 计算模型参数量 # 先用model summary # from model import ModelGenerator # action = [0, '1x7-7x1 conv', 0, '1x7-7x1 conv', 0, '3x3 maxpool', 0, '3x3 avgpool', 0, '1x7-7x1 conv', 0, '7x7 dconv'] # # # def counts(actions, input_channel, filter_number, classes, cell): # """ 在最后还有一个全局池化 # 池化层默认padding为same,所以输出尺寸为input_size/2 # 卷积层后面要加偏置,含有BN,所以要加3*output_feature_map # 前B层的filter个数为32,后B层为64 """ # # # 先从actions中取出卷积核及池化核,取出奇数位 # operator = actions[1::2] # conv_size = [] # pool_size = [] # numbers = 0 # # for index in range(len(operator)): # name = operator[index].split(' ', 1) # if name[1] == 'conv': # temp = [i.split('x', 1) for i in name[0].split('-', 1)] # 分离出数值 # content1 = [[float(temp[0][0]), float(temp[0][1])], [float(temp[1][0]), float(temp[1][1])]] # 将str转换为float,[[1,7],[7,1]] # conv_size.append(content1) # elif name[1] == 'dconv': # temp = name[0].split('x', 1) # content1 = [float(temp[0]), float(temp[1])] # conv_size.append(content1) # # if any([name[1] == 'maxpool', name[1] == 'avgpool']): # temp = name[0].split('x', 1) # content2 = [float(temp[0]), float(temp[1])] # pool_size.append(content2) # # # 取出卷积层的数值 # conv_size2 = [] # for i in conv_size: # if isinstance(i, list): # for j in i: # if isinstance(j, list): # for t in j: # conv_size2.append(t) # 只取出了嵌套的列表 # else: # conv_size2.append(j) # # conv_size2 = [conv_size2[i:i+2] for i in range(0, len(conv_size2), 2)] # # # 综合其他参数开始计算网络中的训练参数总量 # if cell == 1: # feed1 = input_channel # for i in range(len(conv_size2)): # 卷积层 # numbers1 = feed1 * conv_size2[i][0] * conv_size2[i][1] * filter_number[0] + 3 * filter_number[0] # cell_1 # feed1 = filter_number[0] # numbers += numbers1 # # numbers += (classes * feed1 + classes) # Dense层 # # elif cell == 2: # feed1 = input_channel # for i in range(len(conv_size2)): # 卷积层 # numbers1 = feed1 * conv_size2[i][0] * conv_size2[i][1] * filter_number[0] + 3 * filter_number[0] # cell_1 # feed1 = filter_number[0] # numbers += numbers1 # feed2 = feed1 # for i in range(len(conv_size2)): # numbers2 = feed2 * conv_size2[i][0] * conv_size2[i][1] * filter_number[1] + 3 * filter_number[1] # cell_2 # feed2 = filter_number[1] # numbers += numbers2 # # numbers += (classes * feed2 + classes) # Dense层 # # else: # print('The numbers of cell is undefined!') # # return numbers # # # total_count = counts(action, input_channel=3, filter_number=[32, 64], classes=5, cell=1) num_acc = [] for i in range(8): action = lines1[i][50:(50+(i+1)*4)] temp = counts(action, input_channel=3, input_size=[32, 32, 3], stride=2, filter_number=[32, 64], classes=5, B=i+1, cell=2) num_acc.append(temp) num_rew = [] for i in range(8): action = lines2[i][50:(50+(i+1)*4)] temp = counts(action, input_channel=3, input_size=[32, 32, 3], stride=2, filter_number=[32, 64], classes=5, B=i+1, cell=2) num_rew.append(temp) num_acc.insert(0, np.nan) num_rew.insert(0, np.nan) plt.plot(num_acc, '--k', label='standard NAS') plt.plot(num_rew, 'r', label='balanced NAS') plt.legend() plt.xlabel('B') plt.ylabel('Computation amount') plt.show() # network = Sequential() # network.add(layers.Conv2D(32, kernel_size=(1, 7), padding='SAME', strides=2, activation='relu', input_shape=(512, 512, 3))) # network.add(layers.Conv2D(32, kernel_size=(7, 1), padding='SAME', strides=2, activation='relu')) # # network.add(layers.Conv2D(32, kernel_size=(1, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Conv2D(32, kernel_size=(7, 1), padding='SAME', strides=2, activation='relu')) # # network.add(layers.MaxPooling2D(pool_size=3, strides=2)) # 第1个池化层,高宽各减半的池化层 # # network.add(layers.MaxPooling2D(pool_size=3, strides=2)) # 第1个池化层,高宽各减半的池化层 # # network.add(layers.Conv2D(32, kernel_size=(1, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Conv2D(32, kernel_size=(7, 1), padding='SAME', strides=2, activation='relu')) # # network.add(layers.Conv2D(32, kernel_size=(7, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Conv2D(64, kernel_size=(1, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Conv2D(64, kernel_size=(7, 1), padding='SAME', strides=2, activation='relu')) # # network.add(layers.Conv2D(64, kernel_size=(1, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Conv2D(64, kernel_size=(7, 1), padding='SAME', strides=2, activation='relu')) # # network.add(layers.MaxPooling2D(pool_size=3, strides=2)) # 第1个池化层,高宽各减半的池化层 # # network.add(layers.MaxPooling2D(pool_size=3, strides=2)) # 第1个池化层,高宽各减半的池化层 # # network.add(layers.Conv2D(64, kernel_size=(1, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Conv2D(64, kernel_size=(7, 1), padding='SAME', strides=2, activation='relu')) # # network.add(layers.Conv2D(64, kernel_size=(7, 7), padding='SAME', strides=2, activation='relu')) # network.add(layers.Dense(units=5, activation='softmax')) # network.summary() # 4. 调试skip connection,需要创造支路,同时需要drop path # action = [0, '1x7-7x1 conv', 0, '1x7-7x1 conv', 0, '3x3 maxpool', 0, '3x3 avgpool', 0, '1x7-7x1 conv', 0, '7x7 dconv'] # network = ModelGenerator(action) # 建立网络,调用时将图像数据输入network # 5. 调试平衡函数 ''' 思路:精度为增函数,运算量函数为减函数; 函数选取幂函数,线性函数,指数函数,sigmoid函数 第一种:令精度的次幂小于运算量,仿真结果发现,当信噪比较低时,高精度的模型得分较小 第二种:令精度的次幂大于运算量 ''' # (一)第一种 # (1) 平衡函数与精度之间的关系 # x = np.linspace(0, 1, 1000) # F1 = 1/(1+np.exp(-10*(x-0.5))) # sigmoid函数 # plt.plot(x, F1, label='$F1(x)$', color='green', linewidth=0.5) # plt.legend() # plt.show() # f2 = a**(1/2) # 幂函数 # plt.plot(a, f2, label='$f2(a)$', color='green', linewidth=0.5) # plt.show() # (2) 平衡函数与运算量之间的关系 # x = np.linspace(0, 1, 1000) # fe_1 = 1/(1+np.exp(10*(x-0.5))) # sigmoid函数 # plt.plot(x, fe_1, label='$fe_1(x)$', color='green', linewidth=0.5) # plt.show() # (3) 画出不同边缘函数组合的图像(二维图) # a = np.linspace(0, 1, 1000) # fa_1 = a**(1/2) # fa_1 = 1/(1+np.exp(-10*(a-0.5))) # fe_1 = -a+1 # f1 = (1/2) * (fe_1+fa_1) # plt.plot(a, f1, color='green', linewidth=0.5) # plt.show() # F_2 = -x*x # f2 = (1/2) * (fe_2+fa_1) # plt.plot(x, F_2, label='$F2(y)$', color='green', linewidth=0.5) # plt.legend() # plt.show() # fe_3 = 1/(a+0.01) # f3 = (1/2) * (fe_3+fa_1) # plt.plot(a, f3, color='green', linewidth=0.5) # plt.show() # fe_4 = 1/(1+np.exp(10*(a-0.5))) # f4 = (1/2) * (fe_4+fa_1) # plt.plot(a, f4, color='green', linewidth=0.5) # plt.show() # 三维图 from mpl_toolkits.mplot3d import Axes3D x = np.arange(0, 1, 0.01) # 精度 y = np.arange(0, 1, 0.01) # 运算量 fig = plt.figure() ax = Axes3D(fig) X, Y = np.meshgrid(x, y) # 网格的创建 # # fa_1 = X**(1/2) fa_1 = 1/(1+np.exp(-10*(X-0.5))) # # fe_1 = -Y + 1 # fe_1 = -Y*Y # Z = 1/2 * (fa_1 + fe_1) # plt.xlabel('x') # plt.ylabel('y') # ax.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow') # plt.show() # (二)第二种 # 此法效果较好 # fa_1 = 1/(1+np.exp(-10*(X-0.5))) fe_1 =
np.exp(-Y)
numpy.exp
import numpy as np import cv2 import open3d as o3d def getAffordancePointCloudBasedOnVariance(pcd): """ Computes 9 points for each affordance, based on standard deviation, present in the point cloud Input: pcd - o3d.geometry.PointCloud() Output: pcd_box - o3d.geometry.PointCloud() """ affordances, affordance_counts = getPredictedAffordancesInPointCloud(pcd) affordance_counts = affordance_counts / np.linalg.norm(affordance_counts) out_points, out_colors = [], [] points = np.asanyarray(pcd.points) colors = np.asanyarray(pcd.colors) if np.max(colors) <= 1.0: colors = colors * 255 label_colors = getAffordanceColors() first = True for label_count, label_color in enumerate(label_colors): if label_count != 0: if affordance_counts[label_count] > 0.005: idx = colors == label_color idx = np.sum(idx, axis = -1) == 3 if True in idx: aff_points = points[idx] x_c, y_c, z_c = np.mean(aff_points, axis = 0) x_std, y_std, z_std = np.std(aff_points, axis = 0) / 2 box_points = [] box_points.append([x_c, y_c, z_c]) # centroid box_points.append([x_c - x_std, y_c - y_std, z_c - z_std]) box_points.append([x_c + x_std, y_c - y_std, z_c - z_std]) box_points.append([x_c - x_std, y_c + y_std, z_c - z_std]) box_points.append([x_c + x_std, y_c + y_std, z_c - z_std]) box_points.append([x_c - x_std, y_c - y_std, z_c + z_std]) box_points.append([x_c + x_std, y_c - y_std, z_c + z_std]) box_points.append([x_c - x_std, y_c + y_std, z_c + z_std]) box_points.append([x_c + x_std, y_c + y_std, z_c + z_std]) box_colors = [label_color for i in range(len(box_points))] box_points = np.array(box_points) box_colors = np.array(box_colors) / 255 if first: out_points = box_points out_colors = box_colors first = False else: out_points = np.vstack((out_points, box_points)) out_colors = np.vstack((out_colors, box_colors)) pcd_box = o3d.geometry.PointCloud() pcd_box.points = o3d.utility.Vector3dVector(out_points) pcd_box.colors = o3d.utility.Vector3dVector(out_colors) return pcd_box def getPredictedAffordancesInPointCloud(pcd): """ Input: pcd - o3d.geometry.PointCloud() Output: affordances - list[], one-hot-encoded vector with present affordances. counts - np.array(), shape(num_affordances), int count of every affordance. """ label_colors = getAffordanceColors() colors = np.asanyarray(pcd.colors) if np.max(colors) <= 1.0: colors = colors * 255 affordances, counts = [], [] for label_color in label_colors: idx = colors == label_color idx = np.sum(idx, axis = -1) == 3 if True in idx: affordances.append(1) counts.append(np.count_nonzero(idx == True)) else: affordances.append(0) counts.append(0) return affordances, np.array(counts) def getPredictedAffordances(masks, bbox = None): """ Input: masks - np.array, shape (affordances, h, w) bbox - if provided speeds up computations Output: affordances - list, [N, ??], affordances found in each N object """ affordances = [] if bbox is not None: masks = masks[:, bbox[1]:bbox[3], bbox[0]:bbox[2]] for count, affordance_mask in enumerate(masks): if True in np.unique(affordance_mask): affordances.append(count) return affordances def getAffordanceColors(): """ Output: colors - 'official' list of colors so they are uniform """ colors = [(0,0,0), (0,0,255), (0,255,0), (123, 255, 123), (255, 0, 0), (255, 255, 0), (255, 255, 255), (255, 0, 255), (123, 123, 123), (255, 255, 0), (70, 70, 70), (0,10,0)] return colors def getAffordanceContours(affordance_id, masks, bbox = None): """ Input: affordance_id - int, masks - np.array, bool, shape (affordances, h, w) bbox - np.array, shape (4, 2), if provided speeds up computation Output: contours - list[N, cv2 contours] """ contours = [] m = masks[affordance_id] if bbox is not None: m = masks[affordance_id, bbox[1]:bbox[3], bbox[0]:bbox[2]].astype(np.uint8) contours, hierarchy = cv2.findContours(m, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) return contours def getAffordanceBoundingBoxes(pcd): """ Returns 8 points of the non-axis aligned bounding box for each affordance present in the provided affordance point cloud Input: pcd - o3d.geometry.PointCloud where each point has an affordance assigned. Output: points - np.array (N, 3) x, y, z points colors - np.array (N, 3) r, g, b associated with each affordance """ pcd_points = np.asanyarray(pcd.points) pcd_colors = np.asanyarray(pcd.colors).astype(np.uint8) if np.max(pcd_colors) <= 1.0: pcd_colors = pcd_colors * 255 label_colors = getAffordanceColors() points = [] colors = [] #print(np.unique(pcd_colors, axis = 0)) for color in label_colors: idx = pcd_colors == color idx = np.sum(idx, axis = -1) == 3 if True in idx: aff_points = o3d.utility.Vector3dVector(pcd_points[idx]) bbox = np.asanyarray(o3d.geometry.OrientedBoundingBox.create_from_points(aff_points).get_box_points()) bbox_colors = [color for i in range(bbox.shape[0])] #print(bbox) if len(points) == 0: points = bbox colors = np.array(bbox_colors) else: points = np.vstack((points, bbox)) colors = np.vstack((colors, bbox_colors)) return points, colors def getPointCloudAffordanceMask(affordance_id, points, uvs, masks, remove_outliers = True, bbox = None): """ Input: affordance_id - int, points - np.array, shape: (n, 3), xyz points masks - np.array, boolean, shape (affordances, h, w) uvs - np.array, shape (n, 2) remove_outliers - bool, uses open3d remove_statistical_outlier method bbox - np.array, shape (4, 2) if provided speeds up computation Output: success - bool, set to False if computation fails points - np.array, shape (n, 3), xyz points """ # Check if points are empty if points.shape[0] <= 0: return False, 0 # select affordance mask in bbox of object if bbox is not None: m = masks[affordance_id, bbox[1]:bbox[3], bbox[0]:bbox[2]] # do the same for points and uv points = points[np.where(uvs[:,0] > bbox[1])] uvs = uvs[np.where(uvs[:,0] > bbox[1])] points = points[np.where(uvs[:,0] < bbox[3])] uvs = uvs[np.where(uvs[:,0] < bbox[3])] points = points[np.where(uvs[:,1] > bbox[0])] uvs = uvs[np.where(uvs[:,1] > bbox[0])] points = points[np.where(uvs[:,1] < bbox[2])] uvs = uvs[np.where(uvs[:,1] < bbox[2])] uvs[:,0] -= bbox[1] uvs[:,1] -= bbox[0] else: m = masks[affordance_id, :, :] # Check if the affordance mask has the requested affordance if not 255 in np.unique(m) and not 1 in np.unique(m): return False, 0 # get points belonging to affordance cloud_masked = [] for count, uv in enumerate(uvs): if m[uv[0], uv[1]] != False: cloud_masked.append(points[count]) points = np.array(cloud_masked) if remove_outliers: pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(points) pcd = pcd.voxel_down_sample(voxel_size=0.005) pcd, _ = pcd.remove_statistical_outlier(nb_neighbors=20, std_ratio=2.0) points =
np.asanyarray(pcd.points)
numpy.asanyarray
import numpy as np import cv2 import matplotlib.pyplot as plt import pandas as pd from scipy.optimize import linear_sum_assignment from scipy import signal from sklearn.neighbors import KernelDensity import copy import os import utm import rasterio from CountLine import CountLine import sys sys.path.append('/home/golden/general-detection/functions') import koger_tracking as ktf def mark_bats_on_image(image_raw, centers, radii=None, scale_circle_size=5, contours=None, draw_contours=False): ''' Draw a bunch of circles on given image image: 2D or 3D image centers: shape(n,2) array of circle centers radii: list of circle radii ''' if len(image_raw.shape) < 2: print('image has too few dimensions') return None if len(image_raw.shape) == 2: color = 200 else: if image_raw.shape[2] == 3: color = (0, 255, 255) else: print('image is the wrong shape') return None image = np.copy(image_raw) if radii is None: radii = np.ones(len(centers)) for circle_ind, radius in enumerate(radii): cv2.circle(image, (centers[circle_ind, 0].astype(int), centers[circle_ind, 1].astype(int)), int(radius * scale_circle_size), color , 1) if draw_contours and contours: for contour in contours: if len(contour.shape) > 1: rect = cv2.minAreaRect(contour) box = cv2.boxPoints(rect) box_d = np.int0(box) cv2.drawContours(image, [box_d], 0, (0,255,100), 1) return image def get_tracks_in_frame(frame_ind, track_list): """ Return list of all tracks present in frame ind. """ tracks_in_frame = [] for track in track_list: if (track['last_frame'] >= frame_ind and track['first_frame'] <= frame_ind): tracks_in_frame.append(track) return tracks_in_frame def draw_tracks_on_frame(frame, frame_ind, track_list, positions=None, figure_scale=60, track_width=2, position_alpha=.5, draw_whole_track=False, shift=0): """ Draw all active tracks and all detected bat locations on given frame. frame: loaded image - np array frame_ind: frame number track_list: list of all tracks in observation positions: all detected bat positions in observation figure_scale: how big to display output image track_width: width of plotted tracks position_alpha: alpha of position dots draw_whole_track: Boolean draw track in the future of frame_ind shift: compensate for lack of padding in network when drawing tracks on input frames """ plt.figure( figsize = (int(frame.shape[1] / figure_scale), int(frame.shape[0] / figure_scale))) plt.imshow(frame) num_tracks = 0 for track in track_list: if (track['last_frame'] >= frame_ind and track['first_frame'] <= frame_ind): rel_frame = frame_ind - track['first_frame'] if draw_whole_track: plt.plot(track['track'][:, 0] + shift, track['track'][:, 1] + shift, linewidth=track_width) else: plt.plot(track['track'][:rel_frame, 0] + shift, track['track'][:rel_frame, 1] + shift, linewidth=track_width) num_tracks += 1 if positions: plt.scatter(positions[frame_ind][:,0] + shift, positions[frame_ind][:,1] + shift, c='red', alpha=position_alpha) plt.title('Tracks: {}, Bats: {}'.format(num_tracks, len(positions[frame_ind]))) def subtract_background(images, image_ind, background_sum): ''' Subtract an averaged background from the image. Average over frame_range in the past and future images: 3d numpy array (num images, height, width) image_ind: index in circular image array background_sum: sum of blue channel pixels across 0 dimension of images ''' background = np.floor_divide(background_sum, images.shape[0]) # The order of subtraction means dark bats are now light in image_dif image_dif = background - images[image_ind, :, :, 2] return image_dif, background def preprocess_to_binary(image, binary_thresh, background): ''' Converts 2D image to binary after rescaling pixel intensity image: 2D np array low_pix_value: pixel value below which all pixels are set to 0 high_pix_value: pixel value above which all pixels are set to 255 binary_thresh: number from 0 - 255, above set to 255, bellow, set to 0 background: background image (2D probably blue channel) ''' # # Rescale image pixels within range # image_rescale = exposure.rescale_intensity( # image, in_range=(low_pix_value, high_pix_value), out_range=(0, 255)) image_rescale = image # Binarize image based on threshold min_difference = 5 threshold = binary_thresh * background threshold = np.where(threshold < min_difference, min_difference, threshold) binary_image = np.where(image < threshold, 0, 255) return binary_image def get_blob_info(binary_image, background=None, size_threshold=0): ''' Get contours from binary image. Then find center and average radius of each contour binary_image: 2D image background: 2D array used to see locally how dark the background is size_threshold: radius above which blob is considered real ''' contours, hierarchy = cv2.findContours(binary_image.astype(np.uint8).copy(), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) centers = [] # Size of bounding rectangles sizes = [] areas = [] # angle of bounding rectangle angles = [] rects = [] good_contours = [] contours = [np.squeeze(contour) for contour in contours] for contour_ind, contour in enumerate(contours): if len(contour.shape) > 1: rect = cv2.minAreaRect(contour) if background is not None: darkness = background[int(rect[0][1]), int(rect[0][0])] if darkness < 30: dark_size_threshold = size_threshold + 22 elif darkness < 50: dark_size_threshold = size_threshold + 15 elif darkness < 80: dark_size_threshold = size_threshold + 10 elif darkness < 100: dark_size_threshold = size_threshold + 5 # elif darkness < 130: # dark_size_threshold = size_threshold + 3 else: dark_size_threshold = size_threshold else: dark_size_threshold = 0 # just used in if statement area = rect[1][0] * rect[1][1] if (area >= dark_size_threshold) or background is None: centers.append(rect[0]) sizes.append(rect[1]) angles.append(rect[2]) good_contours.append(contour) areas.append(area) rects.append(rect) if centers: centers = np.stack(centers, 0) sizes = np.stack(sizes, 0) else: centers = np.zeros((0,2)) return (centers, np.array(areas), good_contours, angles, sizes, rects) def draw_circles_on_image(image, centers, sizes, rects=None): ''' Draw a bunch of circles on given image image: 2D or 3D image centers: shape(n,2) array of circle centers rects: list of minimum bounding rectangles ''' if len(image.shape) < 2: print('image has too few dimensions') return None if len(image.shape) == 2: color = 200 rect_color = 100 else: if image.shape[2] == 3: color = (0, 255, 255) rect_color = (0,255,100) else: print('image is the wrong shape') return None for circle_ind, size in enumerate(sizes): cv2.circle(image, (centers[circle_ind, 0].astype(int), centers[circle_ind, 1].astype(int)), int(np.max(size)), color , 1) if rects: for rect in rects: box = cv2.boxPoints(rect) box_d = np.int0(box) cv2.drawContours(image, [box_d], 0, rect_color, 1) return image def update_circular_image_array(images, image_ind, image_files, frame_num, background_sum): """ Add new image if nessesary and increment image_ind. Also update sum of pixels across array for background subtraction. If frame_num is less than half size of array than don't need to replace image since intitally all images in average are in the future. images: image array size (num images averaging, height, width, channel) image_ind: index of focal frame in images image_files: list of all image files in observation frame_num: current frame number in observation background_sum: sum of current frames blue dimension across frames """ if (frame_num > int(images.shape[0] / 2) and frame_num < (len(image_files) - int(images.shape[0] / 2))): replace_ind = image_ind + int(images.shape[0] / 2) replace_ind %= images.shape[0] # Subtract the pixel values that are about to be removed from background background_sum -= images[replace_ind, :, :, 2] image_file = image_files[frame_num + int(images.shape[0] / 2)] image = cv2.imread(image_file) images[replace_ind] = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # Add new pixel values to the background sum background_sum += images[replace_ind, :, :, 2] image_ind += 1 # image_ind should always be in between 0 and images.shape - 1 image_ind = image_ind % images.shape[0] return images, image_ind, background_sum def initialize_image_array(image_files, focal_frame_ind, num_images): """ Create array of num_images x h x w x 3. Args: image_files (list): sorted paths to all image files in observation focal_frame_ind (int): number of the frame being process num_images (int): number of frames used for background subtraction return array, index in array where focal frame is located """ images = [] first_frame_ind = focal_frame_ind - (num_images // 2) if num_images % 2 == 0: # even last_frame_ind = focal_frame_ind + (num_images // 2) - 1 else: # odd last_frame_ind = focal_frame_ind + (num_images // 2) for file in image_files[first_frame_ind:last_frame_ind+1]: image = cv2.imread(file) images.append(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)) images = np.stack(images) focal_ind = num_images // 2 return(images, focal_ind) def process_frame(images, focal_frame_ind, bat_thresh, background_sum, bat_area_thresh, debug=False): """Process bat frame. images: n x h x w x c array where the n images are averaged together for background subtraction focal_frame_ind: which index in images array should be processed bat_thresh: float value to use for thresholding bat from background background_sum: sum of all blue channel pixels across the n dimension of images debug: if true return binary image """ size_threshold = bat_area_thresh max_bats = 600 mean = np.mean(images[focal_frame_ind, :, :, 2]) if mean < 35: max_bats = 200 if mean < 28: max_bats = 100 if mean < 5: print('Too dark...') if debug: return None, None, None, None, None, None, None, None else: return None, None, None, None, None, None, None image_dif, background = subtract_background(images, focal_frame_ind, background_sum) while True: binary_image = preprocess_to_binary(image_dif, bat_thresh, background) bat_centers, bat_areas, contours, rect_angles, bat_sizes, bat_rects = get_blob_info( binary_image, background, size_threshold=size_threshold) if len(bat_centers) < max_bats: break bat_thresh += 0.05 if debug: return bat_centers, bat_areas, contours, rect_angles, bat_sizes, bat_rects, bat_thresh, binary_image else: return bat_centers, bat_areas, contours, rect_angles, bat_sizes, bat_rects, bat_thresh def add_all_points_as_new_tracks(raw_track_list, positions, contours, sizes, current_frame_ind, noise): """ When there are no active tracks, add all new points to new tracks. Args: raw_track_list (list): list of tracks positions (numpy array): p x 2 contours (list): p contours current_frame_ind (int): current frame index noise: how much noise to add to tracks initially """ for ind, (position, contour, size) in enumerate(zip(positions, contours, sizes)): raw_track_list.append( ktf.create_new_track(first_frame=current_frame_ind, first_position=position, pos_index=ind, noise=noise, contour=contour, size=size ) ) return raw_track_list def find_tracks(first_frame_ind, positions, contours_files=None, contours_list=None, sizes_list=None, max_frame=None, verbose=True, tracks_file=None): """ Take in positions of all individuals in frames and find tracks. Args: first_frame_ind (int): index of first frame of these tracks positions (list): n x 2 for each frame contours_files (list): list of files for contour info from each frame contours_list: already loaded list of contours, only used if contours_file is None sizes_list (list): sizes info from each frame return list of all tracks found """ raw_track_list = [] max_distance_threshold = 30 max_distance_threshold_noise = 30 min_distance_threshold = 0 max_unseen_time = 2 min_new_track_distance = 3 min_distance_big = 30 # #Create initial tracks based on the objects in the first frame # raw_track_list = add_all_points_as_new_tracks( # raw_track_list, positions[0], contours_list[0], sizes_list0, noise=0 # ) #try to connect points to the next frame if max_frame is None: max_frame = len(positions) contours_file_ind = 0 previous_contours_seen = 0 if contours_files: contours_list = np.load(contours_files[contours_file_ind], allow_pickle=True) while first_frame_ind >= previous_contours_seen + len(contours_list): contours_file_ind += 1 previous_contours_seen += len(contours_list) contours_list = np.load(contours_files[contours_file_ind], allow_pickle=True) print(f'using {contours_files[contours_file_ind]}') elif not contours_list: print("Needs contour_files or contour_list") return contours_ind = first_frame_ind - previous_contours_seen - 1 for frame_ind in range(first_frame_ind, max_frame): contours_ind += 1 if contours_files: if contours_ind >= len(contours_list): # load next file try: contours_file_ind += 1 contours_list = np.load(contours_files[contours_file_ind], allow_pickle=True) contours_ind = 0 except: if tracks_file: tracks_file_error = os.path.splitext(tracks_file)[0] + f'-error-{frame_ind}.npy' print(tracks_file_error) np.save(tracks_file_error, np.array(raw_track_list, dtype=object)) #get tracks that are still active (have been seen within the specified time) active_list = ktf.calculate_active_list(raw_track_list, max_unseen_time, frame_ind) if verbose: if frame_ind % 10000 == 0: print('frame {} processed.'.format(frame_ind)) if tracks_file: np.save(tracks_file, np.array(raw_track_list, dtype=object)) if len(active_list) == 0: #No existing tracks to connect to #Every point in next frame must start a new track raw_track_list = add_all_points_as_new_tracks( raw_track_list, positions[frame_ind], contours_list[contours_ind], sizes_list[frame_ind], frame_ind, noise=1 ) continue # Make sure there are new points to add new_positions = None row_ind = None col_ind = None new_sizes = None new_position_indexes = None distance = None contours = None if len(positions[frame_ind]) != 0: #positions from the next step new_positions = positions[frame_ind] contours = [np.copy(contour) for contour in contours_list[contours_ind]] new_sizes = sizes_list[frame_ind] raw_track_list = ktf.calculate_max_distance( raw_track_list, active_list, max_distance_threshold, max_distance_threshold_noise, min_distance_threshold, use_size=True, min_distance_big=min_distance_big ) distance = ktf.calculate_distances( new_positions, raw_track_list, active_list ) max_distance = ktf.create_max_distance_array( distance, raw_track_list, active_list ) assert distance.shape[1] == len(new_positions) assert distance.shape[1] == len(contours) assert distance.shape[1] == len(new_sizes) # Some new points could be too far away from every existing track raw_track_list, distance, new_positions, new_position_indexes, new_sizes, contours = ktf.process_points_without_tracks( distance, max_distance, raw_track_list, new_positions, contours, frame_ind, new_sizes ) if distance.shape[1] > 0: # There are new points can be assigned to existing tracks #connect the dots from one frame to the next row_ind, col_ind = linear_sum_assignment(np.log(distance + 1)) # for active_ind, track_ind in enumerate(active_list): # if active_ind in row_ind: # row_count = np.where(row_ind == active_ind)[0] # raw_track_list[track_ind]['debug'].append( # '{} dist {}, best {}'.format( # frame_ind, # distance[row_ind[row_count], # col_ind[row_count]], # np.min(distance[row_ind[row_count], # :]) # ) # ) # best_col = np.argmin(distance[row_ind[row_count], # :]) # row_count = np.where(col_ind == best_col)[0] # raw_track_list[track_ind]['debug'].append( # '{} row_ind {} col {} dist {} track {}'.format( # frame_ind, row_ind[row_count], # col_ind[row_count], # distance[row_ind[row_count], # col_ind[row_count]], # active_list[row_ind[row_count][0]]) # ) # In casese where there are fewer new points than existing tracks # some tracks won't get new point. Just assign them to # the closest point row_ind, col_ind = ktf.filter_tracks_without_new_points( raw_track_list, distance, row_ind, col_ind, active_list, frame_ind ) # Check if tracks with big bats got assigned to small points which are # probably noise row_ind, col_ind = ktf.fix_tracks_with_small_points( raw_track_list, distance, row_ind, col_ind, active_list, new_sizes, frame_ind) # see if points got assigned to tracks that are farther # than max_threshold_distance # This happens when the closer track gets assigned # to a differnt point row_ind, col_ind = ktf.filter_bad_assigns(raw_track_list, active_list, distance, max_distance, row_ind, col_ind ) raw_track_list = ktf.update_tracks(raw_track_list, active_list, frame_ind, row_ind, col_ind, new_positions, new_position_indexes, new_sizes, contours, distance, min_new_track_distance) raw_track_list = ktf.remove_noisy_tracks(raw_track_list) raw_track_list = ktf.finalize_tracks(raw_track_list) if tracks_file: np.save(tracks_file, np.array(raw_track_list, dtype=object)) print('{} final save.'.format(os.path.basename(os.path.dirname(tracks_file)))) return raw_track_list def get_tracked_bats_in_frame(image_files, focal_frame_ind, bat_thresh, bat_area_thresh): centers_list = [] contours_list = [] sizes_list = [] clip_length = 5 array_size = 31 images, frame_buffer_ind = initialize_image_array(image_files, focal_frame_ind, array_size) background_sum = np.sum(images[:,:,:,2], 0, dtype=np.int16) for video_frame_ind in range(focal_frame_ind, focal_frame_ind+clip_length): bat_centers, bat_areas, bat_contours, _, _, _, bat_thresh = process_frame( images, frame_buffer_ind, bat_thresh, background_sum, bat_area_thresh, debug=False) centers_list.append(bat_centers) contours_list.append(bat_contours) sizes_list.append(bat_areas) images, frame_buffer_ind, background_sum = update_circular_image_array( images, frame_buffer_ind, image_files, video_frame_ind, background_sum) raw_tracks = find_tracks(0, centers_list, contours_list=contours_list, sizes_list=sizes_list ) return raw_tracks, centers_list # return raw_tracks, centers_list, distance, max_distance, active_list, all_pre_distances, all_row_inds, all_col_inds # return(connected_distance, connected_size) def piecewise_linear(x, x0, y0, k1, k2): return np.piecewise(x, [x < x0], [lambda x:k1*x + y0-k1*x0, lambda x:k2*x + y0-k2*x0] ) def get_bat_accumulation(crossing_frames, obs=None, parameters=None, w_multiplier=True, w_darkness=True, w_frac=True): """ Create and return cummulative sum of bats crossing count line over the course of list of given positive and negative crossing frames. crossing_frames: list of frame that each track crosses line. Positive if leaving negative if going obs: observation dictionary. parameters: list of parameters of piecewise linear function w_multiplier: multiply each bat crossing by apropriate bat multiplier for camera etc. w_darkness: scale each bat crossing by apropriate accuracy corrrection based on frame darkness w_frac: scale each bat crossing by fraction of total circle that camera sees """ if not np.any(crossing_frames): return np.zeros(1) last_crossing_frame = np.max(np.abs(crossing_frames)) crossing_per_frame = np.zeros(last_crossing_frame+1) if obs and parameters: accurracies = piecewise_linear(obs['darkness'], *parameters) for crossing_frame, bm, acc in zip(crossing_frames, obs['multiplier'], accurracies): scale = 1 if w_multiplier: scale *= bm if w_darkness: scale *= (1/acc) if crossing_frame < 0: crossing_per_frame[-crossing_frame] -= scale elif crossing_frame > 0: crossing_per_frame[crossing_frame] += scale if w_frac: crossing_per_frame *= obs['fraction_total'] else: for crossing_frame in crossing_frames: if crossing_frame < 0: crossing_per_frame[-crossing_frame] -= 1 elif crossing_frame > 0: crossing_per_frame[crossing_frame] += 1 return np.cumsum(crossing_per_frame) def threshold_short_tracks(raw_track_list, min_length_threshold=2): """Only return tracks that are longer than min_length_threshold.""" track_lengths = [] track_list = [] for track_num, track in enumerate(raw_track_list): if isinstance(track['track'], list): track['track'] = np.array(track['track']) track_length = track['track'].shape[0] if track_length >= min_length_threshold: track_lengths.append(track['track'].shape[0]) track_list.append(track) return track_list def calculate_height(wingspan_pixels, camera_constant, wingspan_meters): ''' Calculate bats height above the ground assumming wingspan_meters is correct. camera_constant = (frame pixels / 2) / tan(fov / 2) height = constant * wingspan_meters / wingspan_pixels ''' return camera_constant * wingspan_meters / wingspan_pixels def calculate_bat_multiplier_simple(height, horizontal_fov, distance_to_center): ''' Calculate how many bats one bats at a given height and camera localtion represents. height: height of bat horizontal_fov: horizontal field of view of camera (degrees) distance_to_center: distance from camera to center of colony ASSUMES CIRCUMFERCE IS MUCH LARGER THAN WIDTH OF SPACE SEEN circumfernce c = 2 * pi * distance_to_center width of seen space w = 2 * height * tan(horizontal_fov / 2) multiplier = c / w ''' c = 2 * np.pi * distance_to_center horizontal_fov_rad = horizontal_fov * np.pi / 180 w = 2 * height * np.tan(horizontal_fov_rad / 2) return c / w def calculate_bat_multiplier(height, horizontal_fov, distance_to_center): ''' Calculate how many bats one bats at a given height and camera localtion represents. height: height of bat horizontal_fov: horizontal field of view of camera (degrees) distance_to_center: distance from camera to center of colony phi = arctan((height*tan(horizontal_fov/2)) / distance to center) multiplier = pi / phi ''' horizontal_fov_rad = horizontal_fov * np.pi / 180 distance_to_center = np.max([distance_to_center, 10e-5]) phi = np.arctan((height * np.tan(horizontal_fov_rad / 2)) / distance_to_center ) return np.pi/phi def combined_bat_multiplier(frame_width, wingspan_meters, wingspan_pixels, camera_distance): """ Calculates bat multiplier. Args: frame_width: frame width in pixels wingspan_meters: bat wingspan in meters wingspan_pixels: bat wingspan in pixels camera_distance: distance from forest point to camera in meters should be a single value or an array of distances with same shape as wingspan_pixels Returns: bat multiplier: float """ denominator = np.arctan( (frame_width*wingspan_meters) / (2*wingspan_pixels*camera_distance) ) return np.pi / denominator def get_rects(track): """ Fit rotated bounding rectangles to each contour in track. track: track dict with 'contour' key linked to list of cv2 contours """ rects = [] for contour in track['contour']: if len(contour.shape) > 1: rect = cv2.minAreaRect(contour) rects.append(rect[1]) else: rects.append((np.nan, np.nan)) return np.array(rects) def get_wingspan(track): """ Estimate wingspan in pixels from average of peak sizes of longest rectangle edges. """ if not 'rects' in track.keys(): track['rects'] = get_rects(track) max_edge = np.nanmax(track['rects'], 1) max_edge = max_edge[~np.isnan(max_edge)] peaks = signal.find_peaks(max_edge)[0] if len(peaks) != 0: mean_wing = np.nanmean(max_edge[peaks]) else: mean_wing = np.nanmean(max_edge) return mean_wing def measure_crossing_bats(track_list, frame_height=None, frame_width=None, count_across=False, count_out=True, num_frames=None, with_rects=True): """ Find and quantify all tracks that cross middle line. track_list: list of track dicts frame_height: height of frame in pixels frame_width: width of frame in pixels count_across: count horizontal tracks count_out: count vertical tracks num_frames: number of frames in observation with_rects: if True calculate rects if not already in track and estimate wingspan and body size """ if count_across: assert frame_width, "If vertical must specify frame width." across_line = CountLine(int(frame_width/2), line_dim=0, total_frames=num_frames) if count_out: assert frame_height, "If horizontal must specify frame height." out_line = CountLine(int(frame_height/2), line_dim=1, total_frames=num_frames) crossing_track_list = [] for track_ind, track in enumerate(track_list[:]): out_result = None across_result = None if count_out: out_result, out_frame_num = out_line.is_crossing(track, track_ind) if count_across: across_result, across_frame_num = across_line.is_crossing(track, track_ind) if out_result or across_result: crossing_track_list.append(track) # result is 1 if forward crossing -1 is backward crossing if count_out: if out_frame_num: crossing_track_list[-1]['crossed'] = out_frame_num * out_result else: crossing_track_list[-1]['crossed'] = 0 if count_across: if across_frame_num: crossing_track_list[-1]['across_crossed'] = across_frame_num * across_result else: crossing_track_list[-1]['across_crossed'] = 0 track[id] = track_ind if with_rects: if not 'rects' in track.keys(): track['rects'] = get_rects(track) min_edge = np.nanmin(track['rects'], 1) min_edge = min_edge[~np.isnan(min_edge)] peaks = signal.find_peaks(max_edge)[0] if len(peaks) != 0: mean_body = np.nanmean(min_edge[peaks]) else: mean_body = np.nanmean(max_edge) crossing_track_list[-1]['mean_wing'] = get_wingspan(track) crossing_track_list[-1]['mean_body'] = mean_body return crossing_track_list def get_camera_locations(observations, all_camera_locations, exclude=False): """Return dict of all camera locations that appear in observations. observations: dict of observations. Probably all observations from one day. all_camera_locations: dict containing all camera locations across all days exclude: if True, exclude observations as marked in obs dict """ camera_locations = {} for camera, obs in observations.items(): if exclude: if 'exclude' in obs.keys(): if obs['exclude']: continue camera_locations[obs['camera']] = all_camera_locations[obs['camera']] return camera_locations def get_camera_distance(camera_utm, center_utm): """ Calculate the distance between utm of camera and possible forest center in meters. camera_utm: [x, y] array center_utm: [x, y] array """ diff = camera_utm - center_utm return np.sum(np.sqrt(diff ** 2)) def get_camera_distances(camera_utms, center_utm): """ Calculate distance from every given camera to specified center. camera_utms: dict with camera names and locations center_utm: np.array 2d, location of forest center """ camera_distances = {} for camera, camera_utm in camera_utms.items(): camera_distances[camera] = get_camera_distance(camera_utm, center_utm) return camera_distances def get_camera_angles(camera_utms, center_utm): """ Calculate angle from center point to each camera location. camera_utms: dict pairs of camera names and location info center_utm: 2d np.array, location of forest center """ camera_angles = {} for camera, camera_utm in camera_utms.items(): dif = camera_utm - center_utm camera_angles[camera] = np.arctan2(dif[1], dif[0]) return camera_angles def get_camera_borders(camera_utms, center_utm, jitter=False): """ Get angles around forest center that evenly bisect camera positions. camera_utms: dict pairs of camera names and location info center_utm: 2d np.array, location of forest center jitter: if True, don't actually bisect cameras at midpoint but drawn from a gaussian """ camera_border = {} camera_angles = get_camera_angles(camera_utms, center_utm) for camera, camera_utm in camera_utms.items(): min_neg = -10000 min_pos = 100000 # for border case where focal is positive angle # and closest cclock is negative max_pos = 0 # for same case a last comment all_pos = True # for border case where focal is positive angle # and closest cclock is negative max_neg = 0 # for same case a last comment all_neg = True max_camera = None camera_border[camera] = {'cclock': None, 'cclock_angle': None, 'clock': None, 'clock_angle': None } for alt_camera, alt_camera_utm in camera_utms.items(): if camera == alt_camera: continue dif = camera_angles[camera] - camera_angles[alt_camera] if dif < 0: all_pos = False if dif > min_neg: min_neg = dif camera_border[camera]['cclock'] = alt_camera camera_border[camera]['cclock_angle'] = dif / 2 if dif < max_neg: max_neg = dif max_camera = alt_camera if dif > 0: all_neg = False if dif < min_pos: min_pos = dif camera_border[camera]['clock'] = alt_camera camera_border[camera]['clock_angle'] = dif / 2 if dif > max_pos: max_pos = dif max_camera = alt_camera if all_pos: camera_border[camera]['cclock'] = max_camera camera_border[camera]['cclock_angle'] = (max_pos - 2*np.pi) / 2 if all_neg: camera_border[camera]['clock'] = max_camera camera_border[camera]['clock_angle'] = (max_neg + 2*np.pi) / 2 if jitter: for camera, border_info in camera_border.items(): camera_angle = camera_angles[camera] clockwise_camera = border_info['clock'] angle_dif = border_info['clock_angle'] # Three sttandard deviations is between camera pair jitter_angle = np.random.normal(scale=angle_dif/3) jitter_angle = np.maximum(-border_info['clock_angle'], jitter_angle) jitter_angle = np.minimum(border_info['clock_angle'], jitter_angle) camera_border[camera]['clock_angle'] += jitter_angle if camera_border[camera]['clock_angle'] < 0: camera_border[camera]['clock_angle'] += (2 * np.pi) if camera_border[camera]['clock_angle'] >= (2 * np.pi): camera_border[camera]['clock_angle'] -= (2 * np.pi) camera_border[clockwise_camera]['cclock_angle'] += jitter_angle if camera_border[clockwise_camera]['cclock_angle'] < -2 * np.pi: camera_border[clockwise_camera]['cclock_angle'] += (2 * np.pi) if camera_border[clockwise_camera]['cclock_angle'] >= (2 * np.pi): camera_border[clockwise_camera]['cclock_angle'] -= (2 * np.pi) return camera_border def latlong_dict_to_utm(latlong_dict): """ Convert dict of latlong coordinates to utm.""" utm_dict = {} for key, latlong in latlong_dict.items(): utm_val = utm.from_latlon(*latlong) utm_dict[key] = np.array([utm_val[0], utm_val[1]]) return utm_dict def get_camera_fractions(camera_utms, center_utm, jitter=False): """ Calculate the fraction of circle around center that each camera is closest to. camera_utms: dict of camera locations center_utm: 2d np array with utm coordinates of center jitter: If True instead of evenly dividing circle by cameras, set borders between camera from a gaussian return dict with fraction for each camera """ if len(camera_utms) == 1: return {list(camera_utms.keys())[0]: 1.0} camera_borders = get_camera_borders(camera_utms, center_utm, jitter=jitter) camera_fractions = {} for camera, border_info in camera_borders.items(): angle = (-border_info['cclock_angle'] + border_info['clock_angle'] ) camera_fractions[camera] = angle / (np.pi * 2) return camera_fractions def get_day_total(observations, center_utm, all_camera_utms, frame_width, wingspan, exclude=False, correct_darkness=False, parameters=None): """ Estimate total number of bats based on all observation counts and corespoinding camera locations. observations: dict of all observations for a specific day center_utm: estimated location of forest center all_camera_utms: dict of the utm locations of each camera frame_width: width of camera frame in pixels wingspan: estimated wingspan off all bats in meters exlude: to manually remove certain cameras, ie shut off early etc. correct_darkness: divide by accuracy estimated for given darkness parameters: param values of linear piecewise function for darkness error correction. Required if correct_darkness is True """ frac_sum = 0 total = 0 obs_totals = [] camera_utms = get_camera_locations(observations, all_camera_utms, exclude=True) camera_fractions = get_camera_fractions(camera_utms, center_utm) for obs in observations.values(): if exclude: if 'exclude' in obs.keys(): if obs['exclude']: continue camera_distances = get_camera_distances(camera_utms, center_utm) obs['multiplier'] = combined_bat_multiplier(frame_width, wingspan, obs['mean_wing'], camera_distances[obs['camera']] ) if correct_darkness: assert parameters is not None, "Must pass parameters if correcting for darkness." acc = piecewise_linear(obs['darkness'], *parameters) obs['total_darkness'] = np.sum(obs['multiplier'] * obs['direction'] * (1/acc)) obs['total'] = np.sum(obs['multiplier'] * obs['direction']) obs['total_unscaled'] =
np.sum(obs['direction'])
numpy.sum
from chainer.training import extensions import chainer.serializers as S import chainer import os import json from chainer.training.triggers import IntervalTrigger from collections import defaultdict import numpy as np class Trainer(object): def __init__(self, folder, chain, train, test, batchsize=500, resume=True, gpu=0, nepoch=1, reports=[]): self.reports = reports self.nepoch = nepoch self.folder = folder self.chain = chain self.gpu = gpu if self.gpu >= 0: chainer.cuda.get_device(gpu).use() chain.to_gpu(gpu) self.eval_chain = eval_chain = chain.copy() self.chain.test = False self.eval_chain.test = True self.testset = test if not os.path.exists(folder): os.makedirs(folder) train_iter = chainer.iterators.SerialIterator(train, batchsize, shuffle=True) test_iter = chainer.iterators.SerialIterator(test, batchsize, repeat=False, shuffle=False) updater = chainer.training.StandardUpdater(train_iter, chain.optimizer, device=gpu) trainer = chainer.training.Trainer(updater, (nepoch, 'epoch'), out=folder) # trainer.extend(TrainingModeSwitch(chain)) # trainer.extend(extensions.dump_graph('main/loss')) trainer.extend(extensions.Evaluator(test_iter, eval_chain, device=gpu), trigger=(1, 'epoch')) trainer.extend(extensions.snapshot_object( chain, 'chain_snapshot_epoch_{.updater.epoch:06}'), trigger=(1, 'epoch')) trainer.extend(extensions.snapshot( filename='snapshot_epoch_{.updater.epoch:06}'), trigger=(1, 'epoch')) trainer.extend(extensions.LogReport(trigger=(1, 'epoch')), trigger=(1, 'iteration')) trainer.extend(extensions.PrintReport( ['epoch', 'main/loss', 'validation/main/loss', 'main/accuracy', 'validation/main/accuracy', 'elapsed_time']), trigger=IntervalTrigger(1, 'epoch')) self.trainer = trainer if resume: # if resumeFrom is not None: # trainerFile = os.path.join(resumeFrom[0],'snapshot_epoch_{:06}'.format(resumeFrom[1])) # S.load_npz(trainerFile, trainer) i = 1 trainerFile = os.path.join(folder, 'snapshot_epoch_{:06}'.format(i)) while i <= nepoch and os.path.isfile(trainerFile): i = i + 1 trainerFile = os.path.join(folder, 'snapshot_epoch_{:06}'.format(i)) i = i - 1 trainerFile = os.path.join(folder, 'snapshot_epoch_{:06}'.format(i)) if i >= 0 and os.path.isfile(trainerFile): S.load_npz(trainerFile, trainer) def run(self): if self.gpu >= 0: chainer.cuda.get_device(self.gpu).use() self.chain.to_gpu(self.gpu) self.chain.test = False self.eval_chain.test = True self.trainer.run() # ext = self.trainer.get_extension('validation')() # test_accuracy = ext['validation/main/accuracy'] # test_loss = ext['validation/main/loss'] # acc = test_accuracy.tolist() # loss = test_loss.tolist() if self.gpu >= 0: self.chain.to_cpu() return # return self.evaluate() # return acc,loss def evaluate(self): test_iter = chainer.iterators.SerialIterator(self.testset, 1, repeat=False, shuffle=False) self.chain.train = False self.chain.test = True if self.gpu >= 0: self.chain.to_gpu(self.gpu) result = extensions.Evaluator(test_iter, self.chain, device=self.gpu)() if self.gpu >= 0: self.chain.to_cpu() # for k,v in result.iteritems(): # if k in ["main/numsamples", "main/accuracy", "main/branch0exit", "main/branch1exit", "main/branch2exit"]: # print k, "\t\t\t", v return result def save_model(self): trainer = self.trainer chain = self.chain trainer.extend(extensions.snapshot_object(chain, 'so_epoch_{.updater.epoch:06}'), trigger=(1,'epoch')) trainer.extend(extensions.snapshot(filename='s_epoch_{.updater.epoch:06}'), trigger=(1,'epoch')) # Deprecated def get_result(self, key): # this only returns the lastest log ext = self.trainer.get_extension('validation')() return ext.get('{}'.format(key),
np.array(None)
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- import torch import torch.utils.data as data import os import numpy as np import pickle import sys TRAIN_SPLIT = 0.8 class Cornell(data.Dataset): def __init__(self, root, train=True): self.data_path = root self.train = train self.files = os.listdir(self.data_path) if train: train_files = self.files[:int(len(self.files) * TRAIN_SPLIT)] self.num = len(train_files) self.files = train_files else: test_files = self.files[int(len(self.files) * TRAIN_SPLIT):] self.num = len(test_files) self.files = test_files def __len__(self): return self.num def __getitem__(self, index): meta = self.files[index] with open(os.path.join(self.data_path, meta), 'rb') as handle: if sys.version_info.major > 2: file = pickle.load(handle, encoding='latin1') else: file = pickle.load(handle) rgb = np.asarray(file['rgb']) rgb = np.squeeze(rgb, axis=0) depth = np.asarray(file['depth_inpainted']) depth = np.squeeze(depth, axis=0) pos_img = np.asarray(file['grasp_points_img']) pos_img = np.squeeze(pos_img, axis=0) angle_img = np.asarray(file['angle_img']) angle_img = np.squeeze(angle_img, axis=0) width_img = np.asarray(file['grasp_width']) width_img = np.squeeze(width_img, axis=0) bbs = np.asarray(file['bounding_boxes']) bbs = np.squeeze(bbs, axis=0) rgb = torch.tensor(rgb) depth = torch.tensor(depth) grasp_points_img = torch.tensor(pos_img) grasp_width = torch.tensor(width_img) cos_img = np.cos(2 * angle_img) sin_img =
np.sin(2 * angle_img)
numpy.sin
""" module for PPK positioning Copyright (c) 2021 <NAME> (from CSSRLIB) Copyright (c) 2022 <NAME> """ import numpy as np from numpy.linalg import inv, norm from sys import stdout from copy import copy, deepcopy import rtkcmn as gn from rtkcmn import rCST, DTTOL, sat2prn, sat2freq, timediff, xyz2enu import rinex as rn from pntpos import pntpos from ephemeris import satposs from mlambda import mlambda from rtkcmn import trace, tracemat, uGNSS import __ppk_config as cfg #rom ppp import tidedisp MAX_VAR_EPH = 300**2 def rtkinit(cfg): nav = gn.Nav(cfg) """ initalize RTK-GNSS parameters from config file """ nav.gnss_t = cfg.gnss_t nav.pmode = cfg.pmode nav.filtertype = cfg.filtertype # add rover vel and accel states for kinematic solution nav.na = nav.nq = 3 if nav.pmode == 'static' else 9 nav.nx = nav.na + uGNSS.MAXSAT * nav.nf nav.x = np.zeros(nav.nx) nav.P = np.zeros((nav.nx, nav.nx)) nav.xa = np.zeros(nav.na) nav.Pa = np.zeros((nav.na, nav.na)) nav.el = np.zeros(uGNSS.MAXSAT) nav.gf = np.zeros(uGNSS.MAXSAT) nav.ph = np.zeros((2, uGNSS.MAXSAT, nav.nf)) nav.pt = np.empty((2, uGNSS.MAXSAT, nav.nf), dtype=object) nav.nfix = nav.neb = nav.tt = 0 nav.rb = cfg.rb # parameter for RTK/PPK nav.use_sing_pos = cfg.use_sing_pos nav.cnr_min = cfg.cnr_min nav.maxout = cfg.maxout # maximum outage [epoch] nav.elmin = np.deg2rad(cfg.elmin) nav.nf = cfg.nf nav.excsats = cfg.excsats nav.freq = cfg.freq nav.dfreq_glo = cfg.dfreq_glo nav.interp_base = cfg.interp_base nav.gnss_t = cfg.gnss_t nav.maxinno = cfg.maxinno nav.thresdop = cfg.thresdop nav.thresslip = cfg.thresslip nav.maxage = cfg.maxage nav.accelh = cfg.accelh nav.accelv = cfg.accelv nav.prnbias = cfg.prnbias # ambiguity resolution nav.armode = cfg.armode nav.glo_hwbias = cfg.glo_hwbias nav.thresar = cfg.thresar nav.thresar1 = cfg.thresar1 nav.var_holdamb = cfg.var_holdamb nav.elmaskar = np.deg2rad(cfg.elmaskar) nav.minfix = cfg.minfix nav.minfixsats = cfg.minfixsats nav.minholdsats = cfg.minholdsats nav.mindropsats = cfg.mindropsats nav.excsat_ix = 0 nav.nfix = 0 nav.ratio = 0 # statistics nav.efact = cfg.efact nav.eratio = cfg.eratio nav.err = np.array(cfg.err) nav.sig_p0 = cfg.sig_p0 nav.sig_v0 = cfg.sig_v0 nav.sig_n0 = cfg.sig_n0 # solution parameters nav.sol = [] dP = np.diag(nav.P) dP.flags['WRITEABLE'] = True dP[0:3] = nav.sig_p0**2 if nav.pmode == 'kinematic': dP[3:9] = nav.sig_v0**2 # obs index ix0, ix1 = cfg.freq_ix0, cfg.freq_ix1 freq0 = {k: cfg.freq[ix0[k]] for k in ix0.keys()} freq1 = {k: cfg.freq[ix1[k]] for k in ix1.keys()} nav.obs_idx = [ix0, ix1] nav.obs_freq = [freq0, freq1] # sat index nav.sysprn = {i: gn.sat2prn(i) for i in range(1, uGNSS.MAXSAT+1)} return nav def zdres_sat(nav, obs, r, rtype, dant, ix): _c = rCST.CLIGHT nf = nav.nf y = np.zeros(nf * 2) for f in range(nf): freq = sat2freq(obs.sat[ix], f, nav) if obs.S[ix,f] < nav.cnr_min: continue # residuals = observable - estimated range (phase and code) y[f] = obs.L[ix,f] * _c / freq - r - dant[f] if obs.L[ix,f] else 0 y[f+nf] = obs.P[ix,f] - r - dant[f] if obs.P[ix,f] else 0 # if obs.L[ix,f] != 0 or obs.P[ix,f] != 0: # trace(3, 'zdres_sat: %d: L=%.6f P=%.6f r=%.6f f=%.0f\n' % # (obs.sat[ix],obs.L[ix,f], obs.P[ix,f],r,freq)) return y def zdres(nav, obs, rs, dts, svh, var, rr, rtype): """ undifferenced phase/code residuals ---------------------------------------- calculate zero diff residuals [observed pseudorange - range] output is in y[0:nu-1], only shared input with base is nav args: I obs = sat observations I n = # of sats I rs = sat position {x,y,z} (m) I dts = sat clock {bias,drift} (s|s/s) I var = variance of ephemeris I svh = sat health flags I nav = sat nav data I rr = rcvr pos (x,y,z) I rtype: 0=base,1=rover O y[] = zero diff residuals {phase,code} (m) O e = line of sight unit vectors to sats O azel = [az, el] to sats """ if obs == []: return [], [], [] _c = rCST.CLIGHT nf = nav.nf n = len(obs.P) y = np.zeros((n, nf * 2)) el = np.zeros(n) e = np.zeros((n, 3)) rr_ = rr.copy() trace(3, 'zdres: n=%d rr=%.2f %.2f %.2f\n' % (n, rr[0], rr[1], rr[2])) pos = gn.ecef2pos(rr_) # loop through satellites ix = np.argsort(obs.sat) for i in ix: if gn.satexclude(obs.sat[i], var[i], svh[i], nav): continue # compute geometric-range and azimuth/elevation angle r, e[i,:] = gn.geodist(rs[i,0:3], rr_) _, el[i] = gn.satazel(pos, e[i,:]) if el[i] < nav.elmin: continue # adjust range for satellite clock-bias r += -_c * dts[i] # adjust range for troposphere delay model (hydrostatic) trophs, tropw, _ = gn.tropmodel(obs.t, pos, np.deg2rad(90.0), 0.0) zhd = trophs + tropw mapfh, _ = gn.tropmapf(obs.t, pos, el[i]) r += mapfh * zhd # calc receiver antenna phase center correction dant = gn.antmodel(nav, el[i], nav.nf, rtype) trace(4,'sat=%d r=%.6f c*dts=%.6f zhd=%.6f map=%.6f\n' % (obs.sat[i],r,_c*dts[i],zhd,mapfh)) # calc undifferenced phase/code residual for satellite y[i] = zdres_sat(nav, obs, r, rtype, dant, i) for i in ix: if obs.L[i,0] != 0 and rtype == 0: trace(4, 'sat=%2d %13.3f %13.3f %13.3f %13.10f %5.1f\n' % (obs.sat[i], rs[i,0], rs[i,1], rs[i,2], dts[i], np.rad2deg(el[i]))) tracemat(3, 'y=', y[ix,:].T, '13.3f') return y, e, el def ddcov(nb, n, Ri, Rj, nv): """ double-differenced measurement error covariance --------------------------- * * nb[n]: # of sat pairs in group * n: # of groups (2 for each system, phase and code) * Ri[nv]: variances of first sats in double diff pairs * Rj[nv]: variances of 2nd sats in double diff pairs * nv: total # of sat pairs * R[nv][nv]: double diff measurement err covariance matrix """ R = np.zeros((nv, nv)) k = 0 for b in range(n): block = R[k:nb[b]+k, k:nb[b]+k] # define subarray block += Ri[k:nb[b]+k] block[range(nb[b]), range(nb[b])] += Rj[k:nb[b]+k] k += nb[b] return R def sysidx(satlist, sys_ref): """ return index of satellites with sys=sys_ref """ idx = [] for k, sat in enumerate(satlist): sys, _ = sat2prn(sat) if sys == sys_ref: idx.append(k) return idx def IB(s, f, na=3): """ return index of phase ambguity """ return na + uGNSS.MAXSAT * f + s - 1 def varerr(nav, sys, el, f, dt, rcvstd): """ variation of measurement """ code = 1 * (f >= nav.nf) # 0 = phase, 1 = code freq = f % nav.nf s_el = np.sin(el) if s_el <= 0.0: return 0.0 fact = nav.eratio[freq] if code else 1 fact *= nav.efact[sys] a, b = fact * nav.err[1:3] c = fact * 0 # nav.err[4]*bl/1E4 # TODO: add baseline term d = rCST.CLIGHT * nav.err[5] * dt # clock term var = 2.0 * (a**2 + (b / s_el)**2 + c**2) + d**2 # TODO: add SNR term # add scaled stdevs from receiver if nav.err[3] > 0: var += (nav.err[3] * rcvstd)**2 return var def ddres(nav, x, P, yr, er, yu, eu, sat, el, dt, obsr): """ /* double-differenced residuals and partial derivatives ----------------------------------- I nav = sat nav data I dt = time diff between base and rover observations I x = rover pos & vel and sat phase biases (float solution) I P = error covariance matrix of float states I sat = list of common sats I y = zero diff residuals (code and phase, base and rover) I e = line of sight unit vectors to sats I el = el to sats O v = double diff innovations (measurement-model) (phase and code) O H = linearized translation from innovations to states (az/el to sats) O R = measurement error covariances """ _c = rCST.CLIGHT nf = nav.nf ns = len(el) ny = ns * nf * 2 # phase and code nb = np.zeros(2 * len(nav.gnss_t) * nf, dtype=int) Ri = np.zeros(ny) Rj = np.zeros(ny) H = np.zeros((nav.nx, ny)) P_init = nav.sig_n0**2 # value used to initialize P states trace(3,"ddres : dt=%.4f ns=%d\n" % (dt, ns)) nv = b = 0 v = np.zeros(ny) # step through sat systems for sys in nav.gnss_t: # step through phases/codes for f in range(0, nf*2): frq = f % nf code = 1 * (f >= nf) idx = sysidx(sat, sys) # find sats in sys # remove sats with missing base or rover residuals nozero = np.where((yr[:,f] != 0) & (yu[:,f] != 0))[0] idx = np.intersect1d(idx, nozero) if len(idx) == 0: continue # no common sats # find sat with max el and not just reset for reference i_el = idx[np.argsort(el[idx])] for i in i_el[::-1]: ii = IB(sat[i], frq, nav.na) # check if sat just reset if P[ii,ii] != nav.sig_n0**2: break else: i = i_el[0] # use highest sat if none without reset # calculate double differences of residuals (code/phase) for each sat freqi = sat2freq(sat[i], frq, nav) lami = _c / freqi for j in idx: # loop through sats if i == j: continue # skip ref sat # double-differenced measurements from 2 receivers and 2 sats in meters v[nv] = (yu[i,f] - yr[i,f]) - (yu[j,f] - yr[j,f]) # partial derivatives by rover position, combine unit vectors from two sats H[0:3, nv] = -eu[i,:] + er[j,:] jj = IB(sat[j], frq, nav.na) if not code: # carrier phase # adjust phase residual by double-differenced phase-bias term freqj = sat2freq(sat[j], frq, nav) lamj = _c / freqj v[nv] -= lami * x[ii] - lamj * x[jj] H[ii, nv], H[jj, nv] = lami, -lamj # adjust double-difference for glonass hw bias if sys == uGNSS.GLO and nav.glo_hwbias != 0: df = (freqi - freqj) / nav.dfreq_glo[frq] v[nv] -= df * nav.glo_hwbias # if residual too large, flag as outlier thres = nav.maxinno # use larger thresh for code or just initialized phase if code or P[ii,ii] == P_init or P[jj,jj] == P_init: thres *= nav.eratio[frq] if abs(v[nv]) > thres: nav.vsat[sat[j]-1,frq] = 0 nav.rejc[sat[j]-1,frq] += 1 trace(3,"outlier rejected: (sat=%3d-%3d %s%d v=%13.3f x=%13.3f %13.3f P=%.6f %.6f)\n" % (sat[i], sat[j], 'LP'[code],frq+1, v[nv], x[ii], x[jj], P[ii,ii],P[jj,jj])) H[ii, nv], H[jj, nv] = 0, 0 continue # single-differenced measurement error variances (m) si, sj = sat[i] - 1, sat[j] - 1 Ri[nv] = varerr(nav, sys, el[i], f, dt, nav.rcvstd[si,f]) Rj[nv] = varerr(nav, sys, el[j], f, dt, nav.rcvstd[sj,f]) if not code: nav.vsat[si,frq] = 1 nav.vsat[sj,frq] = 1 trace(3,"sat=%3d-%3d %s%d v=%13.3f R=%9.6f %9.6f lock=%2d x=%13.3f\n" % (sat[i], sat[j], 'LP'[code], frq+1, v[nv], Ri[nv], Rj[nv], nav.lock[sat[j]-1,frq],x[jj])) nv += 1 nb[b] += 1 b += 1 R = ddcov(nb, b, Ri[:nv], Rj[:nv], nv) return v[:nv], H[:,:nv], R def valpos(nav, v, R, thres=4.0): """ post-file residual test """ trace(3, 'valpos : nv=%d thres=%.1f\n' % (len(v), thres)) nv = len(v) fact = thres**2 for i in range(nv): if v[i]**2 > fact * R[i, i]: trace(3, 'large residual (ix_sat=%d v=%.3f sig=%.3f)\n' % (i, v[i], np.sqrt(R[i, i]))) return True def intpres(time, nav, y0, y1, obs0, obs1): """ time-interpolation of residuals """ tt, ttb = timediff(time, obs1.t), timediff(time, obs0.t) if len(y0) == 0 or abs(ttb) > nav.maxage or abs(tt) < DTTOL: return y1, tt # find common sats _, ix0, ix1 = np.intersect1d(obs0.sat, obs1.sat, return_indices=True) for i in range(len(ix0)): for j in range(4): i0, i1 = ix0[i], ix1[i] if y1[i1,j] == 0: y1[i1,j] = y0[i0,j] elif y0[i0,j] != 0: y1[i1,j] = (ttb * y1[i1,j] - tt * y0[i0,j]) / (ttb - tt) dt = min(abs(tt), abs(ttb)) / np.sqrt(2) return y1, dt def ddidx(nav, sats): """ index for single to double-difference transformation matrix (D') """ nb, fix, ref = 0, [], [] ns = uGNSS.MAXSAT #na = nav.na ix = np.zeros((ns, 2), dtype=int) # clear fix flag for all sats (1=float, 2=fix) nav.fix[:,:] = 0 # step through constellations for m in range(uGNSS.GNSSMAX): k = nav.na # state index for first sat # step through freqs for f in range(nav.nf): # look for first valid sat (i=state index, i-k=sat index) for i in range(k, k + ns): sati = i - k + 1 # if sati not in sats: # xxx=1 sys = nav.sysprn[sati][0] # skip if sat not active if nav.x[i] == 0.0 or sys != m or nav.vsat[sati-1,f] == 0: continue if nav.lock[sati-1,f] >= 0 and nav.slip[sati-1,f] & 2 == 0 and \ nav.el[sati-1] >= nav.elmaskar: # set sat to use for fixing ambiguity if meets criteria nav.fix[sati-1,f] = 2 # fix break # break out of loop if find good sat else: # don't use this sat for fixing ambiguity nav.fix[sati-1,f] = 1 # float if nav.fix[sati-1,f] != 2: # no good sat found continue n = 0 # count of sat pairs for this freq/constellation # step through all sats (j=state index, j-k=sat index, i-k=first good sat) for j in range(k, k + ns): satj = j - k + 1 sys = nav.sysprn[satj][0] if i == j or nav.x[j] == 0.0 or sys != m or nav.vsat[satj-1,f] <= 0: continue if nav.lock[satj-1,f] >= 0 and nav.slip[satj-1,f] & 2 == 0 and \ nav.el[satj-1] >= nav.elmaskar: # set D coeffs to subtract sat j from sat i ix[nb, :] = [i,j] # state indices of ref bias and target bias ref.append(sati) fix.append(satj) nav.fix[satj-1,f] = 2 # fix nb += 1 # increment total count n += 1 # inc count in freq/constellation else: # don't use this sat for fixing ambiguity nav.fix[satj-1,f] = 1 # float if n == 0: # don't use ref sat if no sat pairs nav.fix[sati-1,f] = 1 k += ns ix = np.resize(ix, (nb, 2)) if nb > 0: tracemat(3,'refSats= ', np.array(ref), '7d') tracemat(3,'fixSats= ', np.array(fix), '7d') return ix def restamb(nav, bias, nb): """ restore SD ambiguity """ nv = 0 xa = nav.x.copy() xa[0:nav.na] = nav.xa[0:nav.na] for m in range(uGNSS.GNSSMAX): for f in range(nav.nf): n = 0 index = [] for i in range(uGNSS.MAXSAT): sys = nav.sysprn[i+1][0] if sys != m or (sys not in nav.gnss_t) or nav.fix[i, f] != 2: continue index.append(IB(i+1, f, nav.na)) n += 1 if n < 2: continue xa[index[0]] = nav.x[index[0]] for i in range(1, n): xa[index[i]] = xa[index[0]] - bias[nv] nv += 1 return xa def resamb_lambda(nav, sats): """ resolve integer ambiguity using LAMBDA method """ nx = nav.nx na = nav.na xa = np.zeros(na) ix = ddidx(nav, sats) nav.nb_ar = nb = len(ix) if nb <= nav.minfixsats - 1: # nb is sat pairs trace(3, 'resamb_lambda: not enough valid double-differences DD\n') return -1, -1 # y=D*xc, Qb=D*Qc*D', Qab=Qac*D' y = nav.x[ix[:, 0]] - nav.x[ix[:, 1]] DP = nav.P[ix[:, 0], na:nx] - nav.P[ix[:, 1], na:nx] Qb = DP[:, ix[:, 0] - na] - DP[:, ix[:, 1] - na] Qab = nav.P[0:na, ix[:, 0]] - nav.P[0:na, ix[:, 1]] tracemat(3,'N(0)= ', y, '7.3f') tracemat(3, 'Qb*1000= ', 1000 * np.diag(Qb[0:nb]), '7.4f') # MLAMBDA ILS b, s = mlambda(y, Qb) tracemat(3,'N(1)= ', b[:,0], '7.3f') tracemat(3,'N(2)= ', b[:,1], '7.3f') nav.ratio = s[1] / s[0] if s[0] <= 0.0 or nav.ratio >= nav.thresar: trace(3,'resamb : validation OK (nb=%d ratio=%.2f\n s=%.2f/%.2f\n' % (nb, nav.ratio, s[1], s[0])) nav.xa = nav.x[0:na].copy() nav.Pa = nav.P[0:na, 0:na].copy() bias = b[:, 0] y -= b[:, 0] K = Qab @ inv(Qb) nav.xa -= K @ y nav.Pa -= K @ Qab.T # restore single diff ambiguity xa = restamb(nav, bias, nb) else: trace(3,'ambiguity validation failed (nb=%d ratio=%.2f\n s=%.2f/%.2f' % (nb, nav.ratio, s[1], s[0])) nb = 0 return nb, xa def manage_amb_LAMBDA(nav, sats, stat, posvar): """ resolve integer ambiguity by LAMBDA using partial fix techniques and multiple attempts """ trace(3, 'posvar=%.6f\n' % posvar) trace(3, 'prevRatios = %.3f %.3f\n' % (nav.prev_ratio1, nav.prev_ratio2)) # skip AR if don't meet criteria if stat != gn.SOLQ_FLOAT or posvar > nav.thresar1: nav.ratio, nav.prev_ratio1, nav.prev_ratio2, nav.nb_ar = 0, 0, 0, 0 trace(3, 'Skip AR\n') return 0, [] # if no fix on previous sample and enough sats, exclude next sat in list excflag = False if nav.prev_ratio2 < nav.thresar and nav.nb_ar >= nav.mindropsats: # find and count sats used last time for AR arsats = np.where(nav.prev_fix == 2)[0] excflag = 0 if nav.excsat_ix < len(arsats): excsat = arsats[nav.excsat_ix] + 1 lockc = copy(nav.lock[excsat-1]) # save lock count # remove sat from AR long enough to enable hold if stays fixed nav.lock[excsat-1] = -nav.nb_ar trace(3, 'AR: exclude sat %d\n' % excsat); excflag = True nav.excsat_ix += 1 else: nav.excsat_ix = 0 # exclude none and reset to beginning of list # initial ambiguity resolution attempt, include all enabled sats nb, xa = resamb_lambda(nav, sats) ratio1 = nav.ratio rerun = False # if results are much poorer than previous epoch or dropped below AR ratio # thresh, remove new sats trace(3, 'lambda: nb=%d r1= %.3f r2=%.3f r=%.3f\n' % ((nb, nav.prev_ratio1, nav.prev_ratio2, nav.ratio))) if nb >= 0 and nav.prev_ratio2 >= nav.thresar and (nav.ratio < nav.thresar or (nav.ratio < nav.thresar * 1.1 and nav.ratio < nav.prev_ratio1 / 2.0)): trace(3, 'low ratio: check for new sat\n') dly = 2 ix = np.where((nav.fix >= 2) & (nav.lock == 0)) for i,f in zip(ix[0],ix[1]): nav.lock[i,f] = -dly dly +=2 trace(3, 'remove sat %d:%d lock=%d\n' % (i+1, f, nav.lock[i,f])) rerun = True # rerun if filter removed any sats if rerun: trace(3, 'rerun AR with new sat removed\n') nb, xa = resamb_lambda(nav, sats) # restore excluded sat if still no fix or significant increase in ar ratio if excflag and nav.ratio < nav.thresar and nav.ratio < 1.5* nav.prev_ratio2: nav.lock[excsat-1] = lockc trace(3, 'AR: restore sat %d\n' % excsat) nav.prev_ratio1, nav.prev_ratio2 = ratio1, nav.ratio return nb, xa def initx(nav, x0, v0, i): """ initialize x and P for index i """ nav.x[i] = x0 nav.P[i,:] = 0 nav.P[:,i] = 0 nav.P[i,i] = v0 def detslp_dop(rcv, nav, obs, ix): """ detect cycle slip with doppler measurement """ if nav.thresdop <= 0: return # calculate doppler differences for all sats and freqs ns = len(ix) mean_dop = ndop = 0 dopdif = np.zeros((ns, nav.nf)) tt = np.zeros((ns, nav.nf)) for i, ii in enumerate(ix): sat = obs.sat[ii] - 1 for f in range(nav.nf): if obs.L[ii,f] == 0.0 or obs.D[ii,f] == 0.0 or nav.ph[rcv,sat,f] == 0.0 \ or nav.pt[rcv,sat,f] == None: continue tt[i,f] = timediff(obs.t, nav.pt[rcv,sat,f]) if abs(tt[i,f]) < DTTOL: continue # calc phase difference and doppler x time (cycle) dph = (obs.L[ii,f] - nav.ph[rcv,sat,f]) / tt[i,f] dpt = -obs.D[ii,f] dopdif[i,f] = dph - dpt # if not outlier, use this to calculate mean if abs(dopdif[i,f]) < 3 * nav.thresdop: mean_dop += dopdif[i,f] ndop += 1 # calc mean doppler diff, most likely due to clock error if ndop == 0: trace(4, 'detslp_dop rcv=%d: no valid doppler diffs\n' % (rcv+1)) return # unable to calc mean doppler, usually very large clock err mean_dop /= ndop # set slip if doppler difference with mean removed exceeds threshold for i, ii in enumerate(ix): sat = obs.sat[ii] - 1 for f in range(nav.nf): if dopdif[i,f] == 0.0: continue if abs(dopdif[i,f] - mean_dop) > nav.thresdop: nav.slip[sat,f] |= 1 trace(3, "slip detected doppler (sat=%2d rcv=%d dL%d=%.3f off=%.3f tt=%.2f)\n" % (sat+1, rcv+1, f+1, dopdif[i,f] - mean_dop, mean_dop, tt[i,f])) def detslp_gf(nav, obsb, obsr, iu, ir): """ detect cycle slip with geometry-free LC """ # skip if check disabled if nav.thresslip == 0 or nav.nf < 2: return ns = len(iu) _c = rCST.CLIGHT for i in range(ns): sat = obsr.sat[iu[i]] - 1 # skip check if slip already detected if (nav.slip[sat,0] & 1) or (nav.slip[sat,1] & 1): continue # calc SD geomotry free LC of phase between freq0 and freq1 L1R = obsr.L[iu[i],0] L2R = obsr.L[iu[i],1] L1B = obsb.L[ir[i],0] L2B = obsb.L[ir[i],1] if L1R == 0.0 or L1B == 0.0 or L2R == 0 or L2B == 0: trace(4, 'gf: skip sat %d, L=0\n' % sat) continue freq0 = sat2freq(sat + 1, 0, nav) freq1 = sat2freq(sat + 1, 1, nav) gf1 = ((L1R - L1B) * _c / freq0 - (L2R - L2B) * _c / freq1) if gf1 == 0: continue gf0 = nav.gf[sat] #retrieve previous gf nav.gf[sat] = gf1 # save current gf for next epoch if gf0 !=0.0 and abs(gf1 - gf0) > nav.thresslip: nav.slip[sat,0] |= 1 nav.slip[sat,1] |= 1 trace(3, "slip detected GF jump (sat=%2d L1-L2 dGF=%.3f)\n" % (sat + 1, gf0 - gf1)) def detslp_ll(nav, obs, ix, rcv): """ detect cycle slip from rinex file flags """ # retrieve previous LLI LLI = nav.prev_lli[:,:,rcv] ixsat = obs.sat[ix] - 1 initP = (nav.sig_n0 / 2)**2 # init value for slips slip = np.zeros_like(nav.slip) for f in range(nav.nf): ixL = np.where(obs.L[ix,f] != 0)[0] if nav.tt >= 0: # forward slip[ixsat[ixL],f] |= (obs.lli[ix[ixL],f] & 3) else: # backward slip[ixsat[ixL],f] |= (LLI[ixsat[ixL],f] & 3) # detect slip by parity unknown flag transition in LLI hc_slip = np.where((obs.lli[ix[ixL],f] & 2) != (LLI[ixsat[ixL],f] & 2))[0] if len(hc_slip) > 0: slip[ixsat[ixL[hc_slip]],f] |= 1 ixslip = np.where((slip[ixsat[ixL],f] & 1) != 0)[0] slipsats = ixsat[ixL[ixslip]] + 1 ib = IB(slipsats, f, nav.na) for i in ib: nav.P[i,i] = max(nav.P[i,i], initP) # output results to trace if len(slipsats) > 0: trace(3, 'slip detected from LLI flags: f=%d, sats=%s\n' % (f, str(slipsats))) trace(3, ' slip=%s\n' % str(slip[ixsat[ixL[ixslip]], f])) def udpos(nav, sol): """ states propagation for kalman filter """ tt = nav.tt trace(3, 'udpos : tt=%.3f\n' % tt) if nav.pmode == 'static': return # check variance of estimated position posvar = np.sum(
np.diag(nav.P[0:3])
numpy.diag
"""Validate a face recognizer on the "Labeled Faces in the Wild" dataset (http://vis-www.cs.umass.edu/lfw/). Embeddings are calculated using the pairs from http://vis-www.cs.umass.edu/lfw/pairs.txt and the ROC curve is calculated and plotted. """ import os import sys import math import pathlib import argparse import importlib import numpy as np from tqdm import tqdm from scipy import misc import tensorflow as tf from sklearn import metrics from scipy import interpolate from scipy.optimize import brentq from sklearn.model_selection import KFold from adaptive_triplet_loss import AdaptiveTripletLoss from custom_triplet_loss import TripletBatchHardLoss, TripletFocalLoss, TripletBatchHardV2Loss, AssortedTripletLoss, ConstellationLoss from custom_triplet_loss import HAP2S_ELoss, HAP2S_PLoss from model_utils import create_neural_network_v2 import model_utils from tensorflow_similarity.losses import MultiSimilarityLoss def _read_pairs(pairs_filename, lfw_path): pairs = [] actual_issame = [] with open(pairs_filename, 'r') as f: for line in f.readlines()[1:]: pair = line.strip().split(',') for i in range(len(pair)): pair[i] = pair[i].strip() if not os.path.exists(os.path.join(lfw_path, pair[2])): continue if not os.path.exists(os.path.join(lfw_path, pair[3])): continue if not os.path.isdir(os.path.join(lfw_path, pair[2])): continue if not os.path.isdir(os.path.join(lfw_path, pair[3])): continue if len(os.listdir(os.path.join(lfw_path, pair[2]))) == 0: continue if len(os.listdir(os.path.join(lfw_path, pair[3]))) == 0: continue if int(pair[-2]) == 1: actual_issame.append(True) else: actual_issame.append(False) pairs.append(pair) return np.array(pairs), np.array(actual_issame), len(pairs) def _get_preprocessor(model_type): if 'inception_resnet_v2' in model_type: preprocessor = 'tensorflow.keras.applications.inception_resnet_v2' #print('[INFO] Loaded Inception-Resnet-V2 data preprocessor', flush=True) elif 'efficientnet' in model_type: preprocessor = 'tensorflow.keras.applications.efficientnet' #print('[INFO] Loaded EfficientNet data preprocessor', flush=True) elif 'xception' in model_type: preprocessor = 'tensorflow.keras.applications.xception' #print('[INFO] Loaded Xception data preprocessor', flush=True) elif 'inception_v3' in model_type: preprocessor = 'tensorflow.keras.applications.inception_v3' #print('[INFO] Loaded Inception-V3 data preprocessor', flush=True) elif 'resnet' in model_type: preprocessor = 'tensorflow.keras.applications.resnet' #print('[INFO] Loaded Resnet data preprocessor', flush=True) elif 'mobilenet_v2' in model_type: preprocessor = 'tensorflow.keras.applications.mobilenet_v2' #print('[INFO] Loaded MobileNet-V2 data preprocessor', flush=True) elif 'mobilenet' in model_type: preprocessor = 'tensorflow.keras.applications.mobilenet' #print('[INFO] Loaded MobileNet data preprocessor', flush=True) else: preprocessor = None #print('[WARNING] Could not find appropriate pre-processor for model', flush=True) if preprocessor is not None: preprocessor = importlib.import_module(preprocessor) return preprocessor def get_dataset(data_path, image_size, batch_size, crop_size, train_classes=0, use_mixed_precision=False, use_tpu=False, model_type=None): AUTOTUNE = tf.data.experimental.AUTOTUNE data_path = pathlib.Path(data_path) image_count = len(list(data_path.glob('*.png'))) preprocessor = _get_preprocessor(model_type) ds = tf.data.Dataset.list_files(str(data_path/"*.png"), shuffle=True) def decode_img(img): #img = tf.io.decode_image(img, channels=3, expand_animations=False) img = tf.io.decode_png(img, channels=3) if use_mixed_precision is True: if use_tpu is True: img = tf.cast(img, tf.bfloat16) else: img = tf.cast(img, tf.float16) else: img = tf.cast(img, tf.float32) img = tf.image.resize(img, [crop_size, crop_size]) return img def process_path(file_path): img = tf.io.read_file(file_path) img = decode_img(img) if preprocessor is not None: img = preprocessor.preprocess_input(img) else: img = img / 255. return img ds = ds.map(process_path, num_parallel_calls=AUTOTUNE, deterministic=True) ds = ds.batch(batch_size) ds = ds.prefetch(AUTOTUNE) return ds, image_count def _distance(embeddings1, embeddings2, distance_metric=0): if distance_metric==0: # Euclidian distance diff = np.subtract(embeddings1, embeddings2) dist = np.sqrt(np.sum(np.square(diff), axis=1)) elif distance_metric==1: # Distance based on cosine similarity dot = np.sum(np.multiply(embeddings1, embeddings2), axis=1) norm = np.linalg.norm(embeddings1, axis=1) * np.linalg.norm(embeddings2, axis=1) similarity = dot / norm dist = np.arccos(similarity) / math.pi else: raise 'Undefined distance metric %d' % distance_metric return dist def _calculate_roc(thresholds, embeddings1, embeddings2, actual_issame, nrof_folds=10, distance_metric=0): assert(embeddings1.shape[0] == embeddings2.shape[0]) assert(embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) tprs = np.zeros((nrof_folds,nrof_thresholds)) fprs = np.zeros((nrof_folds,nrof_thresholds)) accuracy = np.zeros((nrof_folds)) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): dist = _distance(embeddings1, embeddings2, distance_metric) # Find the best threshold for the fold acc_train = np.zeros((nrof_thresholds)) for threshold_idx, threshold in enumerate(thresholds): _, _, acc_train[threshold_idx] = _calculate_accuracy(threshold, dist[train_set], actual_issame[train_set]) best_threshold_index = np.argmax(acc_train) for threshold_idx, threshold in enumerate(thresholds): tprs[fold_idx,threshold_idx], fprs[fold_idx,threshold_idx], _ = _calculate_accuracy(threshold, dist[test_set], actual_issame[test_set]) _, _, accuracy[fold_idx] = _calculate_accuracy(thresholds[best_threshold_index], dist[test_set], actual_issame[test_set]) tpr = np.mean(tprs, 0) fpr = np.mean(fprs, 0) return tpr, fpr, accuracy, np.std(accuracy) def _calculate_accuracy(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) tp = np.sum(np.logical_and(predict_issame, actual_issame)) fp = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) tn = np.sum(np.logical_and(np.logical_not(predict_issame), np.logical_not(actual_issame))) fn = np.sum(np.logical_and(np.logical_not(predict_issame), actual_issame)) tpr = 0 if (tp+fn==0) else float(tp) / float(tp+fn) fpr = 0 if (fp+tn==0) else float(fp) / float(fp+tn) acc = float(tp+tn)/dist.size return tpr, fpr, acc def _calculate_val(thresholds, embeddings1, embeddings2, actual_issame, far_target, nrof_folds=10, distance_metric=0): assert(embeddings1.shape[0] == embeddings2.shape[0]) assert(embeddings1.shape[1] == embeddings2.shape[1]) nrof_pairs = min(len(actual_issame), embeddings1.shape[0]) nrof_thresholds = len(thresholds) k_fold = KFold(n_splits=nrof_folds, shuffle=False) val = np.zeros(nrof_folds) far = np.zeros(nrof_folds) indices = np.arange(nrof_pairs) for fold_idx, (train_set, test_set) in enumerate(k_fold.split(indices)): dist = _distance(embeddings1, embeddings2, distance_metric) # Find the threshold that gives FAR = far_target far_train = np.zeros(nrof_thresholds) for threshold_idx, threshold in enumerate(thresholds): _, far_train[threshold_idx] = _calculate_val_far(threshold, dist[train_set], actual_issame[train_set]) if np.max(far_train)>=far_target: f = interpolate.interp1d(far_train, thresholds, kind='slinear') threshold = f(far_target) else: threshold = 0.0 val[fold_idx], far[fold_idx] = _calculate_val_far(threshold, dist[test_set], actual_issame[test_set]) val_mean = np.mean(val) far_mean = np.mean(far) val_std = np.std(val) return val_mean, val_std, far_mean def _calculate_val_far(threshold, dist, actual_issame): predict_issame = np.less(dist, threshold) true_accept = np.sum(np.logical_and(predict_issame, actual_issame)) false_accept = np.sum(np.logical_and(predict_issame, np.logical_not(actual_issame))) n_same = np.sum(actual_issame) n_diff = np.sum(np.logical_not(actual_issame)) val = float(true_accept) / float(n_same) far = float(false_accept) / float(n_diff) return val, far def main(weights_path, lfw_path, image_size, crop_size, model_type, loss_type, batch_size=50, use_mixed_precision=False, use_tpu=False, embedding_size=512, load_from_file=False, distance_metric=0): model = None if loss_type == 'ADAPTIVE': loss_obj = ['AdaptiveTripletLoss', AdaptiveTripletLoss] elif loss_type == 'FOCAL': loss_obj = ['TripletFocalLoss', TripletFocalLoss] elif loss_type == 'BATCH_HARD': loss_obj = ['TripletBatchHardLoss', TripletBatchHardLoss] elif loss_type == 'BATCH_HARD_V2': loss_obj = ['TripletBatchHardV2Loss', TripletBatchHardV2Loss] elif loss_type == 'ASSORTED': loss_obj = ['AssortedTripletLoss', AssortedTripletLoss] elif loss_type == 'CONSTELLATION': loss_obj = ['ConstellationLoss', ConstellationLoss] elif loss_type == 'HAP2S_E': loss_obj = ['HAP2S_ELoss', HAP2S_ELoss] elif loss_type == 'HAP2S_P': loss_obj = ['HAP2S_PLoss', HAP2S_PLoss] else: loss_obj = None if loss_obj is not None: model = tf.keras.models.load_model(weights_path, custom_objects={loss_obj[0]:loss_obj[1]}) #Another solution is skip the model_utils import and use : custom_objects={loss_obj[0]:loss_obj[1], 'tf':tf} else: model = tf.keras.models.load_model(weights_path) pairs, actual_issame, nrof_pairs = _read_pairs('./data/ytface_pairs.txt', lfw_path) #embeddings = np.zeros((nrof_pairs*2, embedding_size)) embeddings = None if load_from_file is None or load_from_file is False: for pair_num, pair in enumerate(tqdm(pairs, file=sys.stdout)): temp_emb = None x_ds, ic = get_dataset(data_path=os.path.join(lfw_path, pair[2]), image_size=image_size, batch_size=batch_size, crop_size=crop_size, use_mixed_precision=use_mixed_precision, use_tpu=use_tpu, train_classes=0, model_type=model_type) for i, xs in enumerate(x_ds): embs = model.predict(xs) embs = np.squeeze(embs) if temp_emb is None: temp_emb = embs else: temp_emb = np.vstack((temp_emb, embs)) #assert temp_emb.shape == (ic, embedding_size) mean_emb = np.squeeze(
np.mean(temp_emb, axis=0)
numpy.mean
""" =========== classify.py =========== This module contains functionality for classifying nanopore captures. """ import os import re from abc import ABC, abstractmethod from dataclasses import dataclass from pathlib import PosixPath from typing import * # I know people don't like import *, but I think it has benefits for types (doesn't impede people from being generous with typing) import numpy as np import torch import torch.nn as nn from ..logger import Logger, getLogger from ..signals import Capture, FractionalizedSignal, RawSignal # TODO: Pipe through filtering https://github.com/uwmisl/poretitioner/issues/43 https://github.com/uwmisl/poretitioner/issues/68 # from .models import NTERs_trained_cnn_05152019 as pretrained_model from . import filtering from .configuration import ClassifierConfiguration from .core import NumpyArrayLike, PathLikeOrString, ReadId use_cuda = False # True # TODO : Don't hardcode use of CUDA : https://github.com/uwmisl/poretitioner/issues/41 ClassLabel = NewType("ClassLabel", str) # Maps a numpy array like (some vector encoding that represents a label) to a the label string. LabelForResult = Callable[[NumpyArrayLike], ClassLabel] __all__ = [ "predict_class", "ClassificationRunId", "ClassifierDetails", "ClassifierPlugin", "CLASSIFICATION_PATH", "ClassificationResult", "PytorchClassifierPlugin", ] # Uniquely identifies a classification run that happened (e.g. 'NTER_2018_RandomForest_Attempt_3'). ClassificationRunId = NewType("ClassificationRunId", str) @dataclass(frozen=True) class ClassifierDetails: model: str model_version: str classification_threshold: float # Timestamp of when this classification occurred, in seconds from epoch (as a float). # # Q: Why not date-time? # # A: Sadly, as of 2020, h5py doesn't provide a good way of storing dates [1]. # Doing so would also be less precise than storing epoch time. # # Q: Why seconds (knowing it will be fractionalized)? # # A: On most modern machines, python time.time() provides micro-second precision. # But this can't be guaranteed (on older machines, it might only provide second precision) [1]. # # If we really wanted an int, the alternative to guarantee an int would be to store # the timestamp in nanoseconds [3], but that feels verbose to me. # # [1] - https://stackoverflow.com/questions/23570632/store-datetimes-in-hdf5-with-h5py # [2] - https://docs.python.org/3/library/time.html#time.time # [3] - https://docs.python.org/3/library/time.html#time.time_ns timestamp_ms: float model_file: PathLikeOrString @dataclass(frozen=True) class CLASSIFICATION_PATH: ROOT = f"/Classification/" @classmethod def for_classification_run(cls, classification_run: ClassificationRunId) -> str: path = str(PosixPath(CLASSIFICATION_PATH.ROOT, classification_run)) return path @classmethod def pass_path(cls, classification_run: ClassificationRunId) -> str: """Path to the group that contains the readIds that passed classification during this classification run. Parameters ---------- classification_run : ClassificationRunId A unique identifier for the classification run that generated these results (e.g. "my_classication_run_04"). Returns ------- str Pathlike to path. (e.g. /Classifcation/my_classication_run_04/pass) """ CLASSICATION_RUN_PATH = cls.for_classification_run(classification_run) path = str(PosixPath(CLASSICATION_RUN_PATH, "pass")) return path @classmethod def fail_path(cls, classification_run: ClassificationRunId) -> str: """Path to the group that contains the readIds that failed classification during this classification run. Parameters ---------- classification_run : ClassificationRunId A unique identifier for the classification run that generated these results (e.g. "my_classication_run_04"). Returns ------- str Pathlike to path. (e.g. /Classifcation/my_classication_run_04/fail) """ CLASSICATION_RUN_PATH = cls.for_classification_run(classification_run) path = str(PosixPath(CLASSICATION_RUN_PATH, "fail")) return path def read_id_path(cls, classification_run: ClassificationRunId, read_id: ReadId) -> str: """Path to the group that contains the classification results for a given readId. Parameters ---------- classification_run : ClassificationRunId A unique identifier for the classification run that generated these results (e.g. "my_classication_run_04"). read_id : ReadId The readId of the read we want to know the classification results for. Returns ------- str Path to the group that contains the classification results for a given readId. """ CLASSICATION_RUN_PATH = cls.for_classification_run(classification_run) path = str(PosixPath(CLASSICATION_RUN_PATH, f"{read_id}")) return path @dataclass(frozen=True) class ClassificationResult: """The result of passing the capture data to the classifier. Fields ---------- score : float A value representing the 'score' of a label predicted by the classifier. Abstractly, the score is a measure of confidence that this label is correct, as determined by the score being greater than some threshold. What exact values this score can take on depends on your classifier (e.g. if you pass the final result through a soft-max, this score will represent a probability from 0 to 1.0). label : ClassLabel The label assigned to this prediction. Returns ------- [ClassificationResult] ClassificationResult instance. """ label: ClassLabel score: float # TODO: Finish writing Classifier plugin architecture: https://github.com/uwmisl/poretitioner/issues/91 class ClassifierPlugin(ABC): @abstractmethod def model_name(self) -> str: raise NotImplementedError("model_name hasn't been implemented for this classifier.") @abstractmethod def model_version(self) -> str: raise NotImplementedError("model_version hasn't been implemented for this classifier.") @abstractmethod def model_file(self) -> str: raise NotImplementedError("model_file hasn't been implemented for this classifier.") @abstractmethod def load(self, use_cuda: bool = False): """Loads a model for classification. This method is where you should do any pre processing needed. For exammple, loading and configuring a Pytorch model, or a sci-kit learn model. Parameters ---------- use_cuda : bool Whether to use cuda. Raises ------ NotImplementedError If this method hasn't been implemented. """ raise NotImplementedError("load hasn't been implemented for this classifier.") @abstractmethod def evaluate(self, capture) -> ClassificationResult: raise NotImplementedError("Evaluate hasn't been implemented for this classifier.") # TODO: Implement Classification with the new data model: https://github.com/uwmisl/poretitioner/issues/92 def filter_and_classify( config, capture_filepaths: List[PathLikeOrString], overwrite=False, filter_name=None ): local_logger = logger.getLogger() clf_config = config["classify"] classifier_name = clf_config["classifier"] classification_path = clf_config["classification_path"] # Load classifier local_logger.info(f"Loading classifier {classifier_name}.") assert classifier_name in ["NTER_cnn", "NTER_rf"] assert classification_path is not None and len(classification_path) > 0 classifier = init_classifier(classifier_name, classification_path) # Filter (optional) TODO: Restore filtering https://github.com/uwmisl/poretitioner/issues/43 https://github.com/uwmisl/poretitioner/issues/68 read_path = "/" # if filter_name is not None: # local_logger.info("Beginning filtering.") # filter.filter_and_store_result(config, fast5_fnames, filter_name, overwrite=overwrite) # read_path = f"/Filter/{filter_name}/pass" # else: # read_path = "/" # Classify classify_fast5_file(f5, clf_config, classifier, classifier_name, read_path) # def classify_file( # capturef5: ClassifierFile, configuration: ClassifierConfiguration, classifier: Classifier, classifier_run_name, read_path, class_labels=None): # for read in capturef5.reads: # pass # TODO: Implement Classification with the new data model: https://github.com/uwmisl/poretitioner/issues/92 def classify_fast5_file( capture_filepath: PathLikeOrString, clf_config, classifier, classifier_run_name, read_path, class_labels=None, ): local_logger = logger.getLogger() local_logger.debug(f"Beginning classification for file {capture_filepath}.") classifier_name = clf_config["classifier"] classifier_version = clf_config["version"] classifier_location = clf_config["filepath"] classify_start = clf_config["start_obs"] # 100 in NTER paper classify_end = clf_config["end_obs"] # 21000 in NTER paper classifier_confidence_threshold = clf_config["min_confidence"] configuration = ClassifierConfiguration( classifier_name, classifier_version, classify_start, classify_end, classifier_confidence_threshold, ) # details = ClassifierDetails(classifier_name, , , ) # ClassifierFile(filepath, ) details = None # ClassifierDetails(classifier_name, ) assert classify_start >= 0 and classify_end >= 0 assert classifier_confidence_threshold is None or (0 <= classifier_confidence_threshold <= 1) local_logger.debug( f"Classification parameters: name: {classifier_name}, " f"range of data points: ({classify_start}, {classify_end})" f"confidence required to pass: {classifier_confidence_threshold}" ) results_path = f"/Classification/{classifier_run_name}" write_classifier_details(f5, clf_config, results_path) with ClassifierFile(capture_filepath, "r+") as classifier_f5: details = ClassifierDetails( classifier_name, classifier_version, classifier_location, classifier_confidence_threshold, ) classifier_f5.write_details(details) for read in classifier_f5.reads: signal = classifier_f5.get_fractionalized_read( read, start=classify_start, end=classify_end ) labels, probability = predict_class( classifier_name, classifier, signal, class_labels=class_labels ) if classifier_confidence_threshold is not None: passed_classification = probability > classifier_confidence_threshold else: passed_classification = None write_classifier_result() # read_h5group_names = f5.get(read_path) # for grp in read_h5group_names: # if "read" not in grp: # continue # read_id = re.findall(r"read_(.*)", str(grp))[0] # signal = get_fractional_blockage_for_read( # f5, grp, start=classify_start, end=classify_end # ) # y, p = predict_class(classifier_name, classifier, signal, class_labels=class_labels) # if classifier_confidence_threshold is not None: # passed_classification = False if p <= classifier_confidence_threshold else True # else: # passed_classification = None # write_classifier_result(f5, results_path, read_id, y, p, passed_classification) # TODO: Implement Classification with the new data model: https://github.com/uwmisl/poretitioner/issues/92 # TODO: This classifier initialization should be a special case of a Plugin: https://github.com/uwmisl/poretitioner/issues/91 def init_classifier(classifier_name, classification_path): """Initialize the classification model. Supported classifier names include "NTER_cnn" and "NTER_rf". According to documentation for original NTER code: Prediction classes are 1-9: 0:Y00, 1:Y01, 2:Y02, 3:Y03, 4:Y04, 5:Y05, 6:Y06, 7:Y07, 8:Y08, 9:noise, -1:below conf_thesh Parameters ---------- classifier_name : str The name of any supported classifier, currently "NTER_cnn" and "NTER_rf". classification_path : str Location of the pre-trained model file. Returns ------- model Classification model (type depends on the spceified model). Raises ------ ValueError Raised if the classifier name is not supported. OSError Raised if the classifier path does not exist. """ if classifier_name == "NTER_cnn": # CNN classifier if not os.path.exists(classification_path): raise OSError(f"Classifier path doesn't exist: {classification_path}") nanoporeTER_cnn = pretrained_model.load_cnn(classification_path) return nanoporeTER_cnn elif classifier_name == "NTER_rf": # Random forest classifier if not os.path.exists(classification_path): raise OSError(f"Classifier path doesn't exist: {classification_path}") # TODO : Improve model maintainability : https://github.com/uwmisl/poretitioner/issues/38 # return joblib.load(open(classification_path, "rb")) pass else: raise ValueError(f"Invalid classifier name: {classifier_name}") # TODO: Implement Classification with the new data model: https://github.com/uwmisl/poretitioner/issues/92 def predict_class(classifier_name, classifier, raw, class_labels=None) -> ClassificationResult: """Runs the classifier using the given raw data as input. Does not apply any kind of confidence threshold. Parameters ---------- classifier_name : str The name of any supported classifier, currently "NTER_cnn" and "NTER_rf". classifier : model Classification model returned by init_classifier. raw : iterable of floats Time series of nanopore current values (in units of fractionalized current). Returns ------- int or string Class label float Model score (for NTER_cnn and NTER_rf, it's a probability) Raises ------ NotImplementedError Raised if the input classifier_name is not supported. """ if classifier_name == "NTER_cnn": X_test = np.array([raw]) # 2D --> 3D array (each obs in a capture becomes its own array) X_test = X_test.reshape(len(X_test), X_test.shape[1], 1) if X_test.shape[1] < 19881: temp = np.zeros((X_test.shape[0], 19881, 1)) temp[:, : X_test.shape[1], :] = X_test X_test = temp X_test = X_test[:, :19881] # First 19881 obs as per NTER paper # Break capture into 141x141 (19881 total data points) X_test = X_test.reshape(len(X_test), 1, 141, 141) X_test = torch.from_numpy(X_test) if use_cuda: X_test = X_test.cuda() outputs = classifier(X_test) out = nn.functional.softmax(outputs, dim=1) prob, label = torch.topk(out, 1) if use_cuda: label = label.cpu().numpy()[0][0] else: label = label.numpy()[0][0] if class_labels is not None: label = class_labels[label] probability = prob[0][0].data # TODO: Implement Classification with the new data model: https://github.com/uwmisl/poretitioner/issues/92 # TODO: Katie Q: Where does assigned class come from? ClassificationResult(label, probability) return label, probability elif classifier_name == "NTER_rf": class_proba = classifier.predict_proba( [[np.mean(raw), np.std(raw), np.min(raw),
np.max(raw)
numpy.max
import numpy as np from sklearn.decomposition import PCA import pandas as pd import matplotlib.pyplot as plt import random import seaborn as sns from sklearn.cluster import KMeans from sklearn.metrics import confusion_matrix from sklearn.metrics.cluster import adjusted_rand_score from sklearn.datasets import fetch_openml from sklearn.model_selection import train_test_split import pandas.util.testing as tm from keras.datasets import mnist import tensorflow_datasets as tfds import tensorflow as tf from google.colab import files import sys import itertools as it #@title ElasticNetSubspaceClustering import warnings import progressbar import spams import time from scipy import sparse from sklearn import cluster from sklearn.base import BaseEstimator, ClusterMixin from sklearn.decomposition import sparse_encode from sklearn.linear_model import orthogonal_mp from sklearn.neighbors import kneighbors_graph from sklearn.preprocessing import normalize from sklearn.utils import check_random_state, check_array, check_symmetric class SelfRepresentation(BaseEstimator, ClusterMixin): def __init__(self, n_clusters=8, affinity='symmetrize', random_state=None, n_init=20, n_jobs=1): self.n_clusters = n_clusters self.affinity = affinity self.random_state = random_state self.n_init = n_init self.n_jobs = n_jobs def fit(self, X, y=None): X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) time_base = time.time() self._self_representation(X) self.timer_self_representation_ = time.time() - time_base self._representation_to_affinity() self._spectral_clustering() self.timer_time_ = time.time() - time_base return self def fit_self_representation(self, X, y=None): X = check_array(X, accept_sparse=['csr', 'csc', 'coo'], dtype=np.float64) time_base = time.time() self._self_representation(X) self.timer_self_representation_ = time.time() - time_base return self def _representation_to_affinity(self): normalized_representation_matrix_ = normalize(self.representation_matrix_, 'l2') if self.affinity == 'symmetrize': self.affinity_matrix_ = 0.5 * (np.absolute(normalized_representation_matrix_) + np.absolute(normalized_representation_matrix_.T)) elif self.affinity == 'nearest_neighbors': neighbors_graph = kneighbors_graph(normalized_representation_matrix_, 3, mode='connectivity', include_self=False) self.affinity_matrix_ = 0.5 * (neighbors_graph + neighbors_graph.T) def _spectral_clustering(self): affinity_matrix_ = check_symmetric(self.affinity_matrix_) random_state = check_random_state(self.random_state) laplacian = sparse.csgraph.laplacian(affinity_matrix_, normed=True) _, vec = sparse.linalg.eigsh(sparse.identity(laplacian.shape[0]) - laplacian, k=self.n_clusters, sigma=None, which='LA') embedding = normalize(vec) _, self.labels_, _ = cluster.k_means(embedding, self.n_clusters, random_state=random_state, n_init=self.n_init) def active_support_elastic_net(X, y, alpha, tau=1.0, algorithm='spams', support_init='knn', support_size=100, maxiter=40): n_samples = X.shape[0] if n_samples <= support_size: # skip active support search for small scale data supp = np.arange(n_samples, dtype=int) # this results in the following iteration to converge in 1 iteration else: if support_init == 'L2': L2sol = np.linalg.solve(np.identity(y.shape[1]) * alpha + np.dot(X.T, X), y.T) c0 = np.dot(X, L2sol)[:, 0] supp = np.argpartition(-np.abs(c0), support_size)[0:support_size] elif support_init == 'knn': supp = np.argpartition(-np.abs(np.dot(y, X.T)[0]), support_size)[0:support_size] curr_obj = float("inf") for _ in range(maxiter): Xs = X[supp, :] if algorithm == 'spams': cs = spams.lasso(np.asfortranarray(y.T), D=np.asfortranarray(Xs.T), lambda1=tau*alpha, lambda2=(1.0-tau)*alpha) cs = np.asarray(cs.todense()).T else: cs = sparse_encode(y, Xs, algorithm=algorithm, alpha=alpha) delta = (y - np.dot(cs, Xs)) / alpha obj = tau * np.sum(np.abs(cs[0])) + (1.0 - tau)/2.0 * np.sum(np.power(cs[0], 2.0)) + alpha/2.0 * np.sum(np.power(delta, 2.0)) if curr_obj - obj < 1.0e-10 * curr_obj: break curr_obj = obj coherence = np.abs(np.dot(delta, X.T))[0] coherence[supp] = 0 addedsupp = np.nonzero(coherence > tau + 1.0e-10)[0] if addedsupp.size == 0: # converged break # Find the set of nonzero entries of cs. activesupp = supp[np.abs(cs[0]) > 1.0e-10] if activesupp.size > 0.8 * support_size: # this suggests that support_size is too small and needs to be increased support_size = min([round(max([activesupp.size, support_size]) * 1.1), n_samples]) if addedsupp.size + activesupp.size > support_size: ord = np.argpartition(-coherence[addedsupp], support_size - activesupp.size)[0:support_size - activesupp.size] addedsupp = addedsupp[ord] supp = np.concatenate([activesupp, addedsupp]) c = np.zeros(n_samples) c[supp] = cs return c def elastic_net_subspace_clustering(X, gamma=50.0, gamma_nz=True, tau=1.0, algorithm='lasso_lars', active_support=True, active_support_params=None, n_nonzero=50): if algorithm in ('lasso_lars', 'lasso_cd') and tau < 1.0 - 1.0e-10: warnings.warn('algorithm {} cannot handle tau smaller than 1. Using tau = 1'.format(algorithm)) tau = 1.0 if active_support == True and active_support_params == None: active_support_params = {} n_samples = X.shape[0] rows = np.zeros(n_samples * n_nonzero) cols = np.zeros(n_samples * n_nonzero) vals = np.zeros(n_samples * n_nonzero) curr_pos = 0 for i in progressbar.progressbar(range(n_samples)): y = X[i, :].copy().reshape(1, -1) X[i, :] = 0 if algorithm in ('lasso_lars', 'lasso_cd', 'spams'): if gamma_nz == True: coh = np.delete(np.absolute(np.dot(X, y.T)), i) alpha0 = np.amax(coh) / tau # value for which the solution is zero alpha = alpha0 / gamma else: alpha = 1.0 / gamma if active_support == True: c = active_support_elastic_net(X, y, alpha, tau, algorithm, **active_support_params) else: if algorithm == 'spams': c = spams.lasso(np.asfortranarray(y.T), D=np.asfortranarray(X.T), lambda1=tau * alpha, lambda2=(1.0-tau) * alpha) c = np.asarray(c.todense()).T[0] else: c = sparse_encode(y, X, algorithm=algorithm, alpha=alpha)[0] else: warnings.warn("algorithm {} not found".format(algorithm)) index = np.flatnonzero(c) if index.size > n_nonzero: # warnings.warn("The number of nonzero entries in sparse subspace clustering exceeds n_nonzero") index = index[np.argsort(-np.absolute(c[index]))[0:n_nonzero]] rows[curr_pos:curr_pos + len(index)] = i cols[curr_pos:curr_pos + len(index)] = index vals[curr_pos:curr_pos + len(index)] = c[index] curr_pos += len(index) X[i, :] = y # affinity = sparse.csr_matrix((vals, (rows, cols)), shape=(n_samples, n_samples)) + sparse.csr_matrix((vals, (cols, rows)), shape=(n_samples, n_samples)) return sparse.csr_matrix((vals, (rows, cols)), shape=(n_samples, n_samples)) class ElasticNetSubspaceClustering(SelfRepresentation): def __init__(self, n_clusters=8, affinity='symmetrize', random_state=None, n_init=20, n_jobs=1, gamma=50.0, gamma_nz=True, tau=1.0, algorithm='lasso_lars', active_support=True, active_support_params=None, n_nonzero=50): self.gamma = gamma self.gamma_nz = gamma_nz self.tau = tau self.algorithm = algorithm self.active_support = active_support self.active_support_params = active_support_params self.n_nonzero = n_nonzero SelfRepresentation.__init__(self, n_clusters, affinity, random_state, n_init, n_jobs) def _self_representation(self, X): self.representation_matrix_ = elastic_net_subspace_clustering(X, self.gamma, self.gamma_nz, self.tau, self.algorithm, self.active_support, self.active_support_params, self.n_nonzero) def sparse_subspace_clustering_orthogonal_matching_pursuit(X, n_nonzero=10, thr=1.0e-6): n_samples = X.shape[0] rows = np.zeros(n_samples * n_nonzero, dtype = int) cols = np.zeros(n_samples * n_nonzero, dtype = int) vals = np.zeros(n_samples * n_nonzero) curr_pos = 0 for i in progressbar.progressbar(range(n_samples)): # for i in range(n_samples): residual = X[i, :].copy() # initialize residual supp = np.empty(shape=(0), dtype = int) # initialize support residual_norm_thr = np.linalg.norm(X[i, :]) * thr for t in range(n_nonzero): # for each iteration of OMP # compute coherence between residuals and X coherence = abs( np.matmul(residual, X.T) ) coherence[i] = 0.0 # update support supp = np.append(supp, np.argmax(coherence)) # compute coefficients c = np.linalg.lstsq( X[supp, :].T, X[i, :].T, rcond=None)[0] # compute residual residual = X[i, :] - np.matmul(c.T, X[supp, :]) # check termination if np.sum(residual **2) < residual_norm_thr: break rows[curr_pos:curr_pos + len(supp)] = i cols[curr_pos:curr_pos + len(supp)] = supp vals[curr_pos:curr_pos + len(supp)] = c curr_pos += len(supp) # affinity = sparse.csr_matrix((vals, (rows, cols)), shape=(n_samples, n_samples)) + sparse.csr_matrix((vals, (cols, rows)), shape=(n_samples, n_samples)) return sparse.csr_matrix((vals, (rows, cols)), shape=(n_samples, n_samples)) class SparseSubspaceClusteringOMP(SelfRepresentation): def __init__(self, n_clusters=8, affinity='symmetrize', random_state=None, n_init=10, n_jobs=1, n_nonzero=10, thr=1.0e-6): self.n_nonzero = n_nonzero self.thr = thr SelfRepresentation.__init__(self, n_clusters, affinity, random_state, n_init, n_jobs) def _self_representation(self, X): self.representation_matrix_ = sparse_subspace_clustering_orthogonal_matching_pursuit(X, self.n_nonzero, self.thr) def least_squares_subspace_clustering(X, gamma=10.0, exclude_self=False): n_samples, n_features = X.shape if exclude_self == False: if n_samples < n_features: gram = np.matmul(X, X.T) return np.linalg.solve(gram + np.eye(n_sample) / gamma, gram).T else: tmp = np.linalg.solve(np.matmul(X.T, X) + np.eye(n_features) / gamma, X.T) return np.matmul(X, tmp).T else: if n_samples < n_features: D = np.linalg.solve(np.matmul(X, X.T) + np.eye(n_sample) / gamma, np.eye(n_sample)) # see Theorem 6 in https://arxiv.org/pdf/1404.6736.pdf else: tmp = np.linalg.solve(np.matmul(X.T, X) + np.eye(n_features) / gamma, X.T) D = eye(n_samples) - np.matmul(X, tmp) D = D / D.diagonal()[None,:] np.fill_diagonal(D, 0.0) return -1.0 * D.T class LeastSquaresSubspaceClustering(SelfRepresentation): def __init__(self, n_clusters=8, affinity='symmetrize', random_state=None, n_init=None, n_jobs=1, gamma=10.0, exclude_self=False): self.gamma = gamma self.exclude_self = exclude_self SelfRepresentation.__init__(self, n_clusters, affinity, random_state, n_init, n_jobs) def _self_representation(self, X): self.representation_matrix_ = least_squares_subspace_clustering(X, self.gamma, self.exclude_self) if 'google.colab' in sys.modules: uploaded = files.upload() #subtract the mean from every class def preprocess_substract_mean(X, y): labels = np.unique(y) X_processed= X.copy() for l in labels: mean =
np.average(X_processed[y == l], 0)
numpy.average
import numpy as np from base_test import ArkoudaTest from context import arkouda as ak from itertools import product class ArrayViewTest(ArkoudaTest): def test_mulitdimensional_array_creation(self): n = np.array([[0, 0], [0, 1], [1, 1]]) a = ak.array([[0, 0], [0, 1], [1, 1]]) self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) n = np.arange(27).reshape((3, 3, 3)) a = ak.arange(27).reshape((3, 3, 3)) self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) n = np.arange(27).reshape(3, 3, 3) a = ak.arange(27).reshape(3, 3, 3) self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) n = np.arange(27, dtype=np.uint64).reshape(3, 3, 3) a = ak.arange(27, dtype=ak.uint64).reshape(3, 3, 3) self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) def test_arrayview_int_indexing(self): nd = np.arange(9).reshape(3, 3) pd_reshape = ak.arange(9).reshape(3, 3) pd_array = ak.array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) nd_ind = [nd[i, j] for (i, j) in product(range(3), repeat=2)] reshape_ind = [pd_reshape[i, j] for (i, j) in product(range(3), repeat=2)] array_ind = [pd_array[i, j] for (i, j) in product(range(3), repeat=2)] self.assertListEqual(nd_ind, reshape_ind) self.assertListEqual(nd_ind, array_ind) with self.assertRaises(IndexError): # index out bounds (>= dimension) # index 3 is out of bounds for axis 0 with size 3 pd_reshape[3, 1] with self.assertRaises(IndexError): # index -4 is out of bounds for axis 1 with size 3 pd_reshape[2, -4] with self.assertRaises(IndexError): # too many indicies for array: array is 2-dimensional, but 3 were indexed pd_reshape[0, 1, 1] with self.assertRaises(ValueError): # cannot reshape array of size 9 into shape (4,3) ak.arange(9).reshape(4, 3) def test_int_list_indexing(self): iav = ak.arange(30).reshape((5, 3, 2)) uav = ak.arange(30, dtype=ak.uint64).reshape((5, 3, 2)) iind = ak.array([3, 0, 1]) uind = ak.cast(iind, ak.uint64) self.assertEqual(iav[iind], iav[uind]) self.assertEqual(uav[iind], uav[uind]) def test_set_index(self): inav = np.arange(30).reshape((5, 3, 2)) unav = np.arange(30, dtype=np.uint64).reshape((5, 3, 2)) iav = ak.arange(30).reshape((5, 3, 2)) uav = ak.arange(30, dtype=ak.uint64).reshape((5, 3, 2)) nind = (3, 0, 1) iind = ak.array(nind) uind = ak.cast(iind, ak.uint64) inav[nind] = -9999 unav[nind] = -9999 iav[uind] = -9999 uav[iind] = -9999 self.assertEqual(iav[uind], inav[nind]) self.assertEqual(iav[iind], iav[uind]) self.assertEqual(uav[uind], unav[nind]) self.assertEqual(uav[iind], uav[uind]) def test_get_bool_pdarray(self): n = np.arange(30).reshape(5, 3, 2) a = ak.arange(30).reshape(5, 3, 2) n_bool_list = n[True, True, True].tolist() a_bool_list = a[True, True, True].to_ndarray().tolist() self.assertListEqual(n_bool_list, a_bool_list) n_bool_list = n[False, True, True].tolist() a_bool_list = a[False, True, True].to_ndarray().tolist() self.assertListEqual(n_bool_list, a_bool_list) n_bool_list = n[True, False, True].tolist() a_bool_list = a[True, False, True].to_ndarray().tolist() self.assertListEqual(n_bool_list, a_bool_list) n_bool_list = n[True, True, False].tolist() a_bool_list = a[True, True, False].to_ndarray().tolist() self.assertListEqual(n_bool_list, a_bool_list) def test_set_bool_pdarray(self): n = np.arange(30).reshape(5, 3, 2) a = ak.arange(30).reshape(5, 3, 2) n[True, True, True] = 9 a[True, True, True] = 9 self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) n[False, True, True] = 5 a[False, True, True] = 5 self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) n[True, False, True] = 6 a[True, False, True] = 6 self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) n[True, True, False] = 13 a[True, True, False] = 13 self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) def test_reshape_order(self): # Keep 'C'/'F' (C/Fortran) order to be consistent with numpy # But also accept more descriptive 'row_major' and 'column_major' nd = np.arange(30).reshape((5, 3, 2), order='C') ak_C = ak.arange(30).reshape((5, 3, 2), order='C') ak_row = ak.arange(30).reshape((5, 3, 2), order='row_major') nd_ind = [nd[i, j, k] for (i, j, k) in product(range(5), range(3), range(2))] C_order = [ak_C[i, j, k] for (i, j, k) in product(range(5), range(3), range(2))] row_order = [ak_row[i, j, k] for (i, j, k) in product(range(5), range(3), range(2))] self.assertListEqual(nd_ind, C_order) self.assertListEqual(nd_ind, row_order) nd = np.arange(30).reshape((5, 3, 2), order='F') ak_F = ak.arange(30).reshape((5, 3, 2), order='F') ak_column = ak.arange(30).reshape((5, 3, 2), order='column_major') nd_ind = [nd[i, j, k] for (i, j, k) in product(range(5), range(3), range(2))] F_order = [ak_F[i, j, k] for (i, j, k) in product(range(5), range(3), range(2))] column_order = [ak_column[i, j, k] for (i, j, k) in product(range(5), range(3), range(2))] self.assertListEqual(nd_ind, F_order) self.assertListEqual(nd_ind, column_order) def test_basic_indexing(self): # verify functionality is consistent with numpy basic indexing tutorial # https://numpy.org/doc/stable/user/basics.indexing.html n = np.arange(10).reshape(2, 5) a = ak.arange(10).reshape(2, 5) self.assertListEqual(list(n.shape), a.shape.to_ndarray().tolist()) # n.tolist() = [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]] self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) self.assertEqual(n.__str__(), a.__str__()) self.assertEqual(n[1, 3], a[1, 3]) self.assertEqual(n[1, -1], a[1, -1]) self.assertListEqual(n[0].tolist(), a[0].to_ndarray().tolist()) self.assertEqual(n[0][2], a[0][2]) n = np.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]) a = ak.array([[0, 1, 2, 3, 4, 5, 6, 7, 8, 9], [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]]) # n[0, 1:7:2].tolist() = [1, 3, 5] self.assertListEqual(n[0, 1:7:2].tolist(), a[0, 1:7:2].to_ndarray().tolist()) # n[0, -2:10].tolist() = [8, 9] self.assertListEqual(n[0, -2:10].tolist(), a[0, -2:10].to_ndarray().tolist()) # n[0, -3:3:-1].tolist() = [7, 6, 5, 4] self.assertListEqual(n[0, -3:3:-1].tolist(), a[0, -3:3:-1].to_ndarray().tolist()) # n[0, 5:].tolist() = [5, 6, 7, 8, 9] self.assertListEqual(n[0, 5:].tolist(), a[0, 5:].to_ndarray().tolist()) n = np.array([[[1],[2],[3]], [[4],[5],[6]]]) a = ak.array([[[1],[2],[3]], [[4],[5],[6]]]) # list(n.shape) = [2, 3, 1] self.assertListEqual(list(n.shape), a.shape.to_ndarray().tolist()) # n.tolist() = [[[1], [2], [3]], [[4], [5], [6]]] self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) self.assertEqual(n.__str__(), a.__str__()) # n[1:2].tolist() = [[[4], [5], [6]]] self.assertListEqual(n[1:2].tolist(), a[1:2].to_ndarray().tolist()) def test_slicing(self): a = ak.arange(30).reshape(2, 3, 5) n = np.arange(30).reshape(2, 3, 5) self.assertListEqual(n.tolist(), a.to_ndarray().tolist()) # n[:, ::-1, 1:5:2].tolist() = [[[11, 13], [6, 8], [1, 3]], [[26, 28], [21, 23], [16, 18]]] self.assertListEqual(n[:, ::-1, 1:5:2].tolist(), a[:, ::-1, 1:5:2].to_ndarray().tolist()) # n[:, 5:8, 1:5:2].tolist() = [[], []] self.assertListEqual(n[:, 5:8, 1:5:2].tolist(), a[:, 5:8, 1:5:2].to_ndarray().tolist()) # n[:, 5:8, 1:5:2][1].tolist() = [] self.assertListEqual(n[:, 5:8, 1:5:2][1].tolist(), a[:, 5:8, 1:5:2][1].to_ndarray().tolist()) a = ak.arange(30).reshape(2, 3, 5, order='F') n =
np.arange(30)
numpy.arange
import numpy as np import time #from scipy.linalg import sqrtm ABSERR = 10E-10 def compute_psd_factorization(X,r,nIterates=100,method='multiplicative',Init = None,silent=False): n1,n2 = X.shape if Init is None: A = gen_psdlinmap(n1,r) B = gen_psdlinmap(n2,r) else: A,B = Init Errs = np.zeros((nIterates,)) start = time.process_time() if not(silent): print(' It. # | Error | Time Taken') for ii in range(nIterates): t_start = time.time() if method == 'multiplicative': try: B = update_multiplicative(A, B, X) except: print('d') B = update_multiplicative_damped(A, B, X) try: A = update_multiplicative(B, A, X.T) except: print('d') A = update_multiplicative_damped(B, A, X.T) if method == 'multiplicativeaccelerated': B = update_multiplicativeaccelerated(A, B, X) A = update_multiplicativeaccelerated(B, A, X.T) if method == 'fpgm': B = update_fpgm(A, B, X, 10) B = np.real(B) A = update_fpgm(B, A, X.T, 10) AB = linmap_dot(A, B) Errs[ii,] = np.linalg.norm(AB-X)/np.linalg.norm(X) elapsed_time = time.time() - t_start np.save('A.npy',A)
np.save('B.npy',B)
numpy.save
# -*- coding: utf-8 -*- """ Created on Tue Feb 5 23:56:16 2019 @author: kirichoi """ import os, sys import tellurium as te import roadrunner import numpy as np import antimony import scipy.optimize import networkGenerator as ng import time import copy def f1(k_list, *args): global counts global countf args[0].reset() args[0].setValues(args[0].getGlobalParameterIds(), k_list) try: args[0].steadyStateApproximate() objCCC = args[0].getScaledConcentrationControlCoefficientMatrix() objCCC[np.abs(objCCC) < 1e-12] = 0 # Set small values to zero if np.isnan(objCCC).any(): dist_obj = 10000 else: if args[3]: objFlux = args[0].getReactionRates() objFlux[np.abs(objFlux) < 1e-12] = 0 # Set small values to zero # objFCC = args[0].getScaledFluxControlCoefficientMatrix() # objFCC[np.abs(objFCC) < 1e-12] = 0 # Set small values to zero objCCC_row = objCCC.rownames objCCC_col = objCCC.colnames objCCC = objCCC[np.argsort(objCCC_row)] objCCC = objCCC[:,np.argsort(objCCC_col)] if args[3]: objFlux = objFlux[np.argsort(objCCC_col)] dist_obj = (((np.linalg.norm(args[1] - objCCC)) + (np.linalg.norm(args[2] - objFlux))) * ((1 + np.sum(np.equal(np.sign(np.array(args[1])), np.sign(np.array(objCCC))))) + (1 + np.sum(np.equal(np.sign(np.array(args[2])), np.sign(np.array(objFlux))))))) else: dist_obj = ((np.linalg.norm(args[1] - objCCC))*(1 + np.sum(np.not_equal(np.sign(np.array(args[1])), np.sign(np.array(objCCC)))))) except: countf += 1 dist_obj = 10000 counts += 1 return dist_obj def callbackF(X, convergence=0.): global counts global countf print(str(counts) + ", " + str(countf)) return False def initialize(Parameters): global countf global counts numBadModels = 0 numGoodModels = 0 numIter = 0 ens_dist = np.empty(Parameters.ens_size) ens_model = np.empty(Parameters.ens_size, dtype='object') ens_rl = np.empty(Parameters.ens_size, dtype='object') rl_track = [] rl_track.append(Parameters.knownReactionList) # Initial Random generation while (numGoodModels < Parameters.ens_size): # Ensure no redundant model rl = ng.generateReactionList(Parameters) st = ng.getFullStoichiometryMatrix(rl, Parameters.ns).tolist() stt = ng.removeBoundaryNodes(np.array(st)) while rl in rl_track: rl = ng.generateReactionList(Parameters) st = ng.getFullStoichiometryMatrix(rl, Parameters.ns).tolist() stt = ng.removeBoundaryNodes(np.array(st)) antStr = ng.generateAntimony(Parameters.realFloatingIds, Parameters.realBoundaryIds, stt[1], stt[2], rl, boundary_init=Parameters.realBoundaryVal) try: r = te.loada(antStr) counts = 0 countf = 0 r.steadyStateApproximate() p_bound = ng.generateParameterBoundary(r.getGlobalParameterIds()) res = scipy.optimize.differential_evolution(f1, args=(r, Parameters.realConcCC, Parameters.realFlux, Parameters.FLUX), bounds=p_bound, maxiter=Parameters.optiMaxIter, tol=Parameters.optiTol, polish=Parameters.optiPolish, seed=Parameters.r_seed) if not res.success: numBadModels += 1 else: # TODO: Might be able to cut the bottom part by simply using # the obj func value from optimizer r = te.loada(antStr) r.setValues(r.getGlobalParameterIds(), res.x) r.steadyStateApproximate() SS_i = r.getFloatingSpeciesConcentrations() r.steadyStateApproximate() if np.any(SS_i < 1e-5) or np.any(SS_i > 1e5): numBadModels += 1 else: concCC_i = r.getScaledConcentrationControlCoefficientMatrix() if Parameters.FLUX: flux_i = r.getReactionRates() if np.isnan(concCC_i).any(): numBadModels += 1 else: concCC_i[np.abs(concCC_i) < 1e-12] = 0 # Set small values to zero if Parameters.FLUX: flux_i[np.abs(flux_i) < 1e-12] = 0 # Set small values to zero concCC_i_row = concCC_i.rownames concCC_i_col = concCC_i.colnames concCC_i = concCC_i[np.argsort(concCC_i_row)] concCC_i = concCC_i[:,np.argsort(concCC_i_col)] if Parameters.FLUX: flux_i = flux_i[np.argsort(concCC_i_col)] dist_i = (((np.linalg.norm(Parameters.realConcCC - concCC_i)) + (np.linalg.norm(Parameters.realFlux - flux_i))) * ((1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realConcCC)), np.sign(np.array(concCC_i))))) + (1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realFlux)), np.sign(np.array(flux_i))))))) else: dist_i = ((np.linalg.norm(Parameters.realConcCC - concCC_i))*(1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realConcCC)), np.sign(np.array(concCC_i)))))) ens_dist[numGoodModels] = dist_i r.reset() ens_model[numGoodModels] = r.getAntimony(current=True) ens_rl[numGoodModels] = rl rl_track.append(rl) numGoodModels = numGoodModels + 1 except: numBadModels = numBadModels + 1 antimony.clearPreviousLoads() numIter = numIter + 1 if int(numIter/1000) == (numIter/1000): print("Number of iterations = " + str(numIter)) if int(numIter/10000) == (numIter/10000): print("Number of good models = " + str(numGoodModels)) print("In generation: 1") print("Number of total iterations = " + str(numIter)) print("Number of bad models = " + str(numBadModels)) return ens_dist, ens_model, ens_rl, rl_track def mutate_and_evaluate(Parameters, listantStr, listdist, listrl, rl_track): global countf global counts eval_dist = np.empty(Parameters.mut_size) eval_model = np.empty(Parameters.mut_size, dtype='object') eval_rl = np.empty(Parameters.mut_size, dtype='object') for m in Parameters.mut_range: o = 0 rl = ng.generateMutation(Parameters, listrl[m], listantStr[m]) st = ng.getFullStoichiometryMatrix(rl, Parameters.ns).tolist() stt = ng.removeBoundaryNodes(np.array(st)) while ((rl in rl_track) and (o < Parameters.maxIter_mut)): rl = ng.generateMutation(Parameters, listrl[m], listantStr[m]) st = ng.getFullStoichiometryMatrix(rl, Parameters.ns).tolist() stt = ng.removeBoundaryNodes(np.array(st)) o += 1 if o >= Parameters.maxIter_mut: eval_dist[m] = listdist[m] eval_model[m] = listantStr[m] eval_rl[m] = listrl[m] else: antStr = ng.generateAntimony(Parameters.realFloatingIds, Parameters.realBoundaryIds, stt[1], stt[2], rl, boundary_init=Parameters.realBoundaryVal) try: r = te.loada(antStr) r.steadyStateApproximate() p_bound = ng.generateParameterBoundary(r.getGlobalParameterIds()) res = scipy.optimize.differential_evolution(f1, args=(r, Parameters.realConcCC, Parameters.realFlux, Parameters.FLUX), bounds=p_bound, maxiter=Parameters.optiMaxIter, tol=Parameters.optiTol, polish=Parameters.optiPolish, seed=Parameters.r_seed) if not res.success: eval_dist[m] = listdist[m] eval_model[m] = listantStr[m] eval_rl[m] = listrl[m] else: r = te.loada(antStr) r.setValues(r.getGlobalParameterIds(), res.x) r.steadyStateApproximate() SS_i = r.getFloatingSpeciesConcentrations() r.steadyStateApproximate() if np.any(SS_i < 1e-5) or np.any(SS_i > 1e5): eval_dist[m] = listdist[m] eval_model[m] = listantStr[m] eval_rl[m] = listrl[m] else: concCC_i = r.getScaledConcentrationControlCoefficientMatrix() if Parameters.FLUX: flux_i = r.getReactionRates() if np.isnan(concCC_i).any(): eval_dist[m] = listdist[m] eval_model[m] = listantStr[m] eval_rl[m] = listrl[m] else: concCC_i[np.abs(concCC_i) < 1e-12] = 0 # Set small values to zero if Parameters.FLUX: flux_i[np.abs(flux_i) < 1e-12] = 0 # Set small values to zero concCC_i_row = concCC_i.rownames concCC_i_col = concCC_i.colnames concCC_i = concCC_i[np.argsort(concCC_i_row)] concCC_i = concCC_i[:,np.argsort(concCC_i_col)] if Parameters.FLUX: flux_i = flux_i[np.argsort(concCC_i_col)] dist_i = (((np.linalg.norm(Parameters.realConcCC - concCC_i)) + (np.linalg.norm(Parameters.realFlux - flux_i))) * ((1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realConcCC)), np.sign(np.array(concCC_i))))) + (1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realFlux)), np.sign(np.array(flux_i))))))) else: dist_i = ((np.linalg.norm(Parameters.realConcCC - concCC_i))*(1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realConcCC)), np.sign(np.array(concCC_i)))))) if dist_i < listdist[m]: eval_dist[m] = dist_i r.reset() eval_model[m] = r.getAntimony(current=True) eval_rl[m] = rl rl_track.append(rl) else: eval_dist[m] = listdist[m] eval_model[m] = listantStr[m] eval_rl[m] = listrl[m] except: eval_dist[m] = listdist[m] eval_model[m] = listantStr[m] eval_rl[m] = listrl[m] antimony.clearPreviousLoads() return eval_dist, eval_model, eval_rl, rl_track def random_gen(Parameters, listAntStr, listDist, listrl, rl_track): global countf global counts rndSize = len(listDist) rnd_dist = np.empty(rndSize) rnd_model = np.empty(rndSize, dtype='object') rnd_rl = np.empty(rndSize, dtype='object') for l in range(rndSize): d = 0 rl = ng.generateReactionList(Parameters) st = ng.getFullStoichiometryMatrix(rl, Parameters.ns).tolist() stt = ng.removeBoundaryNodes(np.array(st)) # Ensure no redundant models while ((rl in rl_track) and (d < Parameters.maxIter_gen)): rl = ng.generateReactionList(Parameters) st = ng.getFullStoichiometryMatrix(rl, Parameters.ns).tolist() stt = ng.removeBoundaryNodes(np.array(st)) d += 1 if d >= Parameters.maxIter_gen: rnd_dist[l] = listDist[l] rnd_model[l] = listAntStr[l] rnd_rl[l] = listrl[l] else: antStr = ng.generateAntimony(Parameters.realFloatingIds, Parameters.realBoundaryIds, stt[1], stt[2], rl, boundary_init=Parameters.realBoundaryVal) try: r = te.loada(antStr) r.steadyStateApproximate() p_bound = ng.generateParameterBoundary(r.getGlobalParameterIds()) res = scipy.optimize.differential_evolution(f1, args=(r, Parameters.realConcCC, Parameters.realFlux, Parameters.FLUX), bounds=p_bound, maxiter=Parameters.optiMaxIter, tol=Parameters.optiTol, polish=Parameters.optiPolish, seed=Parameters.r_seed) # Failed to find solution if not res.success: rnd_dist[l] = listDist[l] rnd_model[l] = listAntStr[l] rnd_rl[l] = listrl[l] else: r = te.loada(antStr) r.setValues(r.getGlobalParameterIds(), res.x) r.steadyStateApproximate() SS_i = r.getFloatingSpeciesConcentrations() r.steadyStateApproximate() if np.any(SS_i < 1e-5) or np.any(SS_i > 1e5): rnd_dist[l] = listDist[l] rnd_model[l] = listAntStr[l] rnd_rl[l] = listrl[l] else: concCC_i = r.getScaledConcentrationControlCoefficientMatrix() if Parameters.FLUX: flux_i = r.getReactionRates() if np.isnan(concCC_i).any(): rnd_dist[l] = listDist[l] rnd_model[l] = listAntStr[l] rnd_rl[l] = listrl[l] else: concCC_i[np.abs(concCC_i) < 1e-12] = 0 # Set small values to zero if Parameters.FLUX: flux_i[np.abs(flux_i) < 1e-12] = 0 # Set small values to zero concCC_i_row = concCC_i.rownames concCC_i_col = concCC_i.colnames concCC_i = concCC_i[np.argsort(concCC_i_row)] concCC_i = concCC_i[:,np.argsort(concCC_i_col)] if Parameters.FLUX: flux_i = flux_i[np.argsort(concCC_i_col)] dist_i = (((np.linalg.norm(Parameters.realConcCC - concCC_i)) + (np.linalg.norm(Parameters.realFlux - flux_i))) * ((1 + np.sum(np.not_equal(np.sign(np.array(Parameters.realConcCC)), np.sign(np.array(concCC_i))))) + (1 + np.sum(np.not_equal(np.sign(
np.array(Parameters.realFlux)
numpy.array
# # Data for analyzing causality. # By <NAME> # # Classes: # ccm # embed # # Paper: # Detecting Causality in Complex Ecosystems # Ge<NAME> et al. 2012 # # Thanks to <NAME> and <NAME> # # Notes: # Originally I thought this can be made way faster by only calculting the # distances once and then chopping it to a specific library length. It turns out # that calculating the distances is cheaper than filtering the indices. # import numpy as np from sklearn import neighbors from sklearn import metrics import skccm.utilities as ut import pandas as pd import time class CCM: """ Convergent cross mapping for two embedded time series """ def __init__(self, weights='exp', score_metric='corrcoef', verbose=False): """ Parameters ---------- weights : weighting scheme for predictions - exp : exponential weighting score : how to score the predictions -'score' -'corrcoef' verbose : prints out calculation status """ self.weights = weights self.score_metric = score_metric self.verbose = verbose def fit(self,X1,X2): """ Fit the training data for ccm. Creates seperate near neighbor regressors for X1 and X2 independently. X1 : embedded time series of shape (num_samps,embed_dim) X2 : embedded time series of shape (num_samps,embed_dim) near_neighs : string - 'sorround' : this is what the paper uses - 'all' : calculate the distance to all near neighbors """ # Save X1_train and X2_train for prediction later. Confusing, # but we need to make predictions about our testing set using these. self.X1 = X1 self.X2 = X2 #to sorround a point, there must be ndim + 1 points # we add two here because the closest neighbor is itself. so that is # going to be dropped. near_neighs = X1.shape[1] + 2 self.knn1 = neighbors.KNeighborsRegressor(near_neighs) self.knn2 = neighbors.KNeighborsRegressor(near_neighs) def predict_no_drop(self,lib_lengths): """ Make a prediction Parameters ---------- X1_test : test set X2_test : test set lib_lengths : list of library lengths to test """ X1_pred = [] X2_pred = [] for liblen in lib_lengths: x1_p = np.empty(self.X1.shape) x2_p = np.empty(self.X2.shape) #keep only the indices that are less than library length self.knn1.fit(self.X1[:liblen], self.X1[:liblen]) self.knn2.fit(self.X2[:liblen], self.X2[:liblen]) dist1,ind1 = self.knn1.kneighbors(self.X1) dist2,ind2 = self.knn2.kneighbors(self.X2) #drop indices and distances to themselves dist1 = dist1[:,1:] dist2 = dist2[:,1:] ind1 = ind1[:,1:] ind2 = ind2[:,1:] for j in range(self.X1.shape[1]): W1 = ut.exp_weight(dist1) W2 = ut.exp_weight(dist2) #flip the weights and indices x1_p[:, j] = np.sum(self.X1[ind2, j] * W2, axis=1) x2_p[:, j] = np.sum(self.X2[ind1, j] * W1, axis=1) X1_pred.append(x1_p) X2_pred.append(x2_p) self.X1_pred = X1_pred self.X2_pred = X2_pred return X1_pred, X2_pred def predict_drop_in_list(self,lib_lengths,emb_ind1,emb_ind2): """ Make a prediction, but the same indices cant be matched with each other. Parameters ---------- lib_lengths : library lengths to Test e_ind1 : indices of the first embed time series. e_ind2 : indices of the second embed time series. """ X1_pred = [] X2_pred = [] #need to reset the class ot use all neighbors so that the appropriate # neighbors can be dropped for each class self.knn1 = neighbors.KNeighborsRegressor(len(self.X1)) self.knn2 = neighbors.KNeighborsRegressor(len(self.X2)) self.knn1.fit(self.X1, self.X1) self.knn2.fit(self.X2, self.X2) dist1,ind1 = self.knn1.kneighbors(self.X1) dist2,ind2 = self.knn2.kneighbors(self.X2) #find the conflicting indices conf1 = ut.conflicting_indices(emb_ind1) conf2 = ut.conflicting_indices(emb_ind2) #throw out the indices that are in the embedding dist1, ind1 = ut.throw_out_nn_indices(dist1,ind1,conf1) dist2, ind2 = ut.throw_out_nn_indices(dist2,ind2,conf2) n_sorround = self.X1.shape[1] + 1 #flipping allows for a faster implentation as we can feed # ut.in_libary_len smaller and smaller arrays for liblen in lib_lengths: #keep only the indices that are less than library length #t0 = time.time() i_1, d_1 = ut.in_library_len_keep(ind1, dist1, liblen,n_sorround) i_2, d_2 = ut.in_library_len_keep(ind2, dist2, liblen,n_sorround) #t1 = time.time() #t0 = time.time() W1 = ut.exp_weight(d_1) W2 = ut.exp_weight(d_2) x1_p = np.empty(self.X1.shape) x2_p = np.empty(self.X2.shape) for j in range(self.X1.shape[1]): #flip the weights and indices x1_p[:, j] =
np.sum(self.X1[i_2, j] * W2, axis=1)
numpy.sum
import glob import os.path import cv2 import numpy as np import collections import matplotlib import scipy.spatial.distance import itertools import matplotlib.pyplot as plt import matplotlib.animation as animation IMAGE_DIR = '../input/train/' MSEC_PER_FRAME = 200 MSEC_REPEAT_DELAY= 2000 ADD_MASK_OUTLINE = True TILE_MIN_SIDE = 50 # pixels; see tile_features() SHOW_GIF = False def grays_to_RGB(img): # Convert a 1-channel grayscale image into 3 channel RGB image return np.dstack((img, img, img)) def image_plus_mask(img, mask): # Returns a copy of the grayscale image, converted to RGB, # and with the edges of the mask added in red img_color = grays_to_RGB(img) mask_edges = cv2.Canny(mask, 100, 200) > 0 img_color[mask_edges, 0] = 255 # chan 0 = bright red img_color[mask_edges, 1] = 0 img_color[mask_edges, 2] = 0 return img_color def to_mask_path(f_image): # Convert an image file path into a corresponding mask file path dirname, basename = os.path.split(f_image) maskname = basename.replace(".tif", "_mask.tif") return os.path.join(dirname, maskname) def add_masks(images): # Return copies of the group of images with mask outlines added # Images are stored as dict[filepath], output is also dict[filepath] images_plus_masks = {} for f_image in images: img = images[f_image] mask = cv2.imread(to_mask_path(f_image)) images_plus_masks[f_image] = image_plus_mask(img, mask) return images_plus_masks def get_patient_images(patient): # Return a dict of patient images, i.e. dict[filepath] f_path = IMAGE_DIR + '%i_*.tif' % patient f_ultrasounds = [f for f in glob.glob(f_path) if 'mask' not in f] images = {f:get_image(f) for f in f_ultrasounds} return images def image_features(img): return tile_features(img) # a tile is just an image... def tile_features(tile, tile_min_side = TILE_MIN_SIDE): # Recursively split a tile (image) into quadrants, down to a minimum # tile size, then return flat array of the mean brightness in those tiles. tile_x, tile_y = tile.shape mid_x = tile_x / 2 mid_y = tile_y / 2 if (mid_x < tile_min_side) or (mid_y < tile_min_side): return np.array([tile.mean()]) # hit minimum tile size else: tiles = [ tile[:mid_x, :mid_y ], tile[mid_x:, :mid_y ], tile[:mid_x , mid_y:], tile[mid_x:, mid_y:] ] features = [tile_features(t) for t in tiles] return np.array(features).flatten() def get_patient_images(patient): # Return a dict of patient images, i.e. dict[filepath] f_path = IMAGE_DIR + '%i_*.tif' % patient f_ultrasounds = [f for f in glob.glob(f_path) if 'mask' not in f] images = {f:get_image(f) for f in f_ultrasounds} return images def image_features(img): return tile_features(img) # a tile is just an image... def tile_features(tile, tile_min_side = TILE_MIN_SIDE): # Recursively split a tile (image) into quadrants, down to a minimum # tile size, then return flat array of the mean brightness in those tiles. tile_x, tile_y = tile.shape mid_x = tile_x / 2 mid_y = tile_y / 2 if (mid_x < tile_min_side) or (mid_y < tile_min_side): return np.array([tile.mean()]) # hit minimum tile size else: tiles = [ tile[:mid_x, :mid_y ], tile[mid_x:, :mid_y ], tile[:mid_x , mid_y:], tile[mid_x:, mid_y:] ] features = [tile_features(t) for t in tiles] return np.array(features).flatten() def feature_dist(feats_0, feats_1): # Definition of the distance metric between image features return scipy.spatial.distance.euclidean(feats_0, feats_1) def feature_dists(features): # Calculate the distance between all pairs of images (using their features) dists = collections.defaultdict(dict) f_img_features = features.keys() for f_img0, f_img1 in itertools.permutations(f_img_features, 2): dists[f_img0][f_img1] = feature_dist(features[f_img0], features[f_img1]) return dists def image_seq_start(dists, f_start): # Given a starting image (i.e. named f_start), greedily pick a sequence # of nearest-neighbor images until there are no more unpicked images. f_picked = [f_start] f_unpicked = set(dists.keys()) - set([f_start]) f_current = f_start dist_tot = 0 while f_unpicked: # Collect the distances from the current image to the # remaining unpicked images, then pick the nearest one candidates = [(dists[f_current][f_next], f_next) for f_next in f_unpicked] dist_nearest, f_nearest = list(sorted(candidates))[0] # Update the image accounting & make the nearest image the current image f_unpicked.remove(f_nearest) f_picked.append(f_nearest) dist_tot += dist_nearest f_current = f_nearest return (dist_tot, f_picked) def image_sequence(dists): # Return a sequence of images that minimizes the sum of # inter-image distances. This function relies on image_seq_start(), # which requires an arbitray starting image. # In order to find an even lower-cost sequence, this function # tries all possible staring images and returns the best result. f_starts = dists.keys() seqs = [image_seq_start(dists, f_start) for f_start in f_starts] dist_best, seq_best = list(sorted(seqs))[0] return seq_best def grayscale_to_RGB(img): return np.asarray(
np.dstack((img, img, img))
numpy.dstack
# from __future__ import division #------------------------------------- # # Started at 06/08/2018 (YuE) # # This script based on the previous script # threeApproachesComparison_v6.py # ## Upgraded version of python (python3.4): script was rewritten to take into # account some differences in the descriptions and using of some functions # (version cma_v3 and more earlier scripts are written under python2). # # 07/24/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # # But nevertheless, the dependences of the transmitted energy on the impact # parameter are close to the inverse quadratic (as it should be!) at all velocities. # # 07/27/2018: IT IS NOT FINISHED: # # Which are still unsatisfactory: # 1) the absolute values of frictional forces for all methods of calculation, # 2) their dependence on the ion velocity. # The investigation of that is in progress. # # Some features were improved, some figures were corrected. # #------------------------------------- #======================================================== # # This code compairs two approaches: "classical" (from [1]) and # "magnus" (from [2]). # # For "classical" approach the magnetized interaction between ion # and electron is considered for ion velocities V_i > rmsTrnsvVe. # # References: # # [1] <NAME>, <NAME>, <NAME>, <NAME>. # "Physics guide of BETACOOL code. Version 1.1". C-A/AP/#262, November # 2006, Brookhaven National Laboratory, Upton, NY 11973. # [2] <NAME>, <NAME>. "New Algorithm for Dynamical Friction # of Ions in a Magnetized Electron Beam". AIP Conf. Proc. 1812, 05006 (2017). # #======================================================== ######################################################### # # Main issues of the calculations: # # 1) Friction force (FF) is calculated in the (P)article (R)est (F)rame, # i.e. in the frame moving together with both (cooled and cooling) # beams at a velocity V0; # 2) Friction force is calculated for each value of ion velocity # in the interval from .1*rmsTrnsvVe till 10*rmsTrnsvVe; # 3) Initially assumped that all electrons have a logitudinal # velocity rmsLongVe and transversal velocity rmsTrnsvVe; # 4) For each ion velocity the minimal and maximal values of the # impact parameter are defined. Radius of the shielding of the # electric field of the ion equals to the value of the maximal # impact parameter; # 5) For each impact parameter in the interval from minimal till # maximal values the transfered momenta deltap_x,y,z are # calculated; # 6) Founded transfered momenta allow to calculate the transfered # energy delta_E =deltap^2/(2*m_e) and to integrate it over # impact parameter; then (expressions (3.4), (3.5) from [1]): # FF =-2*pi*n_e*integral_rhoMin^rhoMax delta_E*rho*drho; # 7) For taking into account the velocity distribution of the # electrons it is necessary to repeat these calculations for # each value of the electron's velocity and then integrate result # over distribution of the velocities. # # 10/26/2018: # # 8) Item 6 is wrong and correct expression for transfered # energy delta_E will be used; # 9) Method (my own) Least Squares Method - LSM is used to fit the # dependence of transferred momenta on impact parameter; # # # 11/08/2018: # # 10) Two functions ('fitting' and 'errFitAB' are defined to realize # my LSM to find the parameters of the fitting end error of this # fitting; # # 11) Analys of different dependeces between values; graphical # presentation of these dependences; # ######################################################### import os, sys import numpy as np import math import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import LogNorm from matplotlib import ticker from matplotlib import markers import matplotlib as mpl from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt from matplotlib.legend_handler import HandlerLine2D import scipy.integrate as integrate from scipy.integrate import quad, nquad, dblquad from scipy.constants import pi from scipy import optimize from statistics import mean from array import array # # All physical constants have its dimension in units in the system CI. # This code uses units in the system CGS! # from scipy.constants import speed_of_light as clight from scipy.constants import epsilon_0 as eps0 from scipy.constants import mu_0 as mu0 from scipy.constants import elementary_charge as qe from scipy.constants import electron_mass as me from scipy.constants import proton_mass as mp from scipy.constants import Boltzmann as kB pi=3.14159265358 # # Physical constants: # m_e=9.10938356e-28 # electron mass, g m_elec=m_e # to keep variable from previous script m_p=1.672621898e-24 # electron mass, g M_ion = m_p # to keep variable from previous script q_e=4.803204673e-10 # electron charge, CGSE unit: sqrt(g*cm^3/sec^2) q_elec=q_e # to keep variable from previous script Z_ion = q_e # to keep variable from previous script cLight=2.99792458e10 # speed of light, cm/sec eVtoErg=1.6021766208e-12 # 1 eV = 1.6...e-12 erg CtoPart=2.99792458e9 # 1 C = 1 A*sec = 2.9...e9 particles m_e_eV = m_e*cLight**2/eVtoErg # # Electron beam parameters: # Ekin=3.0e4 # kinetic energy, eV curBeam=0.5 # current density, A/cm^2 dBeam=3.0 # beam diameter, cm angSpread=3.0 # angular spread, mrad trnsvT=0.5 # transversal temperature, eV longT=2.0e-4 # longitudinal temperature, eV (was 2.0e-4) nField=1 # number ov values of the magnetic field fieldB=np.zeros(nField) # magnetic field fieldB[0]=3.e3 # Gs omega_p=1.0e9 # plasma frequency, 1/sec n_e=omega_p**2*m_e/(4.*pi*q_e**2) # plasma density, 3.1421e+08 cm-3 n_e1=8.e7 # plasma density, cm-3 omega_p1=np.sqrt(4.*pi*n_e1*q_e**2/m_e) # plasma frequency, 5.0459e+08 1/s # # Cooling system parameter: # coolLength=150.0 # typical length of the coolong section, cm # # HESR: # Ekin=90.8e4 # HESR kinetic energy, eV curBeam=0.5 # HESR current beam, A dBeam=2.0 # HESR beam diameter, cm angSpread=0.0 # HESR angular spread, mrad trnsvT=0.2 # HESR transversal temperature, eV longT=1.0e-2 # HESR longitudinal temperature, eV (was 2.0e-4) fieldB[0]=1.e3 # HESR, Gs coolLength=270.0 # HESR typical length of the coolong section, cm # # EIC: # angSpread=0.0 # EIC angular spread, mrad fieldB[0]=5.e4 # EIC, Gs coolLength=300.0 # EIC typical length of the coolong section, cm # # Calculated parameters of the electron beam: # V0 = cLight*np.sqrt(Ekin/m_e_eV*(Ekin/m_e_eV+2.))/(Ekin/m_e_eV+1.) print ('V0 =%e' % V0) tetaV0=0. # angle between V0 and magnetic field, rad B_mag=fieldB[0]*np.cos(tetaV0) # magnetic field acting on an electron, Gs rmsTrnsvVe=np.sqrt(2.*trnsvT*eVtoErg/m_e) # RMS transversal velocity, cm/s rmsLongVe=np.sqrt(2.*longT*eVtoErg/m_e) # RMS longitudinal velocity, cm/s # HESR: dens=curBeam*(CtoPart/q_e)/(pi*(.5*dBeam)**2*V0) # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('HESR: dens = %e,omega_p = %e' % (dens,omega_p)) # EIC: rmsLongVe = 1.0e+7 # cm/s longT = .5*m_e*rmsLongVe**2/eVtoErg rmsTrnsvVe = 4.2e+7 # cm/s trnsvT = .5*m_e*rmsTrnsvVe**2/eVtoErg print ('EIC: rmsLongVe = %e, longT = %e, rmsTrnsvVe = %e, trnsvT = %e' % \ (rmsLongVe,longT,rmsTrnsvVe,trnsvT)) dens=2.e9 # density, 1/cm^3 omega=np.sqrt(4.*pi*dens*q_e**2/m_e) # plasma frequency, 1/s n_e=dens omega_p=omega print ('EIC: dens = %e,omega_p = %e' % (dens,omega_p)) cyclFreq=q_e*B_mag/(m_e*cLight) # cyclotron frequency, 1/s rmsRoLarm=rmsTrnsvVe*cyclFreq**(-1) # RMS Larmor radius, cm dens=omega_p**2*m_e/(4.*pi*q_e**2) # density, 1/cm^3 likeDebyeR=(3./dens)**(1./3.) # "Debye" sphere with 3 electrons, cm eTempTran=trnsvT # to keep variable from previous script eTempLong=longT # to keep variable from previous script coolPassTime=coolLength/V0 # time pass through cooling section, cm thetaVi=0. # polar angle ion and cooled electron beams, rad phiVi=0. # azimuth angle ion and cooled electron beams, rad powV0=round(np.log10(V0)) mantV0=V0/(10**powV0) pow_n_e=round(np.log10(n_e)) mant_n_e=n_e/(10**pow_n_e) # # Formfactor ffForm for friction force: # # ffForm = 2*pi*dens*q_e**4/(m_e*V0**2)= # = 0.5*omega_p**2*q_e**2/V0**2 # # Dimension of ffForm is force: g*cm/sec**2=erg/cm # # 1 MeV/m = 1.e6*eVtoErg/100. g*cm/sec**2 = 1.e4*eVtoErg erg/cm MeV_mToErg_cm=1.e4*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/MeV_mToErg_cm # MeV/m eV_mToErg_m=100.*eVtoErg # ffForm=-.5*omega_p**2*q_e**2/V0**2/eV_mToErg_m # =-6.8226e-12 eV/m eV_mInErg_cm=100.*eVtoErg ffForm=-.5*omega_p**2*q_e**2/V0**2/eVtoErg # =-6.8226e-10 eV/cm ffForm=100.*ffForm # =-6.8226e-08 eV/m ergToEV = 1./1.60218e-12 # # Relative velocities of electrons: # relVeTrnsv=rmsTrnsvVe/V0 relVeLong=rmsLongVe/V0 print ('V0=%e cm/s, rmsTrnsvVe=%e cm/s (rel = %e), rmsLongVe=%e cm/s (rel = %e)' % \ (V0,rmsTrnsvVe,relVeTrnsv,rmsLongVe,relVeLong)) # Indices: (Ix, Ipx, Iy, Ipy, Iz, Ipz) = range(6) stepsNumberOnGyro = 25 # number of the steps on each Larmour period ''' # # Opening the input file: # inputFile='areaOfImpactParameter_tAC-v6_fig110.data' print ('Open input file "%s"...' % inputFile) inpfileFlag=0 try: inpfile = open(inputFile,'r') inpfileFlag=1 except: print ('Problem to open input file "%s"' % inputFile) if inpfileFlag == 1: print ('No problem to open input file "%s"' % inputFile) lines=0 # Number of current line from input file dataNumber=0 # Number of current value of any types of Data xAboundary=np.zeros(100) xBboundary=np.zeros(100) while True: lineData=inpfile.readline() # print ('line=%d: %s' % (lines,lineData)) if not lineData: break lines += 1 if lines > 4: words=lineData.split() nWords=len(words) # print ('Data from %d: words=%s, number of entries = %d' % (lines,words,nWords)) xAboundary[dataNumber]=float(words[0]) xBboundary[dataNumber]=float(words[1]) dataNumber += 1 inpfile.close() print ('Close input file "%s"' % inputFile) ''' #==================================================================== # #------------------ Begin of defined functions ----------------------- # # Larmor frequency electron: # def omega_Larmor(mass,B_mag): return (q_elec)*B_mag/(mass*clight*1.e+2) # rad/sec # # Derived quantities: # omega_L = omega_Larmor(m_elec,B_mag) # rad/sec T_larm = 2*pi/omega_L # sec timeStep = T_larm/stepsNumberOnGyro # time step, sec print ('omega_Larmor= %e rad/sec, T_larm = %e sec, timeStep = %e sec' % \ (omega_L,T_larm,timeStep)) nLarmorAvrgng=10 # number of averaged Larmor rotations # # Data to integrate transferred momemta over the track: # timeStep_c=nLarmorAvrgng*stepsNumberOnGyro*timeStep # sec print ('timeStep_c = %e s' % timeStep_c) eVrmsTran = np.sqrt(2.*eTempTran*eVtoErg/m_elec) # cm/sec eVrmsLong = np.sqrt(2.*eTempLong*eVtoErg/m_elec) # cm/sec kinEnergy = m_elec*(eVrmsTran**2+eVrmsLong**2)/2. # kinetic energy; erg print ('eVrmsTran = %e cm/sec, eVrmsLong = %e cm/sec, kinEnergy = %e eV' % \ (eVrmsTran,eVrmsLong,ergToEV*kinEnergy)) ro_larmRMS = eVrmsTran/omega_L # cm print ('ro_larmRMS =%e mkm' % (1.e4*ro_larmRMS)) # # Electrons are magnetized for impact parameter >> rhoCrit: # rhoCrit=math.pow(q_elec**2/(m_elec*omega_L**2),1./3) # cm print ('rhoCrit (mkm) = ' , 1.e+4*rhoCrit) # # Convertion from 6-vector of relectron's "coordinates" to 6-vector # of guiding-center coordinates: # z_e=(x_e,px_e,y_e,py_e,z_e,pz_e) --> zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e); # def toGuidingCenter(z_e): mOmega=m_elec*omega_L # g/sec zgc_e=z_e.copy() # 6-vector zgc_e[Ix] = np.arctan2(z_e[Ipx]+mOmega*z_e[Iy],z_e[Ipy]) # radians zgc_e[Ipx]= (((z_e[Ipx]+mOmega*z_e[Iy])**2+z_e[Ipy]**2)/(2.*mOmega)) # g*cm**2/sec zgc_e[Iy] =-z_e[Ipx]/mOmega # cm zgc_e[Ipy]= z_e[Ipy]+mOmega*z_e[Ix] # g/sec return zgc_e # # Convertion from 6-vector of guiding-center coordinates to 6-vector # of electron's "coordinates": # zgc_e=(phi,p_phi,y_gc,p_gc,z_e,pz_e) --> z_e=(x_e,px_e,y_e,py_e,z_e,pz_e); # def fromGuidingCenter(zgc_e): mOmega=m_elec*omega_L # g/sec rho_larm=np.sqrt(2.*zgc_e[Ipx]/mOmega) # cm z_e = zgc_e.copy() # 6-vector z_e[Ix] = zgc_e[Ipy]/mOmega-rho_larm*np.cos(zgc_e[Ix]) # cm z_e[Ipx]=-mOmega*zgc_e[Iy] # g*cm/sec z_e[Iy] = zgc_e[Iy]+rho_larm*np.sin(zgc_e[Ix]) # cm z_e[Ipy]= mOmega*rho_larm*np.cos(zgc_e[Ix]) # g*cm/sec return z_e # # Matrix to dragg electron through the solenoid with field 'B_mag' # during time interval 'deltaT': # def solenoid_eMatrix(B_mag,deltaT): slndMtrx=np.identity(6) omega_L=omega_Larmor(m_elec,B_mag) # rad/sec mOmega= m_elec*omega_L # g/sec phi=omega_L*deltaT # phase, rad cosPhi=math.cos(phi) # dimensionless sinPhi=math.sin(phi) # dimensionless cosPhi_1=2.*math.sin(phi/2.)**2 # dimensionless slndMtrx[Iy, Iy ]= cosPhi # dimensionless slndMtrx[Ipy,Ipy]= cosPhi # dimensionless slndMtrx[Iy, Ipy]= sinPhi/mOmega # sec/g slndMtrx[Ipy,Iy ]=-mOmega*sinPhi # g/sec slndMtrx[Iz, Ipz]= deltaT/m_elec # sec/g slndMtrx[Ix, Ipx]= sinPhi/mOmega # sec/g slndMtrx[Ix, Iy ]= sinPhi # dimensionless slndMtrx[Ix, Ipy]= cosPhi_1/mOmega # sec/g slndMtrx[Iy, Ipx]=-cosPhi_1/mOmega # sec/g slndMtrx[Ipy,Ipx]=-sinPhi # dimensionless return slndMtrx # # Matrix to dragg particle through the drift during time interval 'deltaT': # def drift_Matrix(M_prtcl,deltaT): driftMtrx = np.identity(6) for i in (Ix,Iy,Iz): driftMtrx[i,i+1]=deltaT/M_prtcl # sec/g return driftMtrx # # Matrix to dragg electron in the "guiding center" system during time interval 'deltaT': # def guidingCenter_Matrix(deltaT): gcMtrx = np.identity(6) gcMtrx[Iz,Ipz]=deltaT/m_elec # sec/g return gcMtrx # # Description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron: # def guidingCenterCollision(vectrElec_gc,vectrIon,deltaT): dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3/2) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec b_gc=np.sqrt((vectrIon[0]-x_gc)**2+ \ (vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-dpFactor_gc*deltaT*(vectrIon[0]-x_gc)/b_gc**3 dpIon[1]=-dpFactor_gc*deltaT*(vectrIon[2]-vectrElec_gc[2])/b_gc**3 dpIon[2]=-dpFactor_gc*deltaT*(vectrIon[4]-vectrElec_gc[4])/b_gc**3 dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,b_gc # # "Magnus expansion" description of the collision during time interval 'deltaT' # in the system coordinates of "guiding center" of electron # input - 6-vectors for electron and ion before collision and time step deltaT; # output - transfered momenta to ion and electron and electron y_gc coordinate # as well calculated parameters C1,C2,C3,b,D1,D2,q for testing: # def MagnusExpansionCollision(vectrElec_gc,vectrIon,deltaT): # print ('Ion: x=%e, y=%e, z=%e' % (vectrIon[0],vectrIon[2],vectrIon[4])) # print ('Electron: x=%e, y=%e, z=%e' % # (vectrElec_gc[0],vectrElec_gc[4],vectrElec_gc[4])) dpIon=np.zeros(3) dpElec=np.zeros(3) mOmegaLarm=m_elec*omega_L # g/sec dpFactor_gc=q_elec**2 # g*cm^3/sec^2 rhoLarm_gc=np.sqrt(2.*vectrElec_gc[1]/mOmegaLarm) # cm sinOmega_gc=math.sin(vectrElec_gc[0]) cosOmega_gc=math.cos(vectrElec_gc[0]) x_gc=vectrElec_gc[3]/mOmegaLarm # cm numer=(vectrIon[0]-x_gc)*cosOmega_gc- \ (vectrIon[2]-vectrElec_gc[2])*sinOmega_gc # cm denom=((vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+rhoLarm_gc**2)**(3./2.) # cm^3 action=vectrElec_gc[1]+dpFactor_gc*numer*rhoLarm_gc/(omega_L*denom) # g*cm^2/sec # C1=np.sqrt((vectrIon[0]-x_gc)**2+ \ # (vectrIon[2]-vectrElec_gc[2])**2+ \ # (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm) # cm^2 C1=(vectrIon[0]-x_gc)**2+(vectrIon[2]-vectrElec_gc[2])**2+ \ (vectrIon[4]-vectrElec_gc[4])**2+2.*action/mOmegaLarm # cm^2 C2=2.*((vectrIon[0]-x_gc)*vectrIon[1]/M_ion+ \ (vectrIon[2]-vectrElec_gc[2])*vectrIon[3]/M_ion+ \ (vectrIon[4]-vectrElec_gc[4])* \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)) # cm^2/sec C3=(vectrIon[1]/M_ion)**2+(vectrIon[3]/M_ion)**2+ \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)**2 # cm^2/sec^2 b=np.sqrt(C1+C2*deltaT+C3*deltaT**2) # cm D1=(2.*C3*deltaT+C2)/b-C2/np.sqrt(C1) # cm/sec D2=(C2*deltaT+2.*C1)/b-2.*np.sqrt(C1) # cm q=4.*C1*C3-C2**2 # cm^4/sec^2 # Dimensions of dpIon, deElec are g*cm/sec: dpIon[0]=-2.*dpFactor_gc/q*((vectrIon[0]-x_gc)*D1-vectrIon[1]/M_ion*D2) dpIon[1]=-2.*dpFactor_gc/q*((vectrIon[2]-vectrElec_gc[2])*D1- \ vectrIon[3]/M_ion*D2) dpIon[2]=-2.*dpFactor_gc/q*((vectrIon[4]-vectrElec_gc[4])*D1- \ (vectrIon[5]/M_ion-vectrElec_gc[5]/m_elec)*D2) dpElec[0]=-dpIon[0] dpElec[1]=-dpIon[1] dpElec[2]=-dpIon[2] dy_gc=dpIon[0]/mOmegaLarm # cm # print ('dpIon[0]=%e, dpIon[1]=%e, dpIon[2]=%e' % \ # (dpIon[0],dpIon[1],dpIon[2])) return dpIon,dpElec,action,dy_gc,C1,C2,C3,b,D1,D2,q # # Minimized functional (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # Funcional = {log10(funcY) - [fitB*log10(argX) + fitA]}^2 # def fitting(nPar1,nPar2,argX,funcY): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) for i in range(nVion): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) sumFuncY = np.zeros(nPar2) sumArgXfuncY= np.zeros(nPar2) fitA = np.zeros(nPar2) fitB = np.zeros(nPar2) for i in range(nPar2): for n in range(nPar1): sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 sumFuncY[i] += log10funcY[n,i] sumArgXfuncY[i] += log10argX[n,i]*log10funcY[n,i] delta = sumArgX[i]**2-nPar1*sumArgX2[i] fitA[i] = (sumArgX[i]*sumArgXfuncY[i]-sumArgX2[i]*sumFuncY[i])/delta fitB[i] = (sumArgX[i]*sumFuncY[i]-nPar1*sumArgXfuncY[i])/delta # print ('fitA(%d) = %e, fitB(%d) = %e' % (i,fitA[i],i,fitB[i])) argXfit = np.zeros((nPar1,nPar2)) funcYfit = np.zeros((nPar1,nPar2)) funcHi2 = np.zeros(nPar2) for i in range(nPar2): factorA = math.pow(10.,fitA[i]) for n in range(nPar1): argXfit[n,i] = math.pow(10.,log10argX[n,i]) funcYfit[n,i] = factorA*math.pow(argXfit[n,i],fitB[i]) funcHi2[i] += (np.log10(abs(funcY[n,i])) - np.log10(abs(funcYfit[n,i])))**2 return fitA,fitB,funcHi2,argXfit,funcYfit # # +-Errors for fitied parameters fitA and fitB: # def errFitAB(nPar1,nPar2,argX,funcY,fitA,fitB,funcHi2,errVar,errType): log10argX = np.zeros((nPar1,nPar2)) log10funcY = np.zeros((nPar1,nPar2)) sumArgX = np.zeros(nPar2) sumArgX2 = np.zeros(nPar2) posErrFit = np.zeros(nPar2) negErrFit = np.zeros(nPar2) # return posErrFit,negErrFit stepA = 5.e-4*mean(funcHi2) stepB = 1.e-4*mean(funcHi2) # print ('errFitAB: mean(funcHi2) = %e, stepA = %e, stepB = %e' % (mean(funcHi2),stepA,stepB)) for i in range(nPar2): for n in range(nPar1): log10argX[n,i] = np.log10(argX[n,i]) log10funcY[n,i] = np.log10(funcY[n,i]) sumArgX[i] += log10argX[n,i] sumArgX2[i] += log10argX[n,i]**2 for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); positive error) for %d' % (errVar,i)) break # print ('i=%d: fitParamtr = %e, funcHi2 = %e' % (i,fitParamtr[i], funcHi2[i])) curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] + k*stepA curFuncHi2 = 0. factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] + k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): posErrFit[i] = abs(curFitA - fitA[i]) else: posErrFit[i] = abs(curFitB - fitB[i]) func1sigma2 = funcHi2[i]/(nPar2-3) if (int(errVar) == 1): fitSigma = np.sqrt(sumArgX2[i]/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) else: fitSigma = np.sqrt(nPar2/(nPar2*sumArgX2[i]-sumArgX[i]**2)*func1sigma2) if (int(errType) == 2): posErrFit[i] = fitSigma # if (int(errVar) == 1): # print ('i=%d: fitA = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e + %e (%e), funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],posErrFit[i],fitSigma,funcHi2[i],k,curFuncHi2)) for i in range(nPar2): k = 0 deltaFuncHi2 = 0. while (deltaFuncHi2 < 1.): k += 1 if k > 2000: print ('Break in errFitAB (Fit funcY: case %d); negative error) for %d' % (errVar,i)) break curFitA = fitA[i] if (int(errVar) == 1): curFitA = fitA[i] - k*stepA factorA = math.pow(10.,curFitA) curFitB = fitB[i] if (int(errVar) == 2): curFitB = fitB[i] - k*stepB curFuncHi2 = 0. for n in range(nPar1): curArgX = math.pow(10.,log10argX[n,i]) curFuncYfit = factorA*math.pow(curArgX,curFitB) curFuncHi2 += (np.log10(abs(curFuncYfit)) - log10funcY[n,i])**2 deltaFuncHi2 = curFuncHi2 - funcHi2[i] if (int(errVar) == 1): negErrFit[i] = abs(curFitA - fitA[i]) else: negErrFit[i] = abs(curFitB - fitB[i]) if (int(errType) == 2): negErrFit[i] = posErrFit[i] # if (errVar == 1): # print ('i=%d: fitA = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitA[i],posErrFit[i],funcHi2[i],k,curFuncHi2)) # else: # print ('i=%d: fitB = %e - %e, funcHi2 = %e (for %d steps curFuncHi2 = %e)' % \ # (i,fitB[i],negErrFit[i],funcHi2[i],k,curFuncHi2)) return posErrFit,negErrFit def fittedGKintegration(xMin,xMax,fitA,fitB): # # "Gauss-Kronrod" method of integration (GK) # # # Points (psi_i) and weigths (w_i) to integrate for interval from -1 to 1; # These data are from <NAME>. "Handbook of Mathematical Science". # 5th Edition, CRC Press, Inc, 1978. # # To integrate for interval from 0 to 1 it is necessary to change points # psi_i with points ksi_i=(1+psi_i)/2; # # For method with order N for function F(x): # int_(-1)^1 = sum_1^N [w_i* F(psi_i)]; # # In case of integration over interval from a to b: # int_(a)^b = (b-a)/2 * sum_1^N [w_i* F(x_i)], where # x_i = (b-a)*psi_i/2+(a+b)/2. # #---------------------------------------------------- # # Data for GK: # #---------------------------------------------------- nPoints_GK = 16 psi_16=np.array([-0.9894009, -0.9445750, -0.8656312, -0.7554044, -0.6178762, \ -0.4580168, -0.2816036, -0.0950125, 0.0950125, 0.2816036, \ 0.4580168, 0.6178762, 0.7554044, 0.8656312, 0.9445750, \ 0.9894009]) w_16 =np.array([ 0.0271525, 0.0622535, 0.0951585, 0.1246290, 0.1495960, \ 0.1691565, 0.1826034, 0.1894506, 0.1894506, 0.1826034, \ 0.1691565, 0.1495960, 0.1246290, 0.0951585, 0.0622535, \ 0.0271525]) y = np.zeros(nPoints_GK) yIntegrated = 0. for n in range(nPoints_GK): xCrrnt = psi_16[n]*(xMax-xMin)/2 + (xMax+xMin)/2. factorA = math.pow(10.,fitA) y[n] = factorA*math.pow(xCrrnt,fitB) yIntegrated += (xMax-xMin)*w_16[n]*y[n]*xCrrnt return y,yIntegrated #------------------ End of defined functions ----------------------- # #==================================================================== sphereNe=3. R_e=math.pow(sphereNe/n_e,1./3) # cm print ('R_e (cm)=%e' % R_e) ro_Larm = eVrmsTran/omega_L # cm print ('ro_Larm (cm)=%e' % ro_Larm) impctPrmtrMin=2.*ro_Larm # rhoDependenceFlag = 1 # skip calculation of rho dependence if = 0! #============ Important flags =========================== # # Taking into account the transfer of momenta for both particles # (for "classical" only): dpTransferFlag = 1 # no taking into account if = 0! # saveFilesFlag = 0 # no saving if = 0! # plotFigureFlag = 1 # plot if = 1! # #======================================================== nVion=50 Vion=np.zeros(nVion) VionLong=np.zeros(nVion) VionTrnsv=np.zeros(nVion) VionRel=np.zeros(nVion) vIonMin=4.e-3*eVrmsTran vIonMax=10.*eVrmsTran vIonMinRel=vIonMin/V0 vIonMaxRel=vIonMax/V0 print ('VionMin=%e (vIonMinRel=%e), vIonMax=%e (vIonMaxRel=%e)' % \ (vIonMin,vIonMinRel,vIonMax,vIonMaxRel)) vIonLogStep=math.log10(vIonMax/vIonMin)/(nVion-1) R_debye=np.zeros(nVion) R_pass=np.zeros(nVion) R_pass_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. impctPrmtrMax=np.zeros(nVion) impctPrmtrMax_1=np.zeros(nVion) # for longT=0. --> eVrmsLong=0. for i in range(nVion): crrntLogVionRel=math.log10(vIonMinRel)+i*vIonLogStep VionRel[i]=math.pow(10.,crrntLogVionRel) Vion[i]=VionRel[i]*V0 VionLong[i]=Vion[i]*np.cos(thetaVi) VionTrnsv[i]=Vion[i]*np.sin(thetaVi) R_debye[i]=np.sqrt(Vion[i]**2+eVrmsTran**2+eVrmsLong**2)/omega_p R_pass[i]=np.sqrt(Vion[i]**2+eVrmsLong**2)*coolPassTime R_pass_1[i]=np.sqrt(Vion[i]**2+0.*eVrmsLong**2)*coolPassTime help=max(R_debye[i],R_e) impctPrmtrMax[i]=min(help,R_pass[i]) impctPrmtrMax_1[i]=min(help,R_pass_1[i]) #----------------------------------------------------------------- # Checking of corection of the maximal impact parameter on depence # of preset number of minimal Larmor turns # larmorTurnsMin=[10,20,30,40] impctPrmtrMaxCrrctd=np.zeros((nVion,4)) impctPrmtrMaxCrrctdRel=np.zeros((nVion,4)) for n in range (4): for i in range(nVion): impctPrmtrMaxCrrctd[i,n]=impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurnsMin[n]*eVrmsLong/omega_L/impctPrmtrMax[i])**2) impctPrmtrMaxCrrctdRel[i,n]=impctPrmtrMaxCrrctd[i,n]/impctPrmtrMax[i] # # First plotting: # if (plotFigureFlag == 0): fig10 = plt.figure(10) plt.semilogx(impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,0],'-r', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,1],'-b', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,2],'-g', \ impctPrmtrMax,impctPrmtrMaxCrrctdRel[:,3],'-m',linewidth=2) plt.grid(True) hold=True plt.xlabel('Maximal Impact parameter $R_{max}$, cm',color='m',fontsize=16) plt.ylabel('$R_{max}^{Crrctd}/R_{Max}$',color='m',fontsize=16) # plt.xlim([.9*min(impctPrmtrMax),1.1*max(impctPrmtrMax)]) plt.xlim([1.e-2,1.1*max(impctPrmtrMax)]) plt.ylim([.986,1.001]) titleHeader='$R_{max}^{Crrctd}=R_{Max} \cdot [1-(\pi\cdot N_{Larm} \cdot' titleHeader += '\Delta_{e||}/(\omega_{Larm} \cdot R_{max})]^{1/2}$' plt.title(titleHeader,color='m',fontsize=16) plt.legend([('$N_{Larm}=$%2d' % larmorTurnsMin[0]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[1]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[2]), \ ('$N_{Larm}=$%2d' % larmorTurnsMin[3])],loc='lower center',fontsize=14) if (saveFilesFlag == 1): fig10.savefig('picturesCMA/correctedRmax_fig10cma.png') print ('File "picturesCMA/correctedRmax_fig10cma.png" is written') xLimit=[.9*VionRel[0],1.1*VionRel[nVion-1]] # # Typs of collisions: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'Types of Collisions: $V_{e0}=%4.2f\cdot10^{%2d}$ cm/s, $B=%6.1f$ Gs' plt.title(titleHeader % (mantV0,powV0,fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,.0018,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-4,1.75e-3,'$R_{min}=2\cdot<rho_\perp>$',color='k',fontsize=16) plt.text(7.e-4,5.e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.85e-5,3.3e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(1.e-4,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(1.e-4,10.e-4,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.25e-5,.275,'Collisions are Screened',color='r',fontsize=20) plt.text(1.6e-5,1.e-3,'$ \cong 20\cdot R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') # # Picture for HESR: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'HESR Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[8.e-4,.6] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(4.4e-4,8.4e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.e-4,8.4e-4,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.7e-6,3.4e-3,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(2.8e-4,.1,'$R_{max}$',color='k',fontsize=16) plt.text(1.e-4,1.8e-2,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(6.8e-5,7.e-3,'Magnetized Collisions',color='r',fontsize=20) plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(2.3e-5,1.95e-3,'Adiabatic or Fast Collisions',color='r',fontsize=20) plt.text(2.e-5,.275,'Screened Collisions',color='r',fontsize=20) plt.text(3.58e-6,2.05e-3,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('HESRimpctPrmtr_fig3151cma.png') print ('File "HESRimpctPrmtr_fig3151cma.png" is written') # # Picture for EIC: # if (plotFigureFlag == 0): fig3151=plt.figure (3151) plt.loglog(VionRel,impctPrmtrMax,'-r', VionRel,impctPrmtrMax_1,'--r', \ [VionRel[0],VionRel[nVion-1]],[impctPrmtrMin,impctPrmtrMin],'-b',linewidth=2) plt.grid(True) hold=True plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Impact Parameter, cm',color='m',fontsize=14) titleHeader= \ 'EIC Types of Collisions: $V_{e0}=%3.1f\cdot10^{%2d}$cm/s, $B=%3.1f$T' plt.title(titleHeader % (mantV0,powV0,1.e-4*fieldB[0]),color='m',fontsize=16) plt.xlim(xLimit) yLimit=[5.e-5,.3] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(9.e-4,4.e-5,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(1.7e-4,3.e-5,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(6.3e-6,1.1e-4,'$R_{min}=2\cdot<rho_\perp>$',color='b',fontsize=16) plt.text(1.e-4,2.1e-2,'$R_{max}$',color='k',fontsize=16) plt.text(2.57e-5,5.e-3,'$R_{max}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.plot([VionRel[0],VionRel[nVion-1]],[20.*rhoCrit,20.*rhoCrit],color='k') plt.text(2.3e-5,1.e-3,'Magnetized Collisions',color='r',fontsize=20) # plt.text(6.8e-5,1.2e-3,'Weak Collisions',color='r',fontsize=20) plt.text(1.1e-5,5.7e-5,'Weak or Adiabatic or Fast Collisions',color='r',fontsize=16) plt.text(2.e-5,.15,'Screened Collisions',color='r',fontsize=20) plt.text(2.5e-3,1.7e-4,'$\cong$20$\cdot$$R_{Crit}$',color='k',fontsize=16) if (saveFilesFlag == 1): # fig3151.savefig('picturesCMA_v7/impctPrmtr_fig3151cma.png') # print ('File "picturesCMA_v7/impctPrmtr_fig3151cma.png" is written') fig3151.savefig('EICimpctPrmtr_fig3151cma.png') print ('File "EICimpctPrmtr_fig3151cma.png" is written') # plt.show() # sys.exit() # # Magnetized collisions: # if (plotFigureFlag == 0): fig209=plt.figure (209) plt.loglog(VionRel,R_debye,'-r',VionRel,R_pass,'-b', \ VionRel,R_pass_1,'--b',linewidth=2) plt.grid(True) hold=True plt.plot([VionRel[0],VionRel[nVion-1]],[R_e,R_e],color='m',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=16) plt.ylabel('$R_{Debye}$, $R_{Pass}$, $R_e$, cm',color='m',fontsize=16) # titleHeader='Magnetized Collision: $R_{Debye}$, $R_{Pass}$, $R_e$: $V_{e0}=%5.3f\cdot10^{%2d}$cm/s' # plt.title(titleHeader % (mantV0,powV0),color='m',fontsize=16) plt.title('Magnetized Collisions: $R_{Debye}$, $R_{Pass}$, $R_e$',color='m',fontsize=16) plt.xlim(xLimit) yLimit=[1.e-3,10.] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.5e-4,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(4.4e-5,0.001175,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) plt.text(3.e-5,2.45e-3,'$R_e$',color='k',fontsize=16) plt.text(3.e-5,5.e-2,'$R_{Debye}$',color='k',fontsize=16) plt.text(3.e-5,1.8e-2,'$R_{Pass}$',color='k',fontsize=16) plt.text(4.5e-5,4.8e-3,'$R_{Pass}$ $for$ $T_{e||}=0$',color='k',fontsize=16) plt.text(8.3e-5,4.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) if (saveFilesFlag == 1): fig209.savefig('picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png') print ('File "picturesCMA/rDebye_rLikeDebye_rPass_fig209cma.png" is written') # # Coulomb logarithm evaluation: # clmbLog = np.zeros(nVion) for i in range(nVion): clmbLog[i] = math.log(impctPrmtrMax[i]/impctPrmtrMin) # clmbLog[i] = math.log(impctPrmtrMax_1[i]/impctPrmtrMin) if (plotFigureFlag == 0): fig3155=plt.figure (3155) plt.semilogx(VionRel,clmbLog,'-xr',linewidth=2) plt.xlabel('Relative Ion Velocity, $V_i/V_{e0}$',color='m',fontsize=14) plt.ylabel('Coulomb Logarithm $L_c$',color='m',fontsize=14) plt.title('Coulomb Logarithm: $L_c$ = $ln(R_{max}/R_{min})$',color='m',fontsize=16) yLimit=[min(clmbLog)-.1,max(clmbLog)+.1] plt.ylim(yLimit) plt.plot([relVeTrnsv,relVeTrnsv],yLimit,'--m',linewidth=1) plt.text(1.6e-3,5.,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([relVeLong,relVeLong],yLimit,'--m',linewidth=1) plt.text(3.4e-5,5.,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3155.savefig('picturesCMA_v7/coulombLogrthm_fig3155cma.png') print ('File "picturesCMA_v7/coulombLogrthm_fig3155cma.png" is written') # # matrix for electron with .5*timeStep_c: # matr_elec_c=guidingCenter_Matrix(.5*timeStep_c) # # matrix for ion with mass M_ion and .5*timeStep_c: # matr_ion_c=drift_Matrix(M_ion,.5*timeStep_c) larmorTurns = 10 nImpctPrmtr = 50 rhoMin = impctPrmtrMin rhoMax = np.zeros(nVion) log10rhoMin = math.log10(rhoMin) crrntImpctPrmtr = np.zeros(nImpctPrmtr) halfLintr = np.zeros((nImpctPrmtr,nVion)) pointAlongTrack = np.zeros((nImpctPrmtr,nVion)) totalPoints = 0 for i in range(nVion): rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! # print ('rhoMax(%d) = %e' % (i,rhoMax[i])) log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # print (' rhoCrrnt(%d) = %e' % (n,rhoCrrnt)) halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm timeHalfPath = halfLintr[n,i]/eVrmsLong # 0.5 time of interaction; sec numbLarmor = int(2.*timeHalfPath/T_larm) pointAlongTrack[n,i] = int(2.*timeHalfPath/timeStep_c) totalPoints += pointAlongTrack[n,i] # print (' %d: rhoCrrnt = %e, numbLarmor = %d, pointAlongTrack = %d' % \ # (n,rhoCrrnt,numbLarmor,pointAlongTrack[n,i])) # print ('totalPoints = %d' % totalPoints) totalPoints = int(totalPoints) nnTotalPoints=np.arange(0,2*totalPoints-1,1) arrayA=np.zeros(2*totalPoints) arrayB=np.zeros(2*totalPoints) bCrrnt_c = np.zeros(2*totalPoints) # # Variables for different testing: # b_gc = np.zeros(totalPoints) action_gc = np.zeros(totalPoints) C1test = np.zeros(totalPoints) C2test = np.zeros(totalPoints) C3test = np.zeros(totalPoints) b_ME = np.zeros(totalPoints) D1test = np.zeros(totalPoints) D2test = np.zeros(totalPoints) qTest = np.zeros(totalPoints) action_ME = np.zeros(totalPoints) actn_gc_ME_rel = np.zeros(totalPoints) indxTest = 0 rhoInit = np.zeros((nImpctPrmtr,nVion)) # # "Classical" approach: # deltaPx_c = np.zeros((nImpctPrmtr,nVion)) deltaPy_c = np.zeros((nImpctPrmtr,nVion)) deltaPz_c = np.zeros((nImpctPrmtr,nVion)) ionVx_c = np.zeros((nImpctPrmtr,nVion)) ionVy_c = np.zeros((nImpctPrmtr,nVion)) ionVz_c = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_c = np.zeros((nImpctPrmtr,nVion)) # # "Magnus Expand" approach: # deltaPx_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_m = np.zeros((nImpctPrmtr,nVion)) ionVx_m = np.zeros((nImpctPrmtr,nVion)) ionVy_m = np.zeros((nImpctPrmtr,nVion)) ionVz_m = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m = np.zeros((nImpctPrmtr,nVion)) # # Comparison of approaches (ratio deltaEnrgIon_c/deltaEnrgIon_m): # deltaPx_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPy_c_m = np.zeros((nImpctPrmtr,nVion)) deltaPz_c_m = np.zeros((nImpctPrmtr,nVion)) dEion_c_m = np.zeros((nImpctPrmtr,nVion)) # # Factor to calculate transferred energy to ion # (the friction force is defined by this transfered energy): # deFactor = 0.5/M_ion # 1/g frctnForce_cSM = np.zeros(nVion) # integration, using Simpson method frctnForce_mSM = np.zeros(nVion) # integration, using Simpson method numberWrongSign_c=0 numberWrongSign_m=0 posSignDeltaEnrgIon_c=0 negSignDeltaEnrgIon_c=0 posSignDeltaEnrgIon_m=0 negSignDeltaEnrgIon_m=0 timeRun = np.zeros(nVion) totalTimeRun = 0. indx = 0 # ----------------- Main simulation --------------- # for i in range(nVion): # Taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i]* \ np.sqrt(1.- (pi*larmorTurns*eVrmsLong/omega_L/impctPrmtrMax[i])**2) # Without taking into account the corection of the maximal impact parameter # on depence of preset number of minimal Larmor turns: rhoMax[i] = impctPrmtrMax[i] # rhoMax[i] = impctPrmtrMax_1[i] # for checking! log10rhoMax = math.log10(rhoMax[i]) log10rhoStep = (log10rhoMax-log10rhoMin)/(nImpctPrmtr) # print ('Vion(%d) = %e, rhoMax = %e' % (i,Vion[i],rhoMax[i])) timeStart=os.times() for n in range(nImpctPrmtr): log10rhoCrrnt = log10rhoMin+(n+0.5)*log10rhoStep rhoCrrnt = math.pow(10.,log10rhoCrrnt) # rhoInit[i*nImpctPrmtr+n] = rhoCrrnt rhoInit[n,i] = rhoCrrnt halfLintr[n,i] = np.sqrt(rhoMax[i]**2-rhoCrrnt**2) # half length of interaction; cm z_ionCrrnt_c = np.zeros(6) # Zeroing out of vector for ion ("GC"-approach) z_elecCrrnt_c = np.zeros(6) # Zeroing out of vector for electron ("GC"-approach) z_ionCrrnt_m = np.zeros(6) # Zeroing out of vector for ion ("ME"-approach) z_elecCrrnt_m = np.zeros(6) # Zeroing out of vector for electron ("ME"-approach) # Zeroing out of "guiding center" vector for electron (both approaches): z_elecCrrnt_gc_c = np.zeros(6) z_elecCrrnt_gc_m = np.zeros(6) # Current values of transfered momemta # (second index numerates "Guiding Center", (if 0) and # "Magnus Expantion" (if 1) approaches: dpCrrnt = np.zeros((3,2)) # Intermediate arrays: dpIon_c = np.zeros(3) dpIon_m = np.zeros(3) dpElec_c = np.zeros(3) dpElec_m = np.zeros(3) # Current initial vector for electron: z_elecCrrnt_c[Ix] = rhoCrrnt # x, cm z_elecCrrnt_c[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_c[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_c[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec z_elecCrrnt_m[Ix] = rhoCrrnt # x, cm z_elecCrrnt_m[Iz] = -halfLintr[n,i] # z, cm z_elecCrrnt_m[Ipy] = m_elec*eVrmsTran # py, g*cm/sec z_elecCrrnt_m[Ipz] = m_elec*eVrmsLong # pz, g*cm/sec # Current initial vector for ion velocity for both approaches: ionVx_c[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_c[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_c[n,i] = VionLong[i] ionVx_m[n,i] = VionTrnsv[i]*np.cos(phiVi) ionVy_m[n,i] = VionTrnsv[i]*np.sin(phiVi) ionVz_m[n,i] = VionLong[i] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # # Main loop along the each track: # for k in range(int(pointAlongTrack[n,i])): # # Dragging both particles through first half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Dragging both particles through interaction during this step of track # (for both approaches): # # "Guiding Center": dpIon_c,dpElec_c,action,b_gc_c = \ guidingCenterCollision(z_elecCrrnt_gc_c,z_ionCrrnt_c,timeStep_c) # "Magnus Expantion": dpIon_m,dpElec_m,actionME,dy_gc_m,C1,C2,C3,b,D1,D2,q = \ MagnusExpansionCollision(z_elecCrrnt_gc_m,z_ionCrrnt_m,timeStep_c) # Save data for testing: b_gc[indxTest] = b_gc_c # "Guiding Center" approach action_gc[indxTest] = action # -"- -"- -"- -"- -"- -"- C1test[indxTest] = C1 # "Magnus expansion" approach C2test[indxTest] = abs(C2) # -"- -"- -"- -"- -"- -"- C3test[indxTest] = C3 # -"- -"- -"- -"- -"- -"- b_ME[indxTest] = b # -"- -"- -"- -"- -"- -"- D1test[indxTest] = D1 # -"- -"- -"- -"- -"- -"- D2test[indxTest] = D2 # -"- -"- -"- -"- -"- -"- qTest[indxTest] = q #-"- -"- -"- -"- -"- -"- action_ME[indxTest] = actionME #-"- -"- -"- -"- -"- -"- indxTest += 1 indxTestMax = indxTest # # Taking into account transfer of momentum for both particles: # if (dpTransferFlag == 1): for ic in range(3): z_ionCrrnt_c[2*ic+1] += dpIon_c[ic] z_elecCrrnt_c[2*ic+1] += dpElec_c[ic] z_ionCrrnt_m[2*ic+1] += dpIon_m[ic] z_elecCrrnt_m[2*ic+1] += dpElec_m[ic] # transfer to system of guiding center: z_elecCrrnt_gc_c=toGuidingCenter(z_elecCrrnt_c) z_elecCrrnt_gc_m=toGuidingCenter(z_elecCrrnt_m) # Accumulation of the transfered momenta to ion along the track for both approaches: for ic in range(3): # if i == 0: # print ('dpIon_c[%2d] = %20.14e, dpIon_m[%2d] = %20.14e' % \ # (ic,dpIon_c[ic],ic,dpIon_m[ic])) dpCrrnt[ic,0] += dpIon_c[ic] # "Guiding Center", g*cm/sec dpCrrnt[ic,1] += dpIon_m[ic] # "Magnus Expansion", g*cm/sec # # Ion's elocity change along the track - both approaches: # ionVx_c[n,i] += dpCrrnt[0,0]/M_ion # cm/sec ionVy_c[n,i] += dpCrrnt[1,0]/M_ion # cm/sec ionVz_c[n,i] += dpCrrnt[2,0]/M_ion # cm/sec ionVx_m[n,i] += dpCrrnt[0,1]/M_ion # cm/sec ionVy_m[n,i] += dpCrrnt[1,1]/M_ion # cm/sec ionVz_m[n,i] += dpCrrnt[2,1]/M_ion # cm/sec # # Dragging both particles through second half of the step of the track: # z_elecCrrnt_gc_c = np.dot(matr_elec_c,z_elecCrrnt_gc_c) # electron z_ionCrrnt_c = np.dot(matr_ion_c,z_ionCrrnt_c) # ion z_elecCrrnt_gc_m = np.dot(matr_elec_c,z_elecCrrnt_gc_m) # electron z_ionCrrnt_m = np.dot(matr_ion_c,z_ionCrrnt_m) # ion # transfer from system of guiding center: z_elecCrrnt_c=fromGuidingCenter(z_elecCrrnt_gc_c) z_elecCrrnt_m=fromGuidingCenter(z_elecCrrnt_gc_m) # Current distance between ion and electron; cm: bCrrnt_c[indx]=np.sqrt((z_ionCrrnt_c[0]-z_elecCrrnt_c[0])**2+ \ (z_ionCrrnt_c[2]-z_elecCrrnt_c[2])**2+ \ (z_ionCrrnt_c[4]-z_elecCrrnt_c[4])**2) # Current values of parameters A,B: arrayA[indx] = math.log10(ro_Larm/bCrrnt_c[indx]) arrayB[indx] = math.log10((q_elec**2/bCrrnt_c[indx])/kinEnergy) indx += 1 # # Transferred momenta along the track - "Guiding Center" approach: # deltaPx_c[n,i] = dpCrrnt[0,0] # dpx, g*cm/sec # if deltaPx_c[n,i] <= 0.: # print ('deltaPx_c[%2d,%2d] = %e, dpCrrnt[%2d,%2d] = %e' % \ # (n,i,deltaPx_c[n,i],n,i,dpCrrnt[0,0])) deltaPy_c[n,i] = dpCrrnt[1,0] # dpy, g*cm/sec # if deltaPy_c[n,i] <= 0.: # print ('deltaPy_c[%2d,%2d] = %e' % (n,i,deltaPy_c[n,i])) deltaPz_c[n,i] = dpCrrnt[2,0] # dpz, g*cm/sec # if deltaPz_c[n,i] <= 0.: # print ('deltaPz_c[%2d,%2d] = %e' % (n,i,deltaPz_c[n,i])) # Incorrect value: # deltaEnrgIon_c[n,i] = (dpCrrnt[0,0]**2+dpCrrnt[1,0]**2+dpCrrnt[2,0]**2)* \ # deFactor/eVtoErg # eV # Correct value: crrntDeltaEnrg = (dpCrrnt[0,0]*ionVx_c[n,i]+ \ dpCrrnt[1,0]*ionVy_c[n,i]+ \ dpCrrnt[2,0]*ionVz_c[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_c = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_c = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_c[n,i] = crrntDeltaEnrg if (deltaEnrgIon_c[n,i] > 0.): posSignDeltaEnrgIon_c += 1 else: negSignDeltaEnrgIon_c += 1 # # Transferred momenta along the track - "Magnus expansion" approach: # deltaPx_m[n,i] = dpCrrnt[0,1] # dpx, g*cm/sec # if deltaPx_m[n,i] <= 0.: # print ('deltaPx_m[%2d,%2d] = %e' % (n,i,deltaPx_m[n,i])) deltaPy_m[n,i] = dpCrrnt[1,1] # if deltaPy_m[n,i] <= 0.: # print ('deltaPy_m[%2d,%2d] = %e' % (n,i,deltaPy_m[n,i])) deltaPz_m[n,i] = dpCrrnt[2,1] # if deltaPz_m[n,i] <= 0.: # print ('deltaPz_m[%2d,%2d] = %e' % (n,i,deltaPz_m[n,i])) # Incorrect value: # deltaEnrgIon_m[n,i] = (dpCrrnt[0,1]**2+dpCrrnt[1,1]**2+dpCrrnt[2,1]**2)* \ # deFactor/eVtoErg # eV # Correct value absolute value): crrntDeltaEnrg = (dpCrrnt[0,1]*ionVx_m[n,i]+ \ dpCrrnt[1,1]*ionVy_m[n,i]+ \ dpCrrnt[2,1]*ionVz_m[n,i])*deFactor/eVtoErg # eV absDeltaEnrgIon_m = abs(crrntDeltaEnrg) if (crrntDeltaEnrg != 0.): signDeltaEnrgIon_m = crrntDeltaEnrg/abs(crrntDeltaEnrg) deltaEnrgIon_m[n,i] = crrntDeltaEnrg if (deltaEnrgIon_m[n,i] > 0.): posSignDeltaEnrgIon_m += 1 else: negSignDeltaEnrgIon_m += 1 # # Comparison of the approaches (%): # if (deltaPx_m[n,i] != 0.): deltaPx_c_m[n,i] = 100.*(deltaPx_c[n,i]/deltaPx_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPx_m[%d,%d] = ' % (n,i)) if (deltaPy_m[n,i] != 0.): deltaPy_c_m[n,i] = 100.*(deltaPy_c[n,i]/deltaPy_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPy_m[%d,%d] = ' % (n,i)) if (deltaPz_m[n,i] != 0.): deltaPz_c_m[n,i] = 100.*(deltaPz_c[n,i]/deltaPz_m[n,i]-1.) else: print ('Bad value (=0.) of deltaPz_m[%d,%d] = ' % (n,i)) if (deltaEnrgIon_m[n,i] != 0.): dEion_c_m[n,i] = 100.*(deltaEnrgIon_c[n,i]/deltaEnrgIon_m[n,i]-1.) else: print ('Bad value (=0.) of deltaEnrgIon_m[%d,%d] = ' % (n,i)) # # Integration using Simpson method: # if (n > 0): frctnForce_cSM[i] += pi*n_e*100.*(deltaEnrgIon_c[n,i]+deltaEnrgIon_c[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m frctnForce_mSM[i] += pi*n_e*100.*(deltaEnrgIon_m[n,i]+deltaEnrgIon_m[n-1,i])* \ .5*(rhoInit[n,i]+rhoInit[n-1,i])* \ (rhoInit[n,i]-rhoInit[n-1,i]) # eV/m timeEnd = os.times() timeRun[i] = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec totalTimeRun += timeRun[i] print ('timeRun(%2d) = %6.3f seconds' % (i,timeRun[i])) print ('Total time (icluding Simpson integration) = %6.3f seconds' % totalTimeRun) print ('deltaEnrgIon_c: nPos=%d, nNeg=%d; deltaEnrgIon_m: nPos=%d, nNeg=%d' % \ (posSignDeltaEnrgIon_c,negSignDeltaEnrgIon_c, \ posSignDeltaEnrgIon_m,negSignDeltaEnrgIon_m)) # # Output for checking: # # print \ # ('n Px_c Px_m Py_c Py_m Pz_c Pz_m Pz_c_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e %e %e %e %e %e' % \ # (n,deltaPx_c[n,i],deltaPx_m[n,i],deltaPy_c[n,i], \ # deltaPy_m[n,i],deltaPz_c[n,i],deltaPz_m[n,i],deltaPz_c_m[n,i])) # print ('n dEion_c dEion_m') # for i in range(10,11,1): # for n in range(nImpctPrmtr): # print ('%d: %e %e ' % (n,deltaEnrgIon_c[n,i],deltaEnrgIon_m[n,i])) # print ('indxTestMax = %d' % indxTestMax) # # Plotting of the tests: # nn=np.arange(0,indxTestMax-1,1) # # C1: # if (plotFigureFlag == 0): fig2020=plt.figure (2020) plt.plot(nn,C1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C1$, $cm^2$',color='m',fontsize=16) plt.title('$C1=[x_{gc}^2+y_{gc}^2+z_e^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2020.savefig('picturesCMA_v7/magnusExpansion_C1_fig2020cma.png') print ('File "picturesCMA_v7/magnusExpansion_C1_fig2020cma.png" is written') # # C2: # if (plotFigureFlag == 0): fig2030=plt.figure (2030) plt.plot(nn,1.e-5*C2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C2$, $\cdot 10^5$ $cm^2/s$',color='m',fontsize=16) plt.title('$C2=2\cdot[V_{ix}\cdot(x_i-x_{gc})+V_{iy}\cdot(y_i-y_{gc})+(V_{iz}-V_{ez})\cdot(z_i-z_e)]$', \ color='m',fontsize=14) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2030.savefig('picturesCMA_v7/magnusExpansion_C2_fig2030cma.png') print ('File "picturesCMA_v7/magnusExpansion_C2_fig2030cma.png" is written') # # C3: # if (plotFigureFlag == 0): fig2040=plt.figure (2040) plt.plot(nn,1e-11*C3test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$C3$, $\cdot 10^{11}$ $cm^2/s^2$',color='m',fontsize=16) plt.title('$C3=V_{ix}^2+V_{iy}^2+(V_{iz}-V_{ez})^2$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2040.savefig('picturesCMA_v7/magnusExpansion_C3_fig2040cma.png') print ('File "picturesCMA_v7/magnusExpansion_C3_fig2040cma.png" is written') # # D1: # if (plotFigureFlag == 0): fig2025=plt.figure (2025) plt.plot(nn,1.e-5*D1test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^{-5}\cdot D1$, $cm/s$',color='m',fontsize=16) plt.title('$D1=(2C_3\cdot \Delta t+C_2)/b_{ME}$ $-$ $C_2/C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2025.savefig('picturesCMA_v7/magnusExpansion_D1_fig2025cma.png') print ('File "picturesCMA_v7/magnusExpansion_D1_fig2025cma.png" is written') # # D2: # if (plotFigureFlag == 0): fig2035=plt.figure (2035) plt.plot(nn,1.e4*D2test[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^4\cdot D2$, $cm$',color='m',fontsize=16) plt.title('$D2=(2C_1+C_2\cdot \Delta t)/b_{ME}$ $-$ $2C_1^{0.5}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2035.savefig('picturesCMA_v7/magnusExpansion_D2_fig2035cma.png') print ('File "picturesCMA_v7/magnusExpansion_D2_fig2035cma.png" is written') # # Distance b_ME between particles for "ME" approach: # if (plotFigureFlag == 0): fig2050=plt.figure (2050) plt.plot(nn,b_ME[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{ME}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{ME}$ between Particles for "ME" Approach', color='m',fontsize=16) plt.text(3500,.4,'$b_{ME}=[C1+C2\cdot \Delta t +C3 \cdot \Delta t^2]^{0.5}$', \ color='m',fontsize=16) plt.text(33000,.36,('$(\Delta t=%8.2e$ $s)$' % timeStep_c),color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2050.savefig('picturesCMA_v7/particleDistance_me_fig2050cma.png') print ('File "picturesCMA_v7/particleDistance_me_fig2050cma.png" is written') # # Distance b_gc between particles for "GC" approach: # if (plotFigureFlag == 0): fig2055=plt.figure (2055) plt.plot(nn,b_gc[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}$, $cm$',color='m',fontsize=16) plt.title('Distance $b_{GC}$ between Particles for "GC" Approach', color='m',fontsize=16) plt.text(0,.4,'$b_{GC}=[(x_i-x_{gc})^2+(y_i-y_{gc})^2+$',color='m',fontsize=16) plt.text(55500,.36,'$+(z_i-z_e)^2+2J/(m_e \cdot \Omega_e)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.grid(True) if (saveFilesFlag == 1): fig2055.savefig('picturesCMA/particleDistance_gc_fig2055cma.png') print ('File "picturesCMA/particleDistance_gc_fig2055cma.png" is written') # # Comparison of bCrrnt_c from "Guiding Center" with bTest from # "Magnus expansion" approaches: # bCrrnt_cTest = np.zeros(indxTestMax) bCrrnt_cTestRel = np.zeros(indxTestMax) b_gc_ME_rel = np.zeros(indxTestMax) for k in range(indxTestMax): bCrrnt_cTest[k] = .5*(bCrrnt_c[2*k]+bCrrnt_c[2*k+1]) # bCrrnt_cTestRel[k] = bCrrnt_cTest[k]/b_ME[k] b_gc_ME_rel[k] = b_gc[k]/b_ME[k] actn_gc_ME_rel[k] = 1.e7*(action_gc[k]/action_ME[k]-1.) if (plotFigureFlag == 0): fig2060=plt.figure (2060) # plt.semilogy(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.plot(nn,bCrrnt_cTest[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('Test $b_{crrntTest}$, $cm$',color='m',fontsize=16) plt.title('Test $b_{crrntTest} = .5 \cdot [b_{crrnt}(k)+b_{crrnt}(k+1)]$',color='m', \ fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(bCrrnt_cTest),1.1*max(bCrrnt_cTest)]) plt.grid(True) # # Ratio b_gc/b_ME (absolute value): # if (plotFigureFlag == 0): fig2070=plt.figure (2070) # plt.semilogy(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,b_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$b_{GC}/b_{ME}$',color='m',fontsize=16) plt.title('Comparison of Distances $b_{GC}$ and $b_{ME}$ between Particles',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) # plt.ylim([.9*min(b_gc_ME_rel),1.1*max(b_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2070.savefig('picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png') print ('File "picturesCMA_v7/particleDistanceComprsn_gc_me_fig2070cma.png" is written') # # Ratio b_gc/b_ME (relative value): # if (plotFigureFlag == 0): fig2080=plt.figure (2080) # plt.semilogy(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.plot(nn,actn_gc_ME_rel[0:indxTestMax-1],'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$10^7\cdot (J_{GC}/J_{ME}$ $-$ $1)$',color='m',fontsize=16) plt.title('Comparison of Actions $J_{GC}$ and $J_{ME}$',color='m',fontsize=16) plt.xlim([-5000,indxTestMax+5000]) plt.ylim([.99*min(actn_gc_ME_rel),1.01*max(actn_gc_ME_rel)]) plt.grid(True) if (saveFilesFlag == 1): fig2080.savefig('picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png') print ('File "picturesCMA_v7/actionComprsn_gc_me_fig2080cma.png" is written') # # Total length of interaction (1/2 of value): # nn=np.arange(0,nVion*nImpctPrmtr,1) halfLintrTest = np.zeros(nVion*nImpctPrmtr) for i in range(nVion): for n in range(nImpctPrmtr): halfLintrTest[nVion*i+n] = halfLintr[i,n] if (plotFigureFlag == 0): fig2090=plt.figure (2090) plt.semilogy(nn,halfLintrTest,'.r') plt.xlabel('Points of Tracks',color='m',fontsize=16) plt.ylabel('$0.5 \cdot L_{Intrctn}$, $cm$',color='m',fontsize=16) plt.title('Total Length of Interaction: $L_{Intrctn}=2 \cdot [R_{max}^2-rho_{Init}^2)]^{0.5}$', \ color='m',fontsize=16) plt.xlim([-100,nVion*nImpctPrmtr+100]) plt.ylim([.9*min(halfLintrTest),1.1*max(halfLintrTest)]) plt.grid(True) if (saveFilesFlag == 1): fig2090.savefig('picturesCMA/totalLengthIntrsctn_fig2090cma.png') print ('File "picturesCMA/totalLengthIntrsctn_fig2090cma.png" is written') #=================================================== # # There is fitting for correct values of deltaEnrgIon_m # #=================================================== # # Fitting for figures with deltaEnrgIon_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # |deltaEnrgIon| = 10^fitA * rho^fitB, # so that # # log10(|deltaEnrgIon|) = fitB*log10(rho) + fitA # # So, the dimension of expression (10^fitA * rho^fitB) is the same # as deltaEnrgIon, i.e. eV # timeStart = os.times() fitA_dEion = np.zeros(nVion) # dimensionless fitB_dEion = np.zeros(nVion) # dimensionless rhoInitFit_dEion = np.zeros((nImpctPrmtr,nVion)) deltaEnrgIon_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2_dEion = np.zeros(nVion) fitA_dEion,fitB_dEion,funcHi2_dEion,rhoInitFit_dEion, deltaEnrgIon_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m) dPosA_dEion = np.zeros(nVion) dNegA_dEion = np.zeros(nVion) dPosA_dEion,dNegA_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,1,2) dPosB_dEion = np.zeros(nVion) dNegB_dEion = np.zeros(nVion) dPosB_dEion,dNegB_dEion = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaEnrgIon_m_fit,fitA_dEion,fitB_dEion,funcHi2_dEion,2,2) # print ('Fitting for deltaEion:') # for i in range(nVion): # print ('i=%2d: fitA_dEion = %e (+%e,-%e), fitB_dEion = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_dEion[i],dPosA_dEion[i],dNegA_dEion[i], \ # fitB_dEion[i],dPosB_dEion[i],dNegB_dEion[i],funcHi2_dEion[i])) # # Analytical Integration of the fitted dependence 10**A*rho**B. # # For this dependece on rho: # # Friction force = 10**A*n_e*integral_rhoMin^rhoMax (rho**B*rho)*dRho = # = 10**A*n_e/(B+2)*[rhoMax**(B+2)-rhoMax**(B+2)] (dimension=eV/cm): # frctnForce_AI = np.zeros(nVion) for i in range(nVion): factorA1 = math.pow(10.,fitA_dEion[i]) factorB1 = 2.+fitB_dEion[i] frctnForce_AI[i] = 2.*pi*n_e*100.*factorA1/factorB1* \ (math.pow(impctPrmtrMax[i],factorB1)- \ math.pow(impctPrmtrMin,factorB1)) # eV/m timeEnd = os.times() timeFitting = float(timeEnd[0])-float(timeStart[0]) # CPU time , sec print ('Time of integration = %6.3f seconds' % timeFitting) # # Dependences of transferred energy to ion on ion velocity for # different initial impact parameters: # rhoSlctd = [.004,.02,.06,.1] nRhoSlctd = len(rhoSlctd) deltaEnrgIon_dpnd_Vi = np.zeros((nRhoSlctd,nVion)) npStart = np.zeros((nRhoSlctd,), dtype=int) for k in range(nRhoSlctd): slctdFlag = 0 for i in range(nVion): if (slctdFlag == 0): for n in range(nImpctPrmtr): if (rhoInit[n,i] >= rhoSlctd[k]): npStart[k] = i slctdFlag = 1 break for k in range(nRhoSlctd): for i in range(npStart[k],nVion,1): factorA = math.pow(10.,fitA_dEion[i]) deltaEnrgIon_dpnd_Vi[k,i] = factorA*math.pow(rhoSlctd[k],fitB_dEion[i]) # print ('deltaEnrgIon_dpnd_Vi[%d,%d] = %e' %(k,i,deltaEnrgIon_dpnd_Vi[k,i])) #=================================================== # # There is fitting of deltaPz_m (these values > 0 always) !!! # #=================================================== # # Fitting for figures with deltaPz_m (my own Least Squares Method - LSM; # Python has own routine for LSM - see site # http://scipy-cookbook.readthedocs.io/items/FittingData.html): # # # Fittied function: # # deltaPz_m = 10^fitA_pz * rho^fitB_pz, # so that # # log10(deltaPz_m) = fitB_pz*log10(rho) + fitA_pz # # So, the dimension of expression (10^fitA_pz * rho^fitB_pz) is the same # as deltaPz_m, i.e. eV # fitA_pz = np.zeros(nVion) # dimensionless fitB_pz = np.zeros(nVion) # dimensionless rhoInitFit_pz = np.zeros((nImpctPrmtr,nVion)) deltaPz_m_fit = np.zeros((nImpctPrmtr,nVion)) fitA_pz,fitB_pz,funcHi2_pz,rhoInitFit_pz, deltaPz_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPz_m) dPosA_pz = np.zeros(nVion) dNegA_pz = np.zeros(nVion) dPosA_pz,dNegA_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,1,2) dPosB_pz = np.zeros(nVion) dNegB_pz = np.zeros(nVion) dPosB_pz,dNegB_pz = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPz_m_fit,fitA_pz,fitB_pz,funcHi2_pz,2,2) # print ('Fitting fordeltaPz_m:') # for i in range(nVion): # print ('i=%2d: fitA_pz = %e (+%e,-%e), fitB_pz = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_pz[i],dPosA_pz[i],dNegA_pz[i], \ # fitB_pz[i],dPosB_pz[i],dNegB_pz[i],funcHi2_pz[i])) # print ('<fitA_pz> = %e +- %e' % (mean(fitA_pz),mean(dNegA_pz))) # print ('<fitB_pz> = %e +- %e' % (mean(fitB_pz),mean(dNegB_pz))) #=================================================== # # There is fitting of deltaPx_m (these values > 0 always) !!! # #=================================================== # rhoInitFit_px = np.zeros((nImpctPrmtr,nVion)) deltaPx_m_fit = np.zeros((nImpctPrmtr,nVion)) funcHi2__px = np.zeros(nVion) fitA_px = np.zeros(nVion) # dimensionless fitB_px = np.zeros(nVion) # dimensionless fitA_px,fitB_px,funcHi2_px,rhoInitFit_px, deltaPx_m_fit = \ fitting(nImpctPrmtr,nVion,rhoInit,deltaPx_m) dPosA_px = np.zeros(nVion) dNegA_px = np.zeros(nVion) dPosA_px,dNegA_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,1,2) dPosB_px = np.zeros(nVion) dNegB_px = np.zeros(nVion) dPosB_px,dNegB_px = \ errFitAB(nImpctPrmtr,nVion,rhoInit,deltaPx_m_fit,fitA_px,fitB_px,funcHi2_px,2,2) # print ('Fitting for deltaPx_m:') # for i in range(nVion): # print ('i=%2d: fitA_px = %e (+%e,-%e), fitB_px = %e (+%e,-%e), hi2_1 = %e' % \ # (i,fitA_px[i],dPosA_px[i],dNegA_px[i], \ # fitB_px[i],dPosB_px[i],dNegB_px[i],funcHi2_px[i])) xLimit = [1.015*np.log10(VionRel[0]),.95*np.log10(VionRel[nVion-1])] yLimMin = 0. yLimMax = 10.*min(fitA_pz) if (min(fitA_pz) > 0): yLimMin = 10.*max(fitA_pz) yLimMax = 0. for i in range(nVion): if (fitA_pz[i] - dNegA_pz[i]) < yLimMin: yLimMin = fitA_pz[i] - dNegA_pz[i] if (fitA_pz[i] + dPosA_pz[i]) > yLimMax: yLimMax = fitA_pz[i] + dPosA_pz[i] # print ('Exponent A (pz): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.25,yLimMax+.25] if (plotFigureFlag == 0): fig3000=plt.figure (3000) plt.errorbar(np.log10(VionRel),fitA_pz,yerr=[dNegA_pz,dPosA_pz],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $A$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_z$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-26.0,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-4.0,-28.,('<A>=%7.3f $\pm$ %5.3f' % (mean(fitA_pz),mean(dNegA_pz))), \ color='r',fontsize=16) # plt.text(-3.25,-29.65,('$-$%5.3f' % (mean(dNegA_pz))),color='r',fontsize=12) # plt.text(-3.25,-29.15,('$+$%5.3f' % (mean(dPosA_pz))),color='r',fontsize=12) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-28.25,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-28.25,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3000.savefig('picturesCMA_v7/fitA_dPz_fig3000cma.png') print ('File "picturesCMA_v7/fitA_dPz_fig3000cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitB_pz) if (min(fitB_pz) > 0): yLimMin = 10.*max(fitB_pz) yLimMax = 0. for i in range(nVion): if (fitB_pz[i] - dNegB_pz[i]) < yLimMin: yLimMin = fitB_pz[i] - dNegB_pz[i] if (fitB_pz[i] + dPosB_pz[i]) > yLimMax: yLimMax = fitB_pz[i] + dPosB_pz[i] # print ('Exponent B (pz): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.1,yLimMax+.1] if (plotFigureFlag == 0): fig3010=plt.figure (3010) plt.errorbar(np.log10(VionRel),fitB_pz,yerr=[dNegB_pz,dPosB_pz],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $B$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_z$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-.87,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-1.55,('<B>=%6.3f $\pm$ %5.3f' % (mean(fitB_pz),mean(dNegB_pz))), \ color='r',fontsize=16) # plt.text(-2.85,-2.25,('$-$%5.3f' % (mean(dNegB_pz))),color='r',fontsize=12) # plt.text(-2.85,-1.75,('$+$%5.3f' % (mean(dPosB_pz))),color='r',fontsize=12) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),np.log10(relVeTrnsv)],yLimit,'--m',linewidth=1) plt.text(-2.55,-1.74,'$ \Delta V_{e\perp}/ V_{e0}$',color='m',fontsize=14) plt.plot([np.log10(relVeLong),np.log10(relVeLong)],yLimit,'--m',linewidth=1) plt.text(-4.24,-1.74,'$ \Delta V_{e||}/ V_{e0}$',color='m',fontsize=14) if (saveFilesFlag == 1): fig3010.savefig('picturesCMA_v7/fitB_dPz_fig3010cma.png') print ('File "picturesCMA_v7/fitB_dPz_fig3010cma.png" is written') yLimMin = 0. yLimMax = 10.*min(fitA_px) if (min(fitA_px) > 0): yLimMin = 10.*max(fitA_px) yLimMax = 0. for i in range(nVion): if (fitA_px[i] - dNegA_px[i]) < yLimMin: yLimMin = fitA_px[i] - dNegA_px[i] if (fitA_px[i] + dPosA_px[i]) > yLimMax: yLimMax = fitA_px[i] + dPosA_px[i] # print ('Exponent A (px): yLimMin = %e, yLimMax = %e' % (yLimMin,yLimMax)) yLimit = [yLimMin-.15,yLimMax+.15] if (plotFigureFlag == 0): fig3020=plt.figure (3020) plt.errorbar(np.log10(VionRel),fitA_px,yerr=[dNegA_px,dPosA_px],fmt='-ro', \ ecolor='b',capsize=5,capthick=1) plt.xlabel('Relative Ion Velocity, $log_{10}(V_{ion}/V_0)$',color='m',fontsize=14) plt.ylabel('Exponent $A$', color='m',fontsize=14) titleHeader = 'Dependence of Transferred Momenta to Single Ion: ' titleHeader += '$\Delta P_x$ = $10^A\cdot rho^B$' plt.title(titleHeader,color='m',fontsize=12) plt.text(-3.75,-24.2,('$V_{e0}=%5.3f\cdot10^{%2d}$cm/s' % (mantV0,powV0)), \ color='m',fontsize=16) plt.text(-3.9,-24.8,('<A>=%6.3f $\pm$ %5.3f' % (mean(fitA_px),mean(dNegA_px))), \ color='r',fontsize=16) plt.xlim(xLimit) plt.ylim(yLimit) plt.grid(True) plt.plot([np.log10(relVeTrnsv),
np.log10(relVeTrnsv)
numpy.log10
""" File with the main Classes. """ import matplotlib.pyplot as plt import matplotlib.dates as md import matplotlib.collections as collections from scipy.integrate import solve_ivp from scipy.optimize import root import numpy as np import datetime # Hovorka 's Model ######################## # TODO LIST # - TRANSLATE # - Write Tests # - CONTROL # - Unknown Error makes simulation fail - likely parameters class Subject(): """ Subject Simulation Class. """ # Paramete Distributions # Paper Software for in Silico Testing.pdf PARAM_DIST = {"EGP_0": {"mean": 0.0169, "std": 0.0039, "unit": "mmol/min", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "F_01": {"mean": 0.0111, "std": 0.0007, "unit": "mmol/min", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "k_12": {"mean": 0.00649, "std": 0.00282, "unit": "1/min", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "S_id": {"mean": 0.00082, "std": 0.00032, "unit": "mU/(L min)", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "S_ie": {"mean": 0.052, "std": 0.0125, "unit": "L/mU", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "S_it": {"mean": 0.00512, "std": 0.00131, "unit": "mU/(L min)", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "k_e": {"mean": 0.14, "std": 0.035, "unit": "1/min", "distribution": "Gaussian", "variability": None}, "Bio": {"mean": 0.7, "std": 1.2, "unit": "%", "distribution": "Uniform", "variability": [[0, 24], 0.2]}, "k_a_int": {"mean": -2.372, "std": 1.092, "unit": "1/min", "distribution": "Lognormal", "variability": [[0, 3], 0.05]}, "k_a1": {"mean": 0.0055, "std": 0.0056, "unit": "1/min", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "k_a2": {"mean": 0.0683, "std": 0.0507, "unit": "1/min", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "k_a3": {"mean": 0.0304, "std": 0.0235, "unit": "1/min", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "V_g": {"mean": -1.89711998489, "std": 0.23, "unit": "L/kg", "distribution": "Lognormal", "variability": None}, "V_i": {"mean": 0.12, "std": 0.012, "unit": "L/kg", "distribution": "Gaussian", "variability": None}, "k_a": {"mean": 0.018, "std": 0.0045, "unit": "mmol/L", "distribution": "Gaussian", "variability": [[0, 3], 0.05]}, "t_max": {"mean": -3.689, "std": 0.025, "unit": "min", "distribution": "Lognormal", "variability": None}, "w": {"mean": 74.9, "std": 14.4, "unit": "kg", "distribution": "Gaussian", "variability": None}, "R_th": {"mean": 9, "std": 1.5, "unit": "mmol/L", "distribution": "Gaussian", "variability": None}, "R_cl": {"mean": 0.01, "std": 0.025, "unit": "1/min", "distribution": "Gaussian", "variability": None}, "U_ceil": {"mean": 0.02, "std": 0.035, "unit": "TODO ??", "distribution": "Uniform", "variability": None} } def __init__(self, params=None, food_intake_f=None, control_type=None): """ Initializes the Class Subject. > params(default None): list with all the parameters in Hovorka 's Model in order given bellow. In case of None, automatic parameters will be given following the built-in probability distribution. [EGP_0, F_01, k_12, S_id, S_ie, S_it, k_e, Bio, k_a1, k_a2, k_a3, k_a_int, V_g, V_i, k_a, t_max, w, R_th, R_cl, U_ceil] > food_intake_f(default None): Function in format 'fun(t)' that returns the rate of carbohydrate ingestetion in given time t. The values should be (g / min). > insulin_intake_f(default None): Function in format 'fun(t)' that return the rate of insulin infusion in given time t. The values should be (U / min). """ # Constants self.CGM_AVERAGE_DELAY = 15 # minutes self.SAMPLING_TIME = 15 # minutes # Last Control Variables self.control_u = np.array([0]) # output after saturation self.control_I = np.array([0]) # previous I self.control_v = np.array([0]) # output before saturation # Variable with resulting simulation values from 'simulate' self.solution = np.array([]) self.time = np.array([]) self.max_glucose = 0 self.min_glucose = 0 # Steady-state basal insulin value self.u_basal = 0 # Auxiliary input functions: food intake and control infusion self.control_type = control_type self.food_intake_fun = food_intake_f # Continuous Variables self.insulin = np.array([]) self.meal = np.array([]) # Sensor reading self.cgm_glucose = np.array([]) self.cgm_time = np.array([]) # Parameters Initialization if params is None: # Initalize parameters from defined distributions # [ *0, *1, *2, *3, *4, *5, *6, *7, *8, 9, 10, 11, 12, 13, 14, 15,16, 17, 18, 19] # [EGP_0, F_01, k_12, S_id, S_ie, S_it, k_e, Bio, k_aint, k_a1, k_a2, k_a3, V_g, V_i, k_a, t_max, w, R_th, R_cl, U_ceil] self.params = self.get_params_from_dist(self.__class__.PARAM_DIST) else: self.params = params # Steady-state basal insulin self.steady_state() def get_params_from_dist(self, param_dist_dict): """ Collects the values from the parameters distributions. The dictionary should be a dictionary of dictionaries and should have all these fields: "EGp_dict, F_01, k_12, S_id, S_ie, S_it, k_e, Bio, k_aint, k_a1, k_a2, k_a3, V_g, V_i, k_a, t_max, w, R_th, R_cl, U_ceil" And each field should result in a dictionary with the fields bellow: "mean": 0.0169, "std": 0.0039, "unit": "mmol/min", "distribution": "Gaussian", "variability": "Oscillatory" Description: - mean": Average values of the distribution. OBS.: If the distribution is uniform, this is the min value. - std": Standard deviation for the distribution. OBS.: If the distribution is uniform, this is the max value. - unit": Units of the parameter. - distribution": The type of distribution, ex.: "Gaussian", "Lognormal", etc. - variability: List in the format [ min oscillatory frequency, max oscillatory frequency], max amplitude ] if the parameter is oscillatory, None otherwise. The dictionary returned has all these fields: "EGp_dict, F_01, k_12, S_id, S_ie, S_it, k_e, Bio, k_aint, k_a1, k_a2, k_a3, V_g, V_i, k_a, t_max, w, R_th, R_cl, U_ceil" And each inner dictionary should look like this: "value": 0.0169, "var_freq": 2, "var_amp": 0.05, "unit": "mmol/min" Description: - value: Average values of the distribution. - var_freq: Sinusoidal wavelength (frequency) of variability. - var_amp: Sinusoidal amplitude of variability. > param_dist_dict: Dictionary with all the parameter distributions. < param_values_dict: Dictionary with all the values from the distributions. """ param_values_dict = {} # For each item in the dict for params, dist_dict in param_dist_dict.items(): # Initialize inner dict param_values_dict[params] = {} # For each type of distribution dist_type = dist_dict["distribution"] if dist_type == "Gaussian" or dist_type == "Normal": param_values_dict[params]["value"] = np.random.normal(dist_dict["mean"], dist_dict["std"]) elif dist_type == "Lognormal": param_values_dict[params]["value"] = np.random.lognormal(dist_dict["mean"], dist_dict["std"]) elif dist_type == "Uniform": param_values_dict[params]["value"] =
np.random.uniform(dist_dict["mean"], dist_dict["std"])
numpy.random.uniform
import sys from scipy import special, stats from numpy import array as A def compoundPartitioning(agents): """Compute and return sections with compound criteria agents is a dict with keys "d", "id", "od", "s", "is", "os" with sectorialized_agents__ with each of these criteria """ exc_h=set( agents["d"][-1][2]) & \ set(agents["id"][-1][2]) & \ set(agents["od"][-1][2]) & \ set( agents["s"][-1][2]) & \ set(agents["is"][-1][2]) & \ set(agents["os"][-1][2]) exc_i=set( agents["d"][-1][1]) & \ set(agents["id"][-1][1]) & \ set(agents["od"][-1][1]) & \ set( agents["s"][-1][1]) & \ set(agents["is"][-1][1]) & \ set(agents["os"][-1][1]) exc_p=set( agents["d"][-1][0]) & \ set(agents["id"][-1][0]) & \ set(agents["od"][-1][0]) & \ set( agents["s"][-1][0]) & \ set(agents["is"][-1][0]) & \ set(agents["os"][-1][0]) exc=exc_p,exc_i,exc_h inc_h=set( agents["d"][-1][2]) | \ set(agents["id"][-1][2]) | \ set(agents["od"][-1][2]) | \ set( agents["s"][-1][2]) | \ set(agents["is"][-1][2]) | \ set(agents["os"][-1][2]) inc_i=set( agents["d"][-1][1]) | \ set(agents["id"][-1][1]) | \ set(agents["od"][-1][1]) | \ set( agents["s"][-1][1]) | \ set(agents["is"][-1][1]) | \ set(agents["os"][-1][1]) inc_p=set( agents["d"][-1][0]) | \ set(agents["id"][-1][0]) | \ set(agents["od"][-1][0]) | \ set( agents["s"][-1][0]) | \ set(agents["is"][-1][0]) | \ set(agents["os"][-1][0]) inc=inc_p, inc_i, inc_h total=set(agents["d"][-1][0]+agents["d"][-1][1]+agents["d"][-1][2]) excc_h=exc[2] excc_p=inc[0] #excc_i=total - (exc[2] & inc[0]) excc_i=total - (exc[2] | inc[0]) excc=excc_p,excc_i,excc_h incc_h=inc[2] incc_p=excc[0] incc_i=total-(incc_h | incc_p) incc=incc_p,incc_i,incc_h exce_h=exc[2] exce_i=inc[1] exce_p=total-(exce_h | exce_i) exce=exce_p,exce_i,exce_h ince_h=inc[2] ince_i=exc[1] ince_p=total-(ince_h | ince_i) ince=ince_p,ince_i,ince_h return dict(total=total, exc=exc, inc=inc, excc=excc, incc=incc, exce=exce, ince=ince) class NetworkPartitioning: network_count=0 def __init__(self,networkMeasures=None, minimum_incidence=1,metric="strength"): if not networkMeasures: networkMeasures=g.NetworkMeasures() self.metric=metric metric_=self.standardizeName(metric) prob, max_degree_empirical, max_degree_possible = \ self.basicMeasures( networkMeasures , metric_) incident_degrees, incident_degrees_, agent_degrees = \ self.makeDegreeLists( networkMeasures, metric_) empirical_distribution = self.makeEmpiricalDistribution( incident_degrees, incident_degrees_, networkMeasures.N ) binomial_distribution=self.makeBinomialDistribution( prob, max_degree_possible, incident_degrees_) binomial=stats.binom(max_degree_possible,prob) #sectorialized_degrees= self.sectorializeDegrees( # empirical_distribution, binomial_distribution, incident_degrees_) #sectorialized_degrees_= self.newSectorializeDegrees( # empirical_distribution, binomial_distribution, incident_degrees_) sectorialized_degrees__= self.newerSectorializeDegrees( empirical_distribution, binomial, incident_degrees_, max_degree_empirical,minimum_incidence,networkMeasures.N ) #sectorialized_agents= self.sectorializeAgents( # sectorialized_degrees, networkMeasures.degrees) #sectorialized_agents_= self.sectorializeAgents( # sectorialized_degrees_, networkMeasures.degrees) sectorialized_agents__= self.sectorializeAgents( sectorialized_degrees__, agent_degrees) NetworkPartitioning.network_count+=1 # to keep track of how may partitions have been done self.makeSelf("incident_degrees_ ",incident_degrees_ , "incident_degrees ",incident_degrees , #"sectorialized_agents ",sectorialized_agents , #"sectorialized_agents_ ",sectorialized_agents_ , "sectorialized_agents__ ",sectorialized_agents__ , #"sectorialized_degrees ",sectorialized_degrees , #"sectorialized_degrees_ ",sectorialized_degrees_ , "sectorialized_degrees__ ",sectorialized_degrees__ , "binomial_distribution ",binomial_distribution , "prob" ,prob, "max" ,(max_degree_possible, max_degree_empirical), "empirical_distribution",empirical_distribution, "binomial",binomial, "metric_",metric_, "minimum_incidence",minimum_incidence, "binomial_distribution" ,binomial_distribution) def makeSelf(self, *args): for signifier, signified in zip(args[::2], args[1::2]): #try: exec("self.{} = signified".format(signifier)) #thing=signified #exec("self.{} = thing".format(signifier)) #exec("self.{} = {}".format(signifier, signified)) #exec("self.{} = ".format(signifier), signified) #except: # self.binomial=signified def standardizeName(self,name): if name in (["s","strength","st"]+["f","força","forca","fo"]): name_="s" elif name in (["is","in_strength","ist"]+["fe","força_e","forca_e","fe"]): name_="is" elif name in (["os","out_strength","ost"]+["fs","força_s","forca_s","fs"]): name_="os" elif name in (["d","degree","dg"]+["g","grau","gr"]): name_="d" elif name in (["id","in_degree","idg"]+["ge","grau_e","gre"]): name_="id" elif name in (["od","out_degree","odg"]+["gs","grau_s","grs"]): name_="od" return name_ def basicMeasures(self,networkMeasures,metric_): nm=networkMeasures if metric_ in ("s","is","os"): edge_weights=[i[2]["weight"] for i in nm.edges] average_edge_weight=sum(edge_weights)/nm.E self.average_edge_weight=average_edge_weight if metric_=="s": max_degree_empirical=round(max(nm.strengths_) / average_edge_weight) elif metric_=="is": max_degree_empirical=round(2*max(nm.in_strengths_) / average_edge_weight) elif metric_=="os": max_degree_empirical=round(2*max(nm.out_strengths_) / average_edge_weight) elif metric_=="d": max_degree_empirical=max(nm.degrees_) elif metric_=="id": max_degree_empirical=2*max(nm.in_degrees_) elif metric_=="od": max_degree_empirical=2*max(nm.out_degrees_) prob=nm.E/(nm.N*(nm.N-1)) # edge probability max_degree_possible=2*(nm.N-1) # max d given N return prob, max_degree_empirical, max_degree_possible def makeDegreeLists(self, networkMeasures,metric_): if metric_=="s": agent_degrees={i:round(j/self.average_edge_weight) for i,j in networkMeasures.strengths.items()} incident_degrees=list(agent_degrees.values()) elif metric_=="is": agent_degrees={i:round((2*j)/self.average_edge_weight) for i,j in networkMeasures.in_strengths.items()} incident_degrees=list(agent_degrees.values()) elif metric_=="os": agent_degrees={i:round((2*j)/self.average_edge_weight) for i,j in networkMeasures.out_strengths.items()} incident_degrees=list(agent_degrees.values()) elif metric_=="d": agent_degrees=networkMeasures.degrees incident_degrees=networkMeasures.degrees_ elif metric_=="id": agent_degrees={i:(2*j) for i,j in networkMeasures.in_degrees.items()} incident_degrees=list(agent_degrees.values()) elif metric_=="od": agent_degrees={i:(2*j) for i,j in networkMeasures.out_degrees.items()} incident_degrees=list(agent_degrees.values()) incident_degrees_=list(set(incident_degrees)) incident_degrees_.sort() return incident_degrees, incident_degrees_, agent_degrees def makeEmpiricalDistribution(self, incident_degrees, incident_degrees_, N): empirical_distribution=[] for degree in incident_degrees_: empirical_distribution.append(incident_degrees.count(degree)/N) return empirical_distribution def makeBinomialDistribution(self,prob,max_degree_possible,incident_degrees_): """If max_degree_possible == max_degree_empirical, makeBinomial ==1""" binomial_distribution=[] # occurance probability of degrees for degree in incident_degrees_: if len(binomial_distribution) and binomial_distribution[-1]==0.0: binomial_distribution.append(0.0) else: n_occurrences=special.binom(max_degree_possible,degree) prob_degree=n_occurrences * (prob**degree)*((1-prob)**(max_degree_possible-degree)) binomial_distribution.append(prob_degree) return binomial_distribution def sectorializeAgents(self,sectorialized_degrees,agent_degrees): periphery=[x for x in agent_degrees if agent_degrees[x] in sectorialized_degrees[0]] intermediary=[x for x in agent_degrees if agent_degrees[x] in sectorialized_degrees[1]] hubs=[x for x in agent_degrees if agent_degrees[x] in sectorialized_degrees[2]] return periphery, intermediary, hubs def newerSectorializeDegrees(self,empirical_distribution,binomial,incident_degrees_,max_degree_empirical,minimum_count,num_agents): # compute bins [start, end] prob_min=minimum_count/num_agents llimit=0 rlimit=0 self.bins=bins=[] self.empirical_probs=empirical_probs=[] while (rlimit < len(incident_degrees_)): if (sum(empirical_distribution[llimit:])>prob_min): prob_empirical=0 while True: prob_empirical=sum( empirical_distribution[llimit:rlimit+1] ) if prob_empirical >= prob_min: break else: rlimit+=1 bins.append((llimit,rlimit)) empirical_probs.append(prob_empirical) rlimit+=1 llimit=rlimit else: # last bin print("last bin less probable than prob_min") rlimit=len(incident_degrees_)-1 bins.append((llimit,rlimit)) prob_empirical=sum( empirical_distribution[llimit:rlimit+1] ) empirical_probs.append(prob_empirical) rlimit+=1 binomial_probs=[] for i, bin_ in enumerate(bins): llimit=bin_[0] rlimit=bin_[1] ldegree=incident_degrees_[llimit]-1 rdegree=incident_degrees_[rlimit] binomial_prob=binomial.cdf(rdegree)-binomial.cdf(ldegree) binomial_probs.append(binomial_prob) # calcula probabilidades em cada bin # compara as probabilidades distribution_compare = list(A(empirical_probs) < A(binomial_probs)) self.binomial_probs=binomial_probs self.distribution_compare0=distribution_compare if sum(distribution_compare): tindex= distribution_compare.index(True) tindex2=distribution_compare[::-1].index(True) periphery_degrees=incident_degrees_[:tindex] intermediary_degrees=incident_degrees_[tindex:-tindex2] hub_degrees= incident_degrees_[-tindex2:] else: periphery_degrees=incident_degrees_[:] intermediary_degrees=[] hub_degrees=[] return periphery_degrees, intermediary_degrees, hub_degrees def newSectorializeDegrees(self,empirical_distribution,binomial_distribution,incident_degrees_): distribution_compare = A(empirical_distribution) <
A(binomial_distribution)
numpy.array
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 24 13:24:43 2020 @author: ssli Module to calculate the m bias mcFitFunc: Shear bias function. WgQuantile1DFunc: Calculate the weighted quantile by given probabilities designed for 1D numpy array. WgBin2DFunc: Calculate the weighted quantile by given bin numbers designed for 2D numpy array mCalFunc: Calculating the residual shear bias (m-value) in 2-d bins """ import numpy as np from scipy import optimize import pandas as pd from astropy.io import fits ## All possible g1,g2 combinations g1Range = np.array([-0.04,0.00,0.04,0.00,-0.0283,+0.0283,+0.0283,-0.0283]) g2Range =
np.array([0.00,0.04,0.00,-0.04,+0.0283,+0.0283,-0.0283,-0.0283])
numpy.array
# -*- coding: utf-8 -*- """ This module contains a set of utility functions and classes used for developing and testing Neural Maching Translation models. Everything comes directly from the accompanying code to the book "Natural Language Processing with PyTorch" by <NAME> and <NAME>. The original code and data can be found at: https://github.com/joosthub/PyTorchNLPBook Used with permission under Apache License 2.0 @author: <NAME> and <NAME> """ import numpy as np import pandas as pd import json import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from torch.nn import functional as F from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence from nltk.translate import bleu_score chencherry = bleu_score.SmoothingFunction() class Vocabulary(object): """Class to process text and extract vocabulary for mapping""" def __init__(self, token_to_idx=None): """ Args: token_to_idx (dict): a pre-existing map of tokens to indices """ if token_to_idx is None: token_to_idx = {} self._token_to_idx = token_to_idx self._idx_to_token = {idx: token for token, idx in self._token_to_idx.items()} def to_serializable(self): """ returns a dictionary that can be serialized """ return {'token_to_idx': self._token_to_idx} @classmethod def from_serializable(cls, contents): """ instantiates the Vocabulary from a serialized dictionary """ return cls(**contents) def add_token(self, token): """Update mapping dicts based on the token. Args: token (str): the item to add into the Vocabulary Returns: index (int): the integer corresponding to the token """ if token in self._token_to_idx: index = self._token_to_idx[token] else: index = len(self._token_to_idx) self._token_to_idx[token] = index self._idx_to_token[index] = token return index def add_many(self, tokens): """Add a list of tokens into the Vocabulary Args: tokens (list): a list of string tokens Returns: indices (list): a list of indices corresponding to the tokens """ return [self.add_token(token) for token in tokens] def lookup_token(self, token): """Retrieve the index associated with the token Args: token (str): the token to look up Returns: index (int): the index corresponding to the token """ return self._token_to_idx[token] def lookup_index(self, index): """Return the token associated with the index Args: index (int): the index to look up Returns: token (str): the token corresponding to the index Raises: KeyError: if the index is not in the Vocabulary """ if index not in self._idx_to_token: raise KeyError("the index (%d) is not in the Vocabulary" % index) return self._idx_to_token[index] def __str__(self): return "<Vocabulary(size=%d)>" % len(self) def __len__(self): return len(self._token_to_idx) class SequenceVocabulary(Vocabulary): def __init__(self, token_to_idx=None, unk_token="<UNK>", mask_token="<MASK>", begin_seq_token="<BEGIN>", end_seq_token="<END>"): super().__init__(token_to_idx) self._mask_token = mask_token self._unk_token = unk_token self._begin_seq_token = begin_seq_token self._end_seq_token = end_seq_token self.mask_index = self.add_token(self._mask_token) self.unk_index = self.add_token(self._unk_token) self.begin_seq_index = self.add_token(self._begin_seq_token) self.end_seq_index = self.add_token(self._end_seq_token) def to_serializable(self): contents = super(SequenceVocabulary, self).to_serializable() contents.update({'unk_token': self._unk_token, 'mask_token': self._mask_token, 'begin_seq_token': self._begin_seq_token, 'end_seq_token': self._end_seq_token}) return contents def lookup_token(self, token): """Retrieve the index associated with the token or the UNK index if token isn't present. Args: token (str): the token to look up Returns: index (int): the index corresponding to the token Notes: `unk_index` needs to be >=0 (having been added into the Vocabulary) for the UNK functionality """ if self.unk_index >= 0: return self._token_to_idx.get(token, self.unk_index) else: return self._token_to_idx[token] class NMTVectorizer(object): """ The Vectorizer which coordinates the Vocabularies and puts them to use""" def __init__(self, source_vocab, target_vocab, max_source_length, max_target_length): """ Args: source_vocab (SequenceVocabulary): maps source words to integers target_vocab (SequenceVocabulary): maps target words to integers max_source_length (int): the longest sequence in the source dataset max_target_length (int): the longest sequence in the target dataset """ self.source_vocab = source_vocab self.target_vocab = target_vocab self.max_source_length = max_source_length self.max_target_length = max_target_length def _vectorize(self, indices, vector_length=-1, mask_index=0): """Vectorize the provided indices Args: indices (list): a list of integers that represent a sequence vector_length (int): an argument for forcing the length of index vector mask_index (int): the mask_index to use; almost always 0 """ if vector_length < 0: vector_length = len(indices) vector =
np.zeros(vector_length, dtype=np.int64)
numpy.zeros
from load_data import Data import numpy as np import torch from collections import defaultdict from model import * from torch.optim.lr_scheduler import ExponentialLR import argparse import os device = torch.device('cuda:0') class Experiment: def __init__(self, num_iterations, batch_size, learning_rate, decay_rate, ent_vec_dim, rel_vec_dim, k, ni, ranks, input_dropout, hidden_dropout): self.num_iterations = num_iterations self.batch_size = batch_size self.learning_rate = learning_rate self.decay_rate = decay_rate self.ent_vec_dim = ent_vec_dim self.rel_vec_dim = rel_vec_dim self.k = k self.ni = ni self.ranks = ranks self.kwargs = {'input_dropout': input_dropout, 'hidden_dropout': hidden_dropout} def get_data_idxs(self, data): if len(data[0])-1 == 3: data_idxs = [(self.relation_idxs[data[i][0]], self.entity_idxs[data[i][1]], self.entity_idxs[data[i][2]], self.entity_idxs[data[i][3]]) for i in range(len(data))] elif len(data[0])-1 == 4: data_idxs = [(self.relation_idxs[data[i][0]], self.entity_idxs[data[i][1]], self.entity_idxs[data[i][2]], self.entity_idxs[data[i][3]], self.entity_idxs[data[i][4]]) for i in range(len(data))] return data_idxs def get_er_vocab(self, data, miss_ent_domain): er_vocab = defaultdict(list) if len(data[0])-1 == 3: if miss_ent_domain == 1: for triple in data: er_vocab[(triple[0], triple[2], triple[3])].append(triple[1]) elif miss_ent_domain == 2: for triple in data: er_vocab[(triple[0], triple[1], triple[3])].append(triple[2]) elif miss_ent_domain == 3: for triple in data: er_vocab[(triple[0], triple[1], triple[2])].append(triple[3]) elif len(data[0])-1 == 4: if miss_ent_domain == 1: for triple in data: er_vocab[(triple[0], triple[2], triple[3], triple[4])].append(triple[1]) elif miss_ent_domain == 2: for triple in data: er_vocab[(triple[0], triple[1], triple[3], triple[4])].append(triple[2]) elif miss_ent_domain == 3: for triple in data: er_vocab[(triple[0], triple[1], triple[2], triple[4])].append(triple[3]) elif miss_ent_domain == 4: for triple in data: er_vocab[(triple[0], triple[1], triple[2], triple[3])].append(triple[4]) return er_vocab def get_batch(self, er_vocab, er_vocab_pairs, idx): batch = er_vocab_pairs[idx:idx+self.batch_size] targets = np.zeros((len(batch), len(d.entities))) for idx, pair in enumerate(batch): targets[idx, er_vocab[pair]] = 1. targets = torch.FloatTensor(targets).to(device) return np.array(batch), targets def evaluate(self, model, data, W): hits, ranks, losses = [], [], [] for _ in [1, 3, 10]: hits.append([]) test_data_idxs = self.get_data_idxs(data) ary = len(test_data_idxs[0])-1 er_vocab_list = [] er_vocab_pairs_list = [] for miss_ent_domain in range(1, ary+1): er_vocab = self.get_er_vocab(self.get_data_idxs(d.data), miss_ent_domain) er_vocab_pairs = list(er_vocab.keys()) er_vocab_list.append(er_vocab) er_vocab_pairs_list.append(er_vocab_pairs) for miss_ent_domain in range(1, ary+1): er_vocab = er_vocab_list[miss_ent_domain-1] for i in range(0, len(test_data_idxs), self.batch_size): data_batch, _ = self.get_batch(er_vocab, test_data_idxs, i) r_idx = torch.tensor(data_batch[:, 0], dtype=torch.long).to(device) e1_idx = torch.tensor(data_batch[:, 1], dtype=torch.long).to(device) e2_idx = torch.tensor(data_batch[:, 2], dtype=torch.long).to(device) e3_idx = torch.tensor(data_batch[:, 3], dtype=torch.long).to(device) if ary == 3: if miss_ent_domain == 1: e_idx = [e2_idx, e3_idx] elif miss_ent_domain == 2: e_idx = [e1_idx, e3_idx] elif miss_ent_domain == 3: e_idx = [e1_idx, e2_idx] elif ary == 4: e4_idx = torch.tensor(data_batch[:, 4], dtype=torch.long).to(device) if miss_ent_domain == 1: e_idx = [e2_idx, e3_idx, e4_idx] elif miss_ent_domain == 2: e_idx = [e1_idx, e3_idx, e4_idx] elif miss_ent_domain == 3: e_idx = [e1_idx, e2_idx, e4_idx] elif miss_ent_domain == 4: e_idx = [e1_idx, e2_idx, e3_idx] pred, _ = model.forward(r_idx, e_idx, miss_ent_domain, W) e_all_idx = [] for k0 in range(1, ary+1): e_all_idx.append(torch.tensor(data_batch[:, k0], dtype=torch.long).to(device)) for j in range(data_batch.shape[0]): er_vocab_key = [] for k0 in range(ary+1): er_vocab_key.append(data_batch[j][k0]) er_vocab_key.remove(data_batch[j][miss_ent_domain]) filt = er_vocab[tuple(er_vocab_key)] target_value = pred[j, e_all_idx[miss_ent_domain-1][j]].item() pred[j, filt] = 0.0 pred[j, e_all_idx[miss_ent_domain-1][j]] = target_value sort_values, sort_idxs = torch.sort(pred, dim=1, descending=True) sort_idxs = sort_idxs.cpu().numpy() for j in range(data_batch.shape[0]): rank = np.where(sort_idxs[j] == e_all_idx[miss_ent_domain-1][j].item())[0][0] ranks.append(rank+1) for id, hits_level in enumerate([1, 3, 10]): if rank+1 <= hits_level: hits[id].append(1.0) else: hits[id].append(0.0) return np.mean(1./np.array(ranks)), np.mean(hits[2]),
np.mean(hits[1])
numpy.mean
# mean = the average value # median = the mid point value # mode = the most common value import numpy as np speed =
np.array( [99,86,87,88,111,86,103,87,94,78,77,85,86] )
numpy.array
""" The bpm module contain the Bpm class used to simulate the light propagation - within low refractive index variation and small angle (paraxial approximation) - using the Beam Propagation Method. This module was done by <NAME> during a master university course from the PAIP master of the université de Lorraine, under the directive of Pr. <NAME>. The bpm codes are mainly based on a compilation of MatLab codes initialy developed by <NAME> during his PhD thesis[2], and later modified at the FEMTO-ST institute of the Université de Franche-Comté and at the LMOPS laboratory [3] of the Université de Lorraine. [1] <NAME>, in Fundamentals of Optical Waveguides, 2nd ed., edited by <NAME> (Academic, Burlington, 2006), pp. 329–397. [2] "Generation et propagation de reseaux periodiques de solitons spatiaux dans un milieu de kerr massif" PhD thesis, université de Franche-Comté 1998. [3] <NAME> et. al., Broadband photonic transport between waveguides by adiabatic elimination Phys. Rev. A, 97 023811 (2018). """ from math import pi, ceil, radians, sqrt, log, sin, cos, acos, asin, exp import time from scipy import special from numpy.fft import fft, ifft, fftshift import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Polygon import numba @numba.vectorize([numba.float64(numba.complex128), numba.float32(numba.complex64)]) def abs2(x): """Square modulus of x. Fastest way possible for a numpy array.""" return x.real**2 + x.imag**2 class Bpm(): """ The Bpm class is used to simulate light propagation - within small refractive index variation guides and small angle of propagation (paraxial) - using the Beam Propagation Method. Parameters ---------- no : float Refractive index of the cladding. lo : float Wavelength of the beam in vaccum (µm). length_z : float Size of the compute window over z (µm). dist_z : float Step over z (µm) nbr_z_disp : int Number of points to display over z. length_x : float Size of the compute window over x (µm). dist_x : float Step over x (µm) """ def __init__(self, no, lo, length_z, dist_z, nbr_z_disp, length_x, dist_x): """ The Bpm class is used to simulate light propagation - within small refractive index variation guides and small angle of propagation (paraxial) - using the Beam Propagation Method. Parameters ---------- no : float Refractive index of the cladding lo : float Wavelength of the beam in vaccum (µm). length_z : float Size of the compute window over z (µm). dist_z : float Step over z (µm). nbr_z_disp : int Number of points to display over z. length_x : float Size of the compute window over x (µm). dist_x : float Step over x (µm). Notes ----- This method creates the following variables within the class :class:`Bpm`: - All input variables. - ko: the free space vector (1/µm). """ self.no = no self.lo = lo self.ko = 2*pi / self.lo # linear wave vector in free space (1/µm) self.length_z = length_z self.dist_z = dist_z self.nbr_z_disp = nbr_z_disp self.dist_x = dist_x self.length_x = length_x def create_x_z(self): """ Create the x, z array and ajust the resolution variables. Returns ------- length_z : float Corrected value due to nbr_z being an int. nbr_z : int Number of points computed over z. nbr_z_disp : int Corrected value due to pas being an int. length_x : float Corrected value due to nbr_x being an int. nbr_x : int Number of point over x (µm). x : array x values between [-length_x/2, length_x/2-dist_x] center on 0. Notes ----- This method creates the following variables within the class :class:`Bpm`: - pas : Interval of computed points between each displayed points. """ assert self.nbr_z_disp > 0 self.nbr_z = ceil(self.length_z / self.dist_z) self.length_z = self.nbr_z * self.dist_z self.pas = ceil(self.length_z / (self.nbr_z_disp * self.dist_z)) self.nbr_z_disp = ceil(self.length_z / (self.pas * self.dist_z)) self.nbr_z_disp += 1 # add 1 for the initial field self.nbr_z += 1 # add 1 for the initial field self.nbr_x = ceil(self.length_x / self.dist_x) # nbr points over x # check if even number if self.nbr_x % 2 != 0: self.nbr_x += 1 # check if multiple of 8: speeds up execution # (was also needed for a obsolete feature) for _ in range(3): if self.nbr_x % 8 != 0: self.nbr_x += 2 else: break self.length_x = self.nbr_x * self.dist_x self.x = np.linspace(-self.length_x/2, self.length_x/2 - self.dist_x, self.nbr_x) return [self.length_z, self.nbr_z, self.nbr_z_disp-1, self.length_x, self.nbr_x, self.x] # Guides # def squared_guide(self, width): """ A lambda function than returns a centered rectangular shape. return 1 if :math:`x >= -width/2` and :math:`x <= width/2` else return 0. Parameters ---------- width : float Waveguide width. """ return lambda x: (x >= -width/2) & (x <= width/2) def gauss_guide(self, width, gauss_pow=1): """ A lambda function than return a centered super-Gaussian shape. :math:`e^{-(x/w)^{2P}}` The waist is defined as width/2 and correspond to the 1/e relative value. See :func:`.example_guides_x` for more details. Parameters ---------- width : float Waveguide width (µm) at 1/e^2 intensity. gauss_pow : int, optional Index of the super-gaussian guide with 1 being a regural gaussian guide and 4 being the conventionnal super-gaussian guide used to describe realistic waveguides. See on en.wikipedia.org/wiki/Gaussian_function #Higher-order_Gaussian_or_super-Gaussian_function. 1 by Default. """ if width == 0: return lambda x: 0 w = width / 2 # width is diameter and w is radius return lambda x: np.exp(-(x / w)**(2*gauss_pow)) def create_guides(self, shape, delta_no, nbr_p, p, offset_guide=0, z=0): """ Create an array of guides over x using peaks positions and for a given shape. Parameters ---------- shape : method :meth:`squared_guide`, :meth:`gauss_guide` or any lambda function that takes one argument and return the relative refractive index for the input position. delta_no : float Difference of refractive index between the core and the cladding. Can contain the losses throught the imaginary part. nbr_p : int Number of guides. p : float Distance between two guides center (µm). offset_guide : float, optional Guide offset from the center (µm). 0 by default. z : list list [start, end] defining the waveguide length. Default length= windows length. Returns ------- peaks : array-like Central position of each guide [guide,z]. dn : array-like Difference of refractive index [z,x]. Can contain the losses throught the imaginary part. Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_z, nbr_x, x, dist_x. """ peaks = np.array([[None]*self.nbr_z]*nbr_p) dn = np.zeros((self.nbr_z, self.nbr_x)) dn_z = np.zeros(self.nbr_x) if nbr_p == 0: return [np.array([[None]*self.nbr_z]), dn] peaks_z = (p*np.linspace(-nbr_p/2, nbr_p/2-1, nbr_p) + p/2 + offset_guide) dn_fix = shape(self.x) # guide shape center on 0 # Sum each identical guide with an offset defined by peaks_z for i in range(nbr_p): dn_z += np.roll(dn_fix, int(round(peaks_z[i] / self.dist_x))) if z == 0: start = 0 end = self.nbr_z else: # assert z[0] >= 0 and z[1] <= self.length_z and z[0] <= z[1] if z[0] > z[1]: print("Warning, the waveguide beginning occurs after the end.", z[0], "should be <=", z[1]) if z[1] > self.length_z: z[1] = self.length_z start = int(z[0]/self.dist_z) end = int(z[1]/self.dist_z) dn[start:end] = dn_z for i in range(start, end): peaks[:, i] = peaks_z dn = dn*delta_no # give a value to the shape return [peaks, dn] def create_curved_guides(self, shape, width, delta_no, curve, half_delay, distance_factor, offset_guide=0): """ Create two curved guides and one linear guide on the center (STIRAP). The central positions over x and z are defined as follow: Left guide: :math:`x_0-p_{min}-curve(z-length\_z/2-half\_delay)^2` Right guide: :math:`x_0+p_{min}+curve(z-length\_z/2+half\_delay)^2` Central guide: :math:`x_0` Parameters ---------- shape : method :meth:`square` or :meth:`gauss` width : float Waveguide width (µm) at 1/e^2 intensity. delta_no : float Difference of refractive index between the core and the cladding. Can contain the losses throught the imaginary part. curve : float curvature factor in :math:`10^{-8} µm^{-2}`. half_delay : float Half distance over z in µm bewteen the two external guides where they are the closest. In other words, the distance from the center and the minimum of one of the curved guides over z. distance_factor : float Factor between the guide width and the minimal distance between the two guides =p_min/width. If distance_factor=1, the curved guides will touch the central guide (p_min=width). offset_guide : float, optional Waveguide offset from the center (µm). 0 by default. Returns ------- peaks : array Central position of each guide as peaks[guide,z]. dn : array Difference of refractive index as dn[z,x]. Can contain the losses throught the imaginary part. Notes ----- This methods uses the following variables defined in :class:`Bpm`: length_z, nbr_z, nbr_x, x, dist_x. """ # all points over z z = np.linspace(0, self.length_z, self.nbr_z) # left curved guide sa = (- offset_guide + curve*(z - self.length_z/2 - half_delay)**2 + width*distance_factor) # right curved guide sb = (offset_guide + curve*(z - self.length_z/2 + half_delay)**2 + width*distance_factor) peaks = np.array([-sa, np.array([offset_guide] * self.nbr_z), sb]) dn = np.zeros((self.nbr_z, self.nbr_x)) dn_fix = shape(self.x) # guide shape center on 0 for i in range(self.nbr_z): dn[i, :] = np.roll(dn_fix, int(round(-sa[i] / self.dist_x))) \ + np.roll(dn_fix, int(round(offset_guide / self.dist_x))) \ + np.roll(dn_fix, int(round(sb[i] / self.dist_x))) dn = dn * delta_no # give a value to the shape return [peaks, dn] # Light # def gauss_light(self, fwhm, offset_light=0): """ Create a gaussien beam in amplitude. :math:`E = e^{-((x-x_0)/w)^{2P}}` The waist is defined as fwhm/sqrt(2*log(2)) and correspond to the 1/e field value and 1/:math:`e^2` intensity value. Parameters ---------- fwhm : float Full width at half maximum (for intensity not amplitude) (µm). offset_light : float, optional Light offset from center in µm. 0 by default. Returns ------- field : array Amplitude values over x in µm. Notes ----- This methods uses the x and dist_x variables defined in :class:`Bpm`. """ spot_size = fwhm / sqrt(2 * log(2)) # such as I=1/e^2 in intensity if spot_size != 0: field = np.exp(-(self.x / spot_size)**2) field = np.roll(field, int(round(offset_light / self.dist_x))) else: field = 0 * self.x # Avoid division by zero error return field def squared_light(self, fwhm, offset_light=0): """ Create a flat-top beam (squared). Parameters ---------- fwhm : float Beam width in µm. offset_light : float, optional Light offset from center in µm. 0 by default. Returns ------- field : array Amplitude values over x in µm. Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_x, x. """ field = np.zeros(self.nbr_x) for j in range(self.nbr_x): if self.x[j] >= -fwhm/2 and self.x[j] <= fwhm/2: field[j] = 1 else: field[j] = 0 field = np.roll(field, int(round(offset_light / self.dist_x))) return field def mode_determ(self, width, delta_no, mode): """ Solve the transcendental equation tan=sqrt that give the modes allowed in a squared guide. Parameters ---------- width : float Waveguide width (µm) at 1/e^2 intensity. delta_no : float Difference of refractive index between the core and the cladding. mode : int Number of the searched mode. Returns ------- h_m : float Transverse propagation constant over x (µm). gamma_m : float Extinction coefficient over x (µm). beta_m : float Longitudinal constant of propagation over z (µm). Raises ------ ValueError if no mode exists. Notes ----- This methods uses the following variables defined in :class:`Bpm`: lo, no, ko. """ width = float(width) if width == 0: raise ValueError("no mode " + str(mode) + " existing") delta_no = float(delta_no.real) lim = self.lo/(2 * width * (self.no + delta_no)) - 1e-12 theta_c = acos(self.no / (self.no + delta_no)) # Critical angle solu = np.linspace( mode*lim + 0.000001, (mode + 1) * lim, round(1 + (lim - 0.000001)/0.000001)) lhs = np.tan( pi * width * (self.no + delta_no) / self.lo * solu - mode*pi/2) rhs = np.sqrt( 0j # to avoid sqrt error when complexe + (sin(theta_c) / solu)**2 - 1) result = rhs - lhs # 0 if left == right minimum = abs(result).min() # return min value : where two equations~= i_min = int(np.where(abs(result) == minimum)[0]) # min value index if i_min == 0: raise ValueError("no mode " + str(mode) + " existing") sin_theta_m = solu[i_min] theta_m = asin(sin_theta_m) # angle at which the mode propagate beta_m = self.ko * (self.no + delta_no) * cos(theta_m) h_m = sqrt((self.ko * (self.no + delta_no))**2 - beta_m**2) gamma_m = (self.no * self.ko * np.sqrt((cos(theta_m) / cos(theta_c))**2 - 1)) return [h_m, gamma_m, beta_m] def mode_light(self, width, delta_no, mode, offset_light=0): """ Create light based on propagated mode inside a squared guide. Parameters ---------- width : float Waveguide width (µm) at 1/e^2 intensity. delta_no : float Difference of refractive index between the core and the cladding. mode : int Number of the searched mode. offset_light : float, optional Light offset from center (µm). 0 by default. Returns ------- field : array Amplitude values over x (µm). h_m : float Transverse propagation constant over x (µm). gamma_m : float Extinction coefficient over x (µm). beta_m : float Longitudinal constant of propagation over z (µm). Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_x, x and the :meth`mode_determ` method. """ field = np.zeros(self.nbr_x) [h_m, gamma_m, beta_m] = self.mode_determ(width, delta_no, mode) if mode % 2 == 0: # if even mode b_b = cos(h_m * width / 2) # Continuity value where x=width/2 for j in range(self.nbr_x): # Compute light based on h,gamma,beta if abs(self.x[j]) <= width/2: # in core field[j] = cos(h_m * self.x[j]) else: # in cladding field[j] = b_b * exp(-gamma_m * ( abs(self.x[j]) - width/2)) else: # if odd mode c_c = sin(h_m * width / 2) # Continuity value where x=width/2 for j in range(self.nbr_x): # Compute light based on h,gamma,beta if abs(self.x[j]) <= width/2: # in core field[j] = sin(h_m * self.x[j]) elif self.x[j] >= width/2: # Right cladding field[j] = c_c * exp(-gamma_m * ( self.x[j] - width/2)) else: # Left cladding field[j] = -c_c * exp(gamma_m * ( self.x[j] + width/2)) field = np.roll(field, int(round(offset_light / self.dist_x))) return [field, h_m, gamma_m, beta_m] def all_modes(self, width, delta_no, offset_light=0): """ Compute all modes allowed by the guide and sum them into one field. Parameters ---------- width : float Waveguide width (µm) at 1/e^2 intensity. delta_no : float Difference of refractive index between the core and the cladding. offset_light : float, optional Light offset from center in µm. 0 by default. Returns ------- field : array Sum of all possibles fields in the guide. h : array, float Transverse propagation constant over x in µm of all modes. gamma : array, float Extinction coefficient over z in µm of all modes. beta : array, float Longitudinal constant of propagation over z in µm of all modes. Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_x and the :meth`mode_light` method. """ i = 0 field = np.zeros(self.nbr_x) h = np.array([]) gamma = np.array([]) beta = np.array([]) while True: try: [field_i, h_m, gamma_m, beta_m] = self.mode_light( width, delta_no, i, offset_light) field = field + field_i h = np.append(h, h_m) gamma = np.append(gamma, gamma_m) beta = np.append(beta, beta_m) i += 1 except ValueError: break return [field, h, gamma, beta] def check_modes(self, width, delta_no): """ Return the last possible mode number. Could be merged with :meth:`all_modes` but would increase the needed time to compute just to display a number. Parameters ---------- width : float Waveguide width (µm) at 1/e^2 intensity. delta_no : float Difference of refractive index between the core and the cladding. Returns ------- m : int Number of the last possible mode for a squared guide. Notes ----- This methods uses the :meth`mode_light` method defined in :class:`Bpm`. """ i = 0 while True: try: self.mode_light(width, delta_no, i) i += 1 except ValueError: print("This guide can propagate up to the modes", i-1) return i-1 def airy_light(self, lobe_size, airy_zero, offset_light=0): """ Create an Airy beam using scipy.special.airy(x). Parameters ---------- lobe_size : float Size of the first lobe (µm). airy_zero : int Cut the beam at the asked zero of the Airy function. n lobes will be displayed. offset_light : float, optional Light offset from center in µm. 0 by default. Returns ------- field : array Amplitude values over x (µm). airy_zero : int Number of lobes. Corrected if higher than the window size. Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_x, length_x, dist_x, x. """ if lobe_size == 0 or airy_zero == 0: return [np.zeros(self.nbr_x), 0] lobe_size = -abs(lobe_size) # Position of the first zero and the asked one zero_pos = special.ai_zeros(airy_zero)[0] first_zero = zero_pos[0] last_zero = zero_pos[-1] # Positions/size of the wanted beam left = last_zero * lobe_size / first_zero right = 10 * lobe_size / first_zero # Airy=1e-10 at x=10 # Reduce the last zero number to stay in the window if -left > self.length_x: left = zero_pos * lobe_size / first_zero # All possibles left posi airy_zero = np.where(-left <= self.length_x)[0] # Higher index if airy_zero.size == 0: # interface don't allow this situation print("The first lobe is bigger than the windows size") return [np.zeros(self.nbr_x), 0] else: # take the higher lobe possible airy_zero = int(airy_zero[-1]) last_zero = zero_pos[airy_zero] # Value of the last lobe airy_zero += 1 # +1 to return the zero number left = last_zero * lobe_size / first_zero # Corrected left positio # Number of points in the Airy window to match the full window nbr_point = int(round(abs((left - right) / self.dist_x))) # Airy window size x_airy = np.linspace(last_zero, 10, nbr_point) # Positions of the Airy and full window center center_airy = int(np.where(x_airy >= 0)[0][0]) center = int(np.where(self.x >= 0)[0][0]) # Airy field field = np.array(special.airy(x_airy)[0]) # add last empty field to reach the windows size if self.x.size > field.size: field = np.append(field, np.zeros((self.x.size-field.size))) else: field.resize(self.x.size) # Cut if exceed windows size # Recenter on 0 field = np.roll(field, int(round(center - center_airy))) field = np.roll(field, int(round(offset_light / self.dist_x))) field /= np.max(field) # Normalized return [field, airy_zero] def init_field(self, field, theta_ext, irrad): """ Initialize phase, field and power variables. Parameters ---------- field : array, array-like Amplitude values for each beams over x (µm) [beam,E] or E theta_ext : float Exterior inclinaison angle (°). irrad : array, array-like Irradiance for each beam (:math:`W/m^2`). Returns ------- progress_pow : array Intensity values over x (µm). Notes ----- This method creates the following variables within the class :class:`Bpm`: - epnc: Convertion factor used to set unit of the field and irradiance. - phase_mat: Free propagation in Fourier space over dz/2. - current_power: Intensity for z=0. - field: Field value with the unit. This methods uses the following variables defined in :class:`Bpm`: no, x, dist_x, nbr_x, nbr_z_disp. """ assert theta_ext <= 28 # paraxial approximation limitation self.field = field.astype(complex) # see en.wiki: Gaussian_beam#Mathematical_form for intensity definition eta = 376.730313668 # Impedance of free space mu_0*c self.epnc = self.no / (2*eta) # used to converte E into I # unit(epnc)= W/V^2 try: # if multiple beams or one beam as [beam] _ = self.field.shape[1] # Raise a IndexError if not nbr_light = self.field.shape[0] # [beam1(x),beam2,beam3] -> 3 # Eo = sqrt(irrad[i] / self.epnc) # Peak value of the field (V/m). for i in range(nbr_light): self.field[i] *= sqrt(irrad[i] / self.epnc) self.field = np.sum(self.field, axis=0) # merge all beam into one except IndexError: # if only one beam and not in form [beam] self.field *= sqrt(irrad / self.epnc) # https://support.lumerical.com/hc/en-us/articles/ # 360034382894-Understanding-injection-angles-in-broadband-simulations theta = asin(sin(radians(theta_ext)) / self.no) # angle in the guide ph = self.no * self.ko * sin(theta) * self.x # k projection over x self.field *= np.exp(1j * ph) # Initial phase due to angle nu_max = 1 / (2*self.dist_x) # max frequency due to sampling # Spacial frequencies over x (1/µm) nu = np.linspace(-nu_max, nu_max * (1 - 2/self.nbr_x), self.nbr_x) intermed = self.no * cos(theta) / self.lo # Linear propagation phase fr = 2 * pi * nu**2 / (intermed + np.sqrt( intermed**2 - nu**2 + 0j)) # Free space matrix self.phase_mat = fftshift(np.exp(-1j * self.dist_z / 2 * fr)) # Initial irradiance self.current_power = self.epnc * abs2(self.field) self.progress_pow = np.zeros([self.nbr_z_disp, self.nbr_x]) self.progress_pow[0, :] = np.array([self.current_power]) return [self.progress_pow] def guide_position(self, peaks, guide, size): """ Return the left and right position index over x of a given guide for each z. Parameters ---------- peaks : array-like Central position of each guide [guide,z]. guide : int Number of the guide. size : float Width (µm). Returns ------- x_beg : array Left indices position of the selected guide over z. x_end : array Right indices position of the selected guide over z. Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_z, x, length_x. """ x_beg = np.array([None]*self.nbr_z) x_end = np.array([None]*self.nbr_z) if peaks.shape[0] != 0: for j in range(self.nbr_z): if peaks[guide, j] is None: continue pos_beg = (peaks[guide, j] - size/2) # Left position # If the position is out of boundery, change interval to # (-length_x/2, length_x) if pos_beg < self.x[0] or pos_beg > self.x[-1]: pos_beg = pos_beg % self.length_x # If the pos_beg is between length_x/2 and length_x then change # interval to (-length_x/2, length_x/2) if pos_beg >= self.x[-1]: pos_beg -= self.length_x # Search the closest index value for this position x_beg[j] = np.where(self.x >= pos_beg)[0][0] pos_end = (peaks[guide, j] + size/2) if pos_end < self.x[0] or pos_end > self.x[-1]: pos_end = pos_end % self.length_x if pos_end >= self.x[-1]: pos_end -= self.length_x x_end[j] = np.where(self.x >= pos_end)[0][0] return [x_beg, x_end] def power_guide(self, x_beg, x_end): """ return the power over z in a given interval by integrating the beam irradiance. Parameters ---------- x_beg : array Left indices position over z for a selected guide. x_end : array Right indices position over z for a selected guide. Returns ------- P : array Normalized power in the guide over z. Notes ----- This methods uses the following variables defined in :class:`Bpm`: nbr_z_disp, progress_pow, pas. """ P = np.zeros(self.nbr_z_disp) # explaination: power[0] is input so take dn[0] but dn[0] is for propag # from 0 to 1 unit so next power power[1] is also dn[0] for i in range(self.nbr_z_disp): if i == 0: index = 0 elif i == self.nbr_z_disp-1: # -1 for beginning at 0 and -1 for final useless value index = len(x_beg)-2 else: index = i*self.pas-1 if x_beg[index] is None or x_end[index] is None: continue if x_beg[index] <= x_end[index]: P[i] = np.trapz( self.progress_pow[i, x_beg[index]:x_end[index]], dx=self.dist_x*1e-6) else: # Take into account guides that crosses the window edges P[i] = np.trapz( self.progress_pow[i, x_beg[index]:], dx=self.dist_x*1e-6) P[i] += np.trapz( self.progress_pow[i, :x_end[index]], dx=self.dist_x*1e-6) P /= np.trapz(self.progress_pow[0], dx=self.dist_x*1e-6) return P # f not normalized, unit: (W/m) def kerr_effect(self, dn, n2=None, chi3=None, kerr_loop=1, variance_check=False, field_start=None, dn_start=None, phase_mat=None): """ Kerr effect: refractive index modulation by the light intensity. See: https://optiwave.com/optibpm-manuals/bpm-non-linear-bpm-algorithm/ Parameters ---------- dn : array Difference of refractive index as dn[z,x]. Can contain the losses throught the imaginary part. n2 : float, optional Nonlinear refractive index responsable for the optical Kerr effect in m^2/W. None by default. chi3 : float, optional Value of the third term of the electric susceptibility tensor in m^2/V^2. None by default. kerr_loop : int, optional Number of corrective loops for the Kerr effect. 1 by default. variance_check : bool, optional Check if the kerr effect converge fast enought. False by default. field_start : array, optional Field without kerr effect. If None were given, take the :meth:`main_compute` field. dn_start : array, optional Refractive index without kerr effect. If None were given, take the :meth:`main_compute` dn. phase_mat: array, optional Free propagation in Fourier space over dz/2. If None were given, take the :meth:`main_compute` phase_mat. Returns ------- dn : array Refractive index with kerr effect. nl_mat : array refractive index modulation with kerr effect. field_x : array Field with the kerr effect at the self.i step. cur_pow : array Beam power with the kerr effect after the dz propagation. Notes ----- This methods uses the following variables defined in :class:`Bpm`: i, epnc, no, ko, dist_z and the :meth:`variance` method. """ assert n2 is None or chi3 is None # assert n2 is not None or chi3 is not None # Set the default value if none were given dn_start = dn[self.i, :] if dn_start is None else dn_start nl_mat = self.ko * self.dist_z * dn_start field_start = self.field if field_start is None else field_start phase_mat = self.phase_mat if phase_mat is None else phase_mat # Influence of the index modulation on the field field_x = field_start * np.exp(1j * nl_mat) # Linear propagation over dz/2 field_x = ifft(phase_mat * fft(field_x)) cur_pow = self.epnc * abs2(field_x) for _ in range(kerr_loop): prev_pow = cur_pow # influence of the beam intensity on the index modulation if n2 is not None: # dn = dn1+dn2*I with I unit: W/m^2 dn_kerr = dn_start + n2*prev_pow elif chi3 is not None: # dn = dn1+ 3chi3/8*no*|E|^2 dn_kerr = dn_start + (3*chi3)/(8*self.no)*(prev_pow/self.epnc) else: dn_kerr = dn_start # identical to no kerr effect but slower nl_mat = self.ko * self.dist_z * dn_kerr # influence of the index modulation on the field field_x = field_start * np.exp(1j * nl_mat) # Linear propagation over dz/2 field_x = ifft(phase_mat * fft(field_x)) # power at pos z cur_pow = self.epnc * abs2(field_x) if variance_check: try: self.variance(prev_pow, cur_pow) # Check if converge except ValueError as ex: print(ex) print("for the step i=", self.i) if np.max(dn_kerr) > self.no/10: print("Careful: index variation too high:", "\t%.2f > %f/10" % (np.max(dn_kerr), self.no), sep="\n") return [dn_kerr, nl_mat, field_x, cur_pow] def variance(self, initial, final): """ This function alerts the user when the kerr effect don't converge fast enough. Raise a ValueError when the power standard deviation exceed :math:`10^{-7}`. Parameters ---------- initial : array Power of the kerr effect looped n-1 time. final : array Power of the kerr effect looped n time. Raises ------ ValueError when the power standard deviation exceed :math:`10^{-7}`. """ finish_sum = np.sum(final) nl_control_amp = 1/finish_sum * np.sqrt(np.abs( np.sum(np.subtract(final, initial)**2) - np.sum(np.subtract(final, initial))**2)) if nl_control_amp > 1e-7: message = "Warning: solution doesn't converge " + \ "for a deviation of " + str(nl_control_amp) raise ValueError(message) def bpm_compute(self, dn, n2=None, chi3=None, kerr_loop=1, variance_check=False): """ Compute BPM principle : free_propag over dz/2, index modulation, free_propag over dz/2. Parameters ---------- n2 : float, optional Nonlinear refractive index responsable for the optical Kerr effect in m^2/W. None by default. chi3 : float, optional Value of the third term of the electric susceptibility tensor in m^2/V^2. None by default. kerr : bool, optional Activate the kerr effect. False by default. kerr_loop : int, optional Number of corrective loops for the Kerr effect. 1 by default. variance_check : bool Check if the kerr effect converge fast enought. False by default. Returns ------- current_power : array Power after the propagation over dz. Notes ----- This method uses the :class:`Bpm` class variables: nbr_lost, i, field, dist_z, dn, nl_mat, phase_mat, epnc, :meth:`kerr_effect`. This method change the values of: field, dn, nl_mat, current_power. """ # Linear propagation over dz/2 self.field = ifft(self.phase_mat *
fft(self.field)
numpy.fft.fft
from subprocess import call import os, time import shutil import io import base64 from IPython.display import HTML import numpy as np from PIL import ImageDraw, Image, ImageFont from tempfile import NamedTemporaryFile import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import animation import matplotlib import math import copy import itertools import tensorflow as tf import subprocess FLAGS = tf.app.flags.FLAGS import cv2 #from pylab import * import pylab from matplotlib.patches import Wedge from scipy.ndimage.filters import gaussian_filter from mpl_toolkits.axes_grid1.anchored_artists import AnchoredDrawingArea from matplotlib.patches import FancyArrowPatch def images2video_highqual(frame_rate, name="temp_name", dir_name="temp_dir"): # make dir if not exists if not os.path.isdir(dir_name): os.mkdir(dir_name) pwd = os.getcwd() os.chdir(dir_name) print("converting to video") video_name = name+'.mp4' cmd = "ffmpeg -y -f image2 -r " + str(frame_rate) + " -pattern_type glob -i '*.png' -crf 5 -preset veryslow " + \ "-threads 16 -vcodec libx264 -pix_fmt yuv420p " + video_name call(cmd, shell=True) call("rm *.png", shell=True) os.chdir(pwd) return os.path.join(dir_name, video_name) def images2video(images, frame_rate, name="temp_name", dir_name="temp_dir", highquality=True): images = np.uint8(images) shape = images.shape assert (len(shape) == 4) assert (shape[3] == 3 or shape[3] == 1) # make dir if not exists if not os.path.isdir(dir_name): os.mkdir(dir_name) pwd = os.getcwd() os.chdir(dir_name) # write out images print("writing images") for i in range(shape[0]): j = Image.fromarray(images[i, :, :, :]) j.save("%05d.jpeg" % i, "jpeg", quality=93) print("converting to video") video_name = name+'.mp4' quality_str = '16' if highquality else '28' cmd = "ffmpeg -y -f image2 -r " + str(frame_rate) + " -pattern_type glob -i '*.jpeg' -crf "+quality_str+" -preset veryfast " + \ "-threads 16 -vcodec libx264 -pix_fmt yuv420p " + video_name call(cmd, shell=True) call("rm *.jpeg", shell=True) os.chdir(pwd) return os.path.join(dir_name, video_name) def play_video(path): video = io.open(path, 'r+b').read() encoded = base64.b64encode(video) return HTML(data='''<video alt="test" controls> <source src="data:video/mp4;base64,{0}" type="video/mp4" /> </video>'''.format(encoded.decode('ascii'))) def visualize_images(images, frame_rate, name="temp_name", dir_name="temp_dir",delete_temp=True): path = images2video(images, frame_rate, name, dir_name) out = play_video(path) if delete_temp: assert not("*" in dir_name) shutil.rmtree(dir_name) return out def write_text_on_image(image, string, lines=[], fontsize=30, lines_color=[]): shape = image.shape assert (len(shape) == 3) assert (shape[-1] == 3 or shape[-1] == 1) image = np.uint8(image) j = Image.fromarray(image) draw = ImageDraw.Draw(j) # font = ImageFont.load_default().font #font = ImageFont.truetype("/usr/share/fonts/truetype/inconsolata/Inconsolata.otf", fontsize) font = ImageFont.truetype("/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf", fontsize) if isinstance(string, list): for s in string: draw.text(s[0], s[1], s[2], font=font) else: draw.text((0, 0), string, (255, 0, 0), font=font) for line in lines: draw.line(line, fill=128, width=1) for line in lines_color: draw.line(line[0], fill=line[1], width=1) return np.array(j) def egomotion2animation(ego): # ego is a egomotion matrix, with nframes * previous frames * 3 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') line = ax.plot([], [], '.', zs=[]) line = line[0] def get_range(ego, axis): data = ego[:, :, axis] data = np.reshape(data, [-1]) return [np.min(data), np.max(data)] ax.axis(get_range(ego, 0) + get_range(ego, 1)) zrange = get_range(ego, 2) ax.set_zlim(zrange[0], zrange[1]) # initialization function: plot the background of each frame def init(): line.set_data([], []) return line, # animation function. This is called sequentially def animate(i): line.set_data(ego[i, :, 0], ego[i, :, 1]) line.set_3d_properties(ego[i, :, 2]) return line, # call the animator. blit=True means only re-draw the parts that have changed. anim = animation.FuncAnimation(fig, animate, init_func=init, frames=ego.shape[0], blit=True) plt.close(anim._fig) return anim def animation2HTML(anim, frame_rate): print("animaiton to video...") if not hasattr(anim, '_encoded_video'): with NamedTemporaryFile(suffix='.mp4') as f: anim.save(f.name, fps=frame_rate, extra_args=['-vcodec', 'libx264', '-pix_fmt', 'yuv420p', '-crf', '28', '-preset', 'veryfast']) video = io.open(f.name, 'r+b').read() encoded = base64.b64encode(video) return HTML(data='''<video alt="test" controls> <source src="data:video/mp4;base64,{0}" type="video/mp4" /> </video>'''.format(encoded.decode('ascii'))) def visualize_egomotion(ego, frame_rate): anim = egomotion2animation(ego) return animation2HTML(anim, frame_rate) def vis_reader(tout, frame_rate, j=0): decoded, isvalid, ego, name, isstop = tout images = decoded[j, :, :, :, :] images_txt = np.zeros_like(images) this_stop = isstop[j] this_valid = isvalid[j] for i in range(images.shape[0]): stop_str = {1: "STOP", 0: "GO", -1: "UNKNOWN"}[this_stop[i]] valid_str = {0: "Egomotion=Invalid", 1: "Egomotion=Valid"}[this_valid[i]] showing_str = stop_str + "\n" + valid_str # showing_str = stop_str images_txt[i, :, :, :] = write_text_on_image(images[i, :, :, :], showing_str) print("showing visualization for video %s" % name[0]) return visualize_images(images_txt, frame_rate) def move_to_line(move, h, w, multiplier = 10): m = copy.deepcopy(move) m[1] *= multiplier m = [m[1] * math.sin(m[0]), m[1]*math.cos(m[0])] return [w / 2, h, w/2+m[0], h-m[1]] def draw_bar_on_image(image, bar_left_top, fraction, fill=(0,0,0,128), height=20, length=120): image = np.uint8(image) j = Image.fromarray(image) draw = ImageDraw.Draw(j) l = bar_left_top draw.rectangle([l, (l[0]+int(length*fraction), l[1]+height)], fill=fill) return np.array(j) def vis_reader_stop_go(tout, prediction,frame_rate, j=0, save_visualize = False, dir_name="temp", provider="nexar_large_speed"): #out_of_date, won't do stop go any more decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres turn = turn[j, :, :] locs = locs[j, :, :] images = decoded[j, :, :, :, :] images_txt = np.zeros_like(images) stop = isstop[j, :] speed = speed[j, :, :] for i in range(images.shape[0]): showing_str = "STOP" if prediction[i] == 1 else "GO!" showing_str += "\n" + str(np.linalg.norm(speed[i, :])) showing_str += "\n" + "GT: STOP" if stop[i] == 1 else "\nGT: GO!" images_txt[i, :, :, :] = write_text_on_image(images[i, :, :, :], showing_str) print("showing visualization for video %s" % name[0]) #vis_speed(speed, frame_rate) if save_visualize: _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] return visualize_images(images_txt, frame_rate, name=short_name, dir_name=dir_name, delete_temp=False) else: return visualize_images(images_txt, frame_rate) def vis_discrete(tout, predict, frame_rate, j=0, save_visualize=False, dir_name="temp"): import data_providers.nexar_large_speed as provider int2str = provider.MyDataset.turn_int2str # city_data and only_seg are mutually exclusive, actually one flag is enough if FLAGS.city_data == 1: decoded = tout[0] speed = tout[1] name = tout[2] isstop = tout[5] turn = tout[6] locs = tout[7] elif FLAGS.only_seg == 1: decoded = tout[0] speed = tout[1] name = tout[2] isstop = tout[6] turn = tout[7] locs = tout[8] else: decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) _, hi, wi, _ = images.shape locs = locs[j, :, :] turn = turn[j, :, :] for i in range(images.shape[0]): # the ground truth course and speed showing_str = "speed: %.1f m/s \ncourse: %.2f degree/s" % \ (locs[i, 1], locs[i, 0]/math.pi*180) for k in range(4): showing_str += "\n"+int2str[k] gtline = move_to_line(locs[i,:], hi, wi) FontHeight=18 FontWidth =8 for k in range(4): images[i, :, :, :] = draw_bar_on_image(images[i,:,:,:], (FontWidth*14, FontHeight*(2+k)), fraction = turn[i, k], fill=(255, 0, 0, 128), height=FontHeight * 2 // 3, length=FontWidth * 4) images[i, :, :, :] = draw_bar_on_image(images[i, :, :, :], (FontWidth * 20, FontHeight * (2 + k)), fraction=predict[i, k], fill=(0, 255, 0, 128), height=FontHeight * 2 // 3, length=FontWidth * 4) images[i, :, :, :] = write_text_on_image(images[i, :, :, :], showing_str, [gtline], fontsize=15) print("showing visualization for video %s" % name[j]) if save_visualize: _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] for i in range(10): this_name = short_name + "_" + str(i) if not os.path.isfile(os.path.join(dir_name,this_name+'.mp4')): break return visualize_images(images, frame_rate, name=this_name, dir_name=dir_name, delete_temp=False) else: return visualize_images(images, frame_rate) def vis_discrete_simplified(tout, predict, frame_rate, j=0, save_visualize=False, dir_name="temp"): import data_providers.nexar_large_speed as provider int2str = provider.MyDataset.turn_int2str decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) _, hi, wi, _ = images.shape locs = locs[j, :, :] turn = turn[j, :, :] for i in range(images.shape[0]): # the ground truth course and speed showing_str = "" for k in range(4): showing_str += int2str[k] + "\n" FontHeight = 18 FontWidth = 8 for k in range(4): images[i, :, :, :] = draw_bar_on_image(images[i, :, :, :], (FontWidth * 14, FontHeight * k), fraction=turn[i, k], fill=(255, 0, 0, 128), height=FontHeight * 2 // 3, length=FontWidth * 4) images[i, :, :, :] = draw_bar_on_image(images[i, :, :, :], (FontWidth * 20, FontHeight * k), fraction=predict[i, k], fill=(0, 255, 0, 128), height=FontHeight * 2 // 3, length=FontWidth * 4) images[i, :, :, :] = write_text_on_image(images[i, :, :, :], showing_str, fontsize=15) print("showing visualization for video %s" % name[j]) if save_visualize: _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] for i in range(10): this_name = short_name + "_" + str(i) if not os.path.isfile(os.path.join(dir_name, this_name + '.mp4')): break return visualize_images(images, frame_rate, name=this_name, dir_name=dir_name, delete_temp=False) else: return visualize_images(images, frame_rate) def generate_meshlist(arange1, arange2): return np.dstack(np.meshgrid(arange1, arange2, indexing='ij')).reshape((-1,2)) def draw_sector(image, predict, car_stop_model, course_delta = 0.5 / 180 * math.pi, speed_delta=0.3, pdf_multiplier=255, speed_multiplier = 5, h=360, w=640, max_speed=30, uniform_speed=False, consistent_vis=(False, 1e-3, 1e2), has_alpha_channel=False): course_samples = np.arange(-math.pi / 2-course_delta, math.pi / 2+course_delta, course_delta) speed_samples = np.arange(0, max_speed+speed_delta, speed_delta) total_pdf = car_stop_model.continous_pdf([predict], generate_meshlist(course_samples, speed_samples), "multi_querys") total_pdf = np.reshape(total_pdf, (len(course_samples), len(speed_samples))) if uniform_speed: total_pdf = total_pdf / np.sum(total_pdf, axis=1, keepdims=True) speed_scaled = max_speed * speed_multiplier # potential xy positions to be filled xy = generate_meshlist(np.arange(w / 2 - speed_scaled, w / 2 + speed_scaled), np.arange(h - speed_scaled, h)) # filter out invalid speed v=np.stack((xy[:,0]-w/2, h-xy[:,1]), axis=1) speed_norm = np.sqrt(v[:,0]**2 + v[:,1]**2) *(1.0/speed_multiplier) valid_speed = np.less(speed_norm, max_speed) xy = xy[valid_speed, :] speed_norm=speed_norm[valid_speed] v=v[valid_speed] course_norm = np.arctan(1.0*v[:, 0] / v[:, 1]) # search the course and speed icourse = np.searchsorted(course_samples, course_norm) ispeed = np.searchsorted(speed_samples, speed_norm) green_portion = 1 total = total_pdf[icourse, ispeed] if consistent_vis[0] == False: total_max = np.amax(total) total = total / total_max * 255*green_portion else: # consistent visualization between methods MIN = consistent_vis[1] MAX = consistent_vis[2] total = np.maximum(MIN, total) total = np.minimum(MAX, total) #total = np.log(total) # map to log(MIN) to log(MAX) #total = (total -np.log(MIN)) / (np.log(MAX) - np.log(MIN)) * 255 total = (total - MIN) / (MAX - MIN) total = np.sqrt(total) total = total * 255 # assign to image image[xy[:, 1], xy[:, 0], :] *= (1-green_portion) image[xy[:, 1], xy[:, 0], 1] += total if has_alpha_channel: image[xy[:, 1], xy[:, 0], 3] = 255 return image def vis_continuous(tout, predict, frame_rate, car_stop_model, j=0, save_visualize=False, dir_name="temp", return_first=False, **kwargs): decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) images = images.astype('float64') _, hi, wi, _ = images.shape locs = locs[j, :, :] for i in range(images.shape[0]): # the ground truth course and speed showing_str = "speed: %.1f m/s \ncourse: %.2f degree/s" % \ (locs[i, 1], locs[i, 0] / math.pi * 180) gtline = move_to_line(locs[i, :], hi, wi, 10) images[i, :, :, :] = draw_sector(images[i, :, :, :], predict[i:(i+1), :], car_stop_model, course_delta=0.3 / 180 * math.pi, speed_delta=0.3, pdf_multiplier=255*10, speed_multiplier=wi/30/3, h=hi, w=wi, consistent_vis=(True, 1e-5, 0.3)) # get the MAP prediction map = car_stop_model.continous_MAP([predict[i:(i+1), :]]) mapline = move_to_line(map.ravel(), hi, wi, 10) # swap the shorter line to the latter, avoid overwriting lines_v = [(gtline, (255,0,0)), (mapline, (0, 0, 255))] if locs[i, 1] < map.ravel()[1]: lines_v = [lines_v[1], lines_v[0]] images[i, :, :, :] = write_text_on_image(images[i, :, :, :], showing_str, lines_color=lines_v, fontsize=15) print("showing visualization for video %s" % name[j]) if return_first: return images[0, :, :, :].astype(np.uint8) if save_visualize: _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] return visualize_images(images, frame_rate, name=short_name, dir_name=dir_name, delete_temp=False) else: return visualize_images(images, frame_rate) def vis_continuous_simplified(tout, predict, frame_rate, car_stop_model, j=0, save_visualize=False, dir_name="temp", vis_radius=10): decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) images = images.astype('float64') _, hi, wi, _ = images.shape locs = locs[j, :, :] locs = copy.deepcopy(locs) for i in range(images.shape[0]): # the ground truth course and speed locs[i, 1] = 10.0 # get the MAP prediction map = car_stop_model.continous_MAP([predict[i:(i+1), :]]) map = map.ravel() map[1] = 10.0 mapline = move_to_line(map, hi, wi, 10) # get map2 map2 = car_stop_model.continous_MAP([predict[i:(i + 1), :]], return_second_best=True) map2 = map2.ravel() map2[1] = 10.0 mapline2 = move_to_line(map2, hi, wi, 10) showing_str = [ [(0, 0), "driver's angular speed: %.2f degree/s" % (locs[i, 0] / math.pi * 180), (255, 0, 0)], [(0, 20), "predicted angular speed: %.2f degree/s" % (map[0] / math.pi * 180), (0, 0, 255)]] # disable the small str on top first showing_str = "" showing_str = "speed: %.1f m/s \ncourse: %.2f degree/s" % \ (locs[i, 1], locs[i, 0] / math.pi * 180) gtline = move_to_line(locs[i, :], hi, wi, 10) if FLAGS.is_MKZ_dataset: # might be problematic since we enable the normalization higher_bound = 0.3 else: higher_bound = 3.0 images[i, :, :, :] = draw_sector(images[i, :, :, :], predict[i:(i+1), :], car_stop_model, course_delta=0.1 / 180 * math.pi, speed_delta=0.1, pdf_multiplier=255*10, speed_multiplier=int(wi/30/3), h=hi, w=wi, uniform_speed=True, consistent_vis=(True, 1e-5, higher_bound)) # disable the MAP line first, since many times not the MAP line is considered ''' # swap the shorter line to the latter, avoid overwriting lines_v = [(gtline, (255,0,0)), (mapline, (0, 0, 255))] if locs[i, 1] < map.ravel()[1]: lines_v = [lines_v[1], lines_v[0]] ''' lines_v = [(gtline, (255,0,0)), (mapline, (0,0,255)), (mapline2, (0, 255, 0))] images[i, :, :, :] = write_text_on_image(images[i, :, :, :], showing_str, lines_color=lines_v, fontsize=24) print("showing visualization for video %s" % name[j]) if save_visualize: _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] return visualize_images(images, frame_rate, name=short_name, dir_name=dir_name, delete_temp=False) else: return visualize_images(images, frame_rate) # some visualization functions for the speed def visLoc(locs, label="NotSet"): axis = lambda i: [loc[i] for loc in locs] import matplotlib.ticker as ticker fig, ax = plt.subplots() #plt.grid(True) ax.plot(axis(0), axis(1), 'g^', ms=2) ylim = ax.get_ylim() xlim = ax.get_xlim() ax.set_xlim(min(xlim[0],ylim[0]) ,max(xlim[1],ylim[1])) ax.set_ylim(min(xlim[0],ylim[0]) ,max(xlim[1],ylim[1])) plt.title("Moving paths from " + label) plt.xlabel("West -- East") plt.ylabel("South -- North") plt.show() def integral(speed, time0): out = np.zeros_like(speed) l = speed.shape[0] for i in range(l): s = speed[i, :] if i > 0: out[i, :] = out[i - 1, :] + s * time0 return out def vis_speed(speed, hz): visLoc(integral(speed, 1.0 / hz), "speed and course") def softmax(x): """Compute softmax values for each sets of scores in x.""" # x has shape: #instances * #classes maxes = np.max(x, axis=1) e_x = np.exp(x - maxes[:, None]) sums = np.sum(e_x, axis=1) return e_x / sums[:, None] def read_video_file(video_path, HEIGHT, WIDTH): # take a video's path and return its decoded contents cmnd = ['ffmpeg', '-i', video_path, '-f', 'image2pipe', '-loglevel', 'panic', '-pix_fmt', 'rgb24', '-vcodec', 'rawvideo', '-'] pipe = subprocess.Popen(cmnd, stdout=subprocess.PIPE, bufsize=10 ** 7) pout, perr = pipe.communicate() image_buff = np.fromstring(pout, dtype='uint8') if image_buff.size % (HEIGHT*WIDTH): print("Height and Width are potentially not correct") return None image_buff = image_buff.reshape((-1, HEIGHT, WIDTH, 3)) return image_buff def vis_discrete_colormap_antialias(tout, predict, frame_rate, j=0, save_visualize=False, dir_name="temp", string_type='image'): if FLAGS.only_seg: decoded = tout[0] speed = tout[1] name = tout[2] isstop = tout[6] turn = tout[7] locs = tout[8] else: decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) _, hi, wi, _ = images.shape turn = turn[j, :, :] def get_color(prob): cm = pylab.get_cmap('viridis') # inferno color = cm(prob) # color will now be an RGBA tuple r = color[0] * 255 g = color[1] * 255 b = color[2] * 255 return r, g, b def clamp(x): x = float(x) return max(0, min(x, 1)) def add_to_ada(ada, pos_x, pos_y, radius, angle_s, angle_e, ring_width, color_code, edge_color, alpha_value): ada.drawing_area.add_artist( Wedge((pos_x, pos_y), radius, angle_s, angle_e, width=ring_width # , color=color_code#'#DAF7A6' , alpha=alpha_value, antialiased=True, ec=edge_color, fc=color_code)) def draw_cake(ada, pos_x, pos_y, radius, angle_s, angle_diff, ring_width, color_code, edge_color, alpha_value, share, shift=45): angle_s = angle_s + shift for i in range(share): if (angle_s + (i + 1) * (angle_diff) / share) == 360: angle_end = 360 else: angle_end = angle_s + (i + 1) * (angle_diff) / share #print(i,'_______________________________________') add_to_ada(ada, pos_x, pos_y, radius, angle_s + i * (angle_diff) / share, angle_end, ring_width, color_code=color_code, edge_color=edge_color, alpha_value=alpha_value[i]) def draw_pile_cake(ada, pos_x, pos_y, radius, angle_s, angle_diff, ring_width, color_code, edge_color, alpha_value, share, x_frac, y_frac, split, fontsize=24, shift=45): # draw the black one draw_cake(ada, pos_x=pos_x, pos_y=pos_y, radius=radius, angle_s=angle_s, angle_diff=360, ring_width=None, color_code='k', edge_color=None, alpha_value=[0.6], share=1) # draw the green one draw_cake(ada, pos_x=pos_x, pos_y=pos_y, radius=radius, angle_s=angle_s, angle_diff=360, ring_width=ring_width, color_code=color_code, edge_color='#FFFFFF', alpha_value=alpha_value, share=4) # draw the white edge draw_cake(ada, pos_x=pos_x, pos_y=pos_y, radius=radius, angle_s=angle_s, angle_diff=360, ring_width=ring_width, color_code='none', edge_color='#FFFFFF', alpha_value=[1, 1, 1, 1], share=4) ada.da.add_artist( ax.annotate(split, xy=(x_frac, y_frac), xycoords="axes fraction", fontsize=fontsize, color='w')) def draw_cake_type(ada, string_type, action_mean, predict_mean): if string_type == 'video': draw_pile_cake(ada, pos_x=210, pos_y=70, radius=60, angle_s=0, angle_diff=360, ring_width=30, color_code='#00FF00', edge_color=None, alpha_value=predict_mean, share=1, x_frac=0.513, y_frac=0.895, split='P') draw_pile_cake(ada, pos_x=80, pos_y=70, radius=60, angle_s=0, angle_diff=360, ring_width=30, color_code='#00FF00', edge_color=None, alpha_value=action_mean, share=1, x_frac=0.185, y_frac=0.895, split='G') elif string_type == 'image': draw_pile_cake(ada, pos_x=240, pos_y=70, radius=70, angle_s=0, angle_diff=360, ring_width=40, color_code='#00FF00', edge_color=None, alpha_value=predict_mean, share=1, x_frac=0.580, y_frac=0.89, split='P', fontsize=32) draw_pile_cake(ada, pos_x=80, pos_y=70, radius=70, angle_s=0, angle_diff=360, ring_width=40, color_code='#00FF00', edge_color=None, alpha_value=action_mean, share=1, x_frac=0.18, y_frac=0.89, split='G', fontsize=32) _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] for i in range(images.shape[0]): action_mean = [clamp(turn[i, 0]+0.05), clamp(turn[i, 2]+0.05), clamp(turn[i, 1]+0.1), clamp(turn[i, 3]+0.05)] predict_mean = [clamp(predict[i, 0]+0.05), clamp(predict[i, 2]+0.05), clamp(predict[i, 1]+0.05), clamp(predict[i, 3]+0.05)] fig = plt.figure(figsize=(16, 12)) ax_original = plt.gca() ax_original.set_axis_off() ax_original.get_xaxis().set_visible(False) ax_original.get_yaxis().set_visible(False) plt.imshow(images[i, :, :, :]) plt.axis('off') ax = fig.add_subplot(121, projection='polar') ax_2 = fig.add_subplot(122, projection='polar') ada = AnchoredDrawingArea(200, 100, 0, 0, loc=2, pad=0., frameon=False) draw_cake_type(ada, string_type, action_mean, predict_mean) ax.add_artist(ada) ax.set_axis_off() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) ax_2.set_axis_off() ax_2.get_xaxis().set_visible(False) ax_2.get_yaxis().set_visible(False) if not os.path.exists(os.path.join(dir_name,'viz')): os.mkdir(os.path.join(dir_name,'viz')) if not os.path.exists(os.path.join(dir_name,'viz', short_name+string_type)): os.mkdir(os.path.join(dir_name, 'viz', short_name+string_type)) fig.savefig(os.path.join(dir_name, 'viz', short_name+string_type,'{0:04}.png'.format(i)), bbox_inches='tight', pad_inches = -0.04, Transparent=True, dpi=100) print(short_name,' ', i, 'Done!') plt.show() plt.close() images2video_highqual(frame_rate = 3, name=short_name, dir_name=os.path.join(dir_name, 'viz', short_name+string_type)) def vis_continuous_colormap_antialias(tout, predict, frame_rate, car_stop_model, j=0, save_visualize=False, dir_name="temp", vis_radius=10): decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) #images = images.astype('float64') _, hi, wi, _ = images.shape locs = locs[j, :, :] def plot_greens(bin_ends, values, image_width, image_height, radius, driver_action): # bins are: [0, bin_ends[0]], [bin_ends[0], bin_ends[1]] ... # and the corresponding values to display are: values[0], values[1] # the final results are added to ada ada = AnchoredDrawingArea(radius * 2, radius, 0, 0, loc=10, pad=0., frameon=False) def add_ada_custom(angle_s, angle_e, value, color): add_to_ada(ada, radius, -(image_height / 2 - radius / 2), radius, angle_s, angle_e, None, color, value) def add_to_ada(ada, pos_x, pos_y, radius, angle_s, angle_e, ring_width, color_code, alpha_value): ada.drawing_area.add_artist( Wedge((pos_x, pos_y), radius, angle_s, angle_e, width=ring_width, fc=color_code # '#DAF7A6' ,ec = 'none', alpha=alpha_value, antialiased=True)) bin_ends = 180 - np.array(bin_ends) bin_ends = bin_ends[::-1] values = np.array(values) values = np.squeeze(values) values = values[::-1] # add a black background add_ada_custom(0, 180, 0.8, "#000000") color_shading = "#00FF00" for i in range(len(values)): #print(bin_ends.shape, '____all____bin_____') #print(values.shape, '___all_____values____') if i < 5: print(bin_ends[i], bin_ends[i + 1], values[i], '________________________') add_ada_custom(bin_ends[i], bin_ends[i + 1], values[i], color_shading) white_border = 1 border_color = '#FFFFFF' add_to_ada(ada, radius, -(image_height / 2 - radius / 2), radius + white_border, 0, 180, white_border, border_color, 1) tick_len = 20 tick_color = '#FFFFFF' tick_width = 1.0 / 2 for i in range(len(bin_ends)): add_to_ada(ada, radius, -(image_height / 2 - radius / 2), radius + white_border, bin_ends[i] - tick_width / 2, bin_ends[i] + tick_width / 2, tick_len, tick_color, 10) driver_action = driver_action / 180.0 * math.pi start = np.array([radius, -(image_height / 2 - radius / 2) - 2]) delta = np.array([radius * math.cos(driver_action), radius * math.sin(driver_action)]) * 0.8 color_driver = "#0000FF" ada.drawing_area.add_artist(FancyArrowPatch(start, start + delta, linewidth=2, color=color_driver)) return ada _, short_name = os.path.split(name[j]) short_name = short_name.split(".")[0] for i in range(images.shape[0]): # the ground truth course and speed locs[i, 1] = 10.0 # get the MAP prediction fig = plt.figure(figsize=(16, 12)) course_bin, speed_bin = car_stop_model.get_bins() course_bin = [-math.pi/2] + course_bin + [math.pi/2] course_bin = np.array(course_bin)*180/math.pi + 90 ax_original = plt.gca() ax_original.set_axis_off() ax_original.get_xaxis().set_visible(False) ax_original.get_yaxis().set_visible(False) plt.imshow(images[i, :, :, :]) plt.axis('off') course = softmax(predict[i:(i + 1), 0:FLAGS.discretize_n_bins]) course = course/np.max(course) print(course_bin, course, '!'*10) ada2 = plot_greens(course_bin, course, 1280, 501, 200, -locs[i, 0]*180/math.pi+90) ax_original.add_artist(ada2) plt.show() if not os.path.exists(os.path.join(dir_name,'viz')): os.mkdir(os.path.join(dir_name,'viz')) if not os.path.exists(os.path.join(dir_name,'viz', short_name)): os.mkdir(os.path.join(dir_name, 'viz', short_name)) fig.savefig(os.path.join(dir_name, 'viz', short_name, '{0:04}.png'.format(i)), bbox_inches='tight', pad_inches=-0.04, Transparent=True, dpi=100) plt.close() print(short_name) print("showing visualization for video %s" % name[j]) def vis_continuous_interpolated(tout, predict, frame_rate, car_stop_model, j=0, save_visualize=False, dir_name="temp", vis_radius=10, need_softmax=True, return_first=False): decoded = tout[0] speed = tout[1] name = tout[2] highres = tout[3] isstop = tout[4] turn = tout[5] locs = tout[6] decoded = highres images = copy.deepcopy(decoded[j, :, :, :, :]) _, hi, wi, _ = images.shape locs = locs[j, :, :] def gen_mask(bin_ends, values, radius, height, width): # convert bin_ends to bin centers new_ends = [] for i in range(len(bin_ends) - 1): new_ends.append((bin_ends[i] + bin_ends[i + 1]) / 2) # RGBA out = np.zeros((height, width, 4), dtype=np.uint8) xy = np.dstack(np.meshgrid(np.arange(width / 2 - radius, width / 2 + radius), np.arange(height - radius, height), indexing='ij')).reshape((-1, 2)) # filter out invalid speed v = np.stack((xy[:, 0] - width / 2, height - xy[:, 1]), axis=1) speed_norm = np.sqrt(v[:, 0] ** 2 + v[:, 1] ** 2) valid_speed = np.less(speed_norm, radius) xy = xy[valid_speed, :] speed_norm = speed_norm[valid_speed] v = v[valid_speed] course_norm = np.arccos(1.0 * v[:, 0] / speed_norm) course_norm = np.degrees(course_norm) value = np.interp(course_norm, new_ends, values) out[xy[:, 1], xy[:, 0], 1] = 255 * value out[xy[:, 1], xy[:, 0], 3] = 255 return out def plot_greens(bin_ends, values, image_width, image_height, radius, driver_action): ada = AnchoredDrawingArea(radius * 2, radius, 0, 0, loc=10, pad=0., borderpad=0., frameon=False) def add_to_ada(ada, pos_x, pos_y, radius, angle_s, angle_e, ring_width, color_code, alpha_value): ada.drawing_area.add_artist( Wedge((pos_x, pos_y), radius, angle_s, angle_e, width=ring_width, fc=color_code # '#DAF7A6' , ec='none', alpha=alpha_value, antialiased=True)) bin_ends = 180 - np.array(bin_ends) bin_ends = bin_ends[::-1] values = np.array(values) values = np.squeeze(values) values = values[::-1] mask = gen_mask(bin_ends, values, radius, image_height, image_width) plt.imshow(mask, alpha=0.8) white_border = 2 border_color = '#FFFFFF' add_to_ada(ada, radius, -(image_height / 2 - radius / 2), radius + white_border, 0, 180, white_border + 1, border_color, 1) tick_len = 20 tick_color = '#FFFFFF' tick_width = 1.0 / 2 for i in range(len(bin_ends)): if abs(bin_ends[i] - 90) > 10: add_to_ada(ada, radius, -(image_height / 2 - radius / 2), radius + white_border, bin_ends[i] - tick_width / 2, bin_ends[i] + tick_width / 2, tick_len, tick_color, 10) driver_action = driver_action / 180.0 * math.pi start =
np.array([radius, -(image_height / 2 - radius / 2)])
numpy.array
import numpy as np import pandas as pd import h5py import os import scipy.sparse import warnings import thimbles as tmb from thimbles.modeling import Model from thimbles import resource_dir from .profiles import convolved_stark from .spectrum import Spectrum from thimbles.tasks import task from thimbles.sqlaimports import * data_cols = np.loadtxt(os.path.join(resource_dir, "transition_data", "Hydrogen_lines.txt"), usecols=[0, 1, 2, 3, 5]) hlines = pd.DataFrame(data=dict(wv=data_cols[:, 0], nlow=np.array(data_cols[:, 1], dtype=int), nup=np.array(data_cols[:, 2], dtype=int), ep=data_cols[:, 3], loggf=data_cols[:, 4]), ) @task() def get_H_mask(wvs, masking_radius=-3.0, nup_max=15): """generates a mask which is false close to hydrogen features inputs wvs: np.ndarray the wavelengths at which to evaluate the mask masking_radius: float the radius around each hydrogen line to exclude. if the radius is positive it is interpreted as a constant number of angstroms to exclude. If the number is negative it is interpreted as the base 10 logarithm of the fraction of the line center wavelength to exclude. That is for a line at wv lambda the radius of exclusion is (10**masking_radius)*lambda. nup_max: int if specified hydrogen lines with upper energy levels above nup_max will not contribute to the mask. """ min_wv = np.min(wvs) max_wv = np.max(wvs) mask = np.ones(wvs.shape, dtype=bool) for line_idx in range(len(hlines)): line_dat = hlines.iloc[line_idx] lwv = line_dat["wv"] nup = line_dat["nup"] if nup > nup_max: continue if masking_radius < 0: mrad = np.power(10.0, masking_radius)*lwv else: mrad = masking_radius if lwv < (min_wv - mrad): continue if lwv > (max_wv + mrad): continue mask *= np.abs(wvs-lwv) > mrad return mask _lemke_dat = None def try_load_lemke(): global _lemke_dat if _lemke_dat is None: try: hf = h5py.File(os.path.join(resource_dir, "transition_data", "lemke.h5"), "r") _lemke_dat = hf return hf except Exception as e: warnings.warn(e) class HydrogenLineOpacity(object): def __init__(self, wv, nlow, nup): try_load_lemke() self.nlow = nlow self.nup = nup self.wv = wv low_str = "{}".format(int(nlow)) up_str = "{}".format(int(nup)) if low_str in list(lemke_dat.keys()): if up_str in list(lemke_dat[low_str].keys()): pass base_group = "{}/{}/".format(low_str, up_str) self.log_nes = np.array(lemke_dat[base_group+"log_ne"]) self.log_ts = np.array(lemke_dat[base_group+"log_t"]) self.alphas = np.array(lemke_dat[base_group+"alphas"]) self.alpha_binner = tmb.coordinatization.as_coordinatization(self.alphas) profile_grid = np.array(lemke_dat[base_group+"profile"]) pinterp = HypercubeGridInterpolator( coordinates=[self.log_ts, self.log_nes], grid_data=profile_grid ) self.pinterp = pinterp def __call__(self, wvs, parameters): """evaluate the line opacity at the given wavelengths Log(Temperature), Log(electron density) = parameters """ #alpha def alpha = delta_wv/F0 F0 = 1.25e-9 * ne^(2/3) input_alpha = np.abs(wvs-self.wv) input_alpha /= np.power(10.0, (2.0/3.0)*parameters[1] -8.9030899869919438) input_alpha = np.clip(input_alpha, self.alphas[0], self.alphas[-1]) alpha_profile = self.pinterp(parameters) alpha_indicies = self.alpha_binner.coordinates_to_indicies(input_alpha) min_indexes = np.array(alpha_indicies, dtype=int) mixing_ratio = alpha_indicies - min_indexes interped_profile = alpha_profile[min_indexes]*(1-mixing_ratio) interped_profile += alpha_profile[np.clip(min_indexes+1, 0, len(alpha_profile)-1)]*mixing_ratio return np.exp(interped_profile) class HydrogenForegroundOpacityModel(Model): _id = Column(Integer, ForeignKey("Model._id"), primary_key=True) __mapper_args__={"polymorphic_identity":"HydrogenForegroundOpacityModel"} def __init__(self, wvs, strength, temperature, electron_density): Model.__init__(self) Spectrum.__init__(self, wvs, np.ones(len(wvs))) self.max_delta_wv_frac = 0.01 self._temperature = temperature self._electron_density = electron_density self.npts_model = len(self.wv) min_wv = self.wv[0] max_wv = self.wv[-1] self.hdat = hlines[(hlines.wv > min_wv)*(hlines.wv < max_wv)].copy() self.series_ids = np.unique(self.hdat.nlow.values) self.series_index = {self.series_ids[idx]:idx for idx in range(len(self.series_ids))} strength = np.atleast_1d(strength) if len(strength) == 1: strength = np.repeat(strength, len(self.series_ids)) elif len(strength) != len(self.series_ids): raise ValueError("different number of strengths than there are available Hydrogen Series!") self._strength = strength self.initialize_lines() self.calc_h_opac() self.calc_opac() @property def electron_density(self): return self._electron_density @electron_density.setter def electron_density(self, value): self._electron_density = value self.calc_h_opac() self.calc_opac() @property def temperature(self): return self._temperature @temperature.setter def temperature(self, value): self._temperature = value self.calc_h_opac() def initialize_lines(self): self.hprofiles = [[] for i in range(len(self.series_ids))] for series_idx in range(len(self.series_ids)): series_id = self.series_ids[series_idx] series_dat = self.hdat[self.hdat.nlow == series_id] for l_idx in range(len(series_dat)): ldat = series_dat.iloc[l_idx] cent_wv = ldat["wv"] nlow, nup = ldat["nlow"], ldat["nup"] self.hprofiles[series_idx].append(HydrogenLineOpacity(cent_wv, nlow, nup)) def calc_h_opac(self): #self._h_opac_profile = np.zeros(self.wv.shape) opac_vecs = [np.zeros(self.wv.shape) for i in range(len(self.series_ids))] theta = 5040.0/self.temperature for series_idx in range(len(self.series_ids)): series_id = self.series_ids[series_idx] series_dat = self.hdat[self.hdat.nlow == series_id] rel_strengths = np.power(10.0, series_dat["loggf"]-theta*(series_dat["ep"])) for line_idx, line_profile in enumerate(self.hprofiles[series_idx]): rel_strength = rel_strengths.iloc[line_idx] lb, ub = self.get_index(line_profile.wv*np.array([1.0-self.max_delta_wv_frac, 1.0+self.max_delta_wv_frac]), clip=True) opac_vecs[series_idx][lb:ub+1] += line_profile(self.wv[lb:ub+1], [np.log10(self.temperature), np.log10(self.electron_density)]) self.opac_matrix = scipy.sparse.bmat(opac_vecs).transpose() @property def strength(self): return self._strength @strength.setter def strength(self, value): self._strength =
np.clip(value, 0.01, np.inf)
numpy.clip
import torch import torch.autograd from torch.autograd import Variable import torch.optim as optim import torch.nn as nn import numpy as np import scipy as sp import scipy.linalg from qpsolvers import solve_qp from core.MADDPG import MADDPGagent from core.ConstraintNetwork import ConstraintNetwork import ipdb class SafeMADDPGagent(MADDPGagent): def __init__(self, N_agents, state_dim, act_dim, constraint_networks_dir, constraint_dim,critic_state_mask = [0,1,2,3,-1,-2], col_margin=0.33, actor_learning_rate=1e-4, critic_learning_rate=1e-3, gamma=0.99, tau=1e-2, max_memory_size=30000, hidden_size_critic = [500, 500], hidden_size_actor = [100, 100], batch_size = 128, soften = True): # Call MADDPGagent's constructor super().__init__(N_agents = N_agents, state_dim = state_dim, act_dim = act_dim, critic_state_mask = critic_state_mask, actor_learning_rate = actor_learning_rate, critic_learning_rate = critic_learning_rate, gamma = gamma, tau = tau, max_memory_size = max_memory_size, hidden_size_critic = hidden_size_critic, hidden_size_actor = hidden_size_actor, batch_size = batch_size) # Extra Params self.col_margin = col_margin self.constraint_dim = constraint_dim self.total_state_dim = self.state_dim * self.N_agents self.total_constraint_dim = self.constraint_dim * self.N_agents self.total_action_dim = self.act_dim * self.N_agents self.constraint_nets = self.total_constraint_dim*[None] # Initialize constraint networks for i in range(self.total_constraint_dim): self.constraint_nets[i] = ConstraintNetwork(self.total_state_dim, self.total_action_dim).double() self.constraint_nets[i].load_state_dict(torch.load(constraint_networks_dir + "constraint_net_" + str(i) + ".pkl")) # Define Solver Globaly self.solver_interventions = 0 self.solver_infeasible = 0 # Choose Solver if soften: self.correct_actions = self.correct_actions_soften else: self.correct_actions = self.correct_actions_hard self.soften = soften def reset_metrics(self): self.solver_interventions = 0 self.solver_infeasible = 0 def get_interventions(self): return self.solver_interventions def get_infeasible(self): return self.solver_infeasible @torch.no_grad() def get_action(self, state, constraint): # Original MADDPG actions = [] for i in range(self.N_agents): s = torch.tensor(state[i], dtype=torch.float64) action = self.actors[i](s).detach() actions.append(action) # merge action and state vectors of all agents action_total = torch.cat(actions).numpy() return actions @torch.no_grad() def correct_actions_hard(self, state, actions, constraint): actions = np.concatenate(actions) state = torch.tensor(np.concatenate(state)) # (1) Problem Variables # Problem specific constants I = np.eye(self.total_action_dim) ones = np.ones(self.total_action_dim) C = np.concatenate(constraint) # Formulate the constraints using neural networks G = np.zeros([self.total_action_dim, self.total_action_dim]) for i, net in enumerate(self.constraint_nets): G[i, :] = net(state).numpy() # (2) Problem Variables in QP form # Cost Function q = -actions P = np.eye(self.total_action_dim) # Constraints A = np.concatenate([-G, I, -I]) ub = np.concatenate([C - self.col_margin, ones, ones]) lb = None # Solve Optimization Problem try: x = solve_qp(P.astype(np.float64), q.astype(np.float64), A.astype(np.float64), ub.astype(np.float64), None, None, None, None) except: self.solver_infeasible +=1 return actions # Count Solver interventions if np.linalg.norm(actions - x) > 1e-3: self.solver_interventions += 1 return x @torch.no_grad() def correct_actions_soften(self, state, actions, constraint): actions = np.concatenate(actions) state = torch.tensor(np.concatenate(state)) # (1) Create solver as a globar variable l1_penalty = 1000 # (2) Problem Variables # Problem specific constants I = np.eye(self.total_action_dim) Z = np.zeros([self.total_action_dim, self.total_action_dim]) ones = np.ones(self.total_action_dim) zeros = np.zeros(self.total_action_dim) C = np.concatenate(constraint) - self.col_margin # Formulate the constraints using neural networks G =
np.zeros([self.total_action_dim, self.total_action_dim])
numpy.zeros
import h5py import os, sys, glob import numpy as np import plotly.offline as offline from preprocessing import analysis_pp from analysis.general_utils import aqua_utils, saving_utils, plotly_utils, general_utils, compare_astro_utils, correlation_utils, stat_utils from scipy.stats.stats import power_divergence from scipy.stats import ttest_ind_from_stats import csv import scipy.signal as ss import math import time from pandas import DataFrame from scipy import optimize import pandas as pd import matplotlib.pyplot as plt from collections import deque class AstrocytePlotter(): def __init__(self, output_folder): self.output_folder = output_folder #For correlation plots self.filter_probs = [0.05, 0.10, 0.25] self.n_samples_corr_fake = 20 self.num_frames_splits_l = [250, 500, 1000, 3000, 6000, 12000, 24000, 100000] self.num_frames_splits_m_l = [0.5, 1, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80] self.num_frames_splits_splits_m_l = [10, 15, 20, 25, 30, 35, 40] self.max_split_comparison_samples = 100 self.behaviours_list_a = ['default', 'rest', 'running', 'running_start', 'running_before', 'stick', 'stick_start', 'stick_end', 'stick_expect', 'stick_rest', 'whisker_rest_stick', 'whisker_stick'] self.behaviours_list_small = ['whisker_rest_stick', 'default', 'rest', 'running', 'stick'] def setup_plot_folders(self, output_experiment_path): paths = ['borders', 'behaviour_heatmaps', 'behaviours_basic', 'signal_delays', 'signal_durations', 'triplet', 'behaviour_activity', 'behaviour_areas', 'signal_basic_samples', 'signal_behaviour_samples', 'correlations', 'random_events', 'splits', 'splits_self', 'signal_amplitudes', 'signal_proportion_delays', 'signal_stick_run_samples', 'splits_split_split', 'triplet_bar', 'size_v_time_corr', 'behaviour_heatmaps_threshold_with_random', 'split_behaviour_grids', 'size_histogram_bh_comparison_individual', 'amplitude_histogram_bh_comparison_individual', 'duration_histogram_bh_comparison_individual',] for p in paths: try: os.makedirs(os.path.join(output_experiment_path, 'plots' , p)) except: pass def setup_file_folders(self, output_experiment_path): paths = ['correlations', 'csv'] for p in paths: try: print(os.path.join(output_experiment_path, 'files', p)) os.makedirs(os.path.join(output_experiment_path, 'files', p)) except: print('Folder structure exists?') def setup_plot_folders_comparison(self, output_experiment_path_comparison): paths = ['behaviour_heatmaps', 'triplet', 'intersection', 'correlations', 'align', 'intersection_border_xcorr_aligned',] for p in paths: try: os.makedirs(os.path.join(output_experiment_path_comparison, 'plots', p)) except: print('Folder structure exists?') def setup_file_folders_comparison(self, output_experiment_path_comparison): paths = ['correlations', 'csv'] for p in paths: try: print(os.path.join(output_experiment_path_comparison, 'files', p)) os.makedirs(os.path.join(output_experiment_path_comparison, 'files', p)) except: print('Folder structure exists?') def setup_plot_folders_all_comparison(self, output_experiment_path_all_comparison): #print(output_experiment_path_all_comparison) paths = ['size_histogram_comparison', 'amplitude_histogram_comparison', 'duration_histogram_comparison', 'size_histogram_bh_comparison', 'amplitude_histogram_bh_comparison', 'duration_histogram_bh_comparison', 'activity_all', 'activity_all_number_minute', 'waterfall_together', 'signal_proportion_delays', 'signal_proportion_delays_alt_average_proportions', 'behaviour_heatmaps_V2_comparison_scale', 'bar_rest_run_all', 'bar_rest_rest_stick_all', 'bar_run_run_stick_all', 'dot_rest_run_pair_all', 'bar_run_stick_run_transition_all', 'rest_to_run_proportions_alt', 'run_to_rest_proportions_alt', 'run_stick_run_proportions_alt', 'run_stick_run_proportions_alt_filter_max_3_frames', 'run_stick_run_proportions_alt_filter_max_5_frames', 'rest_to_run_amplitudes_default_alt', 'rest_to_run_amplitudes_alt', 'rest_to_run_durations_alt', 'rest_to_run_sizes_alt', 'rest_to_run_speed_alt', 'rest_to_run_pupil_alt', 'run_to_rest_amplitudes_default_alt', 'run_to_rest_amplitudes_alt', 'run_to_rest_durations_alt', 'run_to_rest_sizes_alt', 'rest_to_run_amplitudes_default_outlier_alt', 'rest_to_run_amplitudes_outlier_alt', 'rest_to_run_durations_outlier_alt', 'rest_to_run_sizes_outlier_alt', 'run_to_rest_amplitudes_default_outlier_alt', 'run_to_rest_amplitudes_outlier_alt', 'run_to_rest_durations_outlier_alt', 'run_to_rest_sizes_outlier_alt', 'run_to_rest_speed_alt', 'run_to_rest_pupil_alt', 'run_stick_run_amplitudes_default_alt', 'run_stick_run_amplitudes_alt', 'run_stick_run_durations_alt', 'run_stick_run_sizes_alt', 'run_stick_run_amplitudes_default_outlier_alt', 'run_stick_run_amplitudes_outlier_alt', 'run_stick_run_durations_outlier_alt', 'run_stick_run_sizes_outlier_alt', 'run_stick_run_speed_alt', 'run_stick_run_pupil_alt', 'run_stick_run_amplitudes_default_alt_filter_max_3_frames', 'run_stick_run_amplitudes_alt_filter_max_3_frames', 'run_stick_run_durations_alt_filter_max_3_frames', 'run_stick_run_sizes_alt_filter_max_3_frames', 'run_stick_run_speed_alt_filter_max_3_frames', 'run_stick_run_pupil_alt_filter_max_3_frames', 'run_stick_run_amplitudes_default_alt_filter_max_5_frames', 'run_stick_run_amplitudes_alt_filter_max_5_frames', 'run_stick_run_durations_alt_filter_max_5_frames', 'run_stick_run_sizes_alt_filter_max_5_frames', 'run_stick_run_speed_alt_filter_max_5_frames', 'run_stick_run_pupil_alt_filter_max_5_frames', 'all_amplitudes', 'all_durations', 'all_sizes', 'all_amplitudes_filt_bh', 'all_durations_filt_bh', 'all_sizes_filt_bh', 'correlations', 'correlations_long_events', 'correlations_short_events', 'correlations_no_align', 'correlations_no_align_long_events', 'correlations_no_align_short_events', 'correlations_csv', 'correlations_long_events_csv', 'correlations_short_events_csv', 'correlations_no_align_csv', 'correlations_no_align_long_events_csv', 'correlations_no_align_short_events_csv', 'control', 'outliers', 'triplet_dot_all', 'size_v_time_corr_ALL', 'speed_v_events_ALL', 'split_correlation_all', 'behaviour_over_recording', 'pixel_distribution', 'splits_self_all', ] data_paths = [ 'correlations', 'correlations_long_events', 'correlations_short_events', 'correlations_no_align', 'correlations_no_align_long_events', 'correlations_no_align_short_events', 'control', 'outliers', 'behaviour_ratios', 'top_average_values', 'split_correlation_all', 'splits_self_all' ] for p in paths: #print('Trying...', p) try: os.makedirs(os.path.join(output_experiment_path_all_comparison, 'plots', p)) except: print('Folder structure exists?') for p in data_paths: try: os.makedirs(os.path.join(output_experiment_path_all_comparison, 'data', p)) except: print('Folder structure exists?') def get_output_experiment_path(self, astroA, output_folder): experiment_id = '/'.join(astroA.experiment_path.split('/')[-2:]) output_experiment_path = os.path.join(output_folder, experiment_id) return output_experiment_path def plot_all_single(self, astroA): output_experiment_path = self.get_output_experiment_path(astroA, self.output_folder) print('Making dirs', output_experiment_path) self.setup_plot_folders(output_experiment_path) print('Plotting behaviours basic...') #Behaviour basic figs_basic_plots = self.get_behaviour_basic_plots(astroA) for fig_k in figs_basic_plots.keys(): saving_utils.save_plotly_fig(figs_basic_plots[fig_k], os.path.join(output_experiment_path, 'plots', 'behaviours_basic', '{}'.format(fig_k)), width=1000, height=400) print('Plotting random samples of signals...') fig_signals = self.get_signal_figs_samples(astroA, 20) for i, fig_signal in enumerate(fig_signals): fig_signal_path = os.path.join(output_experiment_path, 'plots', 'signal_basic_samples', 'signal_{}'.format(i)) saving_utils.save_plotly_fig(fig_signal, fig_signal_path) print('Plotting borders...') #Borders plot fig_border = self.get_border_plot(astroA) saving_utils.save_plotly_fig(fig_border, os.path.join(output_experiment_path, 'plots' , 'borders', 'border')) print('Plotting behaviour heatmaps...') #Behaviour heatmaps fig_heatmap_grids, fig_heatmap_dff_grids = self.get_behaviour_contour_plots(astroA) heatmap_grid_base_path = os.path.join(output_experiment_path, 'plots', 'behaviour_heatmaps') for k in fig_heatmap_grids.keys(): saving_utils.save_plotly_fig(fig_heatmap_grids[k], os.path.join(heatmap_grid_base_path, k)) saving_utils.save_plotly_fig(fig_heatmap_dff_grids[k], os.path.join(heatmap_grid_base_path, k + 'dff')) print('Plotting behaviour activity bar plot...') behaviour_activity_path = os.path.join(output_experiment_path, 'plots', 'behaviour_activity', 'activity') fig_behaviour_activity = self.get_behaviour_activity_plot(astroA) print('BEHAVIOUR ACTIVITY PATH \nn\\n\n\n\n', behaviour_activity_path) saving_utils.save_plotly_fig(fig_behaviour_activity, behaviour_activity_path, width=1200, height=800) print('Plotting behaviour event size bar plot...') behaviour_area_path = os.path.join(output_experiment_path, 'plots', 'behaviour_areas', 'areas') fig_behaviour_area = self.get_behaviour_area_plot(astroA) saving_utils.save_plotly_fig(fig_behaviour_area, behaviour_area_path) print('Plotting behaviour amplitude size bar plot...') behaviour_amplitude_path = os.path.join(output_experiment_path, 'plots', 'signal_amplitudes', 'amplitudes') fig_behaviour_amplitude = self.get_behaviour_amplitude_bar_plot(astroA) saving_utils.save_plotly_fig(fig_behaviour_amplitude, behaviour_amplitude_path) print('Plotting random samples of signals on different behaviours...') fig_bk_signals = self.get_signal_bk_figs_samples(astroA, 3) for bk in fig_bk_signals.keys(): for i, fig_bk_signal in enumerate(fig_bk_signals[bk]): fig_bk_signal_path = os.path.join(output_experiment_path, 'plots', 'signal_behaviour_samples', 'signal_{}-{}'.format(bk, i)) saving_utils.save_plotly_fig(fig_bk_signal, fig_bk_signal_path) print('Plotting local signal samples with stick and running...') stick_run_sample_path = os.path.join(output_experiment_path, 'plots', 'signal_stick_run_samples') fig_stick_run_samples_l = self.get_stick_run_sample_figs(astroA) for i, sample_figs in enumerate(fig_stick_run_samples_l): saving_utils.save_plotly_fig(sample_figs[0], os.path.join(stick_run_sample_path, '{}-running'.format(i))) saving_utils.save_plotly_fig(sample_figs[1], os.path.join(stick_run_sample_path, '{}-stick'.format(i))) for j in range(min(10, len(sample_figs[2]))): saving_utils.save_plotly_fig(sample_figs[2][j], os.path.join(stick_run_sample_path, '{}-signal_{}'.format(i, j))) bh_l = ['rest', 'stick_rest', 'running', 'stick_run_ind_15'] #Area: None, 60, num_bins = 10 #Duration: None, 30, num_bins = 10 #dff : 0.6, 5, num_bins = 20 print('Comparing behaviour distribution plots for SINGLE...') for n_bins in [10, 20]: print('NUM BINS:', n_bins) for behaviour_l in [bh_l]: #, ['rest', 'running'], ['running', 'stick'], ['rest', 'stick_rest'], ['running', 'stick_run_ind_15']]: for measure, min_measure, max_measure in [ ['area', None, 60], ['dffMax2', 0.6, 5], ['duration', None, 30], ]: for confidence in [True]: measure_name = aqua_utils.get_measure_names(measure) path = os.path.join(output_experiment_path, 'plots', '{}_histogram_bh_comparison_individual'.format(measure_name), 'behaviours-{}-nbins={}-min={}-max={}-conf={}'.format('_'.join(behaviour_l), n_bins, min_measure, max_measure, confidence)) plot, stats_d = self.measure_distribution_bh_compare_plot([astroA], behaviour_l, measure=measure, num_bins=n_bins, min_measure=min_measure, max_measure=max_measure, measure_name=measure_name, confidence=confidence, with_stats=True, mode='MOA') if measure == 'duration': plotly_utils.apply_fun_axis_fig(plot, lambda x : x / astroA.fr, axis='x') saving_utils.save_pth_plt_l_log([plot], [path], axis='x') saving_utils.save_pth_plt_l_log([plot], [path], axis='y') #Save results in text file for i, name in enumerate(stats_d['names']): #Create folder data_folder_path = path try: os.makedirs(path) except: pass temp_d = {k : stats_d[k][i] for k in stats_d.keys()} saving_utils.save_csv_dict(temp_d, os.path.join(data_folder_path, '{}.csv'.format(name)), key_order=['names', 'x', 'mean', 'conf_95', 'std']) np.savetxt(os.path.join(data_folder_path, '{}-data.csv'.format(name)), np.array(temp_d['data']).transpose(), delimiter=",") ''' for confidence in [True]: for with_log in [False, True]: try: measure_name = aqua_utils.get_measure_names(measure) plot, stats_d = self.measure_distribution_bh_compare_plot_exponential_fit([astroA], behaviour_l, measure=measure, num_bins=n_bins, min_measure=min_measure, max_measure=max_measure, measure_name=measure_name, confidence=False, with_stats=True, with_log=with_log) path = os.path.join(output_experiment_path, 'plots', '{}_histogram_bh_comparison_individual'.format(measure_name), 'behaviours-{}-nbins={}-min={}-max={}-conf={}_EXPFIT-withlog={}'.format('_'.join(behaviour_l), n_bins, min_measure, max_measure, confidence, with_log)) if measure == 'duration': plotly_utils.apply_fun_axis_fig(plot, lambda x : x / astroA.fr, axis='x') #Save results in text file for i, name in enumerate(stats_d['names']): #Create folder data_folder_path = path try: os.makedirs(path) except: pass temp_d = {k : stats_d[k][i] for k in stats_d.keys()} if len(name.split('__')) == 2: tx_name = name.split('__')[0] + '_expfit' else: tx_name = name print('TX NAME', name) saving_utils.save_csv_dict(temp_d, os.path.join(data_folder_path, '{}.csv'.format(tx_name)), key_order=['names', 'x', 'mean', 'conf_95', 'std']) np.savetxt(os.path.join(data_folder_path, '{}-data.csv'.format(tx_name)), np.array(temp_d['data']).transpose(), delimiter=",") saving_utils.save_plotly_fig(plot, path) print('THE STAT HERE?', stats_d) except Exception as e: print('EXCEPTION\n\n\n', 'CONF', confidence, 'LOG', with_log, 'measure' ,measure) ''' print('Plotting signal durations...') #Signal durations plot durations_base_path = os.path.join(output_experiment_path, 'plots', 'signal_durations') fig_durations = self.get_signal_durations_plot(astroA) for k in fig_durations.keys(): saving_utils.save_plotly_fig(fig_durations[k], os.path.join(durations_base_path, k + '-durations')) ''' if astroA.aqua_bound == True: print('Plotting triplet plot...') #Triplet plot triplet_base_path = os.path.join(output_experiment_path, 'plots' , 'triplet') radii_path = os.path.join(output_experiment_path, 'plots', 'triplet', 'radii') fig_triplets, fig_radii_border = self.get_triplet_plots(astroA, n_bins=8) for k in fig_triplets.keys(): saving_utils.save_plotly_fig(fig_triplets[k], os.path.join(triplet_base_path, k + '-triplet')) saving_utils.save_plotly_fig(fig_radii_border, radii_path) print('Plotting bar plots (triplet plot bands) num_events, duration, amplitude, ') measure_names = [None, 'Area', 'Amplitude', 'Time (s)'] for bh in ['default', 'rest', 'running', 'stick', 'stick_rest', 'stick_run_ind_15']: for i, measure in enumerate([None, 'area', 'dffMax2', 'time_s']): path = os.path.join(output_experiment_path, 'plots', 'triplet_bar', '{}_{}'.format(bh, measure)) if bh in astroA.event_subsets: fig = self.triplet_bar_plot(astroA, bh=bh, measure=measure, n_bins=8, y_title=measure_names[i]) print('SAVING TRIPLET BAR') saving_utils.save_plotly_fig(fig, path) ''' ''' print('Plotting Signal duration split relative differences...') duration_split_differences_path = os.path.join(output_experiment_path, 'plots', 'signal_durations', 'duration_splits_relative_differences') fig_duration_split_differences = self.get_duration_split_differences_from_default(astroA) saving_utils.save_plotly_fig(fig_duration_split_differences, duration_split_differences_path) ''' ''' #Signal delays plot signal_delays_path = os.path.join(output_experiment_path, 'plots' , 'signal_delays') print('Plotting signal delays') fig_delays_waterfall_d, fig_delays_waterfall_interpolate_d = self.get_waterfall_delays_plot_all(astroA) for fig_k in fig_delays_waterfall_d.keys(): print('FIG K', fig_k) saving_utils.save_plotly_fig(fig_delays_waterfall_d[fig_k], os.path.join(signal_delays_path, fig_k + '-delays_waterfall')) saving_utils.save_plotly_fig(fig_delays_waterfall_interpolate_d[fig_k], os.path.join(signal_delays_path, fig_k + '-delays_waterfall_interpolate')) print('Plotting singal proportion delays...') fig_proportion_delays_path = os.path.join(output_experiment_path, 'plots', 'signal_proportion_delays') fig_proportion_delays_d = self.get_proportion_delays_plot_all([astroA]) for fig_k in fig_proportion_delays_d.keys(): saving_utils.save_plotly_fig(fig_proportion_delays_d[fig_k], os.path.join(fig_proportion_delays_path, fig_k)) print('Plotting sample frame split examples...') figs_frame_split_examples = self.get_frame_split_example_plots(astroA) for pk in figs_frame_split_examples.keys(): for frame_split in figs_frame_split_examples[pk].keys(): figs_frame_split_example_path = os.path.join(output_experiment_path, 'plots', 'correlations', 'frame_split_pair_example_frames_{}_p={}'.format(frame_split, pk)) saving_utils.save_plotly_fig(figs_frame_split_examples[pk][frame_split], figs_frame_split_example_path) print('Plotting random astrocyte FULL sample plots...') figs_random_event_path = os.path.join(output_experiment_path, 'plots', 'random_events') fig_l = self.get_random_astrocyte_plot(astroA) for i, fig in enumerate(fig_l): saving_utils.save_plotly_fig(fig, os.path.join(figs_random_event_path, 'sample_{}'.format(i))) ''' ''' print('Plotting split counter') figs_frame_split = self.get_compare_frame_split_plots(astroA) for pk in figs_frame_split.keys(): figs_frame_split_path = os.path.join(output_experiment_path, 'plots', 'splits', 'splits_p={}'.format(pk)) saving_utils.save_plotly_fig(figs_frame_split[pk], figs_frame_split_path) #TODO RUN THIS print('Plotting frame split xcorr value to full self (self<->split)') fig_frame_split_self_path_a = os.path.join(output_experiment_path, 'plots', 'splits_self', 'splits_self_a') fig_frame_split_self_path_b = os.path.join(output_experiment_path, 'plots', 'splits_self', 'splits_self_b') fig_frame_split_self_a, fig_frame_split_self_b = self.get_compare_full_self_frame_split_plot_xcorr(astroA) saving_utils.save_plotly_fig(fig_frame_split_self_a, fig_frame_split_self_path_a) saving_utils.save_plotly_fig(fig_frame_split_self_b, fig_frame_split_self_path_b) ''' ''' print('Plotting frame split xcorr value to splits splits (split<->split)') fig_frame_split_self_path_a = os.path.join(output_experiment_path, 'plots', 'splits_split_split', 'splits_self_a') fig_frame_split_self_path_b = os.path.join(output_experiment_path, 'plots', 'splits_split_split', 'splits_self_b') fig_frame_split_self_a, fig_frame_split_self_b = self.get_compare_full_self_frame_split_split_plot_xcorr(astroA) saving_utils.save_plotly_fig(fig_frame_split_self_a, fig_frame_split_self_path_a) saving_utils.save_plotly_fig(fig_frame_split_self_b, fig_frame_split_self_path_b) ''' ''' print('Plotting first last 20 min of rest heatmap comparison...') fig_20min_rest_path = os.path.join(output_experiment_path, 'plots', 'splits_self', 'splits_first_last_rest_20min') fig_20min_rest = self.get_plot_first_last_x_min_behaviour(astroA, num_min=20, behaviour_ind='rest') if fig_20min_rest is not None: saving_utils.save_plotly_fig(fig_20min_rest, fig_20min_rest_path) print('Plotting continuous 20 min rest heatmaps compared to start...') fig_20min_cont_rest_path = os.path.join(output_experiment_path, 'plots', 'splits_self', 'cont_splits_first_last_rest_20min') fig_20min_cont_rest = self.get_plot_x_min_rest_relative(astroA, num_min=20, behaviour_ind='rest') if fig_20min_cont_rest is not None: saving_utils.save_plotly_fig(fig_20min_cont_rest, fig_20min_cont_rest_path) ''' ''' plt.ioff() print('Plotting Size vs Time correlation plot...') path = os.path.join(output_experiment_path, 'plots', 'size_v_time_corr') areas = np.log(astroA.res_d['area']) times = astroA.res_d['time_s'] r, p = stat_utils.get_pearsonr(times, areas) df = pd.DataFrame({'Size': areas, 'Time': times}) title ='Size vs Time correlation plot' text = 'r = {}, p < {}'.format(general_utils.truncate(r, 2), p) for kind in ['reg', 'hex', 'kde']: plotly_utils.seaborn_joint_grid(df, 'Size', 'Time', kind=kind, text=text) plt.savefig(os.path.join(path, '{}.svg'.format(kind))) plt.savefig(os.path.join(path, '{}.png'.format(kind))) ''' ''' print('Split BEHAVIOUR GRIDS...') n_chunks = 3 for bh in ['default', 'running', 'rest']: event_grid_splits = aqua_utils.split_n_event_grids(astroA, bh=bh, n=n_chunks) path = os.path.join(output_experiment_path, 'plots', 'split_behaviour_grids') for i, event_grid_split in enumerate(event_grid_splits): plot = plotly_utils.plot_contour(event_grid_split, title='{}-split {}/{}'.format(bh, i+1, len(event_grid_splits))) saving_utils.save_plotly_fig(plot, os.path.join(path, 'bh_{}-split_{}-chunks_{}'.format(bh,i,n_chunks))) ''' ''' print('HEATMAPS V2_2... (each astro day scaled with random)') for dff_mode in ['False']: #for bh in ['default', 'running', 'rest', 'stick_run_ind_15', 'stick_rest']: for bh in ['default']: print('THIS REPETITION LOOP MUST BE ONCE') path = os.path.join(output_experiment_path, 'plots', 'behaviour_heatmaps_threshold_with_random') d = self.get_individual_heatmaps_threshold_scaled(astroA, bh=bh, threshold=0.7, num_samples=3, dff_mode=dff_mode) if d is None: continue saving_utils.save_plotly_fig(d['contour'], os.path.join(path, 'bh_{}-dff_{}'.format(bh, dff_mode))) for i, contour_random in enumerate(d['contour_random']): saving_utils.save_plotly_fig(contour_random, os.path.join(path, 'bh_{}-dff_{}-random_{}'.format(bh, dff_mode, i))) ''' ''' #Every 60 seconds, whole vid with_donwsample = True downsample_length = int(astroA.fr * 60) second_length = astroA.fr bh_l = ['default', 'rest', 'running'] end_t = -1 start_t = 0 for bh in bh_l: save_base_path = os.path.join(output_experiment_path, 'plots', 'video_plots-{}-d{}-e{}'.format(bh, downsample_length, end_t)) try: os.makedirs(save_base_path) except: print('Folder exists') self.make_event_appended_video(astroA, bh=bh, start_t=start_t, end_t=end_t, downsample_length=downsample_length, save_base_path=save_base_path) ''' ''' #Every 2 seconds, first 120 seconds with_donwsample = True downsample_length = int(astroA.fr * 2) end_t = int(1200 * astroA.fr) start_t = 0 second_length = astroA.fr #bh_l = ['default', 'rest', 'running'] bh_l = ['default', 'rest', 'running'] for bh in bh_l: save_base_path = os.path.join(output_experiment_path, 'plots', 'video_plots-{}-d{}-e{}'.format(bh, downsample_length, end_t)) try: os.makedirs(save_base_path) except: print('Folder exists') self.make_event_appended_video(astroA, bh=bh, start_t=start_t, end_t=end_t, downsample_length=downsample_length, save_base_path=save_base_path) ''' ''' bh_l = ['default', 'rest', 'running'] for bh in bh_l: end_t = int(120*astroA.fr) time_sorted_events_trunc = sorted((i for i,e in enumerate(astroA.res_d['tEnd']) if (e < frame_max))) save_base_path = os.path.join(output_experiment_path, 'plots', 'video_plots_precise-{}-d{}-e{}'.format(bh, downsample_length, end_t)) downsample_length = int(astroA.fr * 2) self.make_event_appended_video_precise(astroA, event_l=time_sorted_events_trunc, end_t=end_t, downsample_length=downsample_length, save_base_path=save_base_path) ''' ''' bh_l = ['rest', 'running'] for bh in bh_l: start_t = 0 end_t = int(1200 * astroA.fr) downsample_length = int(astroA.fr * 2) save_base_path = os.path.join(output_experiment_path, 'plots', 'video_plots_bh_frames-{}-d{}-e{}'.format(bh, downsample_length, end_t)) try: os.makedirs(save_base_path) except: print('Folder exists') self.make_event_appended_video_bh_frames(astroA, bh=bh, start_t=start_t, end_t=end_t, downsample_length=downsample_length, save_base_path=save_base_path) ''' def make_event_appended_video_bh_frames(self, astro, bh, start_t=0, end_t=-1, downsample_length=60, save_base_path=''): curr_indices = astro.indices_d[bh][start_t:end_t] if len(curr_indices) % downsample_length != 0: curr_indices_fix = curr_indices[:-(len(curr_indices) % downsample_length)] else: curr_indices_fix = curr_indices num_splits = len(curr_indices_fix) // downsample_length curr_indices_split = {i : curr_indices_fix[i*downsample_length:(i+1)*downsample_length] for i in range(num_splits)} curr_indices_split['default'] = astro.indices_d['default'] bh_event_subsets = aqua_utils.get_event_subsets(curr_indices_split, astro.res_d) x2d_all = np.zeros([astro.input_shape[0], astro.input_shape[1]]) for i in range(num_splits): print(i, '/', num_splits) x2d = aqua_utils.get_event_grid_from_x2D(astro.res_d['x2D'][bh_event_subsets[i]], (astro.input_shape[0], astro.input_shape[1])) x2d_all = x2d_all + x2d x2d_all_normalized = np.copy(x2d_all) / ((i+1) * (downsample_length)) * astro.minute_frames #Linearly rescale 0-1 x2d_all_normalized = (x2d_all_normalized - np.min(x2d_all_normalized)) / (np.max(x2d_all_normalized) - np.min(x2d_all_normalized)) fig = plotly_utils.plot_contour(x2d_all_normalized, title='', tick_x=[0.2, 0.4, 0.6, 0.8]) saving_utils.save_plotly_fig(fig, os.path.join(save_base_path, '{:05d}'.format(i)), save_svg=False) def make_event_appended_video(self, astro, bh='default', start_t=0, end_t=-1, downsample_length=60, save_base_path=''): # Create array of (end_t - start_t) values consisting of event indices (lists) inside each frame #Time sorted events [[time, event_id], ..] sorted by time with_downsample = False if downsample_length == 1 else True if end_t == -1: end_t = astro.total_indices time_sorted_events = deque(sorted((e,i) for i,e in enumerate(astro.res_d['tBegin'][astro.event_subsets[bh]]))) #Populate events over time: for each frame we have a list of event indices starting then events_ot_l = [] for t in range(start_t, end_t): events_ot_l.append([]) #As long as first element has same time, we pop to add to our list while(len(time_sorted_events) != 0 and t == time_sorted_events[0][0]): events_ot_l[t].append(time_sorted_events.popleft()[1]) ################################################################# #Downsample if with_downsample: new_events_ot_l = general_utils.merge_l_l(events_ot_l, downsample_length) else: # copy it, not really need to new_events_ot_l = [ev for ev in events_ot_l] # Generate plots over time x2d_all = np.zeros([astro.input_shape[0], astro.input_shape[1]]) for i, segment_events_l in enumerate(new_events_ot_l): x2d = aqua_utils.get_event_grid_from_x2D(astro.res_d['x2D'][segment_events_l], (astro.input_shape[0], astro.input_shape[1])) x2d_all = x2d_all + x2d #Normalize x2d_all_normalized = np.copy(x2d_all) / ((i+1) * (downsample_length if with_downsample else 1)) * astro.minute_frames #Linearly rescale 0-1 x2d_all_normalized = (x2d_all_normalized - np.min(x2d_all_normalized)) / (np.max(x2d_all_normalized) - np.min(x2d_all_normalized)) fig = plotly_utils.plot_contour(x2d_all_normalized, title='', tick_x=[0.2, 0.4, 0.6, 0.8]) saving_utils.save_plotly_fig(fig, os.path.join(save_base_path, '{:05d}'.format(i)), save_svg=False) #Pass event list to choose which events. E.g. events in first 2 minutes #Slow but potentially prettier method. You can see each individual event its duration def make_event_appended_video_precise(self, astro_curr, event_l, end_t, downsample_length, save_base_path): dim_1 = astro_curr.input_shape[0] dim_2 = astro_curr.input_shape[1] #dim_3 = np.sum([x[2] for x in astro_curr.input_shape_l]) dim_3 = end_t a = np.zeros([dim_1, dim_2, dim_3]) for i, event in enumerate(astro_curr.res_d['x3D'][event_l]): print(i) unraveled = np.unravel_index(event, [dim_1, dim_2, dim_3], order='F') begin_time = np.min(unraveled[2]) end_time = np.max(unraveled[2]) added_arr = np.zeros([dim_1, dim_2]) for u_i in range(len(unraveled[0])): c_0 = unraveled[0][u_i] c_1 = unraveled[1][u_i] t = unraveled[2][u_i] #print('begin {} end {}'.format(begin_time, end_time)) if added_arr[c_0, c_1] == 1: continue a[c_0, c_1, t:] += 1 added_arr[c_0, c_1] = 1 return a for i in range(a_3d.shape[2] // (downsample_length if with_downsample else 1)): print(i) x2d = np.sum(a_3d[:, :, i*downsample_length:(i+1)*downsample_length], axis=2) #Normalize x2d_all_normalized = np.copy(x2d) / ((i+1) * (downsample_length if with_downsample else 1)) * astro_curr.minute_frames #Linearly rescale 0-1 x2d_all_normalized = (x2d_all_normalized - np.min(x2d_all_normalized)) / (np.max(x2d_all_normalized) - np.min(x2d_all_normalized)) fig = plotly_utils.plot_contour(x2d_all_normalized, title='', tick_x=[0.2, 0.4, 0.6, 0.8]) saving_utils.save_plotly_fig(fig, os.path.join(save_base_path, '{:05d}'.format(i)), save_svg=False) #--------#--------#--------#--------#--------#--------#--------#--------#--------#-------- #Experiment_id/days def plot_comparisons(self, astroA_l): output_experiment_path_comparison, days_str, day_l_s, astroA_l_s = self.setup_comparison_vars(astroA_l, self.output_folder) print(output_experiment_path_comparison) #Setup folders self.setup_plot_folders_comparison(output_experiment_path_comparison) ''' #Behaviour contour plots compare for k in astroA_l[0].event_subsets.keys(): try: event_grids_l = [astroA.event_grids_compare[k] for astroA in astroA_l] fig_k = plotly_utils.plot_contour_multiple(event_grids_l, title=k + '_event grid comparison_' + days_str, height=500, width=600*len(astroA_l)) saving_utils.save_plotly_fig(fig_k , os.path.join(output_experiment_path_comparison, 'plots', 'behaviour_heatmaps', k), height=500, width=600*len(astroA_l)) except: continue for k in astroA_l[0].event_subsets.keys(): try: event_grids_dff_l = [astroA.event_grids_compare_dff[k] for astroA in astroA_l] fig_k = plotly_utils.plot_contour_multiple(event_grids_dff_l, title=k + '_event grid dff comparison_' + days_str, height=500, width=600*len(astroA_l)) saving_utils.save_plotly_fig(fig_k , os.path.join(output_experiment_path_comparison, 'plots', 'behaviour_heatmaps', k + '-dff'), height=500, width=600*len(astroA_l)) except: continue ''' ''' name = '{}-{}'.format(astroA_l[0].day, astroA_l[1].day) behaviour_l = ['default', 'running', 'rest'] p_l = [0.05, 0.1, 0.25] dff_mode_l = [False, True] for behaviour in behaviour_l: for dff_mode in dff_mode_l: for p in p_l: same_spots_prob, astro_filt_l, astro_all_filt, astro_nz_bool_l, astro_all_nz_bool = compare_astro_utils.get_astro_pair_same_spots_prob([astroA_l[0], astroA_l[1]], p=0.05, dff_mode=True) print('Plotting intersections...') top_five_perc_path = os.path.join(output_experiment_path_comparison, 'plots', 'intersection', name + 'bh_{}-dff_{}-top_{}'.format(behaviour, dff_mode, p)) nz_border_path = os.path.join(output_experiment_path_comparison, 'plots', 'intersection', name + 'nz_border') fig_perc = plotly_utils.plot_contour_multiple([astro_filt_l[0], astro_filt_l[1], astro_all_filt], subplot_titles=['top 5% values day {}'.format(astroA_l[0].day), 'top 5% values day {}'.format(astroA_l[1].day), 'intersection'], title='Probability to occur randomly {:.2e}'.format(same_spots_prob), color_bar_title='', line_width=0.1, font_size_individual=40, scale_equal=False) fig_bord = plotly_utils.plot_contour_multiple([astro_nz_bool_l[0].astype(int), astro_nz_bool_l[1].astype(int), astro_all_nz_bool.astype(int)], subplot_titles=['non-0 values day {}'.format(astroA_l[0].day), 'non-0 values day {}'.format(astroA_l[1].day), 'intersection'], title='Event activity borders', color_bar_title='', line_width=0.1, font_size_individual=40, scale_equal=False) saving_utils.save_plotly_fig(fig_perc, top_five_perc_path, width=2000, height=1000) saving_utils.save_plotly_fig(fig_bord, nz_border_path, width=2000, height=1000) ''' ''' behaviour_l = ['default', 'running', 'rest'] dff_mode_l = [False, True] p_l = [0.05, 0.10, 0.25] for behaviour in behaviour_l: print('Plotting intersections after alignment...') #move_vector = compare_astro_utils.get_move_vector_xcorr_default(astroA_l[0], astroA_l[1]) move_vector = [0, 0] #p_l = [0.05, 0.1, 0.25] for dff_mode in dff_mode_l: for p in p_l: same_spots_prob, astro_filt_l, astro_all_filt, astro_nz_bool_l, astro_all_nz_bool = compare_astro_utils.get_astro_pair_same_spots_prob([astroA_l[0], astroA_l[1]], p=0.05, move_vector=move_vector, dff_mode=True) print('Plotting intersections...') top_perc_path = os.path.join(output_experiment_path_comparison, 'plots', 'intersection_border_xcorr_aligned', name + 'bh_{}-dff_{}-top_{}'.format(behaviour, dff_mode, p)) fig_perc = plotly_utils.plot_contour_multiple([astro_filt_l[0], astro_filt_l[1], astro_all_filt], subplot_titles=['top 5% values day {}'.format(astroA_l[0].day), 'top 5% values day {}'.format(astroA_l[1].day), 'intersection'], title='Probability to occur randomly {:.2e}'.format(same_spots_prob), color_bar_title='', line_width=0.1, font_size_individual=40, scale_equal=False) saving_utils.save_plotly_fig(fig_perc, top_perc_path, width=2000, height=1000) ''' ''' print('Plotting correlations compare...') figs_compare_corrs = self.get_compare_max_corrs_plots(astroA_l) for pk in figs_compare_corrs.keys(): figs_compare_corrs_path = os.path.join(output_experiment_path_comparison, 'plots', 'correlations', 'max_correlations_compare_p={}'.format(pk)) saving_utils.save_plotly_fig(figs_compare_corrs[pk], figs_compare_corrs_path) print('Plotting compare alignments intersection sizes...') figs_compare_align = self.get_compare_align_plots(astroA_l) for setting in figs_compare_align.keys(): for pk in figs_compare_align[setting].keys(): figs_compare_align_path = os.path.join(output_experiment_path_comparison, 'plots', 'align', 'align_compare_s={}_p={}'.format(setting, pk)) saving_utils.save_plotly_fig(figs_compare_align[setting][pk], figs_compare_align_path) for behaviour in self.behaviours_list_small: if (behaviour in astroA_l[0].indices_d) and (behaviour in astroA_l[1].indices_d): print('Plotting compare alignments xcorr full... (Aligning borders then taking xcorr value of the 2 astrocytes. Then compare to random astrocyte plots)') figs_compare_align_xcorr = self.get_compare_align_plots_xcorr(astroA_l, align_setting='xcorr', dff_mode=False, behaviour=behaviour) figs_compare_align_xcorr_path = os.path.join(output_experiment_path_comparison, 'plots', 'align', 'align_compare_xcorr_values_full_{}'.format(behaviour)) saving_utils.save_plotly_fig(figs_compare_align_xcorr, figs_compare_align_xcorr_path) print('Plotting compare alignments dff xcorr full... (Aligning borders then taking xcorr value of the 2 astrocytes. Then compare to random astrocyte plots)') figs_compare_align_xcorr_dff = self.get_compare_align_plots_xcorr(astroA_l, align_setting='xcorr', dff_mode=True, behaviour=behaviour) figs_compare_align_xcorr_dff_path = os.path.join(output_experiment_path_comparison, 'plots', 'align', 'align_compare_xcorr_values_full_dff_{}'.format(behaviour)) saving_utils.save_plotly_fig(figs_compare_align_xcorr_dff, figs_compare_align_xcorr_dff_path) else: print('Behaviour {} not existent in astro'.format(behaviour)) print('Plotting sample for comparison') #Make contour plot of astro1, astro2, sample_1, sample_2, sample_3 figs_compare_samples = self.get_compare_corrs_samples_plots(astroA_l) for pk in figs_compare_samples.keys(): for s in figs_compare_samples[pk].keys(): path_s = os.path.join(output_experiment_path_comparison, 'plots', 'correlations', '{}_p={}'.format(s, pk)) saving_utils.save_plotly_fig(figs_compare_samples[pk][s], path_s) behaviour_corr_path = os.path.join(output_experiment_path_comparison, 'plots', 'correlations', 'behaviour_corr') fig_behaviour_corr = self.get_plot_compare_behaviour_correlation(astroA_l) saving_utils.save_plotly_fig(fig_behaviour_corr, behaviour_corr_path) behaviour_corr_path = os.path.join(output_experiment_path_comparison, 'plots', 'correlations', 'behaviour_corr_dff') fig_behaviour_corr = self.get_plot_compare_behaviour_correlation(astroA_l, dff_mode=True) saving_utils.save_plotly_fig(fig_behaviour_corr, behaviour_corr_path) ''' def plot_comparisons_all(self, astroA_l, astroA_l_pairs=None, astroA_l_good_pairs=None, astroA_l_good=None, astroA_long_l=None): output_experiment_path_all_comparison, _, _, astroA_l_s = self.setup_comparison_all_vars(astroA_l, self.output_folder) print('Plotting sizes histogram dataset comparison for each behaviour') self.setup_plot_folders_all_comparison(output_experiment_path_all_comparison) bh_l = ['rest', 'stick_rest', 'running', 'stick_run_ind_15'] astroA_l_filt = [] bh_l_test = ['rest', 'running', 'stick_run_ind_15', 'stick_rest'] for astroA in astroA_l: include = True for bh in bh_l_test: if bh not in astroA.indices_d.keys() or bh not in astroA.activity_ratios.keys(): include = False print(':(', astroA.print_id, bh) if include: astroA_l_filt.append(astroA) day_0_1_pairs = [] if astroA_l_pairs is not None: for astroA_l_pair in astroA_l_pairs: if astroA_l_pair[1].day == 1: day_0_1_pairs.append(astroA_l_pair) ''' print('Saving results of ratios running, rest, stick-running, stick-rest of each astrocyte in csv...') c = ['running', 'rest', 'stick_run_ind_15', 'stick_rest', 'total_time_s', 'total_time_m', 'avg_running_speed', 'avg_speed_global'] c_n = ['running', 'rest', 'stick_run', 'stick_rest', 'total_time(s)', 'total_time(m)', 'avg_speed(cm/s)', 'avg_speed_global(cm/s)'] astro_ratios_np = np.zeros([len(astroA_l), len(c)]) r = [astroA.id for astroA in astroA_l] for i, astroA in enumerate(astroA_l): num_frames = len(astroA.indices_d['default']) num_seconds = num_frames / astroA.fr num_minutes = general_utils.truncate(num_seconds / 60.0, 2) num_seconds = general_utils.truncate(num_seconds, 2) for j, k in enumerate(c): if j == 4: astro_ratios_np[i, j] = num_seconds continue if j == 5: astro_ratios_np[i, j] = num_minutes continue if k not in astroA.indices_d: if 'speed' in k: if k == 'avg_running_speed': astro_ratios_np[i, j] = np.mean(astroA.speed_values[astroA.speed_values!=0]) elif k == 'avg_speed_global': astro_ratios_np[i, j] = np.mean(astroA.speed_values) else: print('Not exist', k, astroA.id) astro_ratios_np[i, j] = 0 continue else: astro_ratios_np[i, j] = general_utils.truncate(len(astroA.indices_d[k]) / num_frames, 3) behaviour_ratios_csv_path = os.path.join(output_experiment_path_all_comparison, 'data', 'behaviour_ratios', 'ratios.csv') DataFrame(astro_ratios_np, columns=c, index=r).to_csv(behaviour_ratios_csv_path) ''' ''' print('Saving results of average maximum characteristic values (e.g. Average maximum duration over all astrocyte recordings)') measure_l = ['area', 'dffMax2', 'duration'] measure_names_l = ['area', 'amplitude', 'duration'] bh_l = ['rest', 'stick_rest', 'running', 'stick_run_ind_15'] settings = ['max', 'meantop10', 'mediantop10', 'meantop5', 'mediantop5'] settings_d_i = {setting: i for i, setting in enumerate(settings)} np_d = [np.zeros([len(astroA_l), len(bh_l)]) for i in range(len(settings))] max_np = np.zeros([len(astroA_l), len(bh_l)]) r = [astroA.id for astroA in astroA_l] #Dictionary of events for each behaviour for each astrocyte. #events_d_d['astro_id']['behaviour'] = event ids of astro id events_d_d = {} for astroA in astroA_l: d = {'default': astroA.indices_d['default']} for bh in bh_l: if bh in astroA.indices_d: d[bh] = astroA.indices_d[bh] events_d_d[astroA.print_id] = aqua_utils.get_event_subsets(d, astroA.res_d) base_path = os.path.join(output_experiment_path_all_comparison, 'data', 'top_average_values') for m_i, measure in enumerate(measure_l): for i, astroA in enumerate(astroA_l): measure_vals_all = astroA.res_d[measure] bh_events_d = events_d_d[astroA.print_id] for j, bh in enumerate(bh_l): if bh in bh_events_d: #Measure values corresponding to given astrocyte & measure & behaviour bh_measure_vals = measure_vals_all[bh_events_d[bh]] bh_measure_vals_s = np.sort(bh_measure_vals)[::-1] top10 = bh_measure_vals_s[:len(bh_measure_vals_s)//10] top5 = bh_measure_vals_s[:len(bh_measure_vals_s)//20] print(astroA.print_id) if astroA.print_id == 'm181129_d190222_c005_day_0' and bh == 'stick_rest': print('A') print(top5) if astroA.print_id == 'm181129_d190222_c005_day_3' and bh == 'stick_rest': print('B') print(top5) np_d[settings_d_i['max']][i, j] = bh_measure_vals_s[0] np_d[settings_d_i['meantop10']][i, j] = np.mean(top10) np_d[settings_d_i['meantop5']][i, j] = np.mean(top5) np_d[settings_d_i['mediantop10']][i, j] = np.median(top10) np_d[settings_d_i['mediantop5']][i, j] = np.median(top5) for setting in settings_d_i.keys(): DataFrame(np_d[settings_d_i[setting]], columns=bh_l, index=r).to_csv(os.path.join(base_path, 'measure={}-type={}.csv'.format(measure_names_l[m_i], setting))) ''' ''' measure_l = ['time_s', 'dffMax2', 'area'] measure_names = ['Duration(s)', 'Amplitude', 'Area'] print('Calcium signal behaviour change over time') #How does calcium signals change over recording time? #1 sort events by time path = os.path.join(output_experiment_path_all_comparison, 'plots', 'behaviour_over_recording') for astroA in astroA_l: for i, measure in enumerate(measure_l): sorted_ev_i = np.argsort(astroA.res_d['tBegin']) x = [] y = [] for ev_i in sorted_ev_i: x.append(ev_i) y.append(astroA.res_d[measure][ev_i]) fig = plotly_utils.plot_scatter(np.array(x), np.array(y) , mode='markers', title='scatter', x_title='', y_title='') plotly_utils.apply_fun_axis_fig(fig, lambda x : x / astroA.fr, axis='x') saving_utils.save_plotly_fig(fig, os.path.join(path, '{}-{}'.format(astroA.print_id, measure_names[i]))) ''' ''' print('Speed over time...') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'behaviour_over_recording') for astroA in astroA_l: fig = plotly_utils.plot_scatter(np.arange(len(astroA.speed_values)), astroA.speed_values, mode='lines') plotly_utils.apply_fun_axis_fig(fig, lambda x : x / astroA.fr, axis='x') saving_utils.save_plotly_fig(fig, os.path.join(path, '{}-speed'.format(astroA.print_id))) ''' ''' print('Individual behaviour distribution plots...') for n_bins in [10, 20, 40, 80]: #Size, amplitude, signal duration distribution plots over all datasets on different behaviours for bh in bh_l: plt_l = [] pth_l = [] for measure, min_measure, max_measure in [ ['area', None, 6], ['area', None, None], ['dffMax2', None, 5], ['dffMax2', None, None], ['duration', None, None], ['duration', None, 50] ]: try: for with_max in [True, False]: measure_name = aqua_utils.get_measure_names(measure) fig_path = os.path.join(output_experiment_path_all_comparison, 'plots', '{}_histogram_comparison'.format(measure_name), '{}-nbins={}-min={}-max={}'.format(bh, n_bins, min_measure, max_measure)) plot, _, _ = self.measure_distribution_plot(astroA_l, bh, measure=measure, num_bins=n_bins, max_measure=max_measure, min_measure=min_measure, measure_name=measure_name) if measure == 'duration': plotly_utils.apply_fun_axis_fig(plot, lambda x : x / astroA_l[0].fr, axis='x') saving_utils.save_pth_plt_l_log([plot], [fig_path], axis='x') except KeyError as e: print('Got key error: some behaviour its fine {}'.format(e)) ''' ''' #Area: None, 60, num_bins = 10 #Duration: None, 30, num_bins = 10 #dff : 0.6, 5, num_bins = 20 print('Comparing behaviour distribution plots...') for n_bins in [10, 20]: print('NUM BINS:', n_bins) for behaviour_l in [bh_l]: #, ['rest', 'running'], ['running', 'stick'], ['rest', 'stick_rest'], ['running', 'stick_run_ind_15']]: for measure, min_measure, max_measure in [ ['area', None, 60], ['dffMax2', 0.6, 5], ['duration', None, 30], ]: for confidence in [True]: for mode in ['MOA', 'MOE']: measure_name = aqua_utils.get_measure_names(measure) path = os.path.join(output_experiment_path_all_comparison, 'plots', '{}_histogram_bh_comparison'.format(measure_name), 'behaviours-{}-nbins={}-min={}-max={}-conf={}-mode={}'.format('_'.join(behaviour_l), n_bins, min_measure, max_measure, confidence, mode)) plot, stats_d = self.measure_distribution_bh_compare_plot(astroA_l, behaviour_l, measure=measure, num_bins=n_bins, min_measure=min_measure, max_measure=max_measure, measure_name=measure_name, confidence=confidence, with_stats=True, mode=mode) if measure == 'duration': plotly_utils.apply_fun_axis_fig(plot, lambda x : x / astroA_l[0].fr, axis='x') saving_utils.save_pth_plt_l_log([plot], [path], axis='x') saving_utils.save_pth_plt_l_log([plot], [path], axis='y') #Save results in text file for i, name in enumerate(stats_d['names']): #Create folder data_folder_path = path try: os.makedirs(path) except: pass temp_d = {k : stats_d[k][i] for k in stats_d.keys()} saving_utils.save_csv_dict(temp_d, os.path.join(data_folder_path, '{}.csv'.format(name)), key_order=['names', 'x', 'mean', 'conf_95', 'std']) np.savetxt(os.path.join(data_folder_path, '{}-data.csv'.format(name)), np.array(temp_d['data']).transpose(), delimiter=",") for confidence in [True]: for with_log in [False, True]: measure_name = aqua_utils.get_measure_names(measure) plot, stats_d = self.measure_distribution_bh_compare_plot_exponential_fit(astroA_l, behaviour_l, measure=measure, num_bins=n_bins, min_measure=min_measure, max_measure=max_measure, measure_name=measure_name, confidence=False, with_stats=True, with_log=with_log) path = os.path.join(output_experiment_path_all_comparison, 'plots', '{}_histogram_bh_comparison'.format(measure_name), 'behaviours-{}-nbins={}-min={}-max={}-conf={}_EXPFIT-withlog={}'.format('_'.join(behaviour_l), n_bins, min_measure, max_measure, confidence, with_log)) if measure == 'duration': plotly_utils.apply_fun_axis_fig(plot, lambda x : x / astroA_l[0].fr, axis='x') #Save results in text file for i, name in enumerate(stats_d['names']): #Create folder data_folder_path = path try: os.makedirs(path) except: pass temp_d = {k : stats_d[k][i] for k in stats_d.keys()} if len(name.split('__')) == 2: tx_name = name.split('__')[0] + '_expfit' else: tx_name = name print('TX NAME', name) saving_utils.save_csv_dict(temp_d, os.path.join(data_folder_path, '{}.csv'.format(tx_name)), key_order=['names', 'x', 'mean', 'conf_95', 'std']) np.savetxt(os.path.join(data_folder_path, '{}-data.csv'.format(tx_name)), np.array(temp_d['data']).transpose(), delimiter=",") saving_utils.save_plotly_fig(plot, path) saving_utils.save_pth_plt_l_log([plot], [path], axis='y') print('THE STAT HERE?', stats_d) ''' ''' print('Violin plots...') plt_l = [] pth_l = [] for max_dff in [2, 5, 10, None]: #VIOLIN PLOTS comparing TWO behaviour distribution plots (but in violin form) fig_amp_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'amplitude_histogram_comparison', 'violin_rest_run_dff={}'.format(max_dff)) fig = self.amplitude_distribution_plot_violin_duo(astroA_l_filt, 'rest', 'running', max_dff=max_dff) #saving_utils.save_plotly_fig(fig, fig_amp_violin_path) plt_l.append(fig) pth_l.append(fig_amp_violin_path) fig_amp_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'amplitude_histogram_comparison', 'violin_run_stick_dff={}'.format(max_dff)) fig = self.amplitude_distribution_plot_violin_duo(astroA_l_filt, 'running', 'stick_run_ind_15', max_dff=max_dff) #saving_utils.save_plotly_fig(fig, fig_amp_violin_path2) plt_l.append(fig) pth_l.append(fig_amp_violin_path) fig_amp_violin_path3 = os.path.join(output_experiment_path_all_comparison, 'plots', 'amplitude_histogram_comparison', 'violin_rest_stick_dff={}'.format(max_dff)) fig = self.amplitude_distribution_plot_violin_duo(astroA_l_filt, 'rest', 'stick_rest', max_dff=max_dff) #saving_utils.save_plotly_fig(fig, fig_amp_violin_path) plt_l.append(fig) pth_l.append(fig_amp_violin_path3) for max_area in [9, 20, 40, None]: sizes_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'sizes_histogram_comparison', 'violin_rest_run_area={}'.format(max_area)) fig = self.sizes_distribution_plot_violin_duo(astroA_l_filt, 'rest', 'running', max_area=max_area) plt_l.append(fig) pth_l.append(sizes_violin_path) sizes_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'sizes_histogram_comparison', 'violin_run_stick_area={}'.format(max_area)) fig = self.sizes_distribution_plot_violin_duo(astroA_l_filt, 'running', 'stick_run_ind_15', max_area=max_area) plt_l.append(fig) pth_l.append(sizes_violin_path) sizes_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'sizes_histogram_comparison', 'violin_rest_stick_area={}'.format(max_area)) fig = self.sizes_distribution_plot_violin_duo(astroA_l_filt, 'rest', 'stick_rest', max_area=max_area) plt_l.append(fig) pth_l.append(sizes_violin_path) for max_duration in [10, 20, 30, 40, None]: duration_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'duration_histogram_comparison', 'violin_rest_run_duration={}'.format(max_duration)) fig = self.signal_duration_distribution_plot_violin_duo(astroA_l_filt, 'rest', 'running', max_duration=max_duration) plt_l.append(fig) pth_l.append(duration_violin_path) duration_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'duration_histogram_comparison', 'violin_run_stick_duration={}'.format(max_duration)) fig = self.signal_duration_distribution_plot_violin_duo(astroA_l_filt, 'running', 'stick_run_ind_15', max_duration=max_duration) plt_l.append(fig) pth_l.append(duration_violin_path) duration_violin_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'duration_histogram_comparison', 'violin_rest_stick_duration={}'.format(max_duration)) fig = self.signal_duration_distribution_plot_violin_duo(astroA_l_filt, 'rest', 'stick_rest', max_duration=max_duration) plt_l.append(fig) pth_l.append(duration_violin_path) save_pth_plt_l_log(plt_l, pth_l, axis='y') ''' ''' print('Splits SELF ALL') #STEP 1 #Take only long duration astrocytes #Set maximum length of astrocyte duration to be 70min #Then apply splits with xcorr data_save_path = os.path.join(output_experiment_path_all_comparison, 'data', 'splits_self_all') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'splits_self_all') y_l_l = [] x_l = [] minute_frame_splits_l = [35, 30, 25, 20, 15, 10, 5, 2] cut_duration = 70 param_str = 'cut_{}-'.format(cut_duration) + 'splits_{}-'.format('_'.join([str(m) for m in minute_frame_splits_l])) name_l = [] for i, astroA in enumerate(astroA_long_l): curr_save_path = os.path.join(data_save_path, 'id_{}-{}.pkl'.format(astroA.print_id, param_str)) res_d = self.get_compare_full_self_results_alt(astroA, cut_duration_min=cut_duration, minute_frame_splits_l=minute_frame_splits_l, save_pkl_path=curr_save_path) y_l_l.append(res_d['y']) x_l.append(res_d['x']) name_l.append(astroA.print_id) fig, stats_d = plotly_utils.plot_scatter_mult_with_avg(x_l[0], y_l_l, None, name_l, mode='lines', title='Splits self', x_title='Splits (minutes)', y_title='Correlation', xrange=None, yrange=None, confidence=True, with_stats=True, point_box=True) df_data_m = DataFrame(stats_d['mean_l_l'], columns=stats_d['x'], index=stats_d['names']) df_ci = DataFrame(stats_d['conf_95'], columns=stats_d['x'], index=stats_d['names']) df_mean = DataFrame([stats_d['mean'], stats_d['mean_conf']], columns=stats_d['x'], index=['mean', 'conf_95']) df_data_m.to_csv(path + '-data_means.csv') df_ci.to_csv(path + '-data_ci.csv') df_mean.to_csv(path + '-mean_and_CI.csv') saving_utils.save_plotly_fig(fig, path) ''' ''' print('HEATMAPS V2... (astro days scaled the same (to minimum maximum scale of the 2))') for astroA_pair in astroA_l_pairs: for dff_mode in ['False']: for bh in ['default', 'running', 'rest', 'stick_run_ind_15', 'stick_rest']: path = os.path.join(output_experiment_path_all_comparison, 'plots', 'behaviour_heatmaps_V2_comparison_scale', self.get_astro_pair_id(astroA_pair)) d = self.get_day_heatmaps_scaled(astroA_pair, bh=bh, dff_mode=dff_mode) if d is None: continue try: os.makedirs(os.path.join(path)) except: pass saving_utils.save_plotly_fig(d['contour_0'], os.path.join(path, 'bh_{}-day_{}-dff_{}'.format(bh, astroA_pair[0].day, dff_mode))) saving_utils.save_plotly_fig(d['contour_x'], os.path.join(path, 'bh_{}-day_{}-dff_{}'.format(bh, astroA_pair[1].day, dff_mode))) ''' ''' #TODO FIX THE DOT PLOTS #TODO CAN JUST ADD ANOTHER LOOP FOR THE BEHAVIOURS LOTS OF REPETITION bh_l_activity = ['rest', 'running', 'stick_rest', 'stick_run_ind_15'] print('Bar charts and dot plots of all amplitudes, durations, sizes') #for type_plot in ['dot', 'bar']: for type_plot in ['bar']: for error_type in ['std', 'conf']: for err_symmetric in [True, False]: path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_amplitudes', '{}_plot_dff_filter_event_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_s, bh_l_activity, type_plot=type_plot, type_event='dffMax2', y_title='Amplitude', title='Amplitudes', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) len_d = {k: [len(stats_d['data'][k])] for k in stats_d['data'].keys()} saving_utils.save_csv_dict(len_d, path +'-len_data.csv', key_order=stats_d['behaviour']) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_amplitudes', '{}_plot_dff_notfiltered_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_s, bh_l_activity, type_plot=type_plot, type_event='dffMax', y_title='Amplitude', title='Amplitudes', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) len_d = {k: [len(stats_d['data'][k])] for k in stats_d['data'].keys()} saving_utils.save_csv_dict(len_d, path +'-len_data.csv', key_order=stats_d['behaviour']) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_durations', '{}_plot_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_s, bh_l_activity, type_plot=type_plot, type_event='time_s', y_title='Duration (s)', title='Event durations', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) len_d = {k: [len(stats_d['data'][k])] for k in stats_d['data'].keys()} saving_utils.save_csv_dict(len_d, path +'-len_data.csv', key_order=stats_d['behaviour']) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_sizes', '{}_plot_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_s, bh_l_activity, type_plot=type_plot, type_event='area', y_title='Event sizes (\u03bcm<sup>2</sup>)', title='Sizes of events', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) len_d = {k: [len(stats_d['data'][k])] for k in stats_d['data'].keys()} saving_utils.save_csv_dict(len_d, path +'-len_data.csv', key_order=stats_d['behaviour']) ''' ''' print('COMPARE THIS', len(astroA_l_filt), 'WITH THIS', len(astroA_l_s)) for astroA in astroA_l_filt: for bh_k in bh_l_activity: if bh_k not in astroA.event_subsets.keys(): print('SHOULD NOT HAPPEND BH ', bh_k, 'NOT IN', astroA.print_id) for type_plot in ['bar']: for error_type in ['std', 'conf']: for err_symmetric in [True, False]: path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_amplitudes_filt_bh', '{}_plot_dff_filter_event_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_filt, bh_l_activity, type_plot=type_plot, type_event='dffMax2', y_title='Amplitude', title='Amplitudes', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_amplitudes_filt_bh', '{}_plot_dff_notfiltered_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_filt, bh_l_activity, type_plot=type_plot, type_event='dffMax', y_title='Amplitude', title='Amplitudes', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_durations_filt_bh', '{}_plot_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_filt, bh_l_activity, type_plot=type_plot, type_event='time_s', y_title='Duration (s)', title='Event durations', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'all_sizes_filt_bh', '{}_plot_{}_symm{}'.format(type_plot, error_type, err_symmetric)) fig, stats_d = self.get_all_signal_attribute_plot(astroA_l_filt, bh_l_activity, type_plot=type_plot, type_event='area', y_title='Event sizes (\u03bcm<sup>2</sup>)', title='Sizes of events', error_type=error_type, err_symmetric=err_symmetric, with_stats=True) saving_utils.save_plotly_fig(fig, path) saving_utils.save_csv_dict(stats_d, path + '.csv', key_order=['behaviour', 'mean', 'std', 'conf_95']) saving_utils.save_csv_dict(stats_d['data'], path +'-data.csv', key_order=stats_d['behaviour']) ''' print('--------------------------------------------------------------------------------------------------') print('Distribution of pixel values real vs fake...') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'pixel_distribution') x_l = [] y_l = [] name_l = [astroA.print_id for astroA in astroA_l] for astroA in astroA_l: grid = astroA.event_grids_1min['default'] grid = np.interp(grid, (grid.min(), grid.max()), (0, 1)) grid_flat = grid.flatten() grid_flat_nz = grid_flat[grid_flat != 0] hist, bin_edges = np.histogram(grid_flat_nz, bins=20, range=(0,1), density=True) hist = hist * (bin_edges[1] - bin_edges[0]) print('HIST SUM', np.sum(hist)) x_l = bin_edges[:-1] y_l.append(hist) y_l_fmt = [] for i in range(len(y_l[0])): y_l_fmt.append([y[i] for y in y_l]) plot_path = os.path.join(path, 'real') fig, stats_d = plotly_utils.plot_scatter_error(x_l, y_l_fmt, x_title='Pixel intensity percentile', y_title='Frequency (Density)', exp_fit=True, with_details=True) saving_utils.save_plotly_fig(fig, plot_path) df_data = DataFrame(np.array(stats_d['data']).T, columns=x_l, index=name_l) df_stats = DataFrame([stats_d['mean'], stats_d['conf_95'], stats_d['fit']], columns=x_l, index=['mean', 'conf_95', 'fit']) df_data.to_csv(plot_path + '-data.csv') df_stats.to_csv(plot_path +'-stats.csv') sample_l_all = [] for astroA in astroA_l: d = self.get_individual_heatmaps_threshold_scaled(astroA, bh='default', threshold=1, num_samples=1, dff_mode=False, with_arr=True) sample_l_all.append(d['arrs_d']['arr_r'][0]) x_l = [] y_l = [] for grid in sample_l_all: grid = np.interp(grid, (grid.min(), grid.max()), (0, 1)) grid_flat = grid.flatten() grid_flat_nz = grid_flat[grid_flat != 0] #Normalize values to 1 grid_flat_nz /= np.max(grid_flat_nz) hist, bin_edges = np.histogram(grid_flat_nz, bins=20, range=(0,1), density=True) hist = hist * (bin_edges[1] - bin_edges[0]) print('HIST SUM', np.sum(hist)) x_l = bin_edges[:-1] y_l.append(hist) y_l_fmt = [] for i in range(len(y_l[0])): y_l_fmt.append([y[i] for y in y_l]) plot_path = os.path.join(path, 'fake') fig, stats_d = plotly_utils.plot_scatter_error(x_l, y_l_fmt, x_title='Pixel intensity percentile', y_title='Frequency (Density)', exp_fit=False, with_details=True) saving_utils.save_plotly_fig(fig, plot_path) df_data = DataFrame(np.array(stats_d['data']).T, columns=x_l) df_stats = DataFrame([stats_d['mean'], stats_d['conf_95']], columns=x_l, index=['mean', 'conf_95']) df_data.to_csv(plot_path + '-data.csv') df_stats.to_csv(plot_path +'-stats.csv') print('--------------------------------------------------------------------------------------------------') ''' print('SINGLE BAR CHART OF BEHAVIOURS (REST, RUN) of all astrocytes') names_l = ['amplitude', 'size', 'duration'] measure_l = ['dffMax2', 'area', 'time_s' ] for i, measure in enumerate(measure_l): plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'bar_rest_run_all', '{}'.format(names_l[i])) plot = self.get_measure_all_bar_plot(astroA_l, measure, bh_list=['rest', 'running']) saving_utils.save_plotly_fig(plot, plot_path) ''' ''' names_l = ['Event number (per minute)', 'amplitude', 'size', 'duration'] measure_l = [None, 'dffMax2', 'area', 'time_s'] bh_list_pairs = [['rest', 'running'], ['rest', 'stick_rest'], ['running', 'stick_run_ind_15']] bh_list_pairs_names = ['rest_run', 'rest_rest_stick', 'run_run_stick'] for j, bh_list_pair in enumerate(bh_list_pairs): for i, measure in enumerate(measure_l): plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'bar_{}_all'.format(bh_list_pairs_names[j]), '{}'.format('dots_'+names_l[i])) if 'stick_rest' in bh_list_pair: plot, stats_d = self.get_measure_all_dot_plot(astroA_l_filt, measure, bh_list=bh_list_pair) else: plot, stats_d = self.get_measure_all_dot_plot(astroA_l, measure, bh_list=bh_list_pair) saving_utils.save_plotly_fig(plot, plot_path) with open(os.path.join(plot_path + '.csv'), mode='w') as csv_file: writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) l = [''] l.extend(stats_d['x']) l.extend(['conf_0', 'conf_1']) writer.writerow(l) for i in range(len(stats_d['names'])): l = [stats_d['names'][i]] l.extend(stats_d['mean_l_l'][i]) if 'conf_95' in stats_d: l.extend(stats_d['conf_95'][i]) writer.writerow(l) writer.writerow('') writer.writerow(['mean_0', 'mean_1', 'mean_conf_0', 'mean_conf_1']) l = [] l.extend(stats_d['mean']) l.extend(stats_d['mean_conf']) writer.writerow(l) ''' """ print('With transitions before and after measures dot plot') names_l = ['Event number (per minute)', 'amplitude', 'size', 'duration'] measure_l = [None, 'dffMax2', 'area', 'time_s'] delay_ranges_pairs = [ [3*astroA_l[0].fr, 6*astroA_l[0].fr], #[1*astroA_l[0].fr, 1*astroA_l[0].fr], #[2*astroA_l[0].fr, 4*astroA_l[0].fr] ] delay_ranges_pairs = [[int(v[0]), int(v[1])] for v in delay_ranges_pairs] for delay_ranges_pair in delay_ranges_pairs: before_range, after_range = delay_ranges_pair for i, measure in enumerate(measure_l): plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'bar_run_stick_run_transition_all', 'range_{}_{}_{}'.format(before_range, after_range, 'dots_'+names_l[i])) plot, stats_d = self.get_measure_all_transition_dot_plot(astroA_l, measure, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range) saving_utils.save_plotly_fig(plot, plot_path) with open(os.path.join(plot_path + '.csv'), mode='w') as csv_file: writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) l = [''] l.extend(stats_d['x']) l.extend(['conf_0', 'conf_1']) writer.writerow(l) for i in range(len(stats_d['names'])): l = [stats_d['names'][i]] l.extend(stats_d['mean_l_l'][i]) if 'conf_95' in stats_d: l.extend(stats_d['conf_95'][i]) writer.writerow(l) writer.writerow('') writer.writerow(['mean_0', 'mean_1', 'mean_conf_0', 'mean_conf_1']) l = [] l.extend(stats_d['mean']) l.extend(stats_d['mean_conf']) writer.writerow(l) """ """ #TODO ADD CSV bh_l_activity = ['rest', 'running', 'stick_rest', 'stick_run_ind_15'] print('Activity all bar plot...') plot, stats_d = self.get_behaviour_activity_bar_plot_all(astroA_l_s, bh_l_activity, with_stats=True) plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'activity_all', 'activity_bar') saving_utils.save_plotly_fig(plot, plot_path) print('Activity all number events per minute bar plot...') plot, stats_d = self.get_behaviour_activity_number_bar_plot_all(astroA_l_s, bh_l_activity, with_stats=True) plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'activity_all_number_minute', 'activity_bar') saving_utils.save_plotly_fig(plot, plot_path) """ ''' bh_l_activity = ['rest', 'running', 'stick_rest', 'stick_run_ind_15'] print('Activity all dot plot...') plot, stats_d = self.get_behaviour_activity_dot_plot_all(astroA_l_s, bh_l_activity) plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'activity_all', 'activity_dot') saving_utils.save_plotly_fig(plot, plot_path) saving_utils.save_csv_dict(stats_d, plot_path+'.csv', key_order=['x', 'mean', 'conf_95']) print(stats_d['data']) #print(stats_d['data'].shape) DataFrame(stats_d['data'], columns=[astroA.print_id for astroA in astroA_l_s], index=stats_d['x']).to_csv(plot_path + '-data.csv') ''' ''' df_data_m = DataFrame(stats_d['mean_l_l'], columns=stats_d['x'], index=stats_d['names']) df_mean_conf = DataFrame([stats_d['mean'], stats_d['mean_conf']], columns=stats_d['x'], index=['mean', 'conf_95']) df_data_m.to_csv(path + '-data.csv') df_mean_conf.to_csv(path + '-mean_and_CI.csv') ''' """ print('Activity all dot plot with lines...') print(len(astroA_l_filt)) plot, stats_d = self.get_behaviour_activity_dot_plot_all(astroA_l_filt, bh_l_activity, lines=True) plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'activity_all', 'activity_dot_lines') saving_utils.save_plotly_fig(plot, plot_path) print('Activity all number events per minute dot plot...') plot, stats_d = self.get_behaviour_activity_number_dot_plot_all(astroA_l_s, bh_l_activity) plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'activity_all_number_minute', 'activity_dot') saving_utils.save_plotly_fig(plot, plot_path) saving_utils.save_csv_dict(stats_d, plot_path+'.csv', key_order=['x', 'mean', 'conf_95']) print('Activity all number events per minute dot plot...') plot, stats_d = self.get_behaviour_activity_number_dot_plot_all(astroA_l_filt, bh_l_activity, lines=True) plot_path = os.path.join(output_experiment_path_all_comparison, 'plots', 'activity_all_number_minute', 'activity_dot_lines') saving_utils.save_plotly_fig(plot, plot_path) """ ''' print('Plotting bar plots (triplet plot bands) num_events, duration, amplitude for ALL TOGETHER') measure_names = [None, 'Area', 'Amplitude', 'Time (s)'] for bh in ['default', 'rest', 'running', 'stick', 'stick_rest', 'stick_run_ind_15']: for i, measure in enumerate([None, 'area', 'dffMax2', 'time_s']): path = os.path.join(output_experiment_path_all_comparison, 'plots', 'triplet_dot_all', '{}_{}'.format(bh, measure)) if bh in astroA.event_subsets: fig, stats_d = self.triplet_dot_plot_all(astroA_l_s, bh=bh, measure=measure, n_bins=8, y_title=measure_names[i]) print('SAVING TRIPLET DOT ALL') saving_utils.save_plotly_fig(fig, path) print(stats_d.keys()) #Saving events only, we don't have CI's for each astrocyte if measure is None: df_data_m = DataFrame(stats_d['mean_l_l'], columns=stats_d['x'], index=stats_d['names']) df_mean_conf = DataFrame([stats_d['mean'], stats_d['mean_conf']], columns=stats_d['x'], index=['mean', 'conf_95']) df_data_m.to_csv(path + '-data.csv') df_mean_conf.to_csv(path + '-mean_and_CI.csv') else: df_data_m = DataFrame(stats_d['mean_l_l'], columns=stats_d['x'], index=stats_d['names']) df_ci = DataFrame(stats_d['conf_95'], columns=stats_d['x'], index=stats_d['names']) df_mean = DataFrame([stats_d['mean'], stats_d['mean_conf']], columns=stats_d['x'], index=['mean', 'conf_95']) df_data_m.to_csv(path + '-data_means.csv') df_ci.to_csv(path + '-data_ci.csv') df_mean.to_csv(path + '-mean_and_CI.csv') ''' """ #-------------------------------------------------- #-------------------------------------------------- #-------------------------------------------------- ##REST TO RUN , RUN TO REST, RUN STICK RUN SECTION #-------------------------------------------------- #-------------------------------------------------- #-------------------------------------------------- print('Alternative run-rest/rest-run averaging individual lines') delay_ranges_pairs = [ [3*astroA_l[0].fr, 6*astroA_l[0].fr], [1*astroA_l[0].fr, 1*astroA_l[0].fr], [2*astroA_l[0].fr, 4*astroA_l[0].fr]] delay_ranges_pairs = [[int(v[0]), int(v[1])] for v in delay_ranges_pairs] #measure_l = ['dffMax2default', 'dffMax2', 'time_s', 'area'] #measure_path_l = ['amplitudes_default', 'amplitudes', 'durations', 'sizes'] #measure_y_titles = ['Amplitude', 'Amplitude', 'Duration (s)', 'Size'] measure_l = ['dffMax2default', 'time_s', 'area'] measure_path_l = ['amplitudes_default', 'durations', 'sizes'] measure_y_titles = ['Amplitude', 'Duration (s)', 'Size'] measure_l = ['dffMax2default'] measure_path_l = ['amplitudes_default'] measure_y_titles = ['Amplitude'] bh_measure_l = ['speed'] bh_measure_path_l = ['speed'] bh_measure_y_titles = ['Speed (cm/s)'] print('Alt Proportion plots...') for delay_ranges_pair in delay_ranges_pairs: before_range, after_range = delay_ranges_pair for p in [#{'fit' : True, 'delay_step_size' : 1, 'confidence' : True}, #{'fit' : True, 'delay_step_size' : 5, 'confidence' : True}, {'fit' : True, 'delay_step_size' : 10, 'confidence': True} ]: ################################################ ##############Proportion plots################## ################################################ print('EXTRA PARS', p, p.keys()) print('rest to run prop') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'rest_to_run_proportions_alt') fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='rest_semi_exact', inds_bh='running_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run to rest prop') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_to_rest_proportions_alt') fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='rest_start', after_bh='rest_semi_exact', before_range=before_range, after_range=after_range, **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run stick hit run prop') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_proportions_alt') fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, **p) for fig_k in fig_d: fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run stick hit run prop duration filter [None, 3]') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_proportions_alt_filter_max_3_frames') fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, duration_filter=[None, 3], **p) for fig_k in fig_d: fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run stick hit run prop duration filter [None, 5]') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_proportions_alt_filter_max_5_frames') fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, duration_filter=[None, 5], **p) for fig_k in fig_d: fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) ''' ################################################ ##############Measure plots##################### ################################################ ''' for m_i, measure in enumerate(measure_l): print('rest to run measure: {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'rest_to_run_{}_alt'.format(measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='rest_semi_exact', inds_bh='running_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run to rest measure: {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_to_rest_{}_alt'.format(measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='rest_start', after_bh='rest_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run stick hit run measure: {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_{}_alt'.format(measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run stick hit run measure: max frames 3 {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_{}_alt_filter_max_3_frames'.format(measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i], duration_filter=[None, 3], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('run stick hit run measure: max frames 5 {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_{}_alt_filter_max_5_frames'.format(measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_proportion_delays_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i], duration_filter=[None, 5], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) ################################################ ##############Behaviour measure plots########### ################################################ for m_i, bh_measure in enumerate(bh_measure_l): print('BH measure {} rest-run'.format(bh_measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'rest_to_run_{}_alt'.format(bh_measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_bh_values_plot_all_alt(astroA_l, before_bh='rest_semi_exact', inds_bh='running_exact_start', after_bh='running_semi_exact', bh_measure=bh_measure, before_range=before_range, after_range=after_range, y_title=bh_measure_y_titles[m_i], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('BH measure {} run-rest'.format(bh_measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_to_rest_{}_alt'.format(bh_measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_bh_values_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='rest_start', after_bh='rest_semi_exact', bh_measure=bh_measure, before_range=before_range, after_range=after_range, y_title=bh_measure_y_titles[m_i], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) print('BH measure {} run-stick-run'.format(bh_measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_{}_alt'.format(bh_measure_path_l[m_i])) fig_d, bin_stats = self.get_transition_bh_values_plot_all_alt(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', bh_measure=bh_measure, before_range=before_range, after_range=after_range, y_title=bh_measure_y_titles[m_i], **p) for fig_k in fig_d.keys(): fig_id = os.path.join(path, fig_k + 'range_{}_{}-{}-fit_{}-step_{}-conf_{}'.format(before_range, after_range, fig_k, p['fit'], p['delay_step_size'], p['confidence'])) saving_utils.save_plotly_fig(fig_d[fig_k], fig_id) saving_utils.save_csv_dict(bin_stats, path=fig_id + '.csv', key_order=['x', 'mean', 'std', 'confidence_95']) if p['delay_step_size'] == 10: data_csv_path = os.path.join(path, 'range_{}_{}-step_{}-all.csv'.format(before_range, after_range, p['delay_step_size'])) DataFrame(bin_stats['y_all'], columns=bin_stats['x']).to_csv(data_csv_path, index=False) """ """ print('OUTLIERS TRANSITION PLOTS...') delay_ranges_pairs = [ [3*astroA_l[0].fr, 6*astroA_l[0].fr], [1*astroA_l[0].fr, 1*astroA_l[0].fr], [2*astroA_l[0].fr, 4*astroA_l[0].fr] ] delay_ranges_pairs = [[int(v[0]), int(v[1])] for v in delay_ranges_pairs] measure_l = ['dffMax2default', 'time_s', 'area'] measure_path_l = ['amplitudes_default', 'durations', 'sizes'] measure_y_titles = ['Amplitude', 'Duration (s)', 'Size'] for delay_ranges_pair in delay_ranges_pairs: before_range, after_range = delay_ranges_pair for m_i, measure in enumerate(measure_l): print('rest to run measure: {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'rest_to_run_{}_outlier_alt'.format(measure_path_l[m_i])) fig, stats_d = self.get_transition_outliers_plot(astroA_l, before_bh='rest_semi_exact', inds_bh='running_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i]) fig_id = os.path.join(path, 'outlier_range_{}_{}'.format(before_range, after_range)) saving_utils.save_plotly_fig(fig, fig_id) with open(os.path.join(fig_id + '.csv'), mode='w') as csv_file: writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i in range(len(stats_d['names'])): l = [stats_d['names'][i]] l.extend(stats_d['mean'][i]) writer.writerow(l) print('run to rest measure: {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_to_rest_{}_outlier_alt'.format(measure_path_l[m_i])) fig, stats_d = self.get_transition_outliers_plot(astroA_l, before_bh='running_semi_exact', inds_bh='rest_start', after_bh='rest_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i]) fig_id = os.path.join(path, 'outlier_range_{}_{}'.format(before_range, after_range)) saving_utils.save_plotly_fig(fig, fig_id) with open(os.path.join(fig_id + '.csv'), mode='w') as csv_file: writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i in range(len(stats_d['names'])): l = [stats_d['names'][i]] l.extend(stats_d['mean'][i]) writer.writerow(l) print('run stick hit run measure: {}'.format(measure)) path = os.path.join(output_experiment_path_all_comparison, 'plots', 'run_stick_run_{}_outlier_alt'.format(measure_path_l[m_i])) fig, stats_d = self.get_transition_outliers_plot(astroA_l, before_bh='running_semi_exact', inds_bh='stick_exact_start', after_bh='running_semi_exact', before_range=before_range, after_range=after_range, measure=measure, y_title=measure_y_titles[m_i]) fig_id = os.path.join(path, 'outlier_range_{}_{}'.format(before_range, after_range)) saving_utils.save_plotly_fig(fig, fig_id) with open(os.path.join(fig_id + '.csv'), mode='w') as csv_file: writer = csv.writer(csv_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL) for i in range(len(stats_d['names'])): l = [stats_d['names'][i]] l.extend(stats_d['mean'][i]) writer.writerow(l) """ """ print('Correlation plots ALL') if astroA_l_pairs is not None: for dff_mode in [False]: #for align_setting in ['xcorr', 'xcorr_free']: for align_setting in ['xcorr']: #for filter_duration in [[None, None], [None, 1], [1, None]]: for filter_duration in [[None, None], [None, 1], [1, None]]: for bh in ['default', 'rest', 'running', 'stick']: main_folder_id = 'correlations_no_align' if align_setting == 'xcorr_free' else 'correlations' if (filter_duration[0] == None and filter_duration[1] == 1): main_folder_id += '_short_events' if (filter_duration[0] == 1 and filter_duration[1] == None): main_folder_id += '_long_events' fig_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id, 'xcorr_compare_{}_is_dff_{}'.format(bh, dff_mode)) save_results_path = os.path.join(output_experiment_path_all_comparison, 'data', main_folder_id, 'xcorr_compare_{}_is_dff_{}'.format(bh, dff_mode)) fig, pair_fakes_before, pair_fakes, pair_corrs_l_before, pair_corrs_l, days_id_l = self.get_compare_align_plot_xcorr_all(astroA_l_pairs, align_setting='xcorr', dff_mode=dff_mode, behaviour=bh, n_fake_samples=25 ,save_results_path=save_results_path) saving_utils.save_plotly_fig(fig, fig_corr_path) csv_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id + '_csv', 'xcorr_compare_{}_is_dff_{}.csv'.format(bh, dff_mode)) self.save_xcorr_pairs_align_results_csv(csv_corr_path, astroA_l_pairs, pair_fakes_before, pair_fakes, pair_corrs_l_before, pair_corrs_l) """ ''' print('Correlation plots (rest 0-1, run 0-1, rest-stick 0-1, run-stick 0-1, all, random)') file_id = 'xcorr_compare_states_all' if astroA_l_pairs is not None: for dff_mode in [False]: #for align_setting in ['xcorr', 'xcorr_free']: for align_setting in ['xcorr']: for astro_pair in astroA_l_pairs: #for filter_duration in [[None, None], [None, 1], [1, None]]: for filter_duration in [[None, None]]: main_folder_id = 'correlations_no_align' if align_setting == 'xcorr_free' else 'correlations' if (filter_duration[0] == None and filter_duration[1] == 1): main_folder_id += '_short_events' if (filter_duration[0] == 1 and filter_duration[1] == None): main_folder_id += '_long_events' fig_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id, 'pair_{}_type_{}_is_dff_{}'.format(self.get_astro_pair_id(astro_pair), file_id, dff_mode)) save_pkl_path = os.path.join(output_experiment_path_all_comparison, 'data', main_folder_id, 'pair_{}_type_{}_is_dff_{}.pkl'.format(self.get_astro_pair_id(astro_pair), file_id, dff_mode)) csv_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id + '_csv', 'pair_{}_type_{}_is_dff_{}.csv'.format(self.get_astro_pair_id(astro_pair), file_id, dff_mode)) behaviour_list_compare =['rest', 'running', 'stick_rest', 'stick_run_ind_15', 'default'] fig, res_d = self.get_compare_states_all_xcorr(astro_pair, align_setting=align_setting, dff_mode=dff_mode, n_fake_samples=1, save_pkl_path=save_pkl_path, filter_duration=filter_duration, behaviour_l=behaviour_list_compare) saving_utils.save_plotly_fig(fig, fig_corr_path) saving_utils.save_csv_dict(res_d, csv_corr_path, key_order=behaviour_list_compare) ''' ''' print('Correlation plots (rest 0 run 0, rest 1 run 1, random)') file_id = 'xcorr_compare_between_states' if astroA_l_pairs is not None: for dff_mode in [False]: #for align_setting in ['xcorr', 'xcorr_free']: for align_setting in ['xcorr']: for astro_pair in astroA_l_pairs: #for filter_duration in [[None, None], [None, 1], [1, None]]: for filter_duration in [[None, None]]: main_folder_id = 'correlations_no_align' if align_setting == 'xcorr_free' else 'correlations' if (filter_duration[0] == None and filter_duration[1] == 1): main_folder_id += '_short_events' if (filter_duration[0] == 1 and filter_duration[1] == None): main_folder_id += '_long_events' fig_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id, 'pair_{}_type_{}_is_dff_{}'.format(self.get_astro_pair_id(astro_pair), file_id, dff_mode)) save_pkl_path = os.path.join(output_experiment_path_all_comparison, 'data', main_folder_id, 'pair_{}_type_{}_is_dff_{}.pkl'.format(self.get_astro_pair_id(astro_pair), file_id, dff_mode)) csv_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id + '_csv', 'pair_{}_type_{}_is_dff_{}.csv'.format(self.get_astro_pair_id(astro_pair), file_id, dff_mode)) fig, res_d = self.get_compare_states_same_astro_all_xcorr(astro_pair, align_setting=align_setting, dff_mode=dff_mode, n_fake_samples=100, save_pkl_path=save_pkl_path, filter_duration=filter_duration) print('RES D', res_d) saving_utils.save_plotly_fig(fig, fig_corr_path) saving_utils.save_csv_dict(res_d, csv_corr_path, key_order=list(res_d.keys())) ''' #TODO RUUN THESE AGAIN """ #USING GOOD PAIRS FROM HERE ON #RUN AFTER file_id = 'xcorr_compare_between_group' if astroA_l_good_pairs is not None: for dff_mode in [False]: #for align_setting in ['xcorr', 'xcorr_free']: #NOT USING ALIGN SETTING for align_setting in ['xcorr']: #for filter_duration in [[None, None], [None, 1], [1, None]]: #for filter_duration in [[None, None], [None, 1], [1, None]]: for filter_duration in [[None, None]]: main_folder_id = 'correlations_no_align' if align_setting == 'xcorr_free' else 'correlations' if (filter_duration[0] == None and filter_duration[1] == 1): main_folder_id += '_short_events' if (filter_duration[0] == 1 and filter_duration[1] == None): main_folder_id += '_long_events' fig_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id, 'type_{}_is_dff_{}'.format(file_id, dff_mode)) save_pkl_path = os.path.join(output_experiment_path_all_comparison, 'data', main_folder_id, 'type_{}_is_dff_{}.pkl'.format(file_id, dff_mode)) csv_corr_path = os.path.join(output_experiment_path_all_comparison, 'plots', main_folder_id + '_csv', 'type_{}_is_dff_{}.csv'.format(file_id, dff_mode)) fig, res_d = self.get_compare_between_group_xcorr(astroA_l_good_pairs, dff_mode=dff_mode, n_fake_samples=5, save_pkl_path=save_pkl_path, filter_duration=filter_duration) saving_utils.save_plotly_fig(fig, fig_corr_path) saving_utils.save_csv_dict(res_d, csv_corr_path, key_order=list(res_d.keys())) """ """ save_folder = os.path.join(output_experiment_path_all_comparison, 'data', 'control') plot_folder = os.path.join(output_experiment_path_all_comparison, 'plots', 'control') print('CONTROLS plot') print('Recombination results...') save_recombination_pkl_path = os.path.join(save_folder, 'recombination.pkl') fig, res_d = self.get_compare_between_group_xcorr(astroA_l_good_pairs, dff_mode=False, n_fake_samples=1, save_pkl_path=save_recombination_pkl_path) recombination_corrs = res_d['between'] recombination_rand_corrs = res_d['random'] print('Recombination CORRS', recombination_corrs) print('Recombination rand corrs', recombination_rand_corrs) #between_id #between #random print('Random sample results...') save_random_pair_pkl_path = os.path.join(save_folder, 'random_pair.pkl') if os.path.isfile(save_random_pair_pkl_path): print('FILE EXISTS', save_random_pair_pkl_path) random_pair_corrs = saving_utils.load_pickle(save_random_pair_pkl_path) else: random_pair_corrs = [] for astroA_pair in astroA_l_good_pairs: d = compare_astro_utils.alignment_counter(astroA_pair[0], astroA_pair[1], n_fake_samples=10, align_setting='xcorr', eval_setting='xcorr', fake_sample_setting='from_astro', p=1, behaviour='default', filter_duration=[None, None], with_output_details=True) random_pair_corrs.extend(d['num_fake']) saving_utils.save_pickle(random_pair_corrs, save_random_pair_pkl_path) print('Random pair corrs:', random_pair_corrs) print('Flip control results...') save_flip_pkl_path = os.path.join(save_folder, 'flip.pkl') if os.path.isfile(save_flip_pkl_path): print('File exists', save_flip_pkl_path) flip_corrs = saving_utils.load_pickle(save_flip_pkl_path) else: flip_corrs = [] for astroA in astroA_l_good: for num_rot in range(1, 6): astro_grid, _, _,_ = compare_astro_utils.get_filters_compare([astroA], p=1, dff_mode=False, behaviour='default') astro_grid = astro_grid[0] astro_grid_rot_1 = np.copy(astro_grid) astro_grid_border_1 = np.copy(astroA.border) if num_rot < 4: astro_grid_rot_2 = np.rot90(np.copy(astro_grid), k=num_rot) astro_grid_border_2 = np.rot90(np.copy(astroA.border), k=num_rot) elif num_rot == 5: astro_grid_rot_2 = np.flipud(np.copy(astro_grid)) astro_grid_border_2 = np.flipud(np.copy(astroA.border)) elif num_rot == 6: astro_grid_rot_2 = np.fliplr(np.copy(astro_grid)) astro_grid_border_2 = np.fliplr(np.copy(astroA.border)) d = compare_astro_utils.alignment_counter(astroA, astroA, n_fake_samples=0, align_setting='param', eval_setting='xcorr', fake_sample_setting='from_astro', grid_target=astro_grid_rot_1, grid_source=astro_grid_rot_2, target_border_grid=astro_grid_border_1, source_border_grid=astro_grid_border_2, move_vector=[0,0], p=1, behaviour='default', with_output_details=True) flip_corrs.append(d['num_compare']) saving_utils.save_pickle(flip_corrs, save_flip_pkl_path) print('Flip corrs', flip_corrs) print('LENS, random pair, flip, recombination') print(len(random_pair_corrs), len(flip_corrs), len(recombination_corrs)) x =['Random simulation', 'Flip Control', 'Recombination Control'] y = [random_pair_corrs, flip_corrs, recombination_corrs] fig = plotly_utils.plot_point_box_revised(x, y, title='Mean +/- standard deviation of controls', x_title='', y_title='xcorr', err_type='std') saving_utils.save_plotly_fig(fig, os.path.join(plot_folder, 'control_plot')) """ ''' plt.ioff() print('Plotting Size vs Time correlation plot...') path = os.path.join(output_experiment_path_all_comparison, 'plots', 'size_v_time_corr_ALL') areas_all = [] times_all = [] for astroA in astroA_l: areas_all.extend(np.log(astroA.res_d['area'])) times_all.extend(astroA.res_d['time_s']) areas_all = np.array(areas_all) times_all = np.array(times_all) r, p = stat_utils.get_pearsonr(times_all, areas_all) df = pd.DataFrame({'Size': areas_all, 'Time': times_all}) title ='Size vs Time correlation plot' text = 'r = {}, p < {}'.format(general_utils.truncate(r, 2), p) for kind in ['reg', 'hex', 'kde']: plotly_utils.seaborn_joint_grid(df, 'Size', 'Time', kind=kind, text=text) plt.savefig(os.path.join(path, '{}.svg'.format(kind))) plt.savefig(os.path.join(path, '{}.png'.format(kind))) ''' ''' print('---------------------------------') print('EVENTS VS SPEED PLOTS...') print('---------------------------------') speed_event_tuple_d = {} n_bins_l = [3, 5, 10] n_frame_splits_l = [15, int(astroA_l[0].minute_frames/6)] for eval_type in ['max', 'mean']: for n_bins in n_bins_l: for n_frame_splits in n_frame_splits_l: path = os.path.join(output_experiment_path_all_comparison, 'plots', 'speed_v_events_ALL', 'eval_type={}_splits={}_bins={}'.format(eval_type, n_frame_splits, n_bins)) for astroA in astroA_l: #split n frames. Measure average speed in that bin. Measure how many events in that bin. #add to histogram #10 second frame splits total_frames = len(astroA.indices_d['default']) num_chunks = total_frames//n_frame_splits print('NUM FRAME SPLITS {}, TOTAL FRAMES {} NUM CHUNKS {}'.format(n_frame_splits, total_frames, num_chunks)) split_arr_i_l = np.array_split(astroA.indices_d['default'], num_chunks) speed_event_tuple_l = aqua_utils.speed_event_tuple(astroA, split_arr_i_l, num_events_only=True, eval_type=eval_type) speed_event_tuple_d[astroA.print_id] = speed_event_tuple_l #Find maximum speed, for bounds of histogram max_speed = 0 for k in speed_event_tuple_d.keys(): max_speed_k = np.max(np.array([speed for speed, ev_l in speed_event_tuple_d[k]])) #print('MAX SPEED {} : {}'.format(k, max_speed_k)) if max_speed_k > max_speed: max_speed = max_speed_k #print('MAX SPEED' , max_speed) events_bins_d = {} bin_values = np.linspace(0, max_speed, n_bins) for astroA in astroA_l: events_bins = [[] for i in range((n_bins-1))] speed_event_tuple = speed_event_tuple_d[astroA.print_id] for sp_ev_tup in speed_event_tuple: ind = np.searchsorted(bin_values, sp_ev_tup[0], side='right')-1 if ind == len(events_bins): ind -= 1 events_bins[ind].append(sp_ev_tup[1] / n_frame_splits) #events_bins_avg = [np.mean(events_bins[i]) for i in range(len(events_bins))] events_bins_d[astroA.print_id] = events_bins x = bin_values[:-1] names_l = list(events_bins_d.keys()) x_l = [x for i in range(len(astroA_l))] y_l_l = [events_bins_d[k] for k in names_l] x_l_dpl = [tup[0] for tup in speed_event_tuple] y_l_dpl = [tup[1] for tup in speed_event_tuple] r, p = stat_utils.get_pearsonr(y_l_dpl, x_l_dpl) df = pd.DataFrame({'Events': y_l_dpl, 'Speed': x_l_dpl}) fig, stats_d = plotly_utils.plot_scatter_mult_with_avg(x, y_l_l, None, names_l, mode='lines', title='scatter', x_title='Speed (cm/s)', y_title='', xrange=None, yrange=None, confidence=True, with_stats=True, point_box=False, mean_width_size=5) saving_utils.save_plotly_fig(fig, path) print('KEYS', stats_d.keys()) print('THE STTS D X', stats_d['x']) df_data_m = DataFrame(stats_d['mean_l_l'], columns=stats_d['x'], index=stats_d['names']) df_ci = DataFrame(stats_d['conf_95'], columns=stats_d['x'], index=stats_d['names']) df_mean = DataFrame([stats_d['mean'], stats_d['mean_conf']], columns=stats_d['x'], index=['mean', 'conf_95']) df_data_m.to_csv(path + '-data_means.csv') df_ci.to_csv(path + '-data_ci.csv') df_mean.to_csv(path + '-mean_and_CI.csv') title ='Events vs Speed correlation plot' text = 'r = {}, p < {}'.format(general_utils.truncate(r, 2), p) for kind in ['reg', 'hex', 'kde']: plotly_utils.seaborn_joint_grid(df, 'Speed', 'Events', kind=kind, text=text) plt.savefig(path + '_corr_{}.svg'.format(kind)) plt.savefig(path + '_corr_{}.png'.format(kind)) print('---------------------------------') ''' ''' print('Plotting correlation of splitted plots in 3 parts...') save_folder = os.path.join(output_experiment_path_all_comparison, 'data', 'split_correlation_all') plot_folder = os.path.join(output_experiment_path_all_comparison, 'plots', 'split_correlation_all') save_splits_pkl_path = os.path.join(save_folder, 'between_splits.pkl') save_day_splits_pkl_path = os.path.join(save_folder, 'between_days.pkl') save_random_pkl_path = os.path.join(save_folder, 'random.pkl') save_bh_splits_pkl_path = os.path.join(save_folder, 'between_rest_run.pkl') #1 random simulations #2 (correlation between splits days with variable the splits (so not between days) 3 split correlations with each other (only day 0 and day 1). day 0 splitted 3 times and correlated between each other. same with day 1 #3 (correlation between splits days with variable the between days)) the day 0 and day 1 splitted and then compared between each other between days #'split_correlation_all' #for bh_l in ['default', 'rest', 'running']: #4 (correlation between split days with variable the rest-run behaviour) for bh in ['rest']: #2 fig, res_splits_l = self.get_between_split_split_xcorr(astroA_long_l, bh=bh, save_pkl_path=save_splits_pkl_path) #3 fig_2, res_day_splits_l = self.get_between_day_split_xcorr(day_0_1_pairs, bh=bh, save_pkl_path=save_day_splits_pkl_path) #4 fig_3, res_bh_splits_l = self.get_between_bh_split_xcorr(astroA_long_l, bh_pair=['rest','running'], save_pkl_path=save_bh_splits_pkl_path) #1 if os.path.isfile(save_random_pkl_path): print('FILE EXISTS') random_l = saving_utils.load_pickle(save_random_pkl_path) else: random_l = [] for astroA in astroA_long_l: random_l.extend(self.get_random_corrs_self(astroA, bh, n_fake_samples=3)) if save_random_pkl_path is not None: saving_utils.save_pickle(random_l, save_random_pkl_path) x = ['Random', 'Self splits', 'Rest-Run splits', 'Day 0-1 Splits'] y = [random_l, res_splits_l, res_bh_splits_l, res_day_splits_l] print('LENS', [len(y_i) for y_i in y]) fig, stats_d = plotly_utils.plot_point_box_revised(x, y, title='Split correlations (between splits)- {}'.format(bh), x_title='', y_title='Xcorr value', with_stats=True) saving_utils.save_plotly_fig(fig, os.path.join(plot_folder, 'splits')) saving_utils.save_csv_dict(stats_d, os.path.join(plot_folder, 'splits' + '.csv'), key_order=['x', 'mean', 'conf_95']) results_dict = {x[i] : y[i] for i in range(len(x))} results_dict['x'] = x key_order = ['x'] key_order.extend(x) saving_utils.save_csv_dict(results_dict, os.path.join(plot_folder, 'splits_data' + '.csv'), key_order=key_order) return fig ''' def get_random_corrs_self(self, astroA, bh, n_fake_samples=3): random_l = [] d = compare_astro_utils.alignment_counter(astroA, astroA, n_fake_samples=n_fake_samples, align_setting='param', eval_setting='xcorr', fake_sample_setting='from_astro', move_vector=[0, 0], p=1, behaviour=bh) return d['num_fake'] def get_between_bh_split_xcorr(self, astroA_l, bh_pair=['rest', 'running'], n_chunks=3, dff_mode=False, save_pkl_path=None, filter_duration=(None, None)): ''' Split bh_pair[0] into 3 splits. Correlate with whole of bh_pair[1] ''' if os.path.isfile(save_pkl_path): print('FILE EXISTS') res_l = saving_utils.load_pickle(save_pkl_path) else: event_grid_splits_d = {} astros_d = {} for astroA in astroA_l: print(astroA.print_id) event_grid_splits_d[astroA.print_id] = aqua_utils.split_n_event_grids(astroA, bh=bh_pair[0], n=n_chunks) astros_d[astroA.print_id] = astroA res_l = [] for astroA_k in event_grid_splits_d.keys(): #Get correlations of splits between splits same days astroA_splits_l = event_grid_splits_d[astroA_k] bh_split = astros_d[astroA_k].event_grids_1min[bh_pair[1]] for i in range(n_chunks): split_i = astroA_splits_l[i] d = compare_astro_utils.alignment_counter(astros_d[astroA_k], astros_d[astroA_k], n_fake_samples=0, align_setting='param', eval_setting='xcorr', fake_sample_setting='from_astro', grid_target=bh_split, grid_source=split_i, move_vector=[0, 0], p=1, behaviour=bh_pair[0], filter_duration=filter_duration, with_output_details=True) res_l.append(d['num_compare']) if save_pkl_path is not None: saving_utils.save_pickle(res_l, save_pkl_path) x = ['Split correlations'] y = [np.copy(np.array(res_l))] print('THE Y', y) fig = plotly_utils.plot_point_box_revised(x, y, title='{} Split correlations (between splits)- {}'.format(n_chunks, '_'.join(bh_pair)), x_title='', y_title='Xcorr value') return fig, res_l def get_between_split_split_xcorr(self, astroA_l, bh='default', n_chunks=3, dff_mode=False, save_pkl_path=None, filter_duration=(None, None)): if os.path.isfile(save_pkl_path): print('FILE EXISTS') res_l = saving_utils.load_pickle(save_pkl_path) else: event_grid_splits_d = {} astros_d = {} for astroA in astroA_l: print(astroA.print_id) event_grid_splits_d[astroA.print_id] = aqua_utils.split_n_event_grids(astroA, bh=bh, n=n_chunks) astros_d[astroA.print_id] = astroA res_l = [] for astroA_k in event_grid_splits_d.keys(): #Get correlations of splits between splits same days astroA_splits_l = event_grid_splits_d[astroA_k] for i in range(n_chunks): for j in range(i+1, n_chunks): print(i, j) split_i = astroA_splits_l[i] split_j = astroA_splits_l[j] d = compare_astro_utils.alignment_counter(astros_d[astroA_k], astros_d[astroA_k], n_fake_samples=0, align_setting='param', eval_setting='xcorr', fake_sample_setting='from_astro', grid_target=split_i, grid_source=split_j, move_vector=[0, 0], p=1, behaviour=bh, filter_duration=filter_duration, with_output_details=True) res_l.append(d['num_compare']) if save_pkl_path is not None: saving_utils.save_pickle(res_l, save_pkl_path) x = ['Split correlations'] y = [np.copy(np.array(res_l))] print('THE Y', y) fig = plotly_utils.plot_point_box_revised(x, y, title='{} Split correlations (between splits)- {}'.format(n_chunks, bh), x_title='', y_title='Xcorr value') return fig, res_l def get_between_day_split_xcorr(self, astroA_l_pairs, bh='default', n_chunks=3, dff_mode=False, n_fake_samples=5, save_pkl_path=None, filter_duration=(None, None)): if os.path.isfile(save_pkl_path): print('FILE EXISTS') res_l = saving_utils.load_pickle(save_pkl_path) else: res_l = [] event_grid_splits_d = {} for astro_pair in astroA_l_pairs: pair_k = self.get_astro_pair_id(astro_pair) event_grid_splits_d[pair_k] = {'day_0' : None, 'day_x' : None} #Split each astro into 3 event_grid_splits_d[pair_k]['day_0'] = aqua_utils.split_n_event_grids(astro_pair[0], bh=bh, n=n_chunks) event_grid_splits_d[pair_k]['day_x'] = aqua_utils.split_n_event_grids(astro_pair[1], bh=bh, n=n_chunks) event_grid_splits_d[pair_k]['astro_pair'] = astro_pair #Get all split correlations between day 0 and day x of same astro pair #All possible here (note the 2nd for loop different than function above) astro_pair = event_grid_splits_d[pair_k]['astro_pair'] d_temp = compare_astro_utils.alignment_counter(astro_pair[0], astro_pair[1], n_fake_samples=0, align_setting='xcorr', eval_setting='xcorr', fake_sample_setting='from_astro', p=1, behaviour='default', dff_mode=dff_mode) move_vector = d_temp['move_vector'] for i in range(n_chunks): for j in range(n_chunks): print(i, j) split_i = event_grid_splits_d[pair_k]['day_0'][i] split_j = event_grid_splits_d[pair_k]['day_x'][j] d = compare_astro_utils.alignment_counter(astro_pair[0], astro_pair[1], n_fake_samples=0, align_setting='param', eval_setting='xcorr', fake_sample_setting='from_astro', grid_target=split_i, grid_source=split_j, move_vector=move_vector, p=1, behaviour=bh, filter_duration=filter_duration, with_output_details=True) res_l.append(d['num_compare']) if save_pkl_path is not None: saving_utils.save_pickle(res_l, save_pkl_path) x = ['Split correlations'] y = [np.copy(np.array(res_l))] fig = plotly_utils.plot_point_box_revised(x, y, title='{} Split correlations (between days) - {}'.format(n_chunks, bh), x_title='', y_title='Xcorr value') return fig, res_l #--------#--------#--------#--------#--------#--------#--------#--------#--------#-------- def generate_corr_data(self, astroA): output_experiment_path = self.get_output_experiment_path(astroA, self.output_folder) print('Making dirs', output_experiment_path) self.setup_file_folders(output_experiment_path) print(output_experiment_path) print('Generating fake sample correlations and split correlations...') #Will use these to compare how much to split before losing correlation for p in self.filter_probs: samples_save_path = os.path.join(output_experiment_path, 'files', 'correlations', 'fake_sample_p={}.pkl'.format(p)) samples_corr_d = correlation_utils.get_corr_astro_samples_v2(astro_xc=astroA, astro_base=astroA, p=p, n_samples=self.n_samples_corr_fake) saving_utils.save_pickle(samples_corr_d, samples_save_path) #splits_save_path = os.path.join(output_experiment_path, 'files', 'correlations', 'splits_p={}.pkl'.format(p)) #splits_corr_d = correlation_utils.get_splits_corr(astroA, num_frames_splits_l=self.num_frames_splits_l, p=p, max_comparisons=self.max_split_comparison_samples) #saving_utils.save_pickle(splits_corr_d, splits_save_path) print('Writing csv...') duration_csv_path = os.path.join(output_experiment_path, 'files', 'csv', 'duration_split_ratios.csv') self.write_csv_duration_splits(astroA, duration_csv_path) def generate_corr_data_pair(self, astroA_l): output_experiment_path_comparison, days_str, day_l_s, astroA_l_s = self.setup_comparison_vars(astroA_l, self.output_folder) print(output_experiment_path_comparison) print('Making dirs', output_experiment_path_comparison) self.setup_file_folders_comparison(output_experiment_path_comparison) for p in self.filter_probs: print(p) d = {} corr_compare_save_path = os.path.join(output_experiment_path_comparison, 'files', 'correlations', 'corr_compare_p={}.pkl'.format(p)) astro_filt_l, astro_all_filt, astro_nz_bool_l, astro_all_nz_bool = compare_astro_utils.get_filters_compare(astroA_l_s, p=p) #1 - self correlation corr_res_self, max_corr_self, move_vector_self, max_coord_self = correlation_utils.get_cross_correlation_2D_info_compare(astro_filt_l[0], astro_filt_l[0]) corr_res, max_corr, move_vector, max_coord = correlation_utils.get_cross_correlation_2D_info_compare(astro_filt_l[0], astro_filt_l[1]) #3 - astroA - astroB fake sample correlations samples_d = correlation_utils.get_corr_astro_samples_v2(astro_xc=astroA_l[0], astro_base=astroA_l[1], p=p, n_samples=self.n_samples_corr_fake) d['self'] = {'max_corr' : max_corr_self, ' corr_res' : corr_res_self, 'move_vector' : move_vector_self, 'max_coord' : max_coord_self } d['compare'] = {'max_corr' : max_corr, ' corr_res' : corr_res, 'move_vector' : move_vector, 'max_coord' : max_coord} d['samples'] = samples_d saving_utils.save_pickle(d, corr_compare_save_path) def parse_prob(self, path): base_name = os.path.splitext(os.path.basename(path))[0] prob_v = float(base_name.split('=')[-1]) return prob_v def read_corr_pair_data(self, astroA_l): output_experiment_path_comparison, days_str, day_l_s, astroA_l_s = self.setup_comparison_vars(astroA_l, self.output_folder) comparison_paths = glob.glob(os.path.join(output_experiment_path_comparison, 'files/correlations/corr_compare_*.pkl')) corr_pair_d = {} for comparison_path in comparison_paths: prob_k = self.parse_prob(comparison_path) print('Prob k', prob_k) corr_pair_d[prob_k] = saving_utils.load_pickle(comparison_path) return corr_pair_d def read_corr_data(self, astroA): experiment_path = self.get_output_experiment_path(astroA, self.output_folder) print('Experiment path', experiment_path) fake_sample_corr_paths = glob.glob(os.path.join(experiment_path, 'files/correlations/fake_sample_*.pkl')) #splits_corr_paths = glob.glob(os.path.join(experiment_path, 'files/correlations/splits_*.pkl')) fake_corr_d = {} #splits_corr_d = {} for fake_sample_path in fake_sample_corr_paths: fake_corr_d[str(self.parse_prob(fake_sample_path))] = saving_utils.load_pickle(fake_sample_path) #for split_path in splits_corr_paths: # splits_corr_d[str(self.parse_prob(split_path))] = saving_utils.load_pickle(split_path) #return fake_corr_d, splits_corr_d return fake_corr_d def setup_comparison_vars(self, astroA_l, output_folder): experiment_id_l = [] day_l = [] for astroA in astroA_l: experiment_id_l.append('/'.join(astroA.experiment_path.split('/')[-3:-1])) day_l.append(int(astroA.experiment_path.split('/')[-1].split('_')[-1])) if len(set(experiment_id_l)) != 1: print('Different experiment ids, stopping', experiment_id_l) return sort_i = np.argsort(day_l) day_l_s = [day_l[i] for i in sort_i] astroA_l_s = [astroA_l[i] for i in sort_i] days_str = 'days_' + '_'.join([str(day) for day in day_l_s]) output_experiment_path_comparison = os.path.join(output_folder, experiment_id_l[0], days_str) return output_experiment_path_comparison, days_str, day_l_s, astroA_l_s def setup_comparison_all_vars(self, astroA_l, output_folder): experiment_id_l = [] day_l = [] for astroA in astroA_l: experiment_id_l.append('/'.join(astroA.experiment_path.split('/')[-3:-1])) day_l.append(int(astroA.experiment_path.split('/')[-1].split('_')[-1])) sort_i = np.argsort(day_l) day_l_s = [day_l[i] for i in sort_i] astroA_l_s = [astroA_l[i] for i in sort_i] days_str = 'days_' + '_'.join([str(day) for day in day_l_s]) output_experiment_path_all_comparison = os.path.join(output_folder, 'all') print('done') return output_experiment_path_all_comparison, days_str, day_l_s, astroA_l_s def get_behaviour_basic_plots(self, astroA): figs = {} figs['stick_bin'] = plotly_utils.plot_scatter_fmt(x=np.arange(len(astroA.stick_bin)), y=astroA.stick_bin, astype='int', straight_lines_only=True, title='Stick', x_title='Frame', y_title='Off whisker/On whisker') figs['speed_bin'] = plotly_utils.plot_scatter_fmt(x=np.arange(len(astroA.speed_bin)), y=astroA.speed_bin, astype='int', straight_lines_only=True, title='Speed', x_title='Frame', y_title='Rest/Running') figs['whisker_bin'] = plotly_utils.plot_scatter_fmt(x=np.arange(len(astroA.whisker_bin)), y=astroA.whisker_bin, astype='int', straight_lines_only=True, title='Whisker', x_title='Frame', y_title='No whisker/Whisker movement') figs['pupil'] = plotly_utils.plot_scatter_fmt(x=np.arange(len(astroA.pupil_values)), y=astroA.pupil_values, astype='float', straight_lines_only=True, title='Pupil', x_title='Frame', y_title='Pupil value') figs['stick_values'] = plotly_utils.plot_scatter(x=np.arange(len(astroA.roi_dict['extra']['stick'])), y=astroA.roi_dict['extra']['stick'], title='Stick', x_title='Frame', y_title='Stick value') figs['speed_values'] = plotly_utils.plot_scatter(x=np.arange(len(astroA.roi_dict['extra']['speed'])), y=astroA.roi_dict['extra']['speed'], title='Speed', x_title='Frame', y_title='Speed value') figs['whisker_values'] = plotly_utils.plot_scatter(x=np.arange(len(astroA.roi_dict['extra']['whiskers'])), y=astroA.roi_dict['extra']['whiskers'], title='Whisker', x_title='Frame', y_title='Whisker value') def make_arr(inds, arr_length): arr = np.zeros([arr_length]) arr[inds] = 1 return arr arr_length = len(astroA.stick_bin) for k in astroA.indices_d.keys(): arr = make_arr(astroA.indices_d[k], arr_length) figs[k] = plotly_utils.plot_scatter_fmt(x=np.arange(len(arr)), y=arr, title=k, astype='int', straight_lines_only=True, x_title='Frame', y_title='Value') return figs def get_signal_durations_plot(self, astroA): signal_duration_figs = {} #Signal durations for k in astroA.event_subsets.keys(): signal_duration_figs[k] = plotly_utils.plot_histogram(astroA.all_durations_d[k], title=' Signal durations histogram ({})'.format(k)) return signal_duration_figs def get_border_plot(self, astroA): if 'clandmark_mask' in astroA.res_d.keys(): return plotly_utils.plot_contour(astroA.res_d['border_mask'] + astroA.res_d['clandmark_mask'], title='border_and_landmark_mask', height=600, width=800) else: return plotly_utils.plot_contour(astroA.res_d['border_mask'], title='border_mask', height=600, width=800) def get_behaviour_contour_plots(self, astroA): ''' Use 1 min normalized plots ''' fig_heatmap_grids = {} fig_heatmap_dff_grids = {} #fig_heatmap_dff_grids for k in astroA.event_subsets.keys(): fig_heatmap_grids[k] = plotly_utils.plot_contour(astroA.event_grids_1min[k], title=k + '_event grid', height=600, width=800) for k in astroA.event_subsets.keys(): fig_heatmap_dff_grids[k] = plotly_utils.plot_contour(astroA.event_grids_1min_dff[k], title=k+'_event grid dff', height=600, width=800) return fig_heatmap_grids, fig_heatmap_dff_grids def get_behaviour_contour_threshold_plots(self, astroA, threshold=0.5): ''' Use 1 min normalized plots ''' fig_heatmap_grids = {} fig_heatmap_dff_grids = {} #fig_heatmap_dff_grids for k in astroA.event_subsets.keys(): fig_heatmap_grids[k] = plotly_utils.plot_contour_threshold(astroA.event_grids_1min[k], threshold_perc=threshold, title=k + '_event grid - Saturation : ' + str(threshold*100) + '%', height=600, width=800) for k in astroA.event_subsets.keys(): fig_heatmap_dff_grids[k] = plotly_utils.plot_contour_threshold(astroA.event_grids_1min_dff[k], threshold_perc=threshold, title=k+'_event grid dff - Saturation : ' + str(threshold*100) + '%', height=600, width=800) return fig_heatmap_grids, fig_heatmap_dff_grids def get_behaviour_activity_plot(self, astroA): activity_ratio_k = np.array(self.filter_keys(astroA)) activity_ratio_l = np.array([astroA.activity_ratios[k] for k in activity_ratio_k]) text_values = np.array(['Frames: ' + str(len(astroA.indices_d[k])) for k in activity_ratio_k]) activity_i = np.argsort(activity_ratio_l) activity_ratio_k_s = activity_ratio_k[activity_i] activity_ratio_l_s = activity_ratio_l[activity_i] text_values_s = text_values[activity_i] activity_ratio_k_s[np.where(activity_ratio_k_s == 'default')] = 'all' fig = plotly_utils.plot_bar(x=activity_ratio_k_s, y=activity_ratio_l_s, text_values=['']*len(activity_ratio_l_s), text_size=20, title='Activity ratio (events per voxel)', x_title='', y_title='Events per voxel (%)', margin_b=150) plotly_utils.apply_fun_axis_fig(fig, lambda x : x * 100, axis='y',) return fig def get_behaviour_activity_bar_plot_all(self, astroA_l, bh_l, with_stats=False): activity_ratios_np = np.zeros(len(bh_l)) activity_ratios_num_added = np.zeros(len(bh_l)) for i, bh_k in enumerate(bh_l): for astroA in astroA_l: if bh_k in astroA.activity_ratios.keys(): activity_ratios_np[i] += astroA.activity_ratios[bh_k] activity_ratios_num_added[i] += 1 activity_ratios_np /= activity_ratios_num_added activity_i = np.argsort(activity_ratios_np) activity_ratio_k_s = np.array(bh_l)[activity_i] activity_ratio_l_s = activity_ratios_np[activity_i] activity_ratio_k_s[np.where(activity_ratio_k_s == 'default')] = 'all' fig = plotly_utils.plot_bar(x=activity_ratio_k_s, y=activity_ratio_l_s, text_values=['']*len(activity_ratio_l_s), text_size=20, title='Activity ratio (events per voxel)', x_title='', y_title='Events per voxel (%)', margin_b=150, err_y=[], err_symmetric=None) plotly_utils.apply_fun_axis_fig(fig, lambda x : x * 100, axis='y',) if with_stats: #data = {k : areas[i] for i, k in enumerate(area_keys_s)} return fig, {} return fig def get_behaviour_activity_dot_plot_all(self, astroA_l, bh_l, lines=False): activity_ratio_l = [] for bh in bh_l: activity_bh_l = [] for i, astroA in enumerate(astroA_l): if bh in astroA.activity_ratios.keys(): activity_bh_l.append(astroA.activity_ratios[bh]) activity_ratio_l.append(activity_bh_l) activity_means = [np.mean(activity_ratios) for activity_ratios in activity_ratio_l] activity_i = np.argsort(activity_means) x = np.array(bh_l)[activity_i] y = [] for i in activity_i: y.append(activity_ratio_l[i]) fig, stats_d = plotly_utils.plot_point_box_revised(x, y, title='Activity ratio', x_title='', y_title='Events per voxel (%)', lines=lines, with_stats=True) return fig, stats_d def get_behaviour_activity_number_bar_plot_all(self, astroA_l, bh_l, with_stats=False): activity_num_np = np.zeros(len(bh_l)) activity_num_added = np.zeros(len(bh_l)) for astroA in astroA_l: for i, bh_k in enumerate(bh_l): if bh_k in astroA.activity_ratios.keys(): activity_num_np[i] += (len(astroA.res_d['area'][astroA.event_subsets[bh_k]]) / len(astroA.indices_d[bh_k])) * astroA.minute_frames activity_num_added[i] += 1 activity_num_np /= activity_num_added activity_i = np.argsort(activity_num_np) activity_num_k_s = np.array(bh_l)[activity_i] activity_num_l_s = activity_num_np[activity_i] activity_num_k_s[np.where(activity_num_k_s == 'default')] = 'all' fig = plotly_utils.plot_bar(x=activity_num_k_s, y=activity_num_l_s, text_values=['']*len(activity_num_l_s), text_size=20, title='Activity number', x_title='', y_title='Events per minute in state', margin_b=150, err_y=[], err_symmetric=None) if with_stats: #data = {k : areas[i] for i, k in enumerate(area_keys_s)} return fig, {} return fig def get_behaviour_activity_number_dot_plot_all(self, astroA_l, bh_l, with_stats=False, lines=False): activity_num_l = [] for bh in bh_l: activity_bh_l = [] for i, astroA in enumerate(astroA_l): if bh in astroA.event_subsets.keys(): num_events = len(astroA.res_d['area'][astroA.event_subsets[bh]]) num_frames = len(astroA.indices_d[bh]) activity_bh_l.append((num_events / num_frames) * astroA.minute_frames) activity_num_l.append(activity_bh_l) activity_means = [np.mean(activity_nums) for activity_nums in activity_num_l] activity_i = np.argsort(activity_means) x = np.array(bh_l)[activity_i] y = [] for i in activity_i: y.append(activity_num_l[i]) fig, stats_d = plotly_utils.plot_point_box_revised(x, y, title='Activity number', x_title='', y_title='Events per minute in state', lines=lines, with_stats=True) return fig, stats_d def get_common_keys(self, astroA_l, bh_l): s = set(bh_l) for astroA in astroA_l: s &= set(astroA.indices_d.keys()) return np.sort(list(s)) def get_all_signal_attribute_plot(self, astroA_l, bh_l, type_event='area', type_plot='bar', y_range=None, divide_y=1, title='', x_title='', y_title='', error_type='std', err_symmetric=True, with_stats=False): areas = [[] for i in range(len(bh_l))] for astroA in astroA_l: for i, k in enumerate(bh_l): if k in astroA.event_subsets.keys(): areas_k = astroA.res_d[type_event][astroA.event_subsets[k]] areas[i].extend(areas_k) areas_std = np.array([np.std(v_l) for v_l in areas]) areas_mean = np.array([np.mean(v_l) for v_l in areas]) areas_conf = [] for v_l in areas: m, l, h = stat_utils.mean_confidence_interval(v_l, confidence=0.95) areas_conf.append(m-l) areas_conf = np.array(areas_conf) areas_i = np.argsort(areas_mean) area_keys_s = np.array(bh_l)[areas_i] areas_s = np.array(areas)[areas_i] areas_mean_s =
np.array(areas_mean)
numpy.array
# implement a simple shading model import numpy as np import matplotlib.pyplot as plt from matplotlib.patches import Ellipse from shapely.geometry import Point, Polygon class SimpleFlicker(): def __init__(self, solar_verts, T, turbine_locs): self.turbine_locs = [[0, 0]] self.solar_verts = solar_verts self.turbine_locs = turbine_locs def rotate(self, origin, point, angle): """ Rotate a point counterclockwise by a given angle around a given origin. The angle should be given in radians. """ ox, oy = origin px, py = point qx = ox + np.cos(angle) * (px - ox) - np.sin(angle) * (py - oy) qy = oy + np.sin(angle) * (px - ox) + np.cos(angle) * (py - oy) return qx, qy def find_angle(self, T_in): # find the omega from scipy import interpolate T = np.array([6, 12, 18]) omega = np.array([-90, 0, 90]) f = interpolate.interp1d(T, omega) if T_in < 6: omega_out = 0 print('Sun is not high enough for a shadow...') elif T_in > 18: omega_out = 0 print('Sun is not high enough for a shadow...') else: omega_out = f(T_in) return -np.radians(omega_out) def calculate_shadow(self, time_idx, show=True): # user inputs T = time_idx # time (in military time) d = 10 # number of days since the new year # turbine parameters HH = 90 # hub height D = 126 # rotor diameter wd = 5 # tower width is 5 m? # turbine location x_loc = self.turbine_locs[0] y_loc = self.turbine_locs[1] # position lat = 39.7555 lon = -105.2211 # calculate the shadow delta = np.radians(-23.45 * np.cos( np.radians(360/365 * (d + 10)) )) omega = self.find_angle(T) # tower shadow Fx = -( np.cos(delta) * np.sin(omega) / (np.sin(lat) * np.sin(delta) + np.cos(lat) * np.cos(delta) * np.cos(omega))) numY = ( np.sin(np.radians(lat)) * np.cos(delta) * np.cos(omega) - np.cos(np.radians(lat)) * np.cos(delta) ) denY = ( np.sin(np.radians(lat)) * np.sin(delta) + np.cos(np.radians(lat)) * np.cos(delta) * np.cos(omega) ) Fy = -numY / denY # plot turbine shadow and rotor shadow fig, ax = plt.subplots() plt.plot(x_loc,y_loc,'bo') plt.plot([x_loc + wd/2, (x_loc+wd/2) + (HH) * Fx], [y_loc, y_loc + (HH) * Fy],'k') plt.plot([x_loc - wd/2, (x_loc-wd/2) + (HH) * Fx], [y_loc, y_loc + (HH) * Fy], 'k') length = (HH + D/2) * Fx - (HH - D/2) * Fx angle = np.degrees(-90 - np.tan(Fx/Fy)) a = length/2 b = D/2 x = np.linspace(-a,a,100) y = b * np.sqrt( 1 - (x/a)**2 ) rx = np.zeros(len(x)) ry = np.zeros(len(y)) rx2 = np.zeros(len(x)) ry2 = np.zeros(len(y)) poly_rotor = [] for i in range(len(x)): rx[i], ry[i] = self.rotate([0,0], [x[i],y[i]], np.radians(angle)) poly_rotor.append((rx[i]+(HH*Fx)+x_loc,ry[i]+(HH*Fy)+y_loc)) for i in range(len(x)): rx2[i], ry2[i] = self.rotate([0, 0], [x[i], -y[i]], np.radians(angle)) poly_rotor.append((rx2[i]+(HH*Fx)+x_loc,ry2[i]+(HH*Fy)+y_loc)) plt.plot(rx+(HH*Fx)+x_loc,ry+(HH*Fy)+y_loc,'k') plt.plot(rx2+(HH*Fx)+x_loc,ry2+(HH*Fy)+y_loc,'k') for i in range(len(self.solar_verts)-1): plt.plot([self.solar_verts[i][0], self.solar_verts[i+1][0]], [self.solar_verts[i][1], self.solar_verts[i+1][1]],'r') plt.plot([self.solar_verts[0][0], self.solar_verts[i + 1][0]], [self.solar_verts[0][1], self.solar_verts[i + 1][1]], 'r') plt.xlim([-500,500]) plt.ylim([-500, 500]) plt.grid() if show: plt.show() poly_tower = [(x_loc + wd/2, y_loc), (x_loc - wd/2, y_loc), (x_loc - wd/2 + (HH) * Fx, y_loc + HH * Fy), (x_loc + wd/2 + HH * Fx, y_loc + HH * Fy)] return poly_rotor, poly_tower def point_inside(self, point, coords): # Create Point objects p1 = Point(point[0], point[1]) # Create a Polygon poly = Polygon(coords) # check if point is within polygon return p1.within(poly) def determine_boundaries(self): x_min = 0 x_max = 0 y_min = 0 y_max = 0 for point in self.solar_verts: # check x points if point[0] < x_min: x_min = point[0] elif point[0] > x_max: x_max = point[0] # check y points if point[1] < y_min: y_min = point[1] elif point[1] > y_max: y_max = point[1] return x_min, x_max, y_min, y_max def calculate_overlap(self, T, show=False): # determine xmin, xmax, ymin, ymax xmin, xmax, ymin, ymax = self.determine_boundaries(self.solar_verts) # solar boundaries - assume rectangle # generation points inside the solar_verts N = 10 x =
np.linspace(xmin,xmax,N)
numpy.linspace
#!/usr/bin/env python # -*- coding: utf-8 -*- ''' :py:mod:`basecamp.py` - The Everest base class ---------------------------------------------- The :py:obj:`everest` engine. All :py:obj:`everest` models inherit from :py:class:`Basecamp`. ''' from __future__ import division, print_function, absolute_import, \ unicode_literals from . import missions from .utils import AP_SATURATED_PIXEL, prange from .mathutils import SavGol from .masksolve import MaskSolve from .gp import GetCovariance from .search import Search from .transit import TransitModel, TransitShape from .dvs import OVERFIT from scipy.linalg import block_diag, cholesky, cho_factor, cho_solve import os import numpy as np import matplotlib.pyplot as pl from scipy.ndimage import zoom from itertools import combinations_with_replacement as multichoose import logging import platform import subprocess log = logging.getLogger(__name__) __all__ = ['Basecamp', 'Overfitting'] class Overfitting(object): """Stores information on the overfitting metrics for a light curve.""" def __init__(self, O1, O2, O3, O4, O5, pdf): """Store values.""" self._O1 = O1 self._O2 = O2 self._O3 = O3 self._O4 = O4 self._O5 = O5 self.pdf = pdf def masked(self, depth=0.01): """Return the masked overfitting metric for a given transit depth.""" return np.hstack(self._O5) / depth def unmasked(self, depth=0.01): """Return the unmasked overfitting metric for a given transit depth.""" return 1 - (np.hstack(self._O2) + np.hstack(self._O3) / depth) / np.hstack(self._O1) def show(self): """Show the overfitting PDF summary.""" try: if platform.system().lower().startswith('darwin'): subprocess.call(['open', self.pdf]) elif os.name == 'nt': os.startfile(self.pdf) elif os.name == 'posix': subprocess.call(['xdg-open', self.pdf]) else: raise IOError("") except IOError: log.info("Unable to open the pdf. Try opening it manually:") log.info(self.pdf) class Basecamp(object): ''' ''' @property def _mission(self): ''' ''' return getattr(missions, self.mission) @_mission.setter def _mission(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def dir(self): ''' Returns the directory where the raw data and output for the target is stored. ''' return self._mission.TargetDirectory(self.ID, self.season) @dir.setter def dir(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def logfile(self): ''' Returns the full path to the log file for the current run. ''' return os.path.join(self.dir, '%s.log' % self.name) @logfile.setter def logfile(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def season(self): """ Return the current observing season. For *K2*, this is the observing campaign, while for *Kepler*, it is the current quarter. """ try: self._season except AttributeError: self._season = self._mission.Season(self.ID) if hasattr(self._season, '__len__'): raise AttributeError( "Please choose a campaign/season for this target: %s." % self._season) return self._season @season.setter def season(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def flux(self): ''' The corrected/de-trended flux. This is computed by subtracting the linear model from the raw SAP flux. ''' return self.fraw - self.model @flux.setter def flux(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def fcor(self): ''' The CBV-corrected de-trended flux. ''' if self.XCBV is None: return None else: return self.flux - self._mission.FitCBVs(self) @fcor.setter def fcor(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def norm(self): ''' The PLD normalization. Typically, this is just the simple aperture photometry flux (i.e., the sum of all the pixels in the aperture). ''' return self._norm @norm.setter def norm(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def cdpps(self): ''' The string version of the current value of the CDPP in *ppm*. This displays the CDPP for each segment of the light curve individually (if breakpoints are present). ''' return " / ".join(["%.2f ppm" % c for c in self.cdpp_arr]) + \ (" (%.2f ppm)" % self.cdpp) @cdpps.setter def cdpps(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def mask(self): ''' The array of indices to be masked. This is the union of the sets of outliers, bad (flagged) cadences, transit cadences, and :py:obj:`NaN` cadences. ''' return np.array(list(set(np.concatenate([self.outmask, self.badmask, self.transitmask, self.nanmask]))), dtype=int) @mask.setter def mask(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def weights(self): ''' The PLD weights vector. The model may be computed by dotting the design matrix :py:attr:`X` with this vector. Note that these are computed just for plotting purpoeses -- the actual weights are never explicitly computed during the de-trending, since it can be rather slow. ''' if self._weights is None: self.get_weights() return self._weights @weights.setter def weights(self, value): ''' ''' raise NotImplementedError("Can't set this property.") @property def transit_model(self): ''' ''' try: self._transit_model except AttributeError: self._transit_model = None return self._transit_model @transit_model.setter def transit_model(self, val): ''' ''' if val is None: self._transit_model = None self.transit_depth = None else: val = np.atleast_1d(val) for tm in val: assert type(tm) is TransitModel, \ "Kwarg `transit_model` must be an instance or " + \ "a list of instances of `everest.TransitModel`." self._transit_model = val self.transit_depth = None def get_norm(self): ''' Computes the PLD normalization. In the base class, this is just the sum of all the pixel fluxes. ''' self._norm = self.fraw def X(self, i, j=slice(None, None, None)): ''' Computes the design matrix at the given *PLD* order and the given indices. The columns are the *PLD* vectors for the target at the corresponding order, computed as the product of the fractional pixel flux of all sets of :py:obj:`n` pixels, where :py:obj:`n` is the *PLD* order. ''' X1 = self.fpix[j] / self.norm[j].reshape(-1, 1) X = np.product(list(multichoose(X1.T, i + 1)), axis=1).T if self.X1N is not None: return np.hstack([X, self.X1N[j] ** (i + 1)]) else: return X def plot_info(self, dvs): ''' Plots miscellaneous de-trending information on the data validation summary figure. :param dvs: A :py:class:`dvs.DVS` figure instance ''' axl, axc, axr = dvs.title() axc.annotate("%s %d" % (self._mission.IDSTRING, self.ID), xy=(0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=18) axc.annotate(r"%.2f ppm $\rightarrow$ %.2f ppm" % (self.cdppr, self.cdpp), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va='center', fontsize=8, color='k', fontstyle='italic') axl.annotate("%s %s%02d: %s" % (self.mission.upper(), self._mission.SEASONCHAR, self.season, self.name), xy=(0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=12, color='k') axl.annotate(self.aperture_name if len(self.neighbors) == 0 else "%s, %d neighbors" % (self.aperture_name, len(self.neighbors)), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va='center', fontsize=8, color='k', fontstyle='italic') axr.annotate("%s %.3f" % (self._mission.MAGSTRING, self.mag), xy=(0.5, 0.5), xycoords='axes fraction', ha='center', va='center', fontsize=12, color='k') if not np.isnan(self.cdppg) and self.cdppg > 0: axr.annotate(r"GP %.3f ppm" % (self.cdppg), xy=(0.5, 0.2), xycoords='axes fraction', ha='center', va='center', fontsize=8, color='k', fontstyle='italic') def compute(self): ''' Compute the model for the current value of lambda. ''' # Is there a transit model? if self.transit_model is not None: return self.compute_joint() log.info('Computing the model...') # Loop over all chunks model = [None for b in self.breakpoints] for b, brkpt in enumerate(self.breakpoints): # Masks for current chunk m = self.get_masked_chunk(b) c = self.get_chunk(b) # This block of the masked covariance matrix mK = GetCovariance(self.kernel, self.kernel_params, self.time[m], self.fraw_err[m]) # Get median med = np.nanmedian(self.fraw[m]) # Normalize the flux f = self.fraw[m] - med # The X^2 matrices A = np.zeros((len(m), len(m))) B = np.zeros((len(c), len(m))) # Loop over all orders for n in range(self.pld_order): # Only compute up to the current PLD order if (self.lam_idx >= n) and (self.lam[b][n] is not None): XM = self.X(n, m) XC = self.X(n, c) A += self.lam[b][n] * np.dot(XM, XM.T) B += self.lam[b][n] * np.dot(XC, XM.T) del XM, XC # Compute the model W = np.linalg.solve(mK + A, f) model[b] = np.dot(B, W) # Free up some memory del A, B, W # Join the chunks after applying the correct offset if len(model) > 1: # First chunk self.model = model[0][:-self.bpad] # Center chunks for m in model[1:-1]: # Join the chunks at the first non-outlier cadence i = 1 while len(self.model) - i in self.mask: i += 1 offset = self.model[-i] - m[self.bpad - i] self.model = np.concatenate( [self.model, m[self.bpad:-self.bpad] + offset]) # Last chunk i = 1 while len(self.model) - i in self.mask: i += 1 offset = self.model[-i] - model[-1][self.bpad - i] self.model = np.concatenate( [self.model, model[-1][self.bpad:] + offset]) else: self.model = model[0] # Subtract the global median self.model -= np.nanmedian(self.model) # Get the CDPP and reset the weights self.cdpp_arr = self.get_cdpp_arr() self.cdpp = self.get_cdpp() self._weights = None def compute_joint(self): ''' Compute the model in a single step, allowing for a light curve-wide transit model. This is a bit more expensive to compute. ''' # Init log.info('Computing the joint model...') A = [None for b in self.breakpoints] B = [None for b in self.breakpoints] # We need to make sure that we're not masking the transits we are # trying to fit! # NOTE: If there happens to be an index that *SHOULD* be masked during # a transit (cosmic ray, detector anomaly), update `self.badmask` # to include that index. # Bad data points are *never* used in the regression. if self.transit_model is not None: outmask = np.array(self.outmask) transitmask = np.array(self.transitmask) transit_inds = np.where( np.sum([tm(self.time) for tm in self.transit_model], axis=0) < 0)[0] self.outmask = np.array( [i for i in self.outmask if i not in transit_inds]) self.transitmask = np.array( [i for i in self.transitmask if i not in transit_inds]) # Loop over all chunks for b, brkpt in enumerate(self.breakpoints): # Masks for current chunk m = self.get_masked_chunk(b, pad=False) c = self.get_chunk(b, pad=False) # The X^2 matrices A[b] = np.zeros((len(m), len(m))) B[b] = np.zeros((len(c), len(m))) # Loop over all orders for n in range(self.pld_order): # Only compute up to the current PLD order if (self.lam_idx >= n) and (self.lam[b][n] is not None): XM = self.X(n, m) XC = self.X(n, c) A[b] += self.lam[b][n] * np.dot(XM, XM.T) B[b] += self.lam[b][n] * np.dot(XC, XM.T) del XM, XC # Merge chunks. BIGA and BIGB are sparse, but unfortunately # scipy.sparse doesn't handle sparse matrix inversion all that # well when the *result* is not itself sparse. So we're sticking # with regular np.linalg. BIGA = block_diag(*A) del A BIGB = block_diag(*B) del B # Compute the full covariance matrix mK = GetCovariance(self.kernel, self.kernel_params, self.apply_mask( self.time), self.apply_mask(self.fraw_err)) # The normalized, masked flux array f = self.apply_mask(self.fraw) med = np.nanmedian(f) f -= med # Are we computing a joint transit model? if self.transit_model is not None: # Get the unmasked indices m = self.apply_mask() # Subtract off the mean total transit model mean_transit_model = med * \ np.sum([tm.depth * tm(self.time[m]) for tm in self.transit_model], axis=0) f -= mean_transit_model # Now add each transit model to the matrix of regressors for tm in self.transit_model: XM = tm(self.time[m]).reshape(-1, 1) XC = tm(self.time).reshape(-1, 1) BIGA += med ** 2 * tm.var_depth * np.dot(XM, XM.T) BIGB += med ** 2 * tm.var_depth * np.dot(XC, XM.T) del XM, XC # Dot the inverse of the covariance matrix W = np.linalg.solve(mK + BIGA, f) self.model = np.dot(BIGB, W) # Compute the transit weights and maximum likelihood transit model w_trn = med ** 2 * np.concatenate([tm.var_depth * np.dot( tm(self.time[m]).reshape(1, -1), W) for tm in self.transit_model]) self.transit_depth = np.array( [med * tm.depth + w_trn[i] for i, tm in enumerate(self.transit_model)]) / med # Remove the transit prediction from the model self.model -= np.dot(np.hstack([tm(self.time).reshape(-1, 1) for tm in self.transit_model]), w_trn) else: # No transit model to worry about W = np.linalg.solve(mK + BIGA, f) self.model = np.dot(BIGB, W) # Subtract the global median self.model -= np.nanmedian(self.model) # Restore the mask if self.transit_model is not None: self.outmask = outmask self.transitmask = transitmask # Get the CDPP and reset the weights self.cdpp_arr = self.get_cdpp_arr() self.cdpp = self.get_cdpp() self._weights = None def apply_mask(self, x=None): ''' Returns the outlier mask, an array of indices corresponding to the non-outliers. :param numpy.ndarray x: If specified, returns the masked version of \ :py:obj:`x` instead. Default :py:obj:`None` ''' if x is None: return np.delete(np.arange(len(self.time)), self.mask) else: return np.delete(x, self.mask, axis=0) def get_chunk(self, b, x=None, pad=True): ''' Returns the indices corresponding to a given light curve chunk. :param int b: The index of the chunk to return :param numpy.ndarray x: If specified, applies the mask to array \ :py:obj:`x`. Default :py:obj:`None` ''' M = np.arange(len(self.time)) if b > 0: res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad) & (M <= self.breakpoints[b] + int(pad) * self.bpad)] else: res = M[M <= self.breakpoints[b] + int(pad) * self.bpad] if x is None: return res else: return x[res] def get_masked_chunk(self, b, x=None, pad=True): ''' Same as :py:meth:`get_chunk`, but first removes the outlier indices. :param int b: The index of the chunk to return :param numpy.ndarray x: If specified, applies the mask to \ array :py:obj:`x`. Default :py:obj:`None` ''' M = self.apply_mask(np.arange(len(self.time))) if b > 0: res = M[(M > self.breakpoints[b - 1] - int(pad) * self.bpad) & (M <= self.breakpoints[b] + int(pad) * self.bpad)] else: res = M[M <= self.breakpoints[b] + int(pad) * self.bpad] if x is None: return res else: return x[res] def get_weights(self): ''' Computes the PLD weights vector :py:obj:`w`. ..warning :: Deprecated and not thoroughly tested. ''' log.info("Computing PLD weights...") # Loop over all chunks weights = [None for i in range(len(self.breakpoints))] for b, brkpt in enumerate(self.breakpoints): # Masks for current chunk m = self.get_masked_chunk(b) c = self.get_chunk(b) # This block of the masked covariance matrix _mK = GetCovariance(self.kernel, self.kernel_params, self.time[m], self.fraw_err[m]) # This chunk of the normalized flux f = self.fraw[m] - np.nanmedian(self.fraw) # Loop over all orders _A = [None for i in range(self.pld_order)] for n in range(self.pld_order): if self.lam_idx >= n: X = self.X(n, m) _A[n] = np.dot(X, X.T) del X # Compute the weights A = np.sum([l * a for l, a in zip(self.lam[b], _A) if l is not None], axis=0) W = np.linalg.solve(_mK + A, f) weights[b] = [l * np.dot(self.X(n, m).T, W) for n, l in enumerate(self.lam[b]) if l is not None] self._weights = weights def get_cdpp_arr(self, flux=None): ''' Returns the CDPP value in *ppm* for each of the chunks in the light curve. ''' if flux is None: flux = self.flux return np.array([self._mission.CDPP(flux[self.get_masked_chunk(b)], cadence=self.cadence) for b, _ in enumerate(self.breakpoints)]) def get_cdpp(self, flux=None): ''' Returns the scalar CDPP for the light curve. ''' if flux is None: flux = self.flux return self._mission.CDPP(self.apply_mask(flux), cadence=self.cadence) def plot_aperture(self, axes, labelsize=8): ''' Plots the aperture and the pixel images at the beginning, middle, and end of the time series. Also plots a high resolution image of the target, if available. ''' log.info('Plotting the aperture...') # Get colormap plasma = pl.get_cmap('plasma') plasma.set_bad(alpha=0) # Get aperture contour def PadWithZeros(vector, pad_width, iaxis, kwargs): vector[:pad_width[0]] = 0 vector[-pad_width[1]:] = 0 return vector ny, nx = self.pixel_images[0].shape contour = np.zeros((ny, nx)) contour[np.where(self.aperture)] = 1 contour = np.lib.pad(contour, 1, PadWithZeros) highres = zoom(contour, 100, order=0, mode='nearest') extent = np.array([-1, nx, -1, ny]) # Plot first, mid, and last TPF image title = ['start', 'mid', 'end'] for i, image in enumerate(self.pixel_images): ax = axes[i] ax.imshow(image, aspect='auto', interpolation='nearest', cmap=plasma) ax.contour(highres, levels=[0.5], extent=extent, origin='lower', colors='r', linewidths=1) # Check for saturated columns for x in range(self.aperture.shape[0]): for y in range(self.aperture.shape[1]): if self.aperture[x][y] == AP_SATURATED_PIXEL: ax.fill([y - 0.5, y + 0.5, y + 0.5, y - 0.5], [x - 0.5, x - 0.5, x + 0.5, x + 0.5], fill=False, hatch='xxxxx', color='r', lw=0) ax.axis('off') ax.set_xlim(-0.7, nx - 0.3) ax.set_ylim(-0.7, ny - 0.3) ax.annotate(title[i], xy=(0.5, 0.975), xycoords='axes fraction', ha='center', va='top', size=labelsize, color='w') if i == 1: for source in self.nearby: ax.annotate('%.1f' % source['mag'], xy=(source['x'] - source['x0'], source['y'] - source['y0']), ha='center', va='center', size=labelsize - 2, color='w', fontweight='bold') # Plot hi res image if self.hires is not None: ax = axes[-1] ax.imshow(self.hires, aspect='auto', extent=(-0.5, nx - 0.5, -0.5, ny - 0.5), interpolation='bicubic', cmap=plasma) ax.contour(highres, levels=[0.5], extent=extent, origin='lower', colors='r', linewidths=1) ax.axis('off') ax.set_xlim(-0.7, nx - 0.3) ax.set_ylim(-0.7, ny - 0.3) ax.annotate('hires', xy=(0.5, 0.975), xycoords='axes fraction', ha='center', va='top', size=labelsize, color='w') else: ax = axes[-1] ax.axis('off') def search(self, pos_tol=2.5, neg_tol=50., clobber=False, name='search', **kwargs): ''' ''' log.info("Searching for transits...") fname = os.path.join(self.dir, self.name + '_%s.npz' % name) pname = os.path.join(self.dir, self.name + '_%s.pdf' % name) # Compute if not os.path.exists(fname) or clobber: time, depth, vardepth, delchisq = Search( self, pos_tol=pos_tol, neg_tol=neg_tol, **kwargs) data = np.vstack([time, depth, vardepth, delchisq]).T header = "TIME, DEPTH, VARDEPTH, DELTACHISQ" np.savetxt(fname, data, fmt=str('%.10e'), header=header) else: time, depth, vardepth, delchisq = np.loadtxt( fname, unpack=True, skiprows=1) # Plot if not os.path.exists(pname) or clobber: fig, ax = pl.subplots(1, figsize=(10, 4)) ax.plot(time, delchisq, lw=1) ax.set_ylabel(r'$\Delta \chi^2$', fontsize=18) ax.set_xlabel('Time (days)', fontsize=18) ax.set_xlim(time[0], time[-1]) fig.savefig(pname, bbox_inches='tight') pl.close() return time, depth, vardepth, delchisq def overfit(self, tau=None, plot=True, clobber=False, w=9, **kwargs): r""" Compute the masked & unmasked overfitting metrics for the light curve. This routine injects a transit model given by `tau` at every cadence in the light curve and recovers the transit depth when (1) leaving the transit unmasked and (2) masking the transit prior to performing regression. :param tau: A function or callable that accepts two arguments, \ `time` and `t0`, and returns an array corresponding to a \ zero-mean, unit depth transit model centered at \ `t0` and evaluated at `time`. \ The easiest way to provide this is to use an instance of \ :py:class:`everest.transit.TransitShape`. Default is \ :py:class:`everest.transit.TransitShape(dur=0.1)`, a transit \ with solar-like limb darkening and a duratio of 0.1 days. :param bool plot: Plot the results as a PDF? Default :py:obj:`True` :param bool clobber: Overwrite the results if present? Default \ :py:obj:`False` :param int w: The size of the masking window in cadences for \ computing the masked overfitting metric. Default `9` \ (about 4.5 hours for `K2` long cadence). :returns: An instance of `everest.basecamp.Overfitting`. """ fname = os.path.join(self.dir, self.name + '_overfit.npz') figname = os.path.join(self.dir, self.name) # Compute if not os.path.exists(fname) or clobber: # Baseline med = np.nanmedian(self.fraw) # Default transit model if tau is None: tau = TransitShape(dur=0.1) # The overfitting metrics O1 = [None for brkpt in self.breakpoints] O2 = [None for brkpt in self.breakpoints] O3 = [None for brkpt in self.breakpoints] O4 = [None for brkpt in self.breakpoints] O5 = [None for brkpt in self.breakpoints] # Loop over all chunks for b, brkpt in enumerate(self.breakpoints): # Masks for current chunk m = self.get_masked_chunk(b, pad=False) time = self.time[m] ferr = self.fraw_err[m] / med y = self.fraw[m] / med - 1 # The metrics we're computing here O1[b] = np.zeros(len(y)) * np.nan O2[b] = np.zeros(len(y)) * np.nan O3[b] = np.zeros(len(y)) * np.nan O4[b] = np.zeros(len(y)) * np.nan O5[b] = np.zeros(len(y)) * np.nan # Compute the astrophysical covariance and its inverse log.info("Computing the covariance...") if self.kernel == 'Basic': wh, am, ta = self.kernel_params wh /= med am /= med kernel_params = [wh, am, ta] elif self.kernel == 'QuasiPeriodic': wh, am, ga, pe = self.kernel_params wh /= med am /= med kernel_params = [wh, am, ga, pe] K = GetCovariance(self.kernel, kernel_params, time, ferr) Kinv = cho_solve((cholesky(K), False), np.eye(len(time))) # Loop over all orders log.info("Computing some large matrices...") X = [None for n in range(self.pld_order)] XL = [None for n in range(self.pld_order)] XLX = [None for n in range(self.pld_order)] for n in range(self.pld_order): if (self.lam_idx >= n) and (self.lam[b][n] is not None): X[n] = self.X(n, m, **kwargs) XL[n] = (self.lam[b][n] / med ** 2) * X[n] XLX[n] = np.dot(XL[n], X[n].T) X = np.hstack(X) XL = np.hstack(XL) XLX = np.sum(XLX, axis=0) # The full covariance C = XLX + K # The unmasked linear problem log.info("Solving the unmasked linear problem...") m = np.dot(XLX, np.linalg.solve(C, y)) m -= np.nanmedian(m) f = y - m R = np.linalg.solve(C, XLX.T).T # The masked linear problem log.info("Solving the masked linear problem...") A = MaskSolve(C, y, w=w) # Now loop through and compute the metric log.info("Computing the overfitting metrics...") for n in prange(len(y)): # # *** Unmasked overfitting metric *** # # Evaluate the sparse transit model TAU = tau(time, t0=time[n]) i = np.where(TAU < 0)[0] TAU = TAU.reshape(-1, 1) # Fast sparse algebra AA = np.dot(np.dot(TAU[i].T, Kinv[i, :][:, i]), TAU[i]) BB = np.dot(TAU[i].T, Kinv[i, :]) CC = TAU - np.dot(R[:, i], TAU[i]) O1[b][n] = AA O2[b][n] = np.dot(BB, CC) O3[b][n] =
np.dot(BB, f)
numpy.dot
# -*- coding: utf-8 -*- """ Created on Thu Jan 8 21:33:23 2015 @author: rmitch """ from __future__ import print_function import numpy as np import mahotas import mahotas.features # perform any required intialization, and add any algorithm specific fields # to the output header def initAlgorithm( hdr ): hdr[ "GLCM Entropy" ] = "log2" return def _getGLCMTestImage(): testImage =
np.array( [[0,0,1,1], [0,0,1,1], [0,2,2,2], [2,2,3,3]] )
numpy.array
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: from __future__ import absolute_import import numpy as np from nipy.algorithms.graph.field import field_from_coo_matrix_and_data from ..hierarchical_parcellation import hparcel from ...utils.simul_multisubject_fmri_dataset import surrogate_2d_dataset from ..parcellation import MultiSubjectParcellation from ..discrete_domain import grid_domain_from_binary_array def test_parcel_interface(): """ Simply test parcellation interface """ # prepare some data shape = (5, 5, 5) nb_parcel = 10 data = np.random.randn(np.prod(shape)) domain = grid_domain_from_binary_array(np.ones(shape)) g = field_from_coo_matrix_and_data(domain.topology, data) u, J0 = g.ward(nb_parcel) tmp = np.array([np.sum(u == k) for k in range(nb_parcel)]) #instantiate a parcellation msp = MultiSubjectParcellation(domain, u, u) assert msp.nb_parcel == nb_parcel assert msp.nb_subj == 1 assert (msp.population().ravel() == tmp).all() def test_parcel_interface_multi_subj(): """ test parcellation interface, with multiple subjects """ # prepare some data shape = (5, 5, 5) nb_parcel = 10 nb_subj = 5 v = [] for s in range(nb_subj): data = np.random.randn(np.prod(shape)) domain = grid_domain_from_binary_array(np.ones(shape)) g = field_from_coo_matrix_and_data(domain.topology, data) u, J0 = g.ward(nb_parcel) v.append(u) v = np.array(v).T tmp = np.array([np.sum(v == k, 0) for k in range(nb_parcel)]) #instantiate a parcellation msp = MultiSubjectParcellation(domain, u, v) assert msp.nb_parcel == nb_parcel assert msp.nb_subj == nb_subj assert (msp.population() == tmp).all() def test_parcel_feature(): """ Simply test parcellation feature interface """ # prepare some data shape = (5, 5, 5) nb_parcel = 10 data = np.random.randn(np.prod(shape), 1) domain = grid_domain_from_binary_array(np.ones(shape)) g = field_from_coo_matrix_and_data(domain.topology, data) u, J0 = g.ward(nb_parcel) #instantiate a parcellation msp = MultiSubjectParcellation(domain, u, u) msp.make_feature('data', data) assert msp.get_feature('data').shape == (nb_parcel, 1) # test with a copy msp2 = msp.copy() assert (msp2.get_feature('data') == msp2.get_feature('data')).all() # test a multi_dimensional feature dim = 4 msp.make_feature('new', np.random.randn(np.prod(shape), 1, dim)) assert msp.get_feature('new').shape == (nb_parcel, 1, dim) def test_parcel_feature_multi_subj(): """ Test parcellation feature interface with multiple subjects """ # prepare some data shape = (5, 5, 5) nb_parcel = 10 nb_subj = 5 v = [] for s in range(nb_subj): data = np.random.randn(np.prod(shape)) domain = grid_domain_from_binary_array(np.ones(shape)) g = field_from_coo_matrix_and_data(domain.topology, data) u, J0 = g.ward(nb_parcel) v.append(u) v = np.array(v).T msp = MultiSubjectParcellation(domain, u, v) # test a multi_dimensional feature # dimension 1 msp.make_feature('data', np.random.randn(np.prod(shape), nb_subj)) assert msp.get_feature('data').shape == (nb_parcel, nb_subj) #dimension>1 dim = 4 msp.make_feature('data', np.random.randn(
np.prod(shape)
numpy.prod
# -*- coding: utf-8 -*- # # Copyright (c) 2018 Leland Stanford Junior University # Copyright (c) 2018 The Regents of the University of California # # This file is part of pelicun. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # # You should have received a copy of the BSD 3-Clause License along with # pelicun. If not, see <http://www.opensource.org/licenses/>. # # Contributors: # <NAME> """ This subpackage performs system tests on the control module of pelicun. """ import pytest import numpy as np from numpy.testing import assert_allclose from scipy.stats import truncnorm as tnorm from copy import deepcopy import os, sys, inspect current_dir = os.path.dirname( os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0,os.path.dirname(parent_dir)) from pelicun.control import * from pelicun.uq import mvn_orthotope_density as mvn_od from pelicun.tests.test_pelicun import prob_allclose, prob_approx # ----------------------------------------------------------------------------- # FEMA_P58_Assessment # ----------------------------------------------------------------------------- def test_FEMA_P58_Assessment_central_tendencies(): """ Perform a loss assessment with customized inputs that reduce the dispersion of calculation parameters to negligible levels. This allows us to test the results against pre-defined reference values in spite of the randomness involved in the calculations. """ base_input_path = 'resources/' DL_input = base_input_path + 'input data/' + "DL_input_test.json" EDP_input = base_input_path + 'EDP data/' + "EDP_table_test.out" A = FEMA_P58_Assessment() A.read_inputs(DL_input, EDP_input, verbose=False) A.define_random_variables() # -------------------------------------------------- check random variables # EDP RV_EDP = list(A._EDP_dict.values())[0] assert RV_EDP.theta[0] == pytest.approx(0.5 * g) assert RV_EDP.theta[1] == pytest.approx(0.5 * g * 1e-6, abs=1e-7) assert RV_EDP._distribution == 'lognormal' # QNT assert A._QNT_dict is None #RV_QNT = A._RV_dict['QNT'] #assert RV_QNT is None # FRG RV_FRG = list(A._FF_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_FRG]).T assert_allclose(thetas, np.array([0.444, 0.6, 0.984]) * g, rtol=0.01) assert_allclose(betas, np.array([0.3, 0.4, 0.5]), rtol=0.01) rho = RV_FRG[0].RV_set.Rho() assert_allclose(rho, np.ones((3, 3)), rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_FRG]) # RED RV_RED = list(A._DV_RED_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_RED]).T assert_allclose(mus, np.ones(2), rtol=0.01) assert_allclose(sigmas, np.array([1e-4, 1e-4]), rtol=0.01) rho = RV_RED[0].RV_set.Rho() assert_allclose(rho, np.array([[1, 0], [0, 1]]), rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_RED]) assert_allclose (RV_RED[0].truncation_limits, [0., 2.], rtol=0.01) assert_allclose (RV_RED[1].truncation_limits, [0., 4.], rtol=0.01) # INJ RV_INJ = list(A._DV_INJ_dict.values()) mus, sigmas = np.array([rv.theta for rv in RV_INJ]).T assert_allclose(mus, np.ones(4), rtol=0.01) assert_allclose(sigmas, np.ones(4) * 1e-4, rtol=0.01) rho = RV_INJ[0].RV_set.Rho() rho_target = np.zeros((4, 4)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'normal' for rv in RV_INJ]) assert_allclose(RV_INJ[0].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[1].truncation_limits, [0., 10./3.], rtol=0.01) assert_allclose(RV_INJ[2].truncation_limits, [0., 10.], rtol=0.01) assert_allclose(RV_INJ[3].truncation_limits, [0., 10.], rtol=0.01) # REP RV_REP = list(A._DV_REP_dict.values()) thetas, betas = np.array([rv.theta for rv in RV_REP]).T assert_allclose(thetas, np.ones(6), rtol=0.01) assert_allclose(betas, np.ones(6) * 1e-4, rtol=0.01) rho = RV_REP[0].RV_set.Rho() rho_target = np.zeros((6, 6)) np.fill_diagonal(rho_target, 1.) assert_allclose(rho, rho_target, rtol=0.01) assert np.all([rv.distribution == 'lognormal' for rv in RV_REP]) # ------------------------------------------------------------------------ A.define_loss_model() # QNT (deterministic) QNT = A._FG_dict['T0001.001']._performance_groups[0]._quantity assert QNT == pytest.approx(50., rel=0.01) A.calculate_damage() # ------------------------------------------------ check damage calculation # TIME T_check = A._TIME.describe().T.loc[['hour','month','weekday?'],:] assert_allclose(T_check['mean'], np.array([11.5, 5.5, 5. / 7.]), rtol=0.05) assert_allclose(T_check['min'], np.array([0., 0., 0.]), rtol=0.01) assert_allclose(T_check['max'], np.array([23., 11., 1.]), rtol=0.01) assert_allclose(T_check['50%'], np.array([12., 5., 1.]), atol=1.0) assert_allclose(T_check['count'], np.array([10000., 10000., 10000.]), rtol=0.01) # POP P_CDF = A._POP.describe(np.arange(1, 27) / 27.).iloc[:, 0].values[4:] vals, counts = np.unique(P_CDF, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]), rtol=0.01) assert_allclose(counts, np.array([14, 2, 7, 5]), atol=1) # COL COL_check = A._COL.describe().T assert COL_check['mean'].values[0] == pytest.approx(0.5, rel=0.05) assert len(A._ID_dict['non-collapse']) == pytest.approx(5000, rel=0.05) assert len(A._ID_dict['collapse']) == pytest.approx(5000, rel=0.05) # DMG DMG_check = A._DMG.describe().T assert_allclose(DMG_check['mean'], np.array([17.074, 17.074, 7.9361]), rtol=0.1, atol=1.0) assert_allclose(DMG_check['min'], np.zeros(3), rtol=0.01) assert_allclose(DMG_check['max'], np.ones(3) * 50.0157, rtol=0.05) # ------------------------------------------------------------------------ A.calculate_losses() # -------------------------------------------------- check loss calculation # RED DV_RED = A._DV_dict['red_tag'].describe().T assert_allclose(DV_RED['mean'], np.array([0.341344, 0.1586555]), rtol=0.1) # INJ - collapse DV_INJ_C = deepcopy(A._COL[['INJ-0', 'INJ-1']]) DV_INJ_C.dropna(inplace=True) NC_count = DV_INJ_C.describe().T['count'][0] assert_allclose(NC_count, np.ones(2) * 5000, rtol=0.05) # lvl 1 vals, counts = np.unique(DV_INJ_C.iloc[:, 0].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.1, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # lvl 2 vals, counts = np.unique(DV_INJ_C.iloc[:, 1].values, return_counts=True) assert_allclose(vals, np.array([0., 2.5, 5., 10.]) * 0.9, rtol=0.01) assert_allclose(counts / NC_count, np.array([14, 2, 7, 5]) / 28., atol=0.01, rtol=0.1) # INJ - non-collapse DV_INJ_NC = deepcopy(A._DV_dict['injuries']) DV_INJ_NC[0].dropna(inplace=True) assert_allclose(DV_INJ_NC[0].describe().T['count'], np.ones(2) * 5000, rtol=0.05) # lvl 1 DS2 I_CDF = DV_INJ_NC[0].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 1 DS3 I_CDF = DV_INJ_NC[0].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.075, 0.15, 0.3]), rtol=0.01) target_prob = np.array( [0.8413445, 0., 0., 0.] + 0.1586555 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl 2 DS2 I_CDF = DV_INJ_NC[1].iloc[:, 0] I_CDF = np.around(I_CDF, decimals=3) vals, counts = np.unique(I_CDF, return_counts=True) assert_allclose(vals, np.array([0., 0.025, 0.05, 0.1]), rtol=0.01) target_prob = np.array( [0.6586555, 0., 0., 0.] + 0.3413445 * np.array([14, 2, 7, 5]) / 28.) assert_allclose(counts / NC_count, target_prob, atol=0.01, rtol=0.1) # lvl2 DS3 I_CDF = DV_INJ_NC[1].iloc[:, 1] I_CDF = np.around(I_CDF, decimals=3) vals, counts =
np.unique(I_CDF, return_counts=True)
numpy.unique
import os import pandas as pd import numpy as np from matplotlib import pyplot as plt import sys import seaborn as sns sns.set() sns.set_context("paper") from sklearn import metrics # get colors from https://medialab.github.io/iwanthue/ or artenatevly from http://phrogz.net/css/distinct-colors.html colors_cycle = ["#a257d4", "#e090bf", "#64c9a3", "#4b68ae", "#dc8c2f", "#cd41a7", "#d9344f", "#bc599a", "#afa1e8", "#48c1d8", "#b54545", "#919233", "#9a78be", "#59602a", "#4e8e2c", "#9db935", "#9b563c", "#e482df", "#5995d3", "#6a5198", "#b05f84", "#b563c3", "#5f6b18", "#a55c21", "#5754c2", "#277257", "#4f9b5e", "#8b6b29", "#b8381c", "#ad2f62", "#97ba6d", "#45c37c", "#5fc250", "#8c4c7b", "#e06e87", "#e2672a", "#db7756", "#974858", "#35743b", "#bbaf6c", "#8c4099", "#e44586", "#ed5c4c", "#389c84", "#cfae3d", "#eda377", "#778749", "#c5935a", "#de8784", "#757eec"] def plot_cluster_composition(fraction_sites, directory, level, normalise=False, label='primary_site', shuffled=False, algorithm='topsbm'): sns.set(font_scale=0.8) df_clusters = pd.read_csv("%s/%s/%s_level_%d_clusters.csv" % (directory, algorithm, algorithm, level), header=[0]) x = np.arange(1, 1 + len(df_clusters.columns)) fig = plt.figure(figsize=(15, 8)) ax = fig.subplots() fraction_bar_plot(x, fraction_sites, ax) ax.set_xlabel("cluster", fontsize=20) if normalise: ax.set_ylabel("fraction of nodes", fontsize=22) else: ax.set_ylabel("number of nodes", fontsize=20) ax.set_title("%s%s distribution across clusters" % ("Shuffled " if shuffled else '', label), fontsize=20) ax.legend(ncol=3, loc='upper right') ax.tick_params(axis='both', labelsize=20) plt.show() fig.savefig("%s/%s/%s%sclustercomposition_l%d_%s.pdf" % ( directory, algorithm, "shuffled" if shuffled else '', "fraction_" if normalise else '', int(level), label)) def fraction_bar_plot(x, fraction_sites, ax=None): global current_color current_color = -1 if ax is None: fig = plt.figure(figsize=(15, 8)) ax = fig.subplots() bottom = np.zeros(len(x)) ymax = 0 for site, data in fraction_sites.items(): if np.max(data) == 0: continue ax.bar(x, data, label=site, bottom=bottom, color=get_color_cycle()) bottom = bottom + data def get_Palette(site): palette_map = dict({'Brain': 'Blues', 'Breast': 'Reds', 'Kidney': 'Greens', 'Lung': 'Oranges', 'Thyroid': 'Greys', 'Uterus': 'Purples', 'Prostate': 'BuGn', 'Ovary': 'BuPu', 'Lymph Nodes': 'OrRd', 'Soft Tissue': 'PuRd', 'Esophagus': 'YlGn', 'Stomach': 'YlRd', 'Bone Marrow': 'PuBuGn', 'Skin': 'YlOrRd', 'Adipose Tissue': 'YlOrBr', 'Blood': 'RdPu', 'Pancreas': 'OrRd', 'Testis': 'GnBu'}) for k in palette_map.keys(): if k in site: return palette_map[k] current_color = -1 def get_color_cycle(): global current_color current_color += 1 if current_color >= len(colors_cycle): current_color = 0 return colors_cycle[current_color] def get_cluster_given_l(l, directory, algorithm='topsbm'): df_clusters = pd.read_csv("%s/%s/%s_level_%d_clusters.csv" % (directory, algorithm, algorithm, l), header=[0], index_col=None) cluster = {} for i, c in enumerate(df_clusters.columns): cluster[i] = df_clusters[c].dropna().values return cluster def get_topic_given_l(l, directory, algorithm='topsbm'): df_topics = pd.read_csv("%s/%s/%s_level_%d_topics.csv" % (directory, algorithm, algorithm, l), header=[0]) topic = {} for i, c in enumerate(df_topics.columns): topic[i] = df_topics[c].dropna().values return topic def get_fraction_sites(cluster, df_files, label='primary_site', normalise=False): fraction_sites = {} c_fraction_site = {} for site in df_files[label].dropna().unique(): fraction_sites[site] = [] c_fraction_site[site] = 0 for i, c in enumerate(cluster): for sample in cluster[i]: foundsample = get_file(sample, df_files) if foundsample is not None: c_fraction_site[foundsample[label]] += 1 else: if 'unknown' in c_fraction_site.keys(): c_fraction_site['unknown'] +=1 else: c_fraction_site['unknown'] = 1 fraction_sites['unknown']=[] for site in fraction_sites: if normalise: norm = float(len(cluster[i])) else: norm = 1 if norm > 0: fraction_sites[site].append(c_fraction_site[site] / norm) else: fraction_sites[site].append(np.nan) c_fraction_site[site] = 0 df = pd.DataFrame(data=fraction_sites).dropna(how='all', axis=0) ##put first columns that have high values in average avgs = df.apply(lambda x: np.average(x.to_numpy()[x.to_numpy().nonzero()[0]]), axis=0) df = df.transpose() df.insert(0, 'avg', avgs) df = df.sort_values(by=['avg'], axis=0, ascending=False).drop('avg', axis=1).transpose() df = df.sort_values(by=[tissue for tissue in df.columns], axis=0, ascending=False) return df.to_dict(orient='list') def get_clustersinfo(cluster, fraction_sites): clustersinfo = { "maximum": [], "homogeneity": [], "sizes": [], "nclasses": [] } for icluster in cluster: maximum = 0 homo = 0 size = 0 nclass = 0 site_maximum = '' cumulative = 0 for site, data in fraction_sites.items(): cdata = data[icluster] cumulative += cdata if cdata > maximum: maximum = cdata site_maximum = site if cdata > 0: nclass += 1 # using fraction_items normalised if cdata <= 1: homo -= cdata * np.log(cdata) size += cdata if cumulative > 0: clustersinfo['maximum'].append([float(maximum) / cumulative, site_maximum]) else: clustersinfo['maximum'].append([0, site_maximum]) clustersinfo['sizes'].append(size) clustersinfo['nclasses'].append(nclass) clustersinfo['homogeneity'].append(1 - homo) return clustersinfo def plot_maximum(clustersinfo, cluster, label, level, directory, clustersinfo_shuffle=None, algorithm='topsbm'): fig = plt.figure(figsize=(15, 6)) ax = fig.subplots(1, 2) bins = 10 real = np.array(clustersinfo['maximum'])[:, 0].astype(float) ax[0].plot(np.sort(real), marker='o', ms=25, ls='') ax[1].hist(np.sort(real), histtype='step', bins=bins, lw=4, density=True, range=(0.05, 1.05)) shuffled = False if clustersinfo_shuffle is not None: shuffled = np.array(clustersinfo_shuffle['maximum'])[:, 0].astype(float) ax[0].plot(np.sort(shuffled), marker='o', ls='', ms=25) ax[1].hist(np.sort(shuffled), histtype='step', bins=bins, lw=4, density=True, range=(0.05, 1.05)) shuffled = True ax[0].plot(np.arange(len(cluster)), [0.8 for i in range(len(cluster))], visible=True, ls='--') for axi in ax: axi.tick_params(axis='both', labelsize=20) ax[0].set_xlabel("cluster", fontsize=20) ax[0].set_ylabel("maximum fraction\nwith same %s" % label, fontsize=20) ax[0].set_ylim((0, 1.1)) ax[1].set_xlabel("maximum fraction\nwith same %s" % label, fontsize=20) ax[1].set_ylabel("pdf", fontsize=20) plt.rc('xtick', labelsize=18) plt.rc('ytick', labelsize=18) plt.show() fig.savefig( "%s/%s/%scluster_maximum_l%d_%s.pdf" % (directory, algorithm, "shuffled" if shuffled else '', level, label)) def plot_maximum_size(clustersinfo, label, level, directory, clustersinfo_shuffle=None, algorithm='topsbm'): fig = plt.figure(figsize=(15, 6)) x = np.array(clustersinfo['sizes']).astype(int) y = np.array(clustersinfo['maximum'])[:, 0].astype(float) plt.scatter(x, y, lw=10, label='clusters') plt.xlim(0, np.max(x) + np.max(x) / 10) plt.plot(np.linspace(0.5, x.max()), 1. / np.linspace(0.5, x.max()), label='uniform') shuffled = False if clustersinfo_shuffle is not None: shuffled = True x_shuffle = np.array(clustersinfo_shuffle['sizes']).astype(int) y_shuffle = np.array(clustersinfo_shuffle['maximum'])[:, 0].astype(float) plt.scatter(x_shuffle, y_shuffle, lw=10, label='clusters shuffled') plt.xlim(0, np.max(x_shuffle) + np.max(x_shuffle) / 10) plt.xlabel("cluster size", fontsize=20) plt.ylabel("maximum fraction\nwith same %s" % label, fontsize=20) plt.ylim((0, 1.1)) plt.legend(loc='best', fontsize=20) plt.rc('xtick', labelsize=18) plt.rc('ytick', labelsize=18) plt.show() fig.savefig( "%s/%s/%sclusterhomosize_l%d_%s.pdf" % (directory, algorithm, "shuffled" if shuffled else '', level, label)) def plot_maximum_label(clustersinfo, label, level, directory, clustersinfo_shuffle=None, algorithm='topsbm'): fig = plt.figure(figsize=(10, 6)) x = np.array(clustersinfo['nclasses']).astype(int) y = np.array(clustersinfo['maximum'])[:, 0].astype(float) shuffled = False plt.scatter(x, y, lw=10, alpha=0.9, label='clusters') plt.plot(np.arange(1, np.max(x) + 2), 1. / np.arange(1, np.max(x) + 2), ls='--', c='cyan', label='uniform') plt.xlim(0.95, np.max(x) + 0.5) if clustersinfo_shuffle is not None: x_shuffle = np.array(clustersinfo_shuffle['nclasses']).astype(int) y_shuffle = np.array(clustersinfo_shuffle['maximum'])[:, 0].astype(float) plt.scatter(x_shuffle, y_shuffle, lw=10, alpha=0.9, label='clusters shuffled') plt.plot(np.arange(1, np.max(x_shuffle) + 2), 1. / np.arange(1, np.max(x_shuffle) + 2), ls='--', c='cyan', label='') shuffled = True plt.xlim(0.95, np.max(x_shuffle) + 0.5) plt.xlabel("number of labels", fontsize=20) plt.ylabel("maximum fraction\nwith same %s" % label, fontsize=20) plt.ylim((0, 1.1)) plt.rc('xtick', labelsize=16) plt.rc('ytick', labelsize=16) plt.legend(loc='lower right', fontsize=20) plt.show() fig.savefig( "%s/%s/%scluster_homon_l%d_%s.pdf" % (directory, algorithm, "shuffled" if shuffled else '', level, label)) def plot_labels_size(clustersinfo, label, level, directory, clustersinfo_shuffle=None, algorithm='topsbm'): fig = plt.figure(figsize=(10, 6)) x = np.array(clustersinfo['sizes']).astype(float) y = np.array(clustersinfo['nclasses']).astype(int) plt.xlim(x.min() - 10, x.max() + 5) plt.ylim(y.min() - 2, y.max() + 5) shuffled = False plt.scatter(x, y, lw=10, alpha=0.9, label='clusters') if clustersinfo_shuffle is not None: x_shuffle = np.array(clustersinfo_shuffle['sizes']).astype(float) y_shuffle = np.array(clustersinfo_shuffle['nclasses']).astype(int) plt.scatter(x_shuffle, y_shuffle, lw=10, alpha=0.9, label='clusters shuffled') plt.xlim(x.min() - 10, x_shuffle.max() + 5) plt.ylim(y.min() - 2, y_shuffle.max() + 8) shuffled = True plt.xlabel("cluster size", fontsize=20) plt.ylabel("number of labels", fontsize=20) plt.legend(loc='upper right', fontsize=20) plt.rc('xtick', labelsize=16) plt.rc('ytick', labelsize=16) plt.show() fig.savefig( "%s/%s/%scluster_shuffle_label_size_l%d_%s.pdf" % ( directory, algorithm, "shuffled" if shuffled else '', level, label)) def make_heatmap(fraction_sites, directory, label, level, shuffled=False, normalise=False, algorithm='topsbm'): sns.set(font_scale=2) found_classes = [] for site, data in fraction_sites.items(): if np.max(data) == 0: continue found_classes.append(site) for arr in fraction_sites.values(): x = len(arr) break x = np.arange(1, 1 + x) fig = plt.figure(figsize=(30, 10)) fig.subplots(1) sns.heatmap(pd.DataFrame(data=fraction_sites).loc[:, found_classes].transpose(), vmin=0, cmap="RdYlBu_r", xticklabels=x) fig.savefig("%s/%s/%sheatmap_cluster%s_l%d_%s.pdf" % ( directory, algorithm, "shuffled" if shuffled else '', "fraction_" if normalise else '', int(level), label)) def get_file(sample, df_file): for fullsample in df_file.index.values: if sample in fullsample: return df_file.loc[fullsample, :] return None def define_labels(cluster, df_files, label='primary_site', verbose=False): true_labels = [] predicted_labels = [] for c in cluster: if verbose: print(c) for sample in cluster[c]: try: true_labels.append(get_file(sample, df_files)[label]) predicted_labels.append(c) except: true_labels.append('') predicted_labels.append('') print(*sys.exc_info()) print("error searching %s in %s" % (label, sample)) _, true_labels = np.unique(true_labels, return_inverse=True) return true_labels, predicted_labels def add_score_lines(ax, scores, labels=None, h=False, c=False, alpha=0.8, **kwargs): ''' add to ax lines in scores add homogeneity and completness if required by h and c ''' colors = { 'primary_site': 'blue', 'hsbm': 'blue', 'secondary_site': 'red', 'status': 'red', 'hSBM': 'blue', 'mixed': 'green', 'hierhsbm': 'purple', 'hsbm->hierachical': 'purple', 'disease_type': 'red', 'shuffle': 'orange', 'tm': 'darkcyan', 'cc': 'darkred', 'disease_tissue': 'purple', 'hierarchical': 'darkgreen', 'lda': 'violet', 'RPPA Clusters': 'red', 'wgcna': 'purple' } for label in labels: if label not in scores.keys(): print("No score for %s"%label) continue if label not in colors.keys(): colors[label]='darkblue' xl = scores[label]['xl'] if h: ax.plot(xl, scores[label]['h'], ls='-.', c=colors[label], marker='x', lw=0.5, ms=25, alpha=alpha, label='homogeneity - %s' % label) if c: ax.plot(xl, scores[label]['c'], ls=':', c=colors[label], marker='<', lw=0.5, ms=25, alpha=alpha, label='completness - %s' % label) if len(scores[label]['V']) == len(xl): ax.plot(xl, scores[label]['V'], label='%s' % label, ls='-', c=colors[label], marker='o', lw=0.5, ms=25, **kwargs) else: raise(ValueError("xl has got wrong lenght")) customize_metric_plot(ax, xl) def customize_metric_plot(ax, xl): ax.set_xlabel("Number of clusters", fontsize=22) ax.set_ylabel("NMI score", fontsize=22) ax.set_ylim((0, 1.1)) ax.set_xlim(1, np.max(xl)*1.1) ax.set_xscale('log') ax.legend(loc='best', fontsize=24) def plot_topic_size(directory, l, algorithm='topsbm'): df_topics = pd.read_csv("%s/%s/%s_level_%d_topics.csv" % (directory, algorithm, algorithm, l)) sizes = [] for t in df_topics.columns: sizes.append(len(df_topics.loc[:, t].dropna())) bins = np.linspace(0.5, np.max(sizes) + 0.5, int((np.max(sizes) + 1) / (np.max(sizes) / 5))) bin_counts, bin_edges, _ = plt.hist(sizes, histtype='step', lw=2, bins=bins) fig = plt.figure() ax = fig.subplots() ax.set_title("[%d topics, level: %d]" % (len(df_topics.columns), l)) x = (bin_edges[:-1] + bin_edges[1:]) / 2 ax.plot(x[np.nonzero(bin_counts)], bin_counts[np.nonzero(bin_counts)]) ax.plot(x, 1e4 / np.power(x, 5)) ax.set_xlabel("topic size\n(number of genes)", fontsize=20) ax.set_ylabel("number of topic", fontsize=20) ax.set_xscale('log') ax.set_yscale('log') plt.show() fig.savefig("%s/%s/topic_size_level%d.png" % (directory, algorithm, l)) def get_candles(directory, level, df_mv, ax, algorithm='topsbm'): df_topics = pd.read_csv("%s/%s/%s_level_%d_topics.csv" % (directory, algorithm, algorithm, level)) candles = { 'open': [], 'high': [], 'low': [], 'close': [], 'size': [] } for topic in df_topics.columns: subarr = df_mv.loc[df_topics[topic].dropna(), :]['occurrence'].values avg = np.average(subarr) std = np.std(subarr) q = np.quantile(subarr, [0.25, 0.75]) candles['high'].append(np.min([1, avg + std])) candles['open'].append(np.min([q[1], 1])) candles['close'].append(np.max([q[0], 0])) candles['low'].append(np.max([0, avg - std])) candles['size'].append(len(subarr)) ax.set_title("[level: %d]" % level) ax.set_ylabel('$O_i$', fontsize=20) ax.set_xlim(-1, len(df_topics.columns)) ax.set_xticks([i + 1 for i in range(-1, len(df_topics.columns))]) ax.set_xticklabels( ["Topic %d" % (i + 2) if ((i + 2) % 5 == 0 or i == -1) else '' for i in range(-1, len(df_topics.columns))], rotation=60) return candles def get_tissue_style(tissue): marker = 'o' c = 'k' ls = '--' if 'gtex' in tissue: marker = 'o' ls = '-' elif 'tcga' in tissue: marker = 'x' ls = '--' else: marker = '.' ls = '-.' if 'reast' in tissue: c = 'darkcyan' elif 'olon' in tissue: c = 'b' elif 'hyroid' in tissue: c = 'y' elif 'terus' in tissue: c = 'pink' elif 'ladder' in tissue: c = 'gray' elif 'sophagus' in tissue: c = 'brown' elif 'ung' in tissue: c = 'magenta' elif 'tomach' in tissue: c = 'lime' elif 'kin' in tissue: c = 'wheat' elif 'ancreas' in tissue: c = 'forestgreen' elif 'Adrenal Gland' in tissue: c = 'aqua' elif 'Adipose Tissue' in tissue: c = 'brown' elif 'erve' in tissue: c = 'royalblue' elif 'lood' in tissue: c = 'red' elif 'idney' in tissue: c = 'mediumslateblue' elif 'eart' in tissue: c = 'darkred' elif 'rain' in tissue: c = 'darkgray' elif 'estis' in tissue: c = 'darkkhaki' else: c = 'k' return (marker, c, ls) def topic_distr_sample(doc, df, ax=None): if ax == None: fig = plt.figure() ax = fig.subplots() ax.set_title("Topic distribution: %s" % doc) labels = [l if df[df['doc'] == doc].loc[:, l].values[0] >= 0.05 else '' for l in df.columns[2:]] patches, texts, autotexts = ax.pie(df[df['doc'] == doc].values[0][2:], labels=labels, autopct=lambda p: '%.1f%s' % (p, '%') if p >= 5 else '', textprops={'fontsize': 20, 'color': 'white', 'wrap': True}) for t in texts: t.set_fontsize(18) t.set_wrap(True) t.set_color('black') plt.show() def topic_distr_isample(idoc, df, ax=None): topic_distr_sample(df[df['i_doc'] == idoc]['doc'].values[0], ax) def add_tumor_location(df_files): df_files.insert(2, 'disease_tissue', '') for sample in df_files.index.values: row = df_files.loc[sample, :] df_files.at[sample, 'disease_tissue'] = '%s[%s]' % (row['primary_site'], row['disease_type']) def get_scores(directory, labels, df_files=None, algorithm='topsbm', verbose=False): if df_files is None: df_files = pd.read_csv("%s/files.dat" % directory, index_col=[0], header=[0]).dropna(how='all', axis=0) if df_files.columns.isin(['disease_type']).any(): add_tumor_location(df_files) scores = {} for label in labels: xl = [] scores[label] = { 'h': [], 'c': [], 'V': [], 'xl':[] } l = get_max_available_L(directory, algorithm) for l in np.arange(l + 1): try: true_labels, predicted_labels = define_labels(get_cluster_given_l(l, directory, algorithm), df_files, label=label) scores[label]['h'].append(metrics.cluster.homogeneity_score(true_labels, predicted_labels)) scores[label]['c'].append(metrics.cluster.completeness_score(true_labels, predicted_labels)) scores[label]['V'].append(metrics.cluster.v_measure_score(true_labels, predicted_labels)) xl.append(len(np.unique(predicted_labels))) if verbose: print(l) except: print(*sys.exc_info()) print("Skipping level ", l) scores[label]['xl'] = xl if len(labels) >= 2: h = np.array(scores[labels[0]]['h']) c = np.array(scores[labels[1]]['c']) scores['mixed'] = { 'h': h, 'c': c, 'V': 2 * h * c / (h + c) } return scores def get_scores_shuffled(directory, df_files, algorithm='topsbm', label='primary_site', verbose=False): scores = { 'h': [], 'c': [], 'V': [], 'xl':[] } xl = [] l = get_max_available_L(directory, algorithm) df_files_shuffled = df_files.copy() np.random.shuffle(df_files_shuffled[label]) try: for l in np.arange(0, l + 1): try: if verbose: print(l) clusters = get_cluster_given_l(l, directory, algorithm=algorithm) except: print("Skipping shuffled level ", l) continue _, predicted_labels = define_labels(clusters, df_files, label=label) true_labels, _ = define_labels(clusters, df_files_shuffled, label=label) scores['h'].append(metrics.cluster.homogeneity_score(true_labels, predicted_labels)) scores['c'].append(metrics.cluster.completeness_score(true_labels, predicted_labels)) scores['V'].append(metrics.cluster.v_measure_score(true_labels, predicted_labels)) xl.append(len(np.unique(predicted_labels))) except: print(*sys.exc_info()) print("shuffled files not found") scores['xl'] = xl return scores def getclustersizesarray(directory, l=3, algorithm='topsbm'): try: xl = [len(get_cluster_given_l(li, directory, algorithm=algorithm)) for li in np.linspace(0, l, l + 1)] except: try: xl = [len(get_cluster_given_l(li, directory, algorithm=algorithm)) for li in np.linspace(1, l, l)] except: xl = [] for li in np.linspace(1, l, l): try: xl.append(len(get_cluster_given_l(li, directory, algorithm=algorithm))) except: pass return xl def gettopicsizesarray(directory, l=3, algorithm='topsbm'): xl = [] try: xl = [len(get_topic_given_l(li, directory, algorithm=algorithm)) for li in
np.linspace(0, l, l + 1)
numpy.linspace
# -*- coding: utf-8 -*- """ Identification of spectral properties in analog signals (e.g., the power spectrum). :copyright: Copyright 2015-2016 by the Elephant team, see `doc/authors.rst`. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function, unicode_literals import neo import numpy as np import quantities as pq import scipy.signal def welch_psd(signal, num_seg=8, len_seg=None, freq_res=None, overlap=0.5, fs=1.0, window='hanning', nfft=None, detrend='constant', return_onesided=True, scaling='density', axis=-1): """ Estimates power spectrum density (PSD) of a given `neo.AnalogSignal` using Welch's method. The PSD is obtained through the following steps: 1. Cut the given data into several overlapping segments. The degree of overlap can be specified by parameter `overlap` (default is 0.5, i.e. segments are overlapped by the half of their length). The number and the length of the segments are determined according to the parameters `num_seg`, `len_seg` or `freq_res`. By default, the data is cut into 8 segments; 2. Apply a window function to each segment. Hanning window is used by default. This can be changed by giving a window function or an array as parameter `window` (see Notes [2]); 3. Compute the periodogram of each segment; 4. Average the obtained periodograms to yield PSD estimate. Parameters ---------- signal : neo.AnalogSignal or pq.Quantity or np.ndarray Time series data, of which PSD is estimated. When `signal` is `pq.Quantity` or `np.ndarray`, sampling frequency should be given through the keyword argument `fs`. Otherwise, the default value is used (`fs` = 1.0). num_seg : int, optional Number of segments. The length of segments is adjusted so that overlapping segments cover the entire stretch of the given data. This parameter is ignored if `len_seg` or `freq_res` is given. Default: 8. len_seg : int, optional Length of segments. This parameter is ignored if `freq_res` is given. If None, it will be determined from other parameters. Default: None. freq_res : pq.Quantity or float, optional Desired frequency resolution of the obtained PSD estimate in terms of the interval between adjacent frequency bins. When given as a `float`, it is taken as frequency in Hz. If None, it will be determined from other parameters. Default: None. overlap : float, optional Overlap between segments represented as a float number between 0 (no overlap) and 1 (complete overlap). Default: 0.5 (half-overlapped). fs : pq.Quantity or float, optional Specifies the sampling frequency of the input time series. When the input is given as a `neo.AnalogSignal`, the sampling frequency is taken from its attribute and this parameter is ignored. Default: 1.0. window : str or tuple or np.ndarray, optional Desired window to use. See Notes [2]. Default: 'hanning'. nfft : int, optional Length of the FFT used. See Notes [2]. Default: None. detrend : str or function or False, optional Specifies how to detrend each segment. See Notes [2]. Default: 'constant'. return_onesided : bool, optional If True, return a one-sided spectrum for real data. If False return a two-sided spectrum. See Notes [2]. Default: True. scaling : {'density', 'spectrum'}, optional If 'density', computes the power spectral density where Pxx has units of V**2/Hz. If 'spectrum', computes the power spectrum where Pxx has units of V**2, if `signal` is measured in V and `fs` is measured in Hz. See Notes [2]. Default: 'density'. axis : int, optional Axis along which the periodogram is computed. See Notes [2]. Default: last axis (-1). Returns ------- freqs : pq.Quantity or np.ndarray Frequencies associated with the power estimates in `psd`. `freqs` is always a vector irrespective of the shape of the input data in `signal`. If `signal` is `neo.AnalogSignal` or `pq.Quantity`, a `pq.Quantity` array is returned. Otherwise, a `np.ndarray` containing frequency in Hz is returned. psd : pq.Quantity or np.ndarray PSD estimates of the time series in `signal`. If `signal` is `neo.AnalogSignal`, a `pq.Quantity` array is returned. Otherwise, the return is a `np.ndarray`. Raises ------ ValueError If `overlap` is not in the interval [0, 1). If `freq_res` is not positive. If `freq_res` is too high for the given data size. If `freq_res` is None and `len_seg` is not a positive number. If `freq_res` is None and `len_seg` is greater than the length of data on `axis`. If both `freq_res` and `len_seg` are None and `num_seg` is not a positive number. If both `freq_res` and `len_seg` are None and `num_seg` is greater than the length of data on `axis`. Notes ----- 1. The computation steps used in this function are implemented in `scipy.signal` module, and this function is a wrapper which provides a proper set of parameters to `scipy.signal.welch` function. 2. The parameters `window`, `nfft`, `detrend`, `return_onesided`, `scaling`, and `axis` are directly passed to the `scipy.signal.welch` function. See the respective descriptions in the docstring of `scipy.signal.welch` for usage. 3. When only `num_seg` is given, parameter `nperseg` of `scipy.signal.welch` function is determined according to the expression `signal.shape[axis]` / (`num_seg` - `overlap` * (`num_seg` - 1)) converted to integer. See Also -------- scipy.signal.welch """ # initialize a parameter dict (to be given to scipy.signal.welch()) with # the parameters directly passed on to scipy.signal.welch() params = {'window': window, 'nfft': nfft, 'detrend': detrend, 'return_onesided': return_onesided, 'scaling': scaling, 'axis': axis} # add the input data to params. When the input is AnalogSignal, the # data is added after rolling the axis for time index to the last data = np.asarray(signal) if isinstance(signal, neo.AnalogSignal): data = np.rollaxis(data, 0, len(data.shape)) params['x'] = data # if the data is given as AnalogSignal, use its attribute to specify # the sampling frequency if hasattr(signal, 'sampling_rate'): params['fs'] = signal.sampling_rate.rescale('Hz').magnitude else: params['fs'] = fs if overlap < 0: raise ValueError("overlap must be greater than or equal to 0") elif 1 <= overlap: raise ValueError("overlap must be less then 1") # determine the length of segments (i.e. *nperseg*) according to given # parameters if freq_res is not None: if freq_res <= 0: raise ValueError("freq_res must be positive") dF = freq_res.rescale('Hz').magnitude \ if isinstance(freq_res, pq.quantity.Quantity) else freq_res nperseg = int(params['fs'] / dF) if nperseg > data.shape[axis]: raise ValueError("freq_res is too high for the given data size") elif len_seg is not None: if len_seg <= 0: raise ValueError("len_seg must be a positive number") elif data.shape[axis] < len_seg: raise ValueError("len_seg must be shorter than the data length") nperseg = len_seg else: if num_seg <= 0: raise ValueError("num_seg must be a positive number") elif data.shape[axis] < num_seg: raise ValueError("num_seg must be smaller than the data length") # when only *num_seg* is given, *nperseg* is determined by solving the # following equation: # num_seg * nperseg - (num_seg-1) * overlap * nperseg = data.shape[-1] # ----------------- =============================== ^^^^^^^^^^^ # summed segment lengths total overlap data length nperseg = int(data.shape[axis] / (num_seg - overlap * (num_seg - 1))) params['nperseg'] = nperseg params['noverlap'] = int(nperseg * overlap) freqs, psd = scipy.signal.welch(**params) # attach proper units to return values if isinstance(signal, pq.quantity.Quantity): if 'scaling' in params and params['scaling'] == 'spectrum': psd = psd * signal.units * signal.units else: psd = psd * signal.units * signal.units / pq.Hz freqs = freqs * pq.Hz return freqs, psd def welch_cohere(x, y, num_seg=8, len_seg=None, freq_res=None, overlap=0.5, fs=1.0, window='hanning', nfft=None, detrend='constant', scaling='density', axis=-1): r""" Estimates coherence between a given pair of analog signals. The estimation is performed with Welch's method: the given pair of data are cut into short segments, cross-spectra are calculated for each pair of segments, and the cross-spectra are averaged and normalized by respective auto-spectra. By default, the data are cut into 8 segments with 50% overlap between neighboring segments. These numbers can be changed through respective parameters. Parameters ---------- x : neo.AnalogSignal or pq.Quantity or np.ndarray First time series data of the pair between which coherence is computed. y : neo.AnalogSignal or pq.Quantity or np.ndarray Second time series data of the pair between which coherence is computed. The shapes and the sampling frequencies of `x` and `y` must be identical. When `x` and `y` are not `neo.AnalogSignal`, sampling frequency should be specified through the keyword argument `fs`. Otherwise, the default value is used (`fs` = 1.0). num_seg : int, optional Number of segments. The length of segments is adjusted so that overlapping segments cover the entire stretch of the given data. This parameter is ignored if `len_seg` or `freq_res` is given. Default: 8. len_seg : int, optional Length of segments. This parameter is ignored if `freq_res` is given. If None, it is determined from other parameters. Default: None. freq_res : pq.Quantity or float, optional Desired frequency resolution of the obtained coherence estimate in terms of the interval between adjacent frequency bins. When given as a `float`, it is taken as frequency in Hz. If None, it is determined from other parameters. Default: None. overlap : float, optional Overlap between segments represented as a float number between 0 (no overlap) and 1 (complete overlap). Default: 0.5 (half-overlapped). fs : pq.Quantity or float, optional Specifies the sampling frequency of the input time series. When the input time series are given as `neo.AnalogSignal`, the sampling frequency is taken from their attribute and this parameter is ignored. Default: 1.0. window : str or tuple or np.ndarray, optional Desired window to use. See Notes [1]. Default: 'hanning'. nfft : int, optional Length of the FFT used. See Notes [1]. Default: None. detrend : str or function or False, optional Specifies how to detrend each segment. See Notes [1]. Default: 'constant'. scaling : {'density', 'spectrum'}, optional If 'density', computes the power spectral density where Pxx has units of V**2/Hz. If 'spectrum', computes the power spectrum where Pxx has units of V**2, if `signal` is measured in V and `fs` is measured in Hz. See Notes [1]. Default: 'density'. axis : int, optional Axis along which the periodogram is computed. See Notes [1]. Default: last axis (-1). Returns ------- freqs : pq.Quantity or np.ndarray Frequencies associated with the estimates of coherency and phase lag. `freqs` is always a vector irrespective of the shape of the input data. If `x` and `y` are `neo.AnalogSignal` or `pq.Quantity`, a `pq.Quantity` array is returned. Otherwise, a `np.ndarray` containing frequency in Hz is returned. coherency : np.ndarray Estimate of coherency between the input time series. For each frequency, coherency takes a value between 0 and 1, with 0 or 1 representing no or perfect coherence, respectively. When the input arrays `x` and `y` are multi-dimensional, `coherency` is of the same shape as the inputs, and the frequency is indexed depending on the type of the input. If the input is `neo.AnalogSignal`, the first axis indexes frequency. Otherwise, frequency is indexed by the last axis. phase_lag : pq.Quantity or np.ndarray Estimate of phase lag in radian between the input time series. For each frequency, phase lag takes a value between :math:`-\pi` and :math:`\pi`, with positive values meaning phase precession of `x` ahead of `y`, and vice versa. If `x` and `y` are `neo.AnalogSignal` or `pq.Quantity`, a `pq.Quantity` array is returned. Otherwise, a `np.ndarray` containing phase lag in radian is returned. The axis for frequency index is determined in the same way as for `coherency`. Raises ------ ValueError If `overlap` is not in the interval [0, 1). If `freq_res` is not positive. If `freq_res` is too high for the given data size. If `freq_res` is None and `len_seg` is not a positive number. If `freq_res` is None and `len_seg` is greater than the length of data on `axis`. If both `freq_res` and `len_seg` are None and `num_seg` is not a positive number. If both `freq_res` and `len_seg` are None and `num_seg` is greater than the length of data on `axis`. Notes ----- 1. The parameters `window`, `nfft`, `detrend`, `scaling`, and `axis` are directly passed to the helper function `_welch`. See the respective descriptions in the docstring of `_welch` for usage. 2. When only `num_seg` is given, parameter `nperseg` for `_welch` function is determined according to the expression `x.shape[axis]` / (`num_seg` - `overlap` * (`num_seg` - 1)) converted to integer. See Also -------- spectral._welch """ # initialize a parameter dict for scipy.signal.csd() params = {'window': window, 'nfft': nfft, 'detrend': detrend, 'scaling': scaling, 'axis': axis} # When the input is AnalogSignal, the axis for time index is rolled to # the last xdata = np.asarray(x) ydata = np.asarray(y) if isinstance(x, neo.AnalogSignal): xdata = np.rollaxis(xdata, 0, len(xdata.shape)) ydata = np.rollaxis(ydata, 0, len(ydata.shape)) # if the data is given as AnalogSignal, use its attribute to specify # the sampling frequency if hasattr(x, 'sampling_rate'): params['fs'] = x.sampling_rate.rescale('Hz').magnitude else: params['fs'] = fs if overlap < 0: raise ValueError("overlap must be greater than or equal to 0") elif 1 <= overlap: raise ValueError("overlap must be less then 1") # determine the length of segments (i.e. *nperseg*) according to given # parameters if freq_res is not None: if freq_res <= 0: raise ValueError("freq_res must be positive") dF = freq_res.rescale('Hz').magnitude \ if isinstance(freq_res, pq.quantity.Quantity) else freq_res nperseg = int(params['fs'] / dF) if nperseg > xdata.shape[axis]: raise ValueError("freq_res is too high for the given data size") elif len_seg is not None: if len_seg <= 0: raise ValueError("len_seg must be a positive number") elif xdata.shape[axis] < len_seg: raise ValueError("len_seg must be shorter than the data length") nperseg = len_seg else: if num_seg <= 0: raise ValueError("num_seg must be a positive number") elif xdata.shape[axis] < num_seg: raise ValueError("num_seg must be smaller than the data length") # when only *num_seg* is given, *nperseg* is determined by solving the # following equation: # num_seg * nperseg - (num_seg-1) * overlap * nperseg = data.shape[-1] # ----------------- =============================== ^^^^^^^^^^^ # summed segment lengths total overlap data length nperseg = int(xdata.shape[axis] / (num_seg - overlap * (num_seg - 1))) params['nperseg'] = nperseg params['noverlap'] = int(nperseg * overlap) freqs, Pxx = scipy.signal.welch(xdata, **params) _, Pyy = scipy.signal.welch(ydata, **params) _, Pxy = scipy.signal.csd(xdata, ydata, **params) coherency = np.abs(Pxy) ** 2 / (Pxx * Pyy) phase_lag =
np.angle(Pxy)
numpy.angle
# RAFT's main model class import os import numpy as np import matplotlib.pyplot as plt from matplotlib import cm import yaml import moorpy as mp import raft.raft_fowt as fowt from raft.helpers import * #import F6T1RNA as structural # import turbine structural model functions raft_dir = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) TwoPi = 2.0*np.pi class Model(): def __init__(self, design, nTurbines=1): ''' Empty frequency domain model initialization function design : dict Dictionary of all the design info from turbine to platform to moorings nTurbines could in future be used to set up any number of identical turbines ''' self.fowtList = [] self.coords = [] self.nDOF = 0 # number of DOFs in system self.design = design # save design dictionary for possible later use/reference # parse settings if not 'settings' in design: # if settings field not in input data design['settings'] = {} # make an empty one to avoid errors min_freq = getFromDict(design['settings'], 'min_freq', default=0.01, dtype=float) # [Hz] lowest frequency to consider, also the frequency bin width max_freq = getFromDict(design['settings'], 'max_freq', default=1.00, dtype=float) # [Hz] highest frequency to consider self.XiStart = getFromDict(design['settings'], 'XiStart' , default=0.1 , dtype=float) # sets initial amplitude of each DOF for all frequencies self.nIter = getFromDict(design['settings'], 'nIter' , default=15 , dtype=int ) # sets how many iterations to perform in Model.solveDynamics() self.w = np.arange(min_freq, max_freq+0.5*min_freq, min_freq) *2*np.pi # angular frequencies to analyze (rad/s) self.nw = len(self.w) # number of frequencies # process mooring information self.ms = mp.System() self.ms.parseYAML(design['mooring']) # depth and wave number self.depth = getFromDict(design['site'], 'water_depth', dtype=float) self.k = np.zeros(self.nw) # wave number for i in range(self.nw): self.k[i] = waveNumber(self.w[i], self.depth) # set up the FOWT here <<< only set for 1 FOWT for now <<< self.fowtList.append(fowt.FOWT(design, self.w, self.ms.bodyList[0], depth=self.depth)) self.coords.append([0.0,0.0]) self.nDOF += 6 self.ms.bodyList[0].type = -1 # need to make sure it's set to a coupled type try: self.ms.initialize() # reinitialize the mooring system to ensure all things are tallied properly etc. except Exception as e: raise RuntimeError('An error occured when initializing the mooring system: '+e.message) self.results = {} # dictionary to hold all results from the model def addFOWT(self, fowt, xy0=[0,0]): '''(not used currently) Adds an already set up FOWT to the frequency domain model solver.''' self.fowtList.append(fowt) self.coords.append(xy0) self.nDOF += 6 # would potentially need to add a mooring system body for it too <<< """ def setEnv(self, Hs=8, Tp=12, spectrum='unit', V=10, beta=0, Fthrust=0): self.env = Env() self.env.Hs = Hs self.env.Tp = Tp self.env.spectrum = spectrum self.env.V = V self.env.beta = beta self.Fthrust = Fthrust for fowt in self.fowtList: fowt.setEnv(Hs=Hs, Tp=Tp, V=V, spectrum=spectrum, beta=beta, Fthrust=Fthrust) """ def analyzeUnloaded(self): '''This calculates the system properties under undloaded coonditions: equilibrium positions, natural frequencies, etc.''' # calculate the system's constant properties #self.calcSystemConstantProps() for fowt in self.fowtList: fowt.calcStatics() #fowt.calcBEM() fowt.calcHydroConstants(dict(wave_spectrum='still', wave_heading=0)) # get mooring system characteristics about undisplaced platform position (useful for baseline and verification) try: self.C_moor0 = self.ms.getCoupledStiffness(lines_only=True) # this method accounts for eqiuilibrium of free objects in the system self.F_moor0 = self.ms.getForces(DOFtype="coupled", lines_only=True) except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in undisplaced state: '+e.message) self.results['properties'] = {} # signal this data is available by adding a section to the results dictionary # calculate platform offsets and mooring system equilibrium state self.calcMooringAndOffsets() self.results['properties']['offset_unloaded'] = self.fowtList[0].Xi0 # TODO: add printing of summary info here - mass, stiffnesses, etc def analyzeCases(self, display=0): '''This runs through all the specified load cases, building a dictionary of results.''' nCases = len(self.design['cases']['data']) nLines = len(self.ms.lineList) # set up output arrays for load cases self.results['case_metrics'] = {} self.results['case_metrics']['surge_avg'] = np.zeros(nCases) self.results['case_metrics']['surge_std'] = np.zeros(nCases) self.results['case_metrics']['surge_max'] = np.zeros(nCases) self.results['case_metrics']['surge_PSD'] = np.zeros([nCases,self.nw]) # adding PSDs as well. Could put behind an if statement if this slows things down self.results['case_metrics']['sway_avg'] = np.zeros(nCases) self.results['case_metrics']['sway_std'] = np.zeros(nCases) self.results['case_metrics']['sway_max'] = np.zeros(nCases) self.results['case_metrics']['sway_PSD'] = np.zeros([nCases,self.nw]) self.results['case_metrics']['heave_avg'] = np.zeros(nCases) self.results['case_metrics']['heave_std'] = np.zeros(nCases) self.results['case_metrics']['heave_max'] = np.zeros(nCases) self.results['case_metrics']['heave_PSD'] = np.zeros([nCases,self.nw]) self.results['case_metrics']['roll_avg'] = np.zeros(nCases) self.results['case_metrics']['roll_std'] = np.zeros(nCases) self.results['case_metrics']['roll_max'] = np.zeros(nCases) self.results['case_metrics']['roll_PSD'] = np.zeros([nCases,self.nw]) self.results['case_metrics']['pitch_avg'] = np.zeros(nCases) self.results['case_metrics']['pitch_std'] = np.zeros(nCases) self.results['case_metrics']['pitch_max'] = np.zeros(nCases) self.results['case_metrics']['pitch_PSD'] = np.zeros([nCases,self.nw]) self.results['case_metrics']['yaw_avg'] = np.zeros(nCases) self.results['case_metrics']['yaw_std'] = np.zeros(nCases) self.results['case_metrics']['yaw_max'] = np.zeros(nCases) self.results['case_metrics']['yaw_PSD'] = np.zeros([nCases,self.nw]) # nacelle acceleration self.results['case_metrics']['AxRNA_avg'] = np.zeros(nCases) self.results['case_metrics']['AxRNA_std'] = np.zeros(nCases) self.results['case_metrics']['AxRNA_max'] = np.zeros(nCases) self.results['case_metrics']['AxRNA_PSD'] = np.zeros([nCases,self.nw]) # tower base bending moment self.results['case_metrics']['Mbase_avg'] = np.zeros(nCases) self.results['case_metrics']['Mbase_std'] = np.zeros(nCases) self.results['case_metrics']['Mbase_max'] = np.zeros(nCases) self.results['case_metrics']['Mbase_PSD'] = np.zeros([nCases,self.nw]) self.results['case_metrics']['Mbase_DEL'] = np.zeros(nCases) # rotor speed self.results['case_metrics']['omega_avg'] = np.zeros(nCases) self.results['case_metrics']['omega_std'] = np.zeros(nCases) self.results['case_metrics']['omega_max'] = np.zeros(nCases) self.results['case_metrics']['omega_PSD'] = np.zeros([nCases,self.nw]) # generator torque self.results['case_metrics']['torque_avg'] = np.zeros(nCases) self.results['case_metrics']['torque_std'] = np.zeros(nCases) self.results['case_metrics']['torque_max'] = np.zeros(nCases) self.results['case_metrics']['torque_PSD'] = np.zeros([nCases,self.nw]) # rotor power self.results['case_metrics']['power_avg'] = np.zeros(nCases) self.results['case_metrics']['power_std'] = np.zeros(nCases) self.results['case_metrics']['power_max'] = np.zeros(nCases) self.results['case_metrics']['power_PSD'] = np.zeros([nCases,self.nw]) # collective blade pitch self.results['case_metrics']['bPitch_avg'] = np.zeros(nCases) self.results['case_metrics']['bPitch_std'] = np.zeros(nCases) self.results['case_metrics']['bPitch_max'] = np.zeros(nCases) self.results['case_metrics']['bPitch_PSD'] = np.zeros([nCases, self.nw]) # mooring tension self.results['case_metrics']['Tmoor_avg'] = np.zeros([nCases, 2*nLines]) # 2d array, for each line in each case? self.results['case_metrics']['Tmoor_std'] = np.zeros([nCases, 2*nLines]) self.results['case_metrics']['Tmoor_max'] = np.zeros([nCases, 2*nLines]) self.results['case_metrics']['Tmoor_DEL'] = np.zeros([nCases, 2*nLines]) self.results['case_metrics']['Tmoor_PSD'] = np.zeros([nCases, 2*nLines, self.nw]) # wind and wave spectra for reference self.results['case_metrics']['wind_PSD'] = np.zeros([nCases, self.nw]) self.results['case_metrics']['wave_PSD'] = np.zeros([nCases, self.nw]) # calculate the system's constant properties for fowt in self.fowtList: fowt.calcStatics() fowt.calcBEM() # loop through each case for iCase in range(nCases): print(f"\n--------------------- Running Case {iCase+1} ----------------------") print(self.design['cases']['data'][iCase]) # form dictionary of case parameters case = dict(zip( self.design['cases']['keys'], self.design['cases']['data'][iCase])) # get initial FOWT values assuming no offset for fowt in self.fowtList: fowt.Xi0 = np.zeros(6) # zero platform offsets fowt.calcTurbineConstants(case, ptfm_pitch=0.0) fowt.calcHydroConstants(case) # calculate platform offsets and mooring system equilibrium state self.calcMooringAndOffsets() # update values based on offsets if applicable for fowt in self.fowtList: fowt.calcTurbineConstants(case, ptfm_pitch=fowt.Xi0[4]) # fowt.calcHydroConstants(case) (hydrodynamics don't account for offset, so far) # (could solve mooring and offsets a second time, but likely overkill) # solve system dynamics self.solveDynamics(case) # process outputs that are specific to the floating unit self.fowtList[0].saveTurbineOutputs(self.results['case_metrics'], case, iCase, fowt.Xi0, self.Xi[0:6,:]) # process mooring tension outputs nLine = int(len(self.T_moor)/2) T_moor_amps = np.zeros([2*nLine, self.nw], dtype=complex) for iw in range(self.nw): T_moor_amps[:,iw] = np.matmul(self.J_moor, self.Xi[:,iw]) # FFT of mooring tensions self.results['case_metrics']['Tmoor_avg'][iCase,:] = self.T_moor for iT in range(2*nLine): TRMS = getRMS(T_moor_amps[iT,:], self.w[0]) # estimated mooring line RMS tension [N] self.results['case_metrics']['Tmoor_std'][iCase,iT] = TRMS self.results['case_metrics']['Tmoor_max'][iCase,iT] = self.T_moor[iT] + 3*TRMS self.results['case_metrics']['Tmoor_PSD'][iCase,iT,:] = getPSD(T_moor_amps[iT,:]) # PSD in N^2/(rad/s) #self.results['case_metrics']['Tmoor_DEL'][iCase,iT] = if display > 0: metrics = self.results['case_metrics'] # print statistics table print(f"-------------------- Case {iCase+1} Statistics --------------------") print("Response channel Average RMS Maximum") print(f"surge (m) {metrics['surge_avg'][iCase] :10.2e} {metrics['surge_std'][iCase] :10.2e} {metrics['surge_max'][iCase] :10.2e}") print(f"sway (m) {metrics['sway_avg' ][iCase] :10.2e} {metrics['sway_std' ][iCase] :10.2e} {metrics['sway_max' ][iCase] :10.2e}") print(f"heave (m) {metrics['heave_avg'][iCase] :10.2e} {metrics['heave_std'][iCase] :10.2e} {metrics['heave_max'][iCase] :10.2e}") print(f"roll (deg) {metrics['roll_avg' ][iCase] :10.2e} {metrics['roll_std' ][iCase] :10.2e} {metrics['roll_max' ][iCase] :10.2e}") print(f"pitch (deg) {metrics['pitch_avg'][iCase] :10.2e} {metrics['pitch_std'][iCase] :10.2e} {metrics['pitch_max'][iCase] :10.2e}") print(f"yaw (deg) {metrics[ 'yaw_avg'][iCase] :10.2e} {metrics[ 'yaw_std'][iCase] :10.2e} {metrics['yaw_max' ][iCase] :10.2e}") print(f"nacelle acc. (m/s) {metrics['AxRNA_avg'][iCase] :10.2e} {metrics['AxRNA_std'][iCase] :10.2e} {metrics['AxRNA_max'][iCase] :10.2e}") print(f"tower bending (Nm) {metrics['Mbase_avg'][iCase] :10.2e} {metrics['Mbase_std'][iCase] :10.2e} {metrics['Mbase_max'][iCase] :10.2e}") print(f"rotor speed (RPM) {metrics['omega_avg'][iCase] :10.2e} {metrics['omega_std'][iCase] :10.2e} {metrics['omega_max'][iCase] :10.2e}") print(f"blade pitch (deg) {metrics['bPitch_avg'][iCase] :10.2e} {metrics['bPitch_std'][iCase] :10.2e} ") print(f"rotor power {metrics['power_avg'][iCase] :10.2e} ") for i in range(nLine): j = i+nLine #print(f"line {i} tension A {metrics['Tmoor_avg'][iCase,i]:10.2e} {metrics['Tmoor_std'][iCase,i]:10.2e} {metrics['Tmoor_max'][iCase,i]:10.2e}") print(f"line {i} tension (N) {metrics['Tmoor_avg'][iCase,j]:10.2e} {metrics['Tmoor_std'][iCase,j]:10.2e} {metrics['Tmoor_max'][iCase,j]:10.2e}") print(f"-----------------------------------------------------------") """ def calcSystemConstantProps(self): '''This gets the various static/constant calculations of each FOWT done. (Those that don't depend on load case.)''' for fowt in self.fowtList: fowt.calcBEM() fowt.calcStatics() #fowt.calcDynamicConstants() # First get mooring system characteristics about undisplaced platform position (useful for baseline and verification) try: self.C_moor0 = self.ms.getCoupledStiffness(lines_only=True) # this method accounts for eqiuilibrium of free objects in the system self.F_moor0 = self.ms.getForces(DOFtype="coupled", lines_only=True) except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in undisplaced state: '+e.message) self.results['properties'] = {} # signal this data is available by adding a section to the results dictionary """ def calcMooringAndOffsets(self): '''Calculates mean offsets and linearized mooring properties for the current load case. setEnv and calcSystemProps must be called first. This will ultimately become a method for solving mean operating point. ''' # apply any mean aerodynamic and hydrodynamic loads F_PRP = self.fowtList[0].F_aero0# + self.fowtList[0].F_hydro0 <<< hydro load would be nice here eventually self.ms.bodyList[0].f6Ext = np.array(F_PRP) # Now find static equilibrium offsets of platform and get mooring properties about that point # (This assumes some loads have been applied) #self.ms.display=2 try: self.ms.solveEquilibrium3(DOFtype="both", tol=0.01) #, rmsTol=1.0E-5) # get the system to its equilibrium except Exception as e: #mp.MoorPyError print('An error occured when solving system equilibrium: '+e.message) #raise RuntimeError('An error occured when solving unloaded equilibrium: '+error.message) # ::: a loop could be added here for an array ::: fowt = self.fowtList[0] #print("Equilibrium'3' platform positions/rotations:") #printVec(self.ms.bodyList[0].r6) r6eq = self.ms.bodyList[0].r6 fowt.Xi0 = np.array(r6eq) # save current mean offsets for the FOWT #self.ms.plot() print(f"Found mean offets with with surge = {r6eq[0]:.2f} m and pitch = {r6eq[4]*180/np.pi:.2f} deg.") try: C_moor, J_moor = self.ms.getCoupledStiffness(lines_only=True, tensions=True) # get stiffness matrix and tension jacobian matrix F_moor = self.ms.getForces(DOFtype="coupled", lines_only=True) # get net forces and moments from mooring lines on Body T_moor = self.ms.getTensions() except Exception as e: raise RuntimeError('An error occured when getting linearized mooring properties in offset state: '+e.message) # add any additional yaw stiffness that isn't included in the MoorPy model (e.g. if a bridle isn't modeled) C_moor[5,5] += fowt.yawstiff self.C_moor = C_moor self.J_moor = J_moor # jacobian of mooring line tensions w.r.t. coupled DOFs self.F_moor = F_moor self.T_moor = T_moor # store results self.results['means'] = {} # signal this data is available by adding a section to the results dictionary self.results['means']['aero force' ] = self.fowtList[0].F_aero0 self.results['means']['platform offset' ] = r6eq self.results['means']['mooring force' ] = F_moor self.results['means']['fairlead tensions'] = np.array([np.linalg.norm(self.ms.pointList[id-1].getForces()) for id in self.ms.bodyList[0].attachedP]) def solveEigen(self): '''finds natural frequencies of system''' # total system coefficient arrays M_tot = np.zeros([self.nDOF,self.nDOF]) # total mass and added mass matrix [kg, kg-m, kg-m^2] C_tot = np.zeros([self.nDOF,self.nDOF]) # total stiffness matrix [N/m, N, N-m] # add in mooring stiffness from MoorPy system C_tot += np.array(self.C_moor0) # ::: a loop could be added here for an array ::: fowt = self.fowtList[0] # add any additional yaw stiffness that isn't included in the MoorPy model (e.g. if a bridle isn't modeled) C_tot[5,5] += fowt.yawstiff # will need to be put in calcSystemProps() once there is more than 1 fowt in a model # add fowt's terms to system matrices (BEM arrays are not yet included here) M_tot += fowt.M_struc + fowt.A_hydro_morison # mass C_tot += fowt.C_struc + fowt.C_hydro # stiffness # check viability of matrices message='' for i in range(self.nDOF): if M_tot[i,i] < 1.0: message += f'Diagonal entry {i} of system mass matrix is less than 1 ({M_tot[i,i]}). ' if C_tot[i,i] < 1.0: message += f'Diagonal entry {i} of system stiffness matrix is less than 1 ({C_tot[i,i]}). ' if len(message) > 0: raise RuntimeError('System matrices computed by RAFT have one or more small or negative diagonals: '+message) # calculate natural frequencies (using eigen analysis to get proper values for pitch and roll - otherwise would need to base about CG if using diagonal entries only) eigenvals, eigenvectors = np.linalg.eig(np.matmul(np.linalg.inv(M_tot), C_tot)) # <<< need to sort this out so it gives desired modes, some are currently a bit messy if any(eigenvals <= 0.0): raise RuntimeError("Error: zero or negative system eigenvalues detected.") # sort to normal DOF order based on which DOF is largest in each eigenvector ind_list = [] for i in range(5,-1, -1): vec = np.abs(eigenvectors[i,:]) # look at each row (DOF) at a time (use reverse order to pick out rotational DOFs first) for j in range(6): # now do another loop in case the index was claimed previously ind = np.argmax(vec) # find the index of the vector with the largest value of the current DOF if ind in ind_list: # if a previous vector claimed this DOF, set it to zero in this vector so that we look at the other vectors vec[ind] = 0.0 else: ind_list.append(ind) # if it hasn't been claimed before, assign this vector to the DOF break ind_list.reverse() # reverse the index list since we made it in reverse order fns = np.sqrt(eigenvals[ind_list])/2.0/np.pi # apply sorting to eigenvalues and convert to natural frequency in Hz modes = eigenvectors[:,ind_list] # apply sorting to eigenvectors print("") print("--------- Natural frequencies and mode shapes -------------") print("Mode 1 2 3 4 5 6") print("Fn (Hz)"+"".join([f"{fn:10.4f}" for fn in fns])) print("") for i in range(6): print(f"DOF {i+1} "+"".join([f"{modes[i,j]:10.4f}" for j in range(6)])) print("-----------------------------------------------------------") ''' print("natural frequencies from eigen values") printVec(fns) print(1/fns) print("mode shapes from eigen values") printMat(modes) # alternative attempt to calculate natural frequencies based on diagonal entries (and taking pitch and roll about CG) if C_tot[0,0] == 0.0: zMoorx = 0.0 else: zMoorx = C_tot[0,4]/C_tot[0,0] # effective z elevation of mooring system reaction forces in x and y directions if C_tot[1,1] == 0.0: zMoory = 0.0 else: zMoory = C_tot[1,3]/C_tot[1,1] zCG = fowt.rCG_TOT[2] # center of mass in z zCMx = M_tot[0,4]/M_tot[0,0] # effective z elevation of center of mass and added mass in x and y directions zCMy = M_tot[1,3]/M_tot[1,1] print("natural frequencies with added mass") fn = np.zeros(6) fn[0] = np.sqrt( C_tot[0,0] / M_tot[0,0] )/ 2.0/np.pi fn[1] = np.sqrt( C_tot[1,1] / M_tot[1,1] )/ 2.0/np.pi fn[2] = np.sqrt( C_tot[2,2] / M_tot[2,2] )/ 2.0/np.pi fn[5] = np.sqrt( C_tot[5,5] / M_tot[5,5] )/ 2.0/np.pi fn[3] = np.sqrt( (C_tot[3,3] + C_tot[1,1]*((zCMy-zMoory)**2 - zMoory**2) ) / (M_tot[3,3] - M_tot[1,1]*zCMy**2 ))/ 2.0/np.pi # this contains adjustments to reflect rotation about the CG rather than PRP fn[4] = np.sqrt( (C_tot[4,4] + C_tot[0,0]*((zCMx-zMoorx)**2 - zMoorx**2) ) / (M_tot[4,4] - M_tot[0,0]*zCMx**2 ))/ 2.0/np.pi # this contains adjustments to reflect rotation about the CG rather than PRP # note that the above lines use off-diagonal term rather than parallel axis theorem since rotation will not be exactly at CG due to effect of added mass printVec(fn) print(1/fn) ''' # store results self.results['eigen'] = {} # signal this data is available by adding a section to the results dictionary self.results['eigen']['frequencies'] = fns self.results['eigen']['modes' ] = modes def solveDynamics(self, case, tol=0.01, conv_plot=0, RAO_plot=0): '''After all constant parts have been computed, call this to iterate through remaining terms until convergence on dynamic response. Note that steady/mean quantities are excluded here. nIter = 2 # maximum number of iterations to allow ''' nIter = int(self.nIter) + 1 # maybe think of a better name for the first nIter XiStart = self.XiStart # total system complex response amplitudes (this gets updated each iteration) XiLast = np.zeros([self.nDOF,self.nw], dtype=complex) + XiStart # displacement and rotation complex amplitudes [m, rad] if conv_plot: fig, ax = plt.subplots(3,1,sharex=True) c = np.arange(nIter+1) # adding 1 again here so that there are no RuntimeErrors c = cm.jet((c-
np.min(c)
numpy.min
import numpy as np import math import abc from random import randint, uniform from PyQt5.QtGui import QColor from PyQt5.QtCore import QPoint, QPointF from game.individuals.perception import Perception from game.individuals.desires import Desires from game.individuals.ability import Ability from game.individuals.statistic import Statistic class Individual(metaclass=abc.ABCMeta): def __init__(self, parent, color, radius=None, position=None): self.parent = parent self.perception = None self.desires = None self.abilities = None # config parameter self.config = self.parent.config self.individual_config = self.config.individuals self.predator_config = self.config.predators self.ability_base = self.config.ability_base # standard parameter self.statistic = Statistic() self.max_health = self.individual_config['max_health'] self.health = self.max_health self.poison = self.individual_config['start_poison'] self.color = color self.default_dmg = self.individual_config['default_dmg'] # if a position was not given if position is None: _left_border = 0 _right_border = int(self.parent.frame_dimension[0]) _top_border = 0 _bottom_border = int(self.parent.frame_dimension[1]) _x = float(randint(_left_border, _right_border)) _y = float(randint(_top_border, _bottom_border)) self._position = np.array([_x, _y]) else: self._position = np.array([position[0], position[1]]) # if a radius was given if not radius: self.radius = self.individual_config['start_size'] else: self.radius = radius # let the individuals run in random directions at beginning self.acceleration = np.array([uniform(-2,2), uniform(-2,2)]) self.velocity =
np.array([0.0, 0.0])
numpy.array
import os import time from math import ceil import MNN import cv2 import numpy as np import torch import utils.box_utils_numpy as box_utils def predict(width, height, confidences, boxes, prob_threshold, iou_threshold=0.3, top_k=-1): boxes = boxes[0] confidences = confidences[0] picked_box_probs = [] picked_labels = [] for class_index in range(1, confidences.shape[1]): probs = confidences[:, class_index] mask = probs > prob_threshold probs = probs[mask] if probs.shape[0] == 0: continue subset_boxes = boxes[mask, :] box_probs = np.concatenate([subset_boxes, probs.reshape(-1, 1)], axis=1) box_probs = box_utils.hard_nms(box_probs, iou_threshold=iou_threshold, top_k=top_k, ) picked_box_probs.append(box_probs) picked_labels.extend([class_index] * box_probs.shape[0]) if not picked_box_probs: return np.array([]), np.array([]), np.array([]) picked_box_probs = np.concatenate(picked_box_probs) picked_box_probs[:, 0] *= width picked_box_probs[:, 1] *= height picked_box_probs[:, 2] *= width picked_box_probs[:, 3] *= height return picked_box_probs[:, :4].astype(np.int32),
np.array(picked_labels)
numpy.array
#!/usr/bin/env python # coding: utf-8 # # Machine Learning using Regularized Logistic Regression # # Classifier model that predict whether microchips from a fabrication plant passes quality assurance (QA). # In[1]: import pandas as pd import numpy as np # import pandas_profiling import seaborn as sns import matplotlib.pyplot as plt # In[2]: data = pd.read_csv('ex2data2.txt', names = ['test1', 'test2', 'accepted']) data = data.astype('float128') print('Profiling Data') print(data.info()) print(data.head()) # profile = pandas_profiling.ProfileReport(df) # profile.to_file(outputfile="output.html") # In[3]: x = np.array(data[['test1', 'test2']]) # training set y = np.array(data['accepted']) # labels [m, n] = np.shape(x) # ## ==================== Part 1: Plotting ==================== # # The plot bellow shows that our dataset cannot be separated into positive and negative examples by a straight-line through the plot. Therefore, a straight-forward application of logistic regression will not perform well on this dataset since logistic regression will only be able to find a linear decision boundary. # In[4]: print('Plotting data with "x" indicating (y = 1) examples and "o" indicating (y = 0) examples.') sns.scatterplot('test1', 'test2', hue='accepted', style='accepted', data=data) # ## =========== Part 2: Mapping Features ============ # # One way to fit the data better is to create more features from each data point. We will map the features into all polynomial terms of $x_1$ and $x_2$ up to the sixth power. # # As a result of this mapping, our vector of two features (the scores on two QA tests) has been transformed into a 28-dimensional vector. A logistic regression classifier trained on this higher-dimension feature vector will have a more complex decision boundary and will appear nonlinear when drawn in our 2-dimensional plot. # # While the feature mapping allows us to build a more expressive classifier, it also more susceptible to overfitting. To void that we will implement regularized logistic regression to fit the data and combat the overfitting problem. # In[5]: """ Maps the two input features to quadratic features used in the regularization. Returns a new feature array with more features, comprising of [1, X1, X2, X1^2, X2^2, X1*X2, X1*X2^2, etc]. Inputs x1, x2 must be the same size. x1 = [ [], ... ] x2 = [ [], ... ] Return [ [1, x1, x2, x1^2, x2^2, x1*x2, x1*x2^2, etc] ... ] """ def mapFeature(x1, x2): assert(len(x1) == len(x2)) degree = 6 out = [[1] for i in range(len(x1))] for i in range(1, degree + 1): for j in range(0, i + 1): for k in range(len(x1)): out[k].append((x1[k][0] ** (i - j)) * (x2[k][0] ** j)) return np.array(out) # In[6]: """ Normalizes the features in X returns a normalized version of X where the mean value of each feature is 0 and the standard deviation is 1. This is often a good preprocessing step to do when working with learning algorithms. First, for each feature dimension, compute the mean of the feature and subtract it from the dataset, storing the mean value in mu. Next, compute the standard deviation of each feature and divide each feature by it's standard deviation, storing the standard deviation in sigma. """ def featureNormalize(X): X_norm = np.zeros(np.shape(X)) qty_features = np.shape(X)[1] mu = np.zeros(qty_features) sigma = np.zeros(qty_features) for i in range(qty_features): mu[i] = np.mean(X[:,i]) X_norm[:,i] = X[:,i] - mu[i] # by default np.std calculate the population std, here we want sample std (as done in Octave) sigma[i] = np.std(X_norm[:,i], ddof=1) # default: ddof=0 (N - 0) will predict 293092.21273075533 X_norm[:,i] = X_norm[:,i] / sigma[i] return X_norm, mu, sigma # ## =========== Part 3: Regularized Logistic Regression ============ # ### Activation Function # We will use the sigmoid function as our activation function. # # $g(z) = \frac{1}{1 + e^{-z}}$ # # When: # # $z = 0$ then $g = 0.5$ # # $z \rightarrow +\infty$ then $g \rightarrow +1$ # # $z \rightarrow -\infty$ then $g \rightarrow 0$ # In[7]: def sigmoid(z): return 1 / (1 + np.exp(-z)) # In[8]: print(sigmoid(-5)) # ~= 0.0066929 print(sigmoid(0)) # ~= 0.5 print(sigmoid(5)) # ~= 0.99331 print(sigmoid(np.array([4, 5, 6]))) # ~= [0.98201 0.99331 0.99753] print(sigmoid(np.array([-1, 0, 1]))) # ~= [0.26894 0.50000 0.73106] print(sigmoid(np.array([[4, 5, 6], [-1, 0, 1]]))) # ### Hypothesis Function # Function that defines our logistic model. # # Definition: # # $h_\theta(x) = g(\theta_0 + \theta_1 * x_1 + \theta_2 * x_2)$ # # Vectorial form: # # $h_\theta(x) = g(\theta^{T} * x)$ # # where: # # $g$ is the sigmoid function; $x = [x_0, x_1, x_2]$; $x_0 = 1$ and $\theta = [\theta_0, \theta_1, \theta_2]$ # In[9]: def hypothesis(X, theta): z = X.dot(theta) return sigmoid(z) # ### Regularized Logistic Cost Function # Computes the logistic cost of our model using theta as the parameter for logistic regression to fit the data points in X and y, considering the cost of a particular choice of theta. # # For parameter $\theta_0$ we aren't computing its cost because it is the bias - doesn't have a feature. # # Function cost: # # $ J(\theta) = \frac{1}{m} \sum_{i=1}^{m} [ -y^{(i)} log(h_\theta(x^{(i)}) - (1 - y^{(i)}) log(1 - h_\theta(x^{(i)})) ] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^{2}$ # # Vectorial form: # # $ J(\theta) = [\frac{1}{m} * (-\vec{y}^{T} \cdot log(h_\theta(\vec{x})) - (1 - \vec{y})^{T} \cdot log(1 - h_\theta(\vec{x})))] + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^{2} $ # # If any time we got a $log(h_\theta(x^{(i)})) = 0$ that means we need to normalize the features. # In[10]: """ Inputs: X = [ [ x_0, x_1, ..., x_n ] ] y = [ [ y_0 ] ... [ y_m ] ] theta = [ theta_0, ..., theta_n ] lambda = regularization parameter """ def computeRegularizedLogisticCostIterative(X, y, theta, lambd): m = len(y) errorSum = 0 # total error for i in range(m): h = hypothesis(X[i], theta) errorSum = errorSum + (-y[i] * np.log(h) - (1 - y[i]) * np.log(1 - h)) # sum the square of parameters cost parameterCost = 0 for i in range(1, len(theta)): parameterCost = parameterCost + (theta[i] ** 2) return errorSum / m + (lambd / (2 * m) * parameterCost) # Better way using Matrix/Vectors def computeRegularizedLogisticCostMatrix(X, y, theta, lambd): m = len(y) h = hypothesis(X, theta) return ((1 / m) * (-y.T.dot(np.log(h)) - (1 - y).T.dot(np.log(1 - h)))) + (lambd / (2 * m) * theta[1:].T.dot(theta[1:])) # In[11]: print('Testing regularized cost function') X_ = np.array([ [1, 8, 1, 6], [1, 3, 5, 7], [1, 4, 9, 2] ]); y_ = np.array([1, 0, 1]); theta_ = np.array([-2, -1, 1, 2]); print('J ~= 4.6832 ->', computeRegularizedLogisticCostIterative(X_, y_, theta_, 0)) print('J ~= 4.6832 ->', computeRegularizedLogisticCostMatrix(X_, y_, theta_, 0)) print('J ~= 8.6832 ->', computeRegularizedLogisticCostIterative(X_, y_, theta_, 4)) print('J ~= 8.6832 ->', computeRegularizedLogisticCostMatrix(X_, y_, theta_, 4)) # In[12]: # map the features and also add 1s at x_0 # X, mu, sigma = featureNormalize(x) X = mapFeature(x[:,0].reshape(m, 1), x[:,1].reshape(m, 1)) n = X.shape[1] initial_theta = np.zeros([n]) # Set regularization parameter lambda to 1 lambd = 1; #initial_theta = np.array([0.1, 12.00921659, 11.26284221], dtype=np.float128) cost = computeRegularizedLogisticCostMatrix(X, y, initial_theta, lambd) print('Cost at initial theta (zeros):', cost) print('Expected cost (approx): 0.693') test_theta = np.ones([X.shape[1]]) cost = computeRegularizedLogisticCostMatrix(X, y, test_theta, 10) print('\nCost at test theta (with lambda = 10):', cost); print('Expected cost (approx): 3.16'); # ### Regularized Gradient Descent # Performs gradient descent to learn $\theta$ parameters. # # It return an array with $\theta$ containing the values found by taking num_iters gradient steps with learning rate $\alpha$. # # Also it return an array with the history of $J(\theta)$ to be plotted. # # Step to update each parameter: # # $\theta_j := \theta_j - \alpha * \frac{\partial J}{\partial \theta_j} $ # # Where: # # $\frac{\partial J}{\partial \theta_j} = \frac{1}{m} \sum_{i=1}^{m} [( h_\theta(x^{(i)}) - y^{(i)}) * x^{(i)}] + \frac{\lambda}{m} \theta_j$ # # Vectorial form: # # $ \frac{\partial J}{\partial \theta_j} = \frac{1}{m} X^{T} ( h_\theta(x^{(i)}) - y^{(i)}) + \frac{\lambda}{m} \theta_j $ # In[13]: def regularizedLogisticGradientDescent(X, y, theta, alpha, lambd, num_iters): m = len(y) J_history = np.zeros(num_iters) for i in range(num_iters): h_theta = hypothesis(X, theta) # gradient of our cost function nabla = ((1 / m) * X.T.dot(h_theta - y)) # regularization nabla_theta_0 = nabla[0] nabla = nabla + (lambd / m) * theta nabla[0] = nabla_theta_0 # print(nabla) # first iteration: [ 0.31722, 0.87232, 1.64812, 2.23787 ] theta = theta - alpha * nabla # Save the cost J in every iteration J_history[i] = computeRegularizedLogisticCostMatrix(X, y, theta, lambd) return theta, J_history # In[14]: # gradient w/o reg: [ 0.31722, 0.87232, 1.64812, 2.23787 ] # ~= [-2, -1, 1, 2], [4.6831] print(regularizedLogisticGradientDescent(X_, y_, theta_, 0, 0, 1)) # gradient w/ reg: [ 0.31722, -0.46102, 2.98146, 4.90454 ] # ~= [-2, -1, 1, 2], [8.6832] print(regularizedLogisticGradientDescent(X_, y_, theta_, 0, 4, 1)) # In[15]: # uncomment the line: print(nabla) theta, J_history = regularizedLogisticGradientDescent(X, y, initial_theta, 0, lambd, 1) print('Expected gradients (approx) - first five values only:'); print('[ 0.0085, 0.0188, 0.0001, 0.0503, 0.0115 ]\n'); test_theta = np.ones([X.shape[1]]) theta, J_history = regularizedLogisticGradientDescent(X, y, test_theta, 0, 10, 1) print('Expected gradients (approx) - first five values only:'); print('[ 0.3460, 0.1614, 0.1948, 0.2269, 0.0922 ]'); # In[16]: num_iters = 50; # with alpha = 0.01 we should rise the # of iterations alphas = [0.01, 0.03, 0.1, 0.3, 1, 3, 10] colors = ['b', 'r', 'y', 'black', 'brown', 'gray']; # In[17]: # To plot the J(theta) using different alphas fig, ax = plt.subplots() iterations = range(num_iters) print('Running gradient descent ...\n') for alpha, color in zip(alphas, colors): theta =
np.zeros([n])
numpy.zeros
# THIS LIBRARY CONTATINS THE ALGORITHMS EXPLAINED IN THE WORK # "Acceleration of Descent-based Optimization Algorithms via Caratheodory's Theorem" #################################################################################### # # This library is focused only on the development of the Caratheodory accelerated # algorithms in the case of least-square with and without Lasso regularization. # # In general X represents the data/features, Y the labels and theta_0 the initial # parameters. It returns theta (the desired argmin) and other variables to reconstruct # the history of the algorithm. # # We can split the functions into three groups: # - ADAM, SAG # - BCD algorithm with the Caratheodory Sampling Procedure(CSP). # The structure of the accelerated functions is this: # a) the *_CA_* functions is the outer while of the algorithms described in # the cited work # b) the *_mod_* functions represent the inner while, i.e. where we use the # the reduced measure # c) directions_CA_steps_* functions are necessary for the parallelziation # of the code # - BCD w/out the Caratheodory Sampling Procedure. # The structure of the accelerated functions is this: # a) mom_BCD_GS_ls, mom_BCD_random_ls, BCD_GS_ls are the outer while of # the algorithms described in the cited work w/out the CSP # b) parallel_BCD_mom, parallel_BCD are necessary for the parallelziation # of the code # #################################################################################### import os import numpy as np import copy, timeit, psutil import recombination as rb from numba import njit, prange import multiprocessing as mp ############################################### # ADAM ############################################### def ADAM_ls(X,Y,theta_0,lambda_LASSO=0.,batch_size=256, lr=1e-3,loss_accepted=1e-8,max_iter=1e2): # it runs the ADAM algorithm specialized in the case of least-square # with a LASSO regularization term. # Copied from the original paper tic = timeit.default_timer() N = np.shape(X)[0] iteration = 0. loss = loss_accepted+1. theta = np.array(theta_0) # Adam Parameter beta_1 = 0.9 beta_2 = 0.999 eps = 1e-8 t = 0 m = np.zeros(np.size(theta_0)) v = np.zeros(np.size(theta_0)) m_hat = np.zeros(np.size(theta_0)) v_hat = np.zeros(np.size(theta_0)) loss_story = [] time_story = [] iteration_story = [] n_cycles = int(N/batch_size) while iteration<=max_iter: error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss.item()) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration+0.5), " | loss = ", loss, " | time = ",timeit.default_timer()-tic) idx_shuffled = np.random.choice(N,N, replace=False) for i in np.arange(n_cycles): t += 1 idx = idx_shuffled[i*batch_size:i*batch_size+batch_size] error_persample = np.dot(X[idx],theta)-Y[idx] error_persample = error_persample[np.newaxis].T gr = 2*np.matmul(X[idx].T,error_persample)/N gr += lambda_LASSO * np.sign(theta).reshape(-1,1) m = beta_1*m + (1-beta_1)*gr[:,0] v = beta_2*v + (1-beta_2)*np.power(gr[:,0],2) m_hat = m/(1-beta_1**t) v_hat = v/(1-beta_2**t) theta -= lr*m_hat/(np.sqrt(v_hat)+eps) iteration += 1 error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss.item()) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration+0.5), " | loss = ", loss, " | time = ",timeit.default_timer()-tic) return (loss_story,iteration_story,theta,time_story) ############################################### # SAG # Observation: the leanring rate must be small # or ''more clever strategy'' ############################################### def SAG_ls(X,Y,theta_0,lambda_LASSO=0.,batch_size=256, lr=1e-3,loss_accepted=1e-8,max_iter=1e2): # it runs the SAG algorithm specialized in the case of least-square # with a LASSO regularization term. # Copied from the original paper tic = timeit.default_timer() N, n = np.shape(X) iteration = 0. loss = loss_accepted+1. theta = np.array(theta_0) loss_story = [] time_story = [] iteration_story = [] n_cycles = int(N/batch_size) gr_persample = np.zeros((N,n)) while iteration<=max_iter: error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss.item()) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration+0.5), " | loss = ", loss, " | time = ",timeit.default_timer()-tic) idx_shuffled = np.random.choice(N,N, replace=False) if iteration == 0: sum_total = 0. for i in range(n_cycles): idx = idx_shuffled[i*batch_size:(i+1)*batch_size] error_persample = np.dot(X[idx],theta)-Y[idx] error_persample = error_persample[np.newaxis].T gr_persample[idx,:] = 2*np.multiply(X[idx,:],error_persample) gr_persample[idx,:] += lambda_LASSO * np.sign(theta) sum_new_idx = np.sum(gr_persample[idx,:],0) sum_total += sum_new_idx theta -= lr * sum_total/((i+1)*batch_size) else: for i in range(n_cycles): idx = idx_shuffled[i*batch_size:i*batch_size+batch_size] sum_old_idx = np.sum(gr_persample[idx,:],0) error_persample = np.dot(X[idx],theta)-Y[idx] error_persample = error_persample[np.newaxis].T gr_persample[idx,:] = 2*np.multiply(X[idx,:],error_persample) gr_persample[idx,:] += lambda_LASSO * np.sign(theta) sum_new_idx = np.sum(gr_persample[idx,:],0) sum_total = sum_total - sum_old_idx + sum_new_idx theta -= lr * sum_total/N iteration += 1 error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss.item()) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration+0.5), " | loss = ", loss, " | time = ",timeit.default_timer()-tic) return (loss_story,iteration_story,theta,time_story) ############################################### # Momentum_BCD w/out CaratheodorySP # GS and Random ############################################### def mom_BCD_GS_ls(X,Y,theta_0,lambda_LASSO=0., lr=1e-3,loss_accepted=1e-8,max_iter=1e2, size_block=2,percentage_gr = 0.75): # it runs the BCD with momentum , # using mom_CA_BCD_mod and the GS rule for the selection of the blocks num_cpus = psutil.cpu_count(logical=False) tic = timeit.default_timer() N = np.shape(X)[0] iteration = 0. loss = loss_accepted+1. assert np.size(theta_0)>=size_block, "less parameters than size_block, decrease the size block" # MOMENTUM param beta = 0.9 v = np.zeros(np.size(theta_0)) theta = np.array(theta_0) loss_story = [] time_story = [] iteration_story = [] gr1d = np.empty(np.size(theta_0)) max_number_blocks = np.infty #8*num_cpus to_extract = min(max_number_blocks*size_block,len(theta_0)*percentage_gr) to_extract -= to_extract % size_block to_extract = int(to_extract) while (loss > loss_accepted and iteration < max_iter): # for i in range(1): error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T if iteration == 0: loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration), " | loss = ", loss, " | time = ", toc) gr_persample = 2*np.multiply(X,error_persample) gr_persample += lambda_LASSO * np.sign(theta) gr1d = np.mean(gr_persample,0) v = beta*v - lr*gr1d # if i == 0: theta += v iteration += 1 loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration), " | loss = ", loss, " | time = ", toc) blocks = building_blocks_cumsum(gr1d,size_block,percentage_gr,max_number_blocks, "sorted") # sorted, random or balanced n_blocks = len(blocks) if loss > loss_accepted: # start parallel part manager = mp.Manager() results = manager.dict() processes = [] for i in range(n_blocks): p = mp.Process(target = parallel_BCD_mom, args = (results,i,X,Y,lambda_LASSO, blocks[i], # direction_persample[:,blocks[i]], theta, # theta_tm1, # gr1d[blocks[i]], # gr1d_tm1[blocks[i]], # max_iter, v, iteration,lr,loss_accepted)) processes.append(p) p.start() i = 0 for process in processes: process.join() i += 1 # collecting results from the parallel execution for i in range(n_blocks): # if results[i][3] != 0: # continue # if results[i][0] == 1: # continue theta[blocks[i]] = results[i][0][blocks[i]] v[blocks[i]] = results[i][1][blocks[i]] iteration += n_blocks #*(len(blocks[i])+1)/N error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration), " | loss = ", loss, " | time = ", toc) toc = timeit.default_timer()-tic return loss_story,iteration_story,theta,time_story def mom_BCD_random_ls(X,Y,theta_0,lambda_LASSO=0., lr=1e-3,loss_accepted=1e-8,max_iter=1e2, size_block=2,percentage_gr = 0.75): # it runs the BCD with momentum , # using parallel_BCD_mom and the random rule for the selection of the blocks num_cpus = psutil.cpu_count(logical=False) tic = timeit.default_timer() N = np.shape(X)[0] iteration = 0. loss = loss_accepted+1. assert np.size(theta_0)>=size_block, "less parameters than size_block, decrease the size block" # MOMENTUM param beta = 0.9 v = np.zeros(np.size(theta_0)) theta = np.array(theta_0) loss_story = [] time_story = [] iteration_story = [] gr1d = np.empty(np.size(theta_0)) max_number_blocks = np.infty #8*num_cpus to_extract = min(max_number_blocks*size_block,len(theta_0)*percentage_gr) to_extract -= to_extract % size_block to_extract = int(to_extract) while (loss > loss_accepted and iteration < max_iter): # for i in range(1): error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T if iteration == 0: loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration), " | loss = ", loss, " | time = ", toc) # gr_persample = 2*np.multiply(X,error_persample) # gr_persample += lambda_LASSO * np.sign(theta) # gr1d = np.mean(gr_persample,0) # v = beta*v - lr*gr1d # # if i == 0: # theta += v # iteration += 1 loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration), " | loss = ", loss, " | time = ", toc) blocks = np.random.choice(len(theta),to_extract,replace = False) n_blocks = len(blocks) if loss > loss_accepted: # start parallel part manager = mp.Manager() results = manager.dict() processes = [] for i in range(n_blocks): p = mp.Process(target = parallel_BCD_mom, args = (results,i,X,Y,lambda_LASSO, blocks[i], # direction_persample[:,blocks[i]], theta, # theta_tm1, # gr1d[blocks[i]], # gr1d_tm1[blocks[i]], # max_iter, v, iteration,lr,loss_accepted)) processes.append(p) p.start() i = 0 for process in processes: process.join() i += 1 # collecting results from the parallel execution for i in range(n_blocks): # if results[i][3] != 0: # continue # if results[i][0] == 1: # continue theta[blocks[i]] = results[i][0][blocks[i]] v[blocks[i]] = results[i][1][blocks[i]] iteration += n_blocks #*(len(blocks[i])+1)/N error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T loss = np.dot(error_persample.T,error_persample)[0,0]/N loss += lambda_LASSO * np.abs(theta).sum() loss_story.append(loss) toc = timeit.default_timer()-tic time_story.append(toc) iteration_story.append(iteration) print("iteration = ", int(iteration), " | loss = ", loss, " | time = ", toc) toc = timeit.default_timer()-tic return loss_story,iteration_story,theta,time_story def parallel_BCD_mom(results,proc_numb,X,Y,lambda_LASSO, block, # direction_persample[:,blocks[i]], theta, # theta_tm1, # gr1d[blocks[i]], # gr1d_tm1[blocks[i]], # max_iter, v, iteration,lr,loss_accepted): beta = 0.9 error_persample = np.dot(X,theta)-Y error_persample = error_persample[np.newaxis].T gr_persample = 2*np.multiply(X,error_persample) gr_persample += lambda_LASSO *
np.sign(theta)
numpy.sign
# Copyright (c) Facebook, Inc. and its affiliates. # Copyright (c) 2020, <NAME> (@e-bug). # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os import sys import random import logging import jsonlines import _pickle as cPickle import base64 import numpy as np import tensorpack.dataflow as td import torch from torch.nn import functional as F from torch.utils.data import Dataset from ._image_features_reader import ImageFeaturesH5Reader import msgpack_numpy msgpack_numpy.patch() MAX_MSGPACK_LEN = 1000000000 logger = logging.getLogger(__name__) os.environ["HDF5_USE_FILE_LOCKING"] = "FALSE" def assert_eq(real, expected): assert real == expected, "%s (true) vs %s (expected)" % (real, expected) def _load_annotations(annotations_jsonpath, task): with jsonlines.open(annotations_jsonpath) as reader: # Build an index which maps image id with a list of caption annotations. entries = [] imgid2entry = {} for annotation in reader: if task == "RetrievalCOCO": image_id = annotation["id"] elif task == "RetrievalFlickr30k": # or task.startswith("RetrievalMulti30k"): image_id = int(annotation["img_path"].split(".")[0]) imgid2entry[image_id] = [] count = 0 for sentences in annotation["sentences"]: entries.append({"caption": sentences, "image_id": image_id}) imgid2entry[image_id].append(count) count += 1 return entries, imgid2entry class RetrievalDataset(Dataset): def __init__( self, task: str, dataroot: str, annotations_jsonpath: str, split: str, image_features_reader: ImageFeaturesH5Reader, gt_image_features_reader: ImageFeaturesH5Reader, tokenizer, bert_model, padding_index: int = 0, max_seq_length: int = 20, max_region_num: int = 36, num_locs=5, add_global_imgfeat=None, append_mask_sep=False, ): # All the keys in `self._entries` would be present in `self._image_features_reader` self._entries, self.imgid2entry = _load_annotations(annotations_jsonpath, task) self.image_id_list = [*self.imgid2entry] self._image_features_reader = image_features_reader self._tokenizer = tokenizer self.num_labels = 1 self._split = split self._padding_index = padding_index self._max_region_num = max_region_num + int(add_global_imgfeat is not None) self._max_seq_length = max_seq_length self._num_locs = num_locs self._add_global_imgfeat = add_global_imgfeat if self._split == "train": image_info = cPickle.load(open(os.path.join(dataroot, "hard_negative" + ".pkl"), "rb")) for key, value in image_info.items(): setattr(self, key, value) self.train_imgId2pool = {imageId: i for i, imageId in enumerate(self.train_image_list)} os.makedirs(os.path.join("/".join(annotations_jsonpath.split("/")[:-1]), "cache"), exist_ok=True) cache_path = os.path.join( "/".join(annotations_jsonpath.split("/")[:-1]), "cache", task + "_" + split + "_" + bert_model.split("/")[-1] + "_" + str(max_seq_length) + ".pkl", ) if not os.path.exists(cache_path): self.tokenize() self.tensorize() cPickle.dump(self._entries, open(cache_path, "wb")) else: print("loading entries from %s" % cache_path) self._entries = cPickle.load(open(cache_path, "rb")) def tokenize(self): """Tokenizes the captions. This will add caption_tokens in each entry of the dataset. -1 represents nil, and should be treated as padding_idx in embedding. """ for entry in self._entries: tokens = self._tokenizer.encode(entry["caption"]) tokens = [tokens[0]] + tokens[1:-1][: self._max_seq_length - 2] + [tokens[-1]] segment_ids = [0] * len(tokens) input_mask = [1] * len(tokens) if len(tokens) < self._max_seq_length: # Note here we pad in front of the sentence padding = [self._padding_index] * (self._max_seq_length - len(tokens)) tokens = tokens + padding input_mask += [0] * len(padding) segment_ids += [0] * len(padding) assert_eq(len(tokens), self._max_seq_length) entry["token"] = tokens entry["input_mask"] = input_mask entry["segment_ids"] = segment_ids def tensorize(self): for entry in self._entries: token = torch.from_numpy(np.array(entry["token"])) entry["token"] = token input_mask = torch.from_numpy(np.array(entry["input_mask"])) entry["input_mask"] = input_mask segment_ids = torch.from_numpy(np.array(entry["segment_ids"])) entry["segment_ids"] = segment_ids def __getitem__(self, index): entry = self._entries[index] image_id = entry["image_id"] features, num_boxes, boxes, _ = self._image_features_reader[image_id] mix_num_boxes = min(int(num_boxes), self._max_region_num) mix_boxes_pad = np.zeros((self._max_region_num, self._num_locs)) mix_features_pad = np.zeros((self._max_region_num, 2048)) image_mask = [1] * (int(mix_num_boxes)) while len(image_mask) < self._max_region_num: image_mask.append(0) mix_boxes_pad[:mix_num_boxes] = boxes[:mix_num_boxes] mix_features_pad[:mix_num_boxes] = features[:mix_num_boxes] features1 = torch.tensor(mix_features_pad).float() image_mask1 = torch.tensor(image_mask).long() spatials1 = torch.tensor(mix_boxes_pad).float() caption1 = entry["token"] input_mask1 = entry["input_mask"] segment_ids1 = entry["segment_ids"] # negative samples. # 1: correct one, 2: random caption wrong, 3: random image wrong. 4: hard image wrong. while True: # sample a random image: img_id2 = random.choice(self.image_id_list) if img_id2 != image_id: entry2 = self._entries[random.choice(self.imgid2entry[img_id2])] break elif len(self.image_id_list) == 1: tokens = self._tokenizer.encode("[MASK]") segment_ids = [0] * len(tokens) input_mask = [1] * len(tokens) padding = [self._padding_index] * (self._max_seq_length - len(tokens)) tokens = torch.from_numpy(np.array(tokens + padding)) input_mask = torch.from_numpy(np.array(input_mask + [0]*len(padding))) segment_ids = torch.from_numpy(np.array(segment_ids + [0]*len(padding))) entry2 = {"token": tokens, "input_mask": input_mask, "segment_ids": segment_ids} break features2 = features1 image_mask2 = image_mask1 spatials2 = spatials1 caption2 = entry2["token"] input_mask2 = entry2["input_mask"] segment_ids2 = entry2["segment_ids"] # random image wrong while True: # sample a random image: img_id3 = random.choice(self.image_id_list) if img_id3 != image_id: break elif len(self.image_id_list) == 1: img_id3 = random.choice(self._image_features_reader._image_ids).decode() break features3, num_boxes3, boxes3, _ = self._image_features_reader[img_id3] image_mask3 = [1] * (int(num_boxes3)) mix_num_boxes3 = min(int(num_boxes3), self._max_region_num) while len(image_mask3) < self._max_region_num: image_mask3.append(0) mix_boxes_pad[:mix_num_boxes3] = boxes3[:mix_num_boxes3] mix_features_pad[:mix_num_boxes3] = features3[:mix_num_boxes3] features3 = torch.tensor(mix_features_pad).float() image_mask3 = torch.tensor(image_mask3).long() spatials3 = torch.tensor(mix_boxes_pad).float() caption3 = caption1 input_mask3 = input_mask1 segment_ids3 = segment_ids1 if self._split == "train": # random hard caption. rand_img_id_pool = self.train_hard_pool[self.train_imgId2pool[image_id]] pool_img_idx = int(rand_img_id_pool[np.random.randint(1, len(rand_img_id_pool))]) img_id4 = self.train_image_list[pool_img_idx] entry4 = self._entries[random.choice(self.imgid2entry[img_id4])] else: while True: # sample a random image: img_id4 = random.choice(self.image_id_list) if img_id4 != image_id: entry4 = self._entries[random.choice(self.imgid2entry[img_id4])] break elif len(self.image_id_list) == 1: tokens = self._tokenizer.encode("[MASK]") segment_ids = [0] * len(tokens) input_mask = [1] * len(tokens) padding = [self._padding_index] * (self._max_seq_length - len(tokens)) tokens = torch.from_numpy(np.array(tokens + padding)) input_mask = torch.from_numpy(np.array(input_mask + [0]*len(padding))) segment_ids = torch.from_numpy(np.array(segment_ids + [0]*len(padding))) entry4 = {"token": tokens, "input_mask": input_mask, "segment_ids": segment_ids} break features4 = features1 image_mask4 = image_mask1 spatials4 = spatials1 caption4 = entry4["token"] input_mask4 = entry4["input_mask"] segment_ids4 = entry4["segment_ids"] features = torch.stack([features1, features2, features3, features4], dim=0) spatials = torch.stack([spatials1, spatials2, spatials3, spatials4], dim=0) image_mask = torch.stack([image_mask1, image_mask2, image_mask3, image_mask4], dim=0) caption = torch.stack([caption1, caption2, caption3, caption4], dim=0) input_mask = torch.stack([input_mask1, input_mask2, input_mask3, input_mask4], dim=0) segment_ids = torch.stack([segment_ids1, segment_ids2, segment_ids3, segment_ids4], dim=0) target = 0 return features, spatials, image_mask, caption, target, input_mask, segment_ids, image_id, index def __len__(self): return len(self._entries) def _load_annotationsVal(annotations_jsonpath, task): with jsonlines.open(annotations_jsonpath) as reader: # Build an index which maps image id with a list of caption annotations. image_entries = {} caption_entries = [] for annotation in reader: if task == "RetrievalCOCO": image_id = annotation["id"] elif task == "RetrievalFlickr30k": image_id = int(annotation["img_path"].split(".")[0]) elif task == "RetrievalxFlickrCO": image_id = annotation["img_path"] elif task == "RetrievalWIT": image_id = annotation["wit_ix"] image_entries[image_id] = 1 if task == "RetrievalWIT": caption_entries.append({"caption": annotation["caption_reference_description"], "image_id": image_id}) else: for sentences in annotation["sentences"]: caption_entries.append({"caption": sentences, "image_id": image_id}) image_entries = [*image_entries] return image_entries, caption_entries class RetrievalDatasetVal(Dataset): def __init__( self, task: str, dataroot: str, annotations_jsonpath: str, split: str, image_features_reader: ImageFeaturesH5Reader, gt_image_features_reader: ImageFeaturesH5Reader, tokenizer, bert_model, padding_index: int = 0, max_seq_length: int = 20, max_region_num: int = 36, num_locs=5, add_global_imgfeat=None, append_mask_sep=False, num_subiters=2, ): # All the keys in `self._entries` would be present in `self._image_features_reader` self._image_entries, self._caption_entries = _load_annotationsVal(annotations_jsonpath, task) self._image_features_reader = image_features_reader self._tokenizer = tokenizer self._split = split self._padding_index = padding_index self._max_region_num = max_region_num + int(add_global_imgfeat is not None) self._max_seq_length = max_seq_length self._num_locs = num_locs self._add_global_imgfeat = add_global_imgfeat self.num_labels = 1 self.num_subiters = num_subiters self.num_images = len(self._image_entries) self.num_entries = len(self._caption_entries) self.max_num_images = self.num_images // self.num_subiters + int(self.num_images % self.num_subiters > 0) os.makedirs(os.path.join("/".join(annotations_jsonpath.split("/")[:-1]), "cache"), exist_ok=True) cache_path = os.path.join( "/".join(annotations_jsonpath.split("/")[:-1]), "cache", task + "_" + split + "_" + bert_model.split("/")[-1] + "_" + str(max_seq_length) + ".pkl", ) if not os.path.exists(cache_path): self.tokenize() self.tensorize() cPickle.dump(self._caption_entries, open(cache_path, "wb")) else: print("loading entries from %s" % cache_path) self._caption_entries = cPickle.load(open(cache_path, "rb")) self.features_all = np.zeros((len(self._image_entries), self._max_region_num, 2048)) self.spatials_all = np.zeros((len(self._image_entries), self._max_region_num, self._num_locs)) self.image_mask_all = np.zeros((len(self._image_entries), self._max_region_num)) for i, image_id in enumerate(self._image_entries): features, num_boxes, boxes, _ = self._image_features_reader[image_id] mix_num_boxes = min(int(num_boxes), self._max_region_num) mix_boxes_pad = np.zeros((self._max_region_num, self._num_locs)) mix_features_pad = np.zeros((self._max_region_num, 2048)) image_mask = [1] * (int(mix_num_boxes)) while len(image_mask) < self._max_region_num: image_mask.append(0) mix_boxes_pad[:mix_num_boxes] = boxes[:mix_num_boxes] mix_features_pad[:mix_num_boxes] = features[:mix_num_boxes] self.features_all[i] = mix_features_pad self.image_mask_all[i] = np.array(image_mask) self.spatials_all[i] = mix_boxes_pad sys.stdout.write("%d/%d\r" % (i, len(self._image_entries))) sys.stdout.flush() self.features_all = torch.Tensor(self.features_all).float() self.image_mask_all = torch.Tensor(self.image_mask_all).long() self.spatials_all = torch.Tensor(self.spatials_all).float() def tokenize(self): """Tokenizes the captions. This will add caption_tokens in each entry of the dataset. -1 represents nil, and should be treated as padding_idx in embedding. """ for entry in self._caption_entries: tokens = self._tokenizer.encode(entry["caption"]) tokens = [tokens[0]] + tokens[1:-1][: self._max_seq_length - 2] + [tokens[-1]] segment_ids = [0] * len(tokens) input_mask = [1] * len(tokens) if len(tokens) < self._max_seq_length: # Note here we pad in front of the sentence padding = [self._padding_index] * (self._max_seq_length - len(tokens)) tokens = tokens + padding input_mask += [0] * len(padding) segment_ids += [0] * len(padding) assert_eq(len(tokens), self._max_seq_length) entry["token"] = tokens entry["input_mask"] = input_mask entry["segment_ids"] = segment_ids def tensorize(self): for entry in self._caption_entries: token = torch.from_numpy(np.array(entry["token"])).long() entry["token"] = token input_mask = torch.from_numpy(np.array(entry["input_mask"])) entry["input_mask"] = input_mask segment_ids = torch.from_numpy(np.array(entry["segment_ids"])).long() entry["segment_ids"] = segment_ids def __getitem__(self, index): # we iterate through every caption here. caption_idx = int(index / self.num_subiters) image_idx = index % self.num_subiters image_entries = self._image_entries[self.max_num_images * (image_idx):self.max_num_images * (image_idx + 1)] features_all = self.features_all[self.max_num_images * (image_idx):self.max_num_images * (image_idx + 1)] spatials_all = self.spatials_all[self.max_num_images * (image_idx):self.max_num_images * (image_idx + 1)] image_mask_all = self.image_mask_all[self.max_num_images * (image_idx):self.max_num_images * (image_idx + 1)] entry = self._caption_entries[caption_idx] caption = entry["token"] input_mask = entry["input_mask"] segment_ids = entry["segment_ids"] target_all = torch.zeros(len(image_entries)) for i, image_id in enumerate(image_entries): if image_id == entry["image_id"]: target_all[i] = 1 return ( features_all, spatials_all, image_mask_all, caption, input_mask, segment_ids, target_all, caption_idx, image_idx, ) def __len__(self): return len(self._caption_entries) * self.num_subiters class RetrievalLoader(object): def __init__( self, task: str, dataroot: str, annotations_jsonpath: str, split: str, image_features_reader, # features_path gt_image_features_reader, tokenizer, bert_model, padding_index: int = 0, max_seq_length: int = 16, # seq_len, max_region_num: int = 36, # reg_len, num_locs=5, add_global_imgfeat=None, append_mask_sep=False, norm_embeddings=False, batch_size=512, num_workers=25, cache=10000, ): self.split = split self._max_region_num = max_region_num self._max_seq_length = max_seq_length self._image_features_reader = image_features_reader self._tokenizer = tokenizer self._padding_index = padding_index self._norm_embeddings = norm_embeddings lmdb_file = image_features_reader print("Loading from %s" % lmdb_file) ds = td.LMDBSerializer.load(lmdb_file, shuffle=False) self.num_dataset = len(ds) if split == "train": ds = td.LocallyShuffleData(ds, cache) caption_path = annotations_jsonpath preprocess_function = BertPreprocessBatch( caption_path, tokenizer, bert_model, max_seq_length, max_region_num, self.num_dataset, num_locs=num_locs, padding_index=padding_index, norm_embeddings=self._norm_embeddings, ) if split == "train": ds = td.PrefetchData(ds, cache, 1) ds = td.MapData(ds, preprocess_function) if split == "train": ds = td.PrefetchDataZMQ(ds, num_workers) self.ds = td.BatchData(ds, batch_size) self.ds.reset_state() self.batch_size = batch_size self.num_workers = num_workers self.add_global_imgfeat = add_global_imgfeat self.num_locs = num_locs def __iter__(self): for ix, batch in enumerate(self.ds.get_data()): image_feats, image_locs, image_masks, \ input_ids1s, input_mask1s, segment_ids1s, \ input_ids3s, input_mask3s, segment_ids3s, \ input_ids4s, input_mask4s, segment_ids4s, \ image_ids = batch batch_size = input_ids1s.shape[0] if self.add_global_imgfeat == "first": sum_count = np.sum(image_masks == 1, axis=1, keepdims=True) g_image_feats = np.sum(image_feats, axis=1) / sum_count image_feats = np.concatenate([np.expand_dims(g_image_feats, axis=1), image_feats], axis=1) image_feats =
np.array(image_feats, dtype=np.float32)
numpy.array
####################################################### # ---------- Network Propagation Functions ---------- # ####################################################### import networkx as nx import time import numpy as np import pandas as pd # Normalize network (or network subgraph) for random walk propagation # If symmetric norm is used then the adjacency matrix is normalized as D^-0.5 * A * D^-0.5 # Otherwise the network is normalized as A*D-1 # Where D is the diagonalized degree (default is colsum) of the adjacency matrix A def normalize_network(network, symmetric_norm=False): adj_mat = nx.adjacency_matrix(network) adj_array = np.array(adj_mat.todense()) if symmetric_norm: D = np.diag(1/np.sqrt(sum(adj_array))) adj_array_norm = np.dot(np.dot(D, adj_array), D) else: degree = sum(adj_array) adj_array_norm = (adj_array*1.0/degree).T return adj_array_norm # Closed form random-walk propagation (as seen in HotNet2) for each subgraph: Ft = (1-alpha)*Fo * (I-alpha*norm_adj_mat)^-1 # Concatenate to previous set of subgraphs def fast_random_walk(alpha, binary_mat, subgraph_norm, prop_data_prev): term1=(1-alpha)*binary_mat term2=np.identity(binary_mat.shape[1])-alpha*subgraph_norm term2_inv = np.linalg.inv(term2) subgraph_prop = np.dot(term1, term2_inv) prop_data_add = np.concatenate((prop_data_prev, subgraph_prop), axis=1) return prop_data_add # Wrapper for random walk propagation of full network by subgraphs # Implementation is based on the closed form of the random walk model over networks presented by the HotNet2 paper def network_propagation(network, binary_matrix, alpha=0.7, symmetric_norm=False, verbose=True, **save_args): # Parameter error check alpha = float(alpha) if alpha <= 0.0 or alpha >= 1.0: raise ValueError('Alpha must be a value between 0 and 1') # Begin network propagation starttime=time.time() if verbose: print('Performing network propagation with alpha:', alpha) # Separate network into connected components and calculate propagation values of each sub-sample on each connected component subgraphs = list(nx.connected_component_subgraphs(network)) # Initialize propagation results by propagating first subgraph subgraph = subgraphs[0] subgraph_nodes = list(subgraph.nodes) prop_data_node_order = list(subgraph_nodes) binary_matrix_filt = np.array(binary_matrix.T.ix[subgraph_nodes].fillna(0).T) subgraph_norm = normalize_network(subgraph, symmetric_norm=symmetric_norm) prop_data_empty = np.zeros((binary_matrix_filt.shape[0], 1)) prop_data = fast_random_walk(alpha, binary_matrix_filt, subgraph_norm, prop_data_empty) # Get propagated results for remaining subgraphs for subgraph in subgraphs[1:]: subgraph_nodes = list(subgraph.nodes) prop_data_node_order = prop_data_node_order + subgraph_nodes binary_matrix_filt = np.array(binary_matrix.T.ix[subgraph_nodes].fillna(0).T) subgraph_norm = normalize_network(subgraph, symmetric_norm=symmetric_norm) prop_data = fast_random_walk(alpha, binary_matrix_filt, subgraph_norm, prop_data) # Return propagated result as dataframe prop_data_df = pd.DataFrame(data=prop_data[:,1:], index = binary_matrix.index, columns=prop_data_node_order) # Saving the propagation result if 'outdir' in save_args: if 'job_name' in save_args: if 'iteration_label' in save_args: save_path = save_args['outdir']+str(save_args['job_name'])+'_prop_'+str(save_args['iteration_label'])+'.csv' else: save_path = save_args['outdir']+str(save_args['job_name'])+'_prop.csv' else: if 'iteration_label' in save_args: save_path = save_args['outdir']+'prop_'+str(save_args['iteration_label'])+'.csv' else: save_path = save_args['outdir']+'prop.csv' prop_data_df.to_csv(save_path) if verbose: print('Network Propagation Result Saved:', save_path) else: pass if verbose: print('Network Propagation Complete:', time.time()-starttime, 'seconds') return prop_data_df # Wrapper for propagating binary mutation matrix over network by subgraph given network propagation kernel # The network propagation kernel can be pre-computed using the network_propagation function and a identity matrix data frame of the network # Pre-calculating the kernel for many runs of NBS saves a significant amount of time def network_kernel_propagation(network, network_kernel, binary_matrix, verbose=False, **save_args): starttime=time.time() if verbose: print('Performing network propagation with network kernel') # Separate network into connected components and calculate propagation values of each sub-sample on each connected component subgraph_nodelists = list(nx.connected_components(network)) # Initialize propagation results by propagating first subgraph prop_nodelist = list(subgraph_nodelists[0]) prop_data = np.dot(binary_matrix.T.ix[prop_nodelist].fillna(0).T, network_kernel.ix[prop_nodelist][prop_nodelist]) # Get propagated results for remaining subgraphs for nodelist in subgraph_nodelists[1:]: subgraph_nodes = list(nodelist) prop_nodelist = prop_nodelist + subgraph_nodes subgraph_prop_data = np.dot(binary_matrix.T.ix[subgraph_nodes].fillna(0).T, network_kernel.ix[subgraph_nodes][subgraph_nodes]) prop_data =
np.concatenate((prop_data, subgraph_prop_data), axis=1)
numpy.concatenate
#!/usr/bin/env python # coding: utf-8 # Solve differential flatness and check feasibility of control command # Use NED coordinate import os, sys, time, copy, yaml import numpy as np from .utils import * # import cupy as cp class QuadModel: def __init__(self, cfg_path=None, drone_model=None): if cfg_path == None: curr_path = os.path.dirname(os.path.abspath(__file__)) cfg_path = curr_path+"/../config/multicopter_model.yaml" if drone_model == None: drone_model="default" with open(cfg_path, 'r') as stream: try: cfg = yaml.safe_load(stream) self.thrustCoef = np.double(cfg['motor_model']['thrust_coefficient']) self.torqueCoef = np.double(cfg['motor_model']['torque_coefficient']) self.armLength = np.double(cfg['motor_model']['moment_arm']) self.mass = np.double(cfg['uav_model'][drone_model]['vehicle_mass']) self.Ixx = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_xx']) self.Iyy = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_yy']) self.Izz = np.double(cfg['uav_model'][drone_model]['vehicle_inertia_zz']) self.w_max = np.double(cfg['motor_model']['max_prop_speed']) self.w_min = np.double(cfg['motor_model']['min_prop_speed']) self.gravity = np.double(cfg['simulation']['gravity']) self.w_sta = np.sqrt(self.mass*self.gravity/self.thrustCoef/4.0) except yaml.YAMLError as exc: print(exc) lt = self.armLength*self.thrustCoef k0 = self.torqueCoef k1 = self.thrustCoef self.G1 = np.array([[lt,-lt,-lt,lt],\ [lt,lt,-lt,-lt],\ [-k0,k0,-k0,k0],\ [-k1,-k1,-k1,-k1]]) self.J = np.diag(np.array([self.Ixx,self.Iyy,self.Izz])) return def getWs(self, status): pos = np.array(status[0:3]) vel = np.array(status[3:6]) acc = np.array(status[6:9]) jer = np.array(status[9:12]) sna = np.array(status[12:15]) yaw = status[15] dyaw = status[16] ddyaw = status[17] # Total thrust tau_v = acc - np.array([0,0,self.gravity]) tau = -np.linalg.norm(tau_v) bz = tau_v/tau Thrust = self.mass*tau # roll & pitch roll = np.arcsin(np.dot(bz,[np.sin(yaw),-np.cos(yaw),0])) pitch = np.arctan(np.dot(bz,[np.cos(yaw),np.sin(yaw),0])/bz[2]) bx = np.array([np.cos(yaw)*np.cos(pitch),np.sin(yaw)*np.cos(pitch),-np.sin(pitch)]) by = np.array([-np.sin(yaw)*np.cos(roll)+np.cos(yaw)*np.sin(pitch)*np.sin(roll),\ np.cos(yaw)*np.cos(roll)+np.sin(yaw)*np.sin(pitch)*np.sin(roll),\ np.cos(pitch)*np.sin(roll)]) # dzhi & Omega dzhi = np.dot(np.array([-1*by,bx/np.cos(roll),np.zeros(3)]),jer)/tau \ +np.array([np.sin(pitch),-np.cos(pitch)*np.tan(roll),1])*dyaw S_inv = np.array([[1,0,-np.sin(pitch)],\ [0,np.cos(roll),np.cos(pitch)*np.sin(roll)],\ [0,-np.sin(roll),np.cos(pitch)*np.cos(roll)]]) Omega = np.dot(S_inv,dzhi) C_inv = np.array([-1*by/tau,bx/np.cos(roll)/tau,bz]) d = np.array([np.cos(yaw)*np.sin(roll)-np.cos(roll)*np.sin(yaw)*np.sin(pitch),\ np.sin(yaw)*np.sin(roll)+np.cos(roll)*np.cos(yaw)*np.sin(pitch),0])*tau dtau = np.dot(bz,jer-dyaw*d) # ddzhi & dOmega dS = np.array([[0,np.cos(roll)*np.tan(pitch),-np.sin(roll)*np.tan(pitch)],\ [0,-np.sin(roll),-np.cos(roll)],\ [0,np.cos(roll)/np.cos(pitch),-np.sin(roll)/np.cos(pitch)]])*dzhi[0]\ +np.array([[0,np.sin(roll)/np.cos(pitch)/np.cos(pitch),np.cos(roll)/np.cos(pitch)/np.cos(pitch)],\ [0,0,0],\ [0,np.sin(roll)*np.tan(pitch)/np.cos(pitch),np.cos(roll)*np.tan(pitch)/np.cos(pitch)]])*dzhi[1] e = 2*dtau*np.dot(np.array([-1*by,bx,0]).T,Omega)\ +tau*np.dot(np.array([bx,by,bz]).T,np.array([Omega[0]*Omega[2],Omega[1]*Omega[2],-Omega[0]*Omega[0]-Omega[1]*Omega[1]]))\ -tau*np.dot(np.array([-1*by,bx,0]).T,np.dot(S_inv,np.dot(dS,Omega))) ddzhi = np.dot(C_inv,sna-ddyaw*d-e) ddzhi[2] = ddyaw dOmega = -np.dot(S_inv,np.dot(dS,Omega))+np.dot(S_inv,ddzhi) Mu = np.dot(self.J,dOmega) + np.cross(Omega,np.dot(self.J,Omega)) MT = np.zeros(4) MT[:3] = Mu MT[3] = Thrust G1_inv = np.linalg.inv(self.G1) Ws2 = np.dot(G1_inv,MT) # Ws2 = np.clip(Ws2, np.power(self.w_min,2), np.power(self.w_max,2)) # Ws = np.sqrt(Ws2) Ws = np.copysign(np.sqrt(np.abs(Ws2)),Ws2) rpy = np.array([roll, pitch, yaw]) rpy_q = Euler2quat(np.array([roll, pitch, yaw])) state = { 'roll':roll, 'pitch':pitch, 'rpy':rpy, 'rpy_q':rpy_q, 'dzhi':dzhi, 'ddzhi':ddzhi, 'ut':MT } return Ws, state def getWs_vector(self, status): pos = np.array(status[:,0:3]) vel = np.array(status[:,3:6]) acc = np.array(status[:,6:9]) jer = np.array(status[:,9:12]) sna = np.array(status[:,12:15]) yaw = np.array(status[:,15:16]) dyaw = np.array(status[:,16:17]) ddyaw = np.array(status[:,17:18]) # Total thrust tau_v = acc - np.array([0,0,self.gravity]) tau = -np.linalg.norm(tau_v,axis=1)[:,np.newaxis] bz = tau_v/tau Thrust = self.mass*tau # roll & pitch roll = np.arcsin(np.einsum('ij,ij->i', bz, np.concatenate(( np.sin(yaw), -np.cos(yaw), np.zeros_like(yaw)),axis=1)))[:,np.newaxis] pitch = np.arctan(np.einsum('ij,ij->i', bz, np.concatenate(( np.cos(yaw)/bz[:,2:3], np.sin(yaw)/bz[:,2:3], np.zeros_like(yaw)),axis=1)))[:,np.newaxis] bx = np.concatenate(( np.cos(yaw)*np.cos(pitch), np.sin(yaw)*np.cos(pitch), -np.sin(pitch)),axis=1) by = np.concatenate(( -np.sin(yaw)*np.cos(roll)+
np.cos(yaw)
numpy.cos
from random import sample from reinforces.reinforce_utils import * from reinforces import rephraser from reinforces.ReplayBuffer import SharedReplayBuffer, ReplayBuffer from reinforces.trans_env import Translate_Env from src.utils.logging import * from src.utils.common_utils import * from src.data.dataset import Dataset, TextLineDataset, ZipDataset from src.data.data_iterator import DataIterator from torch.utils.tensorboard import SummaryWriter import nltk.translate.bleu_score as bleu import argparse import math import torch import numpy as np import torch.multiprocessing as _mp os.system('export PYTHONWARNINGS="ignore:semaphore_tracker:UserWarning" ') parser = argparse.ArgumentParser() parser.add_argument("--n", type=int, default=1, help="parallel attacker process (default as 1)") parser.add_argument("--config_path", type=str, default="./configs/cwmt_zh2en_reinforce.yaml", help="the path to reinforcement config file.") parser.add_argument("--save_to", type=str, default="./reinforces/reinforce_tf_zh2en_log", help="the path for model-saving and log saving.") parser.add_argument("--action_roll_steps", type=int, default=35, help="training rolling steps (default as 35)") parser.add_argument("--max_episode_lengths", type=int, default=200, help="maximum steps for attack (default as 200)") parser.add_argument("--max_episodes", type=int, default=5000000, help="maximum environment episode for learning (default as 500k)") parser.add_argument("--use_gpu", action="store_true", default=False, help="Whether to use GPU.(default as false)") parser.add_argument("--seed", type=int, default=1, help="random seed (default as 1)") def run(): # default actor threads as 1 os.environ["OMP_NUM_THREADS"] = "1" mp = _mp.get_context('spawn') args = parser.parse_args() if not os.path.exists(args.save_to): os.mkdir(args.save_to) # load reinforce configs with open(args.config_path, "r") as f, \ open(os.path.join(args.save_to, "current_reinforce.yaml"), "w") as current_configs: INFO("load reinforce configures") configs = yaml.load(f, Loader=yaml.FullLoader) yaml.dump(configs, current_configs) reinforce_configs = configs["reinforce_configs"] agent_configs = configs["agent_configs"] rephraser_model_configs = agent_configs["rephraser_model_configs"] rephraser_optimizer_configs = agent_configs["rephraser_optimizer_configs"] annunciator_configs = configs["annunciator_configs"] # the Global variable of USE_GPU is mainly used for environments GlobalNames.SEED = reinforce_configs["seed"] GlobalNames.USE_GPU = args.use_gpu torch.manual_seed(GlobalNames.SEED) # build vocabulary and data iterator for env with open(reinforce_configs["victim_configs"], "r") as victim_f: victim_configs = yaml.load(victim_f, Loader=yaml.FullLoader) data_configs = victim_configs["data_configs"] src_vocab = Vocabulary(**data_configs["vocabularies"][0]) trg_vocab = Vocabulary(**data_configs["vocabularies"][1]) data_set = ZipDataset( TextLineDataset(data_path=data_configs["train_data"][0], vocabulary=src_vocab, max_len=data_configs["max_len"][0]), TextLineDataset(data_path=data_configs["train_data"][1], vocabulary=trg_vocab, max_len=data_configs["max_len"][1]), shuffle=reinforce_configs["shuffle"] ) # we build the parallel data sets and iterate inside a thread # collect range of action space: _, _, limit_dist = load_or_extract_near_vocab( config_path=reinforce_configs["victim_configs"], model_path=reinforce_configs["victim_model"], init_perturb_rate=reinforce_configs["init_perturb_rate"], save_to=os.path.join(args.save_to, "near_vocab"), save_to_full=os.path.join(args.save_to, "full_near_vocab"), top_reserve=12, emit_as_id=True, use_max_dist=True) # build global SACAgent for the final policy (on cpu) global_agent = rephraser.SACAgent( device="cpu", d_word_vec=victim_configs["model_configs"]["d_word_vec"], d_model=rephraser_model_configs["d_model"], limit_dist=limit_dist, dropout=rephraser_model_configs["dropout"], learnable_temperature=rephraser_model_configs["learnable_temperature"], init_temperature=rephraser_model_configs["init_temperature"], rephraser_optimizer_configs=rephraser_optimizer_configs, save_to=args.save_to, num_kept_checkpoints=reinforce_configs["num_kept_checkpoints"] ) # load global ckp (only for the AC parameters) if needed global_step = global_agent.load_model() print("global_step:", global_step) if global_step != 0: INFO("restarting at step %d"%global_step) else: # save the initial model global_agent.save_model(global_step) global_summary_writer = SummaryWriter( log_dir=os.path.join(args.save_to, "global_summary")) global_replay_buffer = SharedReplayBuffer( max_sen_len=data_configs["max_len"][0], state_dim=victim_configs["model_configs"]["d_word_vec"], action_dim=victim_configs["model_configs"]["d_word_vec"], capacity=reinforce_configs["replay_buffer_capacity"]) # test_for_throughput(global_replay_buffer) # make global objects shared memory global_agent.share_memory() global_replay_buffer.share_memory() # collect available devices and distribute env on the available gpu if args.use_gpu: device = "cuda" devices = [] for i in range(torch.cuda.device_count()): devices += ["cuda:%d" % i] print("available gpus:", devices) else: device = "cpu" devices = [device] # initialize global parameters for the current training trial global_step_lock = mp.Lock() global_step_counter = mp.Value("i", global_step) # "i is the type code for c_int" # train_thread(0, device, args, # reinforce_configs, annunciator_configs, # src_vocab, trg_vocab, data_set, # global_agent, global_replay_buffer, # global_step_counter, global_step_lock, # agent_configs) # valid_thread(device, args, # reinforce_configs, annunciator_configs, # src_vocab, trg_vocab, data_set, # global_agent, global_replay_buffer, # global_step_counter, global_step_lock, # agent_configs) # build multi thread for learning and validation process = [] for rank in range(args.n): print("initialize training thread on cuda:%d" % (rank+1)) p=mp.Process( target=train_thread, args=(rank, "cuda:%d"%(rank+1), args, reinforce_configs, annunciator_configs, src_vocab, trg_vocab, data_set, global_agent, global_replay_buffer, global_step_counter, global_step_lock, agent_configs) ) p.start() process.append(p) # run the dev thread for initiation print("initialize dev thread on cuda:0") p = mp.Process( target=valid_thread, args=("cuda:0", args, reinforce_configs, annunciator_configs, src_vocab, trg_vocab, data_set, global_agent, global_replay_buffer, global_step_counter, global_step_lock, agent_configs) ) p.start() process.append(p) for p in process: p.join() def train_thread(rank, device, args, reinforce_configs, annunciator_configs, src_vocab, trg_vocab, data_set, global_SACAgent, global_replay_buffer, global_step_counter, global_step_lock, local_agent_configs): """ build training thread for a local SACAgent on gpu device provide parameter soft-updates for the global_models. """ GlobalNames.USE_GPU = args.use_gpu GlobalNames.SEED = reinforce_configs["seed"] torch.manual_seed(GlobalNames.SEED + rank) # build local SACAgent rephraser_model_configs = local_agent_configs["rephraser_model_configs"] rephraser_optimizer_configs = local_agent_configs["rephraser_optimizer_configs"] with open(reinforce_configs["victim_configs"], "r") as victim_f: victim_configs = yaml.load(victim_f, Loader=yaml.FullLoader) _, _, limit_dist = load_or_extract_near_vocab( config_path=reinforce_configs["victim_configs"], model_path=reinforce_configs["victim_model"], init_perturb_rate=reinforce_configs["init_perturb_rate"], save_to=os.path.join(args.save_to, "near_vocab"), save_to_full=os.path.join(args.save_to, "full_near_vocab"), top_reserve=12, emit_as_id=True) local_agent = rephraser.SACAgent( device=device, d_word_vec=victim_configs["model_configs"]["d_word_vec"], d_model=rephraser_model_configs["d_model"], limit_dist=limit_dist, dropout=rephraser_model_configs["dropout"], learnable_temperature=rephraser_model_configs["learnable_temperature"], init_temperature=rephraser_model_configs["init_temperature"], rephraser_optimizer_configs=rephraser_optimizer_configs, rank=rank, save_to=os.path.join(args.save_to), num_kept_checkpoints=reinforce_configs["num_kept_checkpoints"] ) local_summary_writer = SummaryWriter( log_dir=os.path.join(args.save_to, "train_env%d" % rank)) # # this is the secondary buffer # local_replay_buffer = ReplayBuffer( # max_sen_len=global_replay_buffer.max_sen_len, # state_dim=victim_configs["model_configs"]["d_word_vec"], # action_dim=victim_configs["model_configs"]["d_word_vec"], # capacity=max(reinforce_configs["replay_buffer_capacity"]/20, 10000) # ) # build environment (include annunciator update settings) reinforce_iterator = DataIterator( dataset=data_set, batch_size=reinforce_configs["batch_size"], use_bucket=True, buffer_size=reinforce_configs["buffer_size"], numbering=True) local_data_iterator = reinforce_iterator.build_generator() local_env = Translate_Env( reinforce_configs=reinforce_configs, annunciator_configs=annunciator_configs, src_vocab=src_vocab, trg_vocab=trg_vocab, data_iterator=local_data_iterator, save_to=args.save_to, device=device) episode_count = 0 # a batch of sentences as an episode & learning episodes local_step = global_step_counter.value # initiate local agent update steps patience_t = annunciator_configs["patience"] trust_acc = 0.5 while True: # infinite loop of data set iterator (epoch) # we will continue with a new iterator with refreshed environments # whenever the last iterator breaks with "StopIteration" rephraser_iterator = reinforce_iterator.build_generator() local_env.reset_data_iter(rephraser_iterator) try: while True: # loop training episodes # the environment will be initiated by an actor as self learning local_env.reset() states, _, _, _ = local_env.get_state() # x_emb = local_env.reset(local_agent.actor) # x_emb = torch.from_numpy(x_emb) # if device != "cpu": # x_emb = x_emb.to(device) annunciator_base_step = local_step episode_length = 0 # the rollout steps episode_rewards = np.array([0.] * states.shape[0]) done = True # whether the episode is finished & should reset episode with new batch while episode_length <= args.max_episode_lengths: # loop TD learning rollouts # check for the environment updates using current **global** agent if episode_count % local_agent_configs["rephraser_update_steps"] == 0: """ stop criterion: until mse reaches the bound within patience. otherwise the training thread stops """ try: # update environment INFO("Update environment") # sync from the global agent to avoid unnecessary locking. local_agent.sync_from(global_SACAgent) annunciator_base_step, trust_acc = local_env.update_annunciator( local_agent, annunciator_base_step, min_update_steps=annunciator_configs["valid_freq"], max_update_steps=annunciator_configs["annunciator_update_steps"], accuracy_bound=annunciator_configs["acc_bound"], overall_update_weight=1-trust_acc, summary_writer=local_summary_writer) # global_SACAgent.to("cpu").train() # switch back to training mode local_agent = local_agent.to(device).train() except StopIteration: INFO("finish one training epoch, reset data_iterator") break annunciator_base_step += 1 # a flag to label the scorer updates if trust_acc < annunciator_configs["d_converged_bound"]: # GAN target reached, scorer has reached its limit. patience_t -= 1 INFO("scorer reached GAN convergence bound: %d times" % patience_t) else: # reset patience if scorer is refreshed patience_t = annunciator_configs["patience"] if patience_t == 0 or episode_count > args.max_episodes: WARN("maximum patience & training step reached. Thread stop") break local_agent = local_agent.to(device).train() # switch the agent to training mode if done: # can't create SARSA with only one step, start a new episode INFO("sync from global agent") local_agent.sync_from(global_SACAgent) local_agent = local_agent.to(device).train() local_env.reset() done = False states, masks, rephrase_positions, _ = local_env.get_state() roll_out_rewards =
np.array([0] * states.shape[0])
numpy.array
import ast import copy import os import base64 import time import cloudpickle as pickle import functools import operator import six import collections import weakref from future.utils import with_metaclass import numpy as np import pandas as pd import tabulate import pyarrow as pa import vaex.hash import vaex.serialize from vaex.utils import _ensure_strings_from_expressions, _ensure_string_from_expression from vaex.column import ColumnString, _to_string_sequence from .hash import counter_type_from_dtype from vaex.datatype import DataType from vaex.docstrings import docsubst from . import expresso try: from StringIO import StringIO except ImportError: from io import BytesIO as StringIO try: collectionsAbc = collections.abc except AttributeError: collectionsAbc = collections # TODO: repeated from dataframe.py default_shape = 128 PRINT_MAX_COUNT = 10 expression_namespace = {} expression_namespace['nan'] = np.nan expression_namespace = {} expression_namespace['nan'] = np.nan _binary_ops = [ dict(code="+", name='add', op=operator.add), dict(code="in", name='contains', op=operator.contains), dict(code="/", name='truediv', op=operator.truediv), dict(code="//", name='floordiv', op=operator.floordiv), dict(code="&", name='and', op=operator.and_), dict(code="^", name='xor', op=operator.xor), dict(code="|", name='or', op=operator.or_), dict(code="**", name='pow', op=operator.pow), dict(code="is", name='is', op=operator.is_), dict(code="is not", name='is_not', op=operator.is_not), dict(code="<<", name='lshift', op=operator.lshift), dict(code="%", name='mod', op=operator.mod), dict(code="*", name='mul', op=operator.mul), dict(code=">>", name='rshift', op=operator.rshift), dict(code="-", name='sub', op=operator.sub), dict(code="<", name='lt', op=operator.lt), dict(code="<=", name='le', op=operator.le), dict(code="==", name='eq', op=operator.eq), dict(code="!=", name='ne', op=operator.ne), dict(code=">=", name='ge', op=operator.ge), dict(code=">", name='gt', op=operator.gt), ] if hasattr(operator, 'div'): _binary_ops.append(dict(code="/", name='div', op=operator.div)) if hasattr(operator, 'matmul'): _binary_ops.append(dict(code="@", name='matmul', op=operator.matmul)) reversable = 'add sub mul matmul truediv floordiv mod divmod pow lshift rshift and xor or'.split() _unary_ops = [ dict(code="~", name='invert', op=operator.invert), dict(code="-", name='neg', op=operator.neg), dict(code="+", name='pos', op=operator.pos), ] class Meta(type): def __new__(upperattr_metaclass, future_class_name, future_class_parents, attrs): # attrs = {} for op in _binary_ops: def wrap(op=op): def f(a, b): self = a # print(op, a, b) if isinstance(b, str) and self.dtype.is_datetime: b = np.datetime64(b) if self.df.is_category(self.expression) and self.df._future_behaviour and not isinstance(b, Expression): labels = self.df.category_labels(self.expression) if b not in labels: raise ValueError(f'Value {b} not present in {labels}') b = labels.index(b) a = self.index_values() try: stringy = isinstance(b, str) or b.is_string() except: # this can happen when expression is a literal, like '1' (used in propagate_unc) # which causes the dtype to fail stringy = False if stringy: if isinstance(b, str): b = repr(b) if op['code'] == '==': expression = 'str_equals({0}, {1})'.format(a.expression, b) elif op['code'] == '!=': expression = 'str_notequals({0}, {1})'.format(a.expression, b) elif op['code'] == '+': expression = 'str_cat({0}, {1})'.format(a.expression, b) else: raise ValueError('operand %r not supported for string comparison' % op['code']) return Expression(self.ds, expression=expression) else: if isinstance(b, Expression): assert b.ds == a.ds b = b.expression elif isinstance(b, (np.timedelta64)): unit, step =
np.datetime_data(b)
numpy.datetime_data
import os import re import time from dataclasses import dataclass, field from timeit import repeat from typing import Optional,Dict, Union, Any, Tuple, List import fitlog import nltk import numpy as np import datasets import torch import torch.nn as nn import torch.distributed as dist from torch.utils.data import DataLoader, Dataset from tqdm import tqdm import transformers from transformers import ( DataCollatorForLanguageModeling, DataCollatorForSeq2Seq, AutoConfig, AutoTokenizer, HfArgumentParser, TrainingArguments, Seq2SeqTrainingArguments, set_seed, ) from transformers import Trainer, Seq2SeqTrainer from transformers import TrainingArguments from transformers import trainer_utils, training_args from transformers.trainer_pt_utils import nested_detach from transformers import BertForMaskedLM from transformers.file_utils import PaddingStrategy from transformers.modeling_utils import PreTrainedModel from transformers.tokenization_utils_base import BatchEncoding, PreTrainedTokenizerBase from data.DatasetLoadingHelper import ( load_ctc2021, load_sighan, load_sighan_enchanted, load_sighan_gector, load_sighan_mask, load_sighan_expand, load_lattice_sighan, load_abs_pos_sighan, load_abs_pos_sighan_lang8, load_abs_pos_sighan_plus, load_abs_pos_and_spe_token_sighan, load_sighan13_test, load_sighan14_test, load_sighan15_test, load_sighan_chinesebert, load_sighan_chinesebert_mask, load_sighan_chinesebert_holy, load_sighan_holy, ) def ddp_exec(command): """ """ if os.environ["LOCAL_RANK"] != '0': return else: exec(command) def ddp_print(*something): """ out of time """ if os.environ["LOCAL_RANK"] != '0': return else: for thing in something: print(thing) return def fitlogging(training_args): for attr in dir(training_args): if not re.match("__.*__", attr) and isinstance(getattr(training_args, attr), (int, str, bool, float)): fitlog.add_hyper(value=getattr(training_args, attr), name=attr) return @dataclass class MySeq2SeqTrainingArguments(Seq2SeqTrainingArguments): model_name: str=field(default="MaskedLM", metadata={"help":"which bert model "}) dataset: str = field(default="sighan", metadata={"help":"dataset"}) eval_dataset:str = field(default="sighan", metadata={"help":"dataset for eval"}) max_length: int = field(default=128, metadata={"help": "max length"}) num_beams: int = field(default=4, metadata={"help": "num beams"}) use_extra_dataset:bool = field(default=False, metadata={"help":"Only work for ctc2021, using larger v2"}) fix_cls:bool = field(default=False, metadata={"help":"whether or not fix the cls layer of BertMaskedLM"}) cl_weight:float = field(default=0.2, metadata={"help": "contrastive learning loss weight"}) repeat_weight:float = field(default=0.2, metadata={"help": "distill repeat loss"}) copy_weight:float = field(default=0.5, metadata={"help":"copy weight"}) num_gpus:int = field(default=4, metadata={"help":"num_gpus"}) pretrained_name:str = field(default="roberta", metadata={"help":"pretrained_name"}) log_path:str = field(default="Recent_train.log", metadata={"help":"log path or name"}) class mydataset(Dataset): def __init__(self, data): self.data = data def __getitem__(self, index): return self.data[index] def __len__(self): return len(self.data) def argument_init(trainingarguments=Seq2SeqTrainingArguments): """ """ parser = HfArgumentParser(trainingarguments) training_args = parser.parse_args_into_dataclasses()[0] return training_args def get_model(model_name="MaskedLM", pretrained_model_name_or_path="hfl/chinese-roberta-wwm-ext", training_args=None): """ Just get model MLP: bert->mlp->loss Dot: bert->dot product with embeddings->loss MaskedLM_v2: lexcions ( flat CL: Model with Contrastive Learning Loss MaskedLM: bert->lmhead->loss """ model = None print("Hint: Loading Model " + "*"*5 + model_name + "*"*5) if model_name == "MLP": from models.bert.modeling_bert_v3 import BertModelForCSC as ProtoModel elif model_name == "Dot": from models.bert.modeling_bert_v3 import BetterBertModelForCSC as ProtoModel elif model_name == "MaskedLM_v2": from models.bert.modeling_bert_v3 import BertForMaskedLM_v2 as ProtoModel elif model_name == "CL": from models.bert.modeling_bert_v4 import BertForMaskedLM_CL as ProtoModel elif model_name == "CPT_NLG": from models.bart.modeling_bart_v2 import BartForConditionalGeneration as ProtoModel pretrained_model_name_or_path="fnlp/cpt-base" # '/remote-home/xtzhang/CTC/CTC2021/SpecialEdition/models/bart/bart-zh/arch12-2-new-iter8w' #pretrained_model_name_or_path = '/remote-home/xtzhang/CTC/CTC2021/SpecialEdition/models/bart/bart-zh/arch12-2-new-iter8w' elif model_name == "CPT_NLU": from models.bart.modeling_bart_v2 import BartForMaskedLM as ProtoModel pretrained_model_name_or_path="fnlp/cpt-large" # '/remote-home/xtzhang/CTC/CTC2021/SpecialEdition/models/bart/bart-zh/arch12-2-new-iter8w' elif model_name == "BART-base": from models.bart.modeling_bart_v2 import BartForConditionalGeneration as ProtoModel pretrained_model_name_or_path="fnlp/bart-base-chinese"# '/remote-home/xtzhang/CTC/CTC2021/SpecialEdition/models/bart/bart-zh/arch12-2-new-iter8w' elif model_name == "BART-large": from models.bart.modeling_bart_v2 import BartForConditionalGeneration as ProtoModel pretrained_model_name_or_path="fnlp/bart-large-chinese"# '/remote-home/xtzhang/CTC/CTC2021/SpecialEdition/models/bart/bart-zh/arch12-2-new-iter8w' elif model_name == "Proto": from models.bert.modeling_bert_v4 import ProtoModel as ProtoModel elif model_name == "Gector": from models.bert.modeling_bert_v3 import GectorModel as ProtoModel elif model_name == "GPT": from transformers import GPT2LMHeadModel as ProtoModel elif model_name is None or model_name == "MaskedLM": if training_args.pretrained_name == "chinesebert": print("Hint: Load ChineseBert MaskedLM") from chinesebert import ChineseBertConfig, ChineseBertForMaskedLM config = ChineseBertConfig.from_pretrained(pretrained_model_name_or_path) model = ChineseBertForMaskedLM.from_pretrained(pretrained_model_name_or_path, config=config) return model elif training_args.pretrained_name == "roformer": from roformer import RoFormerForMaskedLM model = RoFormerForMaskedLM.from_pretrained( pretrained_model_name_or_path ) return model print("Hint: Load Default BertForMaskedLM.") from transformers import BertForMaskedLM as ProtoModel else: print("Hint: No such " + model_name) exit(0) if model_name != "Proto": model = ProtoModel.from_pretrained(pretrained_model_name_or_path=pretrained_model_name_or_path) else: model = ProtoModel( pretrained_model_name_or_path=pretrained_model_name_or_path, cl_weight=training_args.cl_weight, repeat_weight=training_args.repeat_weight, copy_weight=training_args.copy_weight ) if not model: print("Warning: wrong model name ! Check the core.py ") exit() return model def get_dataset(training_args): """ preprocess wrapped in load_ctc2021 return : mydate torch.LongTensor Good day! """ print("Loading Dataset !") ddp_exec("os.system('date')") if training_args.dataset == "ctc2021": train_data, eval_data, test_data = load_ctc2021(training_args.use_extra_dataset) elif training_args.dataset == "sighan": train_data, eval_data, test_data = load_sighan(path_head="") else: print("Error: No such dataset ") print(training_args.dataset) exit(0) train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def get_dataset_plus(training_args): """ preprocess wrapped in load_ctc2021 return : mydate torch.LongTensor Good day! """ print("Loading Dataset !") ddp_exec("os.system('date')") if training_args.dataset == "ctc2021": train_data, eval_data, test_data = load_ctc2021(extra=training_args.use_extra_dataset) elif "sighan" in training_args.dataset: #train_data, eval_data, test_data = load_sighan(path_head) if training_args.model_name == "Gector": return _get_Gector_dataset() if training_args.pretrained_name == "chinesebert": if "mask" in training_args.dataset: return _get_chinesebert_mask_dataset() elif "holy" in training_args.dataset: return _get_chinesebert_holy_dataset() else: return _get_chinesebert_dataset() elif "mask" in training_args.dataset: return _get_mask_dataset() elif "holy" in training_args.dataset: return _get_holy_dataset() elif "enchanted" in training_args.dataset: return _get_enchanted_dataset() elif "raw" in training_args.dataset: return _get_raw_dataset() elif 'ReaLiSe' in training_args.dataset: return _get_ReaLiSe_dataset() elif 'expand' in training_args.dataset: return _get_expand_dataset() else: print("Unclear data type, load default raw sighan") return _get_raw_dataset() else: print("Error: No such dataset ") print(training_args.dataset) exit(0) train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_enchanted_dataset(which="15"): """ Gector for sighan """ print("Loading Enchanted Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_enchanted(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_raw_dataset(which="15"): """ Gector for sighan """ print("Loading Raw Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_holy_dataset(which="15"): """ Gector for sighan """ print("Loading Holy Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_holy(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_mask_dataset(which="15"): """ Gector for sighan """ print("Loading MASK Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_mask(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_Gector_dataset(which="15"): """ Gector for sighan """ print("Loading GECTOR Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_gector(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_chinesebert_holy_dataset(which="15"): """ ChineseBert for sighan Mainly diff in no max_length and 'pinyin_idx' must be 8 * len('input_ids') """ print("Loading ChineseBert Holy Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_chinesebert_holy(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_chinesebert_dataset(which="15"): """ ChineseBert for sighan Mainly diff in no max_length and 'pinyin_idx' must be 8 * len('input_ids') """ print("Loading ChineseBert Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_chinesebert(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_chinesebert_mask_dataset(which="15"): """ ChineseBert for sighan Mainly diff in no max_length and 'pinyin_idx' must be 8 * len('input_ids') """ print("Loading Masked ChineseBert Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_chinesebert_mask(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_ReaLiSe_dataset(which="15"): """ For its """ print("Loading ReaLiSe Dataset !") print("Hint: The Data You loading now is the preprocessed sighan from ReaLise, ") ddp_exec("os.system('date')") path = "../SE_tmp_back/milestone/ReaLiSe/data/" import pickle train_dataset = pickle.load(open(path + "trainall.times2.pkl", "rb")) eval_dataset = pickle.load(open(path + "test.sighan" + which + ".pkl", "rb")) test_dataset = pickle.load(open(path + "test.sighan" + which + ".pkl", "rb")) print("Hint: Using **SIGHAN" + which + "** for eval & test !") def trans2mydataset(features): new = [] for feature in features: tmp = {} tmp["input_ids"] = feature["src_idx"][:128] tmp["labels"] = feature["tgt_idx"][:128] tmp["attention_mask"] = ([1] * len(tmp["input_ids"]))[:128]#feature["lengths"])[:128] new.append(tmp) return mydataset(new) print("Loaded successfully !") ddp_exec("os.system('date')") print("over") return trans2mydataset(train_dataset), trans2mydataset(eval_dataset), trans2mydataset(test_dataset) def _get_expand_dataset(which="15"): """ NLPcc and HSK Expand for sighan """ print("Loading Expand Dataset !") ddp_exec("os.system('date')") train_data, eval_data, test_data = load_sighan_expand(path_head="") train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loaded successfully !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_sighan_test(which, path_head=""): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if which == "13": test_data = load_sighan13_test(path_head) elif which == "14": test_data = load_sighan14_test(path_head) elif which == "15": test_data = load_sighan15_test(path_head) else: print("Error: No such dataset ") print(which) exit(0) test_dataset = mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return test_dataset def _get_lattice_dataset(dataset="sighan", path_head="."): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if dataset == "sighan": datasets, vocabs, embeddings = load_lattice_sighan(path_head=path_head) else: exit() datasets["train"], datasets["valid"], datasets["test"] = mydataset(datasets["train"]), mydataset(datasets["valid"]), mydataset(datasets["test"]) return datasets, vocabs, embeddings def _get_magic_plus_dataset(dataset="sighan", path_head=""): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if dataset == "sighan": train_data, eval_data, test_data = load_abs_pos_sighan_plus(path_head=path_head) else: exit() train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_magic_dataset(dataset="sighan", path_head=""): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if dataset == "sighan": train_data, eval_data, test_data = load_abs_pos_sighan(path_head=path_head) else: exit() train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_magic_lang8_dataset(dataset="sighan", path_head=""): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if dataset == "sighan": train_data, eval_data, test_data = load_abs_pos_sighan_lang8(path_head=path_head) else: exit() train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_magic_expand_dataset(dataset="sighan", path_head=""): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if dataset == "sighan": train_data, eval_data, test_data = load_abs_pos_sighan_plus(path_head=path_head) else: exit() train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset def _get_super_magic_dataset(dataset="sighan", path_head=""): """ """ print("Loading Dataset !") ddp_exec("os.system('date')") if dataset == "sighan": train_data, eval_data, test_data, tokenizer = load_abs_pos_and_spe_token_sighan(path_head=path_head) else: exit() train_dataset, eval_dataset, test_dataset = mydataset(train_data), mydataset(eval_data), mydataset(test_data) print("Loading Succeed !") ddp_exec("os.system('date')") return train_dataset, eval_dataset, test_dataset, tokenizer def get_metrics(training_args): if "sighan" in training_args.dataset: print("Hint: Using aligned sighan F1_score as metric") return _get_metrics(training_args) if "ctc2021" in training_args.dataset : print("Hint: Using Seq2Seq ctc2021 score as metric") return _get_seq2seq_metrics(training_args) else: print("Error when getting metrics.") exit(0) def _get_metrics(training_args): """ #https://huggingface.co/metrics #accuracy,bertscore, bleu, bleurt, coval, gleu, glue, meteor, #rouge, sacrebleu, seqeval, squad, squad_v2, xnli metric = load_metric() """ import numpy as np from datasets import load_metric def compute_metrics(eval_preds): """ reference: https://github.com/ACL2020SpellGCN/SpellGCN/blob/master/run_spellgcn.py """ Achilles = time.time() sources, preds, labels = eval_preds# (num, length) np.array tp, fp, fn = 0, 0, 0 sent_p, sent_n = 0, 0 for i in range(len(sources)): #print(sources[i]) #print(preds[i]) #print(labels[i]) source, pred, label = sources[i], preds[i], labels[i] source, label = source[ source != -100], label[label != -100] source, label = source[source != 0], label[label != 0]#pad idx for input_ids #we guess pretrain Masked Language Model bert lack the surpvised sighan for 101 & 102 ( [CLS] & [SEP] ) , so we just ignore source, pred, label = np.where(source == 102, 101, source),
np.where(pred == 102, 101, pred)
numpy.where
# -*- codeing: utf-8 -*- import numpy as np from scipy.stats import norm import matplotlib.pyplot as plt def myrand_gmm(n, mu, sigma, fill=0.0): x = np.zeros(n) g = np.random.randn(n) u = np.random.rand(n) #mu = np.array([1.0, 2.0, 3.0]) #sigma = np.array([0.1, 0.3, 0.5]) flag = (0 <= u) & (u < 1/2) # この&は論理積(ビット演算) x = (mu[0] + sigma[0]*g)*flag flag = (1/2 <= u) & (u < 1) x += (mu[1] + sigma[1]*g)*flag #flag = (2/3 <= u) & (u <= 1) #x += (mu[2] + sigma[2]*g)*flag return x def myrand(n, fill=0.0): # n は生成するデータの個数 x=
np.zeros(n)
numpy.zeros
import numpy as np import matplotlib.pyplot as plt import pandas as pd import math import cmath import seaborn import scipy import functools import time v=1 #intracell hopping in time period 1 w=1 #intercell hopping in time period 2 aalpha=0.25 #phase index 1 bbeta=1.5 #phase index 2 t1=(np.pi*(aalpha+bbeta))/(2*v) #time period 1 t2=(np.pi*(bbeta-aalpha))/(2*w) #time period 2 print(t1,t2) T=t1+t2 #total time period V=v*t1 W=w*t1 # V=np.pi-0.2 # W=np.linspace(0,np.pi,50) # length=len(W) sig0 = np.matrix([[1,0],[0,1]]) sig1 = np.matrix([[0,1],[1,0]]) sig2 = np.matrix([[0,-1j],[1j,0]]) sig3 = np.matrix([[1,0],[0,-1]]) def nU(k): nU0 = np.cos(W/2)*np.cos(V/2)-np.sin(W/2)*np.sin(V/2)*np.cos(k) nU1 = -1j*(np.cos(W/2)*np.sin(V/2)+np.sin(W/2)*np.cos(V/2)*np.cos(k)) nU2 = -1j*(np.sin(W/2)*np.cos(V/2)*np.sin(k)) nU3 = 1j*(np.sin(W/2)*np.sin(V/2)*np.sin(k)) return np.dot(nU0,sig0)+np.dot(nU1,sig1)+np.dot(nU2,sig2)+np.dot(nU3,sig3) # def aU(k): # t0 = np.cos(V)*np.cos(W)-np.sin(V)*np.sin(W)*np.cos(k) # t1 = -np.sin(V)*np.cos(W)-np.cos(V)*np.sin(W)*np.cos(k) # t2 = -np.sin(W)*np.sin(k) # aU0 = np.sqrt((1+t0)/2) # aU1 = -1j*np.sqrt(1/(2*(1+t0)))*t1 # aU2 = -1j*np.sqrt(1/(2*(1+t0)))*t2 # return np.dot(aU0,sig0)+np.dot(aU1,sig1)+np.dot(aU2,sig2) def aU(k): t0 = np.cos(V)*np.cos(W)-np.sin(V)*np.sin(W)*np.cos(k) t1 = -np.sin(V)*np.cos(W)-np.cos(V)*np.sin(W)*np.cos(k) t2 = -np.sin(W)*np.sin(k) aU0 = -1j*np.sqrt((1-t0)/2) aU1 = np.sqrt(1/(2*(1-t0)))*t1 aU2 = np.sqrt(1/(2*(1+t0)))*t2 return
np.dot(aU0,sig0)
numpy.dot
from __future__ import division, print_function import numpy as np import os from scipy.stats import multivariate_normal import sys import struct try: import sounddevice as sd have_sounddevice = True except: have_sounddevice = False from .stft import stft from .acoustics import mfcc class CircularGaussianEmission: def __init__(self, nstates, odim=1, examples=None): ''' Initialize the Gaussian emission object ''' # The emissions parameters self.K = nstates if examples is None: # Initialize to random components self.O = odim self.mu = np.random.normal(size=(self.K, self.O)) self.Sigma = np.ones((self.K, self.O))*10 else: # Initialize all components to the same mean and variance of the data self.O = examples[0].shape[1] X = np.concatenate(examples, axis=0) self.mu = np.array([np.mean(X, axis=0)]*self.K) centered = X - self.mu[0] self.Sigma = np.array([np.mean(centered**2, axis=0)]*self.K) def update_parameters(self, examples, gamma): g = np.concatenate(gamma, axis=0) X = np.concatenate(examples, axis=0) Z = g.sum(axis=0) for k in range(self.K): self.mu[k] = np.sum(X.T * g[:,k], axis=1)/Z[k] centered = (X - self.mu[k])**2 self.Sigma[k] = np.sum(centered.T * g[:,k], axis=1)/Z[k] def get_pdfs(self): ''' Return the pdf of all the emission probabilities ''' return [multivariate_normal(self.mu[k], np.diag(self.Sigma[k])) for k in range(self.K)] def prob_x_given_state(self, examples): ''' Recompute the probability of the observation given the state of the latent variables ''' distribution = [multivariate_normal(self.mu[k], np.diag(self.Sigma[k])) for k in range(self.K)] p_x_given_z = [] for X in examples: p_x_given_z.append(np.zeros((X.shape[0], self.K))) for k in range(self.K): p_x_given_z[-1][:,k] = distribution[k].pdf(X) return p_x_given_z class GaussianEmission: def __init__(self, nstates, odim=1, examples=None): ''' Initialize the Gaussian emission object ''' # The emissions parameters self.K = nstates if examples is None: # initialize to random mean unit variance self.O = odim self.mu = np.random.normal(size=(self.K, self.O)) self.Sigma = np.random.normal(size=(self.K, self.O, self.O)) for k in range(self.K): self.Sigma[k] = np.dot(self.Sigma[k].T, self.Sigma[k]) + np.eye(self.O) else: # Initialize using mean and covariance of dataset self.O = examples[0].shape[1] X = np.concatenate(examples, axis=0) self.mu = np.array([np.mean(X, axis=0)]*self.K) centered = X - self.mu[0] self.Sigma = np.array([np.diag(np.mean(centered**2, axis=0))]*self.K) def update_parameters(self, examples, gamma): g = np.concatenate(gamma, axis=0) X = np.concatenate(examples, axis=0) Z = g.sum(axis=0) for k in range(self.K): self.mu[k] = np.sum(X.T * g[:,k], axis=1)/Z[k] centered = X - self.mu[k] self.Sigma[k] = np.dot(centered.T*g[:,k], centered/Z[k]) def get_pdfs(self): ''' Return the pdf of all the emission probabilities ''' return [multivariate_normal(self.mu[k], self.Sigma[k]) for k in range(self.K)] def prob_x_given_state(self, examples): ''' Recompute the probability of the observation given the state of the latent variables ''' distribution = [ multivariate_normal(self.mu[k], self.Sigma[k]) for k in range(self.K)] p_x_given_z = [] for X in examples: p_x_given_z.append(np.zeros((X.shape[0], self.K))) for k in range(self.K): p_x_given_z[-1][:,k] = distribution[k].pdf(X) return p_x_given_z class HMM: ''' Hidden Markov Model with Gaussian emissions Attributes ---------- K : int Number of states in the model O : int Number of dimensions of the Gaussian emission distribution A : ndarray KxK transition matrix of the Markov chain pi : ndarray K dim vector of the initial probabilities of the Markov chain emission : (GaussianEmission or CircularGaussianEmission) An instance of emission_class model : string, optional The model used for the chain, can be 'full' or 'left-right' leftright_jum_max : int, optional The number of non-zero upper diagonals in a 'left-right' model ''' def __init__(self, nstates, emission, model='full', leftright_jump_max=3): ''' Initialize a Hidden Markov Model with nstates and Gaussian observations nstates: int The number of states in the Markov chain emission : emission object, optional The emission object (CircularGaussianEmission or GaussianEmission) model : string, optional The model used for the chain, can be 'full' or 'left-right' leftright_jump_max : int The maximum jump length in the Left-Right chain model ''' self.K = nstates # number of states self.emission = emission # The observation parameters # The Markov chain parameters self.model = model self.leftright_jump_max = leftright_jump_max self.A = np.zeros((self.K, self.K)) # the state transition matrix self.pi = np.zeros((self.K)) # the initial distribution # Initialize the HMM parameters to some random values if self.model == 'full': self.A = np.random.uniform(size=(self.K,self.K)) self.pi = np.random.uniform(size=(self.K)) elif self.model == 'left-right': self.A = np.triu(np.tril(np.random.uniform(size=(self.K,self.K)), k=self.leftright_jump_max)) self.A += np.diag(np.sum(self.A[:,:], axis=1)*2) self.pi = np.zeros(self.K) self.pi[0] = 1 # Normalize the distributions for row in self.A: row /= row.sum() self.pi /= self.pi.sum() def fit(self, examples, tol=0.1, max_iter=10, verbose=False): ''' Training of the HMM using the EM algorithm Parameters ---------- examples : (list) A list of examples used to train the model. Each example is an array of feature vectors, each row is a feature vector, the sequence runs on axis 0 tol : (float) The training stops when the progress between to steps is less than this number (default 0.1) max_iter : (int) Alternatively the algorithm stops when a maximum number of iterations is reached (default 10) verbose : bool, optional When True, prints extra information about convergence ''' # Make sure to normalize parameters that should be... for row in self.A: row[:] /= row.sum() self.pi[:] /= self.pi.sum() # Run the EM algorithm loglikelihood_old = -np.inf # log-likelihood n_iter = 0 while True: # Initialize new parameters value for accumulation loglikelihood = 0. # We need to run the forward/backward algorithm for each example and # and combine the result to form the new estimates gamma = [] xhi = [] p_x_given_z = self.emission.prob_x_given_state(examples) # Expectation-step #----------------- for X,pxz in zip(examples, p_x_given_z): # check dimension of emission if X.shape[1] != self.emission.O: raise ValueError("Error: Emission vectors of all examples should have the same size") # First compute alpha and beta using forward/backward algo alpha, c = self.forward(X, pxz) beta = self.backward(X, pxz, c) # Recompute the likelihood of the sequence # (Bishop 13.63) loglikelihood += np.sum(np.log(c)) # Now the more interesting quantities # gamma(z_n) = p(z_n | X, theta_old) # xhi(z_{n-1}, z_n) = p(z_{n-1}, z_n | X, theta_old) gamma.append(alpha * beta) xhi.append(np.zeros((X.shape[0]-1, self.K, self.K))) for n in range(1,X.shape[0]): xhi[-1][n-1] = np.outer(alpha[n-1], beta[n]*pxz[n])*self.A/c[n] # Maximization-step #------------------ # update the Markov Chain parameters self.update_parameters(examples, gamma, xhi) # Update the emission distribution parameters self.emission.update_parameters(examples, gamma) # Now check for convergence #-------------------------- n_iter += 1 epsilon = loglikelihood - loglikelihood_old if verbose: print('Iterations:', n_iter, 'epsilon:', epsilon, 'LL_new:', loglikelihood) # some checks here if epsilon < tol: if verbose: print('Tolerance reached: stopping.') break if n_iter == max_iter: if verbose: print('Maximum iterations reached: stopping.') break loglikelihood_old = loglikelihood # return the number of iterations performed return n_iter def update_parameters(self, examples, gamma, xhi): ''' Update the parameters of the Markov Chain ''' X = np.concatenate(examples, axis=0) x = np.concatenate(xhi, axis=0) self.pi[:] = np.sum([g[0,:] for g in gamma], axis=0) self.A = x.sum(axis=0) # normalize to enforce distribution constraints self.pi /= np.sum(self.pi) for k in range(self.K): den =
np.sum(self.A[k,:])
numpy.sum
#!/usr/bin/env python3 import numpy as np def svmPredict(model, X): #SVMPREDICT returns a vector of predictions using a trained SVM model #(svmTrain). # pred = SVMPREDICT(model, X) returns a vector of predictions using a # trained SVM model (svmTrain). X is a mxn matrix where there each # example is a row. model is a svm model returned from svmTrain. # predictions pred is a m x 1 column of predictions of {0, 1} values. # # check if we are getting a vector. If so, then assume we only need to do predictions # for a single example if X.ndim == 1: X = X[np.newaxis, :] m = X.shape[0] p = np.zeros(m) pred = np.zeros(m) if model['kernelFunction'].__name__ == 'linearKernel': # we can use the weights and bias directly if working with the linear kernel p = np.dot(X, model['w']) + model['b'] elif model['kernelFunction'].__name__ == 'gaussianKernel': # vectorized RBF Kernel # This is equivalent to computing the kernel on every pair of examples X1 = np.sum(X**2, 1) X2 = np.sum(model['X']**2, 1) K = X2 + X1[:, None] - 2 * np.dot(X, model['X'].T) if len(model['args']) > 0: K /= 2*model['args'][0]**2 K =
np.exp(-K)
numpy.exp
def fooofmodel(): import sys import numpy as np from scipy.io import loadmat, savemat from fooof import FOOOFGroup import matplotlib.pyplot as plt data = loadmat('ModelPowSpctraForFOOOF.mat') # Unpack data from dictionary, and squeeze numpy arrays freqs = np.squeeze(data['fx']).astype('float') psds =
np.squeeze(data['avgpwr'])
numpy.squeeze
from operator import itemgetter import math pil_available = True try: from PIL import Image except: pil_available = False import random import numpy as np from dezero import cuda class Dataset: def __getitem__(self, index): raise NotImplementedError def __len__(self): raise NotImplementedError class TupleDataset: """Dataset of tuples from multiple equal-length datasets. """ def __init__(self, *datasets): self._datasets = datasets self._length = len(datasets[0]) def __getitem__(self, index): batches = [dataset[index] for dataset in self._datasets] if isinstance(index, slice): L = len(batches[0]) return [tuple([batch[i] for batch in batches]) for i in range(L)] else: return tuple(batches) def __len__(self): return self._length class DatasetLoader: def __init__(self, dataset, batch_size, shuffle=True, gpu=False): self.dataset = dataset self.batch_size = batch_size self.shuffle = shuffle self.data_size = len(dataset) self.max_iter = math.ceil(self.data_size / batch_size) self.gpu = gpu self.reset() def reset(self): self.iteration = 0 if self.shuffle: random.shuffle(self.dataset) def __iter__(self): return self def _get_batch(self): i = self.iteration % self.max_iter start_idx = i * self.batch_size end_idx = (i + 1) * self.batch_size batch = self.dataset[start_idx:end_idx] return batch def __next__(self): if self.iteration >= self.max_iter: self.reset() raise StopIteration batch = self._get_batch() xp = cuda.cupy if self.gpu else np x = xp.array([example[0] for example in batch]) t = xp.array([example[1] for example in batch]) self.iteration += 1 return x, t def next(self): return self.__next__() def to_cpu(self): self.gpu = False def to_gpu(self): self.gpu = True class SeqDataLoader(DatasetLoader): def __init__(self, dataset, batch_size, gpu=False): super().__init__(dataset=dataset, batch_size=batch_size, shuffle=False, gpu=gpu) def _get_batch(self): jump = self.data_size // self.batch_size offsets = [(i * jump + self.iteration) % self.data_size for i in range(self.batch_size)] batch = itemgetter(*offsets)(self.dataset) return batch # ============================================================================= # Preprocess function # ============================================================================= def preprocess_vgg(image, size=(224, 224), dtype=np.float32): """VGGで使用する画像に対して前処理を施しndarrayへと変換する VGGのpre-trainedモデルでは、下記の前処理を行う - 224x224サイズへのリサイズ - BGR順にデータを - すべての画素から固定値を差し引く - 軸の順番を入れ替える Parameters ---------- image : PIL.Image or numpy.ndarray 入力画像がndarrayの場合は、その形状は(height, width)、 (hegith, width, channels) もしくは (channels, hegith, width)のいずれか (そのチャンネルの並びはRGB) size : None or (int, int) リサイズする画像サイズ。Noneの場合はリサイズしない dtype : numpy.dtype 変換後のデータ型 Returns ------- image : numpy.ndarray 前処理を行ったndarray """ if not pil_available: raise ImportError('PIL cannot be loaded. Install Pillow!') if isinstance(image, np.ndarray): if image.ndim == 3: if image.shape[0] == 1: image = image[0, :, :] elif image.shape[0] == 3: image = image.transpose((1, 2, 0)) image = Image.fromarray(image.astype(np.uint8)) image = image.convert('RGB') if size: image = image.resize(size) image =
np.asarray(image, dtype=dtype)
numpy.asarray
from typing import Any, Dict, Tuple, Union, Callable, Optional, Sequence from typing_extensions import Literal from copy import deepcopy from types import MappingProxyType from pathlib import Path from anndata import AnnData from cellrank import logging as logg from cellrank._key import Key from cellrank.ul._docs import d from cellrank.tl._utils import save_fig, _unique_order_preserving from cellrank.ul._utils import _read_graph_data import numpy as np import pandas as pd from scipy.sparse import issparse, spmatrix from pandas.api.types import is_categorical_dtype import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib import cm from matplotlib.colors import ListedColormap from matplotlib.patches import ArrowStyle, FancyArrowPatch from matplotlib.collections import LineCollection from mpl_toolkits.axes_grid1 import make_axes_locatable @d.dedent def graph( data: Union[AnnData, np.ndarray, spmatrix], graph_key: Optional[str] = None, ixs: Optional[Union[range, np.array]] = None, layout: Union[str, Dict[str, Any], Callable[..., np.ndarray]] = "umap", keys: Sequence[ Union[str, Literal["incoming", "outgoing", "self_loops"]] ] = "incoming", keylocs: Union[str, Sequence[str]] = "uns", node_size: float = 400, labels: Optional[Union[Sequence[str], Sequence[Sequence[str]]]] = None, top_n_edges: Optional[Union[int, Tuple[int, bool, str]]] = None, self_loops: bool = True, self_loop_radius_frac: Optional[float] = None, filter_edges: Optional[Tuple[float, float]] = None, edge_reductions: Union[Callable, Sequence[Callable]] = np.sum, edge_reductions_restrict_to_ixs: Optional[Union[range, np.ndarray]] = None, edge_weight_scale: float = 10, edge_width_limit: Optional[float] = None, edge_alpha: float = 1.0, edge_normalize: bool = False, edge_use_curved: bool = True, arrows: bool = True, font_size: int = 12, font_color: str = "black", color_nodes: bool = True, cat_cmap: ListedColormap = cm.Set3, cont_cmap: ListedColormap = cm.viridis, legend_loc: Optional[str] = "best", title: Optional[Union[str, Sequence[Optional[str]]]] = None, figsize: Optional[Tuple[float, float]] = None, dpi: Optional[int] = None, save: Optional[Union[str, Path]] = None, layout_kwargs: Dict[str, Any] = MappingProxyType({}), ) -> None: """ Plot a graph, visualizing incoming and outgoing edges or self-transitions. This is a utility function to look in more detail at the transition matrix in areas of interest, e.g. around an endpoint of development. This function is meant to visualise a small subset of nodes (~100-500) and the most likely transitions between them. Note that limiting edges visualized using ``top_n_edges`` will speed things up, as well as reduce the visual clutter. Parameters ---------- data The graph data to be plotted. graph_key Key in :attr:`anndata.AnnData.obsp` where the graph is stored. Only used when ``data`` is :class:`anndata.Anndata` object. ixs Subset of indices of the graph to visualize. layout Layout to use for graph drawing. - If :class:`str`, search for embedding in :attr:`anndata.AnnData.obsm` ``['X_{layout}']``. Use ``layout_kwargs={'components': [0, 1]}`` to select components. - If :class:`dict`, keys should be values in interval `[0, len(ixs))` and values `(x, y)` pairs corresponding to node positions. keys Keys in :attr:`anndata.AnnData.obs`, :attr:`anndata.AnnData.obsm` or :attr:`anndata.AnnData.obsm` used to color the nodes. If `'incoming'`, `'outgoing'` or `'self_loops'`, visualize reduction (see ``edge_reductions``) for each node based on incoming or outgoing edges, respectively. keylocs Locations of ``keys``. Can be any attribute of ``data`` if it's :class:`anndata.AnnData` object. node_size Size of the nodes. labels Labels of the nodes. top_n_edges Either top N outgoing edges in descending order or a tuple ``(top_n_edges, in_ascending_order, {'incoming', 'outgoing'})``. If `None`, show all edges. self_loops Whether visualize self transitions and also to consider them in ``top_n_edges``. self_loop_radius_frac Fraction of a unit circle to visualize self transitions. If `None`, use ``node_size / 1000``. filter_edges Whether to remove all edges not in `[min, max]` interval. edge_reductions Aggregation function to use when coloring nodes by edge weights. edge_reductions_restrict_to_ixs Whether to use the full graph when calculating the ``edge_reductions`` or just use the nodes marked by the ``ixs`` and this parameter. If `None`, it's the same as ``ixs``. edge_weight_scale Number by which to scale the width of the edges. Useful when the weights are small. edge_width_limit Upper bound for the width of the edges. Useful when weights are unevenly distributed. edge_alpha Alpha channel value for edges and arrows. edge_normalize If `True`, normalize edges to `[0, 1]` interval prior to applying any scaling or truncation. edge_use_curved If `True`, use curved edges. This can improve visualization at a small performance cost. arrows Whether to show the arrows. Setting this to `False` may dramatically speed things up. font_size Font size for node labels. font_color Label color of the nodes. color_nodes Whether to color the nodes cat_cmap Categorical colormap used when ``keys`` contain categorical variables. cont_cmap Continuous colormap used when ``keys`` contain continuous variables. legend_loc Location of the legend. title Title of the figure(s), one for each ``key``. %(plotting)s layout_kwargs Keyword arguments for ``layout``. Returns ------- %(just_plots)s """ import networkx as nx def plot_arrows(curves, G, pos, ax, edge_weight_scale): for line, (edge, val) in zip(curves, G.edges.items()): if edge[0] == edge[1]: continue mask = (~np.isnan(line)).all(axis=1) line = line[mask, :] if not len(line): # can be all NaNs continue line = line.reshape((-1, 2)) X, Y = line[:, 0], line[:, 1] node_start = pos[edge[0]] # reverse if np.where(np.isclose(node_start - line, [0, 0]).all(axis=1))[0][0]: X, Y = X[::-1], Y[::-1] mid = len(X) // 2 posA, posB = zip(X[mid : mid + 2], Y[mid : mid + 2]) arrow = FancyArrowPatch( posA=posA, posB=posB, # we clip because too small values # cause it to crash arrowstyle=ArrowStyle.CurveFilledB( head_length=np.clip( val["weight"] * edge_weight_scale * 4, _min_edge_weight, edge_width_limit, ), head_width=np.clip( val["weight"] * edge_weight_scale * 2, _min_edge_weight, edge_width_limit, ), ), color="k", zorder=float("inf"), alpha=edge_alpha, linewidth=0, ) ax.add_artist(arrow) def normalize_weights(): weights = np.array([v["weight"] for v in G.edges.values()]) minn = np.min(weights) weights = (weights - minn) / (
np.max(weights)
numpy.max
"""Interfaces to modified Helmholtz operators.""" from bempp.api.operators.boundary import common as _common import numpy as _np def single_layer( domain, range_, dual_to_range, omega, parameters=None, assembler="default_nonlocal", device_interface=None, precision=None, ): """Assemble the Helmholtz single-layer boundary operator.""" if
_np.imag(omega)
numpy.imag
import unittest from os.path import abspath, dirname, join, isfile, normpath, relpath import os import numpy as np import pandas as pd import matplotlib.pylab as plt import mhkit.river as river import netCDF4 from numpy.testing import assert_array_almost_equal from pandas.testing import assert_frame_equal import scipy.interpolate as interp testdir = dirname(abspath(__file__)) datadir = normpath(join(testdir,'..','..','examples','data','river')) class TestPerformance(unittest.TestCase): @classmethod def setUpClass(self): self.diameter = 1 self.height = 2 self.width = 3 self.diameters = [1,2,3,4] @classmethod def tearDownClass(self): pass def test_circular(self): eq, ca = river.performance.circular(self.diameter) self.assertEqual(eq, self.diameter) self.assertEqual(ca, 4*np.pi*self.diameter**2.) def test_ducted(self): eq, ca =river.performance.ducted(self.diameter) self.assertEqual(eq, self.diameter) self.assertEqual(ca, 4*np.pi*self.diameter**2.) def test_rectangular(self): eq, ca = river.performance.rectangular(self.height, self.width) self.assertAlmostEqual(eq, 2.76, places=2) self.assertAlmostEqual(ca, self.height*self.width, places=2) def test_multiple_circular(self): eq, ca = river.performance.multiple_circular(self.diameters) self.assertAlmostEqual(eq, 5.48, places=2) self.assertAlmostEqual(ca, 23.56, places=2) def test_tip_speed_ratio(self): rotor_speed = [15,16,17,18] # create array of rotor speeds rotor_diameter = 77 # diameter of rotor for GE 1.5 inflow_speed = [13,13,13,13] # array of wind speeds TSR_answer = [4.7,5.0,5.3,5.6] TSR = river.performance.tip_speed_ratio(np.asarray(rotor_speed)/60,rotor_diameter,inflow_speed) for i,j in zip(TSR,TSR_answer): self.assertAlmostEqual(i,j,delta=0.05) def test_power_coefficient(self): # data obtained from power performance report of wind turbine inflow_speed = [4,6,8,10,12,14,16,18,20] power_out = np.asarray([59,304,742,1200,1400,1482,1497,1497,1511]) capture_area = 4656.63 rho = 1.225 Cp_answer = [0.320,0.493,0.508,0.421,0.284,0.189,0.128,0.090,0.066] Cp = river.performance.power_coefficient(power_out*1000,inflow_speed,capture_area,rho) for i,j in zip(Cp,Cp_answer): self.assertAlmostEqual(i,j,places=2) class TestResource(unittest.TestCase): @classmethod def setUpClass(self): self.data = pd.read_csv(join(datadir, 'tanana_discharge_data.csv'), index_col=0, parse_dates=True) self.data.columns = ['Q'] self.results = pd.read_csv(join(datadir, 'tanana_test_results.csv'), index_col=0, parse_dates=True) @classmethod def tearDownClass(self): pass def test_Froude_number(self): v = 2 h = 5 Fr = river.resource.Froude_number(v, h) self.assertAlmostEqual(Fr, 0.286, places=3) def test_exceedance_probability(self): # Create arbitrary discharge between 0 and 8(N=9) Q = pd.Series(np.arange(9)) # Rank order for non-repeating elements simply adds 1 to each element #if N=9, max F = 100((max(Q)+1)/10) = 90% #if N=9, min F = 100((min(Q)+1)/10) = 10% f = river.resource.exceedance_probability(Q) self.assertEqual(f.min().values , 10. ) self.assertEqual(f.max().values , 90. ) def test_polynomial_fit(self): # Calculate a first order polynomial on an x=y line p, r2 = river.resource.polynomial_fit(np.arange(8), np.arange(8),1) # intercept should be 0 self.assertAlmostEqual(p[0], 0.0, places=2 ) # slope should be 1 self.assertAlmostEqual(p[1], 1.0, places=2 ) # r-squared should be perfect self.assertAlmostEqual(r2, 1.0, places=2 ) def test_discharge_to_velocity(self): # Create arbitrary discharge between 0 and 8(N=9) Q = pd.Series(np.arange(9)) # Calculate a first order polynomial on an DV_Curve x=y line 10 times greater than the Q values p, r2 = river.resource.polynomial_fit(np.arange(9), 10*np.arange(9),1) # Becuase the polynomial line fits perfect we should expect the V to equal 10*Q V = river.resource.discharge_to_velocity(Q, p) self.assertAlmostEqual(np.sum(10*Q - V['V']), 0.00, places=2 ) def test_velocity_to_power(self): # Calculate a first order polynomial on an DV_Curve x=y line 10 times greater than the Q values p, r2 = river.resource.polynomial_fit(np.arange(9), 10*np.arange(9),1) # Becuase the polynomial line fits perfect we should expect the V to equal 10*Q V = river.resource.discharge_to_velocity(pd.Series(np.arange(9)), p) # Calculate a first order polynomial on an VP_Curve x=y line 10 times greater than the V values p2, r22 = river.resource.polynomial_fit(np.arange(9), 10*np.arange(9),1) # Set cut in/out to exclude 1 bin on either end of V range cut_in = V['V'][1] cut_out = V['V'].iloc[-2] # Power should be 10x greater and exclude the ends of V P = river.resource.velocity_to_power(V['V'], p2, cut_in, cut_out) #Cut in power zero self.assertAlmostEqual(P['P'][0], 0.00, places=2 ) #Cut out power zero self.assertAlmostEqual(P['P'].iloc[-1], 0.00, places=2 ) # Middle 10x greater than velocity self.assertAlmostEqual((P['P'][1:-1] - 10*V['V'][1:-1] ).sum(), 0.00, places=2 ) def test_energy_produced(self): # If power is always X then energy produced with be x*seconds X=1 seconds=1 P = pd.Series(X*np.ones(10) ) EP = river.resource.energy_produced(P, seconds) self.assertAlmostEqual(EP, X*seconds, places=1 ) # for a normal distribution of Power EP = mean *seconds mu=5 sigma=1 power_dist = pd.Series(np.random.normal(mu, sigma, 10000)) EP2 = river.resource.energy_produced(power_dist, seconds) # import ipdb; ipdb.set_trace() self.assertAlmostEqual(EP2, mu*seconds, places=1 ) def test_plot_flow_duration_curve(self): filename = abspath(join(testdir, 'river_plot_flow_duration_curve.png')) if isfile(filename): os.remove(filename) f = river.resource.exceedance_probability(self.data.Q) plt.figure() river.graphics.plot_flow_duration_curve(self.data['Q'], f['F']) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_power_duration_curve(self): filename = abspath(join(testdir, 'river_plot_power_duration_curve.png')) if isfile(filename): os.remove(filename) f = river.resource.exceedance_probability(self.data.Q) plt.figure() river.graphics.plot_flow_duration_curve(self.results['P_control'], f['F']) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_velocity_duration_curve(self): filename = abspath(join(testdir, 'river_plot_velocity_duration_curve.png')) if isfile(filename): os.remove(filename) f = river.resource.exceedance_probability(self.data.Q) plt.figure() river.graphics.plot_velocity_duration_curve(self.results['V_control'], f['F']) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_discharge_timeseries(self): filename = abspath(join(testdir, 'river_plot_discharge_timeseries.png')) if isfile(filename): os.remove(filename) plt.figure() river.graphics.plot_discharge_timeseries(self.data['Q']) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_discharge_vs_velocity(self): filename = abspath(join(testdir, 'river_plot_discharge_vs_velocity.png')) if isfile(filename): os.remove(filename) plt.figure() river.graphics.plot_discharge_vs_velocity(self.data['Q'], self.results['V_control']) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) def test_plot_velocity_vs_power(self): filename = abspath(join(testdir, 'river_plot_velocity_vs_power.png')) if isfile(filename): os.remove(filename) plt.figure() river.graphics.plot_velocity_vs_power(self.results['V_control'], self.results['P_control']) plt.savefig(filename, format='png') plt.close() self.assertTrue(isfile(filename)) class TestIO(unittest.TestCase): @classmethod def setUpClass(self): d3ddatadir = normpath(join(datadir,'d3d')) filename= 'turbineTest_map.nc' self.d3d_flume_data = netCDF4.Dataset(join(d3ddatadir,filename)) @classmethod def tearDownClass(self): pass def test_load_usgs_data_instantaneous(self): file_name = join(datadir, 'USGS_08313000_Jan2019_instantaneous.json') data = river.io.usgs.read_usgs_file(file_name) self.assertEqual(data.columns, ['Discharge, cubic feet per second']) self.assertEqual(data.shape, (2972, 1)) # 4 data points are missing def test_load_usgs_data_daily(self): file_name = join(datadir, 'USGS_08313000_Jan2019_daily.json') data = river.io.usgs.read_usgs_file(file_name) expected_index = pd.date_range('2019-01-01', '2019-01-31', freq='D') self.assertEqual(data.columns, ['Discharge, cubic feet per second']) self.assertEqual((data.index == expected_index.tz_localize('UTC')).all(), True) self.assertEqual(data.shape, (31, 1)) def test_request_usgs_data_daily(self): data=river.io.usgs.request_usgs_data(station="15515500", parameter='00060', start_date='2009-08-01', end_date='2009-08-10', data_type='Daily') self.assertEqual(data.columns, ['Discharge, cubic feet per second']) self.assertEqual(data.shape, (10, 1)) def test_request_usgs_data_instant(self): data=river.io.usgs.request_usgs_data(station="15515500", parameter='00060', start_date='2009-08-01', end_date='2009-08-10', data_type='Instantaneous') self.assertEqual(data.columns, ['Discharge, cubic feet per second']) # Every 15 minutes or 4 times per hour self.assertEqual(data.shape, (10*24*4, 1)) def test_layer_data(self): data=self.d3d_flume_data variable= 'ucx' layer=2 time_index= 3 layer_data= river.io.d3d.get_layer_data(data, variable, layer, time_index) layer_compare = 2 time_index_compare= 4 layer_data_expected= river.io.d3d.get_layer_data(data, variable, layer_compare, time_index_compare) assert_array_almost_equal(layer_data.x,layer_data_expected.x, decimal = 2) assert_array_almost_equal(layer_data.y,layer_data_expected.y, decimal = 2) assert_array_almost_equal(layer_data.v,layer_data_expected.v, decimal= 2) def test_create_points(self): x=np.linspace(1, 3, num= 3) y=np.linspace(1, 3, num= 3) z=1 points= river.io.d3d.create_points(x,y,z) x=[1,2,3,1,2,3,1,2,3] y=[1,1,1,2,2,2,3,3,3] z=[1,1,1,1,1,1,1,1,1] points_array= np.array([ [x_i, y_i, z_i] for x_i, y_i, z_i in zip(x, y, z)]) points_expected= pd.DataFrame(points_array, columns=('x','y','z')) assert_array_almost_equal(points, points_expected,decimal = 2) def test_get_all_data_points(self): data=self.d3d_flume_data variable= 'ucx' time_step= 3 output = river.io.d3d.get_all_data_points(data, variable, time_step) size_output = np.size(output) time_step_compair=4 output_expected= river.io.d3d.get_all_data_points(data, variable, time_step_compair) size_output_expected= np.size(output_expected) self.assertEqual(size_output, size_output_expected) def test_unorm(self): x=np.linspace(1, 3, num= 3) y=np.linspace(1, 3, num= 3) z=np.linspace(1, 3, num= 3) unorm = river.io.d3d.unorm(x,y,z) unorm_expected= [np.sqrt(1**2+1**2+1**2),np.sqrt(2**2+2**2+2**2), np.sqrt(3**2+3**2+3**2)] assert_array_almost_equal(unorm, unorm_expected, decimal = 2) def test_turbulent_intensity(self): data=self.d3d_flume_data time_step= -1 x_test=np.linspace(1, 17, num= 10) y_test=np.linspace(3, 3, num= 10) z_test=np.linspace(1, 1, num= 10) test_points = np.array([ [x, y, z] for x, y, z in zip(x_test, y_test, z_test)]) points= pd.DataFrame(test_points, columns=['x','y','z']) TI= river.io.d3d.turbulent_intensity(data, points, time_step) TI_vars= ['turkin1', 'ucx', 'ucy', 'ucz'] TI_data_raw = {} for var in TI_vars: #get all data var_data_df = river.io.d3d.get_all_data_points(data, var,time_step) TI_data_raw[var] = var_data_df TI_data= points.copy(deep=True) for var in TI_vars: TI_data[var] = interp.griddata(TI_data_raw[var][['x','y','z']], TI_data_raw[var][var], points[['x','y','z']]) u_mag=river.io.d3d.unorm(TI_data['ucx'],TI_data['ucy'], TI_data['ucz']) turbulent_intensity_expected=
np.sqrt(2/3*TI_data['turkin1'])
numpy.sqrt
import numpy as np from PIL import Image import torchvision import torch class TransformTwice: def __init__(self, transform): self.transform = transform def __call__(self, inp): out1 = self.transform(inp) out2 = self.transform(inp) return out1, out2 def get_svhn(root, n_labeled, transform_train=None, transform_val=None, download=True): base_dataset = torchvision.datasets.SVHN(root, split='train', download=download) test_dataset = torchvision.datasets.SVHN(root, split='test', download=download) train_labeled_idxs, train_unlabeled_idxs, val_idxs = train_val_split(test_dataset.labels, int(n_labeled/10)) train_labeled_idxs2, train_unlabeled_idxs2, val_idxs2 = train_val_split( base_dataset.labels, int(n_labeled / 10), False) train_labeled_dataset = SVHN_labeledmod(root, train_labeled_idxs, train=False, transform=transform_train) train_unlabeled_dataset = SVHN_unlabeled(root, train_unlabeled_idxs, train=False, transform=TransformTwice(transform_train)) val_dataset = SVHN_labeled(root, val_idxs2, train=True, transform=transform_val, download=True) test_dataset = SVHN_labeled(root, train=False, transform=transform_val, download=True) #print("Test shape", train_labeled_dataset[0][0].shape) print (f"#Labeled: {len(train_labeled_idxs)} #Unlabeled: {len(train_unlabeled_idxs)} #Val: {len(val_idxs)}") return train_labeled_dataset, train_unlabeled_dataset, val_dataset, test_dataset, val_idxs def train_val_split(labels, n_labeled_per_class, write=True): labels = np.array(labels) train_labeled_idxs = [] train_unlabeled_idxs = [] val_idxs = [] ent = 0 gap = 0 temp1 = np.load("svhnent.npy") temp2 = np.load("svhngap.npy") #pknn = 0 total = n_labeled_per_class*10 # To get an equal number of samples per class. # for i in range(10): # idxs = np.where(labels == i)[0] # np.random.shuffle(idxs) # train_labeled_idxs.extend(idxs[:n_labeled_per_class]) # train_unlabeled_idxs.extend(idxs[n_labeled_per_class:-500]) # val_idxs.extend(idxs[-500:]) # Random selection for point: n_labeled = n_labeled_per_class * 10 idxs = np.where(labels < 10)[0] # All points np.random.shuffle(idxs) train_labeled_idxs.extend(idxs[:n_labeled]) train_unlabeled_idxs.extend(idxs[n_labeled: -1000]) # was 500 val_idxs.extend(idxs[-1000:]) if write == True: for i in train_labeled_idxs: ent += temp1[i] gap += temp2[i] file = f"svhn@{total}new/stats.txt" f = open(file, "w") f.write("Entropy: " + str(ent) + "\n") f.write("Gap: " + str(gap) + "\n") f.close() np.random.shuffle(train_labeled_idxs) np.random.shuffle(train_unlabeled_idxs) np.random.shuffle(val_idxs) return train_labeled_idxs, train_unlabeled_idxs, val_idxs svhn_mean = (0.430, 0.428, 0.443) # equals np.mean(train_set.train_data, axis=(0,1,2))/255 svhn_std = (0.196, 0.198, 0.199) # equals np.std(train_set.train_data, axis=(0,1,2))/255 def normalise(x, mean=svhn_mean, std=svhn_std): x, mean, std = [
np.array(a, np.float32)
numpy.array
# Copyright 2020 Google LLC # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for qrecurrent.py""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import copy import json import numpy as np import tensorflow as tf from numpy.testing import assert_allclose import pytest import tempfile from tensorflow.keras import backend as K from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Input from tensorflow.keras.models import Model from tensorflow.keras.backend import clear_session from tensorflow.keras.layers import SimpleRNN from tensorflow.keras.layers import LSTM from tensorflow.keras.layers import GRU from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Bidirectional from tensorflow.keras.models import Sequential from qkeras import QActivation from qkeras import QSimpleRNN from qkeras import QLSTM from qkeras import QGRU from qkeras import QBidirectional from qkeras import QDense from qkeras import quantized_bits from qkeras import quantized_tanh from qkeras.utils import model_save_quantized_weights from qkeras.utils import quantized_model_from_json from qkeras.utils import load_qmodel from qkeras.utils import model_quantize @pytest.mark.parametrize( 'rnn, all_weights_signature, expected_output', [ ( QSimpleRNN, np.array([5.109375, -1.8828125, 0.0, -0.5, 0.0], dtype=np.float32), np.array( [[0.2812 , 0.4949 , 0.10254 , 0.1215 ], [0.1874 , 0.6055 , 0.09 , 0.1173 ], [0.3965 , 0.4778 , 0.02974 , 0.0962 ], [0.4158 , 0.5005 , 0.0172 , 0.06665 ], [0.3367 , 0.537 , 0.02444 , 0.1018 ], [0.2125 , 0.584 , 0.03937 , 0.164 ], [0.2368 , 0.639 , 0.04245 , 0.0815 ], [0.4468 , 0.4436 , 0.01942 , 0.0902 ], [0.622 , 0.257 , 0.03293 , 0.0878 ], [0.4814 , 0.3923 , 0.011215, 0.11505 ]], dtype=np.float16) ), ( QLSTM, np.array([3.7421875, 2.1328125, 15.875, -0.5, 0.0], dtype=np.float32), np.array( [[0.265 , 0.1775, 0.319 , 0.2384], [0.2896, 0.2417, 0.2563, 0.2124], [0.309 , 0.193 , 0.2734, 0.2246], [0.322 , 0.17 , 0.2668, 0.2412], [0.267 , 0.174 , 0.301 , 0.2578], [0.311 , 0.1774, 0.2566, 0.255 ], [0.2854, 0.174 , 0.2927, 0.248 ], [0.2668, 0.2268, 0.2585, 0.2479], [0.2795, 0.2113, 0.2659, 0.2434], [0.275 , 0.2333, 0.2505, 0.2415]], dtype=np.float16) ), ( QGRU, np.array([4.6875, 4.3984375, 0.0, -0.5, 0.0], dtype=np.float32), np.array( [[0.203 , 0.3547, 0.2854, 0.1567], [0.294 , 0.334 , 0.1985, 0.1736], [0.2096, 0.4392, 0.1812, 0.1702], [0.1974, 0.4927, 0.1506, 0.1593], [0.1582, 0.4788, 0.1968, 0.1661], [0.2028, 0.4421, 0.1678, 0.1871], [0.1583, 0.5464, 0.1705, 0.125 ], [0.1956, 0.4407, 0.1703, 0.1935], [0.1638, 0.511 , 0.1725, 0.1527], [0.2074, 0.3862, 0.208 , 0.1982]], dtype=np.float16) ) ]) def test_qrnn(rnn, all_weights_signature, expected_output): K.set_learning_phase(0) np.random.seed(22) tf.random.set_seed(22) x = x_in = Input((2, 4), name='input') x = rnn( 16, activation=quantized_tanh(bits=8), kernel_quantizer=quantized_bits(8, 0, 1, alpha=1.0), recurrent_quantizer=quantized_bits(8, 0, 1, alpha=1.0), bias_quantizer=quantized_bits(8, 0, 1, alpha=1.0), name='qrnn_0')( x) x = QDense( 4, kernel_quantizer=quantized_bits(6, 2, 1, alpha=1.0), bias_quantizer=quantized_bits(4, 0, 1), name='dense')( x) x = Activation('softmax', name='softmax')(x) model = Model(inputs=[x_in], outputs=[x]) # reload the model to ensure saving/loading works json_string = model.to_json() clear_session() model = quantized_model_from_json(json_string) # Save the model as an h5 file using Keras's model.save() fd, fname = tempfile.mkstemp('.h5') model.save(fname) del model # Delete the existing model # Return a compiled model identical to the previous one model = load_qmodel(fname) # Clean the created h5 file after loading the model os.close(fd) os.remove(fname) # apply quantizer to weights model_save_quantized_weights(model) all_weights = [] for layer in model.layers: for i, weights in enumerate(layer.get_weights()): w = np.sum(weights) all_weights.append(w) all_weights = np.array(all_weights) assert all_weights.size == all_weights_signature.size assert np.all(all_weights == all_weights_signature) # test forward: inputs = 2 * np.random.rand(10, 2, 4) actual_output = model.predict(inputs).astype(np.float16) assert_allclose(actual_output, expected_output, rtol=1e-4) @pytest.mark.parametrize( 'rnn, all_weights_signature, expected_output', [ ( QSimpleRNN, np.array([ -2.6562500e+00, -4.3466797e+00, 8.6736174e-19, 6.2548828e-01, -6.0751953e+00, 8.6736174e-19, -7.5000000e-01, 0.0], dtype=np.float32), np.array([ [0.0851 , 0.1288 , 0.586 , 0.2002 ], [0.1044 , 0.1643 , 0.7217 , 0.00978], [0.04135, 0.0537 , 0.8706 , 0.03455], [0.03354, 0.0489 , 0.889 , 0.02852], [0.04358, 0.05246, 0.7563 , 0.1478 ], [0.03403, 0.0743 , 0.4177 , 0.4739 ], [0.0859 , 0.1567 , 0.3972 , 0.36 ], [0.27 , 0.1945 , 0.4841 , 0.05124], [0.12115, 0.05722, 0.728 , 0.0938 ], [0.2864 , 0.1262 , 0.339 , 0.2484 ]], dtype=np.float16) ), ( QLSTM, np.array([ -4.1406555, 3.2921143, 16. , 7.0236816, 4.1237793, 16. , -0.75 , 0. ], dtype=np.float32), np.array([ [0.3066, 0.2026, 0.2335, 0.2573], [0.1796, 0.283 , 0.27 , 0.2673], [0.1702, 0.2144, 0.308 , 0.3074], [0.2216, 0.2153, 0.286 , 0.277 ], [0.3533, 0.1725, 0.2322, 0.2421], [0.2764, 0.2153, 0.227 , 0.2812], [0.2786, 0.1711, 0.2861, 0.2642], [0.2493, 0.1882, 0.3098, 0.2527], [0.1926, 0.1779, 0.3137, 0.316 ], [0.263 , 0.1783, 0.3086, 0.2502]], dtype=np.float16) ), ( QGRU, np.array([ -6.7578125e-01, 3.6837769e-01, 2.6020852e-18, 4.1682129e+00, -7.5769043e-01, 2.6020852e-18, -7.5000000e-01, 0.0], dtype=np.float32), np.array([ [0.2764, 0.1531, 0.3047, 0.2659], [0.2012, 0.1885, 0.3638, 0.2466], [0.2024, 0.1703, 0.3718, 0.2554], [0.2451, 0.1581, 0.294 , 0.3027], [0.3987, 0.117 , 0.2343, 0.25 ], [0.2834, 0.1829, 0.2734, 0.2603], [0.2905, 0.1345, 0.3003, 0.2747], [0.2954, 0.1481, 0.2744, 0.2822], [0.2336, 0.1282, 0.334 , 0.3042], [0.2396, 0.1595, 0.3093, 0.2915]], dtype=np.float16) ) ]) def test_qbidirectional(rnn, all_weights_signature, expected_output): K.set_learning_phase(0)
np.random.seed(22)
numpy.random.seed
# -*- coding: utf-8 -*- """ Authors ------- <NAME> <<EMAIL>> About ----- Functions to handle command-line input Known Issues ------------ None """ # General imports import os import sys import time from functools import partial import shutil if os.path.exists(os.path.join(os.getcwd(), 'config')): # You're 1 up from config? sys.path.insert(0, os.path.join(os.getcwd(), 'config')) else: # You're working from a directory parallel with config? sys.path.insert(0, os.path.abspath(os.path.join(os.getcwd(), '../config'))) import pickle # Tractor imports from tractor import NCircularGaussianPSF, PixelizedPSF, Image, Tractor, FluxesPhotoCal, NullWCS, ConstantSky, EllipseESoft, Fluxes, PixPos from tractor.galaxy import ExpGalaxy, DevGalaxy, FixedCompositeGalaxy, SoftenedFracDev, GalaxyShape from tractor.sersic import SersicIndex, SersicGalaxy from tractor.sercore import SersicCoreGalaxy from tractor.pointsource import PointSource from tractor.psfex import PixelizedPsfEx, PsfExModel from tractor.psf import HybridPixelizedPSF # Miscellaneous science imports from astropy.io import fits, ascii from astropy.table import Table, Column, vstack, join from astropy.wcs import WCS import astropy.units as u import numpy as np from functools import partial import matplotlib.pyplot as plt import weakref from scipy import stats import pathos as pa from astropy.coordinates import SkyCoord # import sfdmap # Local imports from .brick import Brick from .mosaic import Mosaic from .utils import header_from_dict, SimpleGalaxy from .visualization import plot_background, plot_blob, plot_blobmap, plot_brick, plot_mask try: import config as conf except: raise RuntimeError('Cannot find configuration file!') # m = sfdmap.SFDMap(conf.SFDMAP_DIR) # Make sure no interactive plotting is going on. plt.ioff() import warnings warnings.filterwarnings("ignore") print( f""" ==================================================================== ________ _ _______ ____ ____ ________ _______ |_ __ | / \ |_ __ \ |_ \ / _||_ __ ||_ __ \ | |_ \_| / _ \ | |__) | | \/ | | |_ \_| | |__) | | _| / ___ \ | __ / | |\ /| | | _| _ | __ / _| |_ _/ / \ \_ _| | \ \_ _| |_\/_| |_ _| |__/ | _| | \ \_ |_____||____| |____||____| |___||_____||_____||________||____| |___| -------------------------------------------------------------------- M O D E L P H O T O M E T R Y W I T H T H E T R A C T O R -------------------------------------------------------------------- (C) 2020 -- <NAME> (DAWN, University of Copenhagen) ==================================================================== CONSOLE_LOGGING_LEVEL ..... {conf.CONSOLE_LOGGING_LEVEL} LOGFILE_LOGGING_LEVEL ..... {conf.LOGFILE_LOGGING_LEVEL} PLOT ...................... {conf.PLOT} NTHREADS .................. {conf.NTHREADS} OVERWRITE ................. {conf.OVERWRITE} """ ) print('Starting up logging system...') # Start the logging import logging.config logger = logging.getLogger('farmer') if not len(logger.handlers): if conf.LOGFILE_LOGGING_LEVEL is not None: logging_level = logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL) else: logging_level = logging.DEBUG logger.setLevel(logging_level) formatter = logging.Formatter('[%(asctime)s] %(name)s :: %(levelname)s - %(message)s', '%H:%M:%S') # Logging to the console at logging level ch = logging.StreamHandler() ch.setLevel(logging.getLevelName(conf.CONSOLE_LOGGING_LEVEL)) ch.setFormatter(formatter) logger.addHandler(ch) if (conf.LOGFILE_LOGGING_LEVEL is None) | (not os.path.exists(conf.LOGGING_DIR)): print('Logging information wills stream only to console.\n') else: # create file handler which logs even debug messages logging_path = os.path.join(conf.LOGGING_DIR, 'logfile.log') print(f'Logging information will stream to console and {logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(logging_path): print('WARNING -- Existing logfile will be overwritten.') os.remove(logging_path) fh = logging.FileHandler(logging_path) fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) fh.setFormatter(formatter) logger.addHandler(fh) # When a user invokes the interface, first check the translation file # Optionally, tell the user. # Try to import the translate file from it's usual spot first. try: from translate import translate logger.info(f'interface.translation :: Imported translate file with {len(translate.keys())} entries.') if len(conf.BANDS) != len(translate.keys()): logger.warning(f'Configuration file only includes {len(conf.BANDS)} entries!') # I have nicknames in the config, I need the raw names for file I/O mask = np.ones_like(conf.BANDS, dtype=bool) for i, band in enumerate(conf.BANDS): if band not in translate.keys(): logger.warning(f'Cound not find {band} in translate file!') mask[i] = False # Re-assign bands and rawbands in config object logger.debug(f'Assigning nicknames to raw image names:') conf.BANDS = list(np.array(conf.BANDS)[mask]) conf.RAWBANDS = conf.BANDS.copy() for i, band in enumerate(conf.RAWBANDS): conf.RAWBANDS[i] = translate[band] logger.debug(f' {i+1} :: {conf.RAWBANDS[i]} --> {conf.BANDS[i]}') # The translation file could not be found, so make a scene. except: logger.warning('interface.translation :: WARNING - Could not import translate file! Will use config instead.') logger.info('interface.translation :: Image names must be < 50 characters (FITS standard) - checking...') # I have raw names, I need shortened raw names (i.e. nicknames) conf.RAWBANDS = conf.BANDS.copy() count_short = 0 for i, band in enumerate(conf.RAWBANDS): if len(band) > 50: conf.BANDS[i] = band[:50] logger.debug(f' {i+1} :: {band} --> {conf.BANDS[i]}') count_short += 1 logger.info(f'interface.translation :: Done checking. Shortened {count_short} image names.') def make_directories(): """Uses the existing config file to set up the directories. Must call from config.py directory! """ import pathlib logger.info('Making directories!') dir_dict = {'IMAGE_DIR': conf.IMAGE_DIR, 'PSF_DIR': conf.PSF_DIR, 'BRICK_DIR': conf.BRICK_DIR, 'INTERIM_DIR': conf.INTERIM_DIR, 'PLOT_DIR': conf.PLOT_DIR, 'CATALOG_DIR': conf.CATALOG_DIR, 'LOGGING_DIR': conf.LOGGING_DIR } for key in dir_dict.keys(): path = dir_dict[key] if os.path.exists(path): # too important to allow overwrite... logger.warning(f'{key} already exists under {path}!') for i in dir_dict.keys(): if path == dir_dict[i]: logger.info(f'{key} was already created for {i}...OK') break else: logger.info(f'{key} --> {path}') pathlib.Path(path).mkdir(parents=True, exist_ok=True) def make_psf(image_type=conf.MULTIBAND_NICKNAME, band=None, sextractor_only=False, psfex_only=False, override=conf.OVERWRITE): """ This is where we automatically construct the PSFs for Farmer. Step 1. Run sextractor_only=True to obtain the PSF candidates Step 2. Using the output plot, determine the selection box for the stars Step 3. Run psfex_only=True to construct the PSF. See config file to set box dimensions, psf spatial sampling, etc. """ # If the user asked to make a PSF for the detection image, tell them we don't do that if image_type is conf.DETECTION_NICKNAME: raise ValueError('Farmer does not use a PSF to perform detection!') # Else if the user asks for a PSF to be made for the modeling band elif image_type is conf.MODELING_NICKNAME: # Make the Mosaic logger.info(f'Making PSF for {conf.MODELING_NICKNAME}') modmosaic = Mosaic(conf.MODELING_NICKNAME, modeling=True, mag_zeropoint=conf.MODELING_ZPT, skip_build=True) # Make the PSF logger.info(f'Mosaic loaded for {conf.MODELING_NICKNAME}') modmosaic._make_psf(xlims=conf.MOD_REFF_LIMITS, ylims=conf.MOD_VAL_LIMITS, override=override, sextractor_only=sextractor_only, psfex_only=psfex_only) logger.info(f'PSF made successfully for {conf.MODELING_NICKNAME}') # Else if the user asks for a PSF in one of the bands elif image_type is conf.MULTIBAND_NICKNAME: # Sanity check if band not in conf.BANDS: raise ValueError(f'{band} is not a valid band nickname!') # Use all bands or just one? if band is not None: sbands = [band,] else: sbands = conf.BANDS # Loop over bands for i, band in enumerate(sbands): # Figure out PS selection box position and zeropoint idx_band = np.array(conf.BANDS) == band multi_xlims = np.array(conf.MULTIBAND_REFF_LIMITS)[idx_band][0] multi_ylims = np.array(conf.MULTIBAND_VAL_LIMITS)[idx_band][0] mag_zpt = np.array(conf.MULTIBAND_ZPT)[idx_band][0] # Make the Mosaic logger.info(f'Making PSF for {band}') bandmosaic = Mosaic(band, mag_zeropoint = mag_zpt, skip_build=True) # Make the PSF logger.info(f'Mosaic loaded for {band}') bandmosaic._make_psf(xlims=multi_xlims, ylims=multi_ylims, override=override, sextractor_only=sextractor_only, psfex_only=psfex_only) if not sextractor_only: logger.info(f'PSF made successfully for {band}') else: logger.info(f'interface.make_psf :: SExtraction complete for {band}') return def make_bricks(image_type=conf.MULTIBAND_NICKNAME, band=None, brick_id=None, insert=False, skip_psf=True, max_bricks=None, make_new_bricks=False): """ Stage 1. Here we collect the detection, modelling, and multiband images for processing. We may also cut them up! NB: PSFs can be automatically made at this stage too, assuming you've determined your PSF selection a priori. """ # Make bricks for the detection image if (image_type==conf.DETECTION_NICKNAME) | (image_type is None): # Detection logger.info('Making mosaic for detection...') detmosaic = Mosaic(conf.DETECTION_NICKNAME, detection=True) if conf.NTHREADS > 1: logger.warning('Parallelization of brick making is currently not supported. Continuing anyways...') # BUGGY DUE TO MEM ALLOC # logger.info('Making bricks for detection (in parallel)') # pool = mp.ProcessingPool(processes=conf.NTHREADS) # pool.map(partial(detmosaic._make_brick, detection=True, overwrite=True), np.arange(0, detmosaic.n_bricks())) logger.info('Making bricks for detection (in serial)') for bid in np.arange(1, detmosaic.n_bricks()+1): detmosaic._make_brick(bid, detection=True, overwrite=True) # Make bricks for the modeling image elif (image_type==conf.MODELING_NICKNAME) | (image_type is None): # Modeling logger.info('Making mosaic for modeling...') modmosaic = Mosaic(conf.MODELING_NICKNAME, modeling=True) # The user wants PSFs on the fly if not skip_psf: mod_xlims = np.array(conf.MOD_REFF_LIMITS) mod_ylims = np.array(conf.MOD_VAL_LIMITS) modmosaic._make_psf(xlims=mod_xlims, ylims=mod_ylims) # Make bricks in parallel if (conf.NTHREADS > 1) & (brick_id is None): logger.warning('Parallelization of brick making is currently not supported. Continuing anyways...') # BUGGY DUE TO MEM ALLOC # if conf.VERBOSE: print('Making bricks for detection (in parallel)') # pool = mp.ProcessingPool(processes=conf.NTHREADS) # pool.map(partial(modmosaic._make_brick, detection=True, overwrite=True), np.arange(0, modmosaic.n_bricks())) # # Make bricks in serial # else: if brick_id is not None: logger.info(f'Making brick #{brick_id} for modeling (in serial)') modmosaic._make_brick(brick_id, modeling=True, overwrite=True) else: logger.info('Making bricks for modeling (in serial)') if max_bricks is None: max_bricks = modmosaic.n_bricks() for bid in np.arange(1, max_bricks+1): modmosaic._make_brick(bid, modeling=True, overwrite=True) # Make bricks for one or more multiband images elif (image_type==conf.MULTIBAND_NICKNAME) | (image_type is None): # One variable list if band is not None: try: if len(band) > 0: sbands = band else: sbands = conf.BANDS except: sbands = [band,] else: sbands = conf.BANDS # In serial, loop over images for i, sband in enumerate(sbands): # Assume we can overwrite files unless insertion is explicit # First image w/o insertion will make new file anyways if make_new_bricks: overwrite = True if insert | (i > 0): overwrite = False else: overwrite=False # Build the mosaic logger.info(f'Making mosaic for image {sband}...') bandmosaic = Mosaic(sband) # The user wants PSFs made on the fly if not skip_psf: idx_band = np.array(conf.BANDS) == sband multi_xlims = np.array(conf.MULTIBAND_REFF_LIMITS)[idx_band][0] multi_ylims = np.array(conf.MULTIBAND_VAL_LIMITS)[idx_band][0] bandmosaic._make_psf(xlims=multi_xlims, ylims=multi_ylims) # Make bricks in parallel if (conf.NTHREADS > 1) & (brick_id is None): logger.warning('Parallelization of brick making is currently not supported. Continuing anyways...') # logger.info(f'Making bricks for band {sband} (in parallel)') # with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: # logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') # pool.uimap(partial(bandmosaic._make_brick, detection=False, overwrite=overwrite), np.arange(0, bandmosaic.n_bricks())) # logger.info('Parallel processing complete.') # Make bricks in serial # else: if brick_id is not None: logger.info(f'Making brick #{brick_id} for multiband (in serial)') bandmosaic._make_brick(brick_id, detection=False, overwrite=overwrite) else: logger.info(f'Making bricks for band {sband} (in serial)') if max_bricks is None: max_bricks = bandmosaic.n_bricks() for bid in np.arange(1, max_bricks+1): bandmosaic._make_brick(bid, detection=False, overwrite=overwrite) # image type is invalid else: raise RuntimeError(f'{image_type} is an unrecognized nickname (see {conf.DETECTION_NICKNAME}, {conf.MODELING_NICKNAME}, {conf.MULTIBAND_NICKNAME})') return def runblob(blob_id, blobs, modeling=None, catalog=None, plotting=0, source_id=None, source_only=False, blob_only=False): """ Essentially a private function. Runs each individual blob and handles the bulk of the work. """ # if conf.NTHREADS != 0: # fh = logging.FileHandler(f'B{blob_id}.log') # fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) # formatter = logging.Formatter('[%(asctime)s] %(name)s :: %(levelname)s - %(message)s', '%H:%M:%S') # fh.setFormatter(formatter) # logger = pathos.logger(level=logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL), handler=fh) logger = logging.getLogger(f'farmer.blob.{blob_id}') logger.info(f'Starting on Blob #{blob_id}') modblob = None fblob = None tstart = time.time() logger.debug('Making weakref proxies of blobs') if modeling is None: modblob, fblob = weakref.proxy(blobs[0]), weakref.proxy(blobs[1]) elif modeling: modblob = weakref.proxy(blobs) else: fblob = weakref.proxy(blobs) logger.debug(f'Weakref made ({time.time() - tstart:3.3f})s') # Make blob with modeling image if modblob is not None: logger.debug(f'Making blob with {conf.MODELING_NICKNAME}') modblob.logger = logger if modblob.rejected: logger.info('Blob has been rejected!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = modblob.bcatalog.copy() del modblob return catout # If the user wants to just model a specific source... if source_only & (source_id is not None): logger.info(f'Preparing to model single source: {source_id}') sid = modblob.bcatalog['source_id'] modblob.bcatalog = modblob.bcatalog[sid == source_id] modblob.n_sources = len(modblob.bcatalog) modblob.mids = np.ones(modblob.n_sources, dtype=int) modblob.model_catalog = np.zeros(modblob.n_sources, dtype=object) modblob.solution_catalog = np.zeros(modblob.n_sources, dtype=object) modblob.solved_chisq = np.zeros(modblob.n_sources) modblob.solved_bic = np.zeros(modblob.n_sources) modblob.solution_chisq = np.zeros(modblob.n_sources) modblob.tr_catalogs = np.zeros((modblob.n_sources, 3, 2), dtype=object) modblob.chisq = np.zeros((modblob.n_sources, 3, 2)) modblob.rchisq = np.zeros((modblob.n_sources, 3, 2)) modblob.bic = np.zeros((modblob.n_sources, 3, 2)) assert(len(modblob.bcatalog) > 0) if not blob_only: if (conf.MODEL_PHOT_MAX_NBLOB > 0) & (modblob.n_sources > conf.MODEL_PHOT_MAX_NBLOB): logger.info('Number of sources exceeds set limit. Skipping!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = modblob.bcatalog.copy() catout['x'] += modblob.subvector[1] catout['y'] += modblob.subvector[0] del modblob return catout # Run models if conf.ITERATIVE_SUBTRACTION_THRESH is None: iter_thresh = 1E31 else: iter_thresh = conf.ITERATIVE_SUBTRACTION_THRESH if (conf.ITERATIVE_SUBTRACTION_THRESH is not None) & (modblob.n_sources >= iter_thresh): logger.debug(f'Performing iterative subtraction for {conf.MODELING_NICKNAME}') astart = time.time() for i, band in enumerate(modblob.bands): band_name = band[len(conf.MODELING_NICKNAME)+1:] zpt = conf.MULTIBAND_ZPT[modblob._band2idx(band_name)] # sorting order avg_flux = np.zeros(modblob.n_sources) for i, item in enumerate(modblob.bcatalog): rawfluxes = np.array([np.sum(img[modblob.segmap == item['source_id']]) for img in modblob.images]) fluxes = rawfluxes * 10**(-0.4 * (zpt - 23.9)) avg_flux[i] = np.mean(fluxes, 0) index = np.argsort(avg_flux)[::-1] # sort by brightness copy_images = modblob.images.copy() import copy modblob.solution_model_images = np.zeros_like(modblob.images) for i, idx in enumerate(index): logger.debug(f" ({i+1}/{modblob.n_sources}) Attemping to model source #{item['source_id']}") itemblob = copy.deepcopy(modblob) itemblob.bcatalog = Table(modblob.bcatalog[idx]) itemblob.n_sources = 1 itemblob.mids = np.ones(itemblob.n_sources, dtype=int) itemblob.model_catalog = np.zeros(itemblob.n_sources, dtype=object) itemblob.solution_catalog = np.zeros(itemblob.n_sources, dtype=object) itemblob.solved_chisq = np.zeros(itemblob.n_sources) itemblob.solved_bic = np.zeros(itemblob.n_sources) itemblob.solution_chisq = np.zeros(itemblob.n_sources) itemblob.tr_catalogs = np.zeros((itemblob.n_sources, 3, 2), dtype=object) itemblob.chisq = np.zeros((itemblob.n_sources, 3, 2)) itemblob.rchisq = np.zeros((itemblob.n_sources, 3, 2)) itemblob.bic = np.zeros((itemblob.n_sources, 3, 2)) itemblob.images = copy_images itemblob._is_itemblob = True logger.debug(f'Staging images for {conf.MODELING_NICKNAME} -- blob #{modblob.blob_id}') itemblob.stage_images() logger.debug(f'Images staged. ({time.time() - astart:3.3f})s') astart = time.time() logger.debug(f'Modeling images for {conf.MODELING_NICKNAME} -- blob #{modblob.blob_id}') status = itemblob.tractor_phot() if status: logger.debug(f'Morphology determined. ({time.time() - astart:3.3f})s') logger.debug(f'Transferring results back to parent blob...') #transfer back modblob.bcatalog[idx] = itemblob.bcatalog[0] modblob.solution_model_images += itemblob.solution_model_images # subtract model from image copy_images -= itemblob.solution_model_images else: logger.warning(f'Morphology failed! ({time.time() - astart:3.3f})s') # # if conf.NTHREADS != 0: # # logger.removeHandler(fh) # catout = modblob.bcatalog.copy() # catout['x'] += modblob.subvector[1] # catout['y'] += modblob.subvector[0] # del modblob # return catout else: astart = time.time() logger.debug(f'Staging images for {conf.MODELING_NICKNAME}') modblob.stage_images() logger.debug(f'Images staged. ({time.time() - astart:3.3f})s') astart = time.time() logger.debug(f'Modeling images for {conf.MODELING_NICKNAME}') status = modblob.tractor_phot() if not status: logger.warning(f'Morphology failed! ({time.time() - astart:3.3f})s') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = modblob.bcatalog.copy() catout['x'] += modblob.subvector[1] catout['y'] += modblob.subvector[0] del modblob return catout logger.debug(f'Morphology determined. ({time.time() - astart:3.3f})s') # Run follow-up phot if conf.DO_APPHOT: for img_type in ('image', 'model', 'isomodel', 'residual', 'weight', 'chisq',): for band in modblob.bands: if True: #try: modblob.aperture_phot(band, img_type, sub_background=conf.SUBTRACT_BACKGROUND) else: logger.warning(f'Aperture photmetry FAILED for {band} {img_type}. Likely a bad blob.') if conf.DO_SEPHOT: for img_type in ('image', 'model', 'isomodel', 'residual'): for band in modblob.bands: try: modblob.sep_phot(band, img_type, centroid='MODEL', sub_background=conf.SUBTRACT_BACKGROUND) modblob.sep_phot(band, img_type, centroid='DETECTION', sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP photometry FAILED for {band} {img_type}. Likely a bad blob.') if conf.DO_SEXPHOT: for band in modblob.bands: try: modblob.residual_phot(band, sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP residual photmetry FAILED. Likely a bad blob.)') duration = time.time() - tstart logger.info(f'Solution for Blob #{modblob.blob_id} (N={modblob.n_sources}) arrived at in {duration:3.3f}s ({duration/modblob.n_sources:2.2f}s per src)') catout = modblob.bcatalog.copy() del modblob #################### FORCED PHOTOMETRY ################################ if fblob is not None: # make new blob with band information logger.debug(f'Making blob with {conf.MULTIBAND_NICKNAME}') fblob.logger = logger if fblob.rejected: logger.info('Blob has been rejected!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout astart = time.time() status = fblob.stage_images() if not status: # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout logger.info(f'{len(fblob.bands)} images staged. ({time.time() - astart:3.3f})s') astart = time.time() if modblob is not None: fblob.model_catalog = modblob.solution_catalog.copy() fblob.position_variance = modblob.position_variance.copy() fblob.parameter_variance = modblob.parameter_variance.copy() logger.info(f'Solution parameters transferred. ({time.time() - astart:3.3f})s') else: if catalog is None: raise ValueError('Input catalog not supplied!') else: blobmask = np.ones(len(catalog)) if source_id is not None: # If the user wants to just model a specific source... logger.info(f'Preparing to force single source: {source_id}') sid = catalog['source_id'] bid = catalog['blob_id'] fblob.bcatalog = catalog[(sid == source_id) & (bid == blob_id)] fblob.n_sources = len(fblob.bcatalog) fblob.mids = np.ones(fblob.n_sources, dtype=int) fblob.model_catalog = np.zeros(fblob.n_sources, dtype=object) fblob.solution_catalog = np.zeros(fblob.n_sources, dtype=object) fblob.solved_chisq = np.zeros(fblob.n_sources) fblob.solved_bic = np.zeros(fblob.n_sources) fblob.solution_chisq = np.zeros(fblob.n_sources) fblob.tr_catalogs = np.zeros((fblob.n_sources, 3, 2), dtype=object) fblob.chisq = np.zeros((fblob.n_sources, 3, 2)) fblob.rchisq = np.zeros((fblob.n_sources, 3, 2)) fblob.bic = np.zeros((fblob.n_sources, 3, 2)) assert(len(fblob.bcatalog) > 0) else: if blob_id is not None: blobmask = catalog['blob_id'] == blob_id fblob.bcatalog = catalog[blobmask] fblob.n_sources = len(fblob.bcatalog) catalog = catalog[blobmask] catalog['X_MODEL'] -= fblob.subvector[1] + fblob.mosaic_origin[1] - conf.BRICK_BUFFER + 1 catalog['Y_MODEL'] -= fblob.subvector[0] + fblob.mosaic_origin[0] - conf.BRICK_BUFFER + 1 fblob.model_catalog, good_sources = models_from_catalog(catalog, fblob) if (good_sources == False).all(): logger.warning('All sources are invalid!') catalog['X_MODEL'] += fblob.subvector[1] + fblob.mosaic_origin[1] - conf.BRICK_BUFFER + 1 catalog['Y_MODEL'] += fblob.subvector[0] + fblob.mosaic_origin[0] - conf.BRICK_BUFFER + 1 return catalog fblob.position_variance = None fblob.parameter_variance = None fblob.bcatalog = catalog[good_sources] fblob.n_sources = len(catalog) if fblob.rejected: logger.info('Blob has been rejected!') # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout # Forced phot astart = time.time() logger.info(f'Starting forced photometry...') status = fblob.forced_phot() if not status: # if conf.NTHREADS != 0: # logger.removeHandler(fh) catout = fblob.bcatalog.copy() del fblob return catout logger.info(f'Force photometry complete. ({time.time() - astart:3.3f})s') # Run follow-up phot if conf.DO_APPHOT: for img_type in ('image', 'model', 'isomodel', 'residual', 'weight', 'chisq',): for band in fblob.bands: # try: fblob.aperture_phot(band, img_type, sub_background=conf.SUBTRACT_BACKGROUND) # except: # logger.warning(f'Aperture photmetry FAILED for {band} {img_type}. Likely a bad blob.') if conf.PLOT > 0: for i, sid in enumerate(fblob.bcatalog['source_id']): for band in fblob.bands: fig, ax = plt.subplots() ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_image'][i], c='k', ls='dashed') ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_model'][i], c='b') ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_isomodel'][i], c='g') ax.plot(conf.APER_PHOT, fblob.bcatalog[f'FLUX_APER_{band}_residual'][i], c='r') fig.savefig(os.path.join(conf.PLOT_DIR, f'aper_{band}_{sid}.pdf')) if conf.DO_SEPHOT: for img_type in ('image', 'model', 'isomodel', 'residual',): for band in fblob.bands: try: fblob.sep_phot(band, img_type, centroid='MODEL', sub_background=conf.SUBTRACT_BACKGROUND) fblob.sep_phot(band, img_type, centroid='DETECTION', sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP photometry FAILED for {band} {img_type}. Likely a bad blob.') if conf.DO_SEXPHOT: for band in fblob.bands: try: fblob.residual_phot(band, sub_background=conf.SUBTRACT_BACKGROUND) except: logger.warning(f'SEP residual photmetry FAILED. Likely a bad blob.)') duration = time.time() - tstart logger.info(f'Solution for blob {fblob.blob_id} (N={fblob.n_sources}) arrived at in {duration:3.3f}s ({duration/fblob.n_sources:2.2f}s per src)') catout = fblob.bcatalog.copy() del fblob # if conf.NTHREADS != 0: # logger.removeHandler(fh) return catout def detect_sources(brick_id, catalog=None, segmap=None, blobmap=None, use_mask=True): """Now we can detect stuff and be rid of it! Parameters ---------- brick_id : [type] [description] catalog : [type], optional [description], by default None segmap : [type], optional [description], by default None blobmap : [type], optional [description], by default None catalog : [type], optional [description], by default None use_mask : bool, optional [description], by default True Returns ------- [type] [description] Raises ------ RuntimeError [description] ValueError [description] ValueError [description] ValueError [description] """ if conf.LOGFILE_LOGGING_LEVEL is not None: brick_logging_path = os.path.join(conf.LOGGING_DIR, f"B{brick_id}_logfile.log") logging.info(f'Logging information will be streamed to console and to {brick_logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(brick_logging_path): logging.warning('Existing logfile will be overwritten.') os.remove(brick_logging_path) # close and remove the old file handler #fh.close() #logger.removeHandler(fh) # we will add an additional file handler to keep track of brick_id specific information # set up the new file handler shutil.copy(logging_path, brick_logging_path) new_fh = logging.FileHandler(brick_logging_path,mode='a') new_fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) new_fh.setFormatter(formatter) logger.addHandler(new_fh) # Create detection brick tstart = time.time() detbrick = stage_brickfiles(brick_id, nickname=conf.DETECTION_NICKNAME, modeling=True, is_detection=True) if detbrick is None: return logger.info(f'Detection brick #{brick_id} created ({time.time() - tstart:3.3f}s)') # Sextract sources tstart = time.time() if (segmap is None) & (catalog is None): try: detbrick.sextract(conf.DETECTION_NICKNAME, sub_background=conf.DETECTION_SUBTRACT_BACKGROUND, use_mask=use_mask, incl_apphot=conf.DO_APPHOT) logger.info(f'Detection brick #{brick_id} sextracted {detbrick.n_sources} objects ({time.time() - tstart:3.3f}s)') detbrick.is_borrowed = False except: raise RuntimeError(f'Detection brick #{brick_id} sextraction FAILED. ({time.time() - tstart:3.3f}s)') return # or find existing catalog/segmap info elif (catalog == 'auto') | ((segmap is not None) & (catalog is not None) & (segmap is not None)): if (catalog == 'auto'): search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') if os.path.exists(search_fn): catalog = Table(fits.open(search_fn)[1].data) else: raise ValueError(f'No valid catalog was found for {brick_id}') logger.info(f'Overriding SExtraction with external catalog. ({search_fn})') search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) segmap = hdul_seg['SEGMAP'].data blobmap = hdul_seg['BLOBMAP'].data else: raise ValueError(f'No valid segmentation map was found for {brick_id}') if conf.X_COLNAME is not 'x': if 'x' in catalog.colnames: if 'x_borrowed' in catalog.colnames: catalog.remove_column('x_borrowed') catalog['x'].name = 'x_borrowed' catalog[conf.X_COLNAME].name = 'x' if conf.Y_COLNAME is not 'y': if 'y' in catalog.colnames: if 'y_borrowed' in catalog.colnames: catalog.remove_column('y_borrowed') catalog['y'].name = 'y_borrowed' catalog[conf.Y_COLNAME].name = 'y' # catalog['x'] = catalog['x'] - detbrick.mosaic_origin[1] + conf.BRICK_BUFFER - 1 # catalog['y'] = catalog['y'] - detbrick.mosaic_origin[0] + conf.BRICK_BUFFER - 1 detbrick.catalog = catalog detbrick.n_sources = len(catalog) detbrick.n_blobs = len(np.unique(catalog['blob_id'])) detbrick.is_borrowed = True detbrick.segmap = segmap detbrick.segmask = segmap.copy() detbrick.segmask[segmap!=0] = 1 detbrick.blobmap = blobmap else: raise ValueError('No valid segmap, blobmap, and catalog provided to override SExtraction!') return if (~detbrick.is_borrowed): detbrick.cleanup() if conf.PLOT > 2: plot_blobmap(detbrick, image=detbrick.images[0], band=conf.DETECTION_NICKNAME, mode='log') plot_blobmap(detbrick, image=detbrick.images[0], band=conf.DETECTION_NICKNAME, mode='rms') logger.info('Saving detection catalog...') outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_{conf.DETECTION_NICKNAME}.fits') tstart = time.time() if os.path.exists(outpath) & (~conf.OVERWRITE): logger.warning('Catalog file exists and I will not overwrite it!') else: detbrick.catalog.write(outpath, overwrite=conf.OVERWRITE) logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') # Save segmap and blobmaps # if (~detbrick.is_borrowed): tstart = time.time() logger.info('Saving segmentation and blob maps...') outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(outpath) & (~conf.OVERWRITE): logger.warning('Segmentation file exists and I will not overwrite it!') else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) hdul.append(fits.ImageHDU(data=detbrick.segmap, name='SEGMAP', header=detbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=detbrick.blobmap, name='BLOBMAP', header=detbrick.wcs.to_header())) outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') tstart = time.time() # else: # logger.info(f'You gave me a catalog and segmap, so I am not saving it again.') # filen = open(os.path.join(conf.INTERIM_DIR, f'detbrick_N{brick_id}.pkl'), 'wb') # dill.dump(detbrick, filen) return detbrick def make_models(brick_id, detbrick='auto', band=None, source_id=None, blob_id=None, multiband_model=len(conf.MODELING_BANDS)>1, source_only=False): """ Stage 2. Detect your sources and determine the best model parameters for them """ if (band is None) & (len(conf.MODELING_BANDS) > 0): modband = conf.MODELING_BANDS addName = conf.MULTIBAND_NICKNAME multiband_model = True if (type(modband) == str) | (type(modband) == np.str_): modband = [modband,] else: logger.warning(f'Disregarding MODELING_BANDS config parameter. Using {band} for modelling instead!') if (type(band) == list) | (type(band) == np.ndarray): multiband_model = True modband = band elif (type(band) == str) | (type(band) == np.str_): multiband_model = False modband = [band,] else: sys.exit('ERROR -- Input band is not a list, array, or string!') addName = '_'.join(modband) # create new logging file if conf.LOGFILE_LOGGING_LEVEL is not None: brick_logging_path = os.path.join(conf.LOGGING_DIR, f"B{brick_id}_{addName}_logfile.log") logger.info(f'Logging information will be streamed to console and to {brick_logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(brick_logging_path): logger.warning('Existing logfile will be overwritten.') os.remove(brick_logging_path) # close and remove the old file handler #fh.close() #logger.removeHandler(fh) # we will add an additional file handler to keep track of brick_id specific information # set up the new file handler shutil.copy(logging_path, brick_logging_path) new_fh = logging.FileHandler(brick_logging_path,mode='a') new_fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) new_fh.setFormatter(formatter) logger.addHandler(new_fh) # Warn user that you cannot plot while running multiprocessing... if (source_id is None) & (blob_id is None): if (conf.NBLOBS == 0) & (conf.NTHREADS > 1) & ((conf.PLOT > 0)): conf.PLOT = 0 logger.warning('Plotting not supported while modeling in parallel!') if detbrick=='auto': outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_{conf.DETECTION_NICKNAME}.fits') if os.path.exists(outpath): logger.info(f'Loading in catalog from {outpath}') catalog = Table.read(outpath) n_blobs = len(np.unique(catalog['blob_id'])) n_sources = len(catalog) else: raise RuntimeError(f'Catalog was not found at {outpath}') outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(outpath): logger.info(f'Loading in segmaps from {outpath}') hdul = fits.open(outpath) segmap = hdul['SEGMAP'].data segmask = segmap.copy() segmask[segmap>1] = 1 blobmap = hdul['BLOBMAP'].data else: raise RuntimeError(f'Segmaps were not found at {outpath}') # filen = open(os.path.join(conf.INTERIM_DIR, f'detbrick_N{brick_id}.pkl'), 'rb') # detbrick = dill.load(filen) # Create modbrick if band is None: if not multiband_model: img_names = [conf.MODELING_NICKNAME,] mod_nickname = conf.MODELING_NICKNAME elif multiband_model: img_names = conf.MODELING_BANDS for iname in img_names: if iname not in conf.BANDS: raise ValueError(f'{iname} is listed as a band to model, but is not found in conf.BANDS!') mod_nickname = conf.MULTIBAND_NICKNAME else: if type(band) == list: img_names = band else: img_names = [band,] mod_nickname = conf.MULTIBAND_NICKNAME # Loop over bands to do the modelling on -- if model in series! eff_area = None if not multiband_model: for band_num, mod_band in enumerate(img_names): tstart = time.time() modbrick = stage_brickfiles(brick_id, band=mod_band, nickname=mod_nickname, modeling=~(modband[band_num] in conf.BANDS)) # catalog['x'] = catalog['x'] - modbrick.mosaic_origin[1] + conf.BRICK_BUFFER - 1 # catalog['y'] = catalog['y'] - modbrick.mosaic_origin[0] + conf.BRICK_BUFFER - 1 if modbrick is None: return if (band is not None) & (band != conf.MODELING_NICKNAME): modbrick.bands = [f'{conf.MODELING_NICKNAME}_{mod_band}',] modbrick.n_bands = len(modbrick.bands) else: mod_band = conf.MODELING_NICKNAME logger.info(f'Modeling brick #{brick_id} created ({time.time() - tstart:3.3f}s)') # Inform the user about the blob occupation distribution logger.info('Blob Occupation Distribution') for i in np.arange(5)+1: n_blob = np.sum(catalog['N_BLOB'] == i) logger.info(f' {i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') n_blob = np.sum(catalog['N_BLOB'] > i) logger.info(f' >{i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') if conf.PLOT > 3: plot_brick(modbrick, 0, band=mod_band) plot_background(modbrick, 0, band=mod_band) plot_mask(modbrick, 0, band=mod_band) if conf.SAVE_BACKGROUND: outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_BACKGROUNDS.fits') logger.info('Saving background and RMS maps...') if os.path.exists(outpath): hdul = fits.open(outpath) else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) for m, mband in enumerate(modbrick.bands): hdul.append(fits.ImageHDU(data=modbrick.background_images[m], name=f'BACKGROUND_{mband}', header=modbrick.wcs.to_header())) hdul[f'BACKGROUND_{mband}'].header['BACK_GLOBAL'] = modbrick.backgrounds[m,0] hdul[f'BACKGROUND_{mband}'].header['BACK_RMS'] = modbrick.backgrounds[m,1] if (conf.SUBTRACT_BACKGROUND_WITH_MASK|conf.SUBTRACT_BACKGROUND_WITH_DIRECT_MEDIAN): hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_GLOBAL'] = modbrick.masked_median[m] hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_RMS'] = modbrick.masked_std[m] hdul.append(fits.ImageHDU(data=modbrick.background_rms_images[m], name=f'RMS_{mband}', header=modbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=1/np.sqrt(modbrick.weights[m]), name=f'UNC_{mband}', header=modbrick.wcs.to_header())) hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') logger.debug(f'Brick #{brick_id} -- Image statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.images[0], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Weight statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.weights[0], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Error statistics for {mod_band}') shape, minmax, mean, var = stats.describe(1/np.sqrt(np.nonzero(modbrick.weights[0].flatten())), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Background statistics for {mod_band}') logger.debug(f' Global: {modbrick.backgrounds[0, 0]:6.6f}') logger.debug(f' RMS: {modbrick.backgrounds[0, 1]:6.6f}\n') modbrick.catalog = catalog.copy() modbrick.segmap = segmap modbrick.n_sources = n_sources modbrick.is_modeling = True modbrick.blobmap = blobmap modbrick.n_blobs = n_blobs modbrick.segmask = segmask # Transfer to MODBRICK tstart = time.time() if band_num > 0: modbrick.n_blobs, modbrick.n_sources, modbrick.segmap, modbrick.segmask, modbrick.blobmap, modbrick.catalog = n_blobs, n_sources, segmap, segmask, blobmap, catalog if modbrick.n_blobs <= 0: logger.critical(f'Modeling brick #{brick_id} gained {modbrick.n_blobs} blobs! Quiting.') return modbrick.run_weights() modbrick.run_background() modbrick.add_columns(modbrick_name=mod_band, multiband_model = False) # doing on detbrick gets column names wrong logger.info(f'Modeling brick #{brick_id} gained {modbrick.n_blobs} blobs with {modbrick.n_sources} objects ({time.time() - tstart:3.3f}s)') if source_only: if source_id is None: raise ValueError('Source only is set True, but no source is has been provided!') # Run a specific source or blob if (source_id is not None) | (blob_id is not None): # conf.PLOT = True outcatalog = modbrick.catalog.copy() # print('AHHHHH ', outcatalog['x', 'y']) mosaic_origin = modbrick.mosaic_origin # print('MOSAIC ORIGIN ', mosaic_origin) brick_id = modbrick.brick_id if source_id is not None: blob_id = np.unique(modbrick.blobmap[modbrick.segmap == source_id]) if len(blob_id) == 1: blob_id = blob_id[0] else: raise ValueError('Requested source is not in brick!') if blob_id is not None: if blob_id not in outcatalog['blob_id']: raise ValueError(f'No blobs exist for requested blob id {blob_id}') logger.info(f'Running single blob {blob_id}') modblob = modbrick.make_blob(blob_id) modblob.is_modeling=True # if source_id is set, then look at only that source if modblob.rejected: raise ValueError('Requested blob is invalid') if source_only & (source_id not in modblob.bcatalog['source_id']): logger.warning('Requested source is not in blob!') for source in modblob.bcatalog: logger.warning(source['source_id'], source['cflux']) raise ValueError('Requested source is not in blob!') output_rows = runblob(blob_id, modblob, modeling=True, plotting=conf.PLOT, source_id=source_id, source_only=source_only) output_cat = vstack(output_rows) for colname in output_cat.colnames: if colname not in outcatalog.colnames: shape = np.shape(output_cat[colname][0]) outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=shape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # Else, production mode -- all objects in brick are to be run. else: if conf.NBLOBS > 0: run_n_blobs = conf.NBLOBS else: run_n_blobs = modbrick.n_blobs logger.info(f'Preparing to run {run_n_blobs} blobs.') outcatalog = modbrick.catalog.copy() mosaic_origin = modbrick.mosaic_origin brick_id = modbrick.brick_id logger.info('Generating blobs...') astart = time.time() modblobs = (modbrick.make_blob(i) for i in np.arange(1, run_n_blobs+1)) logger.info(f'{run_n_blobs} blobs generated ({time.time() - astart:3.3f}s)') #del modbrick tstart = time.time() if conf.NTHREADS > 1: with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') result = pool.uimap(partial(runblob, modeling=True, plotting=conf.PLOT, source_only=source_only), np.arange(1, run_n_blobs+1), modblobs) output_rows = list(result) logger.info('Parallel processing complete.') else: logger.info('Serial processing initalized.') output_rows = [runblob(kblob_id+1, kblob, modeling=True, plotting=conf.PLOT, source_only=source_only) for kblob_id, kblob in enumerate(modblobs)] output_cat = vstack(output_rows) # Estimate covariance modbrick.bcatalog = output_cat astart = time.time() logger.info(f'Starting covariance estimation...') status = modbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=True) logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') # estimate effective area if conf.ESTIMATE_EFF_AREA: eff_area = np.zeros(len(img_names)) for b, bname in enumerate(img_names): eff_area[b] = modbrick.estimate_effective_area(output_cat, bname, modeling=True)[0] ttotal = time.time() - tstart logger.info(f'Completed {run_n_blobs} blobs with {len(output_cat)} sources in {ttotal:3.3f}s (avg. {ttotal/len(output_cat):2.2f}s per source)') for colname in output_cat.colnames: if colname not in outcatalog.colnames: shape = np.shape(output_cat[colname][0]) outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=shape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # open again and add # If user wants model and/or residual images made: if conf.MAKE_RESIDUAL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{modbrick.bands[0]}']] modbrick.make_residual_image(catalog=cleancatalog, use_band_position=False, modeling=True) elif conf.MAKE_MODEL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{modbrick.bands[0]}']] modbrick.make_model_image(catalog=cleancatalog, use_band_position=False, modeling=True) # Reconstuct mosaic positions of invalid sources invalid = ~modbrick.catalog[f'VALID_SOURCE_{modbrick.bands[0]}'] # modbrick.catalog[invalid][f'X_MODEL_{modbrick.bands[0]}'] = modbrick.catalog[invalid]['x_orig'] + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER # modbrick.catalog[invalid][f'Y_MODEL_{modbrick.bands[0]}'] = modbrick.catalog[invalid]['y_orig'] + modbrick.mosaic_origin[0] - conf.BRICK_BUFFER # print(np.sum(invalid), len(invalid)) # plt.pause(10) # idx = np.argwhere(invalid)[:20] # print(modbrick.catalog[idx][f'X_MODEL_{modbrick.bands[0]}'], np.array(modbrick.catalog[idx]['x_orig']) + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER) # if multiband model is enabled... elif multiband_model: tstart = time.time() modbrick = stage_brickfiles(brick_id, band=img_names, nickname=mod_nickname, modeling=True) if modbrick is None: return # if detbrick.is_borrowed: # catalog['x'] = catalog['x'] - modbrick.mosaic_origin[1] + conf.BRICK_BUFFER - 1 # catalog['y'] = catalog['y'] - modbrick.mosaic_origin[0] + conf.BRICK_BUFFER - 1 modbrick.bands = [f'{conf.MODELING_NICKNAME}_{b}' for b in img_names] modbrick.n_bands = len(modbrick.bands) logger.info(f'Multi-band Modeling brick #{brick_id} created ({time.time() - tstart:3.3f}s)') # Inform the user about the blob occupation distribution logger.info('Blob Occupation Distribution') __, idx = np.unique(catalog['blob_id'], return_index=True) for i in np.arange(5)+1: n_blob = np.sum(catalog['N_BLOB'][idx] == i) logger.info(f' {i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') n_blob = np.sum(catalog['N_BLOB'][idx] > i) logger.info(f' >{i}: {n_blob}/{n_blobs} ({n_blob/n_blobs*100:2.2f}%)') for i, mod_band in enumerate(modbrick.bands): if conf.PLOT > 3: plot_brick(modbrick, 0, band=mod_band) plot_background(modbrick, 0, band=mod_band) plot_mask(modbrick, 0, band=mod_band) logger.debug(f'Brick #{brick_id} -- Image statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.images[i], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Weight statistics for {mod_band}') shape, minmax, mean, var = stats.describe(modbrick.weights[i], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Error statistics for {mod_band}') shape, minmax, mean, var = stats.describe(1/np.sqrt(np.nonzero(modbrick.weights[i].flatten())), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Background statistics for {mod_band}') logger.debug(f' Global: {modbrick.backgrounds[i, 0]:6.6f}') logger.debug(f' RMS: {modbrick.backgrounds[i, 1]:6.6f}\n') modbrick.catalog = catalog.copy() modbrick.segmap = segmap modbrick.n_sources = n_sources modbrick.is_modeling = True modbrick.blobmap = blobmap modbrick.n_blobs = n_blobs modbrick.segmask = segmask # Cleanup on MODBRICK tstart = time.time() modbrick.shared_params = True ## CRITICAL THING TO DO HERE! modbrick.add_columns(multiband_model=True) # doing on detbrick gets column names wrong logger.info(f'Modeling brick #{brick_id} has {modbrick.n_blobs} blobs with {modbrick.n_sources} objects ({time.time() - tstart:3.3f}s)') modbrick.run_weights() modbrick.run_background() if conf.PLOT > 3: plot_blobmap(modbrick) if conf.SAVE_BACKGROUND: outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_BACKGROUNDS.fits') logger.info('Saving background and RMS maps...') if os.path.exists(outpath): hdul = fits.open(outpath) else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) for m, mband in enumerate(modbrick.bands): hdul.append(fits.ImageHDU(data=modbrick.background_images[m], name=f'BACKGROUND_{mband}', header=modbrick.wcs.to_header())) hdul[f'BACKGROUND_{mband}'].header['BACK_GLOBAL'] = modbrick.backgrounds[m,0] hdul[f'BACKGROUND_{mband}'].header['BACK_RMS'] = modbrick.backgrounds[m,1] if (conf.SUBTRACT_BACKGROUND_WITH_MASK|conf.SUBTRACT_BACKGROUND_WITH_DIRECT_MEDIAN): hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_GLOBAL'] = modbrick.masked_median[m] hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_RMS'] = modbrick.masked_std[m] hdul.append(fits.ImageHDU(data=modbrick.background_rms_images[m], name=f'RMS_{mband}', header=modbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=1/np.sqrt(modbrick.weights[m]), name=f'UNC_{mband}', header=modbrick.wcs.to_header())) hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') if source_only: if source_id is None: raise ValueError('Source only is set True, but no source is has been provided!') # Run a specific source or blob blob_only=False if (source_id is not None) | (blob_id is not None): # conf.PLOT = True outcatalog = modbrick.catalog.copy() # print('AHHHHH ', outcatalog['x', 'y']) mosaic_origin = modbrick.mosaic_origin # print('MOSAIC ORIGIN ', mosaic_origin) brick_id = modbrick.brick_id if source_id is not None: blob_id = np.unique(modbrick.blobmap[modbrick.segmap == source_id]) if len(blob_id) == 1: blob_id = blob_id[0] else: raise ValueError('Requested source is not in brick!') if blob_id is not None: if blob_id not in outcatalog['blob_id']: raise ValueError(f'No blobs exist for requested blob id {blob_id}') blob_only=True logger.info(f'Running single blob for blob {blob_id}') modblob = modbrick.make_blob(blob_id) if modblob.rejected: raise ValueError('Requested blob is invalid') output_rows = runblob(blob_id, modblob, modeling=True, plotting=conf.PLOT, source_id=source_id, blob_only=blob_only, source_only=source_only) output_cat = vstack(output_rows) # Estimate covariance modbrick.bcatalog = output_cat # astart = time.time() # logger.info(f'Starting covariance estimation...') # status = modbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=True) # logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') for colname in output_cat.colnames: if colname not in outcatalog.colnames: colshape = output_cat[colname].shape outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # Else, production mode -- all objects in brick are to be run. else: if conf.NBLOBS > 0: run_n_blobs = conf.NBLOBS bid_arr = np.arange(1, run_n_blobs+1) elif conf.MODEL_PHOT_MAX_NBLOB > 0: bid_arr = np.unique(modbrick.catalog['blob_id'][modbrick.catalog['N_BLOB'] <= conf.MODEL_PHOT_MAX_NBLOB]) run_n_blobs = len(bid_arr) if conf.NBLOBS > 0: bid_arr = bid_arr[:conf.NBLOBS] run_n_blobs = len(bid_arr) else: run_n_blobs = modbrick.n_blobs bid_arr = np.arange(1, run_n_blobs+1) logger.info(f'Preparing to run {run_n_blobs}/{modbrick.n_blobs} blobs.') outcatalog = modbrick.catalog.copy() mosaic_origin = modbrick.mosaic_origin brick_id = modbrick.brick_id logger.info('Generating blobs...') astart = time.time() modblobs = (modbrick.make_blob(i) for i in bid_arr) logger.info(f'{run_n_blobs} blobs generated ({time.time() - astart:3.3f}s)') #del modbrick tstart = time.time() if conf.NTHREADS > 1: with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') result = pool.uimap(partial(runblob, modeling=True, plotting=conf.PLOT), bid_arr, modblobs) output_rows = list(result) logger.info('Parallel processing complete.') else: logger.info('Serial processing initalized.') output_rows = [runblob(kblob_id+1, kblob, modeling=True, plotting=conf.PLOT) for kblob_id, kblob in enumerate(modblobs)] output_cat = vstack(output_rows) ttotal = time.time() - tstart logger.info(f'Completed {run_n_blobs} blobs with {len(output_cat)} sources in {ttotal:3.3f}s (avg. {ttotal/len(output_cat):2.2f}s per source)') # Estimate covariance modbrick.bcatalog = output_cat # astart = time.time() # logger.info(f'Starting covariance estimation...') # status = modbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=True) # logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') # estimate effective area if conf.ESTIMATE_EFF_AREA: eff_area = dict(zip(img_names, np.zeros(len(img_names)))) for b, bname in enumerate(img_names): eff_area[bname] = modbrick.estimate_effective_area(output_cat, bname, modeling=True)[0] else: eff_area = None for colname in output_cat.colnames: if colname not in outcatalog.colnames: colshape = np.shape(output_cat[colname]) if len(colshape) == 2: colshape = (colshape[1],) else: colshape = (1,) outcatalog.add_column(Column(length=len(outcatalog), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) #outcatalog = join(outcatalog, output_cat, join_type='left', ) for row in output_cat: outcatalog[np.where(outcatalog['source_id'] == row['source_id'])[0]] = row # vs = outcatalog['VALID_SOURCE'] # scoords = SkyCoord(ra=outcatalog[vs]['RA'], dec=outcatalog[vs]['DEC'], unit='degree') # ebmv = m.ebv(scoords) # col_ebmv = Column(np.zeros_like(outcatalog['RA']), name='EBV') # col_ebmv[vs] = ebmv # outcatalog.add_column(col_ebmv) modbrick.catalog = outcatalog # Reconstuct mosaic positions of invalid sources invalid = ~modbrick.catalog[f'VALID_SOURCE'] modbrick.catalog['x'] = modbrick.catalog['x'] + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER modbrick.catalog['y'] = modbrick.catalog['y'] + modbrick.mosaic_origin[0] - conf.BRICK_BUFFER modbrick.catalog['x_orig'] = modbrick.catalog['x_orig'] + modbrick.mosaic_origin[1] - conf.BRICK_BUFFER modbrick.catalog['y_orig'] = modbrick.catalog['y_orig'] + modbrick.mosaic_origin[0] - conf.BRICK_BUFFER # If model bands is more than one, choose best one # Choose based on min chisq if (len(img_names) > 1) & ~multiband_model: logger.info(f'Selecting best-fit models within {len(img_names)} bands') name_arr = np.ones(shape=(len(modbrick.catalog), len(img_names)), dtype='U11') score_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) valid_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) xmodel_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) ymodel_arr = np.zeros(shape=(len(modbrick.catalog), len(img_names))) for i, mod_band in enumerate(img_names): name_arr[:, i] = mod_band score_arr[:, i] = modbrick.catalog[f'CHISQ_{conf.MODELING_NICKNAME}_{mod_band}'] xmodel_arr[:, i] = modbrick.catalog[f'X_MODEL_{conf.MODELING_NICKNAME}_{mod_band}'] ymodel_arr[:, i] = modbrick.catalog[f'Y_MODEL_{conf.MODELING_NICKNAME}_{mod_band}'] valid_arr[:, i] = modbrick.catalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}_{mod_band}'] score_arr[np.logical_not(valid_arr[:,i]), i] = 1E31 argmin_score = np.argmin(score_arr, 1) argmin_zero = np.min(score_arr, 1) == 1E31 argmin_zero = np.zeros_like(argmin_zero) modbrick.catalog['BEST_MODEL_BAND'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(name_arr[~argmin_zero], argmin_score[~argmin_zero])] modbrick.catalog['X_MODEL'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(xmodel_arr[~argmin_zero], argmin_score[~argmin_zero])] modbrick.catalog['Y_MODEL'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(ymodel_arr[~argmin_zero], argmin_score[~argmin_zero])] modbrick.catalog['VALID_SOURCE'][~argmin_zero] = [modband_opt[k] for modband_opt, k in zip(valid_arr[~argmin_zero], argmin_score[~argmin_zero])] # if modbrick.wcs is not None: # skyc = self.brick_wcs.all_pix2world(modbrick.catalog[f'X_MODEL'] - modbrick.mosaic_origin[0] + conf.BRICK_BUFFER, modbrick.catalog[f'Y_MODEL'] - modbrick.mosaic_origin[1] + conf.BRICK_BUFFER, 0) # modbrick.bcatalog[row][f'RA'] = skyc[0] # modbrick.bcatalog[row][f'DEC'] = skyc[1] # logger.info(f" Sky Model RA, Dec: {skyc[0]:6.6f} deg, {skyc[1]:6.6f} deg") elif (len(img_names) > 1) & multiband_model: modbrick.catalog['BEST_MODEL_BAND'] = conf.MODELING_NICKNAME # modbrick.catalog['X_MODEL'] # modbrick.catalog['Y_MODEL'] # ???? WHAT # modbrick.catalog['VALID_SOURCE'] elif img_names[0] != conf.MODELING_NICKNAME: modbrick.catalog['BEST_MODEL_BAND'] = f'{conf.MODELING_NICKNAME}_{img_names[0]}' modbrick.catalog['X_MODEL'] = modbrick.catalog[f'X_MODEL_{conf.MODELING_NICKNAME}_{img_names[0]}'] modbrick.catalog['Y_MODEL'] = modbrick.catalog[f'Y_MODEL_{conf.MODELING_NICKNAME}_{img_names[0]}'] modbrick.catalog['VALID_SOURCE'] = modbrick.catalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}_{img_names[0]}'] else: modbrick.catalog['BEST_MODEL_BAND'] = f'{conf.MODELING_NICKNAME}' modbrick.catalog['X_MODEL'] = modbrick.catalog[f'X_MODEL_{conf.MODELING_NICKNAME}'] modbrick.catalog['Y_MODEL'] = modbrick.catalog[f'Y_MODEL_{conf.MODELING_NICKNAME}'] modbrick.catalog['VALID_SOURCE'] = modbrick.catalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}'] # write out cat if conf.OUTPUT: hdr = header_from_dict(conf.__dict__) if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in img_names: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b}', eff_area_deg, f'{conf.MODELING_NICKNAME} {band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(modbrick.catalog) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) outpath = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') hdul.writeto(outpath, output_verify='ignore', overwrite=conf.OVERWRITE) logger.info(f'Wrote out catalog to {outpath}') # If user wants model and/or residual images made: if conf.MAKE_RESIDUAL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}']] modbrick.make_residual_image(catalog=cleancatalog, use_band_position=False, modeling=True) elif conf.MAKE_MODEL_IMAGE: cleancatalog = outcatalog[outcatalog[f'VALID_SOURCE_{conf.MODELING_NICKNAME}']] modbrick.make_model_image(catalog=cleancatalog, use_band_position=False, modeling=True) # close the brick_id specific file handlers if conf.LOGFILE_LOGGING_LEVEL is not None: new_fh.close() logger.removeHandler(new_fh) def force_photometry(brick_id, band=None, source_id=None, blob_id=None, insert=False, source_only=False, unfix_bandwise_positions=(not conf.FREEZE_FORCED_POSITION), unfix_bandwise_shapes=(not conf.FREEZE_FORCED_SHAPE), rao_cramer_only=False): if band is None: fband = conf.BANDS addName = conf.MULTIBAND_NICKNAME else: if (type(band) == list) | (type(band) == np.ndarray): fband = band elif (type(band) == str) | (type(band) == np.str_): fband = [band,] else: sys.exit('ERROR -- Input band is not a list, array, or string!') addName = '_'.join(fband) # create new logging file if conf.LOGFILE_LOGGING_LEVEL is not None: brick_logging_path = os.path.join(conf.LOGGING_DIR, f"B{brick_id}_{addName}_logfile.log") logger.info(f'Logging information will be streamed to console and to {brick_logging_path}\n') # If overwrite is on, remove old logger if conf.OVERWRITE & os.path.exists(brick_logging_path): logger.warning('Existing logfile will be overwritten.') os.remove(brick_logging_path) # close and remove the old file handler #fh.close() #logger.removeHandler(fh) # we will add an additional file handler to keep track of brick_id specific information # set up the new file handler shutil.copy(logging_path, brick_logging_path) new_fh = logging.FileHandler(brick_logging_path,mode='a') new_fh.setLevel(logging.getLevelName(conf.LOGFILE_LOGGING_LEVEL)) new_fh.setFormatter(formatter) logger.addHandler(new_fh) # TODO Check if the catalog will be too big... if ((not unfix_bandwise_positions) & (not unfix_bandwise_shapes)) | (len(fband) == 1): force_models(brick_id=brick_id, band=band, source_id=source_id, blob_id=blob_id, insert=insert, source_only=source_only, force_unfixed_pos=False, use_band_shape=unfix_bandwise_shapes, rao_cramer_only=rao_cramer_only) else: if conf.FREEZE_FORCED_POSITION: logger.warning('Setting FREEZE_FORCED_POSITION to False!') conf.FREEZE_FORCED_POSITION = False for b in fband: tstart = time.time() logger.critical(f'Running Forced Photometry on {b}') if rao_cramer_only: logger.critical('WARNING -- ONLY COMPUTING RAO-CRAMER FLUX ERRORS! THIS IS NOT A NORMAL MODE!') logger.critical('ENSURE PLOTTING IS TURNED OFF!!!') force_models(brick_id=brick_id, band=b, source_id=source_id, blob_id=blob_id, insert=insert, source_only=source_only, force_unfixed_pos=True, use_band_shape=unfix_bandwise_shapes, rao_cramer_only=rao_cramer_only) logger.critical(f'Forced Photometry for {b} finished in {time.time() - tstart:3.3f}s') # TODO -- compare valid source_band and add to catalog! if conf.PLOT > 0: # COLLECT SRCPROFILES logger.info('Collecting srcprofile diagnostic plots...') if (blob_id is None) & (source_id is None): import glob # find sids files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B*_S*_*_srcprofile.pdf')) sids= [] for f in files: tsid = int(f[len(conf.PLOT_DIR):].split('S')[1].split('_')[0]) if tsid not in sids: sids.append(tsid) for sid in sids: logger.debug(f' * source {sid}') fnames = [] files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B*_S{sid}_*_srcprofile.pdf')) if len(files) == 0: logger.error('Source {source_id} does not have any srcprofile plots to collect!') return bid = int(files[0][len(conf.PLOT_DIR):].split('B')[1].split('_')[0]) for b in fband: logger.debug(f' *** adding {b}') fname = os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_{b}_srcprofile.pdf') if os.path.exists(fname): fnames.append(fname) else: logger.warning(f' *** {b} does not exist at {fname}') # collect from PyPDF2 import PdfFileMerger merger = PdfFileMerger() for pdf in fnames: merger.append(pdf) logger.debug(f'Writing out combined srcprofile...') merger.write(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_srcprofile.pdf')) merger.close() # remove logger.debug(f'Removing individual srcprofiles...') [os.system(f'rm {fname}') for fname in fnames] else: import glob # find sids files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{blob_id}_S*_*_srcprofile.pdf')) sids= [] for f in files: tsid = int(f[len(conf.PLOT_DIR):].split('S')[1].split('_')[0]) if tsid not in sids: sids.append(tsid) for sid in sids: logger.debug(f' * source {sid}') fnames = [] files = glob.glob(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{blob_id}_S{sid}_*_srcprofile.pdf')) if len(files) == 0: logger.error('Source {source_id} does not have any srcprofile plots to collect!') return bid = int(files[0][len(conf.PLOT_DIR):].split('B')[1].split('_')[0]) for b in fband: logger.debug(f' *** adding {b}') fname = os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_{b}_srcprofile.pdf') if os.path.exists(fname): fnames.append(fname) else: logger.warning(f' *** {b} does not exist at {fname}') # collect from PyPDF2 import PdfFileMerger merger = PdfFileMerger() for pdf in fnames: merger.append(pdf) logger.debug(f'Writing out combined srcprofile...') merger.write(os.path.join(conf.PLOT_DIR, f'T{brick_id}_B{bid}_S{sid}_srcprofile.pdf')) merger.close() # remove logger.debug(f'Removing individual srcprofiles...') [os.system(f'rm {fname}') for fname in fnames] def force_models(brick_id, band=None, source_id=None, blob_id=None, insert=True, source_only=False, force_unfixed_pos=(not conf.FREEZE_FORCED_POSITION), use_band_shape=(not conf.FREEZE_FORCED_SHAPE), rao_cramer_only=False): """ Stage 3. Force the models on the other images and solve only for flux. """ # Create and update multiband brick tstart = time.time() eff_area = None if source_only: if source_id is None: raise ValueError('Source only is set True, but no source is has been provided!') if (source_id is None) & (blob_id is None): if (conf.NBLOBS == 0) & (conf.NTHREADS > 1) & (conf.PLOT > 0): conf.PLOT = 0 logger.warning('Plotting not supported while forcing models in parallel!') if band is None: fband = conf.BANDS else: if (type(band) == list) | (type(band) == np.ndarray): fband = band elif (type(band) == str) | (type(band) == np.str_): fband = [band,] else: sys.exit('ERROR -- Input band is not a list, array, or string!') fbrick = stage_brickfiles(brick_id, nickname=conf.MULTIBAND_NICKNAME, band=fband, modeling=False) if fbrick is None: return search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') if os.path.exists(search_fn): fbrick.catalog = Table(fits.open(search_fn)[1].data) fbrick.n_sources = len(fbrick.catalog) fbrick.n_blobs = np.unique(fbrick.catalog['blob_id']) #.max() else: logger.critical(f'No valid catalog was found for {brick_id}') return search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) fbrick.segmap = hdul_seg['SEGMAP'].data fbrick.blobmap = hdul_seg['BLOBMAP'].data fbrick.segmask = fbrick.segmap.copy() fbrick.segmask[fbrick.segmap>0] = 1 else: logger.critical(f'No valid segmentation map was found for {brick_id}') return if (~fbrick.catalog['VALID_SOURCE_MODELING']).all(): logger.critical(f'All sources in brick #{brick_id} are invalid. Quitting!') return uniq_src, index_src = np.unique(fbrick.catalog['source_id'], return_index=True) if len(uniq_src) != len(fbrick.catalog): n_nonuniq = len(fbrick.catalog) - len(uniq_src) logger.warning(f'Removing {n_nonuniq} non-unique sources from catalog!') fbrick.catalog = fbrick.catalog[index_src] if not rao_cramer_only: fbrick.add_columns(modeling=False) else: filler = np.zeros(len(fbrick.catalog)) for colname in fbrick.bands: colname = colname.replace(' ', '_') fbrick.catalog.add_column(Column(filler, name=f'RAW_DIRECTFLUX_{colname}')) fbrick.catalog.add_column(Column(filler, name=f'RAW_DIRECTFLUXERR_{colname}')) fbrick.catalog.add_column(Column(filler, name=f'DIRECTFLUX_{colname}')) fbrick.catalog.add_column(Column(filler, name=f'DIRECTFLUXERR_{colname}')) fbrick.run_background() fbrick.run_weights() logger.info(f'{conf.MULTIBAND_NICKNAME} brick #{brick_id} created ({time.time() - tstart:3.3f}s)') if conf.PLOT > 3: for plt_band in fband: if (len(fband) == 1) | force_unfixed_pos: idx = 0 else: idx = np.argwhere(np.array(fband)==plt_band)[0][0] plot_brick(fbrick, idx, band=plt_band) plot_background(fbrick, idx, band=plt_band) plot_mask(fbrick, idx, band=plt_band) fcat = fbrick.catalog.copy() fcat['x'] -= fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1 fcat['y'] -= fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1 plot_blobmap(fbrick, image=fbrick.images[idx], band=plt_band, catalog=fcat) for i, vb_band in enumerate(fband): logger.debug(f'Brick #{brick_id} -- Image statistics for {vb_band}') shape, minmax, mean, var = stats.describe(fbrick.images[i], axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Weight statistics for {vb_band}') ok = fbrick.weights[i] > 0 shape, minmax, mean, var = stats.describe(fbrick.weights[i][ok].flatten(), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Error statistics for {vb_band}') shape, minmax, mean, var = stats.describe(1/np.sqrt(fbrick.weights[i][ok].flatten()), axis=None)[:4] logger.debug(f' Limits: {minmax[0]:6.6f} - {minmax[1]:6.6f}') logger.debug(f' Mean: {mean:6.6f}+/-{np.sqrt(var):6.6f}\n') logger.debug(f'Brick #{brick_id} -- Background statistics for {vb_band}') logger.debug(f' Global: {fbrick.backgrounds[i, 0]:6.6f}') logger.debug(f' RMS: {fbrick.backgrounds[i, 1]:6.6f}') if conf.SAVE_BACKGROUND: outpath = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_BACKGROUNDS.fits') logger.info('Saving background and RMS maps...') if os.path.exists(outpath): hdul = fits.open(outpath) else: hdul = fits.HDUList() hdul.append(fits.PrimaryHDU()) for m, mband in enumerate(fbrick.bands): hdul.append(fits.ImageHDU(data=fbrick.background_images[m], name=f'BACKGROUND_{mband}', header=fbrick.wcs.to_header())) hdul[f'BACKGROUND_{mband}'].header['BACK_GLOBAL'] = fbrick.backgrounds[m,0] hdul[f'BACKGROUND_{mband}'].header['BACK_RMS'] = fbrick.backgrounds[m,1] if (conf.SUBTRACT_BACKGROUND_WITH_MASK|conf.SUBTRACT_BACKGROUND_WITH_DIRECT_MEDIAN): hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_GLOBAL'] = fbrick.masked_median[m] hdul[f'BACKGROUND_{mband}'].header['MASKEDIMAGE_RMS'] = fbrick.masked_std[m] hdul.append(fits.ImageHDU(data=fbrick.background_rms_images[m], name=f'RMS_{mband}', header=fbrick.wcs.to_header())) hdul.append(fits.ImageHDU(data=1/np.sqrt(fbrick.weights[m]), name=f'UNC_{mband}', header=fbrick.wcs.to_header())) hdul.writeto(outpath, overwrite=conf.OVERWRITE) hdul.close() logger.info(f'Saved to {outpath} ({time.time() - tstart:3.3f}s)') logger.info(f'Forcing models on {len(fband)} {conf.MULTIBAND_NICKNAME} bands') # if conf.FORCE_SHARE_PARAMS: # fbrick.shared_params = True tstart = time.time() if (source_id is not None) | (blob_id is not None): # conf.PLOT = True if source_id is not None: blob_id = np.unique(fbrick.blobmap[fbrick.segmap == source_id]) assert(len(blob_id) == 1) blob_id = blob_id[0] fblob = fbrick.make_blob(blob_id) if source_only & (source_id not in fbrick.catalog['source_id']): logger.warning('Requested source is not in blob!') for source in fbrick.catalog: logger.debug(source['source_id'], source['cflux']) raise ValueError('Requested source is not in blob!') if rao_cramer_only: output_rows = runblob_rc(blob_id, fblob, catalog=fbrick.catalog, source_id=source_id) else: output_rows = runblob(blob_id, fblob, modeling=False, catalog=fbrick.catalog, plotting=conf.PLOT, source_id=source_id) output_cat = vstack(output_rows) fbrick.bcatalog = output_cat # Estimate covariance astart = time.time() logger.info(f'Starting covariance estimation...') status = fbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=False) logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') if not conf.OUTPUT: logging.warning('OUTPUT is DISABLED! Quitting...') else: if insert & conf.OVERWRITE & (conf.NBLOBS==0): # open old cat path_mastercat = os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat') if os.path.exists(path_mastercat): mastercat = Table.read(path_mastercat, format='fits') # find new columns newcols = np.in1d(output_cat.colnames, mastercat.colnames, invert=True) # make fillers for colname in np.array(output_cat.colnames)[newcols]: #mastercat.add_column(output_cat[colname]) if colname not in mastercat.colnames: if np.ndim(output_cat[colname]) > 1: shape = np.shape(output_cat[colname][1]) else: shape = 1 mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=shape, name=colname)) for row in output_cat: mastercat[np.where(mastercat['source_id'] == row['source_id'])[0]] = row # coordinate correction # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. # save mastercat.write(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat'), format='fits', overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to existing catalog file.') else: for colname in output_cat.colnames: if colname not in fbrick.catalog.colnames: if np.ndim(output_cat[colname]) > 1: shape = np.shape(output_cat[colname][1]) else: shape = 1 fbrick.catalog.add_column(Column(length=len(fbrick.catalog), dtype=output_cat[colname].dtype, shape=shape, name=colname)) #fbrick.catalog = join(fbrick.catalog, output_cat, join_type='left', ) for row in output_cat: fbrick.catalog[np.where(fbrick.catalog['source_id'] == row['source_id'])[0]] = row mode_ext = conf.MULTIBAND_NICKNAME if fband is not None: if len(fband) == 1: mode_ext = fband[0].replace(' ', '_') else: mode_ext = conf.MULTIBAND_NICKNAME # write out cat # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. if conf.OUTPUT: fbrick.catalog.write(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{mode_ext}.cat'), format='fits', overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new {mode_ext} catalog file.') else: if conf.NBLOBS > 0: run_n_blobs = conf.NBLOBS else: run_n_blobs = fbrick.n_blobs fblobs = (fbrick.make_blob(i) for i in np.unique(fbrick.catalog['blob_id'].data)) if conf.NTHREADS > 1: with pa.pools.ProcessPool(ncpus=conf.NTHREADS) as pool: logger.info(f'Parallel processing pool initalized with {conf.NTHREADS} threads.') if rao_cramer_only: result = pool.uimap(partial(runblob_rc, catalog=fbrick.catalog), np.arange(1, run_n_blobs+1), fblobs) else: result = pool.uimap(partial(runblob, modeling=False, catalog=fbrick.catalog, plotting=conf.PLOT), np.arange(1, run_n_blobs+1), fblobs) output_rows = list(result) logger.info('Parallel processing complete.') else: if rao_cramer_only: output_rows = [runblob_rc(kblob_id, fbrick.make_blob(kblob_id), catalog=fbrick.catalog) for kblob_id in np.arange(1, run_n_blobs+1)] else: output_rows = [runblob(kblob_id, fbrick.make_blob(kblob_id), modeling=False, catalog=fbrick.catalog, plotting=conf.PLOT) for kblob_id in np.arange(1, run_n_blobs+1)] logger.info(f'Completed {run_n_blobs} blobs in {time.time() - tstart:3.3f}s') #output_rows = [x for x in output_rows if x is not None] output_cat = vstack(output_rows) # HACK -- at some point this should just UPDATE the bcatalog with the new photoms. IF the user sets NBLOBS > 0, the catalog is truncated! uniq_src, idx_src = np.unique(output_cat['source_id'], return_index=True) # if len(idx_src) != len(fbrick.catalog): # raise RuntimeError(f'Output catalog is truncated! {len(idx_src)} out of {len(fbrick.catalog)}') if len(uniq_src) < len(output_cat): logger.warning(f'Found {len(uniq_src)} unique sources, out of {len(output_cat)} -- CLEANING!') output_cat = output_cat[idx_src] else: logger.debug(f'Found {len(uniq_src)} unique sources, out of {len(output_cat)}') # Estimate covariance fbrick.bcatalog = output_cat astart = time.time() logger.info(f'Starting covariance estimation...') status = fbrick.estimate_error_corr(use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=False) logger.info(f'Covariance estimation complete. ({time.time() - astart:3.3f})s') # estimate effective area if conf.ESTIMATE_EFF_AREA: eff_area = dict(zip(fband, np.zeros(len(fband)))) for b, bname in enumerate(fband): eff_area[bname] = fbrick.estimate_effective_area(output_cat, bname, modeling=False)[0] else: eff_area = None if not conf.OUTPUT: logging.warning('OUTPUT is DISABLED! Quitting...') else: if insert & conf.OVERWRITE & (conf.NBLOBS==0) & (not force_unfixed_pos): # open old cat path_mastercat = os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat') if os.path.exists(path_mastercat): mastercat = Table.read(path_mastercat, format='fits') # find new columns newcols = np.in1d(output_cat.colnames, mastercat.colnames, invert=True) # make fillers for colname in np.array(output_cat.colnames)[newcols]: if colname not in mastercat.colnames: if np.ndim(output_cat[colname]) > 1: colshape = np.shape(output_cat[colname][1]) else: colshape = 1 mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) for row in output_cat: mastercat[np.where(mastercat['source_id'] == row['source_id'])[0]] = row # coordinate correction # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. # save hdr = fits.open(path_mastercat)['CONFIG'].header lastb = 0 for b in np.arange(99): if 'AREA{b}' not in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}.cat'), overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to existing catalog file.') outcatalog = mastercat else: logger.critical(f'Catalog file for brick #{fbrick.brick_id} could not be found!') return elif (not insert) & force_unfixed_pos: # make a new MULITBAND catalog or add to it! path_mastercat = os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{conf.MULTIBAND_NICKNAME}.cat') if os.path.exists(path_mastercat): mastercat = Table.read(path_mastercat, format='fits') # find new columns newcols = np.in1d(output_cat.colnames, mastercat.colnames, invert=True) if np.sum(newcols) == 0: logger.warning('Columns exist in catalog -- defaulting to separate file output!') hdr = fits.open(path_mastercat)['CONFIG'].header lastb = 0 for b in np.arange(99): if 'AREA{b}' in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{conf.MULTIBAND_NICKNAME}.cat'), overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new catalog file.') else: join_cat = output_cat[list(np.array(output_cat.colnames)[newcols])] join_cat.add_column(output_cat['source_id']) mastercat = join(mastercat, join_cat, keys='source_id', join_type='left') # # add new columns, filled. # newcolnames = [] # for colname in np.array(output_cat.colnames)[newcols]: # if colname not in mastercat.colnames: # if colname.startswith('FLUX_APER') | colname.startswith('MAG_APER'): # mastercat.add_column(Column(length=len(mastercat), dtype=float, shape=(len(conf.APER_PHOT),), name=colname)) # else: # mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=(1,), name=colname)) # newcolnames.append(colname) # # if colname.startswith('FLUX_APER') | colname.startswith('MAG_APER'): # # mastercat.add_column(Column(length=len(mastercat), dtype=float, shape=(len(conf.APER_PHOT),), name=colname)) # # else: # # mastercat.add_column(Column(length=len(mastercat), dtype=output_cat[colname].dtype, shape=(1,), name=colname)) # # [print(j) for j in mastercat.colnames] # # [print(j) for j in output_cat.colnames] # # count = 0 # # for row in output_cat: # # idx = np.where(mastercat['source_id'] == row['source_id'])[0] # for colname in newcolnames: # mastercat[colname][idx] = output_cat[colname] # # print(mastercat[np.where(mastercat['source_id'] == row['source_id'])[0]][newcolnames]) # # print(newcolnames) # # print(row[newcolnames]) # # print(np.where(mastercat['source_id'] == row['source_id'])[0]) # mastercat[newcolnames][idx] = row[newcolnames] # count+=1 hdr = fits.open(path_mastercat)['CONFIG'].header lastb = 0 for b in np.arange(99): if 'AREA{b}' not in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(path_mastercat, overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to existing catalog file.') else: mastercat = output_cat hdr = header_from_dict(conf.__dict__) # hdr = fits.open(path_mastercat)['CONFIG'].header # lastb = 0 # for b in np.arange(99): # if 'AREA{b}' not in hdr.keys(): lastb = 0 if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(mastercat) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(path_mastercat, overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new catalog file.') outcatalog = mastercat else: for colname in output_cat.colnames: if colname not in fbrick.catalog.colnames: colshape = np.shape(output_cat[colname]) if len(colshape) == 2: colshape = (colshape[1],) else: colshape = (1,) fbrick.catalog.add_column(Column(length=len(fbrick.catalog), dtype=output_cat[colname].dtype, shape=colshape, name=colname)) #fbrick.catalog = join(fbrick.catalog, output_cat, join_type='left', ) for row in output_cat: fbrick.catalog[np.where(fbrick.catalog['source_id'] == row['source_id'])[0]] = row mode_ext = conf.MULTIBAND_NICKNAME if fband is not None: if len(fband) == 1: mode_ext = fband[0].replace(' ', '_') # write out cat mastercat = fbrick.catalog # fbrick.catalog['x'] = fbrick.catalog['x'] + fbrick.mosaic_origin[1] - conf.BRICK_BUFFER + 1. # fbrick.catalog['y'] = fbrick.catalog['y'] + fbrick.mosaic_origin[0] - conf.BRICK_BUFFER + 1. hdr = header_from_dict(conf.__dict__) lastb = 0 for b in np.arange(99): if 'AREA{b}' not in hdr.keys(): lastb = b if eff_area is not None: for b, band in enumerate(conf.BANDS): if band in fband: eff_area_deg = eff_area[band] * (conf.PIXEL_SCALE / 3600)**2 hdr.set(f'AREA{b+lastb}', eff_area_deg, f'{band} EFF_AREA (deg2)') hdu_info = fits.ImageHDU(header=hdr, name='CONFIG') hdu_table = fits.table_to_hdu(fbrick.catalog) hdul = fits.HDUList([fits.PrimaryHDU(), hdu_table, hdu_info]) hdul.writeto(os.path.join(conf.CATALOG_DIR, f'B{fbrick.brick_id}_{mode_ext}.cat'), overwrite=conf.OVERWRITE) logger.info(f'Saving results for brick #{fbrick.brick_id} to new {mode_ext} catalog file.') outcatalog = fbrick.catalog # If user wants model and/or residual images made: if conf.MAKE_RESIDUAL_IMAGE: fbrick.make_residual_image(catalog=outcatalog, use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=False) elif conf.MAKE_MODEL_IMAGE: fbrick.make_model_image(catalog=outcatalog, use_band_position=force_unfixed_pos, use_band_shape=use_band_shape, modeling=False) del fbrick return def make_model_image(brick_id, band, catalog=None, use_band_position=(not conf.FREEZE_FORCED_POSITION), use_band_shape=(not conf.FREEZE_FORCED_SHAPE), modeling=False): # USE BAND w/ MODELING NICKNAME FOR MODELING RESULTS! if band.startswith(conf.MODELING_NICKNAME): nickname = conf.MULTIBAND_NICKNAME sband = band[len(conf.MODELING_NICKNAME)+1:] modeling=True elif band == conf.MODELING_NICKNAME: nickname = conf.MODELING_NICKNAME sband = conf.MODELING_NICKNAME modeling=True else: nickname = conf.MULTIBAND_NICKNAME sband = band modeling=False brick = stage_brickfiles(brick_id, nickname=nickname, band=sband) # print(brick.bands) if catalog is not None: brick.catalog = catalog brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() if use_single_band_run: use_band_position=True else: use_band_position=False else: search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') search_fn2 = os.path.join(conf.CATALOG_DIR, f'B{brick_id}_{band}.cat') # this means the band was run by itself! if os.path.exists(search_fn) & ~use_single_band_run: brick.logger.info(f'Adopting catalog from {search_fn}') brick.catalog = Table(fits.open(search_fn)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=False elif os.path.exists(search_fn2) & use_single_band_run: brick.logger.info(f'Adopting catalog from {search_fn2}') brick.catalog = Table(fits.open(search_fn2)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=True else: raise ValueError(f'No valid catalog was found for {brick_id}') search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) brick.segmap = hdul_seg['SEGMAP'].data brick.blobmap = hdul_seg['BLOBMAP'].data brick.segmask = brick.segmap.copy() brick.segmask[brick.segmap>0] = 1 else: raise ValueError(f'No valid segmentation map was found for {brick_id}') brick.run_background() brick.make_model_image(brick.catalog, use_band_position=use_band_position, modeling=modeling) def make_residual_image(brick_id, band, catalog=None, use_band_position=(not conf.FREEZE_FORCED_POSITION), use_band_shape=(not conf.FREEZE_FORCED_SHAPE), modeling=False): # USE BAND w/ MODELING NICKNAME FOR MODELING RESULTS! if band.startswith(conf.MODELING_NICKNAME) | ((modeling==True) & (band != conf.MODELING_NICKNAME)): nickname = conf.MULTIBAND_NICKNAME if band.startswith(conf.MODELING_NICKNAME): sband = band[len(conf.MODELING_NICKNAME)+1:] else: sband = band modeling=True elif band == conf.MODELING_NICKNAME: nickname = conf.MODELING_NICKNAME sband = conf.MODELING_NICKNAME modeling=True else: nickname = conf.MULTIBAND_NICKNAME sband = band modeling=False brick = stage_brickfiles(brick_id, nickname=nickname, band=sband) # if modeling: # brick.bands = np.array([f'{conf.MODELING_NICKNAME}_{s}' for s in [band,]]) if catalog is not None: brick.catalog = catalog brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() else: search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') search_fn2 = os.path.join(conf.CATALOG_DIR, f'B{brick_id}_{conf.MULTIBAND_NICKNAME}.cat') # this means the band was run by itself! search_fn3 = os.path.join(conf.CATALOG_DIR, f'B{brick_id}_{band}.cat') if os.path.exists(search_fn) & ~(use_band_position | use_band_shape) & (band in conf.MODELING_BANDS): brick.logger.info(f'Adopting catalog from {search_fn}') brick.catalog = Table(fits.open(search_fn)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=False elif os.path.exists(search_fn2) & ((band not in conf.MODELING_BANDS) | (use_band_position | use_band_shape)): brick.logger.info(f'Adopting catalog from {search_fn2}') # Tries to find BXXX_MULTIBAND.fits brick.catalog = Table(fits.open(search_fn2)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=('X_MODEL_{band}' in brick.catalog.colnames) elif os.path.exists(search_fn3) & (use_band_position | use_band_shape): brick.logger.info(f'Adopting catalog from {search_fn3}') # Tries to find BXXX_BAND.fits brick.catalog = Table(fits.open(search_fn3)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=True else: raise ValueError(f'No valid catalog was found for {brick_id}') search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) brick.segmap = hdul_seg['SEGMAP'].data brick.blobmap = hdul_seg['BLOBMAP'].data brick.segmask = brick.segmap.copy() brick.segmask[brick.segmap>0] = 1 else: raise ValueError(f'No valid segmentation map was found for {brick_id}') brick.run_background() brick.make_residual_image(brick.catalog, use_band_position=use_band_position, use_band_shape=use_band_shape, modeling=modeling) def estimate_effective_area(brick_id, band, catalog=None, save=False, use_band_position=(not conf.FREEZE_FORCED_POSITION), use_band_shape=(not conf.FREEZE_FORCED_SHAPE), modeling=False): if band.startswith(conf.MODELING_NICKNAME) | ((modeling==True) & (band != conf.MODELING_NICKNAME)): nickname = conf.MULTIBAND_NICKNAME if band.startswith(conf.MODELING_NICKNAME): sband = band[len(conf.MODELING_NICKNAME)+1:] else: sband = band modeling=True elif band == conf.MODELING_NICKNAME: nickname = conf.MODELING_NICKNAME sband = conf.MODELING_NICKNAME modeling=True else: nickname = conf.MULTIBAND_NICKNAME sband = band modeling=False brick = stage_brickfiles(brick_id, nickname=nickname, band=sband) if catalog is not None: brick.catalog = catalog[catalog['brick_id']==brick_id] brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() else: search_fn = os.path.join(conf.CATALOG_DIR, f'B{brick_id}.cat') search_fn2 = os.path.join(conf.CATALOG_DIR, f'B{brick_id}_{conf.MULTIBAND_NICKNAME}.cat') # this means the band was run by itself! search_fn3 = os.path.join(conf.CATALOG_DIR, f'B{brick_id}_{band}.cat') if os.path.exists(search_fn) & ~(use_band_position | use_band_shape): brick.logger.info(f'Adopting catalog from {search_fn}') brick.catalog = Table(fits.open(search_fn)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=False elif os.path.exists(search_fn2) & (use_band_position | use_band_shape): brick.logger.info(f'Adopting catalog from {search_fn2}') # Tries to find BXXX_MULTIBAND.fits brick.catalog = Table(fits.open(search_fn2)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=True elif os.path.exists(search_fn3) & (use_band_position | use_band_shape): brick.logger.info(f'Adopting catalog from {search_fn3}') # Tries to find BXXX_BAND.fits brick.catalog = Table(fits.open(search_fn3)[1].data) brick.n_sources = len(brick.catalog) brick.n_blobs = brick.catalog['blob_id'].max() use_band_position=True else: raise ValueError(f'No valid catalog was found for {brick_id}') import os search_fn = os.path.join(conf.INTERIM_DIR, f'B{brick_id}_SEGMAPS.fits') if os.path.exists(search_fn): hdul_seg = fits.open(search_fn) brick.segmap = hdul_seg['SEGMAP'].data brick.blobmap = hdul_seg['BLOBMAP'].data brick.segmask = brick.segmap.copy() brick.segmask[brick.segmap>0] = 1 else: raise ValueError(f'No valid segmentation map was found for {brick_id}') # brick.run_background() good_area_pix, inner_area_pix = brick.estimate_effective_area(brick.catalog, sband, modeling=modeling) if save: import os outF = open(os.path.join(conf.INTERIM_DIR, f"effarea_{band}_{brick_id}.dat"), "w") outF.write(f'{good_area_pix}\n{inner_area_pix}') outF.close() return good_area_pix, inner_area_pix def stage_brickfiles(brick_id, nickname='MISCBRICK', band=None, modeling=False, is_detection=False): """ Essentially a private function. Pre-processes brick files and relevant catalogs """ # Wraps Brick with a single parameter call # THIS ASSUMES YOU HAVE IMG, WGT, and MSK FOR ALL BANDS! path_brickfile = os.path.join(conf.BRICK_DIR, f'B{brick_id}_N{nickname}_W{conf.BRICK_WIDTH}_H{conf.BRICK_HEIGHT}.fits') logger.info(f'Staging brickfile ({path_brickfile}') if modeling & (band is None): sbands = [nickname,] elif band is None: sbands = conf.BANDS else: if type(band) == list: sbands = band else: sbands = [band,] # conf.BANDS = sbands [logger.debug(f' *** {i}') for i in sbands] if os.path.exists(path_brickfile): # Stage things images = np.zeros((len(sbands), conf.BRICK_WIDTH + 2 * conf.BRICK_BUFFER, conf.BRICK_HEIGHT + 2 * conf.BRICK_BUFFER)) weights = np.zeros_like(images) masks =
np.zeros_like(images, dtype=bool)
numpy.zeros_like
# -*- coding: utf-8 -*- """ Created on Tue May 19 17:54:12 2020 @author: Shaji,Charu,Selva """ import scipy import numpy as np import pandas as pd from sklearn.impute import KNNImputer from . import helper from . import exceptions pd.set_option('mode.chained_assignment', None) def get_distance(dataset, start_latitude, start_longitude, end_latitude, end_longitude): """ Usage: [arg1]:[Pandas DataFrame],[arg2]:[column-start_latitude],[arg3]:[column-start_longitude],[arg4]:[column-end_latitude],[arg5]:[column-end_longitude] Returns: DataFrame with additional column [Distance in kilometers] """ print( "This module (ctrl4ai.preprocessing) will be deprecated by the end of 2021. Please plan to switch to the same functions in ") dataset['kms_' + start_latitude + '_' + end_latitude] = dataset.apply( lambda row: helper.distance_calculator(row[start_latitude], row[start_longitude], row[end_latitude], row[end_longitude]), axis=1) return dataset def get_timediff(dataset, start_time, end_time): """ Usage: [arg1]:[Pandas DataFrame],[arg2]:[column-start_time],[arg3]:[column-end_time] Returns: DataFrame with additional column [Duration in seconds] """ dataset['secs_diff_' + start_time + '_' + end_time] = (dataset[end_time] - dataset[start_time]).dt.total_seconds() return dataset def derive_from_datetime(dataset): """ Usage: [arg1]:[pandas dataframe] Prerequisite: Type for datetime columns to be defined correctly Description: Derives the hour, weekday, year and month from a datetime column Returns: Dataframe [with new columns derived from datetime columns] """ columns = [] for column, dtype in dataset.dtypes.items(): if 'datetime' in str(dtype): columns.append(column) dataset['hour_of_' + column] = dataset[column].apply(lambda x: x.hour) dataset['weekday_of_' + column] = dataset[column].apply(lambda x: x.weekday()) dataset['year_of_' + column] = dataset[column].apply(lambda x: x.year) dataset['month_of_' + column] = dataset[column].apply(lambda x: x.month) return dataset, columns def log_transform(dataset, method='yeojohnson', define_continuous_cols=[], ignore_cols=[], categorical_threshold=0.3): """ Usage: [arg1]:[pandas dataframe],[method]=['yeojohnson'/'added_constant'] Description: Checks if the a continuous column is skewed and does log transformation Returns: Dataframe [with all skewed columns normalized using appropriate approach] """ continuous_columns = [] for col in define_continuous_cols: if col not in ignore_cols: continuous_columns.append(col) for col in dataset.columns: if col not in continuous_columns+ignore_cols: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold) == False and helper.check_numeric_col(dataset[col]): continuous_columns.append(col) for col in dataset.columns: if col in continuous_columns and np.abs(scipy.stats.skew(dataset[col])) > 1: print('Log Normalization(' + method + ') applied for ' + col) if method == 'yeojohnson': dataset[col] = dataset[col].apply(lambda x: helper.yeojohnsonlog(x)) elif method == 'added_constant': dataset = helper.added_constant_log(dataset, col) return dataset def drop_null_fields(dataset, dropna_threshold=0.7, ignore_cols=[]): """ Usage: [arg1]:[pandas dataframe],[dropna_threshold(default=0.7)]:[What percentage of nulls should account for the column top be removed],[ignore_cols]:[columnd that shouldn't be dropped] Description: Drop columns that has more null values Returns: Dataframe [with null dominated columns removed] """ no_of_records = dataset.shape[0] select_cols = [] dropped_cols = [] for index, val in dataset.isnull().sum().items(): if val / no_of_records < dropna_threshold or index in ignore_cols: select_cols.append(index) else: dropped_cols.append(index) print('Dropping null dominated column(s) ' + index) return dataset[select_cols], dropped_cols def drop_single_valued_cols(dataset): """ Usage: [arg1]:[pandas dataframe] Description: Drop columns that has only one value in it Returns: Dataframe [without single valued columns] """ single_valued_cols = [] for col in dataset.columns: if helper.single_valued_col(dataset[col]): single_valued_cols.append(col) if len(single_valued_cols) > 0: print('Dropping single valued column(s) ' + ','.join(single_valued_cols)) dataset = dataset.drop(single_valued_cols, axis=1) return dataset def get_ohe_df(dataset, target_variable=None, define_nominal_cols=[], ignore_cols=[], drop_first=True, categorical_threshold=0.3): """ Usage: [arg1]:[pandas dataframe],[target_variable(default=None)]:[Dependent variable for Regression/Classification],[ignore_cols]:[categorical columns where one hot encoding need not be done],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)] Description: Auto identifies categorical features in the dataframe and does one hot encoding Note: Consumes more system mermory if the size of the dataset is huge Returns: Dataframe [with separate column for each categorical values] """ nominal_cols = [] nominal_cols.extend(define_nominal_cols) columns = [] for col in dataset: if col not in nominal_cols+ignore_cols and col != target_variable: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold): nominal_cols.append(col) for col in dataset.columns: if col in nominal_cols and col not in ignore_cols: print('One hot encoding ' + col) columns.append(col) dataset = helper.one_hot_encoding(dataset, [col], drop_first=drop_first) return dataset, columns def drop_non_numeric(dataset): """ Usage: [arg1]:[pandas dataframe] Description: Drop columns that are not numeric Returns: Dataframe [only numeric features] """ drop_cols = [] for col in dataset.columns: if helper.check_numeric_col(dataset[col]) == False: drop_cols.append(col) if len(drop_cols) > 0: print("Dropping non categorical/continuous column(s):" + ','.join(drop_cols)) dataset = dataset.drop(drop_cols, axis=1) return dataset def impute_nulls(dataset, method='central_tendency', define_continuous_cols=[], define_nominal_cols=[], define_ordinal_cols=[], categorical_threshold=0.3): """ Usage: [arg1]:[pandas dataframe],[method(default=central_tendency)]:[Choose either central_tendency or KNN] Description: Auto identifies the type of distribution in the column and imputes null values Note: KNN consumes more system memory if the size of the dataset is huge Returns: Dataframe [with separate column for each categorical values] """ nominal_cols = [] ordinal_cols = [] continuous_cols = [] nominal_cols.extend(define_nominal_cols) continuous_cols.extend(define_continuous_cols) ordinal_cols.extend(define_ordinal_cols) for col in dataset: if col not in nominal_cols + ordinal_cols + continuous_cols: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold): nominal_cols.append(col) elif helper.check_numeric_col(dataset[col]): continuous_cols.append(col) if str.lower(method) == 'knn': for col, value in dataset.isnull().sum().items(): if value > 0: if col in nominal_cols + ordinal_cols: print("KNN (Only Categorical): Replaced nulls in " + col + " with mode") mode_val = dataset[col].mode()[0] dataset[col] = dataset[col].fillna(mode_val) k_knn = int(np.ceil(np.sqrt(dataset.shape[0]))) if k_knn % 2 == 0: k_knn += 1 imputer = KNNImputer(n_neighbors=k_knn) knn_imputed_array = imputer.fit_transform(dataset) dataset = pd.DataFrame(knn_imputed_array, columns=dataset.columns) return dataset elif method == 'central_tendency': for col, value in dataset.isnull().sum().items(): if value > 0: if col in nominal_cols + ordinal_cols: print("Replaced nulls in " + col + " with mode") mode_val = dataset[col].mode()[0] dataset[col] = dataset[col].fillna(mode_val) elif col in continuous_cols: if np.abs(scipy.stats.skew(dataset[col])) > 1: print("Replaced nulls in " + col + " with median") median_val = dataset[col].median() dataset[col] = dataset[col].fillna(median_val) else: print("Replaced nulls in " + col + " with mean") mean_val = dataset[col].mean() dataset[col] = dataset[col].fillna(mean_val) return dataset else: raise exceptions.ParameterError('Method should be either central_tendency or knn') def label_encode(dataset, col): """ Usage: [arg1]:[pandas dataframe],[arg1]:[column to be encoded] Description: Labelling categorical features with numbers from 0 to n categories Returns: Label Dict , Dataframe """ mode_val = dataset[col].mode()[0] # dataset[col] = dataset[col].apply(lambda x: str(x).strip()).astype(str).fillna(mode_val) dataset[col] = dataset[col].fillna(mode_val) label_dict = dict(zip(dataset[col].unique(), np.arange(dataset[col].unique().shape[0]))) dataset = dataset.replace({col: label_dict}) dataset[col] = dataset[col].astype('int') dataset[col] = dataset[col].astype('category') return label_dict, dataset def remove_outlier_df(dataset, cols): """ Usage: [arg1]:[pandas dataframe],[arg2]:[list of columns to check and remove outliers] Description: The column needs to be continuous Returns: DataFrame with outliers removed for the specific columns """ for col in cols: outlier_temp_dataset = pd.DataFrame(dataset[col]) outlier_temp_dataset = impute_nulls(outlier_temp_dataset) Q1 = outlier_temp_dataset.quantile(0.25) Q3 = outlier_temp_dataset.quantile(0.75) IQR = Q3 - Q1 outlier_bool_dataset = ((outlier_temp_dataset > (Q1 - 1.5 * IQR)) & (outlier_temp_dataset < (Q3 + 1.5 * IQR))) select_index = outlier_bool_dataset.index[outlier_bool_dataset[col] == True] print('No. of outlier rows removed based on ' + col + ' is ' + str( outlier_temp_dataset.shape[0] - len(select_index))) dataset = dataset.iloc[select_index].reset_index(drop=True) return dataset def auto_remove_outliers(dataset, ignore_cols=[], categorical_threshold=0.3, define_continuous_cols=[]): """ Usage: [arg1]:[pandas dataframe],[ignore_cols]:[list of columns to be ignored],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)] Description: Checks if the column is continuous and removes outliers Returns: DataFrame with outliers removed """ continuous_columns = [] for col in define_continuous_cols: if col not in ignore_cols: continuous_columns.append(col) for col in dataset.columns: if col not in continuous_columns+ignore_cols: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold) == False and helper.check_numeric_col(dataset[col]) == True: continuous_columns.append(col) dataset = remove_outlier_df(dataset, continuous_columns) return dataset def get_label_encoded_df(dataset, categorical_threshold=0.3, define_nominal_cols=[], ignore_cols=[]): """ Usage: [arg1]:[pandas dataframe],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)] Description: Auto identifies categorical features in the dataframe and does label encoding Returns: Dictionary [Labels for columns],Dataframe [with separate column for each categorical values] """ nominal_cols = [] nominal_cols.extend(define_nominal_cols) for col in dataset: if col not in nominal_cols+ignore_cols: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold): nominal_cols.append(col) column_labels = dict() for col in dataset.columns: if col not in ignore_cols: if helper.check_numeric_col(dataset[col]): continue elif col in nominal_cols: labels, dataset = label_encode(dataset, col) print('Labels for ' + col + ': ' + str(labels)) column_labels[col] = labels return column_labels, dataset def get_ordinal_encoded_df(dataset, custom_ordinal_dict=dict()): """ Usage: [arg1]:[pandas dataframe],[arg2]:[Pre-defined ordinal scale dictionary] Description: Identifies ordinal columns and translate them to numbers Returns: Dictionary [Labels for columns], Dataframe [with ordinal values converted to number] """ column_labels = dict() for col in dataset: if col in custom_ordinal_dict.keys(): dataset[col] = dataset[col].astype(str).map(custom_ordinal_dict[col]) mode_val = dataset[col].mode()[0] dataset[col] = dataset[col].fillna(mode_val).astype('int') else: result, mapper = helper.check_ordinal_col(dataset[col]) if result: dataset[col] = dataset[col].astype(str).map(mapper) mode_val = dataset[col].mode()[0] dataset[col] = dataset[col].fillna(mode_val).astype('int') column_labels[col] = mapper print('Labels for ' + col + ': ' + str(mapper)) return column_labels, dataset def cramersv_corr(x, y): """ Usage: [arg1]:[categorical series],[arg2]:[categorical series] Description: Cramer's V Correlation is a measure of association between two categorical variables Returns: A value between 0 and +1 """ confusion_matrix = pd.crosstab(x, y) chi2 = scipy.stats.chi2_contingency(confusion_matrix)[0] n = confusion_matrix.sum().sum() phi2 = chi2 / n r, k = confusion_matrix.shape phi2corr = max(0, phi2 - ((k - 1) * (r - 1)) / (n - 1)) rcorr = r - ((r - 1) ** 2) / (n - 1) kcorr = k - ((k - 1) ** 2) / (n - 1) return np.sqrt(phi2corr / min((kcorr - 1), (rcorr - 1))) def kendalltau_corr(x, y): """ Usage: [arg1]:[continuous series],[arg2]:[categorical series] Description: Kendall Tau Correlation is a measure of association between a ordinal feature and a ordinal feature Returns: A value between -1 and +1 """ x_arr = np.array(impute_nulls(pd.DataFrame(x))) y_arr = np.array(impute_nulls(pd.DataFrame(y))) corr, _ = scipy.stats.kendalltau(x_arr, y_arr) return corr def spearmans_corr(x, y): """ Usage: [arg1]:[continuous series],[arg2]:[categorical series] Description: Spearman Correlation is a measure of association between a continuous feature and a ordinal/continuous feature with monotonic relationship Returns: A value between -1 and +1 """ x_arr = np.array(impute_nulls(pd.DataFrame(x))) y_arr = np.array(impute_nulls(pd.DataFrame(y))) corr, _ = scipy.stats.spearmanr(x_arr, y_arr) return corr def pearson_corr(x, y): """ Usage: [arg1]:[continuous series],[arg2]:[continuous series] Description: Pearson Correlation is a measure of association between two continuous features Returns: A value between -1 and +1 """ x = pd.to_numeric(x) y = pd.to_numeric(y) return np.corrcoef(x, y)[0, 1] def nominal_scale_corr(nominal_series, continuous_series): """ Usage: [arg1]:[nominal series],[arg2]:[continuous series] Description: Ctrl4AI's Nominal Scale Correlation is a measure of association between a nominal feature and a continuous feature Returns: A value between 0 and 1 """ mean_val = continuous_series.mean() continuous_series = continuous_series.fillna(mean_val) len_nominal = len(nominal_series.unique()) best_corr = 0 for bin_size in ['even', 'distributed']: for bins in [None, len_nominal]: binned_series = binning(continuous_series, bin_size=bin_size, bins=bins) corr_val = cramersv_corr(nominal_series, binned_series) if corr_val > best_corr: best_corr = corr_val return best_corr def get_correlated_features(dataset, target_col, target_type, correlation_threshold=None, categorical_threshold=0.3, define_continuous_cols=[], define_nominal_cols=[], define_ordinal_cols=[]): """ Usage: [arg1]:[pandas dataframe],[arg2]:[target/dependent variable],[arg3]:['continuous'/'categorical'],[correlation_threshold(default=2/sqrt(dataset.shape[0]))]:[The threshold value for a good correlation],[categorical_threshold(default=0.3)]:[Threshold for determining categorical column based on the percentage of unique values(optional)] Description: Only for supervised learning to select independent variables that has some correlation with target/dependent variable (Uses Pearson correlation between two continuous variables, CramersV correlation between two categorical variables, Kendalls Tau correlation between a categorical and a continuos variable) Returns: Dictionary of correlation coefficients, List of columns that have considerable correlation """ nominal_cols = [] ordinal_cols = [] continuous_cols = [] nominal_cols.extend(define_nominal_cols) ordinal_cols.extend(define_ordinal_cols) continuous_cols.extend(define_continuous_cols) col_corr = dict() if correlation_threshold is None: correlation_threshold = 2 / np.sqrt(dataset.shape[0]) for col in dataset: if col not in nominal_cols + continuous_cols + ordinal_cols: if col != target_col: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold): nominal_cols.append(col) elif helper.check_numeric_col(dataset[col]): continuous_cols.append(col) if target_type == 'continuous': for col in continuous_cols: coeff = pearson_corr(dataset[col], dataset[target_col]) col_corr[col] = coeff for col in ordinal_cols: coeff = kendalltau_corr(dataset[col], dataset[target_col]) col_corr[col] = coeff for col in nominal_cols: coeff = nominal_scale_corr(dataset[col], dataset[target_col]) col_corr[col] = coeff if target_type == 'categorical': for col in continuous_cols: coeff = kendalltau_corr(dataset[col], dataset[target_col]) col_corr[col] = coeff for col in ordinal_cols + nominal_cols: coeff = cramersv_corr(dataset[col], dataset[target_col]) col_corr[col] = coeff selected_features = [] for col in col_corr.keys(): if np.abs(float(col_corr[col])) > np.abs(correlation_threshold): selected_features.append(col) return col_corr, selected_features def binning(pdSeries, bin_size='even', bins=None): """ Usage: [arg1]:[Pandas Series],[bin_size(default=even)]:[even/distributed] Description: Will split to intervals of equal size of bin size is even. Otherwise, data will be distributed to variable bin sizes with more or less same frequency of data Returns: Pandas Series with Values converted to Intervals """ if bins is None: bins = helper.freedman_diaconis(pdSeries, returnas='bins') if str.lower(bin_size) == 'even': new_pdSeries = pd.cut(pdSeries, bins=bins) else: new_pdSeries = pd.qcut(pdSeries, q=bins, duplicates='drop') return new_pdSeries def multicollinearity_check(corr_df, threshold=0.7): """ Usage: [arg1]:[Correlation Result DataFrame],[threshold(default=0.7)]:[Value in the range of 0-1] Description: Will split to intervals of equal size of bin size is even. Otherwise, data will be distributed to variable bin sizes with more or less same frequency of data Returns: Pandas Series with Values converted to Intervals """ result_set = [] for col in corr_df.columns: for row in corr_df[col].index: if col != row: val = corr_df[col][row] if helper.get_absolute(val) >= threshold: cols = [col, row] cols.sort() if (cols, val) not in result_set: result_set.append((cols, val)) return result_set def get_multicollinearity_removals(corr_df, target_variable, threshold=0.7): res = multicollinearity_check(corr_df, threshold=threshold) corr = list(set([helper.get_absolute(item[1]) for item in res])) corr.sort(reverse=True) tgt_corr = corr_df[target_variable].to_dict() remove_list = [] for val in corr: for item in res: if helper.get_absolute(item[1]) == val: cols = item[0] if target_variable not in cols: if len(helper.intersection(cols, remove_list)) == 0: if cols[0] < cols[1]: remove_list.append(cols[0]) else: remove_list.append(cols[1]) return remove_list def dataset_summary(dataset, define_continuous_cols=[], define_nominal_cols=[], define_ordinal_cols=[], categorical_threshold=0.3): """ Usage: [arg1]:[pandas dataframe] Description: Returns summary of DataFrame Returns: [Summary Dict] """ nominal_cols = [] ordinal_cols = [] continuous_cols = [] nominal_cols.extend(define_nominal_cols) continuous_cols.extend(define_continuous_cols) ordinal_cols.extend(define_ordinal_cols) for col in dataset: if col not in nominal_cols + ordinal_cols + continuous_cols: if helper.check_categorical_col(dataset[col], categorical_threshold=categorical_threshold): nominal_cols.append(col) elif helper.check_numeric_col(dataset[col]): continuous_cols.append(col) dataset_summary = dict() for col in ordinal_cols: dataset_summary[col] = dict() dataset_summary[col]['type'] = 'ordinal' col_summary = dataset[col].describe().to_dict() dataset_summary[col].update(col_summary) dataset_summary[col]['mode'] = dataset[col].mode()[0] dataset_summary[col]['min'] = dataset[col].min() dataset_summary[col]['max'] = dataset[col].max() for col in nominal_cols: dataset_summary[col] = dict() dataset_summary[col]['type'] = 'nominal' col_summary = dataset[col].describe().to_dict() dataset_summary[col].update(col_summary) dataset_summary[col]['mode'] = dataset[col].mode()[0] for col in continuous_cols: dataset_summary[col] = dict() dataset_summary[col]['type'] = 'continuous' col_summary = dataset[col].describe().to_dict() dataset_summary[col].update(col_summary) dataset_summary[col]['mean'] = dataset[col].mean() dataset_summary[col]['median'] = dataset[col].median() dataset_summary[col]['min'] = dataset[col].min() dataset_summary[col]['max'] = dataset[col].max() if np.abs(scipy.stats.skew(dataset[col])) > 1: dataset_summary[col]['Skewed'] = 'Y' else: dataset_summary[col]['Skewed'] = 'N' return dataset_summary def split_dataset(dataset, n_splits, proportion=None, mode=None, shuffle=False): if mode == 'equal': each_proportion = int((1/n_splits)*100) proportion = [each_proportion for i in range(n_splits-1)] final_val = 100 - sum(proportion) proportion.append(final_val) proportion = [val/100 for val in proportion] if len(proportion) != n_splits: raise exceptions.ParameterError('n_splits should be equal to the number of values in proportion') if sum(proportion) != 1: raise exceptions.ParameterError('The sum of values in proportion should be 1') indices = list(dataset.index) if shuffle: np.random.shuffle(indices) df_list = [] indices_split = [] prev = 0 length = len(indices) for ctr in range(n_splits): max_records = int(
np.floor(proportion[ctr] * length)
numpy.floor
#!/usr/bin/env python ## Copyright (c) 2009, <NAME> ## Original Matlab version of GC2D, <NAME> ## GC2D first converted to Python/NumPy in 2009 by <NAME> ################################################################ # NOTE: TopoFlow can provide "mass balance" for GC2D, but # the timescales are very different. TopoFlow should # pass some kind of "net" or cumulative "mass balance" # to GC2D at its large timestep. # # NOTE: There is no "load_mask()" function yet, but it is # called in a "try" block. # # NOTE: THERMAL_TOGGLE option does not work yet. # See notes below regarding undefined vars. # # NOTE: Should carefully test update_vars() due to # a bug fix and other changes to the code. # Compare to update_vars_OLD(). # # NOTE: Check that all "numpy" function calls include "numpy.". # Fixed calls to "mean()", "nonzero()", "ravel()", # abs() vs. absolute(), max(A,B) vs. maximum(A,B), etc. # ################################################################ import numpy import time import sys import logging # import getopt import scipy # scipy.signal.convolve, scipy.io.loadmat from scipy import interpolate from scipy import signal # SDP. 10/24/11. No longer available. Deprecated? # from scipy.io.numpyio import fwrite # used by print_watch_point() #-------------------------------------------------------------------------------------------------- # run_model() # (for testing) # ------------------------------ # Classes (used as structures) # ------------------------------ # MassBalance # BoundaryCond # Parameters # InputParams # OutputParams # Toggles # # ----------- # Functions # ----------- # compress_grid() # filter2d() # add_halo() # set_bc() # difference_grid() # basal_shear_stress() # iceflow() # ice_sliding() # sum_ice_motion() # avalanche() # calve() # mass_balance() # mass_conservation() # load_dem() # load_dem_var() # load_mask() ###### Not written, but called. ##### # get_timestep() # update_vars() # print_watch_point() # update() # init_valley_glacier() # init_ice_sheet() # resample_dem() # init_ice_surface() # load_state() # #### load_state_old() # #### run_for() #-------------------------------------------------------------------------------------------------- def run_model(t_max=10.0, DEM_file='Animas_200.mat', SILENT=False): Toggles.VARIABLE_DT_TOGGLE = 0 # (or change to 1) ################################### print('Starting GC2D test run...') print('Reading input file...') ( H, Zb, Zi, dx, dy ) = load_state(DEM_file=DEM_file, RESTART_TOGGLE = 0, INIT_COND_TOGGLE=1 ) ny, nx = Zb.shape #------------------ # Initialize vars #------------------ t = numpy.float64(0) conserveIce = numpy.float64(0) # (total ice mass ??) meltrate = numpy.zeros( (ny, nx), dtype='float64' ) ## fd_watch = {} ## fd_watch['thick'] = open( 'thickness_py.bin' , 'wb' ) ## counter = 0 while (t < t_max): (dt, t, H, Zi, meltrate, conserveIce) = update( t, H, Zb, dx, dy, meltrate, conserveIce, SILENT=SILENT) ## COMPRESS_TOGGLE = Toggles.COMPRESS_TOGGLE, ## ICEFLOW_TOGGLE = Toggles.ICEFLOW_TOGGLE, ## ICESLIDE_TOGGLE = Toggles.ICESLIDE_TOGGLE, ## VARIABLE_DT_TOGGLE = Toggles.VARIABLE_DT_TOGGLE, ## dtDefault=Parameters.dtDefault, ## dtMax=Parameters.dtMax) #----------------------- # Print a short report #----------------------- print(' ') print('(nx, ny) =', nx, ny) print('(dx, dy) =', dx, dy) print('(Hmin, Hmax) =', H.min(), H.max()) print('(Zbmin, Zbmax) =', Zb.min(), Zb.max()) print('(Zimin, Zimax) =', Zi.min(), Zi.max()) print('(MRmin, MRmax) =', meltrate.min(), meltrate.max()) print('conserveIce =', conserveIce) print('Finished.') print(' ') # run_model() #-------------------------------------------------------------------------------------------------- class MassBalance: # (enumeration) ( BAD_VAL , ZERO_BALANCE , CONSTANT_ELA , ELA_LOWERING , ELA_TIME_SERIES , EXTERNAL_FUNC , ELA_LOWERING2 , BALANCE_FILE , D180_TIME_SERIES ) = list(range( 9)) # class MassBalance #-------------------------------------------------------------------------------------------------- class BoundaryCond: # (enumeration) ( BAD_VAL , ICE_FREE_BOUND , ZERO_FLUX_BOUND , CONST_FLUX_BOUND , SURF_ELEV_BOUND , SURF_SLOPE_BOUND ) = list(range( 6)) # class BoundaryCond #-------------------------------------------------------------------------------------------------- class Parameters: # (structure) # Constants g = numpy.float64(9.81) # gravitional acceleration [m/s**2] rhoI = numpy.float64(917) # density of ice [kg/m**3] rhoW = numpy.float64(1000) # density of water [kg/m**3] day = numpy.float64(0.00274) # length of a day in years [years] # Time t = numpy.float64(0) # set time to zero tMax = numpy.float64(100000) # maximum simulation time in years dtMax = numpy.float64(0.4 * 365*day) # maximum timestep in years dtDefault = dtMax # timestep if VARIABLE_DT_TOGGLE==0 sec_per_year = numpy.float64(3600) * 24 * 365 # (SDP, 9/30/09) # Glacier Properties MinGlacThick = numpy.float64(1) # Ice Deformation glensA = numpy.float64( (6.8e-15)*3.15e7/(1e9) ) # Patterson, 1994; MacGregor, 2000 ## glensA = numpy.float64( 6.8 * 3.15 * 1e-17) # Attractor Sliding -- only if ICESLIDE_TOGGLE==1 (generally used) UsChar = numpy.float64(10) taubChar = numpy.float64(100000) # Standard Sliding -- used if ICESLIDE_TOGGLE==2 (generally not used) B = numpy.float64(0.0012) # m/(Pa*yr) -- MacGregor, 2000 DepthToWaterTable = numpy.float64(20) # distance from ice surface to water table MaxFloatFraction = numpy.float64(80) # limits water level in ice Hpeff = numpy.float64(20) # effective pressure (meters of water) # Mass Balance initELA = numpy.float64(3350) # (valley glaciers, try 3500 ice sheets) ELAStepSize = numpy.float64(-50) ELAStepInterval = numpy.float64(500) gradBz = numpy.float64(0.01) maxBz = numpy.float64(2) tmin = numpy.float64(200) # Years, spin-up time # Avalanching angleOfRepose = numpy.float64(30) avalanchFreq = numpy.float64(3) # average number per year # Calving seaLevel = numpy.float64(-100) # meters calvingCoef = numpy.float64(2) # year^-1 # Thermal c = numpy.float64(2060) # specific heat capacity (J/(kg*K)) Qg = numpy.float64(0.05 * 3.15e7) # Geothermal heat flux (W/m^2)*seconds/year = (J/year)/(m^2) gradTz = numpy.float64(-0.0255) # Geothermal Gradient # Only for Ice Sheets ??? Hbound = numpy.float64(2000) Elev0 = numpy.float64(0) # reference elevation To = numpy.float64(2.6) # temperature at Elev0 lapseRate = numpy.float64(-0.0065) # degrees per meter # class Parameters #-------------------------------------------------------------------------------------------------- class InputParams: # (structure) CLEAR_FIGURE = 1 CONTOUR_INTERVAL = 50. DEBUG_TOGGLE = 0 DT_LIMIT = 0 ELA_CONTOUR = 1. ICE_CONTOUR = 1. NEW_FIGURE = 0 QUIVER_VECS = 0 RECONSTRUCT = 0 SUBFIGURE = 0 THERMAL_CONTOUR = 0 # class InputParams #-------------------------------------------------------------------------------------------------- class OutputParams: # (structure) plotInterval = 60 * 120 # seconds saveInterval = 100 # whole years reportInterval = 30 # seconds nextPlot = 0 # initialize to plot on first timestep nextSave = 0 # initialize to save on first timestep nextReport = 0 # initialize to report on first timestep outputFile = 'savetmp' # class OutputParams #-------------------------------------------------------------------------------------------------- class Toggles: # (structure) #------------------------ # Code behavior toggles #----------------------------------------------------------- # Toggle or turn on/off segments of the code or select # between multiple possibilities for a given process. # Values can be reset in INIT_COND segment. # Note that many of these are unused in current version. #----------------------------------------------------------- GUISTART_TOGGLE = 0 # started simulation with the gui (off|on) SAVE_TOGGLE = 1 # saving (off|on) PLOT_TOGGLE = 1 # plotting (off|on) REPORT_TOGGLE = 1 # reporting (off|on) COMPRESS_TOGGLE = 0 # only simulate area with ice (off|on) VARIABLE_DT_TOGGLE = 0 # state dependent time step (off|on) INIT_COND_TOGGLE = 1 # load DEM and climate (synth|valley|sheet) GENERIC_ICE_TOGGLE = 0 # start with generic ice surface (off|on) ICEFLOW_TOGGLE = 1 # ice motion by deformation (off|on) ICESLIDE_TOGGLE = 0 # ice motion by sliding (off|on|select) THERMAL_TOGGLE = 0 # temp dependance of flow (off|on) FREEZEON_TOGGLE = 0 # basal ice freeze to bed (off|on) AVALANCHE_TOGGLE = 0 # avalanche off steep surfaces (off|on) CALVING_TOGGLE = 0 # calving front (off|on) ERODE_TOGGLE = 0 # erode the bed (off|on|select) ## CRN_TOGGLE = 0 # CRN accumulation (off|on) # MASS_BALANCE_TOGGLE = MassBalance.ELA_LOWERING # select climate scenerio (off|on|select) MASS_BALANCE_TOGGLE = MassBalance.CONSTANT_ELA # select climate scenerio (off|on|select) WEST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) EAST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) SOUTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) NORTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND # boundary condition (no ice|reflect|no flow) # class Toggles #-------------------------------------------------------------------------------------------------- #-------------------------------------------------------------------------------------------------- def compress_grid( H , Zb , COMPRESS_TOGGLE=False , RESTART_TOGGLE=0, THERMAL_TOGGLE=False ): # COMPRESS - ONLY SIMULATE SUB-RECTANGLE THAT CONTAINS ICE if (COMPRESS_TOGGLE) and (H.max() > 1) and (RESTART_TOGGLE != 2): H_FullSpace = H.copy() Zb_FullSpace = Zb.copy() if (THERMAL_TOGGLE): Ts_FullSpace = Ts.copy() Tb_FullSpace = Tb.copy() Tm_FullSpace = Tm.copy() #[indrw,indcl] = find(H ~= 0); indrw, indcl = numpy.where( H != 0 ) mxrw, mxcl = Zb.shape mnrw = max( 0 , min(indrw) - 2 ) mxrw = min( mxrw , max(indrw) + 2 ) mncl = max( 0 , min(indcl) - 2 ) mxcl = min( mxcl , max(indcl) + 2 ) H = H [ mnrw:mxrw , mncl:mxcl ] Zb = Zb[ mnrw:mxrw , mncl:mxcl ] ## Zi = Zb + max( H, 0 ) ## Zi = Zb + numpy.choose( H<0 , (H,0) ) Zi = Zb + numpy.maximum(H, 0) if (THERMAL_TOGGLE): Ts = Ts[ mnrw:mxrw , mncl:mxcl ] Tb = Tb[ mnrw:mxrw , mncl:mxcl ] Tm = Tm[ mnrw:mxrw , mncl:mxcl ] ny, nx = H.shape mx_ny, mx_nx = Zb_FullSpace.shape ny, nx = Zb.shape compression_ratio = (mx_nx * mx_ny) / (nx * ny) COMPRESSED_FLAG = 1 else: ## Zi = Zb + max( H, 0 ) # included for restarts ## Zi = Zb + numpy.choose( H<0 , (H,0) ) Zi = Zb + numpy.maximum(H, 0) compression_ratio = 1. COMPRESSED_FLAG = 0 return ( Zi , compression_ratio , COMPRESSED_FLAG ) # compress_grid() #-------------------------------------------------------------------------------------------------- def filter2d( b , x , shape='same' ): return scipy.signal.convolve( b , x , mode=shape ) # filter2d() #-------------------------------------------------------------------------------------------------- def add_halo( x ): x_ext = numpy.concatenate( ( x[:,0,numpy.newaxis] , x , x[:,-1,numpy.newaxis] ) , axis=1 ) x_ext = numpy.concatenate( ( [x_ext[0,:]] , x_ext , [x_ext[-1,:]] ) ) return x_ext # add_halo() #-------------------------------------------------------------------------------------------------- def set_bc( H , Zb , Zi , THERMAL_TOGGLE = Toggles.THERMAL_TOGGLE, WEST_BC_TOGGLE = Toggles.WEST_BC_TOGGLE, EAST_BC_TOGGLE = Toggles.EAST_BC_TOGGLE, SOUTH_BC_TOGGLE = Toggles.SOUTH_BC_TOGGLE, NORTH_BC_TOGGLE = Toggles.NORTH_BC_TOGGLE ): ## WEST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND , ## EAST_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND , ## SOUTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND , ## NORTH_BC_TOGGLE = BoundaryCond.ICE_FREE_BOUND ): #------------------------------------------------------- # MODIFY BOUNDARY CELLS TO ENFORCE BOUNDARY CONDITIONS #------------------------------------------------------- # DEFAULT BOUNDARY CONDITION IS ZERO FLUX #------------------------------------------------------- H_ext = add_halo( H ) Zb_ext = add_halo( Zb ) Zi_ext = add_halo( Zi ) if (THERMAL_TOGGLE): Ts_ext = add_halo( Ts ) Tb_ext = add_halo( Tb ) Tm_ext = add_halo( Tm ) # WESTERN BOUNDARY CONDITION if WEST_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[:,0]) + Hbound H_ext[:,0] = ZiBound - Zb_ext[:,0] elif WEST_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif WEST_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[:,0] = 2*Zi_ext[:,1] - Zi_ext[:,2] H_ext [:,0] = Zi_ext[:,0] - Zb_ext[:,0] H_ext [:,0] = numpy.maximum( H_ext[:,0], 0 ) elif WEST_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[:,0] = 0 # EASTERN BOUNDARY CONDITION if EAST_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[:,-1]) + Hbound H_ext[:,-1] = ZiBound - Zb_ext[:,-1] elif EAST_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif EAST_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[:,-1] = 2*Zi_ext[:,-2] - Zi_ext[:,-3] H_ext [:,-1] = Zi_ext[:,-1] - Zb_ext[:,-1] H_ext [:,-1] = numpy.maximum( H_ext[:,-1], 0) elif EAST_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[:,-1] = 0 # SOUTHERN BOUNDARY CONDITION if SOUTH_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[0,:]) + Hbound H_ext[0,:] = ZiBound - Zb_ext[0,:] elif SOUTH_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif SOUTH_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[0,:] = 2*Zi_ext[1,:] - Zi_ext[2,:] H_ext [0,:] = Zi_ext[0,:] - Zb_ext[0,:] H_ext [0,:] = numpy.maximum( H_ext[0,:], 0 ) elif SOUTH_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[0,:] = 0 # NORTHERN BOUNDARY CONDITION if NORTH_BC_TOGGLE == BoundaryCond.SURF_ELEV_BOUND: # Constant Ice Surface Height ZiBound = numpy.mean(Zb[-1,:]) + Hbound H_ext[-1,:] = ZiBound - Zb_ext[-1,:] elif NORTH_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND: # Constant Ice Flux B.C. pass elif NORTH_BC_TOGGLE == BoundaryCond.SURF_SLOPE_BOUND: # Constant Ice Surface Slope Zi_ext[-1,:] = 2*Zi_ext[-2,:] - Zi_ext[-3,:] H_ext [-1,:] = Zi_ext[-1,:] - Zb_ext[-1,:] H_ext [-1,:] = numpy.maximum( H_ext[-1,:], 0 ) elif NORTH_BC_TOGGLE == BoundaryCond.ICE_FREE_BOUND: # Ice Free Boundary H_ext[-1,:] = 0 Zi_ext = Zb_ext + H_ext return ( H_ext , Zb_ext , Zi_ext ) # set_bc() #-------------------------------------------------------------------------------------------------- def difference_grid( A , dx , dy ): dAdx_ext = ( A[:,1:] - A[:,:-1] ) / dx dAdy_ext = ( A[1:,:] - A[:-1,:] ) / dy dAdx = dAdx_ext[1:-1,:] dAdy = dAdy_ext[:,1:-1] return ( dAdx , dAdy ) # difference_grid() #-------------------------------------------------------------------------------------------------- #-------------------------------------------------------------------------------------------------- def basal_shear_stress( H_ext , Zi_ext , dx=1. , dy=1. , g=Parameters.g , rhoI=Parameters.rhoI ): #------------------------------------ # CALCULATE THE BASAL SHEAR STRESS #------------------------------------ # forward differences (could use difference_grid()) dZidxX_ext = ( Zi_ext[:,1:] - Zi_ext[:,:-1] ) / dx dZidyY_ext = ( Zi_ext[1:,:] - Zi_ext[:-1,:] ) / dy dZidxX = dZidxX_ext[1:-1,:] dZidyY = dZidyY_ext[:,1:-1] HX_ext = ( H_ext[:,1:] + H_ext[:,:-1] ) / 2. HY_ext = ( H_ext[1:,:] + H_ext[:-1,:] ) / 2. HX = HX_ext[1:-1,:] HY = HY_ext[:,1:-1] taubxX_ext = -rhoI * g * HX_ext * dZidxX_ext taubyY_ext = -rhoI * g * HY_ext * dZidyY_ext taubxX = taubxX_ext[1:-1,:] taubyY = taubyY_ext[:,1:-1] taubxY = ( taubxX_ext[:-1,:-1] + taubxX_ext[:-1,1:] + taubxX_ext[1: ,:-1] + taubxX_ext[1: ,1:] ) / 4. taubyX = ( taubyY_ext[:-1,:-1] + taubyY_ext[:-1,1:] + taubyY_ext[1: ,:-1] + taubyY_ext[1: ,1:] ) / 4. taubX = numpy.sqrt( taubxX**2 + taubyX**2 ) taubY = numpy.sqrt( taubxY**2 + taubyY**2 ) taubX = numpy.choose( HX>0 , (0,taubX) ) taubY = numpy.choose( HY>0 , (0,taubY) ) # Fill in zero values with 1 for use in division xcmpnt = numpy.choose( numpy.abs(taubX)<1e-5 , ( taubxX / taubX , 0. ) ) ycmpnt = numpy.choose( numpy.abs(taubY)<1e-5 , ( taubyY / taubY , 0. ) ) return ( ( xcmpnt , ycmpnt ) , ( taubX , taubY ) , ( HX , HY ) ) # basal_shear_stress() #-------------------------------------------------------------------------------------------------- def iceflow( taubX , taubY , HX , HY , xcmpnt , ycmpnt , THERMAL_TOGGLE = Toggles.THERMAL_TOGGLE, ## THERMAL_TOGGLE=False, glensA = Parameters.glensA, #---------------------------------------------- # Remaining values for THERMAL_TOGGLE = True #---------------------------------------------- MinGlacThick = Parameters.MinGlacThick, lapseRate = Parameters.lapseRate ): # (value for ice sheets ???) ## MinGlacThick = 1.0, ## lapseRate = numpy.float64(-0.0065)): # (value for ice sheets ???) #-------------------------------------------- # CALCULATE ICE VELOCITY DUE TO DEFORMATION #-------------------------------------------- if (THERMAL_TOGGLE): ################################################################## # NOTE! Many of the vars needed by this segment are undefined, # such as: lapseRate (added above), eHs, eTs, eTm, To, # H_ext, Ts_ext and Tm_ext. (SDP, 9/21/09) ################################################################## A_ext = numpy.zeros(H_ext.shape , dtype='float64' ) ind = numpy.nonzero( numpy.ravel(H_ext) >= MinGlacThick ) Ts_ext = To + lapseRate*( Zi_ext - Elev0 ) #A_ext(ind) = interp3( eHs, eTs, eTm, eA, H_ext(ind), Ts_ext(ind), Tm_ext(ind) ) ; try: numpy.put( A_ext , ind , interpolate.interp3d( eHs , eTs , eTm )( numpy.take(H_ext,ind) , numpy.take(Ts_ext,ind) , numpy.take(Tm_ext,ind) ) ) except: logging.error( "NaN in A, likely H_node exceeds H_glens limits" ) return -1 AX = ( A_ext[1:-1, :-1] + A_ext[1:-1,1: ] ) / 2. AY = ( A_ext[ :-1,1:-1] + A_ext[1: ,1:-1] ) / 2. else: AX = glensA AY = glensA # Here's the guts of calculating the depth averaged velocity UdxX = numpy.abs( .4 * AX * taubX*taubX*taubX * HX ) * xcmpnt UdyY = numpy.abs( .4 * AY * taubY*taubY*taubY * HY ) * ycmpnt #UdxX = numpy.fix(UdxX*1e6)*1e-6 #UdyY = numpy.fix(UdyY*1e6)*1e-6 return ( UdxX , UdyY ) # iceflow() #-------------------------------------------------------------------------------------------------- def ice_sliding( taubX , taubY , xcmpnt , ycmpnt , THERMAL_TOGGLE=False, FREEZEON_TOGGLE=False, UsChar=Parameters.UsChar, taubChar=Parameters.taubChar ): #------------------------------ # CALCULATE SLIDING VELOCITY #------------------------------ # Here's the guts of calculating the sliding velocity UsxX = numpy.choose( numpy.abs(taubX)<1e-5 , ( UsChar * numpy.exp(1 - taubChar / taubX) * xcmpnt , UsChar * numpy.exp(1 - taubChar ) * xcmpnt ) ) UsyY = numpy.choose( numpy.abs(taubY)<1e-5 , ( UsChar * numpy.exp(1 - taubChar / taubY) * ycmpnt , UsChar * numpy.exp(1 - taubChar ) * ycmpnt ) ) if (THERMAL_TOGGLE and FREEZEON_TOGGLE): ################################################################## # NOTE! Many of the vars needed by this segment are undefined, # such as: Tb_ext, Zb_ext, seaLevel. (SDP, 9/21/09) ################################################################## ## notFrozen = (Tb_ext > -.5) or (Zb_ext < seaLevel) notFrozen = numpy.logical_or( Tb_ext > -0.5, Zb_ext < seaLevel ) notFrozenX = ( notFrozen[1:-1, :-1] + notFrozen[1:-1,1: ] ) / 2. notFrozenY = ( notFrozen[ :-1,1:-1] + notFrozen[1: ,1:-1] ) / 2. UsxX *= notFrozenX UsyY *= notFrozenY return ( UsxX , UsyY ) # ice_sliding() #-------------------------------------------------------------------------------------------------- def sum_ice_motion( UdxX , UdyY , UsxX , UsyY ): UxX = (UdxX + UsxX) UyY = (UdyY + UsyY) return ( UxX , UyY ) # sum_ice_motion() #-------------------------------------------------------------------------------------------------- def avalanche( H , angleOfRepose=Parameters.angleOfRepose ): #--------------------------------------- # AVALANCHE SNOW OFF OF STEEP SURFACES #--------------------------------------------------------- # move ice downslope until the ice surface is everywhere # less then or near the angle of repose #--------------------------------------------------------- ny, nx = Zb.shape dHRepose = dx * numpy.tan(angleOfRepose * numpy.pi / 180.) Ho = numpy.maximum( H, 0 ) while True: dZidx_down = numpy.zeros( (ny,nx) , dtype='float64' ) dZidx_up = numpy.zeros( (ny,nx) , dtype='float64' ) dZidx_down[:,1:] = numpy.choose( Zi[:,1:] < Zi[:,:-1] , ( Zi[:,1:] - Zi[:,:-1] , 0 ) ) dZidx_up [:,:-1] = numpy.choose( Zi[:,:-1] < Zi[:,1:] , ( Zi[:,:-1] - Zi[:,1:] , 0 ) ) dZidx = numpy.choose( dZidx_up > dZidx_down , ( dZidx_down , dZidx_up ) ) dZidy_left = numpy.zeros( (ny,nx) , dtype='float64' ) dZidy_right = numpy.zeros( (ny,nx) , dtype='float64' ) dZidy_left [1:,:] = numpy.choose( Zi[1:,:] < Zi[:-1,:] , ( Zi[1:,:] - Zi[:-1,:] , 0 ) ) dZidy_right[:-1,:] = numpy.choose( Zi[:-1,:] < Zi[1:,:] , ( Zi[:-1,:] - Zi[1:,:] , 0 ) ) dZidy = numpy.choose( dZidy_left > dZidy_right , ( dZidy_right , dZidy_left ) ) grad = numpy.sqrt( dZidx**2 + dZidy**2 ) gradT = dZidy_left + dZidy_right + dZidx_down + dZidx_up gradT = numpy.choose( gradT == 0, (gradT,1) ) grad = numpy.choose( Ho < 0.1, (grad ,0) ) mxGrad = grad.max() if (mxGrad <= 1.1*dHRepose): break delH = numpy.choose( grad < dHRepose , ( ( grad - dHRepose)/3. , 0 ) ) Htmp = Ho.copy() Ho = numpy.choose( Htmp<delH , ( Htmp-delH , 0 ) ) delH = Htmp - Ho delHdn = numpy.zeros( (ny,nx) , dtype='float64' ) delHup = numpy.zeros( (ny,nx) , dtype='float64' ) delHlt = numpy.zeros( (ny,nx) , dtype='float64' ) delHrt = numpy.zeros( (ny,nx) , dtype='float64' ) delHup[:,1: ] = delH[:, :-1] * dZidx_up [:, :-1] / gradT[:, :-1] delHdn[:, :-1] = delH[:,1: ] * dZidx_down[:,1: ] / gradT[:,1: ] delHrt[1: ,:] = delH[ :-1,:] * dZidy_right[ :-1,:] / gradT[ :-1,:] delHlt[ :-1,:] = delH[1: ,:] * dZidy_left [1: ,:] / gradT[1: ,:] Ho = Ho + delHdn + delHup + delHlt + delHrt Ho = numpy.maximum( Ho, 0 ) Zi = Zb + Ho #H = Ho + (H<0).*H ; H = Ho + numpy.choose( H<0 , (0,H) ) ### DOUBLE-CHECK THIS return H # avalanche() #-------------------------------------------------------------------------------------------------- def calve( H , dt , CALVING_TOGGLE=True ): if not(CALVING_TOGGLE): return #------------------------- # CALVING GLACIER FRONT #----------------------------------------------------------------------- # one reason this is difficult is that the height of ice in the cell # is really just recording the volume of ice, the position of the # margin in the cell not the actual ice height. Here floation # height is assumed (or higher if necessary to account for ice volume) #----------------------------------------------------------------------- Hold = H.copy() calvedIce = 0 # Count time backwards with a sshorted timestep until the whole # timestep used during this itteration has been simulated dtTot = dt while (dtTot > 0): # Find the calving front, aka the wet glacier margin G = H > 1 W = numpy.logical_and( G==0 , Zb <= seaLevel ) filt = numpy.array( [[0,1,0],[1,1,1],[0,1,0]] , dtype='float64' ) Wfilt = filter2d( filt , W ) Wfilt[:,(0,-1)] = Wfilt[:,(2,-3)] Wfilt[(0,-1),:] = Wfilt[(2,-3),:] wetGmargin = Gi * Wfilt > 0 indWGM = wetGmargin.ravel().nonzero() # If calving front exists, find water depth, ensure it's positive if (indWGM.size > 0): ## WDmarg = seaLevel - Zb.flatten()[indWGM] WDmarg = seaLevel - Zb.flat[indWGM] WDmarg = numpy.maximum( WDmarg, 0 ) ind = (WDmarg != 0).nonzero() indWGM = numpy.take( indWGM , ind ) WDmarg = numpy.take( WDmarg , ind ) #WDmarg = max( 0, seaLevel - Zb(indWGM) ) ; #ind = find( WDmarg == 0 ) ; #indWGM(ind) = [] ; #WDmarg(ind) = [] ; # If calving front exists, remove some ice if (indWGM.size > 0): # ice thickness in calving cells Hmarg = H.flatten()[indWGM] Hmarg = numpy.choose( Hmarg<WDmarg/0.917 , (Hmarg,WDmarg/0.917) ) # A new timestep is calculated such that the calving rate times the # timesstep does not exceed the total contents of any calving cell. dLinCalvdt = calvingCoef * WDmarg # front migration rate dVolCalvdt = dx * dLinCalvdt * Hmarg # rate of volume calved volAvailMarg = dx * dx * H.flatten()[indWGM] # ice volume available calvDt = min( dtTot, ( volAvailMarg / dVolCalvdt ).min() ) # calving timestep # Remove this calving timestep from total time to calve dtTot = dtTot - calvDt # Convert the volume calved to ice thickness and remove calve = dVolCalvdt * calvDt / ( dx * dx ) H[indWGM] = H[indWGM] - calve # Record total volume calved for posterity calvedIce = calvedIce + calve.sum(asis=0).sum() * dx * dx else: dtTot = 0 # Record ice removal by calving for conservation test conserveIce = conserveIce + ( H - Hold ).sum(axis=0).sum() # calve() #-------------------------------------------------------------------------------------------------- def mass_balance( Zi, t, MASS_BALANCE_TOGGLE=None, initELA=None, ELAStepSize=None, ELAStepInterval=None, tmin=None, gradBz=None, maxBz=None ): ## MASS_BALANCE_TOGGLE=Toggles.MASS_BALANCE_TOGGLE, ## initELA=Parameters.initELA, ## tmin=Parameters.tmin , ## ELAStepSize=Parameters.ELAStepSize , ## ELAStepInterval=Parameters.ELAStepInterval , ## gradBz=Parameters.gradBz, ## maxBz=Parameters.maxBz ): #------------------------------------------------------------ # (12/4/09) Experiment that worked. A function in another # Python package can change variables stored in "classes" # like Toggles and Parameters, but if given as defaults # to the arguments of the update() function it will always # use the original values in Toggles and Parameters. #------------------------------------------------------------ if (MASS_BALANCE_TOGGLE == None): MASS_BALANCE_TOGGLE = Toggles.MASS_BALANCE_TOGGLE if (initELA == None): initELA = Parameters.initELA if (ELAStepSize == None): ELAStepSize = Parameters.ELAStepSize if (ELAStepInterval == None): ELAStepInterval = Parameters.ELAStepInterval if (tmin == None): tmin = Parameters.tmin if (gradBz == None): gradBz = Parameters.gradBz if (maxBz == None): maxBz = Parameters.maxBz ## print 'MASS_BALANCE_TOGGLE =', MASS_BALANCE_TOGGLE ## print 'initELA =', initELA ## print 'ELAStepSize =', ELAStepSize ## print 'ELAStepInterval =', ELAStepInterval ## print 'tmin (spinup) =', tmin #-------------------------- # CALCULATE MASS BALANCE #--------------------------------------------------------- # The imposed mass balance is the imposed climate. # There are many possibilities, here are only a few. # All must populate the 2D matrix Bxy of size = size(Zb) # with values of net precip/melt rate in m/yr. ################################### # Define the scalar, ELA (m), for plotting. #--------------------------------------------------------- if (MASS_BALANCE_TOGGLE == MassBalance.CONSTANT_ELA): # Simple ELA, maxBz, gradBz ELA = initELA #Bxy = min( maxBz , gradBz * ( Zi - ELA ) ) Bxy = gradBz * ( Zi - ELA ) Bxy = numpy.choose( Bxy > maxBz , (Bxy, maxBz) ) elif (MASS_BALANCE_TOGGLE == MassBalance.ELA_LOWERING): # ELA changing with time experiment # ELAStepSize = -10 ; # positive/negative values raise/lower ELA # ELAStepInterval = 500 ; ## ELA = initELA + ELAStepSize * max( 0 , numpy.floor( (t-tmin)/ELAStepInterval ) ) ELA = initELA + ELAStepSize * numpy.maximum(0, (t-tmin)/ELAStepInterval ) # (SDP, 12/4/09) Bxy = gradBz * ( Zi - ELA ) Bxy = numpy.choose( Bxy > maxBz , (Bxy, maxBz) ) #---------------- # For debugging #---------------- DEBUG = False if (DEBUG): print('t, ELA =', t, ', ', ELA) print('min(Bxy), max(Bxy) =', Bxy.min(), ', ', Bxy.max()) elif (MASS_BALANCE_TOGGLE == MassBalance.ELA_LOWERING2): # ELA changing with time experiment tau = numpy.float64(25) # intrinsic timescale of ice dynamics tmin = numpy.float64(0) # time to begin ELA modification initELA = numpy.float64(4200) # initial ELA stepSize = numpy.float64(-10) # positive/negative values raise/lower ELA dELAdt = numpy.float64(-0.1) ELA = initELA + stepSize * max( 0, numpy.floor( (t-tmin) / (8*tau) ) ) Bxy = gradBz * ( Zi - ELA ) Bxy = numpy.choose( Bxy > maxBz , (Bxy, maxBz) ) elif (MASS_BALANCE_TOGGLE == MassBalance.EXTERNAL_FUNC): # external mass balance function try: Bxy except NameError: # Mass Balance 2D Must Return Bxy (2d Matrix) Bxy = mass_balance_gc2d( t , cellsize , Zi ) nextGetBxy = t + getBxyInterval else: if (t >= nextGetBxy): Bxy = mass_balance_gc2d( t , cellsize , Zi ) nextGetBxy = t + getBxyInterval elif (MASS_BALANCE_TOGGLE == MassBalance.ELA_TIME_SERIES) or \ (MASS_BALANCE_TOGGLE == MassBalance.D18O_TIME_SERIES): # ELA time series ELA = interpolate.interp1d( trecord , ELArecord )( t ) Bxy = gradBz * ( Zi - ELA ) Bxy = numpy.choose( Bxy > maxBz , (Bxy, maxBz) ) elif (MASS_BALANCE_TOGGLE == MassBalance.BALANCE_FILE): # external mass balance file Bxy = load_dem_var( DEM_file, 'Bxy' ) ind = numpy.nonzero( numpy.ravel(numpy.abs(Bxy)==min(numpy.abs(Bxy))) ) ELA = numpy.mean( numpy.take( numpy.ravel(Zi) , ind ) ) elif (MASS_BALANCE_TOGGLE == MassBalance.ZERO_BALANCE): ELA = 0 Bxy = numpy.zeros( Zb.shape , dtype='float64' ) else: logging.error( "Unrecognized Mass Balance" ) return -1 return ( Bxy , ELA ) # mass_balance() #-------------------------------------------------------------------------------------------------- def mass_conservation( H_ext , UxX , UyY , HX , HY , dZidxX , dZidyY , dx=1., dy=1., MinGlacThick=Parameters.MinGlacThick, BoundaryFlux=0., #### WAS UNDEFINED BEFORE 9/21/09 #### WEST_BC_TOGGLE =Toggles.WEST_BC_TOGGLE, EAST_BC_TOGGLE =Toggles.EAST_BC_TOGGLE, SOUTH_BC_TOGGLE=Toggles.SOUTH_BC_TOGGLE, NORTH_BC_TOGGLE=Toggles.NORTH_BC_TOGGLE ): ## WEST_BC_TOGGLE =BoundaryCond.ICE_FREE_BOUND , # (Before 12/4/09) ## EAST_BC_TOGGLE =BoundaryCond.ICE_FREE_BOUND , ## SOUTH_BC_TOGGLE=BoundaryCond.ICE_FREE_BOUND , ## NORTH_BC_TOGGLE=BoundaryCond.ICE_FREE_BOUND ): #----------------------------------- # MASS CONSERVATION -- CONTINUITY #-------------------------------------------- # Ensure that no ice is drawn from the rock # CLASS = H_ext >= MinGlacThick #-------------------------------------------- CLASS = numpy.choose( H_ext >= MinGlacThick , (0.,1.) ) DCLASSx = ( CLASS[1:-1,1: ] - CLASS[1:-1, :-1] ) * numpy.sign( dZidxX ) DCLASSy = ( CLASS[1: ,1:-1] - CLASS[ :-1,1:-1] ) * numpy.sign( dZidyY ) UxX = numpy.choose( numpy.abs(DCLASSx+1)<1e-5 , (UxX,0.) ) UyY = numpy.choose( numpy.abs(DCLASSy+1)<1e-5 , (UyY,0.) ) # Calculate both components of the ice flux qxX = UxX * HX qyY = UyY * HY #----------------------------------------------------------- # Note: What is appropriate value for BoundaryFlux ?? # Was undefined in versions prior to 9/21/09 (SDP). #----------------------------------------------------------- if (WEST_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND): qxX[: , 0] = BoundaryFlux if (EAST_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND): qxX[: ,-1] = BoundaryFlux if (SOUTH_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND): qyY[0 , :] = BoundaryFlux if (NORTH_BC_TOGGLE == BoundaryCond.CONST_FLUX_BOUND): qyY[-1, :] = BoundaryFlux # Here's the guts of the continuity equation dqdxX = ( qxX[ :,1:] - qxX[: ,:-1] ) / dx dqdyY = ( qyY[1:, :] - qyY[:-1,: ] ) / dy dHdt = -dqdxX - dqdyY return ( dHdt , ( qxX , qyY ) ) # mass_conservation() #-------------------------------------------------------------------------------------------------- #-------------------------------------------------------------------------------------------------- def load_dem( DEM_file ): # Assume DEM_file is in MatLab format vars = scipy.io.loadmat( DEM_file ) cellsize = numpy.float64(vars['cellsize']) easting = numpy.float64(vars['easting']) northing = numpy.float64(vars['northing']) topo = numpy.float64(vars['topo']) ny, nx = topo.shape logging.info( 'Shape of topo is %d by %d' , ny , nx ) logging.info( 'Shape of easting is %d' , easting.size ) logging.info( 'Shape of northing is %d' , northing.size ) if (easting.size != nx): sys.exit( 'Easting does not match dimension of topo (%d != %d)' % (easting.size, nx) ) if (northing.size != ny): sys.exit( 'Northing does not match dimension of topo (%d != %d)' % (northing.size, ny) ) return ( topo , easting , northing , cellsize ) # load_dem() #-------------------------------------------------------------------------------------------------- def load_dem_var( var_file , val_s ): # Assume var_file is in MatLab format, # & maybe contains DEM as well. vars = scipy.io.loadmat( var_file ) if (val_s in vars): var = vars[val_s] else: var = None return var # load_dem_var() #-------------------------------------------------------------------------------------------------- def get_timestep( H, Zi_ext, Zi , dHdt, Bxy, dtMax = Parameters.dtMax, dtDefault = Parameters.dtDefault ): #--------------------- # CALCULATE TIMESTEP #----------------------------------------------------------------------- # Now that we know the rate of change in ice surface heights due to # ice motion and due to precipitation or melt we need to know over # what period of time we can project forward with these rates and # maintain stability of the ice surface. The basic idea here is that # we don't want to take a timestep any longer then it would take to # reverse the ice surface slope between two cells, such that ice # should be flowing in the other direction. In fact, let's make our # timestep much less than that. # # This calculation sets the timestep such that the change # in ice surface elevation nowhere exceeds a set fraction # of the local standard deviation in ice surface elevations #----------------------------------------------------------------------- # include ice changes by precip and melt dHdtTot = dHdt + Bxy adHdt =
numpy.abs(dHdtTot)
numpy.abs
''' Show the effect of cycles and undecided labels in preference pairs in simple training datasets on: - GPPL - SVC - Ranking using PageRank We use these three because they have different ways of modelling preference pairs: as noisy observations at both points; as classifications; as graphs. Created on 20 Jul 2017 @author: simpson ''' import os, sys sys.path.append("./python") sys.path.append("./python/analysis") sys.path.append("./python/models") sys.path.append("./python/analysis/habernal_comparison") sys.path.append(os.path.expanduser("~/git/HeatMapBCC/python")) sys.path.append(os.path.expanduser("~/git/pyIBCC/python")) from gp_pref_learning import GPPrefLearning import numpy as np import matplotlib.pyplot as plt from tests import get_noisy_fold_data, load_embeddings, \ compute_lengthscale_heuristic from embeddings import get_mean_embeddings from data_loader import load_train_test_data, load_ling_features import networkx as nx from sklearn.svm import SVC import matplotlib matplotlib.rcParams.update({'font.size': 16}) def run_pagerank(trainids_a1, trainids_a2, prefs_train): G = nx.DiGraph() for i in range(len(trainids_a1)): if prefs_train[i] == 2: G.add_edge(trainids_a1[i], trainids_a2[i]) elif prefs_train[i] == 0: G.add_edge(trainids_a2[i], trainids_a1[i]) rank_dict = nx.pagerank_numpy(G) rankscores = np.zeros(len(rank_dict)) rankscores[list(rank_dict.keys())] = list(rank_dict.values()) return rankscores def run_svm(trainids_a1, trainids_a2, prefs_train, items_feat, testids_a1, testids_a2): svc = SVC(probability=True) prefs_train = np.copy(prefs_train) #ignore the undecided labels trainids_a1 = trainids_a1[prefs_train!=1] trainids_a2 = trainids_a2[prefs_train!=1] prefs_train = prefs_train[prefs_train!=1] svc.fit( #np.concatenate((items_feat[trainids_a1, :], items_feat[trainids_a2, :]), axis=1), #np.array(prefs_train) / 2.0) np.concatenate((np.concatenate((items_feat[trainids_a1, :], items_feat[trainids_a2, :]), axis=1), np.concatenate((items_feat[trainids_a2, :], items_feat[trainids_a1, :]), axis=1)), axis=0), np.concatenate((np.array(prefs_train) / 2.0, 1 - np.array(prefs_train) / 2.0)) ) #results['SVM'] = svc.decision_function(targets_single_arr) #proba = svc.predict_proba(np.concatenate((items_feat[testids_a1, :], items_feat[testids_a2, :]), axis=1)) pred_svm = svc.predict(np.concatenate((items_feat[testids_a1, :], items_feat[testids_a2, :]), axis=1)) #return proba[:, np.argwhere(np.array(svc.classes_)==1)[0][0]] return pred_svm def plot_probas(total_p, label, outputdir, N, vmin=0, vmax=1): mean_p = total_p / float(nrepeats) # Plot classifications of all pairs as a coloured 3x3 table plt.figure(figsize=(4,3)) data = mean_p.reshape(N, N) # do 1 - to get the preference for the argument along x axis over arg along y axis im = plt.imshow(data, interpolation='nearest', vmin=vmin, vmax=vmax, cmap=plt.cm.get_cmap('hot')) plt.grid('on') plt.title('%s -- Predicted Preferences: p(arg_x > arg_y)' % label) plt.xlabel('ID of arg_x') plt.ylabel('ID of arg_y') plt.xticks(list(range(N))) plt.yticks(list(range(N))) plt.colorbar(im, fraction=0.046, pad=0.04, shrink=0.9) plt.savefig(outputdir + '/' + label + '_probas.pdf') def plot_scores(total_f, var_f, label, outputdir, sample_objs, obj_labels, methodnum, max_normalize_val, fig=None): # normalise it total_f /= max_normalize_val mean_f = total_f / float(nrepeats) # Plot the latent function values for a, b, and c as a bar chart if fig is None: fig = plt.figure(figsize=(3,3)) else: plt.figure(fig.number) cols = ['steelblue', 'maroon', 'lightblue'] if methodnum == 0: plt.plot([-0.5, len(sample_objs)-0.5], [0, 0], color='black') if var_f is not None: var_f /= max_normalize_val**2 var_f /= float(nrepeats)**2 plt.bar(sample_objs - (0.47*methodnum) + 0.235, mean_f.flatten(), 0.45, color=cols[methodnum], yerr=
np.sqrt(var_f)
numpy.sqrt
import cv2 import numpy as np import scipy.optimize import recordreader WHEELTICK_SCALE = 0.066 CAM_TILT = np.array([0, 22.*np.pi/180., 0]) K = np.load("../../tools/camcal/camera_matrix.npy") dist = np.load("../../tools/camcal/dist_coeffs.npy") K[:2] /= 4.05 fx, fy = np.diag(K)[:2] cx, cy = K[:2, 2] mapsz = 300 # map size Z = 14 # map zoom factor uv = np.mgrid[:480, :640][[1, 0]].transpose(1, 2, 0).astype(np.float32) ceilmask = ((uv[:, :, 1] - cy)**2 + (uv[:, :, 0] - cx + 60)**2) < (np.pi/2.4 * fx)**2 R = cv2.Rodrigues(CAM_TILT)[0] pts = cv2.fisheye.undistortPoints(uv[None, ceilmask], K, dist, R=R) ceilmap = np.zeros((mapsz, mapsz), np.float32) ceilN = np.ones((mapsz, mapsz), np.float32) ceilmean = ceilmap / ceilN def pix2floormap(): ''' undistortPoints doesn't support points behind the image plane, but we can solve for them ''' def solvetheta(thetad, k1): theta = thetad theta += (theta*(k1*theta**2 + 1) - thetad)/(-3*k1*theta**2 - 1) theta += (theta*(k1*theta**2 + 1) - thetad)/(-3*k1*theta**2 - 1) return theta mg = np.mgrid[:480, :640] u, v = (mg[1] - cx)/fx, (mg[0] - cy)/fy r = np.sqrt(u**2 + v**2) a, b = u/r, -v/r theta = solvetheta(r, dist[0]) mask = (theta > np.pi/2) & (theta < np.pi/1.9) t = 1.0 / np.tan(theta[mask] - np.pi/2) return mask, np.stack([a[mask] * t, b[mask] * t]).T floormap = np.zeros((mapsz, mapsz, 3), np.float32) floorN = np.ones((mapsz, mapsz), np.float32) * 1e-3 floormean = floormap / floorN[:, :, None] floormask, floorpts = pix2floormap() def Maplookup(x, y, theta): S, C = np.sin(theta), np.cos(theta) R = np.array([[C, S], [-S, C]])*Z p = np.dot(pts[0], R.T) + np.array([x, y]) pi = p.astype(np.int) pt = p - pi t00 = (1-pt[:, 1])*(1-pt[:, 0]) t01 = (1-pt[:, 1])*(pt[:, 0]) t10 = (pt[:, 1])*(1-pt[:, 0]) t11 = (pt[:, 1])*(pt[:, 0]) m = (t00*ceilmean[pi[:, 1], pi[:, 0]+1] + t01*ceilmean[pi[:, 1], pi[:, 0]+1] + t10*ceilmean[pi[:, 1]+1, pi[:, 0]+1] + t11*ceilmean[pi[:, 1]+1, pi[:, 0]+1]) return m def Mapupdate(xi, yi, theta, gray): S, C = np.sin(theta), np.cos(theta) R = np.array([[C, S], [-S, C]])*Z p = np.dot(pts[0], R.T) + np.array([xi, yi]) pi = p.astype(np.int) pt = p - pi t00 = (1-pt[:, 1])*(1-pt[:, 0]) t01 = (1-pt[:, 1])*(pt[:, 0]) t10 = (pt[:, 1])*(1-pt[:, 0]) t11 = (pt[:, 1])*(pt[:, 0]) idxs = pi[:, 1] * mapsz + pi[:, 0] ceilN[:] += np.bincount(idxs, t00.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) ceilN[:] += np.bincount(idxs+1, t01.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) ceilN[:] += np.bincount(idxs+mapsz, t10.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) ceilN[:] += np.bincount(idxs+mapsz+1, t11.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) mask = ceilmask ceilmap[:] += np.bincount(idxs, t00*gray[mask], mapsz*mapsz).reshape(mapsz, mapsz) ceilmap[:] += np.bincount(idxs+1, t01*gray[mask], mapsz*mapsz).reshape(mapsz, mapsz) ceilmap[:] += np.bincount(idxs+mapsz, t10*gray[mask], mapsz*mapsz).reshape(mapsz, mapsz) ceilmap[:] += np.bincount(idxs+mapsz+1, t11*gray[mask], mapsz*mapsz).reshape(mapsz, mapsz) ceilmean[:] = ceilmap / ceilN def Floorupdate(xi, yi, theta, bgr): S, C = np.sin(-theta), np.cos(-theta) R = np.array([[C, S], [-S, C]]) p = np.dot(floorpts, R.T) + np.array([xi, yi]) mask2 = (p[:, 0] >= 0) & (p[:, 1] >= 0) & (p[:, 0] < mapsz-1) & (p[:, 1] < mapsz-1) p = p[mask2] pi = p.astype(np.int) pt = p - pi t00 = (1-pt[:, 1])*(1-pt[:, 0]) t01 = (1-pt[:, 1])*(pt[:, 0]) t10 = (pt[:, 1])*(1-pt[:, 0]) t11 = (pt[:, 1])*(pt[:, 0]) idxs = pi[:, 1] * mapsz + pi[:, 0] floorN[:] += np.bincount(idxs, t00.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) floorN[:] += np.bincount(idxs+1, t01.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) floorN[:] += np.bincount(idxs+mapsz, t10.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) floorN[:] += np.bincount(idxs+mapsz+1, t11.reshape(-1), mapsz*mapsz).reshape(mapsz, mapsz) mask = floormask for i in range(3): floormap[:, :, i] += np.bincount(idxs, t00*bgr[mask, i][mask2], mapsz*mapsz).reshape(mapsz, mapsz) floormap[:, :, i] += np.bincount(idxs+1, t01*bgr[mask, i][mask2], mapsz*mapsz).reshape(mapsz, mapsz) floormap[:, :, i] += np.bincount(idxs+mapsz, t10*bgr[mask, i][mask2], mapsz*mapsz).reshape(mapsz, mapsz) floormap[:, :, i] += np.bincount(idxs+mapsz+1, t11*bgr[mask, i][mask2], mapsz*mapsz).reshape(mapsz, mapsz) floormean[:] = floormap / floorN[:, :, None] def main(fname, skips=0): f = open(fname, 'rb') ts0 = None theta = -0.09 ri = recordreader.RecordIterator(f) for _ in range(skips): ri.__next__() xi, yi = mapsz/2, mapsz/2 ptrange = np.max(np.linalg.norm(pts[0], axis=1)) firstiter = False if firstiter: poses = [] else: poses = np.load("poses.npy") frameno = 0 vidout = None if False: vidout = cv2.VideoWriter("ba.mp4", cv2.VideoWriter_fourcc( 'X', '2', '6', '4'), 30, (640, 480), True) lastw = None for frame in ri: gray = frame['yuv420'][:480] bgr = cv2.cvtColor(frame['yuv420'], cv2.COLOR_YUV2BGR_I420) if ts0 is None: ts0 = frame['tstamp'] - 1.0/30 ts = frame['tstamp'] dt = ts - ts0 ts0 = ts # throttle, steering, accel, gyro, servo, wheels, periods gz = frame['carstate'][3][2] wheels = frame['carstate'][5] ds = 0 if lastw is not None: ds = (wheels - lastw)[0] lastw = wheels theta -= gz*dt S, C = np.sin(theta), np.cos(theta) # now solve for x, y, theta xi -= ds*WHEELTICK_SCALE*S yi -= ds*WHEELTICK_SCALE*C gm = gray[ceilmask] def L(X): x, y, theta = X # m, n = Maplookup(x, y, theta) # i really thought that this would work better, # but it totally doesn't # return (gray[mask].astype(np.float32)*n - m) # odometry constraint return np.concatenate([(gm - Maplookup(x, y, theta)) / 170.0, 1e-3*np.array([xi - x, yi - y])]) if False: L0 = np.sum(L([xi, yi, theta])**2) Lx = np.sum(L([xi+1, yi, theta])**2) Ly = np.sum(L([xi, yi+1, theta])**2) Lt = np.sum(L([xi, yi, theta+0.01])**2) print("jac: ", (Lx - L0), (Ly - L0), (Lt - L0)/0.01) if firstiter: lb = ptrange*Z ub = mapsz - 2 - ptrange*Z soln = scipy.optimize.least_squares( L, x0=
np.array([xi, yi, theta])
numpy.array
import numpy as np import numba as nb from numba import types, typed, typeof from numba import jit from numba.experimental import jitclass from nrc_spifpy.spif import TIME_CHUNK # The size of the metadata in a particle record # Word 1 = Flag 2S # Word 2 = word for h image metadata # Word 3 = word for v image metadata # Word 4 = word for particle count # Word 5 = word for number of slices METADATA_LENGTH = 5 # Offsets to find specific metadata in an image record WORD_H_OFFSET = 1 WORD_V_OFFSET = 2 WORD_PC_OFFSET = 3 WORD_NUM_SLICE_OFFSET = 4 # Easier to define here than to have to flip 1 and 0 in the code SHADED_VAL = 0 CLEAR_VAL = 1 # Useful datatypes decoded_word_type = np.dtype([ ("is_image_slice", "u2"), ("is_start_slice", "u2"), ("num_shaded", "u2"), ("num_clear", "u2") ]) class ImageMetadataContainer: def __init__(self): self.buffer_idx = 0 self.n_h = 0 self.timing_h = 0 self.mismatch_h = 0 self.fifo_h = 0 self.overload_h = 0 self.n_v = 0 self.timing_v = 0 self.mismatch_v = 0 self.fifo_v = 0 self.overload_v = 0 self.particle_count = 0 self.num_slices = 0 self.h_start = 0 self.h_end = 0 self.v_start = 0 self.v_end = 0 self.frame_len = 0 self.image_in_buffer = 0 class ImageMetadataProcessor: """ This is for words 2 in a particle frame NH (Word 2) ----------------------------------------------------------- Bits 0–11 Number of horizontal words–Includes Timing Words if present Bit 12 – 1 = Timing Words not found Bit 13 – Timing Word mismatch Bit 14 — FIFO Empty (means the next particle was cut off) Bit 15 – The last two words of the horizontal data record are overload timing words NV (Word 3) ------------------------------------------------------------- Bits 0 –11 Number of vertical words–Includes Timing Words if not same as the horizontal Timing Word and the TW were found. Bit 12 –1 = Timing Words not found Bit 13 –Timing Word mismatch Bit 14-FIFO Empty before timing word found Bit 15 –The last two words of the vertical data record are overload timing words """ def __init__(self) -> None: pass def process_metadata(self, buffer_idx, buffer): metadata = ImageMetadataContainer() metadata.buffer_idx = buffer_idx metadata.n_h = num_words(buffer[buffer_idx + WORD_H_OFFSET]) metadata.timing_h = timing_words_not_found(buffer[buffer_idx + WORD_H_OFFSET]) metadata.mismatch_h = timing_word_mismatch(buffer[buffer_idx + WORD_H_OFFSET]) metadata.fifo_h = fifo_empty(buffer[buffer_idx + WORD_H_OFFSET]) metadata.overload_h = overload_timing_words_exist(buffer[buffer_idx + WORD_H_OFFSET]) metadata.n_v = num_words(buffer[buffer_idx + WORD_V_OFFSET]) metadata.timing_v = timing_words_not_found(buffer[buffer_idx + WORD_V_OFFSET]) metadata.mismatch_v = timing_word_mismatch(buffer[buffer_idx + WORD_V_OFFSET]) metadata.fifo_v = fifo_empty(buffer[buffer_idx + WORD_V_OFFSET]) metadata.overload_v = overload_timing_words_exist(buffer[buffer_idx + WORD_V_OFFSET]) metadata.particle_count = buffer[buffer_idx + WORD_PC_OFFSET] metadata.num_slices = buffer[buffer_idx + WORD_NUM_SLICE_OFFSET] metadata.h_start = metadata.buffer_idx + METADATA_LENGTH metadata.h_end = metadata.h_start + metadata.n_h metadata.v_start = metadata.buffer_idx + METADATA_LENGTH + metadata.n_h metadata.v_end = metadata.v_start + metadata.n_v metadata.frame_len = METADATA_LENGTH + metadata.n_h + metadata.n_v metadata.image_in_buffer = (metadata.buffer_idx + metadata.frame_len) < 2048 return metadata @jit(nopython = True) def num_words(word): # Bit masking out of a 16-bit number # to only get the 12 bit component return word & 0b0000111111111111 @jit(nopython = True) def timing_words_not_found(word): # Bitmask to get 12th bit only, then bit shift right # 12 spots to keep only that bit return (word & 0b0001000000000000) >> 12 @jit(nopython = True) def timing_word_mismatch(word): # Bitmask to get 13th bit only, then bit shift right # 13 spots to keep only that bit return (word & 0b0010000000000000) >> 13 @jit(nopython = True) def fifo_empty(word): # Bitmask to get 14th bit only, then bit shift right # 14 spots to keep only that bit return (word & 0b0100000000000000) >> 14 @jit(nopython = True) def overload_timing_words_exist(word): # Bitmask to get 15th bit only, then bit shift right # 15 spots to keep only that bit return (word & 0b1000000000000000) >> 15 class RawImageContainer: def __init__(self) -> None: self.raw_image_h = np.array([], dtype=np.uint16) self.raw_image_v = np.array([], dtype=np.uint16) class ImageTimewordContainer: def __init__(self) -> None: self.timeword_h_upper = 0 self.timeword_h_lower = 0 self.timeword_v_upper = 0 self.timeword_v_lower = 0 class RawImageExtractor: def __init__(self) -> None: self.raw_image_container = RawImageContainer() self.image_timeword_container = ImageTimewordContainer() def extract_raw_images(self, metadata, buffer): self.raw_image_container = RawImageContainer() raw_image_h = buffer[metadata.h_start:metadata.h_end] raw_image_v = buffer[metadata.v_start:metadata.v_end] if metadata.timing_h == 0: raw_image_h = raw_image_h[:-2] if metadata.timing_v == 0: raw_image_v = raw_image_v[:-2] self.raw_image_container.raw_image_h = raw_image_h self.raw_image_container.raw_image_v = raw_image_v return self.raw_image_container def extract_image_timewords(self, metadata, buffer): self.image_timeword_container = ImageTimewordContainer() raw_image_h = buffer[metadata.h_start:metadata.h_end] raw_image_v = buffer[metadata.v_start:metadata.v_end] if (metadata.timing_h == 0) and (len(raw_image_h) >= 2): self.image_timeword_container.timeword_h_upper = raw_image_h[-2] self.image_timeword_container.timeword_h_lower = raw_image_h[-1] if (metadata.timing_v == 0) and (len(raw_image_v) >= 2): self.image_timeword_container.timeword_v_upper = raw_image_v[-2] self.image_timeword_container.timeword_v_lower = raw_image_v[-1] return self.image_timeword_container class DecodedImageContainer: def __init__(self) -> None: self.decoded_image_h = np.empty(0, dtype = decoded_word_type) self.decoded_image_v = np.empty(0, dtype = decoded_word_type) class RawImageDecoder: def __init__(self) -> None: pass def decode_dual_channel_images(self, raw_image_container): decoded_image_container = DecodedImageContainer() decoded_image_container.decoded_image_h = decode_image(raw_image_container.raw_image_h) decoded_image_container.decoded_image_v = decode_image(raw_image_container.raw_image_v) return decoded_image_container @jit def decode_image(encoded_image): decoded_image = np.zeros(len(encoded_image), dtype = decoded_word_type) for i, word in enumerate(encoded_image): if word == 0x7fff: decoded_image['is_image_slice'][i] = 1 decoded_image['is_start_slice'][i] = 1 decoded_image['num_clear'][i] = 128 decoded_image['num_shaded'][i] = 0 elif word == 0x4000: decoded_image['is_image_slice'][i] = 1 decoded_image['is_start_slice'][i] = 1 decoded_image['num_clear'][i] = 0 decoded_image['num_shaded'][i] = 128 else: decoded_image['is_image_slice'][i] = ((word & 2**15) >> 15) == 0 decoded_image['is_start_slice'][i] = (word & 2**14) >> 14 decoded_image['num_shaded'][i] = (word & 0b0011111110000000) >> 7 decoded_image['num_clear'][i] = (word & 0b0000000001111111) valid_image_words = decoded_image['is_image_slice'] == True return decoded_image[valid_image_words] class DecompressedImageContainer: def __init__(self) -> None: self.decompressed_image_h = np.array([], np.uint8) self.decompressed_image_v = np.array([], np.uint8) class DecodedImageDecompressor: def __init__(self) -> None: pass def decompress_image(self, decoded_image_container): decompressed_image_container = DecompressedImageContainer() decompressed_image_container.decompressed_image_h = self.decompress_single_channel_image(decoded_image_container.decoded_image_h) decompressed_image_container.decompressed_image_v = self.decompress_single_channel_image(decoded_image_container.decoded_image_v) return decompressed_image_container def decompress_single_channel_image(self, decoded_image): if len(decoded_image) == 0: return [] else: return decompress_complete_image(decoded_image) @jit(nopython = True) def get_complete_image_slice_inds(start_slice_flags): image_slice_id = np.cumsum(start_slice_flags) image_slice_inds = [] for i in np.unique(image_slice_id): image_slice_inds.append( np.ravel(
np.argwhere(image_slice_id == i)
numpy.argwhere
# Allen Institute Software License - This software license is the 2-clause BSD # license plus a third clause that prohibits redistribution for commercial # purposes without further permission. # # Copyright 2015-2016. Allen Institute. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Redistributions for commercial purposes are not permitted without the # Allen Institute's written permission. # For purposes of this license, commercial purposes is the incorporation of the # Allen Institute's software into anything for which you will charge fees or # other compensation. Contact <EMAIL> for commercial licensing # opportunities. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # import sys import math import numpy as np import scipy.signal as signal import logging # Design notes: # to generate an average feature file, all sweeps must have all features # to generate a fitness score of a sweep to a feature file,, the sweep # must have all features in the file. If one is absent, a penalty # of TODO ??? will be assessed # set of features class EphysFeatures( object ): def __init__(self, name): # feature mean and standard deviations self.mean = {} self.stdev = {} # human-readable names for features self.glossary = {} # table indicating how to score feature # 'hit' feature exists: # 'ignore' do nothing # 'stdev' score is # stdevs from target mean # 'miss' feature absent: # 'constant' score = scoring['constant'] # 'mean_mult' score = mean * scoring['mean_mult'] # self.scoring = {} self.name = name ################################################################ # ignore scores ignore_score = { "hit": "ignore" } self.glossary["n_spikes"] = "Number of spikes" self.scoring["n_spikes"] = ignore_score ################################################################ # ignore misses ignore_miss = { "hit":"stdev", "miss":"const", "const":0 } self.glossary["adapt"] = "Adaptation index" self.scoring["adapt"] = ignore_miss self.glossary["latency"] = "Time to first spike (ms)" self.scoring["latency"] = ignore_miss ################################################################ # base miss off mean mean_score = { "hit":"stdev", "miss":"mean_mult", "mean_mult":2 } self.glossary["ISICV"] = "ISI-CV" self.scoring["ISICV"] = mean_score ################################################################ # normal scoring normal_score = { "hit":"stdev", "miss":"const", "const":20 } self.glossary["isi_avg"] = "Average ISI (ms)" self.scoring["isi_avg"] = ignore_score self.glossary["doublet"] = "Doublet ISI (ms)" self.scoring["doublet"] = normal_score self.glossary["f_fast_ahp"] = "Fast AHP (mV)" self.scoring["f_fast_ahp"] = normal_score self.glossary["f_slow_ahp"] = "Slow AHP (mV)" self.scoring["f_slow_ahp"] = normal_score self.glossary["f_slow_ahp_time"] = "Slow AHP time" self.scoring["f_slow_ahp_time"] = normal_score self.glossary["base_v"] = "Baseline voltage (mV)" self.scoring["base_v"] = normal_score #self.glossary["base_v2"] = "Baseline voltage 2 (mV)" #self.scoring["base_v2"] = normal_score #self.glossary["base_v3"] = "Baseline voltage 3 (mV)" #self.scoring["base_v3"] = normal_score ################################################################ # per spike scoring perspike_score = { "hit":"perspike", "miss":"const", "const":20, "skip_last_n":0 } self.glossary["f_peak"] = "Spike height (mV)" self.scoring["f_peak"] = perspike_score.copy() self.glossary["f_trough"] = "Spike depth (mV)" self.scoring["f_trough"] = perspike_score.copy() self.scoring["f_trough"]["skip_last_n"] = 1 # self.glossary["f_w"] = "Spike width at -30 mV (ms)" # self.scoring["f_w"] = perspike_score.copy() self.glossary["upstroke"] = "Peak upstroke (mV/ms)" self.scoring["upstroke"] = perspike_score.copy() self.glossary["upstroke_v"] = "Vm of peak upstroke (mV)" self.scoring["upstroke_v"] = perspike_score.copy() self.glossary["downstroke"] = "Peak downstroke (mV/ms)" self.scoring["downstroke"] = perspike_score.copy() self.glossary["downstroke_v"] = "Vm of peak downstroke (mV)" self.scoring["downstroke_v"] = perspike_score.copy() self.glossary["threshold"] = "Threshold voltage (mV)" self.scoring["threshold"] = perspike_score.copy() self.glossary["width"] = "Spike width at half-max (ms)" self.scoring["width"] = perspike_score.copy() self.scoring["width"]["skip_last_n"] = 1 self.glossary["thresh_ramp"] = "Change in dv/dt over first 5 mV past threshold (mV/ms)" self.scoring["thresh_ramp"] = perspike_score.copy() ################################################################ # heavily penalize when there are no spikes spike_score = { "hit":"stdev", "miss":"const", "const":250 } self.glossary["rate"] = "Firing rate (Hz)" self.scoring["rate"] = spike_score def print_out(self): print(("Features from " + self.name)) for k in list(self.mean.keys()): if k in self.glossary: st = "%30s = " % self.glossary[k] if self.mean[k] is not None: st += "%g" % self.mean[k] else: st += "--------" if k in self.stdev and self.stdev[k] is not None: st += " +/- %g" % self.stdev[k] print(st) # initialize summary feature set from file def clone(self, param_dict): for k in list(param_dict.keys()): self.mean[k] = param_dict[k]["mean"] self.stdev[k] = param_dict[k]["stdev"] class EphysFeatureExtractor( object ): def __init__(self): # list of feature set instances self.feature_list = [] # names of each element in feature list self.feature_source = [] # feature set object representing combination of all instances self.summary = None # adds new feature set instance to feature_list def process_instance(self, name, v, curr, t, onset, dur, stim_name): feature = EphysFeatures(name) ################################################################ # set stop time -- run until end of stimulus or end of sweep # comment-out the one of the two approaches # detect spikes only during stimulus start = onset stop = onset + dur # detect spikes for all of sweep #start = 0 #stop = t[-1] ################################################################ # pull out spike times # calculate the derivative only within target window # otherwise get spurious detection at ends of stimuli # filter with 10kHz cutoff if constant 200kHz sample rate (ie experimental trace) start_idx = np.where(t >= start)[0][0] stop_idx = np.where(t >= stop)[0][0] v_target = v[start_idx:stop_idx] if np.abs(t[1] - t[0] - 5e-6) < 1e-7 and np.var(np.diff(t)) < 1e-6: b, a = signal.bessel(4, 0.1, "low") smooth_v = signal.filtfilt(b, a, v_target, axis=0) dv = np.diff(smooth_v) else: dv = np.diff(v_target) dvdt = dv / (np.diff(t[start_idx:stop_idx]) * 1e3) # in mV/ms dv_cutoff = 20 thresh_pct = 0.05 spikes = [] temp_spk_idxs = np.where(np.diff(np.greater_equal(dvdt, dv_cutoff).astype(int)) == 1)[0] # find positive-going crossings of 100 mV/ms spk_idxs = [] for i, temp in enumerate(temp_spk_idxs): if i == 0: spk_idxs.append(temp) elif np.any(dvdt[temp_spk_idxs[i - 1]:temp] < 0): # check if the dvdt has gone back down below zero between presumed spike times # sometimes the dvdt bobbles around detection threshold and produces spurious guesses at spike times spk_idxs.append(temp) spk_idxs += start_idx # set back to the "index space" of the original trace # recalculate full dv/dt for feature analysis (vs spike detection) if np.abs(t[1] - t[0] - 5e-6) < 1e-7 and np.var(np.diff(t)) < 1e-6: b, a = signal.bessel(4, 0.1, "low") smooth_v = signal.filtfilt(b, a, v, axis=0) dv = np.diff(smooth_v) else: dv = np.diff(v) dvdt = dv / (np.diff(t) * 1e3) # in mV/ms # First time through, accumulate upstrokes to calculate average threshold target for spk_n, spk_idx in enumerate(spk_idxs): # Etay defines spike as time of threshold crossing spk = {} if spk_n < len(spk_idxs) - 1: next_idx = spk_idxs[spk_n + 1] else: next_idx = stop_idx if spk_n > 0: prev_idx = spk_idxs[spk_n - 1] else: prev_idx = start_idx # Find the peak peak_idx = np.argmax(v[spk_idx:next_idx]) + spk_idx spk["peak_idx"] = peak_idx spk["f_peak"] = v[peak_idx] spk["f_peak_i"] = curr[peak_idx] spk["f_peak_t"] = t[peak_idx] # Check if end of stimulus interval cuts off spike - if so, don't process spike if spk_n == len(spk_idxs) - 1 and peak_idx == next_idx-1: continue if spk_idx == peak_idx: continue # this was bugfix, but why? ramp? # Determine maximum upstroke of spike upstroke_idx = np.argmax(dvdt[spk_idx:peak_idx]) + spk_idx spk["upstroke"] = dvdt[upstroke_idx] if np.isnan(spk["upstroke"]): # sometimes dvdt will be NaN because of multiple cvode points at same time step close_idx = upstroke_idx + 1 while (np.isnan(dvdt[close_idx])): close_idx += 1 spk["upstroke_idx"] = close_idx spk["upstroke"] = dvdt[close_idx] spk["upstroke_v"] = v[close_idx] spk["upstroke_i"] = curr[close_idx] spk["upstroke_t"] = t[close_idx] else: spk["upstroke_idx"] = upstroke_idx spk["upstroke_v"] = v[upstroke_idx] spk["upstroke_i"] = curr[upstroke_idx] spk["upstroke_t"] = t[upstroke_idx] # Preliminarily define threshold where dvdt = 5% * max upstroke thresh_pct = 0.05 find_thresh_idxs = np.where(dvdt[prev_idx:upstroke_idx] <= thresh_pct * spk["upstroke"])[0] if len(find_thresh_idxs) < 1: # Can't find a good threshold value - probably a bad simulation case # Fall back to the upstroke value threshold_idx = upstroke_idx else: threshold_idx = find_thresh_idxs[-1] + prev_idx spk["threshold_idx"] = threshold_idx spk["threshold"] = v[threshold_idx] spk["threshold_v"] = v[threshold_idx] spk["threshold_i"] = curr[threshold_idx] spk["threshold_t"] = t[threshold_idx] spk["rise_time"] = spk["f_peak_t"] - spk["threshold_t"] PERIOD = t[1] - t[0] width_volts = (v[peak_idx] + v[threshold_idx]) / 2 recording_width = False for i in range(threshold_idx, min(len(v), threshold_idx + int(0.001 / PERIOD))): if not recording_width and v[i] >= width_volts: recording_width = True idx0 = i elif recording_width and v[i] < width_volts: spk["half_height_width"] = t[i] - t[idx0] break # </KEITH> # Check for things that are probably not spikes: # if there is more than 2 ms between the detection event and the peak, don't count it if t[peak_idx] - t[threshold_idx] > 0.002: continue # if the "spike" is less than 2 mV, don't count it if v[peak_idx] - v[threshold_idx] < 2.0: continue # if the absolute value of the peak is less than -30 mV, don't count it if v[peak_idx] < -30.0: continue spikes.append(spk) # Refine threshold target based on average of all spikes if len(spikes) > 0: threshold_target = np.array([spk["upstroke"] for spk in spikes]).mean() * thresh_pct for spk_n, spk in enumerate(spikes): if spk_n < len(spikes) - 1: next_idx = spikes[spk_n + 1]["threshold_idx"] else: next_idx = stop_idx if spk_n > 0: prev_idx = spikes[spk_n - 1]["peak_idx"] else: prev_idx = start_idx # Restore variables from before # peak_idx = spk['peak_idx'] peak_idx = np.argmax(v[spk['threshold_idx']:next_idx]) + spk['threshold_idx'] spk["peak_idx"] = peak_idx spk["f_peak"] = v[peak_idx] spk["f_peak_i"] = curr[peak_idx] spk["f_peak_t"] = t[peak_idx] # Determine maximum upstroke of spike # upstroke_idx = spk['upstroke_idx'] upstroke_idx = np.argmax(dvdt[spk['threshold_idx']:peak_idx]) + spk['threshold_idx'] spk["upstroke"] = dvdt[upstroke_idx] if np.isnan(spk["upstroke"]): # sometimes dvdt will be NaN because of multiple cvode points at same time step close_idx = upstroke_idx + 1 while (np.isnan(dvdt[close_idx])): close_idx += 1 spk["upstroke_idx"] = close_idx spk["upstroke"] = dvdt[close_idx] spk["upstroke_v"] = v[close_idx] spk["upstroke_i"] = curr[close_idx] spk["upstroke_t"] = t[close_idx] else: spk["upstroke_idx"] = upstroke_idx spk["upstroke_v"] = v[upstroke_idx] spk["upstroke_i"] = curr[upstroke_idx] spk["upstroke_t"] = t[upstroke_idx] # Find threshold based on average target find_thresh_idxs = np.where(dvdt[prev_idx:upstroke_idx] <= threshold_target)[0] if len(find_thresh_idxs) < 1: # Can't find a good threshold value - probably a bad simulation case # Fall back to the upstroke value threshold_idx = upstroke_idx else: threshold_idx = find_thresh_idxs[-1] + prev_idx spk["threshold_idx"] = threshold_idx spk["threshold"] = v[threshold_idx] spk["threshold_v"] = v[threshold_idx] spk["threshold_i"] = curr[threshold_idx] spk["threshold_t"] = t[threshold_idx] # Define the spike time as threshold time spk["t_idx"] = threshold_idx spk["t"] = t[threshold_idx] # Save the -30 mV crossing time for backward compatibility with Etay code overn30_idxs = np.where(v[threshold_idx:peak_idx] >= -30)[0] if len(overn30_idxs) > 0: spk["t_idx_n30"] = overn30_idxs[0] + threshold_idx else: # fall back to threshold definition if spike doesn't cross -30 mV spk["t_idx_n30"] = threshold_idx spk["t_n30"] = t[spk["t_idx_n30"]] # Figure out initial "slope" of phase plot post-threshold plus_5_vec = np.where(v[threshold_idx:upstroke_idx] >= spk["threshold"] + 5)[0] if len(plus_5_vec) > 0: thresh_plus_5_idx = plus_5_vec[0] + threshold_idx spk["thresh_ramp"] = dvdt[thresh_plus_5_idx] - dvdt[threshold_idx] else: spk["thresh_ramp"] = dvdt[upstroke_idx] - dvdt[threshold_idx] # go forward to determine peak downstroke of spike downstroke_idx = np.argmin(dvdt[peak_idx:next_idx]) + peak_idx spk["downstroke_idx"] = downstroke_idx spk["downstroke_v"] = v[downstroke_idx] spk["downstroke_i"] = curr[downstroke_idx] spk["downstroke_t"] = t[downstroke_idx] spk["downstroke"] = dvdt[downstroke_idx] if np.isnan(spk["downstroke"]): # sometimes dvdt will be NaN because of multiple cvode points at same time step close_idx = downstroke_idx + 1 while (np.isnan(dvdt[close_idx])): close_idx += 1 spk["downstroke"] = dvdt[close_idx] features = {} feature.mean["base_v"] = v[
np.where((t > onset - 0.1) & (t < onset - 0.001))
numpy.where
try: import importlib.resources as pkg_resources except ImportError: # Try backported to PY<37 `importlib_resources`. import importlib_resources as pkg_resources from . import images from gym import Env, spaces from time import time import numpy as np from copy import copy import colorsys import pygame from pygame.transform import scale class MinesweeperEnv(Env): def __init__(self, grid_shape=(10, 15), bombs_density=0.1, n_bombs=None, impact_size=3, max_time=999, chicken=False): self.grid_shape = grid_shape self.grid_size = np.prod(grid_shape) self.n_bombs = max(1, int(bombs_density * self.grid_size)) if n_bombs is None else n_bombs self.n_bombs = min(self.grid_size - 1, self.n_bombs) self.flaged_bombs = 0 self.flaged_empty = 0 self.max_time = max_time if impact_size % 2 == 0: raise ValueError('Impact_size must be an odd number !') self.impact_size = impact_size # Define constants self.HIDDEN = 0 self.REVEAL = 1 self.FLAG = 2 self.BOMB = self.impact_size ** 2 # Setting up gym Env conventions nvec_observation = (self.BOMB + 2) * np.ones(self.grid_shape) self.observation_space = spaces.MultiDiscrete(nvec_observation) nvec_action = np.array(self.grid_shape + (2,)) self.action_space = spaces.MultiDiscrete(nvec_action) # Initalize state self.state = np.zeros(self.grid_shape + (2,), dtype=np.uint8) ## Setup bombs places idx = np.indices(self.grid_shape).reshape(2, -1) bombs_ids = np.random.choice(range(self.grid_size), size=self.n_bombs, replace=False) self.bombs_positions = idx[0][bombs_ids], idx[1][bombs_ids] ## Place numbers self.semi_impact_size = (self.impact_size-1)//2 bomb_impact = np.ones((self.impact_size, self.impact_size), dtype=np.uint8) for bombs_id in bombs_ids: bomb_x, bomb_y = idx[0][bombs_id], idx[1][bombs_id] x_min, x_max, dx_min, dx_max = self.clip_index(bomb_x, 0) y_min, y_max, dy_min, dy_max = self.clip_index(bomb_y, 1) bomb_region = self.state[x_min:x_max, y_min:y_max, 0] bomb_region += bomb_impact[dx_min:dx_max, dy_min:dy_max] ## Place bombs self.state[self.bombs_positions + (0,)] = self.BOMB self.start_time = time() self.time_left = int(time() - self.start_time) # Setup rendering self.pygame_is_init = False self.chicken = chicken self.done = False self.score = 0 def get_observation(self): observation = copy(self.state[:, :, 1]) revealed = observation == 1 flaged = observation == 2 observation += self.impact_size ** 2 + 1 observation[revealed] = copy(self.state[:, :, 0][revealed]) observation[flaged] -= 1 return observation def reveal_around(self, coords, reward, done, without_loss=False): if not done: x_min, x_max, _, _ = self.clip_index(coords[0], 0) y_min, y_max, _, _ = self.clip_index(coords[1], 1) region = self.state[x_min:x_max, y_min:y_max, :] unseen_around = np.sum(region[..., 1] == 0) if unseen_around == 0: if not without_loss: reward -= 0.001 return flags_around = np.sum(region[..., 1] == 2) if flags_around == self.state[coords + (0,)]: unrevealed_zeros_around = np.logical_and(region[..., 0] == 0, region[..., 1] == self.HIDDEN) if np.any(unrevealed_zeros_around): zeros_coords = np.argwhere(unrevealed_zeros_around) for zero in zeros_coords: coord = (x_min + zero[0], y_min + zero[1]) self.state[coord + (1,)] = 1 self.reveal_around(coord, reward, done, without_loss=True) self.state[x_min:x_max, y_min:y_max, 1][self.state[x_min:x_max, y_min:y_max, 1] != self.FLAG] = 1 unflagged_bombs_around = np.logical_and(region[..., 0] == self.BOMB, region[..., 1] != self.FLAG) if np.any(unflagged_bombs_around): self.done = True reward, done = -1, True else: if not without_loss: reward -= 0.001 def clip_index(self, x, axis): max_idx = self.grid_shape[axis] x_min, x_max = max(0, x-self.semi_impact_size), min(max_idx, x + self.semi_impact_size + 1) dx_min, dx_max = x_min - (x - self.semi_impact_size), x_max - (x + self.semi_impact_size + 1) + self.impact_size return x_min, x_max, dx_min, dx_max def step(self, action): coords = action[:2] action_type = action[2] + 1 # 0 -> 1 = reveal; 1 -> 2 = toggle_flag case_state = self.state[coords + (1,)] case_content = self.state[coords + (0,)] NO_BOMBS_AROUND = 0 reward, done = 0, False self.time_left = self.max_time - time() + self.start_time if self.time_left <= 0: score = -(self.n_bombs - self.flaged_bombs + self.flaged_empty)/self.n_bombs reward, done = score, True return self.get_observation(), reward, done, {'passed':False} if action_type == self.REVEAL: if case_state == self.HIDDEN: self.state[coords + (1,)] = action_type if case_content == self.BOMB: if self.pygame_is_init: self.done = True reward, done = -1, True return self.get_observation(), reward, done, {'passed':False} elif case_content == NO_BOMBS_AROUND: self.reveal_around(coords, reward, done) elif case_state == self.REVEAL: self.reveal_around(coords, reward, done) reward -= 0.01 else: reward -= 0.001 self.score += reward return self.get_observation(), reward, done, {'passed':True} elif action_type == self.FLAG: if case_state == self.REVEAL: reward -= 0.001 else: flaging = 1 if case_state == self.FLAG: flaging = -1 self.state[coords + (1,)] = self.HIDDEN else: self.state[coords + (1,)] = self.FLAG if case_content == self.BOMB: self.flaged_bombs += flaging else: self.flaged_empty += flaging if self.flaged_bombs == self.n_bombs and self.flaged_empty == 0: reward, done = 2 + self.time_left/self.max_time, True if np.any(np.logical_and(self.state[..., 0]==9, self.state[..., 1]==1)) or self.done: reward, done = -1 + self.time_left/self.max_time + (self.flaged_bombs - self.flaged_empty)/self.n_bombs, True self.score += reward return self.get_observation(), reward, done, {'passed':False} def reset(self): self.__init__(self.grid_shape, n_bombs=self.n_bombs, impact_size=self.impact_size, max_time=self.max_time, chicken=self.chicken) return self.get_observation() def render(self): if not self.pygame_is_init: self._init_pygame() self.pygame_is_init = True for event in pygame.event.get(): if event.type == pygame.QUIT: # pylint: disable=E1101 pygame.quit() # pylint: disable=E1101 # Plot background pygame.draw.rect(self.window, (60, 56, 53), (0, 0, self.height, self.width)) # Plot grid for index, state in np.ndenumerate(self.state[..., 1]): self._plot_block(index, state) # Plot infos ## Score score_text = self.score_font.render("SCORE", 1, (255, 10, 10)) score = self.score_font.render(str(round(self.score, 4)), 1, (255, 10, 10)) self.window.blit(score_text, (0.1*self.header_size, 0.75*self.width)) self.window.blit(score, (0.1*self.header_size, 0.8*self.width)) ## Time left time_text = self.num_font.render("TIME", 1, (255, 10, 10)) self.time_left = self.max_time - time() + self.start_time time_left = self.num_font.render(str(int(self.time_left+1)), 1, (255, 10, 10)) self.window.blit(time_text, (0.1*self.header_size, 0.03*self.width)) self.window.blit(time_left, (0.1*self.header_size, 0.1*self.width)) ## Bombs left bombs_text = self.num_font.render("BOMBS", 1, (255, 255, 10)) left_text = self.num_font.render("LEFT", 1, (255, 255, 10)) potential_bombs_left = self.n_bombs - self.flaged_bombs - self.flaged_empty potential_bombs_left = self.num_font.render(str(int(potential_bombs_left)), 1, (255, 255, 10)) self.window.blit(bombs_text, (0.1*self.header_size, 0.4*self.width)) self.window.blit(left_text, (0.1*self.header_size, 0.45*self.width)) self.window.blit(potential_bombs_left, (0.1*self.header_size, 0.5*self.width)) pygame.display.flip() pygame.time.wait(10) if self.done: pygame.time.wait(3000) @staticmethod def _get_color(n, max_n): BLUE_HUE = 0.6 RED_HUE = 0.0 HUE = RED_HUE + (BLUE_HUE - RED_HUE) * ((max_n - n) / max_n)**3 color = 255 * np.array(colorsys.hsv_to_rgb(HUE, 1, 0.7)) return color def _plot_block(self, index, state): position = tuple(self.origin + self.scale_factor * self.BLOCK_SIZE * np.array((index[1], index[0]))) label = None if state == self.HIDDEN and not self.done: img_key = 'hidden' elif state == self.FLAG: if not self.done: img_key = 'flag' else: content = self.state[index][0] if content == self.BOMB: img_key = 'disabled_mine' if not self.chicken else 'disabled_chicken' else: img_key = 'misplaced_flag' else: content = self.state[index][0] if content == self.BOMB: if state == self.HIDDEN: img_key = 'mine' if not self.chicken else 'chicken' else: img_key = 'exploded_mine' if not self.chicken else 'exploded_chicken' else: img_key = 'revealed' label = self.num_font.render(str(content), 1, self._get_color(content, self.BOMB)) self.window.blit(self.images[img_key], position) if label: self.window.blit(label, position + self.font_offset - (content > 9) * self.decimal_font_offset) def _init_pygame(self): pygame.init() # pylint: disable=E1101 # Open Pygame window self.scale_factor = 2 * min(12 / self.grid_shape[0], 25 / self.grid_shape[1]) self.BLOCK_SIZE = 32 self.header_size = self.scale_factor * 100 self.origin = np.array([self.header_size, 0]) self.width = int(self.scale_factor * self.BLOCK_SIZE * self.grid_shape[0]) self.height = int(self.scale_factor * self.BLOCK_SIZE * self.grid_shape[1] + self.header_size) self.window = pygame.display.set_mode((self.height, self.width)) # Setup font for numbers num_font_size = 20 self.num_font = pygame.font.SysFont("monospace", int(self.scale_factor * num_font_size)) self.font_offset = self.scale_factor * self.BLOCK_SIZE *
np.array([0.325, 0.15])
numpy.array
import numpy as np from matplotlib import pyplot as plt from matplotlib import cm as cm import click import re re_time = re.compile(r'^\d+.?\d*e?-?\d*') re_point = re.compile( r'([A-Z])\((-?\d+.?\d*e?-?\d*), (-?\d+.?\d*e?-?\d*)\)' ) H_RANGE = tuple( np.array([-0.5, 0.5]) * 32 ) V_RANGE = tuple( np.array([-0.5, 0.5]) * 18 ) SPACE_FACTOR = 20 SPACE_BIAS =
np.array([0.25, 0.25])
numpy.array
from plyfile import PlyData, PlyElement import open3d as o3d from pyobb.obb import OBB import numpy as np import os from scipy.spatial import ConvexHull, convex_hull_plot_2d from scipy.spatial.transform import Rotation as R import matplotlib.pyplot as plt import argparse import utils def obb_calc(filename, gravity=np.array((0.0,1.0,0.0)), align_axis=np.array((0.0,0.0,-1.0))): o3d_mesh = o3d.io.read_triangle_mesh(filename) points = np.asarray(o3d_mesh.vertices) obb_center, obb_size, trans_inv = gravity_aligned_mobb(points, gravity, align_axis) obb = o3d.geometry.OrientedBoundingBox(obb_center, trans_inv, obb_size) return obb def gravity_aligned_mobb(points, gravity, align_axis): def from2vectors(gravity, axis=align_axis): gravity = gravity/np.linalg.norm(gravity) axis = axis/np.linalg.norm(axis) vec = np.cross(gravity, axis) rot = np.arccos(np.dot(gravity, axis)) r = R.from_rotvec(rot * vec) return r.as_matrix() # trigonometry, law of sines: a/sin(A) = b/sin(B) def intersect_lines(s0, d0, s1 ,d1): """ s0, s1: 2D coordinates of a point d0, d1: direction vector determines the direction a line """ sin_a = np.cross(d0, d1) vec_s = s1-s0 t = np.cross(vec_s, d1)/sin_a return s0 + t*d0 def mobb_area(left_start, left_dir, right_start, right_dir, top_start, top_dir, bottom_start, bottom_dir): upper_left = intersect_lines(left_start, left_dir, top_start, top_dir) upper_right = intersect_lines(right_start, right_dir, top_start, top_dir) bottom_left = intersect_lines(bottom_start, bottom_dir, left_start, left_dir) return np.linalg.norm(upper_left-upper_right) * np.linalg.norm(upper_left-bottom_left) align_gravity = from2vectors(gravity, align_axis) tmp_points = np.matmul(align_gravity, points.transpose()).transpose() points_2d = tmp_points[:, 0:2] hull = ConvexHull(points_2d) # plot conver hull # print(len(hull.vertices)) # plt.plot(points_2d[:,0], points_2d[:,1], '.') # plt.plot(points_2d[hull.vertices,0], points_2d[hull.vertices,1], 'r--', lw=2) # plt.plot(points_2d[(hull.vertices[-1], hull.vertices[0]),0], points_2d[(hull.vertices[-1], hull.vertices[0]),1], 'r--', lw=2) # plt.plot(points_2d[hull.vertices[0],0], points_2d[hull.vertices[0],1], 'ro') # plt.show() assert len(hull.vertices) > 0, 'convex hull vertices number must be positive' # the vertices are in counterclockwise order hull_points = points_2d[hull.vertices] edge_dirs = np.roll(hull_points, 1, axis=0) - hull_points edge_norm = np.linalg.norm(edge_dirs, axis=1) edge_dirs /= edge_norm[:, None] min_idx =
np.argmin(hull_points, axis=0)
numpy.argmin
import numpy as np import tensorflow as tf from tensorflow.python.layers import core as layers_core import RAKE, math, random from zpar import ZPar from data import array_data import torch, sys,os import pickle as pkl from copy import copy from bert.bertinterface import BertEncoding, BertSimilarity from utils import get_corpus_bleu_scores, appendtext def output_p(sent, model): # list sent = torch.tensor(sent, dtype=torch.long).cuda() output = model.predict(sent) # 1,15,300003 return output.squeeze(0).cpu().detach().numpy() def keyword_pos2sta_vec(option,keyword, pos): key_ind=[] # pos=pos[:option.num_steps-1] pos=pos[:option.num_steps-1] for i in range(len(pos)): if pos[i]=='NNP': key_ind.append(i) elif pos[i] in ['NN', 'NNS'] and keyword[i]==1: key_ind.append(i) elif pos[i] in ['VBZ'] and keyword[i]==1: key_ind.append(i) elif keyword[i]==1: key_ind.append(i) elif pos[i] in ['NN', 'NNS','VBZ']: key_ind.append(i) key_ind=key_ind[:max(int(option.max_key_rate*len(pos)), option.max_key)] sta_vec=[] for i in range(len(keyword)): if i in key_ind: sta_vec.append(1) else: sta_vec.append(0) return sta_vec def read_data_use(option, sen2id): file_name = option.use_data_path max_length = option.num_steps dict_size = option.dict_size Rake = RAKE.Rake(RAKE.SmartStopList()) z=ZPar(option.pos_path) tagger = z.get_tagger() with open(file_name) as f: data=[] vector=[] sta_vec_list=[] j=0 for line in f: sta_vec=list(np.zeros([option.num_steps-1])) keyword=Rake.run(line.strip()) pos_list=tagger.tag_sentence(line.strip()).split() # pos=zip(*[x.split('/') for x in pos_list])[0] pos=list(zip(*[x.split('/') for x in pos_list]))[0] if keyword!=[]: keyword=list(list(zip(*keyword))[0]) keyword_new=[] linewords = line.strip().split() for i in range(len(linewords)): for item in keyword: length11 = len(item.split()) if ' '.join(linewords[i:i+length11])==item: keyword_new.extend([i+k for k in range(length11)]) for i in range(len(keyword_new)): ind=keyword_new[i] if ind<=option.num_steps-2: sta_vec[ind]=1 if option.keyword_pos==True: sta_vec_list.append(keyword_pos2sta_vec(option,sta_vec,pos)) else: sta_vec_list.append(list(np.zeros([option.num_steps-1]))) data.append(sen2id(line.strip().lower().split())) data_new=array_data(data, max_length, dict_size) return data_new, sta_vec_list # sentence, keyvector def read_data_use1(option, sen2id): file_name = option.use_data_path max_length = option.num_steps dict_size = option.dict_size Rake = RAKE.Rake(RAKE.SmartStopList()) z=ZPar(option.pos_path) tagger = z.get_tagger() with open(file_name) as f: data=[] vector=[] sta_vec_list=[] j=0 for line in f: print('sentence:'+line) sta_vec=list(np.zeros([option.num_steps-1])) keyword=Rake.run(line.strip()) pos_list=tagger.tag_sentence(line.strip()).split() # pos=zip(*[x.split('/') for x in pos_list])[0] pos=list(zip(*[x.split('/') for x in pos_list]))[0] print(keyword) if keyword!=[]: keyword=list(list(zip(*keyword))[0]) keyword_new=[] for item in keyword: tem1=[line.strip().split().index(x) for x in item.split() if x in line.strip().split()] print('id',tem1) keyword_new.extend(tem1) print(keyword_new) for i in range(len(keyword_new)): ind=keyword_new[i] if ind<=option.num_steps-2: sta_vec[ind]=1 if option.keyword_pos==True: sta_vec_list.append(keyword_pos2sta_vec(option,sta_vec,pos)) else: sta_vec_list.append(list(np.zeros([option.num_steps-1]))) print(keyword_pos2sta_vec(option,sta_vec, pos)) data.append(sen2id(line.strip().lower().split())) data_new=array_data(data, max_length, dict_size) return data_new, sta_vec_list # sentence, keyvector def choose_action(c): r=np.random.random() c=np.array(c) for i in range(1, len(c)): c[i]=c[i]+c[i-1] for i in range(len(c)): if c[i]>=r: return i def sigma_word(x): if x>0.7: return x elif x>0.65: return (x-0.65)*14 else: return 0 #return max(0, 1-((x-1))**2) #return (((np.abs(x)+x)*0.5-0.6)/0.4)**2 def sigma_word1(x): if x>0.9: return x elif x>0.8: return (x-0.8)*9 else: return 0 #return max(0, 1-((x-1))**2) #return (((np.abs(x)+x)*0.5-0.6)/0.4)**2 def sigma_word_bert(x): # x:K, x9 = torch.gt(x,0.9).float() x8 = torch.gt(x,0.8).float() return x*x9+(x-0.8)*9*x8 def sigma_bleu(x): if x>0.9: return 1-x+0.01 # 0.1-0 elif x>0.8: return 1-(x-0.8)*9 # 0.1-1 else: return 1 #return max(0, 1-((x-1))**2) #return (((np.abs(x)+x)*0.5-0.6)/0.4)**2 def sigmoid(x): s = 1 / (1 + np.exp(-x)) return s def sen2mat(s, id2sen, emb_word, option): mat=[] for item in s: if item==option.dict_size+2: continue if item==option.dict_size+1: break word=id2sen([item])[0] if word in emb_word: mat.append(np.array(emb_word[word])) else: mat.append(np.random.random([option.hidden_size])) return np.array(mat) def similarity_semantic(s1_list,s2, sta_vec, id2sen, emb_word, option, model): K = 4 sourcesent = [' '.join(id2sen(s1)) for s1 in s1_list] sourcesent2 = [' '.join(id2sen(s2))] * len(s1_list) rep1 = model.get_encoding(sourcesent, sourcesent) rep2 = model.get_encoding(sourcesent,sourcesent2) rep3 = model.get_encoding(sourcesent2,sourcesent2) rep1 = (rep1+rep3)/2 norm1 = rep1.norm(2,1) norm2 = rep2.norm(2,1) semantic = torch.sum(rep1*rep2,1)/(norm1*norm2) semantic = semantic*(1- (torch.abs(norm1-norm2)/torch.max(norm1,norm2))) semantics = semantic.cpu().numpy() res = np.power(semantics,K) return res def similarity_semantic_bleu(s1_list,s2, sta_vec, id2sen, emb_word, option, model): K = 12 sourcesent = [' '.join(id2sen(s1)) for s1 in s1_list] sourcesent2 = [' '.join(id2sen(s2))] * len(s1_list) rep1 = model.get_encoding(sourcesent, sourcesent) rep2 = model.get_encoding(sourcesent,sourcesent2) rep3 = model.get_encoding(sourcesent2,sourcesent2) rep1 = (rep1+rep3)/2 norm1 = rep1.norm(2,1) norm2 = rep2.norm(2,1) semantic = torch.sum(rep1*rep2,1)/(norm1*norm2) semantic = semantic*(1- (torch.abs(norm1-norm2)/torch.max(norm1,norm2))) semantics = semantic.cpu().numpy() bleus = [] for s1 in s1_list: actual_word_lists = [[id2sen(s2)]*len(s1_list)] generated_word_lists = [id2sen(s1)] bleu_score = get_corpus_bleu_scores(actual_word_lists, generated_word_lists)[1] bleus.append(bleu_score) bleus = (1.0-sigmoid(np.minimum(bleus,0.999))) semantics = np.power(semantics,K) res = bleus*semantics return res def similarity_semantic_keyword(s1_list,s2, sta_vec, id2sen, emb_word, option, model): C1 = 0.1 K = 4 sourcesent = [' '.join(id2sen(s1)) for s1 in s1_list] sourcesent2 = [' '.join(id2sen(s2))] * len(s1_list) rep1 = model.get_encoding(sourcesent, sourcesent) rep2 = model.get_encoding(sourcesent,sourcesent2) rep3 = model.get_encoding(sourcesent2,sourcesent2) rep1 = (rep1+rep3)/2 norm1 = rep1.norm(2,1) norm2 = rep2.norm(2,1) semantic = torch.sum(rep1*rep2,1)/(norm1*norm2) semantic = semantic*(1- (torch.abs(norm1-norm2)/torch.max(norm1,norm2))) semantics = semantic.cpu().numpy() res = np.power(semantics,K) semantics = [] for s, s1 in zip(res, s1_list): tem = 1 for i,x in zip(sta_vec,s2): if i==1 and x not in s1: tem *= C1 semantics.append(s*tem) res = np.array(semantics) return res def similarity_keyword(s1_list, s2, sta_vec, id2sen, emb_word, option, model = None): e=1e-5 sims= [] for s1 in s1_list: emb1=sen2mat(s1, id2sen, emb_word, option) # M*K #wei2=normalize( np.array([-np.log(id2freq[x]) for x in s2 if x<=config.dict_size])) emb2=sen2mat(s2, id2sen, emb_word, option) # N*k wei2=np.array(sta_vec[:len(emb2)]).astype(np.float32) # N*1 #wei2=normalize(wei2) emb_mat=np.dot(emb2,emb1.T) #N*M norm1=np.diag(1/(np.linalg.norm(emb1,2,axis=1)+e)) # M*M norm2=np.diag(1/(np.linalg.norm(emb2,2,axis=1)+e)) #N*N sim_mat=np.dot(norm2,emb_mat).dot(norm1) #N*M sim_vec=sim_mat.max(axis=1) #N # debug # print('sss',sim_vec) # print(wei2) # sim=min([x for x in list(sim_vec*wei2) if x>0]+[1]) sim=min([x for x,y in zip(list(sim_vec*wei2),list(wei2)) if y>0]+[1]) sim = sigma_word(sim) sims.append(sim) res = np.array(sims) return res def similarity_batch_word(s1, s2, sta_vec, option): return np.array([ similarity_word(x,s2,sta_vec, option) for x in s1 ]) def similarity_keyword_batch(s1_lists, s2s, sta_vecs, id2sen, emb_word, option, model = None): simss= [] for s1_list,s2, sta_vec in zip(s1_lists,s2s, sta_vecs): sims = similarity_keyword(s1_list, s2, sta_vec, id2sen, emb_word, option, model) simss.append(sims) return simss def similarity_batch_word(s1, s2, sta_vec, option): return np.array([ similarity_word(x,s2,sta_vec, option) for x in s1 ]) def similarity_keyword_tensor(s1_list, s2, sta_vec, id2sen, emb_word, option, model = None): e=1e-5 N_candidant = len(s1_list) sims= [] embs = [] for s1 in s1_list: emb1=sen2mat(s1, id2sen, emb_word, option) # M*K embs.append(np.expand_dims(emb1,axis=0)) emb1 = np.concatenate(embs,0) # K,8,300 emb1 = torch.tensor(emb1, dtype=torch.float).permute(0,2,1).cuda() emb2= sen2mat(s2, id2sen, emb_word, option) # N*k emb2 = torch.tensor(emb2, dtype=torch.float).unsqueeze(0).repeat(N_candidant,1,1).cuda() # print(emb1.size(), emb2.size()) #bs,300,7, bs,8,300 wei2= torch.tensor([0]+sta_vec[:emb2.size(1)-1],dtype=torch.uint8) #8 emb_mat = torch.bmm(emb2,emb1) # K,8,7 norm2 = 1/(torch.norm(emb2,p= 2,dim=2)+e) # K,8,8 norm1 = 1/(torch.norm(emb1,p= 2,dim=1)+e) # K,7,7 norm2 = torch.diag_embed(norm2) # K,15,15 norm1 = torch.diag_embed(norm1) sim_mat = torch.bmm(torch.bmm(norm2, emb_mat), norm1) # K,8,7 sim_vec,_ = torch.max(sim_mat,2) # K,8 sim,_ = torch.min(sim_vec[:,wei2],1) sim = sigma_word_bert(sim) return sim.cpu().numpy() def similarity_keyword_bleu(s1_list, s2, sta_vec, id2sen, emb_word, option, model = None): e=1e-5 sims= [] for s1 in s1_list: emb1=sen2mat(s1, id2sen, emb_word, option) # M*K #wei2=normalize( np.array([-np.log(id2freq[x]) for x in s2 if x<=config.dict_size])) emb2=sen2mat(s2, id2sen, emb_word, option) # N*k wei2=np.array(sta_vec[:len(emb2)]).astype(np.float32) # N*1 #wei2=normalize(wei2) emb_mat=np.dot(emb2,emb1.T) #N*M norm1=np.diag(1/(np.linalg.norm(emb1,2,axis=1)+e)) # M*M norm2=np.diag(1/(np.linalg.norm(emb2,2,axis=1)+e)) #N*N sim_mat=np.dot(norm2,emb_mat).dot(norm1) #N*M sim_vec=sim_mat.max(axis=1) #N # debug # print('sss',sim_vec) # print(wei2) # sim=min([x for x in list(sim_vec*wei2) if x>0]+[1]) sim=min([x for x,y in zip(list(sim_vec*wei2),list(wei2)) if y>0]+[1]) sim = sigma_word(sim) sims.append(sim) bleus = [] for s1 in s1_list: actual_word_lists = [[id2sen(s2)]*len(s1_list)] generated_word_lists = [id2sen(s1)] bleu_score = get_corpus_bleu_scores(actual_word_lists, generated_word_lists)[3] bleus.append(bleu_score) # bleus = (1.0-sigmoid(np.minimum(bleus,0.9999))) bleus = (1.0-np.minimum(bleus,0.99)) res = np.array(sims)*bleus return res def similarity_keyword_bert(s1_list, s2, sta_vec, id2sen, emb_word, option, model = None): e=1e-5 sims= [] sourcesent = [' '.join(id2sen(s1)) for s1 in s1_list] sourcesent2 = [' '.join(id2sen(s2))] sourcesent = sourcesent+sourcesent2 emb = model.get_representation(sourcesent) N_candidant = len(s1_list) emb2 = emb[-1,:,:].unsqueeze(0).repeat(N_candidant,1,1) # K,15*d emb1 = emb[:-1,:,:].permute(0,2,1) #K,d,15 wei2= torch.tensor([0]+sta_vec,dtype=torch.uint8) emb_mat = torch.bmm(emb2,emb1) # K,15,15 norm2 = 1/(torch.norm(emb2,p= 2,dim=2)+e) # K,15 norm1 = 1/(torch.norm(emb1,p= 2,dim=1)+e) # K,15 norm2 = torch.diag_embed(norm2) # K,15,15 norm1 = torch.diag_embed(norm1) sim_mat = torch.bmm(torch.bmm(norm2, emb_mat), norm1) # K,15,15 sim_vec,_ = torch.max(sim_mat,2) # K,15 sim,_ = torch.min(sim_vec[:,wei2],1) sim = sigma_word_bert(sim) return sim.cpu().numpy() def similarity_batch_word(s1, s2, sta_vec, option): return np.array([ similarity_word(x,s2,sta_vec, option) for x in s1 ]) def similarity_keyword_bert_bleu(s1_list, s2, sta_vec, id2sen, emb_word, option, model = None): e=1e-5 sims= [] sourcesent = [' '.join(id2sen(s1)) for s1 in s1_list] sourcesent2 = [' '.join(id2sen(s2))] sourcesent = sourcesent+sourcesent2 emb = model.get_representation(sourcesent).numpy() emb2 = emb[-1,:,:] actual_word_lists = [[id2sen(s2)]] bleus = [] for i,s1 in enumerate(s1_list): emb1 = emb[i,:,:] wei2=np.array([0]+sta_vec).astype(np.float32) # N*1 #wei2=normalize(wei2) emb_mat=np.dot(emb2,emb1.T) #N*M norm1=np.diag(1/(np.linalg.norm(emb1,2,axis=1)+e)) # M*M norm2=np.diag(1/(np.linalg.norm(emb2,2,axis=1)+e)) #N*N sim_mat=np.dot(norm2,emb_mat).dot(norm1) #N*M sim_vec=sim_mat.max(axis=1) #N # debug # print('sss',sim_vec) # print(wei2) # sim=min([x for x in list(sim_vec*wei2) if x>0]+[1]) sim=min([x for x,y in zip(list(sim_vec*wei2),list(wei2)) if y>0]+[1]) sim = sigma_word1(sim) sims.append(sim) generated_word_lists = [id2sen(s1)] bleu_score = get_corpus_bleu_scores(actual_word_lists, generated_word_lists)[3] bleu_score = sigma_bleu(bleu_score) bleus.append(bleu_score) # bleus = (1.0-sigmoid(np.minimum(bleus,0.9999))) res = np.array(sims)*np.array(bleus) return res def similarity_batch_word(s1, s2, sta_vec, option): return np.array([ similarity_word(x,s2,sta_vec, option) for x in s1 ]) def cut_from_point(input, sequence_length, ind,option, mode=0): batch_size=input.shape[0] num_steps=input.shape[1] input_forward=np.zeros([batch_size, num_steps])+option.dict_size+1 input_backward=np.zeros([batch_size, num_steps])+option.dict_size+1 sequence_length_forward=np.zeros([batch_size]) sequence_length_backward=np.zeros([batch_size]) for i in range(batch_size): input_forward[i][0]=option.dict_size+2 input_backward[i][0]=option.dict_size+2 length=sequence_length[i]-1 for j in range(ind): input_forward[i][j+1]=input[i][j+1] sequence_length_forward[i]=ind+1 if mode==0: for j in range(length-ind-1): input_backward[i][j+1]=input[i][length-j] sequence_length_backward[i]=length-ind elif mode==1: for j in range(length-ind): input_backward[i][j+1]=input[i][length-j] sequence_length_backward[i]=length-ind+1 return input_forward.astype(np.int32), input_backward.astype(np.int32), sequence_length_forward.astype(np.int32), sequence_length_backward.astype(np.int32) def generate_candidate_input(input, sequence_length, ind, prob, search_size, option, mode=0): input_new=np.array([input[0]]*search_size) sequence_length_new=np.array([sequence_length[0]]*search_size) length=sequence_length[0]-1 if mode!=2: ind_token=np.argsort(prob[: option.dict_size])[-search_size:] if mode==2: for i in range(sequence_length[0]-ind-2): input_new[: , ind+i+1]=input_new[: , ind+i+2] for i in range(sequence_length[0]-1, option.num_steps-1): input_new[: , i]=input_new[: , i]*0+option.dict_size+1 sequence_length_new=sequence_length_new-1 return input_new[:1], sequence_length_new[:1] if mode==1: for i in range(0, sequence_length_new[0]-1-ind): input_new[: , sequence_length_new[0]-i]=input_new[: , sequence_length_new[0]-1-i] sequence_length_new=sequence_length_new+1 for i in range(search_size): input_new[i][ind+1]=ind_token[i] return input_new.astype(np.int32), sequence_length_new.astype(np.int32) def generate_candidate_input_batch(input, sequence_length, ind, prob, search_size, option, mode=0,\ calibrated_set=None): # input, K,L; prob, K,vocab input_new=np.array([[inp]*search_size for inp in input]) # K,100,L sequence_length_new=np.array([[length]*search_size for length in sequence_length]) #K,100 length=sequence_length[0]-1 if mode!=2: ind_token=np.argsort(prob[:,: option.dict_size],1)[-search_size:] #K,100 print(ind_token.shape) if mode==2: for k in range(len(input)): for i in range(sequence_length[k]-ind-2): input_new[k,: , ind+i+1]=input_new[k,: , ind+i+2] for i in range(sequence_length[k]-1, option.num_steps-1): input_new[k,: , i]=input_new[k,:, i]*0+option.dict_size+1 sequence_length_new=sequence_length_new-1 return input_new, sequence_length_new if mode==1: for k in range(len(input)): for i in range(0, sequence_length_new[k]-1-ind): input_new[: , sequence_length_new[k]-i]=input_new[: , sequence_length_new[k]-1-i] sequence_length_new=sequence_length_new+1 for i in range(search_size): input_new[:,i,ind+1]=ind_token[:,i] return input_new.astype(np.int32), sequence_length_new.astype(np.int32) def generate_candidate_input_calibrated(input, sequence_length, ind, prob, searching_size, option,\ mode=0, calibrated_set = None): search_size = searching_size if mode!=2: if calibrated_set is None: ind_token=np.argsort(prob[: option.dict_size])[-search_size:] else: search_size = searching_size+len(calibrated_set) ind_token=np.argsort(prob[: option.dict_size])[-search_size:] ind_token = np.concatenate([ind_token,np.array(input[0])],0) input_new=np.array([input[0]]*search_size) sequence_length_new=np.array([sequence_length[0]]*search_size) length=sequence_length[0]-1 if mode==2: print(input_new, ind) for i in range(sequence_length[0]-ind-2): input_new[: , ind+i+1]=input_new[: , ind+i+2] for i in range(sequence_length[0]-1, option.num_steps-1): input_new[: , i]=input_new[: , i]*0+option.dict_size+1 print(input_new, ind) sequence_length_new=sequence_length_new-1 return input_new[:1], sequence_length_new[:1] if mode==1: for i in range(0, sequence_length_new[0]-1-ind): input_new[: , sequence_length_new[0]-i]=input_new[: , sequence_length_new[0]-1-i] sequence_length_new=sequence_length_new+1 for i in range(search_size): input_new[i][ind+1]=ind_token[i] return input_new.astype(np.int32), sequence_length_new.astype(np.int32) def normalize(x, e=0.05): tem = copy(x) return tem/tem.sum() def sample_from_candidate(prob_candidate): return choose_action(normalize(prob_candidate)) def samplep(probs): N = probs.shape[1] M = probs.shape[0] samples = [] for i in range(M): a = np.random.choice(range(N), 1, replace=True, p=probs[i]) samples.append(a[0]) return np.array(samples) def just_acc(option): r=np.random.random() if r<option.just_acc_rate: return 0 else: return 1 def getp(probabilities,input, lengths, option): tems = [] for probs,inp, length in zip(probabilities,input,lengths): tem = 1 for i in range(length-1): tem*= probs[i][inp[i+1]] tem*= probs[length-1][option.dict_size+1] tems.append(tem) return tems class StrToBytes: def __init__(self, fileobj): self.fileobj = fileobj def read(self, size): return self.fileobj.read(size).encode() def readline(self, size=-1): return self.fileobj.readline(size).encode() def data_type(): return tf.float32 class PTBModel(object): #The language model. def __init__(self, is_training, option,is_test_LM=False): self._is_training = is_training self.batch_size = option.batch_size self.num_steps = option.num_steps size = option.hidden_size self.hidden_size = option.hidden_size self.num_layers = option.num_layers self.keep_prob = option.keep_prob vocab_size = option.vocab_size self._input=tf.placeholder(shape=[None, option.num_steps], dtype=tf.int32) self._target=tf.placeholder(shape=[None, option.num_steps], dtype=tf.int32) self._sequence_length=tf.placeholder(shape=[None], dtype=tf.int32) with tf.device("/cpu:0"): embedding = tf.get_variable("embedding", [vocab_size, size], dtype=data_type()) inputs = tf.nn.embedding_lookup(embedding, self._input) softmax_w = tf.get_variable( "softmax_w", [size, vocab_size], dtype=data_type()) softmax_b = tf.get_variable("softmax_b", [vocab_size], dtype=data_type()) if is_training and option.keep_prob < 1: inputs = tf.nn.dropout(inputs, option.keep_prob) output = self._build_rnn_graph(inputs, self._sequence_length, is_training) output=tf.reshape(output, [-1, option.hidden_size]) logits = tf.nn.xw_plus_b(output, softmax_w, softmax_b) # Reshape logits to be a 3-D tensor for sequence loss logits = tf.reshape(logits, [-1, self.num_steps, vocab_size]) self._output_prob=tf.nn.softmax(logits) # Use the contrib sequence loss and average over the batches mask=tf.sequence_mask(lengths=self._sequence_length, maxlen=self.num_steps, dtype=data_type()) loss = tf.contrib.seq2seq.sequence_loss( logits, self._target, mask, average_across_timesteps=True, average_across_batch=True) # Update the cost self._cost = loss #self._lr = tf.Variable(0.0, trainable=False) tvars = tf.trainable_variables() grads, _ = tf.clip_by_global_norm(tf.gradients(self._cost, tvars), option.max_grad_norm) optimizer = tf.train.AdamOptimizer() self._train_op = optimizer.apply_gradients( zip(grads, tvars), global_step=tf.train.get_or_create_global_step()) def _build_rnn_graph(self, inputs, sequence_length, is_training): return self._build_rnn_graph_lstm(inputs, sequence_length, is_training) def _get_lstm_cell(self, is_training): return tf.contrib.rnn.BasicLSTMCell( self.hidden_size, forget_bias=0.0, state_is_tuple=True, reuse=not is_training) def _build_rnn_graph_lstm(self, inputs, sequence_length, is_training): """Build the inference graph using canonical LSTM cells.""" # Slightly better results can be obtained with forget gate biases # initialized to 1 but the hyperparameters of the model would need to be # different than reported in the paper. def make_cell(): cell = self._get_lstm_cell( is_training) if is_training and self.keep_prob < 1: cell = tf.contrib.rnn.DropoutWrapper( cell, output_keep_prob=self.keep_prob) return cell cell = tf.contrib.rnn.MultiRNNCell( [make_cell() for _ in range(self.num_layers)], state_is_tuple=True) outputs, states=tf.nn.dynamic_rnn(cell=cell, inputs=inputs, sequence_length=sequence_length, dtype=data_type()) return outputs def run_epoch(sess, model, input, sequence_length, target=None, mode='train'): #Runs the model on the given data. if mode=='train': #train language model _,cost = sess.run([model._train_op, model._cost], feed_dict={model._input: input, model._target:target, model._sequence_length:sequence_length}) return cost elif mode=='test': #test language model cost = sess.run(model._cost, feed_dict={model._input: input, model._target:target, model._sequence_length:sequence_length}) return cost else: #use the language model to calculate sentence probability output_prob = sess.run(model._output_prob, feed_dict={model._input: input, model._sequence_length:sequence_length}) return output_prob def metropolisHasting(option, dataclass,forwardmodel, backwardmodel): tfflag = True if tfflag: with tf.name_scope("forward_train"): with tf.variable_scope("forward", reuse=None): m_forward = PTBModel(is_training=True,option=option) with tf.name_scope("forward_test"): with tf.variable_scope("forward", reuse=True): mtest_forward = PTBModel(is_training=False,option=option) var=tf.trainable_variables() var_forward=[x for x in var if x.name.startswith('forward')] saver_forward=tf.train.Saver(var_forward, max_to_keep=1) with tf.name_scope("backward_train"): with tf.variable_scope("backward", reuse=None): m_backward = PTBModel(is_training=True,option=option) with tf.name_scope("backward_test"): with tf.variable_scope("backward", reuse=True): mtest_backward = PTBModel(is_training=False, option=option) var=tf.trainable_variables() var_backward=[x for x in var if x.name.startswith('backward')] saver_backward=tf.train.Saver(var_backward, max_to_keep=1) init = tf.global_variables_initializer() session = tf.Session() session.run(init) saver_forward.restore(session, option.forward_save_path) saver_backward.restore(session, option.backward_save_path) similaritymodel = BertSimilarity() similarity = similarity_keyword #similarity_semantic fileobj = open(option.emb_path,'r') emb_word,emb_id=pkl.load(StrToBytes(fileobj), encoding='latin1') fileobj.close() sim=option.sim sta_vec=list(np.zeros([option.num_steps-1])) use_data, sta_vec_list = read_data_use(option, dataclass.sen2id) id2sen = dataclass.id2sen generateset = [] for sen_id in range(use_data.length): #generate for each sentence sta_vec=sta_vec_list[sen_id%len(sta_vec)] input, sequence_length, _=use_data(1, sen_id) input_original=input[0] for i in range(1,option.num_steps): if input[0][i]>option.rare_since and input[0][i]<option.dict_size: sta_vec[i-1]=1 pos=0 print(' '.join(id2sen(input[0]))) print(sta_vec) for iter in range(option.sample_time): #ind is the index of the selected word, regardless of the beginning token. ind=pos%(sequence_length[0]-1) action=choose_action(option.action_prob) if action==0: # word replacement (action: 0) if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original, sta_vec, id2sen, emb_word, option, similaritymodel)[0] prob_old_prob*=similarity_old else: similarity_old=-1 input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(option.search_size): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] if input_candidate[prob_candidate_ind][ind+1]<option.dict_size and\ (prob_candidate_prob>prob_old_prob*option.threshold or just_acc(option)==0): input1=input_candidate[prob_candidate_ind:prob_candidate_ind+1] if np.sum(input1[0])==np.sum(input[0]): pass else: input= input1 print(' '.join(id2sen(input[0]))) elif action==1: # word insert if sequence_length[0]>=option.num_steps: pos += 1 break input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(option.search_size): tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] if tfflag: prob_old=run_epoch(session, mtest_forward, input,\ sequence_length,mode='use')[0] else: prob_old = output_p(input, forwardmodel) # 100,15,300003 tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 #alpha is acceptance ratio of current proposal alpha=min(1, prob_candidate_prob*option.action_prob[2]/(prob_old_prob*option.action_prob[1]*prob_candidate_norm[prob_candidate_ind])) if choose_action([alpha, 1-alpha])==0 and \ input_candidate[prob_candidate_ind][ind]<option.dict_size and \ (prob_candidate_prob>prob_old_prob* option.threshold or just_acc(option)==0): input=input_candidate[prob_candidate_ind:prob_candidate_ind+1] sequence_length+=1 pos+=1 sta_vec.insert(ind, 0.0) del(sta_vec[-1]) print(' '.join(id2sen(input[0]))) elif action==2: # word delete if sequence_length[0]<=2: pos += 1 break if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 input_candidate, sequence_length_candidate=generate_candidate_input(input,\ sequence_length, ind, None, option.search_size, option, mode=action) # delete sentence if tfflag: prob_new=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use')[0] else: prob_new = output_p(input_candidate, forwardmodel) tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_new[j][input_candidate[0][j+1]] tem*=prob_new[j+1][option.dict_size+1] prob_new_prob=tem if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_new_prob=prob_new_prob*similarity_candidate # original sentence input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=0) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=0) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(option.search_size): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) #alpha is acceptance ratio of current proposal if input[0] in input_candidate: for candidate_ind in range(len(input_candidate)): if input[0] in input_candidate[candidate_ind: candidate_ind+1]: break pass alpha=min(prob_candidate_norm[candidate_ind]*prob_new_prob*option.action_prob[1]/(option.action_prob[2]*prob_old_prob), 1) else: alpha=0 if choose_action([alpha, 1-alpha])==0 and (prob_new_prob> prob_old_prob*option.threshold or just_acc(option)==0): input=np.concatenate([input[:,:ind+1], input[:,ind+2:], input[:,:1]*0+option.dict_size+1], axis=1) sequence_length-=1 del(sta_vec[ind]) sta_vec.append(0) pos -= 1 print(' '.join(id2sen(input[0]))) pos += 1 generateset.append(id2sen(input[0])) return generateset def simulatedAnnealing_bat(option, dataclass,forwardmodel, backwardmodel, sim_mode = 'keyword'): tfflag = True print('xxxxxxxxxx') if tfflag: with tf.name_scope("forward_train"): with tf.variable_scope("forward", reuse=None): m_forward = PTBModel(is_training=True,option=option) print('xxxxxxxxxx') with tf.name_scope("forward_test"): with tf.variable_scope("forward", reuse=True): mtest_forward = PTBModel(is_training=False,option=option) var=tf.trainable_variables() var_forward=[x for x in var if x.name.startswith('forward')] saver_forward=tf.train.Saver(var_forward, max_to_keep=1) print('xxxxxxxxxx') with tf.name_scope("backward_train"): with tf.variable_scope("backward", reuse=None): m_backward = PTBModel(is_training=True,option=option) with tf.name_scope("backward_test"): with tf.variable_scope("backward", reuse=True): mtest_backward = PTBModel(is_training=False, option=option) var=tf.trainable_variables() var_backward=[x for x in var if x.name.startswith('backward')] saver_backward=tf.train.Saver(var_backward, max_to_keep=1) print('xxxxxxxxxx') init = tf.global_variables_initializer() session = tf.Session() session.run() # saver_forward.restore(session, option.forward_save_path) # saver_backward.restore(session, option.backward_save_path) print('xxxxxxxxxx') generate_candidate = generate_candidate_input_batch similaritymodel = None if sim_mode == 'keyword': similarity = similarity_keyword_batch elif sim_mode =='keyword-bleu': similarity = similarity_keyword_bleu elif sim_mode =='keyword-bert': similaritymodel = BertEncoding() similarity = similarity_keyword_bert elif sim_mode =='keyword-bert-bleu': similaritymodel = BertEncoding() similarity = similarity_keyword_bert_bleu elif sim_mode =='semantic': similaritymodel = BertSimilarity() similarity = similarity_semantic elif sim_mode =='semantic-bleu': similaritymodel = BertSimilarity() similarity = similarity_semantic_bleu elif sim_mode =='semantic-keyword': similaritymodel = BertSimilarity() similarity = similarity_semantic_keyword fileobj = open(option.emb_path,'r') emb_word,emb_id=pkl.load(StrToBytes(fileobj), encoding='latin1') fileobj.close() sim=option.sim sta_vec=list(np.zeros([option.num_steps-1])) use_data, sta_vec_list = read_data_use(option, dataclass.sen2id) id2sen = dataclass.id2sen generateset = [] C = 0.05 batch_size = 20 temperatures = C*(1.0/100)*np.array(list(range(option.sample_time+1,1,-1))) print(temperatures, use_data.length) print(use_data.length/batch_size) for sen_id in range(int(use_data.length/batch_size)): sta_vec=sta_vec_list[sen_id*batch_size:sen_id*batch_size+batch_size] input, sequence_length, _=use_data(batch_size, sen_id) input_original=input N_input = len(input) sta_vec_original = [x for x in sta_vec] pos=0 for sta, sent in zip( sta_vec, input): print(' '.join(id2sen(sent))) print(sta) calibrated_set = [x for x in input[0]] for iter in range(option.sample_time): temperature = temperatures[iter] ind=pos%(np.max(sequence_length)) action=choose_action(option.action_prob) action = 0 calibrated_set = list(set(calibrated_set)) if action==0: # word replacement (action: 0) prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use') # K,L,Vocab prob_old_prob = getp(prob_old,input, sequence_length, option) # K, input_ = [[x] for x in input] similarity_old=similarity(input_, input_original, sta_vec, id2sen, emb_word, option, similaritymodel) #K, V_old = prob_old_prob*np.concatenate(similarity_old,0) input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) prob_forward=run_epoch(session, mtest_forward, input_forward,\ sequence_length_forward, mode='use')[:, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward,\ sequence_length_backward, mode='use')[:, sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) #K,vocab input_candidate, sequence_length_candidate=generate_candidate(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) # K,100,15 input_candidate_flat = input_candidate.reshape(-1,option.num_steps) sequence_length_candidate_flat = sequence_length_candidate.reshape(-1) prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate_flat,\ sequence_length_candidate_flat, mode='use') #K*100,15,vocab prob_candidate = getp(prob_candidate_pre, input_candidate_flat,sequence_length_candidate_flat, option) # K*100 prob_candidate = np.array(prob_candidate).reshape(N_input,-1) # K,100 similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) # K,100 similarity_candidate = np.concatenate(similarity_candidate,0).reshape(N_input,-1) prob_candidate=prob_candidate*similarity_candidate # K,100 prob_candidate_norm= prob_candidate/prob_candidate.sum(1,keepdims=True) prob_candidate_ind=samplep(prob_candidate_norm) prob_candidate_prob= torch.gather(torch.tensor(prob_candidate),1,\ torch.tensor(prob_candidate_ind,dtype=torch.long).view(N_input,1)) # 5,1 prob_candidate_prob = prob_candidate_prob.squeeze().numpy() V_new = np.log(np.maximum(np.power(prob_candidate_prob,1.0/sequence_length),1e-200)) V_old = np.log(np.maximum(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = np.minimum(1,np.exp(np.minimum((V_new-V_old)/temperature,100))) for i,inp in enumerate(input): alpha = alphat[i] chooseind = prob_candidate_ind[i] if choose_action([alpha, 1-alpha])==0: input1=input_candidate[i][chooseind] if np.sum(input1)==np.sum(inp): pass else: input[i] = input1 # calibrated_set.append(input[i][ind]) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[i]))) elif action==1: # word insert if sequence_length[0]>=option.num_steps: pos += 1 continue # break input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] #for i in range(option.search_size): for i in range(len(input_candidate)): tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] similarity_new = similarity_candidate[prob_candidate_ind] if tfflag: prob_old=run_epoch(session, mtest_forward, input,\ sequence_length,mode='use')[0] else: prob_old = output_p(input, forwardmodel) # 100,15,300003 tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 V_new = math.log(max(np.power(prob_candidate_prob,1.0/sequence_length_candidate[0]),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,200))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input=input_candidate[prob_candidate_ind:prob_candidate_ind+1] sequence_length+=1 pos+=1 # sta_vec.insert(ind, 0.0) # del(sta_vec[-1]) print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_new) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==2: # word delete if sequence_length[0]<=2 or ind==0: pos += 1 continue if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, None, option.search_size, option,\ mode=action,calibrated_set=calibrated_set) # delete sentence if tfflag: prob_new=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use')[0] else: prob_new = output_p(input_candidate, forwardmodel) tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_new[j][input_candidate[0][j+1]] tem*=prob_new[j+1][option.dict_size+1] prob_new_prob=tem if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_new_prob=prob_new_prob*similarity_candidate #alpha is acceptance ratio of current proposal if input[0] in input_candidate: for candidate_ind in range(len(input_candidate)): if input[0] in input_candidate[candidate_ind: candidate_ind+1]: break pass V_new = math.log(max(np.power(prob_new_prob,1.0/sequence_length_candidate[0]),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp((V_new-V_old)/temperature)) else: alphat=0 if choose_action([alphat, 1-alphat])==0: calibrated_set.append(input[0][ind]) input=np.concatenate([input[:,:ind+1], input[:,ind+2:], input[:,:1]*0+option.dict_size+1], axis=1) sequence_length-=1 # del(sta_vec[ind]) # sta_vec.append(0) pos -= 1 print('oldprob,vold, vnew, alpha,simold, simnew',prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_candidate) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) pos += 1 generateset.append(id2sen(input[0])) appendtext(id2sen(input[0]), option.save_path) return generateset def simulatedAnnealing(option, dataclass,forwardmodel, backwardmodel, sim_mode = 'keyword'): tfflag = True with tf.name_scope("forward_train"): with tf.variable_scope("forward", reuse=None): m_forward = PTBModel(is_training=True, option=option) with tf.name_scope("forward_test"): with tf.variable_scope("forward", reuse=True): mtest_forward = PTBModel(is_training=False, option=option) var=tf.trainable_variables() var_forward=[x for x in var if x.name.startswith('forward')] saver_forward=tf.train.Saver(var_forward, max_to_keep=1) with tf.name_scope("backward_train"): with tf.variable_scope("backward", reuse=None): m_backward = PTBModel(is_training=True, option=option) with tf.name_scope("backward_test"): with tf.variable_scope("backward", reuse=True): mtest_backward = PTBModel(is_training=False,option=option) var=tf.trainable_variables() var_backward=[x for x in var if x.name.startswith('backward')] saver_backward=tf.train.Saver(var_backward, max_to_keep=1) print('line1295-------------------') init = tf.global_variables_initializer() with tf.Session() as session: session.run(init) saver_forward.restore(session, option.forward_save_path) saver_backward.restore(session, option.backward_save_path) print('line1295-------------------') # if tfflag: # with tf.name_scope("forward_train"): # with tf.variable_scope("forward", reuse=None): # m_forward = PTBModel(is_training=True,option=option) # with tf.name_scope("forward_test"): # with tf.variable_scope("forward", reuse=True): # mtest_forward = PTBModel(is_training=False,option=option) # var=tf.trainable_variables() # var_forward=[x for x in var if x.name.startswith('forward')] # saver_forward=tf.train.Saver(var_forward, max_to_keep=1) # with tf.name_scope("backward_train"): # with tf.variable_scope("backward", reuse=None): # m_backward = PTBModel(is_training=True,option=option) # with tf.name_scope("backward_test"): # with tf.variable_scope("backward", reuse=True): # mtest_backward = PTBModel(is_training=False, option=option) # var=tf.trainable_variables() # var_backward=[x for x in var if x.name.startswith('backward')] # saver_backward=tf.train.Saver(var_backward, max_to_keep=1) # init = tf.global_variables_initializer() # session = tf.Session() # session.run(init) # saver_forward.restore(session, option.forward_save_path) # saver_backward.restore(session, option.backward_save_path) similaritymodel = None if sim_mode == 'keyword': similarity = similarity_keyword elif sim_mode =='keyword-bleu': similarity = similarity_keyword_bleu elif sim_mode =='keyword-bert': similaritymodel = BertEncoding() similarity = similarity_keyword_bert elif sim_mode =='keyword-bert-bleu': similaritymodel = BertEncoding() similarity = similarity_keyword_bert_bleu elif sim_mode =='semantic': similaritymodel = BertSimilarity() similarity = similarity_semantic elif sim_mode =='semantic-bleu': similaritymodel = BertSimilarity() similarity = similarity_semantic_bleu elif sim_mode =='semantic-keyword': similaritymodel = BertSimilarity() similarity = similarity_semantic_keyword fileobj = open(option.emb_path,'r') emb_word,emb_id=pkl.load(StrToBytes(fileobj), encoding='latin1') fileobj.close() sim=option.sim sta_vec=list(np.zeros([option.num_steps-1])) use_data, sta_vec_list = read_data_use(option, dataclass.sen2id) id2sen = dataclass.id2sen generateset = [] C = 0.05 temperatures = C*(1.0/100)*np.array(list(range(option.sample_time+1,1,-1))) print(temperatures) for sen_id in range(use_data.length): sta_vec=sta_vec_list[sen_id] input, sequence_length, _=use_data(1, sen_id) input_original=input[0] sta_vec_original = [x for x in sta_vec] # for i in range(1,option.num_steps): # if input[0][i]>option.rare_since and input[0][i]<option.dict_size: # sta_vec[i-1]=1 pos=0 print(' '.join(id2sen(input[0]))) print(sta_vec) calibrated_set = [x for x in input[0]] for iter in range(option.sample_time): temperature = temperatures[iter] ind=pos%(sequence_length[0]-1) action=choose_action(option.action_prob) calibrated_set = list(set(calibrated_set)) if action==0: # word replacement (action: 0) if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original, sta_vec, id2sen, emb_word, option, similaritymodel)[0] prob_old_prob*=similarity_old else: similarity_old=-1 input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(len(input_candidate)): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] V_new = math.log(max(np.power(prob_candidate_prob,1.0/sequence_length),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,100))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input1=input_candidate[prob_candidate_ind:prob_candidate_ind+1] if np.sum(input1[0])==np.sum(input[0]): pass else: calibrated_set.append(input[0][ind]) input= input1 print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_candidate[prob_candidate_ind]) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==1: # word insert if sequence_length[0]>=option.num_steps: pos += 1 continue # break input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] #for i in range(option.search_size): for i in range(len(input_candidate)): tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] similarity_new = similarity_candidate[prob_candidate_ind] if tfflag: prob_old=run_epoch(session, mtest_forward, input,\ sequence_length,mode='use')[0] else: prob_old = output_p(input, forwardmodel) # 100,15,300003 tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 V_new = math.log(max(np.power(prob_candidate_prob,1.0/sequence_length_candidate[0]),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,200))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input=input_candidate[prob_candidate_ind:prob_candidate_ind+1] sequence_length+=1 pos+=1 # sta_vec.insert(ind, 0.0) # del(sta_vec[-1]) print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_new) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==2: # word delete if sequence_length[0]<=2 or ind==0: pos += 1 continue if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, None, option.search_size, option,\ mode=action,calibrated_set=calibrated_set) # delete sentence if tfflag: prob_new=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use')[0] else: prob_new = output_p(input_candidate, forwardmodel) tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_new[j][input_candidate[0][j+1]] tem*=prob_new[j+1][option.dict_size+1] prob_new_prob=tem if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_new_prob=prob_new_prob*similarity_candidate #alpha is acceptance ratio of current proposal if input[0] in input_candidate: for candidate_ind in range(len(input_candidate)): if input[0] in input_candidate[candidate_ind: candidate_ind+1]: break pass V_new = math.log(max(np.power(prob_new_prob,1.0/sequence_length_candidate[0]),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp((V_new-V_old)/temperature)) else: alphat=0 if choose_action([alphat, 1-alphat])==0: calibrated_set.append(input[0][ind]) input=np.concatenate([input[:,:ind+1], input[:,ind+2:], input[:,:1]*0+option.dict_size+1], axis=1) sequence_length-=1 # del(sta_vec[ind]) # sta_vec.append(0) pos -= 1 print('oldprob,vold, vnew, alpha,simold, simnew',prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_candidate) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) pos += 1 generateset.append(id2sen(input[0])) appendtext(id2sen(input[0]), option.save_path) return generateset def simulatedAnnealing_std(option, dataclass,forwardmodel, backwardmodel, sim_mode = 'keyword'): tfflag = True if tfflag: with tf.name_scope("forward_train"): with tf.variable_scope("forward", reuse=None): m_forward = PTBModel(is_training=True,option=option) with tf.name_scope("forward_test"): with tf.variable_scope("forward", reuse=True): mtest_forward = PTBModel(is_training=False,option=option) var=tf.trainable_variables() var_forward=[x for x in var if x.name.startswith('forward')] saver_forward=tf.train.Saver(var_forward, max_to_keep=1) with tf.name_scope("backward_train"): with tf.variable_scope("backward", reuse=None): m_backward = PTBModel(is_training=True,option=option) with tf.name_scope("backward_test"): with tf.variable_scope("backward", reuse=True): mtest_backward = PTBModel(is_training=False, option=option) var=tf.trainable_variables() var_backward=[x for x in var if x.name.startswith('backward')] saver_backward=tf.train.Saver(var_backward, max_to_keep=1) init = tf.global_variables_initializer() session = tf.Session() session.run(init) saver_forward.restore(session, option.forward_save_path) saver_backward.restore(session, option.backward_save_path) similaritymodel = None if sim_mode == 'keyword': similarity = similarity_keyword elif sim_mode =='keyword-bleu': similarity = similarity_keyword_bleu elif sim_mode =='keyword-bert': similaritymodel = BertEncoding() similarity = similarity_keyword_bert elif sim_mode =='keyword-bert-bleu': similaritymodel = BertEncoding() similarity = similarity_keyword_bert_bleu elif sim_mode =='semantic': similaritymodel = BertSimilarity() similarity = similarity_semantic elif sim_mode =='semantic-bleu': similaritymodel = BertSimilarity() similarity = similarity_semantic_bleu elif sim_mode =='semantic-keyword': similaritymodel = BertSimilarity() similarity = similarity_semantic_keyword fileobj = open(option.emb_path,'r') emb_word,emb_id=pkl.load(StrToBytes(fileobj), encoding='latin1') fileobj.close() sim=option.sim sta_vec=list(np.zeros([option.num_steps-1])) use_data, sta_vec_list = read_data_use(option, dataclass.sen2id) id2sen = dataclass.id2sen generateset = [] C = 0.05 temperatures = C*(1.0/100)*np.array(list(range(option.sample_time+1,1,-1))) print(temperatures) for sen_id in range(use_data.length): sta_vec=sta_vec_list[sen_id] input, sequence_length, _=use_data(1, sen_id) input_original=input[0] sta_vec_original = [x for x in sta_vec] for i in range(1,option.num_steps): if input[0][i]>option.rare_since and input[0][i]<option.dict_size: sta_vec[i-1]=1 pos=0 print(' '.join(id2sen(input[0]))) print(sta_vec) calibrated_set = [x for x in input[0]] for iter in range(option.sample_time): temperature = temperatures[iter] print(temperature) ind=pos%(sequence_length[0]-1) action=choose_action(option.action_prob) calibrated_set = list(set(calibrated_set)) if action==0: # word replacement (action: 0) if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original, sta_vec, id2sen, emb_word, option, similaritymodel)[0] prob_old_prob*=similarity_old else: similarity_old=-1 input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(len(input_candidate)): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] V_new = math.log(max(np.power(prob_candidate_prob,1.0/sequence_length),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,100))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input1=input_candidate[prob_candidate_ind:prob_candidate_ind+1] if np.sum(input1[0])==np.sum(input[0]): pass else: calibrated_set.append(input[0][ind]) input= input1 print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_candidate[prob_candidate_ind]) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==1: # word insert if sequence_length[0]>=option.num_steps: pos += 1 continue # break input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] #for i in range(option.search_size): for i in range(len(input_candidate)): tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] similarity_new = similarity_candidate[prob_candidate_ind] if tfflag: prob_old=run_epoch(session, mtest_forward, input,\ sequence_length,mode='use')[0] else: prob_old = output_p(input, forwardmodel) # 100,15,300003 tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 V_new = math.log(max(np.power(prob_candidate_prob,1.0/sequence_length_candidate[0]),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,200))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input=input_candidate[prob_candidate_ind:prob_candidate_ind+1] sequence_length+=1 pos+=1 # sta_vec.insert(ind, 0.0) # del(sta_vec[-1]) print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_new) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==2: # word delete if sequence_length[0]<=2 or ind==0: pos += 1 continue if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, None, option.search_size, option,\ mode=action,calibrated_set=calibrated_set) # delete sentence if tfflag: prob_new=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use')[0] else: prob_new = output_p(input_candidate, forwardmodel) tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_new[j][input_candidate[0][j+1]] tem*=prob_new[j+1][option.dict_size+1] prob_new_prob=tem if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_new_prob=prob_new_prob*similarity_candidate #alpha is acceptance ratio of current proposal if input[0] in input_candidate: for candidate_ind in range(len(input_candidate)): if input[0] in input_candidate[candidate_ind: candidate_ind+1]: break pass V_new = math.log(max(np.power(prob_new_prob,1.0/sequence_length_candidate[0]),1e-200)) V_old = math.log(max(np.power(prob_old_prob, 1.0/sequence_length),1e-200)) alphat = min(1,math.exp((V_new-V_old)/temperature)) else: alphat=0 if choose_action([alphat, 1-alphat])==0: calibrated_set.append(input[0][ind]) input=np.concatenate([input[:,:ind+1], input[:,ind+2:], input[:,:1]*0+option.dict_size+1], axis=1) sequence_length-=1 # del(sta_vec[ind]) # sta_vec.append(0) pos -= 1 print('oldprob,vold, vnew, alpha,simold, simnew',prob_old_prob,V_old,\ V_new,alphat,similarity_old,similarity_candidate) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) pos += 1 generateset.append(id2sen(input[0])) appendtext(id2sen(input[0]), option.save_path) return generateset def simulatedAnnealing_calibrated(option, dataclass,forwardmodel, backwardmodel, sim_mode = 'keyword'): tfflag = True if tfflag: with tf.name_scope("forward_train"): with tf.variable_scope("forward", reuse=None): m_forward = PTBModel(is_training=True,option=option) with tf.name_scope("forward_test"): with tf.variable_scope("forward", reuse=True): mtest_forward = PTBModel(is_training=False,option=option) var=tf.trainable_variables() var_forward=[x for x in var if x.name.startswith('forward')] saver_forward=tf.train.Saver(var_forward, max_to_keep=1) with tf.name_scope("backward_train"): with tf.variable_scope("backward", reuse=None): m_backward = PTBModel(is_training=True,option=option) with tf.name_scope("backward_test"): with tf.variable_scope("backward", reuse=True): mtest_backward = PTBModel(is_training=False, option=option) var=tf.trainable_variables() var_backward=[x for x in var if x.name.startswith('backward')] saver_backward=tf.train.Saver(var_backward, max_to_keep=1) init = tf.global_variables_initializer() session = tf.Session() session.run(init) saver_forward.restore(session, option.forward_save_path) saver_backward.restore(session, option.backward_save_path) similaritymodel = None if sim_mode == 'keyword': similarity = similarity_keyword elif sim_mode =='keyword-bleu': similarity = similarity_keyword_bleu elif sim_mode =='keyword-bert': similaritymodel = BertEncoding() similarity = similarity_keyword_bert elif sim_mode =='semantic': similaritymodel = BertSimilarity() similarity = similarity_semantic elif sim_mode =='semantic-bleu': similaritymodel = BertSimilarity() similarity = similarity_semantic_bleu elif sim_mode =='semantic-keyword': similaritymodel = BertSimilarity() similarity = similarity_semantic_keyword fileobj = open(option.emb_path,'r') emb_word,emb_id=pkl.load(StrToBytes(fileobj), encoding='latin1') fileobj.close() sim=option.sim sta_vec=list(np.zeros([option.num_steps-1])) use_data, sta_vec_list = read_data_use(option, dataclass.sen2id) id2sen = dataclass.id2sen generateset = [] C = 2 temperatures = 0.3+ C*(1.0/100)*np.array(list(range(option.sample_time+1,1,-1))) print(temperatures) for sen_id in range(use_data.length): sta_vec=sta_vec_list[sen_id%len(sta_vec)] input, sequence_length, _=use_data(1, sen_id) input_original=input[0] sta_vec_original = [x for x in sta_vec] for i in range(1,option.num_steps): if input[0][i]>option.rare_since and input[0][i]<option.dict_size: sta_vec[i-1]=1 pos=0 print(' '.join(id2sen(input[0]))) print(sta_vec) calibrated_set = [x for x in input[0]] for iter in range(option.sample_time): temperature = temperatures[iter] ind=pos%(sequence_length[0]-1) action=choose_action(option.action_prob) calibrated_set = list(set(calibrated_set)) if action==0: # word replacement (action: 0) if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original, sta_vec, id2sen, emb_word, option, similaritymodel)[0] prob_old_prob*=similarity_old else: similarity_old=-1 input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(len(input_candidate)): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] V_new = math.log(max(prob_candidate_prob,1e-200)) V_old = math.log(max(prob_old_prob,1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,100))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input1=input_candidate[prob_candidate_ind:prob_candidate_ind+1] if np.sum(input1[0])==np.sum(input[0]): pass else: calibrated_set.append(input[0][ind]) input= input1 print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,0,0) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==1: # word insert if sequence_length[0]>=option.num_steps: pos += 1 break input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] #for i in range(option.search_size): for i in range(len(input_candidate)): tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel) prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) prob_candidate_ind=sample_from_candidate(prob_candidate_norm) prob_candidate_prob=prob_candidate[prob_candidate_ind] if tfflag: prob_old=run_epoch(session, mtest_forward, input,\ sequence_length,mode='use')[0] else: prob_old = output_p(input, forwardmodel) # 100,15,300003 tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 V_new = math.log(max(prob_candidate_prob, 1e-200)) V_old = math.log(max(prob_old_prob*prob_candidate_norm[prob_candidate_ind],1e-200)) alphat = min(1,math.exp(min((V_new-V_old)/temperature,200))) if choose_action([alphat, 1-alphat])==0 and input_candidate[prob_candidate_ind][ind]<option.dict_size: input=input_candidate[prob_candidate_ind:prob_candidate_ind+1] sequence_length+=1 # debug # print('xxxx', sequence_length, sta_vec) # tem=1 # prob_old=run_epoch(session, mtest_forward, input,\ # sequence_length,mode='use')[0] # for j in range(sequence_length[0]-1): # tem*=prob_old[j][input[0][j+1]] # print(tem,) # tem*=prob_old[j+1][option.dict_size+1] # print(tem) # similarity_old=similarity(input, input_original,sta_vec,\ # id2sen, emb_word, option, similaritymodel)[0] # print(similarity_old) pos+=1 # sta_vec.insert(ind, 0.0) # del(sta_vec[-1]) print('ind, action,oldprob,vold, vnew, alpha,simold, simnew', ind, action,prob_old_prob,V_old,\ V_new,alphat,0,0) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) elif action==2: # word delete if sequence_length[0]<=2: pos += 1 break if tfflag: prob_old=run_epoch(session, mtest_forward, input, sequence_length,\ mode='use')[0] else: prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_old_prob=prob_old_prob*similarity_old else: similarity_old=-1 input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, None, option.search_size, option,\ mode=action,calibrated_set=calibrated_set) # delete sentence if tfflag: prob_new=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use')[0] else: prob_new = output_p(input_candidate, forwardmodel) tem=1 for j in range(sequence_length_candidate[0]-1): tem*=prob_new[j][input_candidate[0][j+1]] tem*=prob_new[j+1][option.dict_size+1] prob_new_prob=tem if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_new_prob=prob_new_prob*similarity_candidate # original sentence input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=0) if tfflag: prob_forward=run_epoch(session, mtest_forward, input_forward, sequence_length_forward, mode='use')[0, ind%(sequence_length[0]-1),:] prob_backward=run_epoch(session, mtest_backward, input_backward, sequence_length_backward, mode='use')[0, sequence_length[0]-1-ind%(sequence_length[0]-1),:] else: prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input_calibrated(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=0,\ calibrated_set=calibrated_set) if tfflag: prob_candidate_pre=run_epoch(session, mtest_forward, input_candidate,\ sequence_length_candidate,mode='use') else: prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(option.search_size): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=np.array(prob_candidate) if sim!=None: similarity_candidate=similarity(input_candidate, input_original,sta_vec,\ id2sen, emb_word, option, similaritymodel)[0] prob_candidate=prob_candidate*similarity_candidate prob_candidate_norm=normalize(prob_candidate) #alpha is acceptance ratio of current proposal if input[0] in input_candidate: for candidate_ind in range(len(input_candidate)): if input[0] in input_candidate[candidate_ind: candidate_ind+1]: break pass V_new = math.log(max(prob_new_prob*prob_candidate_norm[candidate_ind],1e-300)) V_old = math.log(max(prob_old_prob,1e-300)) alphat = min(1,math.exp((V_new-V_old)/temperature)) else: alphat=0 if choose_action([alphat, 1-alphat])==0: calibrated_set.append(input[0][ind]) input=np.concatenate([input[:,:ind+1], input[:,ind+2:], input[:,:1]*0+option.dict_size+1], axis=1) sequence_length-=1 # del(sta_vec[ind]) # sta_vec.append(0) pos -= 1 print('oldprob,vold, vnew, alpha,simold, simnew',prob_old_prob,V_old,\ V_new,alphat,0,0) print('Temperature:{:3.3f}: '.format(temperature)+' '.join(id2sen(input[0]))) pos += 1 generateset.append(id2sen(input[0])) appendtext(id2sen(input[0]), option.save_path) return generateset def simulatedAnnealing_pytorch(option, dataclass,forwardmodel, backwardmodel, sim_mode = 'keyword'): sim=option.sim similaritymodel = None if sim_mode == 'keyword': similarity = similarity_keyword elif sim_mode =='semantic': similaritymodel = BertSimilarity() similarity = similarity_semantic elif sim_mode =='semantic-bleu': similaritymodel = BertSimilarity() similarity = similarity_semantic_bleu elif sim_mode =='semantic-keyword': similaritymodel = BertSimilarity() similarity = similarity_semantic_keyword generated_sentence = [] fileemb = open(option.emb_path,'rb') emb_word,emb_id=pkl.load(fileemb, encoding = 'latin1') sta_vec=list(np.zeros([option.num_steps-1])) use_data, sta_vec_list = read_data_use(option, dataclass.sen2id) id2sen = dataclass.id2sen C = 1 # 0.2 for sen_id in range(use_data.length): #generate for each sentence sta_vec=sta_vec_list[sen_id%len(sta_vec)] sta_vec.insert(0, 0.0) del(sta_vec[-1]) input, sequence_length, _=use_data(1, sen_id) input_original=input[0] for i in range(1,option.num_steps): if input[0][i]>option.rare_since and input[0][i]<option.dict_size: sta_vec[i-1]=1 pos=0 print('Origin Sentence:') print(' '.join(id2sen(input[0]))) print(sta_vec) print('Paraphrase:') for iter in range(option.sample_time): #ind is the index of the selected word, regardless of the beginning token. ind=pos%(sequence_length[0]-1) action=choose_action(option.action_prob) steps = float(iter/(sequence_length[0]-1)) temperature = C/(math.log(steps+2)) if action==0: # word replacement (action: 0) prob_old= output_p(input, forwardmodel) #15,K tem=1 for j in range(sequence_length[0]-1): tem*=prob_old[j][input[0][j+1]] tem*=prob_old[j+1][option.dict_size+1] prob_old_prob=tem if sim!=None: similarity_old=similarity(input, input_original, sta_vec, id2sen, emb_word, option, similaritymodel)[0] prob_old_prob*=similarity_old else: similarity_old=-1 input_forward, input_backward, sequence_length_forward, sequence_length_backward =\ cut_from_point(input, sequence_length, ind, option, mode=action) prob_forward = output_p(input_forward, forwardmodel)[ind%(sequence_length[0]-1),:] prob_backward = output_p(input_backward,backwardmodel)[ sequence_length[0]-1-ind%(sequence_length[0]-1),:] prob_mul=(prob_forward*prob_backward) input_candidate, sequence_length_candidate=generate_candidate_input(input,\ sequence_length, ind, prob_mul, option.search_size, option, mode=action) prob_candidate_pre = output_p(input_candidate, forwardmodel) # 100,15,300003 prob_candidate=[] for i in range(option.search_size): tem=1 for j in range(sequence_length[0]-1): tem*=prob_candidate_pre[i][j][input_candidate[i][j+1]] tem*=prob_candidate_pre[i][j+1][option.dict_size+1] prob_candidate.append(tem) prob_candidate=
np.array(prob_candidate)
numpy.array
# ------------------ # this module, grid.py, deals with calculations of all microbe-related activites on a spatial grid with a class, Grid(). # by <NAME> # ------------------ import numpy as np import pandas as pd from microbe import microbe_osmo_psi from microbe import microbe_mortality_prob as MMP from enzyme import Arrhenius, Allison from monomer import monomer_leaching from utility import expand class Grid(): """ This class holds all variables related to microbe, substrate, monomer, and enzyme over the spatial grid. Accepts returns from the module 'initialization.py' and includes methods as follows: 1) degrdation(): explicit substrate degradation 2) uptake(): explicit monomers uptake 3) metabolism(): cellular processes and emergent CUE and respiration 4) mortality(): determine mortality of microbial cells based on mass thresholds 5) reproduction(): compute cell division and dispersal 6) repopulation(): resample taxa from the microbial pool and place them on the grid Coding philosophy: Each method starts with passing some global variables to local ones and creating some indices facilitating dataframe index/column processing and ends up with updating state variables and passing them back to the global ones. All computation stays in between. Reminder: Keep a CLOSE EYE on the indexing throughout the matrix/dataframe operations """ def __init__(self,runtime,data_init): """ The constructor of Grid class. Parameters: runtime: user-specified parameters data_init: dictionary;initialized data from the module 'initialization.py' """ self.cycle = int(runtime.loc['end_time',1]) self.gridsize = int(runtime.loc['gridsize',1]) self.n_taxa = int(runtime.loc["n_taxa",1]) self.n_substrates = int(runtime.loc["n_substrates",1]) self.n_enzymes = int(runtime.loc["n_enzymes",1]) self.n_monomers = self.n_substrates + 2 #Degradation #self.Substrates_init = data_init['Substrates'] # Substrates initialized self.Substrates = data_init['Substrates'].copy(deep=True) # Substrates;df; w/ .copy() avoiding mutation self.SubInput = data_init['SubInput'] # Substrate inputs #self.Enzymes_init = data_init['Enzymes'] # Initial pool of Enzymes self.Enzymes = data_init['Enzymes'].copy(deep=True) # Enzymes self.ReqEnz = data_init['ReqEnz'] # Enzymes required by each substrate self.Ea = data_init['Ea'] # Enzyme activatin energy self.Vmax0 = data_init['Vmax0'] # Max. reaction speed self.Km0 = data_init['Km0'] # Half-saturation constant self.SubstrateRatios = np.float32('nan') # Substrate stoichiometry self.DecayRates = np.float32('nan') # Substrate decay rate #Uptake #self.Microbes_init = data_init['Microbes_pp'] # microbial community before placement self.Microbes = data_init['Microbes'].copy(deep=True) # microbial community after placement #self.Monomers_init = data_init['Monomers'] # Monomers initialized self.Monomers = data_init['Monomers'].copy(deep=True) # Monomers self.MonInput = data_init['MonInput'] # Inputs of monomers self.Uptake_Ea = data_init['Uptake_Ea'] # transporter enzyme Ea self.Uptake_Vmax0 = data_init['Uptake_Vmax0'] # transporter Vmax self.Uptake_Km0 = data_init['Uptake_Km0'] # transporter Km self.Monomer_ratios = data_init['Monomer_ratio'].copy(deep=True) # monomer stoichiometry self.Uptake_ReqEnz = data_init['Uptake_ReqEnz'] # Enzymes required by monomers self.Uptake_Enz_Cost = data_init['UptakeGenesCost'] # Cost of encoding each uptake gene self.Taxon_Uptake_C = np.float32('nan') # taxon uptake of C self.Taxon_Uptake_N = np.float32('nan') # taxon uptake of N self.Taxon_Uptake_P = np.float32('nan') # taxon uptake of P #Metabolism self.Consti_Enzyme_C = data_init["EnzProdConstit"] # C cost of encoding constitutive enzyme self.Induci_Enzyme_C = data_init["EnzProdInduce"] # C Cost of encoding inducible enzyme self.Consti_Osmo_C = data_init['OsmoProdConsti'] # C Cost of encoding constitutive osmolyte self.Induci_Osmo_C = data_init['OsmoProdInduci'] # C Cost of encoding inducible osmolyte self.Uptake_Maint_Cost = data_init['Uptake_Maint_cost'] # Respiration cost of uptake transporters: 0.01 mg C transporter-1 day-1 self.Enz_Attrib = data_init['EnzAttrib'] # Enzyme attributes; dataframe self.AE_ref = data_init['AE_ref'] # Reference AE:constant of 0.5;scalar self.AE_temp = data_init['AE_temp'] # AE sensitivity to temperature;scalar self.Respiration = np.float32('nan') # Respiration self.CUE_system = np.float32('nan') # emergent CUE #self.Transporters = float('nan') #self.Osmolyte_Con = float('nan') #self.Osmolyte_Ind = float('nan') #self.Enzyme_Con = float('nan') #self.Enzyme_Ind = float('nan') #self.CUE_Taxon = float('nan') #self.Growth_Yield = float('nan') #Mortality self.MinRatios = data_init['MinRatios'] # minimal cell quotas self.C_min = data_init['C_min'] # C threshold value of living cell self.N_min = data_init['N_min'] # N threshold value of living cell self.P_min = data_init['P_min'] # P threshold value of living cell self.basal_death_prob = data_init['basal_death_prob'] # basal death probability of microbes self.death_rate = data_init['death_rate'] # change rate of mortality with water potential self.tolerance = data_init['TaxDroughtTol'] # taxon drought tolerance self.wp_fc = data_init['wp_fc'] # scalar; max threshold value of water potential self.wp_th = data_init['wp_th'] # scalar; min threshold value of water potential self.alpha = data_init['alpha'] # scalar; moisture sensitivity; 1 self.Kill = np.float32('nan') # total number of cells stochastically killed # Reproduction self.fb = data_init['fb'] # index of fungal taxa (=1) self.max_size_b = data_init['max_size_b'] # threshold of cell division self.max_size_f = data_init['max_size_f'] # threshold of cell division self.x = int(runtime.loc['x',1]) # x dimension of grid self.y = int(runtime.loc['y',1]) # y dimension of grid self.dist = int(runtime.loc['dist',1]) # maximum dispersal distance: 1 cell self.direct = int(runtime.loc['direct',1]) # dispersal direction: 0.95 # Climate data self.temp = data_init['Temp'] # series; temperature self.psi = data_init['Psi'] # series; water potential # Global constants self.Km_Ea = np.float32(20) # kj mol-1;activation energy for both enzyme and transporter self.Tref = np.float32(293) # reference temperature of 20 celcius # tradeoff self.Taxon_Enzyme_Cost_C = np.float32('nan') self.Taxon_Osmo_Cost_C = np.float32('nan') self.Microbe_C_Gain = np.float32('nan') def degradation(self,day): """ Explicit degradation of different substrates. Calculation procedure: 1. Determine substates pool: incl. inputs 2. Compute Vmax & Km and make them follow the index of Substrates 3. Follow the Michaelis-Menten equation to compute full degradation rate 4. Impose the substrate-required enzymes upon the full degradation rate 5. Adjust cellulose rate with LCI(lignocellulose index) """ # constant of lignocellulose index--LCI LCI_slope = np.float32(-0.8) # Substrates index by subtrate names Sub_index = self.Substrates.index # Calculate total mass of each substrate (C+N+P) and derive substrate stoichiometry rss = self.Substrates.sum(axis=1) SubstrateRatios = self.Substrates.divide(rss,axis=0) SubstrateRatios = SubstrateRatios.fillna(0) # NOTE:ensure NA(b/c of 0/0 in df) = 0 # Arrhenius equation for Vmax and Km multiplied by exponential decay for Psi sensitivity Vmax = Arrhenius(self.Vmax0, self.Ea, self.temp[day]) * Allison(0.05, self.wp_fc, self.psi[day]) # Vmax: (enz*gridsize) * sub Km = Arrhenius(self.Km0, self.Km_Ea, self.temp[day]) # Km: (sub*gridsize) * enz # Multiply Vmax by enzyme concentration tev_transition = Vmax.mul(self.Enzymes,axis=0) # (enz*gridsize) * sub tev_transition.index = [np.arange(self.gridsize).repeat(self.n_enzymes),tev_transition.index] # create a MultiIndex tev = tev_transition.stack().unstack(1).reset_index(level=0,drop=True) # (sub*gridsize) * enz tev = tev[Km.columns] # ensure to re-order the columns b/c of python's default alphabetical ordering # Michaelis-Menten equation Decay = tev.mul(rss,axis=0)/Km.add(rss,axis=0) # Pull out each batch of required enzymes and sum across redundant enzymes batch1 = (self.ReqEnz.loc['set1'].values * Decay).sum(axis=1) #batch2 = (self.ReqEnz.loc['set2'].values * Decay).sum(axis=1) # Assess the rate-limiting enzyme and set decay to that rate #DecaySums = pd.concat([batch1, batch2],axis=1) #DecayRates0 = DecaySums.min(axis=1, skipna=True) # Compare to substrate available and take the min, allowing for a tolerance of 1e-9 DecayRates = pd.concat([batch1,rss],axis=1,sort=False).min(axis=1,skipna=True) # Adjust cellulose rate by linking cellulose degradation to lignin concentration (LCI) ss7 = self.Substrates.loc[Sub_index=='Lignin'].sum(axis=1).values DecayRates.loc[Sub_index=='Cellulose'] *= np.float32(1) + (ss7/(ss7 + self.Substrates.loc[Sub_index=='Cellulose','C'])) * LCI_slope # Update Substrates Pool by removing decayed C, N, & P. Depending on specific needs, adding inputs of substrates can be done here self.Substrates -= SubstrateRatios.mul(DecayRates,axis=0) #+ self.SubInput # Pass these two back to the global variables to be used in the next method self.SubstrateRatios = SubstrateRatios self.DecayRates = DecayRates def uptake(self,day): """ Explicit uptake of different monomers by transporters following the Michaelis-Menten equation. Calculaton procedure: 1. Average monomers across the grid: 2. Determine pool of monomers: add degradation and input, update stoichimoetry 3. Maximum uptake: 4. Uptake by Monomer: 5. Uptake by Taxon: """ # Every monomer averaged over the grid in each time step self.Monomers = expand(self.Monomers.groupby(level=0,sort=False).sum()/self.gridsize,self.gridsize) # Indices is_org = (self.Monomers.index != "NH4") & (self.Monomers.index != "PO4") # organic monomers #is_mineral = (Monomers.index == "NH4") | (Monomers.index == "PO4") # Update monomer ratios in each time step with organic monomers following the substrates self.Monomer_ratios[is_org] = self.SubstrateRatios.values # Determine monomer pool from decay and input # Organic monomers derived from substrate-decomposition Decay_Org = self.Monomer_ratios[is_org].mul(self.DecayRates.values,axis=0) # inputs of organic and mineral monomers #Input_Org = MR_transition[is_org].mul(self.MonInput[is_org].tolist(),axis=0) #Input_Mineral = MR_transition[is_mineral].mul((self.MonInput[is_mineral]).tolist(),axis=0) # Monomer pool determined self.Monomers.loc[is_org] += Decay_Org #+ Input_Org #self.Monomers.loc[is_mineral] += Input_Mineral # Get the total mass of each monomer: C+N+P rsm = self.Monomers.sum(axis=1) # Recalculate monomer ratios after updating monomer pool and before uptake calculation self.Monomer_ratios.loc[is_org] = self.Monomers.loc[is_org].divide(rsm[is_org],axis=0) self.Monomer_ratios = self.Monomer_ratios.fillna(0) # Start calculating monomer uptake # Caculate uptake enzyme kinetic parameters, multiplied by moisture multiplier accounting for the diffusivity implications Uptake_Vmax = Arrhenius(self.Uptake_Vmax0, self.Uptake_Ea, self.temp[day]) * Allison(0.1, self.wp_fc, self.psi[day]) Uptake_Km = Arrhenius(self.Uptake_Km0, self.Km_Ea, self.temp[day]) # Equation for hypothetical potential uptake (per unit of compatible uptake protein) Potential_Uptake = (self.Uptake_ReqEnz * Uptake_Vmax).mul(rsm.values,axis=0)/Uptake_Km.add(rsm.values,axis=0) # Derive the mass of each transporter of each taxon NOTE: transpose the df to Upt*(Taxa*grid) MicCXGenes = (self.Uptake_Enz_Cost.mul(self.Microbes.sum(axis=1),axis=0)).T # Define Max_Uptake: (Monomer*gridsize) * Taxon Max_Uptake_array = np.zeros((self.n_monomers*self.gridsize,self.n_taxa), dtype='float32') Max_Uptake = pd.DataFrame(data=Max_Uptake_array, index=self.Monomers.index, columns=self.Microbes.index[0:self.n_taxa]) # Matrix multiplication to get max possible uptake by monomer(extract each grid point separately for operation) for i in range(self.gridsize): i_monomer = np.arange(i * self.n_monomers, (i+1) * self.n_monomers) i_taxa = np.arange(i * self.n_taxa, (i+1) * self.n_taxa) Max_Uptake.iloc[i_monomer,:] = Potential_Uptake.iloc[i_monomer,:].values @ MicCXGenes.iloc[:,i_taxa].values # Take the min of the monomer available and the max potential uptake, and scale the uptake to what's available csmu = Max_Uptake.sum(axis=1) # total potential uptake of each monomer Uptake = Max_Uptake.mul(pd.concat([csmu,rsm],axis=1).min(axis=1,skipna=True)/csmu,axis=0) #(Monomer*gridsize) * Taxon Uptake.loc[csmu==0] = np.float32(0) # End computing monomer uptake # Update Monomers # By monomer: total uptake (monomer*gridsize) * 3(C-N-P) self.Monomers -= self.Monomer_ratios.mul(Uptake.sum(axis=1),axis=0) # Derive Taxon-specific total uptake of C, N, & P # By taxon: total uptake; (monomer*gridsize) * taxon C_uptake_df = Uptake.mul(self.Monomer_ratios["C"],axis=0) N_uptake_df = Uptake.mul(self.Monomer_ratios["N"],axis=0) P_uptake_df = Uptake.mul(self.Monomer_ratios["P"],axis=0) # generic multi-index C_uptake_df.index = N_uptake_df.index = P_uptake_df.index = [np.arange(self.gridsize).repeat(self.n_monomers),C_uptake_df.index] TUC_df = C_uptake_df.groupby(level=[0]).sum() TUN_df = N_uptake_df.groupby(level=[0]).sum() TUP_df = P_uptake_df.groupby(level=[0]).sum() # Update these 3 global variables self.Taxon_Uptake_C = TUC_df.stack().values # spatial C uptake: array self.Taxon_Uptake_N = TUN_df.stack().values # spatial N uptake: array self.Taxon_Uptake_P = TUP_df.stack().values # spatial P uptake: array def metabolism(self,day): """ Explicitly calculate intra-cellular production of metabolites. Handles both constitutive (standing biomass) and inducible (immediate monomers uptake) pathways following: 1. constitutive enzyme and osmolyte production 2. inducible enzyme and osmolyte production 3. emergent CUE & Respiration 4. update both Enzymes (with production & loss) and Substrates (with dead enzymes) """ # Constants Osmo_N_cost = np.float32(0.3) # N cost per unit of osmo-C production Osmo_Maint_cost = np.float32(5.0) # C loss per unit of osmo-C production Enzyme_Loss_Rate = np.float32(0.04) # enzyme turnover rate(=0.04; Allison 2006) # index of dead enzyme in Substrates is_deadEnz = self.Substrates.index == "DeadEnz" #---------------------------------------------------------------------# #......................constitutive processes.........................# #---------------------------------------------------------------------# # Variable Acronyms: # OECCN : Osmo_Enzyme_Consti_Cost_N # ARROEC: Avail_Req_ratio_osmo_enzyme_consti # MNAOEC: Min_N_Avail_Osmo_Enzyme_Consti #............................................... # Taxon-specific respiration cost of producing transporters: self.uptake_maint_cost = 0.01 # NOTE Microbes['C'],as opposed to Microbes.sum(axis=1) in DEMENT Taxon_Transporter_Maint = self.Uptake_Enz_Cost.mul(self.Microbes['C'],axis=0).sum(axis=1) * self.Uptake_Maint_Cost # Osmolyte before adjustment Taxon_Osmo_Consti = self.Consti_Osmo_C.mul(self.Microbes['C'],axis=0) Taxon_Osmo_Consti_Cost_N = (Taxon_Osmo_Consti * Osmo_N_cost).sum(axis=1) # Enzyme before adjustment Taxon_Enzyme_Consti = self.Consti_Enzyme_C.mul(self.Microbes['C'],axis=0) Taxon_Enzyme_Consti_Cost_N = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['N_cost'],axis=1)).sum(axis=1) # Adjust osmolyte & enzyme production based on available N in microbial biomass OECCN = Taxon_Osmo_Consti_Cost_N + Taxon_Enzyme_Consti_Cost_N # Total N cost MNAOEC = (pd.concat([OECCN[OECCN>0],self.Microbes['N'][OECCN>0]],axis=1)).min(axis=1,skipna=True) # get the minimum value ARROEC = (MNAOEC/OECCN[OECCN>0]).fillna(0) # Derive ratio of availabe N to required N # Osmolyte adjusted Taxon_Osmo_Consti[OECCN>0] = Taxon_Osmo_Consti[OECCN>0].mul(ARROEC,axis=0) # adjusted osmolyte Taxon_Osmo_Consti_Maint = (Taxon_Osmo_Consti * Osmo_Maint_cost).sum(axis=1) # maintenece Taxon_Osmo_Consti_Cost_N = (Taxon_Osmo_Consti * Osmo_N_cost).sum(axis=1) # N cost (no P) Taxon_Osmo_Consti_Cost_C = Taxon_Osmo_Consti.sum(axis=1) + Taxon_Osmo_Consti_Maint # total C consumption # Enzyme adjusted Taxon_Enzyme_Consti.loc[OECCN>0] = Taxon_Enzyme_Consti.loc[OECCN>0].mul(ARROEC,axis=0) # adjusted enzyme Taxon_Enzyme_Consti_Maint = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['Maint_cost'],axis=1)).sum(axis=1) # maintinence Taxon_Enzyme_Consti_Cost_N = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['N_cost'], axis=1)).sum(axis=1) # N cost Taxon_Enzyme_Consti_Cost_P = (Taxon_Enzyme_Consti.mul(self.Enz_Attrib['P_cost'], axis=1)).sum(axis=1) # P cost Taxon_Enzyme_Consti_Cost_C = Taxon_Enzyme_Consti.sum(axis=1) + Taxon_Enzyme_Consti_Maint # C cost (total) #---------------------------------------------------------------------# #.....Inducible processes.............................................# #---------------------------------------------------------------------# # Variable Acronyms: # OEICN : Osmo_Enzyme_Induci_Cost_N # OEIAN : Osmo_Enzyme_Induci_Avail_N # ARROEI: Avail_Req_ratio_osmo_enzyme_induci # MNAOEI: Min_N_Avail_Osmo_Enzyme_Induci #.................................................. # Assimilation efficiency constrained by temperature Taxon_AE = self.AE_ref + (self.temp[day] - (self.Tref - np.float32(273))) * self.AE_temp #scalar # Taxon growth respiration Taxon_Growth_Respiration = self.Taxon_Uptake_C * (np.float32(1) - Taxon_AE) # derive the water potential modifier by calling the function microbe_osmo_psi() f_psi = microbe_osmo_psi(self.alpha,self.wp_fc,self.psi[day]) # Inducible Osmolyte production only when psi reaches below wp_fc Taxon_Osmo_Induci = self.Induci_Osmo_C.mul(self.Taxon_Uptake_C*Taxon_AE, axis=0) * f_psi Taxon_Osmo_Induci_Cost_N = (Taxon_Osmo_Induci * Osmo_N_cost).sum(axis=1) # Total osmotic N cost of each taxon (.sum(axis=1)) # Inducible enzyme production Taxon_Enzyme_Induci = self.Induci_Enzyme_C.mul(self.Taxon_Uptake_C*Taxon_AE, axis=0) Taxon_Enzyme_Induci_Cost_N = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib['N_cost'],axis=1)).sum(axis=1) # Total enzyme N cost of each taxon (.sum(axis=1)) # Adjust production based on N availabe OEICN = Taxon_Osmo_Induci_Cost_N + Taxon_Enzyme_Induci_Cost_N # Total N cost of osmolyte and enzymes OEIAN = pd.Series(data=self.Taxon_Uptake_N, index=self.Microbes.index) # N available MNAOEI = (pd.concat([OEICN[OEICN>0],OEIAN[OEICN>0]],axis=1)).min(axis=1,skipna=True) # Get the minimum value by comparing N cost to N available ARROEI = (MNAOEI/OEICN[OEICN>0]).fillna(0) # Ratio of Available to Required # Osmolyte adjusted: accompanying maintenence and N cost Taxon_Osmo_Induci[OEICN>0] = Taxon_Osmo_Induci.loc[OEICN>0].mul(ARROEI,axis=0) Taxon_Osmo_Induci_Maint = (Taxon_Osmo_Induci * Osmo_Maint_cost).sum(axis=1) Taxon_Osmo_Induci_Cost_N = (Taxon_Osmo_Induci * Osmo_N_cost).sum(axis=1) Taxon_Osmo_Induci_Cost_C = Taxon_Osmo_Induci.sum(axis=1) + Taxon_Osmo_Induci_Maint # Enzyme adjusted: Total enzyme carbon cost (+ CO2 loss), N cost, and P cost for each taxon Taxon_Enzyme_Induci[OEICN>0] = Taxon_Enzyme_Induci.loc[OEICN>0].mul(ARROEI,axis=0) Taxon_Enzyme_Induci_Maint = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib["Maint_cost"],axis=1)).sum(axis=1) Taxon_Enzyme_Induci_Cost_N = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib["N_cost"], axis=1)).sum(axis=1) Taxon_Enzyme_Induci_Cost_P = (Taxon_Enzyme_Induci.mul(self.Enz_Attrib["P_cost"], axis=1)).sum(axis=1) Taxon_Enzyme_Induci_Cost_C = Taxon_Enzyme_Induci.sum(axis=1) + Taxon_Enzyme_Induci_Maint # Derive C, N, & P deposited as biomass from Uptake; ensure no negative values Microbe_C_Gain = self.Taxon_Uptake_C - Taxon_Growth_Respiration - Taxon_Enzyme_Induci_Cost_C - Taxon_Osmo_Induci_Cost_C Microbe_N_Gain = self.Taxon_Uptake_N - Taxon_Enzyme_Induci_Cost_N - Taxon_Osmo_Induci_Cost_N Microbe_P_Gain = self.Taxon_Uptake_P - Taxon_Enzyme_Induci_Cost_P self.Taxon_Enzyme_Cost_C = Taxon_Enzyme_Induci_Cost_C + Taxon_Enzyme_Consti_Cost_C self.Taxon_Osmo_Cost_C = Taxon_Osmo_Induci_Cost_C + Taxon_Osmo_Consti_Cost_C self.Microbe_C_Gain = Microbe_C_Gain - Taxon_Enzyme_Consti_Cost_C - Taxon_Osmo_Consti_Cost_C - Taxon_Transporter_Maint #------------------------------------------------# #...............Integration......................# #------------------------------------------------# # Update Microbial pools with GAINS (from uptake) and LOSSES (from constitutive production) self.Microbes.loc[:,'C'] += Microbe_C_Gain - Taxon_Enzyme_Consti_Cost_C - Taxon_Osmo_Consti_Cost_C - Taxon_Transporter_Maint self.Microbes.loc[:,'N'] += Microbe_N_Gain - Taxon_Enzyme_Consti_Cost_N - Taxon_Osmo_Consti_Cost_N self.Microbes.loc[:,'P'] += Microbe_P_Gain - Taxon_Enzyme_Consti_Cost_P self.Microbes[self.Microbes<0] = np.float32(0) # avoid negative values # Taxon-specific emergent CUE #CUE_taxon = Microbes['C'].copy() # create a dataframe and set all vals to 0 #CUE_taxon[:] = 0 #pos_uptake_index = self.Taxon_Uptake_C > 0 #CUE_taxon[pos_uptake_index] = Microbe_C_Gain[pos_uptake_index]/self.Taxon_Uptake_C[pos_uptake_index] # System-level emergent CUE Taxon_Uptake_C_grid = self.Taxon_Uptake_C.sum(axis=0) # Total C Uptake if Taxon_Uptake_C_grid == 0: self.CUE_system = np.float32(0) else: self.CUE_system = Microbe_C_Gain.sum(axis=0)/Taxon_Uptake_C_grid # Respiration from Constitutive + Inducible(NOTE: missing sum(MicLoss[,"C"]) in the Mortality below) self.Respiration = ( Taxon_Transporter_Maint + Taxon_Growth_Respiration + Taxon_Osmo_Consti_Maint + Taxon_Osmo_Induci_Maint + Taxon_Enzyme_Consti_Maint + Taxon_Enzyme_Induci_Maint ).sum(axis=0) # Derive Enzyme production Taxon_Enzyme_Production = Taxon_Enzyme_Consti + Taxon_Enzyme_Induci # gene-specific prod of enzyme of each taxon: (taxon*gridsize) * enzyme Taxon_Enzyme_Production.index = [np.arange(self.gridsize).repeat(self.n_taxa),Taxon_Enzyme_Production.index] # create a multi-index EP_df = Taxon_Enzyme_Production.groupby(level=0).sum() # enzyme-specific production in each grid cell Enzyme_Production = EP_df.stack().values # 1-D array # Derive Enzyme turnover Enzyme_Loss = self.Enzymes * Enzyme_Loss_Rate # Update Enzyme pools by adding enzymes produced and substracting the 'dead' enzymes self.Enzymes += Enzyme_Production - Enzyme_Loss # Update Substrates pools with dead enzymes DeadEnz_df = pd.concat( [Enzyme_Loss, Enzyme_Loss.mul(self.Enz_Attrib['N_cost'].tolist()*self.gridsize,axis=0), Enzyme_Loss.mul(self.Enz_Attrib['P_cost'].tolist()*self.gridsize,axis=0)], axis=1 ) DeadEnz_df.index = [np.arange(self.gridsize).repeat(self.n_enzymes), DeadEnz_df.index] # create a multi-index DeadEnz_gridcell = DeadEnz_df.groupby(level=0).sum() # total dead mass across taxa in each grid cell self.Substrates.loc[is_deadEnz] += DeadEnz_gridcell.values def mortality(self,day): """ Calculate microbial mortality, and update stoichiometry of the alive and microbial pools. Kill microbes that are starving deterministically and microbes that are drought intolerant stochastically Also update Substrates with input from dead microbes, monomers(with leaching loss), and respiration """ # Indices Mic_index = self.Microbes.index is_DeadMic = self.Substrates.index == 'DeadMic' is_NH4 = self.Monomers.index == 'NH4' is_PO4 = self.Monomers.index == 'PO4' # Reset the index to arabic numerals from taxa series self.Microbes = self.Microbes.reset_index(drop=True) MinRatios = self.MinRatios.reset_index(drop=True) # Create a blank dataframe, Death, having the same structure as Microbes Death = self.Microbes.copy(deep=True) Death[:] = np.float32(0) # Create a series, kill, holding boolean value of False kill = pd.Series([False]*self.n_taxa*self.gridsize) # Start to calculate mortality # --Kill microbes deterministically based on threshold values: C_min: 0.086; N_min:0.012; P_min: 0.002 starve_index = (self.Microbes['C']>0) & ((self.Microbes['C']<self.C_min)|(self.Microbes['N']<self.N_min)|(self.Microbes['P']<self.P_min)) # Index the dead, put them in Death, and set them to 0 in Microbes Death.loc[starve_index] = self.Microbes[starve_index] self.Microbes.loc[starve_index] = np.float32(0) # Index the locations where microbial cells remain alive mic_index = self.Microbes['C'] > 0 # --Kill microbes stochastically based on mortality prob as a function of water potential and drought tolerance # call the function MMP:microbe_mortality_psi() r_death = MMP(self.basal_death_prob,self.death_rate,self.tolerance,self.wp_fc,self.psi[day]) kill.loc[mic_index] = r_death[mic_index] > np.random.uniform(0,1,sum(mic_index)).astype('float32') # Index the dead, put them in Death, and set them to 0 in Microbes Death.loc[kill] = self.Microbes[kill] self.Microbes.loc[kill] = np.float32(0) # Index locations where microbes remain alive mic_index = self.Microbes['C']>0 # Calculate the total dead mass (threshold & drought) across taxa in each grid cell Death_gridcell = Death.groupby(Death.index//self.n_taxa).sum() # Distinguish between conditions of complete death VS partial death # All cells die if sum(mic_index) == 0: #...Update Substrates pool by adding dead microbial biomass self.Substrates.loc[is_DeadMic] += Death_gridcell.values # Partly die and adjust stoichiometry of those remaining alive else: # Index only those taxa in Microbes that have below-minimum quotas: Mic_subset MicrobeRatios = self.Microbes[mic_index].divide(self.Microbes[mic_index].sum(axis=1),axis=0) mic_index_sub = (MicrobeRatios["C"]<MinRatios[mic_index]["C"])|(MicrobeRatios["N"]<MinRatios[mic_index]["N"])|(MicrobeRatios["P"]<MinRatios[mic_index]["P"]) rat_index = self.Microbes.index.map(mic_index_sub).fillna(False) # Derive the Microbes wanted Mic_subset = self.Microbes[rat_index] StartMicrobes = Mic_subset.copy(deep=True) # Derive new ratios and Calculate difference between actual and min ratios MicrobeRatios = Mic_subset.divide(Mic_subset.sum(axis=1),axis=0) MinRat = MinRatios[rat_index] Ratio_dif = MicrobeRatios - MinRat # Create a df recording the ratio differences < 0 Ratio_dif_0 = Ratio_dif.copy(deep=True) Ratio_dif_0[Ratio_dif>0] = np.float32(0) # Create a df recording the ratio differences > 0 Excess = Ratio_dif.copy(deep=True) Excess[Ratio_dif<0] = np.float32(0) # Determine the limiting nutrient that will be conserved Limiting = (-Ratio_dif/MinRat).idxmax(axis=1) # Series of index of the first occurrence of maximum in each row # Set all deficient ratios to their minima MicrobeRatios[Ratio_dif<0] = MinRat[Ratio_dif<0] # Reduce the mass fractions for non-deficient elements in proportion to the distance from the minimum # ....Partition the total deficit to the excess element(s) in proportion to their distances from their minima MicrobeRatios[Ratio_dif>0] += Excess.mul((Ratio_dif_0.sum(axis=1)/Excess.sum(axis=1)),axis=0)[Ratio_dif>0] # Construct hypothetical nutrient quotas for each possible minimum nutrient MC = Mic_subset["C"] MN = Mic_subset["N"] MP = Mic_subset["P"] MRC = MicrobeRatios["C"] MRN = MicrobeRatios["N"] MRP = MicrobeRatios["P"] new_C = pd.concat([MC, MN*MRC/MRN, MP*MRC/MRP],axis=1) new_C = new_C.fillna(0) new_C[np.isinf(new_C)] = np.float32(0) new_C.columns = ['C','N','P'] new_N = pd.concat([MC*MRN/MRC, MN, MP*MRN/MRP],axis=1) new_N = new_N.fillna(0) new_N[np.isinf(new_N)] = np.float32(0) new_N.columns = ['C','N','P'] new_P = pd.concat([MC*MRP/MRC, MN*MRP/MRN, MP],axis=1) new_P = new_P.fillna(0) new_P[np.isinf(new_P)] = np.float32(0) new_P.columns = ['C','N','P'] # Insert the appropriate set of nutrient quotas scaled to the minimum nutrient C = [new_C.loc[i,Limiting[i]] for i in Limiting.index] #list N = [new_N.loc[i,Limiting[i]] for i in Limiting.index] #list P = [new_P.loc[i,Limiting[i]] for i in Limiting.index] #list # Update Microbes self.Microbes.loc[rat_index] = np.vstack((C,N,P)).transpose() # Sum up the element losses from biomass across whole grid and calculate average loss MicLoss = StartMicrobes - self.Microbes[rat_index] # Update total respiration by adding ... self.Respiration += sum(MicLoss['C']) # Update monomer pools self.Monomers.loc[is_NH4,"N"] += sum(MicLoss["N"])/self.gridsize self.Monomers.loc[is_PO4,"P"] += sum(MicLoss["P"])/self.gridsize # Update Substrates pool by adding dead microbial biomass self.Substrates.loc[is_DeadMic] += Death_gridcell.values # End of if else clause # Calculate monomers' leaching and update Monomers leaching_rate = monomer_leaching(self.psi[day]) self.Monomers.loc[is_NH4,"N"] -= self.Monomers.loc[is_NH4,"N"] * leaching_rate self.Monomers.loc[is_PO4,"P"] -= self.Monomers.loc[is_PO4,"P"] * leaching_rate # Restore the index to taxa series self.Microbes.index = Mic_index # Update the death toll of cells self.Kill = kill.sum().astype('uint32') def reproduction(self,day): """ Calculate reproduction and dispersal. Update microbial composition/distrituion on the spatial grid. Parameters: fb : index of fungal taxa max_size_b : threshold of cell division max_size_f : threshold of cell division x,y : x,y dimension of grid dist : maximum dispersal distance: 1 cell direct : dispersal direction: 0.95 """ # index of Microbes Mic_index = self.Microbes.index # Set up the Colonization dataframe: taxon * 3(C,N,&P) Colonization = self.Microbes.copy(deep=True) Colonization = Colonization.reset_index(drop=True) Colonization[:] = np.float32(0) #STEP 1: Fungal translocation by calculating average biomass within fungal taxa # Count the fungal taxa before cell division Fungi_df = pd.Series(data=[0]*self.n_taxa*self.gridsize, index=Mic_index, name='Count', dtype='int8') # Add one or two fungi to the count series based on size Fungi_df.loc[(self.fb==1)&(self.Microbes['C']>0)] = np.int8(1) Fungi_df.loc[(self.fb==1)&(self.Microbes['C']>self.max_size_f)] = np.int8(2) Fungi_count = Fungi_df.groupby(level=0,sort=False).sum() # Derive average biomass of fungal taxa Microbes_grid = self.Microbes.groupby(level=0,sort=False).sum() Mean_fungi = Microbes_grid.divide(Fungi_count,axis=0) Mean_fungi[Fungi_count==0] = np.float32(0) # Expand the fungal average across the grid eMF = expand(Mean_fungi,self.gridsize) #STEP 2: Cell division & translocate nutrients MicrobesBeforeDivision = self.Microbes.copy(deep=True) #bacterial cell division bac_index = (self.fb==0) & (self.Microbes['C']>self.max_size_b) self.Microbes[bac_index] = self.Microbes[bac_index]/2 #fungal cell division fun_index = (self.fb==1) & (self.Microbes['C']>self.max_size_f) self.Microbes[fun_index] = self.Microbes[fun_index]/2 # Put daughter cells into a seperate dataframe, Reprod Reprod = MicrobesBeforeDivision - self.Microbes # Translocate nutrients within fungal taxa after reproduction self.Microbes[(self.fb==1)&(self.Microbes['C']>0)] = eMF[(self.fb==1)&(self.Microbes['C']>0)] # Index the daughter cells of fungi vs bacteria daughters_b = (Reprod['C']>0) & (self.fb==0) daughters_f = (Reprod['C']>0) & (self.fb==1) # set all fungi equal to their grid averages for translocation before colonization Reprod[daughters_f] = eMF[daughters_f] #STEP 3: dispersal calculation num_b = sum(daughters_b) num_f = sum(daughters_f) shift_x = pd.Series(data=[0] * self.gridsize*self.n_taxa, index=Mic_index, dtype='int8') shift_y = pd.Series(data=[0] * self.gridsize*self.n_taxa, index=Mic_index, dtype='int8') # Bacterial dispersal movements in X & Y direction shift_x[daughters_b] = np.random.choice([i for i in range(-self.dist, self.dist+1)],num_b,replace=True).astype('int8') shift_y[daughters_b] = np.random.choice([i for i in range(-self.dist, self.dist+1)],num_b,replace=True).astype('int8') # Fungi always move positively in x direction, and in y direction constrained to one box away determined by probability "direct" shift_x[daughters_f] = np.int8(1) shift_y[daughters_f] = np.random.choice([-1,0,1], num_f, replace=True, p=[0.5*(1-self.direct),self.direct,0.5*(1-self.direct)]).astype('int8') # Calculate x,y coordinates of dispersal destinations (% remainder of x/x) and substitute coordinates when there is no shift new_x = (shift_x + list(np.repeat(range(1,self.x+1),self.n_taxa)) * self.y + self.x) % self.x new_y = (shift_y + list(np.repeat(range(1,self.y+1),self.n_taxa*self.x)) + self.y) % self.y new_x[new_x==0] = self.x new_y[new_y==0] = self.y # Convert x,y coordinates to a Series of destination locations; NOTE: must -1 index_series = ((new_y-1)*self.x + (new_x-1)) * self.n_taxa + list(range(1,self.n_taxa+1)) * self.gridsize - 1 #Step 4: colonization of dispersed microbes # Transfer reproduced cells to new locations and sum when two or more of the same taxa go to same location Colonization.iloc[index_series[daughters_b],:] = Reprod[daughters_b].values Colonization.iloc[index_series[daughters_f],:] = Reprod[daughters_f].values # Colonization of dispersing microbes self.Microbes += Colonization.values def reinitialization(self,initialization,microbes_pp,output,mode,pulse,switch): """ Reinitialize the system in a new pulse. Initialize Subsrates, Monomers, and Enzymes on the grid that are initialized from the very beginning Parameters: initialization: dictionary; site-specific initialization microbes_pp: dataframe;taxon-specific mass in C, N, &P output: an instance of the Output class, from which the var, MicrobesSeries_repop, referring to taxon-specific total mass over the grid is retrieved mode: string; 'defaul' or 'dispersal' pulse: integer; the pulse index Returns: update temp, psi, Substrates, Monomers, Enzymes, and Microbes """ # reinitialize temperature and water potential if (pulse < switch-1): self.temp = initialization['Temp'].copy(deep=True) self.psi = initialization['Psi'].copy(deep=True) else: self.temp = initialization['Temp'][(pulse-(switch-1))*365:(pulse-(switch-2))*365] self.psi = initialization['Psi'][(pulse-(switch-1))*365:(pulse-(switch-2))*365] # reinitialize site-based substrates, monomers, and enzymes in a new pulse self.Substrates = initialization['Substrates'].copy(deep=True) self.Monomers = initialization['Monomers'].copy(deep=True) self.Enzymes = initialization['Enzymes'].copy(deep=True) # reinitialize microbial community in a new pulse as per the mode in three steps # first: retrieve the microbial pool; NOTE: copy() #self.Microbes = self.Microbes_init.copy(deep=True) #self.Microbes = initialization['Microbes_pp'].copy(deep=True) self.Microbes = microbes_pp.copy(deep=True) # then: derive cumulative abundance of each taxon over "a certain period" in the prior year/pulse # default(mode==0): last day; dispersal(mode==1): whole previous year (NOTE: the column index) if mode == 0: index_l = (pulse+1)*self.cycle - 1 index_u = (pulse+1)*self.cycle + 1 cum_abundance = output.MicrobesSeries_repop.iloc[:,index_l:index_u].sum(axis=1) else: index_l = pulse*self.cycle + 1 index_u = (pulse+1)*self.cycle + 1 cum_abundance = output.MicrobesSeries_repop.iloc[:,index_l:index_u].sum(axis=1) # account for the cell mass size difference of bacteria vs fungi cum_abundance[self.fb[0:self.n_taxa]==1] *= self.max_size_b/self.max_size_f # calculate frequency of every taxon frequencies = cum_abundance/cum_abundance.sum() frequencies = frequencies.fillna(0) # last: assign microbes to each grid box randomly based on prior densities choose_taxa = np.zeros((self.n_taxa,self.gridsize), dtype='int8') for i in range(self.n_taxa): choose_taxa[i,:] = np.random.choice([1,0], self.gridsize, replace=True, p=[frequencies[i], 1-frequencies[i]]) self.Microbes.loc[
np.ravel(choose_taxa,order='F')
numpy.ravel
import unittest import numpy as np import nglpy_cuda as ngl # import objgraph import os f32 = np.float32 i32 = np.int32 def create_edge_set(edge_matrix): """ A helper method for putting the output edge_matrices into a format that is easy to test with the ground truth. """ edge_set = set() for i, row in enumerate(edge_matrix): for j in row: if j != -1: edge_set.add((min(i, j), max(i, j))) return edge_set class TestAPI(unittest.TestCase): """ Class for testing the direct to CUDA API """ def setup(self): """ Setup repeatable test case with a known ground truth """ # User-editable variables dir_path = os.path.dirname(os.path.realpath(__file__)) X = np.loadtxt(os.path.join(dir_path, 'data', 'points.txt')) self.X = np.array(X, dtype=f32) edges = np.loadtxt(os.path.join(dir_path, 'data', 'edges.txt')) self.edges =
np.array(edges, dtype=i32)
numpy.array
# Copyright (c) 2020 Cognitive & Perceptual Developmental Lab # Washington University School of Medicine # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # Primary Contact: <NAME> # Email: <EMAIL> # Secondary Contact: <NAME> # Email: <EMAIL> # The following functions have been vetted: # percentThresh: (AT checked 05/11/2020) # multipleRegressionShuffle: (MT checked) # univariatePoissonScreen (MT checked 10/09/2020) - Max error = 9.96416e-07 # univariatePoissonScreenShuffle (MT checked 10/09/2020) - Max error = 9.96416e-07 # --------------------------------- # # Import necessary built-in functions import math import numpy as np from copy import copy # --------------------------------- # # Linear Regression (from Linear Models package - entire code not yet available to the public) def multipleRegressionShuffle(nshuffles, Y, X, Fc): if nshuffles > 0: YS = np.array([Y, ]* (nshuffles + 1) ).transpose() for i in range(1, nshuffles + 1): np.random.shuffle(YS[:, i]) else: YS = Y npairs, nobs = Fc.shape if X is not None: df = nobs - 2 - X.shape[1] X = np.hstack((np.ones((nobs, 1)),X)) else: df = nobs - 2 X = np.ones((nobs, 1)) XpX = X.T.dot(X) A = np.linalg.inv(XpX) M = A.dot(X.T) Q = np.sum(Fc**2, axis=1) Z = (YS - X.dot(M.dot(YS))) sse0 = np.sum(Z ** 2, axis=0) FX = Fc.dot(X) FM = Fc.dot(M.T) K = (Q - np.sum(FX*FM, axis=1)).reshape(-1,1) G = Fc.dot(Z) B = G/K S = np.sqrt((sse0 - (G*B))/(df*K)) B /= S return B.T # --------------------------------- # # Poisson (from GLM package - entire code not yet available to the public) def univariatePoissonScreen(Y, Fc): convtol = 1e-6 npairs, nobs = Fc.shape sumY = np.sum(Y) mu0 = sumY / nobs b0 = np.log(mu0) LL0 = (b0 - 1.) * sumY D0 = Y - mu0 chi2 = np.zeros(npairs) beta = np.zeros(npairs) std = np.zeros(npairs) B = np.zeros(2) mu = np.zeros(nobs, dtype=float) Z1 = np.hstack((np.ones((nobs, 1)), np.zeros((nobs, 1)))) Z2 = np.hstack((np.ones((nobs, 1)), np.zeros((nobs, 1)), np.zeros((nobs, 1)))) for pair in range(0, npairs): Z1[:, 1] = Fc[pair, :] Z2[:, 1] = Fc[pair, :] Z2[:, 2] = Fc[pair, :]**2 B[0] = b0 B[1] = 0 dLdb0, dLdb1 = D0.dot(Z1) d2Ld00, d2Ld10, d2Ld11 = mu0 * np.sum(Z2, axis=0) for iter in range(1, 11): det = d2Ld00 * d2Ld11 - d2Ld10 ** 2 H00 = d2Ld11 / det H10 = -d2Ld10 / det H11 = d2Ld00 / det delta0 = H00 * dLdb0 + H10 * dLdb1 delta1 = H10 * dLdb0 + H11 * dLdb1 if math.sqrt(delta0 ** 2 + delta1 ** 2) < convtol: break B[0] += delta0 B[1] += delta1 xb = Z1.dot(B) np.exp(xb, out=mu) D = Y - mu dLdb0, dLdb1 = D.dot(Z1) d2Ld00, d2Ld10, d2Ld11 = mu.dot(Z2) chi2[pair] = Y.dot(xb) - np.sum(mu) beta[pair] = B[1] std[pair] = math.sqrt(H11) chi2 = 2*(chi2 - LL0) return beta, beta/std, chi2 def univariatePoissonScreenShuffle(nshuffles, Y, Fc): npairs, nobs = Fc.shape beta = np.zeros((nshuffles+1, npairs), dtype=float) betastd = np.zeros((nshuffles+1, npairs), dtype=float) chi2 = np.zeros((nshuffles + 1, npairs), dtype=float) YS = copy(Y) for i in range(0, nshuffles + 1): beta[i,:], betastd[i, :], chi2[i,:] = univariatePoissonScreen(YS, Fc)
np.random.shuffle(YS)
numpy.random.shuffle
import numpy as np import ReactionNetworkClass as rxn import tensorflow as tf import itertools from scipy.integrate import odeint class independent_birth_death(rxn.ReactionNetworkDefinition): """independent birth death network""" def __init__(self, num_species): num_reactions = 2 * num_species species_labels = ["X%d" % i for i in range(num_species)] output_species_labels = [species_labels[-1]] reactant_matrix = np.zeros([num_reactions, num_species], dtype=int) product_matrix = np.zeros([num_reactions, num_species], dtype=int) # 1. Birth of all the species for i in np.arange(num_species): product_matrix[i, i] = 1 # 2. degradation of all the species for i in np.arange(num_species): reactant_matrix[num_species + i, i] = 1 # define parameters parameter_dict = {'production rate': 10, 'degradation rate': 1} reaction_dict = {} for i in np.arange(num_species): reaction_dict[i] = ['mass action', 'production rate'] for i in np.arange(num_species): reaction_dict[i + num_species] = ['mass action', 'degradation rate'] super(independent_birth_death, self).__init__(num_species, num_reactions, reactant_matrix, product_matrix, parameter_dict, reaction_dict, species_labels, output_species_labels) self.set_propensity_vector() self.set_propensity_sensitivity_matrix() self.output_function_size = 2 self.initial_state = np.zeros(self.num_species) # define output function def output_function(self, state): output_list = [state[:, i] for i in self.output_species_indices] output_list_second_moment = [state[:, i] ** 2 for i in self.output_species_indices] output_list_cross_moments = [state[:, subset[0]] * state[:, subset[1]] for subset in itertools.combinations(self.output_species_indices, 2)] for elem in output_list_second_moment + output_list_cross_moments: output_list.append(elem) return tf.stack(output_list, axis=1) # here we compute the exact outputs and their sensitivities for this example def moment_eqn_sens(self, y, t): dydt = np.zeros(np.shape(y)) k = self.parameter_dict['production rate'] g = self.parameter_dict['degradation rate'] dydt[0] = k - g * y[0] dydt[1] = -2 * g * y[1] + (2 * k + g) * y[0] + k dydt_sens = np.zeros([len(self.parameter_dict.keys()), self.output_function_size]) y_sens = np.reshape(y[self.output_function_size:], np.shape(dydt_sens), order='C') dydt_sens[0, 0] = 1 - g * y_sens[0, 0] dydt_sens[1, 0] = - y[0] - g * y_sens[1, 0] dydt_sens[0, 1] = - 2 * g * y_sens[0, 1] + 2 * y[0] + 2 * k * y_sens[0, 0] + 1 dydt_sens[1, 1] = -2 * y[1] - 2 * g * y_sens[1, 1] + y[0] + (2 * k + g) * y_sens[1, 0] dydt[self.output_function_size:] = np.ndarray.flatten(dydt_sens, order='C') return dydt def exact_values(self, finaltime): y0 = np.zeros([self.output_function_size + self.output_function_size * len(self.parameter_dict.keys())]) t = np.linspace(0, finaltime, 101) # solve the moment equations sol = odeint(self.moment_eqn_sens, y0, t) exact_sens = sol[-1, :] exact_function_vals = exact_sens[:self.output_function_size] exact_sens_vals = np.reshape(exact_sens[self.output_function_size:], [len(self.parameter_dict.keys()), self.output_function_size]) return exact_function_vals, exact_sens_vals class linear_signalling_cascade(rxn.ReactionNetworkDefinition): """linear signalling cascade network""" def __init__(self, num_species): num_reactions = 2 * num_species species_labels = ["X%d" % i for i in range(num_species)] output_species_labels = [species_labels[-1]] reactant_matrix = np.zeros([num_reactions, num_species], dtype=int) product_matrix = np.zeros([num_reactions, num_species], dtype=int) # 1. Constitutive production of the first species product_matrix[0, 0] = 1 # 2. Catalytic production of the other species for i in np.arange(num_species - 1): reactant_matrix[i + 1, i] = 1 product_matrix[i + 1, i] = 1 product_matrix[i + 1, i + 1] = 1 # 3. Dilution of all the species for i in np.arange(num_species): reactant_matrix[num_species + i, i] = 1 # define parameters parameter_dict = {'base production rate': 10.0, 'translation rate': 5.0, 'dilution rate': 1.0} reaction_dict = {0: ['mass action', 'base production rate']} for i in np.arange(num_species - 1): reaction_dict[i + 1] = ['mass action', 'translation rate'] for i in np.arange(num_species): reaction_dict[i + num_species] = ['mass action', 'dilution rate'] super(linear_signalling_cascade, self).__init__(num_species, num_reactions, reactant_matrix, product_matrix, parameter_dict, reaction_dict, species_labels, output_species_labels) self.initial_state = np.zeros(self.num_species) self.set_propensity_vector() self.set_propensity_sensitivity_matrix() self.output_function_size = 2 # define output function def output_function(self, state): output_list = [state[:, i] for i in self.output_species_indices] output_list_second_moment = [state[:, i] ** 2 for i in self.output_species_indices] output_list_cross_moments = [state[:, subset[0]] * state[:, subset[1]] for subset in itertools.combinations(self.output_species_indices, 2)] for elem in output_list_second_moment + output_list_cross_moments: output_list.append(elem) return tf.stack(output_list, axis=1) # here we compute the exact outputs and their sensitivities for this example def moment_eqn_sens(self, y, t): dydt = np.zeros(np.shape(y)) beta = self.parameter_dict['base production rate'] k = self.parameter_dict['translation rate'] g = self.parameter_dict['dilution rate'] n = self.num_species num_params = 3 W = np.zeros([2 * n, n], dtype=float) w_0 = np.zeros(2 * n, dtype=float) w_0[0] = beta W[0:n, :] = k * np.diag(np.ones(n - 1), -1) W[n: 2 * n, :] = g * np.diag(np.ones(n)) A = np.matmul(np.transpose(self.stoichiometry_matrix), W) b = np.matmul(np.transpose(self.stoichiometry_matrix), w_0) dydt[0:n] = np.matmul(A, y[0:n]) + b Sigma = np.reshape(y[n:n * (n + 1)], [n, n], order='C') dsigma_dt = np.matmul(A, Sigma) + np.matmul(Sigma, np.transpose(A)) dsigma_dt += np.matmul(np.matmul(np.transpose(self.stoichiometry_matrix), np.diag(np.matmul(W, y[0:n]) + w_0)), self.stoichiometry_matrix) dydt[n:n * (n + 1)] = np.ndarray.flatten(dsigma_dt, order='C') W_sens = np.zeros([num_params, 2 * n, n], dtype=float) A_sens = np.zeros([num_params, n, n], dtype=float) w_0_sens = np.zeros([num_params, 2 * n], dtype=float) b_sens = np.zeros([num_params, n], dtype=float) temp_dydt = np.zeros([num_params, n], dtype=float) temp2_dydt = np.zeros([num_params, n, n], dtype=float) # der w.r.t. beta w_0_sens[0, 0] = 1 # der w.r.t. k W_sens[1, 0:n, :] = np.diag(np.ones(n - 1), -1) # der w.r.t. gamma W_sens[2, n:2 * n, :] = np.diag(np.ones(n)) y_sens = np.reshape(y[n * (n + 1):n * (n + 1) + num_params * n], [num_params, n], order='C') Sigma_sens = np.reshape(y[n * (n + 1) + num_params * n:], [num_params, n, n], order='C') for i in np.arange(num_params): A_sens[i, :, :] = np.matmul(np.transpose(self.stoichiometry_matrix), W_sens[i, :, :]) b_sens[i, :] = np.matmul(np.transpose(self.stoichiometry_matrix), w_0_sens[i, :]) temp_dydt[i, :] = np.matmul(A_sens[i, :, :], y[0:n]) + np.matmul(A, y_sens[i, :]) + b_sens[i, :] temp2_dydt[i, :, :] = np.matmul(A_sens[i, :, :], Sigma) + np.matmul(A, Sigma_sens[i, :, :]) \ + np.matmul(Sigma, np.transpose(A_sens[i, :, :])) + np.matmul(Sigma_sens[i, :, :], np.transpose(A)) temp2_dydt[i, :, :] += np.matmul(np.matmul(np.transpose(self.stoichiometry_matrix), np.diag(np.matmul(W_sens[i, :, :], y[0: n]) + np.matmul(W, y_sens[i, :]) + w_0_sens[i, :])), self.stoichiometry_matrix) dydt[n * (n + 1):n * (n + 1) + num_params * n] = np.ndarray.flatten(temp_dydt, order='C') dydt[n * (n + 1) + num_params * n:] = np.ndarray.flatten(temp2_dydt, order='C') return dydt def exact_values(self, finaltime): n = self.num_species num_params = 3 y0 = np.zeros([n * (n + 1) + num_params * n * (n + 1)]) t = np.linspace(0, finaltime, 1001) # solve the moment equations sol = odeint(self.moment_eqn_sens, y0, t) exact_vals = sol[-1, :] Sigma = np.reshape(exact_vals[n:n * (n + 1)], [n, n], order='C') y_sens = np.reshape(exact_vals[n * (n + 1):n * (n + 1) + num_params * n], [num_params, n], order='C') Sigma_sens = np.reshape(exact_vals[n * (n + 1) + num_params * n:], [num_params, n, n], order='C') exact_function_vals = np.array([exact_vals[n - 1], Sigma[n - 1, n - 1] + exact_vals[n - 1] ** 2]) exact_sens_vals = np.zeros([num_params, self.output_function_size]) exact_sens_vals[:, 0] = y_sens[:, n - 1] exact_sens_vals[:, 1] = Sigma_sens[:, n - 1, n - 1] + 2 * exact_vals[n - 1] * exact_sens_vals[:, 0] return exact_function_vals, exact_sens_vals class nonlinear_signalling_cascade(rxn.ReactionNetworkDefinition): """nonlinear_signalling_cascade network""" def __init__(self, num_species): num_reactions = 2 * num_species species_labels = ["X%d" % i for i in range(num_species)] output_species_labels = [species_labels[-1]] reactant_matrix = np.zeros([num_reactions, num_species], dtype=int) product_matrix =
np.zeros([num_reactions, num_species], dtype=int)
numpy.zeros
""" A module for generic classification purpose. Funtionality include: normalize_l2norm: Normalize each row has unit l_2 norm. normalize_mean0std1: Normalize each feature to have mean 0 and std 1. balance_sample_size: Balance sample size of a data set among classes. change_class_labels: Change class labels to {0,1,2,3,...,C-1}. change_class_labels_to_given: Change original class labels to a given labels. merge_class_labels: Merge class labels into several super groups/classes. take_some_classes: Only take sevaral classes, and remove the rest. partition_train_valid_test: Partition the whole data into training, validation, and test sets. reduce_sample_size: Reduce sample by to 1/times. perform: Compute the classification performance. write_feature_weight: Write the input layer weights to a file. Only applicable to deep feature selection. write_feature_weight2: Write the input layer weights and other information to a file. Only applicable to deep feature selection. <NAME> CMMT, UBC, Vancouver Sep 23, 2014 Contact: <EMAIL> """ from __future__ import division import numpy as np from sklearn import cross_validation import math def normalize_l2norm(data): """ Normalize each row has unit l_2 norm. INPUTS: data: numpy 2d array or matrix, each row should be a sample. OUTPUTS: data: numpy 2d array or matrix, normalized data. Example: data=[[3,5,7,9],[3.0,2,1.1,8.4],[5.9,9,8,10]] data=np.array(data) data_normalized=normalize_l2norm(data) print data_normalized """ data_sqrt=np.sqrt(np.square(data).sum(axis=1)) data_sqrt.shape=(data_sqrt.shape[0],1) tol=2**-30 data=(data+tol)/(data_sqrt+tol) return data def normalize_mean0std1(data,data_mean=None,data_std=None): """ Normalize each feature to have mean 0 and std 1. INPUTS: data: numpy 2d array or matrix, each row should be a sample. data_mean: numpy 1d array or vector, the given means of samples, useful for normalize test data. data_std: numpy 1d array or vector, the given standard deviation of samples, useful for normalize test data. OUTPUTS: data: numpy 2d array or matrix, normalized data. data_mean: numpy 1d array or vector, the given means of samples, useful for normalize test data. data_std: numpy 1d array or vector, the given standard deviation of samples, useful for normalize test data. """ if data_mean is None: data_mean=np.mean(data,axis=0) data_mean.reshape((1,data_mean.shape[0])) if data_std is None: data_std=np.std(data,axis=0) data_std.reshape((1,data_std.shape[0])) tol=1e-16 return (data-data_mean)/(data_std+tol),data_mean,data_std def balance_sample_size(data,classes,others=None,min_size_given=None,rng=np.random.RandomState(100)): """ Balance sample size of a data set among classes. INPUTS: data: numpy 2d array or matrix, each row should be a sample. classes: numpy 1d array or vector, class labels. others: numpy 2d array or matrix, extra information of samples if available, each row should associated to a row of data. min_size_given: int, the size of each class wanted. rng: numpy random state. OUTPUTS: data: numpy 2d array or matrix, each row should be a sample, balanced data. classes: numpy 1d array or vector, balanced class labels. others: numpy 2d array or matrix, balanced other information. Example: data=[[1,1,1],[2,2,2],[3,3,3],[4,4,4],[5,5,5],[6,6,6],[7,7,7]] data=np.array(data) classes=np.array(['zz','xx','xx','yy','zz','yy','xx']) balance_sample_size(data,classes) """ u, indices = np.unique(classes,return_inverse=True) indices=np.asarray(indices) num_u=len(u) sample_sizes=[] # get sample size of each class for i in xrange(num_u): sample_size_this=np.sum(indices==i) sample_sizes.append(sample_size_this) size_min=np.amin(sample_sizes) # smallest sample size if min_size_given and size_min>min_size_given: size_min=min_size_given indices_all=np.array([],dtype=indices.dtype) indices_range=np.array(range(len(indices))) for i in xrange(num_u): ind_this_num=indices_range[indices==i] ind_this_reduced=ind_this_num[rng.choice(len(ind_this_num),size=size_min,replace=False)] indices_all=np.append(indices_all,ind_this_reduced) # reduce the data data=data[indices_all] classes=classes[indices_all] if others: others=others[indices_all] return data,classes,others def change_class_labels(classes): """ Change class labels to {0,1,2,3,...,C-1}. INPUTS: classes: numpy 1d array or vector, the original class labels. OUTPUTS: u: numpy 1d array or vector, the unique class labels of the original class labels. indices: numpy 1d array or vector, the new class labels from {0,1,2,3,...,C-1}. Example: classes=['c2','c3','c2','c1','c2','c1','c3','c2'] change_class_labels(classes) <NAME>, in UBC Aug 22, 2014. """ u,indices=np.unique(classes,return_inverse=True) return u,indices def change_class_labels_to_given(classes,given): """ Change original class labels to a given labels. INPUTS: classes: numpy 1 d array or vector, the original class labels. given: dic, pairs of old and new labels. OUTPUTS: classes_new: numpy 1 d array or vector, changed class labels. Example: classes=[1,2,0,0,2,1,1,2] given={1:"class1", 2:"class2", 0:"class0"} change_class_labels_to_given(classes,given) """ classes=np.asarray(classes) classes_new=np.zeros(classes.shape,dtype=object) for i in given: classes_new[classes==i]=given[i] return classes_new def merge_class_labels(classes,group): """ Merge class labels into several super groups/classes. INPUTS: classes: numpy 1 d array or vector, the original class labels. group: tuple of tuples or lists, group[i] indicates which original classes to be merged to the i-th super class. OUTPUTS: classes_merged: numpy 1 d array or vector, the merged class labels. If original labels are strings, they are concatenated by "+". If original lables are numbers, they are renumbered starting from 0. Example classes=[0,3,4,2,1,3,3,2,4,1,1,0,0,1,2,3,4,1] group=([0],[1,2],[3,4]) merge_class_labels(classes,group) classes=['c2','c1','c0','c0','c1','c2','c1'] group=(['c0'],['c1','c2']) merge_class_labels(classes,group) """ classes=np.asarray(classes) if (classes.dtype != int) and (classes.dtype != 'int64') and (classes.dtype != 'int32'): classes_merged=np.zeros(classes.shape,dtype=object) for subgroup in group: subgroup_label='+'.join(subgroup) for member in subgroup: classes_merged[classes==member]=subgroup_label else: # int class labels classes_merged=np.zeros(classes.shape,dtype=int) for i in range(len(group)): subgroup=group[i] for member in subgroup: classes_merged[classes==member]=i return classes_merged def take_some_classes(data,classes,given): """ Only take sevaral classes, and remove the rest. INPUTS: data: numpy 2d array or matrix, each row is a sample, the original data. classes: numpy 1d array or vector, class labels, the original labels. given: numpy 1d array or vector, indicates which classes to be taken. OUTPUTS: data: numpy 2d array or matrix, each row is a sample, the taken data. classes: numpy 1d array or vector, class labels, the taken labels. """ classes=np.asarray(classes) log_ind=np.zeros(classes.shape,dtype=bool) for i in range(len(given)): log_ind[classes==given[i]]=True classes=classes[log_ind] data=data[log_ind] return data,classes def partition_train_valid_test(data,classes,ratio=(1,1,1)): """ Partition the whole data into training, validation, and test sets. INPUTS: data: numpy 2d array or matrix, each row is a sample, the original data. classes: numpy 1d array or vector, class labels, the original labels. ratio, int tuple or list of length 3, (ratio_of_train_set,ratio_of_valid_set,ratio_test_set). OUTPUTS: train_set_x: data of training set. train_set_y: class labels of training set. valid_set_x: data of validation set. valid_set_y: class labels of validation set. test_set_x: data of test set. test_set_y: class labels of test set. Example: data=np.random.random((20,3)) classes=np.array([0,2,2,2,0,0,1,1,0,0,0,2,2,2,0,0,1,1,0,0],dtype=int) train_set_x,train_set_y,valid_set_x,valid_set_y,test_set_x,test_set_y \ =partition_train_valid_test(data,classes,ratio=(2,1,1)) <NAME>, in UBC. August 22, 2014. """ k=sum(ratio) # ratio must be a vector of integers skf = cross_validation.StratifiedKFold(classes, n_folds=k) train_ind=np.array([],dtype=int) valid_ind=np.array([],dtype=int) test_ind=np.array([],dtype=int) count=0 for (tr,te) in skf: if count<ratio[0]: train_ind=np.append(train_ind,te) count=count+1 continue if count>=ratio[0] and count <ratio[0]+ratio[1]: valid_ind=np.append(valid_ind,[te]) count=count+1 continue if count>=ratio[0]+ratio[1]: test_ind=np.append(test_ind,[te]) count=count+1 continue train_set_x=data[train_ind] train_set_y=classes[train_ind] valid_set_x=data[valid_ind] valid_set_y=classes[valid_ind] test_set_x=data[test_ind] test_set_y=classes[test_ind] return train_set_x,train_set_y,valid_set_x,valid_set_y,test_set_x,test_set_y def perform(y,y_predicted,unique_classes): """ Compute the classification performance. INPUTS: y: numpy 1d array or vector, the actual class labels. y_predicted: numpy 1d array or vector, the predicted class labels. unique_classes: numpy 1d array or vector of length C (# classes), all unique actual class labels. OUTPUTS: perf: numpy 1d array or vector of length C+2, [acc_0, acc_1, acc_{C-1}, accuracy, balanced accuracy]. confusion_matrix: numpy 2d array of size C X C, confusion matrix. Example: y=[0,0,1,1,1,2,2,2,2] y_predicted=[0,1,1,1,2,2,2,0,1] perform(y,y_predicted,[0,1,2]) <NAME>, in UBC. August 23, 2014. """ y=np.asarray(y,dtype=int) y_predicted=np.asarray(y_predicted,dtype=int) numcl=len(unique_classes) confusion_matrix=np.zeros((numcl,numcl),dtype=float) for i in xrange(len(y)): confusion_matrix[y[i],y_predicted[i]]=confusion_matrix[y[i],y_predicted[i]]+1 perf=np.zeros((numcl+2,)) # acc_0,acc_1,...,acc_C-1, acc, BACC perf[0:numcl]=confusion_matrix.diagonal()/confusion_matrix.sum(axis=1) perf[numcl]=confusion_matrix.diagonal().sum()/confusion_matrix.sum(axis=1).sum() perf[numcl+1]=
np.mean(perf[0:numcl])
numpy.mean
import os import sys import numpy as np from pycocotools import mask as maskUtils import imgaug import skimage from matplotlib import pyplot as plt import cv2 import time from pycocotools.cocoeval import COCOeval from pycocotools.coco import COCO ROOT_DIR = os.path.abspath("../") # Import Mask RCNN sys.path.append(ROOT_DIR) print(ROOT_DIR) COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") from mrcnn.config import Config from mrcnn import model as modellib, utils from mrcnn import visualize from angiodataset import AngioDataset import json import tensorflow as tf gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print(len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) """Arrange resutls to match COCO specs in http://cocodataset.org/#format """ def build_coco_results(dataset, image_ids, rois, class_ids, scores, masks): # If no results, return an empty list if rois is None: return [] results = [] for image_id in image_ids: # Loop through detections for i in range(rois.shape[0]): class_id = class_ids[i] score = scores[i] bbox =
np.around(rois[i], 1)
numpy.around
import multiprocessing from py_wake.examples.data.hornsrev1 import Hornsrev1Site, wt_x, wt_y from py_wake import IEA37SimpleBastankhahGaussian from py_wake.tests.check_speed import timeit import numpy as np from py_wake.tests import npt from py_wake.wind_turbines import WindTurbines from py_wake.examples.data import wtg_path import pytest def get_wfm(grad=True): wt = WindTurbines.from_WAsP_wtg(wtg_path + "Vestas-V80.wtg", ) site = Hornsrev1Site() return IEA37SimpleBastankhahGaussian(site, wt) wd_lst = np.arange(0, 360, 180) def aep_wd(args): x, y, wd = args return get_wfm()(x, y, wd=wd, ws=None).aep().sum() def aep_all_multiprocessing(pool, x, y): return np.sum(pool.map(aep_wd, [(x, y, i) for i in wd_lst])) def aep_wfm_xy(args): wfm, x, y = args return wfm(x, y, wd=wd_lst).aep().sum() def aep_xy(args): x, y = args return get_wfm()(x, y, wd=wd_lst).aep().sum() @pytest.fixture(scope='module') def pool(): return multiprocessing.Pool(2) debug = False def test_multiprocessing_wd(pool): # compare result of vectorized call 12wd with result of multiprocessing 1wd/cpu # Slow down is expected aep1, t_lst1 = timeit(aep_wd, min_runs=1)((wt_x, wt_y, wd_lst)) aep2, t_lst2 = timeit(aep_all_multiprocessing, min_runs=1)(pool, wt_x, wt_y) t1, t2 = np.mean(t_lst1), np.mean(t_lst2) if debug: print("1 CPU, 12wd/CPU: %.2fs, %d CPUs, 1wd/CPU: %.2fs, speedup: %d%%" % (t1, pool._processes, t2, (t1 - t2) / t1 * 100)) npt.assert_almost_equal(aep1, aep2 / len(wd_lst)) def test_multiprocessing_wfm_xy(): pool = multiprocessing.Pool(2) arg_lst = [(get_wfm(grad=False), np.array(wt_x) + i, wt_y) for i in range(4)] aep1, t_lst1 = timeit(lambda arg_lst: [aep_wfm_xy(arg) for arg in arg_lst])(arg_lst) aep2, t_lst2 = timeit(lambda arg_lst: pool.map(aep_wfm_xy, arg_lst))(arg_lst) t1, t2 =
np.mean(t_lst1)
numpy.mean
import functools import numpy import numpy.testing import pytest import six.moves import skimage.util import tests.modules import cellprofiler_core.image import cellprofiler_core.measurement import cellprofiler_core.module import cellprofiler.modules.imagemath import cellprofiler_core.object import cellprofiler_core.pipeline import cellprofiler_core.preferences import cellprofiler_core.workspace cellprofiler_core.preferences.set_headless() MEASUREMENT_NAME = "mymeasurement" @pytest.fixture(scope="function") def module(): return cellprofiler.modules.imagemath.ImageMath() @pytest.fixture(scope="function") def workspace(image_a, image_b, module): image_set_list = cellprofiler_core.image.ImageSetList() image_set = image_set_list.get_image_set(0) workspace = cellprofiler_core.workspace.Workspace( image_set=image_set, image_set_list=image_set_list, module=module, pipeline=cellprofiler_core.pipeline.Pipeline(), measurements=cellprofiler_core.measurement.Measurements(), object_set=cellprofiler_core.object.ObjectSet(), ) workspace.image_set.add("input_a", image_a) workspace.image_set.add("input_b", image_b) module.images[0].image_name.value = "input_a" module.images[0].factor.value = 1.0 module.images[1].image_name.value = "input_b" module.images[1].factor.value = 1.0 module.truncate_low.value = False module.truncate_high.value = False module.output_image_name.value = "output" return workspace def run_operation(operation, expected, module, workspace): module.operation.value = operation module.replace_nan.value = False module.run(workspace) output = workspace.image_set.get_image("output") actual = output.pixel_data numpy.testing.assert_array_equal(actual, expected) class TestVolumes(object): @staticmethod @pytest.fixture(scope="function") def image_a(): k, i, j = numpy.mgrid[-5:6, -5:6, -5:10] data_a = numpy.zeros((11, 11, 15)) data_a[k ** 2 + i ** 2 + j ** 2 <= 25] = 1 image_a = cellprofiler_core.image.Image() image_a.pixel_data = data_a image_a.dimensions = 3 return image_a @staticmethod @pytest.fixture(scope="function") def image_b(): k, i, j = numpy.mgrid[-5:6, -5:6, -10:5] data_b = numpy.zeros((11, 11, 15)) data_b[k ** 2 + i ** 2 + j ** 2 <= 25] = 0.5 image_b = cellprofiler_core.image.Image() image_b.pixel_data = data_b image_b.dimensions = 3 return image_b @staticmethod def test_add(image_a, image_b, module, workspace): operation = "Add" expected = image_a.pixel_data + image_b.pixel_data run_operation(operation, expected, module, workspace) @staticmethod def test_subtract(image_a, image_b, module, workspace): operation = "Subtract" expected = image_a.pixel_data - image_b.pixel_data run_operation(operation, expected, module, workspace) @staticmethod def test_absolute_difference(image_a, image_b, module, workspace): operation = "Absolute Difference" expected = numpy.abs(image_a.pixel_data - image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_multiply(image_a, image_b, module, workspace): operation = "Multiply" expected = image_a.pixel_data * image_b.pixel_data run_operation(operation, expected, module, workspace) @staticmethod def test_divide(image_a, image_b, module, workspace): operation = "Divide" expected = image_a.pixel_data / image_b.pixel_data run_operation(operation, expected, module, workspace) @staticmethod def test_average(image_a, image_b, module, workspace): operation = "Average" expected = (image_a.pixel_data + image_b.pixel_data) / 2.0 run_operation(operation, expected, module, workspace) @staticmethod def test_minimum(image_a, image_b, module, workspace): operation = "Minimum" expected = numpy.minimum(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_maximum(image_a, image_b, module, workspace): operation = "Maximum" expected = numpy.maximum(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_invert(image_a, module, workspace): operation = "Invert" expected = skimage.util.invert(image_a.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_log_transform(image_a, module, workspace): operation = "Log transform (base 2)" expected = numpy.log2(image_a.pixel_data + 1) run_operation(operation, expected, module, workspace) @staticmethod def test_and(image_a, image_b, module, workspace): operation = "And" expected = 1.0 * numpy.logical_and(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_or(image_a, image_b, module, workspace): operation = "Or" expected = numpy.logical_or(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_not(image_a, module, workspace): operation = "Not" expected = numpy.logical_not(image_a.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_equals(image_a, image_b, module, workspace): operation = "Equals" expected = image_a.pixel_data == image_b.pixel_data run_operation(operation, expected, module, workspace) class TestBinaryImages(object): @staticmethod @pytest.fixture() def image_a(): data_a = numpy.random.rand(128, 128) > 0.5 image_a = cellprofiler_core.image.Image() image_a.pixel_data = data_a image_a.dimensions = 2 return image_a @staticmethod @pytest.fixture() def image_b(): data_b = numpy.random.rand(128, 128) > 0.5 image_b = cellprofiler_core.image.Image() image_b.pixel_data = data_b image_b.dimensions = 2 return image_b @staticmethod def test_add(image_a, image_b, module, workspace): operation = "Add" expected = numpy.logical_or(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_subtract(image_a, image_b, module, workspace): operation = "Subtract" expected = image_a.pixel_data.copy() expected[image_b.pixel_data] = False run_operation(operation, expected, module, workspace) @staticmethod def test_absolute_difference(image_a, image_b, module, workspace): operation = "Absolute Difference" expected = numpy.logical_xor(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_multiply(image_a, image_b, module, workspace): operation = "Multiply" expected = numpy.logical_and(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_divide(image_a, image_b, module, workspace): operation = "Divide" expected = image_a.pixel_data / image_b.pixel_data run_operation(operation, expected, module, workspace) @staticmethod def test_average(image_a, image_b, module, workspace): operation = "Average" expected = numpy.logical_or(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_minimum(image_a, image_b, module, workspace): operation = "Minimum" expected = numpy.logical_and(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_maximum(image_a, image_b, module, workspace): operation = "Maximum" expected = numpy.logical_or(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_invert(image_a, module, workspace): operation = "Invert" expected = numpy.logical_not(image_a.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_log_transform(image_a, module, workspace): operation = "Log transform (base 2)" expected = image_a.pixel_data run_operation(operation, expected, module, workspace) @staticmethod def test_and(image_a, image_b, module, workspace): operation = "And" expected = numpy.logical_and(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_or(image_a, image_b, module, workspace): operation = "Or" expected = numpy.logical_or(image_a.pixel_data, image_b.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_not(image_a, module, workspace): operation = "Not" expected = numpy.logical_not(image_a.pixel_data) run_operation(operation, expected, module, workspace) @staticmethod def test_equals(image_a, image_b, module, workspace): operation = "Equals" expected = image_a.pixel_data == image_b.pixel_data run_operation(operation, expected, module, workspace) def test_load_v3(): file = tests.modules.get_test_resources_directory("imagemath/v3.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(six.moves.StringIO(data)) module = pipeline.modules()[-1] assert isinstance(module, cellprofiler.modules.imagemath.ImageMath) assert module.operation == cellprofiler.modules.imagemath.O_LOG_TRANSFORM_LEGACY assert module.exponent == 1.5 assert module.after_factor == 0.5 assert module.addend == 0.1 assert module.truncate_low assert not module.truncate_high assert module.ignore_mask assert module.output_image_name == "LogTransformed" assert ( module.images[0].image_or_measurement == cellprofiler.modules.imagemath.IM_IMAGE ) assert module.images[0].image_name == "DNA" assert module.images[0].factor == 1.2 assert ( module.images[1].image_or_measurement == cellprofiler.modules.imagemath.IM_MEASUREMENT ) assert module.images[1].measurement == "Count_Nuclei" assert module.images[1].factor == 1.5 def test_load_v4(): file = tests.modules.get_test_resources_directory("imagemath/v4.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.load(six.moves.StringIO(data)) module = pipeline.modules()[-1] assert isinstance(module, cellprofiler.modules.imagemath.ImageMath) assert module.operation == cellprofiler.modules.imagemath.O_LOG_TRANSFORM assert module.exponent == 1.5 assert module.after_factor == 0.5 assert module.addend == 0.1 assert module.truncate_low assert not module.truncate_high assert module.ignore_mask assert module.output_image_name == "LogTransformed" assert ( module.images[0].image_or_measurement == cellprofiler.modules.imagemath.IM_IMAGE ) assert module.images[0].image_name == "DNA" assert module.images[0].factor == 1.2 assert ( module.images[1].image_or_measurement == cellprofiler.modules.imagemath.IM_MEASUREMENT ) assert module.images[1].measurement == "Count_Nuclei" assert module.images[1].factor == 1.5 def run_imagemath(images, modify_module_fn=None, measurement=None): """Run the ImageMath module, returning the image created images - a list of dictionaries. The dictionary has keys: pixel_data - image pixel data mask - mask for image cropping - cropping mask for image modify_module_fn - a function of the signature, fn(module) that allows the test to modify the module. measurement - an image measurement value """ image_set_list = cellprofiler_core.image.ImageSetList() image_set = image_set_list.get_image_set(0) module = cellprofiler.modules.imagemath.ImageMath() module.set_module_num(1) for i, image in enumerate(images): pixel_data = image["pixel_data"] mask = image.get("mask", None) cropping = image.get("cropping", None) if i >= 2: module.add_image() name = "inputimage%s" % i module.images[i].image_name.value = name img = cellprofiler_core.image.Image(pixel_data, mask=mask, crop_mask=cropping) image_set.add(name, img) module.output_image_name.value = "outputimage" if modify_module_fn is not None: modify_module_fn(module) pipeline = cellprofiler_core.pipeline.Pipeline() pipeline.add_module(module) measurements = cellprofiler_core.measurement.Measurements() if measurement is not None: measurements.add_image_measurement(MEASUREMENT_NAME, str(measurement)) workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, cellprofiler_core.object.ObjectSet(), measurements, image_set_list, ) module.run(workspace) return image_set.get_image("outputimage") def check_expected(image, expected, mask=None, ignore=False): if mask is None and not image.has_crop_mask: numpy.testing.assert_array_almost_equal(image.pixel_data, expected) assert not image.has_mask elif mask is not None and ignore: numpy.testing.assert_array_almost_equal(image.pixel_data, expected) assert image.has_mask elif mask is not None and not ignore: assert image.has_mask if not image.has_crop_mask: assert numpy.all(mask == image.mask) numpy.testing.assert_array_almost_equal( image.pixel_data[image.mask], expected[image.mask] ) def test_exponent(): """Test exponentiation of an image""" def fn(module): module.exponent.value = 2 module.operation.value = cellprofiler.modules.imagemath.O_NONE numpy.random.seed(0) image = numpy.random.uniform(size=(10, 10)).astype(numpy.float32) expected = image ** 2 output = run_imagemath([{"pixel_data": image}], fn) check_expected(output, expected) def test_factor(): """Test multiplicative factor""" def fn(module): module.after_factor.value = 0.5 module.operation.value = cellprofiler.modules.imagemath.O_NONE numpy.random.seed(0) image = numpy.random.uniform(size=(10, 10)) expected = image * 0.5 output = run_imagemath([{"pixel_data": image}], fn) check_expected(output, expected) def test_addend(): """Test adding a value to image""" def fn(module): module.addend.value = 0.5 module.operation.value = cellprofiler.modules.imagemath.O_NONE numpy.random.seed(0) image = numpy.random.uniform(size=(10, 10)) * 0.5 image = image.astype(numpy.float32) expected = image + 0.5 output = run_imagemath([{"pixel_data": image}], fn) check_expected(output, expected) def test_mask(): """Test a mask in the first image""" def fn(module): module.operation.value = cellprofiler.modules.imagemath.O_NONE numpy.random.seed(0) image = numpy.random.uniform(size=(10, 10)).astype(numpy.float32) mask = numpy.random.uniform(size=(10, 10)) > 0.3 output = run_imagemath([{"pixel_data": image, "mask": mask}], fn) check_expected(output, image, mask) def test_add(): """Test adding""" def fn(module): module.operation.value = cellprofiler.modules.imagemath.O_ADD module.truncate_high.value = False numpy.random.seed(0) for n in range(2, 5): images = [ {"pixel_data": numpy.random.uniform(size=(10, 10)).astype(numpy.float32)} for i in range(n) ] expected = functools.reduce(numpy.add, [x["pixel_data"] for x in images]) output = run_imagemath(images, fn) check_expected(output, expected) def test_add_mask(): """Test adding masked images""" """Test adding""" def fn(module): module.operation.value = cellprofiler.modules.imagemath.O_ADD module.truncate_high.value = False numpy.random.seed(0) for n in range(2, 5): images = [ { "pixel_data": numpy.random.uniform(size=(50, 50)).astype(numpy.float32), "mask": (numpy.random.uniform(size=(50, 50)) > 0.1), } for i in range(n) ] expected = functools.reduce(numpy.add, [x["pixel_data"] for x in images]) mask = functools.reduce(numpy.logical_and, [x["mask"] for x in images]) output = run_imagemath(images, fn) check_expected(output, expected, mask) def test_add_mask_truncate(): def fn(module): module.operation.value = cellprofiler.modules.imagemath.O_ADD module.truncate_high.value = True numpy.random.seed(0) for n in range(2, 5): images = [ { "pixel_data": numpy.random.uniform(size=(50, 50)).astype(numpy.float32), "mask": (numpy.random.uniform(size=(50, 50)) > 0.1), } for i in range(n) ] expected = functools.reduce(numpy.add, [x["pixel_data"] for x in images]) expected[expected > 1] = 1 mask = functools.reduce(numpy.logical_and, [x["mask"] for x in images]) output = run_imagemath(images, fn) check_expected(output, expected, mask) def test_add_crop(): """Add images, cropping to border""" def fn(module): module.operation.value = cellprofiler.modules.imagemath.O_ADD module.truncate_high.value = False numpy.random.seed(0) crop_mask = numpy.zeros((20, 20), bool) crop_mask[5:15, 5:15] = True for n in range(2, 3): for m in range(n): images = [ { "pixel_data":
numpy.random.uniform(size=(20, 20))
numpy.random.uniform
# -*- coding: utf-8 -*- """ Interpies - a libray for the interpretation of gravity and magnetic data. transforms.py: Functions for applying derivatives, transforms and filters to grids. @author: <NAME> Geophysics Labs, 2017 """ # Import numpy and scipy import numpy as np from scipy import signal from scipy.ndimage import filters #from scipy import interpolate from scipy import ndimage as nd # Import scikit-learn modules (used for the find_trend function) from sklearn.linear_model import LinearRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.pipeline import Pipeline ### definitions pi = np.pi # kernels for convolution filters derfilt3 = np.array([-0.5, 0, 0.5], np.float32) derfilt5 = np.array([1, -8, 0, 8, -1], np.float32)/12 # Five-point stencil vector prewitt1d = np.array([-1, 0, 1], np.float32)/2 #=============================================================================== # miscellaneous functions #=============================================================================== def replace_edges(data, ncells=1): """Replace the values at the edges of an array with the values calculated with reflection padding. Useful to correct edge effects due to convolution filters. """ return np.pad(data[ncells:-ncells, ncells:-ncells], ncells, mode='reflect', reflect_type='odd') def fill_nodata(data, invalid=None): """Replace the value of invalid 'data' cells (indicated by 'invalid') by the value of the nearest valid data cell. Not very pretty but enough for making sure the calculation works. Parameters ---------- data: numpy array of any dimension invalid: a binary array of same shape as 'data'. True cells set where data value should be replaced. If None (default), use: invalid = np.isnan(data) Returns ------- Return a filled array. Credits ------- http://stackoverflow.com/a/9262129 """ if np.any(np.isnan(data)): if invalid is None: invalid = np.isnan(data) ind = nd.distance_transform_edt(invalid, return_distances=False, return_indices=True) return data[tuple(ind)] else: return data def simple_resample(data, sampling=2): ''' Resample grid by simply picking cells at a given sampling rate. The starting point is the lower-left corner of grid so the location of the grid is unchanged. ''' return np.flipud(np.flipud(data)[::sampling, ::sampling]) def find_trend(X, data, degree=1, returnModel=False): ''' Calculate trend in 2D data. The fit is made with a polynomial function of chosen degree. A least-square method is used for the fit. ''' nrows, ncols = data.shape # get location of NaNs mask = np.isnan(data) # Fit data with a polynomial surface (or a plane if degree=1) model = Pipeline([('poly', PolynomialFeatures(degree)), ('linear', LinearRegression())]) model.fit(X[~mask.flatten(), :], data[~mask]) # calculate resulting trend trend = model.predict(X).reshape((nrows, ncols)) if returnModel: return model else: return trend def stats(data): ''' Return a list of descriptive statistical values. ''' mean = np.nanmean(data) sigma = np.nanstd(data) minimum = np.nanmin(data) maximum = np.nanmax(data) return (mean, sigma, minimum, maximum) #============================================================================== # Derivatives with Savitzky-Golay coeficients #============================================================================== #------------------------------------------- # Pre-calculated Savitzky-Golay coeficients #------------------------------------------- # <NAME>, Microsoft Research, August 2001 # # SavGolSize<m>Order<n>X<i>Y<j> is a filter in row-major order for one polynomial with: # filter size m x m # polynomial order n # filter for coefficient of term (x^i)(y^j) # These are grouped by size # http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/KRUMM1/SavGol.htm # Size 2 Order 1 SavGolSize2Order1X0Y0 = np.array([0.25000000,0.25000000, 0.25000000,0.25000000]).reshape((2,2)) SavGolSize2Order1X1Y0 = np.array([-0.50000000,0.50000000, -0.50000000,0.50000000]).reshape((2,2)) SavGolSize2Order1X0Y1 = np.array([-0.50000000,-0.50000000, 0.50000000,0.50000000]).reshape((2,2)) # Size 3 Order 1 SavGolSize3Order1X0Y0 = np.array([0.11111111,0.11111111,0.11111111, 0.11111111,0.11111111,0.11111111, 0.11111111,0.11111111,0.11111111]).reshape((3,3)) SavGolSize3Order1X1Y0 = np.array([-0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667]).reshape((3,3)) SavGolSize3Order1X0Y1 = np.array([-0.16666667,-0.16666667,-0.16666667, 0.00000000,0.00000000,0.00000000, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) # Size 3 Order 2 ## can be used for quadratic polynomial fit SavGolSize3Order2X0Y0 = np.array([-0.11111111,0.22222222,-0.11111111, 0.22222222,0.55555556,0.22222222, -0.11111111,0.22222222,-0.11111111]).reshape((3,3)) SavGolSize3Order2X1Y0 = np.array([-0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667, -0.16666667,0.00000000,0.16666667]).reshape((3,3)) SavGolSize3Order2X2Y0 = np.array([0.16666667,-0.33333333,0.16666667, 0.16666667,-0.33333333,0.16666667, 0.16666667,-0.33333333,0.16666667]).reshape((3,3)) SavGolSize3Order2X0Y1 = np.array([-0.16666667,-0.16666667,-0.16666667, 0.00000000,0.00000000,0.00000000, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) SavGolSize3Order2X1Y1 = np.array([0.25000000,0.00000000,-0.25000000, 0.00000000,0.00000000,0.00000000, -0.25000000,0.00000000,0.25000000]).reshape((3,3)) SavGolSize3Order2X0Y2 = np.array([0.16666667,0.16666667,0.16666667, -0.33333333,-0.33333333,-0.33333333, 0.16666667,0.16666667,0.16666667]).reshape((3,3)) #---------------------------------------- def savgol2d(degree, window_size): ''' Calculate coefficients of two-dimensional Savitzky-Golay filters. Derived from https://github.com/whatasunnyday/Savitzky-Golay-Filter Checked against Krumm's coefficients (see list above). Parameters ---------- degree: positive integer The degree of the polynomial that is fitted to the data points. The greater the degree, the larger the fitting window must be. window_size: positive odd integer The size of the square window that is used to calculate the fitting polynomial. Returns ------- coeffs : 2D array of shape (n, `window_size**2`), where n is the number of coefficients in a polynomial of degree `degree` with 2 variables (x and y). n is equal to (2+d)! / 2d! Each of the n rows is a kernel of size `window_size` that can be used to smooth 2D data (with the first one) or to calculate derivatives (with the others). ''' if not isinstance(degree, int) or degree < 0: raise ValueError("Degree of polynomial must be a positive integer") if not isinstance(window_size, int) or window_size % 2 == 0 or window_size < 0 : raise ValueError("Window size must be a positive odd integer") if window_size ** 2 < ((degree + 2) * (degree + 1)) / 2.0: raise ValueError("Degree too high for window size") # create dictionary of exponents exps = [ {"x": k - n, "y": n } for k in range(degree + 1) for n in range(k + 1)] # coordinates of points in window n = np.arange(-(window_size - 1)//2, (window_size - 1)//2 + 1, dtype = np.float64) dx = np.tile(n, [window_size, 1]).reshape(window_size ** 2, ) dy = np.repeat(n, window_size) # array A = np.empty((window_size ** 2, len(exps))) for i, exp in enumerate(exps): A[:,i] = (dx ** exp["x"]) * (dy ** exp["y"]) return np.linalg.pinv(A) #---------------------------------------- # Dictionary to associate types of derivative with Savitzky-Golay coeficients # and parameters sg_dicts = {} sg_dicts['dx'] = {'index':1,'factor':1,'exponent':1,'flipfunc':np.fliplr} sg_dicts['dy'] = {'index':2,'factor':-1,'exponent':1,'flipfunc':np.flipud} sg_dicts['dx2'] = {'index':3,'factor':2,'exponent':2,'flipfunc':np.fliplr} sg_dicts['dxdy'] = {'index':4,'factor':-1,'exponent':2,'flipfunc':lambda x: np.flipud(np.fliplr(x))} sg_dicts['dy2'] = {'index':5,'factor':2,'exponent':2,'flipfunc':np.flipud} def savgol_smooth(data, deg=3, win=5, doEdges=False): ''' Smooth an array by 2D convolution with a Savitzky-Golay (SG) filter. It works even if NaNs are present in the data. The SG filter is controlled by two parameters, `deg` (degree) and `win` (window size). The amount of smoothing will increase with `win` and decrease with `deg`. Parameters ---------- data: 2D array Input data deg: positive integer, default 3 The degree of the Savitzky-Golay filter. The greater the degree, the larger the fitting window must be. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ''' # retrieve Savitzky-Golay coeficients and make kernel sg_coeffs = savgol2d(deg,win) sg_kernel = sg_coeffs[0].reshape((win,win)) # calculate filtered result by convolution convResult = signal.convolve2d(data,sg_kernel,mode='same', boundary='symm') # fill edges if doEdges: convResult = replace_edges(convResult, (win-1)//2) return convResult def savgol_deriv(data, cellsize, direction='dx', deg=3, win=5, doEdges=True): ''' Calculate horizontal derivatives by convolution with a Savitzky-Golay (SG) filter. It works even if NaNs are present in the data. Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. direction : {'dx','dy','dx2','dxdy','dy2'}, optional Type of derivative. Default is 'dx', first horizontal derivative in the x direction. The x axis is "West to East", i.e. along rows of the array. The y axis is "South to North", i.e. along columns of the array. deg: positive integer, default 3 The degree of the Savitzky-Golay filter. The greater the degree, the larger the fitting window must be. win: positive odd integer, default 5 The size of the fitting window that is used to calculate the SG coefficients. doEdges: boolean, default True Replace the values at the edges of the output array with values calculated by reflection padding. Useful to correct bad edge effects. ''' sg_dict = sg_dicts[direction] index = sg_dict['index'] factor = sg_dict['factor'] exponent = sg_dict['exponent'] flipfunc = sg_dict['flipfunc'] # retrieve Savitzky-Golay coeficients and make kernel sg_coeffs = savgol2d(deg, win) sg_kernel = flipfunc(sg_coeffs[index].reshape((win, win))) # flip for convolution # calculate derivative by convolution convResult = factor*signal.convolve2d(data, sg_kernel, mode='same', boundary='symm')/cellsize**exponent # fill edges if doEdges: convResult = replace_edges(convResult, (win-1)//2) return convResult #============================================================================== # fs_deriv - 5-Tap and 7-tap 1st and 2nd discrete derivatives #============================================================================== # ** Adapted from Matlab code by <NAME> ** # # These functions compute 1st and 2nd derivatives of an image using # coefficients given by <NAME> Simoncelli (2004). The results are significantly # more accurate than MATLAB's GRADIENT function on edges that are at angles # other than vertical or horizontal. This in turn improves gradient orientation # estimation enormously. If you are after extreme accuracy try using the 7-tap # coefficients. # # Reference: <NAME> and <NAME> "Differentiation of Discrete # Multi-Dimensional Signals" IEEE Trans. Image Processing. 13(4): 496-508 (2004) # # Copyright (c) 2010 <NAME> # http://www.peterkovesi.com/matlabfns/index.html # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # The Software is provided "as is", without warranty of any kind. # April 2010 def _conv1(a, h): return np.convolve(a, h, mode='same') def _conv2(h1, h2, A): ''' Performs a 1D convolution down the columns using h1 then a 1D convolution along the rows using h2. ''' result = np.apply_along_axis(_conv1, 0, A, h1) result = np.apply_along_axis(_conv1, 1, result, h2) return result def fs_coefficients(tap=5, direction='dx'): ''' This function returns the 5-tap or 7-tap coefficients given by Farid and Simoncelli (2004). ''' if tap==5: if direction in ['dx', 'dy', 'dxdy']: # 5-tap 1st derivative coefficients. These are optimal if you are just # seeking the 1st deriavtives. p = np.array([0.037659, 0.249153, 0.426375, 0.249153, 0.037659]) d1 = np.array([0.109604, 0.276691, 0.000000, -0.276691, -0.109604]) d2 = 0 elif direction in ['dx2', 'dy2', 'dxdy']: # 5-tap 2nd derivative coefficients. The associated 1st derivative # coefficients are not quite as optimal as the ones above but are # consistent with the 2nd derivative interpolator p and thus are # appropriate to use if you are after both 1st and 2nd derivatives. p = np.array([0.030320, 0.249724, 0.439911, 0.249724, 0.030320]) d1 = np.array([0.104550, 0.292315, 0.000000, -0.292315, -0.104550]) d2 = np.array([0.232905, 0.002668, -0.471147, 0.002668, 0.232905]) elif tap==7: # 7-tap interpolant and 1st and 2nd derivative coefficients p = np.array([0.004711, 0.069321, 0.245410, 0.361117, 0.245410, 0.069321, 0.004711]) d1 = np.array([0.018708, 0.125376, 0.193091, 0.000000, -0.193091, -0.125376, -0.018708]) d2 = np.array([0.055336, 0.137778, -0.056554, -0.273118, -0.056554, 0.137778, 0.055336]) else: raise ValueError('The tap value must be either 5 or 7.') return p, d1, d2 def fs_deriv(data, cellsize, direction='dx', tap=5): ''' Compute 1st or 2nd derivative of an array using the method of Farid and Simoncelli (2004). Parameters ---------- data : 2D array Input array cellsize: float Size of grid cells. Dimensions are assumed to be identical in both the x and y directions. direction : {'dx','dy','dx2','dxdy','dy2'}, optional Type of derivative. Default is 'dx', first horizontal derivative in the x direction. The x axis is "West to East", i.e. along rows of the array. The y axis is "South to North", i.e. along columns of the array. tap: {5, 7}, default 5 Size of the kernel that is used to calculate the derivative by convolution. ''' # Compute coefficients p, d1, d2 = fs_coefficients(tap, direction) # Compute derivatives if direction=='dx': result = _conv2(p,d1,data)/cellsize elif direction=='dy': result = -1 * _conv2(d1,p,data)/cellsize # origin is in lower left corner elif direction=='dx2': result = _conv2(p,d2,data)/cellsize/cellsize elif direction=='dy2': result = _conv2(d2,p,data)/cellsize/cellsize elif direction=='dxdy': result = _conv2(p,d1,data)/cellsize result = -1 * _conv2(d1,p,result)/cellsize return result #============================================================================== # Fourier functions #============================================================================== def getk(nx, ny, dx, dy): ''' Given the size `nx` and `ny` of a FFT and the spacing `dx` and `dy` of the space domain grid, this routine returns the spatial frequency grid components `kx`, `ky` and `k = sqrt(kx.^2 + ky.^2)` Makes use of numpy function `fftfreq`. Returns ------- [kx,ky,k] ''' # Discrete Fourier Transform sample frequencies kx = 2*np.pi*np.fft.fftfreq(nx,dx) ky = 2*np.pi*np.fft.fftfreq(ny,dy) # Create matrices for 2D case kx =
np.tile(kx,(ny,1))
numpy.tile
import cv2 import numpy as np def abs_sobel_thresh(img, sobel_kernel=3, orient='x', thresh_min=0, thresh_max=255): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) if (orient == 'x'): sobel = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) else: sobel = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) sobel_absolute = np.absolute(sobel) scaled = np.uint8(255 * sobel_absolute / np.max(sobel_absolute)) binary = np.zeros_like(scaled) binary[(scaled >= thresh_min) & (scaled <= thresh_max)] = 255 return binary def mag_thresh(img, sobel_kernel=3, thresh=(0, 255)): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel) sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel) sobel_mag = np.sqrt(np.multiply(sobel_x, sobel_x) + np.multiply(sobel_y, sobel_y)) scaled_mag = 255 * sobel_mag / np.max(sobel_mag) binary_output = np.zeros_like(scaled_mag) binary_output[(scaled_mag > thresh[0]) & (scaled_mag < thresh[1])] = 255 return binary_output def dir_threshold(img, sobel_kernel=3, thresh=(0, np.pi / 2)): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) sobel_x = np.abs(cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)) sobel_y = np.abs(cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)) direction = np.arctan2(sobel_y, sobel_x) threshed_direction = np.zeros_like(direction) threshed_direction[(direction > thresh[0]) & (direction < thresh[1])] = 255 return threshed_direction def hls_s_threshold(img, thresh=(0, 255)): hls = cv2.cvtColor(img, cv2.COLOR_BGR2HLS) s_channel = hls[:, :, 2] binary = np.zeros_like(s_channel) binary[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 255 return binary def hsv_s_threshold(img, thresh=(0, 255)): hls = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) s_channel = hls[:, :, 1] binary = np.zeros_like(s_channel) binary[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 255 return binary def hsv_v_threshold(img, thresh=(0, 255)): hls = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) s_channel = hls[:, :, 2] binary = np.zeros_like(s_channel) binary[(s_channel > thresh[0]) & (s_channel <= thresh[1])] = 255 return binary def perspective_transfrom(img, src_points, dst_points): img_size = img.shape[1::-1] transformation = cv2.getPerspectiveTransform(src_points, dst_points) perspective_transformed = cv2.warpPerspective(img, transformation, img_size) Minv = cv2.getPerspectiveTransform(dst_points, src_points) # aa = cv2.warpPerspective(perspective_transformed, Minv, img_size) # cv2.imshow('aa', aa) # cv2.waitKey(0) return perspective_transformed, Minv def get_warpback_overlay_img(raw_img, fit_points, inverse_perspevtive_trans): if fit_points[0] is None or fit_points[1] is None: return raw_img left_fit_x = fit_points[0] right_fit_x = fit_points[1] ploty = fit_points[2] # Create an image to draw the lines on color_warp =
np.zeros_like(raw_img)
numpy.zeros_like
"""CorEx Hierarchical Topic Models Use the principle of Total Cor-relation Explanation (CorEx) to construct hierarchical topic models. This module is specially designed for sparse count data and implements semi-supervision via the information bottleneck. <NAME> and <NAME>. "Maximally Informative Hierarchical Representations of High-Dimensional Data." AISTATS, 2015. Gallagher et al. "Anchored Correlation Explanation: Topic Modeling with Minimal Domain Knowledge." TACL, 2017. License: Apache V2 """ import warnings import numpy as np # Tested with 1.8.0 from os import makedirs from os import path try: from scipy.special import logsumexp except ImportError: from scipy.misc import logsumexp # Tested with 0.13.0 import scipy.sparse as ss from six import string_types # For Python 2&3 compatible string checking import joblib class Corex(object): """ Anchored CorEx hierarchical topic models Code follows sklearn naming/style (e.g. fit(X) to train) Parameters ---------- n_hidden : int, optional, default=2 Number of hidden units. max_iter : int, optional Maximum number of iterations before ending. verbose : int, optional The verbosity level. The default, zero, means silent mode. 1 outputs TC(X;Y) as you go 2 output alpha matrix and MIs as you go. tree : bool, default=True In a tree model, each word can only appear in one topic. tree=False is not yet implemented. count : string, {'binarize', 'fraction'} Whether to treat counts (>1) by directly binarizing them, or by constructing a fractional count in [0,1]. seed : integer or numpy.RandomState, optional A random number generator instance to define the state of the random permutations generator. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- labels : array, [n_samples, n_hidden] Label for each hidden unit for each sample. clusters : array, [n_visible] Cluster label for each input variable. p_y_given_x : array, [n_samples, n_hidden] p(y_j=1|x) for each sample. alpha : array-like, shape [n_hidden, n_visible] Adjacency matrix between input variables and hidden units. In range [0,1]. mis : array, [n_hidden, n_visible] Mutual information between each (visible/observed) variable and hidden unit tcs : array, [n_hidden] TC(X_Gj;Y_j) for each hidden unit tc : float Convenience variable = Sum_j tcs[j] tc_history : array Shows value of TC over the course of learning. Hopefully, it is converging. words : list of strings Feature names that label the corresponding columns of X References ---------- [1] <NAME> and <NAME>. "Discovering Structure in High-Dimensional Data Through Correlation Explanation." NIPS, 2014. arXiv preprint arXiv:1406.1222. [2] <NAME> and <NAME>. "Maximally Informative Hierarchical Representations of High-Dimensional Data" AISTATS, 2015. arXiv preprint arXiv:1410.7404. """ def __init__(self, n_hidden=2, max_iter=200, eps=1e-5, seed=None, verbose=False, count='binarize', tree=True, **kwargs): self.n_hidden = n_hidden # Number of hidden factors to use (Y_1,...Y_m) in paper self.max_iter = max_iter # Maximum number of updates to run, regardless of convergence self.eps = eps # Change to signal convergence self.tree = tree np.random.seed(seed) # Set seed for deterministic results self.verbose = verbose self.t = 20 # Initial softness of the soft-max function for alpha (see NIPS paper [1]) self.count = count # Which strategy, if necessary, for binarizing count data if verbose > 0: np.set_printoptions(precision=3, suppress=True, linewidth=200) print('corex, rep size:', n_hidden) if verbose: np.seterr(all='warn') # Can change to 'raise' if you are worried to see where the errors are # Locally, I "ignore" underflow errors in logsumexp that appear innocuous (probabilities near 0) else: np.seterr(all='ignore') def label(self, p_y_given_x): """Maximum likelihood labels for some distribution over y's""" return (p_y_given_x > 0.5).astype(bool) @property def labels(self): """Maximum likelihood labels for training data. Can access with self.labels (no parens needed)""" return self.label(self.p_y_given_x) @property def clusters(self): """Return cluster labels for variables""" return np.argmax(self.alpha, axis=0) @property def sign(self): """Return the direction of correlation, positive or negative, for each variable-latent factor.""" return np.sign(self.theta[3] - self.theta[2]).T @property def tc(self): """The total correlation explained by all the Y's. """ return np.sum(self.tcs) def fit(self, X, y=None, anchors=None, anchor_strength=1, words=None, docs=None): """ Fit CorEx on the data X. See fit_transform. """ self.fit_transform(X, anchors=anchors, anchor_strength=anchor_strength, words=words, docs=docs) return self def fit_transform(self, X, y=None, anchors=None, anchor_strength=1, words=None, docs=None): """Fit CorEx on the data Parameters ---------- X : scipy sparse CSR or a numpy matrix, shape = [n_samples, n_visible] Count data or some other sparse binary data. anchors : A list of variables anchor each corresponding latent factor to. anchor_strength : How strongly to weight the anchors. words : list of strings that label the corresponding columns of X docs : list of strings that label the corresponding rows of X Returns ------- Y: array-like, shape = [n_samples, n_hidden] Learned values for each latent factor for each sample. Y's are sorted so that Y_1 explains most correlation, etc. """ X = self.preprocess(X) self.initialize_parameters(X, words, docs) if anchors is not None: anchors = self.preprocess_anchors(list(anchors)) p_y_given_x = np.random.random((self.n_samples, self.n_hidden)) if anchors is not None: for j, a in enumerate(anchors): p_y_given_x[:, j] = 0.5 * p_y_given_x[:, j] + 0.5 * X[:, a].mean(axis=1).A1 # Assumes X is a binary matrix for nloop in range(self.max_iter): if nloop > 1: for j in range(self.n_hidden): if self.sign[j, np.argmax(self.mis[j])] < 0: # Switch label for Y_j so that it is correlated with the top word p_y_given_x[:, j] = 1. - p_y_given_x[:, j] self.log_p_y = self.calculate_p_y(p_y_given_x) self.theta = self.calculate_theta(X, p_y_given_x, self.log_p_y) # log p(x_i=1|y) nv by m by k if nloop > 0: # Structure learning step self.alpha = self.calculate_alpha(X, p_y_given_x, self.theta, self.log_p_y, self.tcs) if anchors is not None: for a in flatten(anchors): self.alpha[:, a] = 0 for ia, a in enumerate(anchors): self.alpha[ia, a] = anchor_strength p_y_given_x, _, log_z = self.calculate_latent(X, self.theta) self.update_tc(log_z) # Calculate TC and record history to check convergence self.print_verbose() if self.convergence(): break if self.verbose: print('Overall tc:', self.tc) if anchors is None: self.sort_and_output(X) self.p_y_given_x, self.log_p_y_given_x, self.log_z = self.calculate_latent(X, self.theta) # Needed to output labels self.mis = self.calculate_mis(self.theta, self.log_p_y) # / self.h_x # could normalize MIs return self.labels def transform(self, X, details=False): """ Label hidden factors for (possibly previously unseen) samples of data. Parameters: samples of data, X, shape = [n_samples, n_visible] Returns: , shape = [n_samples, n_hidden] """ X = self.preprocess(X) p_y_given_x, _, log_z = self.calculate_latent(X, self.theta) labels = self.label(p_y_given_x) if details == 'surprise': # TODO: update # Totally experimental n_samples = X.shape[0] alpha = np.zeros((self.n_hidden, self.n_visible)) for i in range(self.n_visible): alpha[np.argmax(self.alpha[:, i]), i] = 1 log_p = np.empty((2, n_samples, self.n_hidden)) c0 =
np.einsum('ji,ij->j', alpha, self.theta[0])
numpy.einsum
import pickle import pandas as pd import numpy as np import pkg_resources import scanpy as sc from anndata import AnnData import seaborn as sns def plot_matrixplot(adata, groupby, cmap='coolwarm', ax=None): # Get progeny data X = np.array(adata.obsm['progeny']) p_names = adata.obsm['progeny'].columns.tolist() # Get group categroies cats = adata.obs[groupby].cat.categories # Compute mean for each group arr = np.zeros((len(cats),X.shape[1])) for i, cat in enumerate(cats): msk = adata.obs[groupby] == cat mean_group =
np.mean(X[msk,], axis=0)
numpy.mean
""" File: continuous.py Author: <NAME> Email: <EMAIL> Github: https://github.com/ComeBertrand Description: Classical continuous functions for performance evaluation of metaheuristics. All theses functions were taken from the following website : https://www.sfu.ca/~ssurjano/optimization.html """ import numpy as np from ...models import Problem from ...common.representation import RealEncoding, Boundaries from ...common.fitness import Objective from ...operators.neighborhood import NeighborhoodOperator, move_distance_continuous, ContinuousLogMoveRange class ContinuousProblem(Problem): """Problems that are defined by a continuous function. # TODO: Do it in a more abstract way and move it in abstract Args: n_dim (int): Number of dimensions. min_vals (np.array): Minimum values for each dimension. max_vals (np.array): Maximum values for each dimension. move_range (MoveRange): Range of the move step. known_min (float): Minimum of the continuous function. None means that the minimum is not known. """ def __init__(self, n_dim, min_vals, max_vals, move_range, known_min): nb_neighbors = n_dim * 100 # TODO: shall be an argument of the object neighborhood = NeighborhoodOperator(move_distance_continuous, move_range, nb_neighbors) boundaries = Boundaries(min_vals, max_vals, np.float) encoding = RealEncoding(boundaries) objective = Objective(self._eval_func) super().__init__(objective, encoding, neighborhood=neighborhood, known_min=known_min) def _eval_func(self, solution): """Actual evaluation of a solution by the continuous function. Args: solution (Solution): Solution to be evaluated. Returns: float: function value of the solution. """ raise NotImplementedError("Abstract Class") # --------------------------------------------------------------------------- # # Functions with many local minima # # --------------------------------------------------------------------------- # class Ackleys(ContinuousProblem): """Ackley's function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-32.768] * n_dim, np.float) max_vals = np.array([32.768] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) part1 = -0.2 * np.sqrt(1/n * np.sum(solution * solution)) part2 = 1/n * np.sum(np.cos(2 * np.pi * solution)) return 20 - 20 * np.exp(part1) + np.e - np.exp(part2) class Bukin6(ContinuousProblem): """Bukin funtion N.6.""" def __init__(self): n_dim = 2 min_vals = np.array([-15.0, -3.0], np.float) max_vals = np.array([-5.0, 3.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.abs(solution[1] - 0.01 * solution[0] * solution[0]) part2 = np.abs(solution[0] + 10) return 100 * np.sqrt(part1) + 0.01 * part2 class CrossInTray(ContinuousProblem): """Cross-in-tray function.""" def __init__(self): n_dim = 2 min_vals = np.array([-10.0, -10.0], np.float) max_vals = np.array([10.0, 10.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -2.06261 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.abs(100 - np.sqrt(np.sum(solution * solution)) / np.pi) part2 = np.sin(solution[0]) * np.sin(solution[1]) final = np.abs(part2 * np.exp(part1)) + 1.0 return -0.0001 * np.power(final, 0.1) class DropWave(ContinuousProblem): """Drop-Wave function.""" def __init__(self): n_dim = 2 min_vals = np.array([-5.12, -5.12], np.float) max_vals = np.array([5.12, 5.12], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -1.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): sum_sol_sq = np.sum(solution * solution) part1 = 1.0 + np.cos(12 * np.sqrt(sum_sol_sq)) part2 = 0.5 * sum_sol_sq + 2.0 return -1.0 * (part1 / part2) class Eggholder(ContinuousProblem): """Eggholder function.""" def __init__(self): n_dim = 2 min_vals = np.array([-512, -512], np.float) max_vals = np.array([512, 512], np.float) move_range = ContinuousLogMoveRange(0.01, 10.0) known_min = -959.6407 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.sin(np.sqrt(np.abs(solution[1] + (solution[0]/2.) + 47))) part2 = np.sin(np.sqrt(np.abs(solution[0] - (solution[1] + 47)))) return -1.0 * (solution[1] + 47) * part1 - 1.0 * part2 class GramacyLee(ContinuousProblem): """Gramacy & Lee function.""" def __init__(self): n_dim = 1 min_vals = np.array([0.5], np.float) max_vals = np.array([2.5], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = None super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.sin(10 * np.pi * solution[0]) / (2 * solution[0]) part2 =
np.power(solution[0] - 1.0, 4)
numpy.power
""" Copyright 2018 Johns Hopkins University (Author: <NAME>) Apache 2.0 (http://www.apache.org/licenses/LICENSE-2.0) """ from __future__ import absolute_import from __future__ import print_function from __future__ import division from six.moves import xrange import pytest import os import copy import numpy as np from numpy.testing import assert_allclose from hyperion.utils import Utt2Info from hyperion.io import H5DataWriter from hyperion.generators.sequence_batch_generator_v2 import SequenceBatchGeneratorV2 as SBG output_dir = './tests/data_out/generators' if not os.path.exists(output_dir): os.makedirs(output_dir) h5_file = output_dir + '/seqbgv2.h5' key_file = output_dir + '/seqbgv2.scp' num_seqs = 10 dim = 2 min_seq_length = 100 delta = 10 max_seq_length = min_seq_length + (num_seqs-1)*delta seq_lengths = np.arange(100, max_seq_length+1, delta) def create_dataset(): file_path = [str(k) for k in xrange(num_seqs)] key=[] i = 0 j = 0 while i < num_seqs: key_i = (j+1)*str(j) i += (i+1) j += 1 key += key_i key = key[:num_seqs] u2c = Utt2Info.create(file_path, key) if os.path.exists(h5_file): return u2c u2c.save(key_file, sep=' ') h = H5DataWriter(h5_file) rng = np.random.RandomState(seed=0) for i in xrange(num_seqs): x_i = rng.randn(seq_lengths[i], dim) h.write(file_path[i], x_i) return u2c def test_num_seqs(): create_dataset() sr = SBG(h5_file, key_file) assert sr.num_seqs==num_seqs def test_seq_lengths(): create_dataset() sr = SBG(h5_file, key_file, shuffle_seqs=False) assert np.all(sr.seq_lengths==seq_lengths) assert sr.total_length==
np.sum(seq_lengths)
numpy.sum
import warnings import pickle import sys from decorated_options import optioned, Options import numpy as np from collections import defaultdict import logging import multiprocessing as mp import pandas as pd from utils import time_in_top_k, average_rank, int_r_2, logTime, find_opt_oracle, sweep_q, is_sorted from opt_model import SimOpts try: import broadcast.opt.optimizer as Bopt except ImportError: warnings.warn('broadcast.opt.optimizer was NOT imported. ' 'Comparison against method of Karimi et. al. method will ' 'not be possible.') # Workers for metrics # Ks = [1, 5, 10] # Ks = [1, 5] Ks = [1] perf_opts = Options(oracle_eps=1e-10, # This is how much after the event that the Oracle tweets. Ks=Ks, performance_fields=['seed', 'q', 'type'] + ['top_' + str(k) for k in Ks] + ['avg_rank', 'r_2', 'num_events', 'world_events']) def add_perf(op, df, sim_opts): for k in perf_opts.Ks: op['top_' + str(k)] = time_in_top_k(df=df, K=k, sim_opts=sim_opts) op['avg_rank'] = average_rank(df, sim_opts=sim_opts) op['r_2'] = int_r_2(df, sim_opts=sim_opts) op['world_events'] = len(df.event_id[df.src_id != sim_opts.src_id].unique()) op['num_events'] = len(df.event_id[df.src_id == sim_opts.src_id].unique()) def worker_opt(params): try: seed, sim_opts, num_segments, queue = params except ValueError: logging.warning('Setting num_segments=10 for world-rate in worker_opt.') seed, sim_opts, queue = params num_segments = 10 sim_mgr = sim_opts.create_manager_with_opt(seed=seed) sim_mgr.run_dynamic() df = sim_mgr.state.get_dataframe() # If Capacity if calculated this way, then the Optimal Broadcaster # May end up with number of tweets higher than the number of tweets # produced by the rest of the world. # capacity = u_int_opt(df=df, sim_opts=sim_opts) # All tweets except by the optimal worker are wall tweets. # this is valid only if other broadcasters do not react to the optimal # broadcaster or do not deviate from their strategy (modulo variation due # to different seeds of the random number generator). wall_df = df[df.src_id != sim_opts.src_id] T = sim_opts.end_time seg_idx = (wall_df.t.values / T * num_segments).astype(int) intensity_df = ( (wall_df.groupby(['sink_id', pd.Series(seg_idx, name='segment')]).size() / (T / num_segments)) .sort_index() .reset_index(name='intensity') ) # Order of walls is ambiguous here. wall_intensities = ( intensity_df.pivot_table(values='intensity', index='sink_id', columns='segment') .ix[sim_opts.sink_ids] # Sort the data according to the sink_ids in sim_opts. .values ) # Note: this works only if the optimal follower has exactly one follower. It is better to count the number # of distinct times that the optimal broadcaster tweeted. # capacity = (df.src_id == sim_opts.src_id).sum() * 1.0 num_events = len(df.event_id[df.src_id == sim_opts.src_id].unique()) capacity = num_events * 1.0 op = { 'type' : 'Opt', 'seed' : seed, 'capacity' : capacity, 'sim_opts' : sim_opts, 'q' : sim_opts.q, 'wall_intensities' : wall_intensities } add_perf(op, df, sim_opts) if queue is not None: queue.put(op) return op def worker_poisson(params): seed, capacity, sim_opts, queue = params sim_mgr = sim_opts.create_manager_with_poisson(seed=seed, capacity=capacity) sim_mgr.run_dynamic() df = sim_mgr.state.get_dataframe() op = { 'type': 'Poisson', 'seed': seed, 'sim_opts': sim_opts, 'q': sim_opts.q } add_perf(op, df, sim_opts) if queue is not None: queue.put(op) return op def worker_oracle(params): seed, capacity, max_events, sim_opts, queue = params opt_oracle = find_opt_oracle(capacity, sim_opts, max_events=max_events) oracle_df = opt_oracle['df'] # TODO: This method of extracting times works before oracle is always run only # for one follower. opt_oracle_mgr = sim_opts.create_manager_with_times(oracle_df.t[oracle_df.events == 1] + perf_opts.oracle_eps) opt_oracle_mgr.run_dynamic() df = opt_oracle_mgr.state.get_dataframe() op = { 'type' : 'Oracle', 'seed' : seed, 'sim_opts' : sim_opts, 'q' : sim_opts.q, 'r0_num_events' : np.sum(oracle_df.events == 1), 'num_events' : np.sum(df.src_id == sim_opts.src_id) } add_perf(op, df, sim_opts) if queue is not None: queue.put(op) return op def worker_kdd(params, window_start=0, verbose=False, Ks=None): seed, capacity, num_segments, sim_opts, world_changing_rates, queue = params T = sim_opts.end_time - window_start seg_len = T / num_segments if world_changing_rates is None: wall_mgr = sim_opts.create_manager_for_wall() wall_mgr.run_dynamic() wall_df = wall_mgr.state.get_dataframe() seg_idx = (wall_df.t.values / T * num_segments).astype(int) intensity_df = (wall_df.groupby(['sink_id', pd.Series(seg_idx, name='segment')]).size() / (T / num_segments)).reset_index(name='intensity') wall_intensities = intensity_df.pivot_table(values='intensity', index='sink_id', columns='segment').values else: wall_intensities = np.asarray(world_changing_rates) follower_wall_intensities = wall_intensities follower_conn_prob = np.asarray([[1.0] * num_segments] * len(sim_opts.sink_ids)) follower_weights = [1.0] * len(sim_opts.sink_ids) upper_bounds = np.array([1e11] * num_segments) threshold = 0.02 op = { 'type' : 'kdd', 'seed' : seed, 'sim_opts' : sim_opts, 'q' : sim_opts.q } best_avg_rank, best_avg_k = np.inf, -1 best_r_2, best_r_2_k = np.inf, -1 if Ks is None: Ks = perf_opts.Ks for k in Ks: if k != 1: def _util(x): return Bopt.utils.weighted_top_k(x, follower_wall_intensities, follower_conn_prob, follower_weights, k) def _util_grad(x): return Bopt.utils.weighted_top_k_grad(x, follower_wall_intensities, follower_conn_prob, follower_weights, k) else: # For k = 1, special case of gradient calculation def _util(x): return Bopt.utils.weighted_top_one(x, follower_wall_intensities, follower_conn_prob, follower_weights) def _util_grad(x): return Bopt.utils.weighted_top_one_grad(x, follower_wall_intensities, follower_conn_prob, follower_weights) # Initial guess is close to Poisson solution x0 = np.ones(num_segments) * capacity / num_segments kdd_opt, iters = Bopt.optimize( util = _util, util_grad = _util_grad, budget = capacity, upper_bounds = upper_bounds, threshold = threshold, x0 = x0, verbose = verbose, with_iter = True ) op['kdd_opt_' + str(k)] = kdd_opt op['kdd_opt_iters_' + str(k)] = iters if iters > 49900: logging.warning('Setting {} took {} iters to converge.'.format(op, iters), file=sys.stderr) piecewise_const_mgr = sim_opts.create_manager_with_piecewise_const( seed=seed, change_times=window_start + np.arange(num_segments) * seg_len, rates=kdd_opt / seg_len ) piecewise_const_mgr.state.time = window_start piecewise_const_mgr.run_dynamic() df = piecewise_const_mgr.state.get_dataframe() perf = time_in_top_k(df=df, K=k, sim_opts=sim_opts) op['top_' + str(k)] = perf op['top_' + str(k) + '_num_events'] = len(df.event_id[df.src_id == sim_opts.src_id].unique()) avg_rank = average_rank(df, sim_opts=sim_opts) r_2 = int_r_2(df, sim_opts=sim_opts) op['avg_rank_' + str(k)] = avg_rank op['r_2_' + str(k)] = r_2 if avg_rank < best_avg_rank: best_avg_rank = avg_rank best_avg_k = k if r_2 < best_r_2: best_r_2 = r_2 best_r_2_k = k op['avg_rank'] = best_avg_rank op['avg_rank_k'] = best_avg_k op['r_2'] = best_r_2 op['r_2_k'] = best_r_2_k op['world_events'] = len(df.event_id[df.src_id != sim_opts.src_id].unique()) op['num_events'] = len(df.event_id[df.src_id == sim_opts.src_id].unique()) if queue is not None: queue.put(op) return op # This is an approach using the multiprocessing module without the Pool and using a queue to accumulate the results. # This will lead to a better utilization of the CPU resources (hopefully) because the previous method only allowed # parallization of the number of seeds. dilation = 100.0 simulation_opts = Options(world_rate=1000.0 / dilation, world_alpha=1.0, world_beta=10.0, N=10, T=1.0 * dilation, num_segments=10, log_q_low=-6 + np.log10(dilation), log_q_high=5 + np.log10(dilation)) @optioned(option_arg='opts') def piecewise_sim_opt_factory(N, T, num_segments, world_rate, opts): random_state = np.random.RandomState(42) world_changing_rates = random_state.uniform(low=world_rate / 2.0, high=world_rate, size=num_segments) world_change_times = np.arange(num_segments) * T / num_segments def sim_opts_gen(seed): return SimOpts.std_piecewise_const(world_rates=world_changing_rates, world_change_times=world_change_times, world_seed=seed + 42).update({'end_time': T}) return opts.set_new(N=N, T=T, num_segments=num_segments, sim_opts_gen=sim_opts_gen) poisson_inf_opts = simulation_opts.set_new( sim_opts_gen=lambda seed: SimOpts.std_poisson(world_rate=simulation_opts.world_rate, world_seed=seed + 42) .update({'end_time': simulation_opts.T})) piecewise_inf_opts = piecewise_sim_opt_factory(opts=simulation_opts) hawkes_inf_opts = simulation_opts.set_new( sim_opts_gen=lambda seed: SimOpts.std_hawkes(world_seed=seed, world_lambda_0=simulation_opts.world_rate, world_alpha=simulation_opts.world_alpha, world_beta=simulation_opts.world_beta) .update({'end_time': simulation_opts.T})) def extract_perf_fields(return_obj, exclude_fields=None, include_fields=None): """Extracts the relevant fields from the return object and returns them in a new dict.""" result_dict = {} include_fields = include_fields if include_fields is not None else set() exclude_fields = exclude_fields if exclude_fields is not None else set() fields = set(perf_opts.performance_fields).union(include_fields) - exclude_fields for field in fields: result_dict[field] = return_obj[field] return result_dict real_performance_fields = [x for x in perf_opts.performance_fields if x != 'q'] + ['user_id'] def extract_real_perf_fields(return_obj, exclude_fields=None, include_fields=None): """Extracts the relevant fields from the return object and returns them in a new dict.""" result_dict = {} include_fields = include_fields if include_fields is not None else set() exclude_fields = exclude_fields if exclude_fields is not None else set() fields = set(real_performance_fields).union(include_fields) - exclude_fields for field in fields: result_dict[field] = return_obj[field] return result_dict @optioned(option_arg='opts') def run_inference(N, T, num_segments, sim_opts_gen, log_q_high, log_q_low): """Run inference for the given sim_opts_gen by sweeping over 'q' and running the simulation for different seeds.""" processes = [] queue = mp.Queue() results = [] capacities = {} raw_results = [] try: active_processes = 0 for q in np.logspace(log_q_low, log_q_high, num=10): capacities[q] = [] for seed in range(N): active_processes += 1 sim_opts = sim_opts_gen(seed).update({'q' : q}) p = mp.Process(target=worker_opt, args=((seed, sim_opts, queue),)) processes.append(p) p.daemon = True p.start() logTime('Started all processes: {}'.format(active_processes)) while active_processes > 0: # logTime('active_processes = {}'.format(active_processes)) r = queue.get() raw_results.append(r) results.append(extract_perf_fields(r)) active_processes -= 1 if r['type'] == 'Opt': seed = r['seed'] capacity = r['capacity'] s = r['sim_opts'].s sim_opts = r['sim_opts'] world_events = r['world_events'] capacities[s].append((seed, capacity)) # Poisson p = mp.Process(target=worker_poisson, args=((seed, capacity, sim_opts, queue),)) processes.append(p) p.daemon = True p.start() active_processes += 1 # Oracle oracle_args = (seed, capacity, world_events, sim_opts, queue) p = mp.Process(target=worker_oracle, args=(oracle_args,)) processes.append(p) p.daemon = True p.start() active_processes += 1 # KDD solution # kdd_args = (seed, capacity, num_segments, sim_opts, world_changing_rates, queue) # kdd_args = (seed, capacity, num_segments, sim_opts, None, queue) # p = mp.Process(target=worker_kdd, args=(kdd_args,)) # processes.append(p) # p.daemon = True # p.start() # active_processes += 1 elif r['type'] == 'Poisson': if active_processes % 10 == 0: logTime('Active processes = {}'.format(active_processes)) elif r['type'] == 'Oracle': if active_processes % 10 == 0: logTime('Active processes = {}'.format(active_processes)) elif r['type'] == 'kdd': if active_processes % 10 == 0: logTime('Active processes = {}'.format(active_processes)) else: raise ValueError('Unknown type: {}'.format(r['type'])) finally: # Attempt at cleanup logging.info("Cleaning up {} processes".format(len(processes))) for p in processes: p.terminate() p.join() return Options(df=pd.DataFrame.from_records(results), raw_results=raw_results, capacities=capacities) def worker_combined(input_queue, output_queue): while True: broadcaster_type, broadcaster_args = input_queue.get() if broadcaster_type == 'Stop': break try: all_args = broadcaster_args + (output_queue,) if broadcaster_type == 'Opt': worker_opt(all_args) elif broadcaster_type == 'Poisson': worker_poisson(all_args) elif broadcaster_type == 'Oracle': worker_oracle(all_args) elif broadcaster_type == 'kdd': worker_kdd(all_args) else: raise RuntimeError('Unknown broadcaster type: {}'.format(broadcaster_type)) except Exception as e: output_queue.put({ 'type' : 'Exception', 'error' : e, 'broadcaster_type' : broadcaster_type, 'broadcaster_args' : broadcaster_args }) raise @optioned(option_arg='opts') def run_inference_queue_kdd(N, T, num_segments, sim_opts_gen, log_q_high, log_q_low, num_procs=None): """Run inference for the given sim_opts_gen by sweeping over 'q' and running the simulation for different seeds.""" if num_procs is None: num_procs = mp.cpu_count() - 1 in_queue = mp.Queue() out_queue = mp.Queue() results = [] raw_results = [] capacities = {} # Start consumers processes = [mp.Process(target=worker_combined, args=(in_queue, out_queue)) for _ in range(num_procs)] for p in processes: p.daemon = True # Terminate if the parent dies. p.start() active_procs = 0 type_procs = defaultdict(lambda: 0) def add_task(task_type, args): in_queue.put((task_type, args)) type_procs[task_type] += 1 try: for q in np.logspace(log_q_low, log_q_high, num=10): capacities[q] = [] for seed in range(N): in_queue.put(('Opt', (seed, sim_opts_gen(seed).update({'q': q})))) active_procs += 1 type_procs['Opt'] = active_procs while active_procs > 0: r = out_queue.get() active_procs -= 1 type_procs[r['type']] -= 1 if active_procs % 10 == 0: logTime('active_procs = {}, procs = {}' .format(active_procs, list(type_procs.items()))) if r['type'] == 'Exception': logging.error('Exception while handling: ', r) else: raw_results.append(r) results.append(extract_perf_fields(r)) if r['type'] == 'Opt': seed = r['seed'] capacity = r['capacity'] q = r['sim_opts'].q sim_opts = r['sim_opts'] world_events = r['world_events'] capacities[q].append((seed, capacity)) # add_task('Poisson', (seed, capacity, sim_opts)) # active_procs += 1 # add_task('Oracle', (seed, capacity, world_events, sim_opts)) # active_procs += 1 add_task('kdd', (seed, capacity, num_segments, sim_opts, None)) active_procs += 1 for p in range(num_procs): in_queue.put(('Stop', None)) except: # In case of exceptions, do not block the parent thread and just # discard all data on the queues. in_queue.cancel_join_thread() out_queue.cancel_join_thread() raise finally: logging.info('Cleaning up {} processes'.format(len(processes))) for p in processes: p.terminate() p.join() return Options(df=pd.DataFrame.from_records(results), raw_results=raw_results, capacities=capacities) @optioned(option_arg='opts') def run_inference_queue(N, T, num_segments, sim_opts_gen, log_q_high, log_q_low, num_procs=None): """Run inference for the given sim_opts_gen by sweeping over 'q' and running the simulation for different seeds.""" if num_procs is None: num_procs = mp.cpu_count() - 1 in_queue = mp.Queue() out_queue = mp.Queue() results = [] raw_results = [] capacities = {} # Start consumers processes = [mp.Process(target=worker_combined, args=(in_queue, out_queue)) for _ in range(num_procs)] for p in processes: p.daemon = True # Terminate if the parent dies. p.start() active_procs = 0 type_procs = defaultdict(lambda: 0) def add_task(task_type, args): in_queue.put((task_type, args)) type_procs[task_type] += 1 try: for q in np.logspace(log_q_low, log_q_high, num=10): capacities[q] = [] for seed in range(N): in_queue.put(('Opt', (seed, sim_opts_gen(seed).update({'q': q}), num_segments))) active_procs += 1 type_procs['Opt'] = active_procs while active_procs > 0: r = out_queue.get() active_procs -= 1 type_procs[r['type']] -= 1 if active_procs % 10 == 0: logTime('active_procs = {}, procs = {}' .format(active_procs, list(type_procs.items()))) if r['type'] == 'Exception': logging.error('Exception while handling: ', r) else: raw_results.append(r) results.append(extract_perf_fields(r)) if r['type'] == 'Opt': seed = r['seed'] capacity = r['capacity'] q = r['sim_opts'].q sim_opts = r['sim_opts'] world_events = r['world_events'] capacities[q].append((seed, capacity)) add_task('Poisson', (seed, capacity, sim_opts)) active_procs += 1 add_task('Oracle', (seed, capacity, world_events, sim_opts)) active_procs += 1 add_task('kdd', (seed, capacity, num_segments, sim_opts, r['wall_intensities'])) active_procs += 1 for p in range(num_procs): in_queue.put(('Stop', None)) except: # In case of exceptions, do not block the parent thread and just # discard all data on the queues. in_queue.cancel_join_thread() out_queue.cancel_join_thread() raise finally: logging.info('Cleaning up {} processes'.format(len(processes))) for p in processes: p.terminate() p.join() return Options(df=pd.DataFrame.from_records(results), raw_results=raw_results, capacities=capacities) ## Experiment with multiple followers def make_piecewise_const(num_segments): """Makes a piecewise constant semi-sinusoid curve with num_segments segments.""" true_values = np.sin(np.arange(0, np.pi, step=0.001)) seg_idx =
np.arange(true_values.shape[0])
numpy.arange
import datetime from collections import defaultdict from decimal import Decimal, ROUND_HALF_UP import numpy as np from matplotlib import pyplot as plt import utils.globals_variable as gv from enums import ReportType from history.capital import LocalCapital from history.statistics import descriptiveStatistics, decilePercentage from history.trade_record import LocalTradeRecord from submodule.Xu3.utils import getLogger # 單筆 Order 的交易紀錄(容許分次買賣) class TradeRecord: def __init__(self): # record dict value: # [buy_time, buy_price, buy_volumn, sell_time, sell_price, sell_volumn, revenue, buy_cost, sell_cost, # stop_value_moving, income, return_rate, annual_return_rate] self.record = None def __getattr__(self, item): if self.record.__contains__(item): return self.record[item] else: return None def __len__(self): return len(self.income) def __repr__(self): return self.toString(guid=None) __str__ = __repr__ def __add__(self, other): pass def toString(self, guid=None): # TODO: self.record if self.record is None: return "self.record is None" if guid is None: description = f"TradeRecord({self.record['buy_time']} ~ {self.record['sell_time']})" else: description = f"TradeRecord(guid: {guid}, {self.record['buy_time']} ~ {self.record['sell_time']})" for key, value in self.record.items(): if key != 'buy_time' or key != 'sell_time': description += f"\n{key}: {value}" return description def add(self, buy_time: datetime.datetime, buy_price: Decimal, buy_volumn: int, sell_time: datetime.datetime, sell_price: Decimal, sell_volumn: int, revenue: Decimal, buy_cost: Decimal, sell_cost: Decimal, stop_value_moving: list, first_add: bool = False): if first_add: income, return_rate, annual_return_rate = self.derivedData(buy_time=buy_time, buy_cost=buy_cost, sell_time=sell_time, sell_cost=sell_cost, revenue=revenue) self.record = dict(buy_time=buy_time, buy_price=buy_price, buy_volumn=buy_volumn, sell_time=sell_time, sell_price=sell_price, sell_volumn=sell_volumn, revenue=revenue, buy_cost=buy_cost, sell_cost=sell_cost, stop_value_moving=stop_value_moving, income=income, return_rate=return_rate, annual_return_rate=annual_return_rate) else: self.record["sell_time"] = sell_time self.getWeightedData(kind="buy", new_price=buy_price, new_volumn=buy_volumn) self.getWeightedData(kind="sell", new_price=sell_price, new_volumn=sell_volumn) self.record["revenue"] += revenue self.record["buy_cost"] += buy_cost self.record["sell_cost"] += sell_cost self.record["stop_value_moving"] += stop_value_moving # 更新衍生數據 income, return_rate, annual_return_rate = self.derivedData(buy_time=self.record["buy_time"], buy_cost=self.record["buy_cost"], sell_time=sell_time, sell_cost=self.record["sell_cost"], revenue=self.record["revenue"]) self.record["income"] = income self.record["return_rate"] = return_rate self.record["annual_return_rate"] = annual_return_rate @staticmethod def derivedData(buy_time: datetime.datetime, buy_cost: Decimal, sell_time: datetime.datetime, sell_cost: Decimal, revenue: Decimal): cost = buy_cost + sell_cost income = revenue - cost return_rate = (revenue / cost).quantize(Decimal('.0000'), ROUND_HALF_UP) during_days = Decimal(str((sell_time - buy_time) / datetime.timedelta(days=1))) during_days = max(during_days, Decimal("1")) annual_index = Decimal("365.25") / during_days annual_return_rate = np.power(return_rate, annual_index).quantize(Decimal('.0000'), ROUND_HALF_UP) return income, return_rate, annual_return_rate def getWeightedData(self, kind: str, new_price: Decimal, new_volumn: int): price = f"{kind}_price" volumn = f"{kind}_volumn" # 根據先後買入的數量為權重,對購買價做加權(若沒加買,則 new_weight 會是 0) origin_price = self.record[price] origin_volumn = self.record[volumn] result_volumn = origin_volumn + new_volumn origin_weight = Decimal(str(origin_volumn)) / result_volumn new_weight = Decimal(str(new_volumn)) / result_volumn self.record[price] = origin_weight * origin_price + new_weight * new_price self.record[volumn] = result_volumn class History: """ revenu: 營業額,revenu = income + cost income: 收入,正值為'利潤(profit)',負值為'虧損(loss)' profit: 利潤(History 當中沒有細分到此項目) loss: 虧損(History 當中沒有細分到此項目) cost: 成本(買和賣都會產生成本) falling_price: 跌價(前一次購買到下一次購買之間為計算區間,購買價與區間最低價的落差,是為跌價) 交易紀錄數據 stock_id,buy_time,sell_time,buy_price,sell_price,volumn,buy_cost,sell_cost,revenue """ def __init__(self, stock_id, logger_dir="strategy", logger_name=datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")): self.stock_id = stock_id self.logger_dir = logger_dir self.logger_name = logger_name # 紀錄交易(key: guid, value: TradeRecord) self.trade_record = dict() # 紀錄資金的變化 self.funds_history = [] # 紀錄收益 self.income = [] # 跌價 self.falling_price = [] self.report = None def __len__(self): return len(self.trade_record) def __repr__(self): description = f"===== History({self.stock_id}) =====" for guid, trade_record in self.trade_record.items(): description += f"\n{trade_record.toString(guid=guid)}" description += f"\nFallingPrice ~ {self.getFallingPriceParam()}" # stop_value_moving: 平均調整金額;平均調整次數: n_stop_value_moving stop_value_moving, n_stop_value_moving = self.getStopValueParam() description += f"\nStopValue 平均調整金額: {stop_value_moving}, 平均調整次數: {n_stop_value_moving}, " \ f"每個 order 預期調整總金額: {stop_value_moving * n_stop_value_moving}" description += f"\n===== Total income: {self.getIncome()} =====" return description __str__ = __repr__ def add(self, *trade_records): for trade_record in trade_records: (guid, buy_time, buy_price, buy_volumn, sell_time, sell_price, sell_volumn, revenue, buy_cost, sell_cost, stop_value_moving) = trade_record # 不包含 = 第一次添加 first_add = not self.trade_record.__contains__(guid) if first_add: self.trade_record[guid] = TradeRecord() self.trade_record[guid].add(buy_time=buy_time, buy_price=buy_price, buy_volumn=buy_volumn, sell_time=sell_time, sell_price=sell_price, sell_volumn=sell_volumn, revenue=revenue, buy_cost=buy_cost, sell_cost=sell_cost, stop_value_moving=stop_value_moving, first_add=first_add) # 記錄歷史(完成買賣後的)資金變化 def recordFunds(self, funds: Decimal): self.funds_history.append(funds) def getTradeRecord(self, guid): if self.trade_record.__contains__(guid): return self.trade_record[guid] else: return None def iterTradeRecord(self): for guid, trade_record in self.trade_record.items(): yield guid, trade_record def display(self, *args): if self.report is None: self.report = Report(history=self, logger_dir=self.logger_dir, logger_name=self.logger_name) self.report.display(*args) def getIncome(self): income = Decimal("0") for trade_record in self.trade_record.values(): income += trade_record.income return income def recordFallingPrice(self, falling_price: Decimal): """ 前一次購買到下一次購買之間為計算區間,購買價與區間最低價的落差 :param falling_price: 跌價 :return: """ self.falling_price.append(falling_price) def getFallingPriceParam(self): if len(self.falling_price) > 0: self.falling_price.sort() mean = Decimal(str(np.mean(self.falling_price))) std = Decimal(str(np.std(self.falling_price))) mean = mean.quantize(Decimal('.0000'), ROUND_HALF_UP) std = std.quantize(Decimal('.0000'), ROUND_HALF_UP) return mean, std else: return Decimal("0.0000"), Decimal("0.0000") def resetFallingPrice(self): self.falling_price = [] def getStopValueParam(self): stop_value_movings = [] n_stop_value_movings = [] for trade_record in self.trade_record.values(): # stop_value_moving: 一維陣列 of Decimal stop_value_moving = trade_record.stop_value_moving # 併入 stop_value_movings(同為一維陣列) stop_value_movings += stop_value_moving # trade_record.n_stop_value_moving: int n_stop_value_movings.append(Decimal(str(len(stop_value_moving)))) if len(stop_value_movings) > 0: stop_value_moving = np.mean(stop_value_movings) stop_value_moving = Decimal(str(stop_value_moving)).quantize(Decimal('.00'), ROUND_HALF_UP) n_stop_value_moving = np.mean(n_stop_value_movings) n_stop_value_moving = Decimal(str(n_stop_value_moving)).quantize(Decimal('.00'), ROUND_HALF_UP) return stop_value_moving, n_stop_value_moving else: # print("交易期間尚未發生 stop_value 的調整") return Decimal("0.00"), Decimal("0.00") def getTimeRange(self): start_time = datetime.datetime.today() stop_time = datetime.datetime(1970, 1, 1) for trade_record in self.trade_record.values(): start_time = min(start_time, trade_record.buy_time) stop_time = max(stop_time, trade_record.sell_time) return stop_time - start_time def reset(self): # 紀錄交易(key: guid, value: TradeRecord) self.trade_record = dict() # 紀錄資金的變化 self.funds_history = [] # 紀錄收益 self.income = [] # 跌價 self.falling_price = [] self.report = None def reportResult(self, *args): if self.report is None: self.report = Report(history=self, logger_dir=self.logger_dir, logger_name=self.logger_name) self.report.report_(*args) # TODO: 各指標皆須考慮無數值的問題(可能執行期間不足以產生特定數據) class Report: def __init__(self, history: History, logger_dir="report", logger_name=datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")): self.logger_dir = logger_dir self.logger_name = logger_name self.extra = {"className": self.__class__.__name__} self.logger = getLogger(logger_name=self.logger_name, to_file=True, time_file=False, file_dir=self.logger_dir, instance=True) self.history = history self.stock_id = self.history.stock_id self.n_trade = Decimal(str(len(self.history))) self.zero_trading_msg = f"({self.stock_id}) 總交易次數為 0,因某些原因,一次交易都沒有成立" gv.initialize() # region 初始數據 """ 數據報告應劃分為兩種導向: 1.交易導向 2.時間導向 1. 交易導向: 以一次次的交易為計算單位,衡量每次交易的效益,history 原始數據即為'交易導向' 2. 時間導向: 將同一天內的交易合併為一筆數據,衡量時間報酬率,評估每天、每年等時間區段可獲得的報酬率 時間導向不討論 profit 和 loss,畢竟已經根據日期做了整合性的計算,再細分 profit 和 loss 的意義不大 """ self.trading_time = None self.trading_revenue = None self.trading_income = None self.trading_cost = None self.trading_profit = None self.trading_loss = None self.date_times = None self.date_incomes = None self.date_costs = None self.funds_history = self.history.funds_history # MDD(最大交易回落): 指帳戶淨值從最高點的滑落程度,意義在於,從任一時間點進場可能遇到的最糟狀況。 self.max_drawdown = self.computeMaxDrawdown() # 年化風報比: 為了這些獲利須承擔多大的風險 self.annualized_risk_ratio = Decimal("0") # 權益曲線(Equity Curve)反映的就是帳戶淨值的變化。 -> 剩餘資金 + cumDateIncome self.date_cum_incomes = [] self.initTradingDict() self.initDateDict() # endregion # 跌價紀錄 self.falling_price = self.history.falling_price def __str__(self): description = descriptiveStatistics(self.trading_income, f"Report({self.stock_id})") return description __repr__ = __str__ def initTradingDict(self): if self.n_trade > 0: trading_time = [] trading_revenue = [] trading_income = [] trading_cost = [] for guid, trade_record in self.history.iterTradeRecord(): trading_time.append(trade_record.buy_time) trading_revenue.append(trade_record.revenue) trading_income.append(trade_record.income) trading_cost.append(trade_record.buy_cost + trade_record.sell_cost) # TODO: 若未能交易,這些數值都會是空的 self.trading_time = np.array(trading_time) self.trading_revenue = np.array(trading_revenue) self.trading_income = np.array(trading_income) self.trading_cost = np.array(trading_cost) # 風報比:常常聽到「風報比」這個詞,白話講就是「為了這些獲利須承擔多大的風險」。 # 公式是 風報比 = 淨獲利 / MDD,這項在績效報告中並沒有,須自己運算。 # 也可以進一步把風報比年化,以利不同回測長度的策略間比較,公式是 年化風報比 = (淨獲利 / 回測年數) / MDD。 if len(self.trading_income) > 0: income = Decimal(str(self.trading_income.sum())) during_years = Decimal(str(self.history.getTimeRange() / datetime.timedelta(days=365.25))) # 若資金未曾下跌,max_drawdown 會是 0,這裡在避免 annualized_risk_ratio 除以 0 self.max_drawdown = max(self.max_drawdown, Decimal("1e-8")) self.annualized_risk_ratio = ((income / during_years) / self.max_drawdown).quantize( Decimal('.0000'), ROUND_HALF_UP) self.logger.info(f"({self.stock_id}) 年化風報比: {self.annualized_risk_ratio}", extra=self.extra) self.logger.info(f"({self.stock_id}) 最大交易回落: {self.max_drawdown}", extra=self.extra) self.logger.debug(f"({self.stock_id}) funds_history: {self.funds_history}", extra=self.extra) # TODO: income = 0 也被算入 profit,檢視是否會有何不協調的地方 self.trading_profit = self.trading_income[np.where(self.trading_income >= 0)] self.trading_loss = self.trading_income[np.where(self.trading_income < 0)] else: self.logger.info(self.zero_trading_msg, extra=self.extra) def initDateDict(self): def zero(): return 0 if self.n_trade > 0: date_times = [trading_time.date() for trading_time in self.trading_time] n_data = len(date_times) # 根據日期區分的數據 date_income_dict = defaultdict(zero) date_cost_dict = defaultdict(zero) for i in range(n_data): date_time = date_times[i] date_income_dict[date_time] += self.trading_income[i] date_cost_dict[date_time] += self.trading_cost[i] # 有序、不重複 日期陣列 self.date_times = list(set(date_times)) self.date_times.sort() date_incomes = [] date_costs = [] # 從'有序、不重複 日期陣列',依序取出日期,再根據日期取出數據 for date_time in self.date_times: date_incomes.append(date_income_dict[date_time]) date_costs.append(date_cost_dict[date_time]) self.date_incomes =
np.array(date_incomes)
numpy.array
""" Tests for functions in imaging module Run at the project directory with: nosetests code/utils/tests/test_imaging.py """ # Loading modules. from __future__ import absolute_import, division, print_function import numpy as np import nibabel as nib import os import sys from numpy.testing import assert_almost_equal, assert_array_equal, assert_equal # Add path to functions to the system path. sys.path.append(os.path.join(os.path.dirname(__file__), "../functions/")) # Load our visualization functions. from Image_Visualizing import present_3d, make_mask,present_3d_options # all tests of present are looking at the output sizes of the 2d arrays def test_present(): # Read in the image data. data = np.arange(100000) data = data.reshape((100,100,10)) full=present_3d(data) assert full.shape == (400,300) def test_present_options_2(): data = np.arange(100000) data = data.reshape((100,100,10)) full=present_3d_options(data,axis=2) first=np.ceil(np.sqrt(10)) second=np.ceil(10/first) assert full.shape == (100*first,100*second) def test_present_options_1(): data = np.arange(100000) data = data.reshape((100,100,10)) full=present_3d_options(data,axis=1) assert full.shape == (10*10,100*10) def test_present_options_0(): data =
np.arange(100000)
numpy.arange
# Copyright 2020 The PyMC Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import aesara import aesara.tensor as at import numpy as np import pytest import scipy.stats as st from aesara.graph.basic import ancestors from aesara.tensor.random.op import RandomVariable from aesara.tensor.random.var import ( RandomGeneratorSharedVariable, RandomStateSharedVariable, ) from aesara.tensor.sort import SortOp from arviz.data.inference_data import InferenceData import pymc as pm from pymc.aesaraf import floatX from pymc.backends.base import MultiTrace from pymc.smc.smc import IMH from pymc.tests.helpers import SeededTest, assert_random_state_equal class TestSMC(SeededTest): """Tests for the default SMC kernel""" def setup_class(self): super().setup_class() self.samples = 1000 n = 4 mu1 = np.ones(n) * 0.5 mu2 = -mu1 stdev = 0.1 sigma = np.power(stdev, 2) * np.eye(n) isigma = np.linalg.inv(sigma) dsigma = np.linalg.det(sigma) w1 = stdev w2 = 1 - stdev def two_gaussians(x): """ Mixture of gaussians likelihood """ log_like1 = ( -0.5 * n * at.log(2 * np.pi) - 0.5 * at.log(dsigma) - 0.5 * (x - mu1).T.dot(isigma).dot(x - mu1) ) log_like2 = ( -0.5 * n * at.log(2 * np.pi) - 0.5 * at.log(dsigma) - 0.5 * (x - mu2).T.dot(isigma).dot(x - mu2) ) return at.log(w1 * at.exp(log_like1) + w2 * at.exp(log_like2)) with pm.Model() as self.SMC_test: X = pm.Uniform("X", lower=-2, upper=2.0, shape=n) llk = pm.Potential("muh", two_gaussians(X)) self.muref = mu1 with pm.Model() as self.fast_model: x = pm.Normal("x", 0, 1) y = pm.Normal("y", x, 1, observed=0) def test_sample(self): initial_rng_state = np.random.get_state() with self.SMC_test: mtrace = pm.sample_smc(draws=self.samples, return_inferencedata=False) # Verify sampling was done with a non-global random generator assert_random_state_equal(initial_rng_state, np.random.get_state()) x = mtrace["X"] mu1d = np.abs(x).mean(axis=0) np.testing.assert_allclose(self.muref, mu1d, rtol=0.0, atol=0.03) def test_discrete_rounding_proposal(self): """ Test that discrete variable values are automatically rounded in SMC logp functions """ with pm.Model() as m: z = pm.Bernoulli("z", p=0.7) like = pm.Potential("like", z * 1.0) smc = IMH(model=m) smc.initialize_population() smc._initialize_kernel() assert smc.prior_logp_func(floatX(np.array([-0.51]))) == -np.inf assert np.isclose(smc.prior_logp_func(floatX(np.array([-0.49]))), np.log(0.3)) assert np.isclose(smc.prior_logp_func(floatX(np.array([0.49]))), np.log(0.3)) assert np.isclose(smc.prior_logp_func(floatX(
np.array([0.51])
numpy.array
## Copyright (c) 2017 <NAME> GmbH ## All rights reserved. ## ## This source code is licensed under the MIT license found in the ## LICENSE file in the root directory of this source tree. import torch import torch.nn as nn import torch.nn.functional as F from torch import optim import numpy as np from torch.nn.utils import weight_norm import pickle import sys from termcolor import colored from modules.hierarchical_embedding import HierarchicalEmbedding from modules.embeddings import LearnableEmbedding, SineEmbedding def sqdist(A, B): return (A**2).sum(dim=2)[:,:,None] + (B**2).sum(dim=2)[:,None,:] - 2 * torch.bmm(A, B.transpose(1,2)) class ResidualBlock(nn.Module): def __init__(self, d_in, d_out, groups=1, dropout=0.0): super().__init__() assert d_in % groups == 0, "Input dimension must be a multiple of groups" assert d_out % groups == 0, "Output dimension must be a multiple of groups" self.d_in = d_in self.d_out = d_out self.proj = nn.Sequential(nn.Conv1d(d_in, d_out, kernel_size=1, groups=groups), nn.ReLU(inplace=True), nn.Dropout(dropout), nn.Conv1d(d_out, d_out, kernel_size=1, groups=groups), nn.Dropout(dropout)) if d_in != d_out: self.downsample = nn.Conv1d(d_in, d_out, kernel_size=1, groups=groups) def forward(self, x): assert x.size(1) == self.d_in, "x dimension does not agree with d_in" return x + self.proj(x) if self.d_in == self.d_out else self.downsample(x) + self.proj(x) class GraphLayer(nn.Module): def __init__(self, d_model, d_inner, n_head, d_head, dropout=0.0, attn_dropout=0.0, wnorm=False, use_quad=False, lev=0): super().__init__() self.d_model = d_model self.d_inner = d_inner self.n_head = n_head self.d_head = d_head self.dropout = nn.Dropout(dropout) self.attn_dropout = nn.Dropout(attn_dropout) self.lev = lev self.use_quad = use_quad # To produce the query-key-value for the self-attention computation self.qkv_net = nn.Linear(d_model, 3*d_model) self.o_net = nn.Linear(n_head*d_head, d_model, bias=False) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.proj1 = nn.Linear(d_model, d_inner) self.proj2 = nn.Linear(d_inner, d_model) self.gamma = nn.Parameter(torch.ones(4, 4)) # For different sub-matrices of D self.sqrtd = np.sqrt(d_head) if wnorm: self.wnorm() def wnorm(self): self.qkv_net = weight_norm(self.qkv_net, name="weight") self.o_net = weight_norm(self.o_net, name="weight") self.proj1 = weight_norm(self.proj1, name="weight") self.proj2 = weight_norm(self.proj2, name="weight") def forward(self, Z, D, new_mask, mask, RA, RB, RT, RQ, store=False): # RA = slice(0,N), RB = slice(N,N+M), RT = slice(N+M, N+M+P) bsz, n_elem, nhid = Z.size() n_head, d_head, d_model = self.n_head, self.d_head, self.d_model assert nhid == d_model, "Hidden dimension of Z does not agree with d_model" # create gamma mask gamma_mask = torch.ones_like(D) all_slices = [RA, RB, RT, RQ] if self.use_quad else [RA, RB, RT] for i, slice_i in enumerate(all_slices): for j, slice_j in enumerate(all_slices): gamma_mask[:, slice_i, slice_j] = self.gamma[i, j] # N+M+P+Q = 333 # d_model = 650 # n_head = 10 # Z.shape= torch.Size([48, 333, 650]) # D.shape= torch.Size([48, 333, 333]) # new_mask.shape= torch.Size([48, 333, 333]) torch.Size([48, 333, 333]) # V.shape= torch.Size([48, 333, 10, 65]) # Q.shape= torch.Size([48, 333, 10, 65]) # K.shape= torch.Size([48, 333, 10, 65]) # V.shape= torch.Size([48, 333, 10, 65]) # W.shape= torch.Size([48, 10, 333, 333]) # WV.shape= torch.Size([48, 333, 10, 65]) # attn_out.shape= torch.Size([48, 333, 650]) # ret.shape= torch.Size([48, 333, 650]) # Self-attention inp = Z Z = self.norm1(Z) V, Q, K = self.qkv_net(Z).view(bsz, n_elem, n_head, 3*d_head).chunk(3, dim=3) # "V, Q, K" W = -(gamma_mask*D)[:,None] + torch.einsum('bnij, bmij->binm', Q, K).type(D.dtype) / self.sqrtd + new_mask[:,None] W = self.attn_dropout(F.softmax(W, dim=3).type(mask.dtype) * mask[:, None]) # softmax(-gamma*D + Q^T K) if store: pickle.dump(W.cpu().detach().numpy(), open(f'analysis/layer_{self.lev}_W.pkl', 'wb')) attn_out = torch.einsum('binm,bmij->bnij', W, V.type(W.dtype)).contiguous().view(bsz, n_elem, d_model) attn_out = self.dropout(self.o_net(F.leaky_relu(attn_out))) Z = attn_out + inp # Position-wise feed-forward inp = Z Z = self.norm2(Z) # d_model -> d_inner -> d_model return self.proj2(self.dropout(F.relu(self.proj1(Z)))) + inp class GraphTransformer(nn.Module): def __init__(self, dim, # model dim n_layers, final_dim, d_inner, fdim=30, # feature dim; embed_dim = dim - fdim dropout=0.0, dropatt=0.0, final_dropout=0.0, n_head=10, num_atom_types=[5, 13, 27], num_bond_types=[28, 53, 69], num_triplet_types=[29, 118], num_quad_types=[62], #min_bond_dist=0.9586, #max_bond_dist=3.9244, dist_embedding="sine", atom_angle_embedding="learnable", trip_angle_embedding="learnable", quad_angle_embedding="learnable", wnorm=False, use_quad=False ): super().__init__() num_atom_types = np.array(num_atom_types) num_bond_types = np.array(num_bond_types) num_triplet_types = np.array(num_triplet_types) num_quad_types = np.array(num_quad_types) if atom_angle_embedding == 'learnable': # features = [closes atoms angle, partial charge] self.atom_embedding = LearnableEmbedding(len(num_atom_types), num_atom_types+1, d_embeds=dim-fdim, d_feature=fdim, n_feature=2) else: self.atom_embedding = SineEmbedding(len(num_atom_types), num_atom_types+1, dim, n_feature=2) if dist_embedding == 'learnable': # features: [bond_dist] self.bond_embedding = LearnableEmbedding(len(num_bond_types), num_bond_types+1, d_embeds=dim-fdim, d_feature=fdim, n_feature=1) else: self.bond_embedding = SineEmbedding(len(num_bond_types), num_bond_types+1, dim, n_feature=1) if trip_angle_embedding == 'learnable': # features: [angle] self.triplet_embedding = LearnableEmbedding(len(num_triplet_types), num_triplet_types+1, d_embeds=dim-fdim, d_feature=fdim, n_feature=1) else: self.triplet_embedding = SineEmbedding(len(num_triplet_types), num_triplet_types+1, dim) if use_quad: if quad_angle_embedding == 'learnable': self.quad_embedding = LearnableEmbedding(len(num_quad_types), num_quad_types+1, d_embeds=dim-fdim, d_feature=fdim, n_feature=1) else: self.quad_embedding = SineEmbedding(len(num_quad_types), num_quad_types+1, dim) self.fdim = fdim self.dim = dim #self.min_bond_dist = min_bond_dist #self.max_bond_dist = max_bond_dist self.wnorm = wnorm self.use_quad = use_quad print(f"{'' if use_quad else colored('Not ', 'cyan')}Using Quadruplet Features") self.n_head = n_head assert dim % n_head == 0, "dim must be a multiple of n_head" self.layers = nn.ModuleList([GraphLayer(d_model=dim, d_inner=d_inner, n_head=n_head, d_head=dim//n_head, dropout=dropout, attn_dropout=dropatt, wnorm=wnorm, use_quad=use_quad, lev=i+1) for i in range(n_layers)]) self.final_norm = nn.LayerNorm(dim) # TODO: Warning: we are predicting with the second-hierarchy bond (sub)types!!!!! self.final_dropout = final_dropout final_dim = num_bond_types[1] * final_dim self.final_lin1 = nn.Conv1d(dim, final_dim, kernel_size=1) self.final_res = nn.Sequential( ResidualBlock(final_dim, final_dim, groups=int(num_bond_types[1]), dropout=final_dropout), nn.Conv1d(final_dim, num_bond_types[1], kernel_size=1, groups=int(num_bond_types[1])) ) self.apply(self.weights_init) def forward(self, x_atom, x_atom_pos, x_bond, x_bond_dist, x_triplet, x_triplet_angle, x_quad, x_quad_angle): # PART I: Form the embeddings and the distance matrix bsz = x_atom.shape[0] N = x_atom.shape[1] M = x_bond.shape[1] P = x_triplet.shape[1] Q = x_quad.shape[1] if self.use_quad else 0 D = torch.zeros(x_atom.shape[0], N+M+P+Q, N+M+P+Q, device=x_atom.device) RA = slice(0,N) RB = slice(N,N+M) RT = slice(N+M, N+M+P) RQ = slice(N+M+P, N+M+P+Q) D[:,RA,RA] = sqdist(x_atom_pos[:,:,:3], x_atom_pos[:,:,:3]) # Only the x,y,z information, not charge/angle for i in range(D.shape[0]): # bonds a1,a2 = x_bond[i,:,3], x_bond[i,:,4] D[i, RA, RB] = torch.min(D[i, RA, a1], D[i, RA, a2]) D[i, RB, RA] = D[i, RA, RB].transpose(0,1) D[i, RB, RB] = (D[i,a1,RB] + D[i,a2,RB])/2 D[i, RB ,RB] = (D[i,RB,RB] + D[i,RB,RB].transpose(0,1))/2 # triplets a1, a2, a3 = x_triplet[i,:,1], x_triplet[i,:,2], x_triplet[i,:,3] b1, b2 = x_triplet[i,:,4], x_triplet[i,:,5] D[i, RA, RT] = torch.min(torch.min(D[i,RA,a1], D[i,RA,a2]), D[i,RA, a3]) + D[i,RA,a1] D[i, RT, RA] = D[i,RA,RT].transpose(0,1) D[i, RB, RT] = torch.min(D[i,RB,b1], D[i,RB,b2]) D[i, RT, RB] = D[i,RB,RT].transpose(0,1) D[i, RT, RT] = (D[i,b1,RT] + D[i,b2,RT]) / 2 D[i, RT, RT] = (D[i,RT,RT] + D[i,RT,RT].transpose(0,1)) / 2 if self.use_quad: # quad a1,a2,a3,a4 = x_quad[i,:,1], x_quad[i,:,2], x_quad[i,:,3], x_quad[i,:,4] b1,b2,b3 = x_quad[i,:,5], x_quad[i,:,6], x_quad[i,:,7] t1,t2 = x_quad[i,:,8], x_quad[i,:,9] D[i,RA,RQ] = torch.min(torch.min(torch.min(D[i,RA,a1], D[i,RA,a2]), D[i,RA, a3]), D[i,RA,a4]) + \ torch.min(D[i,RA,a1], D[i,RA,a2]) D[i,RQ,RA] = D[i,RA,RQ].transpose(0,1) D[i,RB,RQ] = torch.min(torch.min(D[i,RB,b1], D[i,RB,b2]), D[i,RB, b3]) + D[i,RB,b1] D[i,RQ,RB] = D[i,RB,RQ].transpose(0,1) D[i,RT,RQ] = torch.min(D[i,RT,t1], D[i,RT,t2]) D[i,RQ,RT] = D[i,RT,RQ].transpose(0,1) D[i,RQ,RQ] = (D[i,t1,RQ] + D[i,t2,RQ]) / 2 D[i,RQ,RQ] = (D[i,RQ,RQ] + D[i,RQ,RQ].transpose(0,1))/2 # No interaction (as in attention = 0) if query or key is the zero padding... if self.use_quad: mask = torch.cat([x_atom[:,:,0] > 0, x_bond[:,:,0] > 0, x_triplet[:,:,0] > 0, x_quad[:,:,0] > 0], dim=1).type(x_atom_pos.dtype) else: mask = torch.cat([x_atom[:,:,0] > 0, x_bond[:,:,0] > 0, x_triplet[:,:,0] > 0], dim=1).type(x_atom_pos.dtype) mask = torch.einsum('bi, bj->bij', mask, mask) new_mask = -1e20 * torch.ones_like(mask).to(mask.device) new_mask[mask > 0] = 0 if self.use_quad: Z = torch.cat([ self.atom_embedding(x_atom[:,:,:3], x_atom_pos[:,:,3:]), self.bond_embedding(x_bond[:,:,:3], x_bond_dist), self.triplet_embedding(x_triplet[:,:,:2], x_triplet_angle), self.quad_embedding(x_quad[:,:,:1], x_quad_angle)], dim=1) else: Z = torch.cat([ self.atom_embedding(x_atom[:,:,:3], x_atom_pos[:,:,3:]), self.bond_embedding(x_bond[:,:,:3], x_bond_dist), self.triplet_embedding(x_triplet[:,:,:2], x_triplet_angle)], dim=1) # PART II: Pass through a bunch of self-attention and position-wise feed-forward blocks seed =
np.random.uniform(0,1)
numpy.random.uniform
from torch import nn import torch.nn.functional as F import numpy as np from PIL import Image import os import shutil from config import cfg import pdb import math def weights_normal_init(*models): for model in models: dev=0.01 if isinstance(model, list): for m in model: weights_normal_init(m, dev) else: for m in model.modules(): if isinstance(m, nn.Conv2d): m.weight.data.normal_(0.0, dev) if m.bias is not None: m.bias.data.fill_(0.0) elif isinstance(m, nn.Linear): m.weight.data.normal_(0.0, dev) def initialize_weights(*models): for model in models: if isinstance(model, list): for m in model: initialize_weights(m) else: for module in model.modules(): if isinstance(module, nn.Conv2d): n = module.kernel_size[0] * module.kernel_size[1] * module.out_channels module.weight.data.normal_(0, math.sqrt(2. / n)) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.BatchNorm2d): module.weight.data.fill_(1) module.bias.data.zero_() elif isinstance(module, nn.Linear): n = module.weight.size(1) module.weight.data.normal_(0, math.sqrt(2. / n)) module.bias.data.zero_() def weights_init_kaiming(*models): for model in models: if isinstance(model, list): for m in model: weights_init_kaiming(m) else: for module in model.modules(): if isinstance(module, nn.Conv2d): #kaiming is first name of author whose last name is 'He' lol nn.init.kaiming_uniform(module.weight) module.bias.data.zero_() def adjust_learning_rate(lr, decay, optimizer, cur_epoch, n_epochs): """Sets the learning rate to the initially configured `lr` decayed by `decay` every `n_epochs`""" new_lr = lr * (decay ** (cur_epoch // n_epochs)) for param_group in optimizer.param_groups: param_group['lr'] = new_lr def calculate_mean_iu(predictions, gts, num_classes): sum_iu = 0 class_iu = [] for i in range(num_classes): n_ii = t_i = sum_n_ji = 1e-9 for p, gt in zip(predictions, gts): n_ii += np.sum(gt[p == i] == i) t_i += np.sum(gt == i) sum_n_ji += np.sum(p == i) sum_iu += float(n_ii) / (t_i + sum_n_ji - n_ii) class_iu.append(float(n_ii) / (t_i + sum_n_ji - n_ii)) mean_iu = sum_iu / num_classes return mean_iu,class_iu def calculate_lane_metrics(predictions, gts, num_classes): sum_iu = 0 class_iu = [] acc = [] rec = [] f1_m = [] for i in range(num_classes): tp = fp = fn = 0. for p, gt in zip(predictions, gts): tp += np.sum(gt[p == i] == i) fp += np.sum( (gt[p == i] != i )) fn += np.sum(gt[p != i] == i) class_iu.append(tp / (tp + fp + fn + 1e-9)) acc.append(tp/(tp+fp+1e-9)) rec.append(tp/(tp+fn+1e-9)) f1_m.append(2*acc[i]*rec[i]/(acc[i]+rec[i]+1e-9)) sum_iu += tp / (tp + fp + fn + 1e-9) mean_iu = sum_iu / num_classes return {'miu':mean_iu, 'ciu':class_iu },\ {'acc':acc, 'rec':rec, 'f1_m':f1_m } class CrossEntropyLoss2d(nn.Module): def __init__(self, weight=None, size_average=True): super(CrossEntropyLoss2d, self).__init__() self.nll_loss = nn.NLLLoss2d(weight, size_average) def forward(self, inputs, targets): return self.nll_loss(F.log_softmax(inputs), targets) def rmrf_mkdir(dir_name): if os.path.exists(dir_name): shutil.rmtree(dir_name) os.mkdir(dir_name) def rm_file(path_file): if os.path.exists(path_file): os.remove(path_file) def colorize_mask(mask): # mask: numpy array of the mask new_mask = Image.fromarray(mask.astype(np.uint8)).convert('P') new_mask.putpalette(cfg.VIS.PALETTE_LABEL_COLORS) return new_mask def scores(predictions, gts, num_classes): hist = np.zeros((num_classes, num_classes)) for lp, lt in zip(predictions, gts): hist += _fast_hist(lp.flatten(), lt.flatten(), num_classes) # axis 0: gt, axis 1: prediction # acc = np.diag(hist).sum() / hist.sum() # acc_cls = np.diag(hist) / hist.sum(axis=1) # acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)) mean_iu = np.nanmean(iu) # freq = hist.sum(axis=1) / hist.sum() # fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() # return acc, acc_cls, mean_iu, fwavacc # pdb.set_trace() return {'miu':mean_iu, 'ciu':iu } def acc(predictions, gts, num_classes=2): predictions = predictions.data.numpy().astype(np.int64) gts = gts.data.numpy().astype(np.int64) predictions[predictions>=0.5]=1 predictions[predictions<0.5]=0 t = predictions==gts acc = np.sum(t)/float((t.shape[0]*t.shape[1])) return acc def _fast_hist(label_pred, label_true, num_classes): mask = (label_true >= 0) & (label_true < num_classes) hist = np.bincount( num_classes * label_true[mask].astype(int) + label_pred[mask], minlength=num_classes ** 2).reshape(num_classes, num_classes) return hist def streaming_scores(hist,predictions, gts, num_classes): for lp, lt in zip(predictions, gts): hist += _fast_hist(lp.flatten(), lt.flatten(), num_classes) # axis 0: gt, axis 1: prediction # acc = np.diag(hist).sum() / hist.sum() # acc_cls = np.diag(hist) / hist.sum(axis=1) # acc_cls = np.nanmean(acc_cls) iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)) mean_iu =
np.nanmean(iu)
numpy.nanmean
# plotting import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt import seaborn as sns # numpy import numpy as np # scipy import scipy as sp import scipy.interpolate from scipy.special import erfinv, erf from scipy.stats import poisson as pss import scipy.fftpack import scipy.sparse # jit from numba import jit import ctypes import astropy import astropy as ap from astropy.convolution import convolve_fft, AiryDisk2DKernel import pickle # multiprocessing import multiprocessing as mp from copy import deepcopy # utilities import os, time, sys, glob, fnmatch, inspect, traceback, functools # HealPix import healpy as hp # ignore warnings if not in diagnostic mode import warnings #seterr(divide='raise', over='raise', invalid='raise') #seterr(all='raise') #seterr(under='ignore') #warnings.simplefilter('ignore') #np.set_printoptions(linewidth=180) #sns.set(context='poster', style='ticks', color_codes=True) import h5py # utilities # secondaries ## Symbolic Jacobian calculation #import sympy # tdpy import tdpy from tdpy.util import summgene # photometry related ### find the spectra of sources def retr_spec(gdat, flux, sind=None, curv=None, expc=None, sindcolr=None, elin=None, edisintp=None, sigm=None, gamm=None, spectype='powr', plot=False): if gdat.numbener == 1: spec = flux[None, :] else: if plot: meanener = gdat.meanpara.enerplot else: meanener = gdat.meanpara.ener if gmod.spectype == 'gaus': spec = 1. / edis[None, :] / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis[None, :])**2) if gmod.spectype == 'voig': args = (gdat.meanpara.ener[:, None] + 1j * gamm[None, :]) / np.sqrt(2.) / sigm[None, :] spec = 1. / sigm[None, :] / np.sqrt(2. * pi) * flux[None, :] * real(scipy.special.wofz(args)) if gmod.spectype == 'edis': edis = edisintp(elin)[None, :] spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'pvoi': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'lore': spec = 1. / edis / np.sqrt(2. * pi) * flux[None, :] * np.exp(-0.5 * ((gdat.meanpara.ener[:, None] - elin[None, :]) / edis)**2) if gmod.spectype == 'powr': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) if gmod.spectype == 'colr': if plot: spec = np.zeros((gdat.numbenerplot, flux.size)) else: spec = np.empty((gdat.numbener, flux.size)) for i in gdat.indxener: if i < gdat.indxenerpivt: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i]) elif i == gdat.indxenerpivt: spec[i, :] = flux else: spec[i, :] = flux * (gdat.meanpara.ener[i] / gdat.enerpivt)**(-sindcolr[i-1]) if gmod.spectype == 'curv': spec = flux[None, :] * meanener[:, None]**(-sind[None, :] - gdat.factlogtenerpivt[:, None] * curv[None, :]) if gmod.spectype == 'expc': spec = flux[None, :] * (meanener / gdat.enerpivt)[:, None]**(-sind[None, :]) * np.exp(-(meanener - gdat.enerpivt)[:, None] / expc[None, :]) return spec ### find the surface brightness due to one point source def retr_sbrtpnts(gdat, lgal, bgal, spec, psfnintp, indxpixlelem): # calculate the distance to all pixels from each point source dist = retr_angldistunit(gdat, lgal, bgal, indxpixlelem) # interpolate the PSF onto the pixels if gdat.kernevaltype == 'ulip': psfntemp = psfnintp(dist) if gdat.kernevaltype == 'bspx': pass # scale by the PS spectrum sbrtpnts = spec[:, None, None] * psfntemp return sbrtpnts def retr_psfnwdth(gdat, psfn, frac): ''' Return the PSF width ''' wdth = np.zeros((gdat.numbener, gdat.numbevtt)) for i in gdat.indxener: for m in gdat.indxevtt: psfntemp = psfn[i, :, m] indxanglgood = np.argsort(psfntemp) intpwdth = max(frac * np.amax(psfntemp), np.amin(psfntemp)) if intpwdth >= np.amin(psfntemp[indxanglgood]) and intpwdth <= np.amax(psfntemp[indxanglgood]): wdthtemp = sp.interpolate.interp1d(psfntemp[indxanglgood], gdat.binspara.angl[indxanglgood], fill_value='extrapolate')(intpwdth) else: wdthtemp = 0. wdth[i, m] = wdthtemp return wdth # lensing-related def samp_lgalbgalfromtmpl(gdat, probtmpl): indxpixldraw = np.random.choice(gdat.indxpixl, p=probtmpl) lgal = gdat.lgalgrid[indxpixldraw] + randn(gdat.sizepixl) bgal = gdat.bgalgrid[indxpixldraw] + randn(gdat.sizepixl) return lgal, bgal ## custom random variables, pdfs, cdfs and icdfs ### probability distribution functions def retr_lprbpois(data, modl): lprb = data * np.log(modl) - modl - sp.special.gammaln(data + 1) return lprb ### probability density functions def pdfn_self(xdat, minm, maxm): pdfn = 1. / (maxm - minm) return pdfn def pdfn_expo(xdat, maxm, scal): if (xdat > maxm).any(): pdfn = 0. else: pdfn = 1. / scal / (1. - np.exp(-maxm / scal)) * np.exp(-xdat / scal) return pdfn def pdfn_dexp(xdat, maxm, scal): pdfn = 0.5 * pdfn_expo(np.fabs(xdat), maxm, scal) return pdfn def pdfn_dpow(xdat, minm, maxm, brek, sloplowr, slopuppr): if np.isscalar(xdat): xdat = np.array([xdat]) faca = 1. / (brek**(sloplowr - slopuppr) * (brek**(1. - sloplowr) - minm**(1. - sloplowr)) / \ (1. - sloplowr) + (maxm**(1. - slopuppr) - brek**(1. - slopuppr)) / (1. - slopuppr)) facb = faca * brek**(sloplowr - slopuppr) / (1. - sloplowr) pdfn = np.empty_like(xdat) indxlowr = np.where(xdat <= brek)[0] indxuppr = np.where(xdat > brek)[0] if indxlowr.size > 0: pdfn[indxlowr] = faca * brek**(sloplowr - slopuppr) * xdat[indxlowr]**(-sloplowr) if indxuppr.size > 0: pdfn[indxuppr] = faca * xdat[indxuppr]**(-slopuppr) return pdfn def pdfn_powr(xdat, minm, maxm, slop): norm = (1. - slop) / (maxm**(1. - slop) - minm**(1. - slop)) pdfn = norm * xdat**(-slop) return pdfn def pdfn_logt(xdat, minm, maxm): pdfn = 1. / (np.log(maxm) - np.log(minm)) / xdat return pdfn def pdfn_igam(xdat, slop, cutf): pdfn = sp.stats.invgamma.pdf(xdat, slop - 1., scale=cutf) return pdfn def pdfn_lnor(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_gaus(xdat, mean, stdv): pdfn = 1. / np.sqrt(2. * pi) / stdv * np.exp(-0.5 * ((xdat - mean) / stdv)**2) return pdfn def pdfn_lgau(xdat, mean, stdv): pdfn = pdfn_gaus(np.log(xdat), np.log(mean), stdv) return pdfn def pdfn_atan(para, minmpara, maxmpara): pdfn = 1. / (para**2 + 1.) / (np.arctan(maxmpara) - np.arctan(minmpara)) return pdfn def cdfn_paragenrscalbase(gdat, strgmodl, paragenrscalbase, thisindxparagenrbase): gmod = getattr(gdat, strgmodl) scalparagenrbase = gmod.scalpara.genrbase[thisindxparagenrbase] if scalparagenrbase == 'self' or scalparagenrbase == 'logt' or scalparagenrbase == 'atan': listminmparagenrscalbase = gmod.minmpara.genrbase[thisindxparagenrbase] factparagenrscalbase = gmod.factparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'self': paragenrscalbaseunit = cdfn_self(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'logt': paragenrscalbaseunit = cdfn_logt(paragenrscalbase, listminmparagenrscalbase, factparagenrscalbase) elif scalparagenrbase == 'atan': gmod.listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[thisindxparagenrbase] paragenrscalbaseunit = cdfn_atan(paragenrscalbase, listminmparagenrscalbase, gmod.listmaxmparagenrscalbase) elif scalparagenrbase == 'gaus' or scalparagenrbase == 'eerr': gmod.listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[thisindxparagenrbase] gmod.liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[thisindxparagenrbase] if scalparagenrbase == 'eerr': gmod.cdfnlistminmparagenrscalbaseunit = gmod.cdfnlistminmparagenrscalbaseunit[thisindxparagenrbase] gmod.listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[thisindxparagenrbase] paragenrscalbaseunit = cdfn_eerr(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase, \ gmod.cdfnlistminmparagenrscalbaseunit, gmod.listparagenrscalbaseunitdiff) else: paragenrscalbaseunit = cdfn_gaus(paragenrscalbase, gmod.listmeanparagenrscalbase, gmod.liststdvparagenrscalbase) elif scalparagenrbase == 'pois': paragenrscalbaseunit = paragenrscalbase if gdat.booldiagmode: if paragenrscalbaseunit == 0: print('Warning. CDF is zero.') return paragenrscalbaseunit def icdf_paragenrscalfull(gdat, strgmodl, paragenrunitfull, indxparagenrfullelem): gmod = getattr(gdat, strgmodl) # tobechanged # temp -- change zeros to empty paragenrscalfull = np.zeros_like(paragenrunitfull) for scaltype in gdat.listscaltype: listindxparagenrbasescal = gmod.listindxparagenrbasescal[scaltype] if len(listindxparagenrbasescal) == 0: continue paragenrscalfull[listindxparagenrbasescal] = icdf_paragenrscalbase(gdat, strgmodl, paragenrunitfull[listindxparagenrbasescal], scaltype, listindxparagenrbasescal) if not np.isfinite(paragenrscalfull).all(): raise Exception('') if indxparagenrfullelem is not None: for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: indxparagenrfulltemp = indxparagenrfullelem[l][gmod.namepara.genrelem[l][g]] if indxparagenrfulltemp.size == 0: continue paragenrscalfull[indxparagenrfulltemp] = icdf_trap(gdat, strgmodl, paragenrunitfull[indxparagenrfulltemp], paragenrscalfull, \ gmod.listscalparagenrelem[l][g], gmod.namepara.genrelem[l][g], l) if gdat.booldiagmode: if not np.isfinite(paragenrscalfull[indxparagenrfulltemp]).all(): raise Exception('') if not np.isfinite(paragenrscalfull).all(): raise Exception('') return paragenrscalfull def icdf_paragenrscalbase(gdat, strgmodl, paragenrunitbase, scaltype, indxparagenrbasescal): gmod = getattr(gdat, strgmodl) if scaltype == 'self' or scaltype == 'logt' or scaltype == 'atan': minmparagenrscalbase = gmod.minmpara.genrbase[indxparagenrbasescal] factparagenrscalbase = gmod.factpara.genrbase[indxparagenrbasescal] if scaltype == 'self': paragenrscalbase = tdpy.icdf_self(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'logt': paragenrscalbase = tdpy.icdf_logt(paragenrunitbase, minmparagenrscalbase, factparagenrscalbase) elif scaltype == 'atan': listmaxmparagenrscalbase = gmod.listmaxmparagenrscalbase[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_atan(paragenrunitbase, minmparagenrscalbase, listmaxmparagenrscalbase) elif scaltype == 'gaus' or scaltype == 'eerr': listmeanparagenrscalbase = gmod.listmeanparagenrscalbase[indxparagenrbasescal] liststdvparagenrscalbase = gmod.liststdvparagenrscalbase[indxparagenrbasescal] if scaltype == 'eerr': cdfnminmparagenrscalbaseunit = gmod.cdfnminmparagenrscalbaseunit[indxparagenrbasescal] listparagenrscalbaseunitdiff = gmod.listparagenrscalbaseunitdiff[indxparagenrbasescal] paragenrscalbase = tdpy.icdf_eerr(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase, cdfnminmparagenrscalbaseunit, listparagenrscalbaseunitdiff) else: paragenrscalbase = tdpy.icdf_gaus(paragenrunitbase, listmeanparagenrscalbase, liststdvparagenrscalbase) elif scaltype == 'pois': paragenrscalbase = paragenrunitbase if gdat.booldiagmode: if not np.isfinite(paragenrscalbase).all(): print('scaltype') print(scaltype) print('paragenrscalbase') print(paragenrscalbase) print('type(paragenrscalbase)') print(type(paragenrscalbase)) print('paragenrscalbase.dtype') print(paragenrscalbase.dtype) raise Exception('') return paragenrscalbase def icdf_trap(gdat, strgmodl, cdfn, paragenrscalfull, scalcomp, nameparagenrelem, l): gmod = getattr(gdat, strgmodl) if scalcomp == 'self' or scalcomp == 'powr' or scalcomp == 'dpowslopbrek' or scalcomp == 'logt': minm = getattr(gmod.minmpara, nameparagenrelem) if scalcomp != 'self': maxm = getattr(gmod.maxmpara, nameparagenrelem) if scalcomp == 'powr': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio%spop%d' % (nameparagenrelem, l))] if gdat.booldiagmode: if not np.isfinite(slop): raise Exception('') if maxm < minm: raise Exception('') icdf = tdpy.icdf_powr(cdfn, minm, maxm, slop) if scalcomp == 'dpowslopbrek': distbrek = paragenrscalfull[getattr(gmod.indxpara, 'brekprio' + nameparagenrelem)[l]] sloplowr = paragenrscalfull[getattr(gmod.indxpara, 'sloplowrprio' + nameparagenrelem)[l]] slopuppr = paragenrscalfull[getattr(gmod.indxpara, 'slopupprprio' + nameparagenrelem)[l]] icdf = tdpy.icdf_dpow(cdfn, minm, maxm, distbrek, sloplowr, slopuppr) if scalcomp == 'expo': sexp = getattr(gmod, nameparagenrelem + 'distsexppop%d' % l) icdf = tdpy.icdf_expo(cdfn, maxm, sexp) if scalcomp == 'self': fact = getattr(gmod.factpara, nameparagenrelem) icdf = tdpy.icdf_self_fact(cdfn, minm, fact) if scalcomp == 'logt': icdf = tdpy.icdf_logt(cdfn, minm, fact) if scalcomp == 'dexp': scal = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distscal')[l]] icdf = tdpy.icdf_dexp(cdfn, maxm, scal) if scalcomp == 'lnormeanstdv': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_lnor(cdfn, distmean, diststdv) if scalcomp == 'igam': slop = paragenrscalfull[getattr(gmod.indxpara, 'slopprio' + nameparagenrelem)[l]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) icdf = tdpy.icdf_igam(cdfn, slop, cutf) if scalcomp == 'gaus': distmean = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'distmean')[l]] diststdv = paragenrscalfull[getattr(gmod.indxpara, nameparagenrelem + 'diststdv')[l]] icdf = tdpy.icdf_gaus(cdfn, distmean, diststdv) if gdat.booldiagmode: if not np.isfinite(icdf).all(): print('icdf') print(icdf) raise Exception('') return icdf def cdfn_trap(gdat, gdatmodi, strgmodl, icdf, indxpoplthis): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmod.listscalparagenrelem = gmod.listscalparagenrelem[indxpoplthis] cdfn = np.empty_like(icdf) for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[indxpoplthis]): if gmod.listscalparagenrelem[k] == 'self' or gmod.listscalparagenrelem[k] == 'dexp' or gmod.listscalparagenrelem[k] == 'expo' \ or gmod.listscalparagenrelem[k] == 'powr' or gmod.listscalparagenrelem[k] == 'dpowslopbrek': minm = getattr(gdat.fitt.minm, nameparagenrelem) if gmod.listscalparagenrelem[k] == 'powr': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) slop = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cdfn[k] = cdfn_powr(icdf[k], minm, maxm, slop) elif gmod.listscalparagenrelem[k] == 'dpowslopbrek': maxm = getattr(gdat.fitt.maxm, nameparagenrelem) brek = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[indxpoplthis]] sloplowr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[indxpoplthis]] slopuppr = gdatobjt.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[indxpoplthis]] cdfn[k] = cdfn_dpow(icdf[k], minm, maxm, brek, sloplowr, slopuppr) else: fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) cdfn[k] = cdfn_self(icdf[k], minm, fact) if gmod.listscalparagenrelem[k] == 'lnormeanstdv': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_lnor(icdf[k], distmean, slop) if gmod.listscalparagenrelem[k] == 'igam': slop = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[indxpoplthis]] cutf = getattr(gdat, 'cutf' + nameparagenrelem) cdfn[k] = cdfn_igam(icdf[k], slop, cutf) if gmod.listscalparagenrelem[k] == 'gaus': distmean = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[indxpoplthis]] diststdv = gdatmodi.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[indxpoplthis]] cdfn[k] = cdfn_gaus(icdf[k], distmean, diststdv) return cdfn ### update sampler state def updt_stat(gdat, gdatmodi): if gdat.typeverb > 1: print('updt_stat()') # update the sample and the unit sample vectors gdatmodi.this.lpritotl = gdatmodi.next.lpritotl gdatmodi.this.lliktotl = gdatmodi.next.lliktotl gdatmodi.this.lpostotl = gdatmodi.next.lpostotl gdatmodi.this.paragenrscalfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrscalfull[gdatmodi.indxsampmodi]) gdatmodi.this.paragenrunitfull[gdatmodi.indxsampmodi] = np.copy(gdatmodi.next.paragenrunitfull[gdatmodi.indxsampmodi]) if gdatmodi.this.indxproptype > 0: gdatmodi.this.indxelemfull = deepcopy(gdatmodi.next.indxelemfull) gdatmodi.this.indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdatmodi.this.indxelemfull, 'fitt') def initcompfromstat(gdat, gdatmodi, namerefr): for l in gmod.indxpopl: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): minm = getattr(gdat.fitt.minmpara, nameparagenrelem) maxm = getattr(gdat.fitt.maxmpara, nameparagenrelem) try: comp = getattr(gdat, namerefr + nameparagenrelem)[l][0, :] if gmod.listscalparagenrelem[l][g] == 'self' or gmod.listscalparagenrelem[l][g] == 'logt': fact = getattr(gdat.fitt, 'fact' + nameparagenrelem) if gmod.listscalparagenrelem[l][g] == 'self': compunit = cdfn_self(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'logt': compunit = cdfn_logt(comp, minm, fact) if gmod.listscalparagenrelem[l][g] == 'expo': scal = getattr(gdat.fitt, 'gangdistsexp') maxm = getattr(gdat.fitt.maxm, nameparagenrelem) compunit = cdfn_expo(icdf, maxm, scal) if gmod.listscalparagenrelem[l][g] == 'powr' or gmod.listscalparagenrelem[l][g] == 'igam': slop = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slop')[l]] if gmod.listscalparagenrelem[l][g] == 'powr': compunit = cdfn_powr(comp, minm, maxm, slop) if gmod.listscalparagenrelem[l][g] == 'igam': cutf = getattr(gdat, 'cutf' + nameparagenrelem) compunit = cdfn_igam(comp, slop, cutf) if gmod.listscalparagenrelem[l][g] == 'dpowslopbrek': brek = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distbrek')[l]] sloplowr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'sloplowr')[l]] slopuppr = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'slopuppr')[l]] compunit = cdfn_powr(comp, minm, maxm, brek, sloplowr, slopuppr) if gmod.listscalparagenrelem[l][g] == 'gaus': distmean = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'distmean')[l]] diststdv = gdatmodi.this.paragenrscalfull[getattr(gdat.fitt, 'indxparagenrbase' + nameparagenrelem + 'diststdv')[l]] compunit = cdfn_gaus(comp, distmean, diststdv) except: if gdat.typeverb > 0: print('Initialization from the reference catalog failed for %s. Sampling randomly...' % nameparagenrelem) compunit = np.random.rand(gdatmodi.this.paragenrscalfull[gmod.indxpara.numbelem[l]].astype(int)) gdatmodi.this.paragenrunitfull[gdatmodi.this.indxparagenrfullelem[l][nameparagenrelem]] = compunit ### find the set of pixels in proximity to a position on the map def retr_indxpixlelemconc(gdat, strgmodl, dictelem, l): gmod = getattr(gdat, strgmodl) lgal = dictelem[l]['lgal'] bgal = dictelem[l]['bgal'] varbampl = dictelem[l][gmod.nameparagenrelemampl[l]] if gmod.typeelemspateval[l] == 'locl': listindxpixlelem = [[] for k in range(lgal.size)] for k in range(lgal.size): indxpixlpnts = retr_indxpixl(gdat, bgal[k], lgal[k]) indxfluxproxtemp = np.digitize(varbampl[k], gdat.binspara.prox) if indxfluxproxtemp > 0: indxfluxproxtemp -= 1 if indxfluxproxtemp == gdat.binspara.prox.size - 1: print('Warning! Index of the proximity pixel list overflew. Taking the largest list...') indxfluxproxtemp -= 1 indxpixlelem = gdat.indxpixlprox[indxfluxproxtemp][indxpixlpnts] if isinstance(indxpixlelem, int): indxpixlelem = gdat.indxpixl listindxpixlelem[k] = indxpixlelem listindxpixlelemconc = np.unique(np.concatenate(listindxpixlelem)) else: listindxpixlelemconc = gdat.indxpixl listindxpixlelem = gdat.indxpixl return listindxpixlelem, listindxpixlelemconc ### find the distance between two points on the map def retr_angldistunit(gdat, lgal, bgal, indxpixlelem, retranglcosi=False): if gdat.typepixl == 'heal': xdat, ydat, zaxi = retr_unit(lgal, bgal) anglcosi = gdat.xdatgrid[indxpixlelem] * xdat + gdat.ydatgrid[indxpixlelem] * ydat + gdat.zaxigrid[indxpixlelem] * zaxi if retranglcosi: return anglcosi else: angldist = np.arccos(anglcosi) return angldist else: angldist = np.sqrt((lgal - gdat.lgalgrid[indxpixlelem])**2 + (bgal - gdat.bgalgrid[indxpixlelem])**2) return angldist ### find the pixel index of a point on the map def retr_indxpixl(gdat, bgal, lgal): if gdat.typepixl == 'heal': indxpixl = gdat.pixlcnvt[hp.ang2pix(gdat.numbsideheal, np.pi / 2. - bgal, lgal)] if gdat.booldiagmode: if (indxpixl == -1).any(): raise Exception('pixlcnvt went negative!') if gdat.typepixl == 'cart': indxlgcr = np.floor(gdat.numbsidecart * (lgal - gdat.minmlgaldata) / 2. / gdat.maxmgangdata).astype(int) indxbgcr = np.floor(gdat.numbsidecart * (bgal - gdat.minmbgaldata) / 2. / gdat.maxmgangdata).astype(int) if np.isscalar(indxlgcr): if indxlgcr < 0: indxlgcr = 0 if indxlgcr >= gdat.numbsidecart: indxlgcr = gdat.numbsidecart - 1 else: indxlgcr[np.where(indxlgcr < 0)] = 0 indxlgcr[np.where(indxlgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 if np.isscalar(indxbgcr): if indxbgcr < 0: indxbgcr = 0 if indxbgcr >= gdat.numbsidecart: indxbgcr = gdat.numbsidecart - 1 else: indxbgcr[np.where(indxbgcr < 0)] = 0 indxbgcr[np.where(indxbgcr >= gdat.numbsidecart)] = gdat.numbsidecart - 1 indxpixl = indxlgcr * gdat.numbsidecart + indxbgcr # convert to an index of non-zero exposure pixels #indxpixl = gdat.indxpixlroficnvt[indxpixl] return indxpixl ## obtain count maps def retr_cntp(gdat, sbrt): cntp = sbrt * gdat.expo * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] return cntp ## plotting ### construct path for plots def retr_plotpath(gdat, gdatmodi, strgpdfn, strgstat, strgmodl, strgplot, nameinte=''): if strgmodl == 'true' or strgstat == '': path = gdat.pathinit + nameinte + strgplot + '.pdf' elif strgstat == 'pdfn' or strgstat == 'mlik': path = gdat.pathplotrtag + strgpdfn + '/finl/' + nameinte + strgstat + strgplot + '.pdf' elif strgstat == 'this': path = gdat.pathplotrtag + strgpdfn + '/fram/' + nameinte + strgstat + strgplot + '_swep%09d.pdf' % gdatmodi.cntrswep return path ### determine the marker size def retr_mrkrsize(gdat, strgmodl, compampl, nameparagenrelemampl): gmod = getattr(gdat, strgmodl) minm = getattr(gdat.minmpara, nameparagenrelemampl) maxm = getattr(gdat.maxmpara, nameparagenrelemampl) mrkrsize = (np.sqrt(compampl) - np.sqrt(minm)) / (np.sqrt(maxm) - np.sqrt(minm)) * (gdat.maxmmrkrsize - gdat.minmmrkrsize) + gdat.minmmrkrsize return mrkrsize ## experiment specific def retr_psfphubb(gmod): # temp gmod.psfpexpr = np.array([0.080, 0.087]) / gdat.anglfact def retr_psfpchan(gmod): # temp #gmod.psfpexpr = np.array([0.25, 0.3, 0.4, 0.6, 0.7]) / gdat.anglfact if gdat.numbenerfull == 5: gmod.psfpexpr = np.array([0.424 / gdat.anglfact, 2.75, 0.424 / gdat.anglfact, 2.59, 0.440 / gdat.anglfact, 2.47, 0.457 / gdat.anglfact, 2.45, 0.529 / gdat.anglfact, 3.72]) if gdat.numbenerfull == 2: gmod.psfpexpr = np.array([0.427 / gdat.anglfact, 2.57, 0.449 / gdat.anglfact, 2.49]) #gdat.psfpchan = gmod.psfpexpr[(2 * gdat.indxenerincl[:, None] + np.arange(2)[None, :]).flatten()] #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, # 0.30 / gdat.anglfacti\ # 0.40 / gdat.anglfacti\ # 0.60 / gdat.anglfacti\ # 0.70 / gdat.anglfacti #gmod.psfpexpr = np.array([0.35 / gdat.anglfact, 2e-1, 1.9, 0.5 / gdat.anglfact, 1.e-1, 2.]) #gmod.psfpexpr = np.array([0.25 / gdat.anglfact, 2.0e-1, 1.9, \ # 0.30 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.40 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.60 / gdat.anglfact, 1.0e-1, 2.0, \ # 0.70 / gdat.anglfact, 1.0e-1, 2.0]) def retr_psfpsdyn(gmod): gmod.psfpexpr = np.array([0.05]) def retr_psfpferm(gmod): if gdat.anlytype.startswith('rec8'): path = gdat.pathdata + 'expr/irfn/psf_P8R2_SOURCE_V6_PSF.fits' else: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' irfn = astropy.io.fits.getdata(path, 1) minmener = irfn['energ_lo'].squeeze() * 1e-3 # [GeV] maxmener = irfn['energ_hi'].squeeze() * 1e-3 # [GeV] enerirfn = np.sqrt(minmener * maxmener) numbpsfpscal = 3 numbpsfpform = 5 fermscal = np.zeros((gdat.numbevtt, numbpsfpscal)) fermform = np.zeros((gdat.numbener, gdat.numbevtt, numbpsfpform)) strgpara = ['score', 'gcore', 'stail', 'gtail', 'ntail'] for m in gdat.indxevtt: if gdat.anlytype.startswith('rec8'): irfn = astropy.io.fits.getdata(path, 1 + 3 * gdat.indxevttincl[m]) fermscal[m, :] = astropy.io.fits.getdata(path, 2 + 3 * gdat.indxevttincl[m])['PSFSCALE'] else: if m == 1: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_front.fits' elif m == 0: path = gdat.pathdata + 'expr/irfn/psf_P7REP_SOURCE_V15_back.fits' else: continue irfn = astropy.io.fits.getdata(path, 1) fermscal[m, :] = astropy.io.fits.getdata(path, 2)['PSFSCALE'] for k in range(numbpsfpform): fermform[:, m, k] = sp.interpolate.interp1d(enerirfn, np.mean(irfn[strgpara[k]].squeeze(), axis=0), fill_value='extrapolate')(gdat.meanpara.ener) # convert N_tail to f_core for m in gdat.indxevtt: for i in gdat.indxener: fermform[i, m, 4] = 1. / (1. + fermform[i, m, 4] * fermform[i, m, 2]**2 / fermform[i, m, 0]**2) # calculate the scale factor gdat.fermscalfact = np.sqrt((fermscal[None, :, 0] * (10. * gdat.meanpara.ener[:, None])**fermscal[None, :, 2])**2 + fermscal[None, :, 1]**2) # store the fermi PSF parameters gmod.psfpexpr = np.zeros(gdat.numbener * gdat.numbevtt * numbpsfpform) for m in gdat.indxevtt: for k in range(numbpsfpform): indxfermpsfptemp = m * numbpsfpform * gdat.numbener + gdat.indxener * numbpsfpform + k gmod.psfpexpr[indxfermpsfptemp] = fermform[:, m, k] def retr_refrchaninit(gdat): gdat.indxrefr = np.arange(gdat.numbrefr) gdat.dictrefr = [] for q in gdat.indxrefr: gdat.dictrefr.append(dict()) gdat.refr.namepara.elemsign = ['flux', 'magt'] gdat.refr.lablelem = ['Xue+2011', 'Wolf+2008'] gdat.listnamerefr += ['xu11', 'wo08'] setattr(gdat, 'plotminmotyp', 0.) setattr(gdat, 'plottmaxmotyp', 1.) setattr(gmod.lablrootpara, 'otyp', 'O') setattr(gdat, 'scalotypplot', 'self') setattr(gmod.lablrootpara, 'otypxu11', 'O') for name in gdat.listnamerefr: setattr(gdat, 'plotminmotyp' + name, 0.) setattr(gdat, 'plotmaxmotyp' + name, 1.) if gdat.strgcnfg == 'pcat_chan_inpt_home4msc': with open(gdat.pathinpt + 'ECDFS_Cross_ID_Hsu2014.txt', 'r') as thisfile: for k, line in enumerate(thisfile): if k < 18: continue rasccand =line[2] declcand =line[2] gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'otyp', 'lumi'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'magt', 'reds', 'otyp'] def retr_refrchanfinl(gdat): booltemp = False if gdat.anlytype.startswith('extr'): if gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] = 1490 gdat.numbpixlbgalshft[0] = 1430 else: booltemp = True elif gdat.anlytype.startswith('home'): gdat.numbpixllgalshft[0] = 0 gdat.numbpixlbgalshft[0] = 0 if gdat.numbsidecart == 600: pass elif gdat.numbsidecart == 100: indxtile = int(gdat.anlytype[-4:]) numbsidecntr = int(gdat.anlytype[8:12]) numbtileside = numbsidecntr / gdat.numbsidecart indxtilexaxi = indxtile // numbtileside indxtileyaxi = indxtile % numbtileside gdat.numbpixllgalshft[0] += indxtilexaxi * gdat.numbsidecart gdat.numbpixlbgalshft[0] += indxtileyaxi * gdat.numbsidecart elif gdat.numbsidecart == 300: gdat.numbpixllgalshft[0] += 150 gdat.numbpixlbgalshft[0] += 150 else: booltemp = True else: booltemp = True if booltemp: raise Exception('Reference elements cannot be aligned with the spatial axes!') ## WCS object for rotating reference elements into the ROI if gdat.numbener == 2: gdat.listpathwcss[0] = gdat.pathinpt + 'CDFS-4Ms-0p5to2-asca-im-bin1.fits' else: gdat.listpathwcss[0] = gdat.pathinpt + '0.5-0.91028_flux_%sMs.img' % gdat.anlytype[4] # Xue et al. (2011) #with open(gdat.pathinpt + 'chancatl.txt', 'r') as thisfile: pathfile = gdat.pathinpt + 'Xue2011.fits' hdun = pf.open(pathfile) hdun.info() lgalchan = hdun[1].data['_Glon'] / 180. * pi bgalchan = hdun[1].data['_Glat'] / 180. * pi fluxchansoft = hdun[1].data['SFlux'] fluxchanhard = hdun[1].data['HFlux'] objttypechan = hdun[1].data['Otype'] gdat.refrlumi[0][0] = hdun[1].data['Lx'] # position gdat.refr.dictelem[0]['lgal'] = lgalchan gdat.refr.dictelem[0]['bgal'] = bgalchan # spectra gdat.refrspec = [[np.zeros((3, gdat.numbener, lgalchan.size))]] if gdat.numbener == 2: gdat.refrspec[0][0, 0, :] = fluxchansoft * 0.624e9 gdat.refrspec[0][0, 1, :] = fluxchanhard * 0.624e9 / 16. else: gdat.refrspec[0][0, :, :] = 2. * fluxchansoft[None, :] * 0.624e9 gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] # fluxes gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] # spectral indices if gdat.numbener > 1: gdat.refrsind[0] = -np.log(gdat.refrspec[0][0, 1, :] / gdat.refrspec[0][0, 0, :]) / np.log(np.sqrt(7. / 2.) / np.sqrt(0.5 * 2.)) ## object type objttypechantemp = np.zeros(lgalchan.size) - 1. indx = np.where(objttypechan == 'AGN')[0] objttypechantemp[indx] = 0.165 indx = np.where(objttypechan == 'Galaxy')[0] objttypechantemp[indx] = 0.495 indx = np.where(objttypechan == 'Star')[0] objttypechantemp[indx] = 0.835 gdat.refrotyp[0][0] = objttypechantemp # Wolf et al. (2011) path = gdat.pathdata + 'inpt/Wolf2008.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['_Glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - pi) % (2. * pi)) - pi gdat.refrbgal[1] = np.deg2rad(data['_Glat']) gdat.refrmagt[1][0] = data['Rmag'] gdat.refrreds[1][0] = data['MCz'] #listname = [] #for k in range(data['MCclass'].size): # if not data['MCclass'][k] in listname: # listname.append(data['MCclass'][k]) listname = ['Galaxy', 'Galaxy (Uncl!)', 'QSO (Gal?)', 'Galaxy (Star?)', 'Star', 'Strange Object', 'QSO', 'WDwarf'] gdat.refrotyp[1][0] = np.zeros_like(gdat.refrreds[1][0]) - 1. for k, name in enumerate(listname): indx = np.where(data['MCclass'] == name)[0] gdat.refrotyp[1][0][indx] = k / 10. # error budget for name in ['lgal', 'bgal', 'sind', 'otyp', 'lumi', 'magt', 'reds']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_refrferminit(gdat): gdat.listnamerefr += ['ac15', 'ma05'] gdat.indxrefr = np.arange(gdat.numbrefr) gdat.refr.lablelem = ['Acero+2015', 'Manchester+2005'] gdat.refr.namepara.elemsign = ['flux', 'flux0400'] setattr(gmod.lablrootpara, 'curvac15', '%s_{3FGL}' % gdat.lablcurv) setattr(gmod.lablrootpara, 'expcac15', 'E_{c,3FGL}') for name in gdat.listnamerefr: setattr(gdat.minmpara, 'curv' + name, -1.) setattr(gdat.maxmpara, 'curv' + name, 1.) setattr(gdat.minmpara, 'expc' + name, 0.1) setattr(gdat.maxmpara, 'expc' + name, 10.) gdat.refr.namepara.elem[0] += ['lgal', 'bgal', 'flux', 'sind', 'curv', 'expc', 'tvar', 'etag', 'styp', 'sindcolr0001', 'sindcolr0002'] gdat.refr.namepara.elem[1] += ['lgal', 'bgal', 'flux0400', 'per0', 'per1'] def retr_refrfermfinl(gdat): gdat.minmstyp = -0.5 gdat.maxmstyp = 3.5 gdat.lablstyp = 'S' gmod.scalstypplot = 'self' gdat.minmtvar = 0. gdat.maxmtvar = 400. gdat.labltvar = 'T' gmod.scaltvarplot = 'logt' # Acero+2015 path = gdat.pathdata + 'expr/pnts/gll_psc_v16.fit' fgl3 = astropy.io.fits.getdata(path) gdat.refr.dictelem[0]['lgal'] = np.deg2rad(fgl3['glon']) gdat.refr.dictelem[0]['lgal'] = np.pi - ((gdat.refr.dictelem[0]['lgal'] - np.pi) % (2. * np.pi)) gdat.refr.dictelem[0]['bgal'] = np.deg2rad(fgl3['glat']) gdat.refr.numbelemfull = gdat.refr.dictelem[0]['lgal'].size gdat.refrspec = [np.empty((3, gdat.numbener, gdat.refr.dictelem[0]['lgal'].size))] gdat.refrspec[0][0, :, :] = np.stack((fgl3['Flux300_1000'], fgl3['Flux1000_3000'], fgl3['Flux3000_10000']))[gdat.indxenerincl, :] / gdat.deltener[:, None] fgl3specstdvtemp = np.stack((fgl3['Unc_Flux100_300'], fgl3['Unc_Flux300_1000'], fgl3['Unc_Flux1000_3000'], fgl3['Unc_Flux3000_10000'], \ fgl3['Unc_Flux10000_100000']))[gdat.indxenerincl, :, :] / gdat.deltener[:, None, None] gdat.refrspec[0][1, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 0] gdat.refrspec[0][2, :, :] = gdat.refrspec[0][0, :, :] + fgl3specstdvtemp[:, :, 1] gdat.refrspec[0][np.where(np.isfinite(gdat.refrspec[0]) == False)] = 0. gdat.refrflux[0] = gdat.refrspec[0][:, gdat.indxenerpivt, :] gdat.refrsindcolr0001[0] = -np.log(gdat.refrspec[0][:, 1, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[1] / gdat.enerpivt) gdat.refrsindcolr0002[0] = -np.log(gdat.refrspec[0][:, 2, :] / gdat.refrflux[0]) / np.log(gdat.meanpara.ener[2] / gdat.enerpivt) fgl3axisstdv = (fgl3['Conf_68_SemiMinor'] + fgl3['Conf_68_SemiMajor']) * 0.5 fgl3anglstdv = np.deg2rad(fgl3['Conf_68_PosAng']) # [rad] fgl3lgalstdv = fgl3axisstdv * abs(np.cos(fgl3anglstdv)) fgl3bgalstdv = fgl3axisstdv * abs(np.sin(fgl3anglstdv)) gdat.refretag[0] = np.zeros(gdat.refr.dictelem[0]['lgal'].size, dtype=object) for k in range(gdat.refr.dictelem[0]['lgal'].size): gdat.refretag[0][k] = '%s, %s, %s' % (fgl3['Source_Name'][k], fgl3['CLASS1'][k], fgl3['ASSOC1'][k]) gdat.refrtvar[0] = fgl3['Variability_Index'] gdat.refrstyp[0] = np.zeros_like(gdat.refr.dictelem[0]['lgal']) - 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PowerLaw ')] = 0 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'LogParabola ')] = 1 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLExpCutoff ')] = 2 gdat.refrstyp[0][np.where(fgl3['SpectrumType'] == 'PLSuperExpCutoff')] = 3 indx = np.where(gdat.refrstyp[0] == -1)[0] if indx.size > 0: raise Exception('') gdat.refrsind[0] = fgl3['Spectral_Index'] gdat.refrcurv[0] = fgl3['beta'] gdat.refrexpc[0] = fgl3['Cutoff'] * 1e-3 gdat.refrcurv[0][np.where(np.logical_not(np.isfinite(gdat.refrcurv[0])))] = -10. gdat.refrexpc[0][np.where(np.logical_not(np.isfinite(gdat.refrexpc[0])))] = 0. gdat.refrsind[0] = np.tile(gdat.refrsind[0], (3, 1)) gdat.refrcurv[0] = np.tile(gdat.refrcurv[0], (3, 1)) gdat.refrexpc[0] = np.tile(gdat.refrexpc[0], (3, 1)) # Manchester+2005 path = gdat.pathdata + 'inpt/Manchester2005.fits' data = astropy.io.fits.getdata(path) gdat.refrlgal[1] = np.deg2rad(data['glon']) gdat.refrlgal[1] = ((gdat.refrlgal[1] - np.pi) % (2. * np.pi)) - np.pi gdat.refrbgal[1] = np.deg2rad(data['glat']) gdat.refrper0[1] = data['P0'] gdat.refrper1[1] = data['P1'] gdat.refrflux0400[1] = data['S400'] #gdat.refrdism[1] = data['DM'] #gdat.refrdlos[1] = data['Dist'] # error budget for name in ['lgal', 'bgal', 'per0', 'per1', 'flux0400', 'tvar', 'styp']: refrtile = [[] for q in gdat.indxrefr] refrfeat = getattr(gdat.refr, name) for q in gdat.indxrefr: if len(refrfeat[q]) > 0: refrtile[q] = np.tile(refrfeat[q], (3, 1)) setattr(gdat.refr, name, refrtile) def retr_singgaus(scaldevi, sigc): psfn = 1. / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_singking(scaldevi, sigc, gamc): psfn = 1. / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) return psfn def retr_doubgaus(scaldevi, frac, sigc, sigt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) return psfn def retr_gausking(scaldevi, frac, sigc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * np.exp(-0.5 * scaldevi**2 / sigc**2) + (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_doubking(scaldevi, frac, sigc, gamc, sigt, gamt): psfn = frac / 2. / np.pi / sigc**2 * (1. - 1. / gamc) * (1. + scaldevi**2 / 2. / gamc / sigc**2)**(-gamc) + \ (1. - frac) / 2. / np.pi / sigt**2 * (1. - 1. / gamt) * (1. + scaldevi**2 / 2. / gamt / sigt**2)**(-gamt) return psfn def retr_lgalbgal(gang, aang): lgal = gang * np.cos(aang) bgal = gang * np.sin(aang) return lgal, bgal def retr_gang(lgal, bgal): gang = np.arccos(np.cos(lgal) * np.cos(bgal)) return gang def retr_aang(lgal, bgal): aang = np.arctan2(bgal, lgal) return aang def show_paragenrscalfull(gdat, gdatmodi, strgstat='this', strgmodl='fitt', indxsampshow=None): gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodstat = getattr(gdatobjt, strgstat) print('strgmodl: ' + strgmodl) print('strgstat: ' + strgstat) print('%5s %20s %30s %30s %15s' % ('index', 'namepara', 'paragenrunitfull', 'paragenrscalfull', 'scalpara')) for k in gmod.indxparagenrfull: if indxsampshow is not None and not k in indxsampshow: continue if gmod.numbparaelem > 0: booltemp = False for l in gmod.indxpopl: if k == gmod.indxparagenrelemsing[l][0]: booltemp = True if booltemp: print('') print('%5d %20s %30g %30g %15s' % (k, gmod.namepara.genrfull[k], gmodstat.paragenrunitfull[k], gmodstat.paragenrscalfull[k], gmod.scalpara.genrfull[k])) def prop_stat(gdat, gdatmodi, strgmodl, thisindxelem=None, thisindxpopl=None, brth=False, deth=False): if gdat.typeverb > 1: print('prop_stat()') #indxproptype # within, birth, death, split, merge # 0, 1, 2, 3, 4 gmod = getattr(gdat, strgmodl) gdatobjt = retr_gdatobjt(gdat, gdatmodi, strgmodl) gmodthis = getattr(gdatobjt, 'this') gmodnext = getattr(gdatobjt, 'next') if gmod.numbparaelem > 0: if gdat.booldiagmode: for l in gmod.indxpopl: if len(gmodthis.indxelemfull[l]) > len(set(gmodthis.indxelemfull[l])): raise Exception('Repeating entry in the element index list!') thisindxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodthis.indxelemfull, strgmodl) setattr(gmodthis, 'indxparagenrfullelem', thisindxparagenrfullelem) else: thisindxparagenrfullelem = None gdatmodi.this.boolpropfilt = True # index of the population in which a transdimensional proposal will be attempted if gmod.numbparaelem > 0: if thisindxpopl is None: gdatmodi.indxpopltran = np.random.choice(gmod.indxpopl) else: gdatmodi.indxpopltran = thisindxpopl numbelemtemp = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # forced death or birth does not check for the prior on the dimensionality on purpose! if gmod.numbparaelem > 0 and (deth or brth or np.random.rand() < gdat.probtran) and \ not (numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if brth or deth or np.random.rand() < gdat.probbrde or \ numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] and numbelemtemp == 1 or numbelemtemp == 0: ## births and deaths if numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran] or deth: gdatmodi.this.indxproptype = 2 elif numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or brth: gdatmodi.this.indxproptype = 1 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 1 else: gdatmodi.this.indxproptype = 2 else: ## splits and merges if numbelemtemp == gmod.minmpara.numbelem[gdatmodi.indxpopltran] or numbelemtemp < 2: gdatmodi.this.indxproptype = 3 elif numbelemtemp == gmod.maxmpara.numbelem[gdatmodi.indxpopltran]: gdatmodi.this.indxproptype = 4 else: if np.random.rand() < 0.5: gdatmodi.this.indxproptype = 3 else: gdatmodi.this.indxproptype = 4 else: if gdat.booldiagmode and (gdatmodi.stdp > 1e2).any(): raise Exception('') thisindxparagenrfullelemconc = [] for l in gmod.indxpopl: thisindxparagenrfullelemconc.append(thisindxparagenrfullelem[l]['full']) # get the indices of the current parameter vector if gmod.numbparaelem > 0: thisindxsampfull = np.concatenate([gmod.indxparagenrbasestdv] + thisindxparagenrfullelemconc) else: thisindxsampfull = gmod.indxparagenrbasestdv thisstdp = gdatmodi.stdp[gdat.indxstdppara[thisindxsampfull]] if not np.isfinite(thisstdp).all(): raise Exception('') gdatmodi.this.indxproptype = 0 if gdat.booldiagmode and gdat.probspmr == 0 and gdatmodi.this.indxproptype > 2: raise Exception('') if gdat.typeverb > 1: print('gdatmodi.this.indxproptype') print(gdatmodi.this.indxproptype) if gdatmodi.this.indxproptype == 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = gmodthis.indxelemfull if gdatmodi.this.indxproptype > 0: gmodnext.paragenrunitfull = np.copy(gmodthis.paragenrunitfull) gmodnext.paragenrscalfull = np.copy(gmodthis.paragenrscalfull) if gmod.numbparaelem > 0: gmodnext.indxelemfull = deepcopy(gmodthis.indxelemfull) if gdatmodi.this.indxproptype == 0: ## proposal scale if False: # amplitude-dependent proposal scale for l in gmod.indxpopl: thiscompampl = gmodthis.paragenrscalfull[thisindxparagenrfullelem[indxelemfull][gmod.nameparagenrelemampl[l]][l]] compampl = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] minmcompampl = getattr(gmod.minmpara, gmod.nameparagenrelemampl[l]) thiscompunit = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] compunit = gmodnext.paragenrscalfull[thisindxparagenrfullelem[gmod.nameparagenrelemampl[l]][l][indxelemfull]] if nameparagenrelem == gmod.nameparagenrelemampl[l]: # temp -- this only works if compampl is powr distributed gdatmodi.this.stdp = stdpcomp / (thiscompampl / minmcompampl)**2. gdatmodi.this.stdv = stdpcomp / (compampl / minmcompampl)**2. gdatmodi.this.ltrp += np.sum(0.5 * (nextcompunit - thiscompunit)**2 * (1. / gdatmodi.this.stdv**2 - 1. / gdatmodi.this.stdv**2)) else: gdatmodi.this.stdp = stdpcomp / (np.minimum(thiscompampl, compampl) / minmcompampl)**0.5 ## propose a step diffparagenrunitfull = np.random.normal(size=thisindxsampfull.size) * thisstdp gmodnext.paragenrunitfull[thisindxsampfull] = gmodthis.paragenrunitfull[thisindxsampfull] + diffparagenrunitfull if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') indxsamplowr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] < 0.)[0] if indxsamplowr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr] = abs(gmodnext.paragenrunitfull[gmod.numbpopl+indxsamplowr]) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') indxsampuppr = np.where(gmodnext.paragenrunitfull[gmod.numbpopl:] > 1.)[0] if indxsampuppr.size > 0: gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] = (gmodnext.paragenrunitfull[gmod.numbpopl+indxsampuppr] - 1.) % 1. if gdat.booldiagmode: if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 1).any(): raise Exception('') if (gmodnext.paragenrunitfull[gmod.numbpopl:] == 0).any(): raise Exception('') if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') gmodnext.paragenrscalfull = icdf_paragenrscalfull(gdat, strgmodl, gmodnext.paragenrunitfull, thisindxparagenrfullelem) if gdat.booldiagmode: if not np.isfinite(gmodnext.paragenrunitfull).all(): raise Exception('') if np.amin(gmodnext.paragenrunitfull[gmod.numbpopl:]) < 0.: raise Exception('') if np.amax(gmodnext.paragenrunitfull[gmod.numbpopl:]) > 1.: raise Exception('') if not np.isfinite(gmodnext.paragenrscalfull).all(): raise Exception('') if gdatmodi.this.indxproptype > 0: gdatmodi.indxsamptran = [] if gdatmodi.this.indxproptype == 1: gdatmodi.this.auxipara = np.random.rand(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) elif gdatmodi.this.indxproptype != 2: gdatmodi.this.auxipara = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: # find an empty slot in the element list for u in range(gmod.maxmpara.numbelem[gdatmodi.indxpopltran]): if not u in gdatmodi.this.indxelemfull[gdatmodi.indxpopltran]: break gdatmodi.indxelemmodi = [u] gdatmodi.indxelemfullmodi = [gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)] # sample indices to add the new element gdatmodi.indxparagenrfullelemaddd = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemaddd) gmodnext.indxelemfull[gdatmodi.indxpopltran].append(gdatmodi.indxelemmodi[0]) if gdatmodi.this.indxproptype == 1: # sample auxiliary variables gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.this.auxipara # death if gdatmodi.this.indxproptype == 2: # occupied element index to be killed if thisindxelem is None: dethindxindxelem = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) else: dethindxindxelem = thisindxelem # element index to be killed gdatmodi.indxelemmodi = [] gdatmodi.indxelemfullmodi = [] if gdat.typeverb > 1: print('dethindxindxelem') print(dethindxindxelem) gdatmodi.indxelemmodi.append(gmodthis.indxelemfull[gdatmodi.indxpopltran][dethindxindxelem]) gdatmodi.indxelemfullmodi.append(dethindxindxelem) # parameter indices to be killed indxparagenrfullelemdeth = retr_indxparaelem(gmod, gdatmodi.indxpopltran, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.append(indxparagenrfullelemdeth) gdatmodi.this.auxipara = gmodthis.paragenrscalfull[indxparagenrfullelemdeth] if gdatmodi.this.indxproptype > 2: gdatmodi.comppare = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compfrst = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) gdatmodi.compseco = np.empty(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]) # split if gdatmodi.this.indxproptype == 3: # find the probability of splitting elements gdatmodi.indxelemfullsplt = np.random.choice(np.arange(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]], dtype=int)) gdatmodi.indxelemsplt = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullsplt] gdatmodi.indxelemfullmodi.insert(0, gdatmodi.indxelemfullsplt) gdatmodi.indxelemmodi.insert(0, gdatmodi.indxelemsplt) # sample indices for the first element gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.indxelemmodi[0]) gdatmodi.indxsamptran.insert(0, gdatmodi.indxparagenrfullelemfrst) # sample indices for the second element gdatmodi.indxsampseco = gdatmodi.indxparagenrfullelemaddd # take the parent element parameters for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gdatmodi.comppare[k] = np.copy(gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]]) # draw the auxiliary parameters for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.auxipara[g] = np.random.randn() * gdat.radispmr elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = np.random.rand() else: gdatmodi.this.auxipara[g] = icdf_trap(gdat, strgmodl, np.random.rand(), gmodthis.paragenrscalfull, gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], l) # determine the new parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[1]) * gdatmodi.this.auxipara[0] else: gdatmodi.compfrst[0] = gdatmodi.comppare[0] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[0] gdatmodi.compfrst[1] = gdatmodi.comppare[1] + (1. - gdatmodi.this.auxipara[2]) * gdatmodi.this.auxipara[1] gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[1] * gdatmodi.this.auxipara[0] else: gdatmodi.compseco[0] = gdatmodi.comppare[0] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[0] gdatmodi.compseco[1] = gdatmodi.comppare[1] - gdatmodi.this.auxipara[2] * gdatmodi.this.auxipara[1] gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] for g in range(gmod.numbparagenrelemsing[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.compfrst[g] = gdatmodi.comppare[g] gdatmodi.compseco[g] = gdatmodi.this.auxipara[g] # place the new parameters into the sample vector gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compfrst, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.compfrst gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.compseco, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[1]] = gdatmodi.compseco # check for prior boundaries if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): if np.fabs(gdatmodi.compfrst[0]) > gdat.maxmelin or np.fabs(gdatmodi.compseco[0]) > gdat.maxmelin: gdatmodi.this.boolpropfilt = False else: if np.fabs(gdatmodi.compfrst[0]) > maxmlgal or np.fabs(gdatmodi.compseco[0]) > maxmlgal or \ np.fabs(gdatmodi.compfrst[1]) > maxmbgal or np.fabs(gdatmodi.compseco[1]) > maxmbgal: gdatmodi.this.boolpropfilt = False if gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]) or \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] < getattr(gmod.minmpara, gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: if not gdatmodi.this.boolpropfilt: print('Rejecting the proposal due to a split that falls out of the prior...') if gdatmodi.this.indxproptype == 4: # determine the index of the primary element to be merged (in the full element list) gdatmodi.indxelemfullmergfrst = np.random.choice(np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran]))) ## first element index to be merged gdatmodi.mergindxelemfrst = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergfrst] # find the probability of merging this element with the others probmerg = retr_probmerg(gdat, gdatmodi, gmodthis.paragenrscalfull, thisindxparagenrfullelem, gdatmodi.indxpopltran, 'seco', typeelem=gmod.typeelem) indxelemfulltemp = np.arange(len(gmodthis.indxelemfull[gdatmodi.indxpopltran])) if gdat.booldiagmode: if indxelemfulltemp.size < 2: raise Exception('') gdatmodi.indxelemfullmergseco = np.random.choice(np.setdiff1d(indxelemfulltemp, np.array([gdatmodi.indxelemfullmergfrst])), p=probmerg) gdatmodi.indxelemfullmodi = np.sort(np.array([gdatmodi.indxelemfullmergfrst, gdatmodi.indxelemfullmergseco])) # parameters of the first element to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## first gdatmodi.compfrst[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[0]]] # determine indices of the modified elements in the sample vector ## first element # temp -- this would not work for multiple populations ! gdatmodi.indxparagenrfullelemfrst = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemfrst) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemfrst) ## second element index to be merged gdatmodi.mergindxelemseco = gmodthis.indxelemfull[gdatmodi.indxpopltran][gdatmodi.indxelemfullmergseco] ## second element gdatmodi.indxparagenrfullelemseco = retr_indxparaelem(gmod, l, gdatmodi.mergindxelemseco) gdatmodi.indxsamptran.append(gdatmodi.indxparagenrfullelemseco) # parameters of the elements to be merged for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): ## second gdatmodi.compseco[k] = gmodthis.paragenrscalfull[thisindxparagenrfullelem[gdatmodi.indxpopltran][nameparagenrelem][gdatmodi.indxelemfullmodi[1]]] # indices of the element to be merged gdatmodi.indxelemmodi = [gdatmodi.mergindxelemfrst, gdatmodi.mergindxelemseco] # auxiliary parameters if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] else: gdatmodi.this.auxipara[0] = gdatmodi.compseco[0] - gdatmodi.compfrst[0] gdatmodi.this.auxipara[1] = gdatmodi.compseco[1] - gdatmodi.compfrst[1] gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] / \ (gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if not gmod.boolcompposi[gdatmodi.indxpopltran][g] and g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.this.auxipara[g] = gdatmodi.compseco[g] # merged element gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] = gdatmodi.compfrst[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] + \ gdatmodi.compseco[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] if gdatmodi.comppare[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]] > getattr(gdat, 'maxm' + gmod.nameparagenrelemampl[gdatmodi.indxpopltran]): gdatmodi.this.boolpropfilt = False if gdat.typeverb > 1: print('Proposal rejected due to falling outside the prior.') return if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[1]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) else: gdatmodi.comppare[0] = gdatmodi.compfrst[0] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[0] - gdatmodi.compfrst[0]) gdatmodi.comppare[1] = gdatmodi.compfrst[1] + (1. - gdatmodi.this.auxipara[2]) * (gdatmodi.compseco[1] - gdatmodi.compfrst[1]) for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + (1. - gdatmodi.this.auxipara[gmod.indxparagenrelemampl[gdatmodi.indxpopltran]]) * \ (gdatmodi.compseco[g] - gdatmodi.compfrst[g]) elif g == gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: gdatmodi.comppare[g] = gdatmodi.compfrst[g] + gdatmodi.compseco[g] else: gdatmodi.comppare[g] = gdatmodi.compfrst[g] gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = cdfn_trap(gdat, gdatmodi, strgmodl, gdatmodi.comppare, gdatmodi.indxpopltran) gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0]] = gdatmodi.comppare # calculate the proposed list of pairs if gdat.typeverb > 1: print('mergindxfrst: ', gdatmodi.mergindxelemfrst) print('gdatmodi.indxelemfullmergfrst: ', gdatmodi.indxelemfullmergfrst) print('mergindxseco: ', gdatmodi.mergindxelemseco) print('gdatmodi.indxelemfullmergseco: ', gdatmodi.indxelemfullmergseco) print('indxparagenrfullelemfrst: ', gdatmodi.indxparagenrfullelemfrst) print('indxparagenrfullelemseco: ', gdatmodi.indxparagenrfullelemseco) if gdat.typeverb > 1 and (gdatmodi.this.indxproptype == 3 or gdatmodi.this.boolpropfilt and gdatmodi.this.indxproptype == 4): if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): print('elinfrst: ', gdatmodi.compfrst[0]) print('amplfrst: ', gdatmodi.compfrst[1]) print('elinseco: ', gdatmodi.compseco[0]) print('amplseco: ', gdatmodi.compseco[1]) print('elinpare: ', gdatmodi.comppare[0]) print('fluxpare: ', gdatmodi.comppare[1]) print('auxipara[0][0]: ', gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdatmodi.this.auxipara[1]) else: print('lgalfrst: ', gdat.anglfact * gdatmodi.compfrst[0]) print('bgalfrst: ', gdat.anglfact * gdatmodi.compfrst[1]) print('amplfrst: ', gdatmodi.compfrst[2]) print('lgalseco: ', gdat.anglfact * gdatmodi.compseco[0]) print('bgalseco: ', gdat.anglfact * gdatmodi.compseco[1]) print('amplseco: ', gdatmodi.compseco[2]) print('lgalpare: ', gdat.anglfact * gdatmodi.comppare[0]) print('bgalpare: ', gdat.anglfact * gdatmodi.comppare[1]) print('fluxpare: ', gdatmodi.comppare[2]) print('auxipara[0][0]: ', gdat.anglfact * gdatmodi.this.auxipara[0]) print('auxipara[0][1]: ', gdat.anglfact * gdatmodi.this.auxipara[1]) print('auxipara[0][2]: ', gdatmodi.this.auxipara[2]) if gmod.numbparaelem > 0 and gdatmodi.this.indxproptype > 0 and gdatmodi.this.boolpropfilt: # change the number of elements if gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 3: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] + 1 if gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4: gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] - 1 gmodnext.paragenrunitfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] = gmodnext.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]] # remove the element from the occupied element list if (gdatmodi.this.indxproptype == 2 or gdatmodi.this.indxproptype == 4): for a, indxelem in enumerate(gdatmodi.indxelemmodi): if a == 0 and gdatmodi.this.indxproptype == 2 or a == 1 and gdatmodi.this.indxproptype == 4: gmodnext.indxelemfull[gdatmodi.indxpopltran].remove(indxelem) if gdatmodi.this.indxproptype == 0: gdatmodi.indxsampmodi = thisindxsampfull else: if gdatmodi.this.indxproptype == 1: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gdatmodi.this.indxproptype == 2: gdatmodi.indxsampmodi = [gmod.indxpara.numbelem[gdatmodi.indxpopltran]] if gdatmodi.this.indxproptype == 3: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), \ gdatmodi.indxsamptran[0], gdatmodi.indxsamptran[1])) if gdatmodi.this.indxproptype == 4: gdatmodi.indxsampmodi = np.concatenate((np.array([gmod.indxpara.numbelem[gdatmodi.indxpopltran]]), gdatmodi.indxsamptran[0])) if gmod.numbparaelem > 0: if gdatmodi.this.indxproptype == 0: indxparagenrfullelem = thisindxparagenrfullelem else: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gmodnext.indxelemfull, strgmodl) if gdat.typeverb > 1: print('gdatmodi.indxsampmodi') print(gdatmodi.indxsampmodi) if gmod.numbparaelem > 0: print('gmodthis.indxelemfull') print(gmodthis.indxelemfull) print('gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)') print(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[gdatmodi.indxpopltran]].astype(int)) if gdatmodi.this.indxproptype > 0: print('gdatmodi.indxelemmodi') print(gdatmodi.indxelemmodi) print('gdatmodi.indxelemfullmodi') print(gdatmodi.indxelemfullmodi) print('gdatmodi.this.boolpropfilt') print(gdatmodi.this.boolpropfilt) print('indxparagenrfullelem') print(indxparagenrfullelem) if gdatmodi.this.indxproptype == 1: for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): gmodnext.paragenrscalfull[gdatmodi.indxsamptran[0][g]] = icdf_trap(gdat, strgmodl, gdatmodi.this.auxipara[g], gmodthis.paragenrscalfull, \ gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gdatmodi.indxpopltran) if gdat.booldiagmode: if gmod.numbparaelem > 0: for l in gmod.indxpopl: if gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrunitfull[gmod.indxpara.numbelem[l]]): print('l') print(l) print('gmod.indxpara.numbelem') print(gmod.indxpara.numbelem) print('gmodthis.paragenrunitfull') print(gmodthis.paragenrunitfull) raise Exception('') if gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodthis.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrunitfull[gmod.indxpara.numbelem[l]]): raise Exception('') if gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]] != round(gmodnext.paragenrscalfull[gmod.indxpara.numbelem[l]]): raise Exception('') if strgmodl == 'fitt': diffparagenrscalfull = abs(gmodnext.paragenrscalfull - gmodthis.paragenrscalfull) #size = np.where(((gmodthis.paragenrscalfull == 0.) & (diffparagenrscalfull > 0.)) | ((gmodthis.paragenrscalfull != 0.) & (diffparagenrscalfull / gmodthis.paragenrscalfull > 0)))[0].size size = np.where(diffparagenrscalfull != 0.)[0].size if gdatmodi.this.indxproptype == 1: if size - 1 != gmod.numbparagenrelemsing[gdatmodi.indxpopltran]: raise Exception('') def calc_probprop(gdat, gdatmodi): gmod = gdat.fitt # calculate the factor to multiply the acceptance rate, i.e., ## probability of the auxiliary parameters, if gdatmodi.this.indxproptype == 0: gdatmodi.this.lpau = 0. elif gdatmodi.this.indxproptype == 1 or gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau = gdatmodi.next.lpritotl - gdatmodi.this.lpritotl lpautemp = 0.5 * gdat.priofactdoff * gmod.numbparagenrelemsing[gdatmodi.indxpopltran] if gdatmodi.this.indxproptype == 1: gdatmodi.this.lpau += lpautemp if gdatmodi.this.indxproptype == 2: gdatmodi.this.lpau -= lpautemp elif gdatmodi.this.indxproptype == 3 or gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau = 0. dictelemtemp = [dict()] for g, nameparagenrelem in enumerate(gmod.namepara.genrelem[gdatmodi.indxpopltran]): if gmod.gmod.boolcompposi[gdatmodi.indxpopltran][g]: gdatmodi.this.lpau += -0.5 * np.log(2. * np.pi * gdat.radispmr**2) - 0.5 * (gdatmodi.this.auxipara[g] / gdat.radispmr)**2 elif g != gmod.indxparagenrelemampl[gdatmodi.indxpopltran]: dictelemtemp[0][nameparagenrelem] = gdatmodi.this.auxipara[g] gdatmodi.this.lpau += retr_lprielem(gdat, 'fitt', gdatmodi.indxpopltran, g, \ gmod.namepara.genrelem[gdatmodi.indxpopltran][g], gmod.listscalparagenrelem[gdatmodi.indxpopltran][g], \ gdatmodi.this.paragenrscalfull, dictelemtemp, [1]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.lpau *= -1. if gdatmodi.this.indxproptype > 2 and gdatmodi.this.boolpropfilt: ## the ratio of the probability of the reverse and forward proposals, and if gdatmodi.this.indxproptype == 3: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.next.paragenrscalfull, gdatmodi.next.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran] + 1) + np.log(gdatmodi.this.probmergtotl) else: gdatmodi.this.probmergtotl = retr_probmerg(gdat, gdatmodi, gdatmodi.this.paragenrscalfull, gdatmodi.this.indxparagenrfullelem, gdatmodi.indxpopltran, 'pair', \ typeelem=gmod.typeelem) gdatmodi.this.ltrp = -np.log(gdatmodi.this.numbelem[gdatmodi.indxpopltran]) - np.log(gdatmodi.this.probmergtotl) ## Jacobian if gmod.typeelem[gdatmodi.indxpopltran].startswith('lghtline'): gdatmodi.this.ljcb = np.log(gdatmodi.comppare[1]) else: gdatmodi.this.ljcb = np.log(gdatmodi.comppare[2]) if gdatmodi.this.indxproptype == 4: gdatmodi.this.ljcb *= -1. else: gdatmodi.this.ljcb = 0. gdatmodi.this.ltrp = 0. for l in gmod.indxpopl: if gdatmodi.this.indxproptype > 0: setattr(gdatmodi, 'auxiparapop%d' % l, gdatmodi.this.auxipara) def retr_indxparagenrfullelem(gdat, indxelemfull, strgmodl): gmod = getattr(gdat, strgmodl) ## element parameters if gmod.numbparaelem > 0: indxparagenrfullelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: indxparagenrfulltemp = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + np.array(indxelemfull[l], dtype=int) * gmod.numbparagenrelemsing[l] cntr = tdpy.cntr() indxparagenrfullelem[l] = dict() for nameparagenrelem in gmod.namepara.genrelem[l]: indxparagenrfullelem[l][nameparagenrelem] = indxparagenrfulltemp + cntr.incr() indxparagenrfullelem[l]['full'] = np.repeat(indxparagenrfulltemp, gmod.numbparagenrelemsing[l]) + np.tile(gmod.indxparagenrelemsing[l], len(indxelemfull[l])) if gdat.booldiagmode: for l in gmod.indxpopl: if len(indxparagenrfullelem[l]['full']) > 0: if np.amax(indxparagenrfullelem[l]['full']) > gmod.numbparagenrelem[l] + gmod.numbparagenrbase: print('strgmodl') print(strgmodl) print('strgstat') print(strgstat) print('gmod.numbparagenrbase') print(gmod.numbparagenrbase) print('gmod.numbparagenrelem[l]') print(gmod.numbparagenrelem[l]) print('indxparagenrfullelem[l][full]') summgene(indxparagenrfullelem[l]['full']) print('gdat.fitt.minmpara.numbelempop0') print(gdat.fitt.minmpara.numbelempop0) print('gdat.fitt.maxmpara.numbelempop0') print(gdat.fitt.maxmpara.numbelempop0) raise Exception('Element parameter indices are bad.') else: indxparagenrfullelem = None return indxparagenrfullelem def retr_weigmergodim(gdat, elin, elinothr): weigmerg = np.exp(-0.5 * ((elin - elinothr) / gdat.radispmr)**2) return weigmerg def retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr): weigmerg = np.exp(-0.5 * (((lgal - lgalothr) / gdat.radispmr)**2 + ((bgal - bgalothr) / gdat.radispmr)**2)) return weigmerg def retr_probmerg(gdat, gdatmodi, paragenrscalfull, indxparagenrfullelem, indxpopltran, strgtype, typeelem=None): # calculate the weights if strgtype == 'seco': numb = 1 if strgtype == 'pair': numb = 2 listweigmerg = [] for a in range(numb): if gmod.typeelem[indxpopltran].startswith('lghtline'): elintotl = paragenrscalfull[indxparagenrfullelem['elin'][indxpopltran]] elin = elintotl[gdatmodi.indxelemfullmodi[0]] elinothr = np.concatenate((elintotl[:gdatmodi.indxelemfullmodi[0]], elintotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergodim(gdat, elin, elinothr) else: lgaltotl = paragenrscalfull[indxparagenrfullelem['lgal'][indxpopltran]] bgaltotl = paragenrscalfull[indxparagenrfullelem['bgal'][indxpopltran]] lgal = lgaltotl[gdatmodi.indxelemfullmodi[0]] bgal = bgaltotl[gdatmodi.indxelemfullmodi[0]] lgalothr = np.concatenate((lgaltotl[:gdatmodi.indxelemfullmodi[0]], lgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) bgalothr = np.concatenate((bgaltotl[:gdatmodi.indxelemfullmodi[0]], bgaltotl[gdatmodi.indxelemfullmodi[0]+1:])) weigmerg = retr_weigmergtdim(gdat, lgal, lgalothr, bgal, bgalothr) listweigmerg.append(weigmerg) # determine the probability of merging the second element given the first element if strgtype == 'seco': probmerg = listweigmerg[0] / np.sum(listweigmerg[0]) # determine the probability of merging the pair if strgtype == 'pair': if gmod.typeelem[indxpopltran].startswith('lghtline'): weigpair = retr_weigmergtdim(gdat, elin, elintotl[gdatmodi.indxelemfullmodi[1]]) else: weigpair = retr_weigmergtdim(gdat, lgal, lgaltotl[gdatmodi.indxelemfullmodi[1]], bgal, bgaltotl[gdatmodi.indxelemfullmodi[1]]) probmerg = weigpair / np.sum(listweigmerg[0]) + weigpair / np.sum(listweigmerg[1]) if gdat.booldiagmode: if not np.isfinite(probmerg).all(): raise Exception('Merge probability is infinite.') return probmerg def retr_indxparaelem(gmod, l, u): indxsamppnts = gmod.indxparagenrfulleleminit + gmod.numbparagenrelemcuml[l] + u * gmod.numbparagenrelemsing[l] + gmod.indxparagenrelemsing[l] return indxsamppnts def gang_detr(): gang, aang, lgal, bgal = sympy.symbols('gang aang lgal bgal') AB = sympy.matrices.Matrix([[a1*b1,a1*b2,a1*b3],[a2*b1,a2*b2,a2*b3],[a3*b1,a3*b2,a3*b3]]) def retr_psfn(gdat, psfp, indxenertemp, thisangl, typemodlpsfn, strgmodl): gmod = getattr(gdat, strgmodl) indxpsfpinit = gmod.numbpsfptotl * (indxenertemp[:, None] + gdat.numbener * gdat.indxevtt[None, :]) if gdat.typeexpr == 'ferm': scalangl = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(thisangl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] scalanglnorm = 2. * np.arcsin(np.sqrt(2. - 2. * np.cos(gdat.binspara.angl)) / 2.)[None, :, None] / gdat.fermscalfact[:, None, :] else: scalangl = thisangl[None, :, None] if typemodlpsfn == 'singgaus': sigc = psfp[indxpsfpinit] sigc = sigc[:, None, :] psfn = retr_singgaus(scalangl, sigc) elif typemodlpsfn == 'singking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigc = sigc[:, None, :] gamc = gamc[:, None, :] psfn = retr_singking(scalangl, sigc, gamc) elif typemodlpsfn == 'doubking': sigc = psfp[indxpsfpinit] gamc = psfp[indxpsfpinit+1] sigt = psfp[indxpsfpinit+2] gamt = psfp[indxpsfpinit+3] frac = psfp[indxpsfpinit+4] sigc = sigc[:, None, :] gamc = gamc[:, None, :] sigt = sigt[:, None, :] gamt = gamt[:, None, :] frac = frac[:, None, :] psfn = retr_doubking(scalangl, frac, sigc, gamc, sigt, gamt) if gdat.typeexpr == 'ferm': psfnnorm = retr_doubking(scalanglnorm, frac, sigc, gamc, sigt, gamt) # normalize the PSF if gdat.typeexpr == 'ferm': fact = 2. * np.pi * np.trapz(psfnnorm * np.sin(gdat.binspara.angl[None, :, None]), gdat.binspara.angl, axis=1)[:, None, :] psfn /= fact return psfn def retr_unit(lgal, bgal): xdat = np.cos(bgal) * np.cos(lgal) ydat = -np.cos(bgal) * np.sin(lgal) zaxi = np.sin(bgal) return xdat, ydat, zaxi def retr_psec(gdat, conv): # temp conv = conv.reshape((gdat.numbsidecart, gdat.numbsidecart)) psec = (abs(scipy.fftpack.fft2(conv))**2)[:gdat.numbsidecarthalf, :gdat.numbsidecarthalf] * 1e-3 psec = psec.flatten() return psec def retr_psecodim(gdat, psec): psec = psec.reshape((gdat.numbsidecarthalf, gdat.numbsidecarthalf)) psecodim = np.zeros(gdat.numbsidecarthalf) for k in gdat.indxmpolodim: indxmpol = np.where((gdat.meanpara.mpol > gdat.binspara.mpolodim[k]) & (gdat.meanpara.mpol < gdat.binspara.mpolodim[k+1])) psecodim[k] = np.mean(psec[indxmpol]) psecodim *= gdat.meanpara.mpolodim**2 return psecodim def retr_eerrnorm(minmvarb, maxmvarb, meanvarb, stdvvarb): cdfnminm = 0.5 * (sp.special.erf((minmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfnmaxm = 0.5 * (sp.special.erf((maxmvarb - meanvarb) / stdvvarb / np.sqrt(2.)) + 1.) cdfndiff = cdfnmaxm - cdfnminm return cdfnminm, cdfndiff def retr_condcatl(gdat): # setup ## number of stacked samples numbstks = 0 indxtupl = [] indxstks = [] indxstksparagenrscalfull = [] for n in gdat.indxsamptotl: indxstks.append([]) indxstkssamptemp = [] for l in gmod.indxpopl: indxstks[n].append([]) for k in range(len(gdat.listpostindxelemfull[n][l])): indxstks[n][l].append(numbstks) indxstkssamptemp.append(numbstks) indxtupl.append([n, l, k]) numbstks += 1 indxstkssamp.append(np.array(indxstkssamptemp)) if gdat.typeverb > 1: print('indxstks') print(indxstks) print('indxtupl') print(indxtupl) print('indxstkssamp') print(indxstksparagenrscalfull) print('numbstks') print(numbstks) cntr = 0 arrystks = np.zeros((numbstks, gmod.numbparagenrelemtotl)) for n in gdat.indxsamptotl: indxparagenrfullelem = retr_indxparagenrfullelem(gdat, gdat.listpostindxelemfull[n], 'fitt') for l in gmod.indxpopl: for k in np.arange(len(gdat.listpostindxelemfull[n][l])): for m, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): arrystks[indxstks[n][l][k], m] = gdat.listpostparagenrscalfull[n, gmodstat.indxparagenrfullelem[l][nameparagenrelem][k]] if gdat.typeverb > 0: print('Constructing the distance matrix for %d stacked samples...' % arrystks.shape[0]) timeinit = gdat.functime() gdat.distthrs = np.empty(gmod.numbparagenrelemtotl) for k, nameparagenrelem in enumerate(gmod.namepara.elem): # temp l = 0 gdat.distthrs[k] = gdat.stdp[getattr(gdat, 'indxstdppop%d' % l + nameparagenrelem)] # construct lists of samples for each proposal type listdisttemp = [[] for k in range(gmod.numbparagenrelemtotl)] indxstksrows = [[] for k in range(gmod.numbparagenrelemtotl)] indxstkscols = [[] for k in range(gmod.numbparagenrelemtotl)] thisperc = 0 cntr = 0 for k in gmod.indxparagenrelemtotl: for n in range(numbstks): dist = np.fabs(arrystks[n, k] - arrystks[:, k]) indxstks = np.where(dist < gdat.distthrs[k])[0] if indxstks.size > 0: for j in indxstks: cntr += 1 listdisttemp[k].append(dist[j]) indxstksrows[k].append(n) indxstkscols[k].append(j) nextperc = np.floor(100. * float(k * numbstks + n) / numbstks / gmod.numbparagenrelemtotl) if nextperc > thisperc: thisperc = nextperc if cntr > 1e6: break listdisttemp[k] = np.array(listdisttemp[k]) indxstksrows[k] = np.array(indxstksrows[k]) indxstkscols[k] = np.array(indxstkscols[k]) if cntr > 1e6: break listdist = [[] for k in range(gmod.numbparagenrelemtotl)] for k, nameparagenrelem in enumerate(gmod.namepara.elem): listdist[k] = scipy.sparse.csr_matrix((listdisttemp[k], (indxstksrows[k], indxstkscols[k])), shape=(numbstks, numbstks)) listindxstkspair = [] indxstksleft = [] if gdat.typeverb > 0: timefinl = gdat.functime() indxstksleft = range(numbstks) # list of sample lists of the labeled element indxstksassc = [] cntr = 0 gdat.prvlthrs = 0.05 while len(indxstksleft) > 0: # count number of associations numbdist = np.zeros(numbstks, dtype=int) - 1 for p in range(len(indxstksleft)): indxindx = np.where((listdist[0][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmlgal < gdat.anglassc) & \ (listdist[1][indxstksleft[p], :].tonp.array().flatten() * 2. * gdat.maxmbgal < gdat.anglassc))[0] numbdist[indxstksleft[p]] = indxindx.size prvlmaxmesti = np.amax(numbdist) / float(gdat.numbsamptotl) if prvlmaxmesti < gdat.prvlthrs: break # determine the element with the highest number of neighbors indxstkscntr = np.argmax(numbdist) indxsamptotlcntr = indxtupl[indxstkscntr][0] indxpoplcntr = indxtupl[indxstkscntr][1] indxelemcntr = indxtupl[indxstkscntr][2] # add the central element sample indxstksassc.append([]) indxstksassc[cntr].append(indxstkscntr) indxstksleft.remove(indxstkscntr) if gdat.typeverb > 1: print('Match step %d' % cntr) print('numbdist') print(numbdist) print('indxstkscntr') print(indxstkscntr) print('indxstksleft') print(indxstksleft) # add the associated element samples if len(indxstksleft) > 0: for n in gdat.indxsamptotl: indxstkstemp = np.intersect1d(np.array(indxstksleft), indxstksparagenrscalfull[n]) if n == indxsamptotlcntr: continue if indxstkstemp.size > 0: totl = np.zeros_like(indxstkstemp) for k in gmod.indxparagenrelemtotl: temp = listdist[k][indxstkscntr, indxstkstemp].tonp.array()[0] totl = totl + temp**2 indxleft = np.argsort(totl)[0] indxstksthis = indxstkstemp[indxleft] thisbool = True for k in gmod.indxparagenrelemtotl: if listdist[k][indxstkscntr, indxstksthis] > gdat.distthrs[k]: thisbool = False if thisbool: indxstksassc[cntr].append(indxstksthis) indxstksleft.remove(indxstksthis) # temp #if gdat.makeplot: # gdatmodi = tdpy.gdatstrt() # gdatmodi.this.indxelemfull = deepcopy(listindxelemfull[n]) # for r in range(len(indxstksassc)): # calc_poststkscond(gdat, indxstksassc) # gdatmodi.this.indxelemfull = [[] for l in gmod.indxpopl] # for indxstkstemp in indxstksleft: # indxsamptotlcntr = indxtupl[indxstkstemp][0] # indxpoplcntr = indxtupl[indxstkstemp][1] # indxelemcntr = indxtupl[indxstkstemp][2] # gdatmodi.this.paragenrscalfull = gdat.listparagenrscalfull[indxsamptotlcntr, :] # gdatmodi.this.indxelemfull[].append() # plot_genemaps(gdat, gdatmodi, 'this', 'cntpdata', strgpdfn, indxenerplot=0, indxevttplot=0, cond=True) cntr += 1 gdat.dictglob['poststkscond'] = [] gdat.dictglob['liststkscond'] = [] # for each condensed element for r in range(len(indxstksassc)): gdat.dictglob['liststkscond'].append([]) gdat.dictglob['liststkscond'][r] = {} gdat.dictglob['poststkscond'].append([]) gdat.dictglob['poststkscond'][r] = {} for strgfeat in gmod.namepara.genrelem: gdat.dictglob['liststkscond'][r][strgfeat] = [] # for each associated sample associated with the central stacked sample for k in range(len(indxstksassc[r])): indxsamptotlcntr = indxtupl[indxstksassc[r][k]][0] indxpoplcntr = indxtupl[indxstksassc[r][k]][1] indxelemcntr = indxtupl[indxstksassc[r][k]][2] for strgfeat in gmod.namepara.genrelem: temp = getattr(gdat, 'list' + strgfeat) if temp[indxsamptotlcntr][indxpoplcntr].size > 0: temp = temp[indxsamptotlcntr][indxpoplcntr][..., indxelemcntr] gdat.dictglob['liststkscond'][r][strgfeat].append(temp) for r in range(len(gdat.dictglob['liststkscond'])): for strgfeat in gmod.namepara.genrelem: arry = np.stack(gdat.dictglob['liststkscond'][r][strgfeat], axis=0) gdat.dictglob['poststkscond'][r][strgfeat] = np.zeros(([3] + list(arry.shape[1:]))) gdat.dictglob['poststkscond'][r][strgfeat][0, ...] = median(arry, axis=0) gdat.dictglob['poststkscond'][r][strgfeat][1, ...] = percennp.tile(arry, 16., axis=0) gdat.dictglob['poststkscond'][r][strgfeat][2, ...] = percennp.tile(arry, 84., axis=0) gdat.numbstkscond = len(gdat.dictglob['liststkscond']) gdat.indxstkscond = np.arange(gdat.numbstkscond) gdat.prvl = np.empty(gdat.numbstkscond) for r in gdat.indxstkscond: gdat.prvl[r] = len(gdat.dictglob['liststkscond'][r]['deltllik']) gdat.prvl /= gdat.numbsamptotl gdat.minmprvl = 0. gdat.maxmprvl = 1. retr_axis(gdat, 'prvl') gdat.histprvl = np.histogram(gdat.prvl, bins=gdat.binspara.prvl)[0] if gdat.makeplot: pathcond = getattr(gdat, 'path' + strgpdfn + 'finlcond') for k, nameparagenrelem in enumerate(gmod.namepara.elem): path = pathcond + 'histdist' + nameparagenrelem listtemp = np.copy(listdist[k].tonp.array()).flatten() listtemp = listtemp[np.where(listtemp != 1e20)[0]] tdpy.mcmc.plot_hist(path, listtemp, r'$\Delta \tilde{' + getattr(gmod.lablrootpara, nameparagenrelem) + '}$') path = pathcond + 'histprvl' tdpy.mcmc.plot_hist(path, gdat.prvl, r'$p$') gdat.prvlthrs = 0.1 gdat.indxprvlhigh = np.where(gdat.prvl > gdat.prvlthrs)[0] gdat.numbprvlhigh = gdat.indxprvlhigh.size def retr_conv(gdat, defl): defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) # temp conv = abs(np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0) + np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) / 2. conv = conv.flatten() return conv def retr_invm(gdat, defl): # temp defl = defl.reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) invm = (1. - np.gradient(defl[:, :, 0], gdat.sizepixl, axis=0)) * (1. - np.gradient(defl[:, :, 1], gdat.sizepixl, axis=1)) - \ np.gradient(defl[:, :, 0], gdat.sizepixl, axis=1) * np.gradient(defl[:, :, 1], gdat.sizepixl, axis=0) invm = invm.flatten() return invm def setp_indxswepsave(gdat): gdat.indxswep = np.arange(gdat.numbswep) gdat.boolsave = np.zeros(gdat.numbswep, dtype=bool) gdat.indxswepsave = np.arange(gdat.numbburn, gdat.numbburn + gdat.numbsamp * gdat.factthin, gdat.factthin) gdat.boolsave[gdat.indxswepsave] = True gdat.indxsampsave = np.zeros(gdat.numbswep, dtype=int) - 1 gdat.indxsampsave[gdat.indxswepsave] = np.arange(gdat.numbsamp) def retr_cntspnts(gdat, listposi, spec): cnts = np.zeros((gdat.numbener, spec.shape[1])) if gdat.boolbinsspat: lgal = listposi[0] bgal = listposi[1] indxpixlpnts = retr_indxpixl(gdat, bgal, lgal) else: elin = listposi[0] indxpixlpnts = np.zeros_like(elin, dtype=int) for k in range(spec.shape[1]): cnts[:, k] += spec[:, k] * gdat.expototl[:, indxpixlpnts[k]] if gdat.enerdiff: cnts *= gdat.deltener[:, None] cnts = np.sum(cnts, axis=0) return cnts def retr_mdencrit(gdat, adissour, adishost, adishostsour): mdencrit = gdat.factnewtlght / 4. / np.pi * adissour / adishostsour / adishost return mdencrit def retr_massfrombein(gdat, adissour, adishost, adishostsour): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) massfrombein = np.pi * adishost**2 * mdencrit return massfrombein def retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut): mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) fracacutasca = acut / asca factmcutfromdefs = np.pi * adishost**2 * mdencrit * asca * retr_mcutfrommscl(fracacutasca) return factmcutfromdefs def retr_mcut(gdat, defs, asca, acut, adishost, mdencrit): mscl = defs * np.pi * adishost**2 * mdencrit * asca fracacutasca = acut / asca mcut = mscl * retr_mcutfrommscl(fracacutasca) return mcut def retr_mcutfrommscl(fracacutasca): mcut = fracacutasca**2 / (fracacutasca**2 + 1.)**2 * ((fracacutasca**2 - 1.) * np.log(fracacutasca) + fracacutasca * np.pi - (fracacutasca**2 + 1.)) return mcut def retr_negalogt(varb): negalogt = sign(varb) * np.log10(np.fabs(varb)) return negalogt def retr_gradmaps(gdat, maps): # temp -- this does not work with vanishing exposure maps = maps.reshape((gdat.numbsidecart, gdat.numbsidecart)) grad = np.dstack((np.gradient(maps, gdat.sizepixl, axis=0), np.gradient(maps, gdat.sizepixl, axis=1))).reshape((gdat.numbsidecart, gdat.numbsidecart, 2)) grad = grad.reshape((gdat.numbpixlcart, 2)) return grad def retr_spatmean(gdat, inpt, boolcntp=False): listspatmean = [[] for b in gdat.indxspatmean] listspatstdv = [[] for b in gdat.indxspatmean] for b, namespatmean in enumerate(gdat.listnamespatmean): if boolcntp: cntp = inpt[gdat.listindxcubespatmean[b]] else: cntp = inpt[gdat.listindxcubespatmean[b]] * gdat.expo[gdat.listindxcubespatmean[b]] * gdat.apix if gdat.enerdiff: cntp *= gdat.deltener[:, None, None] spatmean = np.mean(np.sum(cntp, 2), axis=1) / gdat.apix spatstdv = np.sqrt(np.sum(cntp, axis=(1, 2))) / gdat.numbdata / gdat.apix if gdat.boolcorrexpo: spatmean /= gdat.expototlmean spatstdv /= gdat.expototlmean if gdat.enerdiff: spatmean /= gdat.deltener spatstdv /= gdat.deltener listspatmean[b] = spatmean listspatstdv[b] = spatstdv return listspatmean, listspatstdv def retr_rele(gdat, maps, lgal, bgal, defs, asca, acut, indxpixlelem, absv=True, cntpmodl=None): grad = retr_gradmaps(gdat, maps) defl = retr_defl(gdat, indxpixlelem, lgal, bgal, defs, asca=asca, acut=acut) prod = grad * defl if cntpmodl is not None: prod /= cntpmodl[:, None] dotstemp = np.sum(prod, 1) if absv: dotstemp = np.fabs(dotstemp) else: dotstemp = dotstemp dots = np.mean(dotstemp) return dots def retr_fromgdat(gdat, gdatmodi, strgstat, strgmodl, strgvarb, strgpdfn, strgmome='pmea', indxvarb=None, indxlist=None): if strgvarb.startswith('cntpdata'): varb = getattr(gdat, strgvarb) elif strgvarb.startswith('histcntpdata'): varb = getattr(gdat, strgvarb) else: if strgmodl == 'true': gmod = getattr(gdat, strgmodl) gmodstat = getattr(gmod, strgstat) varb = getattr(gmodstat, strgvarb) if strgmodl == 'fitt': if strgstat == 'this': if strgmome == 'errr': varb = getattr(gdatmodi, strgstat + 'errr' + strgvarb) else: varb = getattr(gdatmodi, strgstat + strgvarb) if strgstat == 'pdfn': varb = getattr(gdat, strgmome + strgpdfn + strgvarb) if indxlist is not None: varb = varb[indxlist] if indxvarb is not None: if strgmome == 'errr': varb = varb[[slice(None)] + indxvarb] else: varb = varb[indxvarb] return np.copy(varb) def setp_indxpara(gdat, typesetp, strgmodl='fitt'): print('setp_indxpara(): Building parameter indices for model %s with type %s...' % (strgmodl, typesetp)) gmod = getattr(gdat, strgmodl) if typesetp == 'init': if strgmodl == 'fitt': gmod.lablmodl = 'Model' if strgmodl == 'true': gmod.lablmodl = 'True' # transdimensional element populations gmod.numbpopl = len(gmod.typeelem) gmod.indxpopl = np.arange(gmod.numbpopl) if gdat.typeexpr != 'user': # background component gmod.numbback = 0 gmod.indxback = [] for c in range(len(gmod.typeback)): if isinstance(gmod.typeback[c], str): if gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): namebfun = gmod.typeback[c][:8] ordrexpa = int(gmod.typeback[c][8:]) numbexpa = 4 * ordrexpa**2 indxexpa = np.arange(numbexpa) del gmod.typeback[c] for k in indxexpa: gmod.typeback.insert(c+k, namebfun + '%04d' % k) gmod.numbback = len(gmod.typeback) gmod.indxback = np.arange(gmod.numbback) gmod.numbbacktotl = np.sum(gmod.numbback) gmod.indxbacktotl = np.arange(gmod.numbbacktotl) # galaxy components gmod.indxsersfgrd = np.arange(gmod.numbsersfgrd) # name of the generative element parameter used for the amplitude gmod.nameparagenrelemampl = [[] for l in gmod.indxpopl] gmod.indxparagenrelemampl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': gmod.nameparagenrelemampl[l] = 'per0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.nameparagenrelemampl[l] = 'lum0' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtline'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 1 elif gmod.typeelem[l].startswith('lghtpnts'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 elif gmod.typeelem[l].startswith('lghtgausbgrd'): gmod.nameparagenrelemampl[l] = 'flux' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l].startswith('clus'): gmod.nameparagenrelemampl[l] = 'nobj' gmod.indxparagenrelemampl[l] = 2 if gmod.typeelem[l] == 'lens': gmod.nameparagenrelemampl[l] = 'defs' if gmod.typeelem[l] == 'clus': gmod.nameparagenrelemampl[l] = 'nobj' if len(gmod.nameparagenrelemampl[l]) == 0: raise Exception('Amplitude feature undefined.') for featpara in gdat.listfeatpara: for strggrop in gdat.liststrggroppara: setattr(gmod, 'list' + featpara + 'para' + strggrop, []) if typesetp == 'finl': # number of elements in the current state of the true model if strgmodl == 'true': gmod.numbelem = np.zeros(gmod.numbpopl) for l in gmod.indxpopl: gmod.numbelem[l] += getattr(gmod.maxmpara, 'numbelempop%d' % l) gmod.numbelemtotl = np.sum(gmod.numbelem) # element setup ## flag to calculate the kernel approximation errors boolcalcerrr = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelemspateval[l] == 'locl' and gdat.numbpixlfull < 1e5: # temp boolcalcerrr[l] = False else: boolcalcerrr[l] = False setp_varb(gdat, 'boolcalcerrr', valu=boolcalcerrr, strgmodl=strgmodl) # maximum number of elements for each population gmod.maxmpara.numbelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.maxmpara.numbelem[l] = getattr(gmod.maxmpara, 'numbelempop%d' % l) # maximum number of elements summed over all populations gmod.maxmpara.numbelemtotl = np.sum(gmod.maxmpara.numbelem) ## sorting feature nameparaelemsort = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: # feature to be used to sort elements if gmod.typeelem[l].startswith('lght'): nameparaelemsort[l] = 'flux' if gmod.typeelem[l] == 'lens': nameparaelemsort[l] = 'defs' if gmod.typeelem[l].startswith('clus'): nameparaelemsort[l] = 'nobj' ## label extensions gmod.lablelemextn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{fps}' if gmod.typeelem[l] == 'lghtgausbgrd': gmod.lablelemextn[l] = r'\rm{bgs}' else: if gmod.typeelem[l].startswith('lghtpntspuls'): gmod.lablelemextn[l] = r'\rm{pul}' if gmod.typeelem[l].startswith('lghtpntsagnn'): gmod.lablelemextn[l] = r'\rm{agn}' elif gmod.typeelem[l] == 'lghtpnts': gmod.lablelemextn[l] = r'\rm{pts}' if gmod.typeelem[l] == 'lens': gmod.lablelemextn[l] = r'\rm{sub}' if gmod.typeelem[l].startswith('clus'): gmod.lablelemextn[l] = r'\rm{cls}' if gmod.typeelem[l].startswith('lghtline'): gmod.lablelemextn[l] = r'\rm{lin}' gmod.indxpoplgrid = [[] for y in gdat.indxgrid] for y in gdat.indxgrid: for indx, typeelemtemp in enumerate(gmod.typeelem): # foreground grid (image plane) -- the one np.where the data is measured if y == 0: if typeelemtemp.startswith('lght') and not typeelemtemp.endswith('bgrd') or typeelemtemp.startswith('clus'): gmod.indxpoplgrid[y].append(indx) # foreground mass grid if y == 1: if typeelemtemp.startswith('lens'): gmod.indxpoplgrid[y].append(indx) # background grid (source plane) if y == 2: if typeelemtemp.endswith('bgrd'): gmod.indxpoplgrid[y].append(indx) indxgridpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for y in gdat.indxgrid: if l in gmod.indxpoplgrid[y]: indxgridpopl[l] = y calcelemsbrt = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts'): calcelemsbrt = True if 'lghtgausbgrd' in gmod.typeelem: calcelemsbrtbgrd = True else: calcelemsbrtbgrd = False if gmod.boollenssubh: calcelemdefl = True else: calcelemdefl = False ## element Boolean flags gmod.boolelemlght = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.boolelemlght[l] = True else: gmod.boolelemlght[l] = False gmod.boolelemlghtanyy = True in gmod.boolelemlght gmod.boolelemlens = False for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lens'): gmod.boolelemlens = True gmod.boolelemsbrtdfnc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0 and (gmod.typeelem[l].startswith('lght') and not gmod.typeelem[l].endswith('bgrd') or gmod.typeelem[l].startswith('clus')): gmod.boolelemsbrtdfnc[l] = True else: gmod.boolelemsbrtdfnc[l] = False gmod.boolelemsbrtdfncanyy = True in gmod.boolelemsbrtdfnc gmod.boolelemdeflsubh = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l] == 'lens': gmod.boolelemdeflsubh[l] = True else: gmod.boolelemdeflsubh[l] = False gmod.boolelemdeflsubhanyy = True in gmod.boolelemdeflsubh gmod.boolelemsbrtextsbgrd = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l].endswith('bgrd'): gmod.boolelemsbrtextsbgrd[l] = True else: gmod.boolelemsbrtextsbgrd[l] = False gmod.boolelemsbrtextsbgrdanyy = True in gmod.boolelemsbrtextsbgrd if gmod.boolelemsbrtextsbgrdanyy: gmod.indxpopllens = 1 else: gmod.indxpopllens = 0 gmod.boolelemsbrtpnts = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and gmod.typeelem[l] != 'lghtline' or gmod.typeelem[l] == 'clus': gmod.boolelemsbrtpnts[l] = True else: gmod.boolelemsbrtpnts[l] = False gmod.boolelemsbrtpntsanyy = True in gmod.boolelemsbrtpnts # temp -- because there is currently no extended source gmod.boolelemsbrt = gmod.boolelemsbrtdfnc gmod.boolelempsfn = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtpnts') or gmod.typeelem[l] == 'clus': gmod.boolelempsfn[l] = True else: gmod.boolelempsfn[l] = False gmod.boolelempsfnanyy = True in gmod.boolelempsfn spectype = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.boolelemlght[l]: spectype[l] = 'powr' else: spectype[l] = 'none' setp_varb(gdat, 'spectype', valu=spectype, strgmodl=strgmodl) minmgwdt = 2. * gdat.sizepixl maxmgwdt = gdat.maxmgangdata / 4. setp_varb(gdat, 'gwdt', minm=minmgwdt, maxm=maxmgwdt, strgmodl=strgmodl) setp_varb(gdat, 'aerr', minm=-100, maxm=100, strgmodl=strgmodl, popl='full') if gmod.boolelemlghtanyy: # flux if gdat.typeexpr == 'ferm': minmflux = 1e-9 maxmflux = 1e-6 if gdat.typeexpr == 'tess': minmflux = 1. maxmflux = 1e3 if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': minmflux = 1e4 maxmflux = 1e7 else: minmflux = 3e-9 maxmflux = 1e-6 if gdat.typeexpr == 'gene': minmflux = 0.1 maxmflux = 100. if gdat.typeexpr == 'hubb': minmflux = 1e-20 maxmflux = 1e-17 if gdat.typeexpr == 'fire': minmflux = 1e-20 maxmflux = 1e-17 setp_varb(gdat, 'flux', limt=[minmflux, maxmflux], strgmodl=strgmodl) if gdat.typeexpr == 'ferm': setp_varb(gdat, 'brekprioflux', limt=[3e-9, 1e-6], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'sloplowrprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'slopupprprioflux', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) if gdat.boolbinsener: ### spectral parameters if gdat.typeexpr == 'ferm': sind = [1., 3.] minmsind = 1. maxmsind = 3. if gdat.typeexpr == 'chan': minmsind = 0.4 maxmsind = 2.4 sind = [0.4, 2.4] if gdat.typeexpr == 'hubb': minmsind = 0.5 maxmsind = 2.5 sind = [0.4, 2.4] if gdat.typeexpr != 'fire': setp_varb(gdat, 'sind', limt=[minmsind, maxmsind], strgmodl=strgmodl) setp_varb(gdat, 'curv', limt=[-1., 1.], strgmodl=strgmodl) setp_varb(gdat, 'expc', limt=[0.1, 10.], strgmodl=strgmodl) setp_varb(gdat, 'sinddistmean', limt=sind, popl='full', strgmodl=strgmodl) #### standard deviations should not be too small setp_varb(gdat, 'sinddiststdv', limt=[0.3, 2.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdistmean', limt=[-1., 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'curvdiststdv', limt=[0.1, 1.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdistmean', limt=[1., 8.], popl='full', strgmodl=strgmodl) setp_varb(gdat, 'expcdiststdv', limt=[0.01 * gdat.maxmener, gdat.maxmener], popl='full', strgmodl=strgmodl) for i in gdat.indxenerinde: setp_varb(gdat, 'sindcolr0001', limt=[-2., 6.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr0002', limt=[0., 8.], strgmodl=strgmodl) setp_varb(gdat, 'sindcolr%04d' % i, limt=[-5., 10.], strgmodl=strgmodl) for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpntspuls': setp_varb(gdat, 'gang', limt=[1e-1 * gdat.sizepixl, gdat.maxmgangdata], strgmodl=strgmodl) setp_varb(gdat, 'geff', limt=[0., 0.4], strgmodl=strgmodl) setp_varb(gdat, 'dglc', limt=[10., 3e3], strgmodl=strgmodl) setp_varb(gdat, 'phii', limt=[0., 2. * np.pi], strgmodl=strgmodl) setp_varb(gdat, 'thet', limt=[0., np.pi], strgmodl=strgmodl) setp_varb(gdat, 'per0distmean', limt=[5e-4, 1e1], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdistmean', limt=[1e7, 1e16], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'per0diststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'magfdiststdv', limt=[1e-2, 1.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'gangslop', limt=[0.5, 4.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'dglcslop', limt=[0.5, 2.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'spatdistcons', limt=[1e-4, 1e-2], popl='full') setp_varb(gdat, 'bgaldistscal', limt=[0.5 / gdat.anglfact, 5. / gdat.anglfact], popl='full', strgmodl=strgmodl) if gmod.typeelem[l] == 'lghtpntsagnntrue': setp_varb(gdat, 'dlos', limt=[1e7, 1e9], strgmodl=strgmodl) setp_varb(gdat, 'dlosslop', limt=[-0.5, -3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0', limt=[1e43, 1e46], strgmodl=strgmodl) setp_varb(gdat, 'lum0distbrek', limt=[1e42, 1e46], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0sloplowr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) setp_varb(gdat, 'lum0slopuppr', limt=[0.5, 3.], popl=l, strgmodl=strgmodl) # construct background surface brightness templates from the user input gmod.sbrtbacknorm = [[] for c in gmod.indxback] gmod.boolunifback = np.ones(gmod.numbback, dtype=bool) for c in gmod.indxback: gmod.sbrtbacknorm[c] = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) if gmod.typeback[c] == 'data': gmod.sbrtbacknorm[c] = np.copy(gdat.sbrtdata) gmod.sbrtbacknorm[c][np.where(gmod.sbrtbacknorm[c] == 0.)] = 1e-100 elif isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c] elif isinstance(gmod.typeback[c], list) and isinstance(gmod.typeback[c], float): gmod.sbrtbacknorm[c] = retr_spec(gdat, np.array([gmod.typeback[c]]), sind=np.array([gmod.typeback[c]]))[:, 0, None, None] elif isinstance(gmod.typeback[c], np.ndarray) and gmod.typeback[c].ndim == 1: gmod.sbrtbacknorm[c] = np.zeros((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) + gmod.typeback[c][:, None, None] elif gmod.typeback[c].startswith('bfunfour') or gmod.typeback[c].startswith('bfunwfou'): indxexpatemp = int(gmod.typeback[c][8:]) indxterm = indxexpatemp // ordrexpa**2 indxexpaxdat = (indxexpatemp % ordrexpa**2) // ordrexpa + 1 indxexpaydat = (indxexpatemp % ordrexpa**2) % ordrexpa + 1 if namebfun == 'bfunfour': ampl = 1. func = gdat.meanpara.bgalcart if namebfun == 'bfunwfou': functemp = np.exp(-0.5 * (gdat.meanpara.bgalcart / (1. / gdat.anglfact))**2) ampl = np.sqrt(functemp) func = functemp argslgal = 2. * np.pi * indxexpaxdat * gdat.meanpara.lgalcart / gdat.maxmgangdata argsbgal = 2. * np.pi * indxexpaydat * func / gdat.maxmgangdata if indxterm == 0: termfrst = np.sin(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 1: termfrst = np.sin(argslgal) termseco = ampl * np.cos(argsbgal) if indxterm == 2: termfrst = np.cos(argslgal) termseco = ampl * np.sin(argsbgal) if indxterm == 3: termfrst = np.cos(argslgal) termseco = ampl * np.cos(argsbgal) gmod.sbrtbacknorm[c] = (termfrst[None, :] * termseco[:, None]).flatten()[None, :, None] * \ np.ones((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) else: path = gdat.pathinpt + gmod.typeback[c] gmod.sbrtbacknorm[c] = astropy.io.fits.getdata(path) if gdat.typepixl == 'cart': if not gdat.boolforccart: if gmod.sbrtbacknorm[c].shape[2] != gdat.numbsidecart: raise Exception('Provided background template must have the chosen image dimensions.') gmod.sbrtbacknorm[c] = gmod.sbrtbacknorm[c].reshape((gmod.sbrtbacknorm[c].shape[0], -1, gmod.sbrtbacknorm[c].shape[-1])) if gdat.typepixl == 'cart' and gdat.boolforccart: sbrtbacknormtemp = np.empty((gdat.numbenerfull, gdat.numbpixlfull, gdat.numbevttfull)) for i in gdat.indxenerfull: for m in gdat.indxevttfull: sbrtbacknormtemp[i, :, m] = tdpy.retr_cart(gmod.sbrtbacknorm[c][i, :, m], \ numbsidelgal=gdat.numbsidecart, numbsidebgal=gdat.numbsidecart, \ minmlgal=gdat.anglfact*gdat.minmlgaldata, maxmlgal=gdat.anglfact*gdat.maxmlgaldata, \ minmbgal=gdat.anglfact*gdat.minmbgaldata, maxmbgal=gdat.anglfact*gdat.maxmbgaldata).flatten() gmod.sbrtbacknorm[c] = sbrtbacknormtemp # determine spatially uniform background templates for i in gdat.indxenerfull: for m in gdat.indxevttfull: if np.std(gmod.sbrtbacknorm[c][i, :, m]) > 1e-6: gmod.boolunifback[c] = False boolzero = True gmod.boolbfun = False for c in gmod.indxback: if np.amin(gmod.sbrtbacknorm[c]) < 0. and isinstance(gmod.typeback[c], str) and not gmod.typeback[c].startswith('bfun'): booltemp = False raise Exception('Background templates must be positive-definite every where.') if not np.isfinite(gmod.sbrtbacknorm[c]).all(): raise Exception('Background template is not finite.') if np.amin(gmod.sbrtbacknorm[c]) > 0. or gmod.typeback[c] == 'data': boolzero = False if isinstance(gmod.typeback[c], str) and gmod.typeback[c].startswith('bfun'): gmod.boolbfun = True if boolzero and not gmod.boolbfun: raise Exception('At least one background template must be positive everynp.where.') # temp -- does not take into account dark hosts gmod.boolhost = gmod.typeemishost != 'none' # type of PSF evaluation if gmod.maxmpara.numbelemtotl > 0 and gmod.boolelempsfnanyy: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'full' else: # the background is not convolved by a kernel and point sources exist typeevalpsfn = 'kern' else: if gmod.typeemishost != 'none' or not gmod.boolunifback.all(): # the background is convolved by a kernel, no point source exists typeevalpsfn = 'conv' else: # the background is not convolved by a kernel, no point source exists typeevalpsfn = 'none' setp_varb(gdat, 'typeevalpsfn', valu=typeevalpsfn, strgmodl=strgmodl) if gdat.typeverb > 1: print('gmod.typeevalpsfn') print(gmod.typeevalpsfn) gmod.boolapplpsfn = gmod.typeevalpsfn != 'none' ### PSF model if gmod.typeevalpsfn != 'none': if gmod.typemodlpsfn == 'singgaus': numbpsfpform = 1 elif gmod.typemodlpsfn == 'singking': numbpsfpform = 2 elif gmod.typemodlpsfn == 'doubgaus': numbpsfpform = 3 elif gmod.typemodlpsfn == 'gausking': numbpsfpform = 4 elif gmod.typemodlpsfn == 'doubking': numbpsfpform = 5 gmod.numbpsfptotl = numbpsfpform if gdat.boolpriopsfninfo: for i in gdat.indxener: for m in gdat.indxevtt: meansigc = gmod.psfpexpr[i * gmod.numbpsfptotl + m * gmod.numbpsfptotl * gdat.numbener] stdvsigc = meansigc * 0.1 setp_varb(gdat, 'sigcen%02devt%d' % (i, m), mean=meansigc, stdv=stdvsigc, lablroot='$\sigma$', scal='gaus', \ strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': meangamc = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 1] stdvgamc = meangamc * 0.1 setp_varb(gdat, 'gamcen%02devt%d' % (i, m), mean=meangamc, stdv=stdvgamc, strgmodl=strgmodl) if gmod.typemodlpsfn == 'doubking': meansigt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 2] stdvsigt = meansigt * 0.1 setp_varb(gdat, 'sigten%02devt%d' % (i, m), mean=meansigt, stdv=stdvsigt, strgmodl=strgmodl) meangamt = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 3] stdvgamt = meangamt * 0.1 setp_varb(gdat, 'gamten%02devt%d' % (i, m), mean=meangamt, stdv=stdvgamt, strgmodl=strgmodl) meanpsff = gmod.psfpexpr[i * numbpsfpform + m * numbpsfpform * gdat.numbener + 4] stdvpsff = meanpsff * 0.1 setp_varb(gdat, 'psffen%02devt%d' % (i, m), mean=meanpsff, stdv=stdvpsff, strgmodl=strgmodl) else: if gdat.typeexpr == 'gene': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'ferm': minmsigm = 0.1 maxmsigm = 10. if gdat.typeexpr == 'hubb': minmsigm = 0.01 / gdat.anglfact maxmsigm = 0.1 / gdat.anglfact if gdat.typeexpr == 'chan': minmsigm = 0.1 / gdat.anglfact maxmsigm = 2. / gdat.anglfact minmgamm = 1.5 maxmgamm = 20. setp_varb(gdat, 'sigc', minm=minmsigm, maxm=maxmsigm, lablroot='$\sigma_c$', ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'sigt', minm=minmsigm, maxm=maxmsigm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamc', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'gamt', minm=minmgamm, maxm=maxmgamm, ener='full', evtt='full', strgmodl=strgmodl) setp_varb(gdat, 'psff', minm=0., maxm=1., ener='full', evtt='full', strgmodl=strgmodl) # background ## number of background parameters numbbacp = 0 for c in gmod.indxback: if gmod.boolspecback[c]: numbbacp += 1 else: numbbacp += gdat.numbener ## background parameter indices gmod.indxbackbacp = np.zeros(numbbacp, dtype=int) indxenerbacp = np.zeros(numbbacp, dtype=int) cntr = 0 for c in gmod.indxback: if gmod.boolspecback[c]: gmod.indxbackbacp[cntr] = c cntr += 1 else: for i in gdat.indxener: indxenerbacp[cntr] = i gmod.indxbackbacp[cntr] = c cntr += 1 # indices of background parameters for each background component gmod.indxbacpback = [[] for c in gmod.indxback] for c in gmod.indxback: gmod.indxbacpback[c] = np.where((gmod.indxbackbacp == c))[0] # list of names of diffuse components gmod.listnamediff = [] for c in gmod.indxback: gmod.listnamediff += ['back%04d' % c] if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: gmod.listnamediff += ['hostisf%d' % e] if gmod.boollens: gmod.listnamediff += ['lens'] # list of names of emission components listnameecom = deepcopy(gmod.listnamediff) for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: if strgmodl == 'true' and gmod.numbelem[l] > 0 or strgmodl == 'fitt' and gmod.maxmpara.numbelem[l] > 0: if not 'dfnc' in listnameecom: listnameecom += ['dfnc'] if not 'dfncsubt' in listnameecom: listnameecom += ['dfncsubt'] gmod.listnameecomtotl = listnameecom + ['modl'] for c in gmod.indxback: setp_varb(gdat, 'cntpback%04d' % c, lablroot='$C_{%d}$' % c, minm=1., maxm=100., scal='logt', strgmodl=strgmodl) gmod.listnamegcom = deepcopy(gmod.listnameecomtotl) if gmod.boollens: gmod.listnamegcom += ['bgrd'] if gmod.numbparaelem > 0 and gmod.boolelemsbrtextsbgrdanyy: gmod.listnamegcom += ['bgrdgalx', 'bgrdexts'] numbdiff = len(gmod.listnamediff) convdiff = np.zeros(numbdiff, dtype=bool) for k, namediff in enumerate(gmod.listnamediff): if not (gdat.boolthindata or gmod.typeevalpsfn == 'none' or gmod.typeevalpsfn == 'kern'): if namediff.startswith('back'): indx = int(namediff[-4:]) convdiff[k] = not gmod.boolunifback[indx] else: convdiff[k] = True # element parameters that correlate with the statistical significance of the element gmod.namepara.elemsign = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): gmod.namepara.elemsign[l] = 'flux' if gmod.typeelem[l] == 'lens': gmod.namepara.elemsign[l] = 'defs' if gmod.typeelem[l].startswith('clus'): gmod.namepara.elemsign[l] = 'nobj' if gdat.typeverb > 0: if strgmodl == 'true': strgtemp = 'true' if strgmodl == 'fitt': strgtemp = 'fitting' print('Building elements for the %s model...' % strgtemp) # define the names and scalings of element parameters gmod.namepara.genrelem = [[] for l in gmod.indxpopl] gmod.listscalparagenrelem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] = ['elin'] gmod.listscalparagenrelem[l] = ['logt'] elif gmod.typespatdist[l] == 'diskscal': gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'dexp'] elif gmod.typespatdist[l] == 'gangexpo': gmod.namepara.genrelem[l] = ['gang', 'aang'] gmod.listscalparagenrelem[l] = ['expo', 'self'] elif gmod.typespatdist[l] == 'glc3': gmod.namepara.genrelem[l] = ['dglc', 'thet', 'phii'] gmod.listscalparagenrelem[l] = ['powr', 'self', 'self'] else: gmod.namepara.genrelem[l] = ['lgal', 'bgal'] gmod.listscalparagenrelem[l] = ['self', 'self'] # amplitude if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['lum0'] gmod.listscalparagenrelem[l] += ['dpowslopbrek'] elif gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['per0'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] elif gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['flux'] gmod.listscalparagenrelem[l] += [gmod.typeprioflux[l]] elif gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['defs'] gmod.listscalparagenrelem[l] += ['powr'] elif gmod.typeelem[l].startswith('clus'): gmod.namepara.genrelem[l] += ['nobj'] gmod.listscalparagenrelem[l] += ['powr'] # shape if gmod.typeelem[l] == 'lghtgausbgrd' or gmod.typeelem[l] == 'clusvari': gmod.namepara.genrelem[l] += ['gwdt'] gmod.listscalparagenrelem[l] += ['powr'] if gmod.typeelem[l] == 'lghtlinevoig': gmod.namepara.genrelem[l] += ['sigm'] gmod.listscalparagenrelem[l] += ['logt'] gmod.namepara.genrelem[l] += ['gamm'] gmod.listscalparagenrelem[l] += ['logt'] # others if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.genrelem[l] += ['magf'] gmod.listscalparagenrelem[l] += ['lnormeanstdv'] gmod.namepara.genrelem[l] += ['geff'] gmod.listscalparagenrelem[l] += ['self'] elif gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.genrelem[l] += ['dlos'] gmod.listscalparagenrelem[l] += ['powr'] if gdat.numbener > 1 and gmod.typeelem[l].startswith('lghtpnts'): if gmod.spectype[l] == 'colr': for i in gdat.indxener: if i == 0: continue gmod.namepara.genrelem[l] += ['sindcolr%04d' % i] gmod.listscalparagenrelem[l] += ['self'] else: gmod.namepara.genrelem[l] += ['sind'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'curv': gmod.namepara.genrelem[l] += ['curv'] gmod.listscalparagenrelem[l] += ['self'] if gmod.spectype[l] == 'expc': gmod.namepara.genrelem[l] += ['expc'] gmod.listscalparagenrelem[l] += ['self'] if gmod.typeelem[l] == 'lens': if gdat.variasca: gmod.namepara.genrelem[l] += ['asca'] gmod.listscalparagenrelem[l] += ['self'] if gdat.variacut: gmod.namepara.genrelem[l] += ['acut'] gmod.listscalparagenrelem[l] += ['self'] # names of element parameters for each scaling gmod.namepara.genrelemscal = [{} for l in gmod.indxpopl] for l in gmod.indxpopl: for scaltype in gdat.listscaltype: gmod.namepara.genrelemscal[l][scaltype] = [] for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if scaltype == gmod.listscalparagenrelem[l][k]: gmod.namepara.genrelemscal[l][scaltype].append(nameparagenrelem) # variables for which whose marginal distribution and pair-correlations will be plotted gmod.namepara.derielemodim = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.derielemodim[l] = deepcopy(gmod.namepara.genrelem[l]) gmod.namepara.derielemodim[l] += ['deltllik'] if gdat.boolbinsspat: if not 'lgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['lgal'] if not 'bgal' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['bgal'] if not 'gang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['gang'] if not 'aang' in gmod.namepara.derielemodim[l]: gmod.namepara.derielemodim[l] += ['aang'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.derielemodim[l] += ['cnts'] if gdat.typeexpr == 'ferm': gmod.namepara.derielemodim[l] + ['sbrt0018'] if gmod.typeelem[l] == 'lghtpntsagnntrue': gmod.namepara.derielemodim[l] += ['reds'] gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] if gmod.typeelem[l] == 'lghtpntspuls': gmod.namepara.derielemodim[l] += ['lumi'] gmod.namepara.derielemodim[l] += ['flux'] gmod.namepara.derielemodim[l] += ['mass'] gmod.namepara.derielemodim[l] += ['dlos'] if gmod.typeelem[l] == 'lens': gmod.namepara.derielemodim[l] += ['mcut', 'diss', 'rele', 'reln', 'relk', 'relf', 'relm', 'reld', 'relc'] #for k in range(len(gmod.namepara.derielemodim[l])): # gmod.namepara.derielemodim[l][k] += 'pop%d' % l # check later # temp #if strgmodl == 'fitt': # for q in gdat.indxrefr: # if gmod.nameparagenrelemampl[l] in gdat.refr.namepara.elem[q]: # gmod.namepara.derielemodim[l].append('aerr' + gdat.listnamerefr[q]) if gdat.typeverb > 1: print('gmod.namepara.derielemodim') print(gmod.namepara.derielemodim) # derived element parameters gmod.namepara.derielem = gmod.namepara.derielemodim[:] if gdat.typeverb > 1: print('gmod.namepara.derielem') print(gmod.namepara.derielem) # derived parameters gmod.listnameparaderitotl = [temptemp for temp in gmod.namepara.derielem for temptemp in temp] #gmod.listnameparaderitotl += gmod.namepara.scal for namediff in gmod.listnamediff: gmod.listnameparaderitotl += ['cntp' + namediff] if gdat.typeverb > 1: print('gmod.listnameparaderitotl') print(gmod.listnameparaderitotl) if strgmodl == 'fitt': # add reference element parameters that are not available in the fitting model gdat.refr.namepara.elemonly = [[[] for l in gmod.indxpopl] for q in gdat.indxrefr] gmod.namepara.extrelem = [[] for l in gmod.indxpopl] for q in gdat.indxrefr: if gdat.refr.numbelem[q] == 0: continue for name in gdat.refr.namepara.elem[q]: for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght') and (name == 'defs' or name == 'acut' or name == 'asca' or name == 'mass'): continue if gmod.typeelem[l] == ('lens') and (name == 'cnts' or name == 'flux' or name == 'spec' or name == 'sind'): continue if not name in gmod.namepara.derielemodim[l]: nametotl = name + gdat.listnamerefr[q] if name == 'etag': continue gmod.namepara.derielemodim[l].append(nametotl) if gdat.refr.numbelem[q] == 0: continue gdat.refr.namepara.elemonly[q][l].append(name) if not nametotl in gmod.namepara.extrelem[l]: gmod.namepara.extrelem[l].append(nametotl) #if name == 'reds': # for nametemp in ['lumi', 'dlos']: # nametemptemp = nametemp + gdat.listnamerefr[q] # if not nametemptemp in gmod.namepara.extrelem[l]: # gmod.namepara.derielemodim[l].append(nametemp + gdat.listnamerefr[q]) # gmod.namepara.extrelem[l].append(nametemptemp) if gdat.typeverb > 1: print('gdat.refr.namepara.elemonly') print(gdat.refr.namepara.elemonly) if gdat.typeexpr == 'chan' and gdat.typedata == 'inpt': for l in gmod.indxpopl: if gmod.typeelem[l] == 'lghtpnts': gmod.namepara.extrelem[l].append('lumiwo08') gmod.namepara.derielemodim[l].append('lumiwo08') if gdat.typeverb > 1: print('gmod.namepara.extrelem') print(gmod.namepara.extrelem) # defaults gmod.liststrgpdfnmodu = [[] for l in gmod.indxpopl] gmod.namepara.genrelemmodu = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lght'): if gdat.typeexpr == 'ferm' and gdat.lgalcntr == 0.: if l == 1: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] if l == 2: gmod.liststrgpdfnmodu[l] += ['tmplnfwp'] gmod.namepara.genrelemmodu[l] += ['lgalbgal'] gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: for liststrg in [gmod.namepara.genrelem[l], gmod.namepara.derielemodim[l]]: for strgthis in liststrg: if not strgthis in gmod.namepara.elem[l]: gmod.namepara.elem[l].append(strgthis) # temp for l in gmod.indxpopl: if gmod.typeelem[l].startswith('lghtline'): gmod.namepara.genrelem[l] += ['spec'] if gmod.typeelem[l].startswith('lght'): gmod.namepara.genrelem[l] += ['spec', 'specplot'] if gmod.typeelem[l] == 'lens': gmod.namepara.genrelem[l] += ['deflprof'] #gmod.namepara.genrelemeval = [[] for l in gmod.indxpopl] #for l in gmod.indxpopl: # if gmod.typeelem[l].startswith('clus'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'nobj'] # if gmod.typeelem[l] == 'clusvari': # gmod.namepara.genrelemeval[l] += ['gwdt'] # if gmod.typeelem[l] == 'lens': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'defs', 'asca', 'acut'] # if gmod.typeelem[l].startswith('lghtline'): # gmod.namepara.genrelemeval[l] = ['elin', 'spec'] # elif gmod.typeelem[l] == 'lghtgausbgrd': # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'gwdt', 'spec'] # elif gmod.typeelem[l].startswith('lght'): # gmod.namepara.genrelemeval[l] = ['lgal', 'bgal', 'spec'] ## element legends lablpopl = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gdat.numbgrid > 1: if gmod.typeelem[l] == 'lghtpnts': lablpopl[l] = 'FPS' if gmod.typeelem[l] == 'lghtgausbgrd': lablpopl[l] = 'BGS' else: if gmod.typeelem[l] == 'lghtpntspuls': lablpopl[l] = 'Pulsar' elif gmod.typeelem[l].startswith('lghtpntsagnn'): lablpopl[l] = 'AGN' elif gmod.typeelem[l].startswith('lghtpnts'): lablpopl[l] = 'PS' if gmod.typeelem[l] == 'lens': lablpopl[l] = 'Subhalo' if gmod.typeelem[l].startswith('clus'): lablpopl[l] = 'Cluster' if gmod.typeelem[l].startswith('lghtline'): lablpopl[l]= 'Line' setp_varb(gdat, 'lablpopl', valu=lablpopl, strgmodl=strgmodl) if strgmodl == 'true': gmod.indxpoplassc = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: if gmod.numbpopl == 3 and gmod.typeelem[1] == 'lens': gmod.indxpoplassc[l] = [l] else: gmod.indxpoplassc[l] = gmod.indxpopl # variables for which two dimensional histograms will be calculated gmod.namepara.genrelemcorr = [[] for l in gmod.indxpopl] if gdat.boolplotelemcorr: for l in gmod.indxpopl: for strgfeat in gmod.namepara.derielemodim[l]: gmod.namepara.genrelemcorr[l].append(strgfeat) # number of element parameters if gmod.numbpopl > 0: gmod.numbparagenrelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelemsing = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcuml = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparagenrelemcumr = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaderielem = np.zeros(gmod.numbpopl, dtype=int) gmod.numbparaelem = np.zeros(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: # number of generative element parameters for a single element of a specific population gmod.numbparagenrelemsing[l] = len(gmod.namepara.genrelem[l]) # number of derived element parameters for a single element of a specific population gmod.numbparaderielemsing[l] = len(gmod.namepara.derielem[l]) # number of element parameters for a single element of a specific population gmod.numbparaelemsing[l] = len(gmod.namepara.elem[l]) # number of generative element parameters for all elements of a specific population gmod.numbparagenrelem[l] = gmod.numbparagenrelemsing[l] * gmod.maxmpara.numbelem[l] # number of generative element parameters up to the beginning of a population gmod.numbparagenrelemcuml[l] = np.sum(gmod.numbparagenrelem[:l]) # number of generative element parameters up to the end of a population gmod.numbparagenrelemcumr[l] = np.sum(gmod.numbparagenrelem[:l+1]) # number of derived element parameters for all elements of a specific population gmod.numbparaderielem[l] = gmod.numbparaderielemsing[l] * gmod.numbelem[l] # number of element parameters for all elements of a specific population gmod.numbparaelem[l] = gmod.numbparaelemsing[l] * gmod.numbelem[l] # number of generative element parameters summed over all populations gmod.numbparagenrelemtotl = np.sum(gmod.numbparagenrelem) # number of derived element parameters summed over all populations gmod.numbparaderielemtotl = np.sum(gmod.numbparaderielem) # number of element parameters summed over all populations gmod.numbparaelemtotl = np.sum(gmod.numbparaderielem) gmod.indxparagenrelemsing = [] for l in gmod.indxpopl: gmod.indxparagenrelemsing.append(np.arange(gmod.numbparagenrelemsing[l])) gmod.indxparaderielemsing = [] for l in gmod.indxpopl: gmod.indxparaderielemsing.append(np.arange(gmod.numbparaderielemsing[l])) gmod.indxparaelemsing = [] for l in gmod.indxpopl: gmod.indxparaelemsing.append(np.arange(gmod.numbparaelemsing[l])) # size of the auxiliary variable propobability density vector if gmod.maxmpara.numbelemtotl > 0: gmod.numblpri = 3 + gmod.numbparagenrelem * gmod.numbpopl else: gmod.numblpri = 0 if gdat.penalpridiff: gmod.numblpri += 1 indxlpri = np.arange(gmod.numblpri) # append the population tags to element parameter names #for l in gmod.indxpopl: # gmod.namepara.genrelem[l] = [gmod.namepara.genrelem[l][g] + 'pop%d' % l for g in gmod.indxparagenrelemsing[l]] gmod.boolcompposi = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.boolcompposi[l] = np.zeros(gmod.numbparagenrelemsing[l], dtype=bool) if gmod.typeelem[l].startswith('lghtline'): gmod.boolcompposi[l][0] = True else: gmod.boolcompposi[l][0] = True gmod.boolcompposi[l][1] = True # list of strings across all populations ## all (generative and derived) element parameters gmod.numbparaelem = len(gmod.namepara.elem) gmod.indxparaelem = np.arange(gmod.numbparaelem) # flattened list of generative element parameters gmod.listnameparagenfelem = [] for l in gmod.indxpopl: for nameparagenrelem in gmod.namepara.genrelem[l]: gmod.listnameparagenfelem.append(nameparagenrelem + 'pop%d' % l) # concatenated list of flattened generative and derived element parameters gmod.listnameparatotlelem = gmod.listnameparagenfelem + gmod.namepara.derielem gmod.numbparaelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: gmod.numbparaelem[l] = len(gmod.namepara.elem[l]) numbdeflsubhplot = 2 numbdeflsingplot = numbdeflsubhplot if gmod.numbparaelem > 0: numbdeflsingplot += 3 gmod.convdiffanyy = True in convdiff cntr = tdpy.cntr() if gmod.boollens: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost massfrombein = retr_massfrombein(gdat, adissour, adishost, adishostsour) mdencrit = retr_mdencrit(gdat, adissour, adishost, adishostsour) # object of parameter indices gmod.indxpara = tdpy.gdatstrt() # define parameter indices if gmod.numbparaelem > 0: # number of elements #gmod.indxpara.numbelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: indx = cntr.incr() setattr(gmod.indxpara, 'numbelempop%d' % l, indx) #gmod.indxpara.numbelem[l] = indx # hyperparameters ## mean number of elements if gmod.typemodltran == 'pois': #gmod.indxpara.meanelem = np.empty(gmod.numbpopl, dtype=int) for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: indx = cntr.incr() setattr(gmod.indxpara, 'meanelempop%d' % l, indx) #gmod.indxpara.meanelem[l] = indx ## parameters parametrizing priors on element parameters liststrgvarb = [] for l in gmod.indxpopl: if gmod.maxmpara.numbelem[l] > 0: for strgpdfnelemgenr, strgfeat in zip(gmod.listscalparagenrelem[l], gmod.namepara.genrelem[l]): if strgpdfnelemgenr == 'expo' or strgpdfnelemgenr == 'dexp': liststrgvarb += [strgfeat + 'distscal'] if strgpdfnelemgenr == 'powr': liststrgvarb += ['slopprio' + strgfeat + 'pop%d' % l] if strgpdfnelemgenr == 'dpow': liststrgvarb += [strgfeat + 'distbrek'] liststrgvarb += [strgfeat + 'sloplowr'] liststrgvarb += [strgfeat + 'slopuppr'] if strgpdfnelemgenr == 'gausmean' or strgpdfnelemgenr == 'lnormean': liststrgvarb += [strgfeat + 'distmean'] if strgpdfnelemgenr == 'gausstdv' or strgpdfnelemgenr == 'lnorstdv': liststrgvarb += [strgfeat + 'diststdv'] if strgpdfnelemgenr == 'gausmeanstdv' or strgpdfnelemgenr == 'lnormeanstdv': liststrgvarb += [nameparagenrelem + 'distmean', nameparagenrelem + 'diststdv'] for strgvarb in liststrgvarb: setattr(gmod.indxpara, strgvarb, np.zeros(gmod.numbpopl, dtype=int) - 1) for l in gmod.indxpopl: strgpopl = 'pop%d' % l if gmod.maxmpara.numbelem[l] > 0: for k, nameparagenrelem in enumerate(gmod.namepara.genrelem[l]): if gmod.listscalparagenrelem[l][k] == 'self': continue indx = cntr.incr() if gmod.listscalparagenrelem[l][k] == 'dpow': for nametemp in ['brek', 'sloplowr', 'slopuppr']: strg = '%s' % nametemp + nameparagenrelem setattr(gmod.indxpara, strg, indx) setattr(gmod.indxpara, strg, indx) else: if gmod.listscalparagenrelem[l][k] == 'expo' or gmod.listscalparagenrelem[l][k] == 'dexp': strghypr = 'scal' if gmod.listscalparagenrelem[l][k] == 'powr': strghypr = 'slop' if gmod.listscalparagenrelem[l][k] == 'gausmean' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnormean' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'mean' if gmod.listscalparagenrelem[l][k] == 'gausstdv' or gmod.listscalparagenrelem[l][k] == 'gausmeanstdv' or \ gmod.listscalparagenrelem[l][k] == 'lnorstdv' or gmod.listscalparagenrelem[l][k] == 'lnormeanstdv': strghypr = 'stdv' strg = strghypr + 'prio' + nameparagenrelem + 'pop%d' % l setattr(gmod.indxpara, strg, indx) # group PSF parameters if gmod.typeevalpsfn == 'kern' or gmod.typeevalpsfn == 'full': for m in gdat.indxevtt: for i in gdat.indxener: setattr(gmod.indxpara, 'sigcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking' or gmod.typemodlpsfn == 'singking': setattr(gmod.indxpara, 'gamcen%02devt%d' % (i, m), cntr.incr()) if gmod.typemodlpsfn == 'doubking': setattr(gmod.indxpara, 'sigten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'gamten%02devt%d' % (i, m), cntr.incr()) setattr(gmod.indxpara, 'ffenen%02devt%d' % (i, m), cntr.incr()) gmod.indxpara.psfp = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith('sigce') or strg.startswith('sigte') or strg.startswith('gamce') or strg.startswith('gamte') or strg.startswith('psffe'): gmod.indxpara.psfp.append(valu) gmod.indxpara.psfp = np.array(gmod.indxpara.psfp) gmod.numbpsfptotlevtt = gdat.numbevtt * gmod.numbpsfptotl gmod.numbpsfptotlener = gdat.numbener * gmod.numbpsfptotl numbpsfp = gmod.numbpsfptotl * gdat.numbener * gdat.numbevtt indxpsfpform = np.arange(numbpsfpform) indxpsfptotl = np.arange(gmod.numbpsfptotl) indxpsfp = np.arange(numbpsfp) gmod.indxpara.psfp = np.sort(gmod.indxpara.psfp) gmod.indxparapsfpinit = gmod.indxpara.psfp[0] # group background parameters gmod.indxpara.bacp = [] for c in gmod.indxback: if gmod.boolspecback[c]: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04d' % c, indx) gmod.indxpara.bacp.append(indx) else: for i in gdat.indxener: indx = cntr.incr() setattr(gmod.indxpara, 'bacpback%04den%02d' % (c, i), indx) gmod.indxpara.bacp.append(indx) gmod.indxpara.bacp = np.array(gmod.indxpara.bacp) # temp #gmod.indxpara.anglsour = [] #gmod.indxpara.anglhost = [] #gmod.indxpara.angllens = [] if gmod.typeemishost != 'none': gmod.indxpara.specsour = [] gmod.indxpara.spechost = [] if gmod.boollens: gmod.indxpara.lgalsour = cntr.incr() gmod.indxpara.bgalsour = cntr.incr() gmod.indxpara.fluxsour = cntr.incr() if gdat.numbener > 1: gmod.indxpara.sindsour = cntr.incr() gmod.indxpara.sizesour = cntr.incr() gmod.indxpara.ellpsour = cntr.incr() gmod.indxpara.anglsour = cntr.incr() if gmod.typeemishost != 'none' or gmod.boollens: for e in gmod.indxsersfgrd: if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'lgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'bgalhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'fluxhostisf%d' % e, cntr.incr()) if gdat.numbener > 1: setattr(gmod.indxpara, 'sindhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'sizehostisf%d' % e, cntr.incr()) if gmod.boollens: setattr(gmod.indxpara, 'beinhostisf%d' % e, cntr.incr()) if gmod.typeemishost != 'none': setattr(gmod.indxpara, 'ellphostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'anglhostisf%d' % e, cntr.incr()) setattr(gmod.indxpara, 'serihostisf%d' % e, cntr.incr()) if gmod.boollens: gmod.indxpara.sherextr = cntr.incr() gmod.indxpara.sangextr = cntr.incr() gmod.indxpara.sour = [] if gmod.boollens and gmod.typeemishost == 'none': raise Exception('Lensing cannot be modeled without host galaxy emission.') # collect groups of parameters if gdat.typeexpr == 'hubb': gmod.listnamecomplens = ['hostlght', 'hostlens', 'sour', 'extr'] for namecomplens in gmod.listnamecomplens: setattr(gmod, 'liststrg' + namecomplens, []) setattr(gmod.indxpara, namecomplens, []) if gmod.boollens or gmod.typeemishost != 'none': gmod.liststrghostlght += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] gmod.liststrghostlens += ['lgalhost', 'bgalhost', 'ellphost', 'anglhost'] if gmod.typeemishost != 'none': gmod.liststrghostlght += ['fluxhost', 'sizehost', 'serihost'] if gdat.numbener > 1: gmod.liststrghostlght += ['sindhost'] if gmod.boollens: gmod.liststrghostlens += ['beinhost'] gmod.liststrgextr += ['sherextr', 'sangextr'] gmod.liststrgsour += ['lgalsour', 'bgalsour', 'fluxsour', 'sizesour', 'ellpsour', 'anglsour'] if gdat.numbener > 1: gmod.liststrgsour += ['sindsour'] for strg, valu in gmod.__dict__.items(): if isinstance(valu, list) or isinstance(valu, np.ndarray): continue if gdat.typeexpr == 'hubb': for namecomplens in gmod.listnamecomplens: for strgtemp in getattr(gmod, 'liststrg' + namecomplens): if strg[12:].startswith(strgtemp): if isinstance(valu, list): for valutemp in valu: gmod['indxparagenr' + namecomplens].append(valutemp) else: gmod['indxparagenr' + namecomplens].append(valu) # remove indxpara. from strg strg = strg[12:] if strg.startswith('fluxsour') or strg.startswith('sindsour'): gmod.indxpara.specsour.append(valu) if strg.startswith('fluxhost') or strg.startswith('sindhost'): gmod.indxpara.spechost.append(valu) if gmod.boollens or gmod.boolhost: gmod.indxpara.host = gmod.indxparahostlght + gmod.indxparahostlens gmod.indxpara.lens = gmod.indxpara.host + gmod.indxpara.sour + gmod.indxpara.extr ## number of model spectral parameters for each population #numbspep = np.empty(gmod.numbpopl, dtype=int) #liststrgspep = [[] for l in range(gmod.numbpopl)] #for l in gmod.indxpopl: # if gdat.numbener > 1: # liststrgspep[l] += ['sind'] # if gmod.spectype[l] == 'expc': # liststrgspep[l] += ['expc'] # if gmod.spectype[l] == 'curv': # liststrgspep[l] = ['curv'] # numbspep[l] = len(liststrgspep[l]) def setp_paragenrscalbase(gdat, strgmodl='fitt'): ''' Setup labels and scales for base parameters ''' print('setp_paragenrscalbase(): Building the %s model base paremeter names and scales...' % strgmodl) gmod = getattr(gdat, strgmodl) listlablback = [] listlablback = [] for nameback in gmod.listnameback: if nameback == 'isot': listlablback.append('Isotropic') listlablback.append(r'$\mathcal{I}$') if nameback == 'fdfm': listlablback.append('FDM') listlablback.append(r'$\mathcal{D}$') if nameback == 'dark': listlablback.append('NFW') listlablback.append(r'$\mathcal{D}_{dark}$') if nameback == 'part': listlablback.append('Particle Back.') listlablback.append(r'$\mathcal{I}_p$') # background templates listlablsbrt = deepcopy(listlablback) numblablsbrt = 0 for l in gmod.indxpopl: if gmod.boolelemsbrt[l]: listlablsbrt.append(gmod.lablpopl[l]) listlablsbrt.append(gmod.lablpopl[l] + ' subt') numblablsbrt += 2 if gmod.boollens: listlablsbrt.append('Source') numblablsbrt += 1 if gmod.typeemishost != 'none': for e in gmod.indxsersfgrd: listlablsbrt.append('Host %d' % e) numblablsbrt += 1 if gmod.numbpopl > 0: if 'clus' in gmod.typeelem or 'clusvari' in gmod.typeelem: listlablsbrt.append('Uniform') numblablsbrt += 1 listlablsbrtspec = ['Data'] listlablsbrtspec += deepcopy(listlablsbrt) if len(listlablsbrt) > 1: listlablsbrtspec.append('Total Model') numblablsbrtspec = len(listlablsbrtspec) # number of generative parameters per element, depends on population #numbparaelem = gmod.numbparagenrelem + numbparaelemderi # maximum total number of parameters #numbparagenrfull = gmod.numbparagenrbase + gmod.numbparaelem #numbparaelemkind = gmod.numbparagenrbase #for l in gmod.indxpopl: # numbparaelemkind += gmod.numbparagenrelemsing[l] #nameparagenrbase #gmod.namepara.genrelem #listnameparaderifixd #listnameparaderielem #gmod.namepara.genrelemextd = gmod.namepara.genrelem * maxm.numbelem #listnameparaderielemextd = gmod.namepara.genrelem * maxm.numbelem gmod.listindxparakindscal = {} for scaltype in gdat.listscaltype: gmod.listindxparakindscal[scaltype] = np.where(scaltype == gmod.listscalparakind)[0] # ## stack ## gmod.listnameparastck #gmod.listnameparastck = np.zeros(gmod.maxmnumbpara, dtype=object) #gmod.listscalparastck = np.zeros(gmod.maxmnumbpara, dtype=object) # #gmod.listnameparastck[gmod.indxparagenrbase] = gmod.nameparagenrbase #gmod.listscalparastck[gmod.indxparagenrbase] = gmod.listscalparagenrbase #for k in range(gmod.numbparaelem): # for l in gmod.indxpopl: # if k >= gmod.numbparagenrelemcuml[l]: # indxpopltemp = l # indxelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) // gmod.numbparagenrelemsing[indxpopltemp] # gmod.indxparagenrelemtemp = (k - gmod.numbparagenrelemcuml[indxpopltemp]) % gmod.numbparagenrelemsing[indxpopltemp] # break # gmod.listnameparastck[gmod.numbparagenrbase+k] = '%spop%d%04d' % (gmod.namepara.genrelem[indxpopltemp][gmod.indxparagenrelemtemp], indxpopltemp, indxelemtemp) # gmod.listscalparastck[gmod.numbparagenrbase+k] = gmod.listscalparagenrelem[indxpopltemp][gmod.indxparagenrelemtemp] # # #if np.where(gmod.listscalpara == 0)[0].size > 0: # print('gmod.listscalpara[gmod.indxparagenrbase]') # print(gmod.listscalpara[gmod.indxparagenrbase]) # raise Exception('') # ## labels and scales for variables if gmod.boollens: setattr(gmod.lablrootpara, 'masssubhintg', r'$M_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhdelt', r'$\rho_{\rm{sub}}$') setattr(gmod.lablrootpara, 'masssubhintgbein', r'$M_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhdeltbein', r'$\rho_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'masssubhintgunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'masssubhintgbeinunit', '$10^9 M_{\odot}$') setattr(gmod.lablrootpara, 'masssubhdeltbeinunit', '$M_{\odot}$/kpc') setattr(gmod.lablrootpara, 'fracsubhintg', r'f_{\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhdelt', r'f_{\rho,\rm{sub}}') setattr(gmod.lablrootpara, 'fracsubhintgbein', r'$f_{\rm{sub,E}}$') setattr(gmod.lablrootpara, 'fracsubhdeltbein', r'$f_{\rho,\rm{sub,E}}$') for e in gmod.indxsersfgrd: setattr(gmod.lablrootpara, 'masshostisf%dbein' % e, r'$M_{\rm{hst,%d,C}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintg' % e, r'$M_{\rm{hst,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddelt' % e, r'$M_{\rm{hst,%d}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%dintgbein' % e, r'$M_{\rm{hst,E,%d<}}$' % e) setattr(gmod.lablrootpara, 'masshostisf%ddeltbein' % e, r'$M_{\rm{hst,E,%d}}$' % e) for namevarb in ['fracsubh', 'masssubh']: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scal' + namevarb + strgcalcmasssubh + nameeval, 'logt') for e in gmod.indxsersfgrd: setattr(gdat, 'scalmasshostisf%d' % e + 'bein', 'logt') for strgcalcmasssubh in gdat.liststrgcalcmasssubh: for nameeval in ['', 'bein']: setattr(gdat, 'scalmasshostisf%d' % e + strgcalcmasssubh + nameeval, 'logt') # scalar variable setup gdat.lablhistcntplowrdfncsubten00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncsubten00evt0 = 'N_{pix,h}' gdat.lablhistcntplowrdfncen00evt0 = 'N_{pix,l}' gdat.lablhistcntphigrdfncen00evt0 = 'N_{pix,h}' gdat.lablbooldfncsubt = 'H' gdat.lablpriofactdoff = r'$\alpha_{p}$' gmod.scalpriofactdoff = 'self' gdat.minmreds = 0. gdat.maxmreds = 1.5 gdat.minmmagt = 19. gdat.maxmmagt = 28. gmod.scalpara.numbelem = 'logt' gmod.scalpara.lliktotl = 'logt' gdat.lablener = 'E' #gdat.lablenertotl = '$%s$ [%s]' % (gdat.lablener, gdat.strgenerunit) # width of the Gaussian clusters gdat.lablgwdt = r'\sigma_G' gdat.lablgang = r'\theta' gdat.lablaang = r'\phi' gdat.labllgalunit = gdat.lablgangunit gdat.lablbgalunit = gdat.lablgangunit gdat.lablanglfromhost = r'\theta_{\rm{0,hst}}' gdat.lablanglfromhostunit = gdat.lablgangunit gdat.labldefs = r'\alpha_s' gdat.lablflux = 'f' gdat.lablnobj = 'p' gdat.lablelin = r'\mathcal{E}' gdat.lablsbrt = r'\Sigma' gdat.labldeflprof = r'\alpha_a' gdat.labldeflprofunit = u'$^{\prime\prime}$' gdat.strgenerkevv = 'keV' gdat.strgenergevv = 'GeV' gdat.strgenerergs = 'erg' gdat.strgenerimum = '\mu m^{-1}' gdat.labldefsunit = u'$^{\prime\prime}$' gdat.lablprat = 'cm$^{-2}$ s$^{-1}$' ### labels for derived fixed dimensional parameters if gdat.boolbinsener: for i in gdat.indxener: setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubten%02d' % i, 'f_{D/ST,%d}' % i) else: gmod.lablrootpara.fracsdenmeandarkdfncsubt = 'f_{D/ST}' setattr(gmod.lablrootpara, 'fracsdenmeandarkdfncsubt', 'f_{D/ST}') ### labels for background units if gdat.typeexpr == 'ferm': for nameenerscaltype in ['en00', 'en01', 'en02', 'en03']: for labltemptemp in ['flux', 'sbrt']: # define the label if nameenerscaltype == 'en00': strgenerscal = '%s' % labltemp if nameenerscaltype == 'en01': strgenerscal = 'E%s' % labltemp if nameenerscaltype == 'en02': strgenerscal = 'E^2%s' % labltemp if nameenerscaltype == 'en03': strgenerscal = '%s' % labltemp labl = '%s' % strgenerscal for nameenerunit in ['gevv', 'ergs', 'kevv', 'imum']: strgenerunit = getattr(gdat, 'strgener' + nameenerunit) if nameenerscaltype == 'en00': strgenerscalunit = '%s$^{-1}$' % strgenerunit if nameenerscaltype == 'en01': strgenerscalunit = '' if nameenerscaltype == 'en02': strgenerscalunit = '%s' % strgenerunit if nameenerscaltype == 'en03': strgenerscalunit = '%s' % strgenerunit # define the label unit for namesoldunit in ['ster', 'degr']: if labltemptemp == 'flux': lablunit = '%s %s' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'lablflux' + nameenerscaltype + nameenerunit + 'unit', lablunit) else: if namesoldunit == 'ster': lablunit = '%s %s sr$^{-1}$' % (strgenerscalunit, gdat.lablprat) if namesoldunit == 'degr': lablunit = '%s %s deg$^{-2}$' % (strgenerscalunit, gdat.lablprat) setattr(gmod.lablunitpara, 'sbrt' + nameenerscaltype + nameenerunit + namesoldunit + 'unit', lablunit) if gdat.boolbinsener: gdat.lablfluxunit = getattr(gmod.lablunitpara, 'fluxen00' + gdat.nameenerunit + 'unit') gdat.lablsbrtunit = getattr(gmod.lablunitpara, 'sbrten00' + gdat.nameenerunit + 'sterunit') gdat.lablexpo = r'$\epsilon$' gdat.lablexpounit = 'cm$^2$ s' gdat.lablprvl = '$p$' gdat.lablreds = 'z' gdat.lablmagt = 'm_R' gdat.lablper0 = 'P_0' gmod.scalper0plot = 'logt' gdat.labldglc = 'd_{gc}' gmod.scaldglcplot = 'logt' gdat.labldlos = 'd_{los}' gmod.scaldlosplot = 'logt' if gdat.typeexpr == 'ferm': gdat.labldlosunit = 'kpc' gdat.labllumi = r'L_{\gamma}' if gdat.typeexpr == 'chan': gdat.labldlosunit = 'Mpc' gdat.labllumi = r'L_{X}' gdat.labllum0 = r'L_{X, 0}' gdat.lablgeff = r'\eta_{\gamma}' gmod.scalgeffplot = 'logt' gmod.scallumiplot = 'logt' gdat.labllumiunit = 'erg s$^{-1}$' gdat.labllum0unit = 'erg s$^{-1}$' gdat.lablthet = r'\theta_{gc}' gmod.scalthetplot = 'self' gdat.lablphii = r'\phi_{gc}' gmod.scalphiiplot = 'self' setattr(gmod.lablrootpara, 'magf', 'B') setattr(gdat, 'scalmagfplot', 'logt') setattr(gmod.lablrootpara, 'per1', 'P_1') if gdat.typedata == 'inpt': gdat.minmpara.per0 = 1e-3 gdat.maxmpara.per0 = 1e1 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.per1 = 1e-20 gdat.maxmpara.per1 = 1e-10 gdat.minmpara.flux0400 = 1e-1 gdat.maxmpara.flux0400 = 1e4 setattr(gdat, 'scalper1plot', 'logt') setattr(gmod.lablrootpara, 'flux0400', 'S_{400}') setattr(gdat, 'scalflux0400plot', 'logt') for q in gdat.indxrefr: setattr(gmod.lablrootpara, 'aerr' + gdat.listnamerefr[q], '\Delta_{%d}' % q) gdat.lablsigm = '\sigma_l' gdat.lablgamm = '\gamma_l' gdat.lablbcom = '\eta' gdat.lablinfopost = 'D_{KL}' gdat.lablinfopostunit = 'nat' gdat.lablinfoprio = 'D_{KL,pr}' gdat.lablinfopriounit = 'nat' gdat.labllevipost = '\ln P(D)' gdat.labllevipostunit = 'nat' gdat.lablleviprio = '\ln P_{pr}(D)' gdat.labllevipriounit = 'nat' gdat.lablsind = 's' if gdat.boolbinsener: for i in gdat.indxenerinde: setattr(gmod.lablrootpara, 'sindcolr%04d' % i, 's_%d' % i) gdat.lablexpcunit = gdat.strgenerunit gdat.labllliktotl = r'\ln P(D|M)' gdat.labllpripena = r'\ln P(N)' gdat.lablasca = r'\theta_s' gdat.lablascaunit = gdat.lablgangunit gdat.lablacut = r'\theta_c' gdat.lablacutunit = gdat.lablgangunit gdat.lablmcut = r'M_{c,n}' gdat.lablmcutunit = r'$M_{\odot}$' gdat.lablmcutcorr = r'\bar{M}_{c,n}' gdat.lablmcutcorrunit = r'$M_{\odot}$' gdat.lablspec = gdat.lablflux gdat.lablspecunit = gdat.lablfluxunit gdat.lablspecplot = gdat.lablflux gdat.lablspecplotunit = gdat.lablfluxunit gdat.lablcnts = 'C' gdat.labldeltllik = r'\Delta_n \ln P(D|M)' gdat.labldiss = r'\theta_{sa}' gdat.labldissunit = gdat.lablgangunit gdat.lablrele = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_l| \rangle' gdat.lablrelc = r'\langle\vec{\alpha}_n \cdot \vec{\nabla} k_l \rangle' gdat.lablreld = r'\langle|\vec{\alpha}_n \cdot \vec{\nabla} k_d| \rangle' gdat.lablreln = r'\langle \Delta \theta_{pix} |\hat{\alpha}_n \cdot \vec{\nabla} k_l| / \alpha_{s,n} \rangle' gdat.lablrelm = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelk = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle' gdat.lablrelf = r'\langle |\vec{\nabla}_{\hat{\alpha}} k_l| / \alpha_{s,n} \rangle / k_m' for q in gdat.indxrefr: for l in gmod.indxpopl: setp_varb(gdat, 'fdispop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$F_{%d%d}$' % (l, q)) setp_varb(gdat, 'cmplpop%dpop%d' % (l, q), minm=0., maxm=1., lablroot='$C_{%d%d}$' % (l, q)) if gdat.typeexpr == 'chan': if gdat.anlytype == 'spec': gdat.minmspec = 1e-2 gdat.maxmspec = 1e1 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 else: gdat.minmspec = 1e-11 gdat.maxmspec = 1e-7 if gdat.typeexpr == 'ferm': gdat.minmlumi = 1e32 gdat.maxmlumi = 1e36 elif gdat.typeexpr == 'chan': if gdat.typedata == 'inpt': gdat.minmlum0 = 1e42 gdat.maxmlum0 = 1e46 gdat.minmlumi = 1e41 gdat.maxmlumi = 1e45 try: gdat.minmdlos except: if gdat.typeexpr == 'chan': gdat.minmdlos = 1e7 gdat.maxmdlos = 1e9 else: gdat.minmdlos = 6e3 gdat.maxmdlos = 1.1e4 if gdat.typeexpr == 'ferm': gdat.minmcnts = 1e1 gdat.maxmcnts = 1e5 if gdat.typeexpr == 'chan': if gdat.numbpixlfull == 1: gdat.minmcnts = 1e4 gdat.maxmcnts = 1e8 else: gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'hubb': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 if gdat.typeexpr == 'fire': gdat.minmcnts = 1. gdat.maxmcnts = 1e3 gdat.minmspecplot = gdat.minmspec gdat.maxmspecplot = gdat.maxmspec gdat.minmdeltllik = 1. gdat.maxmdeltllik = 1e3 gdat.minmdiss = 0. gdat.maxmdiss = gdat.maxmgangdata * np.sqrt(2.) gdat.minmrele = 1e-3 gdat.maxmrele = 1e1 gdat.minmreln = 1e-3 gdat.maxmreln = 1. gdat.minmrelk = 1e-3 gdat.maxmrelk = 1. gdat.minmrelf = 1e-5 gdat.maxmrelf = 1e-1 gdat.minmrelm = 1e-3 gdat.maxmrelm = 1e1 gdat.minmreld = 1e-3 gdat.maxmreld = 1e1 gdat.minmrelc = 1e-3 gdat.maxmrelc = 1. gdat.minmmcut = 3e7 gdat.maxmmcut = 2e9 gdat.minmmcutcorr = gdat.minmmcut gdat.maxmmcutcorr = gdat.maxmmcut if gdat.boolbinsspat: gdat.minmbein = 0. gdat.maxmbein = 1. / gdat.anglfact # scalar variables if gdat.boolbinsspat: gdat.minmdeflprof = 1e-3 / gdat.anglfact gdat.maxmdeflprof = 0.1 / gdat.anglfact #gdat.minmfracsubh = 0. #gdat.maxmfracsubh = 0.3 #gmod.scalfracsubh = 'self' #gdat.minmmasshost = 1e10 #gdat.maxmmasshost = 1e13 #gmod.scalmasshost = 'self' # #gdat.minmmasssubh = 1e8 #gdat.maxmmasssubh = 1e10 #gmod.scalmasssubh = 'self' # collect groups of parameter indices into lists ## labels and scales for base parameters gmod.nameparagenrbase = [] for name, k in gmod.indxpara.__dict__.items(): if not np.isscalar(k): print('name') print(name) print('temp: no nonscalar should be here!') continue gmod.nameparagenrbase.append(name) gmod.numbparagenrbase = len(gmod.nameparagenrbase) gmod.indxparagenrbase = np.arange(gmod.numbparagenrbase) gmod.indxparagenrbasestdv = gmod.indxparagenrbase[gmod.numbpopl:] ## list of scalar variable names gmod.namepara.scal = list(gmod.nameparagenrbase) gmod.namepara.scal += ['lliktotl'] # derived parameters print('Determining the list of derived, fixed-dimensional parameter names...') gmod.namepara.genrelemextd = [[[] for g in gmod.indxparagenrelemsing[l]] for l in gmod.indxpopl] gmod.namepara.derielemextd = [[[] for k in gmod.indxparaderielemsing[l]] for l in gmod.indxpopl] gmod.namepara.genrelemflat = [] gmod.namepara.derielemflat = [] gmod.namepara.genrelemextdflat = [] gmod.namepara.derielemextdflat = [] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: gmod.namepara.genrelemflat.append(gmod.namepara.genrelem[l][g] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.genrelemextd[l][g].append(gmod.namepara.genrelem[l][g] + 'pop%d' % l + '%04d' % d) gmod.namepara.genrelemextdflat.append(gmod.namepara.genrelemextd[l][g][d]) for k in gmod.indxparaderielemsing[l]: gmod.namepara.derielemflat.append(gmod.namepara.derielem[l][k] + 'pop%d' % l) for d in range(gmod.maxmpara.numbelem[l]): gmod.namepara.derielemextd[l][k].append(gmod.namepara.derielem[l][k] + 'pop%d' % l + '%04d' % d) gmod.namepara.derielemextdflat.append(gmod.namepara.derielemextd[l][k][d]) # list of element parameter names (derived and generative), counting label-degenerate element parameters only once gmod.namepara.elem = [[] for l in gmod.indxpopl] for l in gmod.indxpopl: gmod.namepara.elem[l].extend(gmod.namepara.genrelem[l]) gmod.namepara.elem[l].extend(gmod.namepara.derielem[l]) gmod.namepara.elemflat = [] for l in gmod.indxpopl: gmod.namepara.elemflat.extend(gmod.namepara.elem[l]) gmod.namepara.genrelemdefa = deepcopy(gmod.namepara.elemflat) if gmod.boolelemlghtanyy: for strgfeat in ['sind', 'curv', 'expc'] + ['sindcolr%04d' % i for i in gdat.indxenerinde]: if not strgfeat in gmod.namepara.genrelemdefa: gmod.namepara.genrelemdefa.append(strgfeat) # list of flattened generative element parameter names, counting label-degenerate element parameters only once gmod.namepara.genrelemkind = gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparagenrelemkind = len(gmod.namepara.genrelemkind) #gmod.inxparagenrscalelemkind = np.arange(gmod.numbparagenrelemkind) gmod.inxparagenrscalelemkind = tdpy.gdatstrt() gmod.numbparagenrelemextdflat = len(gmod.namepara.genrelemextdflat) gmod.indxparagenrelemextdflat = np.arange(gmod.numbparagenrelemextdflat) # list of parameter names (derived and generative), counting label-degenerate element parameters only once, element lists flattened gmod.namepara.kind = gmod.nameparagenrbase + gmod.listnameparaderitotl + gmod.namepara.genrelemflat + gmod.namepara.derielemflat gmod.numbparakind = len(gmod.namepara.kind) gmod.indxparakind = np.arange(gmod.numbparakind) # list of generative parameter names, separately including all label-degenerate element parameters, element lists flattened gmod.namepara.genrscalfull = gmod.nameparagenrbase + gmod.namepara.genrelemextdflat gmod.namepara.genrscalfull = np.array(gmod.namepara.genrscalfull) gmod.numbparagenrfull = len(gmod.namepara.genrscalfull) gmod.indxparagenrfull = np.arange(gmod.numbparagenrfull) # list of generative parameter names, counting label-degenerate element parameters only once, element lists flattened gmod.listnameparagenrscal = gmod.nameparagenrbase + gmod.namepara.genrelemflat gmod.numbparagenr = len(gmod.listnameparagenrscal) gmod.indxparagenr = np.arange(gmod.numbparagenr) # list of parameter names (derived and generative), element lists flattened gmod.listnameparatotl = gmod.nameparagenrbase + gmod.listnameparaderitotl + \ gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.nameparagenrbase = np.array(gmod.nameparagenrbase) for e in gmod.indxsersfgrd: gmod.namepara.scal += ['masshost' + strgsersfgrd + 'bein'] for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masshost' + strgsersfgrd + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: if gmod.boollenssubh: for strgcalcmasssubh in gdat.liststrgcalcmasssubh: gmod.namepara.scal += ['masssubh' + strgcalcmasssubh + 'bein', 'fracsubh' + strgcalcmasssubh + 'bein'] if gmod.numbparaelem > 0: gmod.namepara.scal += ['lpripena'] if False and gmod.boolelemsbrtdfncanyy: for strgbins in ['lowr', 'higr']: gmod.namepara.scal += ['histcntp%sdfncen00evt0' % strgbins] gmod.namepara.scal += ['histcntp%sdfncsubten00evt0' % strgbins] for i in gdat.indxener: gmod.namepara.scal += ['fracsdenmeandarkdfncsubten%02d' % i] gmod.namepara.scal += ['booldfncsubt'] if gmod.numbparaelem > 0: for q in gdat.indxrefr: if gdat.boolasscrefr[q]: for l in gmod.indxpopl: gmod.namepara.scal += ['cmplpop%dpop%d' % (l, q)] gmod.namepara.scal += ['fdispop%dpop%d' % (q, l)] gmod.numbvarbscal = len(gmod.namepara.scal) gmod.indxvarbscal = np.arange(gmod.numbvarbscal) # determine total label gmod.listnameparaglob = gmod.namepara.kind + gmod.namepara.genrelemextdflat + gmod.namepara.derielemextdflat gmod.listnameparaglob += ['cntpmodl'] for l in gmod.indxpopl: for g in gmod.indxparagenrelemsing[l]: if not gmod.namepara.genrelem[l][g] in gmod.listnameparaglob: gmod.listnameparaglob.append(gmod.namepara.genrelem[l][g]) gmod.listnameparaglob.append(gmod.namepara.derielem[l][g]) for name in gmod.listnameparaglob: lablroot = getattr(gmod.lablrootpara, name) lablunit = getattr(gmod.lablunitpara, name) labltotl = tdpy.retr_labltotlsing(lablroot, lablunit) setattr(gmod.labltotlpara, name, labltotl) # define fact for l in gmod.indxpopl: for k in gmod.indxparakind: name = gmod.namepara.kind[k] scal = getattr(gmod.scalpara, name) if scal == 'self' or scal == 'logt': minm = getattr(gmod.minmpara, name) maxm = getattr(gmod.maxmpara, name) if scal == 'self': fact = maxm - minm if scal == 'logt': fact = np.log(maxm / minm) if fact == 0: print('name') print(name) raise Exception('') setattr(gmod.factpara, name, fact) if gmod.numbparaelem > 0: gmod.indxparagenrfulleleminit = gmod.indxparagenrbase[-1] + 1 else: gmod.indxparagenrfulleleminit = -1 ## arrays of parameter features (e.g., minm, maxm, labl, scal, etc.) for featpara in gdat.listfeatparalist: gmodfeat = getattr(gmod, featpara + 'para') ### elements #for strgtypepara in gdat.liststrgtypepara: # listname = getattr(gmod.namepara, strgtypepara + 'elem') # listfeat = [[] for l in gmod.indxpopl] # listfeatflat = [] # for l in gmod.indxpopl: # # numb = getattr(gmod, 'numbpara' + strgtypepara + 'elemsing')[l] # listfeat[l] = [[] for k in range(numb)] # for k in range(numb): # scal = getattr(gmod.scalpara, listname[l][k]) # if featpara == 'fact' and not (scal == 'self' or scal == 'logt'): # continue # if featpara == 'mean' and (scal != 'gaus' and scal != 'lnor'): # continue # if featpara == 'stdv' and (scal != 'gaus' and scal != 'lnor'): # continue # # if strgtypepara == 'genr': # strgextn = 'pop%d' % l # else: # strgextn = '' # print('featpara') # print(featpara) # print('listname') # print(listname) # listfeat[l][k] = getattr(gmodfeat, listname[l][k] + strgextn) # listfeatflat.append(listfeat[l][k]) # setattr(gmodfeat, strgtypepara + 'elem', listfeat) # setattr(gmodfeat, strgtypepara + 'elemflat', listfeatflat) ### groups of parameters inside the parameter vector ### 'base': all fixed-dimensional generative parameters ### 'full': all generative parameters for strggroppara in ['base', 'full']: indx = getattr(gmod, 'indxparagenr' + strggroppara) feat = [0. for k in indx] for attr, valu in gmod.indxpara.__dict__.items(): if not np.isscalar(valu): continue scal = getattr(gmod.scalpara, attr) if not (scal == 'self' or scal == 'logt') and featpara == 'fact': continue if scal != 'gaus' and (featpara == 'mean' or featpara == 'stdv'): print('Mean or Std for non-Gaussian') continue if featpara == 'name': feat[valu] = attr else: feat[valu] = getattr(gmodfeat, attr) feat = np.array(feat) setattr(gmodfeat, 'genr' + strggroppara, feat) #print('gmod.minmpara') #for attr, varb in gmod.minmpara.__dict__.items(): # print(attr, varb) #print('gmod.maxmpara') #for attr, varb in gmod.maxmpara.__dict__.items(): # print(attr, varb) #print('gmod.scalpara') #for attr, varb in gmod.scalpara.__dict__.items(): # print(attr, varb) #raise Exception('') ## population groups ### number of elements for strgvarb in ['numbelem', 'meanelem']: listindxpara = [] if strgmodl == 'true': listpara = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg.startswith(strgvarb + 'p'): listindxpara.append(valu) if strgmodl == 'true': listpara.append(getattr(gmod.this, strg)) listindxpara = np.array(listindxpara) setattr(gmod.indxpara, strgvarb, listindxpara) if strgmodl == 'true': listpara = np.array(listpara) setattr(gmod, strgvarb, listpara) ### parameters of priors for element parameters gmod.indxpara.prioelem = [] for strg, valu in gmod.indxpara.__dict__.items(): if strg == 'dist' and np.isscalar(valu): gmod.indxpara.prioelem.append(valu) gmod.indxpara.prioelem = np.array(gmod.indxpara.prioelem) ### hyperparameters if gmod.typemodltran == 'pois': gmod.indxpara.hypr = np.array(list(gmod.indxpara.prioelem) + list(gmod.indxpara.meanelem)) else: gmod.indxpara.hypr = gmod.indxpara.prioelem ## generative base parameter indices for each scaling gmod.listindxparagenrbasescal = dict() for scaltype in gdat.listscaltype: gmod.listindxparagenrbasescal[scaltype] = np.where(np.array(gmod.scalpara.genrbase) == scaltype)[0] if gdat.booldiagmode: if np.where(gmod.scalpara.genrfull == 0)[0].size > 0: raise Exception('') def plot_lens(gdat): if gmod.boolelemdeflsubh: xdat = gdat.binspara.angl[1:] * gdat.anglfact lablxdat = gdat.labltotlpara.gang listdeflscal = np.array([4e-2, 4e-2, 4e-2]) / gdat.anglfact listanglscal = np.array([0.05, 0.1, 0.05]) / gdat.anglfact listanglcutf = np.array([1., 1., 10.]) / gdat.anglfact listasym = [False, False, False] listydat = [] for deflscal, anglscal, anglcutf, asym in zip(listdeflscal, listanglscal, listanglcutf, listasym): listydat.append(retr_deflcutf(gdat.binspara.angl[1:], deflscal, anglscal, anglcutf, asym=asym) * gdat.anglfact) for scalxdat in ['self', 'logt']: path = gdat.pathinitintr + 'deflcutf' + scalxdat + '.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat=scalxdat, scalydat='logt', lablxdat=lablxdat, \ lablydat=r'$\alpha_n$ [$^{\prime\prime}$]', limtydat=[1e-3, 1.5e-2], limtxdat=[None, 2.]) # pixel-convoltuion of the Sersic profile # temp -- y axis labels are wrong, should be per solid angle xdat = gdat.binspara.lgalsers * gdat.anglfact for n in range(gdat.numbindxsers + 1): for k in range(gdat.numbhalfsers + 1): if k != 5: continue path = gdat.pathinitintr + 'sersprofconv%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, gdat.sersprof[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) #path = gdat.pathinitintr + 'sersprofcntr%04d%04d.pdf' % (n, k) #tdpy.plot_gene(path, xdat, gdat.sersprofcntr[:, n, k], scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e6, 1e12]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) path = gdat.pathinitintr + 'sersprofdiff%04d%04d.pdf' % (n, k) tdpy.plot_gene(path, xdat, abs(gdat.sersprof[:, n, k] - gdat.sersprofcntr[:, n, k]) / gdat.sersprofcntr[:, n, k], scalxdat='logt', \ scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, limtydat=[1e-6, 1.]) xdat = gdat.binspara.angl * gdat.anglfact listspec = np.array([1e-19, 1e-18, 1e-18, 1e-18]) / gdat.anglfact listsize = np.array([0.3, 1., 1., 1.]) / gdat.anglfact listindx = np.array([4., 2., 4., 10.]) listydat = [] listlabl = [] for spec, size, indx in zip(listspec, listsize, listindx): listydat.append(spec * retr_sbrtsersnorm(gdat.binspara.angl, size, indxsers=indx)) listlabl.append('$R_e = %.3g ^{\prime\prime}, n = %.2g$' % (size * gdat.anglfact, indx)) path = gdat.pathinitintr + 'sersprof.pdf' tdpy.plot_gene(path, xdat, listydat, scalxdat='logt', scalydat='logt', lablxdat=lablxdat, lablydat=gdat.lablfluxtotl, \ listlegd=listlegd, listhlin=1e-7, limtydat=[1e-8, 1e0]) minmredshost = 0.01 maxmredshost = 0.4 minmredssour = 0.01 maxmredssour = 2. numbreds = 200 retr_axis(gdat, 'redshost') retr_axis(gdat, 'redssour') gdat.meanpara.adishost = np.empty(numbreds) for k in range(numbreds): gdat.meanpara.adishost[k] = gdat.adisobjt(gdat.meanpara.redshost[k]) asca = 0.1 / gdat.anglfact acut = 1. / gdat.anglfact minmmass = np.zeros((numbreds + 1, numbreds + 1)) maxmmass = np.zeros((numbreds + 1, numbreds + 1)) for k, redshost in enumerate(gdat.binspara.redshost): for n, redssour in enumerate(gdat.binspara.redssour): if redssour > redshost: adishost = gdat.adisobjt(redshost) adissour = gdat.adisobjt(redssour) adishostsour = adissour - (1. + redshost) / (1. + redssour) * adishost factmcutfromdefs = retr_factmcutfromdefs(gdat, adissour, adishost, adishostsour, asca, acut) minmmass[n, k] = np.log10(factmcutfromdefs * gdat.minmdefs) maxmmass[n, k] = np.log10(factmcutfromdefs * gdat.maxmdefs) #valulevl = np.linspace(7.5, 9., 5) valulevl = [7.0, 7.3, 7.7, 8., 8.6] figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, minmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=20, fmt='%.3g') axis.set_xlabel(r'$z_{\rm{hst}}$') axis.set_ylabel(r'$z_{\rm{src}}$') axis.set_title(r'$M_{c,min}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsminm.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) valulevl = np.linspace(9., 11., 20) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) imag = axis.imshow(maxmmass, extent=[minmredshost, maxmredshost, minmredssour, maxmredssour], aspect='auto', vmin=9., vmax=11.) cont = axis.contour(gdat.binspara.redshost, gdat.binspara.redssour, maxmmass, 10, colors='g', levels=valulevl) axis.clabel(cont, inline=1, fontsize=15, fmt='%.3g') axis.set_xlabel('$z_{hst}$') axis.set_ylabel('$z_{src}$') axis.set_title(r'$M_{c,max}$ [$M_{\odot}$]') path = gdat.pathinitintr + 'massredsmaxm.pdf' plt.colorbar(imag) plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * gdat.sizepixl * 1e-3) axis.plot(gdat.meanpara.redshost, gdat.meanpara.adishost * 2. * gdat.maxmgangdata * 1e-3) axis.set_xlabel('$z_h$') axis.set_yscale('log') axis.set_ylabel(r'$\lambda$ [kpc]') path = gdat.pathinitintr + 'wlenreds.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) figr, axis = plt.subplots(figsize=(gdat.plotsize, gdat.plotsize)) fracacutasca = np.logspace(-1., 2., 20) mcut = retr_mcutfrommscl(fracacutasca) axis.lognp.log(fracacutasca, mcut) axis.set_xlabel(r'$\tau_n$') axis.set_ylabel(r'$M_{c,n} / M_{0,n}$') axis.axhline(1., ls='--') path = gdat.pathinitintr + 'mcut.pdf' plt.tight_layout() figr.savefig(path) plt.close(figr) def retr_listrtagprev(strgcnfg, pathpcat): # list of PCAT run plot outputs pathimag = pathpcat + '/imag/' listrtag = fnmatch.filter(os.listdir(pathimag), '2*') listrtagprev = [] for rtag in listrtag: strgstat = pathpcat + '/data/outp/' + rtag if chec_statfile(pathpcat, rtag, 'gdatmodipost', typeverb=0) and strgcnfg + '_' + rtag[16:].split('_')[-1] == rtag[16:]: listrtagprev.append(rtag) listrtagprev.sort() return listrtagprev def make_legd(axis, offs=None, loca=1, numbcols=1, ptch=None, line=None): hand, labl = axis.get_legend_handles_labels() legd = axis.legend(hand, labl, fancybox=True, frameon=True, bbox_to_anchor=offs, bbox_transform=axis.transAxes, ncol=numbcols, loc=loca, labelspacing=1, handlelength=2) legd.get_frame().set_fill(True) legd.get_frame().set_facecolor('white') def setp_namevarbsing(gdat, gmod, strgmodl, strgvarb, popl, ener, evtt, back, isfr, iele): if popl == 'full': indxpopltemp = gmod.indxpopl elif popl != 'none': indxpopltemp = [popl] if ener == 'full': indxenertemp = gdat.indxener elif ener != 'none': indxenertemp = [ener] if evtt == 'full': indxevtttemp = gdat.indxevtt elif evtt != 'none': indxevtttemp = [evtt] if back == 'full': gmod.indxbacktemp = gmod.indxback elif isinstance(back, int): gmod.indxbacktemp =
np.array([back])
numpy.array
# -*- coding: utf-8 -*- import operator import dxchange import numpy as np import tomopy from util import * class Sinogram(object): def __init__(self, sinogram, type, coords=None, normalize_bg=False, minus_log=False, center=None, fin_angle=180, max_count=None): assert type in ('local', 'tomosaic', 'full', 'raw') self.padded = False # self.normalized_bg = False self.type = type self.shape = sinogram.shape # unpadded shape self.is_mlogged = False if normalize_bg: self.scaler = (
np.mean(sinogram[:, 0])
numpy.mean
#! /usr/bin/env python # Mathematica nb from Alex & Laurent # <EMAIL> major reorg as LG++ 2018 01 # python3 required (int( (len(coeffs) -1)/2 )) because of float int/int result change from python2 import numpy as np import scipy.special import numpy.linalg as linalg import sys from scipy.special import comb import os, pickle from uncertainties import unumpy # pip install if you need m = 1.0 mm = 1.0e-3 * m um = 1.0e-6 * m def scaling(img, photons): # RENAME this function # img gives a perfect psf to count its total flux # photons is the desired number of photons (total flux in data) total = np.sum(img) print("total", total) return photons / total def matrix_operations(img, model, flux = None, verbose=False, linfit=False, dqm=None): # meta-question: why & when do we use linfit? # least squares matrix operations to solve A x = b, where A is the model, # b is the data (image), and x is the coefficient vector we are solving for. # In 2-D data x = inv(At.A).(At.b) # # img 2d array of image data # dqm 2d bool array of bad pixel locations (same shape as 2d img), or None (for all-good data) print("leastsqnrm.matrix_operations() - equally-weighted") flatimg = img.reshape(np.shape(img)[0] * np.shape(img)[1]) flatdqm = dqm.reshape(np.shape(img)[0] * np.shape(img)[1]) if verbose: print(f'fringefitting.leastsqnrm.matrix_operations(): ', end='') print(f'\n\timg {img.shape:} \n\tdqm {dqm.shape:}', end='') print(f'\n\tL x W = {img.shape[0]:d} x {img.shape[1]:d} = {img.shape[0] * img.shape[1]:d}', end='') print(f'\n\tflatimg {flatimg.shape:}', end='') print(f'\n\tflatdqm {flatdqm.shape:}', end='') # Originally Alex had nans coding bad pixels in the image. # Anand: re-use the nan terminology code but driven by bad pixel frame # nanlist shoud get renamed eg donotuselist if verbose: print('\n\ttype(dqm)', type(dqm), end='') if dqm is not None: nanlist = np.where(flatdqm==True) # where DO_NOT_USE up. else: nanlist = (np.array(()), ) # shouldn't occur w/MAST JWST data if verbose: print(f'\n\ttype(nanlist) {type(nanlist):}, len={len(nanlist):}', end='') print(f'\n\tnumber of nanlist pixels: {len(nanlist[0]):d} items', end='') print(f'\n\t{len(nanlist[0]):d} DO_NOT_USE pixels found in data slice', end='') else: print(f'\t{len(nanlist[0]):d} DO_NOT_USE pixels found in data slice') flatimg = np.delete(flatimg, nanlist) if verbose: print(f'\n\tflatimg {flatimg.shape:} after deleting {len(nanlist[0]):d}', end='') if flux is not None: flatimg = flux * flatimg / flatimg.sum() # A flatmodel_nan = model.reshape(np.shape(model)[0] * np.shape(model)[1], np.shape(model)[2]) flatmodel = np.zeros((len(flatimg), np.shape(model)[2])) if verbose: print(f'\n\tflatmodel_nan {flatmodel_nan.shape:}', end='') print(f'\n\tflatmodel {flatmodel.shape:}', end='') print(f'\n\tdifference {flatmodel_nan.shape[0] - flatmodel.shape[0]:}', end='') print() print("flat model dimensions ", np.shape(flatmodel)) print("flat image dimensions ", np.shape(flatimg)) for fringe in range(np.shape(model)[2]): flatmodel[:,fringe] = np.delete(flatmodel_nan[:,fringe], nanlist) # At (A transpose) flatmodeltransp = flatmodel.transpose() # At.A (makes square matrix) modelproduct = np.dot(flatmodeltransp, flatmodel) # At.b data_vector = np.dot(flatmodeltransp, flatimg) # inv(At.A) inverse = linalg.inv(modelproduct) cond = np.linalg.cond(inverse) x = np.dot(inverse, data_vector) res = np.dot(flatmodel, x) - flatimg # put bad pixels back naninsert = nanlist[0] - np.arange(len(nanlist[0])) # calculate residuals with fixed but unused bad pixels as nans res = np.insert(res, naninsert, np.nan) res = res.reshape(img.shape[0], img.shape[1]) if verbose: print('model flux', flux) print('data flux', flatimg.sum()) print("flat model dimensions ", np.shape(flatmodel)) print("model transpose dimensions ", np.shape(flatmodeltransp)) print("flat image dimensions ", np.shape(flatimg)) print("transpose * image data dimensions", np.shape(data_vector)) print("flat img * transpose dimensions", np.shape(inverse)) if linfit: try: from linearfit import linearfit # dependent variables M = np.mat(flatimg) # photon noise noise = np.sqrt(np.abs(flatimg)) # this sets the weights of pixels fulfilling condition to zero weights = np.where(np.abs(flatimg)<=1.0, 0.0, 1.0/(noise**2)) # uniform weight wy = weights S = np.mat(np.diag(wy)); # matrix of independent variables C = np.mat(flatmodeltransp) # initialize object result = linearfit.LinearFit(M,S,C) # do the fit result.fit() # delete inverse_covariance_matrix to reduce size of pickled file result.inverse_covariance_matrix = [] linfit_result = result print("Returned linearfit result") except ImportError: linfit_result = None # if verbose: print("linearfit module not imported, no covariances saved.") else: linfit_result = None print("linearfit module not imported, no covariances saved.") return x, res, cond, linfit_result ####################################################################### def weighted_operations(img, model, verbose=False, dqm=None): # return x, res, condition_number (None=>no condition number yet), singvals # x: solution vector # res: residuals array, nan-flagged for bad dq values? # cond: condition number not calculateds (no inversion done here, so not available) # singvals: singular values returned by the SVD solution for the parameters # # meta-question: why & when do we use linfit? I removed it here - anand 2022 Jan # least squares matrix operations to solve A x = b, where # A is the model, # b is the data (image), # x is the coefficient vector we are solving for. # # Solution 1: equal weighting of data (matrix_operations()). # x = inv(At.A).(At.b) # # Solution 2: weighting data by Poisson variance (weighted_operations()) # x = inv(At.W.A).(At.W.b) # where W is a diagonal matrix of weights w_i, # weighting each data point i by the inverse of its variance: # w_i = 1 / sigma_i^2 # For photon noise, the data, i.e. the image values b_i have variance # proportional to b_i with an e.g. ADU to electrons coonversion factor. # If this factor is the same for all pixels, we do not need to include # it here (is that really true? Yes I think so because we're not # normalizing wts here, just ascribing rel wts.). # # Possibly replace or campare with a MAD minimization using fast simplex # https://theoryl1.wordpress.com/2016/08/03/solve-weighted-least-squares-with-numpy/ # Solve for x in Ax = b # # np.set_printoptions(formatter={'float': lambda x: '{:+.1e}'.format(x)}, linewidth=80) # # Ax = b # b: data vector nd long; nd=5 # A: model matrix; np x nd matrix 4 x 5: np=4 parameters, nd=5 data points. # x: parameter, vector np=4 long, unknown # # A=np.array([[3,1,4,2],[2,7,1,2],[1,6,1,8],[6,1,8,2],[1,4,1,4]]) # print("A:", A.shape) # b = np.array([1.2,1.3,1.4,1.5,1.6]) # print("b:", b.shape) # w = np.array([1,2,3,4,5]) # print("w:", w.shape) # Aw = A * np.sqrt(w[:,np.newaxis]) # print("Aw:", Aw.shape) # bw = w * np.sqrt(w) # x, r, rank, s = np.linalg.lstsq(Aw, bw, rcond=None) # print("x.shape:", x.shape) # print("x:", x) # print("r:", r) # print("rank:", rank) # print("s:", s) # Also a good summary at: # https://math.stackexchange.com/questions/3094925/weighted-least-squares # Remove not-to-be-fit data from the flattened "img" data vector flatimg = img.reshape(np.shape(img)[0] * np.shape(img)[1]) flatdqm = dqm.reshape(np.shape(img)[0] * np.shape(img)[1]) if dqm is not None: nanlist = np.where(flatdqm==True) # where DO_NOT_USE up. else: nanlist = (np.array(()), ) # shouldn't occur w/MAST JWST data # see original linearfit https://github.com/agreenbaum/ImPlaneIA: # agreenbaum committed on May 21, 2017 1 parent 3e0fb8b # commit bf02eb52c5813cb5d77036174a7caba703f9d366 # flatimg = np.delete(flatimg, nanlist) # DATA values # photon noise variance - proportional to ADU # (for roughly uniform adu2electron factor) variance = np.abs(flatimg) # this resets the weights of pixels with negative or unity values to zero # we ignore data with unity or lower values - weight it not-at-all.. weights = np.where(flatimg <= 1.0, 0.0, 1.0/
np.sqrt(variance)
numpy.sqrt
# Built-in import os import warnings # Common import numpy as np import scipy.optimize as scpopt import scipy.constants as scpct import scipy.sparse as sparse from scipy.interpolate import BSpline import matplotlib.pyplot as plt # -------------- # TO BE MOVED TO tofu.data WHEN FINISHED !!!! # -------------- _NPEAKMAX = 12 ########################################################### ########################################################### # # Preliminary # utility tools for 1d spectral fitting # ########################################################### ########################################################### def remove_bck(x, y): # opt = np.polyfit(x, y, deg=0) opt = [np.nanmin(y)] return y-opt[0], opt[0] def get_peaks(x, y, nmax=None): if nmax is None: nmax = _NPEAKMAX # Prepare ybis = np.copy(y) A = np.empty((nmax,), dtype=y.dtype) x0 = np.empty((nmax,), dtype=x.dtype) sigma = np.empty((nmax,), dtype=y.dtype) def gauss(xx, A, x0, sigma): return A*np.exp(-(xx-x0)**2/sigma**2) def gauss_jac(xx, A, x0, sigma): jac = np.empty((xx.size, 3), dtype=float) jac[:, 0] = np.exp(-(xx-x0)**2/sigma**2) jac[:, 1] = A*2*(xx-x0)/sigma**2 * np.exp(-(xx-x0)**2/sigma**2) jac[:, 2] = A*2*(xx-x0)**2/sigma**3 * np.exp(-(xx-x0)**2/sigma**2) return jac dx = np.nanmin(np.diff(x)) # Loop nn = 0 while nn < nmax: ind = np.nanargmax(ybis) x00 = x[ind] if np.any(np.diff(ybis[ind:], n=2) >= 0.): wp = min(x.size-1, ind + np.nonzero(np.diff(ybis[ind:],n=2)>=0.)[0][0] + 1) else: wp = ybis.size-1 if np.any(np.diff(ybis[:ind+1], n=2) >= 0.): wn = max(0, np.nonzero(np.diff(ybis[:ind+1],n=2)>=0.)[0][-1] - 1) else: wn = 0 width = x[wp]-x[wn] assert width>0. indl = np.arange(wn, wp+1) sig = np.ones((indl.size,)) if (np.abs(np.mean(np.diff(ybis[ind:wp+1]))) > np.abs(np.mean(np.diff(ybis[wn:ind+1])))): sig[indl < ind] = 1.5 sig[indl > ind] = 0.5 else: sig[indl < ind] = 0.5 sig[indl > ind] = 1.5 p0 = (ybis[ind], x00, width)#,0.) bounds = (np.r_[0., x[wn], dx/2.], np.r_[5.*ybis[ind], x[wp], 5.*width]) try: (Ai, x0i, sigi) = scpopt.curve_fit(gauss, x[indl], ybis[indl], p0=p0, bounds=bounds, jac=gauss_jac, sigma=sig, x_scale='jac')[0] except Exception as err: print(str(err)) import ipdb ipdb.set_trace() pass ybis = ybis - gauss(x, Ai, x0i, sigi) A[nn] = Ai x0[nn] = x0i sigma[nn] = sigi nn += 1 return A, x0, sigma def get_p0bounds_all(x, y, nmax=None, lamb0=None): yflat, bck = remove_bck(x, y) amp, x0, sigma = get_peaks(x, yflat, nmax=nmax) lamb0 = x0 nmax = lamb0.size p0 = amp.tolist() + [0 for ii in range(nmax)] + sigma.tolist() + [bck] lx = [np.nanmin(x), np.nanmax(x)] Dx = np.diff(lx) dx = np.nanmin(np.diff(x)) bamp = (np.zeros(nmax,), np.full((nmax,),3.*np.nanmax(y))) bdlamb = (np.full((nmax,), -Dx/2.), np.full((nmax,), Dx/2.)) bsigma = (np.full((nmax,), dx/2.), np.full((nmax,), Dx/2.)) bbck0 = (0., np.nanmax(y)) bounds = (np.r_[bamp[0], bdlamb[0], bsigma[0], bbck0[0]], np.r_[bamp[1], bdlamb[1], bsigma[1], bbck0[1]]) if not np.all(bounds[0]<bounds[1]): msg = "Lower bounds must be < upper bounds !\n" msg += " lower : %s\n"+str(bounds[0]) msg += " upper : %s\n"+str(bounds[1]) raise Exception(msg) return p0, bounds, lamb0 def get_p0bounds_lambfix(x, y, nmax=None, lamb0=None): nmax = lamb0.size # get typical x units Dx = x.nanmax()-x.nanmin() dx = np.nanmin(np.diff(x)) # Get background and background-subtracted y yflat, bck = remove_bck(x, y) # get initial guesses amp = [yflat[np.nanargmin(np.abs(x-lamb))] for lamb in lamb0] sigma = [Dx/nmax for ii in range(nmax)] p0 = A + sigma + [bck] # Get bounding boxes bamp = (np.zeros(nmax,), np.full((nmax,),3.*np.nanmax(y))) bsigma = (np.full((nmax,), dx/2.), np.full((nmax,), Dx/2.)) bbck0 = (0., np.nanmax(y)) bounds = (np.r_[bamp[0], bsigma[0], bbck0[0]], np.r_[bamp[1], bsigma[1], bbck0[1]]) if not np.all(bounds[0]<bounds[1]): msg = "Lower bounds must be < upper bounds !\n" msg += " lower : %s\n"+str(bounds[0]) msg += " upper : %s\n"+str(bounds[1]) raise Exception(msg) return p0, bounds, lamb0 def get_func1d_all(n=5, lamb0=None): if lamb0 is None: lamb0 = np.zeros((n,), dtype=float) assert lamb0.size == n def func_vect(x, amp, dlamp, sigma, bck0, lamb0=lamb0, n=n): y = np.full((n+1, x.size), np.nan) y[:-1, :] = amp[:, None]*np.exp(-(x[None, :]-(lamb0+dlamb)[:, None])**2 /sigma[:, None]**2) y[-1, :] = bck0 return y def func_sca(x, *args, lamb0=lamb0, n=n): amp = np.r_[args[0:n]][:, None] dlamb = np.r_[args[n:2*n]][:, None] sigma = np.r_[args[2*n:3*n]][:, None] bck0 = np.r_[args[3*n]] gaus = amp * np.exp(-(x[None, :]-(lamb0[:, None] + dlamb))**2/sigma**2) back = bck0 return np.sum(gaus, axis=0) + back def func_sca_jac(x, *args, lamb0=lamb0, n=n): amp = np.r_[args[0:n]][None, :] dlamb = np.r_[args[n:2*n]][None, :] sigma = np.r_[args[2*n:3*n]][None, :] bck0 = np.r_[args[3*n]] lamb0 = lamb0[None, :] x = x[:, None] jac = np.full((x.size, 3*n+1,), np.nan) jac[:, :n] = np.exp(-(x - (lamb0+dlamb))**2/sigma**2) jac[:, n:2*n] = amp*2*((x - (lamb0+dlamb))/(sigma**2) * np.exp(-(x - (lamb0+dlamb))**2/sigma**2)) jac[:, 2*n:3*n] = amp*2*((x - (lamb0+dlamb))**2/sigma**3 * np.exp(-(x - (lamb0+dlamb))**2/sigma**2)) jac[:, -1] = 1. return jac return func_vect, func_sca, func_sca_jac def get_func1d_lamb0fix(n=5, lamb0=None): if lamb0 is None: lamb0 = np.zeros((n,), dtype=float) assert lamb0.size == n def func_vect(x, amp, sigma, bck0, lamb0=lamb0, n=n): y = np.full((n+1, x.size), np.nan) for ii in range(n): y[ii, :] = amp[ii]*np.exp(-(x-lamb0[ii])**2/sigma[ii]**2) y[-1, :] = bck0 return y def func_sca(x, *args, lamb0=lamb0, n=n): amp = np.r_[args[0:n]][:, None] sigma = np.r_[args[2*n:3*n]][:, None] bck0 = np.r_[args[3*n]] gaus = amp * np.exp(-(x[None, :]-lamb0[:, None])**2/sigma**2) back = bck0 return np.sum(gaus, axis=0) + back def func_sca_jac(x, *args, lamb0=lamb0, n=n): amp = np.r_[args[0:n]][None, :] sigma = np.r_[args[2*n:3*n]][None, :] bck0 = np.r_[args[3*n]] lamb0 = lamb0[None, :] x = x[:, None] jac = np.full((x.size, 2*n+1,), np.nan) jac[:, :n] = np.exp(-(x - lamb0)**2/sigma**2) jac[:, n:2*n] = amp*2*((x - lamb0)**2/sigma**3 * np.exp(-(x-lamb0)**2/sigma**2)) jac[:, -1] = 1. return jac return func_vect, func_sca, func_sca_jac def multiplegaussianfit1d(x, spectra, nmax=None, lamb0=None, forcelamb=None, p0=None, bounds=None, max_nfev=None, xtol=None, verbose=0, percent=None, plot_debug=False): # Check inputs if xtol is None: xtol = 1.e-8 if percent is None: percent = 20 # Prepare if spectra.ndim == 1: spectra = spectra.reshape((1,spectra.size)) nt = spectra.shape[0] # Prepare info if verbose is not None: print("----- Fitting spectra with {0} gaussians -----".format(nmax)) nspect = spectra.shape[0] nstr = max(nspect//max(int(100/percent), 1), 1) # get initial guess function if forcelamb is True: get_p0bounds = get_p0bounds_lambfix else: get_p0bounds = get_p0bounds_all # lamb0 if p0 is None or bounds is None or lamb0 is None: p00, bounds0, lamb00 = get_p0bounds_all(x, spectra[0,:], nmax=nmax, lamb0=lamb0) if lamb0 is None: lamb0 = lamb00 assert lamb0 is not None if forcelamb is True: p00 = p00[:nmax] + p00[2*nmax:] bounds0 = bounds0[:nmax] + bounds0[2*nmax:] if p0 is None: p0 = p00 if bounds is None: bounds = bounds0 if nmax is None: nmax = lamb0.size assert nmax == lamb0.size # Get fit vector, scalar and jacobian functions if forcelamb is True: func_vect, func_sca, func_sca_jac = get_func1d_lambfix(n=nmax, lamb0=lamb0) else: func_vect, func_sca, func_sca_jac = get_func1d_all(n=nmax, lamb0=lamb0) # Prepare index for splitting p0 if forcelamb is True: indsplit = nmax*np.r_[1, 2] else: indsplit = nmax*np.r_[1, 2, 3] # Prepare output fit = np.full(spectra.shape, np.nan) amp = np.full((nt, nmax), np.nan) sigma = np.full((nt, nmax), np.nan) bck = np.full((nt,), np.nan) ampstd = np.full((nt, nmax), np.nan) sigmastd = np.full((nt, nmax), np.nan) bckstd = np.full((nt,), np.nan) if not forcelamb is True: dlamb = np.full((nt, nmax), np.nan) dlambstd = np.full((nt, nmax), np.nan) else: dlamb, dlambstd = None, None # Loop on spectra lch = [] for ii in range(0, nspect): if verbose is not None and ii%nstr==0: print("=> spectrum {0} / {1}".format(ii+1, nspect)) try: popt, pcov = scpopt.curve_fit(func_sca, x, spectra[ii,:], jac=func_sca_jac, p0=p0, bounds=bounds, max_nfev=max_nfev, xtol=xtol, x_scale='jac', verbose=verbose) except Exception as err: msg = " Convergence issue for {0} / {1}\n".format(ii+1, nspect) msg += " => %s\n"%str(err) msg += " => Resetting initial guess and bounds..." print(msg) try: p0, bounds, _ = get_p0bounds(x, spectra[ii,:], nmax=nmax, lamb0=lamb0) popt, pcov = scpopt.curve_fit(func_sca, x, spectra[ii,:], jac=func_sca_jac, p0=p0, bounds=bounds, max_nfev=max_nfev, xtol=xtol, x_scale='jac', verbose=verbose) p0 = popt popt, pcov = scpopt.curve_fit(func_sca, x, spectra[ii,:], jac=func_sca_jac, p0=p0, bounds=bounds, max_nfev=max_nfev, xtol=xtol, x_scale='jac', verbose=verbose) lch.append(ii) except Exception as err: print(str(err)) import ipdb ipdb.set_trace() raise err out = np.split(popt, indsplit) outstd = np.split(np.sqrt(np.diag(pcov)), indsplit) if forcelamb is True: amp[ii, :], sigma[ii, :], bck[ii] = out ampstd[ii, :], sigmastd[ii, :], bckstd[ii] = outstd else: amp[ii, :], dlamb[ii, :], sigma[ii, :], bck[ii] = out ampstd[ii,:], dlambstd[ii,:], sigmastd[ii,:], bckstd[ii] = outstd fit[ii, :] = func_sca(x, *popt) p0[:] = popt[:] if plot_debug and ii in [0,1]: fit = func_vect(x, amp[ii,:], x0[ii,:], sigma[ii,:], bck0[ii]) plt.figure() ax0 = plt.subplot(2,1,1) ax1 = plt.subplot(2,1,2, sharex=ax0, sharey=ax0) ax0.plot(x,spectra[ii,:], '.k', x, np.sum(fit, axis=0), '-r') ax1.plot(x, fit.T) std = np.sqrt(np.sum((spectra-fit)**2, axis=1)) dout = {'fit': fit, 'lamb0': lamb0, 'std': std, 'lch': lch, 'amp': amp, 'ampstd': ampstd, 'sigma': sigma, 'sigmastd': sigmastd, 'bck': bck, 'bckstd': bckstd, 'dlamb': dlamb, 'dlambstd': dlambstd} return dout ########################################################### ########################################################### # # 1d spectral fitting with physics parameters # ########################################################### ########################################################### def get_lamb0_from_dlines(dlines): lamb0, ions = zip(*[(vv['lamb0'], np.full((len(vv['lamb0']),), kk)) for kk, vv in dlines.items()]) lamb0 = np.r_[lamb0] ind = np.argsort(lamb0) return lamb0[ind], np.concatenate(ions)[ind] def get_dindx(bckdeg=None, dlines=None, nbs=None): nbck = bckdeg + 1 if nbs is None: # 1d spectral fit nbs = 1 i0 = nbck lk = ['sigma', 'dlamb', 'amp', 'ntot', 'nlamb'] dindx= {'bck': np.r_[:nbck], 'ions':dict.fromkeys(sorted(dlines.keys())), 'nbs': nbs} for kk in dindx['ions'].keys(): dindx['ions'][kk] = dict.fromkeys(lk) dindx['ions'][kk]['sigma'] = i0 + np.r_[:nbs] dindx['ions'][kk]['dlamb'] = i0+nbs + np.r_[:nbs] nlamb = len(dlines[kk]['lamb0']) dindx['ions'][kk]['amp'] = i0+2*nbs + np.r_[:nlamb*nbs] dindx['ions'][kk]['nlamb'] = nlamb dindx['ions'][kk]['ntot'] = (2 + nlamb)*nbs i0 += dindx['ions'][kk]['ntot'] dindx['nall'] = i0 return dindx def get_x0_bounds(x01d=None, dlines=None, dindx=None, lamb=None, data=None): x0 = np.zeros((dindx['nall'],), dtype=float) if x01d is None: # Get average spectral width and separation lamb0_Delta = lamb0.max() - lamb0.min() nlamb0 = lamb0.size lamb0_delta = lamb0_Delta / nlamb0 nbs = dindx['nbs'] x0[dindx['bck']] = np.zeros((dindx['bck'].size,)) for kk in dindx['ions'].keys(): # sigma x0[dindx[kk]['sigma']] = lamb0_delta # dlamb x0[dindx[kk]['dlamb']] = 0. # amp x0[dindx[kk]['amp']] = ampmean else: x0[dindx['bck']] = x01d[dindx['bck']] i0 = dindx['bck'].size for kk in dindx['ions'].keys(): # TBF # x0[dindx[kk]['sigma']] = x01d[] pass # Get bounds lamb_delta = np.mean(np.abs(np.diff(np.unique(lamb)))) datamax = np.nanmax(data) bampup = min(datamax, np.nanmean(data) + np.nanstd(data)) bounds0 = np.zeros((dindx['nall'],), dtype=float) bounds1 = np.zeros((dindx['nall'],), dtype=float) if dindx['bck'].size == 1: bounds0[dindx['bck']] = 0. bounds1[dindx['bck']] = bampup elif dindx['bck'].size == 2: bounds0[dindx['bck'][0]] = 0. bounds1[dindx['bck'][0]] = bampup bounds0[dindx['bck'][0]] = 0. # TBC bounds1[dindx['bck'][0]] = bampup # TBC for kk in dindx['ions'].keys(): bounds0[dindx[kk]['sigma']] = 2.*lamb_delta bounds1[dindx[kk]['sigma']] = lamb0_delta*5. bounds0[dindx[kk]['dlamb']] = -3.*lamb0_delta bounds1[dindx[kk]['dlamb']] = 3.*lamb0_delta bounds0[dindx[kk]['amp']] = 0. bounds1[dindx[kk]['amp']] = datamax return x0, bounds def get_funccostjac(): def func(): pass def cost(): pass def jac(): pass return func, cost, jac ########################################################### ########################################################### # # 2d spectral fitting # ########################################################### ########################################################### def get_knots_nbs_for_bsplines(knots_unique, deg): if deg > 0: knots = np.r_[[knots_unique[0]]*deg, knots_unique, [knots_unique[-1]]*deg] else: knots = knots_unique nbknotsperbs = 2 + deg nbs = knots_unique.size - 1 + deg assert nbs == knots.size - 1 - deg return knots, nbknotsperbs, nbs def get_2dspectralfit_func(lamb0, forcelamb=False, deg=None, knots=None): lamb0 = np.atleast_1d(lamb0).ravel() nlamb = lamb0.size knots = np.atleast_1d(knots).ravel() nknots = knots.size nbsplines = np.unique(knots).size - 1 + deg # Define function def func(lamb, phi, camp=None, cwidth=None, cshift=None, lamb0=lamb0, nlamb=nlamb, knots=knots, deg=deg, forcelamb=forcelamb, nbsplines=nbsplines, mesh=True): assert phi.ndim in [1, 2] if camp is not None: assert camp.shape[0] == nbsplines bsamp = BSpline(knots, camp, deg, extrapolate=False, axis=0) if csigma is not None: assert csigma.shape[0] == nbsplines bssigma = BSpline(knots, csigma, deg, extrapolate=False, axis=0) if mesh or phi.ndim == 2: lamb0 = lamb0[None, None, :] else: lamb0 = lamb0[None, :] if forcelamb: if mesh: assert angle.ndim == lamb.ndim == 1 # shape (lamb, angle, lines) return np.sum(bsamp(phi)[None,:,:] * np.exp(-(lamb[:,None,None] - lamb0)**2 /(bssigma(phi)[None,:,:]**2)), axis=-1) else: assert phi.shape == lamb.shape lamb = lamb[..., None] # shape (lamb/angle, lines) return np.sum(bsamp(phi) * np.exp(-(lamb - lamb0)**2 /(bssigma(phi)**2)), axis=-1) else: if cdlamb is not None: assert cdlamb.shape[0] == nbsplines bsdlamb = BSpline(knots, cdlamb, deg, extrapolate=False, axis=0) return func def get_multigaussianfit2d_costfunc(lamb=None, phi=None, data=None, std=None, lamb0=None, forcelamb=None, deg=None, knots=None, nlamb0=None, nkperbs=None, nbs=None, nc=None, debug=None): assert lamb.shape == phi.shape == data.shape assert lamb.ndim == 1 assert nc == nbs*nlamb0 if forcelamb is None: forcelamb = False if debug is None: debug = False # Define func assuming all inpus properly formatted if forcelamb: # x = [camp[1-nbs,...,nbs*(nlamb0-1)-nc}, csigma[1-nc]] def func(x, lamb=lamb, phi=phi, data=data, std=std, lamb0=lamb0, knots=knots, deg=deg, nc=nc): amp = BSpline(knots, x[:nc], deg, extrapolate=False, axis=0)(phi) sigma = BSpline(knots, x[nc:], deg, extrapolate=False, axis=0)(phi) val = np.sum(amp[:, None] * np.exp(-(lamb[:, None] - lamb0[None, :])**2 /(sigma[:, None]**2)), axis=-1) return (val-data)/(std*data.size) def jac(x, lamb=lamb, phi=phi, std=std, lamb0=lamb0, knots=knots, deg=deg, nlamb0=nlamb0, nkperbs=nkperbs, nbs=nbs, nc=nc): amp = BSpline(knots, x[:nc], deg, extrapolate=False, axis=0)(phi) sigma = BSpline(knots, x[nc:], deg, extrapolate=False, axis=0)(phi) jacx = sparse.csr_matrix((phi.size, 2*nc), dtype=float) #jacx = np.zeros((phi.size, 2*nc), dtype=float) for ii in range(nlamb0): expi = np.exp(-(lamb-lamb0[ii])**2/sigma**2) for jj in range(nbs): ind = ii*nbs + jj indk = np.r_[jj*nkperbs:(jj+1)*nkperbs] # all bsplines are the same, only coefs (x) are changing bj = BSpline.basis_element(knots[indk], extrapolate=False)(phi) #bj[np.isnan(bj)] = 0. indok = ~np.isnan(bj) # Differentiate wrt camp jacx[indok, ind] = (bj * expi)[indok] # Differentiate wrt csigma jacx[indok, nc+ind] = ( amp * (2*(lamb-lamb0[ii])**2*bj/sigma**3) * expi )[indok] return jacx/(std*phi.size) else: # x = [camp1-nbs*nlamb, csigma1-nbs*nlamb, cdlamb1-nbs*nlamb] def func(x, lamb=lamb, phi=phi, data=data, std=std, lamb0=lamb0, knots=knots, deg=deg, nbs=nbs, nlamb0=nlamb0, nc=nc, debug=debug): amp = BSpline(knots, x[:nc].reshape((nbs, nlamb0), order='F'), deg, extrapolate=False, axis=0)(phi) sigma = BSpline(knots, x[nc:2*nc].reshape((nbs, nlamb0), order='F'), deg, extrapolate=False, axis=0)(phi) dlamb = BSpline(knots, x[2*nc:-1].reshape((nbs, nlamb0), order='F'), deg, extrapolate=False, axis=0)(phi) val = np.nansum(amp * np.exp(-(lamb[:, None] - (lamb0[None, :]+dlamb))**2 / sigma**2), axis=-1) + x[-1] if debug: vmin, vmax = 0, np.nanmax(data) fig = plt.figure(figsize=(14, 10)); ax0 = fig.add_axes([0.05,0.55,0.25,0.4]) ax1 = fig.add_axes([0.35,0.55,0.25,0.4], sharex=ax0, sharey=ax0) ax2 = fig.add_axes([0.65,0.55,0.25,0.4], sharex=ax0, sharey=ax0) ax3 = fig.add_axes([0.05,0.05,0.25,0.4], sharex=ax0, sharey=ax0) ax4 = fig.add_axes([0.35,0.05,0.25,0.4], sharex=ax0, sharey=ax0) ax5 = fig.add_axes([0.65,0.05,0.25,0.4], sharex=ax0, sharey=ax0) ax0.scatter(lamb, phi, c=data, s=2, marker='s', edgecolors='None', vmin=vmin, vmax=vmax) # DB ax1.scatter(lamb, phi, c=val, s=2, marker='s', edgecolors='None', # DB vmin=vmin, vmax=vmax) # DB errmax = np.nanmax(np.abs((val-data) / (std*data.size))) ax2.scatter(lamb, phi, c=(val-data) / (std*data.size), s=2, marker='s', edgecolors='None', # DB vmin=-errmax, vmax=errmax, cmap=plt.cm.seismic) # DB dlamb0_amp = np.max(np.diff(lamb0))/np.nanmax(np.abs(amp)) dlamb0_sigma = np.max(np.diff(lamb0))/np.nanmax(np.abs(sigma)) dlamb0_dlamb = np.max(np.diff(lamb0))/np.nanmax(np.abs(dlamb)) for ii in range(nlamb0): ax3.axvline(lamb0[ii], ls='--', c='k') ax4.axvline(lamb0[ii], ls='--', c='k') ax5.axvline(lamb0[ii], ls='--', c='k') ax3.plot(lamb0[ii] + dlamb0_amp*amp[:, ii], phi, '.', ms=4) ax4.plot(lamb0[ii] + dlamb0_sigma*sigma[:, ii], phi, '.', ms=4) ax5.plot(lamb0[ii] + dlamb0_dlamb*dlamb[:, ii], phi, '.', ms=4) import ipdb # DB ipdb.set_trace() # DB return (val-data) / (std*data.size) def jac(x, lamb=lamb, phi=phi, std=std, lamb0=lamb0, knots=knots, deg=deg, nlamb0=nlamb0, nkperbs=nkperbs, nbs=nbs, nc=nc): amp = BSpline(knots, x[:nc], deg, extrapolate=False, axis=0)(phi) sigma = BSpline(knots, x[nc:2*nc], deg, extrapolate=False, axis=0)(phi) dlamb = BSpline(knots, x[2*nc:], deg, extrapolate=False, axis=0)(phi) #jacx = sparse.csr_matrix((phi.size, 2*nc), dtype=float) jacx = np.zeros((phi.size, 3*nc+1), dtype=float) for ii in range(nlamb0): expi = np.exp(-(lamb-(lamb0[ii]+dlamb))**2/sigma**2) indlamb = expi > 0.001 for jj in range(nbs): kk = ii*nbs + jj indk = jj + np.r_[:nkperbs] # all bsplines are the same, only coefs (x) are changing bj = BSpline.basis_element(knots[indk], extrapolate=False)(phi) # bj[np.isnan(bj)] = 0. indok = (~np.isnan(bj)) & indlamb # Differentiate wrt camp jacx[indok, kk] = (bj[indok] * expi[indok]) # Differentiate wrt csigma jacx[indok, nc+kk] = ( amp * 2*(lamb-(lamb0[ii]+dlamb))**2*bj/sigma**3 * expi )[indok] # Differentiate wrt dlamb jacx[indok, 2*nc+kk] = ( amp * 2*(lamb-(lamb0[ii]+dlamb))*bj/sigma**2 * expi )[indok] jacx[:, -1] = 1. return jacx/(std*phi.size) return func, jac def multigaussianfit2d(lamb, phi, data, std=None, lamb0=None, forcelamb=None, knots=None, deg=None, nbsplines=None, x0=None, bounds=None, method=None, max_nfev=None, xtol=None, ftol=None, gtol=None, loss=None, verbose=0, debug=None): # Check inputs if deg is None: deg = 3 if nbsplines is None: nbsplines = 5 if method is None: method = 'trf' # Only 2 method for pb. with bounds assert method in ['trf', 'dogbox'], method if xtol is None: xtol = 1.e-6 if ftol is None: ftol = 1.e-6 if gtol is None: gtol = 1.e-8 if loss is None: loss = 'linear' if max_nfev is None: max_nfev = None if std is None: std = 0.1*np.nanmean(data) assert lamb0 is not None # Get knots if knots is None: phimin, phimax = np.nanmin(phi), np.nanmax(phi) knots = np.linspace(phimin, phimax, nbsplines+1-deg) knots, nkperbs, nbs = get_knots_nbs_for_bsplines(np.unique(knots), deg) # Scaling lambmin = np.nanmin(lamb) lamb0Delta = np.max(lamb0) - np.min(lamb0) nlamb0 = np.size(lamb0) nc = nbs*nlamb0 dlambscale = lamb0Delta / nlamb0 ampscale = np.nanmean(data) + np.nanstd(data) datascale = data / ampscale lambscale = lamb / dlambscale lamb0scale = lamb0 / dlambscale stdscale = std / ampscale # Get cost function and jacobian func, jac = get_multigaussianfit2d_costfunc(lamb=lambscale, phi=phi, data=datascale, std=stdscale, lamb0=lamb0scale, forcelamb=forcelamb, deg=deg, knots=knots, nlamb0=nlamb0, nbs=nbs, nkperbs=nkperbs, nc=nc, debug=debug) # Get initial guess if x0 is None: x0 = np.r_[np.ones((nc,)), np.ones((nc,))] if not forcelamb: x0 = np.r_[x0, np.zeros((nc,))] x0 = np.r_[x0, 0.] # Get bounds if bounds is None: bounds = (np.r_[np.zeros((nc,)), np.full((nc,), nlamb0/100)], np.r_[np.full((nc,), np.nanmax(data)/ampscale), np.full((nc,), 3.)]) if not forcelamb: bounds = (np.r_[bounds[0], -np.full((nc,), 2.)], np.r_[bounds[1], np.full((nc,), 2.)]) bounds = (np.r_[bounds[0], 0.], np.r_[bounds[1], 0.1*np.nanmax(data)/ampscale]) # Minimize res = scpopt.least_squares(func, x0, jac=jac, bounds=bounds, method=method, ftol=ftol, xtol=xtol, gtol=gtol, x_scale=1.0, f_scale=1.0, loss=loss, diff_step=None, tr_solver=None, tr_options={}, jac_sparsity=None, max_nfev=max_nfev, verbose=verbose, args=(), kwargs={}) # Separate and reshape output camp = res.x[:nc].reshape((nlamb0, nbs)) * ampscale csigma = res.x[nc:2*nc].reshape((nlamb0, nbs)) * dlambscale if forcelamb: cdlamb = None else: cdlamb = res.x[2*nc:3*nc].reshape((nlamb0, nbs)) * dlambscale # Create output dict dout = {'camp': camp, 'csigma': csigma, 'cdlamb': cdlamb, 'bck':res.x[-1], 'fit':(func(res.x)*stdscale*data.size + datascale) * ampscale, 'lamb0':lamb0, 'knots': knots, 'deg':deg, 'nbsplines': nbsplines, 'cost': res.cost, 'fun': res.fun, 'active_mask': res.active_mask, 'nfev': res.nfev, 'njev': res.njev, 'status': res.status} return dout ########################################################### # # From DataCam2D # ########################################################### ########################################################### # DEPRECATED def fit_spectra2d_x0_per_row(): # Loop from centre to edges for jj in range(ny): out = multiplegaussianfit(x, datat[jj,:], nmax=nmax, p0=p0u, bounds=None, max_nfev=None, xtol=1.e-8, verbose=0, percent=20, plot_debug=False) x0[jj,:], x0_std[jj,:] = out[:2] for jj in range(nybis): # Upper half ju = indy1[jj] out = multiplegaussianfit(x, spect, nmax=nmax, p0=p0u, bounds=None, max_nfev=None, xtol=1.e-8, verbose=0, percent=20, plot_debug=False) x0[ju,:], x0_std[ju,:] = out[:2] p0u[:nmax], p0u[nmax:2*nmax], = amp[ii,ju,:], x0[ii,ju,:] p0u[2*nmax:3*nmax], p0u[3*nmax:] = sigma[ii,ju,:], bck0 # Lower half jl = indy2[jj] return x0 def get_func2d(y0, y1, x0_y, bspl_n, bspl_deg): knots = np.linspace(y0,y1, 6) bspliney = scpinterp.LSQUnivariateSpline() def func(x, y, ampy_coefs, sigy_coefs, bcky_coefs): amp_bs = BSpline(knots, ampy_coefs, k=bspl_deg, extrapolate=False, axis=0) amp = amp_bs(y) x0y = x0_y(y) return np.sum(amp*np.exp((x-xoy)**2/sig**2) + bck0, axis=-1) return func def fit_spectra_2d(data2d, indt=None, nbin_init=None, nmax=None, bck=None, nbsplines=None): """ Return fitted spectra Can handle unique or multiple time Takes already formatted 2d data: - (nx, ny) - (nt, nx, ny) x being the horizontal / spectral direction (lambda) """ ##################### # Check / format input ##################### # Check data assert isinstance(data, np.ndarray) assert data.ndim in [2,3] if data.ndim == 2: data = np.reshape((1,data.shape[0],data.shape[1])) if indt is not None: data = data[indt,...] # Set bck type if bck is None: bck = 0 assert type(bck) in [int, str] if type(bck) is int: nbck = bck + 1 elif bck == 'exp': nbck = 3 # Extract shape nt = data.shape[0] nlamb, ny = data.shape[1:] x =
np.arange(0,nlamb)
numpy.arange
from ._accumulate_data import AccumulateData from ..util import MaxSamplesWarning from ..discrete_distribution import Lattice from numpy import array, nan import warnings import numpy as np from scipy.optimize import fminbound as fminbnd from scipy.optimize import fmin, fmin_bfgs from numpy import sqrt, exp, log from scipy.stats import norm as gaussnorm from scipy.stats import t as tnorm class LDTransformBayesData(AccumulateData): """ Update and store transformation data based on low-discrepancy sequences. See the stopping criterion that utilize this object for references. """ def __init__(self, stopping_crit, integrand, true_measure, discrete_distrib, m_min: int, m_max: int, fbt, merge_fbt, kernel): """ Args: stopping_crit (StoppingCriterion): a StoppingCriterion instance integrand (Integrand): an Integrand instance true_measure (TrueMeasure): A TrueMeasure instance discrete_distrib (DiscreteDistribution): a DiscreteDistribution instance m_min (int): initial n == 2^m_min m_max (int): max n == 2^m_max """ self.parameters = ['solution', 'error_bound', 'n_total'] self.stopping_crit = stopping_crit self.integrand = integrand self.true_measure = true_measure self.discrete_distrib = discrete_distrib self.distribution_name = type(self.discrete_distrib).__name__ # Bayes cubature properties self.errbd_type = self.stopping_crit.errbd_type self.arb_mean = self.stopping_crit.arb_mean self.order = self.stopping_crit.order self.kernType = self.stopping_crit.kernType self.avoid_cancel_error = self.stopping_crit.avoid_cancel_error self.abs_tol = self.stopping_crit.abs_tol self.rel_tol = self.stopping_crit.rel_tol self.debug_enable = self.stopping_crit.debug_enable # Credible interval : two-sided confidence, i.e., 1-alpha percent quantile # quantile value for the error bound if self.errbd_type == 'full_Bayes': # degrees of freedom = 2^mmin - 1 self.uncert = -tnorm.ppf(self.stopping_crit.alpha / 2, (2 ** m_min) - 1) else: self.uncert = -gaussnorm.ppf(self.stopping_crit.alpha / 2) # Set Attributes self.m_min = m_min self.m_max = m_max self.debugEnable = True self.n_total = 0 # total number of samples generated self.solution = nan self.iter = 0 self.m = self.m_min self.mvec = np.arange(self.m_min, self.m_max + 1, dtype=int) # Initialize various temporary storage between iterations self.xpts_ = array([]) # shifted lattice points self.xun_ = array([]) # un-shifted lattice points self.ftilde_ = array([]) # fourier transformed integrand values if isinstance(self.discrete_distrib, Lattice): # integrand after the periodization transform self.ff = lambda x, *args, **kwargs: self.integrand.f(x, periodization_transform=stopping_crit.ptransform, *args, **kwargs).squeeze() else: self.ff = self.integrand.f self.fbt = fbt self.merge_fbt = merge_fbt self.kernel = kernel super(LDTransformBayesData, self).__init__() def update_data(self, y_val_new=None, xnew=None, xunnew=None): """ See abstract method. """ # Generate sample values if self.iter < len(self.mvec): if y_val_new is None: self.ftilde_, self.xun_, self.xpts_ = self.iter_fbt(self.iter, self.xun_, self.xpts_, self.ftilde_) else: self.ftilde_, self.xun_, self.xpts_ = self.iter_fbt(self.iter, self.xun_, self.xpts_, self.ftilde_, y_val_new, xunnew, xnew) self.m = self.mvec[self.iter] self.iter += 1 # update total samples self.n_total = 2 ** self.m # updated the total evaluations else: warnings.warn(''' Already used maximum allowed sample size %d. Note that error tolerances may no longer be satisfied.''' % (2 ** self.m_max), MaxSamplesWarning) return self._stopping_criterion(self.xun_, self.ftilde_, self.m) # decides if the user-defined error threshold is met def _stopping_criterion(self, xpts, ftilde, m): r = self.stopping_crit.order ftilde = ftilde.squeeze() n = 2 ** m success = False lna_range = [-5, 0] # reduced from [-5, 5], to avoid kernel values getting too big causing error # search for optimal shape parameter if self.stopping_crit.one_theta == True: lna_MLE = fminbnd(lambda lna: self.objective_function(exp(lna), xpts, ftilde)[0], x1=lna_range[0], x2=lna_range[1], xtol=1e-2, disp=0) aMLE = exp(lna_MLE) _, vec_lambda, vec_lambda_ring, RKHS_norm = self.objective_function(aMLE, xpts, ftilde) else: if self.stopping_crit.use_gradient == True: warnings.warn('Not implemented !') lna_MLE = 0 else: # Nelder-Mead Simplex algorithm theta0 = np.ones((xpts.shape[1], 1)) * (0.05) theta0 = np.ones((1, xpts.shape[1])) * (0.05) lna_MLE = fmin(lambda lna: self.objective_function(exp(lna), xpts, ftilde)[0], theta0, xtol=1e-2, disp=False) aMLE = exp(lna_MLE) # print(n, aMLE) _, vec_lambda, vec_lambda_ring, RKHS_norm = self.objective_function(aMLE, xpts, ftilde) # Check error criterion # compute DSC if self.errbd_type == 'full_Bayes': # full Bayes if self.avoid_cancel_error: DSC = abs(vec_lambda_ring[0] / n) else: DSC = abs((vec_lambda[0] / n) - 1) # 1-alpha two sided confidence interval err_bd = self.uncert * sqrt(DSC * RKHS_norm / (n - 1)) elif self.errbd_type == 'GCV': # GCV based stopping criterion if self.avoid_cancel_error: DSC = abs(vec_lambda_ring[0] / (n + vec_lambda_ring[0])) else: DSC = abs(1 - (n / vec_lambda[0])) temp = vec_lambda temp[0] = n + vec_lambda_ring[0] mC_inv_trace = sum(1. / temp(temp != 0)) err_bd = self.uncert * sqrt(DSC * RKHS_norm / mC_inv_trace) else: # empirical Bayes if self.avoid_cancel_error: DSC = abs(vec_lambda_ring[0] / (n + vec_lambda_ring[0])) else: DSC = abs(1 - (n / vec_lambda[0])) err_bd = self.uncert * sqrt(DSC * RKHS_norm / n) if self.arb_mean: # zero mean case muhat = ftilde[0] / n else: # non zero mean case muhat = ftilde[0] / vec_lambda[0] self.error_bound = err_bd muhat =
np.abs(muhat)
numpy.abs
################################################################################ # # Copyright (c) 2017 University of Oxford # Authors: # <NAME> (<EMAIL>) # # This work is licensed under the Creative Commons # Attribution-NonCommercial-ShareAlike 4.0 International License. # To view a copy of this license, visit # http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to # Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. # ################################################################################ import bisect import csv import numpy as np import numpy.matlib as ml from .transform import * def interpolate_vo_poses(vo_path, pose_timestamps, origin_timestamp): """Interpolate poses from visual odometry. Args: vo_path (str): path to file containing relative poses from visual odometry. pose_timestamps (list[int]): UNIX timestamps at which interpolated poses are required. origin_timestamp (int): UNIX timestamp of origin frame. Poses will be reported relative to this frame. Returns: list[numpy.matrixlib.defmatrix.matrix]: SE3 matrix representing interpolated pose for each requested timestamp. """ with open(vo_path) as vo_file: vo_reader = csv.reader(vo_file) headers = next(vo_file) vo_timestamps = [0] abs_poses = [ml.identity(4)] lower_timestamp = min(min(pose_timestamps), origin_timestamp) upper_timestamp = max(max(pose_timestamps), origin_timestamp) for row in vo_reader: timestamp = int(row[0]) if timestamp < lower_timestamp: vo_timestamps[0] = timestamp continue vo_timestamps.append(timestamp) xyzrpy = [float(v) for v in row[2:8]] rel_pose = build_se3_transform(xyzrpy) abs_pose = abs_poses[-1] * rel_pose abs_poses.append(abs_pose) if timestamp >= upper_timestamp: break return interpolate_poses(vo_timestamps, abs_poses, pose_timestamps, origin_timestamp) def interpolate_ins_poses(ins_path, pose_timestamps, use_rtk=False): """Interpolate poses from INS. Args: ins_path (str): path to file containing poses from INS. pose_timestamps (list[int]): UNIX timestamps at which interpolated poses are required. Returns: list[numpy.matrixlib.defmatrix.matrix]: SE3 matrix representing interpolated pose for each requested timestamp. QUT CHANGE: Removed origin timestamp, so interpolated poses are absolute """ with open(ins_path) as ins_file: ins_reader = csv.reader(ins_file) headers = next(ins_file) ins_timestamps = [0] abs_poses = [ml.identity(4)] upper_timestamp = max(pose_timestamps) for row in ins_reader: timestamp = int(row[0]) ins_timestamps.append(timestamp) utm = row[5:8] if not use_rtk else row[4:7] rpy = row[-3:] if not use_rtk else row[11:14] xyzrpy = [float(v) for v in utm] + [float(v) for v in rpy] abs_pose = build_se3_transform(xyzrpy) abs_poses.append(abs_pose) if timestamp >= upper_timestamp: break ins_timestamps = ins_timestamps[1:] abs_poses = abs_poses[1:] return interpolate_poses(ins_timestamps, abs_poses, pose_timestamps) def interpolate_poses(pose_timestamps, abs_poses, requested_timestamps): """Interpolate between absolute poses. Args: pose_timestamps (list[int]): Timestamps of supplied poses. Must be in ascending order. abs_poses (list[numpy.matrixlib.defmatrix.matrix]): SE3 matrices representing poses at the timestamps specified. requested_timestamps (list[int]): Timestamps for which interpolated timestamps are required. Returns: list[numpy.matrixlib.defmatrix.matrix]: SE3 matrix representing interpolated pose for each requested timestamp. Raises: ValueError: if pose_timestamps and abs_poses are not the same length ValueError: if pose_timestamps is not in ascending order QUT CHANGE: Removed origin timestamp, so interpolated poses are absolute """ requested_timestamps = np.array(requested_timestamps) pose_timestamps = np.array(pose_timestamps) if len(pose_timestamps) != len(abs_poses): raise ValueError('Must supply same number of timestamps as poses') abs_quaternions = np.zeros((4, len(abs_poses))) abs_positions = np.zeros((3, len(abs_poses))) for i, pose in enumerate(abs_poses): if i > 0 and pose_timestamps[i-1] >= pose_timestamps[i]: raise ValueError('Pose timestamps must be in ascending order') abs_quaternions[:, i] = so3_to_quaternion(pose[0:3, 0:3]) abs_positions[:, i] = np.ravel(pose[0:3, 3]) upper_indices = [bisect.bisect(pose_timestamps, pt) for pt in requested_timestamps] lower_indices = [u - 1 for u in upper_indices] if max(upper_indices) >= len(pose_timestamps): upper_indices = [min(i, len(pose_timestamps) - 1) for i in upper_indices] fractions = (requested_timestamps - pose_timestamps[lower_indices]) // \ (pose_timestamps[upper_indices] - pose_timestamps[lower_indices]) quaternions_lower = abs_quaternions[:, lower_indices] quaternions_upper = abs_quaternions[:, upper_indices] d_array = (quaternions_lower * quaternions_upper).sum(0) linear_interp_indices = np.nonzero(d_array >= 1) sin_interp_indices = np.nonzero(d_array < 1) scale0_array = np.zeros(d_array.shape) scale1_array = np.zeros(d_array.shape) scale0_array[linear_interp_indices] = 1 - fractions[linear_interp_indices] scale1_array[linear_interp_indices] = fractions[linear_interp_indices] theta_array = np.arccos(np.abs(d_array[sin_interp_indices])) scale0_array[sin_interp_indices] = \ np.sin((1 - fractions[sin_interp_indices]) * theta_array) /
np.sin(theta_array)
numpy.sin