prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
#!/usr/bin/env python3 import sys import os import shutil import cv2 from ament_index_python import get_package_share_directory import yaml import numpy as np from transforms3d.euler import euler2mat, mat2euler from subprocess import check_output, run from copy import deepcopy import xacro from urdf_parser_py.urdf import URDF marine_ppt = get_package_share_directory('marine_presenter') def add_icon(img, x, y, w): im = cv2.imread(img) H,W = im.shape[:2] X = int(W*x/100.) Y = int(H*y/100.) w /= 100. icon = cv2.imread(marine_ppt + '/objects/video.png') scale = w*W/icon.shape[1] icon = cv2.resize(icon, None, fx=scale, fy=scale, interpolation=cv2.INTER_LANCZOS4) im[Y:Y+icon.shape[0], X-icon.shape[1]:X] = icon cv2.imwrite(img, im) def add_borders(img, w = 20): im = cv2.imread(img) H,W = im.shape[:2] w = int(W*(1+w/100.)) im2 = np.full((H,W+w,3), 255, dtype=np.uint8) im2[:,w//2:W+w//2] = im cv2.imwrite(img, im2) # get initial pdf filename = sys.argv[1] if filename[-4:] != '.pdf': filename = (filename+'.pdf').replace('..','.') if not os.path.exists(filename): print(filename + ' does not exist, exiting') sys.exit(0) # check config file if os.path.exists(filename.replace('.pdf', '.yaml')): config = yaml.safe_load(open(filename.replace('.pdf', '.yaml'))) else: config = {} video_x = 99.5 video_y = 0.5 video_w = 3 if 'video' in config: video_x = config['video']['x'] video_y = config['video']['y'] video_w = config['video']['w'] if 'scale' not in config: config['scale'] = 3 scale = config['scale'] ext = 'png' cam_pose = [1, 0, scale, 0, 0, 0] # wrt current slide def dict_replace(s, d): for key in d: s = s.replace(key, d[key]) return s def read_pose(pose, base_pose = (0,0,0,0,0,0)): if type(pose) == dict: if 'pose' in pose: return read_pose(pose['pose'], base_pose) return base_pose if len(pose) >= 3: pose[2] *= scale if len(pose) == 6: return pose # complete with base_pose return pose + base_pose[len(pose)-6:] def Homogeneous(pose): R = euler2mat(pose[3], pose[4], pose[5], 'rxyz') t =
np.array(pose[:3])
numpy.array
from typing import Optional import gym import numpy as np from jax_rl.datasets.dataset import Dataset import pandas as pd from .welford import Welford from .equivariant_standardization import EquivStandardizer import abc import collections import numpy as np Batch = collections.namedtuple( 'Batch', ['observations', 'actions', 'rewards', 'masks', 'next_observations']) class ReplayBuffer(Dataset): def __init__(self, observation_space: gym.spaces.Box, action_dim: int, capacity: int,rep,state_transform,inv_state_transform,standardize=False): observations = np.empty((capacity, *observation_space.shape), dtype=observation_space.dtype) actions = np.empty((capacity, action_dim), dtype=np.float32) rewards = np.empty((capacity, ), dtype=np.float32) masks = np.empty((capacity, ), dtype=np.float32) next_observations = np.empty((capacity, *observation_space.shape), dtype=observation_space.dtype) super().__init__(observations=observations, actions=actions, rewards=rewards, masks=masks, next_observations=next_observations, size=0) self.size = 0 self.insert_index = 0 self.capacity = capacity self.restarts =
np.zeros(capacity)
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Sat Jan 8 21:39:07 2022 @author: rainn """ import numpy as np from PIL import Image # from https://stackoverflow.com/questions/34913005/color-space-mapping-ycbcr-to-rgb def ycbcr2rgb(im): xform =
np.array([[1, 0, 1.402], [1, -0.34414, -.71414], [1, 1.772, 0]])
numpy.array
# Licensed under a 3-clause BSD style license - see LICENSE.rst from __future__ import absolute_import, division, print_function, unicode_literals import pytest import numpy as np from numpy.testing import assert_allclose, assert_equal from astropy.io import fits from astropy.coordinates import SkyCoord from astropy.convolution import Gaussian2DKernel import astropy.units as u from ...utils.testing import requires_dependency, requires_data, mpl_plot_check from ...cube import PSFKernel from ...irf import EnergyDependentMultiGaussPSF from ..utils import fill_poisson from ..geom import MapAxis, MapCoord, coordsys_to_frame from ..base import Map from ..wcs import WcsGeom from ..hpx import HpxGeom from ..wcsnd import WcsNDMap pytest.importorskip("reproject") axes1 = [MapAxis(np.logspace(0.0, 3.0, 3), interp="log", name="spam")] axes2 = [ MapAxis(np.logspace(0.0, 3.0, 3), interp="log"), MapAxis(np.logspace(1.0, 3.0, 4), interp="lin"), ] skydir = SkyCoord(110.0, 75.0, unit="deg", frame="icrs") wcs_allsky_test_geoms = [ (None, 10.0, "GAL", "AIT", skydir, None), (None, 10.0, "GAL", "AIT", skydir, axes1), (None, [10.0, 20.0], "GAL", "AIT", skydir, axes1), (None, 10.0, "GAL", "AIT", skydir, axes2), (None, [[10.0, 20.0, 30.0], [10.0, 20.0, 30.0]], "GAL", "AIT", skydir, axes2), ] wcs_partialsky_test_geoms = [ (10, 1.0, "GAL", "AIT", skydir, None), (10, 1.0, "GAL", "AIT", skydir, axes1), (10, [1.0, 2.0], "GAL", "AIT", skydir, axes1), (10, 1.0, "GAL", "AIT", skydir, axes2), (10, [[1.0, 2.0, 3.0], [1.0, 2.0, 3.0]], "GAL", "AIT", skydir, axes2), ] wcs_test_geoms = wcs_allsky_test_geoms + wcs_partialsky_test_geoms @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_init(npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, proj=proj, coordsys=coordsys, axes=axes ) m0 = WcsNDMap(geom) coords = m0.geom.get_coord() m0.set_by_coord(coords, coords[1]) m1 = WcsNDMap(geom, m0.data) assert_allclose(m0.data, m1.data) @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_read_write(tmpdir, npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, proj=proj, coordsys=coordsys, axes=axes ) filename = str(tmpdir / "map.fits") m0 = WcsNDMap(geom) fill_poisson(m0, mu=0.5) m0.write(filename, overwrite=True) m1 = WcsNDMap.read(filename) m2 = Map.read(filename) m3 = Map.read(filename, map_type="wcs") assert_allclose(m0.data, m1.data) assert_allclose(m0.data, m2.data) assert_allclose(m0.data, m3.data) m0.write(filename, sparse=True, overwrite=True) m1 = WcsNDMap.read(filename) m2 = Map.read(filename) m3 = Map.read(filename, map_type="wcs") assert_allclose(m0.data, m1.data) assert_allclose(m0.data, m2.data) assert_allclose(m0.data, m3.data) # Specify alternate HDU name for IMAGE and BANDS table m0.write(filename, hdu="IMAGE", hdu_bands="TEST", overwrite=True) m1 = WcsNDMap.read(filename) m2 = Map.read(filename) m3 = Map.read(filename, map_type="wcs") def test_wcsndmap_read_write_fgst(tmpdir): filename = str(tmpdir / "map.fits") axis = MapAxis.from_bounds(100.0, 1000.0, 4, name="energy", unit="MeV") geom = WcsGeom.create(npix=10, binsz=1.0, proj="AIT", coordsys="GAL", axes=[axis]) # Test Counts Cube m = WcsNDMap(geom) m.write(filename, conv="fgst-ccube", overwrite=True) with fits.open(filename) as h: assert "EBOUNDS" in h m2 = Map.read(filename) assert m2.geom.conv == "fgst-ccube" # Test Model Cube m.write(filename, conv="fgst-template", overwrite=True) with fits.open(filename) as h: assert "ENERGIES" in h m2 = Map.read(filename) assert m2.geom.conv == "fgst-template" def test_wcs_nd_map_data_transpose_issue(tmpdir): # Regression test for https://github.com/gammapy/gammapy/issues/1346 # Our test case: a little map with WCS shape (3, 2), i.e. numpy array shape (2, 3) data = np.array([[0, 1, 2], [np.nan, np.inf, -np.inf]]) geom = WcsGeom.create(npix=(3, 2)) # Data should be unmodified after init m = WcsNDMap(data=data, geom=geom) assert_equal(m.data, data) # Data should be unmodified if initialised like this m = WcsNDMap(geom=geom) # and then filled via an in-place Numpy array operation m.data += data assert_equal(m.data, data) # Data should be unmodified after write / read to normal image format filename = str(tmpdir / "normal.fits.gz") m.write(filename) assert_equal(Map.read(filename).data, data) # Data should be unmodified after write / read to sparse image format filename = str(tmpdir / "sparse.fits.gz") m.write(filename) assert_equal(Map.read(filename).data, data) @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_set_get_by_pix(npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, skydir=skydir, proj=proj, coordsys=coordsys, axes=axes ) m = WcsNDMap(geom) coords = m.geom.get_coord() pix = m.geom.get_idx() m.set_by_pix(pix, coords[0]) assert_allclose(coords[0], m.get_by_pix(pix)) @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_set_get_by_coord(npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, skydir=skydir, proj=proj, coordsys=coordsys, axes=axes ) m = WcsNDMap(geom) coords = m.geom.get_coord() m.set_by_coord(coords, coords[0]) assert_allclose(coords[0], m.get_by_coord(coords)) if not geom.is_allsky: coords[1][...] = 0.0 assert_allclose(np.nan * np.ones(coords[0].shape), m.get_by_coord(coords)) # Test with SkyCoords m = WcsNDMap(geom) coords = m.geom.get_coord() skydir = SkyCoord( coords[0], coords[1], unit="deg", frame=coordsys_to_frame(geom.coordsys) ) skydir_cel = skydir.transform_to("icrs") skydir_gal = skydir.transform_to("galactic") m.set_by_coord((skydir_gal,) + tuple(coords[2:]), coords[0]) assert_allclose(coords[0], m.get_by_coord(coords)) assert_allclose( m.get_by_coord((skydir_cel,) + tuple(coords[2:])), m.get_by_coord((skydir_gal,) + tuple(coords[2:])), ) # Test with MapCoord m = WcsNDMap(geom) coords = m.geom.get_coord() coords_dict = dict(lon=coords[0], lat=coords[1]) if axes: for i, ax in enumerate(axes): coords_dict[ax.name] = coords[i + 2] map_coords = MapCoord.create(coords_dict, coordsys=coordsys) m.set_by_coord(map_coords, coords[0]) assert_allclose(coords[0], m.get_by_coord(map_coords)) def test_set_get_by_coord_quantities(): ax = MapAxis(np.logspace(0.0, 3.0, 3), interp="log", name="energy", unit="TeV") geom = WcsGeom.create(binsz=0.1, npix=(3, 4), axes=[ax]) m = WcsNDMap(geom) coords_dict = {"lon": 0, "lat": 0, "energy": 1000 * u.GeV} m.set_by_coord(coords_dict, 42) coords_dict["energy"] = 1 * u.TeV assert_allclose(42, m.get_by_coord(coords_dict)) @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_fill_by_coord(npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, skydir=skydir, proj=proj, coordsys=coordsys, axes=axes ) m = WcsNDMap(geom) coords = m.geom.get_coord() fill_coords = tuple([np.concatenate((t, t)) for t in coords]) fill_vals = fill_coords[1] m.fill_by_coord(fill_coords, fill_vals) assert_allclose(m.get_by_coord(coords), 2.0 * coords[1]) # Test with SkyCoords m = WcsNDMap(geom) coords = m.geom.get_coord() skydir = SkyCoord( coords[0], coords[1], unit="deg", frame=coordsys_to_frame(geom.coordsys) ) skydir_cel = skydir.transform_to("icrs") skydir_gal = skydir.transform_to("galactic") fill_coords_cel = (skydir_cel,) + tuple(coords[2:]) fill_coords_gal = (skydir_gal,) + tuple(coords[2:]) m.fill_by_coord(fill_coords_cel, coords[1]) m.fill_by_coord(fill_coords_gal, coords[1]) assert_allclose(m.get_by_coord(coords), 2.0 * coords[1]) @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_coadd(npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, skydir=skydir, proj=proj, coordsys=coordsys, axes=axes ) m0 = WcsNDMap(geom) m1 = WcsNDMap(geom.upsample(2)) coords = m0.geom.get_coord() m1.fill_by_coord( tuple([np.concatenate((t, t)) for t in coords]), np.concatenate((coords[1], coords[1])), ) m0.coadd(m1) assert_allclose(np.nansum(m0.data), np.nansum(m1.data), rtol=1e-4) @pytest.mark.parametrize( ("npix", "binsz", "coordsys", "proj", "skydir", "axes"), wcs_test_geoms ) def test_wcsndmap_interp_by_coord(npix, binsz, coordsys, proj, skydir, axes): geom = WcsGeom.create( npix=npix, binsz=binsz, skydir=skydir, proj=proj, coordsys=coordsys, axes=axes ) m = WcsNDMap(geom) coords = m.geom.get_coord(flat=True) m.set_by_coord(coords, coords[1]) assert_allclose(coords[1], m.interp_by_coord(coords, interp="nearest")) assert_allclose(coords[1], m.interp_by_coord(coords, interp="linear")) assert_allclose(coords[1], m.interp_by_coord(coords, interp=1)) if geom.is_regular and not geom.is_allsky: assert_allclose(coords[1], m.interp_by_coord(coords, interp="cubic")) def test_interp_by_coord_quantities(): ax = MapAxis(
np.logspace(0.0, 3.0, 3)
numpy.logspace
# first to start the nameserver start: python -m Pyro4.naming import time from threading import Thread import numpy as np import Pyro4 from rlkit.launchers import conf as config Pyro4.config.SERIALIZERS_ACCEPTED = set(["pickle", "json", "marshal", "serpent"]) Pyro4.config.SERIALIZER = "pickle" device_state = None @Pyro4.expose class DeviceState(object): state = None def get_state(self): return device_state def set_state(self, state): global device_state device_state = state class SpaceMouseExpert: def __init__( self, xyz_dims=3, xyz_remap=[0, 1, 2], xyz_scale=[1, 1, 1], xyz_abs_threshold=0.0, rot_dims=3, rot_remap=[0, 1, 2], rot_scale=[1, 1, 1], rot_abs_threshold=0.0, rot_discrete=False, min_clip=-np.inf, max_clip=np.inf, ): """TODO: fill in other params""" self.xyz_dims = xyz_dims self.xyz_remap = np.array(xyz_remap) self.xyz_scale = np.array(xyz_scale) self.xyz_abs_threshold = xyz_abs_threshold self.rot_dims = rot_dims self.rot_remap = rot_remap self.rot_scale = rot_scale self.rot_abs_threshold = rot_abs_threshold self.rot_discrete = rot_discrete self.min_clip = min_clip self.max_clip = max_clip self.thread = Thread(target=start_server) self.thread.daemon = True self.thread.start() self.device_state = DeviceState() def get_action(self, obs): """Must return (action, valid, reset, accept)""" state = self.device_state.get_state() # time.sleep(0.1) if state is None: return None, False, False, False dpos, rotation, roll, pitch, yaw, accept, reset = ( state["dpos"], state["rotation"], state["roll"], state["pitch"], state["yaw"], state["grasp"], # ["left_click"], state["reset"], # ["right_click"], ) xyz = dpos[self.xyz_remap] xyz[np.abs(xyz) < self.xyz_abs_threshold] = 0.0 xyz = xyz * self.xyz_scale xyz = np.clip(xyz, self.min_clip, self.max_clip) rot = np.array([roll, pitch, yaw]) rot[
np.abs(rot)
numpy.abs
#!/usr/bin/env python # -*- coding: UTF-8 -*- ''' Name: NetPanelAnalysis Function: 计算柔性防护系统中任意四边形钢丝绳网片顶破力、顶破位移、耗能能力 Note: 国际单位制 Version: 1.2.1 Author: <NAME> Date: from 2021/8/31 to 命名方式:以平行于x方向及y方向分别作为后缀 Remark: 尚未解决的问题: (1)考虑矩形之外的网孔形状 (2)考虑柔性边界刚度 ''' import numpy as np from userfunc_NPA import * ###################################################################################################################################################### # 本部分代码用于校准另一种方法 def func_cablenet_xyz(theta, H, w, Rp, Rs, a, m): i_arr = np.arange(1,m+0.1,step=1) xP_arr = a/2*(2*i_arr - m - 1) yP_arr = np.sqrt(Rp**2 - xP_arr**2) zP_arr = H*np.ones_like(xP_arr) theta_1 = np.arcsin(xP_arr[-1]/(w/np.sqrt(2))) theta_2 = np.arccos(xP_arr[-1]/(w/np.sqrt(2))) if theta>=0 and theta<theta_1: m1 = int(m/2 - 1/2*func_round(np.sqrt(2)*w*np.sin(theta)/a)) i1_arr = np.arange(1,m1+0.1,step=1) i2_arr = np.arange(m1+1,m+0.1,step=1) yQ1_arr = w/np.sqrt(2)*np.cos(theta) - abs(xP_arr[0] +w/np.sqrt(2)*np.sin(theta))*np.tan(np.pi/4+theta) + a*(i1_arr-1)*np.tan(np.pi/4+theta) yQ2_arr = w/np.sqrt(2)*np.cos(theta) - abs(xP_arr[m1]+w/np.sqrt(2)*np.sin(theta))*np.tan(np.pi/4-theta) - a*(i2_arr-m1-1)*np.tan(np.pi/4-theta) xQ_arr = xP_arr yQ_arr = np.concatenate((yQ1_arr,yQ2_arr)) zQ_arr = np.zeros_like(xP_arr) elif theta>=theta_1 and theta<=theta_2: xQ_arr = xP_arr yQ_arr = w/np.sqrt(2)*np.cos(theta) - abs(xP_arr[0] +w/np.sqrt(2)*np.sin(theta))*np.tan(np.pi/4-theta) - a*(i_arr-1)*np.tan(np.pi/4-theta) zQ_arr = np.zeros_like(xP_arr) elif theta>theta_2 and theta<np.pi/2: m1 = m/2 - 1/2*func_round(np.sqrt(2)*w*np.cos(theta)/a) i1_arr = np.arange(1,m1+0.1,step=1) i2_arr = np.arange(m1+1,m+0.1,step=1) yQ1_arr = w/np.sqrt(2)*np.sin(theta) - abs(xP_arr[0] -w/np.sqrt(2)*
np.cos(theta)
numpy.cos
# coding=utf-8 # Copyright 2021 The init2winit Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit tests for CurvatureEvaluator class. """ import os import shutil import tempfile from absl.testing import absltest from flax import jax_utils from flax import nn from flax import optim from init2winit import checkpoint from init2winit import hyperparameters from init2winit import trainer from init2winit.dataset_lib import datasets from init2winit.hessian import hessian_eval from init2winit.hessian import run_lanczos from init2winit.init_lib import initializers from init2winit.model_lib import models from jax.flatten_util import ravel_pytree import jax.numpy as jnp import jax.random import numpy as np import tensorflow.compat.v1 as tf # importing this is needed for tfds mocking. import tensorflow_datasets as tfds CONFIG = { 'num_batches': 25, 'rng_key': 0, 'use_training_gen': True, 'update_stats': True, 'num_points': 20, 'num_eval_draws': 6, 'compute_stats': True, 'lower_thresh': -0.1, 'upper_thresh': 0.1, 'name': 'stats', 'eval_hessian': True, 'eval_gradient_covariance': True, 'compute_interps': True, 'num_lanczos_steps': 40, 'hparam_overrides': {}, 'average_hosts': True, 'num_eigens': 3} def _batch_square_loss(flax_module, batch): """Helper function to compute square loss of model on the given batch. The function computes frac{1}{B} sum_{i=1}^B (y - hat{y})^2 where B is the batch-size. Args: flax_module: The flax module representing the model. batch: A dictionary with keys 'inputs' and 'targets'. Returns: total_loss: The loss averaged over the batch. """ batch, rng = batch del rng batch_size = batch['targets'].shape[0] preds = flax_module(batch['inputs']).reshape((batch_size, -1)) batch_targets = batch['targets'].reshape((batch_size, -1)) square_loss = jnp.mean(jnp.sum(jnp.square(preds - batch_targets), axis=1)) total_loss = square_loss return total_loss class LinearModel(nn.Module): """Defines a simple linear model for the purpose of testing. The model assumes the input data has shape [batch_size_per_device, feature_dim]. The model flatten the input before applying a dense layer. """ def apply(self, x, num_outputs): x = jnp.reshape(x, (x.shape[0], -1)) x = nn.Dense(x, features=num_outputs, bias=False) return x def _get_synth_data(num_examples, dim, num_outputs, batch_size): """Generates a fake data class for testing.""" hess = np.ones((1, dim)) hess[0, :CONFIG['num_eigens']] += np.arange(CONFIG['num_eigens']) feature = np.random.normal(size=(num_examples, dim)) / np.sqrt(dim) feature = np.multiply(feature, hess) feature = feature.astype(np.float32) y = np.random.normal(size=(num_examples, num_outputs)) y = y.astype(np.float32) class SynthData(object): def train_iterator_fn(self): for ind in range(0, num_examples, batch_size): batch = {'inputs': feature[ind:ind + batch_size, :], 'targets': y[ind:ind + batch_size, :]} yield batch return SynthData, feature, y def _to_vec(pytree): """Helper function that converts a pytree to a n-by-1 vector.""" vec, _ = ravel_pytree(pytree) n = len(vec) vec = vec.reshape((n, 1)) return vec def _quad_grad(x, y, beta): """Computes the gradient of a linear model with square loss.""" num_obs = x.shape[0] assert len(y.shape) == 2 and y.shape[0] == num_obs exact_grad = - np.dot(x.T, y) + np.dot(x.T, np.dot(x, beta)) exact_grad = 2 * exact_grad / num_obs return exact_grad class TrainerTest(absltest.TestCase): """Tests examining the CurvatureEvaluator class.""" def setUp(self): super(TrainerTest, self).setUp() self.test_dir = tempfile.mkdtemp() rng = jax.random.PRNGKey(0) np.random.seed(0) self.feature_dim = 100 num_outputs = 1 self.batch_size = 32 num_examples = 2048 def create_model(key): module = LinearModel.partial(num_outputs=num_outputs) _, init = module.init_by_shape(key, [((self.batch_size, self.feature_dim), jnp.float32)]) model = nn.Model(module, init) return model model = create_model(rng) # Linear model coefficients self.beta = model.params['Dense_0']['kernel'] self.beta = self.beta.reshape((self.feature_dim, 1)) self.beta = self.beta.astype(np.float32) self.optimizer = optim.GradientDescent(learning_rate=1.0).create(model) self.optimizer = jax_utils.replicate(self.optimizer) data_class, self.feature, self.y = _get_synth_data(num_examples, self.feature_dim, num_outputs, self.batch_size) self.evaluator = hessian_eval.CurvatureEvaluator( self.optimizer.target, CONFIG, data_class(), _batch_square_loss) # Computing the exact full-batch quantities from the linear model num_obs = CONFIG['num_batches'] * self.batch_size xb = self.feature[:num_obs, :] yb = self.y[:num_obs, :] self.fb_grad = _quad_grad(xb, yb, self.beta) self.hessian = 2 * np.dot(xb.T, xb) / num_obs def tearDown(self): shutil.rmtree(self.test_dir) super(TrainerTest, self).tearDown() def test_run_lanczos(self): """Test training for two epochs on MNIST with a small model.""" rng = jax.random.PRNGKey(0) # Set the numpy seed to make the fake data deterministc. mocking.mock_data # ultimately calls numpy.random. np.random.seed(0) model_name = 'fully_connected' loss_name = 'cross_entropy' metrics_name = 'classification_metrics' initializer_name = 'noop' dataset_name = 'mnist' model_cls = models.get_model(model_name) initializer = initializers.get_initializer(initializer_name) dataset_builder = datasets.get_dataset(dataset_name) hparam_overrides = { 'lr_hparams': { 'base_lr': 0.1, 'schedule': 'cosine' }, 'batch_size': 8, 'train_size': 160, 'valid_size': 96, 'test_size': 80, } hps = hyperparameters.build_hparams( model_name, initializer_name, dataset_name, hparam_file=None, hparam_overrides=hparam_overrides) model = model_cls(hps, datasets.get_dataset_meta_data(dataset_name), loss_name, metrics_name) eval_batch_size = 16 num_examples = 256 def as_dataset(self, *args, **kwargs): del args del kwargs # pylint: disable=g-long-lambda,g-complex-comprehension return tf.data.Dataset.from_generator( lambda: ({ 'image': np.ones(shape=(28, 28, 1), dtype=np.uint8), 'label': 9, } for i in range(num_examples)), output_types=self.info.features.dtype, output_shapes=self.info.features.shape, ) # This will override the tfds.load(mnist) call to return 100 fake samples. with tfds.testing.mock_data( as_dataset_fn=as_dataset, num_examples=num_examples): dataset = dataset_builder( shuffle_rng=jax.random.PRNGKey(0), batch_size=hps.batch_size, eval_batch_size=eval_batch_size, hps=hps) num_train_steps = 41 eval_num_batches = 5 eval_every = 10 checkpoint_steps = [40] _ = list( trainer.train( train_dir=self.test_dir, model=model, dataset_builder=lambda *unused_args, **unused_kwargs: dataset, initializer=initializer, num_train_steps=num_train_steps, hps=hps, rng=rng, eval_batch_size=eval_batch_size, eval_num_batches=eval_num_batches, eval_train_num_batches=eval_num_batches, eval_frequency=eval_every, checkpoint_steps=checkpoint_steps)) checkpoint_dir = os.path.join(self.test_dir, 'checkpoints') rng = jax.random.PRNGKey(0) run_lanczos.eval_checkpoints( checkpoint_dir, hps, rng, eval_num_batches, model_cls=model_cls, dataset_builder=lambda *unused_args, **unused_kwargs: dataset, dataset_meta_data=datasets.get_dataset_meta_data(dataset_name), hessian_eval_config=CONFIG, ) # Load the saved file. stats_file = os.path.join(checkpoint_dir, 'stats') latest = checkpoint.load_latest_checkpoint(stats_file) state_list = latest.pytree if latest else [] # Test that the logged steps are correct. saved_steps = [row['step'] for row in state_list] self.assertEqual(saved_steps, checkpoint_steps) def test_grads(self): """Test the computed gradients using a linear model.""" dim = self.feature_dim bs = self.batch_size num_batches = CONFIG['num_batches'] num_draws = CONFIG['num_eval_draws'] grads, _ = self.evaluator.compute_dirs(self.optimizer) # Assert both full and mini batch gradients are accurate for i in range(num_draws + 1): dir_vec = _to_vec(grads[i])[:, 0] self.assertLen(dir_vec, dim) # i == num_draws corresponds to full-batch directions if i == num_draws: start = 0 end = num_batches * bs else: start = i * bs end = (i + 1) * bs xb = self.feature[start:end, :] yb = self.y[start:end, :] exact_grad = _quad_grad(xb, yb, self.beta)[:, 0] add_err = np.max(np.abs(dir_vec - exact_grad)) self.assertLessEqual(add_err, 1e-6) rel_err = np.abs(exact_grad / dir_vec - 1.0) rel_err = np.max(rel_err) self.assertLessEqual(rel_err, 1e-4) def test_statistics(self): """Test the computed statistics using a linear model.""" bs = self.batch_size num_batches = CONFIG['num_batches'] num_draws = CONFIG['num_eval_draws'] step = 0 grads, _ = self.evaluator.compute_dirs(self.optimizer) _, q = np.linalg.eigh(self.hessian) evecs = [q[:, -k] for k in range(CONFIG['num_eigens'], 0, -1)] q = q[:, -CONFIG['num_eigens']:] stats_row = self.evaluator.evaluate_stats(self.optimizer.target, grads, [], evecs, [], step) # Assert that the statistics are exact for i in range(num_draws + 1): if i == num_draws: start = 0 end = num_batches * bs else: start = i * bs end = (i + 1) * bs xb = self.feature[start:end, :] yb = self.y[start:end, :] exact_grad = _quad_grad(xb, yb, self.beta) exact_overlap = np.sum(np.multiply(exact_grad, self.fb_grad)) overlap = stats_row['overlap%d'%(i,)] self.assertAlmostEqual(exact_overlap, overlap, places=5) exact_norm = np.linalg.norm(exact_grad) ** 2 norm = stats_row['norm%d'%(i,)] self.assertAlmostEqual(exact_norm, norm, places=5) exact_quad = np.dot(exact_grad.T, np.dot(self.hessian, exact_grad))[0, 0] quad = stats_row['quad%d'%(i,)] self.assertAlmostEqual(exact_quad, quad, places=5) noise = exact_grad - self.fb_grad exact_quad = np.dot(noise.T, np.dot(self.hessian, noise))[0, 0] quad = stats_row['quad_noise%d'%(i,)] self.assertAlmostEqual(exact_quad, quad, places=5) inner_prods = np.dot(q.T, exact_grad / np.linalg.norm(exact_grad)).flatten() err = np.max(np.abs(inner_prods - stats_row['hTg'][:, i])) self.assertAlmostEqual(err, 0.0, places=4) def test_interpolation(self): """Test the linear interpolations using a linear model.""" bs = self.batch_size num_batches = CONFIG['num_batches'] num_draws = CONFIG['num_eval_draws'] num_obs = num_batches * bs step = 0 num_points = CONFIG['num_points'] grads, _ = self.evaluator.compute_dirs(self.optimizer) _, q = np.linalg.eigh(self.hessian) evecs = [q[:, -k] for k in range(CONFIG['num_eigens'], 0, -1)] q = q[:, -CONFIG['num_eigens']:] interps_row = self.evaluator.compute_interpolations(self.optimizer.target, grads, [], evecs, [], step) # Computing the exact full-batch quantities from the linear model etas = interps_row['step_size'] xb = self.feature[:num_obs, :] yb = self.y[:num_obs, :] for i in range(num_draws + 1): exact_values = np.zeros((num_points,)) dir_vec = _to_vec(grads[i]) # Normalize: dir_vec = dir_vec / np.linalg.norm(dir_vec) for j in range(num_points): new_param = self.beta + etas[j] * dir_vec errs = yb - np.dot(xb, new_param) exact_values[j] = np.dot(errs.T, errs)[0, 0] / num_obs values = interps_row['loss%d'%(i,)] self.assertTrue(np.allclose(exact_values, values, atol=1e-6, rtol=1e-5)) # Checking interpolations for the eigenvectors for i in range(CONFIG['num_eigens']): exact_values = np.zeros((num_points,)) dir_vec = evecs[i].reshape(len(self.beta), 1) for j in range(num_points): new_param = self.beta + etas[j] * dir_vec errs = yb - np.dot(xb, new_param) exact_values[j] =
np.dot(errs.T, errs)
numpy.dot
# This module has been generated automatically from space group information # obtained from the Computational Crystallography Toolbox # """ Space groups This module contains a list of all the 230 space groups that can occur in a crystal. The variable space_groups contains a dictionary that maps space group numbers and space group names to the corresponding space group objects. .. moduleauthor:: <NAME> <<EMAIL>> """ #----------------------------------------------------------------------------- # Copyright (C) 2013 The Mosaic Development Team # # Distributed under the terms of the BSD License. The full license is in # the file LICENSE.txt, distributed as part of this software. #----------------------------------------------------------------------------- import numpy as N class SpaceGroup(object): """ Space group All possible space group objects are created in this module. Other modules should access these objects through the dictionary space_groups rather than create their own space group objects. """ def __init__(self, number, symbol, transformations): """ :param number: the number assigned to the space group by international convention :type number: int :param symbol: the Hermann-Mauguin space-group symbol as used in PDB and mmCIF files :type symbol: str :param transformations: a list of space group transformations, each consisting of a tuple of three integer arrays (rot, tn, td), where rot is the rotation matrix and tn/td are the numerator and denominator of the translation vector. The transformations are defined in fractional coordinates. :type transformations: list """ self.number = number self.symbol = symbol self.transformations = transformations self.transposed_rotations = N.array([N.transpose(t[0]) for t in transformations]) self.phase_factors = N.exp(N.array([(-2j*N.pi*t[1])/t[2] for t in transformations])) def __repr__(self): return "SpaceGroup(%d, %s)" % (self.number, repr(self.symbol)) def __len__(self): """ :return: the number of space group transformations :rtype: int """ return len(self.transformations) def symmetryEquivalentMillerIndices(self, hkl): """ :param hkl: a set of Miller indices :type hkl: Scientific.N.array_type :return: a tuple (miller_indices, phase_factor) of two arrays of length equal to the number of space group transformations. miller_indices contains the Miller indices of each reflection equivalent by symmetry to the reflection hkl (including hkl itself as the first element). phase_factor contains the phase factors that must be applied to the structure factor of reflection hkl to obtain the structure factor of the symmetry equivalent reflection. :rtype: tuple """ hkls = N.dot(self.transposed_rotations, hkl) p = N.multiply.reduce(self.phase_factors**hkl, -1) return hkls, p space_groups = {} transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(1, 'P 1', transformations) space_groups[1] = sg space_groups['P 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(2, 'P -1', transformations) space_groups[2] = sg space_groups['P -1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(3, 'P 1 2 1', transformations) space_groups[3] = sg space_groups['P 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(4, 'P 1 21 1', transformations) space_groups[4] = sg space_groups['P 1 21 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(5, 'C 1 2 1', transformations) space_groups[5] = sg space_groups['C 1 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(6, 'P 1 m 1', transformations) space_groups[6] = sg space_groups['P 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(7, 'P 1 c 1', transformations) space_groups[7] = sg space_groups['P 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(8, 'C 1 m 1', transformations) space_groups[8] = sg space_groups['C 1 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(9, 'C 1 c 1', transformations) space_groups[9] = sg space_groups['C 1 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(10, 'P 1 2/m 1', transformations) space_groups[10] = sg space_groups['P 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(11, 'P 1 21/m 1', transformations) space_groups[11] = sg space_groups['P 1 21/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(12, 'C 1 2/m 1', transformations) space_groups[12] = sg space_groups['C 1 2/m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(13, 'P 1 2/c 1', transformations) space_groups[13] = sg space_groups['P 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(14, 'P 1 21/c 1', transformations) space_groups[14] = sg space_groups['P 1 21/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(15, 'C 1 2/c 1', transformations) space_groups[15] = sg space_groups['C 1 2/c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(16, 'P 2 2 2', transformations) space_groups[16] = sg space_groups['P 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(17, 'P 2 2 21', transformations) space_groups[17] = sg space_groups['P 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(18, 'P 21 21 2', transformations) space_groups[18] = sg space_groups['P 21 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(19, 'P 21 21 21', transformations) space_groups[19] = sg space_groups['P 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(20, 'C 2 2 21', transformations) space_groups[20] = sg space_groups['C 2 2 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(21, 'C 2 2 2', transformations) space_groups[21] = sg space_groups['C 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(22, 'F 2 2 2', transformations) space_groups[22] = sg space_groups['F 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(23, 'I 2 2 2', transformations) space_groups[23] = sg space_groups['I 2 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(24, 'I 21 21 21', transformations) space_groups[24] = sg space_groups['I 21 21 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(25, 'P m m 2', transformations) space_groups[25] = sg space_groups['P m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(26, 'P m c 21', transformations) space_groups[26] = sg space_groups['P m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(27, 'P c c 2', transformations) space_groups[27] = sg space_groups['P c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(28, 'P m a 2', transformations) space_groups[28] = sg space_groups['P m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(29, 'P c a 21', transformations) space_groups[29] = sg space_groups['P c a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(30, 'P n c 2', transformations) space_groups[30] = sg space_groups['P n c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(31, 'P m n 21', transformations) space_groups[31] = sg space_groups['P m n 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(32, 'P b a 2', transformations) space_groups[32] = sg space_groups['P b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(33, 'P n a 21', transformations) space_groups[33] = sg space_groups['P n a 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(34, 'P n n 2', transformations) space_groups[34] = sg space_groups['P n n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(35, 'C m m 2', transformations) space_groups[35] = sg space_groups['C m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(36, 'C m c 21', transformations) space_groups[36] = sg space_groups['C m c 21'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(37, 'C c c 2', transformations) space_groups[37] = sg space_groups['C c c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(38, 'A m m 2', transformations) space_groups[38] = sg space_groups['A m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(39, 'A b m 2', transformations) space_groups[39] = sg space_groups['A b m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(40, 'A m a 2', transformations) space_groups[40] = sg space_groups['A m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(41, 'A b a 2', transformations) space_groups[41] = sg space_groups['A b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(42, 'F m m 2', transformations) space_groups[42] = sg space_groups['F m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(43, 'F d d 2', transformations) space_groups[43] = sg space_groups['F d d 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(44, 'I m m 2', transformations) space_groups[44] = sg space_groups['I m m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(45, 'I b a 2', transformations) space_groups[45] = sg space_groups['I b a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(46, 'I m a 2', transformations) space_groups[46] = sg space_groups['I m a 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(47, 'P m m m', transformations) space_groups[47] = sg space_groups['P m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(48, 'P n n n :2', transformations) space_groups[48] = sg space_groups['P n n n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(49, 'P c c m', transformations) space_groups[49] = sg space_groups['P c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(50, 'P b a n :2', transformations) space_groups[50] = sg space_groups['P b a n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(51, 'P m m a', transformations) space_groups[51] = sg space_groups['P m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(52, 'P n n a', transformations) space_groups[52] = sg space_groups['P n n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(53, 'P m n a', transformations) space_groups[53] = sg space_groups['P m n a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(54, 'P c c a', transformations) space_groups[54] = sg space_groups['P c c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(55, 'P b a m', transformations) space_groups[55] = sg space_groups['P b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(56, 'P c c n', transformations) space_groups[56] = sg space_groups['P c c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(57, 'P b c m', transformations) space_groups[57] = sg space_groups['P b c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(58, 'P n n m', transformations) space_groups[58] = sg space_groups['P n n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(59, 'P m m n :2', transformations) space_groups[59] = sg space_groups['P m m n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(60, 'P b c n', transformations) space_groups[60] = sg space_groups['P b c n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(61, 'P b c a', transformations) space_groups[61] = sg space_groups['P b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(62, 'P n m a', transformations) space_groups[62] = sg space_groups['P n m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(63, 'C m c m', transformations) space_groups[63] = sg space_groups['C m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(64, 'C m c a', transformations) space_groups[64] = sg space_groups['C m c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(65, 'C m m m', transformations) space_groups[65] = sg space_groups['C m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(66, 'C c c m', transformations) space_groups[66] = sg space_groups['C c c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(67, 'C m m a', transformations) space_groups[67] = sg space_groups['C m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(68, 'C c c a :2', transformations) space_groups[68] = sg space_groups['C c c a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(69, 'F m m m', transformations) space_groups[69] = sg space_groups['F m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(70, 'F d d d :2', transformations) space_groups[70] = sg space_groups['F d d d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(71, 'I m m m', transformations) space_groups[71] = sg space_groups['I m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(72, 'I b a m', transformations) space_groups[72] = sg space_groups['I b a m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(73, 'I b c a', transformations) space_groups[73] = sg space_groups['I b c a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(74, 'I m m a', transformations) space_groups[74] = sg space_groups['I m m a'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(75, 'P 4', transformations) space_groups[75] = sg space_groups['P 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(76, 'P 41', transformations) space_groups[76] = sg space_groups['P 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(77, 'P 42', transformations) space_groups[77] = sg space_groups['P 42'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(78, 'P 43', transformations) space_groups[78] = sg space_groups['P 43'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(79, 'I 4', transformations) space_groups[79] = sg space_groups['I 4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(80, 'I 41', transformations) space_groups[80] = sg space_groups['I 41'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(81, 'P -4', transformations) space_groups[81] = sg space_groups['P -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(82, 'I -4', transformations) space_groups[82] = sg space_groups['I -4'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(83, 'P 4/m', transformations) space_groups[83] = sg space_groups['P 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(84, 'P 42/m', transformations) space_groups[84] = sg space_groups['P 42/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(85, 'P 4/n :2', transformations) space_groups[85] = sg space_groups['P 4/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(86, 'P 42/n :2', transformations) space_groups[86] = sg space_groups['P 42/n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(87, 'I 4/m', transformations) space_groups[87] = sg space_groups['I 4/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(88, 'I 41/a :2', transformations) space_groups[88] = sg space_groups['I 41/a :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(89, 'P 4 2 2', transformations) space_groups[89] = sg space_groups['P 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(90, 'P 4 21 2', transformations) space_groups[90] = sg space_groups['P 4 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(91, 'P 41 2 2', transformations) space_groups[91] = sg space_groups['P 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(92, 'P 41 21 2', transformations) space_groups[92] = sg space_groups['P 41 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(93, 'P 42 2 2', transformations) space_groups[93] = sg space_groups['P 42 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(94, 'P 42 21 2', transformations) space_groups[94] = sg space_groups['P 42 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,3]) trans_den = N.array([1,1,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(95, 'P 43 2 2', transformations) space_groups[95] = sg space_groups['P 43 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(96, 'P 43 21 2', transformations) space_groups[96] = sg space_groups['P 43 21 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(97, 'I 4 2 2', transformations) space_groups[97] = sg space_groups['I 4 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(98, 'I 41 2 2', transformations) space_groups[98] = sg space_groups['I 41 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(99, 'P 4 m m', transformations) space_groups[99] = sg space_groups['P 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(100, 'P 4 b m', transformations) space_groups[100] = sg space_groups['P 4 b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(101, 'P 42 c m', transformations) space_groups[101] = sg space_groups['P 42 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(102, 'P 42 n m', transformations) space_groups[102] = sg space_groups['P 42 n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(103, 'P 4 c c', transformations) space_groups[103] = sg space_groups['P 4 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(104, 'P 4 n c', transformations) space_groups[104] = sg space_groups['P 4 n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(105, 'P 42 m c', transformations) space_groups[105] = sg space_groups['P 42 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(106, 'P 42 b c', transformations) space_groups[106] = sg space_groups['P 42 b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(107, 'I 4 m m', transformations) space_groups[107] = sg space_groups['I 4 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(108, 'I 4 c m', transformations) space_groups[108] = sg space_groups['I 4 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(109, 'I 41 m d', transformations) space_groups[109] = sg space_groups['I 41 m d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(110, 'I 41 c d', transformations) space_groups[110] = sg space_groups['I 41 c d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(111, 'P -4 2 m', transformations) space_groups[111] = sg space_groups['P -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(112, 'P -4 2 c', transformations) space_groups[112] = sg space_groups['P -4 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(113, 'P -4 21 m', transformations) space_groups[113] = sg space_groups['P -4 21 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(114, 'P -4 21 c', transformations) space_groups[114] = sg space_groups['P -4 21 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(115, 'P -4 m 2', transformations) space_groups[115] = sg space_groups['P -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(116, 'P -4 c 2', transformations) space_groups[116] = sg space_groups['P -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(117, 'P -4 b 2', transformations) space_groups[117] = sg space_groups['P -4 b 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(118, 'P -4 n 2', transformations) space_groups[118] = sg space_groups['P -4 n 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(119, 'I -4 m 2', transformations) space_groups[119] = sg space_groups['I -4 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(120, 'I -4 c 2', transformations) space_groups[120] = sg space_groups['I -4 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(121, 'I -4 2 m', transformations) space_groups[121] = sg space_groups['I -4 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([2,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([1,2,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(122, 'I -4 2 d', transformations) space_groups[122] = sg space_groups['I -4 2 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(123, 'P 4/m m m', transformations) space_groups[123] = sg space_groups['P 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(124, 'P 4/m c c', transformations) space_groups[124] = sg space_groups['P 4/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(125, 'P 4/n b m :2', transformations) space_groups[125] = sg space_groups['P 4/n b m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(126, 'P 4/n n c :2', transformations) space_groups[126] = sg space_groups['P 4/n n c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(127, 'P 4/m b m', transformations) space_groups[127] = sg space_groups['P 4/m b m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(128, 'P 4/m n c', transformations) space_groups[128] = sg space_groups['P 4/m n c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(129, 'P 4/n m m :2', transformations) space_groups[129] = sg space_groups['P 4/n m m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(130, 'P 4/n c c :2', transformations) space_groups[130] = sg space_groups['P 4/n c c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(131, 'P 42/m m c', transformations) space_groups[131] = sg space_groups['P 42/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(132, 'P 42/m c m', transformations) space_groups[132] = sg space_groups['P 42/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(133, 'P 42/n b c :2', transformations) space_groups[133] = sg space_groups['P 42/n b c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(134, 'P 42/n n m :2', transformations) space_groups[134] = sg space_groups['P 42/n n m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(135, 'P 42/m b c', transformations) space_groups[135] = sg space_groups['P 42/m b c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(136, 'P 42/m n m', transformations) space_groups[136] = sg space_groups['P 42/m n m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(137, 'P 42/n m c :2', transformations) space_groups[137] = sg space_groups['P 42/n m c :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(138, 'P 42/n c m :2', transformations) space_groups[138] = sg space_groups['P 42/n c m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(139, 'I 4/m m m', transformations) space_groups[139] = sg space_groups['I 4/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(140, 'I 4/m c m', transformations) space_groups[140] = sg space_groups['I 4/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(141, 'I 41/a m d :2', transformations) space_groups[141] = sg space_groups['I 41/a m d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,-3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(142, 'I 41/a c d :2', transformations) space_groups[142] = sg space_groups['I 41/a c d :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(143, 'P 3', transformations) space_groups[143] = sg space_groups['P 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(144, 'P 31', transformations) space_groups[144] = sg space_groups['P 31'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(145, 'P 32', transformations) space_groups[145] = sg space_groups['P 32'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(146, 'R 3 :H', transformations) space_groups[146] = sg space_groups['R 3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(147, 'P -3', transformations) space_groups[147] = sg space_groups['P -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(148, 'R -3 :H', transformations) space_groups[148] = sg space_groups['R -3 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(149, 'P 3 1 2', transformations) space_groups[149] = sg space_groups['P 3 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(150, 'P 3 2 1', transformations) space_groups[150] = sg space_groups['P 3 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(151, 'P 31 1 2', transformations) space_groups[151] = sg space_groups['P 31 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(152, 'P 31 2 1', transformations) space_groups[152] = sg space_groups['P 31 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(153, 'P 32 1 2', transformations) space_groups[153] = sg space_groups['P 32 1 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(154, 'P 32 2 1', transformations) space_groups[154] = sg space_groups['P 32 2 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(155, 'R 3 2 :H', transformations) space_groups[155] = sg space_groups['R 3 2 :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(156, 'P 3 m 1', transformations) space_groups[156] = sg space_groups['P 3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(157, 'P 3 1 m', transformations) space_groups[157] = sg space_groups['P 3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(158, 'P 3 c 1', transformations) space_groups[158] = sg space_groups['P 3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(159, 'P 3 1 c', transformations) space_groups[159] = sg space_groups['P 3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(160, 'R 3 m :H', transformations) space_groups[160] = sg space_groups['R 3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(161, 'R 3 c :H', transformations) space_groups[161] = sg space_groups['R 3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(162, 'P -3 1 m', transformations) space_groups[162] = sg space_groups['P -3 1 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(163, 'P -3 1 c', transformations) space_groups[163] = sg space_groups['P -3 1 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(164, 'P -3 m 1', transformations) space_groups[164] = sg space_groups['P -3 m 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(165, 'P -3 c 1', transformations) space_groups[165] = sg space_groups['P -3 c 1'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(166, 'R -3 m :H', transformations) space_groups[166] = sg space_groups['R -3 m :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,7]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,2,2]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,2,1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,5]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([2,1,1]) trans_den = N.array([3,3,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([2,1,-1]) trans_den = N.array([3,3,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(167, 'R -3 c :H', transformations) space_groups[167] = sg space_groups['R -3 c :H'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(168, 'P 6', transformations) space_groups[168] = sg space_groups['P 6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(169, 'P 61', transformations) space_groups[169] = sg space_groups['P 61'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(170, 'P 65', transformations) space_groups[170] = sg space_groups['P 65'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(171, 'P 62', transformations) space_groups[171] = sg space_groups['P 62'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(172, 'P 64', transformations) space_groups[172] = sg space_groups['P 64'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(173, 'P 63', transformations) space_groups[173] = sg space_groups['P 63'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(174, 'P -6', transformations) space_groups[174] = sg space_groups['P -6'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(175, 'P 6/m', transformations) space_groups[175] = sg space_groups['P 6/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(176, 'P 63/m', transformations) space_groups[176] = sg space_groups['P 63/m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(177, 'P 6 2 2', transformations) space_groups[177] = sg space_groups['P 6 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(178, 'P 61 2 2', transformations) space_groups[178] = sg space_groups['P 61 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,5]) trans_den = N.array([1,1,6]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(179, 'P 65 2 2', transformations) space_groups[179] = sg space_groups['P 65 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(180, 'P 62 2 2', transformations) space_groups[180] = sg space_groups['P 62 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,2]) trans_den = N.array([1,1,3]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(181, 'P 64 2 2', transformations) space_groups[181] = sg space_groups['P 64 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(182, 'P 63 2 2', transformations) space_groups[182] = sg space_groups['P 63 2 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(183, 'P 6 m m', transformations) space_groups[183] = sg space_groups['P 6 m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(184, 'P 6 c c', transformations) space_groups[184] = sg space_groups['P 6 c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(185, 'P 63 c m', transformations) space_groups[185] = sg space_groups['P 63 c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(186, 'P 63 m c', transformations) space_groups[186] = sg space_groups['P 63 m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(187, 'P -6 m 2', transformations) space_groups[187] = sg space_groups['P -6 m 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(188, 'P -6 c 2', transformations) space_groups[188] = sg space_groups['P -6 c 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(189, 'P -6 2 m', transformations) space_groups[189] = sg space_groups['P -6 2 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(190, 'P -6 2 c', transformations) space_groups[190] = sg space_groups['P -6 2 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(191, 'P 6/m m m', transformations) space_groups[191] = sg space_groups['P 6/m m m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(192, 'P 6/m c c', transformations) space_groups[192] = sg space_groups['P 6/m c c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(193, 'P 63/m c m', transformations) space_groups[193] = sg space_groups['P 63/m c m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,1,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,1,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,-1,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,-1,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(194, 'P 63/m m c', transformations) space_groups[194] = sg space_groups['P 63/m m c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(195, 'P 2 3', transformations) space_groups[195] = sg space_groups['P 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(196, 'F 2 3', transformations) space_groups[196] = sg space_groups['F 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(197, 'I 2 3', transformations) space_groups[197] = sg space_groups['I 2 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(198, 'P 21 3', transformations) space_groups[198] = sg space_groups['P 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(199, 'I 21 3', transformations) space_groups[199] = sg space_groups['I 21 3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(200, 'P m -3', transformations) space_groups[200] = sg space_groups['P m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(201, 'P n -3 :2', transformations) space_groups[201] = sg space_groups['P n -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(202, 'F m -3', transformations) space_groups[202] = sg space_groups['F m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(203, 'F d -3 :2', transformations) space_groups[203] = sg space_groups['F d -3 :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(204, 'I m -3', transformations) space_groups[204] = sg space_groups['I m -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(205, 'P a -3', transformations) space_groups[205] = sg space_groups['P a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(206, 'I a -3', transformations) space_groups[206] = sg space_groups['I a -3'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(207, 'P 4 3 2', transformations) space_groups[207] = sg space_groups['P 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(208, 'P 42 3 2', transformations) space_groups[208] = sg space_groups['P 42 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(209, 'F 4 3 2', transformations) space_groups[209] = sg space_groups['F 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(210, 'F 41 3 2', transformations) space_groups[210] = sg space_groups['F 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(211, 'I 4 3 2', transformations) space_groups[211] = sg space_groups['I 4 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(212, 'P 43 3 2', transformations) space_groups[212] = sg space_groups['P 43 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(213, 'P 41 3 2', transformations) space_groups[213] = sg space_groups['P 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(214, 'I 41 3 2', transformations) space_groups[214] = sg space_groups['I 41 3 2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(215, 'P -4 3 m', transformations) space_groups[215] = sg space_groups['P -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(216, 'F -4 3 m', transformations) space_groups[216] = sg space_groups['F -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(217, 'I -4 3 m', transformations) space_groups[217] = sg space_groups['I -4 3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(218, 'P -4 3 n', transformations) space_groups[218] = sg space_groups['P -4 3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(219, 'F -4 3 c', transformations) space_groups[219] = sg space_groups['F -4 3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,5,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,5]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,5,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,3]) trans_den = N.array([4,4,4]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(220, 'I -4 3 d', transformations) space_groups[220] = sg space_groups['I -4 3 d'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(221, 'P m -3 m', transformations) space_groups[221] = sg space_groups['P m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,-1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(222, 'P n -3 n :2', transformations) space_groups[222] = sg space_groups['P n -3 n :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,-1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(223, 'P m -3 n', transformations) space_groups[223] = sg space_groups['P m -3 n'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(224, 'P n -3 m :2', transformations) space_groups[224] = sg space_groups['P n -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(225, 'F m -3 m', transformations) space_groups[225] = sg space_groups['F m -3 m'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,0]) trans_den = N.array([1,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(226, 'F m -3 c', transformations) space_groups[226] = sg space_groups['F m -3 c'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([2,2,1]) transformations.append((rot, trans_num, trans_den)) sg = SpaceGroup(227, 'F d -3 m :2', transformations) space_groups[227] = sg space_groups['F d -3 m :2'] = sg transformations = [] rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,0,0]) trans_den = N.array([1,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,-1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-3,0]) trans_den = N.array([4,4,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,-3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,-1,-3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,0,0]) trans_den = N.array([2,1,1]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,3,3]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,5,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,3,5]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([0,1,1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,-1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,-1]) trans_den = N.array([4,2,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([0,1,-1]) trans_den = N.array([1,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([-1,1,1]) trans_den = N.array([2,2,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,-1,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,-1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,0,0,1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,-1,0,0,0,1,0]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,1,0,0,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,0,0,-1,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,1,3]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,0,3]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,1]) rot.shape = (3, 3) trans_num = N.array([3,1,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([3,3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,-1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([3,0,5]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,1,5]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([1,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,-1,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,0,1]) trans_den = N.array([2,1,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,1,0,-1,0]) rot.shape = (3, 3) trans_num = N.array([1,0,-1]) trans_den = N.array([4,1,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([-1,0,0,0,0,-1,0,1,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,-1,0,-1,0,1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-3,1]) trans_den = N.array([4,4,2]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,0,1,0,-1,0,-1,0,0]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot = N.array([0,1,0,-1,0,0,0,0,-1]) rot.shape = (3, 3) trans_num = N.array([1,-1,-1]) trans_den = N.array([2,4,4]) transformations.append((rot, trans_num, trans_den)) rot =
N.array([0,-1,0,1,0,0,0,0,-1])
numpy.array
import numpy as np class Agent(object): def __init__(self, k, policy, init_exploration, prior=0, gamma=None): self.policy = policy self.k = k self.prior = prior self.gamma = gamma self._value_estimates = prior * np.ones(self.k) # Estimated Mean reward self.action_attempts = np.zeros(self.k) self.t = 0 self.last_action = None self.init_exploration = init_exploration def reset(self): """ Resets the agent's memory to an initial state. """ self._value_estimates[:] = self.prior * np.ones(self.k) self.action_attempts[:] = np.zeros(self.k) self.last_action = None self.t = 0 def choose(self): if self.t < self.init_exploration: action = np.random.randint(self.k) else: action = self.policy.choose(self) self.last_action = action return action def observe(self, reward): # Updating value_estimates ! (calculating mean rewards) self.action_attempts[self.last_action] += 1 if self.gamma is None: g = 1 / self.action_attempts[self.last_action] else: g = self.gamma q = self._value_estimates[self.last_action] self._value_estimates[self.last_action] += g * (reward - q) self.t += 1 @property def value_estimates(self): return self._value_estimates class ContextualAgent(Agent): """ ( linUCB disjoint model) """ def __init__(self, k, d, policy, init_exploration, prior=0, gamma=None): super().__init__(k, policy, init_exploration, prior, gamma) self.d = d self.memory = {action: {'A': np.identity(self.d), 'b': np.zeros((self.d, 1))} for action in range(self.k)} self.states = np.array([]) self.reset() def reset(self): self._value_estimates[:] = self.prior * np.ones(self.k) self.action_attempts[:] = 0 self.last_action = None self.t = 0 self.memory = {action: {'A':
np.identity(self.d)
numpy.identity
# ============================================================================= # Final Code for N Body # ============================================================================= #Importing libraries import numpy as np import matplotlib.pyplot as plt from scipy.integrate import odeint from scipy.integrate import solve_ivp from matplotlib import animation from mpl_toolkits.mplot3d import Axes3D from scipy.integrate import LSODA #not directly used, but can be used to compare how fast LSODA solves compared to RK methods #%% G = 6.67430e-11 #Gravitational constant ## Sun inital conditions ## x_sun_inital=0 #Sun x coord y_sun_inital=0 #Sun y coord z_sun_inital=0 #Sun z coord vx_sun_inital=0 #Sun velocity in x-direction vy_sun_inital=0 #Sun velocity in y-direction vz_sun_inital=0 #Sun velocity in z-direction M_s=1.989e30 #Sun mass in kg ## Earth inital conditions ## x_earth_inital= 1.496*10**11 #Earth x coord - 1AU initally y_earth_inital=0 #Earth y coord z_earth_inital=0 #Earth z coord vx_earth_inital=0 #Earth velocity in x-direction vy_earth_inital=np.sqrt((G*M_s)/x_earth_inital) #Earth velocity in y-direction vz_earth_inital=0 #Earth velocity in z-direction M_e=5.972*10**24 #Earth mass in kg ## Time the System evolves over ## year = 3.154*10**7 #Year in seconds ti=0 #Inital time tf=5*year #Solves up to 5 years t=np.arange(ti,tf,10) #Defining 2D system of Earth and Sun def solving_system_earth(System_Earth,t): #Defining a 2D system of all variables to solve at any time t x_earth,y_earth,x_sun,y_sun,vx_earth,vy_earth,vx_sun,vy_sun = System_Earth r_se=np.sqrt((x_sun-x_earth)**2 +(y_sun-y_earth)**2) #Radius vector Sun - Earth return [vx_earth, vy_earth, vx_sun, vy_sun, (G*M_s/r_se**3) *(x_sun-x_earth), (G*M_s/r_se**3) *(y_sun-y_earth), (G*M_e/r_se**3) * (x_earth-x_sun), (G*M_e/r_se**3) *(y_earth-y_sun)] #Solving 2D System of Earth and Sun Solution_2D_Earth = odeint(solving_system_earth, y0=[x_earth_inital, y_earth_inital, x_sun_inital, y_sun_inital, vx_earth_inital,vy_earth_inital, vx_sun_inital,vy_sun_inital], t=t) Solution_2D_Earth = Solution_2D_Earth/1.496e11 #Converting solution into AU t1=Solution_2D_Earth.T[0] #time #%% # Plotting distance from sun against time (test plot) fig1=plt.figure(1,figsize=(10,10)) axsec=plt.gca() #gets current axis axsec.plot((Solution_2D_Earth.T[0])) axsec.tick_params(labelsize=15) #Increasing tick size plt.xlabel("Time (Seconds)",fontsize=18) plt.ylabel("Distance from the Sun in AU",fontsize=18) plt.title("$x$⨁ against time over 5 years",fontsize=24,x=0.5,y=1.1) #Adding year axis axyears=axsec.twiny() axyears.set_xticks([0,1,2,3,4,5]) axyears.set_xlabel("Time (Years)",fontsize=18) axyears.tick_params(labelsize=15) #making ticks readable size plt.show() #%% # Plotting full orbit view (test plot 2) fig2=plt.figure(2,figsize=(12,12)) x_earth_sol= Solution_2D_Earth[:,0] #x coord of Earth y_earth_sol= Solution_2D_Earth[:,1] #y coord of Earth x_sun_sol= Solution_2D_Earth[:,2] #x coord of the Sun y_sun_sol= Solution_2D_Earth[:,3] #y coord of the Sun plt.plot(x_earth_sol,y_earth_sol,'b') #Plotting Earth's orbit plt.plot(x_sun_sol,y_sun_sol,'orange',linewidth=5) #Plotting the Sun's orbit plt.title("Earth's Orbit around the Sun",fontsize=24) plt.xlabel('$x$' r'$\bigoplus$',fontsize=18) plt.ylabel('$y$' r'$\bigoplus$',fontsize=18) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.show() #%% ## 3D Plotting of Earth around the Sun fig3= plt.figure(3,figsize=(10,10)) ax3=plt.axes(projection='3d') #3d axis setup plt.plot(x_earth_sol,y_earth_sol,0,linewidth=5) #Plotting Earth Sun orbit with no z components. plt.plot(x_sun_sol,y_sun_sol,0,linewidth=5) plt.title("Earth Orbit around Sun 3D Axis",fontsize=20) plt.xlabel('$x$' r'$\bigoplus$',fontsize=16) plt.ylabel('$y$' r'$\bigoplus$',fontsize=16) ax3.set_zlabel('$z$' r'$\bigoplus$',fontsize=16) ax3.locator_params(nbins=6) #6 ticks on each axis for no overlapping plt.xticks(fontsize=14) plt.yticks(fontsize=14) ax3.zaxis.set_tick_params(labelsize=14) ax3.set_aspect('auto') #auto selects best aspect ratio to display plt.show() #%% ## Attempting with Mars ## ## Mars Inital Conditions ## x_mars_inital= 1.5*1.496e11 #x coord of Mars in AU y_mars_inital=0 #y coord of Mars z_mars_inital=0 #Z coord of Mars vx_mars_inital= 0 #Velocity of Mars in x component vy_mars_inital= np.sqrt((G*M_s)/x_mars_inital) #Velocity of Mars in y component vz_mars_inital=0 #Velocity of Mars in z component M_m= 6.39e23 #Mar's mass in kg ##Defining Mars Sun Problem ## def evolving_system_mars(System_Mars,t): #Defining a 2D system of all variables to solve at any time tm x_mars,y_mars,x_sun,y_sun,vx_mars,vy_mars,vx_sun,vy_sun = System_Mars r_ms= np.sqrt((x_sun-x_mars)**2 +(y_sun-y_mars)**2) return [vx_mars, vy_mars, vx_sun, vy_sun, (G*M_m/r_ms**3)*(x_sun-x_mars), (G*M_m/r_ms**3) *(y_sun-y_mars), (G*M_m/r_ms**3) * (x_mars-x_sun), (G*M_m/r_ms**3) *(y_mars-y_sun)] #Solving Mars Sun problem Solution_Mars = odeint(evolving_system_mars, y0=[x_mars_inital, y_mars_inital , x_sun_inital,y_sun_inital, vx_mars_inital,vy_mars_inital, vx_sun_inital,vy_sun_inital,], t=t) Solution_Mars = Solution_Mars/1.496e11 #Converting solution into AU x_mars_sol= Solution_Mars[:,0] #x coord of Mars y_mars_sol= Solution_Mars[:,1] #y coord of Mars #Solving Mars 2D system def evolving_system_mars(System_Mars,t): #Defining a 2D system of all variables to solve at any time t x_mars,y_mars,x_sun,y_sun,vx_mars,vy_mars,vx_sun,vy_sun = System_Mars rm=np.sqrt((x_sun-x_mars)**2 +(y_sun-y_mars)**2) #Radius vector return [vx_mars, vy_mars, vx_sun, vy_sun, (G*M_s/rm**3) *(x_sun-x_mars), (G*M_s/rm**3) *(y_sun-y_mars), (G*M_m/rm**3) * (x_mars-x_sun), (G*M_m/rm**3) *(y_mars-y_sun)] Solution_2D_Mars = odeint(evolving_system_mars, y0=[x_mars_inital, y_mars_inital , x_sun_inital,y_sun_inital, vx_mars_inital,vy_mars_inital, vx_sun_inital,vy_sun_inital], t=t) Solution_2D_Mars = Solution_2D_Mars/1.496e11 #Converting solution into AU x_mars_sol= Solution_2D_Mars[:,0] #x coord of Earth y_mars_sol= Solution_2D_Mars[:,1] #y coord of Earth x_sun_sol= Solution_2D_Mars[:,2] #x coord of the Sun y_sun_sol= Solution_2D_Mars[:,3] #y coord of the Sun ## 3D Plotting of Earth, Mars, Sun orbit. fig4= plt.figure(4,figsize=(10,10)) ax4=plt.axes(projection='3d') plt.plot(x_mars_sol,y_mars_sol,0,label="Mars Orbit",color='Red') #plots x,y coords of mars plt.title("Earth and Mars Orbit 3D",fontsize=20) plt.plot(x_earth_sol,y_earth_sol,color='blue',label="Earth Orbit") plt.plot(x_sun_sol,y_sun_sol,0,label="Sun Orbit",color='orange',linewidth=4) #Plotting Mars Sun orbit with no z components. plt.xlabel('$x$' r'$\bigoplus$',fontsize=16) plt.ylabel('$y$' r'$\bigoplus$',fontsize=16) ax4.set_zlabel('$z$' r'$\bigoplus$',fontsize=16) plt.show() #%% # ============================================================================= # 2 Heavy Stars and 1 Smaller Mass # ============================================================================= #Setting inital conditions #Inital masses M_e=5.972e24 M_Star1=1e50 M_Star2=1e35 M_Planet=1e20 G=6.6743e-11 #Inital positions x_star1_inital = 1e10 y_star1_inital = 0 z_star1_inital = 0 x_star2_inital=2e10 y_star2_inital = 1e10 z_star2_inital =0 x_planet_inital =-2e10 y_planet_inital =-2e10 z_planet_inital = 0 #Inital radius vectors r_s1_s2= np.sqrt((x_star2_inital-x_star1_inital)**2) r_s1_p3= np.sqrt((x_planet_inital-x_star2_inital)**2) r_s2_p3 = np.sqrt((x_planet_inital-x_star1_inital)**2) #Inital velocites vx_star1_inital =0 vy_star1_inital = np.sqrt(G*M_Star2/np.abs(r_s1_s2))+np.sqrt(G*M_Planet/np.abs(r_s1_p3)) vz_star1_inital = 0 vx_star2_inital = 0 vy_star2_inital = np.sqrt(G*M_Star1/np.abs(r_s1_s2))+np.sqrt(G*M_Planet/np.abs(r_s2_p3)) vz_star2_inital=0 vx_planet_inital = 0 vy_planet_inital = np.sqrt(G*M_Star1/np.abs(r_s1_p3))+np.sqrt(G*M_Star2/np.abs(r_s2_p3)) vz_planet_inital = 0 #Defining three body systems with 2 stars, 1 planet def three_body_2stars(t, System_2stars): x_star1,y_star1,z_star1,x_star2,y_star2,z_star2,x_planet,y_planet,z_planet,vx_star1,vy_star1,vz_star1,vx_star2, vy_star2,vz_star2,vx_planet,vy_planet,vz_planet = System_2stars r_s1_s2 = np.sqrt((x_star2-x_star1)**2 + (y_star2-y_star1)**2 + (z_star2-z_star1)**2) r_s1_p3 = np.sqrt((x_planet-x_star1)**2 + (y_planet-y_star1)**2 +(z_planet-z_star1)**2) r_s2_p3 = np.sqrt((x_star2-x_planet)**2 + (y_star2-y_planet)**2 + (z_star2-z_planet)**2) return [ vx_star1, vy_star1, vz_star1, vx_star2, vy_star2, vz_star2, vx_planet, vy_planet, vz_planet, G*M_Star2/r_s1_s2**3 * (x_star2-x_star1) + M_Planet/r_s1_p3**3 * (x_planet-x_star1), #Star1 G*M_Star2/r_s1_s2**3 * (y_star2-y_star1) + M_Planet/r_s1_p3**3 * (y_planet-y_star1), G*M_Star2/r_s1_s2**3 * (z_star2-z_star1)+ M_Planet/r_s1_p3**3 *(z_planet-z_star1), G*M_Star1/r_s1_s2**3 * (x_star1-x_star2) + M_Planet/r_s2_p3**3 * (x_planet-x_star2), #Star2 G*M_Star1/r_s1_s2**3 * (y_star1-y_star2) + M_Planet/r_s2_p3**3 * (y_planet-y_star2), G*M_Star1/r_s1_s2**3 * (z_star1-z_star2) +M_Planet/r_s2_p3**3 * (z_planet-z_star2), G*M_Star1/r_s1_p3**3 * (x_star1-x_planet) + M_Star2/r_s2_p3**3 * (x_star2-x_planet), #Planet G*M_Star1/r_s1_p3**3 * (y_star1-y_planet) + M_Star2/r_s2_p3**3 * (y_star2-y_planet), G*M_Star1/r_s1_p3**3 *(z_star1-z_planet) + M_Star2/r_s2_p3**3 *(z_star2-z_planet)] #time system runs over t_min=0 t_max=1000 t = np.linspace(t_min, t_max, 100000) #Solving three body system of 2 stars, 1 planet Solution_3_Body_2_Stars= solve_ivp(three_body_2stars,y0=[x_star1_inital, y_star1_inital, z_star1_inital, x_star2_inital, y_star2_inital , z_star2_inital, x_planet_inital, y_planet_inital, z_planet_inital, vx_star1_inital, vy_star1_inital,vz_star1_inital, vx_star2_inital, vy_star2_inital,vz_star2_inital, vx_planet_inital, vy_planet_inital,vz_planet_inital], method='RK23', t_span=(0,1000)) #coordinates of each object over time x_star1_sol = Solution_3_Body_2_Stars.y[0] y_star1_sol = Solution_3_Body_2_Stars.y[1] z_star1_sol = Solution_3_Body_2_Stars.y[2] x_star2_sol = Solution_3_Body_2_Stars.y[3] y_star2_sol = Solution_3_Body_2_Stars.y[4] z_star2_sol = Solution_3_Body_2_Stars.y[5] x_planet_sol = Solution_3_Body_2_Stars.y[6] y_planet_sol = Solution_3_Body_2_Stars.y[7] z_planet_sol = Solution_3_Body_2_Stars.y[8] t = Solution_3_Body_2_Stars.t #Animates the three body system by plotting positions to line objects def animate_2stars_1planet(i): line1.set_data([x_star1_sol[i]], [y_star1_sol[i]]) line2.set_data([x_star2_sol[i],y_star2_sol[i]]) line3.set_data([x_planet_sol[i],y_planet_sol[i]]) fig5=plt.figure(figsize=(12,12)) ax5=plt.axes() ax5.set_facecolor('black') #background black for space theme plt.grid() #adds grid to plot background #Plotting positions line1, = plt.plot([], [],'r*', lw=3, markersize=20,label="Star1") line2, =plt.plot([],[],'b*',lw=3,label="Star2",markersize=20) line3, = plt.plot([],[],'go',label="Planet",markersize=10) #Axis labelling plt.xlabel("$x$(metres)",fontsize=18) plt.ylabel("$y$(metres)",fontsize=18) plt.xlim(-10e10,10e10) plt.ylim(-10e10,10e10) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.legend() plt.title("2 Stars and a Planet Orbit",fontsize=22) #blit false for three body systems ani1 = animation.FuncAnimation(fig5, animate_2stars_1planet, frames=1000, interval=1,blit=False) plt.show() #%% #3D plotting coordinates over time for 2 star, one planet fig9=plt.figure(figsize=(22,14)) plt.axis('off') plt.title("Coordinates Plotted in 3D over Time",fontsize=26) #Setting up 3 subplots wit 3D axes ax9=fig9.add_subplot(1,3,1,projection='3d') ax10=fig9.add_subplot(1,3,2,projection='3d') ax11=fig9.add_subplot(1,3,3,projection='3d') plt.subplots_adjust(hspace=0,wspace=0.3,left=0,right=None) #Plotting star 1 coords #labelpad used so axes ticks and axes labels do not overlap ax9.plot(x_star1_sol,y_star1_sol,z_star1_sol,color='r') ax9.set_xlabel(" X Coordinate (10^10 metres)",fontsize=18,labelpad=30) ax9.set_ylabel(" Y Coordinate (10^10 metres)",fontsize=18,labelpad=30) ax9.set_zlabel("Z Coordinate (metres)",fontsize=18,labelpad=30) ax9.set_title("Coordinates of Star 1",fontsize=22) ax9.tick_params(axis='both',labelsize=16,pad=10) #Plotting star 2 coords ax10.plot(x_star2_sol,y_star2_sol,z_star2_sol,color='b') ax10.set_xlabel(" X Coordinate (10^13 metres)",fontsize=18,labelpad=30) ax10.set_ylabel(" Y Coordinate (10^13 metres)",fontsize=18,labelpad=30) ax10.set_zlabel("Z Coordinate (metres)",fontsize=18,labelpad=30) ax10.set_title("Coordinates of Star 2",fontsize=22) ax10.tick_params(axis='both',labelsize=14,pad=10) #Plotting planet coords ax11.plot(x_planet_sol,y_planet_sol,z_planet_sol,color='g') ax11.tick_params(axis='both',labelsize=14,pad=10) ax11.set_xlabel(" X Coordinate (10^13 metres)",fontsize=18,labelpad=30) ax11.set_ylabel(" Y Coordinate (10^13 metres)",fontsize=18,labelpad=30) ax11.set_zlabel("Z Coordinate (metres)",fontsize=18,labelpad=30) ax11.set_title("Coordinates of Planet",fontsize=22) plt.show() #%% # ============================================================================= # 2 Planets and 1 Star # ============================================================================= #Setting inital conditions #masses inital conditions M_Star1=1e50 M_Planet1=1e20 M_Planet2=1e20 G=6.6743e-11 #positions inital conditions x_star_inital = 1e10 y_star_inital = 0 z_star_inital = 0 x_planet1_inital=10e10 y_planet1_inital = 10e10 z_planet1_inital =0 x_planet2_inital =-10e10 y_planet2_inital =-10e10 z_planet2_inital = 0 #inital radius vectors r_p1_s= np.sqrt((x_planet1_inital-x_star_inital)**2) r_p2_p1= np.sqrt((x_planet2_inital-x_planet1_inital)**2) r_p2_s = np.sqrt((x_planet2_inital-x_star_inital)**2) #inital velocities vx_star_inital =0 vy_star_inital = np.sqrt(G*M_Planet2/np.abs(r_p1_s))+np.sqrt(G*M_Planet1/np.abs(r_p2_p1)) vz_star_inital = 0 vx_planet1_inital = 0 vy_planet1_inital = np.sqrt(G*M_Star1/np.abs(r_p1_s))+np.sqrt(G*M_Planet1/
np.abs(r_p2_s)
numpy.abs
""" Packaged MASAC""" from typing import Dict, List, Tuple import matplotlib.pyplot as plt import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from unityagents import UnityEnvironment from buffers.buffer import ReplayBuffer from models.network import Network from torch.nn.utils.clip_grad import clip_grad_norm_ class DQNAgent: def __init__( self, env: UnityEnvironment, memory_size: int, batch_size: int, target_update: int, epsilon_decay: float = 1 / 2000, max_epsilon: float = 1.0, min_epsilon: float = 0.1, gamma: float = 0.99, ): self.brain_name = env.brain_names[0] self.brain = env.brains[self.brain_name] env_info = env.reset(train_mode=True)[self.brain_name] self.env = env action_size = self.brain.vector_action_space_size state = env_info.vector_observations[0] state_size = len(state) self.obs_dim = state_size self.action_dim = 1 self.memory = ReplayBuffer(self.obs_dim, self.action_dim, memory_size, batch_size) self.batch_size = batch_size self.target_update = target_update self.epsilon_decay = epsilon_decay self.max_epsilon = max_epsilon self.min_epsilon = min_epsilon self.gamma = gamma self.epsilon = max_epsilon self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.dqn = Network(self.obs_dim, self.action_dim) self.dqn_target = Network(self.obs_dim, self.action_dim) self.dqn_target.load_state_dict(self.dqn.state_dict()) self.dqn_target.eval() self.optimizer = optim.Adam(self.dqn.parameters(), lr=5e-5) self.transition = list() self.is_test = False def select_action(self, state: np.ndarray) -> np.int64: """ Select an action given input """ if self.epsilon > np.random.random(): selected_action = np.random.random_integers(0, self.action_dim-1) else: selected_action = self.dqn( torch.FloatTensor(state).to(self.device) ) selected_action = np.argmax(selected_action.detach().cpu().numpy()) if not self.is_test: self.transition = [state, selected_action] return selected_action def step(self, action: np.int64) -> Tuple[np.ndarray, np.float64, bool]: "Take an action and return environment response" env_info = self.env.step(action)[self.brain_name] next_state = env_info.vector_observations[0] reward = env_info.rewards[0] done = env_info.local_done[0] if not self.is_test: self.transition += [reward, next_state, done] self.memory.store(*self.transition) return next_state, reward, done def update_model(self) -> torch.Tensor: """ Update model by gradient descent""" samples = self.memory.sample_batch() loss = self._compute_dqn_loss(samples) self.optimizer.zero_grad() loss.backward() self.optimizer.step() return loss.item() def train(self, num_episode: int, max_iteration: int=1000, plotting_interval: int=400): """ train the agent """ self.is_test = False env_info = self.env.reset(train_mode=True)[self.brain_name] state = env_info.vector_observations[0] update_cnt = 0 epsilons = [] losses = [] avg_losses= [] scores = [] avg_scores = [] for episode in range(num_episode): env_info = self.env.reset(train_mode=True)[self.brain_name] state = env_info.vector_observations[0] score = 0 for iter in range(max_iteration): action = self.select_action(state) next_state, reward, done = self.step(action) state = next_state score += reward if done: break if len(self.memory) > self.batch_size: loss = self.update_model() losses.append(loss) update_cnt += 1 avg_losses.append(np.mean(losses)) losses = [] self.epsilon = max( self.min_epsilon, self.epsilon - ( self.max_epsilon - self.min_epsilon ) * self.epsilon_decay ) epsilons.append(self.epsilon) if update_cnt % self.target_update == 0: self._target_hard_update() scores.append(score) epsilons.append(self.epsilon) if episode >= 100: avg_scores.append(np.mean(scores[-100:])) self._plot(episode, scores, avg_scores, avg_losses, epsilons) torch.save(self.dqn.state_dict(), "model_weight/dqn.pt") def test(self): """ Test agent """ self.is_test = True env_info = self.env.reset(train_mode=False)[self.brain_name] state = env_info.vector_observations[0] done = False score = 0 while not done: action = self.select_action(state) next_state, reward, done = self.step(action) state = next_state score += reward print("score: ", score) self.env.close() def _compute_dqn_loss(self, samples: Dict[str, np.ndarray], gamma: float=0.99) -> torch.Tensor: """ Compute and return DQN loss""" gamma = self.gamma device = self.device state = torch.FloatTensor(samples["obs"]).to(device) next_state = torch.FloatTensor(samples["next_obs"]).to(device) action = torch.LongTensor(samples["acts"]).reshape(-1, 1).to(device) reward = torch.FloatTensor(samples["rews"]).reshape(-1, 1).to(device) done = torch.FloatTensor(samples["done"]).reshape(-1, 1).to(device) curr_q_value = self.dqn(state).gather(1, action) next_q_value = self.dqn_target(next_state).max(dim=1, keepdim=True)[0].detach() mask = 1 - done target = (reward + gamma * next_q_value * mask).to(device) loss = F.smooth_l1_loss(curr_q_value, target) return loss def _target_hard_update(self): """ update target network """ self.dqn_target.load_state_dict(self.dqn.state_dict()) def _plot( self, episode :int, scores: List[float], avg_scores: List[float], losses: List[float], epsilons: List[float] ): """ Plot the training process""" plt.figure(figsize=(20, 5)) plt.subplot(141) if len(avg_scores) > 0: plt.title("Average reward per 100 episodes. Score: %s" % (avg_scores[-1])) else: plt.title("Average reward over 100 episodes.") plt.plot([100 + i for i in range(len(avg_scores))], avg_scores) plt.subplot(142) plt.title("episode %s. Score: %s" % (episode,
np.mean(scores[-10:])
numpy.mean
# -*- coding: utf-8 -*- """ Created on Sun Oct 2 18:02:17 2016 @author: denis """ from math import pi from itertools import islice import numpy as np import pandas as pd import copy import matplotlib.pyplot as plt from pytrx.utils import z_str2num, z_num2str import pkg_resources from pytrx import hydro from pytrx.transformation import Transformation # from pytrx import transformation from numba import njit, prange from mpl_toolkits.mplot3d import Axes3D class Molecule: def __init__(self, Z, xyz, calc_gr=False, rmin=0, rmax=25, dr=0.01, associated_transformation=None, printing=True): ''' associated_transformation will be either a transformation class or a list of transformations ''' if type(Z) == str: Z = np.array([Z]) self.Z = Z self.Z_num = np.array([z_str2num(z) for z in Z]) self.xyz = xyz.copy() self.xyz_ref = xyz.copy() self.printing = printing self.reparameterized = False # print(type(associated_transformation), Transformation) print("Running initial check up for associated_transformation") if associated_transformation is None: self._associated_transformation = None elif type(associated_transformation) == list: if self.printing: print("associated_transformation is a list. Examining elements...") for t in associated_transformation: if self.printing: print(f'Checking {t}') assert issubclass(type(t), Transformation), 'List element is not a Transformation class' self._associated_transformation = associated_transformation elif issubclass(type(associated_transformation), Transformation): self._associated_transformation = [associated_transformation] else: raise TypeError('Supplied transformations must be None, a transformation class, or a list of it') # self.dispersed # self.dispersed = any([t.dw for t in self._associated_transformation]) # self._t_keys = [] # list of transformation names - for internal use self.par0 = {} self.dispersed = False if self._associated_transformation is not None: for t in self._associated_transformation: t.prepare(self.xyz, self.Z_num) self._t_keys.append(t.name) self.par0[t.name] = t.amplitude0 if t.dw: self.dispersed = True for key, value in zip(t.dw.suffix, t.dw.standard_value): self.par0[t.name + key] = value self.n_par = len(self.par0.keys()) if calc_gr: self.calcGR(rmin=rmin, rmax=rmax, dr=dr) def calcDistMat(self, return_mat=False): self.dist_mat = np.sqrt(np.sum((self.xyz[None, :, :] - self.xyz[:, None, :]) ** 2, axis=2)) if return_mat: return self.dist_mat def calcGR(self, rmin=0, rmax=25, dr=0.01): self.calcDistMat() self.gr = GR(self.Z, rmin=rmin, rmax=rmax, dr=dr) self.r = self.gr.r for pair in self.gr.el_pairs: el1, el2 = pair idx1, idx2 = (el1 == self.Z, el2 == self.Z) self.gr[pair] += np.histogram(self.dist_mat[np.ix_(idx1, idx2)].ravel(), self.gr.r_bins)[0] def reset_xyz(self): self.xyz = self.xyz_ref.copy() # as a numpy array we can just use the array's method def transform(self, par=None, return_xyz=False): ''' Transforms xyz based on the transformation supplied in the _associated_transformation. Also takes the par which should be either None or a list that is the same length as the number of transformations. reprep: recalculate associated vectors, COMs, etc. after each step (as they might shift) by calling the prepare() methods within each class. ''' if (par is not None) and (self._associated_transformation is not None): # Resets the coordinate set to be transformed # self.xyz = copy.deepcopy(self.xyz_ref) self.reset_xyz() # assert (len(par.keys()) == len(self._associated_transformation)), \ # "Number of parameters not matching number of transformations" for t in self._associated_transformation: self.xyz = t.transform(self.xyz, self.Z_num, par[t.name]) if return_xyz: return self.xyz def s(self, q, pars=None): if not hasattr(self, '_atomic_formfactors'): self._atomic_formfactors = formFactor(q, self.Z) if pars is None: pars = self.par0 else: # print(pars) # print(self.par0.keys()) assert all([key in pars.keys() for key in self.par0.keys()]), \ 'the input parameter dict does not contain all necessary parameter keys' if self.reparameterized: pars = self.convert(pars) if not self.dispersed: self.transform(pars) return Debye(q, self, f=self._atomic_formfactors) else: pd = [] wd = [] for t in self._associated_transformation: if t.dw: _p, _w = t.dw.disperse(pars, t.name) else: _p, _w = pars[t.name], 1 pd.append(_p) wd.append(_w) pd_grid = [i.ravel() for i in np.meshgrid(*pd)] wd_grid = [i.ravel() for i in np.meshgrid(*wd)] n = len(pd_grid[0]) # number of combinations # _bla = 0 _s = np.zeros(q.shape) for i in range(n): _p_dict = {} _w = 1 for j, key in enumerate(self._t_keys): _p_dict[key] = pd_grid[j][i] _w *= wd_grid[j][i] self.transform(_p_dict) _s += _w * Debye(q, self, f=self._atomic_formfactors) return _s def clash(self): # Check for clash by whether min distances between two atom types are shorter than 80 % of original (tentative) pass def write_xyz(self, fname): # Write the xyz (NOT xyz_ref) to an xyz file with open(fname, 'w') as f: f.write(f'{len(self.Z)}') f.write(f'\nOutput of xyz for molecule\n') for i in range(len(self.Z)): f.write(f'{self.Z[i]} {self.xyz[i][0]} {self.xyz[i][1]} {self.xyz[i][2]}\n') f.write('\n') # def sum_parameters(self): # if self._associated_transformation is not None: # return len(self._associated_transformation) def calcDens(self): self.gr.calcDens() self.dens = self.gr.dens def reparameterize(self, par_new, roi_dict, n=11, plotting=False): if self.dispersed: raise ValueError('dispersed transformations are incompatible with reparameterization') assert self.n_par == len(par_new), 'number of new parameters must match the number of original parameters' self._pc = ParameterConverter(self, par_new) self._pc.define_conversion(roi_dict, n, plotting=plotting) self.reparameterized = True # re-"brand" the parameters: self.reset_xyz() self.par0 = self._pc.compute_pars(return_type=dict) self._t_keys = list(self.par0.keys()) def convert(self, x): return self._pc.convert(x) # x_ar = np.array([x[key] for key in x.keys()]) # x_ar = np.hstack((x_ar, [1])) # # print(x_ar, self.R.shape) # # y_out = x_ar @ self._pc.R # return dict(zip([t.name for t in self._associated_transformation], y_out)) class ParameterConverter: def __init__(self, molecule, pars): self.mol = molecule self.pars = pars # parameters to which we reparameterize self.t_labels = list(self.mol.par0.keys()) self.R = None def compute_pars(self, return_type=list): out = [] for p in self.pars: if p['type'] == 'distance': idx1, idx2 = p['group1'], p['group2'] xyz1 = np.mean(self.mol.xyz[idx1, :], axis=0) xyz2 = np.mean(self.mol.xyz[idx2, :], axis=0) r = np.linalg.norm(xyz1 - xyz2) out.append(r) elif p['type'] == 'angle': idx1, idx2 = p['group1'], p['group2'] n1 = self._get_normal(self.mol.xyz[idx1, :]) n2 = self._get_normal(self.mol.xyz[idx2, :]) phi = np.arccos(np.sum(n1 * n2)) out.append(np.rad2deg(phi)) if return_type == list: return out elif return_type == dict: return dict(zip([p['label'] for p in self.pars], out)) def _get_normal(self, xyz): if len(xyz) == 2: n = xyz[0, :] - xyz[1, :] else: # print(xyz) n, _, _, _ = np.linalg.lstsq(xyz, np.ones(len(xyz)), rcond=-1) return n / np.linalg.norm(n) def compute_grid(self, roi, n): roi_grid = {} for key in roi.keys(): x1, x2 = roi[key][0], roi[key][1] roi_grid[key] = np.linspace(x1, x2, n) grid = np.meshgrid(*[roi_grid[key] for key in self.t_labels]) return [i.ravel() for i in grid] def define_conversion(self, roi, n, plotting=True): grid_out = self.compute_grid(roi, n) # print(grid) grid_in = [] for vals in zip(*grid_out): _p = dict(zip(self.t_labels, vals)) self.mol.transform(_p) out = self.compute_pars() grid_in.append(out) grid_in = np.array(grid_in) grid_out = np.array(grid_out).T grid_in = np.hstack((grid_in, np.ones((grid_in.shape[0], 1)))) # print(grid_in.shape, grid_out.shape) self.R, _, _, _ = np.linalg.lstsq(grid_in, grid_out, rcond=-1) if plotting: grid_out_pred = grid_in @ self.R fig = plt.figure() plt.clf() ax = fig.gca(projection='3d') ax.plot(grid_in[:, 0], grid_in[:, 1], grid_out[:, 0], 'k.') ax.plot(grid_in[:, 0], grid_in[:, 1], grid_out_pred[:, 0], 'r.') def convert(self, x): # print('BLABLABLA') # print(x) x_ar = np.array([float(x[key]) for key in x.keys() if key in self.mol._t_keys]) x_ar = np.hstack((x_ar, [1])) y_out = x_ar @ self.R return dict(zip([t.name for t in self.mol._associated_transformation], y_out)) class GR: def __init__(self, Z, rmin=0, rmax=25, dr=0.01, r=None, el_pairs=None): self.Z = np.unique(Z) if el_pairs is None: self.el_pairs = [(z_i, z_j) for i, z_i in enumerate(self.Z) for z_j in self.Z[i:]] else: self.el_pairs = el_pairs if r is None: # self.r = np.arange(rmin, rmax+dr, dr) self.r = np.linspace(rmin, rmax, int((rmax - rmin) / dr) + 1) else: self.r = r rmin, rmax, dr = r.min(), r.max(), r[1] - r[0] # self.r_bins = np.arange(rmin-0.5*dr, rmax+1.5*dr, dr) print(rmin, type(rmin), dr, type(dr), rmax, type(rmax)) # self.r_bins = np.linspace(float(rmin) - 0.5 * dr, float(rmax) + 0.5 * dr, # int((float(rmax) - float(rmin)) / dr) + 2) self.r_bins = np.linspace(float(rmin) + 0.5 * dr, float(rmax) + 0.5 * dr, int((float(rmax) - float(rmin)) / dr) + 1) self.gr = {} for pair in self.el_pairs: self.gr[frozenset(pair)] = np.zeros(self.r.size) def __setitem__(self, key, data): key = frozenset(key) self.gr[key] = data def __getitem__(self, key): key = frozenset(key) return self.gr[key] def __add__(self, gr_other): gr_out = GR(self.Z, r=self.r, el_pairs=self.el_pairs) for pair in self.el_pairs: gr_out[pair] = self[pair] + gr_other[pair] return gr_out def __sub__(self, gr_other): gr_out = GR(self.Z, r=self.r, el_pairs=self.el_pairs) for pair in self.el_pairs: gr_out[pair] = self[pair] - gr_other[pair] return gr_out def __mul__(self, factor): gr_out = GR(self.Z, r=self.r, el_pairs=self.el_pairs) for pair in self.el_pairs: gr_out[pair] = self[pair] * factor return gr_out def __truediv__(self, gr_other): gr_out = GR(self.Z, r=self.r, el_pairs=self.el_pairs) for pair in self.el_pairs: gr_out[pair] = self[pair] / gr_other[pair] return gr_out def calcDens(self): self.dens = np.zeros(self.r.shape) for pair in self.el_pairs: el1, el2 = pair z1 = z_str2num(el1) z2 = z_str2num(el2) self.dens += z1 * z2 * self.gr[frozenset(pair)] def save(self, fname): n = self.r.size m = len(self.el_pairs) header = 'r, ' + ', '.join([ '-'.join([i for i in pair]) for pair in self.el_pairs]) data = np.zeros((n, m + 1)) data[:, 0] = self.r for i, pair in enumerate(self.el_pairs): if not np.all(np.isnan(self[pair])): data[:, i + 1] = self[pair] np.savetxt(fname, data, delimiter=', ', header=header) ### UTILS def formFactor(q, Elements): ''' Calculates atomic form-factor at value q q - np.array of scattering vector values Elements - np.array or list of elements. May be a string if one wants to compute form-factor for only one element. returns a dict of form factors Examples: q = np.arange(10) f = formFactor(q, 'Si') print(f['Si']) Elements = ['Si', 'O'] f = formFactor(q, Elements) print(f['Si'], f['O']) ''' Elements = np.unique(Elements) fname = pkg_resources.resource_filename('pytrx', './f0_WaasKirf.dat') with open(fname) as f: content = f.readlines() s = q / (4 * pi) formFunc = lambda sval, a: np.sum(a[None, :5] * np.exp(-a[None, 6:] * sval[:, None] ** 2), axis=1) + a[5] f = {} for i, x in enumerate(content): if x[0:2] == '#S': atom = x.split()[-1] if any([atom == x for x in Elements]): coef = np.fromstring(content[i + 3], sep='\t') f[atom] = formFunc(s, coef) return f def diff_cage_from_dgr(q, dgr, molecule, solvent_str, r_cut=None): ff = formFactor(q, dgr.Z) s = np.zeros(q.shape) r = dgr.r w = np.ones(r.shape) if r_cut: w[r > r_cut] = 0 # else: # w = np.exp(-0.5 * (r / r_damp) ** 2) ksi = q[:, None] * r[None, :] ksi[ksi < 1e-9] = 1e-9 # w = np.exp(-0.5*(r/5)**2) Asin = 4 * np.pi * (r[1] - r[0]) * (np.sin(ksi) / ksi) * r[None, :] ** 2 * w solvent = hydro.solvent_data[solvent_str] V = solvent.molar_mass / 6.02e23 / (solvent.density / 1e30) for el1 in np.unique(molecule.Z): for el2 in np.unique(solvent.Z): el_pair = (el1, el2) if not np.all(dgr[el_pair] == 0): n1 = np.sum(molecule.Z == el1) n2 = np.sum(solvent.Z == el2) # print(el1, n1, el2, n2) _s = ff[el1] * ff[el2] * n1 * n2 / V * (Asin @ dgr[el_pair]) s += _s return s def diff_cave_from_dgr(q, dgr, solvent_str, r_damp=25): ff = formFactor(q, dgr.Z) s = np.zeros(q.shape) r = dgr.r ksi = q[:, None] * r[None, :] ksi[ksi < 1e-9] = 1e-9 # w = np.exp(-0.5*(r/5)**2) w = np.ones(r.shape) w[r > r_damp] = 0 Asin = 4 * np.pi * (r[1] - r[0]) * (np.sin(ksi) / ksi) * r[None, :] ** 2 * w solvent = hydro.solvent_data[solvent_str] V = solvent.molar_mass / 6.02e23 / (solvent.density / 1e30) for el1 in np.unique(solvent.Z): for el2 in np.unique(solvent.Z): el_pair = (el1, el2) if not np.all(dgr[el_pair] == 0): n1 = np.sum(solvent.Z == el1) n2 = np.sum(solvent.Z == el2) # print(el1, n1, el2, n2) _s = ff[el1] * ff[el2] * n1 * n2 / V * (Asin @ dgr[el_pair]) s += _s return s def GRfromFile(filename, delimiter=', ', normalize=False, rmin=25, rmax=30): names = np.genfromtxt(filename, delimiter=delimiter, names=True, deletechars=',').dtype.names data = np.genfromtxt(filename, delimiter=delimiter) # print(data) els = [] el_pairs = [] for name in names[1:]: new_pair = name.split('_') if len(new_pair) == 1: new_pair = name.split('-') new_pair = [str.capitalize(i) for i in new_pair] el_pairs.append([str.capitalize(i) for i in new_pair]) els += new_pair els = np.unique(els) # print(els) # print(el_pairs) gr = GR(els) r = data[1:, 0] for i, pair in enumerate(el_pairs): gr_array = data[1:, i + 1] if normalize: rsel = (r >= rmin) & (r <= rmax) c = np.mean(gr_array[rsel]) if c != 0: gr_array /= c gr[pair] = gr_array gr.r = r return gr def convert2rspace(q, dsq, alpha_damp=0.15, rmax=25, dr=0.01, molecule=None): r = np.arange(0, rmax+dr, dr) ksi = q[None, :] * r[:, None] ksi[ksi<1e-9] = 1e-9 if molecule: f_sharp = get_f_sharp_for_molecule(q, molecule) f_sharp /= f_sharp.max() else: f_sharp = np.ones(q.shape) w = q * np.exp( - (alpha_damp * q)**2 ) / f_sharp # plt.figure() # plt.plot(q, w) A_sin = w[None, :] * np.sin(ksi) return r, A_sin @ dsq def get_f_sharp_for_molecule(q, molecule): if hasattr(molecule, '_atomic_formfactors'): ff = molecule._atomic_formfactors else: ff = formFactor(q, molecule.Z) f_sharp = np.zeros(q.size) for i in range(molecule.Z.size): for j in range(i + 1, molecule.Z.size): z_i = molecule.Z[i] z_j = molecule.Z[j] f_sharp += 2 * ff[z_i] * ff[z_j] return f_sharp def Debye(q, mol, f=None, atomOnly=False, debug=False): mol.calcDistMat() natoms = mol.Z.size if f is None: f = formFactor(q, mol.Z) if debug: print(f) Scoh = np.zeros(q.shape) FFtable = np.zeros((natoms, len(q))) for idx in range(natoms): FFtable[idx] = f[mol.Z[idx]] if atomOnly: Scoh = np.zeros(q.shape) for idx1 in range(natoms): Scoh += f[mol.Z[idx1]] ** 2 else: Scoh = Scoh_calc2(FFtable, q, mol.dist_mat, natoms) if debug: print(Scoh) return Scoh @njit def Scoh_calc(FF, q, r, natoms): Scoh = np.zeros(q.shape) for idx1 in range(natoms): for idx2 in range(idx1 + 1, natoms): r12 = r[idx1, idx2] qr12 = q * r12 Scoh += 2 * FF[idx1] * FF[idx2] * np.sin(qr12) / qr12 Scoh += FF[idx1] ** 2 return Scoh @njit(parallel=True) def Scoh_calc2(FF, q, r, natoms): # Scoh = np.zeros(q.shape) Scoh2 = np.zeros((natoms, len(q))) for idx1 in prange(natoms): Scoh2[idx1] += FF[idx1] ** 2 for idx2 in range(idx1 + 1, natoms): r12 = r[idx1, idx2] qr12 = q * r12 qr12[qr12<1e-9] = 1e-9 Scoh2[idx1] += 2 * FF[idx1] * FF[idx2] * np.sin(qr12) / qr12 return np.sum(Scoh2, axis=0) def DebyeFromGR(q, gr, f=None, rmax=None, cage=False): if f is None: f = formFactor(q, gr.Z) if rmax is None: rmax = gr.r.max() Scoh = np.zeros(q.shape) rsel = gr.r < rmax qr = q[:, None] * gr.r[None, rsel] qr[qr < 1e-6] = 1e-6 Asin = np.sin(qr) / qr for pair in gr.el_pairs: el1, el2 = pair # print(Asin.shape, gr[pair].shape) pair_scat = f[el1] * f[el2] * (Asin @ gr[pair][rsel]) if el1 == el2: if cage: Scoh += 2 * pair_scat else: Scoh += pair_scat else: Scoh += 2 * pair_scat return Scoh def ScatFromDens(q, gr): gr.calcDens() qr = q[:, None] * gr.r[None, :] qr[qr < 1e-6] = 1e-6 Asin = np.sin(qr) / qr return Asin @ gr.dens def Compton(z, q): fname_lowz = pkg_resources.resource_filename('pytrx', './Compton_lowZ.dat') fname_highz = pkg_resources.resource_filename('pytrx', './Compton_highZ.dat') data_lowz = pd.read_csv(fname_lowz, sep='\t') data_highz = pd.read_csv(fname_highz, sep='\t') data_lowz['Z'] = data_lowz['Z'].apply(lambda x: z_num2str(x)) data_highz['Z'] = data_highz['Z'].apply(lambda x: z_num2str(x)) Scoh = formFactor(q, z)[z] ** 2 z_num = z_str2num(z) if z in data_lowz['Z'].values: M, K, L = data_lowz[data_lowz['Z'] == z].values[0, 1:4] S_inc = (z_num - Scoh / z_num) * (1 - M * (np.exp(-K * q / (4 * pi)) - np.exp(-L * q / (4 * pi)))) # S(idx_un(i),:) = (Z_un(i)-Scoh(idx_un(i),:)/Z_un(i)).*... # (1-M*(exp(-K*Q/(4*pi))-exp(-L*Q/(4*pi)))); elif z in data_highz['Z'].values: A, B, C = data_highz[data_highz['Z'] == z].values[0, 1:4] S_inc = z_num * (1 - A / (1 + B * q / (4 * pi)) ** C) # S(idx_un(i),:) = Z_un(i)*(1-A./(1+B*Q/(4*pi)).^C); elif z == 'H': S_inc =
np.zeros(q.shape)
numpy.zeros
import platform import numpy as np import pytest from qtpy import PYQT5 from qtpy.QtCore import QPoint, Qt from qtpy.QtGui import QImage import PartSegData from PartSeg.common_backend.base_settings import BaseSettings, ColormapDict, ViewSettings from PartSeg.common_gui.channel_control import ChannelProperty, ColorComboBox, ColorComboBoxGroup from PartSeg.common_gui.napari_image_view import ImageView from PartSegCore.color_image import color_image_fun from PartSegCore.color_image.base_colors import starting_colors from PartSegCore.image_operations import NoiseFilterType from PartSegImage import TiffImageReader from .utils import CI_BUILD if PYQT5: def array_from_image(image: QImage): size = image.size().width() * image.size().height() return np.frombuffer(image.bits().asstring(size * 3), dtype=np.uint8) else: def array_from_image(image: QImage): size = image.size().width() * image.size().height() return np.frombuffer(image.bits(), dtype=np.uint8, count=size * 3) def test_color_combo_box(qtbot): dkt = ColormapDict({}) box = ColorComboBox(0, starting_colors, dkt) box.show() qtbot.add_widget(box) with qtbot.waitSignal(box.channel_visible_changed): with qtbot.assertNotEmitted(box.clicked): qtbot.mouseClick(box.check_box, Qt.LeftButton) with qtbot.waitSignal(box.clicked, timeout=1000): qtbot.mouseClick(box, Qt.LeftButton, pos=QPoint(5, 5)) with qtbot.waitSignal(box.clicked): qtbot.mouseClick(box, Qt.LeftButton, pos=QPoint(box.width() - 5, 5)) index = 3 with qtbot.waitSignal(box.currentTextChanged): box.set_color(starting_colors[index]) img = color_image_fun( np.linspace(0, 256, 512, endpoint=False).reshape((1, 512, 1)), [dkt[starting_colors[index]][0]], [(0, 255)] ) assert np.all(array_from_image(box.image) == img.flatten()) class TestColorComboBox: def test_visibility(self, qtbot): dkt = ColormapDict({}) box = ColorComboBox(0, starting_colors, dkt, lock=True) box.show() qtbot.add_widget(box) assert box.lock.isVisible() box = ColorComboBox(0, starting_colors, dkt, blur=NoiseFilterType.Gauss) box.show() qtbot.add_widget(box) assert box.blur.isVisible() box = ColorComboBox(0, starting_colors, dkt, gamma=2) box.show() qtbot.add_widget(box) assert box.gamma.isVisible() class TestColorComboBoxGroup: def test_change_channels_num(self, qtbot): settings = ViewSettings() box = ColorComboBoxGroup(settings, "test", height=30) qtbot.add_widget(box) box.set_channels(1) box.set_channels(4) box.set_channels(10) box.set_channels(4) box.set_channels(10) box.set_channels(2) def test_color_combo_box_group(self, qtbot): settings = ViewSettings() box = ColorComboBoxGroup(settings, "test", height=30) qtbot.add_widget(box) box.set_channels(3) assert len(box.current_colors) == 3 assert all(map(lambda x: isinstance(x, str), box.current_colors)) with qtbot.waitSignal(box.coloring_update): box.layout().itemAt(0).widget().check_box.setChecked(False) with qtbot.waitSignal(box.coloring_update): box.layout().itemAt(0).widget().setCurrentIndex(2) assert box.current_colors[0] is None assert all(map(lambda x: isinstance(x, str), box.current_colors[1:])) def test_color_combo_box_group_and_color_preview(self, qtbot): settings = ViewSettings() ch_property = ChannelProperty(settings, "test") box = ColorComboBoxGroup(settings, "test", ch_property, height=30) qtbot.add_widget(box) qtbot.add_widget(ch_property) box.set_channels(3) box.set_active(1) with qtbot.assert_not_emitted(box.coloring_update), qtbot.assert_not_emitted(box.change_channel): ch_property.minimum_value.setValue(10) ch_property.minimum_value.setValue(100) def check_parameters(name, index): return name == "test" and index == 1 with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(True) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.minimum_value.setValue(10) ch_property.maximum_value.setValue(10000) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.maximum_value.setValue(11000) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(False) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.set_value(NoiseFilterType.Gauss) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.set_value(NoiseFilterType.Median) ch_property.filter_radius.setValue(0.5) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.filter_radius.setValue(2) with qtbot.waitSignal(box.coloring_update), qtbot.waitSignal( box.change_channel, check_params_cb=check_parameters ): ch_property.use_filter.set_value(NoiseFilterType.No) with qtbot.assert_not_emitted(box.coloring_update), qtbot.assert_not_emitted(box.change_channel): ch_property.filter_radius.setValue(0.5) @pytest.mark.xfail((platform.system() == "Windows") and CI_BUILD, reason="GL problem") def test_image_view_integration(self, qtbot, tmp_path): settings = BaseSettings(tmp_path) ch_property = ChannelProperty(settings, "test") image_view = ImageView(settings, ch_property, "test") # image_view.show() qtbot.addWidget(image_view) qtbot.addWidget(ch_property) image = TiffImageReader.read_image(PartSegData.segmentation_analysis_default_image) with qtbot.waitSignals([settings.image_changed, image_view.image_added], timeout=10 ** 6): settings.image = image channels_num = image.channels assert image_view.channel_control.channels_count == channels_num image_view.viewer_widget.screenshot() image1 = image_view.viewer_widget.canvas.render() assert np.any(image1 != 255) image_view.channel_control.set_active(1) ch_property.minimum_value.setValue(100) ch_property.maximum_value.setValue(10000) ch_property.filter_radius.setValue(0.5) image2 = image_view.viewer_widget.canvas.render() assert np.any(image2 != 255) assert np.all(image1 == image2) def check_parameters(name, index): return name == "test" and index == 1 # Test fixed range with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.fixed.setChecked(True) image1 = image_view.viewer_widget.canvas.render() assert np.any(image1 != 255) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.minimum_value.setValue(20) image2 = image_view.viewer_widget.canvas.render() assert np.any(image2 != 255) assert np.any(image1 != image2) with qtbot.waitSignal(image_view.channel_control.coloring_update), qtbot.waitSignal( image_view.channel_control.change_channel, check_params_cb=check_parameters ): ch_property.maximum_value.setValue(11000) image3 = image_view.viewer_widget.screenshot() assert np.any(image3 != 255) assert
np.any(image2 != image3)
numpy.any
import numpy as np import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt import scipy.interpolate import scipy.signal import scipy.spatial import scipy.stats import sys # %% Load data case = int(sys.argv[1]) print("Case " + str(case)) suffix = '_uphavg' basedata = np.load('/home/nc1472/git/qg-edgeofchaos/poincare_input/case{}_poincare_config_fd_smooth_uphavg.npz'.format(case)) qbar = basedata['qbar'] uy = basedata['uy'] nx = 2048 x = np.linspace(-np.pi, np.pi, num=nx, endpoint=False) # Set up interpolation functions pad = 4 xp = np.zeros(nx+2*pad) xp[pad:-pad] = x xp[:pad] = x[-pad:] - 2*np.pi xp[-pad:] = x[:pad] + 2*np.pi def circularInterpolant(vec): vecp = np.zeros(nx+2*pad) vecp[pad:-pad] = vec vecp[:pad] = vec[-pad:] vecp[-pad:] = vec[:pad] return scipy.interpolate.interp1d(xp, vecp, kind='quadratic') uyfft = np.fft.rfft(uy) hilbuy = np.fft.irfft(1j*uyfft) hilbuyf = circularInterpolant(hilbuy) uyf = circularInterpolant(uy) # Compute regions of zonal flow minima and maxima uyminxs = x[scipy.signal.argrelextrema(uy, np.less)] uymaxxs = x[scipy.signal.argrelextrema(uy, np.greater)] # Set up function for computing correlation dimension def fit_slope(lind, rind, psorted, bounds): lbound = bounds[lind] ubound = bounds[rind] sampinds = np.array(list(map(lambda x: int(np.round(x)), np.geomspace(lbound, ubound, num=256))), dtype=int) result = scipy.stats.linregress(np.log(psorted[sampinds-1]), np.log(ncorr[sampinds-1])) return result # Set up result arrays nparticles = 127 allstdresids =
np.zeros((nparticles, 257))
numpy.zeros
import os import math import pandas as pd import numpy as np from PIL import Image import matplotlib.pyplot as plt from data.utils import rgb2binary from pathlib import Path class ROIGenerator: def __init__(self, model): self.model = model self.colors = {'roi': np.array([0, 1, 0]), 'start': np.array([0, 0, 1]), 'goal': np.array([1, 0, 0])} def set_parameters(self, m_name=None, m_path='data/dataset/maps/', t_path='data/dataset/tasks/'): self.m_name = m_name # with extantion self.fname = Path(m_name).stem # without extantion Map=Image.open(m_path + self.m_name).convert('RGB') Map =
np.array(Map)
numpy.array
import numpy as np from hypernet.src.thermophysicalModels.chemistry.chemistryModel import Basic class Standard(Basic): # Initialization ########################################################################### def __init__( self, specieThermos, processFlags, reactionsList=None, *args, **kwargs ): super(Standard, self).__init__( specieThermos, processFlags, reactionsList=reactionsList, *args, **kwargs ) self.m = self.spTh[self.atom].specie.m # Methods ########################################################################### # Rates matrices ---------------------------------------------------------- def K_(self, reac): labels = { 'f': 'kf', 'r': 'kr', } Ke = self.Ke_(self.processFlags['excit'], reac, labels) / self.m Kd = self.Kd_(self.processFlags['diss'], reac, labels) / self.m Kr = self.Kr_(self.processFlags['diss'], reac, labels) / self.m**2*2 return Ke, Kd, Kr # Rates matrices derivatives ---------------------------------------------- def dKdT_(self, reac): labels = { 'f': 'dkfdT', 'r': 'dkrdT', } dKedT = self.Ke_(self.processFlags['excit'], reac, labels) / self.m dKddT = self.Kd_(self.processFlags['diss'], reac, labels) / self.m dKrdT = self.Kr_(self.processFlags['diss'], reac, labels) / self.m**2*2 return dKedT, dKddT, dKrdT # Porcesses matrices ------------------------------------------------------ def Ke_(self, mask, reac, labels): '''Excit. & Relax. rates matrix''' # Construct Excit. & Relax. matrix K = np.zeros((self.nSpecies,self.nSpecies), dtype=np.float64) if mask: # Get excitation/relaxation rates reac = reac.loc[reac['reacIndex'].isin(self.processIndices['excit'])] # Fill matrix for i, row in reac.iterrows(): l, r = row['indices'] K[l,r] = K[l,r] + row[labels['f']] K[r,l] = K[r,l] + row[labels['r']] # Manipulate matrix K = -np.diag(
np.sum(K, axis=1)
numpy.sum
# Author: <NAME> <<EMAIL>> # My imports from . import tools # Regular imports from mir_eval.transcription import precision_recall_f1_overlap as evaluate_notes from mir_eval.multipitch import evaluate as evaluate_frames from abc import abstractmethod from scipy.stats import hmean from copy import deepcopy import numpy as np import sys import os EPSILON = sys.float_info.epsilon # TODO - add warning when unpack returns None # TODO - none of the stacked evaluators have been tested independently # - they will likely break during append, average, log, write, etc. ################################################## # HELPER FUNCTIONS / RESULTS DICTIONARY # ################################################## def average_results(results): """ Obtain the average across all tracked results for each metric in a results dictionary. Parameters ---------- results : dictionary Dictionary containing results of tracks arranged by metric Returns ---------- average : dictionary Dictionary with a single value for each metric """ # Only modify a local copy which will be returned average = deepcopy(results) # Loop through the keys in the dictionary for key in average.keys(): # Check if the entry is another dictionary if isinstance(average[key], dict): # Recursively call this function average[key] = average_results(average[key]) else: # Check if the entry is a NumPy array or list - leave it alone otherwise if isinstance(average[key], np.ndarray) or isinstance(average[key], list): # Take the average of all entries and convert to float (necessary for logger) average[key] = float(np.mean(average[key])) return average def append_results(tracked_results, new_results): """ Combine two results dictionaries. This function is more general than the signature suggests. Parameters ---------- tracked_results and new_results : dictionary Dictionaries containing results of tracks arranged by metric Returns ---------- tracked_results : dictionary Dictionary with all results appended along the metric """ # Only modify a local copy which will be returned tracked_results = deepcopy(tracked_results) # Loop through the keys in the new dictionary for key in new_results.keys(): # Check if the key already exists in the current dictionary if key not in tracked_results.keys(): # Add the untracked entry tracked_results[key] = new_results[key] # Check if the entry is another dictionary elif isinstance(new_results[key], dict): # Recursively call this function tracked_results[key] = append_results(tracked_results[key], new_results[key]) else: # Append the new entry (or entries) to the current entry tracked_results[key] = np.append(tracked_results[key], new_results[key]) return tracked_results def log_results(results, writer, step=0, patterns=None, tag=''): """ Log results using TensorBoardX. Parameters ---------- results : dictionary Dictionary containing results of tracks arranged by metric writer : tensorboardX.SummaryWriter Writer object being used to log results step : int Current iteration in whatever process (e.g. training) patterns : list of string or None (optional) Only write metrics containing these patterns (e.g. ['f1', 'pr']) (None for all metrics) tag : string Tag for organizing different types of results (e.g. 'validation') """ # Loop through the keys in the dictionary for key in results.keys(): # Extract the next entry entry = results[key] # Check if the entry is another dictionary if isinstance(entry, dict): # Add the key to the tag and call this function recursively log_results(entry, writer, step, patterns, tag + f'/{key}') else: # Check if the key matches the specified patterns if pattern_match(key, patterns) or patterns is None: # Log the entry under the specified key writer.add_scalar(f'{tag}/{key}', entry, global_step=step) def write_results(results, file, patterns=None, verbose=False): """ Write result dictionary to a text file. Parameters ---------- results : dictionary Dictionary containing results of tracks arranged by metric file : TextIOWrapper File open in write mode patterns : list of string or None (optional) Only write metrics containing these patterns (e.g. ['f1', 'pr']) (None for all metrics) verbose : bool Whether to print to console whatever is written to the file """ # Loop through the keys in the dictionary for key in results.keys(): # Check if the key's entry is another dictionary if isinstance(results[key], dict): # Write a header to the file tools.write_and_print(file, f'-----{key}-----', verbose, '\n') # Call this function recursively write_results(results[key], file, patterns, verbose) # Write an empty line tools.write_and_print(file, '', verbose, '\n') else: # Check if the key matches the specified patterns if pattern_match(key, patterns) or patterns is None: # Write the metric and corresponding result to the file tools.write_and_print(file, f' {key} : {results[key]}', verbose, '\n') # Write an empty line tools.write_and_print(file, '', verbose, '\n') def pattern_match(query, patterns=None): """ Simple helper function to see if a query matches a list of strings, even if partially. Parameters ---------- query : string String to check for matches patterns : list of string or None (optional) Patterns to reference, return False if unspecified Returns ---------- match : bool Whether the query matches some pattern, fully or partially """ # Default the returned value match = False # Check if there are any patterns to analyze if patterns is not None: # Compare the query to each pattern match = any([p in query for p in patterns]) return match ################################################## # EVALUATORS # ################################################## class Evaluator(object): """ Implements a generic music information retrieval evaluator. """ def __init__(self, key, save_dir, patterns, verbose): """ Initialize parameters common to all evaluators and instantiate. Parameters ---------- key : string Key to use when unpacking data and organizing results save_dir : string or None (optional) Directory where results for each track will be written patterns : list of string or None (optional) Only write/log metrics containing these patterns (e.g. ['f1', 'pr']) (None for all metrics) verbose : bool Whether to print any written text to console as well """ self.key = key self.save_dir = None self.set_save_dir(save_dir) self.patterns = None self.set_patterns(patterns) self.verbose = None self.set_verbose(verbose) # Initialize dictionary to track results self.results = None self.reset_results() def set_save_dir(self, save_dir): """ Simple helper function to set and create a new save directory. Parameters ---------- save_dir : string or None (optional) Directory where estimates for each track will be written """ self.save_dir = save_dir if self.save_dir is not None: # Create the specified directory if it does not already exist os.makedirs(self.save_dir, exist_ok=True) def set_patterns(self, patterns): """ Simple helper function to set new patterns. Parameters ---------- patterns : list of string or None (optional) Only write/log metrics containing these patterns (e.g. ['f1', 'pr']) (None for all metrics) """ self.patterns = patterns def set_verbose(self, verbose): """ Simple helper function to set a new verbose flag. Parameters ---------- verbose : bool Whether to print any written text to console as well """ self.verbose = verbose def reset_results(self): """ Reset tracked results to empty dictionary. """ self.results = dict() def average_results(self): """ Return the average of the currently tracked results. Returns ---------- average : dictionary Dictionary with a single value for each metric """ # Average the tracked results average = average_results(self.results) return average def get_key(self): """ Obtain the key being used for the Evaluator. Returns ---------- key : string Key to use when unpacking data and organizing results """ if self.key is None: # Default the key key = self.get_default_key() else: # Use the provided key key = self.key return key @staticmethod @abstractmethod def get_default_key(): """ Provide the default key to use in the event no key was provided. """ return NotImplementedError def unpack(self, data): """ Unpack the relevant entry for evaluation if a dictionary is provided and the entry exists. Parameters ---------- data : object Presumably either a dictionary containing ground-truth or model output, or the already-unpacked entry Returns ---------- data : object Unpacked entry or same object provided if no dictionary """ # Determine the relevant key for evaluation key = self.get_key() # Check if a dictionary was provided and if the key is in the dictionary data = tools.try_unpack_dict(data, key) return data def pre_proc(self, estimated, reference): """ Handle both dictionary input as well as relevant input for both estimated and reference data. Note: This method can be overridden in order to insert extra steps. Parameters ---------- estimated : object Dictionary containing ground-truth or the already-unpacked entry reference : object Dictionary containing model output or the already-unpacked entry Returns ---------- estimated : object Estimate relevant to the evaluation reference : object Reference relevant to the evaluation """ # Unpacked estimate and reference if dictionaries were provided estimated = self.unpack(estimated) reference = self.unpack(reference) return estimated, reference @abstractmethod def evaluate(self, estimated, reference): """ Evaluate an estimate with respect to a reference. Parameters ---------- estimated : object Estimate relevant to the evaluation or the dictionary containing it reference : object Reference relevant to the evaluation or the dictionary containing it """ return NotImplementedError def write(self, results, track=None): """ Write the results dictionary to a text file if a save directory was specified. Parameters ---------- results : dictionary Dictionary containing results of tracks arranged by metric track : string Name of the track being processed """ if self.save_dir is not None: # Determine how to name the results tag = tools.get_tag(track) if self.verbose: # Print the track name to console as a header to the results print(f'Evaluating track: {tag}') # Construct a path for the results results_path = os.path.join(self.save_dir, f'{tag}.{tools.TXT_EXT}') # Make sure all directories exist (there can be directories in the track name) os.makedirs(os.path.dirname(results_path), exist_ok=True) # Open a file at the path with writing permissions with open(results_path, 'w') as results_file: # Write the results to a text file write_results(results, results_file, self.patterns, self.verbose) def get_track_results(self, estimated, reference, track=None): """ Calculate the results, write them, and track them within the evaluator. Parameters ---------- estimated : object Estimate relevant to the evaluation or the dictionary containing it reference : object Reference relevant to the evaluation or the dictionary containing it track : string Name of the track being processed Returns ---------- results : dictionary Dictionary containing results of tracks arranged by metric """ # Make sure the estimated and reference data are unpacked estimated, reference = self.pre_proc(estimated, reference) # Calculate the results results = self.evaluate(estimated, reference) # Add the results to the tracked dictionary self.results = append_results(self.results, results) # Write the results self.write(results, track) return results def finalize(self, writer, step=0): """ Log the averaged results using TensorBoardX and reset the results tracking. Parameters ---------- writer : tensorboardX.SummaryWriter Writer object being used to log results step : int Current iteration in whatever process (e.g. training) """ # Average the currently tracked results average = self.average_results() # Log the currently tracked results log_results(average, writer, step, patterns=self.patterns, tag=tools.VAL) # Reset the tracked results self.reset_results() class ComboEvaluator(Evaluator): """ Packages multiple evaluators into one modules. """ def __init__(self, evaluators, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... evaluators : list of Evaluator All of the evaluators to run """ self.evaluators = evaluators super().__init__(None, save_dir, patterns, verbose) def reset_results(self): """ Reset tracked results of each evaluator in the collection. """ # Loop through the evaluators for evaluator in self.evaluators: # Reset the respective results dictionary so it is empty evaluator.reset_results() def average_results(self): """ Return the average of the currently tracked results across all evaluators. Returns ---------- average : dictionary Dictionary with results dictionary entries for each evaluator """ # Initialize an empty dictionary for the average results average = dict() # Loop through the evaluators for evaluator in self.evaluators: # Average the tracked results for the evaluator # and place in average results under evaluator's key results = average_results(evaluator.results) # Check if there is already an entry for the evaluator's key if tools.query_dict(average, evaluator.get_key()): # Add new entries to the results average[evaluator.get_key()].update(results) else: # Create a new entry for the results average[evaluator.get_key()] = results return average @staticmethod @abstractmethod def get_default_key(): """ This should not be called directly on a ComboEvaluator. """ return NotImplementedError @abstractmethod def evaluate(self, estimated, reference): """ This should not be called directly on a ComboEvaluator. """ return NotImplementedError def get_track_results(self, estimated, reference, track=None): """ Very similar to parent method, except file is written after results are calculated for each evaluator and packaged into a single dictionary. Parameters ---------- estimated : object Estimate relevant to the evaluation or the dictionary containing it reference : object Reference relevant to the evaluation or the dictionary containing it track : string Name of the track being processed Returns ---------- results : dictionary Dictionary containing results of tracks arranged by metric """ # Copy the raw output dictionary and use it to hold estimates results = {} # Loop through the evaluators for evaluator in self.evaluators: # Make sure the estimated and reference data are unpacked estimated_, reference_ = evaluator.pre_proc(estimated, reference) # Calculate the results new_results = evaluator.evaluate(estimated_, reference_) # Check if there is already an entry for the evaluator's key if tools.query_dict(results, evaluator.get_key()): # Add new entries to the results results[evaluator.get_key()].update(new_results) else: # Create a new entry for the results results[evaluator.get_key()] = new_results # Add the results to the tracked dictionary evaluator.results = append_results(evaluator.results, new_results) # Write the results self.write(results, track) return results class LossWrapper(Evaluator): """ Simple wrapper for tracking, writing, and logging loss. """ def __init__(self, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... """ super().__init__(key, save_dir, patterns, verbose) @staticmethod def get_default_key(): """ Default key for loss. """ return tools.KEY_LOSS def evaluate(self, estimated, reference=None): """ Simply return loss in a new results dictionary. Parameters ---------- estimated : ndarray Single loss value in a NumPy array reference : irrelevant Returns ---------- results : dict Dictionary containing loss """ # Package the results into a dictionary results = estimated return results class StackedMultipitchEvaluator(Evaluator): """ Implements an evaluator for stacked multi pitch activation maps, i.e. independent multi pitch estimations across degrees of freedom or instruments. """ def __init__(self, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... """ super().__init__(key, save_dir, patterns, verbose) @staticmethod def get_default_key(): """ Default key for multi pitch activation maps. """ return tools.KEY_MULTIPITCH def evaluate(self, estimated, reference): """ Evaluate a stacked multi pitch estimate with respect to a reference. Parameters ---------- estimated : ndarray (S x F x T) Array of multiple discrete pitch activation maps S - number of slices in stack F - number of discrete pitches T - number of frames reference : ndarray (S x F x T) Array of multiple discrete pitch activation maps Dimensions same as estimated Returns ---------- results : dict Dictionary containing precision, recall, and f-measure """ # Determine the shape necessary to flatten the last two dimensions flatten_shape = estimated.shape[:-2] + tuple([-1]) # Flatten the estimated and reference data flattened_multi_pitch_est = np.reshape(estimated, flatten_shape) flattened_multi_pitch_ref = np.reshape(reference, flatten_shape) # Determine the number of correct predictions, # where estimated activation lines up with reference num_correct = np.sum(flattened_multi_pitch_est * flattened_multi_pitch_ref, axis=-1) # Count the number of activations predicted num_predicted = np.sum(flattened_multi_pitch_est, axis=-1) # Count the number of activations referenced num_ground_truth = np.sum(flattened_multi_pitch_ref, axis=-1) # Calculate precision and recall precision = num_correct / (num_predicted + EPSILON) recall = num_correct / (num_ground_truth + EPSILON) # Calculate the f1-score using the harmonic mean formula f_measure = hmean([precision + EPSILON, recall + EPSILON]) - EPSILON # Package the results into a dictionary results = { tools.KEY_PRECISION : precision, tools.KEY_RECALL : recall, tools.KEY_F1 : f_measure } return results class MultipitchEvaluator(StackedMultipitchEvaluator): """ Implements an evaluator for multi pitch activation maps. """ def __init__(self, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... """ super().__init__(key, save_dir, patterns, verbose) def evaluate(self, estimated, reference): """ Evaluate a multi pitch estimate with respect to a reference. Parameters ---------- estimated : ndarray (F x T) Predicted discrete pitch activation map F - number of discrete pitches T - number of frames reference : ndarray (F x T) Ground-truth discrete pitch activation map Dimensions same as estimated Returns ---------- results : dict Dictionary containing precision, recall, and f-measure """ # Convert the multi pitch arrays to stacked multi pitch arrays stacked_multi_pitch_est = tools.multi_pitch_to_stacked_multi_pitch(estimated) stacked_multi_pitch_ref = tools.multi_pitch_to_stacked_multi_pitch(reference) # Call the parent class evaluate function. Multi pitch is just a special # case of stacked multi pitch, where there is only one degree of freedom results = super().evaluate(stacked_multi_pitch_est, stacked_multi_pitch_ref) # Average the results across the degree of freedom - i.e. collapse extraneous dimension results = average_results(results) return results class StackedNoteEvaluator(Evaluator): """ Implements an evaluator for stacked (independent) note estimations. """ def __init__(self, offset_ratio=None, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... offset_ratio : float Ratio of the reference note's duration used to define the offset tolerance """ super().__init__(key, save_dir, patterns, verbose) self.offset_ratio = offset_ratio @staticmethod def get_default_key(): """ Default key for notes. """ return tools.KEY_NOTES def unpack(self, data): """ Unpack notes using the default notes key rather than the specified key. Parameters ---------- data : object Presumably either a dictionary containing ground-truth or model output, or the already-unpacked notes Returns ---------- data : object Unpacked notes or same object provided if no dictionary """ # Determine the relevant key for evaluation key = self.get_default_key() # Check if a dictionary was provided and if the key is in the dictionary data = tools.try_unpack_dict(data, key) return data def evaluate(self, estimated, reference): """ Evaluate stacked note estimates with respect to a reference. Parameters ---------- estimated : dict Dictionary containing (slice -> (pitches, intervals)) pairs reference : dict Dictionary containing (slice -> (pitches, intervals)) pairs Returns ---------- results : dict Dictionary containing precision, recall, and f-measure """ # Initialize empty arrays to hold results for each degree of freedom precision, recall, f_measure = np.empty(0), np.empty(0), np.empty(0) # Loop through the stack of notes for key in estimated.keys(): # Extract the loose note groups from the stack pitches_ref, intervals_ref = estimated[key] pitches_est, intervals_est = reference[key] # Convert notes to Hertz pitches_ref = tools.notes_to_hz(pitches_ref) pitches_est = tools.notes_to_hz(pitches_est) # Calculate frame-wise precision, recall, and f1 score with or without offset p, r, f, _ = evaluate_notes(ref_intervals=intervals_ref, ref_pitches=pitches_ref, est_intervals=intervals_est, est_pitches=pitches_est, offset_ratio=self.offset_ratio) # Add the results to the respective array precision = np.append(precision, p) recall = np.append(recall, r) f_measure = np.append(f_measure, f) # Package the results into a dictionary results = { tools.KEY_PRECISION : precision, tools.KEY_RECALL : recall, tools.KEY_F1 : f_measure } return results class NoteEvaluator(StackedNoteEvaluator): """ Implements an evaluator for notes. """ def __init__(self, offset_ratio=None, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See StackedNoteEvaluator class... """ super().__init__(offset_ratio, key, save_dir, patterns, verbose) def evaluate(self, estimated, reference): """ Evaluate note estimates with respect to a reference. Parameters ---------- estimated : ndarray (N x 3) Array of estimated note intervals and pitches by row N - number of notes reference : ndarray (N x 3) Array of ground-truth note intervals and pitches by row N - number of notes Returns ---------- results : dict Dictionary containing precision, recall, and f-measure """ # Convert the batches notes to notes notes_est = tools.batched_notes_to_notes(estimated) notes_ref = tools.batched_notes_to_notes(reference) # Convert the notes to stacked notes stacked_notes_est = tools.notes_to_stacked_notes(*notes_est) stacked_notes_ref = tools.notes_to_stacked_notes(*notes_ref) # Call the parent class evaluate function results = super().evaluate(stacked_notes_est, stacked_notes_ref) # Average the results across the degree of freedom - i.e. collapse extraneous dimension results = average_results(results) return results class StackedPitchListEvaluator(Evaluator): """ Implements an evaluator for stacked (independent) pitch list estimations. This is equivalent to the discrete multi pitch evaluation protocol for discrete estimates, but is more general and works for continuous pitch estimations. """ def __init__(self, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... """ super().__init__(key, save_dir, patterns, verbose) @staticmethod def get_default_key(): """ Default key for pitch lists. """ return tools.KEY_PITCHLIST def evaluate(self, estimated, reference): """ Evaluate stacked pitch list estimates with respect to a reference. Parameters ---------- estimated : dict Dictionary containing (slice -> (times, pitch_list)) pairs reference : dict Dictionary containing (slice -> (times, pitch_list)) pairs Returns ---------- results : dict Dictionary containing precision, recall, and f-measure """ # Initialize empty arrays to hold results for each degree of freedom precision, recall, f_measure = np.empty(0), np.empty(0), np.empty(0) # Loop through the stack of pitch lists for key in estimated.keys(): # Extract the pitch lists from the stack times_ref, pitches_ref = estimated[key] times_est, pitches_est = reference[key] # Convert pitch lists to Hertz pitches_ref = tools.pitch_list_to_hz(pitches_ref) pitches_est = tools.pitch_list_to_hz(pitches_est) # Calculate frame-wise precision, recall, and f1 score for continuous pitches frame_metrics = evaluate_frames(times_ref, pitches_ref, times_est, pitches_est) # Extract observation-wise precision and recall p, r = frame_metrics['Precision'], frame_metrics['Recall'] # Calculate the f1-score using the harmonic mean formula f = hmean([p + EPSILON, r + EPSILON]) - EPSILON # Add the results to the respective array precision = np.append(precision, p) recall = np.append(recall, r) f_measure = np.append(f_measure, f) # Package the results into a dictionary results = { tools.KEY_PRECISION : precision, tools.KEY_RECALL : recall, tools.KEY_F1 : f_measure } return results class PitchListEvaluator(StackedPitchListEvaluator): """ Evaluates pitch list estimates against a reference. This is equivalent to the discrete multi pitch evaluation protocol for discrete estimates, but is more general and works for continuous pitch estimations. """ def __init__(self, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class... """ super().__init__(key, save_dir, patterns, verbose) def evaluate(self, estimated, reference): """ Evaluate pitch list estimates with respect to a reference. Parameters ---------- estimated : tuple containing times : ndarray (N) Time in seconds of beginning of each frame N - number of time samples (frames) pitch_list : list of ndarray (N x [...]) Array of pitches corresponding to notes N - number of pitch observations (frames) reference : tuple containing times : ndarray (N) Time in seconds of beginning of each frame N - number of time samples (frames) pitch_list : list of ndarray (N x [...]) Array of pitches corresponding to notes N - number of pitch observations (frames) Returns ---------- results : dict Dictionary containing precision, recall, and f-measure """ # Convert the pitch lists to stacked pitch lists stacked_pitch_list_est = tools.pitch_list_to_stacked_pitch_list(*estimated) stacked_pitch_list_ref = tools.pitch_list_to_stacked_pitch_list(*reference) # Call the parent class evaluate function results = super().evaluate(stacked_pitch_list_est, stacked_pitch_list_ref) # Average the results across the degree of freedom - i.e. collapse extraneous dimension results = average_results(results) return results class TablatureEvaluator(Evaluator): """ Implements an evaluator for tablature. """ def __init__(self, profile, key=None, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class for others... profile : InstrumentProfile (instrument.py) Instrument profile detailing experimental setup """ super().__init__(key, save_dir, patterns, verbose) self.profile = profile @staticmethod def get_default_key(): """ Default key for tablature. """ return tools.KEY_TABLATURE def pre_proc(self, estimated, reference): """ By default, we anticipate neither estimate or reference to be in stacked multi pitch format. TODO - do something similar for pitch list wrapper reference Parameters ---------- estimated : object Dictionary containing ground-truth or the already-unpacked entry reference : object Dictionary containing model output or the already-unpacked entry Returns ---------- estimated : object Estimate relevant to the evaluation reference : object Reference relevant to the evaluation """ # Unpacked estimate and reference if dictionaries were provided tablature_est, tablature_ref = super().pre_proc(estimated, reference) # Convert from tablature format to stacked multi pitch format tablature_est = tools.tablature_to_stacked_multi_pitch(tablature_est, self.profile) tablature_ref = tools.tablature_to_stacked_multi_pitch(tablature_ref, self.profile) return tablature_est, tablature_ref def evaluate(self, estimated, reference): """ Evaluate a stacked multi pitch tablature estimate with respect to a reference. Parameters ---------- estimated : ndarray (S x F x T) Array of multiple discrete pitch activation maps S - number of slices in stack F - number of discrete pitches T - number of frames reference : ndarray (S x F x T) Array of multiple discrete pitch activation maps Dimensions same as estimated Returns ---------- results : dict Dictionary containing precision, recall, f-measure, and tdr """ # Flatten the estimated and reference data along the pitch and degree-of-freedom axis flattened_tablature_est = estimated.flatten() flattened_tablature_ref = reference.flatten() # Count the number of activations predicted num_predicted = np.sum(flattened_tablature_est, axis=-1) # Count the number of activations referenced num_ground_truth = np.sum(flattened_tablature_ref, axis=-1) # Determine the number of correct tablature predictions, # where estimated activation lines up with reference num_correct_tablature = np.sum(flattened_tablature_est * flattened_tablature_ref, axis=-1) # Calculate precision and recall precision = num_correct_tablature / (num_predicted + EPSILON) recall = num_correct_tablature / (num_ground_truth + EPSILON) # Calculate the f1-score using the harmonic mean formula f_measure = hmean([precision + EPSILON, recall + EPSILON]) - EPSILON # Collapse the stacked multi pitch activations into a single representation multi_pitch_est = tools.stacked_multi_pitch_to_multi_pitch(estimated) multi_pitch_ref = tools.stacked_multi_pitch_to_multi_pitch(reference) # Flatten the estimated and reference multi pitch activations flattened_multi_pitch_est = multi_pitch_est.flatten() flattened_multi_pitch_ref = multi_pitch_ref.flatten() # Determine the number of correct predictions, # where estimated activation lines up with reference num_correct_multi_pitch = np.sum(flattened_multi_pitch_est * flattened_multi_pitch_ref, axis=-1) # Calculate the tablature disambiguation rate tdr = num_correct_tablature / (num_correct_multi_pitch + EPSILON) # Package the results into a dictionary results = { tools.KEY_PRECISION : precision, tools.KEY_RECALL : recall, tools.KEY_F1 : f_measure, tools.KEY_TDR : tdr } return results class SoftmaxAccuracy(Evaluator): """ Implements an evaluator for calculating accuracy of softmax groups. """ def __init__(self, key, save_dir=None, patterns=None, verbose=False): """ Initialize parameters for the evaluator. Parameters ---------- See Evaluator class for others... """ super().__init__(key, save_dir, patterns, verbose) @staticmethod def get_default_key(): """ A key must be provided for softmax groups accuracy. """ return NotImplementedError def evaluate(self, estimated, reference): """ Evaluate class membership estimates with respect to a reference. Parameters ---------- estimated : ndarray (S x T) Array of class membership estimates for multiple degrees of freedom (e.g. strings) S - number of degrees of freedom T - number of samples or frames reference : ndarray (S x F x T) Array of class membership ground-truth Dimensions same as estimated Returns ---------- results : dict Dictionary containing accuracy """ # Determine the number of correctly identified classes across all groups num_correct =
np.sum(estimated == reference)
numpy.sum
# Copyright (c) 2019 - The Procedural Generation for Gazebo authors # For information on the respective copyright owner see the NOTICE file # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np from ..simulation.properties import Pose from ..log import PCG_ROOT_LOGGER def circular( radius, max_theta=2 * np.pi, step_theta=None, step_radius=None, n_theta=None, n_radius=None, pose_offset=[0, 0, 0, 0, 0, 0]): poses = None assert radius > 0, \ 'Radius must be greater than zero, provided={}'.format( radius) assert max_theta >= 0 and max_theta <= 2 * np.pi, \ 'max_theta must be greater than zero and smaller' \ ' than 2 * pi, provided={}'.format(max_theta) if step_theta is not None: assert step_theta > 0, \ 'n_theta must be greater than zero, provided={}'.format( n_theta) theta = np.arange(0, max_theta + step_theta, step_theta) elif n_theta is not None: assert n_theta > 0, \ 'Number of angle samples must be greater than 0, ' \ 'provided={}'.format(n_theta) if max_theta == 2 * np.pi: m = max_theta - max_theta / n_theta else: m = max_theta theta =
np.linspace(0, m, n_theta)
numpy.linspace
import unittest import numpy as np from parameterized import parameterized_class from unittest import mock from numpy.testing import assert_array_equal from small_text.data.datasets import SklearnDataset, DatasetView from small_text.data.datasets import split_data from small_text.data.exceptions import UnsupportedOperationException from small_text.data import balanced_sampling, stratified_sampling from tests.utils.datasets import random_matrix_data from tests.utils.testing import assert_array_not_equal @parameterized_class([{'matrix_type': 'sparse', 'target_labels': 'explicit'}, {'matrix_type': 'sparse', 'target_labels': 'inferred'}, {'matrix_type': 'dense', 'target_labels': 'explicit'}, {'matrix_type': 'dense', 'target_labels': 'inferred'}]) class SklearnDatasetTest(unittest.TestCase): NUM_SAMPLES = 100 def _dataset(self, num_samples=100, return_data=False): x, y = random_matrix_data(self.matrix_type, num_samples=num_samples) if self.target_labels not in ['explicit', 'inferred']: raise ValueError('Invalid test parameter value for target_labels:' + self.target_labels) target_labels = None if self.target_labels == 'inferred' else np.unique(y) dataset = SklearnDataset(x, y, target_labels=target_labels) if return_data: return dataset, x, y else: return dataset def test_init_when_some_labels_are_none(self): x, y = random_matrix_data(self.matrix_type, num_samples=self.NUM_SAMPLES) y = y.tolist() y[0:10] = [None] * 10 y = np.array(y) if self.target_labels not in ['explicit', 'inferred']: raise ValueError('Invalid test parameter value for target_labels:' + self.target_labels) target_labels = np.array([0, 1]) if self.target_labels == 'inferred' else np.unique(y[10:]) SklearnDataset(x, y, target_labels=target_labels) def test_get_features(self): ds, x, y = self._dataset(num_samples=self.NUM_SAMPLES, return_data=True) self.assertIsNotNone(ds.y) if self.matrix_type == 'dense': assert_array_equal(x, ds.x) else: self.assertTrue((x != ds.x).nnz == 0) def test_set_features(self): ds, x, y = self._dataset(num_samples=self.NUM_SAMPLES, return_data=True) ds_new = self._dataset(num_samples=self.NUM_SAMPLES) self.assertIsNotNone(ds.y) self.assertIsNotNone(ds_new.y) if self.matrix_type == 'dense': self.assertFalse((ds.x == ds_new.x).all()) else: self.assertFalse((ds.x != ds_new.x).nnz == 0) ds.x = ds_new.x if self.matrix_type == 'dense': self.assertTrue((ds.x == ds_new.x).all()) else: self.assertTrue((ds.x != ds_new.x).nnz == 0) def test_get_labels(self): ds, _, y = self._dataset(num_samples=self.NUM_SAMPLES, return_data=True) assert_array_equal(y, ds.y) def test_set_labels(self): ds, _, y = self._dataset(num_samples=self.NUM_SAMPLES, return_data=True) ds_new, _, y_new = self._dataset(num_samples=self.NUM_SAMPLES, return_data=True) self.assertFalse((y == y_new).all()) ds.y = ds_new.y assert_array_equal(y_new, ds.y) def test_get_target_labels(self): ds = self._dataset(num_samples=self.NUM_SAMPLES) expected_target_labels = np.array([0, 1]) assert_array_equal(expected_target_labels, ds.target_labels) def test_set_target_labels(self): ds = self._dataset(num_samples=self.NUM_SAMPLES) expected_target_labels = np.array([0, 1]) assert_array_equal(expected_target_labels, ds.target_labels) new_target_labels = np.array([2, 3]) ds.target_labels = new_target_labels
assert_array_equal(new_target_labels, ds.target_labels)
numpy.testing.assert_array_equal
""" functions for image segmentation and splitting of training/test dataset """ import time import numpy as np import matplotlib.colors as colors import matplotlib as mpl # my modules import chmap.utilities.datatypes.datatypes as datatypes # machine learning modules import tensorflow as tf import matplotlib.pyplot as plt from IPython.display import clear_output from sklearn.cluster import KMeans from skimage import measure from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import Model, load_model from tensorflow.keras.layers import * def normalize(input_image): """ normalizes image :param input_image: :param input_mask: :return: """ input_image = tf.cast(input_image, tf.float32) / 255.0 # input_mask -= 1 return input_image def load_image_train(datapoint, size): input_image = tf.image.resize(datapoint, size) # input_image = tf.image.resize(datapoint, (128, 128)) # if datapoint['segmentation_mask']: # input_mask = tf.image.resize(datapoint['segmentation_mask'], size) # # input_mask = tf.image.resize(segmentation_mask, (128, 128)) if tf.random.uniform(()) > 0.5: input_image = tf.image.flip_left_right(input_image) # if input_mask: # input_mask = tf.image.flip_left_right(input_mask) # input_image = normalize(input_image) return input_image def load_image_val(datapoint): input_image = tf.image.resize(datapoint['image'], (128, 128)) input_mask = tf.image.resize(datapoint['segmentation_mask'], (128, 128)) input_image, input_mask = normalize(input_image, input_mask) return input_image, input_mask def display_sample(display_list): plt.figure(figsize=(15, 15)) title = ['Input Image', 'True Mask', 'Predicted Mask'] for i in range(len(display_list)): plt.subplot(1, len(display_list), i + 1) plt.title(title[i]) plt.imshow(tf.keras.preprocessing.image.array_to_img(display_list[i])) plt.axis('off') plt.show() def create_mask(pred_mask: tf.Tensor) -> tf.Tensor: """Return a filter mask with the top 1 predictions only. Parameters ---------- pred_mask : tf.Tensor A [IMG_SIZE, IMG_SIZE, N_CLASS] tensor. For each pixel we have N_CLASS values (vector) which represents the probability of the pixel being these classes. Example: A pixel with the vector [0.0, 0.0, 1.0] has been predicted class 2 with a probability of 100%. Returns ------- tf.Tensor A [IMG_SIZE, IMG_SIZE, 1] mask with top 1 predictions for each pixels. """ # pred_mask -> [IMG_SIZE, SIZE, N_CLASS] # 1 prediction for each class but we want the highest score only # so we use argmax pred_mask = tf.argmax(pred_mask, axis=-1) # pred_mask becomes [IMG_SIZE, IMG_SIZE] # but matplotlib needs [IMG_SIZE, IMG_SIZE, 1] pred_mask = tf.expand_dims(pred_mask, axis=-1) return pred_mask def show_predictions(sample_image=None, sample_mask=None, dataset=None, model=None, num=1): """Show a sample prediction. Parameters ---------- dataset : [type], optional [Input dataset, by default None num : int, optional Number of sample to show, by default 1 """ if dataset: for image, mask in dataset.take(num): pred_mask = model.predict(image) display_sample([image, mask, create_mask(pred_mask)]) else: # The model is expecting a tensor of the size # [BATCH_SIZE, IMG_SIZE, IMG_SIZE, 3] # but sample_image[0] is [IMG_SIZE, IMG_SIZE, 3] # and we want only 1 inference to be faster # so we add an additional dimension [1, IMG_SIZE, IMG_SIZE, 3] one_img_batch = sample_image[0][tf.newaxis, ...] # one_img_batch -> [1, IMG_SIZE, IMG_SIZE, 3] inference = model.predict(one_img_batch) # inference -> [1, IMG_SIZE, IMG_SIZE, N_CLASS] pred_mask = create_mask(inference) # pred_mask -> [1, IMG_SIZE, IMG_SIZE, 1] display_sample([sample_image[0], sample_mask[0], pred_mask[0]]) #### more advanced training class DisplayCallback(tf.keras.callbacks.Callback): def on_epoch_end(self, epoch, logs=None): clear_output(wait=True) # show_predictions() print('\nSample Prediction after epoch {}\n'.format(epoch + 1)) #### apply detection def ml_chd(model, iit_list, los_list, use_indices, inst_list): start = time.time() chd_image_list = [datatypes.CHDImage()] * len(inst_list) for inst_ind, instrument in enumerate(inst_list): if iit_list[inst_ind] is not None: # define CHD parameters image_data = iit_list[inst_ind].iit_data use_chd = use_indices[inst_ind] # ML CHD # create correct data format scalarMap = mpl.cm.ScalarMappable(norm=colors.LogNorm(vmin=1.0, vmax=np.max(image_data)), cmap='sohoeit195') colorVal = scalarMap.to_rgba(image_data, norm=True) data_x = colorVal[:, :, :3] # apply ml algorithm ml_output = model.predict(data_x[tf.newaxis, ...], verbose=1) result = (ml_output[0] > 0.1).astype(np.uint8) # use_chd = np.logical_and(image_data != -9999, result.squeeze() > 0) pred = np.zeros(shape=result.squeeze().shape) pred[use_chd] = result.squeeze()[use_chd] # pred = np.zeros(shape=ml_output.squeeze().shape) # pred[use_chd] = ml_output.squeeze()[use_chd] # chd_result = np.logical_and(pred == 1, use_chd == 1) # chd_result = chd_result.astype(int) # binary_result = np.logical_and(binary_output == 1, use_chd == 1) # binary_result = binary_result.astype(int) # create CHD image chd_image_list[inst_ind] = datatypes.create_chd_image(los_list[inst_ind], pred) chd_image_list[inst_ind].get_coordinates() # chd_binary_list[inst_ind] = datatypes.create_chd_image(los_list[inst_ind], binary_result) # chd_binary_list[inst_ind].get_coordinates() end = time.time() print("Coronal Hole Detection algorithm implemented in", end - start, "seconds.") return chd_image_list def conv2d_block(input_tensor, n_filters, kernel_size=3, batchnorm=True): """Function to add 2 convolutional layers with the parameters passed to it""" # first layer x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) # second layer x = Conv2D(filters=n_filters, kernel_size=(kernel_size, kernel_size), kernel_initializer='he_normal', padding='same')(input_tensor) if batchnorm: x = BatchNormalization()(x) x = Activation('relu')(x) return x def get_unet(input_img, n_filters=16, dropout=0.1, batchnorm=True): # Contracting Path c1 = conv2d_block(input_img, n_filters * 1, kernel_size=3, batchnorm=batchnorm) p1 = MaxPooling2D((2, 2))(c1) p1 = Dropout(dropout)(p1) c2 = conv2d_block(p1, n_filters * 2, kernel_size=3, batchnorm=batchnorm) p2 = MaxPooling2D((2, 2))(c2) p2 = Dropout(dropout)(p2) c3 = conv2d_block(p2, n_filters * 4, kernel_size=3, batchnorm=batchnorm) p3 = MaxPooling2D((2, 2))(c3) p3 = Dropout(dropout)(p3) c4 = conv2d_block(p3, n_filters * 8, kernel_size=3, batchnorm=batchnorm) p4 = MaxPooling2D((2, 2))(c4) p4 = Dropout(dropout)(p4) c5 = conv2d_block(p4, n_filters=n_filters * 16, kernel_size=3, batchnorm=batchnorm) # Expansive Path u6 = Conv2DTranspose(n_filters * 8, (3, 3), strides=(2, 2), padding='same')(c5) u6 = concatenate([u6, c4]) u6 = Dropout(dropout)(u6) c6 = conv2d_block(u6, n_filters * 8, kernel_size=3, batchnorm=batchnorm) u7 = Conv2DTranspose(n_filters * 4, (3, 3), strides=(2, 2), padding='same')(c6) u7 = concatenate([u7, c3]) u7 = Dropout(dropout)(u7) c7 = conv2d_block(u7, n_filters * 4, kernel_size=3, batchnorm=batchnorm) u8 = Conv2DTranspose(n_filters * 2, (3, 3), strides=(2, 2), padding='same')(c7) u8 = concatenate([u8, c2]) u8 = Dropout(dropout)(u8) c8 = conv2d_block(u8, n_filters * 2, kernel_size=3, batchnorm=batchnorm) u9 = Conv2DTranspose(n_filters * 1, (3, 3), strides=(2, 2), padding='same')(c8) u9 = concatenate([u9, c1]) u9 = Dropout(dropout)(u9) c9 = conv2d_block(u9, n_filters * 1, kernel_size=3, batchnorm=batchnorm) outputs = Conv2D(1, (1, 1), activation='sigmoid')(c9) model = Model(inputs=[input_img], outputs=[outputs]) return model def load_model(model_h5, IMG_SIZE=2048, N_CHANNELS=3): """ function to load keras model from hdf5 file :param model_h5: :param IMG_SIZE: :param N_CHANNELS: :return: """ input_img = Input((IMG_SIZE, IMG_SIZE, N_CHANNELS), name='img') model = get_unet(input_img, n_filters=16, dropout=0.05, batchnorm=True) model.compile(optimizer=Adam(), loss="binary_crossentropy", metrics=["accuracy"]) model.load_weights(model_h5) return model def cluster_brightness(clustered_img, org_img, n_clusters): # create average color array avg_color = [] for i in range(0, n_clusters): cluster_indices = np.where(clustered_img == i) # average per row average_color_per_row = np.average(org_img[cluster_indices], axis=0) # find average across average per row avg_color.append(average_color_per_row) return avg_color def kmeans_detection(org_map, use_data, arr, N_CLUSTERS, IMG_HEIGHT, IMG_WIDTH, map_x, map_y): optimalk = KMeans(n_clusters=N_CLUSTERS, random_state=0, init='k-means++').fit(arr) labels = optimalk.labels_ pred_clustered = labels.reshape(IMG_HEIGHT, IMG_WIDTH) # get cluster brightnesses avg_color = cluster_brightness(pred_clustered, use_data, N_CLUSTERS) color_order = np.argsort(avg_color) ### CH Detection chd_clustered = pred_clustered + 1 chd_clustered = np.where(np.logical_or(chd_clustered == color_order[0] + 1, chd_clustered == color_order[1] + 1), N_CLUSTERS + 1, 0) chd_clustered = np.where(chd_clustered == N_CLUSTERS + 1, 1, 0) # area constraint chd_labeled = measure.label(chd_clustered, connectivity=2, background=0, return_num=True) # get area chd_area = [props.area for props in measure.regionprops(chd_labeled[0])] # remove CH with less than 10 pixels in area chd_good_area = np.where(np.array(chd_area) > 25) indices = [] chd_plot = np.zeros(chd_labeled[0].shape) for val in chd_good_area[0]: val_label = val + 1 indices.append(np.logical_and(chd_labeled[0] == val_label, val in chd_good_area[0])) for idx in indices: chd_plot[idx] = chd_labeled[0][idx] + 1 #### ACTIVE REGION DETECTION # get cluster brightness ar_clustered = pred_clustered + 1 ar_clustered = np.where(ar_clustered == color_order[-1] + 1, N_CLUSTERS + 1, 0) ar_clustered =
np.where(ar_clustered == N_CLUSTERS + 1, 1, 0)
numpy.where
""" Tests for the generic MLEModel Author: <NAME> License: Simplified-BSD """ from __future__ import division, absolute_import, print_function import numpy as np import pandas as pd import os import re import warnings from statsmodels.tsa.statespace import (sarimax, varmax, kalman_filter, kalman_smoother) from statsmodels.tsa.statespace.mlemodel import MLEModel, MLEResultsWrapper from statsmodels.tsa.statespace.tools import compatibility_mode from statsmodels.datasets import nile from numpy.testing import assert_almost_equal, assert_equal, assert_allclose, assert_raises from nose.exc import SkipTest from statsmodels.tsa.statespace.tests.results import results_sarimax, results_var_misc current_path = os.path.dirname(os.path.abspath(__file__)) try: import matplotlib.pyplot as plt have_matplotlib = True except ImportError: have_matplotlib = False # Basic kwargs kwargs = { 'k_states': 1, 'design': [[1]], 'transition': [[1]], 'selection': [[1]], 'state_cov': [[1]], 'initialization': 'approximate_diffuse' } def get_dummy_mod(fit=True, pandas=False): # This tests time-varying parameters regression when in fact the parameters # are not time-varying, and in fact the regression fit is perfect endog = np.arange(100)*1.0 exog = 2*endog if pandas: index = pd.date_range('1960-01-01', periods=100, freq='MS') endog = pd.Series(endog, index=index) exog = pd.Series(exog, index=index) mod = sarimax.SARIMAX(endog, exog=exog, order=(0,0,0), time_varying_regression=True, mle_regression=False) if fit: with warnings.catch_warnings(): warnings.simplefilter("ignore") res = mod.fit(disp=-1) else: res = None return mod, res def test_wrapping(): # Test the wrapping of various Representation / KalmanFilter / # KalmanSmoother methods / attributes mod, _ = get_dummy_mod(fit=False) # Test that we can get the design matrix assert_equal(mod['design', 0, 0], 2.0 * np.arange(100)) # Test that we can set individual elements of the design matrix mod['design', 0, 0, :] = 2 assert_equal(mod.ssm['design', 0, 0, :], 2) assert_equal(mod.ssm['design'].shape, (1, 1, 100)) # Test that we can set the entire design matrix mod['design'] = [[3.]] assert_equal(mod.ssm['design', 0, 0], 3.) # (Now it's no longer time-varying, so only 2-dim) assert_equal(mod.ssm['design'].shape, (1, 1)) # Test that we can change the following properties: loglikelihood_burn, # initial_variance, tolerance assert_equal(mod.loglikelihood_burn, 1) mod.loglikelihood_burn = 0 assert_equal(mod.ssm.loglikelihood_burn, 0) assert_equal(mod.tolerance, mod.ssm.tolerance) mod.tolerance = 0.123 assert_equal(mod.ssm.tolerance, 0.123) assert_equal(mod.initial_variance, 1e10) mod.initial_variance = 1e12 assert_equal(mod.ssm.initial_variance, 1e12) # Test that we can use the following wrappers: initialization, # initialize_known, initialize_stationary, initialize_approximate_diffuse # Initialization starts off as none assert_equal(mod.initialization, None) # Since the SARIMAX model may be fully stationary or may have diffuse # elements, it uses a custom initialization by default, but it can be # overridden by users mod.initialize_state() # (The default initialization in this case is known because there is a non- # stationary state corresponding to the time-varying regression parameter) assert_equal(mod.initialization, 'known') mod.initialize_approximate_diffuse(1e5) assert_equal(mod.initialization, 'approximate_diffuse') assert_equal(mod.ssm._initial_variance, 1e5) mod.initialize_known([5.], [[40]]) assert_equal(mod.initialization, 'known') assert_equal(mod.ssm._initial_state, [5.]) assert_equal(mod.ssm._initial_state_cov, [[40]]) mod.initialize_stationary() assert_equal(mod.initialization, 'stationary') # Test that we can use the following wrapper methods: set_filter_method, # set_stability_method, set_conserve_memory, set_smoother_output # The defaults are as follows: assert_equal(mod.ssm.filter_method, kalman_filter.FILTER_CONVENTIONAL) assert_equal(mod.ssm.stability_method, kalman_filter.STABILITY_FORCE_SYMMETRY) assert_equal(mod.ssm.conserve_memory, kalman_filter.MEMORY_STORE_ALL) assert_equal(mod.ssm.smoother_output, kalman_smoother.SMOOTHER_ALL) # Now, create the Cython filter object and assert that they have # transferred correctly mod.ssm._initialize_filter() kf = mod.ssm._kalman_filter assert_equal(kf.filter_method, kalman_filter.FILTER_CONVENTIONAL) assert_equal(kf.stability_method, kalman_filter.STABILITY_FORCE_SYMMETRY) assert_equal(kf.conserve_memory, kalman_filter.MEMORY_STORE_ALL) # (the smoother object is so far not in Cython, so there is no # transferring) # Change the attributes in the model class if compatibility_mode: assert_raises(NotImplementedError, mod.set_filter_method, 100) else: mod.set_filter_method(100) mod.set_stability_method(101) mod.set_conserve_memory(102) mod.set_smoother_output(103) # Assert that the changes have occurred in the ssm class if not compatibility_mode: assert_equal(mod.ssm.filter_method, 100) assert_equal(mod.ssm.stability_method, 101) assert_equal(mod.ssm.conserve_memory, 102) assert_equal(mod.ssm.smoother_output, 103) # Assert that the changes have *not yet* occurred in the filter object assert_equal(kf.filter_method, kalman_filter.FILTER_CONVENTIONAL) assert_equal(kf.stability_method, kalman_filter.STABILITY_FORCE_SYMMETRY) assert_equal(kf.conserve_memory, kalman_filter.MEMORY_STORE_ALL) # Re-initialize the filter object (this would happen automatically anytime # loglike, filter, etc. were called) # In this case, an error will be raised since filter_method=100 is not # valid # Note: this error is only raised in the compatibility case, since the # newer filter logic checks for a valid filter mode at a different point if compatibility_mode: assert_raises(NotImplementedError, mod.ssm._initialize_filter) # Now, test the setting of the other two methods by resetting the # filter method to a valid value mod.set_filter_method(1) mod.ssm._initialize_filter() # Retrieve the new kalman filter object (a new object had to be created # due to the changing filter method) kf = mod.ssm._kalman_filter assert_equal(kf.filter_method, 1) assert_equal(kf.stability_method, 101) assert_equal(kf.conserve_memory, 102) def test_fit_misc(): true = results_sarimax.wpi1_stationary endog = np.diff(true['data'])[1:] mod = sarimax.SARIMAX(endog, order=(1,0,1), trend='c') # Test optim_hessian={'opg','oim','approx'} with warnings.catch_warnings(): warnings.simplefilter("ignore") res1 = mod.fit(method='ncg', disp=0, optim_hessian='opg', optim_complex_step=False) res2 = mod.fit(method='ncg', disp=0, optim_hessian='oim', optim_complex_step=False) # Check that the Hessians broadly result in the same optimum assert_allclose(res1.llf, res2.llf, rtol=1e-2) # Test return_params=True mod, _ = get_dummy_mod(fit=False) with warnings.catch_warnings(): warnings.simplefilter("ignore") res_params = mod.fit(disp=-1, return_params=True) # 5 digits necessary to accommodate 32-bit numpy / scipy with OpenBLAS 0.2.18 assert_almost_equal(res_params, [0, 0], 5) def test_score_misc(): mod, res = get_dummy_mod() # Test that the score function works mod.score(res.params) def test_from_formula(): assert_raises(NotImplementedError, lambda: MLEModel.from_formula(1,2,3)) def test_score_analytic_ar1(): # Test the score against the analytic score for an AR(1) model with 2 # observations # Let endog = [1, 0.5], params=[0, 1] mod = sarimax.SARIMAX([1, 0.5], order=(1,0,0)) def partial_phi(phi, sigma2): return -0.5 * (phi**2 + 2*phi*sigma2 - 1) / (sigma2 * (1 - phi**2)) def partial_sigma2(phi, sigma2): return -0.5 * (2*sigma2 + phi - 1.25) / (sigma2**2) params = np.r_[0., 2] # Compute the analytic score analytic_score = np.r_[ partial_phi(params[0], params[1]), partial_sigma2(params[0], params[1])] # Check each of the approximations, transformed parameters approx_cs = mod.score(params, transformed=True, approx_complex_step=True) assert_allclose(approx_cs, analytic_score) approx_fd = mod.score(params, transformed=True, approx_complex_step=False) assert_allclose(approx_fd, analytic_score, atol=1e-5) approx_fd_centered = ( mod.score(params, transformed=True, approx_complex_step=False, approx_centered=True)) assert_allclose(approx_fd, analytic_score, atol=1e-5) harvey_cs = mod.score(params, transformed=True, method='harvey', approx_complex_step=True) assert_allclose(harvey_cs, analytic_score) harvey_fd = mod.score(params, transformed=True, method='harvey', approx_complex_step=False) assert_allclose(harvey_fd, analytic_score, atol=1e-5) harvey_fd_centered = mod.score(params, transformed=True, method='harvey', approx_complex_step=False, approx_centered=True) assert_allclose(harvey_fd_centered, analytic_score, atol=1e-5) # Check the approximations for untransformed parameters. The analytic # check now comes from chain rule with the analytic derivative of the # transformation # if L* is the likelihood evaluated at untransformed parameters and # L is the likelihood evaluated at transformed parameters, then we have: # L*(u) = L(t(u)) # and then # L'*(u) = L'(t(u)) * t'(u) def partial_transform_phi(phi): return -1. / (1 + phi**2)**(3./2) def partial_transform_sigma2(sigma2): return 2. * sigma2 uparams = mod.untransform_params(params) analytic_score = np.dot( np.diag(np.r_[partial_transform_phi(uparams[0]), partial_transform_sigma2(uparams[1])]), np.r_[partial_phi(params[0], params[1]), partial_sigma2(params[0], params[1])]) approx_cs = mod.score(uparams, transformed=False, approx_complex_step=True) assert_allclose(approx_cs, analytic_score) approx_fd = mod.score(uparams, transformed=False, approx_complex_step=False) assert_allclose(approx_fd, analytic_score, atol=1e-5) approx_fd_centered = ( mod.score(uparams, transformed=False, approx_complex_step=False, approx_centered=True)) assert_allclose(approx_fd, analytic_score, atol=1e-5) harvey_cs = mod.score(uparams, transformed=False, method='harvey', approx_complex_step=True) assert_allclose(harvey_cs, analytic_score) harvey_fd = mod.score(uparams, transformed=False, method='harvey', approx_complex_step=False) assert_allclose(harvey_fd, analytic_score, atol=1e-5) harvey_fd_centered = mod.score(uparams, transformed=False, method='harvey', approx_complex_step=False, approx_centered=True) assert_allclose(harvey_fd_centered, analytic_score, atol=1e-5) # Check the Hessian: these approximations are not very good, particularly # when phi is close to 0 params = np.r_[0.5, 1.] def hessian(phi, sigma2): hessian = np.zeros((2,2)) hessian[0,0] = (-phi**2 - 1) / (phi**2 - 1)**2 hessian[1,0] = hessian[0,1] = -1 / (2 * sigma2**2) hessian[1,1] = (sigma2 + phi - 1.25) / sigma2**3 return hessian analytic_hessian = hessian(params[0], params[1]) with warnings.catch_warnings(): warnings.simplefilter("ignore") assert_allclose(mod._hessian_complex_step(params) * 2, analytic_hessian, atol=1e-1) assert_allclose(mod._hessian_finite_difference(params) * 2, analytic_hessian, atol=1e-1) def test_cov_params(): mod, res = get_dummy_mod() # Smoke test for each of the covariance types with warnings.catch_warnings(): warnings.simplefilter("ignore") res = mod.fit(res.params, disp=-1, cov_type='none') assert_equal(res.cov_kwds['description'], 'Covariance matrix not calculated.') res = mod.fit(res.params, disp=-1, cov_type='approx') assert_equal(res.cov_type, 'approx') assert_equal(res.cov_kwds['description'], 'Covariance matrix calculated using numerical (complex-step) differentiation.') res = mod.fit(res.params, disp=-1, cov_type='oim') assert_equal(res.cov_type, 'oim') assert_equal(res.cov_kwds['description'], 'Covariance matrix calculated using the observed information matrix (complex-step) described in Harvey (1989).') res = mod.fit(res.params, disp=-1, cov_type='opg') assert_equal(res.cov_type, 'opg') assert_equal(res.cov_kwds['description'], 'Covariance matrix calculated using the outer product of gradients (complex-step).') res = mod.fit(res.params, disp=-1, cov_type='robust') assert_equal(res.cov_type, 'robust') assert_equal(res.cov_kwds['description'], 'Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications; calculated using the observed information matrix (complex-step) described in Harvey (1989).') res = mod.fit(res.params, disp=-1, cov_type='robust_oim') assert_equal(res.cov_type, 'robust_oim') assert_equal(res.cov_kwds['description'], 'Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications; calculated using the observed information matrix (complex-step) described in Harvey (1989).') res = mod.fit(res.params, disp=-1, cov_type='robust_approx') assert_equal(res.cov_type, 'robust_approx') assert_equal(res.cov_kwds['description'], 'Quasi-maximum likelihood covariance matrix used for robustness to some misspecifications; calculated using numerical (complex-step) differentiation.') assert_raises(NotImplementedError, mod.fit, res.params, disp=-1, cov_type='invalid_cov_type') def test_transform(): # The transforms in MLEModel are noops mod = MLEModel([1,2], **kwargs) # Test direct transform, untransform assert_allclose(mod.transform_params([2, 3]), [2, 3]) assert_allclose(mod.untransform_params([2, 3]), [2, 3]) # Smoke test for transformation in `filter`, `update`, `loglike`, # `loglikeobs` mod.filter([], transformed=False) mod.update([], transformed=False) mod.loglike([], transformed=False) mod.loglikeobs([], transformed=False) # Note that mod is an SARIMAX instance, and the two parameters are # variances mod, _ = get_dummy_mod(fit=False) # Test direct transform, untransform assert_allclose(mod.transform_params([2, 3]), [4, 9]) assert_allclose(mod.untransform_params([4, 9]), [2, 3]) # Test transformation in `filter` res = mod.filter([2, 3], transformed=True) assert_allclose(res.params, [2, 3]) res = mod.filter([2, 3], transformed=False) assert_allclose(res.params, [4, 9]) def test_filter(): endog = np.array([1., 2.]) mod = MLEModel(endog, **kwargs) # Test return of ssm object res = mod.filter([], return_ssm=True) assert_equal(isinstance(res, kalman_filter.FilterResults), True) # Test return of full results object res = mod.filter([]) assert_equal(isinstance(res, MLEResultsWrapper), True) assert_equal(res.cov_type, 'opg') # Test return of full results object, specific covariance type res = mod.filter([], cov_type='oim') assert_equal(isinstance(res, MLEResultsWrapper), True) assert_equal(res.cov_type, 'oim') def test_params(): mod = MLEModel([1,2], **kwargs) # By default start_params raises NotImplementedError assert_raises(NotImplementedError, lambda: mod.start_params) # But param names are by default an empty array assert_equal(mod.param_names, []) # We can set them in the object if we want mod._start_params = [1] mod._param_names = ['a'] assert_equal(mod.start_params, [1]) assert_equal(mod.param_names, ['a']) def check_results(pandas): mod, res = get_dummy_mod(pandas=pandas) # Test fitted values assert_almost_equal(res.fittedvalues[2:], mod.endog[2:].squeeze()) # Test residuals assert_almost_equal(res.resid[2:], np.zeros(mod.nobs-2)) # Test loglikelihood_burn assert_equal(res.loglikelihood_burn, 1) def test_results(pandas=False): check_results(pandas=False) check_results(pandas=True) def test_predict(): dates = pd.date_range(start='1980-01-01', end='1981-01-01', freq='AS') endog = pd.Series([1,2], index=dates) mod = MLEModel(endog, **kwargs) res = mod.filter([]) # Test that predict with start=None, end=None does prediction with full # dataset predict = res.predict() assert_equal(predict.shape, (mod.nobs,)) assert_allclose(res.get_prediction().predicted_mean, predict) # Test a string value to the dynamic option assert_allclose(res.predict(dynamic='1981-01-01'), res.predict()) # Test an invalid date string value to the dynamic option # assert_raises(ValueError, res.predict, dynamic='1982-01-01') # Test for passing a string to predict when dates are not set mod = MLEModel([1,2], **kwargs) res = mod.filter([]) assert_raises(KeyError, res.predict, dynamic='string') def test_forecast(): # Numpy mod = MLEModel([1,2], **kwargs) res = mod.filter([]) forecast = res.forecast(steps=10) assert_allclose(forecast, np.ones((10,)) * 2) assert_allclose(res.get_forecast(steps=10).predicted_mean, forecast) # Pandas index = pd.date_range('1960-01-01', periods=2, freq='MS') mod = MLEModel(pd.Series([1,2], index=index), **kwargs) res = mod.filter([]) assert_allclose(res.forecast(steps=10), np.ones((10,)) * 2) assert_allclose(res.forecast(steps='1960-12-01'), np.ones((10,)) * 2) assert_allclose(res.get_forecast(steps=10).predicted_mean, np.ones((10,)) * 2) def test_summary(): dates = pd.date_range(start='1980-01-01', end='1984-01-01', freq='AS') endog = pd.Series([1,2,3,4,5], index=dates) mod = MLEModel(endog, **kwargs) res = mod.filter([]) # Get the summary txt = str(res.summary()) # Test res.summary when the model has dates assert_equal(re.search('Sample:\s+01-01-1980', txt) is not None, True) assert_equal(re.search('\s+- 01-01-1984', txt) is not None, True) # Test res.summary when `model_name` was not provided assert_equal(re.search('Model:\s+MLEModel', txt) is not None, True) # Smoke test that summary still works when diagnostic tests fail with warnings.catch_warnings(): warnings.simplefilter("ignore") res.filter_results._standardized_forecasts_error[:] = np.nan res.summary() res.filter_results._standardized_forecasts_error = 1 res.summary() res.filter_results._standardized_forecasts_error = 'a' res.summary() def check_endog(endog, nobs=2, k_endog=1, **kwargs): # create the model mod = MLEModel(endog, **kwargs) # the data directly available in the model is the Statsmodels version of # the data; it should be 2-dim, C-contiguous, long-shaped: # (nobs, k_endog) == (2, 1) assert_equal(mod.endog.ndim, 2) assert_equal(mod.endog.flags['C_CONTIGUOUS'], True) assert_equal(mod.endog.shape, (nobs, k_endog)) # the data in the `ssm` object is the state space version of the data; it # should be 2-dim, F-contiguous, wide-shaped (k_endog, nobs) == (1, 2) # and it should share data with mod.endog assert_equal(mod.ssm.endog.ndim, 2) assert_equal(mod.ssm.endog.flags['F_CONTIGUOUS'], True) assert_equal(mod.ssm.endog.shape, (k_endog, nobs)) assert_equal(mod.ssm.endog.base is mod.endog, True) return mod def test_basic_endog(): # Test various types of basic python endog inputs (e.g. lists, scalars...) # Check cannot call with non-array-like # fails due to checks in Statsmodels base classes assert_raises(ValueError, MLEModel, endog=1, k_states=1) assert_raises(ValueError, MLEModel, endog='a', k_states=1) assert_raises(ValueError, MLEModel, endog=True, k_states=1) # Check behavior with different types mod = MLEModel([1], **kwargs) res = mod.filter([]) assert_equal(res.filter_results.endog, [[1]]) mod = MLEModel([1.], **kwargs) res = mod.filter([]) assert_equal(res.filter_results.endog, [[1]]) mod = MLEModel([True], **kwargs) res = mod.filter([]) assert_equal(res.filter_results.endog, [[1]]) mod = MLEModel(['a'], **kwargs) # raises error due to inability coerce string to numeric assert_raises(ValueError, mod.filter, []) # Check that a different iterable tpyes give the expected result endog = [1.,2.] mod = check_endog(endog, **kwargs) mod.filter([]) endog = [[1.],[2.]] mod = check_endog(endog, **kwargs) mod.filter([]) endog = (1.,2.) mod = check_endog(endog, **kwargs) mod.filter([]) def test_numpy_endog(): # Test various types of numpy endog inputs # Check behavior of the link maintained between passed `endog` and # `mod.endog` arrays endog = np.array([1., 2.]) mod = MLEModel(endog, **kwargs) assert_equal(mod.endog.base is not mod.data.orig_endog, True) assert_equal(mod.endog.base is not endog, True) assert_equal(mod.data.orig_endog.base is not endog, True) endog[0] = 2 # there is no link to mod.endog assert_equal(mod.endog, np.r_[1, 2].reshape(2,1)) # there remains a link to mod.data.orig_endog assert_equal(mod.data.orig_endog, endog) # Check behavior with different memory layouts / shapes # Example (failure): 0-dim array endog = np.array(1.) # raises error due to len(endog) failing in Statsmodels base classes assert_raises(TypeError, check_endog, endog, **kwargs) # Example : 1-dim array, both C- and F-contiguous, length 2 endog = np.array([1.,2.]) assert_equal(endog.ndim, 1) assert_equal(endog.flags['C_CONTIGUOUS'], True) assert_equal(endog.flags['F_CONTIGUOUS'], True) assert_equal(endog.shape, (2,)) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : 2-dim array, C-contiguous, long-shaped: (nobs, k_endog) endog = np.array([1., 2.]).reshape(2, 1) assert_equal(endog.ndim, 2) assert_equal(endog.flags['C_CONTIGUOUS'], True) # On newer numpy (>= 0.10), this array is (rightly) both C and F contiguous # assert_equal(endog.flags['F_CONTIGUOUS'], False) assert_equal(endog.shape, (2, 1)) mod = check_endog(endog, **kwargs) mod.filter([]) # Example : 2-dim array, C-contiguous, wide-shaped: (k_endog, nobs) endog = np.array([1., 2.]).reshape(1, 2)
assert_equal(endog.ndim, 2)
numpy.testing.assert_equal
"""Subdivided icosahedral mesh generation""" from __future__ import print_function import numpy as np # following: http://blog.andreaskahler.com/2009/06/creating-icosphere-mesh-in-code.html # hierarchy: # Icosphere -> Triangle -> Point class IcoSphere: """ Usage: IcoSphere(level) Maximum supported level = 8 get started with: >>> A = IcoSphere(3) ... A.plot3d() """ # maximum level for subdivision of the icosahedron maxlevel = 8 def __init__(self, level): if type(level) is not int: raise TypeError('level must be an integer') elif level < 0: raise Exception('level must be no less than 0') elif level > self.maxlevel: raise Exception('level larger than ' + str(self.maxlevel) + ' not supported') self.level = level self.points = [] self.triangles = [] self.npts = 0 ################################ # initialise level 1 icosahedron ################################ # golden ration t = (1.0 + np.sqrt(5.0)) / 2.0 # add vertices self._addPoint(np.array([-1, t, 0])) self._addPoint(np.array([ 1, t, 0])) self._addPoint(np.array([-1,-t, 0])) self._addPoint(np.array([ 1,-t, 0])) self._addPoint(np.array([ 0,-1, t])) self._addPoint(np.array([ 0, 1, t])) self._addPoint(np.array([ 0,-1,-t])) self._addPoint(np.array([ 0, 1,-t])) self._addPoint(np.array([ t, 0,-1])) self._addPoint(np.array([ t, 0, 1])) self._addPoint(np.array([-t, 0,-1])) self._addPoint(np.array([-t, 0, 1])) # make triangles tris = self.triangles verts = self.points # 5 faces around point 0 tris.append(Triangle([ verts[0],verts[11], verts[5]])) tris.append(Triangle([ verts[0], verts[5], verts[1]])) tris.append(Triangle([ verts[0], verts[1], verts[7]])) tris.append(Triangle([ verts[0], verts[7],verts[10]])) tris.append(Triangle([ verts[0],verts[10],verts[11]])) # 5 adjacent faces tris.append(Triangle([ verts[1], verts[5], verts[9]])) tris.append(Triangle([ verts[5],verts[11], verts[4]])) tris.append(Triangle([verts[11],verts[10], verts[2]])) tris.append(Triangle([verts[10], verts[7], verts[6]])) tris.append(Triangle([ verts[7], verts[1], verts[8]])) # 5 faces around point 3 tris.append(Triangle([ verts[3], verts[9], verts[4]])) tris.append(Triangle([ verts[3], verts[4], verts[2]])) tris.append(Triangle([ verts[3], verts[2], verts[6]])) tris.append(Triangle([ verts[3], verts[6], verts[8]])) tris.append(Triangle([ verts[3], verts[8], verts[9]])) # 5 adjacent faces tris.append(Triangle([ verts[4], verts[9], verts[5]])) tris.append(Triangle([ verts[2], verts[4],verts[11]])) tris.append(Triangle([ verts[6], verts[2],verts[10]])) tris.append(Triangle([ verts[8], verts[6], verts[7]])) tris.append(Triangle([ verts[9], verts[8], verts[1]])) ######################################## # refine triangles to desired mesh level ######################################## for l in range(self.level): midPointDict = {} faces = [] for tri in self.triangles: # replace triangle by 4 triangles p = tri.pts a = self._getMiddlePoint(p[0], p[1], midPointDict) b = self._getMiddlePoint(p[1], p[2], midPointDict) c = self._getMiddlePoint(p[2], p[0], midPointDict) faces.append(Triangle([p[0], a, c])) faces.append(Triangle([p[1], b, a])) faces.append(Triangle([p[2], c, b])) faces.append(Triangle([a, b, c])) # once looped thru all triangles overwrite self.triangles self.triangles = faces self.nfaces = len(self.triangles) # check that npts and nfaces are as expected expected_npts = calculate_npts(self.level) expected_nfaces = calculate_nfaces(self.level) if self.npts != calculate_npts(self.level): raise Exception('npts '+str(self.npts)+' not as expected '+str(expected_npts)) elif self.nfaces != calculate_nfaces(self.level): raise Exception('nfaces '+str(self.nfaces)+' not as expected '+str(expected_nfaces)) def _addPoint(self, xyz): """Add point to self.points""" self.points.append(Point(self.npts, xyz)) self.npts += 1 def _getMiddlePoint(self, p1, p2, midPointDict): """return Point""" if not isinstance(p1, Point) or not isinstance(p2, Point): raise TypeError('p1 and p2 must be Points') # does point already exist? key = tuple(sorted([p1.idx, p2.idx])) if key in midPointDict: # point exists pass else: # point is new self._addPoint((p1.xyz + p2.xyz)/2) midPointDict[key] = self.points[-1] return midPointDict[key] def plot3d(self): """Matplotlib 3D plot of mesh""" import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() ax = fig.add_subplot(111, projection='3d') xyz = np.asarray([ pt.xyz for pt in self.points ]) x = xyz[:,0] y = xyz[:,1] z = xyz[:,2] ts = np.asarray([ [ p.idx for p in t.pts ] for t in self.triangles ]) ax.plot_trisurf(x,y,ts,z) plt.show() def dump_xyz(self): [ print(*pt.xyz) for pt in self.points ] def dump_latlonr(self): [ print(*cart2geo(*pt.xyz)) for pt in self.points ] class Triangle: """A triangle adjoining three adjacent points""" def __init__(self, pts): if not isinstance(pts, list): raise TypeError('pts must be a list') elif len(pts) !=3: raise Exception('pts must be of length 3') else: self.pts = pts class Point: """A 3D point on the mesh""" def __init__(self, idx, xyz): if type(idx) is not int: raise TypeError('idx must be an integer') elif not isinstance(xyz,np.ndarray): raise TypeError('xyz must be a numpy array') elif xyz.size != 3: raise Exception('xyz must be of size 3') else: # ensure length equals 1 and add to list of points self.xyz = (xyz/np.linalg.norm(xyz)) self.idx = idx def calculate_npts(level): n = 2**level return 2 + 10 * n**2 def calculate_nfaces(level): n = 2**level return 20 * n**2 def cart2geo(x, y, z): """convert x y z cartesian coordinates to latitude longitude radius xyz is a numpy array, a right handed co-ordinate system is assumed with -- x-axis going through the equator at 0 degrees longitude -- y-axis going through the equator at 90 degrees longitude -- z-axis going through the north pole.""" r =
np.sqrt(x**2 + y**2 + z**2)
numpy.sqrt
#!/usr/bin/env python import pytest import os import shutil import json import numpy as np import cv2 import sys import pandas as pd from plotnine import ggplot from plantcv import plantcv as pcv import plantcv.learn import plantcv.parallel import plantcv.utils # Import matplotlib and use a null Template to block plotting to screen # This will let us test debug = "plot" import matplotlib import dask from dask.distributed import Client PARALLEL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "parallel_data") TEST_TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", ".cache") TEST_IMG_DIR = "images" TEST_IMG_DIR2 = "images_w_date" TEST_SNAPSHOT_DIR = "snapshots" TEST_PIPELINE = os.path.join(PARALLEL_TEST_DATA, "plantcv-script.py") META_FIELDS = {"imgtype": 0, "camera": 1, "frame": 2, "zoom": 3, "lifter": 4, "gain": 5, "exposure": 6, "id": 7} VALID_META = { # Camera settings "camera": { "label": "camera identifier", "datatype": "<class 'str'>", "value": "none" }, "imgtype": { "label": "image type", "datatype": "<class 'str'>", "value": "none" }, "zoom": { "label": "camera zoom setting", "datatype": "<class 'str'>", "value": "none" }, "exposure": { "label": "camera exposure setting", "datatype": "<class 'str'>", "value": "none" }, "gain": { "label": "camera gain setting", "datatype": "<class 'str'>", "value": "none" }, "frame": { "label": "image series frame identifier", "datatype": "<class 'str'>", "value": "none" }, "lifter": { "label": "imaging platform height setting", "datatype": "<class 'str'>", "value": "none" }, # Date-Time "timestamp": { "label": "datetime of image", "datatype": "<class 'datetime.datetime'>", "value": None }, # Sample attributes "id": { "label": "image identifier", "datatype": "<class 'str'>", "value": "none" }, "plantbarcode": { "label": "plant barcode identifier", "datatype": "<class 'str'>", "value": "none" }, "treatment": { "label": "treatment identifier", "datatype": "<class 'str'>", "value": "none" }, "cartag": { "label": "plant carrier identifier", "datatype": "<class 'str'>", "value": "none" }, # Experiment attributes "measurementlabel": { "label": "experiment identifier", "datatype": "<class 'str'>", "value": "none" }, # Other "other": { "label": "other identifier", "datatype": "<class 'str'>", "value": "none" } } METADATA_COPROCESS = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_VIS_ONLY = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } METADATA_NIR_ONLY = { 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } # Set the temp directory for dask dask.config.set(temporary_directory=TEST_TMPDIR) # ########################## # Tests setup function # ########################## def setup_function(): if not os.path.exists(TEST_TMPDIR): os.mkdir(TEST_TMPDIR) # ############################## # Tests for the parallel subpackage # ############################## def test_plantcv_parallel_workflowconfig_save_config_file(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_save_config_file") os.mkdir(cache_dir) # Define output path/filename template_file = os.path.join(cache_dir, "config.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # Save template file config.save_config(config_file=template_file) assert os.path.exists(template_file) def test_plantcv_parallel_workflowconfig_import_config_file(): # Define input path/filename config_file = os.path.join(PARALLEL_TEST_DATA, "workflow_config_template.json") # Create config instance config = plantcv.parallel.WorkflowConfig() # import config file config.import_config(config_file=config_file) assert config.cluster == "LocalCluster" def test_plantcv_parallel_workflowconfig_validate_config(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_validate_config") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir # Validate config assert config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_startdate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_startdate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.start_date = "2020-05-10" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_enddate(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_enddate") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set valid values in config config.input_dir = os.path.join(PARALLEL_TEST_DATA, "images") config.json = os.path.join(cache_dir, "valid_config.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.end_date = "2020-05-10" config.timestampformat = "%Y%m%d" # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_metadata_terms(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_metadata_terms") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set an incorrect metadata term config.filename_metadata.append("invalid") # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_filename_metadata(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_filename_metadata") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Do not set required filename_metadata # Validate config assert not config.validate_config() def test_plantcv_parallel_workflowconfig_invalid_cluster(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_workflowconfig_invalid_cluster") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() # Set invalid values in config # input_dir and json are not defined by default, but are required # Set invalid cluster type config.cluster = "MyCluster" # Validate config assert not config.validate_config() def test_plantcv_parallel_metadata_parser_snapshots(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_snapshots_coimg(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshots_coimg", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "FAKE" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_metadata_parser_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014" config.end_date = "2014" config.timestampformat = '%Y' # no date in filename so check date range and date_format are ignored config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected config.include_all_subdirs = False meta = plantcv.parallel.metadata_parser(config=config) assert meta == expected def test_plantcv_parallel_metadata_parser_regex(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.delimiter = r'(VIS)_(SV)_(\d+)_(z1)_(h1)_(g0)_(e82)_(\d+)' meta = plantcv.parallel.metadata_parser(config=config) expected = { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'images', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': None, 'id': '117770', 'plantbarcode': 'none', 'treatment': 'none', 'cartag': 'none', 'measurementlabel': 'none', 'other': 'none'} } assert meta == expected def test_plantcv_parallel_metadata_parser_images_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_IMG_DIR2) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "timestamp"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "NIR"} config.start_date = "1970-01-01 00_00_00" config.end_date = "1970-01-01 00_00_00" config.timestampformat = "%Y-%m-%d %H_%M_%S" config.imgformat = "jpg" config.delimiter = r"(NIR)_(SV)_(\d)_(z1)_(h1)_(g0)_(e65)_(\d{4}-\d{2}-\d{2} \d{2}_\d{2}_\d{2})" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_no_default_dates(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_no_default_dates", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS", "camera": "SV", "id": "117770"} config.start_date = None config.end_date = None config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_VIS_ONLY def test_plantcv_parallel_check_date_range_wrongdateformat(): start_date = 10 end_date = 10 img_time = '2010-10-10' with pytest.raises(SystemExit, match=r'does not match format'): date_format = '%Y%m%d' _ = plantcv.parallel.check_date_range( start_date, end_date, img_time, date_format) def test_plantcv_parallel_metadata_parser_snapshot_outside_daterange(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_snapshot_outside_daterange", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" meta = plantcv.parallel.metadata_parser(config=config) assert meta == {} def test_plantcv_parallel_metadata_parser_fail_images(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_fail_images", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"cartag": "VIS"} config.start_date = "1970-01-01 00:00:00.0" config.end_date = "1970-01-01 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == METADATA_NIR_ONLY def test_plantcv_parallel_metadata_parser_images_with_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_with_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_frame(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "camera", "X", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'SV', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'SV', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': 'none', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_metadata_parser_images_no_camera(): # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_metadata_parser_images_no_frame", "output.json") config.filename_metadata = ["imgtype", "X", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.metadata_filters = {"imgtype": "VIS"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.coprocess = "NIR" meta = plantcv.parallel.metadata_parser(config=config) assert meta == { 'VIS_SV_0_z1_h1_g0_e82_117770.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'VIS_SV_0_z1_h1_g0_e82_117770.jpg'), 'camera': 'none', 'imgtype': 'VIS', 'zoom': 'z1', 'exposure': 'e82', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117770', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none', 'coimg': 'NIR_SV_0_z1_h1_g0_e65_117779.jpg' }, 'NIR_SV_0_z1_h1_g0_e65_117779.jpg': { 'path': os.path.join(PARALLEL_TEST_DATA, 'snapshots', 'snapshot57383', 'NIR_SV_0_z1_h1_g0_e65_117779.jpg'), 'camera': 'none', 'imgtype': 'NIR', 'zoom': 'z1', 'exposure': 'e65', 'gain': 'g0', 'frame': '0', 'lifter': 'h1', 'timestamp': '2014-10-22 17:49:35.187', 'id': '117779', 'plantbarcode': 'Ca031AA010564', 'treatment': 'none', 'cartag': '2143', 'measurementlabel': 'C002ch_092214_biomass', 'other': 'none' } } def test_plantcv_parallel_job_builder_single_image(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_single_image") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True jobs = plantcv.parallel.job_builder(meta=METADATA_VIS_ONLY, config=config) image_name = list(METADATA_VIS_ONLY.keys())[0] result_file = os.path.join(cache_dir, image_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', METADATA_VIS_ONLY[image_name]['path'], '--outdir', cache_dir, '--result', result_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_job_builder_coprocess(): # Create cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_job_builder_coprocess") os.mkdir(cache_dir) # Create config instance config = plantcv.parallel.WorkflowConfig() config.input_dir = os.path.join(PARALLEL_TEST_DATA, TEST_SNAPSHOT_DIR) config.json = os.path.join(cache_dir, "output.json") config.tmp_dir = cache_dir config.filename_metadata = ["imgtype", "camera", "frame", "zoom", "lifter", "gain", "exposure", "id"] config.workflow = TEST_PIPELINE config.img_outdir = cache_dir config.metadata_filters = {"imgtype": "VIS", "camera": "SV"} config.start_date = "2014-10-21 00:00:00.0" config.end_date = "2014-10-23 00:00:00.0" config.timestampformat = '%Y-%m-%d %H:%M:%S.%f' config.imgformat = "jpg" config.other_args = ["--other", "on"] config.writeimg = True config.coprocess = "NIR" jobs = plantcv.parallel.job_builder(meta=METADATA_COPROCESS, config=config) img_names = list(METADATA_COPROCESS.keys()) vis_name = img_names[0] vis_path = METADATA_COPROCESS[vis_name]['path'] result_file = os.path.join(cache_dir, vis_name + '.txt') nir_name = img_names[1] coresult_file = os.path.join(cache_dir, nir_name + '.txt') expected = ['python', TEST_PIPELINE, '--image', vis_path, '--outdir', cache_dir, '--result', result_file, '--coresult', coresult_file, '--writeimg', '--other', 'on'] if len(expected) != len(jobs[0]): assert False else: assert all([i == j] for i, j in zip(jobs[0], expected)) def test_plantcv_parallel_multiprocess_create_dask_cluster_local(): client = plantcv.parallel.create_dask_cluster(cluster="LocalCluster", cluster_config={}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster(): client = plantcv.parallel.create_dask_cluster(cluster="HTCondorCluster", cluster_config={"cores": 1, "memory": "1GB", "disk": "1GB"}) status = client.status client.shutdown() assert status == "running" def test_plantcv_parallel_multiprocess_create_dask_cluster_invalid_cluster(): with pytest.raises(ValueError): _ = plantcv.parallel.create_dask_cluster(cluster="Skynet", cluster_config={}) def test_plantcv_parallel_convert_datetime_to_unixtime(): unix_time = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m-%d") assert unix_time == 0 def test_plantcv_parallel_convert_datetime_to_unixtime_bad_strptime(): with pytest.raises(SystemExit): _ = plantcv.parallel.convert_datetime_to_unixtime(timestamp_str="1970-01-01", date_format="%Y-%m") def test_plantcv_parallel_multiprocess(): image_name = list(METADATA_VIS_ONLY.keys())[0] image_path = os.path.join(METADATA_VIS_ONLY[image_name]['path'], image_name) result_file = os.path.join(TEST_TMPDIR, image_name + '.txt') jobs = [['python', TEST_PIPELINE, '--image', image_path, '--outdir', TEST_TMPDIR, '--result', result_file, '--writeimg', '--other', 'on']] # Create a dask LocalCluster client client = Client(n_workers=1) plantcv.parallel.multiprocess(jobs, client=client) assert os.path.exists(result_file) def test_plantcv_parallel_process_results(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'appended_results.json')) # Assert that the output JSON file matches the expected output JSON file result_file = open(os.path.join(cache_dir, "appended_results.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "appended_results.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_new_output(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_new_output") os.mkdir(cache_dir) plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(cache_dir, 'new_result.json')) # Assert output matches expected values result_file = open(os.path.join(cache_dir, "new_result.json"), "r") results = json.load(result_file) result_file.close() expected_file = open(os.path.join(PARALLEL_TEST_DATA, "new_result.json")) expected = json.load(expected_file) expected_file.close() assert results == expected def test_plantcv_parallel_process_results_valid_json(): # Test when the file is a valid json file but doesn't contain expected keys with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(PARALLEL_TEST_DATA, "results"), json_file=os.path.join(PARALLEL_TEST_DATA, "valid.json")) def test_plantcv_parallel_process_results_invalid_json(): # Create a test tmp directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_parallel_process_results_invalid_json") os.mkdir(cache_dir) # Move the test data to the tmp directory shutil.copytree(os.path.join(PARALLEL_TEST_DATA, "bad_results"), os.path.join(cache_dir, "bad_results")) with pytest.raises(RuntimeError): plantcv.parallel.process_results(job_dir=os.path.join(cache_dir, "bad_results"), json_file=os.path.join(cache_dir, "bad_results", "invalid.txt")) # #################################################################################################################### # ########################################### PLANTCV MAIN PACKAGE ################################################### matplotlib.use('Template') TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") HYPERSPECTRAL_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "hyperspectral_data") HYPERSPECTRAL_DATA = "darkReference" HYPERSPECTRAL_WHITE = "darkReference_whiteReference" HYPERSPECTRAL_DARK = "darkReference_darkReference" HYPERSPECTRAL_HDR = "darkReference.hdr" HYPERSPECTRAL_MASK = "darkReference_mask.png" HYPERSPECTRAL_DATA_NO_DEFAULT = "darkReference2" HYPERSPECTRAL_HDR_NO_DEFAULT = "darkReference2.hdr" HYPERSPECTRAL_DATA_APPROX_PSEUDO = "darkReference3" HYPERSPECTRAL_HDR_APPROX_PSEUDO = "darkReference3.hdr" HYPERSPECTRAL_HDR_SMALL_RANGE = {'description': '{[HEADWALL Hyperspec III]}', 'samples': '800', 'lines': '1', 'bands': '978', 'header offset': '0', 'file type': 'ENVI Standard', 'interleave': 'bil', 'sensor type': 'Unknown', 'byte order': '0', 'default bands': '159,253,520', 'wavelength units': 'nm', 'wavelength': ['379.027', '379.663', '380.3', '380.936', '381.573', '382.209']} FLUOR_TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "photosynthesis_data") FLUOR_IMG = "PSII_PSD_supopt_temp_btx623_22_rep1.DAT" TEST_COLOR_DIM = (2056, 2454, 3) TEST_GRAY_DIM = (2056, 2454) TEST_BINARY_DIM = TEST_GRAY_DIM TEST_INPUT_COLOR = "input_color_img.jpg" TEST_INPUT_GRAY = "input_gray_img.jpg" TEST_INPUT_GRAY_SMALL = "input_gray_img_small.jpg" TEST_INPUT_BINARY = "input_binary_img.png" # Image from http://www.libpng.org/pub/png/png-OwlAlpha.html # This image may be used, edited and reproduced freely. TEST_INPUT_RGBA = "input_rgba.png" TEST_INPUT_BAYER = "bayer_img.png" TEST_INPUT_ROI_CONTOUR = "input_roi_contour.npz" TEST_INPUT_ROI_HIERARCHY = "input_roi_hierarchy.npz" TEST_INPUT_CONTOURS = "input_contours.npz" TEST_INPUT_OBJECT_CONTOURS = "input_object_contours.npz" TEST_INPUT_OBJECT_HIERARCHY = "input_object_hierarchy.npz" TEST_VIS = "VIS_SV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR = "NIR_SV_0_z300_h1_g0_e15000_v500_93059.png" TEST_VIS_TV = "VIS_TV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR_TV = "NIR_TV_0_z300_h1_g0_e15000_v500_93059.png" TEST_INPUT_MASK = "input_mask_binary.png" TEST_INPUT_MASK_OOB = "mask_outbounds.png" TEST_INPUT_MASK_RESIZE = "input_mask_resize.png" TEST_INPUT_NIR_MASK = "input_nir.png" TEST_INPUT_FDARK = "FLUO_TV_dark.png" TEST_INPUT_FDARK_LARGE = "FLUO_TV_DARK_large" TEST_INPUT_FMIN = "FLUO_TV_min.png" TEST_INPUT_FMAX = "FLUO_TV_max.png" TEST_INPUT_FMASK = "FLUO_TV_MASK.png" TEST_INPUT_GREENMAG = "input_green-magenta.jpg" TEST_INPUT_MULTI = "multi_ori_image.jpg" TEST_INPUT_MULTI_MASK = "multi_ori_mask.jpg" TEST_INPUT_MULTI_OBJECT = "roi_objects.npz" TEST_INPUT_MULTI_CONTOUR = "multi_contours.npz" TEST_INPUT_ClUSTER_CONTOUR = "clusters_i.npz" TEST_INPUT_MULTI_HIERARCHY = "multi_hierarchy.npz" TEST_INPUT_VISUALIZE_CONTOUR = "roi_objects_visualize.npz" TEST_INPUT_VISUALIZE_HIERARCHY = "roi_obj_hierarchy_visualize.npz" TEST_INPUT_VISUALIZE_CLUSTERS = "clusters_i_visualize.npz" TEST_INPUT_VISUALIZE_BACKGROUND = "visualize_background_img.png" TEST_INPUT_GENOTXT = "cluster_names.txt" TEST_INPUT_GENOTXT_TOO_MANY = "cluster_names_too_many.txt" TEST_INPUT_CROPPED = 'cropped_img.jpg' TEST_INPUT_CROPPED_MASK = 'cropped-mask.png' TEST_INPUT_MARKER = 'seed-image.jpg' TEST_INPUT_SKELETON = 'input_skeleton.png' TEST_INPUT_SKELETON_PRUNED = 'input_pruned_skeleton.png' TEST_FOREGROUND = "TEST_FOREGROUND.jpg" TEST_BACKGROUND = "TEST_BACKGROUND.jpg" TEST_PDFS = "naive_bayes_pdfs.txt" TEST_PDFS_BAD = "naive_bayes_pdfs_bad.txt" TEST_VIS_SMALL = "setaria_small_vis.png" TEST_MASK_SMALL = "setaria_small_mask.png" TEST_VIS_COMP_CONTOUR = "setaria_composed_contours.npz" TEST_ACUTE_RESULT = np.asarray([[[119, 285]], [[151, 280]], [[168, 267]], [[168, 262]], [[171, 261]], [[224, 269]], [[246, 271]], [[260, 277]], [[141, 248]], [[183, 194]], [[188, 237]], [[173, 240]], [[186, 260]], [[147, 244]], [[163, 246]], [[173, 268]], [[170, 272]], [[151, 320]], [[195, 289]], [[228, 272]], [[210, 272]], [[209, 247]], [[210, 232]]]) TEST_VIS_SMALL_PLANT = "setaria_small_plant_vis.png" TEST_MASK_SMALL_PLANT = "setaria_small_plant_mask.png" TEST_VIS_COMP_CONTOUR_SMALL_PLANT = "setaria_small_plant_composed_contours.npz" TEST_SAMPLED_RGB_POINTS = "sampled_rgb_points.txt" TEST_TARGET_IMG = "target_img.png" TEST_TARGET_IMG_WITH_HEXAGON = "target_img_w_hexagon.png" TEST_TARGET_IMG_TRIANGLE = "target_img copy.png" TEST_SOURCE1_IMG = "source1_img.png" TEST_SOURCE2_IMG = "source2_img.png" TEST_TARGET_MASK = "mask_img.png" TEST_TARGET_IMG_COLOR_CARD = "color_card_target.png" TEST_SOURCE2_MASK = "mask2_img.png" TEST_TARGET_MATRIX = "target_matrix.npz" TEST_SOURCE1_MATRIX = "source1_matrix.npz" TEST_SOURCE2_MATRIX = "source2_matrix.npz" TEST_MATRIX_B1 = "matrix_b1.npz" TEST_MATRIX_B2 = "matrix_b2.npz" TEST_TRANSFORM1 = "transformation_matrix1.npz" TEST_MATRIX_M1 = "matrix_m1.npz" TEST_MATRIX_M2 = "matrix_m2.npz" TEST_S1_CORRECTED = "source_corrected.png" TEST_SKELETON_OBJECTS = "skeleton_objects.npz" TEST_SKELETON_HIERARCHIES = "skeleton_hierarchies.npz" TEST_THERMAL_ARRAY = "thermal_img.npz" TEST_THERMAL_IMG_MASK = "thermal_img_mask.png" TEST_INPUT_THERMAL_CSV = "FLIR2600.csv" PIXEL_VALUES = "pixel_inspector_rgb_values.txt" # ########################## # Tests for the main package # ########################## @pytest.mark.parametrize("debug", ["print", "plot"]) def test_plantcv_debug(debug, tmpdir): from plantcv.plantcv._debug import _debug # Create a test tmp directory img_outdir = tmpdir.mkdir("sub") pcv.params.debug = debug img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) _debug(visual=img, filename=os.path.join(img_outdir, TEST_INPUT_COLOR)) assert True @pytest.mark.parametrize("datatype,value", [[list, []], [int, 2], [float, 2.2], [bool, True], [str, "2"], [dict, {}], [tuple, ()], [None, None]]) def test_plantcv_outputs_add_observation(datatype, value): # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=datatype, value=value, label=[]) assert outputs.observations["default"]["test"]["value"] == value def test_plantcv_outputs_add_observation_invalid_type(): # Create output instance outputs = pcv.Outputs() with pytest.raises(RuntimeError): outputs.add_observation(sample='default', variable='test', trait='test variable', method='type', scale='none', datatype=list, value=np.array([2]), label=[]) def test_plantcv_outputs_save_results_json_newfile(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_json_existing_file(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "data_results.txt") shutil.copyfile(os.path.join(TEST_DATA, "data_results.txt"), outfile) # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='test', trait='test variable', method='test', scale='none', datatype=str, value="test", label="none") outputs.save_results(filename=outfile, outformat="json") with open(outfile, "r") as fp: results = json.load(fp) assert results["observations"]["default"]["test"]["value"] == "test" def test_plantcv_outputs_save_results_csv(tmpdir): # Create a test tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.csv") testfile = os.path.join(TEST_DATA, "data_results.csv") # Create output instance outputs = pcv.Outputs() outputs.add_observation(sample='default', variable='string', trait='string variable', method='string', scale='none', datatype=str, value="string", label="none") outputs.add_observation(sample='default', variable='boolean', trait='boolean variable', method='boolean', scale='none', datatype=bool, value=True, label="none") outputs.add_observation(sample='default', variable='list', trait='list variable', method='list', scale='none', datatype=list, value=[1, 2, 3], label=[1, 2, 3]) outputs.add_observation(sample='default', variable='tuple', trait='tuple variable', method='tuple', scale='none', datatype=tuple, value=(1, 2), label=(1, 2)) outputs.add_observation(sample='default', variable='tuple_list', trait='list of tuples variable', method='tuple_list', scale='none', datatype=list, value=[(1, 2), (3, 4)], label=[1, 2]) outputs.save_results(filename=outfile, outformat="csv") with open(outfile, "r") as fp: results = fp.read() with open(testfile, "r") as fp: test_results = fp.read() assert results == test_results def test_plantcv_transform_warp_smaller(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) bimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY),-1) bimg_small = cv2.resize(bimg, (200,300)) #not sure why INTER_NEAREST doesn't preserve values bimg_small[bimg_small>0]=255 mrow, mcol = bimg_small.shape vrow, vcol, vdepth = img.shape pcv.params.debug = None mask_warped = pcv.transform.warp(bimg_small, img[:,:,2], pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) pcv.params.debug = 'plot' mask_warped_plot = pcv.transform.warp(bimg_small, img[:,:,2], pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) assert np.count_nonzero(mask_warped)==93142 assert np.count_nonzero(mask_warped_plot)==93142 def test_plantcv_transform_warp_larger(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) gimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY),-1) gimg_large = cv2.resize(gimg, (5000,7000)) mrow, mcol = gimg_large.shape vrow, vcol, vdepth = img.shape pcv.params.debug='print' mask_warped_print = pcv.transform.warp(gimg_large, img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) assert np.sum(mask_warped_print)==83103814 def test_plantcv_transform_warp_rgbimgerror(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) gimg = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY),-1) gimg_large = cv2.resize(gimg, (5000,7000)) mrow, mcol = gimg_large.shape vrow, vcol, vdepth = img.shape with pytest.raises(RuntimeError): _ = pcv.transform.warp(img, img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) def test_plantcv_transform_warp_4ptserror(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR),-1) mrow, mcol, _ = img.shape vrow, vcol, vdepth = img.shape with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,0], img, pts = [(0,0),(mcol-1,0),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(0,vrow-1)]) with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,1], img, pts = [(0,0),(mcol-1,0),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1)]) with pytest.raises(RuntimeError): _ = pcv.transform.warp(img[:,:,2], img, pts = [(0,0),(mcol-1,0),(mcol-1,mrow-1),(0,mrow-1)], refpts = [(0,0),(vcol-1,0),(vcol-1,vrow-1),(0,vrow-1),(0,vrow-1)]) def test_plantcv_acute(): # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) _ = pcv.acute(obj=np.array(([[213, 190]], [[83, 61]], [[149, 246]])), win=84, thresh=192, mask=mask) _ = pcv.acute(obj=np.array(([[3, 29]], [[31, 102]], [[161, 63]])), win=148, thresh=56, mask=mask) _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) # Test with debug = None pcv.params.debug = None _ = pcv.acute(obj=np.array(([[103, 154]], [[27, 227]], [[152, 83]])), win=35, thresh=0, mask=mask) _ = pcv.acute(obj=obj_contour, win=0, thresh=15, mask=mask) homology_pts = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask) assert all([i == j] for i, j in zip(np.shape(homology_pts), (29, 1, 2))) def test_plantcv_acute_vertex(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, label="prefix") _ = pcv.acute_vertex(obj=[], win=5, thresh=15, sep=5, img=img) _ = pcv.acute_vertex(obj=[], win=.01, thresh=.01, sep=1, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) # Test with debug = None pcv.params.debug = None acute = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(np.shape(acute), np.shape(TEST_ACUTE_RESULT))) pcv.outputs.clear() def test_plantcv_acute_vertex_bad_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) obj_contour = np.array([]) pcv.params.debug = None result = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img) assert all([i == j] for i, j in zip(result, [0, ("NA", "NA")])) pcv.outputs.clear() def test_plantcv_analyze_bound_horizontal(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_above_bound_only = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=300, label="prefix") pcv.outputs.clear() _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=100) _ = pcv.analyze_bound_horizontal(img=img_above_bound_only, obj=object_contours, mask=mask, line_position=1756) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(pcv.outputs.observations["default"]) == 7 def test_plantcv_analyze_bound_horizontal_grayscale_image(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" boundary_img1 = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=1756) assert len(np.shape(boundary_img1)) == 3 def test_plantcv_analyze_bound_horizontal_neg_y(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_horizontal") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug=None, line position that will trigger -y pcv.params.debug = "plot" _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=-1000) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=0) _ = pcv.analyze_bound_horizontal(img=img, obj=object_contours, mask=mask, line_position=2056) assert pcv.outputs.observations['default']['height_above_reference']['value'] == 713 def test_plantcv_analyze_bound_vertical(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) # Test with debug = None pcv.params.debug = None _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 def test_plantcv_analyze_bound_vertical_grayscale_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with a grayscale reference image and debug="plot" pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1000) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 94 pcv.outputs.clear() def test_plantcv_analyze_bound_vertical_neg_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug="plot", line position that will trigger -x pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=2454) assert pcv.outputs.observations['default']['width_left_reference']['value'] == 441 def test_plantcv_analyze_bound_vertical_small_x(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_bound_vertical") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") object_contours = contours_npz['arr_0'] # Test with debug='plot', line position that will trigger -x, and two channel object pcv.params.debug = "plot" _ = pcv.analyze_bound_vertical(img=img, obj=object_contours, mask=mask, line_position=1) assert pcv.outputs.observations['default']['width_right_reference']['value'] == 441 def test_plantcv_analyze_color(): # Clear previous outputs pcv.outputs.clear() # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = "print" # pcv.params.debug = "print" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="all") _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None, label="prefix") # Test with debug = "plot" # pcv.params.debug = "plot" # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='lab') _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='hsv') # _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type=None) # Test with debug = None # pcv.params.debug = None _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='rgb') assert pcv.outputs.observations['default']['hue_median']['value'] == 84.0 def test_plantcv_analyze_color_incorrect_image(): img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img_binary, mask=mask, hist_plot_type=None) # # def test_plantcv_analyze_color_bad_hist_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type='bgr') def test_plantcv_analyze_color_incorrect_hist_plot_type(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.analyze_color(rgb_img=img, mask=mask, hist_plot_type="bgr") def test_plantcv_analyze_nir(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=img, mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_nir_16bit(): # Clear previous outputs pcv.outputs.clear() # Test with debug=None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) _ = pcv.analyze_nir_intensity(gray_img=np.uint16(img), mask=mask, bins=256, histplot=True) result = len(pcv.outputs.observations['default']['nir_frequencies']['value']) assert result == 256 def test_plantcv_analyze_object(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) pcv.outputs.clear() assert len(obj_images) != 0 def test_plantcv_analyze_object_grayscale_input(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_CONTOURS), encoding="latin1") obj_contour = contours_npz['arr_0'] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 1 def test_plantcv_analyze_object_zero_slope(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:11, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[11, 10]], [[12, 10]], [[13, 10]], [[14, 10]], [[15, 10]], [[16, 10]], [[17, 10]], [[18, 10]], [[19, 10]], [[20, 10]], [[21, 10]], [[22, 10]], [[23, 10]], [[24, 10]], [[25, 10]], [[26, 10]], [[27, 10]], [[28, 10]], [[29, 10]], [[30, 10]], [[31, 10]], [[32, 10]], [[33, 10]], [[34, 10]], [[35, 10]], [[36, 10]], [[37, 10]], [[38, 10]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2d(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[0:5, 45:49, 0] = 255 img[0:5, 0:5, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[45, 1]], [[45, 2]], [[45, 3]], [[45, 4]], [[46, 4]], [[47, 4]], [[48, 4]], [[48, 3]], [[48, 2]], [[48, 1]], [[47, 1]], [[46, 1]], [[1, 1]], [[1, 2]], [[1, 3]], [[1, 4]], [[2, 4]], [[3, 4]], [[4, 4]], [[4, 3]], [[4, 2]], [[4, 1]], [[3, 1]], [[2, 1]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_longest_axis_2e(): # Test with debug = None pcv.params.debug = None # Create a test image img = np.zeros((50, 50, 3), dtype=np.uint8) img[10:15, 10:40, 0] = 255 mask = img[:, :, 0] obj_contour = np.array([[[10, 10]], [[10, 11]], [[10, 12]], [[10, 13]], [[10, 14]], [[11, 14]], [[12, 14]], [[13, 14]], [[14, 14]], [[15, 14]], [[16, 14]], [[17, 14]], [[18, 14]], [[19, 14]], [[20, 14]], [[21, 14]], [[22, 14]], [[23, 14]], [[24, 14]], [[25, 14]], [[26, 14]], [[27, 14]], [[28, 14]], [[29, 14]], [[30, 14]], [[31, 14]], [[32, 14]], [[33, 14]], [[34, 14]], [[35, 14]], [[36, 14]], [[37, 14]], [[38, 14]], [[39, 14]], [[39, 13]], [[39, 12]], [[39, 11]], [[39, 10]], [[38, 10]], [[37, 10]], [[36, 10]], [[35, 10]], [[34, 10]], [[33, 10]], [[32, 10]], [[31, 10]], [[30, 10]], [[29, 10]], [[28, 10]], [[27, 10]], [[26, 10]], [[25, 10]], [[24, 10]], [[23, 10]], [[22, 10]], [[21, 10]], [[20, 10]], [[19, 10]], [[18, 10]], [[17, 10]], [[16, 10]], [[15, 10]], [[14, 10]], [[13, 10]], [[12, 10]], [[11, 10]]], dtype=np.int32) obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert len(obj_images) != 0 def test_plantcv_analyze_object_small_contour(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_contour = [np.array([[[0, 0]], [[0, 50]], [[50, 50]], [[50, 0]]], dtype=np.int32)] obj_images = pcv.analyze_object(img=img, obj=obj_contour, mask=mask) assert obj_images is None def test_plantcv_analyze_thermal_values(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_thermal_values") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data # img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_THERMAL_IMG_MASK), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_THERMAL_ARRAY), encoding="latin1") img = contours_npz['arr_0'] pcv.params.debug = None thermal_hist = pcv.analyze_thermal_values(thermal_array=img, mask=mask, histplot=True) assert thermal_hist is not None and pcv.outputs.observations['default']['median_temp']['value'] == 33.20922 def test_plantcv_apply_mask_white(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_white") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="white") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="white") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_black(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_black") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="black") # Test with debug = None pcv.params.debug = None masked_img = pcv.apply_mask(img=img, mask=mask, mask_color="black") assert all([i == j] for i, j in zip(np.shape(masked_img), TEST_COLOR_DIM)) def test_plantcv_apply_mask_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_apply_mask_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) hyper_array = pcv.hyperspectral.read_data(filename=spectral_filename) img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.apply_mask(img=img_stacked, mask=img, mask_color="black") # Test with debug = "plot" pcv.params.debug = "plot" masked_array = pcv.apply_mask(img=hyper_array.array_data, mask=img, mask_color="black") assert np.mean(masked_array) == 13.97111260224949 def test_plantcv_apply_mask_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.apply_mask(img=img, mask=mask, mask_color="wite") def test_plantcv_auto_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=(20, 10), padding_y=(20, 10), color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.auto_crop(img=img1, obj=roi_contours[1], color='image') _ = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=2000, padding_y=2000, color='image') # Test with debug = None pcv.params.debug = None cropped = pcv.auto_crop(img=img1, obj=roi_contours[1], padding_x=20, padding_y=20, color='black') x, y, z = np.shape(img1) x1, y1, z1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_auto_crop_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='white') x, y = np.shape(gray_img) x1, y1 = np.shape(cropped) assert x > x1 def test_plantcv_auto_crop_bad_color_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x=20, padding_y=20, color='wite') def test_plantcv_auto_crop_bad_padding_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") roi_contours = [contours[arr_n] for arr_n in contours] with pytest.raises(RuntimeError): _ = pcv.auto_crop(img=gray_img, obj=roi_contours[1], padding_x="one", padding_y=20, color='white') def test_plantcv_canny_edge_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.canny_edge_detect(img=rgb_img, mask=mask, mask_color='white') _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color='black') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.canny_edge_detect(img=img, thickness=2) _ = pcv.canny_edge_detect(img=img) # Test with debug = None pcv.params.debug = None edge_img = pcv.canny_edge_detect(img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(edge_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(edge_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_canny_edge_detect_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_canny_edge_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) with pytest.raises(RuntimeError): _ = pcv.canny_edge_detect(img=img, mask=mask, mask_color="gray") def test_plantcv_closing(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.closing(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.closing(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.closing(bin_img) assert np.sum(filtered_img) == 16261860 def test_plantcv_closing_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.closing(rgb_img) def test_plantcv_cluster_contours(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierarchy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierarchy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, show_grid=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierarchy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) roi_objects = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_OBJECT), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") objs = [roi_objects[arr_n] for arr_n in roi_objects] obj_hierarchy = hierachy['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) # Test with debug = None pcv.params.debug = None clusters_i, contours, hierachy = pcv.cluster_contours(img=img1, roi_objects=objs, roi_obj_hierarchy=obj_hierarchy, nrow=4, ncol=6) lenori = len(objs) lenclust = len(clusters_i) assert lenori > lenclust def test_plantcv_cluster_contours_splitimg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] # Test with debug = None pcv.params.debug = None _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file=None, filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=[[0]], contours=[], hierarchy=np.array([[[1, -1, -1, -1]]])) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=cache_dir, file='multi', filenames=None) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names) _, _, _ = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=cluster_names_too_many) output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_cluster_contours_splitimg_grayscale(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_cluster_contours_splitimg_grayscale") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), 0) contours = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_CONTOUR), encoding="latin1") clusters = np.load(os.path.join(TEST_DATA, TEST_INPUT_ClUSTER_CONTOUR), encoding="latin1") hierachy = np.load(os.path.join(TEST_DATA, TEST_INPUT_MULTI_HIERARCHY), encoding="latin1") cluster_names = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT) cluster_names_too_many = os.path.join(TEST_DATA, TEST_INPUT_GENOTXT_TOO_MANY) roi_contours = [contours[arr_n] for arr_n in contours] cluster_contours = [clusters[arr_n] for arr_n in clusters] obj_hierarchy = hierachy['arr_0'] pcv.params.debug = None output_path, imgs, masks = pcv.cluster_contour_splitimg(img=img1, grouped_contour_indexes=cluster_contours, contours=roi_contours, hierarchy=obj_hierarchy, outdir=None, file=None, filenames=None) assert len(output_path) != 0 def test_plantcv_color_palette(): # Return a color palette colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_random(): # Return a color palette in random order pcv.params.color_sequence = "random" colors = pcv.color_palette(num=10, saved=False) assert np.shape(colors) == (10, 3) def test_plantcv_color_palette_saved(): # Return a color palette that was saved pcv.params.saved_color_scale = [[0, 0, 0], [255, 255, 255]] colors = pcv.color_palette(num=2, saved=True) assert colors == [[0, 0, 0], [255, 255, 255]] def test_plantcv_crop(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img, _, _ = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50) def test_plantcv_crop_hyperspectral(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_hyperspectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = np.ones((2056, 2454)) img_stacked = cv2.merge((img, img, img, img)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) # Test with debug = "plot" pcv.params.debug = "plot" cropped = pcv.crop(img=img_stacked, x=10, y=10, h=50, w=50) assert np.shape(cropped) == (50, 50, 4) def test_plantcv_crop_position_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), 'gray') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_three_channel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=40, y=3, v_pos="top", h_pos="right") _ = pcv.crop_position_mask(nir, mask_three_channel, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_color(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_resize = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_RESIZE)) mask_non_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "print" with bottom _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="bottom", h_pos="left") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") # Test with debug = "plot" with bottom _ = pcv.crop_position_mask(nir, mask, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="top", h_pos="left") _ = pcv.crop_position_mask(nir, mask_non_binary, x=45, y=2, v_pos="bottom", h_pos="right") _ = pcv.crop_position_mask(nir, mask_resize, x=45, y=2, v_pos="top", h_pos="left") # Test with debug = None pcv.params.debug = None newmask = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="right") assert np.sum(newmask) == 707115 def test_plantcv_crop_position_mask_bad_input_x(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=-1, y=-1, v_pos="top", h_pos="right") def test_plantcv_crop_position_mask_bad_input_vpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="below", h_pos="right") def test_plantcv_crop_position_mask_bad_input_hpos(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_crop_position_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) # Read in test data nir, path1, filename1 = pcv.readimage(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.crop_position_mask(nir, mask, x=40, y=3, v_pos="top", h_pos="starboard") def test_plantcv_dilate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_dilate") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.dilate(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None dilate_img = pcv.dilate(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(dilate_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(dilate_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_dilate_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.dilate(img, 1, 1) def test_plantcv_erode(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_erode") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.erode(gray_img=img, ksize=5, i=1) # Test with debug = None pcv.params.debug = None erode_img = pcv.erode(gray_img=img, ksize=5, i=1) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(erode_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(erode_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_erode_small_k(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(ValueError): _ = pcv.erode(img, 1, 1) def test_plantcv_distance_transform(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_distance_transform") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Test with debug = None pcv.params.debug = None distance_transform_img = pcv.distance_transform(bin_img=mask, distance_type=1, mask_size=3) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(distance_transform_img), np.shape(mask))) def test_plantcv_fatal_error(): # Verify that the fatal_error function raises a RuntimeError with pytest.raises(RuntimeError): pcv.fatal_error("Test error") def test_plantcv_fill(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill(bin_img=img, size=63632) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.fill(bin_img=img, size=63632) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill(bin_img=img, size=63632) # Assert that the output image has the dimensions of the input image # assert all([i == j] for i, j in zip(np.shape(fill_img), TEST_BINARY_DIM)) assert np.sum(fill_img) == 0 def test_plantcv_fill_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill(bin_img=img, size=1) def test_plantcv_fill_holes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.fill_holes(bin_img=img) pcv.params.debug = "plot" _ = pcv.fill_holes(bin_img=img) # Test with debug = None pcv.params.debug = None fill_img = pcv.fill_holes(bin_img=img) assert np.sum(fill_img) > np.sum(img) def test_plantcv_fill_holes_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_fill_holes_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.fill_holes(bin_img=img) def test_plantcv_find_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.find_objects(img=img, mask=mask) # Test with debug = None pcv.params.debug = None contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_find_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_find_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "plot" pcv.params.debug = "plot" contours, hierarchy = pcv.find_objects(img=img, mask=mask) # Assert the correct number of contours are found assert len(contours) == 2 def test_plantcv_flip(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_flip") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img_binary = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.flip(img=img, direction="horizontal") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.flip(img=img, direction="vertical") _ = pcv.flip(img=img_binary, direction="vertical") # Test with debug = None pcv.params.debug = None flipped_img = pcv.flip(img=img, direction="horizontal") assert all([i == j] for i, j in zip(np.shape(flipped_img), TEST_COLOR_DIM)) def test_plantcv_flip_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.flip(img=img, direction="vert") def test_plantcv_gaussian_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_gaussian_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) _ = pcv.gaussian_blur(img=img_color, ksize=(51, 51), sigma_x=0, sigma_y=None) # Test with debug = None pcv.params.debug = None gaussian_img = pcv.gaussian_blur(img=img, ksize=(51, 51), sigma_x=0, sigma_y=None) imgavg = np.average(img) gavg = np.average(gaussian_img) assert gavg != imgavg def test_plantcv_get_kernel_cross(): kernel = pcv.get_kernel(size=(3, 3), shape="cross") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_rectangle(): kernel = pcv.get_kernel(size=(3, 3), shape="rectangle") assert (kernel == np.array([[1, 1, 1], [1, 1, 1], [1, 1, 1]])).all() def test_plantcv_get_kernel_ellipse(): kernel = pcv.get_kernel(size=(3, 3), shape="ellipse") assert (kernel == np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])).all() def test_plantcv_get_kernel_bad_input_size(): with pytest.raises(ValueError): _ = pcv.get_kernel(size=(1, 1), shape="ellipse") def test_plantcv_get_kernel_bad_input_shape(): with pytest.raises(RuntimeError): _ = pcv.get_kernel(size=(3, 1), shape="square") def test_plantcv_get_nir_sv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS) nirpath1 = os.path.join(TEST_DATA, TEST_NIR) assert nirpath == nirpath1 def test_plantcv_get_nir_tv(): nirpath = pcv.get_nir(TEST_DATA, TEST_VIS_TV) nirpath1 = os.path.join(TEST_DATA, TEST_NIR_TV) assert nirpath == nirpath1 def test_plantcv_hist_equalization(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.hist_equalization(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.hist_equalization(gray_img=img) # Test with debug = None pcv.params.debug = None hist = pcv.hist_equalization(gray_img=img) histavg = np.average(hist) imgavg = np.average(img) assert histavg != imgavg def test_plantcv_hist_equalization_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hist_equalization_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), 1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.hist_equalization(gray_img=img) def test_plantcv_image_add(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_add") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.image_add(gray_img1=img1, gray_img2=img2) # Test with debug = None pcv.params.debug = None added_img = pcv.image_add(gray_img1=img1, gray_img2=img2) assert all([i == j] for i, j in zip(np.shape(added_img), TEST_BINARY_DIM)) def test_plantcv_image_subtract(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_image_sub") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = 'print' _ = pcv.image_subtract(img1, img2) # Test with debug = "plot" pcv.params.debug = 'plot' _ = pcv.image_subtract(img1, img2) # Test with debug = None pcv.params.debug = None new_img = pcv.image_subtract(img1, img2) assert np.array_equal(new_img, np.zeros(np.shape(new_img), np.uint8)) def test_plantcv_image_subtract_fail(): # read in images img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY)) # test with pytest.raises(RuntimeError): _ = pcv.image_subtract(img1, img2) def test_plantcv_invert(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_invert") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.invert(gray_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.invert(gray_img=img) # Test with debug = None pcv.params.debug = None inverted_img = pcv.invert(gray_img=img) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(inverted_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(inverted_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_landmark_reference_pt_dist(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_landmark_reference") os.mkdir(cache_dir) points_rescaled = [(0.0139, 0.2569), (0.2361, 0.2917), (0.3542, 0.3819), (0.3542, 0.4167), (0.375, 0.4236), (0.7431, 0.3681), (0.8958, 0.3542), (0.9931, 0.3125), (0.1667, 0.5139), (0.4583, 0.8889), (0.4931, 0.5903), (0.3889, 0.5694), (0.4792, 0.4306), (0.2083, 0.5417), (0.3194, 0.5278), (0.3889, 0.375), (0.3681, 0.3472), (0.2361, 0.0139), (0.5417, 0.2292), (0.7708, 0.3472), (0.6458, 0.3472), (0.6389, 0.5208), (0.6458, 0.625)] centroid_rescaled = (0.4685, 0.4945) bottomline_rescaled = (0.4685, 0.2569) _ = pcv.landmark_reference_pt_dist(points_r=[], centroid_r=('a', 'b'), bline_r=(0, 0)) _ = pcv.landmark_reference_pt_dist(points_r=[(10, 1000)], centroid_r=(10, 10), bline_r=(10, 10)) _ = pcv.landmark_reference_pt_dist(points_r=[], centroid_r=(0, 0), bline_r=(0, 0)) _ = pcv.landmark_reference_pt_dist(points_r=points_rescaled, centroid_r=centroid_rescaled, bline_r=bottomline_rescaled, label="prefix") assert len(pcv.outputs.observations['prefix'].keys()) == 8 def test_plantcv_laplace_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_laplace_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Test with debug = None pcv.params.debug = None lp_img = pcv.laplace_filter(gray_img=img, ksize=1, scale=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(lp_img), TEST_GRAY_DIM)) def test_plantcv_logical_and(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_and") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_and(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_and(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None and_img = pcv.logical_and(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(and_img), TEST_BINARY_DIM)) def test_plantcv_logical_or(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_or") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_or(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_or(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None or_img = pcv.logical_or(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(or_img), TEST_BINARY_DIM)) def test_plantcv_logical_xor(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_logical_xor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img1 = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) img2 = np.copy(img1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.logical_xor(bin_img1=img1, bin_img2=img2) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.logical_xor(bin_img1=img1, bin_img2=img2) # Test with debug = None pcv.params.debug = None xor_img = pcv.logical_xor(bin_img1=img1, bin_img2=img2) assert all([i == j] for i, j in zip(np.shape(xor_img), TEST_BINARY_DIM)) def test_plantcv_median_blur(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_median_blur") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.median_blur(gray_img=img, ksize=5) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.median_blur(gray_img=img, ksize=5) # Test with debug = None pcv.params.debug = None blur_img = pcv.median_blur(gray_img=img, ksize=5) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(blur_img), TEST_BINARY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(blur_img), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_median_blur_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_median_blur_bad_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) with pytest.raises(RuntimeError): _ = pcv.median_blur(img, 5.) def test_plantcv_naive_bayes_classifier(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_naive_bayes_classifier") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Test with debug = None pcv.params.debug = None mask = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS)) # Assert that the output image has the dimensions of the input image if all([i == j] for i, j in zip(np.shape(mask), TEST_GRAY_DIM)): # Assert that the image is binary if all([i == j] for i, j in zip(np.unique(mask), [0, 255])): assert 1 else: assert 0 else: assert 0 def test_plantcv_naive_bayes_classifier_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.naive_bayes_classifier(rgb_img=img, pdf_file=os.path.join(TEST_DATA, TEST_PDFS_BAD)) def test_plantcv_object_composition(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_object_composition") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) _ = pcv.object_composition(img=img, contours=[], hierarchy=object_hierarchy) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Test with debug = None pcv.params.debug = None contours, mask = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Assert that the objects have been combined contour_shape = np.shape(contours) # type: tuple assert contour_shape[1] == 1 def test_plantcv_object_composition_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_object_composition_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "plot" pcv.params.debug = "plot" contours, mask = pcv.object_composition(img=img, contours=object_contours, hierarchy=object_hierarchy) # Assert that the objects have been combined contour_shape = np.shape(contours) # type: tuple assert contour_shape[1] == 1 def test_plantcv_within_frame(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_within_frame") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask_ib = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK), -1) mask_oob = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MASK_OOB), -1) in_bounds_ib = pcv.within_frame(mask=mask_ib, border_width=1, label="prefix") in_bounds_oob = pcv.within_frame(mask=mask_oob, border_width=1) assert (in_bounds_ib is True and in_bounds_oob is False) def test_plantcv_within_frame_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_within_frame") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data grayscale_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) with pytest.raises(RuntimeError): _ = pcv.within_frame(grayscale_img) def test_plantcv_opening(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_closing") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) bin_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug=None pcv.params.debug = None _ = pcv.opening(gray_img) # Test with debug='plot' pcv.params.debug = 'plot' _ = pcv.opening(bin_img, np.ones((4, 4), np.uint8)) # Test with debug='print' pcv.params.debug = 'print' filtered_img = pcv.opening(bin_img) assert np.sum(filtered_img) == 16184595 def test_plantcv_opening_bad_input(): # Read in test data rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI), -1) with pytest.raises(RuntimeError): _ = pcv.opening(rgb_img) def test_plantcv_output_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_output_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=None, mask_only=False) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) _ = pcv.output_mask(img=img_color, mask=mask, filename='test.png', outdir=None, mask_only=False) # Remove tmp files in working direcctory shutil.rmtree("ori-images") shutil.rmtree("mask-images") # Test with debug = None pcv.params.debug = None imgpath, maskpath, analysis_images = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) assert all([os.path.exists(imgpath) is True, os.path.exists(maskpath) is True]) def test_plantcv_output_mask_true(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_output_mask") pcv.params.debug_outdir = cache_dir os.mkdir(cache_dir) # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.output_mask(img=img_color, mask=mask, filename='test.png', outdir=cache_dir, mask_only=True) pcv.params.debug = None imgpath, maskpath, analysis_images = pcv.output_mask(img=img, mask=mask, filename='test.png', outdir=cache_dir, mask_only=False) assert all([os.path.exists(imgpath) is True, os.path.exists(maskpath) is True]) def test_plantcv_plot_image_matplotlib_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_pseudocolor") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pimg = pcv.visualize.pseudocolor(gray_img=img, mask=mask, min_value=10, max_value=200) with pytest.raises(RuntimeError): pcv.plot_image(pimg) def test_plantcv_plot_image_plotnine(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_plot_image_plotnine") os.mkdir(cache_dir) dataset = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 2, 3, 4]}) img = ggplot(data=dataset) try: pcv.plot_image(img=img) except RuntimeError: assert False # Assert that the image was plotted without error assert True def test_plantcv_print_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR)) filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=img, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_image_bad_type(): with pytest.raises(RuntimeError): pcv.print_image(img=[], filename="/dev/null") def test_plantcv_print_image_plotnine(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_print_image_plotnine") os.mkdir(cache_dir) dataset = pd.DataFrame({'x': [1, 2, 3, 4], 'y': [1, 2, 3, 4]}) img = ggplot(data=dataset) filename = os.path.join(cache_dir, 'plantcv_print_image.png') pcv.print_image(img=img, filename=filename) # Assert that the file was created assert os.path.exists(filename) is True def test_plantcv_print_results(tmpdir): # Create a tmp directory cache_dir = tmpdir.mkdir("sub") outfile = os.path.join(cache_dir, "results.json") pcv.print_results(filename=outfile) assert os.path.exists(outfile) def test_plantcv_readimage_native(): # Test with debug = None pcv.params.debug = None _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='rgba') _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR)) img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_COLOR), mode='native') # Assert that the image name returned equals the name of the input image # Assert that the path of the image returned equals the path of the input image # Assert that the dimensions of the returned image equals the expected dimensions if img_name == TEST_INPUT_COLOR and path == TEST_DATA: if all([i == j] for i, j in zip(np.shape(img), TEST_COLOR_DIM)): assert 1 else: assert 0 else: assert 0 def test_plantcv_readimage_grayscale(): # Test with debug = None pcv.params.debug = None _, _, _ = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="grey") img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="gray") assert len(np.shape(img)) == 2 def test_plantcv_readimage_rgb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_GRAY), mode="rgb") assert len(np.shape(img)) == 3 def test_plantcv_readimage_rgba_as_rgb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_RGBA), mode="native") assert np.shape(img)[2] == 3 def test_plantcv_readimage_csv(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readimage(filename=os.path.join(TEST_DATA, TEST_INPUT_THERMAL_CSV), mode="csv") assert len(np.shape(img)) == 2 def test_plantcv_readimage_envi(): # Test with debug = None pcv.params.debug = None array_data = pcv.readimage(filename=os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA), mode="envi") if sys.version_info[0] < 3: assert len(array_data.array_type) == 8 def test_plantcv_readimage_bad_file(): with pytest.raises(RuntimeError): _ = pcv.readimage(filename=TEST_INPUT_COLOR) def test_plantcv_readbayer_default_bg(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_readbayer_default_bg") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="default") # Test with debug = "plot" pcv.params.debug = "plot" img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="default") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_bg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_edgeaware_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="edgeaware") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_bg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="BG", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_gb(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GB", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_rg(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="RG", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_variablenumbergradients_gr(): # Test with debug = None pcv.params.debug = None img, path, img_name = pcv.readbayer(filename=os.path.join(TEST_DATA, TEST_INPUT_BAYER), bayerpattern="GR", alg="variablenumbergradients") assert all([i == j] for i, j in zip(np.shape(img), (335, 400, 3))) def test_plantcv_readbayer_default_bad_input(): # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _, _, _ = pcv.readbayer(filename=os.path.join(TEST_DATA, "no-image.png"), bayerpattern="GR", alg="default") def test_plantcv_rectangle_mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rectangle_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) img_color = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="white") _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="white") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rectangle_mask(img=img_color, p1=(0, 0), p2=(2454, 2056), color="gray") # Test with debug = None pcv.params.debug = None masked, hist, contour, heir = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="black") maskedsum = np.sum(masked) imgsum = np.sum(img) assert maskedsum < imgsum def test_plantcv_rectangle_mask_bad_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rectangle_mask") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = None pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rectangle_mask(img=img, p1=(0, 0), p2=(2454, 2056), color="whit") def test_plantcv_report_size_marker_detect(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_report_size_marker_detect") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel='s', thresh=120) pcv.outputs.clear() assert len(images) != 0 def test_plantcv_report_size_marker_define(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='define', objcolor='light', thresh_channel='s', thresh=120) assert len(images) != 0 def test_plantcv_report_size_marker_grayscale_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # ROI contour roi_contour = [np.array([[[0, 0]], [[0, 49]], [[49, 49]], [[49, 0]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) # Test with debug = None pcv.params.debug = None images = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='define', objcolor='light', thresh_channel='s', thresh=120) assert len(images) != 0 def test_plantcv_report_size_marker_bad_marker_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='none', objcolor='light', thresh_channel='s', thresh=120) def test_plantcv_report_size_marker_bad_threshold_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER), -1) # ROI contour roi_contour = [np.array([[[3550, 850]], [[3550, 1349]], [[4049, 1349]], [[4049, 850]]], dtype=np.int32)] roi_hierarchy = np.array([[[-1, -1, -1, -1]]], dtype=np.int32) with pytest.raises(RuntimeError): _ = pcv.report_size_marker_area(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, marker='detect', objcolor='light', thresh_channel=None, thresh=120) def test_plantcv_rgb2gray_cmyk(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) c = pcv.rgb2gray_cmyk(rgb_img=img, channel="c") # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(c), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_cmyk_bad_channel(): # Test with debug = None pcv.params.debug = None # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): # Channel S is not in CMYK _ = pcv.rgb2gray_cmyk(rgb_img=img, channel="s") def test_plantcv_rgb2gray_hsv(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray_hsv") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Test with debug = None pcv.params.debug = None s = pcv.rgb2gray_hsv(rgb_img=img, channel="s") # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(s), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_hsv_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rgb2gray_hsv(rgb_img=img, channel="l") def test_plantcv_rgb2gray_lab(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray_lab") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Test with debug = None pcv.params.debug = None b = pcv.rgb2gray_lab(rgb_img=img, channel='b') # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(b), TEST_GRAY_DIM)) def test_plantcv_rgb2gray_lab_bad_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.rgb2gray_lab(rgb_img=img, channel="v") def test_plantcv_rgb2gray(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rgb2gray") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.rgb2gray(rgb_img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.rgb2gray(rgb_img=img) # Test with debug = None pcv.params.debug = None gray = pcv.rgb2gray(rgb_img=img) # Assert that the output image has the dimensions of the input image but is only a single channel assert all([i == j] for i, j in zip(np.shape(gray), TEST_GRAY_DIM)) def test_plantcv_roi2mask(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "plot" _ = pcv.roi.roi2mask(img=img, contour=obj_contour) pcv.params.debug = "print" mask = pcv.roi.roi2mask(img=img, contour=obj_contour) assert np.shape(mask)[0:2] == np.shape(img)[0:2] and np.sum(mask) == 255 def test_plantcv_roi_objects(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_objects") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="largest") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="partial") # Test with debug = None and roi_type = cutto pcv.params.debug = None _ = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="cutto") # Test with debug = None kept_contours, kept_hierarchy, mask, area = pcv.roi_objects(img=img, roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy, roi_type="partial") # Assert that the contours were filtered as expected assert len(kept_contours) == 1891 def test_plantcv_roi_objects_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.roi_objects(img=img, roi_type="cut", roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy) def test_plantcv_roi_objects_grayscale_input(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_objects_grayscale_input") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR), 0) roi_contour_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_CONTOUR), encoding="latin1") roi_contour = [roi_contour_npz[arr_n] for arr_n in roi_contour_npz] roi_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_ROI_HIERARCHY), encoding="latin1") roi_hierarchy = roi_hierarchy_npz['arr_0'] object_contours_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_CONTOURS), encoding="latin1") object_contours = [object_contours_npz[arr_n] for arr_n in object_contours_npz] object_hierarchy_npz = np.load(os.path.join(TEST_DATA, TEST_INPUT_OBJECT_HIERARCHY), encoding="latin1") object_hierarchy = object_hierarchy_npz['arr_0'] # Test with debug = "plot" pcv.params.debug = "plot" kept_contours, kept_hierarchy, mask, area = pcv.roi_objects(img=img, roi_type="partial", roi_contour=roi_contour, roi_hierarchy=roi_hierarchy, object_contour=object_contours, obj_hierarchy=object_hierarchy) # Assert that the contours were filtered as expected assert len(kept_contours) == 1891 def test_plantcv_rotate(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) rotated = pcv.rotate(img=img, rotation_deg=45, crop=True) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_transform_rotate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_rotate_img") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) # Test with debug = None pcv.params.debug = None rotated = pcv.transform.rotate(img=img, rotation_deg=45, crop=True) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_transform_rotate_gray(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.transform.rotate(img=img, rotation_deg=45, crop=False) # Test with debug = None pcv.params.debug = None rotated = pcv.transform.rotate(img=img, rotation_deg=45, crop=False) imgavg = np.average(img) rotateavg = np.average(rotated) assert rotateavg != imgavg def test_plantcv_scale_features(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_scale_features") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _ = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position='NA') # Test with debug = None pcv.params.debug = None points_rescaled, centroid_rescaled, bottomline_rescaled = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) assert len(points_rescaled) == 23 def test_plantcv_scale_features_bad_input(): mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.scale_features(obj=obj_contour, mask=mask, points=TEST_ACUTE_RESULT, line_position=50) assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_scharr_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_scharr_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) pcv.params.debug = "print" # Test with debug = "print" _ = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Test with debug = None pcv.params.debug = None scharr_img = pcv.scharr_filter(img=img, dx=1, dy=0, scale=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(scharr_img), TEST_GRAY_DIM)) def test_plantcv_shift_img(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_shift_img") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.shift_img(img=img, number=300, side="top") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.shift_img(img=img, number=300, side="top") # Test with debug = "plot" _ = pcv.shift_img(img=img, number=300, side="bottom") # Test with debug = "plot" _ = pcv.shift_img(img=img, number=300, side="right") # Test with debug = "plot" _ = pcv.shift_img(img=mask, number=300, side="left") # Test with debug = None pcv.params.debug = None rotated = pcv.shift_img(img=img, number=300, side="top") imgavg = np.average(img) shiftavg = np.average(rotated) assert shiftavg != imgavg def test_plantcv_shift_img_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.shift_img(img=img, number=-300, side="top") def test_plantcv_shift_img_bad_side_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) with pytest.raises(RuntimeError): pcv.params.debug = None _ = pcv.shift_img(img=img, number=300, side="starboard") def test_plantcv_sobel_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_sobel_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Test with debug = None pcv.params.debug = None sobel_img = pcv.sobel_filter(gray_img=img, dx=1, dy=0, ksize=1) # Assert that the output image has the dimensions of the input image assert all([i == j] for i, j in zip(np.shape(sobel_img), TEST_GRAY_DIM)) def test_plantcv_stdev_filter(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_sobel_filter") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY_SMALL), -1) pcv.params.debug = "plot" _ = pcv.stdev_filter(img=img, ksize=11) pcv.params.debug = "print" filter_img = pcv.stdev_filter(img=img, ksize=11) assert (np.shape(filter_img) == np.shape(img)) def test_plantcv_watershed_segmentation(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_watershed_segmentation") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_CROPPED_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10) # Test with debug = None pcv.params.debug = None _ = pcv.watershed_segmentation(rgb_img=img, mask=mask, distance=10) assert pcv.outputs.observations['default']['estimated_object_count']['value'] > 9 def test_plantcv_white_balance_gray_16bit(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_gray_16bit") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_gray_8bit(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_gray_8bit") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK)) img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_rgb(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_white_balance_rgb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER)) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 80, 80)) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='max', roi=(5, 5, 80, 80)) # Test without an ROI pcv.params.debug = None _ = pcv.white_balance(img=img, mode='hist', roi=None) # Test with debug = None white_balanced = pcv.white_balance(img=img, roi=(5, 5, 80, 80)) imgavg = np.average(img) balancedavg = np.average(white_balanced) assert balancedavg != imgavg def test_plantcv_white_balance_bad_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='hist', roi=(5, 5, 5, 5, 5)) def test_plantcv_white_balance_bad_mode_input(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MARKER)) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='histogram', roi=(5, 5, 80, 80)) def test_plantcv_white_balance_bad_input_int(): # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_NIR_MASK), -1) # Test with debug = None with pytest.raises(RuntimeError): pcv.params.debug = "plot" _ = pcv.white_balance(img=img, mode='hist', roi=(5., 5, 5, 5)) def test_plantcv_x_axis_pseudolandmarks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_x_axis_pseudolandmarks_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "print" _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img, label="prefix") _ = pcv.x_axis_pseudolandmarks(obj=np.array([[0, 0], [0, 0]]), mask=np.array([[0, 0], [0, 0]]), img=img) _ = pcv.x_axis_pseudolandmarks(obj=np.array(([[89, 222]], [[252, 39]], [[89, 207]])), mask=np.array(([[42, 161]], [[2, 47]], [[211, 222]])), img=img) _ = pcv.x_axis_pseudolandmarks(obj=(), mask=mask, img=img) # Test with debug = None pcv.params.debug = None top, bottom, center_v = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(top), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(bottom), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_v), (20, 1, 2)))]) def test_plantcv_x_axis_pseudolandmarks_small_obj(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR_SMALL_PLANT), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.x_axis_pseudolandmarks(obj=[], mask=mask, img=img) _, _, _ = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" _, _, _ = pcv.x_axis_pseudolandmarks(obj=[], mask=mask, img=img) top, bottom, center_v = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) assert all([all([i == j] for i, j in zip(np.shape(top), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(bottom), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_v), (20, 1, 2)))]) def test_plantcv_x_axis_pseudolandmarks_bad_input(): img = np.array([]) mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.x_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_x_axis_pseudolandmarks_bad_obj_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) with pytest.raises(RuntimeError): _ = pcv.x_axis_pseudolandmarks(obj=np.array([[-2, -2], [-2, -2]]), mask=np.array([[-2, -2], [-2, -2]]), img=img) def test_plantcv_y_axis_pseudolandmarks(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR), encoding="latin1") obj_contour = contours_npz['arr_0'] pcv.params.debug = "print" _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() _ = pcv.y_axis_pseudolandmarks(obj=[], mask=mask, img=img) _ = pcv.y_axis_pseudolandmarks(obj=(), mask=mask, img=img) _ = pcv.y_axis_pseudolandmarks(obj=np.array(([[89, 222]], [[252, 39]], [[89, 207]])), mask=np.array(([[42, 161]], [[2, 47]], [[211, 222]])), img=img) _ = pcv.y_axis_pseudolandmarks(obj=np.array(([[21, 11]], [[159, 155]], [[237, 11]])), mask=np.array(([[38, 54]], [[144, 169]], [[81, 137]])), img=img) # Test with debug = None pcv.params.debug = None left, right, center_h = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(left), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(right), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_h), (20, 1, 2)))]) def test_plantcv_y_axis_pseudolandmarks_small_obj(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL_PLANT), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR_SMALL_PLANT), encoding="latin1") obj_contour = contours_npz['arr_0'] # Test with debug = "print" pcv.params.debug = "print" _, _, _ = pcv.y_axis_pseudolandmarks(obj=[], mask=mask, img=img) _, _, _ = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) # Test with debug = "plot" pcv.params.debug = "plot" pcv.outputs.clear() left, right, center_h = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([all([i == j] for i, j in zip(np.shape(left), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(right), (20, 1, 2))), all([i == j] for i, j in zip(np.shape(center_h), (20, 1, 2)))]) def test_plantcv_y_axis_pseudolandmarks_bad_input(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_y_axis_pseudolandmarks_debug") os.mkdir(cache_dir) img = np.array([]) mask = np.array([]) obj_contour = np.array([]) pcv.params.debug = None result = pcv.y_axis_pseudolandmarks(obj=obj_contour, mask=mask, img=img) pcv.outputs.clear() assert all([i == j] for i, j in zip(result, [("NA", "NA"), ("NA", "NA"), ("NA", "NA")])) def test_plantcv_y_axis_pseudolandmarks_bad_obj_input(): img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL_PLANT)) with pytest.raises(RuntimeError): _ = pcv.y_axis_pseudolandmarks(obj=np.array([[-2, -2], [-2, -2]]), mask=np.array([[-2, -2], [-2, -2]]), img=img) def test_plantcv_background_subtraction(): # List to hold result of all tests. truths = [] fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) big_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Testing if background subtraction is actually still working. # This should return an array whose sum is greater than one pcv.params.debug = None fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) fgmask = pcv.background_subtraction(background_image=big_img, foreground_image=bg_img) truths.append(np.sum(fgmask) > 0) # The same foreground subtracted from itself should be 0 fgmask = pcv.background_subtraction(background_image=fg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) == 0) # The same background subtracted from itself should be 0 fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=bg_img) truths.append(np.sum(fgmask) == 0) # All of these should be true for the function to pass testing. assert (all(truths)) def test_plantcv_background_subtraction_debug(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_background_subtraction_debug") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # List to hold result of all tests. truths = [] fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) # Test with debug = "print" pcv.params.debug = "print" fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) # Test with debug = "plot" pcv.params.debug = "plot" fgmask = pcv.background_subtraction(background_image=bg_img, foreground_image=fg_img) truths.append(np.sum(fgmask) > 0) # All of these should be true for the function to pass testing. assert (all(truths)) def test_plantcv_background_subtraction_bad_img_type(): fg_color = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_gray = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND), 0) pcv.params.debug = None with pytest.raises(RuntimeError): _ = pcv.background_subtraction(background_image=bg_gray, foreground_image=fg_color) def test_plantcv_background_subtraction_different_sizes(): fg_img = cv2.imread(os.path.join(TEST_DATA, TEST_FOREGROUND)) bg_img = cv2.imread(os.path.join(TEST_DATA, TEST_BACKGROUND)) bg_shp = np.shape(bg_img) # type: tuple bg_img_resized = cv2.resize(bg_img, (int(bg_shp[0] / 2), int(bg_shp[1] / 2)), interpolation=cv2.INTER_AREA) pcv.params.debug = None fgmask = pcv.background_subtraction(background_image=bg_img_resized, foreground_image=fg_img) assert np.sum(fgmask) > 0 def test_plantcv_spatial_clustering_dbscan(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_spatial_clustering_dbscan") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = "print" _ = pcv.spatial_clustering(img, algorithm="DBSCAN", min_cluster_size=10, max_distance=None) pcv.params.debug = "plot" spmask = pcv.spatial_clustering(img, algorithm="DBSCAN", min_cluster_size=10, max_distance=None) assert len(spmask[1]) == 2 def test_plantcv_spatial_clustering_optics(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_spatial_clustering_optics") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = None spmask = pcv.spatial_clustering(img, algorithm="OPTICS", min_cluster_size=100, max_distance=5000) assert len(spmask[1]) == 2 def test_plantcv_spatial_clustering_badinput(): img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_MULTI_MASK), -1) pcv.params.debug = None with pytest.raises(NameError): _ = pcv.spatial_clustering(img, algorithm="Hydra", min_cluster_size=5, max_distance=100) # ############################## # Tests for the learn subpackage # ############################## def test_plantcv_learn_naive_bayes(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_learn_naive_bayes") os.mkdir(cache_dir) # Make image and mask directories in the cache directory imgdir = os.path.join(cache_dir, "images") maskdir = os.path.join(cache_dir, "masks") if not os.path.exists(imgdir): os.mkdir(imgdir) if not os.path.exists(maskdir): os.mkdir(maskdir) # Copy and image and mask to the image/mask directories shutil.copyfile(os.path.join(TEST_DATA, TEST_VIS_SMALL), os.path.join(imgdir, "image.png")) shutil.copyfile(os.path.join(TEST_DATA, TEST_MASK_SMALL), os.path.join(maskdir, "image.png")) # Run the naive Bayes training module outfile = os.path.join(cache_dir, "naive_bayes_pdfs.txt") plantcv.learn.naive_bayes(imgdir=imgdir, maskdir=maskdir, outfile=outfile, mkplots=True) assert os.path.exists(outfile) def test_plantcv_learn_naive_bayes_multiclass(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_learn_naive_bayes_multiclass") os.mkdir(cache_dir) # Run the naive Bayes multiclass training module outfile = os.path.join(cache_dir, "naive_bayes_multiclass_pdfs.txt") plantcv.learn.naive_bayes_multiclass(samples_file=os.path.join(TEST_DATA, TEST_SAMPLED_RGB_POINTS), outfile=outfile, mkplots=True) assert os.path.exists(outfile) # #################################### # Tests for the morphology subpackage # #################################### def test_plantcv_morphology_segment_curvature(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_curvature") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) pcv.outputs.clear() _ = pcv.morphology.segment_curvature(segmented_img, seg_objects, label="prefix") pcv.params.debug = "plot" pcv.outputs.clear() _ = pcv.morphology.segment_curvature(segmented_img, seg_objects) assert len(pcv.outputs.observations['default']['segment_curvature']['value']) == 22 def test_plantcv_morphology_check_cycles(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_branches") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) pcv.params.debug = "print" _ = pcv.morphology.check_cycles(mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.check_cycles(mask) pcv.params.debug = None _ = pcv.morphology.check_cycles(mask) assert pcv.outputs.observations['default']['num_cycles']['value'] == 1 def test_plantcv_morphology_find_branch_pts(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_branches") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.find_branch_pts(skel_img=skeleton, mask=mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.find_branch_pts(skel_img=skeleton) pcv.params.debug = None branches = pcv.morphology.find_branch_pts(skel_img=skeleton) assert np.sum(branches) == 9435 def test_plantcv_morphology_find_tips(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_tips") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.find_tips(skel_img=skeleton, mask=mask, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.find_tips(skel_img=skeleton) pcv.params.debug = None tips = pcv.morphology.find_tips(skel_img=skeleton) assert np.sum(tips) == 9435 def test_plantcv_morphology_prune(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.prune(skel_img=skeleton, size=1) pcv.params.debug = "plot" _ = pcv.morphology.prune(skel_img=skeleton, size=1, mask=skeleton) pcv.params.debug = None pruned_img, _, _ = pcv.morphology.prune(skel_img=skeleton, size=3) assert np.sum(pruned_img) < np.sum(skeleton) def test_plantcv_morphology_prune_size0(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned_img, _, _ = pcv.morphology.prune(skel_img=skeleton, size=0) assert np.sum(pruned_img) == np.sum(skeleton) def test_plantcv_morphology_iterative_prune(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_pruned") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned_img = pcv.morphology._iterative_prune(skel_img=skeleton, size=3) assert np.sum(pruned_img) < np.sum(skeleton) def test_plantcv_morphology_segment_skeleton(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_skeleton") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.segment_skeleton(skel_img=skeleton, mask=mask) pcv.params.debug = "plot" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) assert len(segment_objects) == 73 def test_plantcv_morphology_fill_segments(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_fill_segments") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_dic = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS)) obj = [] for key, val in obj_dic.items(): obj.append(val) pcv.params.debug = "print" _ = pcv.morphology.fill_segments(mask, obj, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.fill_segments(mask, obj) tests = [pcv.outputs.observations['default']['segment_area']['value'][42] == 5529, pcv.outputs.observations['default']['segment_area']['value'][20] == 5057, pcv.outputs.observations['default']['segment_area']['value'][49] == 3323] assert all(tests) def test_plantcv_morphology_fill_segments_with_stem(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_fill_segments") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) obj_dic = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS)) obj = [] for key, val in obj_dic.items(): obj.append(val) stem_obj = obj[0:4] pcv.params.debug = "print" _ = pcv.morphology.fill_segments(mask, obj, stem_obj) num_objects = len(pcv.outputs.observations['default']['leaf_area']['value']) assert num_objects == 70 def test_plantcv_morphology_segment_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_angles") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_angle(segmented_img=segmented_img, objects=segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_angle(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_angle']['value']) == 22 def test_plantcv_morphology_segment_angle_overflow(): # Clear previous outputs pcv.outputs.clear() # Don't prune, would usually give overflow error without extra if statement in segment_angle # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_angles") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_angle(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_angle']['value']) == 73 def test_plantcv_morphology_segment_euclidean_length(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_eu_length") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_eu_length']['value']) == 22 def test_plantcv_morphology_segment_euclidean_length_bad_input(): mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) skel = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = None segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skel) with pytest.raises(RuntimeError): _ = pcv.morphology.segment_euclidean_length(segmented_img, segment_objects) def test_plantcv_morphology_segment_path_length(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_path_length") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) pcv.params.debug = "print" segmented_img, segment_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) _ = pcv.morphology.segment_path_length(segmented_img, segment_objects, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_path_length(segmented_img, segment_objects) assert len(pcv.outputs.observations['default']['segment_path_length']['value']) == 22 def test_plantcv_morphology_skeletonize(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_skeletonize") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir mask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_BINARY), -1) input_skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pcv.params.debug = "print" _ = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = "plot" _ = pcv.morphology.skeletonize(mask=mask) pcv.params.debug = None skeleton = pcv.morphology.skeletonize(mask=mask) arr = np.array(skeleton == input_skeleton) assert arr.all() def test_plantcv_morphology_segment_sort(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_sort") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skeleton) pcv.params.debug = "print" _ = pcv.morphology.segment_sort(skeleton, seg_objects, mask=skeleton) pcv.params.debug = "plot" leaf_obj, stem_obj = pcv.morphology.segment_sort(skeleton, seg_objects) assert len(leaf_obj) == 36 def test_plantcv_morphology_segment_tangent_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_tangent_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) objects = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS), encoding="latin1") objs = [objects[arr_n] for arr_n in objects] pcv.params.debug = "print" _ = pcv.morphology.segment_tangent_angle(skel, objs, 2, label="prefix") pcv.params.debug = "plot" _ = pcv.morphology.segment_tangent_angle(skel, objs, 2) assert len(pcv.outputs.observations['default']['segment_tangent_angle']['value']) == 73 def test_plantcv_morphology_segment_id(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_tangent_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) objects = np.load(os.path.join(TEST_DATA, TEST_SKELETON_OBJECTS), encoding="latin1") objs = [objects[arr_n] for arr_n in objects] pcv.params.debug = "print" _ = pcv.morphology.segment_id(skel, objs) pcv.params.debug = "plot" _, labeled_img = pcv.morphology.segment_id(skel, objs, mask=skel) assert np.sum(labeled_img) > np.sum(skel) def test_plantcv_morphology_segment_insertion_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=6) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) pcv.params.debug = "plot" _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 3, label="prefix") pcv.params.debug = "print" _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 10) assert pcv.outputs.observations['default']['segment_insertion_angle']['value'][:6] == ['NA', 'NA', 'NA', 24.956918822001636, 50.7313343343401, 56.427712102130734] def test_plantcv_morphology_segment_insertion_angle_bad_stem(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=5) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) stem_obj = [leaf_obj[0], leaf_obj[10]] with pytest.raises(RuntimeError): _ = pcv.morphology.segment_insertion_angle(pruned, segmented_img, leaf_obj, stem_obj, 10) def test_plantcv_morphology_segment_combine(): skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "plot" # Test with list of IDs input _, new_objects = pcv.morphology.segment_combine([0, 1], seg_objects, skel) assert len(new_objects) + 1 == len(seg_objects) def test_plantcv_morphology_segment_combine_lists(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "print" # Test with list of lists input _, new_objects = pcv.morphology.segment_combine([[0, 1, 2], [3, 4]], seg_objects, skel) assert len(new_objects) + 3 == len(seg_objects) def test_plantcv_morphology_segment_combine_bad_input(): skel = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON_PRUNED), -1) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=skel) pcv.params.debug = "plot" with pytest.raises(RuntimeError): _, new_objects = pcv.morphology.segment_combine([0.5, 1.5], seg_objects, skel) def test_plantcv_morphology_analyze_stem(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_analyze_stem") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, segmented_img, _ = pcv.morphology.prune(skel_img=skeleton, size=6) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) leaf_obj, stem_obj = pcv.morphology.segment_sort(pruned, seg_objects) pcv.params.debug = "plot" _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj, label="prefix") pcv.params.debug = "print" _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj) assert pcv.outputs.observations['default']['stem_angle']['value'] == -12.531776428222656 def test_plantcv_morphology_analyze_stem_bad_angle(): # Clear previous outputs pcv.outputs.clear() # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_morphology_segment_insertion_angle") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir skeleton = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_SKELETON), -1) pruned, _, _ = pcv.morphology.prune(skel_img=skeleton, size=5) segmented_img, seg_objects = pcv.morphology.segment_skeleton(skel_img=pruned) _, _ = pcv.morphology.segment_sort(pruned, seg_objects) # print([stem_obj[3]]) # stem_obj = [stem_obj[3]] stem_obj = [[[[1116, 1728]], [[1116, 1]]]] _ = pcv.morphology.analyze_stem(rgb_img=segmented_img, stem_objects=stem_obj) assert pcv.outputs.observations['default']['stem_angle']['value'] == 22877334.0 # ######################################## # Tests for the hyperspectral subpackage # ######################################## def test_plantcv_hyperspectral_read_data_default(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_read_data_default") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) _ = pcv.hyperspectral.read_data(filename=spectral_filename) pcv.params.debug = "print" array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_no_default_bands(): pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_NO_DEFAULT) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_read_data_approx_pseudorgb(): pcv.params.debug = "plot" spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA_APPROX_PSEUDO) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) assert np.shape(array_data.array_data) == (1, 1600, 978) def test_plantcv_spectral_index_ndvi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ndvi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndvi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ndvi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndvi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ndvi(hsi=index_array, distance=20) def test_plantcv_spectral_index_gdvi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_gdvi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.gdvi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_gdvi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.gdvi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.gdvi(hsi=index_array, distance=20) def test_plantcv_spectral_index_savi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_savi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_savi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.savi(hsi=index_array, distance=20) def test_plantcv_spectral_index_pri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pri(hsi=index_array, distance=20) def test_plantcv_spectral_index_ari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ari(hsi=index_array, distance=20) def test_plantcv_spectral_index_ci_rededge(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ci_rededge") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ci_rededge(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ci_rededge_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ci_rededge(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ci_rededge(hsi=index_array, distance=20) def test_plantcv_spectral_index_cri550(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_cri550") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri550(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_cri550_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri550(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.cri550(hsi=index_array, distance=20) def test_plantcv_spectral_index_cri700(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_cri700") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri700(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_cri700_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.cri700(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.cri700(hsi=index_array, distance=20) def test_plantcv_spectral_index_egi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_egi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) index_array = pcv.spectral_index.egi(rgb_img=rgb_img) assert np.shape(index_array.array_data) == (2056, 2454) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_evi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_evi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.evi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_evi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.evi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.evi(hsi=index_array, distance=20) def test_plantcv_spectral_index_mari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mari(hsi=index_array, distance=20) def test_plantcv_spectral_index_mcari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mcari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mcari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mcari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mcari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mcari(hsi=index_array, distance=20) def test_plantcv_spectral_index_mtci(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_mtci") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mtci(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_mtci_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.mtci(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.mtci(hsi=index_array, distance=20) def test_plantcv_spectral_index_ndre(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_ndre") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndre(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_ndre_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.ndre(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.ndre(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_chla(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_chla") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chla(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_chla_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chla(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_chla(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_chlb(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_chlb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chlb(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_chlb_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_chlb(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_chlb(hsi=index_array, distance=20) def test_plantcv_spectral_index_psnd_car(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psnd_car") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_car(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psnd_car_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psnd_car(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psnd_car(hsi=index_array, distance=20) def test_plantcv_spectral_index_psri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_psri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_psri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.psri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.psri(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_chla(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_chla") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chla(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_chla_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chla(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_chla(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_chlb(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_chlb") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chlb(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_chlb_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_chlb(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_chlb(hsi=index_array, distance=20) def test_plantcv_spectral_index_pssr_car(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_pssr_car") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_car(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_pssr_car_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.pssr_car(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.pssr_car(hsi=index_array, distance=20) def test_plantcv_spectral_index_rgri(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_rgri") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rgri(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_rgri_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rgri(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.rgri(hsi=index_array, distance=20) def test_plantcv_spectral_index_rvsi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_rvsi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rvsi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_rvsi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.rvsi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.rvsi(hsi=index_array, distance=20) def test_plantcv_spectral_index_sipi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_sipi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sipi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_sipi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sipi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.sipi(hsi=index_array, distance=20) def test_plantcv_spectral_index_sr(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_sr") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sr(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_sr_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.sr(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.sr(hsi=index_array, distance=20) def test_plantcv_spectral_index_vari(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_vari") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vari(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_vari_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vari(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.vari(hsi=index_array, distance=20) def test_plantcv_spectral_index_vi_green(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_vi_green") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vi_green(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_vi_green_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.vi_green(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.vi_green(hsi=index_array, distance=20) def test_plantcv_spectral_index_wi(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_index_wi") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.wi(hsi=array_data, distance=20) assert np.shape(index_array.array_data) == (1, 1600) and np.nanmax(index_array.pseudo_rgb) == 255 def test_plantcv_spectral_index_wi_bad_input(): spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) pcv.params.debug = None array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.wi(hsi=array_data, distance=20) with pytest.raises(RuntimeError): _ = pcv.spectral_index.wi(hsi=index_array, distance=20) def test_plantcv_hyperspectral_analyze_spectral(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_spectral") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) mask = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) # pcv.params.debug = "plot" # _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True) # pcv.params.debug = "print" # _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True, label="prefix") pcv.params.debug = None _ = pcv.hyperspectral.analyze_spectral(array=array_data, mask=mask, histplot=True, label="prefix") assert len(pcv.outputs.observations['prefix']['spectral_frequencies']['value']) == 978 def test_plantcv_hyperspectral_analyze_index(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 # pcv.params.debug = "print" # pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) # pcv.params.debug = "plot" # pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True) assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_set_range(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_set_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, histplot=True, min_bin=0, max_bin=1) assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_auto_range(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_auto_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, min_bin="auto", max_bin="auto") assert pcv.outputs.observations['default']['mean_index_savi']['value'] > 0 def test_plantcv_hyperspectral_analyze_index_outside_range_warning(): import io from contextlib import redirect_stdout cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_analyze_index_auto_range") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = np.ones(np.shape(index_array.array_data), dtype=np.uint8) * 255 f = io.StringIO() with redirect_stdout(f): pcv.params.debug = None pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img, min_bin=.5, max_bin=.55, label="i") out = f.getvalue() # assert os.listdir(cache_dir) is 0 assert out[0:10] == 'WARNING!!!' def test_plantcv_hyperspectral_analyze_index_bad_input_mask(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK)) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img) def test_plantcv_hyperspectral_analyze_index_bad_input_index(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) index_array = pcv.spectral_index.savi(hsi=array_data, distance=801) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) index_array.array_data = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK)) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=index_array, mask=mask_img) def test_plantcv_hyperspectral_analyze_index_bad_input_datatype(): pcv.params.debug = None spectral_filename = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) array_data = pcv.hyperspectral.read_data(filename=spectral_filename) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) with pytest.raises(RuntimeError): pcv.hyperspectral.analyze_index(index_array=array_data, mask=mask_img) def test_plantcv_hyperspectral_calibrate(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_calibrate") os.mkdir(cache_dir) raw = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) white = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_WHITE) dark = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DARK) raw = pcv.hyperspectral.read_data(filename=raw) white = pcv.hyperspectral.read_data(filename=white) dark = pcv.hyperspectral.read_data(filename=dark) pcv.params.debug = "plot" _ = pcv.hyperspectral.calibrate(raw_data=raw, white_reference=white, dark_reference=dark) pcv.params.debug = "print" calibrated = pcv.hyperspectral.calibrate(raw_data=raw, white_reference=white, dark_reference=dark) assert np.shape(calibrated.array_data) == (1, 1600, 978) def test_plantcv_hyperspectral_extract_wavelength(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_hyperspectral_extract_wavelength") os.mkdir(cache_dir) spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) spectral = pcv.hyperspectral.read_data(filename=spectral) pcv.params.debug = "plot" _ = pcv.hyperspectral.extract_wavelength(spectral_data=spectral, wavelength=500) pcv.params.debug = "print" new = pcv.hyperspectral.extract_wavelength(spectral_data=spectral, wavelength=500) assert np.shape(new.array_data) == (1, 1600) def test_plantcv_hyperspectral_avg_reflectance(): spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) mask_img = cv2.imread(os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_MASK), -1) spectral = pcv.hyperspectral.read_data(filename=spectral) avg_reflect = pcv.hyperspectral._avg_reflectance(spectral, mask=mask_img) assert len(avg_reflect) == 978 def test_plantcv_hyperspectral_inverse_covariance(): spectral = os.path.join(HYPERSPECTRAL_TEST_DATA, HYPERSPECTRAL_DATA) spectral = pcv.hyperspectral.read_data(filename=spectral) inv_cov = pcv.hyperspectral._inverse_covariance(spectral) assert np.shape(inv_cov) == (978, 978) # ######################################## # Tests for the photosynthesis subpackage # ######################################## def test_plantcv_photosynthesis_read_dat(): cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_photosynthesis_read_dat") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir pcv.params.debug = "plot" fluor_filename = os.path.join(FLUOR_TEST_DATA, FLUOR_IMG) _, _, _ = pcv.photosynthesis.read_cropreporter(filename=fluor_filename) pcv.params.debug = "print" fdark, fmin, fmax = pcv.photosynthesis.read_cropreporter(filename=fluor_filename) assert np.sum(fmin) < np.sum(fmax) def test_plantcv_photosynthesis_analyze_fvfm(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # filename = os.path.join(cache_dir, 'plantcv_fvfm_hist.png') # Read in test data fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) # Test with debug = "print" pcv.params.debug = "print" _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000, label="prefix") # Test with debug = "plot" pcv.params.debug = "plot" fvfm_images = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) assert len(fvfm_images) != 0 def test_plantcv_photosynthesis_analyze_fvfm_print_analysis_results(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) result_file = os.path.join(cache_dir, "results.txt") pcv.print_results(result_file) pcv.outputs.clear() assert os.path.exists(result_file) def test_plantcv_photosynthesis_analyze_fvfm_bad_fdark(): # Clear previous outputs pcv.outputs.clear() cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_analyze_fvfm") os.mkdir(cache_dir) pcv.params.debug_outdir = cache_dir # Read in test data fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FDARK), -1) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark + 3000, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) check = pcv.outputs.observations['default']['fdark_passed_qc']['value'] is False assert check def test_plantcv_photosynthesis_analyze_fvfm_bad_input(): fdark = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) fmin = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMIN), -1) fmax = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMAX), -1) fmask = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_FMASK), -1) with pytest.raises(RuntimeError): _ = pcv.photosynthesis.analyze_fvfm(fdark=fdark, fmin=fmin, fmax=fmax, mask=fmask, bins=1000) # ############################## # Tests for the roi subpackage # ############################## def test_plantcv_roi_from_binary_image(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_from_binary_image") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Create a binary image bin_img = np.zeros(np.shape(rgb_img)[0:2], dtype=np.uint8) cv2.rectangle(bin_img, (100, 100), (1000, 1000), 255, -1) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.from_binary_image(bin_img=bin_img, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 3600, 1, 2) def test_plantcv_roi_from_binary_image_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Create a binary image bin_img = np.zeros(np.shape(gray_img)[0:2], dtype=np.uint8) cv2.rectangle(bin_img, (100, 100), (1000, 1000), 255, -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.from_binary_image(bin_img=bin_img, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 3600, 1, 2) def test_plantcv_roi_from_binary_image_bad_binary_input(): # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Binary input is required but an RGB input is provided with pytest.raises(RuntimeError): _, _ = pcv.roi.from_binary_image(bin_img=rgb_img, img=rgb_img) def test_plantcv_roi_rectangle(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_roi_rectangle") os.mkdir(cache_dir) # Read in test RGB image rgb_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_COLOR)) # Test with debug = "print" pcv.params.debug = "print" pcv.params.debug_outdir = cache_dir _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Test with debug = "plot" pcv.params.debug = "plot" _, _ = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Test with debug = None pcv.params.debug = None roi_contour, roi_hierarchy = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=rgb_img) # Assert the contours and hierarchy lists contain only the ROI assert np.shape(roi_contour) == (1, 4, 1, 2) def test_plantcv_roi_rectangle_grayscale_input(): # Read in a test grayscale image gray_img = cv2.imread(os.path.join(TEST_DATA, TEST_INPUT_GRAY), -1) # Test with debug = "plot" pcv.params.debug = "plot" roi_contour, roi_hierarchy = pcv.roi.rectangle(x=100, y=100, h=500, w=500, img=gray_img) # Assert the contours and hierarchy lists contain only the ROI assert
np.shape(roi_contour)
numpy.shape
import numpy as np import os import random import cv2 def load_imgpath_labels(filename, labels_num=1, shuffle=True): imgpath=[] labels=[] with open(os.path.join(filename)) as f: lines_list = f.readlines() if shuffle: random.shuffle(lines_list) for lines in lines_list: line = lines.rstrip().split(',') label = None if labels_num == 1: label = int(line[1]) else: for i in range(labels_num): label.append(int(line[i+1])) imgpath.append(line[0]) labels.append(label) return np.array(imgpath), np.array(labels) def get_input_img(filename, input_size=32): img = cv2.imread(filename) img = cv2.resize(img, (input_size, input_size)) img =
np.array(img, dtype=np.float32)
numpy.array
#!/Users/bernardroesler/anaconda3/envs/insight/bin/python3 #============================================================================== # File: run_kstest.py # Created: 07/08/2018, 19:02 # Author: <NAME> # """ Description: """ #============================================================================== import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from cycler import cycler from scipy.stats import norm, uniform, kstest np.random.seed(56) plt.ion() def make_kstest_plots(dist, compare='norm'): fig = plt.figure(1) plt.clf() ax = plt.gca() n = np.array([int(10**i) for i in range(7)]) n = np.hstack((n, 3*n)) n.sort() D =
np.zeros(n.size)
numpy.zeros
import h5py import mpi_init import subfind_data import cosmology import tree_build import numpy as np from scipy.interpolate import interp1d def compute_accretion_rates(mpi, path, datasets, data, snap=99, mcut=1.0e12): """ Compute the accretion rate based on different mass estimates """ if not mpi.Rank: print(" > Examining: {0}\n > Snap: {1:03d}".format(path, snap), flush=True) # First we need to find the halos of interest subfind_table = subfind_data.build_table(mpi, sim=path, snap=snap) subfind_table.select_halos(mpi, cut=mcut) if not mpi.Rank: print(" > Found {0:d} halo(s)".format(len(subfind_table.tags)), flush=True) # Now rebuild the trees for those halos if not mpi.Rank: print(" > Building merger tree for halos...", flush=True) Mtrees = tree_build.trees(mpi, path, subfind_table, snap) Mtrees.build_branches(mpi) # Initialize cosmology class instance cosmo = cosmology.cosmology( subfind_table.hub, subfind_table.omega_m, subfind_table.omega_L ) # Age of Universe at snapshots if not mpi.Rank: print(" > Computing mass accretion rates", flush=True) age_Gyr = cosmo.age(Mtrees.zred) # Now compute accretion rates for halos tdyn_500c_Gyr = cosmo.t_dynamic_Gyr(Mtrees.zred, delta=500.0, mode="CRIT") tdyn_200c_Gyr = cosmo.t_dynamic_Gyr(Mtrees.zred, delta=200.0, mode="CRIT") tdyn_200m_Gyr = cosmo.t_dynamic_Gyr(Mtrees.zred, delta=200.0, mode="MEAN") tdyn_vir_Gyr = cosmo.t_dynamic_Gyr(Mtrees.zred, mode="VIR") # Compute age of Universe one dynamical time ago for each snapshot dt_500c_Gyr = age_Gyr - tdyn_500c_Gyr dt_200c_Gyr = age_Gyr - tdyn_200c_Gyr dt_200m_Gyr = age_Gyr - tdyn_200m_Gyr dt_vir_Gyr = age_Gyr - tdyn_vir_Gyr # Delta log(a) of a dynamical time for all snapshots aexp_int = interp1d(age_Gyr, Mtrees.aexp, fill_value="extrapolate") Delta_lgAexp_500c = np.log(Mtrees.aexp) - np.log(aexp_int(dt_500c_Gyr)) Delta_lgAexp_200c = np.log(Mtrees.aexp) - np.log(aexp_int(dt_200c_Gyr)) Delta_lgAexp_200m = np.log(Mtrees.aexp) - np.log(aexp_int(dt_200m_Gyr)) Delta_lgAexp_vir = np.log(Mtrees.aexp) - np.log(aexp_int(dt_vir_Gyr)) # Now loop over haloes computing Delta log(M) -- with appropriate mass definition Delta_lgM500c = np.zeros(Mtrees.M500c.shape, dtype=np.float) Delta_lgM200c = np.zeros(Mtrees.M200c.shape, dtype=np.float) Delta_lgM200m = np.zeros(Mtrees.M200m.shape, dtype=np.float) Delta_lgMvir = np.zeros(Mtrees.Mvir.shape, dtype=np.float) for j in range(0, len(Mtrees.index), 1): lgM500c_int = interp1d( age_Gyr, np.log(Mtrees.M500c[j]), fill_value="extrapolate" ) lgM200c_int = interp1d( age_Gyr, np.log(Mtrees.M200c[j]), fill_value="extrapolate" ) lgM200m_int = interp1d( age_Gyr,
np.log(Mtrees.M200m[j])
numpy.log
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import time import json import numpy as np import numba as nb from enum import Enum from GridCal.Engine.Core.multi_circuit import MultiCircuit from GridCal.Engine.Core.snapshot_pf_data import compile_snapshot_circuit from GridCal.Engine.Simulations.LinearFactors.linear_analysis import LinearAnalysis, make_worst_contingency_transfer_limits from GridCal.Engine.Simulations.driver_types import SimulationTypes from GridCal.Engine.Simulations.result_types import ResultTypes from GridCal.Engine.Simulations.results_table import ResultsTable from GridCal.Engine.Simulations.results_template import ResultsTemplate from GridCal.Engine.Simulations.driver_template import DriverTemplate ######################################################################################################################## # Optimal Power flow classes ######################################################################################################################## class AvailableTransferMode(Enum): Generation = 0 InstalledPower = 1 Load = 2 GenerationAndLoad = 3 @nb.njit() def compute_alpha(ptdf, P0, Pinstalled, idx1, idx2, bus_types, dT=1.0, mode=0): """ Compute all lines' ATC :param ptdf: Power transfer distribution factors (n-branch, n-bus) :param P0: all bus injections [p.u.] :param idx1: bus indices of the sending region :param idx2: bus indices of the receiving region :param bus_types: Array of bus types {1: pq, 2: pv, 3: slack} :param dT: Exchange amount :param mode: Type of power shift 0: shift generation based on the current generated power 1: shift generation based on the installed power 2: shift load 3 (or else): shift using generation and load :return: Exchange sensitivity vector for all the lines """ nbr = ptdf.shape[0] nbus = ptdf.shape[1] # declare the bus injections increment due to the transference dP = np.zeros(nbus) if mode == 0: # move the generators based on the generated power -------------------- # set the sending power increment proportional to the current power (Area 1) n1 = 0.0 for i in idx1: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node n1 += P0[i] for i in idx1: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node dP[i] = dT * P0[i] / abs(n1) # set the receiving power increment proportional to the current power (Area 2) n2 = 0.0 for i in idx2: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node n2 += P0[i] for i in idx2: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node dP[i] = -dT * P0[i] / abs(n2) elif mode == 1: # move the generators based on the installed power -------------------- # set the sending power increment proportional to the current power (Area 1) n1 = 0.0 for i in idx1: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node n1 += Pinstalled[i] for i in idx1: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node dP[i] = dT * Pinstalled[i] / abs(n1) # set the receiving power increment proportional to the current power (Area 2) n2 = 0.0 for i in idx2: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node n2 += Pinstalled[i] for i in idx2: if bus_types[i] == 2 or bus_types[i] == 3: # it is a PV or slack node dP[i] = -dT * Pinstalled[i] / abs(n2) elif mode == 2: # move the load ------------------------------------------------------ # set the sending power increment proportional to the current power (Area 1) n1 = 0.0 for i in idx1: if bus_types[i] == 1: # it is a PV or slack node n1 += P0[i] for i in idx1: if bus_types[i] == 1: # it is a PV or slack node dP[i] = dT * P0[i] / abs(n1) # set the receiving power increment proportional to the current power (Area 2) n2 = 0.0 for i in idx2: if bus_types[i] == 1: # it is a PV or slack node n2 += P0[i] for i in idx2: if bus_types[i] == 1: # it is a PV or slack node dP[i] = -dT * P0[i] / abs(n2) else: # move all of it ----------------------------------------------------------------- # set the sending power increment proportional to the current power n1 = 0.0 for i in idx1: n1 += P0[i] for i in idx1: dP[i] = dT * P0[i] / abs(n1) # set the receiving power increment proportional to the current power n2 = 0.0 for i in idx2: n2 += P0[i] for i in idx2: dP[i] = -dT * P0[i] / abs(n2) # ---------------------------------------------------------------------------------------- # compute the line flow increments due to the exchange increment dT in MW dflow = ptdf.dot(dP) # compute the sensitivity alpha = dflow / dT return alpha @nb.njit() def compute_atc(br_idx, ptdf, lodf, alpha, flows, rates, contingency_rates, threshold=0.005): """ Compute all lines' ATC :param br_idx: array of branch indices to analyze :param ptdf: Power transfer distribution factors (n-branch, n-bus) :param lodf: Line outage distribution factors (n-branch, n-outage branch) :param alpha: Branch sensitivities to the exchange [p.u.] :param flows: branches power injected at the "from" side [MW] :param rates: all branches rates vector :param contingency_rates: all branches contingency rates vector :param threshold: value that determines if a line is studied for the ATC calculation :return: beta_mat: Matrix of beta values (branch, contingency_branch) beta: vector of actual beta value used for each branch (n-branch) atc_n: vector of ATC values in "N" (n-branch) atc_final: vector of ATC in "N" or "N-1" whatever is more limiting (n-branch) atc_limiting_contingency_branch: most limiting contingency branch index vector (n-branch) atc_limiting_contingency_flow: most limiting contingency flow vector (n-branch) """ nbr = len(br_idx) # explore the ATC atc_n = np.zeros(nbr) atc_mc = np.zeros(nbr) atc_final = np.zeros(nbr) beta_mat = np.zeros((nbr, nbr)) beta_used = np.zeros(nbr) atc_limiting_contingency_branch = np.zeros(nbr) atc_limiting_contingency_flow = np.zeros(nbr) # processed = list() # mm = 0 for im, m in enumerate(br_idx): # for each branch if abs(alpha[m]) > threshold and abs(flows[m]) < rates[m]: # if the branch is relevant enough for the ATC... # compute the ATC in "N" if alpha[m] == 0: atc_final[im] = np.inf elif alpha[m] > 0: atc_final[im] = (rates[m] - flows[m]) / alpha[m] else: atc_final[im] = (-rates[m] - flows[m]) / alpha[m] # remember the ATC in "N" atc_n[im] = atc_final[im] # set to the current branch, since we don't know if there will be any contingency that make the ATC worse atc_limiting_contingency_branch[im] = m # explore the ATC in "N-1" for ic, c in enumerate(br_idx): # for each contingency # compute the exchange sensitivity in contingency conditions beta_mat[im, ic] = alpha[m] + lodf[m, c] * alpha[c] if m != c: # compute the contingency flow contingency_flow = flows[m] + lodf[m, c] * flows[c] # set the default values (worst contingency by itself, not comparing with the base situation) if abs(contingency_flow) > abs(atc_limiting_contingency_flow[im]): atc_limiting_contingency_flow[im] = contingency_flow # default atc_limiting_contingency_branch[im] = c # now here, do compare with the base situation if abs(beta_mat[im, ic]) > threshold and abs(contingency_flow) <= contingency_rates[m]: # compute the ATC in "N-1" if beta_mat[im, ic] == 0: atc_mc[im] = np.inf elif beta_mat[im, ic] > 0: atc_mc[im] = (contingency_rates[m] - contingency_flow) / beta_mat[im, ic] else: atc_mc[im] = (-contingency_rates[m] - contingency_flow) / beta_mat[im, ic] # refine the ATC to the most restrictive value every time if abs(atc_mc[im]) < abs(atc_final[im]): atc_final[im] = atc_mc[im] beta_used[im] = beta_mat[im, ic] atc_limiting_contingency_flow[im] = contingency_flow atc_limiting_contingency_branch[im] = c return beta_mat, beta_used, atc_n, atc_mc, atc_final, atc_limiting_contingency_branch, atc_limiting_contingency_flow class AvailableTransferCapacityResults(ResultsTemplate): def __init__(self, n_bus, br_names, bus_names, bus_types, bus_idx_from, bus_idx_to, br_idx): """ :param n_bus: :param br_names: :param bus_names: :param bus_types: :param bus_idx_from: :param bus_idx_to: :param br_idx: """ ResultsTemplate.__init__(self, name='ATC Results', available_results=[ResultTypes.AvailableTransferCapacity, ResultTypes.NetTransferCapacity, ResultTypes.AvailableTransferCapacityN, ResultTypes.AvailableTransferCapacityAlpha, ResultTypes.AvailableTransferCapacityBeta, ResultTypes.AvailableTransferCapacityReport ], data_variables=['alpha', 'beta_mat', 'beta', 'atc', 'atc_n', 'atc_limiting_contingency_branch', 'atc_limiting_contingency_flow', 'base_flow', 'rates', 'contingency_rates', 'report', 'report_headers', 'report_indices', 'branch_names', 'bus_names', 'bus_types', 'bus_idx_from', 'bus_idx_to', 'br_idx']) self.n_br = len(br_idx) self.n_bus = n_bus self.branch_names = np.array(br_names, dtype=object) self.bus_names = bus_names self.bus_types = bus_types self.bus_idx_from = bus_idx_from self.bus_idx_to = bus_idx_to self.br_idx = br_idx # stores the worst transfer capacities (from to) and (to from) self.rates = np.zeros(self.n_br) self.contingency_rates = np.zeros(self.n_br) self.base_exchange = 0 self.alpha = np.zeros(self.n_br) self.atc = np.zeros(self.n_br) self.atc_n = np.zeros(self.n_br) self.atc_mc =
np.zeros(self.n_br)
numpy.zeros
#scipy.signal.istft example #https://docs.scipy.org/doc/scipy/reference/generated/scipy.signal.istft.html # import numpy as np #added by author from scipy import signal import matplotlib.pyplot as plt #Generate a test signal, a 2 Vrms sine wave at 50Hz corrupted by 0.001 V**2/Hz of white noise sampled at 1024 Hz. #テスト信号、1024 Hzでサンプリングされた0.001 V ** 2 / Hzのホワイトノイズで破損した50 Hzの2 Vrmsの正弦波を生成します fs = 1024 N = 10*fs nperseg = 64 #2048 #1024 #128 #256 #512 amp = 2 *
np.sqrt(2)
numpy.sqrt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jun 3 09:06:52 2021 @author: yohanna """ import itertools import numpy as np import config p = config.setup() import math def nCr(n,k): ''' Function for calculate combination C(n, k) = n!/(k! * (n-k)!), for 0 <= k <= n ''' f = math.factorial return f(n) // f(k) // f(n-k) def DCP_rs(data, A_true, A_est, M_gt, Z): from scipy import stats ''' Performance evaluation (D_cp distance over all samples) Based on this paper:(DCP calculation for noisy data through robust statistics - Not used in our paper) https://feb.kuleuven.be/public/u0017833/PDF-FILES/Croux_Dehon5.pdf Arguments: data : Input data; {train_data, test_data} A_true : hidden true parameters A_true = (A, sigma_y); A_est : our estimates A_est = (A, sigma_hat); Returns: DKL = sum(DCP) KL divergence. ''' n = p.n DCP = np.array([]) for child in range(n): parents = [list(pa) for pa in (np.nonzero(A_true[:, child]))] parents = list(itertools.chain(*parents)) ''' Calculate M: covariance matrix among parents''' M = M_gt[np.ix_(parents, parents)] ''' Calculate a_true and a_est''' index_true = A_true[:, child] index_est = A_est[:, child] a_true = index_true[index_true != 0] a_est = index_est[index_est != 0] ''' delta = [a_true - a_est]''' delta = a_true - a_est ''' Calculate sigma_y (true)''' if len(a_est) == 0: points = data[:, child] a = np.abs(data[:, child]) elif len(a_est) == 1: points = data[:, child] - a_est * np.transpose(data[:, parents]) points = np.squeeze(points) a = np.abs(data[:, child] - a_est * np.transpose(data[:, parents])) elif len(a_est) > 1: points = data[:, child] - np.matmul(np.array(a_est), np.transpose(data[:, parents])) a = np.abs(data[:, child] - np.matmul(np.array(a_est), np.transpose(data[:, parents]))) dist = [] for i in list(range(len(points))): for j in list(range(i)): d = np.abs(points[i] - points[j]) dist.append(d) dist_new = np.sort(dist) index = nCr(np.round(len(points)/2) + 1, 2) smallest_dist = dist_new[index] sigma_hat = 2.219 *smallest_dist sigma_hat2 = np.median(a)/0.674 sigma_y = np.sqrt(np.diag(Z)[child]) if sigma_y == 0 or sigma_hat == 0: DCP = 0 else: ''' DCP can be calculated as follows: ''' if len(delta) == 1: DMD = (delta * M * delta)/(2 * np.square(sigma_hat)) else: DMD = np.matmul(np.matmul(np.transpose( delta), M), delta)/(2 * np.square(sigma_hat)) dcp = np.log(sigma_hat/sigma_y) + (np.square(sigma_y) - np.square(sigma_hat))/(2*np.square(sigma_hat)) + DMD DCP =
np.append(DCP, dcp)
numpy.append
# general libraries import numpy as np from scipy import fftpack from .matching_tools import \ get_integer_peak_location, reposition_templates_from_center, \ make_templates_same_size from .matching_tools_frequency_filters import \ raised_cosine, thresh_masking, normalize_power_spectrum, gaussian_mask # general frequency functions def create_complex_DCT(I, C_c, C_s): #wip C_cc,C_ss = C_c*I*C_c.T, C_s*I*C_s.T C_sc,C_cs = C_s*I*C_c.T, C_c*I*C_s.T C = C_cc-C_ss + 1j*(-(C_cs+C_sc)) return C def create_complex_fftpack_DCT(I): # DCT-based complex transform: {(C_cc - C_ss) -j(C_cs + C_sc)} C_cc = fftpack.dct(fftpack.dct(I, type=2, axis=0), type=2, axis=1) C_ss = fftpack.dst(fftpack.dst(I, type=2, axis=0), type=2, axis=1) C_cs = fftpack.dct(fftpack.dst(I, type=2, axis=0), type=2, axis=1) C_sc = fftpack.dst(fftpack.dct(I, type=2, axis=0), type=2, axis=1) C = (C_cc - C_ss) - 1j*(C_cs + C_sc) return C def get_cosine_matrix(I,N=None): #wip (L,_) = I.shape if N==None: N = np.copy(L) C = np.zeros((L,L)) for k in range(L): for n in range(N): if k == 0: C[k,n] = np.sqrt(np.divide(1, L, out=np.zeros_like(L), where=L!=0)) else: C[k,n] = np.sqrt(np.divide(2, L, out=np.zeros_like(L), where=L!=0))*\ np.cos(np.divide(np.pi*k*(1/2+n), L, out=np.zeros_like(L), where=L!=0)) return(C) def get_sine_matrix(I,N=None): #wip (L,_) = I.shape if N==None: # make a square matrix N = np.copy(L) C = np.zeros((L,L)) for k in range(L): for n in range(N): if k == 0: C[k,n] = np.sqrt(np.divide(1, L, out=np.zeros_like(L), where=L!=0)) else: C[k,n] = np.sqrt(np.divide(2, L, out=np.zeros_like(L), where=L!=0))*\ np.sin(np.divide(np.pi*k*(1/2+n), L, out=np.zeros_like(L), where=L!=0)) return(C) def upsample_dft(Q, up_m=0, up_n=0, upsampling=1, \ i_offset=0, j_offset=0): (m,n) = Q.shape if up_m==0: up_m = m.copy() if up_n==0: up_n = n.copy() kernel_collumn = np.exp((1j*2*np.pi/(n*upsampling)) *\ ( np.fft.fftshift(np.arange(n) - \ (n//2))[:,np.newaxis] )*\ ( np.arange(up_n) - j_offset )) kernel_row = np.exp((1j*2*np.pi/(m*upsampling)) *\ ( np.arange(up_m)[:,np.newaxis] - i_offset )*\ ( np.fft.fftshift(np.arange(m) - (m//2)) )) Q_up = np.matmul(kernel_row, np.matmul(Q,kernel_collumn)) return Q_up def pad_dft(Q, m_new, n_new): assert type(Q)==np.ndarray, ("please provide an array") (m,n) = Q.shape Q_ij = np.fft.fftshift(Q) # in normal configuration center_old = np.array([m//2, n//2]) Q_new = np.zeros((m_new, n_new), dtype=np.complex64) center_new = np.array([m_new//2, n_new//2]) center_offset = center_new - center_old # fill the old data in the new array Q_new[np.maximum(center_offset[0], 0):np.minimum(center_offset[0]+m, m_new),\ np.maximum(center_offset[1], 0):np.minimum(center_offset[1]+n, n_new)]\ = \ Q_ij[np.maximum(-center_offset[0], 0):\ np.minimum(-center_offset[0]+m_new, m),\ np.maximum(-center_offset[1], 0):\ np.minimum(-center_offset[1]+n_new, n)] Q_new = (np.fft.fftshift(Q_new)*m_new*n_new)/(m*n) # scaling return Q_new # frequency/spectrum matching functions def cosi_corr(I1, I2, beta1=.35, beta2=.50, m=1e-4): assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') mt,nt = I1.shape[0], I1.shape[1] # dimensions of the template W1 = raised_cosine(np.zeros((mt,nt)), beta1) W2 = raised_cosine(np.zeros((mt,nt)), beta2) if I1.size==I2.size: # if templates are same size, no refinement is done tries = [0] else: tries = [0, 1] di,dj, m0 = 0,0,np.array([0, 0]) for trying in tries: # implement refinement step to have more overlap if I1.ndim==3: # multi-spectral frequency stacking bands = I1.shape[2] I1sub,I2sub = reposition_templates_from_center(I1,I2,di,dj) for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) if i == 0: Q = (W1*S1)*np.conj((W2*S2)) else: Q_b = (W1*S1)*np.conj((W2*S2)) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = reposition_templates_from_center(I1,I2,di,dj) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) Q = (W1*S1)*np.conj((W2*S2)) # transform back to spatial domain C = np.real(np.fft.fftshift(np.fft.ifft2(Q))) ddi, ddj,_,_ = get_integer_peak_location(C) m_int = np.round(np.array([ddi, ddj])).astype(int) if np.amax(abs(np.array([ddi, ddj])))<.5: break else: di,dj = m_int[0], m_int[1] m0[0] += di m0[1] += dj WS = thresh_masking(S1, m) Qn = normalize_power_spectrum(Q) return Qn, WS, m0 def cosine_corr(I1, I2): """ match two imagery through discrete cosine transformation Parameters ---------- I1 : np.array, size=(m,n), dtype=float array with intensities I2 : np.array, size=(m,n), dtype=float array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- create_complex_DCT, sign_only_corr References ---------- .. [1] Li, et al. "DCT-based phase correlation motion estimation", IEEE international conference on image processing, vol. 1, 2004. """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') # construct cosine and sine basis matrices Cc, Cs = get_cosine_matrix(I1), get_sine_matrix(I1) if I1.ndim==3: # multi-spectral frequency stacking bands = I1.shape[2] I1sub,I2sub = make_templates_same_size(I1,I2) for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] C1 = create_complex_fftpack_DCT(I1bnd) C2 = create_complex_fftpack_DCT(I2bnd) # C1 = create_complex_DCT(I1bnd, Cc, Cs) # C2 = create_complex_DCT(I2bnd, Cc, Cs) if i == 0: Q = C1*np.conj(C2) else: Q_b = (C1)*np.conj(C2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) C1 = create_complex_fftpack_DCT(I1sub) C2 = create_complex_fftpack_DCT(I2sub) # C1 = create_complex_DCT(I1sub, Cc, Cs) # C2 = create_complex_DCT(I2sub, Cc, Cs) Q = (C1)*np.conj(C2) Q = normalize_power_spectrum(Q) C = np.fft.fftshift(np.real(np.fft.ifft2(Q))) return C def masked_cosine_corr(I1, I2, M1, M2): # wip ''' work in progress ''' assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') assert type(M1)==np.ndarray, ('please provide an array') assert type(M2)==np.ndarray, ('please provide an array') M1, M2 = M1.astype(dtype=bool), M2.astype(dtype=bool) # construct cosine and sine basis matrices Cc, Cs = get_cosine_matrix(I1), get_sine_matrix(I1) # look at how many frequencies can be estimated with this data (m,n) = M1.shape X1 = np.ones((m,n), dtype=bool) min_span = int(np.floor(np.sqrt(min(np.sum(M1), np.sum(M2))))) X1[min_span:,:] = False X1[:,min_span:] = False y = (I1[M1].astype(dtype=float)/255)-.5 # build matrix Ccc = np.kron(Cc,Cc) # shrink size Ccc = Ccc[M1.flatten(),:] # remove rows, as these are missing Ccc = Ccc[:,X1.flatten()] # remove collumns, since these can't be estimated Icc = np.linalg.lstsq(Ccc, y, rcond=None)[0] Icc = np.reshape(Icc, (min_span, min_span)) iCC = Ccc.T*y np.reshape(Ccc.T*y, (min_span, min_span)) if I1.ndim==3: # multi-spectral frequency stacking (mt,nt,bt) = I1.shape (ms,ns,bs) = I2.shape md, nd = np.round((ms-mt)/2).astype(int), np.round((ns-nt)/2).astype(int) for i in range(bt): # loop through all bands I1sub = I1[:,:,i] I2sub = I2[md:-md, nd:-nd,i] C1 = create_complex_DCT(I1sub, Cc, Cs) C2 = create_complex_DCT(I2sub, Cc, Cs) if i == 0: Q = C1*np.conj(C2) else: Q_b = (C1)*np.conj(C2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) C1 = create_complex_DCT(I1sub, Cc, Cs) C2 = create_complex_DCT(I2sub, Cc, Cs) Q = (C1)*np.conj(C2) return Q def phase_only_corr(I1, I2): """ match two imagery through phase only correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- phase_corr, symmetric_phase_corr, amplitude_comp_corr Notes ----- The matching equations are as follows: .. math:: \mathbf{S}_1, \mathbf{S}_2 = \mathcal{F}[\mathbf{I}_1], \mathcal{F}[\mathbf{I}_2] .. math:: \mathbf{W} = 1 / \mathbf{S}_2 .. math:: \mathbf{Q}_{12} = \mathbf{S}_1 [\mathbf{W}\mathbf{S}_2]^{\star} where :math:`\mathcal{F}` denotes the Fourier transform and :math:`\star` a complex conjugate operation References ---------- .. [1] Horner & Gianino, "Phase-only matched filtering", Applied optics, vol. 23(6) pp.812--816, 1984. .. [2] Kumar & Juday, "Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise", Optics letters, vol. 16(13) pp. 1025--1027, 1991. Example ------- >>> import numpy as np >>> from ..generic.test_tools import create_sample_image_pair >>> from .matching_tools import get_integer_peak_location >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = phase_only_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) W2 = np.divide(1, np.abs(I2bnd), out=np.zeros_like(I2bnd), where=I2bnd!=0) if i == 0: Q = (S1)*np.conj((W2*S2)) else: Q_b = (S1)*np.conj((W2*S2)) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) W2 = np.divide(1, np.abs(I2sub), out=np.zeros_like(I2sub), where=I2sub!=0) Q = (S1)*np.conj((W2*S2)) return Q def projected_phase_corr(I1, I2, M1=np.array(()), M2=np.array(())): """ match two imagery through separated phase correlation Parameters ---------- I1 : np.array, size=(m,n), ndim=2 array with intensities I2 : np.array, size=(m,n), ndim=2 array with intensities M1 : np.array, size=(m,n), ndim=2, dtype={bool,float} array with mask M2 : np.array, size=(m,n), ndim=2, dtype={bool,float} array with mask Returns ------- C : np.array, size=(m,n), real displacement surface References ---------- .. [1] Zhang et al. "An efficient subpixel image registration based on the phase-only correlations of image projections", IEEE proceedings of the 10th international symposium on communications and information technologies, 2010. """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') I1sub,I2sub = make_templates_same_size(I1,I2) if M1.size==0 : M1 = np.ones_like(I1sub) if M2.size==0 : M2 = np.ones_like(I1sub) def project_spectrum(I, M, axis=0): if axis==1 : I,M = I.T, M.T # projection I_p = np.sum(I*M, axis=1) # windowing I_w = I_p*np.hamming(I_p.size) # Fourier transform S = np.fft.fft(I_w) if axis==1: S = S.T return S def phase_corr_1d(S1, S2): # normalize power spectrum Q12 = S1*np.conj(S2) return Q12 S1_m = project_spectrum(I1sub, M1, axis=0) S2_m = project_spectrum(I2sub, M2, axis=0) Q12_m = phase_corr_1d(S1_m, S2_m) C_m = np.fft.fftshift(np.real(np.fft.ifft(Q12_m))) S1_n = project_spectrum(I1sub, M1, axis=1) S2_n = project_spectrum(I2sub, M2, axis=1) Q12_n = phase_corr_1d(S1_n, S2_n) C_n = np.fft.fftshift(np.real(np.fft.ifft(Q12_n))) C = np.sqrt(np.outer(C_m, C_n)) return C def sign_only_corr(I1, I2): # to do """ match two imagery through phase only correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- C : np.array, size=(m,n), real displacement surface See Also -------- cosine_corr References ---------- .. [1] Ito & Kiya, "DCT sign-only correlation with application to image matching and the relationship with phase-only correlation", IEEE international conference on acoustics, speech and signal processing, vol. 1, 2007. """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] C1 = np.sign(fftpack.dctn(I1bnd, type=2)), C2 = np.sign(fftpack.dctn(I2bnd, type=2)) if i == 0: Q = C1*np.conj(C2) else: Q_b = (C1)*np.conj(C2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) C1,C2 = fftpack.dctn(I1sub, type=2), fftpack.dctn(I2sub, type=2) # C1,C2 = np.multiply(C1,1/C1), np.multiply(C2,1/C2) C1,C2 = np.sign(C1), np.sign(C2) Q = (C1)*np.conj(C2) C = fftpack.idctn(Q,type=1) C_cc = fftpack.idct(fftpack.idct(Q, axis=1, type=1), axis=0, type=1) C_sc = fftpack.idst(fftpack.idct(Q, axis=1, type=1), axis=0, type=1) C_cs = fftpack.idct(fftpack.idst(Q, axis=1, type=1), axis=0, type=1) C_ss = fftpack.idst(fftpack.idst(Q, axis=1, type=1), axis=0, type=1) # iC1 = fft.idctn(C1,2) # import matplotlib.pyplot as plt # plt.imshow(iC1), plt.show() return C def symmetric_phase_corr(I1, I2): """ match two imagery through symmetric phase only correlation (SPOF) also known as Smoothed Coherence Transform (SCOT) Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum Notes ----- The matching equations are as follows: .. math:: \mathbf{S}_1, \mathbf{S}_2 = \mathcal{F}[\mathbf{I}_1], \mathcal{F}[\mathbf{I}_2] .. math:: \mathbf{W} = 1 / \sqrt{||\mathbf{S}_1||||\mathbf{S}_2||} .. math:: \mathbf{Q}_{12} = \mathbf{S}_1 [\mathbf{W}\mathbf{S}_2]^{\star} where :math:`\mathcal{F}` denotes the Fourier transform and :math:`\star` a complex conjugate operation References ---------- .. [1] Nikias & Petropoulou. "Higher order spectral analysis: a nonlinear signal processing framework", Prentice hall. pp.313-322, 1993. .. [2] Wernet. "Symmetric phase only filtering: a new paradigm for DPIV data processing", Measurement science and technology, vol.16 pp.601-618, 2005. Example ------- >>> import numpy as np >>> from ..generic.test_tools import create_sample_image_pair >>> from .matching_tools import get_integer_peak_location >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = symmetric_phase_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) W2 = np.divided(1, np.sqrt(abs(S1))*np.sqrt(abs(S2)) ) if i == 0: Q = (S1)*np.conj((W2*S2)) else: Q_b = (S1)*np.conj((W2*S2)) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) W2 = np.divide(1, np.sqrt(abs(I1sub))*np.sqrt(abs(I2sub)) ) Q = (S1)*np.conj((W2*S2)) return Q def amplitude_comp_corr(I1, I2, F_0=0.04): """ match two imagery through amplitude compensated phase correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities F_0 : float, default=4e-2 cut-off intensity in respect to maximum Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum References ---------- .. [1] Mu et al. "Amplitude-compensated matched filtering", Applied optics, vol. 27(16) pp. 3461-3463, 1988. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = amplitude_comp_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) s_0 = F_0 * np.amax(abs(S2)) W = np.divide(1, abs(I2sub), \ out=np.zeros_like(I2sub), where=I2sub!=0 ) A = np.divide(s_0, abs(I2sub)**2, \ out=np.zeros_like(I2sub), where=I2sub!=0) W[abs(S2)>s_0] = A if i == 0: Q = (S1)*np.conj((W*S2)) else: Q_b = (S1)*np.conj((W*S2)) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) s_0 = F_0 * np.amax(abs(S2)) W = np.divide(1, abs(I2sub), \ out=np.zeros_like(I2sub), where=I2sub!=0) A = np.divide(s_0, abs(I2sub)**2, \ out=np.zeros_like(I2sub), where=I2sub!=0) W[abs(S2)>s_0] = A[abs(S2)>s_0] Q = (S1)*np.conj((W*S2)) return Q def robust_corr(I1, I2): """ match two imagery through fast robust correlation Parameters ---------- I1 : np.array, size=(m,n), ndim=2 array with intensities I2 : np.array, size=(m,n), ndim=2 array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum References ---------- .. [1] Fitch et al. "Fast robust correlation", IEEE transactions on image processing vol. 14(8) pp. 1063-1073, 2005. .. [2] Essannouni et al. "Adjustable SAD matching algorithm using frequency domain" Journal of real-time image processing, vol.1 pp.257-265 Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = robust_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') I1sub,I2sub = make_templates_same_size(I1,I2) p_steps = 10**np.arange(0,1,.5) for idx, p in enumerate(p_steps): I1p = 1/p**(1/3) * np.exp(1j*(2*p -1)*I1sub) I2p = 1/p**(1/3) * np.exp(1j*(2*p -1)*I2sub) S1p, S2p = np.fft.fft2(I1p), np.fft.fft2(I2p) if idx==0: Q = (S1p)*np.conj(S2p) else: Q += (S1p)*np.conj(S2p) return Q def orientation_corr(I1, I2): """ match two imagery through orientation correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- phase_corr, windrose_corr References ---------- .. [1] Fitch et al. "Orientation correlation", Proceeding of the Britisch machine vison conference, pp. 1--10, 2002. .. [2] <NAME>. "Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery", Remote sensing of environment, vol. 118 pp. 339-355, 2012. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = orientation_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) S1,S2 = normalize_power_spectrum(S1),normalize_power_spectrum(S2) if i == 0: Q = (S1)*np.conj(S2) else: Q_b = (S1)*np.conj(S2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) S1,S2 = normalize_power_spectrum(S1),normalize_power_spectrum(S2) Q = (S1)*np.conj(S2) return Q def windrose_corr(I1, I2): """ match two imagery through windrose phase correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- orientation_corr, phase_only_corr References ---------- .. [1] Kumar & Juday, "Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise", Optics letters, vol. 16(13) pp. 1025--1027, 1991. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = windrose_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) if i == 0: Q = (S1)*np.conj(S2) else: Q_b = (S1)*np.conj(S2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.sign(np.fft.fft2(I1sub)), np.sign(np.fft.fft2(I2sub)) Q = (S1)*np.conj(S2) return Q def phase_corr(I1, I2): """ match two imagery through phase correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- orientation_corr, cross_corr References ---------- .. [1] Kuglin & Hines. "The phase correlation image alignment method", proceedings of the IEEE international conference on cybernetics and society, pp. 163-165, 1975. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = phase_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) if i == 0: Q = (S1)*np.conj(S2) Q = normalize_power_spectrum(Q) else: Q_b = (S1)*np.conj(S2) Q_b = np.divide(Q_b, np.abs(Q), \ out=np.zeros_like(Q), where=Q!=0) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) Q = (S1)*np.conj(S2) Q = normalize_power_spectrum(Q) return Q def gaussian_transformed_phase_corr(I1, I2): """ match two imagery through Gaussian transformed phase correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- phase_corr References ---------- .. [1] Eckstein et al. "Phase correlation processing for DPIV measurements", Experiments in fluids, vol.45 pp.485-500, 2008. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = gaussian_transformed_phase_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) if i == 0: Q = (S1)*np.conj(S2) Q = normalize_power_spectrum(Q) M = gaussian_mask(S1) Q = np.multiply(M, Q) else: Q_b = (S1)*np.conj(S2) Q_b = np.divide(Q_b, np.abs(Q),\ out=np.zeros_like(Q), where=Q!=0) Q_b = np.multiply(M, Q_b) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) Q = (S1)*np.conj(S2) Q = normalize_power_spectrum(Q) M = gaussian_mask(Q) Q = np.multiply(M, Q) return Q def upsampled_cross_corr(S1, S2, upsampling=2): """ apply cros correlation, and upsample the correlation peak Parameters ---------- S1 : np.array, size=(m,n), dtype=complex, ndim=2 array with intensities S2 : np.array, size=(m,n), dtype=complex, ndim=2 array with intensities Returns ------- di,dj : float sub-pixel displacement See Also -------- pad_dft, upsample_dft References ---------- .. [1] Guizar-Sicairo, et al. "Efficient subpixel image registration algorithms", Applied optics, vol. 33 pp.156--158, 2008. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> di,dj = upsampled_cross_corr(im1, im2) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(S1)==np.ndarray, ('please provide an array') assert type(S2)==np.ndarray, ('please provide an array') (m,n) = S1.shape S1,S2 = pad_dft(S1, 2*m, 2*n), pad_dft(S2, 2*m, 2*n) # Q = S1*conj(S2) Q = normalize_power_spectrum(S1)*np.conj(normalize_power_spectrum(S2)) # Q = normalize_power_spectrum(Q) C = np.real(np.fft.ifft2(Q)) ij = np.unravel_index(np.argmax(C), C.shape, order='F') di, dj = ij[::-1] # transform to shifted fourier coordinate frame (being twice as big) i_F = np.fft.fftshift(np.arange(-np.fix(m),m)) j_F = np.fft.fftshift(np.arange(-np.fix(n),n)) i_offset, j_offset = i_F[di]/2, j_F[dj]/2 if upsampling >2: i_shift = 1 + np.round(i_offset*upsampling)/upsampling j_shift = 1 + np.round(j_offset*upsampling)/upsampling F_shift = np.fix(np.ceil(1.5*upsampling)/2) CC = np.conj(upsample_dft(Q,\ up_m=np.ceil(upsampling*1.5),\ up_n=np.ceil(upsampling*1.5),\ upsampling=upsampling,\ i_offset=F_shift-(i_shift*upsampling),\ j_offset=F_shift-(j_shift*upsampling))) ij = np.unravel_index(np.argmax(CC), CC.shape, order='F') ddi, ddj = ij[::-1] ddi -= (F_shift ) ddj -= (F_shift ) i_offset += ddi/upsampling j_offset += ddj/upsampling return i_offset,j_offset def cross_corr(I1, I2): """ match two imagery through cross correlation in FFT Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- phase_corr References ---------- .. [1] <NAME>. "Evaluation of existing image matching methods for deriving glacier surface displacements globally from optical satellite imagery", Remote sensing of environment, vol. 118 pp. 339-355, 2012. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = cross_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) if i == 0: Q = (S1)*np.conj(S2) else: Q_b = (S1)*np.conj(S2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) Q = (S1)*np.conj(S2) return Q def binary_orientation_corr(I1, I2): """ match two imagery through binary phase only correlation Parameters ---------- I1 : np.array, size=(m,n), ndim={2,3} array with intensities I2 : np.array, size=(m,n), ndim={2,3} array with intensities Returns ------- Q : np.array, size=(m,n), dtype=complex cross-spectrum See Also -------- orientation_corr, phase_only_corr References ---------- .. [1] Kumar & Juday, "Design of phase-only, binary phase-only, and complex ternary matched filters with increased signal-to-noise ratios for colored noise", Optics letters, vol. 16(13) pp. 1025--1027, 1991. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> Q = binary_orientation_corr(im1, im2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') if (I1.ndim==3) or (I2.ndim==3): # multi-spectral frequency stacking I1sub,I2sub = make_templates_same_size(I1,I2) bands = I1.shape[2] for i in range(bands): # loop through all bands I1bnd, I2bnd = I1sub[:,:,i], I2sub[:,:,i] S1, S2 = np.fft.fft2(I1bnd), np.fft.fft2(I2bnd) W = np.sign(np.real(S2)) if i == 0: Q = (S1)*np.conj(W*S2) else: Q_b = (S1)*np.conj(W*S2) Q = (1/(i+1))*Q_b + (i/(i+1))*Q else: I1sub,I2sub = make_templates_same_size(I1,I2) S1, S2 = np.fft.fft2(I1sub), np.fft.fft2(I2sub) W = np.sign(np.real(S2)) Q = (S1)*np.conj(W*S2) return Q def masked_corr(I1, I2, M1=np.array(()), M2=np.array(())): """ match two imagery through masked normalized cross-correlation in FFT Parameters ---------- I1 : np.array, size=(m,n), ndim=2 array with intensities I2 : np.array, size=(m,n), ndim=2 array with intensities M1 : np.array, size=(m,n) array with mask M2 : np.array, size=(m,n) array with mask Returns ------- NCC : np.array, size=(m,n) correlation surface References ---------- .. [1] Padfield. "Masked object registration in the Fourier domain", IEEE transactions on image processing, vol. 21(5) pp. 2706-2718, 2011. Example ------- >>> import numpy as np >>> from .matching_tools import get_integer_peak_location >>> from ..generic.test_tools import create_sample_image_pair >>> im1,im2,ti,tj,_ = create_sample_image_pair(d=2**4, max_range=1) >>> msk1,msk2 = np.ones_like(im1), np.ones_like(im2) >>> Q = masked_corr(im1, im2, msk1, msk2) >>> C = np.fft.ifft2(Q) >>> di,dj,_,_ = get_integer_peak_location(C) >>> assert(np.isclose(ti, di, atol=1)) >>> assert(np.isclose(ti, di, atol=1)) """ assert type(I1)==np.ndarray, ('please provide an array') assert type(I2)==np.ndarray, ('please provide an array') assert type(M1)==np.ndarray, ('please provide an array') assert type(M2)==np.ndarray, ('please provide an array') # init I1sub,I2sub = make_templates_same_size(I1,I2) if M1.size==0 : M1 = np.ones_like(I1sub) if M2.size==0 : M2 = np.ones_like(I2sub) M1sub,M2sub = make_templates_same_size(M1,M2) # preparation I1f, I2f = np.fft.fft2(I1sub), np.fft.fft2(I2sub) M1f, M2f = np.fft.fft2(M1sub), np.fft.fft2(M2sub) fF1F2 = np.fft.ifft2( I1f*
np.conj(I2f)
numpy.conj
import gym import logging logging.basicConfig(level=logging.INFO,format = '%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) import numpy as np import sys sys.path.append(r"code\Reforcement-Learning\DQN-CartPole") from agent import Agent from model import MyModel from algorithm import DQN from replay_memory import ReplayMemory LEARN_FREQ = 5 # 训练频率,不需要每一个step都learn,积攒一些Experience后再learn,提高效率 MEMORY_SIZE = 200000 # replay memory大小,越大约占内存 MEMORY_WARMUP_SIZE = 200 # replay memory里需要先 预存一些Experience(再从里面sample一个batch的经验让agent去learn BATCH_SIZE = 64 # batch size LEARNING_RATE = 0.0005 # 学习率 GAMMA = 0.99 # reward衰减因子,一般取0.9~0.999不等 def run_train_episode(agent,env,rpm): """ 参数: agent - 智能体 env - 环境 rpm - replay memory 返回: total_reward - 总奖励 """ total_reward = 0 obs = env.reset() # 初始化环境 step = 0 while True: step += 1 obs = np.expand_dims(obs,axis=0) # 拓展一个维度 action = agent.sample(obs) # 尝试一个动作 obs =
np.squeeze(obs)
numpy.squeeze
from os import environ, remove from tempfile import NamedTemporaryFile, mktemp from unittest import TestCase, main from numpy import ( arange, array, e, greater_equal, less_equal, log, nan, sqrt, zeros, ) from cogent3 import ( DNA, PROTEIN, RNA, load_aligned_seqs, make_aligned_seqs, make_tree, ) from cogent3.core.alignment import ArrayAlignment from cogent3.core.alphabet import CharAlphabet from cogent3.evolve.coevolution import ( DEFAULT_NULL_VALUE, AAGapless, aln_position_pairs_cmp_threshold, aln_position_pairs_ge_threshold, aln_position_pairs_le_threshold, ancestral_state_alignment, ancestral_state_pair, ancestral_state_position, ancestral_states_input_validation, build_coevolution_matrix_filepath, calc_pair_scale, coevolution_matrix_to_csv, coevolve_alignment, coevolve_alignments, coevolve_alignments_validation, coevolve_pair, coevolve_position, count_ge_threshold, count_le_threshold, csv_to_coevolution_matrix, filter_exclude_positions, filter_non_parsimony_informative, filter_threshold_based_multiple_interdependency, freqs_from_aln, freqs_to_array, get_allowed_perturbations, get_ancestral_seqs, get_dg, get_dgg, get_positional_frequencies, get_positional_probabilities, get_subalignments, identify_aln_positions_above_threshold, ignore_excludes, is_parsimony_informative, join_positions, ltm_to_symmetric, make_weights, merge_alignments, mi, mi_alignment, mi_pair, mi_position, n_random_seqs, nmi, nmi_alignment, nmi_pair, nmi_position, normalized_mi, parse_coevolution_matrix_filepath, pickle_coevolution_result, probs_from_dict, protein_dict, resampled_mi_alignment, sca_alignment, sca_input_validation, sca_pair, sca_position, unpickle_coevolution_result, validate_alignment, validate_alphabet, validate_ancestral_seqs, validate_position, validate_tree, ) from cogent3.maths.stats.number import CategoryCounter __author__ = "<NAME>" __copyright__ = "Copyright 2007-2022, The Cogent Project" __credits__ = ["<NAME>"] __license__ = "BSD-3" __version__ = "2022.4.20a1" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Beta" from numpy.testing import assert_allclose, assert_equal class CoevolutionTests(TestCase): """Tests of coevolution.py""" def setUp(self): """Set up variables for us in tests""" self.run_slow_tests = int(environ.get("TEST_SLOW_APPC", 0)) # Data used in SCA tests self.dna_aln = ArrayAlignment( data=list(zip(list(range(4)), ["ACGT", "AGCT", "ACCC", "TAGG"])), moltype=DNA, ) self.rna_aln = ArrayAlignment( data=list(zip(list(range(4)), ["ACGU", "AGCU", "ACCC", "UAGG"])), moltype=RNA, ) self.protein_aln = ArrayAlignment( data=list(zip(list(range(4)), ["ACGP", "AGCT", "ACCC", "TAGG"])), moltype=PROTEIN, ) self.dna_aln_gapped = ArrayAlignment( data=list(zip(list(range(4)), ["A-CGT", "AGC-T", "-ACCC", "TAGG-"])), moltype=DNA, ) self.freq = ArrayAlignment( data=list( zip( list(range(20)), [ "TCT", "CCT", "CCC", "CCC", "CCG", "CC-", "AC-", "AC-", "AA-", "AA-", "GA-", "GA-", "GA-", "GA-", "GA-", "G--", "G--", "G--", "G--", "G--", ], ) ), moltype=PROTEIN, ) self.two_pos = ArrayAlignment( data=list( zip( list(map(str, list(range(20)))), [ "TC", "CC", "CC", "CC", "CC", "CC", "AC", "AC", "AA", "AA", "GA", "GA", "GA", "GA", "GA", "GT", "GT", "GT", "GT", "GT", ], ) ), moltype=PROTEIN, ) self.tree20 = make_tree(treestring=tree20_string) self.gpcr_aln = gpcr_aln self.myos_aln = myos_aln # a made-up dict of base frequencies to use as the natural freqs # for SCA calcs on DNA seqs self.dna_base_freqs = dict(list(zip("ACGT", [0.25] * 4))) self.rna_base_freqs = dict(list(zip("ACGU", [0.25] * 4))) self.protein_aln4 = ArrayAlignment( [("A1", "AACF"), ("A12", "AADF"), ("A123", "ADCF"), ("A111", "AAD-")], moltype=PROTEIN, ) self.rna_aln4 = ArrayAlignment( [("A1", "AAUU"), ("A12", "ACGU"), ("A123", "UUAA"), ("A111", "AAA-")], moltype=RNA, ) self.dna_aln4 = ArrayAlignment( [("A1", "AATT"), ("A12", "ACGT"), ("A123", "TTAA"), ("A111", "AAA?")], moltype=DNA, ) self.tree4 = make_tree( treestring="((A1:0.5,A111:0.5):0.5,(A12:0.5,A123:0.5):0.5);" ) def test_alignment_analyses_moltype_protein(self): """alignment methods work with moltype = PROTEIN""" r = mi_alignment(self.protein_aln4) self.assertEqual(r.shape, (4, 4)) r = nmi_alignment(self.protein_aln4) self.assertEqual(r.shape, (4, 4)) r = sca_alignment(self.protein_aln4, cutoff=0.75) self.assertEqual(r.shape, (4, 4)) r = ancestral_state_alignment(self.protein_aln4, self.tree4) self.assertEqual(r.shape, (4, 4)) def test_alignment_analyses_moltype_rna(self): """alignment methods work with moltype = RNA""" r = mi_alignment(self.rna_aln4) self.assertEqual(r.shape, (4, 4)) r = nmi_alignment(self.rna_aln4) self.assertEqual(r.shape, (4, 4)) r = sca_alignment( self.rna_aln4, cutoff=0.75, alphabet="ACGU", background_freqs=self.rna_base_freqs, ) self.assertEqual(r.shape, (4, 4)) r = ancestral_state_alignment(self.rna_aln4, self.tree4) self.assertEqual(r.shape, (4, 4)) def test_alignment_analyses_moltype_dna(self): """alignment methods work with moltype = DNA""" r = mi_alignment(self.dna_aln4) self.assertEqual(r.shape, (4, 4)) r = nmi_alignment(self.dna_aln4) self.assertEqual(r.shape, (4, 4)) r = sca_alignment( self.dna_aln4, cutoff=0.75, alphabet="ACGT", background_freqs=self.dna_base_freqs, ) self.assertEqual(r.shape, (4, 4)) r = ancestral_state_alignment(self.dna_aln4, self.tree4) self.assertEqual(r.shape, (4, 4)) def test_join_positions(self): """join_positions functions as expected""" self.assertEqual( join_positions(list("ABCD"), list("WXYZ")), ["AW", "BX", "CY", "DZ"] ) self.assertEqual(join_positions(list("AAA"), list("BBB")), ["AB", "AB", "AB"]) self.assertEqual(join_positions([], []), []) def test_mi(self): """mi calculations function as expected with valid data""" assert_allclose(mi(1.0, 1.0, 1.0), 1.0) assert_allclose(mi(1.0, 1.0, 2.0), 0.0) assert_allclose(mi(1.0, 1.0, 1.5), 0.5) def test_normalized_mi(self): """normalized mi calculations function as expected with valid data""" assert_allclose(normalized_mi(1.0, 1.0, 1.0), 1.0) assert_allclose(normalized_mi(1.0, 1.0, 2.0), 0.0) assert_allclose(normalized_mi(1.0, 1.0, 1.5), 0.3333, 3) def test_mi_pair(self): """mi_pair calculates mi from a pair of columns""" aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), 0.0) aln = ArrayAlignment(data={"1": "AB", "2": "BA"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), 1.0) # order of positions doesn't matter (when it shouldn't) aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), mi_pair(aln, pos1=1, pos2=0)) aln = ArrayAlignment(data={"1": "AB", "2": "BA"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), mi_pair(aln, pos1=1, pos2=0)) def test_wrapper_functions_handle_invalid_parameters(self): """coevolve_*: functions error on missing parameters""" # missing cutoff aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) self.assertRaises(ValueError, coevolve_pair, sca_pair, aln, 0, 1) self.assertRaises(ValueError, coevolve_position, sca_position, aln, 0) self.assertRaises(ValueError, coevolve_alignment, sca_alignment, aln) self.assertRaises(ValueError, coevolve_alignments, sca_alignment, aln, aln) def test_coevolve_pair(self): """coevolve_pair: returns same as pair methods called directly""" aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # mi_pair == coevolve_pair(mi_pair,...) assert_allclose( coevolve_pair(mi_pair, aln, pos1=0, pos2=1), mi_pair(aln, pos1=0, pos2=1) ) assert_allclose( coevolve_pair(nmi_pair, aln, pos1=0, pos2=1), nmi_pair(aln, pos1=0, pos2=1) ) assert_allclose( coevolve_pair(ancestral_state_pair, aln, pos1=0, pos2=1, tree=t), ancestral_state_pair(aln, pos1=0, pos2=1, tree=t), ) assert_allclose( coevolve_pair(sca_pair, aln, pos1=0, pos2=1, cutoff=cutoff), sca_pair(aln, pos1=0, pos2=1, cutoff=cutoff), ) def test_coevolve_position(self): """coevolve_position: returns same as position methods called directly""" aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # mi_position == coevolve_position(mi_position,...) assert_allclose( coevolve_position(mi_position, aln, position=0), mi_position(aln, position=0), ) assert_allclose( coevolve_position(nmi_position, aln, position=0), nmi_position(aln, position=0), ) assert_allclose( coevolve_position(ancestral_state_position, aln, position=0, tree=t), ancestral_state_position(aln, position=0, tree=t), ) assert_allclose( coevolve_position(sca_position, aln, position=0, cutoff=cutoff), sca_position(aln, position=0, cutoff=cutoff), ) def test_coevolve_alignment(self): """coevolve_alignment: returns same as alignment methods""" aln = ArrayAlignment(data={"1": "AC", "2": "AC"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # mi_alignment == coevolve_alignment(mi_alignment,...) assert_allclose(coevolve_alignment(mi_alignment, aln), mi_alignment(aln)) assert_allclose(coevolve_alignment(mip_alignment, aln), mip_alignment(aln)) assert_allclose(coevolve_alignment(mia_alignment, aln), mia_alignment(aln)) assert_allclose(coevolve_alignment(nmi_alignment, aln), nmi_alignment(aln)) assert_allclose( coevolve_alignment(ancestral_state_alignment, aln, tree=t), ancestral_state_alignment(aln, tree=t), ) assert_allclose( coevolve_alignment(sca_alignment, aln, cutoff=cutoff), sca_alignment(aln, cutoff=cutoff), ) def test_coevolve_alignments_validation_idenifiers(self): """coevolve_alignments_validation: seq/tree validation functions""" method = sca_alignment aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") # OK w/ no tree coevolve_alignments_validation(method, aln1, aln2, 2, None) # OK w/ tree coevolve_alignments_validation(method, aln1, aln2, 2, None, tree=t) # If there is a plus present in identifiers, we only care about the # text before the colon aln1 = ArrayAlignment(data={"1+a": "AC", "2+b": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1 + c": "EFW", "2 + d": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1+e:0.5,2 + f:0.5);") # OK w/ no tree coevolve_alignments_validation(method, aln1, aln2, 2, None) # OK w/ tree coevolve_alignments_validation(method, aln1, aln2, 2, None, tree=t) # mismatch b/w alignments seq names aln1 = ArrayAlignment(data={"3": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) # mismatch b/w alignments and tree seq names aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(3:0.5,2:0.5);") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) # mismatch b/w alignments in number of seqs aln1 = ArrayAlignment(data={"1": "AC", "2": "AD", "3": "AA"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,2:0.5);") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None ) self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) # mismatch b/w alignments & tree in number of seqs aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) t = make_tree(treestring="(1:0.5,(2:0.5,3:0.25));") self.assertRaises( AssertionError, coevolve_alignments_validation, method, aln1, aln2, 2, None, tree=t, ) def test_coevolve_alignments_validation_min_num_seqs(self): """coevolve_alignments_validation: ValueError on fewer than min_num_seqs""" method = mi_alignment # too few sequences -> ValueError aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) coevolve_alignments_validation(method, aln1, aln2, 1, None) coevolve_alignments_validation(method, aln1, aln2, 2, None) self.assertRaises( ValueError, coevolve_alignments_validation, method, aln1, aln2, 3, None ) def test_coevolve_alignments_validation_max_num_seqs(self): """coevolve_alignments_validation: min_num_seqs <= max_num_seqs""" method = mi_alignment # min_num_seqs > max_num_seqs-> ValueError aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) coevolve_alignments_validation(method, aln1, aln2, 1, None) coevolve_alignments_validation(method, aln1, aln2, 1, 3) coevolve_alignments_validation(method, aln1, aln2, 2, 3) self.assertRaises( ValueError, coevolve_alignments_validation, method, aln1, aln2, 3, 2 ) def test_coevolve_alignments_validation_moltypes(self): """coevolve_alignments_validation: valid for acceptable moltypes""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AU"}, moltype=RNA) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) # different moltype coevolve_alignments_validation(mi_alignment, aln1, aln2, 2, None) coevolve_alignments_validation(nmi_alignment, aln1, aln2, 2, None) coevolve_alignments_validation(resampled_mi_alignment, aln1, aln2, 2, None) self.assertRaises( AssertionError, coevolve_alignments_validation, sca_alignment, aln1, aln2, 2, None, ) self.assertRaises( AssertionError, coevolve_alignments_validation, ancestral_state_alignment, aln1, aln2, 2, None, ) def test_coevolve_alignments(self): """coevolve_alignments: returns correct len(aln1) x len(aln2) matrix""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) combined_aln = ArrayAlignment( data={"1": "ACEFW", "2": "ADEGY"}, moltype=PROTEIN ) t = make_tree(treestring="(1:0.5,2:0.5);") cutoff = 0.50 # MI m = mi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(mi_alignment, aln1, aln2), expected) # MI (return_full=True) assert_allclose( coevolve_alignments(mi_alignment, aln1, aln2, return_full=True), m ) # NMI m = nmi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(nmi_alignment, aln1, aln2), expected) # AS m = ancestral_state_alignment(combined_aln, tree=t) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose( coevolve_alignments(ancestral_state_alignment, aln1, aln2, tree=t), expected ) # SCA m = sca_alignment(combined_aln, cutoff=cutoff) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose( coevolve_alignments(sca_alignment, aln1, aln2, cutoff=cutoff), expected ) def test_coevolve_alignments_watches_min_num_seqs(self): """coevolve_alignments: error on too few sequences""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AD"}, moltype=PROTEIN) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) coevolve_alignments(mi_alignment, aln1, aln2) coevolve_alignments(mi_alignment, aln1, aln2, min_num_seqs=0) coevolve_alignments(mi_alignment, aln1, aln2, min_num_seqs=1) coevolve_alignments(mi_alignment, aln1, aln2, min_num_seqs=2) self.assertRaises( ValueError, coevolve_alignments, mi_alignment, aln1, aln2, min_num_seqs=3 ) self.assertRaises( ValueError, coevolve_alignments, mi_alignment, aln1, aln2, min_num_seqs=50 ) def test_coevolve_alignments_watches_max_num_seqs(self): """coevolve_alignments: filtering or error on too many sequences""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AD", "3": "YP"}, moltype=PROTEIN) aln2 = ArrayAlignment( data={"1": "ACP", "2": "EAD", "3": "PYP"}, moltype=PROTEIN ) # keep all seqs tmp_filepath = NamedTemporaryFile( prefix="tmp_test_coevolution", suffix=".fasta" ).name coevolve_alignments( mi_alignment, aln1, aln2, max_num_seqs=3, merged_aln_filepath=tmp_filepath ) self.assertEqual(load_aligned_seqs(tmp_filepath).num_seqs, 3) # keep 2 seqs coevolve_alignments( mi_alignment, aln1, aln2, max_num_seqs=2, merged_aln_filepath=tmp_filepath ) seqs = load_aligned_seqs(tmp_filepath) self.assertEqual(seqs.num_seqs, 2) # error if no sequence filter self.assertRaises( ValueError, coevolve_alignments, mi_alignment, aln1, aln2, max_num_seqs=2, merged_aln_filepath=tmp_filepath, sequence_filter=None, ) # clean up the temporary file remove(tmp_filepath) def test_coevolve_alignments_different_MolType(self): """coevolve_alignments: different MolTypes supported""" aln1 = ArrayAlignment(data={"1": "AC", "2": "AU"}, moltype=RNA) aln2 = ArrayAlignment(data={"1": "EFW", "2": "EGY"}, moltype=PROTEIN) combined_aln = ArrayAlignment(data={"1": "ACEFW", "2": "AUEGY"}) t = make_tree(treestring="(1:0.5,2:0.5);") # MI m = mi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(mi_alignment, aln1, aln2), expected) # MI (return_full=True) assert_allclose( coevolve_alignments(mi_alignment, aln1, aln2, return_full=True), m ) # NMI m = nmi_alignment(combined_aln) expected = array([[m[2, 0], m[2, 1]], [m[3, 0], m[3, 1]], [m[4, 0], m[4, 1]]]) assert_allclose(coevolve_alignments(nmi_alignment, aln1, aln2), expected) def test_mi_pair_cols_default_exclude_handling(self): """mi_pair returns null_value on excluded by default""" aln = ArrayAlignment(data={"1": "AB", "2": "-B"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) aln = ArrayAlignment(data={"1": "-B", "2": "-B"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) aln = ArrayAlignment(data={"1": "AA", "2": "-B"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) aln = ArrayAlignment(data={"1": "AA", "2": "PB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, excludes="P"), DEFAULT_NULL_VALUE) def test_mi_pair_cols_non_default_exclude_handling(self): """mi_pair uses non-default exclude_handler when provided""" aln = ArrayAlignment(data={"1": "A-", "2": "A-"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), DEFAULT_NULL_VALUE) assert_allclose( mi_pair(aln, pos1=0, pos2=1, exclude_handler=ignore_excludes), 0.0 ) def test_mi_pair_cols_and_entropies(self): """mi_pair calculates mi from a pair of columns and precalc entropies""" aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, h1=0.0, h2=0.0), 0.0) aln = ArrayAlignment(data={"1": "AB", "2": "BA"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, h1=1.0, h2=1.0), 1.0) # incorrect positional entropies provided to ensure that the # precalculated values are used, and that entorpies are not # caluclated on-the-fly. aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1, h1=1.0, h2=1.0), 2.0) def test_mi_pair_alt_calculator(self): """mi_pair uses alternate mi_calculator when provided""" aln = ArrayAlignment(data={"1": "AB", "2": "AB"}, moltype=PROTEIN) assert_allclose(mi_pair(aln, pos1=0, pos2=1), 0.0) assert_allclose( mi_pair(aln, pos1=0, pos2=1, mi_calculator=normalized_mi), DEFAULT_NULL_VALUE, ) def test_mi_position_valid_input(self): """mi_position functions with varied valid input""" aln = ArrayAlignment(data={"1": "ACG", "2": "GAC"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([1.0, 1.0, 1.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([0.0, 0.0, 0.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 2), array([0.0, 0.0, 0.0])) def test_mi_position_from_alignment_nmi(self): """mi_position functions w/ alternate mi_calculator""" aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([0.0, 0.0, 0.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "ACG"}, moltype=PROTEIN) assert_allclose( mi_position(aln, 0, mi_calculator=normalized_mi), array([DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE, DEFAULT_NULL_VALUE]), ) def test_mi_position_from_alignment_default_exclude_handling(self): """mi_position handles excludes by setting to null_value""" aln = ArrayAlignment(data={"1": "ACG", "2": "G-C"}, moltype=PROTEIN) assert_allclose(mi_position(aln, 0), array([1.0, DEFAULT_NULL_VALUE, 1.0])) aln = ArrayAlignment(data={"1": "ACG", "2": "GPC"}, moltype=PROTEIN) assert_allclose( mi_position(aln, 0, excludes="P"),
array([1.0, DEFAULT_NULL_VALUE, 1.0])
numpy.array
""" Created on June 21, 2018 @author: Moritz """ import numpy as np from spn.experiments.AQP.leaves.static.StaticNumeric import StaticNumeric def identity_likelihood(node, data, dtype=np.float64): assert len(node.scope) == 1, node.scope probs = np.zeros((data.shape[0], 1), dtype=dtype) nd = data[:, node.scope[0]] for i, val in enumerate(nd): if np.isnan(val): probs[i] = 1 else: lower = np.searchsorted(node.vals, val, side="left") higher =
np.searchsorted(node.vals, val, side="right")
numpy.searchsorted
# -*- coding: utf-8 -*- """ @author: jzh """ import numpy as np, keras.backend as K import tensorflow as tf from keras.optimizers import Adam from keras.layers import Input from keras.models import Model from src.VAE import get_gcn, get_gcn_vae_id, get_gcn_vae_exp from src.data_utils import normalize_fromfile, denormalize_fromfile, data_recover, batch_change from src.get_mesh import get_mesh import scipy.sparse as sp from scipy.sparse.linalg.eigen.arpack import eigsh, ArpackNoConvergence from src.mesh import V2M2 ref_name = 'data/disentangle/Mean_Face.obj' ''' GCN code was inspired by https://github.com/tkipf/keras-gcn ''' def get_general_laplacian(adj): return (sp.diags(np.power(np.array(adj.sum(1)), 1).flatten(), 0) - adj) * sp.diags(np.power(np.array(adj.sum(1)), -1).flatten(), 0) def normalize_adj(adj, symmetric=True): if symmetric: d = sp.diags(np.power(np.array(adj.sum(1)), -0.5).flatten(), 0) a_norm = adj.dot(d).transpose().dot(d).tocsr() else: d = sp.diags(np.power(np.array(adj.sum(1)), -1).flatten(), 0) a_norm = d.dot(adj).tocsr() return a_norm def normalized_laplacian(adj, symmetric=True): adj_normalized = normalize_adj(adj, symmetric) laplacian = (sp.eye(adj.shape[0], dtype=np.float32)) - adj_normalized return laplacian def preprocess_adj(adj, symmetric=True): adj = adj + sp.eye(adj.shape[0]) adj = normalize_adj(adj, symmetric) return adj def rescale_laplacian(laplacian): try: print('Calculating largest eigenvalue of normalized graph Laplacian...') largest_eigval = (eigsh(laplacian, 1, which='LM', return_eigenvectors=False))[0] except ArpackNoConvergence: print('Eigenvalue calculation did not converge! Using largest_eigval=2 instead.') largest_eigval = 2 scaled_laplacian = 2.0 / largest_eigval * laplacian - sp.eye(laplacian.shape[0]) return scaled_laplacian def chebyshev_polynomial(X, k): """Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices.""" print(('Calculating Chebyshev polynomials up to order {}...').format(k)) T_k = list() T_k.append(sp.eye(X.shape[0]).tocsr()) T_k.append(X) def chebyshev_recurrence(T_k_minus_one, T_k_minus_two, X): X_ = sp.csr_matrix(X, copy=True) return 2 * X_.dot(T_k_minus_one) - T_k_minus_two for i in range(2, k + 1): T_k.append(chebyshev_recurrence(T_k[-1], T_k[-2], X)) T_k = [i.astype(np.float32) for i in T_k] return T_k class gcn_dis_model(object): def __init__(self, input_dim, prefix, suffix, lr, load, feature_dim=9, latent_dim_id=50, latent_dim_exp=25, kl_weight=0.000005,weight_decay = 0.00001, batch_size=1, MAX_DEGREE=2): self.input_dim = input_dim self.prefix = prefix self.suffix = suffix self.load = load self.latent_dim_id = latent_dim_id self.latent_dim_exp = latent_dim_exp self.feature_dim = feature_dim self.v = int(input_dim / feature_dim) self.hidden_dim = 300 self.lr = lr self.kl_weight = K.variable(kl_weight) self.M_list = np.load(('data/{}/max_data.npy').format(self.prefix)) self.m_list = np.load(('data/{}/min_data.npy').format(self.prefix)) self.batch_size = batch_size self.weight_decay = K.variable(weight_decay) self.build_model(MAX_DEGREE) class disentangle_model_vae_id(gcn_dis_model): def build_model(self, MAX_DEGREE): SYM_NORM = True A = sp.load_npz(('data/{}/FWH_adj_matrix.npz').format(self.prefix)) L = normalized_laplacian(A, SYM_NORM) T_k = chebyshev_polynomial(rescale_laplacian(L), MAX_DEGREE) support = MAX_DEGREE + 1 self.kl_loss, self.encoder, self.decoder, self.gcn_vae_id = get_gcn_vae_id(T_k, support, batch_size=self.batch_size, feature_dim=self.feature_dim, v=self.v, input_dim=self.input_dim, latent_dim = self.latent_dim_id) self.neutral_face = Input(shape=(self.input_dim,)) real = self.gcn_vae_id.get_input_at(0) ratio = K.variable(self.M_list - self.m_list) if self.feature_dim == 9: self.id_loss = K.mean(K.abs((self.neutral_face - self.gcn_vae_id(real)) * ratio))/1.8 else: ori_mesh = K.reshape(((self.neutral_face - self.gcn_vae_id(real)) * ratio), (self.batch_size, -1, 3)) self.id_loss = K.mean(K.sqrt(K.sum(K.square(ori_mesh) ,axis=-1)))/1.8 weights = self.gcn_vae_id.trainable_weights#+[self.scalar] self.regularization_loss = 0 for w in weights: #print(w) if self.feature_dim == 9: self.regularization_loss += self.weight_decay* K.sum(K.square(w)) else: self.regularization_loss += 0.00002* K.sum(K.square(w)) self.loss = self.id_loss + self.kl_weight * self.kl_loss + self.regularization_loss self.opt = Adam(lr=self.lr) training_updates = (self.opt).get_updates(weights, [], self.loss) self.train_func = K.function([real, self.neutral_face], [self.id_loss, self.loss, self.kl_loss, self.regularization_loss], training_updates) self.test_func = K.function([real, self.neutral_face], [self.id_loss, self.loss, self.kl_loss, self.regularization_loss]) if self.load: self.load_models() def save_models(self): self.gcn_vae_id.save_weights(('model/gcn_vae_id_model/gcn_vae_id{}{}.h5').format(self.prefix, self.suffix)) self.encoder.save_weights(('model/gcn_vae_id_model/encoder_id_{}{}.h5').format(self.prefix, self.suffix)) self.decoder.save_weights(('model/gcn_vae_id_model/decoder_id_{}{}.h5').format(self.prefix, self.suffix)) def load_models(self): self.gcn_vae_id.load_weights(('model/gcn_vae_id_model/gcn_vae_id{}{}.h5').format(self.prefix, self.suffix)) def code_bp(self, epoch): #test_array = np.vstack(batch_change(np.fromfile('data/disentangle/real_data/{}.dat'.format(i))) for i in range(287)) test_array = np.load('data/{}/test_data.npy'.format(self.prefix))[47*np.arange(10)] frt = np.loadtxt('src/front_part_v.txt', dtype = int) mask = np.zeros(11510) mask[frt] = 1 normalize_fromfile(test_array, self.M_list, self.m_list) num = 0 target_feature = test_array[num:num+1] #x = [0,2,6,7,8] K.set_learning_phase(0) start = self.encoder.predict(target_feature, batch_size = self.batch_size) code = K.variable(start[0]) target_feature_holder = Input(shape=(self.input_dim, )) mask = K.variable(np.repeat(mask, 9)) ratio = K.variable(self.M_list - self.m_list) cross_id = K.variable(np.tile(np.array([1,0,0,1,0,1,0,0,0]), 11510)) target = self.decoder(code) loss = K.mean(K.abs(ratio*(target - target_feature_holder)))/1.8 lr = self.lr for circle in range(10): training_updates = (Adam(lr=lr)).get_updates([code], [], loss) bp_func = K.function([target_feature_holder], [loss, target], training_updates) for i in range(epoch): err, result_mesh = bp_func([target_feature]) print('Epoch: {}, loss: {}'.format(i,err)) lr = input('learning rate change? ') lr = float(lr) if lr == 0: break start_norm = self.decoder.predict(start[0],batch_size = self.batch_size) start_id = denormalize_fromfile(start_norm, self.M_list, self.m_list) result_id = denormalize_fromfile(result_mesh, self.M_list, self.m_list) denormalize_fromfile(target_feature, self.M_list, self.m_list) import shutil, os shutil.rmtree('data/mesh') os.mkdir('data/mesh') V2M2(get_mesh(ref_name, data_recover(start_id)), 'data/mesh/start_id.obj') V2M2(get_mesh(ref_name, data_recover(result_id)), 'data/mesh/result_id.obj') V2M2(get_mesh(ref_name, data_recover(target_feature)), 'data/mesh/target_id.obj') def train(self, epoch): def get_interpolate_data(prefix, num = 2000): if prefix == 'disentangle': #interpolate_data = np.vstack(batch_change(np.fromfile('data/{}/real_data/{}.dat'.format(prefix, i))) for i in range(num)) interpolate_data = np.vstack(batch_change(np.fromfile('data/{}/Interpolated_results/interpolated_{}.dat'.format(prefix, i))) for i in range(num)) else: interpolate_data = np.vstack(np.fromfile('data/{}/Interpolated_results/interpolated_{}.dat'.format(prefix, i)) for i in range(num)) mean_inter = np.mean(interpolate_data, axis = 0) interpolate_data = interpolate_data - mean_inter return interpolate_data inter_array = get_interpolate_data(self.prefix, 4000) data_array = np.load(('data/{}/train_data.npy').format(self.prefix)) test_array = np.load(('data/{}/test_data.npy').format(self.prefix)) mean_exp = np.load(('data/{}/MeanFace_data.npy').format(self.prefix)) normalize_fromfile(test_array, self.M_list, self.m_list) normalize_fromfile(mean_exp, self.M_list, self.m_list) normalize_fromfile(data_array, self.M_list, self.m_list) normalize_fromfile(inter_array, self.M_list, self.m_list) ITS = data_array.shape[0]//self.batch_size log = np.zeros((epoch*ITS,)) test_log = np.zeros((epoch*ITS,)) constant_list = np.arange(data_array.shape[0]) inter_list = np.arange(inter_array.shape[0]) display_step = 50 for i in range(epoch): np.random.shuffle(constant_list) np.random.shuffle(inter_list) # for index, j in enumerate(constant_list): for index, j in enumerate(zip(*[iter(constant_list)]*self.batch_size)): # l = np.random.randint(0, 47) l = np.random.randint(0,47,self.batch_size) inter_sample = np.random.randint(0,inter_array.shape[0],self.batch_size) #l = 1 j = np.array(j) C_exp = j % 47 C_neutral = j - C_exp people_with_emotion = data_array[j] people_neutral_face = data_array[C_neutral] C_int = inter_list[(index*self.batch_size) %inter_array.shape[0]: (index * self.batch_size)%inter_array.shape[0]+self.batch_size] inter_people = inter_array[C_int] m = np.random.randint(0, 47, inter_people.shape[0]) inter_people_emotion = inter_people + mean_exp[m] + 0.9*(self.M_list + self.m_list)/(self.M_list - self.m_list) K.set_learning_phase(1) K.set_value(self.opt.lr, self.lr*10) err_re_inter, err_total_inter, err_kl, err_regular = self.train_func([inter_people_emotion, inter_people]) K.set_value(self.opt.lr, self.lr*0.1) err_re_emoti, err_total_emoti, err_kl, err_regular = self.train_func([people_with_emotion, people_neutral_face]) err_re = err_re_emoti#(err_re_inter + err_re_emoti)/2 err_total = (err_total_inter + err_total_emoti)/2 k = np.random.randint(0, 10*47,self.batch_size) test_emotion = test_array[k] test_neutral = test_array[k-(k%47)] K.set_learning_phase(0) eval_re, eval_total, eval_kl, eval_regular = self.test_func([test_emotion, test_neutral]) if index%display_step == 0: print(('Epoch: {:3}, total_loss: {:8.4f}, re_loss: {:8.4f}, kl_loss: {:8.4f}, regular: {:8.4f}, eval: {:8.4f}, eval_re: {:8.4f}, eval_kl: {:8.4f}').format(i, err_total, err_re, err_kl, err_regular, eval_total, eval_re, eval_kl)) log[i*ITS + index] += err_re test_log[i*ITS + index] += eval_re np.save('log', log) np.save('testlog', test_log) self.save_models() def special_train(self, epoch): def get_interpolate_data(prefix, num = 2000): if prefix == 'disentangle': #interpolate_data = np.vstack(batch_change(np.fromfile('data/{}/real_data/{}.dat'.format(prefix, i))) for i in range(num)) interpolate_data = np.vstack(batch_change(np.fromfile('data/{}/Interpolated_results/interpolated_{}.dat'.format(prefix, i))) for i in range(num)) else: interpolate_data = np.vstack(np.fromfile('data/{}/real_data/{}.dat'.format(prefix, i)) for i in range(num)) mean_inter = np.mean(interpolate_data, axis = 0) interpolate_data = interpolate_data - mean_inter return interpolate_data data_array = np.load(('data/{}/train_data.npy').format(self.prefix))[47*np.arange(140)] test_array = np.load(('data/{}/test_data.npy').format(self.prefix))[47*np.arange(10)] inter_array = get_interpolate_data(self.prefix) normalize_fromfile(inter_array, self.M_list, self.m_list) normalize_fromfile(data_array, self.M_list, self.m_list) normalize_fromfile(test_array, self.M_list, self.m_list) data_array = np.concatenate([data_array, inter_array]) log = np.zeros((epoch,)) test_log = np.zeros((epoch,)) constant_list = np.arange(data_array.shape[0]) display_step = 50 for i in range(epoch): np.random.shuffle(constant_list) for index, j in enumerate(zip(*[iter(constant_list)]*self.batch_size)): test_idx = np.random.randint(0,10,self.batch_size) test_emotion = test_array[test_idx] people_with_emotion = data_array[np.array(j)] K.set_learning_phase(1) err_re, err_total, err_kl, err_regular = self.train_func([people_with_emotion, people_with_emotion]) K.set_learning_phase(0) eval_re, eval_total, eval_kl, eval_regular = self.test_func([test_emotion, test_emotion]) if index%display_step == 0: print(('Epoch: {:3}, total_loss: {:8.4f}, re_loss: {:8.4f}, kl_loss: {:8.4f}, regular: {:8.4f}, eval: {:8.4f}, eval_re: {:8.4f}, eval_kl: {:8.4f}').format(i, err_total, err_re, err_kl, err_regular, eval_total, eval_re, eval_kl)) log[i] += err_total test_log[i] += eval_total np.save('log', log) np.save('testlog', test_log) self.save_models() def test(self, limit=5, filename='test', people_id=142): data = np.load(('data/{}/{}_data/Feature{}.npy').format(self.prefix, filename, people_id)) data_array = data.copy() normalize_fromfile(data_array, self.M_list, self.m_list) err_re, err_total, err_kl, _ = self.test_func([data_array[24:25], data_array[:1]]) print(err_re) feature_id = denormalize_fromfile(self.gcn_vae_id.predict(data_array, batch_size=self.batch_size), self.M_list, self.m_list) import shutil, os shutil.rmtree('data/mesh') os.mkdir('data/mesh') for i in (0, 1, 2, 22, 24, 25, 37, 39): V2M2(get_mesh(ref_name, data_recover(feature_id[i])), ('data/mesh/id_{}_{}.obj').format(self.prefix, i)) V2M2(get_mesh(ref_name, data_recover(data[i])), ('data/mesh/ori_{}_{}.obj').format(self.prefix, i)) class disentangle_model_vae_exp(gcn_dis_model): def build_model(self, MAX_DEGREE): SYM_NORM = True A = sp.load_npz(('data/{}/FWH_adj_matrix.npz').format(self.prefix)) L = normalized_laplacian(A, SYM_NORM) T_k = chebyshev_polynomial(rescale_laplacian(L), MAX_DEGREE) support = MAX_DEGREE + 1 self.kl_loss, self.encoder, self.decoder, self.gcn_vae_exp = get_gcn_vae_exp(T_k, support, batch_size=self.batch_size, feature_dim=self.feature_dim, v=self.v, input_dim=self.input_dim, latent_dim = self.latent_dim_exp) self.mean_exp = Input(shape=(self.input_dim,)) real = self.gcn_vae_exp.get_input_at(0) ratio = K.variable(self.M_list - self.m_list) # L2 when xyz, L1 when rimd if self.feature_dim == 9: #self.away_loss = 0.001/K.mean(K.abs(0.9*s- ( self.gcn_vae_exp(real)) * ratio)) self.exp_loss = K.mean(K.abs((self.mean_exp - self.gcn_vae_exp(real)) * ratio )) / 1.8 #+ self.away_loss else: self.exp_loss = K.mean(K.square((self.mean_exp - self.gcn_vae_exp(real)) * ratio )) * 100 self.loss = self.exp_loss + self.kl_weight * self.kl_loss weights = self.gcn_vae_exp.trainable_weights training_updates = (Adam(lr=self.lr)).get_updates(weights, [], self.loss) self.train_func = K.function([real, self.mean_exp], [self.exp_loss, self.loss, self.kl_loss], training_updates) self.test_func = K.function([real, self.mean_exp], [self.exp_loss, self.loss, self.kl_loss]) if self.load: self.load_models() def save_models(self): self.gcn_vae_exp.save_weights(('model/gcn_vae_exp_model/gcn_vae_exp{}{}.h5').format(self.prefix, self.suffix)) self.encoder.save_weights(('model/gcn_vae_exp_model/encoder_exp_{}{}.h5').format(self.prefix, self.suffix)) self.decoder.save_weights(('model/gcn_vae_exp_model/decoder_exp_{}{}.h5').format(self.prefix, self.suffix)) def load_models(self): self.gcn_vae_exp.load_weights(('model/gcn_vae_exp_model/gcn_vae_exp{}{}.h5').format(self.prefix, self.suffix)) def train(self, epoch): data_array = np.load(('data/{}/train_data.npy').format(self.prefix)) test_array = np.load(('data/{}/test_data.npy').format(self.prefix)) mean_exp = np.load(('data/{}/MeanFace_data.npy').format(self.prefix)) normalize_fromfile(mean_exp, self.M_list, self.m_list) normalize_fromfile(data_array, self.M_list, self.m_list) normalize_fromfile(test_array, self.M_list, self.m_list) log = np.zeros((epoch,)) test_log = np.zeros((epoch,)) constant_list = np.arange(6580) for i in range(epoch): k = np.random.randint(1, 11) test_emotion = test_array[k * 47 - 47:k * 47] np.random.shuffle(constant_list) for j in constant_list: l = np.random.randint(0, 47) C_exp = j % 47 people_with_emotion = data_array[j:j + 1] exp = mean_exp[C_exp:C_exp+1] err_re, err_total, err_kl = self.train_func([people_with_emotion, exp]) eval_re, eval_total, eval_kl = self.test_func([test_emotion[l:l + 1], mean_exp[l:l+1]]) print(('Epoch: {:3}, people: {:4}, total_loss: {:8.6f}, re_loss: {:8.6f}, kl_loss: {:8.4f}, eval: {:8.6f}, eval_re: {:8.6f}, eval_kl: {:8.4f}').format(i, j, err_total, err_re, err_kl, eval_total, eval_re, eval_kl)) log[i] += err_total test_log[i] += eval_total
np.save('log', log)
numpy.save
# Double pendulum formula translated from the C code at # http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c from numpy import sin, cos import numpy as np import matplotlib.pyplot as plt import scipy.integrate as integrate import matplotlib.animation as animation G = 9.81 # acceleration due to gravity, in m/s^2 L1 = 1.0 # length of pendulum 1 in m L2 = 1.0 # length of pendulum 2 in m M1 = 1.0 # mass of pendulum 1 in kg M2 = 1.0 # mass of pendulum 2 in kg def derivs(state, t): dydx = np.zeros_like(state) dydx[0] = state[1] del_ = state[2] - state[0] den1 = (M1 + M2)*L1 - M2*L1*cos(del_)*cos(del_) dydx[1] = (M2*L1*state[1]*state[1]*sin(del_)*cos(del_) + M2*G*sin(state[2])*cos(del_) + M2*L2*state[3]*state[3]*sin(del_) - (M1 + M2)*G*sin(state[0]))/den1 dydx[2] = state[3] den2 = (L2/L1)*den1 dydx[3] = (-M2*L2*state[3]*state[3]*sin(del_)*cos(del_) + (M1 + M2)*G*sin(state[0])*cos(del_) - (M1 + M2)*L1*state[1]*state[1]*sin(del_) - (M1 + M2)*G*sin(state[2]))/den2 return dydx # create a time array from 0..100 sampled at 0.015 second steps dt = 0.01 t = np.arange(0.0, 100.0, dt) # th1 and th2 are the initial angles (degrees) # w10 and w20 are the initial angular velocities (degrees per second) th1 = 120.0 w1 = 0.0 th2 = -10.0 w2 = 0.0 # initial state state = np.radians([th1, w1, th2, w2]) # integrate your ODE using scipy.integrate. y = integrate.odeint(derivs, state, t) P1 = np.dstack([L1*sin(y[:, 0]), -L1*cos(y[:, 0])]).squeeze() P2 = P1 + np.dstack([L2*sin(y[:, 2]), -L2*cos(y[:, 2])]).squeeze() fig = plt.figure(figsize=(5,5), facecolor=".85") ax = plt.axes([0,0,1,1], frameon=False) #subplot(1,1,1, aspect=1, frameon = False, xlim=(-2, 2), ylim=(-2, 2)) n = 250 colors= np.zeros((n,4)) colors[:,3] = np.linspace(0, 1, n, endpoint=True) scatter = ax.scatter(
np.zeros(n)
numpy.zeros
import os, sys, trimesh, matplotlib.pyplot as pyplot, numpy as np, time, random, progressbar, json from plyfile import PlyData, PlyElement from json import encoder encoder.FLOAT_REPR = lambda o: format(o, '.6f') from subprocess import call from collections import deque from imageio import imread colors = [[0, 0, 1], [1, 0, 0], [0, 1, 0], [0.5, 0.5, 0], [0.5, 0, 0.5], [0, 0.5, 0.5], [0.3, 0.6, 0], [0.6, 0, 0.3], [0.3, 0, 0.6], [0.6, 0.3, 0], [0.3, 0, 0.6], [0.6, 0, 0.3], [0.8, 0.2, 0.5]] BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(BASE_DIR) # ---------------------------------------- # Point Cloud Sampling # ---------------------------------------- def random_sampling(pc, num_sample, replace=None, return_choices=False): """ Input is NxC, output is num_samplexC """ if replace is None: replace = (pc.shape[0] < num_sample) choices = np.random.choice(pc.shape[0], num_sample, replace=replace) if return_choices: return pc[choices], choices else: return pc[choices] # ---------------------------------------- # Point Cloud/Volume Conversions # ---------------------------------------- def point_cloud_to_volume_batch(point_clouds, vsize=12, radius=1.0, flatten=True): """ Input is BxNx3 batch of point cloud Output is Bx(vsize^3) """ vol_list = [] for b in range(point_clouds.shape[0]): vol = point_cloud_to_volume(np.squeeze(point_clouds[b, :, :]), vsize, radius) if flatten: vol_list.append(vol.flatten()) else: vol_list.append(np.expand_dims(np.expand_dims(vol, -1), 0)) if flatten: return np.vstack(vol_list) else: return np.concatenate(vol_list, 0) def point_cloud_to_volume(points, vsize, radius=1.0): """ input is Nx3 points. output is vsize*vsize*vsize assumes points are in range [-radius, radius] """ vol = np.zeros((vsize, vsize, vsize)) voxel = 2 * radius / float(vsize) locations = (points + radius) / voxel locations = locations.astype(int) vol[locations[:, 0], locations[:, 1], locations[:, 2]] = 1.0 return vol def volume_to_point_cloud(vol): """ vol is occupancy grid (value = 0 or 1) of size vsize*vsize*vsize return Nx3 numpy array. """ vsize = vol.shape[0] assert (vol.shape[1] == vsize and vol.shape[1] == vsize) points = [] for a in range(vsize): for b in range(vsize): for c in range(vsize): if vol[a, b, c] == 1: points.append(np.array([a, b, c])) if len(points) == 0: return np.zeros((0, 3)) points = np.vstack(points) return points def point_cloud_to_volume_v2_batch(point_clouds, vsize=12, radius=1.0, num_sample=128): """ Input is BxNx3 a batch of point cloud Output is BxVxVxVxnum_samplex3 Added on Feb 19 """ vol_list = [] for b in range(point_clouds.shape[0]): vol = point_cloud_to_volume_v2(point_clouds[b, :, :], vsize, radius, num_sample) vol_list.append(np.expand_dims(vol, 0)) return np.concatenate(vol_list, 0) def point_cloud_to_volume_v2(points, vsize, radius=1.0, num_sample=128): """ input is Nx3 points output is vsize*vsize*vsize*num_sample*3 assumes points are in range [-radius, radius] samples num_sample points in each voxel, if there are less than num_sample points, replicate the points Added on Feb 19 """ vol = np.zeros((vsize, vsize, vsize, num_sample, 3)) voxel = 2 * radius / float(vsize) locations = (points + radius) / voxel locations = locations.astype(int) loc2pc = {} for n in range(points.shape[0]): loc = tuple(locations[n, :]) if loc not in loc2pc: loc2pc[loc] = [] loc2pc[loc].append(points[n, :]) for i in range(vsize): for j in range(vsize): for k in range(vsize): if (i, j, k) not in loc2pc: vol[i, j, k, :, :] = np.zeros((num_sample, 3)) else: pc = loc2pc[(i, j, k)] # a list of (3,) arrays pc = np.vstack(pc) # kx3 # Sample/pad to num_sample points if pc.shape[0] > num_sample: pc = random_sampling(pc, num_sample, False) elif pc.shape[0] < num_sample: pc = np.lib.pad(pc, ((0, num_sample - pc.shape[0]), (0, 0)), 'edge') # Normalize pc_center = (np.array([i, j, k]) + 0.5) * voxel - radius pc = (pc - pc_center) / voxel # shift and scale vol[i, j, k, :, :] = pc return vol def point_cloud_to_image_batch(point_clouds, imgsize, radius=1.0, num_sample=128): """ Input is BxNx3 a batch of point cloud Output is BxIxIxnum_samplex3 Added on Feb 19 """ img_list = [] for b in range(point_clouds.shape[0]): img = point_cloud_to_image(point_clouds[b, :, :], imgsize, radius, num_sample) img_list.append(np.expand_dims(img, 0)) return np.concatenate(img_list, 0) def point_cloud_to_image(points, imgsize, radius=1.0, num_sample=128): """ input is Nx3 points output is imgsize*imgsize*num_sample*3 assumes points are in range [-radius, radius] samples num_sample points in each pixel, if there are less than num_sample points, replicate the points Added on Feb 19 """ img = np.zeros((imgsize, imgsize, num_sample, 3)) pixel = 2 * radius / float(imgsize) locations = (points[:, 0:2] + radius) / pixel # Nx2 locations = locations.astype(int) loc2pc = {} for n in range(points.shape[0]): loc = tuple(locations[n, :]) if loc not in loc2pc: loc2pc[loc] = [] loc2pc[loc].append(points[n, :]) for i in range(imgsize): for j in range(imgsize): if (i, j) not in loc2pc: img[i, j, :, :] = np.zeros((num_sample, 3)) else: pc = loc2pc[(i, j)] pc = np.vstack(pc) if pc.shape[0] > num_sample: pc = random_sampling(pc, num_sample, False) elif pc.shape[0] < num_sample: pc = np.lib.pad(pc, ((0, num_sample - pc.shape[0]), (0, 0)), 'edge') pc_center = (np.array([i, j]) + 0.5) * pixel - radius pc[:, 0:2] = (pc[:, 0:2] - pc_center) / pixel img[i, j, :, :] = pc return img # ---------------------------------------- # Point cloud IO # ---------------------------------------- def read_ply(filename): """ read XYZ point cloud from filename PLY file """ plydata = PlyData.read(filename) pc = plydata['vertex'].data pc_array = np.array([[x, y, z] for x, y, z in pc]) return pc_array def write_ply(points, filename, text=True): """ input: Nx3, write points to filename as PLY format. """ points = [(points[i, 0], points[i, 1], points[i, 2]) for i in range(points.shape[0])] vertex = np.array(points, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4')]) el = PlyElement.describe(vertex, 'vertex', comments=['vertices']) PlyData([el], text=text).write(filename) def write_ply_color(points, labels, filename, num_classes=None, colormap=pyplot.cm.jet): """ Color (N,3) points with labels (N) within range 0 ~ num_classes-1 as OBJ file """ labels = labels.astype(int) N = points.shape[0] if num_classes is None: num_classes = np.max(labels) + 1 else: assert (num_classes > np.max(labels)) vertex = [] # colors = [pyplot.cm.jet(i / float(num_classes)) for i in range(num_classes)] colors = [colormap(i / float(num_classes)) for i in range(num_classes)] for i in range(N): c = colors[labels[i]] c = [int(x * 255) for x in c] vertex.append((points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2])) vertex = np.array(vertex, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) el = PlyElement.describe(vertex, 'vertex', comments=['vertices']) PlyData([el], text=True).write(filename) return colors def merge_mesh_with_color(meshes): face_colors = [mesh.visual.face_colors for mesh in meshes] vertex_colors = [mesh.visual.vertex_colors for mesh in meshes] vertice_list = [mesh.vertices for mesh in meshes] faces_list = [mesh.faces for mesh in meshes] faces_offset = np.cumsum([v.shape[0] for v in vertice_list]) faces_offset = np.insert(faces_offset, 0, 0)[:-1] vertices = np.vstack(vertice_list) faces = np.vstack([face + offset for face, offset in zip(faces_list, faces_offset)]) vertex_colors = np.vstack(vertex_colors) face_colors = np.vstack(face_colors) # print(vertex_colors.shape, faces.shape, vertices.shape) # exit(0) merged_meshes = trimesh.Trimesh(vertices, faces, face_colors=face_colors, vertex_colors=vertex_colors) return merged_meshes def write_ply_bbox_color(vertices, vertex_colors, edges, edge_colors, filename, num_classes=None, colormap=pyplot.cm.jet): """ Color (N,3) points with labels (N) within range 0 ~ num_classes-1 as OBJ file """ vertex = [] for i in range(len(vertices)): vertex.append((vertices[i, 0], vertices[i, 1], vertices[i, 2], vertex_colors[i, 0], vertex_colors[i, 1], vertex_colors[i, 2])) vertex = np.array(vertex, dtype=[('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) edge = [] for i in range(len(edges)): edge.append((edges[i, 0], edges[i, 1], edge_colors[i, 0], edge_colors[i, 1], edge_colors[i, 2])) edge = np.array(edge, dtype=[('vertex1', 'i4'), ('vertex2', 'i4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')]) e1 = PlyElement.describe(vertex, 'vertex', comments=['vertices']) e2 = PlyElement.describe(edge, 'edge', comments=['edges']) PlyData([e1, e2], text=True).write(filename) def write_bbox_color_json(scene_bbox, label, out_filename, num_classes=None, colormap=pyplot.cm.jet): labels = label.astype(int) if num_classes is None: num_classes = np.max(labels) + 1 else: assert (num_classes > np.max(labels)) colors = [colormap(i / float(num_classes)) for i in range(num_classes)] used_color = {} ret = [] for i, box in enumerate(scene_bbox): c = colors[label[i]] c = (np.array(c) * 255).astype(np.uint8) item_i = [float(box[0]), float(box[1]), float(box[2]), float(box[3]), float(box[4]), float(box[5]), int(c[0]), int(c[1]), int(c[2])] used_color[label[i]] = c #item_i = [str(_) for _ in item_i] ret.append(item_i) with open(out_filename, 'w') as f: json.dump(ret, f) return used_color def write_bbox_color(scene_bbox, label, out_filename, num_classes=None, colormap=pyplot.cm.jet, edge=False): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ labels = label.astype(int) if num_classes is None: num_classes = np.max(labels) + 1 else: assert (num_classes > np.max(labels)) def convert_box_to_trimesh_fmt(box, color): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 mesh = trimesh.creation.box(lengths, trns) color = np.array(color) * 255 face_colors = np.array([color] * mesh.faces.shape[0], np.uint8) vertex_colors = np.array([color] * mesh.vertices.shape[0], np.uint8) #print(face_colors, vertex_colors, box_trimesh_fmt.vertices, box_trimesh_fmt.faces) #exit(0) box_visual = trimesh.visual.create_visual( vertex_colors=vertex_colors, face_colors=face_colors, mesh=mesh) mesh.visual = box_visual # print(edges.shape) # exit(0) # print(box_trimesh_fmt.visual.face_colors) #print(face_colors) #print(box_visual.__dict__) #print(box_trimesh_fmt.visual.__dict__) #exit(0) #, facecolors=color, vertex_color=color) #print(box_trimesh_fmt.__dict__) #exit(0) return mesh colors = [colormap(i / float(num_classes)) for i in range(num_classes)] scene = [] ret = [] for i, box in enumerate(scene_bbox): ret.append(colors[label[i]]) scene.append(convert_box_to_trimesh_fmt(box, colors[label[i]])) mesh = merge_mesh_with_color(scene) if edge: sharp = mesh.face_adjacency_angles > np.radians(40) edges = mesh.face_adjacency_edges[sharp] assert edges.shape[0] % 12 == 0 edge_colors = mesh.visual.vertex_colors[edges[:, 0]] #print(edges.shape, edge_colors.shape) #exit(0) write_ply_bbox_color(mesh.vertices, mesh.visual.vertex_colors, edges, edge_colors, out_filename) else: trimesh.exchange.export.export_mesh(mesh, out_filename, file_type='ply') #print(mesh_list.visual.mesh.visual.__dict__) # save to ply file # ply = trimesh.exchange.ply.export_ply(mesh_list, encoding='ascii') #trimesh.exchange.export.export_mesh(mesh_list, out_filename, file_type='ply') #, encoding='ascii') # print(ply) # exit(0) # out_filename return ret def write_ply_rgb(points, colors, out_filename, num_classes=None): """ Color (N,3) points with RGB colors (N,3) within range [0,255] as OBJ file """ colors = colors.astype(int) N = points.shape[0] fout = open(out_filename, 'w') for i in range(N): c = colors[i, :] fout.write('v %f %f %f %d %d %d\n' % (points[i, 0], points[i, 1], points[i, 2], c[0], c[1], c[2])) fout.close() # ---------------------------------------- # Simple Point cloud and Volume Renderers # ---------------------------------------- def pyplot_draw_point_cloud(points, output_filename): """ points is a Nx3 numpy array """ import matplotlib.pyplot as plt fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(points[:, 0], points[:, 1], points[:, 2]) ax.set_xlabel('x') ax.set_ylabel('y') ax.set_zlabel('z') pyplot.savefig(output_filename) def pyplot_draw_volume(vol, output_filename): """ vol is of size vsize*vsize*vsize output an image to output_filename """ points = volume_to_point_cloud(vol) pyplot_draw_point_cloud(points, output_filename) # ---------------------------------------- # Simple Point manipulations # ---------------------------------------- def rotate_point_cloud(points, rotation_matrix=None): """ Input: (n,3), Output: (n,3) """ # Rotate in-place around Z axis. if rotation_matrix is None: rotation_angle = np.random.uniform() * 2 * np.pi sinval, cosval = np.sin(rotation_angle), np.cos(rotation_angle) rotation_matrix = np.array([[cosval, sinval, 0], [-sinval, cosval, 0], [0, 0, 1]]) ctr = points.mean(axis=0) rotated_data = np.dot(points - ctr, rotation_matrix) + ctr return rotated_data, rotation_matrix def rotate_pc_along_y(pc, rot_angle): ''' Input ps is NxC points with first 3 channels as XYZ z is facing forward, x is left ward, y is downward ''' cosval = np.cos(rot_angle) sinval = np.sin(rot_angle) rotmat = np.array([[cosval, -sinval], [sinval, cosval]]) pc[:, [0, 2]] = np.dot(pc[:, [0, 2]], np.transpose(rotmat)) return pc def roty(t): """Rotation about the y-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, 0, s], [0, 1, 0], [-s, 0, c]]) def roty_batch(t): """Rotation about the y-axis. t: (x1,x2,...xn) return: (x1,x2,...,xn,3,3) """ input_shape = t.shape output = np.zeros(tuple(list(input_shape) + [3, 3])) c = np.cos(t) s = np.sin(t) output[..., 0, 0] = c output[..., 0, 2] = s output[..., 1, 1] = 1 output[..., 2, 0] = -s output[..., 2, 2] = c return output def rotz(t): """Rotation about the z-axis.""" c = np.cos(t) s = np.sin(t) return np.array([[c, -s, 0], [s, c, 0], [0, 0, 1]]) # ---------------------------------------- # BBox # ---------------------------------------- def bbox_corner_dist_measure(crnr1, crnr2): """ compute distance between box corners to replace iou Args: crnr1, crnr2: Nx3 points of box corners in camera axis (y points down) output is a scalar between 0 and 1 """ dist = sys.maxsize for y in range(4): rows = ([(x + y) % 4 for x in range(4)] + [4 + (x + y) % 4 for x in range(4)]) d_ = np.linalg.norm(crnr2[rows, :] - crnr1, axis=1).sum() / 8.0 if d_ < dist: dist = d_ u = sum([np.linalg.norm(x[0, :] - x[6, :]) for x in [crnr1, crnr2]]) / 2.0 measure = max(1.0 - dist / u, 0) print(measure) return measure def point_cloud_to_bbox(points): """ Extract the axis aligned box from a pcl or batch of pcls Args: points: Nx3 points or BxNx3 output is 6 dim: xyz pos of center and 3 lengths """ which_dim = len(points.shape) - 2 # first dim if a single cloud and second if batch mn, mx = points.min(which_dim), points.max(which_dim) lengths = mx - mn cntr = 0.5 * (mn + mx) return np.concatenate([cntr, lengths], axis=which_dim) def write_bbox(scene_bbox, out_filename): """Export scene bbox to meshes Args: scene_bbox: (N x 6 numpy array): xyz pos of center and 3 lengths out_filename: (string) filename Note: To visualize the boxes in MeshLab. 1. Select the objects (the boxes) 2. Filters -> Polygon and Quad Mesh -> Turn into Quad-Dominant Mesh 3. Select Wireframe view. """ def convert_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply') return def write_oriented_bbox(scene_bbox, out_filename): """Export oriented (around Z axis) scene bbox to meshes Args: scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz) and heading angle around Z axis. Y forward, X right, Z upward. heading angle of positive X is 0, heading angle of positive Y is 90 degrees. out_filename: (string) filename """ def heading2rotmat(heading_angle): pass rotmat = np.zeros((3, 3)) rotmat[2, 2] = 1 cosval = np.cos(heading_angle) sinval = np.sin(heading_angle) rotmat[0:2, 0:2] = np.array([[cosval, -sinval], [sinval, cosval]]) return rotmat def convert_oriented_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:6] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 trns[0:3, 0:3] = heading2rotmat(box[6]) box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply') return def write_oriented_bbox_camera_coord(scene_bbox, out_filename): """Export oriented (around Y axis) scene bbox to meshes Args: scene_bbox: (N x 7 numpy array): xyz pos of center and 3 lengths (dx,dy,dz) and heading angle around Y axis. Z forward, X rightward, Y downward. heading angle of positive X is 0, heading angle of negative Z is 90 degrees. out_filename: (string) filename """ def heading2rotmat(heading_angle): pass rotmat = np.zeros((3, 3)) rotmat[1, 1] = 1 cosval = np.cos(heading_angle) sinval = np.sin(heading_angle) rotmat[0, :] = np.array([cosval, 0, sinval]) rotmat[2, :] = np.array([-sinval, 0, cosval]) return rotmat def convert_oriented_box_to_trimesh_fmt(box): ctr = box[:3] lengths = box[3:6] trns = np.eye(4) trns[0:3, 3] = ctr trns[3, 3] = 1.0 trns[0:3, 0:3] = heading2rotmat(box[6]) box_trimesh_fmt = trimesh.creation.box(lengths, trns) return box_trimesh_fmt scene = trimesh.scene.Scene() for box in scene_bbox: scene.add_geometry(convert_oriented_box_to_trimesh_fmt(box)) mesh_list = trimesh.util.concatenate(scene.dump()) # save to ply file trimesh.io.export.export_mesh(mesh_list, out_filename, file_type='ply') return def write_lines_as_cylinders(pcl, filename, rad=0.005, res=64): """Create lines represented as cylinders connecting pairs of 3D points Args: pcl: (N x 2 x 3 numpy array): N pairs of xyz pos filename: (string) filename for the output mesh (ply) file rad: radius for the cylinder res: number of sections used to create the cylinder """ scene = trimesh.scene.Scene() for src, tgt in pcl: # compute line vec = tgt - src M = trimesh.geometry.align_vectors([0, 0, 1], vec, False) vec = tgt - src # compute again since align_vectors modifies vec in-place! M[:3, 3] = 0.5 * src + 0.5 * tgt height = np.sqrt(np.dot(vec, vec)) scene.add_geometry(trimesh.creation.cylinder(radius=rad, height=height, sections=res, transform=M)) mesh_list = trimesh.util.concatenate(scene.dump()) trimesh.io.export.export_mesh(mesh_list, '%s.ply' % (filename), file_type='ply') def normalize_pts(pts): out = np.array(pts, dtype=np.float32) center = np.mean(out, axis=0) out -= center scale = np.sqrt(np.max(np.sum(out ** 2, axis=1))) out /= scale return out def load_obj(fn, no_normal=False): fin = open(fn, 'r') lines = [line.rstrip() for line in fin] fin.close() vertices = []; normals = []; faces = []; for line in lines: if line.startswith('v '): vertices.append(np.float32(line.split()[1:4])) elif line.startswith('vn '): normals.append(np.float32(line.split()[1:4])) elif line.startswith('f '): faces.append(np.int32([item.split('/')[0] for item in line.split()[1:4]])) mesh = dict() mesh['faces'] = np.vstack(faces) mesh['vertices'] = np.vstack(vertices) if (not no_normal) and (len(normals) > 0): assert len(normals) == len(vertices), 'ERROR: #vertices != #normals' mesh['normals'] = np.vstack(normals) return mesh def export_obj_submesh_label(obj_fn, label_fn): fin = open(obj_fn, 'r') lines = [line.rstrip() for line in fin] fin.close() face_ids = []; cur_id = 0; for line in lines: if line.startswith('f '): face_ids.append(cur_id) elif line.startswith('g '): cur_id += 1 fout = open(label_fn, 'w') for i in range(len(face_ids)): fout.write('%d\n' % face_ids[i]) fout.close() def load_obj_with_submeshes(fn): fin = open(fn, 'r') lines = [line.rstrip() for line in fin] fin.close() vertices = []; submesh_id = -1; submesh_names = []; faces = dict(); for line in lines: if line.startswith('v '): vertices.append(np.float32(line.split()[1:4])) elif line.startswith('f '): faces[submesh_id].append(np.int32([item.split('/')[0] for item in line.split()[1:4]])) elif line.startswith('g '): submesh_names.append(line.split()[1]) submesh_id += 1 faces[submesh_id] = [] vertice_arr = np.vstack(vertices) mesh = dict() mesh['names'] = submesh_names mesh['tot'] = submesh_id + 1 out_vertices = dict() out_faces = dict() for i in range(submesh_id + 1): data = np.vstack(faces[i]).astype(np.int32) out_vertice_ids = np.array(list(set(data.flatten())), dtype=np.int32) - 1 vertice_map = {out_vertice_ids[x] + 1: x + 1 for x in range(len(out_vertice_ids))} out_vertices[i] = vertice_arr[out_vertice_ids, :] data = np.vstack(faces[i]) cur_out_faces = np.zeros(data.shape, dtype=np.float32) for x in range(data.shape[0]): for y in range(data.shape[1]): cur_out_faces[x, y] = vertice_map[data[x, y]] out_faces[i] = cur_out_faces mesh['vertices'] = out_vertices mesh['faces'] = out_faces return mesh def load_off(fn): fin = open(fn, 'r') line = fin.readline() line = fin.readline() num_vertices = int(line.split()[0]) num_faces = int(line.split()[1]) vertices = np.zeros((num_vertices, 3)).astype(np.float32) for i in range(num_vertices): vertices[i, :] = np.float32(fin.readline().split()) faces = np.zeros((num_faces, 3)).astype(np.int32) for i in range(num_faces): faces[i, :] = np.int32(fin.readline().split()[1:]) + 1 fin.close() mesh = dict() mesh['faces'] = faces mesh['vertices'] = vertices return mesh def rotate_pts(pts, theta=0, phi=0): rotated_data = np.zeros(pts.shape, dtype=np.float32) # rotate along y-z axis rotation_angle = phi / 90 * np.pi / 2 cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[1, 0, 0], [0, cosval, sinval], [0, -sinval, cosval]]) rotated_pts = np.dot(pts, rotation_matrix) # rotate along x-z axis rotation_angle = theta / 360 * 2 * np.pi cosval = np.cos(rotation_angle) sinval = np.sin(rotation_angle) rotation_matrix = np.array([[cosval, 0, sinval], [0, 1, 0], [-sinval, 0, cosval]]) rotated_pts = np.dot(rotated_pts, rotation_matrix) return rotated_pts def load_pts(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] pts = np.array([[float(line.split()[0]), float(line.split()[1]), float(line.split()[2])] for line in lines], dtype=np.float32) return pts def load_pts_nor(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] pts = np.array([[float(line.split()[0]), float(line.split()[1]), float(line.split()[2])] for line in lines], dtype=np.float32) nor = np.array([[float(line.split()[3]), float(line.split()[4]), float(line.split()[5])] for line in lines], dtype=np.float32) return pts, nor def load_label(fn): with open(fn, 'r') as fin: lines = [item.rstrip() for item in fin] label = np.array([int(line) for line in lines], dtype=np.int32) return label def export_obj(out, v, f): with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('v %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) for i in range(f.shape[0]): fout.write('f %d %d %d\n' % (f[i, 0], f[i, 1], f[i, 2])) def export_label(out, label): with open(out, 'w') as fout: for i in range(label.shape[0]): fout.write('%d\n' % label[i]) def export_pts(out, v): with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('%f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) def export_pts_with_normal(out, v, n): assert v.shape[0] == n.shape[0], 'v.shape[0] != v.shape[0]' with open(out, 'w') as fout: for i in range(v.shape[0]): fout.write('%f %f %f %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2], n[i, 0], n[i, 1], n[i, 2])) def export_ply(out, v): with open(out, 'w') as fout: fout.write('ply\n'); fout.write('format ascii 1.0\n'); fout.write('element vertex ' + str(v.shape[0]) + '\n'); fout.write('property float x\n'); fout.write('property float y\n'); fout.write('property float z\n'); fout.write('end_header\n'); for i in range(v.shape[0]): fout.write('%f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2])) def export_ply_with_label(out, v, l): num_colors = len(colors) with open(out, 'w') as fout: fout.write('ply\n'); fout.write('format ascii 1.0\n'); fout.write('element vertex ' + str(v.shape[0]) + '\n'); fout.write('property float x\n'); fout.write('property float y\n'); fout.write('property float z\n'); fout.write('property uchar red\n'); fout.write('property uchar green\n'); fout.write('property uchar blue\n'); fout.write('end_header\n'); for i in range(v.shape[0]): cur_color = colors[l[i] % num_colors] fout.write('%f %f %f %d %d %d\n' % (v[i, 0], v[i, 1], v[i, 2], \ int(cur_color[0] * 255), int(cur_color[1] * 255), int(cur_color[2] * 255))) def export_ply_with_normal(out, v, n): assert v.shape[0] == n.shape[0], 'v.shape[0] != v.shape[0]' with open(out, 'w') as fout: fout.write('ply\n'); fout.write('format ascii 1.0\n'); fout.write('element vertex ' + str(v.shape[0]) + '\n'); fout.write('property float x\n'); fout.write('property float y\n'); fout.write('property float z\n'); fout.write('property float nx\n'); fout.write('property float ny\n'); fout.write('property float nz\n'); fout.write('end_header\n'); for i in range(v.shape[0]): fout.write('%f %f %f %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2], n[i, 0], n[i, 1], n[i, 2])) def sample_points_from_obj(label_fn, obj_fn, pts_fn, num_points, verbose=False): cmd = 'MeshSample -n%d -s3 -l %s %s %s> /dev/null' % (num_points, label_fn, obj_fn, pts_fn) if verbose: print(cmd) call(cmd, shell=True) with open(pts_fn, 'r') as fin: lines = [line.rstrip() for line in fin] pts = np.array([[line.split()[0], line.split()[1], line.split()[2]] for line in lines], dtype=np.float32) label = np.array([int(line.split()[-1].split('"')[1]) for line in lines], dtype=np.int32) if verbose: print('get pts: ', pts.shape) return pts, label def sample_points(v, f, label=None, num_points=200, verbose=False): tmp_obj = str(time.time()).replace('.', '_') + '_' + str(random.random()).replace('.', '_') + '.obj' tmp_pts = tmp_obj.replace('.obj', '.pts') tmp_label = tmp_obj.replace('.obj', '.label') if label is None: label = np.zeros((f.shape[0]), dtype=np.int32) export_obj(tmp_obj, v, f) export_label(tmp_label, label) pts, fid = sample_points_from_obj(tmp_label, tmp_obj, tmp_pts, num_points=num_points, verbose=verbose) cmd = 'rm -rf %s %s %s' % (tmp_obj, tmp_pts, tmp_label) call(cmd, shell=True) return pts, fid def export_pts_with_color(out, pc, label): num_point = pc.shape[0] with open(out, 'w') as fout: for i in range(num_point): cur_color = label[i] fout.write('%f %f %f %d %d %d\n' % (pc[i, 0], pc[i, 1], pc[i, 2], cur_color[0], cur_color[1], cur_color[2])) def export_pts_with_label(out, pc, label, base=0): num_point = pc.shape[0] num_colors = len(colors) with open(out, 'w') as fout: for i in range(num_point): cur_color = colors[label[i] % num_colors] fout.write('%f %f %f %f %f %f\n' % (pc[i, 0], pc[i, 1], pc[i, 2], cur_color[0], cur_color[1], cur_color[2])) def export_pts_with_keypoints(out, pc, kp_list): num_point = pc.shape[0] with open(out, 'w') as fout: for i in range(num_point): if i in kp_list: color = [1.0, 0.0, 0.0] else: color = [0.0, 0.0, 1.0] fout.write('%f %f %f %f %f %f\n' % (pc[i, 0], pc[i, 1], pc[i, 2], color[0], color[1], color[2])) def compute_boundary_labels(pc, seg, radius=0.05): num_points = len(seg) assert num_points == pc.shape[0] assert pc.shape[1] == 3 bdr = np.zeros((num_points)).astype(np.int32) square_sum = np.sum(pc * pc, axis=1) A = np.tile(np.expand_dims(square_sum, axis=0), [num_points, 1]) B = np.tile(np.expand_dims(square_sum, axis=1), [1, num_points]) C = np.dot(pc, pc.T) dist = A + B - 2 * C for i in range(num_points): neighbor_seg = seg[dist[i, :] < radius ** 2] if len(set(neighbor_seg)) > 1: bdr[i] = 1 return bdr def render_obj(out, v, f, delete_img=False, flat_shading=True): tmp_obj = out.replace('.png', '.obj') export_obj(tmp_obj, v, f) if flat_shading: cmd = 'RenderShape -0 %s %s 600 600 > /dev/null' % (tmp_obj, out) else: cmd = 'RenderShape %s %s 600 600 > /dev/null' % (tmp_obj, out) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s' % (tmp_obj) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_obj_with_label(out, v, f, label, delete_img=False, base=0): tmp_obj = out.replace('.png', '.obj') tmp_label = out.replace('.png', '.label') label += base export_obj(tmp_obj, v, f) export_label(tmp_label, label) cmd = 'RenderShape %s -l %s %s 600 600 > /dev/null' % (tmp_obj, tmp_label, out) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s %s' % (tmp_obj, tmp_label) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_pts_with_label(out, pts, label, delete_img=False, base=0, point_size=6): tmp_pts = out.replace('.png', '.pts') tmp_label = out.replace('.png', '.label') label += base export_pts(tmp_pts, pts) export_label(tmp_label, label) cmd = 'RenderShape %s -l %s %s 600 600 -p %d > /dev/null' % (tmp_pts, tmp_label, out, point_size) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s %s' % (tmp_pts, tmp_label) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_pts(out, pts, delete_img=False, point_size=6, point_color='FF0000FF'): tmp_pts = out.replace('.png', '.pts') export_pts(tmp_pts, pts) cmd = 'RenderShape %s %s 600 600 -p %d -c %s > /dev/null' % (tmp_pts, out, point_size, point_color) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s' % tmp_pts call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def render_pts_with_keypoints(out, pts, kp_list, delete_img=False, \ point_size=6, fancy_kp=False, fancy_kp_num=20, fancy_kp_radius=0.02): tmp_pts = out.replace('.png', '.pts') tmp_label = out.replace('.png', '.label') num_point = pts.shape[0] labels = np.ones((num_point), dtype=np.int32) * 14 for idx in kp_list: labels[idx] = 13 if fancy_kp: num_kp = len(kp_list) more_pts = np.zeros((num_kp * fancy_kp_num, 3), dtype=np.float32) more_labels = np.ones((num_kp * fancy_kp_num), dtype=np.int32) * 13 for i, idx in enumerate(kp_list): for j in range(fancy_kp_num): x = np.random.randn() y = np.random.randn() z = np.random.randn() l = np.sqrt(x ** 2 + y ** 2 + z ** 2) x = x / l * fancy_kp_radius + pts[idx, 0] y = y / l * fancy_kp_radius + pts[idx, 1] z = z / l * fancy_kp_radius + pts[idx, 2] more_pts[i * fancy_kp_num + j, 0] = x more_pts[i * fancy_kp_num + j, 1] = y more_pts[i * fancy_kp_num + j, 2] = z pts = np.concatenate((pts, more_pts), axis=0) labels = np.concatenate((labels, more_labels), axis=0) export_pts(tmp_pts, pts) export_label(tmp_label, labels) cmd = 'RenderShape %s -l %s %s 600 600 -p %d > /dev/null' % (tmp_pts, tmp_label, out, point_size) call(cmd, shell=True) img = np.array(imread(out), dtype=np.float32) cmd = 'rm -rf %s %s' % (tmp_pts, tmp_label) call(cmd, shell=True) if delete_img: cmd = 'rm -rf %s' % out call(cmd, shell=True) return img def compute_normal(pts, neighbor=50): l = pts.shape[0] assert (l > neighbor) t = np.sum(pts ** 2, axis=1) A = np.tile(t, (l, 1)) C = np.array(A).T B = np.dot(pts, pts.T) dist = A - 2 * B + C neigh_ids = dist.argsort(axis=1)[:, :neighbor] vec_ones = np.ones((neighbor, 1)).astype(np.float32) normals = np.zeros((l, 3)).astype(np.float32) for idx in range(l): D = pts[neigh_ids[idx, :], :] cur_normal = np.dot(np.linalg.pinv(D), vec_ones) cur_normal = np.squeeze(cur_normal) len_normal = np.sqrt(np.sum(cur_normal ** 2)) normals[idx, :] = cur_normal / len_normal if np.dot(normals[idx, :], pts[idx, :]) < 0: normals[idx, :] = -normals[idx, :] return normals def transfer_label_from_pts_to_obj(vertices, faces, pts, label): assert pts.shape[0] == label.shape[0], 'ERROR: #pts != #label' num_pts = pts.shape[0] num_faces = faces.shape[0] face_centers = [] for i in range(num_faces): face_centers.append( (vertices[faces[i, 0] - 1, :] + vertices[faces[i, 1] - 1, :] + vertices[faces[i, 2] - 1, :]) / 3) face_center_array = np.vstack(face_centers) A = np.tile(np.expand_dims(np.sum(face_center_array ** 2, axis=1), axis=0), [num_pts, 1]) B = np.tile(np.expand_dims(np.sum(pts ** 2, axis=1), axis=1), [1, num_faces]) C = np.dot(pts, face_center_array.T) dist = A + B - 2 * C lid = np.argmax(-dist, axis=0) face_label = label[lid] return face_label def detect_connected_component(vertices, faces, face_labels=None): edge2facelist = dict() num_vertices = vertices.shape[0] num_faces = faces.shape[0] bar = progressbar.ProgressBar() face_id_list = [] for face_id in bar(range(num_faces)): f0 = faces[face_id, 0] - 1 f1 = faces[face_id, 1] - 1 f2 = faces[face_id, 2] - 1 id_list = np.sort([f0, f1, f2]) s0 = id_list[0] s1 = id_list[1] s2 = id_list[2] key1 = '%d_%d' % (s0, s1) if key1 in edge2facelist.keys(): edge2facelist[key1].append(face_id) else: edge2facelist[key1] = [face_id] key2 = '%d_%d' % (s1, s2) if key2 in edge2facelist.keys(): edge2facelist[key2].append(face_id) else: edge2facelist[key2] = [face_id] key3 = '%d_%d' % (s0, s2) if key3 in edge2facelist.keys(): edge2facelist[key3].append(face_id) else: edge2facelist[key3] = [face_id] face_id_list.append([key1, key2, key3]) face_used = np.zeros((num_faces), dtype=np.bool); face_seg_id = np.zeros((num_faces), dtype=np.int32); cur_id = 0; new_part = False for i in range(num_faces): q = deque() q.append(i) while len(q) > 0: face_id = q.popleft() if not face_used[face_id]: face_used[face_id] = True new_part = True face_seg_id[face_id] = cur_id for key in face_id_list[face_id]: for new_face_id in edge2facelist[key]: if not face_used[new_face_id] and (face_labels == None or face_labels[new_face_id] == face_labels[face_id]): q.append(new_face_id) if new_part: cur_id += 1 new_part = False return face_seg_id def calculate_two_pts_distance(pts1, pts2): A = np.tile(np.expand_dims(np.sum(pts1 ** 2, axis=1), axis=-1), [1, pts2.shape[0]]) B = np.tile(np.expand_dims(np.sum(pts2 ** 2, axis=1), axis=0), [pts1.shape[0], 1]) C = np.dot(pts1, pts2.T) dist = A + B - 2 * C return dist def propagate_pts_seg_from_another_pts(ori_pts, ori_seg, tar_pts): dist = calculate_two_pts_distance(ori_pts, tar_pts) idx = np.argmin(dist, axis=0) return ori_seg[idx] # ---------------------------------------- # Testing # ---------------------------------------- if __name__ == '__main__': print('running some tests') ############ ## Test "write_lines_as_cylinders" ############ pcl = np.random.rand(32, 2, 3) write_lines_as_cylinders(pcl, 'point_connectors') input() scene_bbox = np.zeros((1, 7)) scene_bbox[0, 3:6] = np.array([1, 2, 3]) # dx,dy,dz scene_bbox[0, 6] = np.pi / 4 # 45 degrees write_oriented_bbox(scene_bbox, 'single_obb_45degree.ply') ############ ## Test point_cloud_to_bbox ############ pcl =
np.random.rand(32, 16, 3)
numpy.random.rand
''' 25 2D-Gaussian Simulation Compare different Sampling methods and DRE methods 1. DRE method 1.1. By NN DR models: MLP Loss functions: uLISF, DSKL, BARR, SP (ours) lambda for SP is selected by maximizing average denstity ratio on validation set 1.2. GAN property 2. Data Generation: (1). Target Distribution p_r: A mixture of 25 2-D Gaussian 25 means which are combinations of any two points in [-2, -1, 0, 1, 2] Each Gaussian has a covariance matrix sigma*diag(2), sigma=0.05 (2). Proposal Distribution p_g: GAN NTRAIN = 50000, NVALID=50000, NTEST=10000 3. Sampling from GAN by None/RS/MH/SIR 4. Evaluation on a held-out test set Prop. of good samples (within 4 sd) and Prop. of recovered modes ''' wd = './Simulation' import os os.chdir(wd) import timeit import torch import torchvision import torchvision.transforms as transforms import numpy as np import torch.nn as nn import torch.backends.cudnn as cudnn from torch.nn import functional as F import random import matplotlib.pyplot as plt import matplotlib as mpl from torch import autograd from torchvision.utils import save_image from tqdm import tqdm import gc from itertools import groupby import argparse from sklearn.linear_model import LogisticRegression import multiprocessing from scipy.stats import multivariate_normal from scipy.stats import ks_2samp import pickle import csv from sklearn.model_selection import GridSearchCV from sklearn import mixture from utils import * from models import * from Train_DRE import train_DRE_GAN from Train_GAN import * ####################################################################################### ''' Settings ''' ####################################################################################### parser = argparse.ArgumentParser(description='Simulation') '''Overall Settings''' parser.add_argument('--NSIM', type=int, default=1, help = "How many times does this experiment need to be repeated?") parser.add_argument('--DIM', type=int, default=2, help = "Dimension of the Euclidean space of our interest") parser.add_argument('--n_comp_tar', type=int, default=25, help = "Number of mixture components in the target distribution") parser.add_argument('--DRE', type=str, default='DRE_SP', choices=['None', 'GT', 'DRE_uLSIF', 'DRE_DSKL', 'DRE_BARR', 'DRE_SP', 'disc', 'disc_MHcal', 'disc_KeepTrain'], #GT is ground truth help='Density ratio estimation method; None means randomly sample from the proposal distribution or the trained GAN') parser.add_argument('--Sampling', type=str, default='RS', help='Sampling method; Candidiate: None, RS, MH, SIR') #RS: rejection sampling, MH: Metropolis-Hastings; SIR: Sampling-Importance Resampling parser.add_argument('--seed', type=int, default=2019, metavar='S', help='random seed (default: 2019)') parser.add_argument('--show_reference', action='store_true', default=False, help='Assign 1 as density ratios to all samples and compute errors') parser.add_argument('--show_visualization', action='store_true', default=False, help='Plot fake samples in 2D coordinate') ''' Data Generation ''' parser.add_argument('--NTRAIN', type=int, default=50000) parser.add_argument('--NTEST', type=int, default=10000) ''' GAN settings ''' parser.add_argument('--epoch_gan', type=int, default=50) #default 50 parser.add_argument('--lr_gan', type=float, default=1e-3, help='learning rate') parser.add_argument('--dim_gan', type=int, default=2, help='Latent dimension of GAN') parser.add_argument('--batch_size_gan', type=int, default=512, metavar='N', help='input batch size for training GAN') parser.add_argument('--resumeTrain_gan', type=int, default=0) parser.add_argument('--compute_disc_err', action='store_true', default=False, help='Compute the distance between the discriminator and its optimality') '''DRE Settings''' parser.add_argument('--DR_Net', type=str, default='MLP5', choices=['MLP3', 'MLP5', 'MLP7', 'MLP9', 'CNN5'], help='DR Model') # DR models parser.add_argument('--epoch_DRE', type=int, default=200) parser.add_argument('--base_lr_DRE', type=float, default=1e-5, help='learning rate') parser.add_argument('--decay_lr_DRE', action='store_true', default=False, help='decay learning rate') parser.add_argument('--lr_decay_epochs_DRE', type=int, default=400) parser.add_argument('--batch_size_DRE', type=int, default=512, metavar='N', help='input batch size for training DRE') parser.add_argument('--lambda_DRE', type=float, default=0.0, #BARR: lambda=10 help='penalty in DRE') parser.add_argument('--weightdecay_DRE', type=float, default=0.0, help='weight decay in DRE') parser.add_argument('--resumeTrain_DRE', type=int, default=0) parser.add_argument('--DR_final_ActFn', type=str, default='ReLU', help='Final layer of the Density-ratio model; Candidiate: Softplus or ReLU') parser.add_argument('--TrainPreNetDRE', action='store_true', default=False, help='Pre-trained MLP for DRE in Feature Space') parser.add_argument('--DRE_save_at_epoch', nargs='+', type=int) parser.add_argument('--epoch_KeepTrain', type=int, default=20) parser.add_argument('--compute_dre_err', action='store_true', default=False, help='Compare the DRE method with the ground truth') ''' Mixture Gaussian (for density estimation) Settings ''' parser.add_argument('--gmm_nfake', type=int, default=100000) # parser.add_argument('--gmm_ncomp', type=int, default=0) #gmm_ncomp is non-positive, then we do ncomp selection parser.add_argument('--gmm_ncomp_nsim', nargs='+', type=int) #A list of ncomp for NSIM rounds. If gmm_ncomp is None, then we do ncomp selection parser.add_argument('--gmm_ncomp_grid', nargs='+', type=int) parser.add_argument('--gmm_ncomp_grid_lb', type=int, default=1) parser.add_argument('--gmm_ncomp_grid_ub', type=int, default=100) parser.add_argument('--gmm_ncomp_grid_step', type=int, default=1) args = parser.parse_args() #-------------------------------- # system assert torch.cuda.is_available() NGPU = torch.cuda.device_count() device = torch.device("cuda" if NGPU>0 else "cpu") cores= multiprocessing.cpu_count() #-------------------------------- # Extra Data Generation Settings n_comp_tar = args.n_comp_tar n_features = args.DIM mean_grid_tar = [-2, -1, 0, 1, 2] sigma_tar = 0.05 n_classes = n_comp_tar quality_threshold = sigma_tar*4 #good samples are within 4 standard deviation #-------------------------------- # GAN Settings epoch_GAN = args.epoch_gan lr_GAN = args.lr_gan batch_size_GAN = args.batch_size_gan dim_GAN = args.dim_gan plot_in_train = True gan_Adam_beta1 = 0.5 gan_Adam_beta2 = 0.999 #-------------------------------- # Extra DRE Settings DRE_Adam_beta1 = 0.5 DRE_Adam_beta2 = 0.999 comp_ratio_bs = 1000 #batch size for computing density ratios base_lr_PreNetDRE = 1e-1 epoch_PreNetDRE = 100 DRE_save_at_epoch = args.DRE_save_at_epoch # save checkpoints at these epochs # DRE_save_at_epoch = [20, 50, 100, 150, 200, 300, 400, 500, 800] epoch_KeepTrain = args.epoch_KeepTrain #keep training for DRS ckp_epoch_KeepTrain = [i for i in range(100) if i%5==0] #-------------------------------- # Mixture Gaussian Setting gmm_nfake = args.gmm_nfake # gmm_ncomp = args.gmm_ncomp gmm_ncomp_nsim = args.gmm_ncomp_nsim # if gmm_ncomp_nsim is not None: # assert len(gmm_ncomp_nsim) == args.NSIM if args.gmm_ncomp_grid is not None: gmm_ncomp_grid = args.gmm_ncomp_grid else: gmm_ncomp_grid = np.arange(args.gmm_ncomp_grid_lb, args.gmm_ncomp_grid_ub+args.gmm_ncomp_grid_step, args.gmm_ncomp_grid_step) #-------------------------------- # Extra Sampling Settings NFAKE = args.NTEST samp_batch_size = 10000 MH_K = 100 MH_mute = True #do not print sampling progress #------------------------------- # seeds random.seed(args.seed) torch.manual_seed(args.seed) torch.backends.cudnn.deterministic = True np.random.seed(args.seed) #------------------------------- # output folders save_models_folder = wd + '/Output/saved_models/' os.makedirs(save_models_folder,exist_ok=True) save_images_folder = wd + '/Output/saved_images/' os.makedirs(save_images_folder,exist_ok=True) save_traincurves_folder = wd + '/Output/Training_loss_fig/' os.makedirs(save_traincurves_folder,exist_ok=True) save_GANimages_InTrain_folder = wd + '/Output/saved_images/GAN_InTrain' os.makedirs(save_GANimages_InTrain_folder,exist_ok=True) save_objects_folder = wd + '/Output/saved_objects' os.makedirs(save_objects_folder,exist_ok=True) ####################################################################################### ''' Start Experiment ''' ####################################################################################### #--------------------------------- # sampler for reference distribution means_tar = np.zeros((1,n_features)) for i in mean_grid_tar: for j in mean_grid_tar: means_tar = np.concatenate((means_tar, np.array([i,j]).reshape(-1,n_features)), axis=0) means_tar = means_tar[1:] assert means_tar.shape[0] == n_comp_tar assert means_tar.shape[1] == n_features def generate_data_tar(nsamp): return sampler_MixGaussian(nsamp, means_tar, sigma = sigma_tar, dim = n_features) def p_r(samples): #pdf of the underlying distribution; samples is a n by n_features sample matrix return pdf_MixGaussian(samples, means_tar, sigma_tar) prop_recovered_modes = np.zeros(args.NSIM) # num of removed modes diveded by num of modes prop_good_samples = np.zeros(args.NSIM) # num of good fake samples diveded by num of all fake samples valid_densityratios_all = [] #store denstiy ratios for validation samples train_densityratios_all = [] ks_test_results = np.zeros((args.NSIM,2)) dre_errors_all = np.zeros(args.NSIM) #compute density ratios on the test set (hold-out set) with each DRE method and the ground truth dre_errors_hq = np.zeros(args.NSIM) dre_errors_lq = np.zeros(args.NSIM) esti_avg_densityratio = np.zeros((args.NSIM, 4)) #estimated density ratios of testing samples, NFAKE fake samples, HQ fake samples, LQ fake samples true_avg_densityratio = np.zeros((args.NSIM, 4)) #true density ratios of testing samples, NFAKE fake samples, HQ fake samples, LQ fake samples disc_errors_all = np.zeros(args.NSIM) #compute the distance between the discriminator and its optimality nfake_in_train = np.zeros(args.NSIM) print("\n Begin The Experiment. Sample from a GAN! >>>") start = timeit.default_timer() for nSim in range(args.NSIM): print("Round %s" % (nSim)) np.random.seed(nSim) #set seed for current simulation ############################################################################### # Data generation and dataloaders ############################################################################### train_samples_tar, train_labels_tar = generate_data_tar(args.NTRAIN) valid_samples_tar, valid_labels_tar = generate_data_tar(args.NTRAIN) test_samples_tar, test_labels_tar = generate_data_tar(args.NTEST) train_dataset_tar = custom_dataset(train_samples_tar, train_labels_tar) test_dataset_tar = custom_dataset(test_samples_tar, test_labels_tar) train_dataloader_tar = torch.utils.data.DataLoader(train_dataset_tar, batch_size=args.batch_size_DRE, shuffle=True, num_workers=0) test_dataloader_tar = torch.utils.data.DataLoader(test_dataset_tar, batch_size=100, shuffle=False, num_workers=0) # #compute the criterion for determing good smaples through train_samples_tar # # for each mixture component, compute the average distance of real samples from this component to the mean # l2_dis_train_samples = np.zeros(args.NTRAIN) #l2 distance between a fake sample and a mode # for i in range(args.NTRAIN): # indx_mean = int(train_labels_tar[i]) # l2_dis_train_samples[i] = np.sqrt(np.sum((train_samples_tar[i]-means_tar[indx_mean])**2)) # print(l2_dis_train_samples.max()) ############################################################################### # Train a GAN model ############################################################################### Filename_GAN = save_models_folder + '/ckpt_GAN_epoch_' + str(args.epoch_gan) + '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) print("\n Begin Training GAN:") #model initialization netG = generator(ngpu=NGPU, nz=dim_GAN, out_dim=n_features) netD = discriminator(ngpu=NGPU, input_dim = n_features) if not os.path.isfile(Filename_GAN): criterion = nn.BCELoss() optimizerG = torch.optim.Adam(netG.parameters(), lr=lr_GAN, betas=(gan_Adam_beta1, gan_Adam_beta2)) optimizerD = torch.optim.Adam(netD.parameters(), lr=lr_GAN, betas=(gan_Adam_beta1, gan_Adam_beta2)) # Start training netG, netD, optimizerG, optimizerD = train_GAN(epoch_GAN, dim_GAN, train_dataloader_tar, netG, netD, optimizerG, optimizerD, criterion, save_models_folder = save_models_folder, ResumeEpoch = args.resumeTrain_gan, device=device, plot_in_train=plot_in_train, save_images_folder = save_GANimages_InTrain_folder, samples_tar = test_samples_tar) # store model torch.save({ 'netG_state_dict': netG.state_dict(), 'netD_state_dict': netD.state_dict(), }, Filename_GAN) torch.cuda.empty_cache() else: #load pre-trained GAN print("\n GAN exists! Loading Pretrained Model>>>") checkpoint = torch.load(Filename_GAN) netG.load_state_dict(checkpoint['netG_state_dict']) netD.load_state_dict(checkpoint['netD_state_dict']) netG = netG.to(device) netD = netD.to(device) def fn_sampleGAN(nfake, batch_size=1000): return SampGAN(netG, GAN_Latent_Length = args.dim_gan, NFAKE = nfake, batch_size = batch_size, device=device) ############################################################################### # Construct a function to compute density-ratio ############################################################################### # Approximate DR by NN if args.DRE in ['DRE_uLSIF', 'DRE_DSKL', 'DRE_BARR', 'DRE_SP']: # TRAIN DRE DRE_loss_type = args.DRE[4:] #loss type if args.DR_Net in ['MLP3', 'MLP5', 'MLP7', 'MLP9']: netDR = DR_MLP(args.DR_Net, init_in_dim = n_features, ngpu=NGPU, final_ActFn=args.DR_final_ActFn) elif args.DR_Net in ['CNN5']: netDR = DR_CNN(args.DR_Net, init_in_dim = n_features, ngpu=NGPU, final_ActFn=args.DR_final_ActFn) optimizer = torch.optim.Adam(netDR.parameters(), lr = args.base_lr_DRE, betas=(DRE_Adam_beta1, DRE_Adam_beta2), weight_decay=args.weightdecay_DRE) #optimizer = torch.optim.RMSprop(netDR.parameters(), lr= args.base_lr_DRE, alpha=0.99, eps=1e-08, weight_decay=args.weightdecay_DRE, momentum=0.9, centered=False) Filename_DRE = save_models_folder + '/ckpt_' + args.DRE +'_LAMBDA_' + str(args.lambda_DRE) + '_FinalActFn_' + args.DR_final_ActFn + '_epoch_' + str(args.epoch_DRE) \ + "_PreNetDRE_" + str(args.TrainPreNetDRE) + '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) filename0 = save_traincurves_folder + '/TrainCurve_' + args.DRE +'_LAMBDA_' + str(args.lambda_DRE) + '_FinalActFn_' + args.DR_final_ActFn + '_epoch_' \ + str(args.epoch_DRE) + "_PreNetDRE_" + str(args.TrainPreNetDRE) + '_SEED_' + str(args.seed) + "_nSim_" + str(nSim) + '_epochGAN_' + str(epoch_GAN) + "_TrainLoss" plot_filename = filename0 + '.pdf' npy_filename = filename0 + '.npy' # Train a net to extract features for DR net if args.TrainPreNetDRE: print("\n Begin Training PreNetDRE Net:") Filename_PreNetDRE = save_models_folder + '/ckpt_PreNetDRE_epochPreNetDRE_' + str(epoch_PreNetDRE) + '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) PreNetDRE_MLP = PreNetDRE_MLP(init_in_dim = n_features, ngpu=NGPU) if not os.path.isfile(Filename_PreNetDRE): criterion_PreNetDRE = nn.CrossEntropyLoss() optimizer_PreNetDRE = torch.optim.SGD(PreNetDRE_MLP.parameters(), lr = base_lr_PreNetDRE, momentum= 0.9, weight_decay=1e-4) PreNetDRE_MLP, _ = train_PreNetDRE(epoch_PreNetDRE, train_dataloader_tar, test_dataloader_tar, PreNetDRE_MLP, base_lr_PreNetDRE, optimizer_PreNetDRE, criterion_PreNetDRE, device=device) # save model torch.save({ 'net_state_dict': PreNetDRE_MLP.state_dict(), }, Filename_PreNetDRE) else: print("\n PreNetDRE Net exits and start loading:") checkpoint_PreNetDRE_MLP = torch.load(Filename_PreNetDRE) PreNetDRE_MLP.load_state_dict(checkpoint_PreNetDRE_MLP['net_state_dict']) PreNetDRE_MLP = PreNetDRE_MLP.to(device) def extract_features(samples): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) extracted_features = np.zeros((n_samples+batch_size_tmp, n_features)) PreNetDRE_MLP.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) _, batch_features = PreNetDRE_MLP(batch_samples) extracted_features[tmp:(tmp+batch_size_tmp)] = batch_features.cpu().detach().numpy() tmp += batch_size_tmp #end while return extracted_features[0:n_samples] test_features_tar = extract_features(test_samples_tar) plt.switch_backend('agg') mpl.style.use('seaborn') plt.figure() plt.grid(b=True) flag0 = 0; flag1=0 colors = ['b','g','r','c','m','y','k'] marker_styles = ['.', 'o', 'v', 's'] for nc in range(n_classes): indx = np.where(test_labels_tar == nc)[0] plt.scatter(test_features_tar[indx, 0], test_features_tar[indx, 1], c=colors[flag0], marker=marker_styles[flag1], s=8) flag0 += 1 if flag0 % 7 ==0 : flag0 = 0; flag1+=1 filename0 = save_images_folder + '/test.pdf' plt.savefig(filename0) plt.close() if not os.path.isfile(Filename_DRE): # Train print("\n Begin Training DRE NET:") if args.TrainPreNetDRE: netDR, optimizer, avg_train_loss = train_DRE_GAN(net=netDR, optimizer=optimizer, BASE_LR_DRE=args.base_lr_DRE, EPOCHS_DRE=args.epoch_DRE, LAMBDA=args.lambda_DRE, tar_dataloader=train_dataloader_tar, netG=netG, dim_gan=dim_GAN, PreNetDRE = PreNetDRE_MLP, decay_lr=args.decay_lr_DRE, decay_epochs=args.lr_decay_epochs_DRE, loss_type=DRE_loss_type, save_models_folder = save_models_folder, ResumeEpoch=args.resumeTrain_DRE, NGPU=NGPU, device=device, save_at_epoch = DRE_save_at_epoch, current_nsim=nSim) else: netDR, optimizer, avg_train_loss = train_DRE_GAN(net=netDR, optimizer=optimizer, BASE_LR_DRE=args.base_lr_DRE, EPOCHS_DRE=args.epoch_DRE, LAMBDA=args.lambda_DRE, tar_dataloader=train_dataloader_tar, netG=netG, dim_gan=dim_GAN, decay_lr=args.decay_lr_DRE, decay_epochs=args.lr_decay_epochs_DRE, loss_type=DRE_loss_type, save_models_folder = save_models_folder, ResumeEpoch=args.resumeTrain_DRE, NGPU=NGPU, device=device, save_at_epoch = DRE_save_at_epoch, current_nsim=nSim) # Plot loss PlotLoss(avg_train_loss, plot_filename) np.save(npy_filename, np.array(avg_train_loss)) # save model torch.save({ 'net_state_dict': netDR.state_dict(), }, Filename_DRE) else: #if the DR model is already trained, load the checkpoint print("\n DRE NET exists and start loading:") checkpoint_netDR = torch.load(Filename_DRE) netDR.load_state_dict(checkpoint_netDR['net_state_dict']) netDR = netDR.to(device) def comp_density_ratio(samples, verbose=False): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) density_ratios = np.zeros((n_samples+batch_size_tmp, 1)) netDR.eval() if args.TrainPreNetDRE: PreNetDRE_MLP.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) if args.TrainPreNetDRE: _, batch_features = PreNetDRE_MLP(batch_samples) batch_weights = netDR(batch_features) else: batch_weights = netDR(batch_samples) #density_ratios[tmp:(tmp+batch_size_tmp)] = batch_weights.cpu().detach().numpy() density_ratios[tmp:(tmp+batch_size_tmp)] = batch_weights.cpu().numpy() tmp += batch_size_tmp if verbose: print(batch_weights.cpu().numpy().mean()) #end while return density_ratios[0:n_samples]+1e-14 ################### # DRE based on GAN property elif args.DRE in ['disc', 'disc_MHcal', 'disc_KeepTrain']: if args.DRE == 'disc': #use GAN property to compute density ratio; ratio=D/(1-D); # function for computing a bunch of images # def comp_density_ratio(samples, netD): def comp_density_ratio(samples): #samples: an numpy array n_samples = samples.shape[0] batch_size_tmp = 1000 dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) data_iter = iter(dataloader_tmp) density_ratios = np.zeros((n_samples+batch_size_tmp, 1)) # print("\n Begin computing density ratio for images >>") netD.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) disc_probs = netD(batch_samples).cpu().detach().numpy() disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) density_ratios[tmp:(tmp+batch_size_tmp)] = np.divide(disc_probs, 1-disc_probs) tmp += batch_size_tmp #end while # print("\n End computing density ratio.") return density_ratios[0:n_samples] #----------------------------------- elif args.DRE == 'disc_MHcal': #use the calibration method in MH-GAN to calibrate disc n_test = valid_samples_tar.shape[0] batch_size_tmp = 1000 cal_labels_fake = np.zeros((n_test,1)) cal_labels_real = np.ones((n_test,1)) cal_samples_fake = fn_sampleGAN(nfake=n_test, batch_size=batch_size_tmp) dataset_fake = custom_dataset(cal_samples_fake) dataloader_fake = torch.utils.data.DataLoader(dataset_fake, batch_size=batch_size_tmp, shuffle=False, num_workers=0) dataset_real = custom_dataset(valid_samples_tar) dataloader_real = torch.utils.data.DataLoader(dataset_real, batch_size=batch_size_tmp, shuffle=False, num_workers=0) del cal_samples_fake; gc.collect() # get the output of disc before the final sigmoid layer; the \tilde{D} in Eq.(4) in "Discriminator Rejection Sampling" # def comp_disc_scores(samples_dataloader, netD): def comp_disc_scores(samples_dataloader): # samples_dataloader: the data loader for images n_samples = len(samples_dataloader.dataset) data_iter = iter(samples_dataloader) batch_size_tmp = samples_dataloader.batch_size disc_scores = np.zeros((n_samples+batch_size_tmp, 1)) netD.eval() with torch.no_grad(): tmp = 0 while tmp < n_samples: batch_samples,_ = data_iter.next() batch_samples = batch_samples.type(torch.float).to(device) disc_probs = netD(batch_samples).cpu().detach().numpy() disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) disc_scores[tmp:(tmp+batch_size_tmp)] = np.log(np.divide(disc_probs, 1-disc_probs)) tmp += batch_size_tmp #end while return disc_scores[0:n_samples] cal_disc_scores_fake = comp_disc_scores(dataloader_fake) #discriminator scores for fake images cal_disc_scores_real = comp_disc_scores(dataloader_real) #discriminator scores for real images # Train a logistic regression model X_train = np.concatenate((cal_disc_scores_fake, cal_disc_scores_real),axis=0).reshape(-1,1) y_train = np.concatenate((cal_labels_fake, cal_labels_real), axis=0).reshape(-1) #del cal_disc_scores_fake, cal_disc_scores_real; gc.collect() cal_logReg = LogisticRegression(solver="liblinear").fit(X_train, y_train) # function for computing a bunch of images # def comp_density_ratio(samples, netD): def comp_density_ratio(samples): #samples: an numpy array dataset_tmp = custom_dataset(samples) dataloader_tmp = torch.utils.data.DataLoader(dataset_tmp, batch_size=batch_size_tmp, shuffle=False, num_workers=0) disc_scores = comp_disc_scores(dataloader_tmp) disc_probs = (cal_logReg.predict_proba(disc_scores))[:,1] #second column corresponds to the real class disc_probs = np.clip(disc_probs.astype(np.float), 1e-14, 1 - 1e-14) density_ratios = np.divide(disc_probs, 1-disc_probs) return density_ratios.reshape(-1,1) #--------------------------------------------- # disc_KeepTrain elif args.DRE == "disc_KeepTrain": batch_size_KeepTrain = 256 Filename_KeepTrain_Disc = save_models_folder + '/ckpt_KeepTrainDisc_epoch_'+str(epoch_KeepTrain)+ '_SEED_' + str(args.seed) + '_nSim_' + str(nSim) + '_epochGAN_' + str(epoch_GAN) if not os.path.isfile(Filename_KeepTrain_Disc): print("Resume training Discriminator for %d epochs" % epoch_KeepTrain) # keep train the discriminator n_heldout = valid_samples_tar.data.shape[0] batch_size_tmp = 500 cal_labels = np.concatenate((
np.zeros((n_heldout,1))
numpy.zeros
import csv import utils import numpy as np from domain import Domain import random from sklearn import svm from sklearn.metrics import accuracy_score import json import pandas as pd from main import main import time from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from preprocess import read_preprocessed_data from sklearn import preprocessing import os import multiprocessing as mp # shuffle and split data def split(data_name): print(' split data') data, headings = utils.tools.read_csv('./preprocess/'+data_name+'.csv') data = np.array(data, dtype=int) np.random.shuffle(data) path = './exp_data' if not os.path.exists(path): os.mkdir(path) utils.tools.write_csv(data[:int(0.8*len(data))], headings, './exp_data/'+data_name+'_train.csv') utils.tools.write_csv(data[int(0.8*len(data)):], headings, './exp_data/'+data_name+'_test.csv') # evaluate dp data on k way marginal task def k_way_marginal(data_name, dp_data_list, k, marginal_num): # data, headings = utils.tools.read_csv('./exp_data/' + data_name + '_train.csv') data, headings = utils.tools.read_csv('./preprocess/' + data_name + '.csv', print_info=False) data = np.array(data, dtype=int) attr_num = data.shape[1] data_num = data.shape[0] # attr_num = 10 domain = json.load(open('./preprocess/'+data_name+'.json')) domain = {int(key): domain[key] for key in domain} domain = Domain(domain, list(range(attr_num))) marginal_list = [tuple(sorted(list(np.random.choice(attr_num, k, replace=False)))) for i in range(marginal_num)] marginal_dict = {} size_limit = 1e8 for marginal in marginal_list: temp_domain = domain.project(marginal) if temp_domain.size() < size_limit: # It is fast when domain is small, howerver it will allocate very large array edge = temp_domain.edge() histogram, _ = np.histogramdd(data[:, marginal], bins=edge) marginal_dict[marginal] = histogram else: uniques, cnts =
np.unique(data, return_counts=True, axis=0)
numpy.unique
import numpy as np import pandas as pd import pdb import re from time import time import json import random import os import model import paths from scipy.spatial.distance import pdist, squareform from scipy.stats import multivariate_normal, invgamma, mode from scipy.special import gamma # from scipy.misc import imresize from functools import partial from math import ceil from sklearn.metrics.pairwise import rbf_kernel from sklearn.preprocessing import MinMaxScaler # --- to do with loading --- # def get_samples_and_labels(settings): """ Parse settings options to load or generate correct type of data, perform test/train split as necessary, and reform into 'samples' and 'labels' dictionaries. """ if settings['data_load_from']: data_path = './experiments/data/' + settings['data_load_from'] + '.data.npy' print('Loading data from', data_path) samples, pdf, labels = get_data('load', data_path) train, vali, test = samples['train'], samples['vali'], samples['test'] train_labels, vali_labels, test_labels = labels['train'], labels['vali'], labels['test'] del samples, labels else: # generate the data data_vars = ['num_samples', 'seq_length', 'num_signals', 'freq_low', 'freq_high', 'amplitude_low', 'amplitude_high', 'scale', 'full_mnist'] data_settings = dict((k, settings[k]) for k in data_vars if k in settings.keys()) samples, pdf, labels = get_data(settings['data'], data_settings) if 'multivariate_mnist' in settings and settings['multivariate_mnist']: seq_length = samples.shape[1] samples = samples.reshape(-1, int(np.sqrt(seq_length)), int(np.sqrt(seq_length))) if 'normalise' in settings and settings['normalise']: # TODO this is a mess, fix print("monish") print(settings['normalise']) norm = True else: norm = False if labels is None: train, vali, test = split(samples, [0.6, 0.2, 0.2], normalise=norm) train_labels, vali_labels, test_labels = None, None, None else: train, vali, test, labels_list = split(samples, [0.6, 0.2, 0.2], normalise=norm, labels=labels) train_labels, vali_labels, test_labels = labels_list labels = dict() labels['train'], labels['vali'], labels['test'] = train_labels, vali_labels, test_labels samples = dict() samples['train'], samples['vali'], samples['test'] = train, vali, test # update the settings dictionary to update erroneous settings # (mostly about the sequence length etc. - it gets set by the data!) settings['seq_length'] = samples['train'].shape[1] settings['num_samples'] = samples['train'].shape[0] + samples['vali'].shape[0] + samples['test'].shape[0] settings['num_signals'] = samples['train'].shape[2] settings['num_generated_features'] = samples['train'].shape[2] return samples, pdf, labels def get_data(data_type, data_options=None): """ Helper/wrapper function to get the requested data. """ labels = None pdf = None if data_type == 'load': data_dict = np.load(data_options).item() samples = data_dict['samples'] pdf = data_dict['pdf'] labels = data_dict['labels'] elif data_type == 'sine': samples = sine_wave(**data_options) elif data_type == 'mnist': if data_options['full_mnist']: samples, labels = mnist() else: #samples, labels = load_resized_mnist_0_5(14) samples, labels = load_resized_mnist(14) # this is the 0-2 setting elif data_type == 'gp_rbf': print(data_options) samples, pdf = GP(**data_options, kernel='rbf') elif data_type == 'linear': samples, pdf = linear(**data_options) else: raise ValueError(data_type) print('Generated/loaded', len(samples), 'samples from data-type', data_type) return samples, pdf, labels def get_batch(samples, batch_size, batch_idx, labels=None): start_pos = batch_idx * batch_size end_pos = start_pos + batch_size if labels is None: return samples[start_pos:end_pos], None else: if type(labels) == tuple: # two sets of labels assert len(labels) == 2 return samples[start_pos:end_pos], labels[0][start_pos:end_pos], labels[1][start_pos:end_pos] else: assert type(labels) == np.ndarray return samples[start_pos:end_pos], labels[start_pos:end_pos] def normalise_data(train, vali, test, low=-1, high=1): """ Apply some sort of whitening procedure """ # remember, data is num_samples x seq_length x signals # whiten each signal - mean 0, std 1 mean = np.mean(np.vstack([train, vali]), axis=(0, 1)) std = np.std(np.vstack([train-mean, vali-mean]), axis=(0, 1)) normalised_train = (train - mean)/std normalised_vali = (vali - mean)/std normalised_test = (test - mean)/std # normalised_data = data - np.nanmean(data, axis=(0, 1)) # normalised_data /= np.std(data, axis=(0, 1)) # # normalise samples to be between -1 and +1 # normalise just using train and vali # min_val = np.nanmin(np.vstack([train, vali]), axis=(0, 1)) # max_val = np.nanmax(np.vstack([train, vali]), axis=(0, 1)) # # normalised_train = (train - min_val)/(max_val - min_val) # normalised_train = (high - low)*normalised_train + low # # normalised_vali = (vali - min_val)/(max_val - min_val) # normalised_vali = (high - low)*normalised_vali + low # # normalised_test = (test - min_val)/(max_val - min_val) # normalised_test = (high - low)*normalised_test + low return normalised_train, normalised_vali, normalised_test def scale_data(train, vali, test, scale_range=(-1, 1)): signal_length = train.shape[1] num_signals = train.shape[2] # reshape everything train_r = train.reshape(-1, signal_length*num_signals) vali_r = vali.reshape(-1, signal_length*num_signals) test_r = test.reshape(-1, signal_length*num_signals) # fit scaler using train, vali scaler = MinMaxScaler(feature_range=scale_range).fit(np.vstack([train_r, vali_r])) # scale everything scaled_train = scaler.transform(train_r).reshape(-1, signal_length, num_signals) scaled_vali = scaler.transform(vali_r).reshape(-1, signal_length, num_signals) scaled_test = scaler.transform(test_r).reshape(-1, signal_length, num_signals) return scaled_train, scaled_vali, scaled_test def split(samples, proportions, normalise=False, scale=False, labels=None, random_seed=None): """ Return train/validation/test split. """ if random_seed != None: random.seed(random_seed) np.random.seed(random_seed) assert np.sum(proportions) == 1 n_total = samples.shape[0] n_train = ceil(n_total*proportions[0]) n_test = ceil(n_total*proportions[2]) n_vali = n_total - (n_train + n_test) # permutation to shuffle the samples shuff = np.random.permutation(n_total) train_indices = shuff[:n_train] vali_indices = shuff[n_train:(n_train + n_vali)] test_indices = shuff[(n_train + n_vali):] # TODO when we want to scale we can just return the indices assert len(set(train_indices).intersection(vali_indices)) == 0 assert len(set(train_indices).intersection(test_indices)) == 0 assert len(set(vali_indices).intersection(test_indices)) == 0 # split up the samples train = samples[train_indices] vali = samples[vali_indices] test = samples[test_indices] # apply the same normalisation scheme to all parts of the split if normalise: if scale: raise ValueError(normalise, scale) # mutually exclusive train, vali, test = normalise_data(train, vali, test) elif scale: train, vali, test = scale_data(train, vali, test) if labels is None: return train, vali, test else: print('Splitting labels...') if type(labels) == np.ndarray: train_labels = labels[train_indices] vali_labels = labels[vali_indices] test_labels = labels[test_indices] labels_split = [train_labels, vali_labels, test_labels] elif type(labels) == dict: # more than one set of labels! (weird case) labels_split = dict() for (label_name, label_set) in labels.items(): train_labels = label_set[train_indices] vali_labels = label_set[vali_indices] test_labels = label_set[test_indices] labels_split[label_name] = [train_labels, vali_labels, test_labels] else: raise ValueError(type(labels)) return train, vali, test, labels_split def make_predict_labels(samples, labels): """ Given two dictionaries of samples, labels (already normalised, split etc) append the labels on as additional signals in the data """ print('Appending label to samples') assert not labels is None if len(labels['train'].shape) > 1: num_labels = labels['train'].shape[1] else: num_labels = 1 seq_length = samples['train'].shape[1] num_signals = samples['train'].shape[2] new_samples = dict() new_labels = dict() for (k, X) in samples.items(): num_samples = X.shape[0] lab = labels[k] # slow code because i am sick and don't want to try to be smart new_X = np.zeros(shape=(num_samples, seq_length, num_signals + num_labels)) for row in range(num_samples): new_X[row, :, :] = np.hstack([X[row, :, :], np.array(seq_length*[(2*lab[row]-1).reshape(num_labels)])]) new_samples[k] = new_X new_labels[k] = None return new_samples, new_labels # --- specific data-types --- # def mnist(randomize=False): """ Load and serialise """ try: train = np.load('./experiments/data/mnist_train.npy') print('Loaded mnist from .npy') except IOError: print('Failed to load MNIST data from .npy, loading from csv') # read from the csv train = np.loadtxt(open('./experiments/data/mnist_train.csv', 'r'), delimiter=',') # scale samples from 0 to 1 train[:, 1:] /= 255 # scale from -1 to 1 train[:, 1:] = 2*train[:, 1:] - 1 # save to the npy np.save('./experiments/data/mnist_train.npy', train) # the first column is labels, kill them labels = train[:, 0] samples = train[:, 1:] if randomize: # not needed for GAN experiments... print('Applying fixed permutation to mnist digits.') fixed_permutation = np.random.permutation(28*28) samples = train[:, fixed_permutation] samples = samples.reshape(-1, 28*28, 1) # add redundant additional signals return samples, labels def sine_wave(seq_length=30, num_samples=28*5*100, num_signals=1, freq_low=1, freq_high=5, amplitude_low = 0.1, amplitude_high=0.9, **kwargs): ix = np.arange(seq_length) + 1 samples = [] for i in range(num_samples): signals = [] for i in range(num_signals): f = np.random.uniform(low=freq_high, high=freq_low) # frequency A = np.random.uniform(low=amplitude_high, high=amplitude_low) # amplitude # offset offset = np.random.uniform(low=-np.pi, high=np.pi) signals.append(A*np.sin(2*np.pi*f*ix/float(seq_length) + offset)) samples.append(np.array(signals).T) # the shape of the samples is num_samples x seq_length x num_signals samples = np.array(samples) return samples def periodic_kernel(T, f=1.45/30, gamma=7.0, A=0.1): """ Calculates periodic kernel between all pairs of time points (there should be seq_length of those), returns the Gram matrix. f is frequency - higher means more peaks gamma is a scale, smaller makes the covariance peaks shallower (smoother) Heuristic for non-singular rbf: periodic_kernel(np.arange(len), f=1.0/(0.79*len), A=1.0, gamma=len/4.0) """ dists = squareform(pdist(T.reshape(-1, 1))) cov = A*np.exp(-gamma*(np.sin(2*np.pi*dists*f)**2)) return cov def GP(seq_length=30, num_samples=28*5*100, num_signals=1, scale=0.1, kernel='rbf', **kwargs): # the shape of the samples is num_samples x seq_length x num_signals samples = np.empty(shape=(num_samples, seq_length, num_signals)) #T = np.arange(seq_length)/seq_length # note, between 0 and 1 T = np.arange(seq_length) # note, not between 0 and 1 if kernel == 'periodic': cov = periodic_kernel(T) elif kernel =='rbf': cov = rbf_kernel(T.reshape(-1, 1), gamma=scale) else: raise NotImplementedError # scale the covariance cov *= 0.2 # define the distribution mu = np.zeros(seq_length) print(np.linalg.det(cov)) distribution = multivariate_normal(mean=np.zeros(cov.shape[0]), cov=cov) pdf = distribution.logpdf # now generate samples for i in range(num_signals): samples[:, :, i] = distribution.rvs(size=num_samples) return samples, pdf def linear_marginal_likelihood(Y, X, a0, b0, mu0, lambda0, log=True, **kwargs): """ Marginal likelihood for linear model. See https://en.wikipedia.org/wiki/Bayesian_linear_regression pretty much """ seq_length = Y.shape[1] # note, y is just a line (one channel) TODO n = seq_length an = a0 + 0.5*n XtX = np.dot(X.T, X) lambdan = XtX + lambda0 prefactor = (2*np.pi)**(-0.5*n) dets = np.sqrt(np.linalg.det(lambda0)/np.linalg.det(lambdan)) marginals = np.empty(Y.shape[0]) for (i, y) in enumerate(Y): y_reshaped = y.reshape(seq_length) betahat = np.dot(np.linalg.inv(XtX), np.dot(X.T, y_reshaped)) mun = np.dot(np.linalg.inv(lambdan), np.dot(XtX, betahat) + np.dot(lambda0, mu0)) bn = b0 + 0.5*(
np.dot(y_reshaped.T, y_reshaped)
numpy.dot
import numpy as np from .helper_finder import BinomialModel, np_get_helper_to_predicted_helper_probs, get_helper_to_predicted_helper_probs from .helper_variants import PriorModel def get_masked_calc_func(score_func, mask): print("MASKED", np.sum(mask)) mask = np.where(mask, -np.inf, 0) def masked_score_func(count_matrix, offset): m = mask[:-offset] if offset>0 else mask[-offset:] return score_func(count_matrix)+m return masked_score_func def get_weighted_calc_func(score_func, weights, k=1): def weighted_score_func(count_matrix, offset): w = weights[:-offset] if offset>0 else weights[-offset:] return score_func(count_matrix)+w*k return weighted_score_func def get_prob_weights(k_r, k_a, genotype_probs): model = BinomialModel(k_r, k_a) prior_model = PriorModel(model, np.log((genotype_probs))) prob_correct = get_prob_correct(prior_model) return
np.log(prob_correct)
numpy.log
import itertools import os from flask import Flask import numpy as np import pandas as pd import pulp from sheetfu import SpreadsheetApp app = Flask(__name__) THRESH = .25 N_GAMES = 5 ssid = '<KEY>' def _game_combos(team_combos, n_games): """Creates game combinations from team combinations Args: team_combos (list[tuple]): the team combinations n_games (int): number of games to schedule Returns: list[tuple] """ # calculate game combinations # each item is a 3-tuple of tuple(team1), tuple(team2), game_number # the set intersection ensures no common elements between teams legal_games = [(t[0], t[1]) for t in pulp.combination(team_combos, 2) if not set(t[0]) & set(t[1])] return [(t1, t2, game_number) for game_number in np.arange(n_games) + 1 for t1, t2 in legal_games] def _game_scores(game_combos, s): """Creates game scores from mapping Args: game_combos (list[tuple]): the game combos s (dict[str, float]): the game scores Returns: dict[tuple, float] """ # calculate game score differential game_scores = {} for gc in game_combos: p1, p2 = gc[0] p3, p4 = gc[1] game_scores[(gc[0], gc[1])] = np.abs((s[p1] + s[p2]) - (s[p3] + s[p4])) return game_scores def _optimize(team_combos, game_combos, game_scores, p, n_games, solver=None): """Creates game scores from mapping Args: team_combos (list[tuple]): the team combos game_combos (list[tuple]): the game combos game_scores (dict[tuple, float]): the game scores p (list[str]): player names n_games (int): number of games solver (pulp.apis.core.LpSolver): optional solver Returns: pulp.LpProblem """ # decision variables gcvars = pulp.LpVariable.dicts('gc_decvar', game_combos, cat=pulp.LpBinary) # create problem # minimize game scores subject to constraints prob = pulp.LpProblem("PBOpt", pulp.LpMinimize) # objective function # minimize difference between team scores prob += pulp.lpSum([gcvars[gc] * game_scores[(gc[0], gc[1])] for gc in game_combos]) # constraints # no game scores > 1 for gc in game_combos: prob += gcvars[gc] * game_scores[(gc[0], gc[1])] <= 1 # each player must have n_games games for player in p: prob += pulp.lpSum([v for k, v in gcvars.items() if (player in k[0] or player in k[1])]) == n_games # each player has 1 game per game_number for player in p: for game_number in np.arange(1, n_games + 1): prob += pulp.lpSum([v for k, v in gcvars.items() if (player in k[0] or player in k[1]) and k[2] == game_number]) == 1 # do not play with a player more than once # do not play against a player more than twice for player, pplayer in itertools.combinations(p, 2): prob += pulp.lpSum([v for k, v in gcvars.items() if (player in k[0] and pplayer in k[0]) or (player in k[1] and pplayer in k[1])]) <= 2 prob += pulp.lpSum([v for k, v in gcvars.items() if (player in k[0] and pplayer in k[1]) or (player in k[1] and pplayer in k[0])]) <= 3 # solve the problem if not solver: solver = pulp.getSolver('PULP_CBC_CMD', timeLimit=600, gapAbs=2) prob.solve(solver) return prob, gcvars def _solution(gcvars, s): """Inspects solution Args: gcvars (dict[str, LpVariable]): the decision variables Returns: DataFrame """ # look at solution df = pd.DataFrame(data=[k for k, v in gcvars.items() if v.varValue == 1], columns=['Team1', 'Team2', 'Round#']) df = df.sort_values('Round#') df['Team1_score'] = df['Team1'].apply(lambda x: sum(s.get(i) for i in x)) df['Team2_score'] = df['Team2'].apply(lambda x: sum(s.get(i) for i in x)) df = df.assign(Combined_score=lambda x: x['Team1_score'] + x['Team2_score']) df = df.assign(Score_diff=lambda x: (
np.abs(x['Team1_score'] - x['Team2_score'])
numpy.abs
import numpy as np import numpy.random as npr import math import pandas as pd def WongChanSimCov(n): Z = npr.normal(size=(n, 10)) X = np.zeros((n, 10)) X[:,0] =
np.exp(Z[:,0]/2.)
numpy.exp
import os import copy import glob import numpy as np from gains import Absorber import corner from utils import (fit_2d_gmm, vcomplex, nested_ddict, make_ellipses, baselines_2_ants, find_outliers_2d_mincov, find_outliers_2d_dbscan, find_outliers_dbscan, fit_kde, fit_2d_kde, hdi_of_mcmc, hdi_of_sample, bc_endpoint, ants_2_baselines) import matplotlib from uv_data import UVData from from_fits import create_model_from_fits_file from model import Model from spydiff import import_difmap_model, modelfit_difmap from spydiff import modelfit_difmap matplotlib.use('Agg') label_size = 12 matplotlib.rcParams['xtick.labelsize'] = label_size matplotlib.rcParams['ytick.labelsize'] = label_size def xy_2_rtheta(params): flux, x, y = params[:3] r = np.sqrt(x ** 2 + y ** 2) theta = np.rad2deg(np.arctan(x / y)) result = [flux, r, theta] try: result.extend(params[3:]) except IndexError: pass return result def boot_ci(boot_images, original_image, cred_mass=0.68, kind=None): """ Calculate bootstrap CI. :param boot_images: Iterable of 2D numpy arrays with bootstrapped images. :param original_image: 2D numpy array with original image. :param kind: (optional) Type of CI. "asym", "bc" or None. If ``None`` than symmetric one. (default: ``None``) :return: Two numpy arrays with low and high CI borders for each pixel. """ images_cube = np.dstack(boot_images) boot_ci = np.zeros(np.shape(images_cube[:, :, 0])) mean_boot = np.zeros(np.shape(images_cube[:, :, 0])) hdi_0 = np.zeros(np.shape(images_cube[:, :, 0])) hdi_1 = np.zeros(np.shape(images_cube[:, :, 0])) hdi_low = np.zeros(np.shape(images_cube[:, :, 0])) hdi_high = np.zeros(np.shape(images_cube[:, :, 0])) alpha = 1 - cred_mass print("calculating CI intervals") if kind == "bc": for (x, y), value in np.ndenumerate(boot_ci): hdi_low[x, y] = bc_endpoint(images_cube[x, y, :], original_image[x, y], alpha/2.) hdi_high[x, y] = bc_endpoint(images_cube[x, y, :], original_image[x, y], 1-alpha/2.) else: for (x, y), value in np.ndenumerate(boot_ci): hdi = hdi_of_sample(images_cube[x, y, :], cred_mass=cred_mass) boot_ci[x, y] = hdi[1] - hdi[0] hdi_0[x, y] = hdi[0] hdi_1[x, y] = hdi[1] mean_boot[x, y] = np.mean(images_cube[x, y, :]) if kind == 'asym': hdi_low = original_image - (mean_boot - hdi_0) hdi_high = original_image + hdi_1 - mean_boot else: hdi_low = original_image - boot_ci / 2. hdi_high = original_image + boot_ci / 2. return hdi_low, hdi_high def analyze_bootstrap_samples(dfm_model_fname, booted_mdl_paths, dfm_model_dir=None, plot_comps=None, plot_file=None, txt_file=None, cred_mass=0.68, coordinates='xy', out_samples_path=None, limits=None, fig=None): """ Plot bootstrap distribution of model component parameters. :param dfm_model_fname: File name of original difmap model. :param booted_mdl_paths: Iterable of paths to bootstrapped difmap models. :param dfm_model_dir: (optional) Directory with original difmap model. If ``None`` then CWD. (default: ``None``) :param plot_comps: (optional) Iterable of components number to plot on same plot. If ``None`` then plot parameter distributions of all components. :param plot_file: (optional) File to save picture. If ``None`` then don't save picture. (default: ``None``) :param txt_file: (optional) File to save credible intervals for parameters. If ``None`` then don't save credible intervals. (default: ``None``) :param cred_mass: (optional) Value of credible interval mass. Float in range (0., 1.). (default: ``0.68``) :param coordinates: (optional) Type of coordinates to use. ``xy`` or ``rtheta``. (default: ``xy``) """ n_boot = len(booted_mdl_paths) # Get params of initial model used for bootstrap comps_orig = import_difmap_model(dfm_model_fname, dfm_model_dir) comps_params0 = {i: [] for i in range(len(comps_orig))} for i, comp in enumerate(comps_orig): # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) else: raise Exception comps_params0[i].extend(list(params)) # Load bootstrap models comps_params = {i: [] for i in range(len(comps_orig))} for booted_mdl_path in booted_mdl_paths: path, booted_mdl_file = os.path.split(booted_mdl_path) comps = import_difmap_model(booted_mdl_file, path) for i, comp in enumerate(comps): # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) else: raise Exception comps_params[i].extend(list(params)) comps_to_plot = [comps_orig[k] for k in plot_comps] # (#boot, #parameters) boot_data = np.hstack(np.array(comps_params[i]).reshape((n_boot, comps_orig[i].size)) for i in plot_comps) # Save all bootstrap samples to file optionally if out_samples_path: boot_data_all = np.hstack(np.array(comps_params[i]).reshape((n_boot, comps_orig[i].size)) for i in range(len(comps_orig))) np.savetxt(out_samples_path, boot_data_all) # Optionally plot figure = None if plot_file: if corner: lens = list(np.cumsum([comp.size for comp in comps_orig])) lens.insert(0, 0) labels = list() for comp in comps_to_plot: for lab in np.array(comp._parnames)[~comp._fixed]: # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` if coordinates == 'rtheta': if lab == 'x': lab = 'r' if lab == 'y': lab = 'theta' elif coordinates == 'xy': pass else: raise Exception labels.append(r'' + '$' + lab + '$') try: n = sum([c.size for c in comps_to_plot]) if fig is None: fig, axes = matplotlib.pyplot.subplots(nrows=n, ncols=n) fig.set_size_inches(16.5, 16.5) corner.corner(boot_data, labels=labels, plot_contours=True, plot_datapoints=False, color='gray', levels=[0.68,0.95], # smooth=0.5, # bins=20, # fill_contours=True, # range=limits, truths=np.hstack([comps_params0[i] for i in plot_comps]), title_kwargs={"fontsize": 14}, label_kwargs={"fontsize": 14}, quantiles=[0.16, 0.5, 0.84], fig=fig, # show_titles=True, hist_kwargs={'normed': True, 'histtype': 'step', 'stacked': True, 'ls': 'solid'}, title_fmt=".4f", max_n_ticks=3) # figure.gca().annotate("Components {}".format(plot_comps), # xy=(0.5, 1.0), # xycoords="figure fraction", # xytext=(0, -5), # textcoords="offset points", ha="center", # va="top") # figure.savefig(plot_file, format='eps', dpi=600) except (ValueError, RuntimeError) as e: with open(plot_file + '_failed_plot', 'w'): print("Failed to plot... ValueError") else: print("Install ``corner`` for corner-plots") if txt_file: # Print credible intervals fn = open(txt_file, 'w') fn.write("# parameter original.value low.boot high.boot mean.boot" " median.boot (mean-low).boot (high-mean).boot\n") recorded = 0 for i in plot_comps: comp = comps_orig[i] for j in range(comp.size): low, high, mean, median = hdi_of_mcmc(boot_data[:, recorded+j], cred_mass=cred_mass, return_mean_median=True) # FIXME: Move (x, y) <-> (r, theta) mapping to ``Component`` parnames = comp._parnames if coordinates == 'xy': params = comp.p elif coordinates == 'rtheta': params = xy_2_rtheta(comp.p) parnames[1] = 'r' parnames[2] = 'theta' else: raise Exception fn.write("{:<4} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f} {:.6f}" " {:.6f}".format(parnames[j], params[j], low, high, mean, median, abs(median - low), abs(high - median))) fn.write("\n") recorded += (j + 1) fn.close() return fig # TODO: Check that numbering of bootstrapped data and their models is OK def bootstrap_uvfits_with_difmap_model(uv_fits_path, dfm_model_path, nonparametric=False, use_kde=True, use_v=False, n_boot=100, stokes='I', boot_dir=None, recenter=True, clean_after=True, out_txt_file='txt.txt', out_plot_file='plot.png', pairs=False, niter=100, bootstrapped_uv_fits=None, additional_noise=None, out_rchisq_file=None): dfm_model_dir, dfm_model_fname = os.path.split(dfm_model_path) comps = import_difmap_model(dfm_model_fname, dfm_model_dir) if boot_dir is None: boot_dir = os.getcwd() if bootstrapped_uv_fits is None: uvdata = UVData(uv_fits_path) model = Model(stokes=stokes) model.add_components(*comps) boot = CleanBootstrap([model], uvdata, additional_noise=additional_noise) os.chdir(boot_dir) boot.run(nonparametric=nonparametric, use_kde=use_kde, recenter=recenter, use_v=use_v, n=n_boot, pairs=pairs) bootstrapped_uv_fits = sorted(glob.glob(os.path.join(boot_dir, 'bootstrapped_data*.fits'))) out_rchisq = list() for j, bootstrapped_fits in enumerate(bootstrapped_uv_fits): rchisq = modelfit_difmap(bootstrapped_fits, dfm_model_fname, 'mdl_booted_{}.mdl'.format(j), path=boot_dir, mdl_path=dfm_model_dir, out_path=boot_dir, niter=niter, show_difmap_output=True) out_rchisq.append(rchisq) print("Finished modelfit of {}th bootstrapped data with with" " RChiSq = {}".format(j, rchisq)) if out_rchisq_file is not None: np.savetxt(out_rchisq_file, np.array(out_rchisq)) booted_mdl_paths = glob.glob(os.path.join(boot_dir, 'mdl_booted*')) fig = analyze_bootstrap_samples(dfm_model_fname, booted_mdl_paths, dfm_model_dir, plot_comps=range(len(comps)), plot_file=out_plot_file, txt_file=out_txt_file) # Clean if clean_after: for file_ in bootstrapped_uv_fits: os.unlink(file_) for file_ in booted_mdl_paths: os.unlink(file_) return fig def create_random_D_dict(uvdata, sigma_D): """ Create dictionary with random D-terms for each antenna/IF/polarization. :param uvdata: Instance of ``UVData`` to generate D-terms. :param sigma_D: D-terms residual noise or mapping from antenna names to residual D-term std. :return: Dictionary with keys [antenna name][integer of IF]["R"/"L"] """ import collections d_dict = dict() for ant in list(uvdata.antenna_mapping.values()): d_dict[ant] = dict() for band in range(uvdata.nif): d_dict[ant][band] = dict() for pol in ("R", "L"): # Generating two random complex numbers near (0, 0) if isinstance(sigma_D, collections.Mapping): rands = np.random.normal(loc=0, scale=sigma_D[ant], size=2) else: rands = np.random.normal(loc=0, scale=sigma_D, size=2) d_dict[ant][band][pol] = rands[0]+1j*rands[1] return d_dict # TODO: Workaround if no antenna/pol/IF informtation is available from dict def create_const_amp_D_dict(uvdata, amp_D, per_antenna=True): """ Create dictionary with random D-terms for each antenna/IF/polarization. :param uvdata: Instance of ``UVData`` to generate D-terms. :param amp_D: D-terms amplitude. Float or mappable with keys [antenna] or [antenna][pol][IF] (depending on ``per_antenna``) and values - residual D-term amplitude. :param per_antenna: (optional) Boolean. If ``amp_D`` mapping from antenna to Ds or full (IF/pol)? (default: ``True``) :return: Dictionary with keys [antenna name][integer of IF]["R"/"L"] and values - D-terms. """ import collections d_dict = dict() for ant in list(uvdata.antenna_mapping.values()): d_dict[ant] = dict() for band in range(uvdata.nif): d_dict[ant][band] = dict() for pol in ("R", "L"): # Generating random complex number near (0, 0) phase = np.random.uniform(-np.pi, np.pi, size=1)[0] if isinstance(amp_D, collections.Mapping): if per_antenna: amp = amp_D[ant] else: amp = amp_D[ant][pol][band] else: amp = amp_D d_dict[ant][band][pol] = amp*(np.cos(phase)+1j*np.sin(phase)) return d_dict def create_const_D_dict(uvdata, amp_D, phase_D): """ Create dictionary with random D-terms for each antenna/IF/polarization. :param uvdata: Instance of ``UVData`` to generate D-terms. :param amp_D: D-terms amplitude. :return: Dictionary with keys [antenna name][integer of IF]["R"/"L"] """ d_dict = dict() for baseline in uvdata.baselines: print(baseline) ant1, ant2 = baselines_2_ants([baseline]) antname1 = uvdata.antenna_mapping[ant1] antname2 = uvdata.antenna_mapping[ant2] d_dict[antname1] = dict() d_dict[antname2] = dict() for band in range(uvdata.nif): d_dict[antname1][band] = dict() d_dict[antname2][band] = dict() for pol in ("R", "L"): # Generating random complex number near (0, 0) d_dict[antname1][band][pol] = amp_D*(np.cos(phase_D)+1j*np.sin(phase_D)) d_dict[antname2][band][pol] = amp_D*(np.cos(phase_D)+1j*np.sin(phase_D)) return d_dict # TODO: Add 0.632-estimate of extra-sample error. class Bootstrap(object): """ Basic class for bootstrapping data using specified model. :param models: Iterable of ``Model`` subclass instances that represent model used for bootstrapping.. There should be only one (or zero) model for each stokes parameter. If there are two, say I-stokes models, then sum them firstly using ``Model.__add__``. :param uvdata: Instance of ``UVData`` class. """ def __init__(self, models, uvdata): self.models = models self.model_stokes = [model.stokes for model in models] self.data = uvdata self.model_data = copy.deepcopy(uvdata) self.model_data.substitute(models) self.residuals = self.get_residuals() self.noise_residuals = None # Dictionary with keys - baseline, #IF, #Stokes and values - instances # of ``sklearn.neighbors.KernelDensity`` class fitted on the residuals # (Re&Im) of key baselines self._residuals_fits = nested_ddict() # Dictionary with keys - baseline, #IF, #Stokes and values - instances # of ``sklearn.neighbors.KernelDensity`` class fitted on the residuals # (Re&Im) of key baselines self._residuals_fits_2d = nested_ddict() # Dictionary with keys - baseline, #scan, #IF, #Stokes and values - # instances of ``sklearn.neighbors.KernelDensity`` class fitted on the # residuals (Re&Im) self._residuals_fits_scans = nested_ddict() # Dictionary with keys - baselines & values - tuples with centers of # real & imag residuals for that baseline self._residuals_centers = nested_ddict() self._residuals_centers_scans = nested_ddict() # Dictionary with keys - baseline, #IF, #Stokes and value - boolean # numpy array with outliers self._residuals_outliers = nested_ddict() # Dictionary with keys - baseline, #scan, #IF, #Stokes and value - # boolean numpy array with outliers self._residuals_outliers_scans = nested_ddict() def get_residuals(self): """ Implements different residuals calculation. :return: Residuals between model and data. """ raise NotImplementedError def plot_residuals_trio(self, outname, split_scans=True, freq_average=False, IF=None, stokes=['RR']): if IF is None: IF = range(self.residuals.nif) if stokes is None: stokes = range(self.residuals.nstokes) else: stokes_list = list() for stoke in stokes: print("Parsing {}".format(stoke)) print(self.residuals.stokes) stokes_list.append(self.residuals.stokes.index(stoke)) stokes = stokes_list print("Plotting IFs {}".format(IF)) print("Plotting Stokes {}".format(stokes)) for baseline in self.residuals.baselines: print(baseline) ant1, ant2 = baselines_2_ants([baseline]) if split_scans: try: for i, indxs in enumerate(self.residuals._indxs_baselines_scans[baseline]): # Complex (#, #IF, #stokes) data = self.residuals.uvdata[indxs] # weights = self.residuals.weights[indxs] if freq_average: raise NotImplementedError # # FIXME: Aberage w/o outliers # # Complex (#, #stokes) # data = np.mean(data, axis=1) # for stoke in stokes: # # Complex 1D array to plot # data_ = data[:, stoke] # fig, axes = matplotlib.pyplot.subplots(nrows=2, # ncols=2) # matplotlib.pyplot.rcParams.update({'axes.titlesize': # 'small'}) # axes[1, 0].plot(data_.real, data_.imag, '.k') # axes[1, 0].axvline(0.0, lw=0.2, color='g') # axes[1, 0].axhline(0.0, lw=0.2, color='g') # axes[0, 0].hist(data_.real, bins=10, # label="Re {}-{}".format(ant1, ant2), # color="#4682b4") # legend = axes[0, 0].legend(fontsize='small') # axes[0, 0].axvline(0.0, lw=1, color='g') # axes[1, 1].hist(data_.imag, bins=10, color="#4682b4", # orientation='horizontal', # label="Im {}-{}".format(ant1, ant2)) # legend = axes[1, 1].legend(fontsize='small') # axes[1, 1].axhline(0.0, lw=1, color='g') # fig.savefig("res_2d_bl{}_st{}_scan_{}".format(baseline, stoke, i), # bbox_inches='tight', dpi=400) # matplotlib.pyplot.close() else: for IF_ in IF: for stoke in stokes: # Complex 1D array to plot data_ = data[:, IF_, stoke] # weigths_ = weights[:, IF_, stoke] # data_pw = data_[weigths_ > 0] data_pw = data_[self.residuals._pw_indxs[indxs, IF_, stokes]] data_nw = data_[self.residuals._nw_indxs[indxs, IF_, stokes]] data_out = data_pw[self._residuals_outliers_scans[baseline][i][IF_][stoke]] # data_nw = data_[weigths_ <= 0] fig, axes = matplotlib.pyplot.subplots(nrows=2, ncols=2) matplotlib.pyplot.rcParams.update({'axes.titlesize': 'small'}) axes[1, 0].plot(data_.real, data_.imag, '.k') axes[1, 0].plot(data_nw.real, data_nw.imag, '.', color='orange') axes[1, 0].plot(data_out.real, data_out.imag, '.r') try: x_c, y_c = self._residuals_centers_scans[baseline][i][IF_][stoke] axes[1, 0].plot(x_c, y_c, '.y') except ValueError: x_c, y_c = 0., 0. axes[1, 0].axvline(0.0, lw=0.2, color='g') axes[1, 0].axhline(0.0, lw=0.2, color='g') axes[0, 0].hist(data_.real, bins=10, label="Re " "{}-{}".format(ant1, ant2), color="#4682b4", histtype='stepfilled', alpha=0.3, normed=True) try: clf_re = self._residuals_fits_scans[baseline][i][IF_][stoke][0] sample = np.linspace(np.min(data_.real) - x_c, np.max(data_.real) - x_c, 1000) pdf = np.exp(clf_re.score_samples(sample[:, np.newaxis])) axes[0, 0].plot(sample + x_c, pdf, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[0, 0].legend(fontsize='small') axes[0, 0].axvline(0.0, lw=1, color='g') axes[1, 1].hist(data_.imag, bins=10, color="#4682b4", orientation='horizontal', histtype='stepfilled', alpha=0.3, normed=True, label="Im " "{}-{}".format(ant1, ant2)) try: clf_im = self._residuals_fits_scans[baseline][i][IF_][stoke][1] sample = np.linspace(np.min(data_.imag) + y_c, np.max(data_.imag) + y_c, 1000) pdf = np.exp(clf_im.score_samples(sample[:, np.newaxis])) axes[1, 1].plot(pdf, sample - y_c, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[1, 1].legend(fontsize='small') axes[1, 1].axhline(0.0, lw=1, color='g') fig.savefig("{}_ant1_{}_ant2_{}_stokes_{}_IF_{}_scan_{}.png".format(outname, ant1, ant2, self.residuals.stokes[stoke], IF_, i), bbox_inches='tight', dpi=400) matplotlib.pyplot.close() # If ``self.residuals._indxs_baselines_scans[baseline] = None`` except TypeError: continue else: indxs = self.residuals._indxs_baselines[baseline] # Complex (#, #IF, #stokes) data = self.residuals.uvdata[indxs] # weights = self.residuals.weights[indxs] if freq_average: raise NotImplementedError else: for IF_ in IF: for stoke in stokes: print("Stokes {}".format(stoke)) # Complex 1D array to plot data_ = data[:, IF_, stoke] # weigths_ = weights[:, IF_, stoke] # data_pw = data_[weigths_ > 0] data_pw = data_[self.residuals._pw_indxs[indxs, IF_, stoke]] data_nw = data_[self.residuals._nw_indxs[indxs, IF_, stoke]] data_out = data_pw[self._residuals_outliers[baseline][IF_][stoke]] # data_nw = data_[weigths_ <= 0] fig, axes = matplotlib.pyplot.subplots(nrows=2, ncols=2) matplotlib.pyplot.rcParams.update({'axes.titlesize': 'small'}) axes[1, 0].plot(data_.real, data_.imag, '.k') axes[1, 0].plot(data_out.real, data_out.imag, '.r') axes[1, 0].plot(data_nw.real, data_nw.imag, '.', color='orange') try: x_c, y_c = self._residuals_centers[baseline][IF_][stoke] axes[1, 0].plot(x_c, y_c, '.y') except ValueError: x_c, y_c = 0., 0. axes[1, 0].axvline(0.0, lw=0.2, color='g') axes[1, 0].axhline(0.0, lw=0.2, color='g') axes[0, 0].hist(data_.real, bins=20, label="Re {}-{}".format(ant1, ant2), color="#4682b4", histtype='stepfilled', alpha=0.3, normed=True) try: clf_re = self._residuals_fits[baseline][IF_][stoke][0] sample = np.linspace(np.min(data_.real) - x_c, np.max(data_.real) - x_c, 1000) pdf = np.exp(clf_re.score_samples(sample[:, np.newaxis])) axes[0, 0].plot(sample + x_c, pdf, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[0, 0].legend(fontsize='small') axes[0, 0].axvline(0.0, lw=1, color='g') axes[1, 1].hist(data_.imag, bins=20, color="#4682b4", orientation='horizontal', histtype='stepfilled', alpha=0.3, normed=True, label="Im {}-{}".format(ant1, ant2)) try: clf_im = self._residuals_fits[baseline][IF_][stoke][1] sample = np.linspace(np.min(data_.imag) + y_c, np.max(data_.imag) + y_c, 1000) pdf = np.exp(clf_im.score_samples(sample[:, np.newaxis])) axes[1, 1].plot(pdf, sample - y_c, color='blue', alpha=0.5, lw=2, label='kde') # ``AttributeError`` when no ``clf`` for that # baseline, IF, Stokes except (ValueError, AttributeError): pass legend = axes[1, 1].legend(fontsize='small') axes[1, 1].axhline(0.0, lw=1, color='g') fig.savefig("{}_ant1_{}_ant2_{}_stokes_{}_IF_{}.png".format(outname, ant1, ant2, self.residuals.stokes[stoke], IF_), bbox_inches='tight', dpi=400) matplotlib.pyplot.close() def find_outliers_in_residuals(self, split_scans=False): """ Method that search outliers in residuals :param split_scans: Boolean. Find outliers on each scan separately? """ print("Searching for outliers in residuals...") for baseline in self.residuals.baselines: indxs = self.residuals._indxs_baselines[baseline] baseline_data = self.residuals.uvdata[indxs] # If searching outliers in baseline data if not split_scans: for if_ in range(baseline_data.shape[1]): for stokes in range(baseline_data.shape[2]): # Complex array with visibilities for given baseline, # #IF, Stokes data = baseline_data[:, if_, stokes] # weigths = self.residuals.weights[indxs, if_, stokes] # Use only valid data with positive weight data_pw = data[self.residuals._pw_indxs[indxs, if_, stokes]] data_nw = data[self.residuals._nw_indxs[indxs, if_, stokes]] print("NW {}".format(np.count_nonzero(data_nw))) # If data are zeros if not np.any(data_pw): continue print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stokes)) outliers_re = find_outliers_dbscan(data_pw.real, 1., 5) outliers_im = find_outliers_dbscan(data_pw.imag, 1., 5) outliers_1d = np.logical_or(outliers_re, outliers_im) outliers_2d = find_outliers_2d_dbscan(data_pw, 1.5, 5) self._residuals_outliers[baseline][if_][stokes] =\ np.logical_or(outliers_1d, outliers_2d) # If searching outliers on each scan else: # Searching each scan on current baseline # FIXME: Use zero centers for shitty scans? if self.residuals.scans_bl[baseline] is None: continue for i, scan_indxs in enumerate(self.residuals.scans_bl[baseline]): scan_uvdata = self.residuals.uvdata[scan_indxs] for if_ in range(scan_uvdata.shape[1]): for stokes in range(scan_uvdata.shape[2]): # Complex array with visibilities for given # baseline, #scan, #IF, Stokes data = scan_uvdata[:, if_, stokes] # weigths = self.residuals.weights[scan_indxs, if_, # stokes] # Use only valid data with positive weight data_pw = data[self.residuals._pw_indxs[scan_indxs, if_, stokes]] data_nw = data[self.residuals._nw_indxs[scan_indxs, if_, stokes]] print("NW {}".format(np.count_nonzero(data_nw))) # If data are zeros if not np.any(data_pw): continue print("Baseline {}, scan {}, IF {}," \ " Stokes {}".format(baseline, i, if_, stokes)) outliers_re = find_outliers_dbscan(data_pw.real, 1., 5) outliers_im = find_outliers_dbscan(data_pw.imag, 1., 5) outliers_1d = np.logical_or(outliers_re, outliers_im) outliers_2d = find_outliers_2d_dbscan(data_pw, 1.5, 5) self._residuals_outliers_scans[baseline][i][if_][stokes] = \ np.logical_or(outliers_1d, outliers_2d) # TODO: Use only data without outliers def find_residuals_centers(self, split_scans): """ Calculate centers of residuals for each baseline[/scan]/IF/stokes. """ print("Finding centers") for baseline in self.residuals.baselines: # Find centers for baselines only if not split_scans: indxs = self.residuals._indxs_baselines[baseline] baseline_data = self.residuals.uvdata[indxs] for if_ in range(baseline_data.shape[1]): for stokes in range(baseline_data.shape[2]): data = baseline_data[:, if_, stokes] # weigths = self.residuals.weights[indxs, if_, stokes] # Use only valid data with positive weight # data_pw = data[weigths > 0] data_pw = data[self.residuals._pw_indxs[indxs, if_, stokes]] # data_nw = data[self.residuals._nw_indxs[indxs, if_, stokes]] # If data are zeros if not np.any(data_pw): continue print("Baseline {}, IF {}, Stokes {}".format(baseline, if_, stokes)) outliers = self._residuals_outliers[baseline][if_][stokes] x_c = np.sum(data_pw.real[~outliers]) / np.count_nonzero(~outliers) y_c = np.sum(data_pw.imag[~outliers]) / np.count_nonzero(~outliers) print("Center: ({:.4f}, {:.4f})".format(x_c, y_c)) self._residuals_centers[baseline][if_][stokes] = (x_c, y_c) # Find residuals centers on each scan else: # Searching each scan on current baseline # FIXME: Use zero centers for shitty scans? if self.residuals.scans_bl[baseline] is None: continue for i, scan_indxs in enumerate(self.residuals.scans_bl[baseline]): scan_uvdata = self.residuals.uvdata[scan_indxs] for if_ in range(scan_uvdata.shape[1]): for stokes in range(scan_uvdata.shape[2]): data = scan_uvdata[:, if_, stokes] # weigths = self.residuals.weights[scan_indxs, if_, # stokes] # Use only valid data with positive weight # data_pw = data[weigths > 0] data_pw = data[self.residuals._pw_indxs[scan_indxs, if_, stokes]] # If data are zeros if not
np.any(data_pw)
numpy.any
import numpy as np from agents.common import PLAYER1, PLAYER2, NO_PLAYER, initialize_game_state, is_valid_action def test_valid_action_allValid(): game = initialize_game_state() for i in {0, 1, 2, 3, 4, 5, 6}: assert is_valid_action(game, i) == True def test_valid_action_oneValid_Column6(): game = initialize_game_state() game[-1] =
np.array([PLAYER1, PLAYER1, PLAYER1, PLAYER1, PLAYER1, PLAYER1, NO_PLAYER])
numpy.array
""" Implement the Numpy backend, and collect timing information with different parameters <NAME> August 26th, 2021 I have set myself beyond the pale. I am nothing. I am hardly human anymore. """ import numpy as np import pickle import time import sys """ ######################################################################################################################## NETWORK STEP Update all of the neural states for 1 timestep """ def stepAll(inputConnectivity, inputVals, Ulast, timeFactorMembrane, Gm, Ib, thetaLast, timeFactorThreshold, theta0, m, refCtr, refPeriod, GmaxNon, GmaxSpk, Gspike, timeFactorSynapse, DelE, outputVoltageConnectivity, outputSpikeConnectivity, R=20): """ All components are present :param inputConnectivity: Matrix describing routing of input currents :param inputVals: Value of input currents (nA) :param Ulast: Vector of neural states at the previous timestep (mV) :param timeFactorMembrane: Vector of constant parameters for each neuron (dt/Cm) :param Gm: Vector of membrane conductances (uS) :param Ib: Vector of bias currents (nA) :param thetaLast: Firing threshold at the previous timestep (mV) :param timeFactorThreshold: Vector of constant parameters for each neuron (dt/tauTheta) :param theta0: Vector of initial firing thresholds (mV) :param m: Vector of threshold adaptation ratios :param refCtr: Vector to store remaining timesteps in the refractory period :param refPeriod: Vector of refractory periods :param GmaxNon: Matrix of maximum nonspiking synaptic conductances (uS) :param GmaxSpk: Matrix of maximum spiking synaptic conductances (uS) :param Gspike: Matrix of spiking synaptic conductances (uS) :param timeFactorSynapse: Matrix of constant parameters for each synapse (dt/tau_syn) :param DelE: Matrix of synaptic reversal potentials :param outputVoltageConnectivity: Matrix describing routes to output nodes :param outputSpikeConnectivity: Matrix describing routes to output nodes :param R: Neural range (mV) :return: u, u_last, theta_last, g_spike, refCtr, outputVoltages """ start = time.time() Iapp = np.matmul(inputConnectivity,inputVals) # Apply external current sources to their destinations Gnon = np.maximum(0, np.minimum(GmaxNon * Ulast/R, GmaxNon)) Gspike = Gspike * (1 - timeFactorSynapse) Gsyn = Gnon + Gspike Isyn = np.sum(Gsyn * DelE, axis=1) - Ulast * np.sum(Gsyn, axis=1) U = Ulast + timeFactorMembrane * (-Gm * Ulast + Ib + Isyn + Iapp) # Update membrane potential theta = thetaLast + timeFactorThreshold * (-thetaLast + theta0 + m * Ulast) # Update the firing thresholds spikes = np.sign(np.minimum(0, theta + U * (-1 + refCtr))) # Compute which neurons have spiked Gspike = np.maximum(Gspike, (-spikes) * GmaxSpk) # Update the conductance of connections which spiked U = U * (spikes + 1) # Reset the membrane voltages of neurons which spiked refCtr = np.maximum(0, refCtr - spikes * (refPeriod + 1) - 1) # Update refractory periods outputVoltages = np.matmul(outputVoltageConnectivity, U) # Copy desired neural quantities to output nodes outputSpikes = np.matmul(outputSpikeConnectivity, spikes) # Copy desired neural quantities to output nodes Ulast = np.copy(U) # Copy the current membrane voltage to be the past value thetaLast = np.copy(theta) # Copy the current threshold value to be the past value end = time.time() return U, Ulast, thetaLast, Gspike, refCtr, outputVoltages, outputSpikes, end-start def stepNoRef(inputConnectivity, inputVals, Ulast, timeFactorMembrane, Gm, Ib, thetaLast, timeFactorThreshold, theta0, m, GmaxNon, GmaxSpk, Gspike, timeFactorSynapse, DelE, outputVoltageConnectivity, outputSpikeConnectivity, R=20): """ There is no refractory period :param inputConnectivity: Matrix describing routing of input currents :param inputVals: Value of input currents (nA) :param Ulast: Vector of neural states at the previous timestep (mV) :param timeFactorMembrane: Vector of constant parameters for each neuron (dt/Cm) :param Gm: Vector of membrane conductances (uS) :param Ib: Vector of bias currents (nA) :param thetaLast: Firing threshold at the previous timestep (mV) :param timeFactorThreshold: Vector of constant parameters for each neuron (dt/tauTheta) :param theta0: Vector of initial firing thresholds (mV) :param m: Vector of threshold adaptation ratios :param GmaxNon: Matrix of maximum nonspiking synaptic conductances (uS) :param GmaxSpk: Matrix of maximum spiking synaptic conductances (uS) :param Gspike: Matrix of spiking synaptic conductances (uS) :param timeFactorSynapse: Matrix of constant parameters for each synapse (dt/tau_syn) :param DelE: Matrix of synaptic reversal potentials :param outputVoltageConnectivity: Matrix describing routes to output nodes :param outputSpikeConnectivity: Matrix describing routes to output nodes :param R: Range of neural activity (mV) :return: u, u_last, theta_last, g_spike, outputVoltages, outputSpikes """ start = time.time() Iapp = np.matmul(inputConnectivity,inputVals) # Apply external current sources to their destinations Gnon = np.maximum(0, np.minimum(GmaxNon * Ulast/R, GmaxNon)) Gspike = Gspike * (1 - timeFactorSynapse) Gsyn = Gnon + Gspike Isyn = np.sum(Gsyn * DelE, axis=1) - Ulast * np.sum(Gsyn, axis=1) U = Ulast + timeFactorMembrane * (-Gm * Ulast + Ib + Isyn + Iapp) # Update membrane potential theta = thetaLast + timeFactorThreshold * (-thetaLast + theta0 + m * Ulast) # Update the firing thresholds spikes = np.sign(np.minimum(0, theta - U)) # Compute which neurons have spiked Gspike = np.maximum(Gspike, (-spikes) * GmaxSpk) # Update the conductance of connections which spiked U = U * (spikes + 1) # Reset the membrane voltages of neurons which spiked outputVoltages = np.matmul(outputVoltageConnectivity, U) # Copy desired neural quantities to output nodes outputSpikes = np.matmul(outputSpikeConnectivity, spikes) # Copy desired neural quantities to output nodes Ulast = np.copy(U) # Copy the current membrane voltage to be the past value thetaLast = np.copy(theta) # Copy the current threshold value to be the past value end = time.time() return U, Ulast, thetaLast, Gspike, outputVoltages, outputSpikes, end - start def stepNoSpike(inputConnectivity,inputVals,Ulast,timeFactorMembrane,Gm,Ib,GmaxNon,DelE,outputConnectivity,R=20): """ No neurons can be spiking :param inputConnectivity: Matrix describing routing of input currents :param inputVals: Value of input currents (nA) :param Ulast: Vector of neural states at the previous timestep (mV) :param timeFactorMembrane: Vector of constant parameters for each neuron (dt/Cm) :param Gm: Vector of membrane conductances (uS) :param Ib: Vector of bias currents (nA) :param GmaxNon: Matrix of maximum nonspiking synaptic conductances (uS) :param DelE: Matrix of synaptic reversal potentials :param outputConnectivity: Matrix describing routes to output nodes :param R: Range of neural activity (mV) :return: u, u_last, outputNodes """ start = time.time() Iapp = np.matmul(inputConnectivity,inputVals) # Apply external current sources to their destinations Gsyn = np.maximum(0, np.minimum(GmaxNon * Ulast/R, GmaxNon)) Isyn = np.sum(Gsyn * DelE, axis=1) - Ulast * np.sum(Gsyn, axis=1) U = Ulast + timeFactorMembrane * (-Gm * Ulast + Ib + Isyn + Iapp) # Update membrane potential outputNodes = np.matmul(outputConnectivity,U) # Copy desired neural quantities to output nodes Ulast = np.copy(U) # Copy the current membrane voltage to be the past value end = time.time() return U, Ulast, outputNodes,end-start """ ######################################################################################################################## NETWORK CONSTRUCTION Construct testing networks using specifications """ def constructAll(dt, numNeurons, probConn, perIn, perOut, perSpike, seed=0): """ All elements are present :param dt: Simulation timestep (ms) :param numNeurons: Number of neurons in the network :param probConn: Percent of network which is connected :param perIn: Percent of input nodes in the network :param perOut: Percent of output nodes in the network :param perSpike: Percent of neurons which are spiking :param seed: Random seed :return: All of the parameters required to run a network """ # Inputs numInputs = int(perIn*numNeurons) if numInputs == 0: numInputs = 1 inputVals = np.zeros(numInputs)+1.0 inputConnectivity = np.zeros([numNeurons,numInputs]) + 1 # Construct neurons Ulast = np.zeros(numNeurons) numSpike = int(perSpike*numNeurons) Cm = np.zeros(numNeurons) + 5.0 # membrane capacitance (nF) Gm = np.zeros(numNeurons) + 1.0 # membrane conductance (uS) Ib = np.zeros(numNeurons) + 10.0 # bias current (nA) timeFactorMembrane = dt/Cm # Threshold stuff theta0 = np.zeros(numNeurons) for i in range(numNeurons): if i >= numSpike: theta0[i] = sys.float_info.max else: theta0[i] = 1.0 thetaLast = np.copy(theta0) m = np.zeros(numNeurons) tauTheta = np.zeros(numNeurons)+1.0 timeFactorThreshold = dt/tauTheta # Refractory period refCtr = np.zeros(numNeurons) refPeriod = np.zeros(numNeurons)+1 # Synapses GmaxNon = np.zeros([numNeurons,numNeurons]) GmaxSpk = np.zeros([numNeurons,numNeurons]) Gspike = np.zeros([numNeurons,numNeurons]) DelE = np.zeros([numNeurons,numNeurons]) tauSyn = np.zeros([numNeurons, numNeurons])+1 np.random.seed(seed) for row in range(numNeurons): for col in range(numNeurons): rand = np.random.uniform() if rand < probConn: DelE[row][col] = 100 if theta0[col] < sys.float_info.max: GmaxSpk[row][col] = 1 else: GmaxNon[row][col] = 1 tauSyn[row][col] = 2 timeFactorSynapse = dt/tauSyn # Outputs numOutputs = int(perOut*numNeurons) if numOutputs == 0: numOutputs = 1 outputVoltageConnectivity = np.zeros([numOutputs,numNeurons]) for i in range(numOutputs): outputVoltageConnectivity[i][i] = 1 outputSpikeConnectivity = np.copy(outputVoltageConnectivity) return (inputConnectivity,inputVals,Ulast,timeFactorMembrane,Gm,Ib,thetaLast,timeFactorThreshold,theta0,m,refCtr, refPeriod,GmaxNon,GmaxSpk,Gspike,timeFactorSynapse,DelE,outputVoltageConnectivity,outputSpikeConnectivity) def constructNoRef(dt,numNeurons,perConn,perIn,perOut,perSpike,seed=0): """ No refractory period :param dt: Simulation timestep (ms) :param numNeurons: Number of neurons in the network :param perConn: Percent of network which is connected :param perIn: Percent of input nodes in the network :param perOut: Percent of output nodes in the network :param perSpike: Percent of neurons which are spiking :param seed: Random seed :return: All of the parameters required to run a network """ # Inputs numInputs = int(perIn*numNeurons) inputVals = np.zeros(numInputs)+1.0 inputConnectivity = np.zeros([numNeurons,numInputs]) + 1 # Construct neurons Ulast = np.zeros(numNeurons) numSpike = int(perSpike*numNeurons) Cm = np.zeros(numNeurons) + 5.0 # membrane capacitance (nF) Gm = np.zeros(numNeurons) + 1.0 # membrane conductance (uS) Ib = np.zeros(numNeurons) + 10.0 # bias current (nA) timeFactorMembrane = dt/Cm # Threshold stuff theta0 = np.zeros(numNeurons) for i in range(numNeurons): if i >= numSpike: theta0[i] = sys.float_info.max else: theta0[i] = 1.0 thetaLast = np.copy(theta0) m = np.zeros(numNeurons) tauTheta = np.zeros(numNeurons)+1.0 timeFactorThreshold = dt/tauTheta # Synapses GmaxNon = np.zeros([numNeurons,numNeurons]) GmaxSpk = np.zeros([numNeurons,numNeurons]) Gspike = np.zeros([numNeurons,numNeurons]) DelE = np.zeros([numNeurons,numNeurons]) tauSyn = np.zeros([numNeurons, numNeurons])+1 numSyn = int(perConn*numNeurons*numNeurons) np.random.seed(seed) for row in range(numNeurons): for col in range(numNeurons): rand = np.random.uniform() if rand < probConn: DelE[row][col] = 100 if theta0[col] < sys.float_info.max: GmaxSpk[row][col] = 1 else: GmaxNon[row][col] = 1 tauSyn[row][col] = 2 timeFactorSynapse = dt/tauSyn # Outputs numOutputs = int(perOut*numNeurons) outputVoltageConnectivity = np.zeros([numOutputs, numNeurons]) for i in range(numOutputs): outputVoltageConnectivity[i][i] = 1 outputSpikeConnectivity = np.copy(outputVoltageConnectivity) return (inputConnectivity, inputVals, Ulast, timeFactorMembrane, Gm, Ib, thetaLast, timeFactorThreshold, theta0, m, GmaxNon, GmaxSpk, Gspike, timeFactorSynapse, DelE, outputVoltageConnectivity, outputSpikeConnectivity) def constructNoSpike(dt,numNeurons,perConn,perIn,perOut,seed=0): """ No spiking elements :param dt: Simulation timestep (ms) :param numNeurons: Number of neurons in the network :param perConn: Percent of network which is connected :param perIn: Percent of input nodes in the network :param perOut: Percent of output nodes in the network :param seed: Random seed :return: All of the parameters required to run a network """ # Inputs numInputs = int(perIn*numNeurons) inputVals = np.zeros(numInputs)+1.0 inputConnectivity = np.zeros([numNeurons,numInputs]) + 1 # Construct neurons Ulast = np.zeros(numNeurons) Cm = np.zeros(numNeurons) + 5.0 # membrane capacitance (nF) Gm = np.zeros(numNeurons) + 1.0 # membrane conductance (uS) Ib = np.zeros(numNeurons) + 10.0 # bias current (nA) timeFactorMembrane = dt/Cm # Synapses GmaxNon = np.zeros([numNeurons,numNeurons]) DelE =
np.zeros([numNeurons,numNeurons])
numpy.zeros
import hypothesis.extra.numpy as hnp import numpy as np from hypothesis import settings from numpy.testing import assert_allclose from mygrad.tensor_base import Tensor from ..custom_strategies import adv_integer_index, basic_indices from ..wrappers.uber import backprop_test_factory, fwdprop_test_factory def test_getitem(): x = Tensor([1, 2, 3]) a, b, c = x f = 2 * a + 3 * b + 4 * c f.backward() assert a.data == 1 assert b.data == 2 assert c.data == 3 assert f.data == 20 assert_allclose(a.grad, np.array(2)) assert_allclose(b.grad, np.array(3)) assert_allclose(c.grad, np.array(4)) assert_allclose(x.grad,
np.array([2, 3, 4])
numpy.array
""" Multi-View Partial Point Clouds The data structure will be: data ├── MVP_Train.h5 | ├── incomplete_pcds (62400, 2048, 3) | ├── complete_pcds (2400, 2048, 3) | └── labels (62400,) ├── MVP_Validation.h5 | ├── incomplete_pcds (41600, 2048, 3) | ├── complete_pcds (1600, 2048, 3) | └── labels (41600,) └── MVP_Test.h5 ├── incomplete_pcds (59800, 2048, 3) └── labels (59800,) for details MVP_data_structure.md """ import random import torch import numpy as np import h5py from pathlib import Path from src.utils.project_root import PROJECT_ROOT class MVP(torch.utils.data.Dataset): def __init__(self, dataset_type: str = "train", pcd_type: str = "complete", *, root='data/mvp/'): """ :param dataset_type: train/validation/test :param pcd_type: complete/incomplete """ self.dataset_type = dataset_type self.pcd_type = pcd_type self.root = root self.file_path = self.parsing_file_path() self.input_data, self.labels, self.ground_truth_data = self.read_dataset() self.len = self.input_data.shape[0] def parsing_file_path(self): file_path = PROJECT_ROOT / self.root if self.dataset_type == "train": file_path = file_path / "MVP_Train.h5" elif self.dataset_type == "validation": file_path = file_path / "MVP_Validation.h5" else: file_path = file_path / "MVP_Test.h5" return file_path def read_dataset(self): input_file = h5py.File(self.file_path, 'r') if self.dataset_type != "test": if self.pcd_type == "complete": input_data = np.array(input_file['complete_pcds']) labels = np.array([input_file['labels'][i] for i in range(0, len(input_file['labels']), 26)]) ground_truth_data = None else: # pcds_type == "incomplete" input_data = np.array(input_file['incomplete_pcds']) labels = np.array(input_file['labels']) ground_truth_data = np.repeat(input_file['complete_pcds'], 26, axis=0) else: # self.dataset_type == "test" input_data = np.array(input_file['incomplete_pcds']) labels = np.array(input_file['labels']).squeeze() ground_truth_data = None input_file.close() return input_data, labels, ground_truth_data def __len__(self): return self.len def __getitem__(self, index): input_data = torch.from_numpy(self.input_data[index]) if self.ground_truth_data is not None: ground_truth = torch.from_numpy(self.ground_truth_data[index]) else: ground_truth = torch.empty(1) label = torch.from_numpy(np.array(self.labels[index].astype('int64'))) # return input_data, label, ground_truth return input_data, label, ground_truth class Partitioned_MVP(torch.utils.data.Dataset): def __init__(self, dataset_type: str = "train", pcd_type: str = "occluded", *, root='data/partitioned_mvp/'): """ :param dataset_type: train/validation/test :param pcd_type: occluded-only """ self.dataset_type = dataset_type self.pcd_type = pcd_type self.root = root self.file_path = self.parsing_file_path() self.input_data, self.labels, self.ground_truth_data = self.read_dataset() self.len = self.input_data.shape[0] def parsing_file_path(self): file_path = PROJECT_ROOT / self.root if self.dataset_type == "train": file_path = file_path / "Partitioned_MVP_Train.h5" elif self.dataset_type == "validation": file_path = file_path / "Partitioned_MVP_Validation.h5" else: file_path = file_path / "Partitioned_MVP_Test.h5" return file_path def read_dataset(self): input_file = h5py.File(self.file_path, 'r') if self.dataset_type != "test": input_data = np.array(input_file['incomplete_pcds']) labels = np.array(input_file['labels']) ground_truth_data = np.array(input_file['complete_pcds']) else: # self.dataset_type == "test" input_data =
np.array(input_file['incomplete_pcds'])
numpy.array
import numpy as np import os import csv import physics as phys import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from matplotlib.pyplot import figure import matplotlib.pylab as pylab import DataAnalysis as Data import utils import GenerationRate.BandToBandTunneling as BTB from scipy.optimize import curve_fit params = {'legend.fontsize': 'x-large', 'figure.figsize': (20, 9.3), 'axes.labelsize': 'x-large', 'axes.titlesize':'x-large', 'xtick.labelsize':'x-large', 'ytick.labelsize':'x-large'} pylab.rcParams.update(params) plt.rcParams.update({'font.size': 9}) # 物理常數 kB = 1.38e-23 # [J/k] me = 9.11e-31 # [kg] e = 1.6e-19 # [C] eps_InP = 12.5 * 8.85e-14 # [F/cm] eps_InGaAs = 13.9 * 8.85e-14 # [F/cm] In 0.53 Ga 0.47 As eps_InGaAsP = 13.436 * 8.85e-14 # [F/cm] Approximated by In 0.53 Ga 0.47 As 0.65 P 0.35 h_bar = 1.054e-34 # [J-s] Eti = {'InP': -0.025, 'InGaAs': 0.16} # 繪圖參數 count = 6 ColorSet10 = ['orangered', 'yellowgreen', 'goldenrod', 'darkviolet', 'darkorange', 'brown', 'b', 'r', 'fuchsia', 'g'] LineSet2 = ['-', '-.'] ColorModel = {'SRH': 'r', 'TAT': 'b'} class CurrentFitting(object): def __init__(self, RawIV, voltage_settings, temperature, mode, electric_field, doping, Lifetime, effective_mass, structure, others, trap_finding): # 讀取IV,這裡必須給出 RawIV,不論TCAD還是實驗。 self.RawIV = RawIV # 溫度設定 self.T_analysis, self.T_analysis_IT, self.T_min, self.T_max, self.T_analysis_v_max = temperature self.v_min, self.v_max, v_max_range, self.Vpt, self.V1, self.V2 = voltage_settings self.method, self.mechanism, self.material = mode location_electric_field, label_electric_field = electric_field self.Lifetime_p, self.Lifetime_n, self.Lifetime_ref = Lifetime location_doping, label_doping = doping self.epitaxy, self.interface_um, self.A = structure # interface_um = [-3.62, -3.5, -0.5] self.ND, self.Ncharge, self.d_mul, self.d_ch, self.ND_abs, self.d_InGaAs = self.epitaxy self.effective_mass_InP = effective_mass['InP'] self.effective_mass_InGaAs = effective_mass['InGaAs'] self.RawLocation, self.I_InP_max, self.TCAD_IV, self.TCAD_lifetime, self.TCAD_check = others self.Eti, self.Eti_error = trap_finding # 設定電壓範圍 v_step = 0.1 iterations = (self.v_max['InGaAs'] - self.v_min['InP']) / v_step self.voltage = np.asarray([round(-self.v_min['InP'] - v_step * i, 1) for i in range(int(iterations))]) self.V_InP = np.asarray([element for element in self.voltage if abs(self.v_min['InP']) <= abs(element) <= self.v_max['InP']]) self.V_InGaAs = np.asarray([element for element in self.voltage if abs(self.v_min['InGaAs']) <= abs(element) <= self.v_max['InGaAs']]) if v_max_range == 'All': for T in self.T_analysis: self.T_analysis_v_max[T] = self.T_analysis_v_max[T] - 0.3 elif v_max_range == 'Partial': self.T_analysis_v_max = {T: self.v_max['InGaAs'] for T in self.T_analysis} # else: raise BaseException("Wrong InGaAs analysis range: %s" % v_max_range) # 製作 guess & bound def tolerance(material, trap_level, error): if material == 'InP': lower_bound = max(trap_level - 0.5 * error * phys.Eg_InP(300), - 0.5 * error * phys.Eg_InP(300)) upper_bound = min(trap_level + 0.5 * error * phys.Eg_InP(300), 0.5 * error * phys.Eg_InP(300)) return lower_bound, upper_bound elif material == 'InGaAs': lower_bound = max(trap_level - 0.5 * error * phys.Eg_InGaAs(300), - 0.5 * phys.Eg_InGaAs(300)) upper_bound = min(trap_level + 0.5 * error * phys.Eg_InGaAs(300), 0.5 * phys.Eg_InGaAs(300)) return lower_bound, upper_bound else: raise BaseException("Wrong material (InP/InGaAs): %s" % material) Bounds = {'InP': tolerance('InP', self.Eti['InP'], self.Eti_error['InP']), 'InGaAs': tolerance('InGaAs', self.Eti['InGaAs'], self.Eti_error['InGaAs'])} SRH_InP_guess_IV = {T: [self.Eti['InP'], 1, 1] for T in self.T_analysis} SRH_InP_bound_IV = {T: ([Bounds['InP'][0], 1, 1], [Bounds['InP'][1], 10, 10]) for T in self.T_analysis} SRH_InGaAs_guess_IV = {T: [self.Eti['InGaAs'], 1, 1] for T in self.T_analysis} SRH_InGaAs_bound_IV = {T: ([Bounds['InGaAs'][0], 0.1, 0.1], [Bounds['InGaAs'][1], 10, 10]) for T in self.T_analysis} TAT_InP_guess_IV = {T: [self.Eti['InP'], 1, 1] for T in self.T_analysis} TAT_InP_bound_IV = {T: ([Bounds['InP'][0], 1, 1], [Bounds['InP'][1], 1.5, 1.5]) for T in self.T_analysis} TAT_InGaAs_guess_IV = {T: [self.Eti['InGaAs'], 1, 1] for T in self.T_analysis} TAT_InGaAs_bound_IV = {T: ([Bounds['InGaAs'][0], 0.5, 0.85], [Bounds['InGaAs'][1], 1.5, 1.5]) for T in self.T_analysis} # 製作 guess & bounds for IT fitting (Eti, tp, tn, alpha_p, alpha_n) SRH_InP_guess_IT = {V: [self.Eti['InP'], 1, 1, 10, 1] for V in self.V_InP} SRH_InP_bound_IT = {V: ([Bounds['InP'][0], 1, 1, 0.1, 0.1], [Bounds['InP'][1], 3, 3, 10, 10]) for V in self.V_InP} SRH_InGaAs_guess_IT = {V: [self.Eti['InGaAs'], 1, 1, 5, 5] for V in self.V_InGaAs} SRH_InGaAs_bound_IT = {V: ([Bounds['InGaAs'][0], 1e-1, 1, 0, 0], [Bounds['InGaAs'][1], 1, 10, 8, 8]) for V in self.V_InGaAs} TAT_InP_guess_IT = {V: [Eti['InP'], 1, 1, 4, 4] for V in self.V_InP} TAT_InP_bound_IT = {V: ([- phys.Eg_InP(300) / 2, 0.8, 0.8, 1, 1], [phys.Eg_InP(300) / 2, 1.5, 1.5, 8, 8]) for V in self.V_InP} TAT_InGaAs_guess_IT = {V: [Eti['InGaAs'], 1, 1, 5, 5] for V in self.V_InGaAs} TAT_InGaAs_bound_IT = {V: ([-phys.Eg_InGaAs(300) / 2, 1e-1, 1, 0, 0], [phys.Eg_InGaAs(300) / 2, 1, 10, 8, 8]) for V in self.V_InGaAs} self.guess = {'InP': {'SRH': {'IV': SRH_InP_guess_IV, 'IT': SRH_InP_guess_IT}, 'TAT': {'IV': TAT_InP_guess_IV, 'IT': TAT_InP_guess_IT}}, 'InGaAs': {'SRH': {'IV': SRH_InGaAs_guess_IV, 'IT': SRH_InGaAs_guess_IT}, 'TAT': {'IV': TAT_InGaAs_guess_IV, 'IT': TAT_InGaAs_guess_IT}}} self.bound = {'InP': {'SRH': {'IV': SRH_InP_bound_IV, 'IT': SRH_InP_bound_IT}, 'TAT': {'IV': TAT_InP_bound_IV, 'IT': TAT_InP_bound_IT}}, 'InGaAs': {'SRH': {'IV': SRH_InGaAs_bound_IV, 'IT': SRH_InGaAs_bound_IT}, 'TAT': {'IV': TAT_InGaAs_bound_IV, 'IT': TAT_InGaAs_bound_IT}}} # 讀取 InP & InGaAs 最大電場與偏壓的分佈 self.Ef_InP = Data.CSV(location_electric_field['InP'], label_electric_field['InP'], label_electric_field['InP']) self.Ef_InGaAs = Data.CSV(location_electric_field['InGaAs'], label_electric_field['InGaAs'], label_electric_field['InGaAs']) self.DopingProfile = Data.DopingProfile(location_doping, label_doping, label_doping) # self.material_voltage = {'InP': self.V_InP, 'InGaAs': self.V_InGaAs} self.weight = {'InP': 1 / abs(self.V_InP), 'InGaAs': 1 / abs(self.V_InGaAs)} self.result = dict() for item in self.method: if item == 'IV': self.result['IV'] = {item: {model: {T: self.FitIV(T, item, model, self.guess[item][model]['IV'][T], self.bound[item][model]['IV'][T], fitsigma=1.5) for T in self.T_analysis} for model in self.mechanism} for item in self.material} self.Lifetime = {item: {model: {T: self.result['IV'][item][model][T][2] for T in self.T_analysis} for model in self.mechanism} for item in self.material} self.Lifetime['InGaAsP'] = {model: {T: [self.Lifetime_p['InGaAsP'], self.Lifetime_n['InGaAsP']] for T in self.T_analysis} for model in self.mechanism} if item == 'IT': self.result['IT'] = {item: {model: {V: self.FitIT(V, item, model, self.guess[item][model]['IT'][V], self.bound[item][model]['IT'][V], fitsigma=1) for V in self.material_voltage[item]} for model in self.mechanism} for item in self.material} ''' self.BTB = {item: {T: self.PlotIV(T, item, 'BTB', ['All', self.effective_mass_InP]) for T in self.T_analysis} for item in self.material} ''' def read_data(self, temperature): return self.RawIV[temperature] def read_result(self): return self.result def room_temperature(self): min = 1e4 RT = None for T in self.T_analysis: if abs(300 - T) < min: min = abs(300 - T) RT = T return RT def dm_InP(self, E_Vcm, ND, ND_c, d_mul, d_charge): d = E_Vcm * eps_InP / (e * ND) # [cm] if type(d) is np.ndarray: dm_list = [] for i, x in enumerate(d): if x <= d_mul: dm_list.append(x) else: E2 = E_Vcm[i] - (e * ND * d_mul) / eps_InP d2 = E2 * eps_InP / (e * ND_c) if d2 <= d_charge: dm_list.append(d_mul + d2) else: dm_list.append(d_mul + d_charge) return np.asarray(dm_list) # [cm] else: if d <= d_mul: return d # [cm] else: E2 = E_Vcm - (e * ND * d_mul) / eps_InP d2 = E2 * eps_InP / (e * ND_c) if d2 <= d_charge: return d_mul + d2 # [cm] else: return d_mul + d_charge # [cm] def dm_InGaAs(self, E, ND_abs, d_abs): d = E * eps_InGaAs / (e * ND_abs) if type(d) is np.ndarray: dm_list = [] for x in d: if x <= d_abs: dm_list.append(x) else: dm_list.append(d_abs) return np.asarray(dm_list) else: if d <= d_abs: return d else: return d_abs def Em_InP(self, V): return utils.find(self.Ef_InP.X, self.Ef_InP.Y, -abs(V), 'linear') def Em_InGaAs(self, V): return utils.find(self.Ef_InGaAs.X, self.Ef_InGaAs.Y, -abs(V), 'linear') def FitIV(self, T, material, type, guess, bound, fitsigma): """ :param T: :param material: :return: V, I, popt """ if material == 'InP': V_InP = np.asarray([V for V in self.RawIV[T].X if -self.v_min['InP'] >= V > -self.v_max['InP']]) F_InP = np.asarray([self.Em_InP(V) for V in V_InP]) I_InP = np.asarray([abs(I) for i, I in enumerate(self.RawIV[T].Y) if self.RawIV[T].X[i] in V_InP]) def lifetime(tp, tn): alpha = 1.5 tau_p0 = self.Lifetime_p['InP'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InP'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha return tau_p, tau_n if type == 'TAT': def TAT_InP_IV(X, Eti, tp, tn): Emax_Vcm, T = X alpha = 1.5 # tp = 1 # tn = 0.1 mt = self.effective_mass_InP prefactor = 1 me = 9.11e-31 Nc300 = 5.716e17 # [cm-3] Nv300 = 1.143e19 # [cm-3] tau_p0 = self.Lifetime_p['InP'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InP'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha ni = np.sqrt(Nc300 * Nv300) * (T / self.room_temperature()) ** 1.5 * np.exp(-e * phys.Eg_InP(T) / (2 * kB * T)) G_SRH = ni / (2 * np.sqrt(tau_p * tau_n) * np.cosh(e * Eti / (kB * T) + 0.5 * np.log(tau_p / tau_n))) dM = self.dm_InP(Emax_Vcm, self.ND, self.Ncharge, self.d_mul, self.d_ch) # 0.42e-4 # [cm] F_Gamma = np.sqrt(24 * (mt * me) * (kB * T) ** 3) / (e * h_bar) / 100 # [V/cm] E1 = Emax_Vcm log10_Current = [] for i, x in enumerate(dM): if x <= self.d_mul: E2 = E1[i] - (e * self.ND * x) / eps_InP d_Gamma_1 = (np.sqrt(3 * np.pi) * eps_InP * F_Gamma) / (e * self.ND) * \ (np.exp((E1[i] / F_Gamma) ** 2) - np.exp(E2 / F_Gamma ** 2)) # [cm] log10_Current.append( np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(x + d_Gamma_1)) else: E2 = E1[i] - (e * self.ND * self.d_mul) / eps_InP E3 = E2 - (e * self.Ncharge * (x - self.d_mul)) / eps_InP d_Gamma_1 = (np.sqrt(3 * np.pi) * eps_InP * F_Gamma) / (e * self.ND) * \ (np.exp((E1[i] / F_Gamma) ** 2) - np.exp(E2 / F_Gamma ** 2)) # [cm] d_Gamma_2 = (np.sqrt(3 * np.pi) * eps_InP * F_Gamma) / (e * self.Ncharge) * \ (np.exp((E2 / F_Gamma) ** 2) - np.exp(E3 / F_Gamma ** 2)) # [cm] log10_Current.append( np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10( x + d_Gamma_1 + d_Gamma_2)) return np.asarray(log10_Current) TAT_InP_popt, TAT_InP_pcov = curve_fit(TAT_InP_IV, (F_InP, T), np.log10(I_InP), p0=guess, bounds=bound, sigma=abs(np.log10(I_InP)) ** fitsigma) print('[TAT] InP (%.0fK) Eti: %.3f, tp: %.3e, tn: %.3e' % (T, TAT_InP_popt[0], TAT_InP_popt[1], TAT_InP_popt[2])) Eti = TAT_InP_popt[0] mt = self.effective_mass_InP tau_p, tau_n = lifetime(TAT_InP_popt[1], TAT_InP_popt[2]) return V_InP, 10 ** TAT_InP_IV((F_InP, T), *TAT_InP_popt), [tau_p, tau_n], Eti, mt elif type == 'SRH': def SRH_InP(X, Eti, tp, tn): """ 使用 -U ~ ni * cosh(-(Eti+ln(tp/tn))/kT) 之近似公式,而不需要使用 |Eti| >> kT 之公式。 內建正確的 lifetime。 :param X: (T, Emax_Vcm) :param Eti: eV :return: np.log10(I) """ Emax_Vcm, T = X alpha = 1.5 # 1 # tp = 1 # 0.1 # tn = 1 # 0.226 prefactor = 1 me = 9.11e-31 Nc300 = 5.716e17 # [cm-3] Nv300 = 1.143e19 # [cm-3] tau_p0 = self.Lifetime_p['InP'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InP'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha ni = np.sqrt(Nc300 * Nv300) * (T / self.room_temperature()) ** 1.5 * np.exp(- e * phys.Eg_InP(T) / (2 * kB * T)) G_SRH = ni / ( 2 * np.sqrt(tau_p * tau_n) * np.cosh(e * Eti / (kB * T) + 0.5 * np.log(tau_p / tau_n))) dM = self.dm_InP(Emax_Vcm, self.ND, self.Ncharge, self.d_mul, self.d_ch) # [cm] return np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(dM) popt_SRH_InP, pcov_SRH_InP = curve_fit(SRH_InP, (F_InP, T), np.log10(I_InP), p0=guess, bounds=bound, sigma=abs(np.log10(I_InP)) ** fitsigma) print('[SRH] InP (%.0fK) Eti: %.3f, tp: %.3e, tn: %.3e' % (T, popt_SRH_InP[0], popt_SRH_InP[1], popt_SRH_InP[2])) Eti = popt_SRH_InP[0] mt = self.effective_mass_InP tau_p, tau_n = lifetime(popt_SRH_InP[1], popt_SRH_InP[2]) return V_InP, 10 ** SRH_InP((F_InP, T), *popt_SRH_InP), [tau_p, tau_n], Eti, mt else: raise BaseException("Wrong type: %s" % type) elif material == 'InGaAs': V_InGaAs = np.asarray([V for V in self.RawIV[T].X if -self.T_analysis_v_max[T] <= V <= -self.v_min['InGaAs']]) F_InGaAs = np.asarray([self.Em_InGaAs(V) for V in V_InGaAs]) I_InGaAs = np.asarray([abs(I) - self.I_InP_max for i, I in enumerate(self.RawIV[T].Y) if self.RawIV[T].X[i] in V_InGaAs]) # check negative current for current in I_InGaAs: if current < 0: raise BaseException("please decrease the I(InP) maximum: %s" % self.I_InP_max) def lifetime(tp, tn): alpha = 1.5 tau_p0 = self.Lifetime_p['InGaAs'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InGaAs'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha return tau_p, tau_n if type == 'TAT': def TAT_InGaAs_IV(X, Eti, tp, tn): Emax_Vcm, T = X prefactor = 1 # tp = 1 # tn = 1 mt = self.effective_mass_InGaAs alpha = 1.5 me = 9.11e-31 Nc300 = 2.53956e17 # [cm-3] Nv300 = 7.51e18 # [cm-3] tau_p0 = self.Lifetime_p['InGaAs'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InGaAs'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha ni = np.sqrt(Nc300 * Nv300) * (T / self.room_temperature()) ** 1.5 * np.exp(-e * phys.Eg_InGaAs(T) / (2 * kB * T)) G_SRH = ni / (2 * np.sqrt(tau_p * tau_n) * np.cosh(e * Eti / (kB * T) + 0.5 * np.log(tau_p / tau_n))) dM = self.dm_InGaAs(Emax_Vcm, self.ND_abs, self.d_InGaAs) # [cm] F_Gamma = np.sqrt(24 * (mt * me) * (kB * T) ** 3) / (e * h_bar) / 100 # [V/cm] E1 = Emax_Vcm E2 = 0 d_Gamma = (np.sqrt(3 * np.pi) * eps_InGaAs * F_Gamma) / (e * self.ND_abs) * \ (np.exp((E1 / F_Gamma) ** 2) - np.exp((E2 / F_Gamma) ** 2)) # [cm] return np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(dM + d_Gamma) if len(V_InGaAs) == 0: return V_InGaAs, [], [0, 0], None, None else: TAT_InGaAs_popt, TAT_InGaAs_pcov = curve_fit(TAT_InGaAs_IV, (F_InGaAs, T), np.log10(I_InGaAs), p0=guess, bounds=bound, sigma=abs(np.log10(I_InGaAs)) ** fitsigma) print('[TAT] InGaAs (%.0fK) Eti: %.3f, tp: %.3e, tn: %.3e' % (T, TAT_InGaAs_popt[0], TAT_InGaAs_popt[1], TAT_InGaAs_popt[2])) Eti = TAT_InGaAs_popt[0] mt = self.effective_mass_InGaAs tau_p, tau_n = lifetime(TAT_InGaAs_popt[1], TAT_InGaAs_popt[2]) return V_InGaAs, 10 ** TAT_InGaAs_IV((F_InGaAs, T), *TAT_InGaAs_popt) + \ np.ones(len(V_InGaAs)) * self.I_InP_max, [tau_p, tau_n], Eti, mt elif type == 'SRH': def SRH_InGaAs_IV(X, Eti, tp, tn): Emax_Vcm, T = X prefactor = 1 # tp = 1 # tn = 1 alpha = 1.5 me = 9.11e-31 Nc300 = 2.53956e17 # [cm-3] Nv300 = 7.51e18 # [cm-3] tau_p0 = self.Lifetime_p['InGaAs'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InGaAs'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha ND_abs = 7.5e14 # [cm-3] d_InGaAs = 3e-4 # [cm] ni = np.sqrt(Nc300 * Nv300) * (T / self.room_temperature()) ** 1.5 * np.exp(-e * phys.Eg_InGaAs(T) / (2 * kB * T)) G_SRH = ni / (2 * np.sqrt(tau_p * tau_n) * np.cosh(e * Eti / (kB * T) + 0.5 * np.log(tau_p / tau_n))) dM = self.dm_InGaAs(Emax_Vcm, ND_abs, d_InGaAs) # [cm] return np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(dM) if len(V_InGaAs) == 0: return V_InGaAs, [], [0, 0], None else: SRH_InGaAs_popt, SRH_InGaAs_pcov = curve_fit(SRH_InGaAs_IV, (F_InGaAs, T), np.log10(I_InGaAs), p0=guess, bounds=bound, sigma=abs(np.log10(I_InGaAs)) ** fitsigma) print('[SRH] InGaAs (%.0fK) Eti: %.3f, tp: %.3e, tn: %.3e' % (T, SRH_InGaAs_popt[0], SRH_InGaAs_popt[1], SRH_InGaAs_popt[2])) Eti = SRH_InGaAs_popt[0] tau_p, tau_n = lifetime(SRH_InGaAs_popt[1], SRH_InGaAs_popt[2]) return V_InGaAs, 10 ** SRH_InGaAs_IV((F_InGaAs, T), *SRH_InGaAs_popt) + \ np.ones(len(V_InGaAs)) * self.I_InP_max, [tau_p, tau_n], Eti else: raise BaseException("Wrong type: %s" % type) else: raise BaseException("Wrong material: %s" % material) def FitIT(self, V, material, type, guess, bound, fitsigma): if material == 'InP': I_InP = np.asarray([utils.find(self.RawIV[T].X, abs(self.RawIV[T].Y), V, 'log') for T in self.T_analysis_IT]) if type == 'TAT': def TAT_InP_IT(X, Eti, tp, tn, alpha_p, alpha_n): T, Emax_Vcm = X mt = self.effective_mass_InP prefactor = 1 me = 9.11e-31 Nc300 = 5.716e17 # [cm-3] Nv300 = 1.143e19 # [cm-3] tau_p0 = self.Lifetime_p['InP'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InP'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha_p tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha_n ni = np.sqrt(Nc300 * Nv300) * (T / self.room_temperature()) ** 1.5 * np.exp(-e * phys.Eg_InP(T) / (2 * kB * T)) G_SRH = ni / (2 * np.sqrt(tau_p * tau_n) * np.cosh(e * Eti / (kB * T) + 0.5 * np.log(tau_p / tau_n))) dM = self.dm_InP(Emax_Vcm, self.ND, self.Ncharge, self.d_mul, self.d_ch) # 0.42e-4 # [cm] F_Gamma = np.sqrt(24 * (mt * me) * (kB * T) ** 3) / (e * h_bar) / 100 # [V/cm] E1 = Emax_Vcm if dM <= self.d_mul: E2 = E1 - (e * self.ND * dM) / eps_InP d_Gamma_1 = (np.sqrt(3 * np.pi) * eps_InP * F_Gamma) / (e * self.ND) * \ (np.exp((E1 / F_Gamma) ** 2) - np.exp(E2 / F_Gamma ** 2)) # [cm] return np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(dM + d_Gamma_1) else: E2 = E1 - (e * self.ND * self.d_mul) / eps_InP E3 = E2 - (e * self.Ncharge * (dM - self.d_mul)) / eps_InP d_Gamma_1 = (np.sqrt(3 * np.pi) * eps_InP * F_Gamma) / (e * self.ND) * \ (np.exp((E1 / F_Gamma) ** 2) - np.exp(E2 / F_Gamma ** 2)) # [cm] d_Gamma_2 = (np.sqrt(3 * np.pi) * eps_InP * F_Gamma) / (e * self.Ncharge) * \ (np.exp((E2 / F_Gamma) ** 2) - np.exp(E3 / F_Gamma ** 2)) # [cm] return np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(dM + d_Gamma_1 + d_Gamma_2) popt, pcov = curve_fit(TAT_InP_IT, (self.T_analysis_IT, self.Em_InP(V)), np.log10(I_InP), p0=guess, bounds=bound, sigma=abs(np.log10(I_InP)) ** fitsigma) Eti, tp, tn, alpha_p, alpha_n = popt print('[TAT] InP (%.1f) Eti: %.3f, tp: %.3e, tn: %.3e, alpha(p): %.3e, alpha(n): %.3e' % (V, Eti, tp, tn, alpha_p, alpha_n)) return self.T_analysis_IT, 10 ** TAT_InP_IT((self.T_analysis_IT, self.Em_InP(V)), *popt), \ Eti, [tp, tn, alpha_p, alpha_n] elif type == 'SRH': def SRH_InP_IT(X, Eti, tp, tn, alpha_n, alpha_p): T, Emax_Vcm = X # tp = 1 # tn = 1 prefactor = 1 Nc300 = 5.716e17 # [cm-3] Nv300 = 1.143e19 # [cm-3] tau_p0 = self.Lifetime_p['InP'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InP'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha_p tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha_n ni = np.sqrt(Nc300 * Nv300) * (T / self.room_temperature()) ** 1.5 * np.exp(-e * phys.Eg_InP(T) / (2 * kB * T)) G_SRH = ni / (2 * np.sqrt(tau_p * tau_n) * np.cosh(e * Eti / (kB * T) + 0.5 * np.log(tau_p / tau_n))) dM = self.dm_InP(Emax_Vcm, self.ND, self.Ncharge, self.d_mul, self.d_ch) # 0.42e-4 # [cm] return np.log10(self.A * e) + np.log10(prefactor * G_SRH) + np.log10(dM) popt, pcov = curve_fit(SRH_InP_IT, (self.T_analysis_IT, self.Em_InP(V)), np.log10(I_InP), p0=guess, bounds=bound, sigma=abs(np.log10(I_InP)) ** fitsigma) Eti, tp, tn, alpha_p, alpha_n = popt print('[SRH] InP (%.1f) Eti: %.3f, tp: %.3e, tn: %.3e, alpha(p): %.3e, alpha(n): %.3e' % (V, Eti, tp, tn, alpha_p, alpha_n)) return self.T_analysis_IT, 10 ** SRH_InP_IT((self.T_analysis_IT, self.Em_InP(V)), *popt), \ Eti, [tp, tn, alpha_p, alpha_n] else: raise BaseException("Wrong type: %s" % type) elif material == 'InGaAs': I_InGaAs = np.asarray([utils.find(self.RawIV[T].X, abs(self.RawIV[T].Y) - self.I_InP_max, V, 'log') for T in self.T_analysis_IT]) # check I(InGaAs) for current in I_InGaAs: if current < 0: raise BaseException("please decrease the I(InP) maximum: %s" % self.I_InP_max) # 檢查電流是否隨著溫度遞增 if abs(V) > abs(self.T_analysis_v_max[self.T_analysis_IT[0]]): raise BaseException("Voltage is too large: %s > Vmax(InGaAs,240K) = %s" % (abs(V), abs(self.T_analysis_v_max[self.T_analysis_IT[0]]))) if type == 'TAT': def TAT_InGaAs_IT(X, Eti, tp, tn, alpha_p, alpha_n): T, Emax_Vcm = X prefactor = 1 mt = self.effective_mass_InGaAs me = 9.11e-31 Nc300 = 2.53956e17 # [cm-3] Nv300 = 7.51e18 # [cm-3] tau_p0 = self.Lifetime_p['InGaAs'] * 1e-9 # [s] tau_n0 = self.Lifetime_n['InGaAs'] * 1e-9 # [s] tau_p = tp * tau_p0 * (T / self.room_temperature()) ** alpha_p tau_n = tn * tau_n0 * (T / self.room_temperature()) ** alpha_n ND_abs = 3.53e14 # [cm-3] d_InGaAs = 3e-4 # [cm] ni =
np.sqrt(Nc300 * Nv300)
numpy.sqrt
"""This file contains code used in "Think Bayes", by <NAME>, available from greenteapress.com Copyright 2012 <NAME> License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html """ from __future__ import print_function import matplotlib.pyplot as pyplot import thinkplot import numpy import csv import random import shelve import sys import time import thinkbayes2 import warnings warnings.simplefilter('error', RuntimeWarning) FORMATS = ['pdf', 'eps', 'png'] class Locker(object): """Encapsulates a shelf for storing key-value pairs.""" def __init__(self, shelf_file): self.shelf = shelve.open(shelf_file) def Close(self): """Closes the shelf. """ self.shelf.close() def Add(self, key, value): """Adds a key-value pair.""" self.shelf[str(key)] = value def Lookup(self, key): """Looks up a key.""" return self.shelf.get(str(key)) def Keys(self): """Returns an iterator of keys.""" return self.shelf.iterkeys() def Read(self): """Returns the contents of the shelf as a map.""" return dict(self.shelf) class Subject(object): """Represents a subject from the belly button study.""" def __init__(self, code): """ code: string ID species: sequence of (int count, string species) pairs """ self.code = code self.species = [] self.suite = None self.num_reads = None self.num_species = None self.total_reads = None self.total_species = None self.prev_unseen = None self.pmf_n = None self.pmf_q = None self.pmf_l = None def Add(self, species, count): """Add a species-count pair. It is up to the caller to ensure that species names are unique. species: string species/genus name count: int number of individuals """ self.species.append((count, species)) def Done(self, reverse=False, clean_param=0): """Called when we are done adding species counts. reverse: which order to sort in """ if clean_param: self.Clean(clean_param) self.species.sort(reverse=reverse) counts = self.GetCounts() self.num_species = len(counts) self.num_reads = sum(counts) def Clean(self, clean_param=50): """Identifies and removes bogus data. clean_param: parameter that controls the number of legit species """ def prob_bogus(k, r): """Compute the probability that a species is bogus.""" q = clean_param / r p = (1-q) ** k return p print(self.code, clean_param) counts = self.GetCounts() r = 1.0 * sum(counts) species_seq = [] for k, species in sorted(self.species): if random.random() < prob_bogus(k, r): continue species_seq.append((k, species)) self.species = species_seq def GetM(self): """Gets number of observed species.""" return len(self.species) def GetCounts(self): """Gets the list of species counts Should be in increasing order, if Sort() has been invoked. """ return [count for count, _ in self.species] def MakeCdf(self): """Makes a CDF of total prevalence vs rank.""" counts = self.GetCounts() counts.sort(reverse=True) cdf = thinkbayes2.Cdf(dict(enumerate(counts))) return cdf def GetNames(self): """Gets the names of the seen species.""" return [name for _, name in self.species] def PrintCounts(self): """Prints the counts and species names.""" for count, name in reversed(self.species): print(count, name) def GetSpecies(self, index): """Gets the count and name of the indicated species. Returns: count-species pair """ return self.species[index] def GetCdf(self): """Returns cumulative prevalence vs number of species. """ counts = self.GetCounts() items = enumerate(counts) cdf = thinkbayes2.Cdf(items) return cdf def GetPrevalences(self): """Returns a sequence of prevalences (normalized counts). """ counts = self.GetCounts() total = sum(counts) prevalences = numpy.array(counts, dtype=numpy.float) / total return prevalences def Process(self, low=None, high=500, conc=1, iters=100): """Computes the posterior distribution of n and the prevalences. Sets attribute: self.suite low: minimum number of species high: maximum number of species conc: concentration parameter iters: number of iterations to use in the estimator """ counts = self.GetCounts() m = len(counts) if low is None: low = max(m, 2) ns = range(low, high+1) #start = time.time() self.suite = Species5(ns, conc=conc, iters=iters) self.suite.Update(counts) #end = time.time() #print 'Processing time' end-start def MakePrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attributes pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads curves = self.RunSimulations(num_sims, add_reads) self.pmf_l = self.MakePredictive(curves) def MakeQuickPrediction(self, num_sims=100): """Make predictions for the given subject. Precondition: Process has run num_sims: how many simulations to run for predictions Adds attribute: pmf_l: predictive distribution of additional species """ add_reads = self.total_reads - self.num_reads pmf = thinkbayes2.Pmf() _, seen = self.GetSeenSpecies() for _ in range(num_sims): _, observations = self.GenerateObservations(add_reads) all_seen = seen.union(observations) l = len(all_seen) - len(seen) pmf.Incr(l) pmf.Normalize() self.pmf_l = pmf def DistL(self): """Returns the distribution of additional species, l. """ return self.pmf_l def MakeFigures(self): """Makes figures showing distribution of n and the prevalences.""" self.PlotDistN() self.PlotPrevalences() def PlotDistN(self): """Plots distribution of n.""" pmf = self.suite.DistN() print('90% CI for N:', pmf.CredibleInterval(90)) pmf.label = self.code thinkplot.Clf() thinkplot.PrePlot(num=1) thinkplot.Pmf(pmf) root = 'species-ndist-%s' % self.code thinkplot.Save(root=root, xlabel='Number of species', ylabel='Prob', formats=FORMATS, ) def PlotPrevalences(self, num=5): """Plots dist of prevalence for several species. num: how many species (starting with the highest prevalence) """ thinkplot.Clf() thinkplot.PrePlot(num=5) for rank in range(1, num+1): self.PlotPrevalence(rank) root = 'species-prev-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 1], ) def PlotPrevalence(self, rank=1, cdf_flag=True): """Plots dist of prevalence for one species. rank: rank order of the species to plot. cdf_flag: whether to plot the CDF """ # convert rank to index index = self.GetM() - rank _, mix = self.suite.DistOfPrevalence(index) count, _ = self.GetSpecies(index) mix.label = '%d (%d)' % (rank, count) print('90%% CI for prevalence of species %d:' % rank, end=' ') print(mix.CredibleInterval(90)) if cdf_flag: cdf = mix.MakeCdf() thinkplot.Cdf(cdf) else: thinkplot.Pmf(mix) def PlotMixture(self, rank=1): """Plots dist of prevalence for all n, and the mix. rank: rank order of the species to plot """ # convert rank to index index = self.GetM() - rank print(self.GetSpecies(index)) print(self.GetCounts()[index]) metapmf, mix = self.suite.DistOfPrevalence(index) thinkplot.Clf() for pmf in metapmf.Values(): thinkplot.Pmf(pmf, color='blue', alpha=0.2, linewidth=0.5) thinkplot.Pmf(mix, color='blue', alpha=0.9, linewidth=2) root = 'species-mix-%s' % self.code thinkplot.Save(root=root, xlabel='Prevalence', ylabel='Prob', formats=FORMATS, axis=[0, 0.3, 0, 0.3], legend=False) def GetSeenSpecies(self): """Makes a set of the names of seen species. Returns: number of species, set of string species names """ names = self.GetNames() m = len(names) seen = set(SpeciesGenerator(names, m)) return m, seen def GenerateObservations(self, num_reads): """Generates a series of random observations. num_reads: number of reads to generate Returns: number of species, sequence of string species names """ n, prevalences = self.suite.SamplePosterior() names = self.GetNames() name_iter = SpeciesGenerator(names, n) items = zip(name_iter, prevalences) cdf = thinkbayes2.Cdf(dict(items)) observations = cdf.Sample(num_reads) #for ob in observations: # print ob return n, observations def Resample(self, num_reads): """Choose a random subset of the data (without replacement). num_reads: number of reads in the subset """ t = [] for count, species in self.species: t.extend([species]*count) random.shuffle(t) reads = t[:num_reads] subject = Subject(self.code) hist = thinkbayes2.Hist(reads) for species, count in hist.Items(): subject.Add(species, count) subject.Done() return subject def Match(self, match): """Match up a rarefied subject with a complete subject. match: complete Subject Assigns attributes: total_reads: total_species: prev_unseen: """ self.total_reads = match.num_reads self.total_species = match.num_species # compute the prevalence of unseen species (at least approximately, # based on all species counts in match _, seen = self.GetSeenSpecies() seen_total = 0.0 unseen_total = 0.0 for count, species in match.species: if species in seen: seen_total += count else: unseen_total += count self.prev_unseen = unseen_total / (seen_total + unseen_total) def RunSimulation(self, num_reads, frac_flag=False, jitter=0.01): """Simulates additional observations and returns a rarefaction curve. k is the number of additional observations num_new is the number of new species seen num_reads: how many new reads to simulate frac_flag: whether to convert to fraction of species seen jitter: size of jitter added if frac_flag is true Returns: list of (k, num_new) pairs """ m, seen = self.GetSeenSpecies() n, observations = self.GenerateObservations(num_reads) curve = [] for i, obs in enumerate(observations): seen.add(obs) if frac_flag: frac_seen = len(seen) / float(n) frac_seen += random.uniform(-jitter, jitter) curve.append((i+1, frac_seen)) else: num_new = len(seen) - m curve.append((i+1, num_new)) return curve def RunSimulations(self, num_sims, num_reads, frac_flag=False): """Runs simulations and returns a list of curves. Each curve is a sequence of (k, num_new) pairs. num_sims: how many simulations to run num_reads: how many samples to generate in each simulation frac_flag: whether to convert num_new to fraction of total """ curves = [self.RunSimulation(num_reads, frac_flag) for _ in range(num_sims)] return curves def MakePredictive(self, curves): """Makes a predictive distribution of additional species. curves: list of (k, num_new) curves Returns: Pmf of num_new """ pred = thinkbayes2.Pmf(label=self.code) for curve in curves: _, last_num_new = curve[-1] pred.Incr(last_num_new) pred.Normalize() return pred def MakeConditionals(curves, ks): """Makes Cdfs of the distribution of num_new conditioned on k. curves: list of (k, num_new) curves ks: list of values of k Returns: list of Cdfs """ joint = MakeJointPredictive(curves) cdfs = [] for k in ks: pmf = joint.Conditional(1, 0, k) pmf.label = 'k=%d' % k cdf = pmf.MakeCdf() cdfs.append(cdf) print('90%% credible interval for %d' % k, end=' ') print(cdf.CredibleInterval(90)) return cdfs def MakeJointPredictive(curves): """Makes a joint distribution of k and num_new. curves: list of (k, num_new) curves Returns: joint Pmf of (k, num_new) """ joint = thinkbayes2.Joint() for curve in curves: for k, num_new in curve: joint.Incr((k, num_new)) joint.Normalize() return joint def MakeFracCdfs(curves, ks): """Makes Cdfs of the fraction of species seen. curves: list of (k, num_new) curves Returns: list of Cdfs """ d = {} for curve in curves: for k, frac in curve: if k in ks: d.setdefault(k, []).append(frac) cdfs = {} for k, fracs in d.items(): cdf = thinkbayes2.Cdf(fracs) cdfs[k] = cdf return cdfs def SpeciesGenerator(names, num): """Generates a series of names, starting with the given names. Additional names are 'unseen' plus a serial number. names: list of strings num: total number of species names to generate Returns: string iterator """ i = 0 for name in names: yield name i += 1 while i < num: yield 'unseen-%d' % i i += 1 def ReadRarefactedData(filename='journal.pone.0047712.s001.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from http://www.plosone.org/article/ info%3Adoi%2F10.1371%2Fjournal.pone.0047712#s4 filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) #_ = reader.next() _ = next(reader) subject = Subject('') subject_map = {} i = 0 for t in reader: code = t[0] if code != subject.code: # start a new subject subject = Subject(code) subject_map[code] = subject # append a number to the species names so they're unique species = t[1] species = '%s-%d' % (species, i) i += 1 count = int(t[2]) subject.Add(species, count) for code, subject in subject_map.items(): subject.Done(clean_param=clean_param) return subject_map def ReadCompleteDataset(filename='BBB_data_from_Rob.csv', clean_param=0): """Reads a data file and returns a list of Subjects. Data from personal correspondence with <NAME>, received 2-7-13. Converted from xlsx to csv. filename: string filename to read clean_param: parameter passed to Clean Returns: map from code to Subject """ fp = open(filename) reader = csv.reader(fp) header = next(reader) header = next(reader) subject_codes = header[1:-1] subject_codes = ['B'+code for code in subject_codes] # create the subject map uber_subject = Subject('uber') subject_map = {} for code in subject_codes: subject_map[code] = Subject(code) # read lines i = 0 for t in reader: otu_code = t[0] if otu_code == '': continue # pull out a species name and give it a number otu_names = t[-1] taxons = otu_names.split(';') species = taxons[-1] species = '%s-%d' % (species, i) i += 1 counts = [int(x) for x in t[1:-1]] # print otu_code, species for code, count in zip(subject_codes, counts): if count > 0: subject_map[code].Add(species, count) uber_subject.Add(species, count) uber_subject.Done(clean_param=clean_param) for code, subject in subject_map.items(): subject.Done(clean_param=clean_param) return subject_map, uber_subject def JoinSubjects(): """Reads both datasets and computers their inner join. Finds all subjects that appear in both datasets. For subjects in the rarefacted dataset, looks up the total number of reads and stores it as total_reads. num_reads is normally 400. Returns: map from code to Subject """ # read the rarefacted dataset sampled_subjects = ReadRarefactedData() # read the complete dataset all_subjects, _ = ReadCompleteDataset() for code, subject in sampled_subjects.items(): if code in all_subjects: match = all_subjects[code] subject.Match(match) return sampled_subjects def JitterCurve(curve, dx=0.2, dy=0.3): """Adds random noise to the pairs in a curve. dx and dy control the amplitude of the noise in each dimension. """ curve = [(x+random.uniform(-dx, dx), y+random.uniform(-dy, dy)) for x, y in curve] return curve def OffsetCurve(curve, i, n, dx=0.3, dy=0.3): """Adds random noise to the pairs in a curve. i is the index of the curve n is the number of curves dx and dy control the amplitude of the noise in each dimension. """ xoff = -dx + 2 * dx * i / (n-1) yoff = -dy + 2 * dy * i / (n-1) curve = [(x+xoff, y+yoff) for x, y in curve] return curve def PlotCurves(curves, root='species-rare'): """Plots a set of curves. curves is a list of curves; each curve is a list of (x, y) pairs. """ thinkplot.Clf() color = '#225EA8' n = len(curves) for i, curve in enumerate(curves): curve = OffsetCurve(curve, i, n) xs, ys = zip(*curve) thinkplot.Plot(xs, ys, color=color, alpha=0.3, linewidth=0.5) thinkplot.Save(root=root, xlabel='# samples', ylabel='# species', formats=FORMATS, legend=False) def PlotConditionals(cdfs, root='species-cond'): """Plots cdfs of num_new conditioned on k. cdfs: list of Cdf root: string filename root """ thinkplot.Clf() thinkplot.PrePlot(num=len(cdfs)) thinkplot.Cdfs(cdfs) thinkplot.Save(root=root, xlabel='# new species', ylabel='Prob', formats=FORMATS) def PlotFracCdfs(cdfs, root='species-frac'): """Plots CDFs of the fraction of species seen. cdfs: map from k to CDF of fraction of species seen after k samples """ thinkplot.Clf() color = '#225EA8' for k, cdf in cdfs.items(): xs, ys = cdf.Render() ys = [1-y for y in ys] thinkplot.Plot(xs, ys, color=color, linewidth=1) x = 0.9 y = 1 - cdf.Prob(x) pyplot.text(x, y, str(k), fontsize=9, color=color, horizontalalignment='center', verticalalignment='center', bbox=dict(facecolor='white', edgecolor='none')) thinkplot.Save(root=root, xlabel='Fraction of species seen', ylabel='Probability', formats=FORMATS, legend=False) class Species(thinkbayes2.Suite): """Represents hypotheses about the number of species.""" def __init__(self, ns, conc=1, iters=1000): hypos = [thinkbayes2.Dirichlet(n, conc) for n in ns] thinkbayes2.Suite.__init__(self, hypos) self.iters = iters def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ # call Update in the parent class, which calls Likelihood thinkbayes2.Suite.Update(self, data) # update the next level of the hierarchy for hypo in self.Values(): hypo.Update(data) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo # draw sample Likelihoods from the hypothetical Dirichlet dist # and add them up like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of ways the observed species # might have been chosen from all species m = len(data) like *= thinkbayes2.BinomialCoef(dirichlet.n, m) return like def DistN(self): """Computes the distribution of n.""" pmf = thinkbayes2.Pmf() for hypo, prob in self.Items(): pmf.Set(hypo.n, prob) return pmf class Species2(object): """Represents hypotheses about the number of species. Combines two layers of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def __init__(self, ns, conc=1, iters=1000): self.ns = ns self.conc = conc self.probs = numpy.ones(len(ns), dtype=numpy.float) self.params = numpy.ones(self.ns[-1], dtype=numpy.float) * conc self.iters = iters self.num_reads = 0 self.m = 0 def Preload(self, data): """Change the initial parameters to fit the data better. Just an experiment. Doesn't work. """ m = len(data) singletons = data.count(1) num = m - singletons print(m, singletons, num) addend = numpy.ones(num, dtype=numpy.float) * 1 print(len(addend)) print(len(self.params[singletons:m])) self.params[singletons:m] += addend print('Preload', num) def Update(self, data): """Updates the distribution based on data. data: numpy array of counts """ self.num_reads += sum(data) like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() self.m = len(data) #self.params[:self.m] += data * self.conc self.params[:self.m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data for all values of n. Draws one sample from the distribution of prevalences. data: sequence of observed counts Returns: numpy array of m likelihoods """ gammas = numpy.random.gamma(self.params) m = len(data) row = gammas[:m] col = numpy.cumsum(gammas) log_likes = [] for n in self.ns: ps = row / col[n-1] terms = numpy.log(ps) * data log_like = terms.sum() log_likes.append(log_like) log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) coefs = [thinkbayes2.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes def DistN(self): """Computes the distribution of n. Returns: new Pmf object """ pmf = thinkbayes2.Pmf(dict(zip(self.ns, self.probs))) return pmf def RandomN(self): """Returns a random value of n.""" return self.DistN().Random() def DistQ(self, iters=100): """Computes the distribution of q based on distribution of n. Returns: pmf of q """ cdf_n = self.DistN().MakeCdf() sample_n = cdf_n.Sample(iters) pmf = thinkbayes2.Pmf() for n in sample_n: q = self.RandomQ(n) pmf.Incr(q) pmf.Normalize() return pmf def RandomQ(self, n): """Returns a random value of q. Based on n, self.num_reads and self.conc. n: number of species Returns: q """ # generate random prevalences dirichlet = thinkbayes2.Dirichlet(n, conc=self.conc) prevalences = dirichlet.Random() # generate a simulated sample pmf = thinkbayes2.Pmf(dict(enumerate(prevalences))) cdf = pmf.MakeCdf() sample = cdf.Sample(self.num_reads) seen = set(sample) # add up the prevalence of unseen species q = 0 for species, prev in enumerate(prevalences): if species not in seen: q += prev return q def MarginalBeta(self, n, index): """Computes the conditional distribution of the indicated species. n: conditional number of species index: which species Returns: Beta object representing a distribution of prevalence. """ alpha0 = self.params[:n].sum() alpha = self.params[index] return thinkbayes2.Beta(alpha, alpha0-alpha) def DistOfPrevalence(self, index): """Computes the distribution of prevalence for the indicated species. index: which species Returns: (metapmf, mix) where metapmf is a MetaPmf and mix is a Pmf """ metapmf = thinkbayes2.Pmf() for n, prob in zip(self.ns, self.probs): beta = self.MarginalBeta(n, index) pmf = beta.MakePmf() metapmf.Set(pmf, prob) mix = thinkbayes2.MakeMixture(metapmf) return metapmf, mix def SamplePosterior(self): """Draws random n and prevalences. Returns: (n, prevalences) """ n = self.RandomN() prevalences = self.SamplePrevalences(n) #print 'Peeking at n_cheat' #n = n_cheat return n, prevalences def SamplePrevalences(self, n): """Draws a sample of prevalences given n. n: the number of species assumed in the conditional Returns: numpy array of n prevalences """ if n == 1: return [1.0] q_desired = self.RandomQ(n) q_desired = max(q_desired, 1e-6) params = self.Unbias(n, self.m, q_desired) gammas = numpy.random.gamma(params) gammas /= gammas.sum() return gammas def Unbias(self, n, m, q_desired): """Adjusts the parameters to achieve desired prev_unseen (q). n: number of species m: seen species q_desired: prevalence of unseen species """ params = self.params[:n].copy() if n == m: return params x = sum(params[:m]) y = sum(params[m:]) a = x + y #print x, y, a, x/a, y/a g = q_desired * a / y f = (a - g * y) / x params[:m] *= f params[m:] *= g return params class Species3(Species2): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observations """ # sample the likelihoods and add them up like = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): like += self.SampleLikelihood(data) self.probs *= like self.probs /= self.probs.sum() m = len(data) self.params[:m] += data def SampleLikelihood(self, data): """Computes the likelihood of the data under all hypotheses. data: list of observations """ # get a random sample gammas = numpy.random.gamma(self.params) # row is just the first m elements of gammas m = len(data) row = gammas[:m] # col is the cumulative sum of gammas col = numpy.cumsum(gammas)[self.ns[0]-1:] # each row of the array is a set of ps, normalized # for each hypothetical value of n array = row / col[:, numpy.newaxis] # computing the multinomial PDF under a log transform # take the log of the ps and multiply by the data terms = numpy.log(array) * data # add up the rows log_likes = terms.sum(axis=1) # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes = numpy.exp(log_likes) # correct for the number of ways we could see m species # out of a possible n coefs = [thinkbayes2.BinomialCoef(n, m) for n in self.ns] likes *= coefs return likes class Species4(Species): """Represents hypotheses about the number of species.""" def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies """ m = len(data) # loop through the species and update one at a time for i in range(m): one = numpy.zeros(i+1) one[i] = data[i] # call the parent class Species.Update(self, one) def Likelihood(self, data, hypo): """Computes the likelihood of the data under this hypothesis. Note: this only works correctly if we update one species at a time. hypo: Dirichlet object data: list of observed frequencies """ dirichlet = hypo like = 0 for _ in range(self.iters): like += dirichlet.Likelihood(data) # correct for the number of unseen species the new one # could have been m = len(data) num_unseen = dirichlet.n - m + 1 like *= num_unseen return like class Species5(Species2): """Represents hypotheses about the number of species. Combines two laters of the hierarchy into one object. ns and probs represent the distribution of N params represents the parameters of the Dirichlet distributions """ def Update(self, data): """Updates the suite based on the data. data: list of observed frequencies in increasing order """ # loop through the species and update one at a time m = len(data) for i in range(m): self.UpdateOne(i+1, data[i]) self.params[i] += data[i] def UpdateOne(self, i, count): """Updates the suite based on the data. Evaluates the likelihood for all values of n. i: which species was observed (1..n) count: how many were observed """ # how many species have we seen so far self.m = i # how many reads have we seen self.num_reads += count if self.iters == 0: return # sample the likelihoods and add them up likes = numpy.zeros(len(self.ns), dtype=numpy.float) for _ in range(self.iters): likes += self.SampleLikelihood(i, count) # correct for the number of unseen species the new one # could have been unseen_species = [n-i+1 for n in self.ns] likes *= unseen_species # multiply the priors by the likelihoods and renormalize self.probs *= likes self.probs /= self.probs.sum() def SampleLikelihood(self, i, count): """Computes the likelihood of the data under all hypotheses. i: which species was observed count: how many were observed """ # get a random sample of p gammas = numpy.random.gamma(self.params) # sums is the cumulative sum of p, for each value of n sums = numpy.cumsum(gammas)[self.ns[0]-1:] # get p for the mth species, for each value of n ps = gammas[i-1] / sums log_likes = numpy.log(ps) * count # before exponentiating, scale into a reasonable range log_likes -= numpy.max(log_likes) likes =
numpy.exp(log_likes)
numpy.exp
""" Copyright (c) 2014, Samsung Electronics Co.,Ltd. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Samsung Electronics Co.,Ltd.. """ """ cuda4py - CUDA cffi bindings and helper classes. URL: https://github.com/ajkxyz/cuda4py Original author: <NAME> <<EMAIL>> """ """ Tests some of the api in cuda4py.blas._cublas module. """ import cuda4py as cu import cuda4py.blas as blas import gc import logging import numpy import os import unittest class Test(unittest.TestCase): def setUp(self): logging.basicConfig(level=logging.DEBUG) self.old_env = os.environ.get("CUDA_DEVICE") if self.old_env is None: os.environ["CUDA_DEVICE"] = "0" self.ctx = cu.Devices().create_some_context() self.blas = blas.CUBLAS(self.ctx) self.path = os.path.dirname(__file__) if not len(self.path): self.path = "." def tearDown(self): if self.old_env is None: del os.environ["CUDA_DEVICE"] else: os.environ["CUDA_DEVICE"] = self.old_env del self.old_env del self.blas del self.ctx gc.collect() def test_constants(self): self.assertEqual(blas.CUBLAS_OP_N, 0) self.assertEqual(blas.CUBLAS_OP_T, 1) self.assertEqual(blas.CUBLAS_OP_C, 2) self.assertEqual(blas.CUBLAS_DATA_FLOAT, 0) self.assertEqual(blas.CUBLAS_DATA_DOUBLE, 1) self.assertEqual(blas.CUBLAS_DATA_HALF, 2) self.assertEqual(blas.CUBLAS_DATA_INT8, 3) self.assertEqual(blas.CUBLAS_POINTER_MODE_HOST, 0) self.assertEqual(blas.CUBLAS_POINTER_MODE_DEVICE, 1) self.assertEqual(blas.CUBLAS_STATUS_SUCCESS, 0) self.assertEqual(blas.CUBLAS_STATUS_NOT_INITIALIZED, 1) self.assertEqual(blas.CUBLAS_STATUS_ALLOC_FAILED, 3) self.assertEqual(blas.CUBLAS_STATUS_INVALID_VALUE, 7) self.assertEqual(blas.CUBLAS_STATUS_ARCH_MISMATCH, 8) self.assertEqual(blas.CUBLAS_STATUS_MAPPING_ERROR, 11) self.assertEqual(blas.CUBLAS_STATUS_EXECUTION_FAILED, 13) self.assertEqual(blas.CUBLAS_STATUS_INTERNAL_ERROR, 14) self.assertEqual(blas.CUBLAS_STATUS_NOT_SUPPORTED, 15) self.assertEqual(blas.CUBLAS_STATUS_LICENSE_ERROR, 16) def test_errors(self): idx = cu.CU.ERRORS[blas.CUBLAS_STATUS_NOT_INITIALIZED].find(" | ") self.assertGreater(idx, 0) def _test_gemm(self, gemm, dtype): for mode in (blas.CUBLAS_POINTER_MODE_HOST, blas.CUBLAS_POINTER_MODE_DEVICE): self._test_gemm_with_mode(gemm, dtype, mode) def _test_gemm_with_mode(self, gemm, dtype, mode): self.blas.set_pointer_mode(mode) a =
numpy.zeros([127, 353], dtype=dtype)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Mar 4 10:09:21 2019 @author: nmei """ from autoreject import (AutoReject,get_rejection_threshold) import mne from glob import glob import re import os import numpy as np import pandas as pd import pickle #import faster # https://gist.github.com/wmvanvliet/d883c3fe1402c7ced6fc from sklearn.metrics import roc_auc_score,roc_curve from sklearn.metrics import ( classification_report, matthews_corrcoef, confusion_matrix, f1_score, log_loss, r2_score ) from sklearn.preprocessing import (MinMaxScaler, OneHotEncoder, FunctionTransformer, StandardScaler) from sklearn.pipeline import make_pipeline from sklearn.ensemble.forest import _generate_unsampled_indices from sklearn.utils import shuffle from sklearn.svm import SVC,LinearSVC from sklearn.calibration import CalibratedClassifierCV from sklearn.decomposition import PCA from sklearn.dummy import DummyClassifier from sklearn.feature_selection import (SelectFromModel, SelectPercentile, VarianceThreshold, mutual_info_classif, f_classif, chi2, f_regression, GenericUnivariateSelect) from sklearn.model_selection import (StratifiedShuffleSplit, cross_val_score) from sklearn.ensemble import RandomForestClassifier,BaggingClassifier,VotingClassifier from sklearn.neural_network import MLPClassifier from xgboost import XGBClassifier from itertools import product,combinations from sklearn.base import clone from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from collections import OrderedDict from scipy import stats from collections import Counter from mpl_toolkits.axes_grid1 import make_axes_locatable from matplotlib import pyplot as plt from matplotlib.pyplot import cm from nilearn.plotting.img_plotting import (_load_anat, _utils, _plot_img_with_bg, _get_colorbar_and_data_ranges, _safe_get_data) import matplotlib.patches as patches try: #from mvpa2.datasets.base import Dataset from mvpa2.mappers.fx import mean_group_sample #from mvpa2.measures import rsa #from mvpa2.measures.searchlight import sphere_searchlight #from mvpa2.base.learner import ChainLearner #from mvpa2.mappers.shape import TransposeMapper #from mvpa2.generators.partition import NFoldPartitioner except: pass#print('pymvpa is not installed') try: # from tqdm import tqdm_notebook as tqdm from tqdm.auto import tqdm except: print('why is tqdm not installed?') def preprocessing_conscious(raw, events, session, tmin = -0, tmax = 1, notch_filter = 50, event_id = {'living':1,'nonliving':2}, baseline = (None,None), perform_ICA = False, lowpass = None, interpolate_bad_channels = True,): """ 0. re-reference - explicitly """ raw_ref ,_ = mne.set_eeg_reference(raw, ref_channels = 'average', projection = True,) raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway # everytime before filtering, explicitly pick the type of channels you want # to perform the filters picks = mne.pick_types(raw_ref.info, meg = False, # No MEG eeg = True, # YES EEG eog = perform_ICA, # depends on ICA ) # regardless the bandpass filtering later, we should always filter # for wire artifacts and their oscillations raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter), picks = picks) if lowpass is not None: raw_ref.filter(None,lowpass,) epochs = mne.Epochs(raw_ref, events, # numpy array event_id, # dictionary tmin = tmin, tmax = tmax, baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel picks = picks, detrend = 1, # detrend preload = True # must be true if we want to do further processing ) """ 1. if necessary, perform ICA """ if perform_ICA: picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) if interpolate_bad_channels: interpolation_list = faster_bad_channels(epochs,picks=picks) for ch_name in interpolation_list: epochs.info['bads'].append(ch_name) epochs = epochs.interpolate_bads() # ar = AutoReject( # picks = picks, # random_state = 12345, # ) # ar.fit(epochs) # _,reject_log = ar.transform(epochs,return_log=True) # calculate the noise covariance of the epochs noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs], tmin = baseline[0], tmax = baseline[1], method = 'empirical', rank = None,) # define an ica function ica = mne.preprocessing.ICA(n_components = .99, n_pca_components = .99, max_pca_components = None, method = 'infomax', max_iter = int(3e3), noise_cov = noise_cov, random_state = 12345,) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ica.fit(epochs,#[~reject_log.bad_epochs], picks = picks, start = tmin, stop = tmax, decim = 3, tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw. ) # search for artificial ICAs automatically # most of these hyperparameters were used in a unrelated published study ica.detect_artifacts(epochs,#[~reject_log.bad_epochs], eog_ch = ['FT9','FT10','TP9','TP10'], eog_criterion = 0.4, # arbitary choice skew_criterion = 1, # arbitary choice kurt_criterion = 1, # arbitary choice var_criterion = 1, # arbitary choice ) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs], exclude = ica.exclude, ) epochs = epochs_ica.copy() else: picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) if interpolate_bad_channels: interpolation_list = faster_bad_channels(epochs,picks=picks) for ch_name in interpolation_list: epochs.info['bads'].append(ch_name) epochs = epochs.interpolate_bads() # pick the EEG channels for later use clean_epochs = epochs.pick_types(eeg = True, eog = False) return clean_epochs def preprocessing_unconscious(raw, events, session, tmin = -0, tmax = 1, notch_filter = 50, event_id = {'living':1,'nonliving':2}, baseline = (None,None), perform_ICA = False, eog_chs = [], ecg_chs = [],): # everytime before filtering, explicitly pick the type of channels you want # to perform the filters picks = mne.pick_types(raw.info, meg = True, # No MEG eeg = False, # NO EEG eog = True, # YES EOG ecg = True, # YES ECG ) # regardless the bandpass filtering later, we should always filter # for wire artifacts and their oscillations if type(notch_filter) is list: for item in notch_filter: raw.notch_filter(np.arange(item,301,item), picks = picks) else: raw.notch_filter(np.arange(notch_filter,301,notch_filter), picks = picks) # filter EOG and ECG channels picks = mne.pick_types(raw.info, meg = False, eeg = False, eog = True, ecg = True,) raw.filter(1,12,picks = picks,) # epoch the data picks = mne.pick_types(raw.info, meg = True, eog = True, ecg = True, ) epochs = mne.Epochs(raw, events, # numpy array event_id, # dictionary tmin = tmin, tmax = tmax, baseline = baseline, # range of time for computing the mean references for each channel and subtract these values from all the time points per channel picks = picks, detrend = 1, # detrend preload = True # must be true if we want to do further processing ) """ 1. if necessary, perform ICA """ if perform_ICA: picks = mne.pick_types(epochs.info, meg = True, # YES MEG eeg = False, # NO EEG eog = False, # NO EOG ecg = False, # NO ECG ) # ar = AutoReject( # picks = picks, # random_state = 12345, # ) # ar.fit(epochs) # _,reject_log = ar.transform(epochs,return_log=True) # calculate the noise covariance of the epochs noise_cov = mne.compute_covariance(epochs,#[~reject_log.bad_epochs], tmin = tmin, tmax = 0, method = 'empirical', rank = None,) # define an ica function ica = mne.preprocessing.ICA(n_components = .99, n_pca_components = .99, max_pca_components = None, method = 'extended-infomax', max_iter = int(3e3), noise_cov = noise_cov, random_state = 12345,) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ica.fit(epochs,#[~reject_log.bad_epochs], picks = picks, start = tmin, stop = tmax, decim = 3, tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw. ) # search for artificial ICAs automatically # most of these hyperparameters were used in a unrelated published study ica.detect_artifacts(epochs,#[~reject_log.bad_epochs], eog_ch = eog_chs, ecg_ch = ecg_chs[0], eog_criterion = 0.4, # arbitary choice ecg_criterion = 0.1, # arbitary choice skew_criterion = 1, # arbitary choice kurt_criterion = 1, # arbitary choice var_criterion = 1, # arbitary choice ) epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs], exclude = ica.exclude, ) epochs = epochs_ica.copy() # pick the EEG channels for later use clean_epochs = epochs.pick_types(meg = True, eeg = True, eog = False) return clean_epochs def _preprocessing_conscious( raw,events,session, n_interpolates = np.arange(1,32,4), consensus_pers = np.linspace(0,1.0,11), event_id = {'living':1,'nonliving':2}, tmin = -0.15, tmax = 0.15 * 6, high_pass = 0.001, low_pass = 30, notch_filter = 50, fix = False, ICA = False, logging = None, filtering = False,): """ Preprocessing pipeline for conscious trials Inputs ------------------- raw: MNE Raw object, contineous EEG raw data events: Numpy array with 3 columns, where the first column indicates time and the last column indicates event code n_interpolates: list of values 1 <= N <= max number of channels consensus_pers: ?? autoreject hyperparameter search grid event_id: MNE argument, to control for epochs tmin: first time stamp of the epoch tmax: last time stamp of the epoch high_pass: low cutoff of the bandpass filter low_pass: high cutoff of the bandpass filter notch_filter: frequency of the notch filter, 60 in US and 50 in Europe fix : when "True", apply autoReject algorithm to remove artifacts that was not identifed in the ICA procedure Output ICA : when "True", apply ICA artifact correction in ICA space logging: when not "None", output some log files for us to track the process ------------------- Epochs: MNE Epochs object, segmented and cleaned EEG data (n_trials x n_channels x n_times) """ """ 0. re-reference - explicitly """ raw_ref ,_ = mne.set_eeg_reference(raw, ref_channels = 'average', projection = True,) raw_ref.apply_proj() # it might tell you it already has been re-referenced, but do it anyway """ 1. highpass filter by a 4th order zero-phase Butterworth filter """ # everytime before filtering, explicitly pick the type of channels you want # to perform the filters picks = mne.pick_types(raw_ref.info, meg = False, # No MEG eeg = True, # YES EEG eog = True, # YES EOG ) # regardless the bandpass filtering later, we should always filter # for wire artifacts and their oscillations raw_ref.notch_filter(np.arange(notch_filter,241,notch_filter), picks = picks) # high pass filtering picks = mne.pick_types(raw_ref.info, meg = False, # No MEG eeg = True, # YES EEG eog = False, # No EOG ) if filtering: raw_ref.filter(high_pass, None, picks = picks, filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”) l_trans_bandwidth= high_pass, method = 'fir', # overlap-add FIR filtering phase = 'zero', # the delay of this filter is compensated for fir_window = 'hamming', # The window to use in FIR design fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2” ) """ 2. epoch the data """ picks = mne.pick_types(raw_ref.info, eeg = True, # YES EEG eog = True, # YES EOG ) epochs = mne.Epochs(raw_ref, events, # numpy array event_id, # dictionary tmin = tmin, tmax = tmax, baseline = (tmin,- (1 / 60 * 20)), # range of time for computing the mean references for each channel and subtract these values from all the time points per channel picks = picks, detrend = 1, # linear detrend preload = True # must be true if we want to do further processing ) """ 4. ica on epoch data """ if ICA: """ 3. apply autoreject """ picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ar = AutoReject( # n_interpolate = n_interpolates, # consensus = consensus_pers, # thresh_method = 'bayesian_optimization', picks = picks, random_state = 12345, # n_jobs = 1, # verbose = 'progressbar', ) ar.fit(epochs) _,reject_log = ar.transform(epochs,return_log=True) if logging is not None: fig = plot_EEG_autoreject_log(ar) fig.savefig(logging,bbox_inches = 'tight') for key in epochs.event_id.keys(): evoked = epochs[key].average() fig_ = evoked.plot_joint(title = key) fig_.savefig(logging.replace('.png',f'_{key}_pre.png'), bbox_inches = 'tight') plt.close('all') # calculate the noise covariance of the epochs noise_cov = mne.compute_covariance(epochs[~reject_log.bad_epochs], tmin = tmin, tmax = tmax, method = 'empirical', rank = None,) # define an ica function ica = mne.preprocessing.ICA(n_components = .99, n_pca_components = .99, max_pca_components = None, method = 'extended-infomax', max_iter = int(3e3), noise_cov = noise_cov, random_state = 12345,) # # search for a global rejection threshold globally # reject = get_rejection_threshold(epochs[~reject_log.bad_epochs], # decim = 1, # random_state = 12345) picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) ica.fit(epochs[~reject_log.bad_epochs], picks = picks, start = tmin, stop = tmax, # reject = reject, # if some data in a window has values that exceed the rejection threshold, this window will be ignored when computing the ICA decim = 3, tstep = 1. # Length of data chunks for artifact rejection in seconds. It only applies if inst is of type Raw. ) # search for artificial ICAs automatically # most of these hyperparameters were used in a unrelated published study ica.detect_artifacts(epochs[~reject_log.bad_epochs], eog_ch = ['FT9','FT10','TP9','TP10'], eog_criterion = 0.4, # arbitary choice skew_criterion = 2, # arbitary choice kurt_criterion = 2, # arbitary choice var_criterion = 2, # arbitary choice ) # # explicitly search for eog ICAs # eog_idx,scores = ica.find_bads_eog(raw_ref, # start = tmin, # stop = tmax, # l_freq = 2, # h_freq = 10, # ) # ica.exclude += eog_idx picks = mne.pick_types(epochs.info, eeg = True, # YES EEG eog = False # NO EOG ) epochs_ica = ica.apply(epochs,#,[~reject_log.bad_epochs], exclude = ica.exclude, ) else: picks = mne.pick_types(epochs.info, eeg = True, eog = False,) # epochs.filter(None, # low_pass, # picks = picks, # filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”) # method = 'fir', # overlap-add FIR filtering # phase = 'zero', # the delay of this filter is compensated for # fir_window = 'hamming', # The window to use in FIR design # fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2” # ) if logging is not None: for key in epochs.event_id.keys(): evoked = epochs[key].average() fig_ = evoked.plot_joint(title = key) fig_.savefig(logging.replace('.png',f'_{key}_post.png'), bbox_inches = 'tight') plt.close('all') return epochs if fix: """ """ ar = AutoReject( # n_interpolate = n_interpolates, # consensus = consensus_pers, # thresh_method = 'bayesian_optimization', picks = picks, random_state = 12345, # n_jobs = 1, # verbose = 'progressbar', ) epochs_clean = ar.fit_transform(epochs_ica, ) return epochs_clean.pick_types(eeg=True,eog=False) else: clean_epochs = epochs_ica.pick_types(eeg = True, eog = False) picks = mne.pick_types(clean_epochs.info, eeg = True, eog = False,) # clean_epochs.filter(None, # low_pass, # picks = picks, # filter_length = 'auto', # the filter length is chosen based on the size of the transition regions (6.6 times the reciprocal of the shortest transition band for fir_window=’hamming’ and fir_design=”firwin2”, and half that for “firwin”) # method = 'fir', # overlap-add FIR filtering # phase = 'zero', # the delay of this filter is compensated for # fir_window = 'hamming', # The window to use in FIR design # fir_design = 'firwin2', # a time-domain design technique that generally gives improved attenuation using fewer samples than “firwin2” # ) if logging is not None: for key in clean_epochs.event_id.keys(): evoked = epochs[key].average() fig_ = evoked.plot_joint(title = key) fig_.savefig(logging.replace('.png',f'_{key}_post.png'), bbox_inches = 'tight') plt.close('all') return clean_epochs def plot_temporal_decoding(times, scores, frames, ii, conscious_state, plscores, n_splits, ylim = (0.2,0.8)): scores_mean = scores.mean(0) scores_se = scores.std(0) / np.sqrt(n_splits) fig,ax = plt.subplots(figsize = (16,8)) ax.plot(times,scores_mean, color = 'k', alpha = .9, label = f'Average across {n_splits} folds', ) ax.fill_between(times, scores_mean + scores_se, scores_mean - scores_se, color = 'red', alpha = 0.4, label = 'Standard Error',) ax.axhline(0.5, linestyle = '--', color = 'k', alpha = 0.7, label = 'Chance level') ax.axvline(0, linestyle = '--', color = 'blue', alpha = 0.7, label = 'Probe onset',) if ii is not None: ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'blue', alpha = 0.3, label = 'probe offset ave +/- std',) ax.set(xlim = (times.min(), times.max()), ylim = ylim,#(0.4,0.6), title = f'Temporal decoding of {conscious_state} = {plscores.mean():.3f}+/-{plscores.std():.3f}', ) ax.legend() return fig,ax def plot_temporal_generalization(scores_gen_, times, ii, conscious_state, frames, vmin = 0.4, vmax = 0.6): fig, ax = plt.subplots(figsize = (10,10)) if len(scores_gen_.shape) > 2: scores_gen_ = scores_gen_.mean(0) im = ax.imshow( scores_gen_, interpolation = 'hamming', origin = 'lower', cmap = 'RdBu_r', extent = times[[0, -1, 0, -1]], vmin = vmin, vmax = vmax, ) ax.set_xlabel('Testing Time (s)') ax.set_ylabel('Training Time (s)') ax.set_title(f'Temporal generalization of {conscious_state}') ax.axhline(0., linestyle = '--', color = 'black', alpha = 0.7, label = 'Probe onset',) ax.axvline(0., linestyle = '--', color = 'black', alpha = 0.7, ) if ii is not None: ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, label = 'probe offset ave +/- std',) ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, ) plt.colorbar(im, ax = ax) ax.legend() return fig,ax def plot_t_stats(T_obs, clusters, cluster_p_values, times, ii, conscious_state, frames,): # since the p values of each cluster is corrected for multiple comparison, # we could directly use 0.05 as the threshold to filter clusters T_obs_plot = 0 * np.ones_like(T_obs) k = np.array([np.sum(c) for c in clusters]) if np.max(k) > 1000: c_thresh = 1000 elif 1000 > np.max(k) > 500: c_thresh = 500 elif 500 > np.max(k) > 100: c_thresh = 100 elif 100 > np.max(k) > 10: c_thresh = 10 else: c_thresh = 0 for c, p_val in zip(clusters, cluster_p_values): if (p_val <= 0.01) and (np.sum(c) >= c_thresh):# and (distance.cdist(np.where(c == True)[0].reshape(1,-1),np.where(c == True)[1].reshape(1,-1))[0][0] < 200):# and (np.sum(c) >= c_thresh): T_obs_plot[c] = T_obs[c] # defind the range of the colorbar vmax = np.max(np.abs(T_obs)) vmin = -vmax# - 2 * t_threshold plt.close('all') fig,ax = plt.subplots(figsize=(10,10)) im = ax.imshow(T_obs_plot, origin = 'lower', cmap = plt.cm.RdBu_r,# to emphasize the clusters extent = times[[0, -1, 0, -1]], vmin = vmin, vmax = vmax, interpolation = 'lanczos', ) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size = "5%", pad = 0.2) cb = plt.colorbar(im, cax = cax, ticks = np.linspace(vmin,vmax,3)) cb.ax.set(title = 'T Statistics') ax.plot([times[0],times[-1]],[times[0],times[-1]], linestyle = '--', color = 'black', alpha = 0.7, ) ax.axhline(0., linestyle = '--', color = 'black', alpha = 0.7, label = 'Probe onset',) ax.axvline(0., linestyle = '--', color = 'black', alpha = 0.7, ) if ii is not None: ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, label = 'probe offset ave +/- std',) ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, ) ax.set(xlabel = 'Test time', ylabel = 'Train time', title = f'nonparametric t test of {conscious_state}') ax.legend() return fig,ax def plot_p_values(times, clusters, cluster_p_values, ii, conscious_state, frames): width = len(times) p_clust = np.ones((width, width))# * np.nan k = np.array([np.sum(c) for c in clusters]) if np.max(k) > 1000: c_thresh = 1000 elif 1000 > np.max(k) > 500: c_thresh = 500 elif 500 > np.max(k) > 100: c_thresh = 100 elif 100 > np.max(k) > 10: c_thresh = 10 else: c_thresh = 0 for c, p_val in zip(clusters, cluster_p_values): if (np.sum(c) >= c_thresh): p_val_ = p_val.copy() if p_val_ > 0.05: p_val_ = 1. p_clust[c] = p_val_ # defind the range of the colorbar vmax = 1. vmin = 0. plt.close('all') fig,ax = plt.subplots(figsize = (10,10)) im = ax.imshow(p_clust, origin = 'lower', cmap = plt.cm.RdBu_r,# to emphasize the clusters extent = times[[0, -1, 0, -1]], vmin = vmin, vmax = vmax, interpolation = 'hanning', ) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size = "5%", pad = 0.2) cb = plt.colorbar(im, cax = cax, ticks = [0,0.05,1]) cb.ax.set(title = 'P values') ax.plot([times[0],times[-1]],[times[0],times[-1]], linestyle = '--', color = 'black', alpha = 0.7, ) ax.axhline(0., linestyle = '--', color = 'black', alpha = 0.7, label = 'Probe onset',) ax.axvline(0., linestyle = '--', color = 'black', alpha = 0.7, ) if ii is not None: ax.axhspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, label = 'probe offset ave +/- std',) ax.axvspan(frames[ii][1] * (1 / 100) - frames[ii][2] * (1 / 100), frames[ii][1] * (1 / 100) + frames[ii][2] * (1 / 100), color = 'black', alpha = 0.2, ) ax.set(xlabel = 'Test time', ylabel = 'Train time', title = f'p value map of {conscious_state}') ax.legend() return fig,ax def plot_EEG_autoreject_log(autoreject_object,): ar = autoreject_object loss = ar.loss_['eeg'].mean(axis=-1) # losses are stored by channel type. fig,ax = plt.subplots(figsize=(10,6)) im = ax.matshow(loss.T * 1e6, cmap=plt.get_cmap('viridis')) ax.set(xticks = range(len(ar.consensus)), xticklabels = ar.consensus.round(2), yticks = range(len(ar.n_interpolate)), yticklabels = ar.n_interpolate) # Draw rectangle at location of best parameters idx, jdx = np.unravel_index(loss.argmin(), loss.shape) rect = patches.Rectangle((idx - 0.5, jdx - 0.5), 1, 1, linewidth=2, edgecolor='r', facecolor='none') ax.add_patch(rect) ax.xaxis.set_ticks_position('bottom') ax.set(xlabel = r'Consensus percentage $\kappa$', ylabel = r'Max sensors interpolated $\rho$', title = 'Mean cross validation error (x 1e6)') plt.colorbar(im) return fig def str2int(x): if type(x) is str: return float(re.findall(r'\d+',x)[0]) else: return x def simple_load(f,idx): df = pd.read_csv(f) df['run'] = idx return df def get_frames(directory,new = True,EEG = True): if EEG: files = glob(os.path.join(directory,'*trials.csv')) # elif EEG == 'fMRI': # files = glob(os.path.join(directory,'*trials.csv')) else: files = glob(os.path.join(directory,'*','*.csv')) empty_temp = '' for ii,f in enumerate(files): df = pd.read_csv(f).dropna() for vis,df_sub in df.groupby(['visible.keys_raw']): try: print(f'session {ii+1}, vis = {vis}, n_trials = {df_sub.shape[0]}') empty_temp += f'session {ii+1}, vis = {vis}, n_trials = {df_sub.shape[0]}' empty_temp += '\n' except: print('session {}, vis = {}, n_trials = {}'.format(ii+1, vis,df_sub.shape[0])) df = pd.concat([simple_load(f,ii).dropna() for ii,f in enumerate(files)]) try: for col in ['probeFrames_raw', 'response.keys_raw', 'visible.keys_raw']: # print(df[col]) df[col] = df[col].apply(str2int) except: for col in ['probe_Frames_raw', 'response.keys_raw', 'visible.keys_raw']: # print(df[col]) df[col] = df[col].apply(str2int) df["probeFrames_raw"] = df["probe_Frames_raw"] df = df[df['probeFrames_raw'] != 999] df = df.sort_values(['run','order']) for vis,df_sub in df.groupby(['visible.keys_raw']): df_press1 = df_sub[df_sub['response.keys_raw'] == 1] df_press2 = df_sub[df_sub['response.keys_raw'] == 2] prob1 = df_press1.shape[0] / df_sub.shape[0] prob2 = df_press2.shape[0] / df_sub.shape[0] try: print(f"\nvis = {vis},mean frames = {np.median(df_sub['probeFrames_raw']):.5f}") print(f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}") empty_temp += f"\nvis = {vis},mean frames = {np.median(df_sub['probeFrames_raw']):.5f}\n" empty_temp += f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}\n" except: print("\nvis = {},mean frames = {:.5f}".format( vis,np.median(df_sub['probeFrames_raw']))) print(f"vis = {vis},prob(press 1) = {prob1:.4f}, p(press 2) = {prob2:.4f}") if new: df = [] for f in files: temp = pd.read_csv(f).dropna() try: temp[['probeFrames_raw','visible.keys_raw']] except: temp['probeFrames_raw'] = temp['probe_Frames_raw'] probeFrame = [] for ii,row in temp.iterrows(): if int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 1: probeFrame.append(row['probeFrames_raw']) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 2: probeFrame.append(row['probeFrames_raw']) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 3: probeFrame.append(row['probeFrames_raw']) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 4: probeFrame.append(row['probeFrames_raw']) temp['probeFrames'] = probeFrame df.append(temp) df = pd.concat(df) else: df = [] for f in files: temp = pd.read_csv(f).dropna() temp[['probeFrames_raw','visible.keys_raw']] probeFrame = [] for ii,row in temp.iterrows(): if int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 1: probeFrame.append(row['probeFrames_raw'] - 2) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 2: probeFrame.append(row['probeFrames_raw'] - 1) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 3: probeFrame.append(row['probeFrames_raw'] + 1) elif int(re.findall(r'\d',row['visible.keys_raw'])[0]) == 4: probeFrame.append(row['probeFrames_raw'] + 2) temp['probeFrames'] = probeFrame df.append(temp) df = pd.concat(df) df['probeFrames'] = df['probeFrames'].apply(str2int) df = df[df['probeFrames'] != 999] results = [] for vis,df_sub in df.groupby(['visible.keys_raw']): corrects = df_sub['response.corr_raw'].sum() / df_sub.shape[0] try: print(f"vis = {vis},N = {df_sub.shape[0]},mean frames = {np.mean(df_sub['probeFrames']):.2f} +/- {np.std(df_sub['probeFrames']):.2f}\np(correct) = {corrects:.4f}") empty_temp += f"vis = {vis},N = {df_sub.shape[0]},mean frames = {np.mean(df_sub['probeFrames']):.2f} +/- {np.std(df_sub['probeFrames']):.2f}\np(correct) = {corrects:.4f}\n" empty_temp += f"RT = {np.mean(df_sub['visible.rt_raw']):.3f} +/- {np.std(df_sub['visible.rt_raw']):.3f}\n" except: print("vis = {},mean frames = {:.2f} +/- {:.2f}".format( vis,np.mean(df_sub['probeFrames']),np.std(df_sub['probeFrames']))) results.append([vis,np.mean(df_sub['probeFrames']),np.std(df_sub['probeFrames'])]) return results,empty_temp def preprocess_behavioral_file(f): df = read_behavorial_file(f) for col in ['probeFrames_raw', 'response.keys_raw', 'visible.keys_raw']: df[col] = df[col].apply(str2int) df = df.sort_values(['order']) return df def read_behavorial_file(f): temp = pd.read_csv(f).iloc[:-12,:] return temp def preload(f): temp = pd.read_csv(f).iloc[-12:,:2] return temp def extract(x): try: return int(re.findall(r'\d',x)[0]) except: return int(99) #def extract_session_run_from_MRI(x): # temp = re.findall(r'\d+',x) # session = temp[1] # if int(session) == 7: # session = '1' # run = temp[-1] # return session,run #def check_behaviral_data_session_block(x): # temp = preload(x) # temp.index = temp['category'] # temp = temp.T # session = int(temp['session'].values[-1]) # block = int(temp['block'].values[-1]) # return session,block #def compare_match(behavorial_file_name,session,block): # behav_session,behav_block = check_behaviral_data_session_block(behavorial_file_name) # if np.logical_and(behav_session == session, behav_block == block): # return True # else: # return False def add_track(df_sub): n_rows = df_sub.shape[0] if len(df_sub.index.values) > 1: temp = '+'.join(str(item + 10) for item in df_sub.index.values) else: temp = str(df_sub.index.values[0]) df_sub = df_sub.iloc[0,:].to_frame().T # why did I use 1 instead of 0? df_sub['n_volume'] = n_rows df_sub['time_indices'] = temp return df_sub def groupby_average(fmri,df,groupby = ['trials']): BOLD_average = np.array([np.mean(fmri[df_sub.index],0) for _,df_sub in df.groupby(groupby)]) df_average = pd.concat([add_track(df_sub) for ii,df_sub in df.groupby(groupby)]) return BOLD_average,df_average def get_brightness_threshold(thresh): return [0.75 * val for val in thresh] def get_brightness_threshold_double(thresh): return [2 * 0.75 * val for val in thresh] def cartesian_product(fwhms, in_files, usans, btthresh): from nipype.utils.filemanip import ensure_list # ensure all inputs are lists in_files = ensure_list(in_files) fwhms = [fwhms] if isinstance(fwhms, (int, float)) else fwhms # create cartesian product lists (s_<name> = single element of list) cart_in_file = [ s_in_file for s_in_file in in_files for s_fwhm in fwhms ] cart_fwhm = [ s_fwhm for s_in_file in in_files for s_fwhm in fwhms ] cart_usans = [ s_usans for s_usans in usans for s_fwhm in fwhms ] cart_btthresh = [ s_btthresh for s_btthresh in btthresh for s_fwhm in fwhms ] return cart_in_file, cart_fwhm, cart_usans, cart_btthresh def getusans(x): return [[tuple([val[0], 0.5 * val[1]])] for val in x] def create_fsl_FEAT_workflow_func(whichrun = 0, whichvol = 'middle', workflow_name = 'nipype_mimic_FEAT', first_run = True, func_data_file = 'temp', fwhm = 3): """ Works with fsl-5.0.9 and fsl-5.0.11, but not fsl-6.0.0 """ from nipype.workflows.fmri.fsl import preprocess from nipype.interfaces import fsl from nipype.interfaces import utility as util from nipype.pipeline import engine as pe """ Setup some functions and hyperparameters """ fsl.FSLCommand.set_default_output_type('NIFTI_GZ') pickrun = preprocess.pickrun pickvol = preprocess.pickvol getthreshop = preprocess.getthreshop getmeanscale = preprocess.getmeanscale # chooseindex = preprocess.chooseindex """ Start constructing the workflow graph """ preproc = pe.Workflow(name = workflow_name) """ Initialize the input and output spaces """ inputnode = pe.Node( interface = util.IdentityInterface(fields = ['func', 'fwhm', 'anat']), name = 'inputspec') outputnode = pe.Node( interface = util.IdentityInterface(fields = ['reference', 'motion_parameters', 'realigned_files', 'motion_plots', 'mask', 'smoothed_files', 'mean']), name = 'outputspec') """ first step: convert Images to float values """ img2float = pe.MapNode( interface = fsl.ImageMaths( out_data_type = 'float', op_string = '', suffix = '_dtype'), iterfield = ['in_file'], name = 'img2float') preproc.connect(inputnode,'func', img2float,'in_file') """ delete first 10 volumes """ develVolume = pe.MapNode( interface = fsl.ExtractROI(t_min = 10, t_size = 508), iterfield = ['in_file'], name = 'remove_volumes') preproc.connect(img2float, 'out_file', develVolume, 'in_file') if first_run == True: """ extract example fMRI volume: middle one """ extract_ref = pe.MapNode( interface = fsl.ExtractROI(t_size = 1,), iterfield = ['in_file'], name = 'extractref') # connect to the deleteVolume node to get the data preproc.connect(develVolume,'roi_file', extract_ref,'in_file') # connect to the deleteVolume node again to perform the extraction preproc.connect(develVolume,('roi_file',pickvol,0,whichvol), extract_ref,'t_min') # connect to the output node to save the reference volume preproc.connect(extract_ref,'roi_file', outputnode, 'reference') if first_run == True: """ Realign the functional runs to the reference (`whichvol` volume of first run) """ motion_correct = pe.MapNode( interface = fsl.MCFLIRT(save_mats = True, save_plots = True, save_rms = True, stats_imgs = True, interpolation = 'spline'), iterfield = ['in_file','ref_file'], name = 'MCFlirt', ) # connect to the develVolume node to get the input data preproc.connect(develVolume, 'roi_file', motion_correct, 'in_file',) ###################################################################################### ################# the part where we replace the actual reference image if exists #### ###################################################################################### # connect to the develVolume node to get the reference preproc.connect(extract_ref, 'roi_file', motion_correct, 'ref_file') ###################################################################################### # connect to the output node to save the motion correction parameters preproc.connect(motion_correct, 'par_file', outputnode, 'motion_parameters') # connect to the output node to save the other files preproc.connect(motion_correct, 'out_file', outputnode, 'realigned_files') else: """ Realign the functional runs to the reference (`whichvol` volume of first run) """ motion_correct = pe.MapNode( interface = fsl.MCFLIRT(ref_file = first_run, save_mats = True, save_plots = True, save_rms = True, stats_imgs = True, interpolation = 'spline'), iterfield = ['in_file','ref_file'], name = 'MCFlirt', ) # connect to the develVolume node to get the input data preproc.connect(develVolume, 'roi_file', motion_correct, 'in_file',) # connect to the output node to save the motion correction parameters preproc.connect(motion_correct, 'par_file', outputnode, 'motion_parameters') # connect to the output node to save the other files preproc.connect(motion_correct, 'out_file', outputnode, 'realigned_files') """ plot the estimated motion parameters """ plot_motion = pe.MapNode( interface = fsl.PlotMotionParams(in_source = 'fsl'), iterfield = ['in_file'], name = 'plot_motion', ) plot_motion.iterables = ('plot_type',['rotations', 'translations', 'displacement']) preproc.connect(motion_correct, 'par_file', plot_motion, 'in_file') preproc.connect(plot_motion, 'out_file', outputnode, 'motion_plots') """ extract the mean volume of the first functional run """ meanfunc = pe.Node( interface = fsl.ImageMaths(op_string = '-Tmean', suffix = '_mean',), name = 'meanfunc') preproc.connect(motion_correct, ('out_file',pickrun,whichrun), meanfunc, 'in_file') """ strip the skull from the mean functional to generate a mask """ meanfuncmask = pe.Node( interface = fsl.BET(mask = True, no_output = True, frac = 0.3, surfaces = True,), name = 'bet2_mean_func') preproc.connect(meanfunc, 'out_file', meanfuncmask, 'in_file') """ Mask the motion corrected functional data with the mask to create the masked (bet) motion corrected functional data """ maskfunc = pe.MapNode( interface = fsl.ImageMaths(suffix = '_bet', op_string = '-mas'), iterfield = ['in_file'], name = 'maskfunc') preproc.connect(motion_correct, 'out_file', maskfunc, 'in_file') preproc.connect(meanfuncmask, 'mask_file', maskfunc, 'in_file2') """ determine the 2nd and 98th percentiles of each functional run """ getthreshold = pe.MapNode( interface = fsl.ImageStats(op_string = '-p 2 -p 98'), iterfield = ['in_file'], name = 'getthreshold') preproc.connect(maskfunc, 'out_file', getthreshold, 'in_file') """ threshold the functional data at 10% of the 98th percentile """ threshold = pe.MapNode( interface = fsl.ImageMaths(out_data_type = 'char', suffix = '_thresh', op_string = '-Tmin -bin'), iterfield = ['in_file','op_string'], name = 'tresholding') preproc.connect(maskfunc, 'out_file', threshold,'in_file') """ define a function to get 10% of the intensity """ preproc.connect(getthreshold,('out_stat',getthreshop), threshold, 'op_string') """ Determine the median value of the functional runs using the mask """ medianval = pe.MapNode( interface = fsl.ImageStats(op_string = '-k %s -p 50'), iterfield = ['in_file','mask_file'], name = 'cal_intensity_scale_factor') preproc.connect(motion_correct, 'out_file', medianval, 'in_file') preproc.connect(threshold, 'out_file', medianval, 'mask_file') """ dilate the mask """ dilatemask = pe.MapNode( interface = fsl.ImageMaths(suffix = '_dil', op_string = '-dilF'), iterfield = ['in_file'], name = 'dilatemask') preproc.connect(threshold, 'out_file', dilatemask, 'in_file') preproc.connect(dilatemask, 'out_file', outputnode, 'mask') """ mask the motion corrected functional runs with the dilated mask """ dilateMask_MCed = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'dilateMask_MCed') preproc.connect(motion_correct, 'out_file', dilateMask_MCed, 'in_file',) preproc.connect(dilatemask, 'out_file', dilateMask_MCed, 'in_file2') """ We now take this functional data that is motion corrected, high pass filtered, and create a "mean_func" image that is the mean across time (Tmean) """ meanfunc2 = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mean', op_string = '-Tmean',), iterfield = ['in_file'], name = 'meanfunc2') preproc.connect(dilateMask_MCed, 'out_file', meanfunc2, 'in_file') """ smooth each run using SUSAN with the brightness threshold set to 75% of the median value for each run and a mask constituing the mean functional """ merge = pe.Node( interface = util.Merge(2, axis = 'hstack'), name = 'merge') preproc.connect(meanfunc2, 'out_file', merge, 'in1') preproc.connect(medianval,('out_stat',get_brightness_threshold_double), merge, 'in2') smooth = pe.MapNode( interface = fsl.SUSAN(dimension = 3, use_median = True), iterfield = ['in_file', 'brightness_threshold', 'fwhm', 'usans'], name = 'susan_smooth') preproc.connect(dilateMask_MCed, 'out_file', smooth, 'in_file') preproc.connect(medianval, ('out_stat',get_brightness_threshold), smooth, 'brightness_threshold') preproc.connect(inputnode, 'fwhm', smooth, 'fwhm') preproc.connect(merge, ('out',getusans), smooth, 'usans') """ mask the smoothed data with the dilated mask """ maskfunc3 = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'dilateMask_smoothed') # connect the output of the susam smooth component to the maskfunc3 node preproc.connect(smooth, 'smoothed_file', maskfunc3, 'in_file') # connect the output of the dilated mask to the maskfunc3 node preproc.connect(dilatemask, 'out_file', maskfunc3, 'in_file2') """ scale the median value of the run is set to 10000 """ meanscale = pe.MapNode( interface = fsl.ImageMaths(suffix = '_intnorm'), iterfield = ['in_file','op_string'], name = 'meanscale') preproc.connect(maskfunc3, 'out_file', meanscale, 'in_file') preproc.connect(meanscale, 'out_file', outputnode,'smoothed_files') """ define a function to get the scaling factor for intensity normalization """ preproc.connect(medianval,('out_stat',getmeanscale), meanscale,'op_string') """ generate a mean functional image from the first run should this be the 'mean.nii.gz' we will use in the future? """ meanfunc3 = pe.MapNode( interface = fsl.ImageMaths(suffix = '_mean', op_string = '-Tmean',), iterfield = ['in_file'], name = 'gen_mean_func_img') preproc.connect(meanscale, 'out_file', meanfunc3, 'in_file') preproc.connect(meanfunc3, 'out_file', outputnode,'mean') # initialize some of the input files preproc.inputs.inputspec.func = os.path.abspath(func_data_file) preproc.inputs.inputspec.fwhm = 3 preproc.base_dir = os.path.abspath('/'.join( func_data_file.split('/')[:-1])) output_dir = os.path.abspath(os.path.join( preproc.base_dir, 'outputs', 'func')) MC_dir = os.path.join(output_dir,'MC') for directories in [output_dir,MC_dir]: if not os.path.exists(directories): os.makedirs(directories) # initialize all the output files if first_run == True: preproc.inputs.extractref.roi_file = os.path.abspath(os.path.join( output_dir,'example_func.nii.gz')) preproc.inputs.dilatemask.out_file = os.path.abspath(os.path.join( output_dir,'mask.nii.gz')) preproc.inputs.meanscale.out_file = os.path.abspath(os.path.join( output_dir,'prefiltered_func.nii.gz')) preproc.inputs.gen_mean_func_img.out_file = os.path.abspath(os.path.join( output_dir,'mean_func.nii.gz')) return preproc,MC_dir,output_dir def create_registration_workflow( anat_brain, anat_head, example_func, standard_brain, standard_head, standard_mask, workflow_name = 'registration', output_dir = 'temp'): from nipype.interfaces import fsl from nipype.interfaces import utility as util from nipype.pipeline import engine as pe fsl.FSLCommand.set_default_output_type('NIFTI_GZ') registration = pe.Workflow(name = 'registration') inputnode = pe.Node( interface = util.IdentityInterface( fields = [ 'highres', # anat_brain 'highres_head', # anat_head 'example_func', 'standard', # standard_brain 'standard_head', 'standard_mask' ]), name = 'inputspec') outputnode = pe.Node( interface = util.IdentityInterface( fields = ['example_func2highres_nii_gz', 'example_func2highres_mat', 'linear_example_func2highres_log', 'highres2example_func_mat', 'highres2standard_linear_nii_gz', 'highres2standard_mat', 'linear_highres2standard_log', 'highres2standard_nii_gz', 'highres2standard_warp_nii_gz', 'highres2standard_head_nii_gz', # 'highres2standard_apply_warp_nii_gz', 'highres2highres_jac_nii_gz', 'nonlinear_highres2standard_log', 'highres2standard_nii_gz', 'standard2highres_mat', 'example_func2standard_mat', 'example_func2standard_warp_nii_gz', 'example_func2standard_nii_gz', 'standard2example_func_mat', ]), name = 'outputspec') """ fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain standard fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm standard_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil standard_mask """ # skip """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in example_func -ref highres -out example_func2highres -omat example_func2highres.mat -cost corratio -dof 7 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ linear_example_func2highres = pe.MapNode( interface = fsl.FLIRT(cost = 'corratio', interp = 'trilinear', dof = 7, save_log = True, searchr_x = [-180, 180], searchr_y = [-180, 180], searchr_z = [-180, 180],), iterfield = ['in_file','reference'], name = 'linear_example_func2highres') registration.connect(inputnode, 'example_func', linear_example_func2highres, 'in_file') registration.connect(inputnode, 'highres', linear_example_func2highres, 'reference') registration.connect(linear_example_func2highres, 'out_file', outputnode, 'example_func2highres_nii_gz') registration.connect(linear_example_func2highres, 'out_matrix_file', outputnode, 'example_func2highres_mat') registration.connect(linear_example_func2highres, 'out_log', outputnode, 'linear_example_func2highres_log') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat highres2example_func.mat example_func2highres.mat """ get_highres2example_func = pe.MapNode( interface = fsl.ConvertXFM(invert_xfm = True), iterfield = ['in_file'], name = 'get_highres2example_func') registration.connect(linear_example_func2highres,'out_matrix_file', get_highres2example_func,'in_file') registration.connect(get_highres2example_func,'out_file', outputnode,'highres2example_func_mat') """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in highres -ref standard -out highres2standard -omat highres2standard.mat -cost corratio -dof 12 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ linear_highres2standard = pe.MapNode( interface = fsl.FLIRT(cost = 'corratio', interp = 'trilinear', dof = 12, save_log = True, searchr_x = [-180, 180], searchr_y = [-180, 180], searchr_z = [-180, 180],), iterfield = ['in_file','reference'], name = 'linear_highres2standard') registration.connect(inputnode,'highres', linear_highres2standard,'in_file') registration.connect(inputnode,'standard', linear_highres2standard,'reference',) registration.connect(linear_highres2standard,'out_file', outputnode,'highres2standard_linear_nii_gz') registration.connect(linear_highres2standard,'out_matrix_file', outputnode,'highres2standard_mat') registration.connect(linear_highres2standard,'out_log', outputnode,'linear_highres2standard_log') """ /opt/fsl/fsl-5.0.10/fsl/bin/fnirt --iout=highres2standard_head --in=highres_head --aff=highres2standard.mat --cout=highres2standard_warp --iout=highres2standard --jout=highres2highres_jac --config=T1_2_MNI152_2mm --ref=standard_head --refmask=standard_mask --warpres=10,10,10 """ nonlinear_highres2standard = pe.MapNode( interface = fsl.FNIRT(warp_resolution = (10,10,10), config_file = "T1_2_MNI152_2mm"), iterfield = ['in_file','ref_file','affine_file','refmask_file'], name = 'nonlinear_highres2standard') # -- iout registration.connect(nonlinear_highres2standard,'warped_file', outputnode,'highres2standard_head_nii_gz') # --in registration.connect(inputnode,'highres', nonlinear_highres2standard,'in_file') # --aff registration.connect(linear_highres2standard,'out_matrix_file', nonlinear_highres2standard,'affine_file') # --cout registration.connect(nonlinear_highres2standard,'fieldcoeff_file', outputnode,'highres2standard_warp_nii_gz') # --jout registration.connect(nonlinear_highres2standard,'jacobian_file', outputnode,'highres2highres_jac_nii_gz') # --ref registration.connect(inputnode,'standard_head', nonlinear_highres2standard,'ref_file',) # --refmask registration.connect(inputnode,'standard_mask', nonlinear_highres2standard,'refmask_file') # log registration.connect(nonlinear_highres2standard,'log_file', outputnode,'nonlinear_highres2standard_log') """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp -i highres -r standard -o highres2standard -w highres2standard_warp """ warp_highres2standard = pe.MapNode( interface = fsl.ApplyWarp(), iterfield = ['in_file','ref_file','field_file'], name = 'warp_highres2standard') registration.connect(inputnode,'highres', warp_highres2standard,'in_file') registration.connect(inputnode,'standard', warp_highres2standard,'ref_file') registration.connect(warp_highres2standard,'out_file', outputnode,'highres2standard_nii_gz') registration.connect(nonlinear_highres2standard,'fieldcoeff_file', warp_highres2standard,'field_file') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2highres.mat highres2standard.mat """ get_standard2highres = pe.MapNode( interface = fsl.ConvertXFM(invert_xfm = True), iterfield = ['in_file'], name = 'get_standard2highres') registration.connect(linear_highres2standard,'out_matrix_file', get_standard2highres,'in_file') registration.connect(get_standard2highres,'out_file', outputnode,'standard2highres_mat') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -omat example_func2standard.mat -concat highres2standard.mat example_func2highres.mat """ get_exmaple_func2standard = pe.MapNode( interface = fsl.ConvertXFM(concat_xfm = True), iterfield = ['in_file','in_file2'], name = 'get_exmaple_func2standard') registration.connect(linear_example_func2highres, 'out_matrix_file', get_exmaple_func2standard,'in_file') registration.connect(linear_highres2standard,'out_matrix_file', get_exmaple_func2standard,'in_file2') registration.connect(get_exmaple_func2standard,'out_file', outputnode,'example_func2standard_mat') """ /opt/fsl/fsl-5.0.10/fsl/bin/convertwarp --ref=standard --premat=example_func2highres.mat --warp1=highres2standard_warp --out=example_func2standard_warp """ convertwarp_example2standard = pe.MapNode( interface = fsl.ConvertWarp(), iterfield = ['reference','premat','warp1'], name = 'convertwarp_example2standard') registration.connect(inputnode,'standard', convertwarp_example2standard,'reference') registration.connect(linear_example_func2highres,'out_matrix_file', convertwarp_example2standard,'premat') registration.connect(nonlinear_highres2standard,'fieldcoeff_file', convertwarp_example2standard,'warp1') registration.connect(convertwarp_example2standard,'out_file', outputnode,'example_func2standard_warp_nii_gz') """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp --ref=standard --in=example_func --out=example_func2standard --warp=example_func2standard_warp """ warp_example2stand = pe.MapNode( interface = fsl.ApplyWarp(), iterfield = ['ref_file','in_file','field_file'], name = 'warp_example2stand') registration.connect(inputnode,'standard', warp_example2stand,'ref_file') registration.connect(inputnode,'example_func', warp_example2stand,'in_file') registration.connect(warp_example2stand,'out_file', outputnode,'example_func2standard_nii_gz') registration.connect(convertwarp_example2standard,'out_file', warp_example2stand,'field_file') """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2example_func.mat example_func2standard.mat """ get_standard2example_func = pe.MapNode( interface = fsl.ConvertXFM(invert_xfm = True), iterfield = ['in_file'], name = 'get_standard2example_func') registration.connect(get_exmaple_func2standard,'out_file', get_standard2example_func,'in_file') registration.connect(get_standard2example_func,'out_file', outputnode,'standard2example_func_mat') registration.base_dir = output_dir registration.inputs.inputspec.highres = anat_brain registration.inputs.inputspec.highres_head= anat_head registration.inputs.inputspec.example_func = example_func registration.inputs.inputspec.standard = standard_brain registration.inputs.inputspec.standard_head = standard_head registration.inputs.inputspec.standard_mask = standard_mask # define all the oupput file names with the directory registration.inputs.linear_example_func2highres.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2highres.nii.gz')) registration.inputs.linear_example_func2highres.out_matrix_file = os.path.abspath(os.path.join(output_dir, 'example_func2highres.mat')) registration.inputs.linear_example_func2highres.out_log = os.path.abspath(os.path.join(output_dir, 'linear_example_func2highres.log')) registration.inputs.get_highres2example_func.out_file = os.path.abspath(os.path.join(output_dir, 'highres2example_func.mat')) registration.inputs.linear_highres2standard.out_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_linear.nii.gz')) registration.inputs.linear_highres2standard.out_matrix_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.mat')) registration.inputs.linear_highres2standard.out_log = os.path.abspath(os.path.join(output_dir, 'linear_highres2standard.log')) # --iout registration.inputs.nonlinear_highres2standard.warped_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) # --cout registration.inputs.nonlinear_highres2standard.fieldcoeff_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_warp.nii.gz')) # --jout registration.inputs.nonlinear_highres2standard.jacobian_file = os.path.abspath(os.path.join(output_dir, 'highres2highres_jac.nii.gz')) registration.inputs.nonlinear_highres2standard.log_file = os.path.abspath(os.path.join(output_dir, 'nonlinear_highres2standard.log')) registration.inputs.warp_highres2standard.out_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) registration.inputs.get_standard2highres.out_file = os.path.abspath(os.path.join(output_dir, 'standard2highres.mat')) registration.inputs.get_exmaple_func2standard.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2standard.mat')) registration.inputs.convertwarp_example2standard.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2standard_warp.nii.gz')) registration.inputs.warp_example2stand.out_file = os.path.abspath(os.path.join(output_dir, 'example_func2standard.nii.gz')) registration.inputs.get_standard2example_func.out_file = os.path.abspath(os.path.join(output_dir, 'standard2example_func.mat')) return registration def _create_registration_workflow(anat_brain, anat_head, func_ref, standard_brain, standard_head, standard_mask, output_dir = 'temp'): from nipype.interfaces import fsl """ fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres fslmaths /bcbl/home/public/Consciousness/uncon_feat/data/MRI/sub-01/anat/sub-01-T1W_mprage_sag_p2_1iso_MGH_day_6_nipy_brain highres_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain standard fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm standard_head fslmaths /opt/fsl/fsl-5.0.9/fsl/data/standard/MNI152_T1_2mm_brain_mask_dil standard_mask """ fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = anat_brain fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = anat_head fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres_head.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = standard_brain fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = standard_head fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard_head.nii.gz')) fslmaths.cmdline fslmaths.run() fslmaths = fsl.ImageMaths() fslmaths.inputs.in_file = standard_mask fslmaths.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard_mask.nii.gz')) fslmaths.cmdline fslmaths.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in example_func -ref highres -out example_func2highres -omat example_func2highres.mat -cost corratio -dof 7 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ flt = fsl.FLIRT() flt.inputs.in_file = func_ref flt.inputs.reference = anat_brain flt.inputs.out_file = os.path.abspath(os.path.join(output_dir,'example_func2highres.nii.gz')) flt.inputs.out_matrix_file = os.path.abspath(os.path.join(output_dir,'example_func2highres.mat')) flt.inputs.out_log = os.path.abspath(os.path.join(output_dir,'example_func2highres.log')) flt.inputs.cost = 'corratio' flt.inputs.interp = 'trilinear' flt.inputs.searchr_x = [-180, 180] flt.inputs.searchr_y = [-180, 180] flt.inputs.searchr_z = [-180, 180] flt.inputs.dof = 7 flt.inputs.save_log = True flt.cmdline flt.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat highres2example_func.mat example_func2highres.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,"example_func2highres.mat")) inverse_transformer.inputs.invert_xfm = True inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres2example_func.mat')) inverse_transformer.cmdline inverse_transformer.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/flirt -in highres -ref standard -out highres2standard -omat highres2standard.mat -cost corratio -dof 12 -searchrx -180 180 -searchry -180 180 -searchrz -180 180 -interp trilinear """ flt = fsl.FLIRT() flt.inputs.in_file = anat_brain flt.inputs.reference = standard_brain flt.inputs.out_file = os.path.abspath(os.path.join(output_dir,'highres2standard_linear.nii.gz')) flt.inputs.out_matrix_file = os.path.abspath(os.path.join(output_dir,'highres2standard.mat')) flt.inputs.out_log = os.path.abspath(os.path.join(output_dir,'highres2standard.log')) flt.inputs.cost = 'corratio' flt.inputs.interp = 'trilinear' flt.inputs.searchr_x = [-180, 180] flt.inputs.searchr_y = [-180, 180] flt.inputs.searchr_z = [-180, 180] flt.inputs.dof = 12 flt.inputs.save_log = True flt.cmdline flt.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/fnirt --iout=highres2standard_head --in=highres_head --aff=highres2standard.mat --cout=highres2standard_warp --iout=highres2standard --jout=highres2highres_jac --config=T1_2_MNI152_2mm --ref=standard_head --refmask=standard_mask --warpres=10,10,10 """ fnirt_mprage = fsl.FNIRT() fnirt_mprage.inputs.warp_resolution = (10, 10, 10) # --iout name of output image fnirt_mprage.inputs.warped_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) # --in input image fnirt_mprage.inputs.in_file = anat_head # --aff affine transform fnirt_mprage.inputs.affine_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.mat')) # --cout output file with field coefficients fnirt_mprage.inputs.fieldcoeff_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_warp.nii.gz')) # --jout fnirt_mprage.inputs.jacobian_file = os.path.abspath(os.path.join(output_dir, 'highres2highres_jac.nii.gz')) # --config fnirt_mprage.inputs.config_file = 'T1_2_MNI152_2mm' # --ref fnirt_mprage.inputs.ref_file = os.path.abspath(standard_head) # --refmask fnirt_mprage.inputs.refmask_file = os.path.abspath(standard_mask) # --warpres fnirt_mprage.inputs.log_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.log')) fnirt_mprage.cmdline fnirt_mprage.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp -i highres -r standard -o highres2standard -w highres2standard_warp """ aw = fsl.ApplyWarp() aw.inputs.in_file = anat_brain aw.inputs.ref_file = os.path.abspath(standard_brain) aw.inputs.out_file = os.path.abspath(os.path.join(output_dir, 'highres2standard.nii.gz')) aw.inputs.field_file = os.path.abspath(os.path.join(output_dir, 'highres2standard_warp.nii.gz')) aw.cmdline aw.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2highres.mat highres2standard.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir,"highres2standard.mat")) inverse_transformer.inputs.invert_xfm = True inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'standard2highres.mat')) inverse_transformer.cmdline inverse_transformer.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -omat example_func2standard.mat -concat highres2standard.mat example_func2highres.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file2 = os.path.abspath(os.path.join(output_dir,"highres2standard.mat")) inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir, "example_func2highres.mat")) inverse_transformer.inputs.concat_xfm = True inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir,'example_func2standard.mat')) inverse_transformer.cmdline inverse_transformer.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convertwarp --ref=standard --premat=example_func2highres.mat --warp1=highres2standard_warp --out=example_func2standard_warp """ warputils = fsl.ConvertWarp() warputils.inputs.reference = os.path.abspath(standard_brain) warputils.inputs.premat = os.path.abspath(os.path.join(output_dir, "example_func2highres.mat")) warputils.inputs.warp1 = os.path.abspath(os.path.join(output_dir, "highres2standard_warp.nii.gz")) warputils.inputs.out_file = os.path.abspath(os.path.join(output_dir, "example_func2standard_warp.nii.gz")) warputils.cmdline warputils.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/applywarp --ref=standard --in=example_func --out=example_func2standard --warp=example_func2standard_warp """ aw = fsl.ApplyWarp() aw.inputs.ref_file = os.path.abspath(standard_brain) aw.inputs.in_file = os.path.abspath(func_ref) aw.inputs.out_file = os.path.abspath(os.path.join(output_dir, "example_func2standard.nii.gz")) aw.inputs.field_file = os.path.abspath(os.path.join(output_dir, "example_func2standard_warp.nii.gz")) aw.run() """ /opt/fsl/fsl-5.0.10/fsl/bin/convert_xfm -inverse -omat standard2example_func.mat example_func2standard.mat """ inverse_transformer = fsl.ConvertXFM() inverse_transformer.inputs.in_file = os.path.abspath(os.path.join(output_dir, "example_func2standard.mat")) inverse_transformer.inputs.out_file = os.path.abspath(os.path.join(output_dir, "standard2example_func.mat")) inverse_transformer.inputs.invert_xfm = True inverse_transformer.cmdline inverse_transformer.run() ###################### ###### plotting ###### example_func2highres = os.path.abspath(os.path.join(output_dir, 'example_func2highres')) example_func2standard = os.path.abspath(os.path.join(output_dir, "example_func2standard")) highres2standard = os.path.abspath(os.path.join(output_dir, 'highres2standard')) highres = os.path.abspath(anat_brain) standard = os.path.abspath(standard_brain) plot_example_func2highres = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2highres} {highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres} {example_func2highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2highres}1.png - {example_func2highres}2.png {example_func2highres}.png; /bin/rm -f sl?.png {example_func2highres}2.png /bin/rm {example_func2highres}1.png """.replace("\n"," ") plot_highres2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {highres2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {highres2standard}1.png - {highres2standard}2.png {highres2standard}.png; /bin/rm -f sl?.png {highres2standard}2.png /bin/rm {highres2standard}1.png """.replace("\n"," ") plot_example_func2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {example_func2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2standard}1.png - {example_func2standard}2.png {example_func2standard}.png; /bin/rm -f sl?.png {example_func2standard}2.png """.replace("\n"," ") for cmdline in [plot_example_func2highres,plot_example_func2standard,plot_highres2standard]: os.system(cmdline) def create_simple_struc2BOLD(roi, roi_name, preprocessed_functional_dir, output_dir): from nipype.interfaces import fsl from nipype.pipeline import engine as pe from nipype.interfaces import utility as util fsl.FSLCommand.set_default_output_type('NIFTI_GZ') simple_workflow = pe.Workflow(name = 'struc2BOLD') inputnode = pe.Node(interface = util.IdentityInterface( fields = ['flt_in_file', 'flt_in_matrix', 'flt_reference', 'mask']), name = 'inputspec') outputnode = pe.Node(interface = util.IdentityInterface( fields = ['BODL_mask']), name = 'outputspec') """ flirt -in /export/home/dsoto/dsoto/fmri/$s/sess2/label/$i -ref /export/home/dsoto/dsoto/fmri/$s/sess2/run1_prepro1.feat/example_func.nii.gz -applyxfm -init /export/home/dsoto/dsoto/fmri/$s/sess2/run1_prepro1.feat/reg/highres2example_func.mat -out /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} """ flirt_convert = pe.MapNode( interface = fsl.FLIRT(apply_xfm = True), iterfield = ['in_file', 'reference', 'in_matrix_file'], name = 'flirt_convert') simple_workflow.connect(inputnode, 'flt_in_file', flirt_convert, 'in_file') simple_workflow.connect(inputnode, 'flt_reference', flirt_convert, 'reference') simple_workflow.connect(inputnode, 'flt_in_matrix', flirt_convert, 'in_matrix_file') """ fslmaths /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} -mul 2 -thr `fslstats /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} -p 99.6` -bin /export/home/dsoto/dsoto/fmri/$s/label/BOLD${i} """ def getthreshop(thresh): return ['-mul 2 -thr %.10f -bin' % (val) for val in thresh] getthreshold = pe.MapNode( interface = fsl.ImageStats(op_string='-p 99.6'), iterfield = ['in_file','mask_file'], name = 'getthreshold') simple_workflow.connect(flirt_convert, 'out_file', getthreshold, 'in_file') simple_workflow.connect(inputnode, 'mask', getthreshold, 'mask_file') threshold = pe.MapNode( interface = fsl.ImageMaths( suffix = '_thresh', op_string = '-mul 2 -bin'), iterfield = ['in_file','op_string'], name = 'thresholding') simple_workflow.connect(flirt_convert, 'out_file', threshold, 'in_file') simple_workflow.connect(getthreshold, ('out_stat',getthreshop), threshold, 'op_string') # simple_workflow.connect(threshold,'out_file',outputnode,'BOLD_mask') bound_by_mask = pe.MapNode( interface = fsl.ImageMaths( suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'bound_by_mask') simple_workflow.connect(threshold, 'out_file', bound_by_mask, 'in_file') simple_workflow.connect(inputnode, 'mask', bound_by_mask, 'in_file2') simple_workflow.connect(bound_by_mask, 'out_file', outputnode, 'BOLD_mask') # setup inputspecs simple_workflow.inputs.inputspec.flt_in_file = roi simple_workflow.inputs.inputspec.flt_in_matrix = os.path.abspath(os.path.join(preprocessed_functional_dir, 'reg', 'highres2example_func.mat')) simple_workflow.inputs.inputspec.flt_reference = os.path.abspath(os.path.join(preprocessed_functional_dir, 'func', 'example_func.nii.gz')) simple_workflow.inputs.inputspec.mask = os.path.abspath(os.path.join(preprocessed_functional_dir, 'func', 'mask.nii.gz')) simple_workflow.inputs.bound_by_mask.out_file = os.path.abspath(os.path.join(output_dir, roi_name.replace('_fsl.nii.gz', '_BOLD.nii.gz'))) return simple_workflow def registration_plotting(output_dir, anat_brain, standard_brain): ###################### ###### plotting ###### try: example_func2highres = os.path.abspath(os.path.join(output_dir, 'example_func2highres')) example_func2standard = os.path.abspath(os.path.join(output_dir, 'example_func2standard_warp')) highres2standard = os.path.abspath(os.path.join(output_dir, 'highres2standard')) highres = os.path.abspath(anat_brain) standard = os.path.abspath(standard_brain) plot_example_func2highres = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2highres} {highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres} {example_func2highres} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2highres}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2highres}1.png - {example_func2highres}2.png {example_func2highres}.png; /bin/rm -f sl?.png {example_func2highres}2.png /bin/rm {example_func2highres}1.png """.replace("\n"," ") plot_highres2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {highres2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {highres2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {highres2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {highres2standard}1.png - {highres2standard}2.png {highres2standard}.png; /bin/rm -f sl?.png {highres2standard}2.png /bin/rm {highres2standard}1.png """.replace("\n"," ") plot_example_func2standard = f""" /opt/fsl/fsl-5.0.10/fsl/bin/slicer {example_func2standard} {standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}1.png ; /opt/fsl/fsl-5.0.10/fsl/bin/slicer {standard} {example_func2standard} -s 2 -x 0.35 sla.png -x 0.45 slb.png -x 0.55 slc.png -x 0.65 sld.png -y 0.35 sle.png -y 0.45 slf.png -y 0.55 slg.png -y 0.65 slh.png -z 0.35 sli.png -z 0.45 slj.png -z 0.55 slk.png -z 0.65 sll.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend sla.png + slb.png + slc.png + sld.png + sle.png + slf.png + slg.png + slh.png + sli.png + slj.png + slk.png + sll.png {example_func2standard}2.png ; /opt/fsl/fsl-5.0.10/fsl/bin/pngappend {example_func2standard}1.png - {example_func2standard}2.png {example_func2standard}.png; /bin/rm -f sl?.png {example_func2standard}2.png """.replace("\n"," ") for cmdline in [plot_example_func2highres, plot_example_func2standard, plot_highres2standard]: os.system(cmdline) except: print('you should not use python 2.7, update your python!!') def create_highpass_filter_workflow(workflow_name = 'highpassfiler', HP_freq = 60, TR = 0.85): from nipype.workflows.fmri.fsl import preprocess from nipype.interfaces import fsl from nipype.pipeline import engine as pe from nipype.interfaces import utility as util fsl.FSLCommand.set_default_output_type('NIFTI_GZ') getthreshop = preprocess.getthreshop getmeanscale = preprocess.getmeanscale highpass_workflow = pe.Workflow(name = workflow_name) inputnode = pe.Node(interface = util.IdentityInterface( fields = ['ICAed_file',]), name = 'inputspec') outputnode = pe.Node(interface = util.IdentityInterface( fields = ['filtered_file']), name = 'outputspec') img2float = pe.MapNode(interface = fsl.ImageMaths(out_data_type = 'float', op_string = '', suffix = '_dtype'), iterfield = ['in_file'], name = 'img2float') highpass_workflow.connect(inputnode,'ICAed_file', img2float,'in_file') getthreshold = pe.MapNode(interface = fsl.ImageStats(op_string = '-p 2 -p 98'), iterfield = ['in_file'], name = 'getthreshold') highpass_workflow.connect(img2float, 'out_file', getthreshold, 'in_file') thresholding = pe.MapNode(interface = fsl.ImageMaths(out_data_type = 'char', suffix = '_thresh', op_string = '-Tmin -bin'), iterfield = ['in_file','op_string'], name = 'thresholding') highpass_workflow.connect(img2float, 'out_file', thresholding, 'in_file') highpass_workflow.connect(getthreshold,('out_stat',getthreshop), thresholding,'op_string') dilatemask = pe.MapNode(interface = fsl.ImageMaths(suffix = '_dil', op_string = '-dilF'), iterfield = ['in_file'], name = 'dilatemask') highpass_workflow.connect(thresholding,'out_file', dilatemask,'in_file') maskfunc = pe.MapNode(interface = fsl.ImageMaths(suffix = '_mask', op_string = '-mas'), iterfield = ['in_file','in_file2'], name = 'apply_dilatemask') highpass_workflow.connect(img2float, 'out_file', maskfunc, 'in_file') highpass_workflow.connect(dilatemask, 'out_file', maskfunc, 'in_file2') medianval = pe.MapNode(interface = fsl.ImageStats(op_string = '-k %s -p 50'), iterfield = ['in_file','mask_file'], name = 'cal_intensity_scale_factor') highpass_workflow.connect(img2float, 'out_file', medianval, 'in_file') highpass_workflow.connect(thresholding, 'out_file', medianval, 'mask_file') meanscale = pe.MapNode(interface = fsl.ImageMaths(suffix = '_intnorm'), iterfield = ['in_file','op_string'], name = 'meanscale') highpass_workflow.connect(maskfunc, 'out_file', meanscale, 'in_file') highpass_workflow.connect(medianval, ('out_stat',getmeanscale), meanscale, 'op_string') meanfunc = pe.MapNode(interface = fsl.ImageMaths(suffix = '_mean', op_string = '-Tmean'), iterfield = ['in_file'], name = 'meanfunc') highpass_workflow.connect(meanscale, 'out_file', meanfunc, 'in_file') hpf = pe.MapNode(interface = fsl.ImageMaths(suffix = '_tempfilt', op_string = '-bptf %.10f -1' % (HP_freq/2/TR)), iterfield = ['in_file'], name = 'highpass_filering') highpass_workflow.connect(meanscale,'out_file', hpf, 'in_file',) addMean = pe.MapNode(interface = fsl.BinaryMaths(operation = 'add'), iterfield = ['in_file','operand_file'], name = 'addmean') highpass_workflow.connect(hpf, 'out_file', addMean, 'in_file') highpass_workflow.connect(meanfunc, 'out_file', addMean, 'operand_file') highpass_workflow.connect(addMean, 'out_file', outputnode,'filtered_file') return highpass_workflow def load_csv(f,print_ = False): temp = re.findall(r'\d+',f) n_session = int(temp[-2]) n_run = int(temp[-1]) if print_: print(n_session,n_run) df = pd.read_csv(f) df['session'] = n_session df['run'] = n_run df['id'] = df['session'] * 1000 + df['run'] * 100 + df['trials'] return df def build_model_dictionary(print_train = False, class_weight = 'balanced', remove_invariant = True, n_jobs = 1): np.random.seed(12345) svm = LinearSVC(penalty = 'l2', # default dual = True, # default tol = 1e-3, # not default random_state = 12345, # not default max_iter = int(1e3), # default class_weight = class_weight, # not default ) svm = CalibratedClassifierCV(base_estimator = svm, method = 'sigmoid', cv = 8) xgb = XGBClassifier( learning_rate = 1e-3, # not default max_depth = 10, # not default n_estimators = 100, # not default objective = 'binary:logistic', # default booster = 'gbtree', # default subsample = 0.9, # not default colsample_bytree = 0.9, # not default reg_alpha = 0, # default reg_lambda = 1, # default random_state = 12345, # not default importance_type = 'gain', # default n_jobs = n_jobs,# default to be 1 ) bagging = BaggingClassifier(base_estimator = svm, n_estimators = 30, # not default max_features = 0.9, # not default max_samples = 0.9, # not default bootstrap = True, # default bootstrap_features = True, # default random_state = 12345, # not default ) RF = SelectFromModel(xgb, prefit = False, threshold = 'median' # induce sparsity ) uni = SelectPercentile(mutual_info_classif,50) # so annoying that I cannot control the random state knn = KNeighborsClassifier() tree = DecisionTreeClassifier(random_state = 12345, class_weight = class_weight) dummy = DummyClassifier(strategy = 'uniform',random_state = 12345,) if remove_invariant: RI = VarianceThreshold() models = OrderedDict([ ['None + Dummy', make_pipeline(RI,MinMaxScaler(), dummy,)], ['None + Linear-SVM', make_pipeline(RI,MinMaxScaler(), svm,)], ['None + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), bagging,)], ['None + KNN', make_pipeline(RI,MinMaxScaler(), knn,)], ['None + Tree', make_pipeline(RI,MinMaxScaler(), tree,)], ['PCA + Dummy', make_pipeline(RI,MinMaxScaler(), PCA(), dummy,)], ['PCA + Linear-SVM', make_pipeline(RI,MinMaxScaler(), PCA(), svm,)], ['PCA + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), PCA(), bagging,)], ['PCA + KNN', make_pipeline(RI,MinMaxScaler(), PCA(), knn,)], ['PCA + Tree', make_pipeline(RI,MinMaxScaler(), PCA(), tree,)], ['Mutual + Dummy', make_pipeline(RI,MinMaxScaler(), uni, dummy,)], ['Mutual + Linear-SVM', make_pipeline(RI,MinMaxScaler(), uni, svm,)], ['Mutual + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), uni, bagging,)], ['Mutual + KNN', make_pipeline(RI,MinMaxScaler(), uni, knn,)], ['Mutual + Tree', make_pipeline(RI,MinMaxScaler(), uni, tree,)], ['RandomForest + Dummy', make_pipeline(RI,MinMaxScaler(), RF, dummy,)], ['RandomForest + Linear-SVM', make_pipeline(RI,MinMaxScaler(), RF, svm,)], ['RandomForest + Ensemble-SVMs', make_pipeline(RI,MinMaxScaler(), RF, bagging,)], ['RandomForest + KNN', make_pipeline(RI,MinMaxScaler(), RF, knn,)], ['RandomForest + Tree', make_pipeline(RI,MinMaxScaler(), RF, tree,)],] ) else: models = OrderedDict([ ['None + Dummy', make_pipeline(MinMaxScaler(), dummy,)], ['None + Linear-SVM', make_pipeline(MinMaxScaler(), svm,)], ['None + Ensemble-SVMs', make_pipeline(MinMaxScaler(), bagging,)], ['None + KNN', make_pipeline(MinMaxScaler(), knn,)], ['None + Tree', make_pipeline(MinMaxScaler(), tree,)], ['PCA + Dummy', make_pipeline(MinMaxScaler(), PCA(), dummy,)], ['PCA + Linear-SVM', make_pipeline(MinMaxScaler(), PCA(), svm,)], ['PCA + Ensemble-SVMs', make_pipeline(MinMaxScaler(), PCA(), bagging,)], ['PCA + KNN', make_pipeline(MinMaxScaler(), PCA(), knn,)], ['PCA + Tree', make_pipeline(MinMaxScaler(), PCA(), tree,)], ['Mutual + Dummy', make_pipeline(MinMaxScaler(), uni, dummy,)], ['Mutual + Linear-SVM', make_pipeline(MinMaxScaler(), uni, svm,)], ['Mutual + Ensemble-SVMs', make_pipeline(MinMaxScaler(), uni, bagging,)], ['Mutual + KNN', make_pipeline(MinMaxScaler(), uni, knn,)], ['Mutual + Tree', make_pipeline(MinMaxScaler(), uni, tree,)], ['RandomForest + Dummy', make_pipeline(MinMaxScaler(), RF, dummy,)], ['RandomForest + Linear-SVM', make_pipeline(MinMaxScaler(), RF, svm,)], ['RandomForest + Ensemble-SVMs', make_pipeline(MinMaxScaler(), RF, bagging,)], ['RandomForest + KNN', make_pipeline(MinMaxScaler(), RF, knn,)], ['RandomForest + Tree', make_pipeline(MinMaxScaler(), RF, tree,)],] ) return models def get_blocks(df__,label_map,): ids = df__['id'].values chunks = df__['session'].values words = df__['labels'].values labels = np.array([label_map[item] for item in df__['targets'].values])[:,-1] sample_indecies = np.arange(len(labels)) blocks = [np.array([ids[ids == target], chunks[ids == target], words[ids == target], labels[ids == target], sample_indecies[ids == target] ]) for target in np.unique(ids) ] block_labels = np.array([np.unique(ll[-2]) for ll in blocks]).ravel() return blocks,block_labels def make_unique_class_target(df_data): make_class = {name:[] for name in pd.unique(df_data['targets'])} for ii,df_sub in df_data.groupby(['labels']): target = pd.unique(df_sub['targets']) label = pd.unique(df_sub['labels']) make_class[target[0]].append(label[0]) return make_class def Find_Optimal_Cutoff(target, predicted): """ Find the optimal probability cutoff point for a classification model related to event rate Parameters ---------- target : Matrix with dependent or target data, where rows are observations predicted : Matrix with predicted data, where rows are observations Returns ------- list type, with optimal cutoff value """ fpr, tpr, threshold = roc_curve(target, predicted) i = np.arange(len(tpr)) roc = pd.DataFrame({'tf' : pd.Series(tpr-(1-fpr), index=i), 'threshold' : pd.Series(threshold, index=i)}) roc_t = roc.iloc[(roc.tf-0).abs().argsort()[:1]] return list(roc_t['threshold']) def customized_partition(df_data,groupby_column = ['id','labels'],n_splits = 100,): """ modified for unaveraged volumes """ idx_object = dict(ids = [],idx = [],labels = []) for label,df_sub in df_data.groupby(groupby_column): idx_object['ids'].append(label[0]) idx_object['idx'].append(df_sub.index.tolist()) idx_object['labels'].append(label[-1]) df_object = pd.DataFrame(idx_object) idxs_test = [] for counter in range(int(1e4)): idx_test = [np.random.choice(item['idx'].values) for ii,item in df_object.groupby(groupby_column[-1])] if counter >= n_splits: return [np.concatenate(item) for item in idxs_test] break if counter > 0: temp = [] for used in idxs_test: used_temp = [','.join(str(ii) for ii in item) for item in used] idx_test_temp = [','.join(str(ii) for ii in item) for item in idx_test] a = set(used_temp) b = set(idx_test_temp) temp.append(len(a.intersection(b)) != len(idx_test)) if all(temp) == True: idxs_test.append(idx_test) else: idxs_test.append(idx_test) def check_train_test_splits(idxs_test): """ check if we get repeated test sets """ temp = [] for ii,item1 in enumerate(idxs_test): for jj,item2 in enumerate(idxs_test): if not ii == jj: if len(item1) == len(item2): sample1 = np.sort(item1) sample2 =
np.sort(item2)
numpy.sort
# -*- coding: utf-8 -*- """ @author: <NAME> """ import sys sys.path.append('../') from defragTrees import * import BATree from RForest import RForest import numpy as np import re from sklearn import tree from sklearn.grid_search import GridSearchCV #************************ # inTree Class #************************ class inTreeModel(RuleModel): def __init__(self, modeltype='regression'): super().__init__(modeltype=modeltype) #************************ # Fit and Related Methods #************************ def fit(self, X, y, filename, featurename=[]): self.dim_ = X.shape[1] self.setfeaturename(featurename) self.setdefaultpred(y) if self.modeltype_ == 'regression': v1 = np.percentile(y, 17) v2 = np.percentile(y, 50) v3 = np.percentile(y, 83) val = (v1, v2, v3) mdl = self.__parsInTreesFile(filename) for m in mdl: if m[3] == 'X[,1]==X[,1]': self.rule_.append([]) else: subrule = [] ll = m[3].split(' & ') for r in ll: id1 = r.find(',') + 1 id2 = r.find(']') idx = int(r[id1:id2]) if '>' in r: v = 1 id1 = r.find('>') + 1 t = float(r[id1:]) else: v = 0 id1 = r.find('<=') + 2 t = float(r[id1:]) subrule.append((idx, v, t)) self.rule_.append(subrule) if self.modeltype_ == 'classification': self.pred_.append(int(m[4])) elif self.modeltype_ == 'regression': if m[4] == 'L1': self.pred_.append(val[0]) elif m[4] == 'L2': self.pred_.append(val[1]) elif m[4] == 'L3': self.pred_.append(val[2]) self.weight_ = np.arange(len(self.rule_))[::-1].tolist() def __parsInTreesFile(self, filename): f = open(filename) line = f.readline() mdl = [] while line: if not'[' in line: line = f.readline() continue id1 = line.find('[') + 1 id2 = line.find(',') idx = int(line[id1:id2]) if idx > len(mdl): mdl.append(re.findall(r'"([^"]*)"', line)) else: mdl[idx-1] += re.findall(r'"([^"]*)"', line) line = f.readline() f.close() return mdl #************************ # NHarvest Class #************************ class NHarvestModel(RuleModel): def __init__(self, modeltype='regression'): super().__init__(modeltype=modeltype) #************************ # Fit and Related Methods #************************ def fit(self, X, y, filename, featurename=[]): self.dim_ = X.shape[1] self.setfeaturename(featurename) rule, pred, weight = self.__parsNHarvestFile(filename) self.setdefaultpred(pred[-1]) idx = np.argsort(weight[:-1])[::-1] self.rule_ = [rule[i] for i in idx] if self.modeltype_ == 'regression': self.pred_ = [pred[i] for i in idx] elif self.modeltype_ == 'classification': self.pred_ = (np.array([pred[i] for i in idx]) > 0.5).astype(int).tolist() self.weight_ = [weight[i] for i in idx] def __parsNHarvestFile(self, filename): f = open(filename) line = f.readline() rule = [] pred = [] weight = [] while line: f.readline() subrule = [] line = f.readline() while (line[0] != 'a'): s = line.split() idx = int(s[1]) low = float(s[2]) up = float(s[3]) if not np.isinf(low): subrule.append((idx, 1, low)) if not np.isinf(up): subrule.append((idx, 0, up)) line = f.readline() if (len(subrule) > 0): rule.append(subrule) while True: line = f.readline() if (line[0] == 'a'): s = line.split('"') if (s[1] == 'predict'): break line = f.readline() s = line.split() pred.append(float(s[1])) f.readline() line = f.readline() s = line.split() weight.append(float(s[1])) line = f.readline() line = f.readline() line = f.readline() line = f.readline() if not line[:2] == '[[': break f.close() return rule, pred, weight #************************ # DTree Class #************************ class DTreeModel(RuleModel): def __init__(self, modeltype='regression', max_depth=[None, 2, 4, 6, 8], min_samples_leaf=[5, 10, 20, 30], cv=5): super().__init__(modeltype=modeltype) self.max_depth_ = max_depth self.min_samples_leaf_ = min_samples_leaf self.cv_ = cv #************************ # Fit and Related Methods #************************ def fit(self, X, y, featurename=[]): self.dim_ = X.shape[1] self.setfeaturename(featurename) self.setdefaultpred(y) param_grid = {"max_depth": self.max_depth_, "min_samples_leaf": self.min_samples_leaf_} if self.modeltype_ == 'regression': mdl = tree.DecisionTreeRegressor() elif self.modeltype_ == 'classification': mdl = tree.DecisionTreeClassifier() grid_search = GridSearchCV(mdl, param_grid=param_grid, cv=self.cv_) grid_search.fit(X, y) mdl = grid_search.best_estimator_ self.__parseTree(mdl) self.weight_ = np.ones(len(self.rule_)) def __parseTree(self, mdl): t = mdl.tree_ m = len(t.value) left = t.children_left right = t.children_right feature = t.feature threshold = t.threshold value = t.value parent = [-1] * m ctype = [-1] * m for i in range(m): if not left[i] == -1: parent[left[i]] = i ctype[left[i]] = 0 if not right[i] == -1: parent[right[i]] = i ctype[right[i]] = 1 for i in range(m): if not left[i] == -1: continue subrule = [] c = ctype[i] idx = parent[i] while not idx == -1: subrule.append((int(feature[idx])+1, c, threshold[idx])) c = ctype[idx] idx = parent[idx] self.rule_.append(subrule) if np.array(value[i]).size > 1: self.pred_.append(np.argmax(np.array(value[i]))) else: self.pred_.append(np.asscalar(value[i])) #************************ # BTree Class #************************ class BTreeModel(RuleModel): def __init__(self, modeltype='regression', max_depth=[2, 3, 4, 6, 8, 10], min_samples_leaf=[10], cv=5, smear_num=100, njobs=1, seed=0): super().__init__(modeltype=modeltype) self.max_depth_ = max_depth self.min_samples_leaf_ = min_samples_leaf self.cv_ = cv self.smear_num_ = smear_num self.njobs_ = njobs self.seed_ = seed #************************ # Fit and Related Methods #************************ def fit(self, X, y, dirname, featurename=[]): self.dim_ = X.shape[1] self.setfeaturename(featurename) self.setdefaultpred(y) mdl = RForest(modeltype=self.modeltype_) mdl.fit(dirname) tree = BATree.fitBATreeCV(X, y, mdl, modeltype=self.modeltype_, max_depth=self.max_depth_, min_samples_split=self.min_samples_leaf_, cv=self.cv_, seed=self.seed_, smear_num=self.smear_num_, njobs=self.njobs_) self.__parseTree(tree) self.weight_ = np.ones(len(self.rule_)) return tree def __parseTree(self, tree): m = len(tree.pred_) left = tree.left_ right = tree.right_ feature = tree.index_ threshold = tree.threshold_ value = tree.pred_ parent = [-1] * m ctype = [-1] * m for i in range(m): if not left[i] == -1: parent[left[i]] = i ctype[left[i]] = 0 if not right[i] == -1: parent[right[i]] = i ctype[right[i]] = 1 for i in range(m): if not left[i] == -1: continue subrule = [] c = ctype[i] idx = parent[i] while not idx == -1: subrule.append((int(feature[idx])+1, c, threshold[idx])) c = ctype[idx] idx = parent[idx] self.rule_.append(subrule) if np.array(value[i]).size > 1: self.pred_.append(np.argmax(np.array(value[i]))) else: self.pred_.append(
np.asscalar(value[i])
numpy.asscalar
from __future__ import print_function import numpy as np import multiprocessing as mp import time from scipy.integrate import simps from functools import partial from scdn.validation_truncation_1 import cross_validation from scdn.model_config import Modelconfig, Modelpara import os from six.moves import cPickle as pkl import random import glob import six def error_ws_0(y, gamma_ini, lam_1, P12, Omega): n_area = y.shape[0] e1 = np.sum((y-np.dot(gamma_ini,np.transpose(P12)))**2) plt_1 = 0 for i in range(n_area): plt_1 = plt_1 + np.dot(np.dot(gamma_ini[i,:],Omega),gamma_ini[i,:]) return e1+lam_1*plt_1 def error_ws(y, gamma_ini, lam_1, P12, Omega): stp=1 while(stp<1000): gr=np.dot((np.dot(gamma_ini,np.transpose(P12))-y),P12)*2+2*lam_1*np.dot(gamma_ini,np.transpose(Omega)) n_gr=(np.sum(gr**2)) f_t=1 fixed=error_ws_0(y, gamma_ini, lam_1, P12, Omega) while(error_ws_0(y, gamma_ini-f_t*gr, lam_1, P12, Omega)>fixed-0.5*f_t*n_gr): f_t=0.8*f_t gamma_ini=gamma_ini-gr*f_t stp=stp+1 if n_gr**0.5<0.001: break return gamma_ini def update_p(file_name_dir, precomp_dir, pickle_file, tol, max_iter, multi, init, saved, lamu): """ main algorithm, updating parameter for a defined problem Parameters ----------- file_name_dir: dir of problem folder precomp_dir: dir of precomputed data pickle_file: file name which we use to save estimations lamu: list = [lam, mu, mu_1, mu_2, lam_1], in our paper, lam*mu, lam*mu_1*mu, lam*mu_2*mu is the coefficient for l1 norm penalty of A, B, C. lam_1 is the penalty for the second dirivative of estimated neural activities. tol, max_iter: multi: boolean variable, Default True init: boolean variable, whether to use two-step method saved: boolean variable, whether the initial value for two-step method has been saved """ configpara = Modelpara(precomp_dir+'precomp.pkl') config = Modelconfig(file_name_dir+'data/observed.pkl') if init: init_dir = precomp_dir[:-5] + 'init/results/result.pkl' if saved: B_u = True else: B_u = False config.B_u = B_u P1 = configpara.P1 P2 = configpara.P2 P3 = configpara.P3 P4 = configpara.P4 P5 = configpara.P5 P6 = configpara.P6 P7 = configpara.P7 P8 = configpara.P8 P9 = configpara.P9 P10 = configpara.P10 P11 = configpara.P11 P12 = configpara.P12 P13 = configpara.P13 P14 = configpara.P14 P15 = configpara.P15 Q1 = configpara.Q1 Q2 = configpara.Q2 Q3 = configpara.Q3 Q4 = configpara.Q4 Omega = configpara.Omega y = config.y n_area = config.n_area p = configpara.p t_i = configpara.t_i l_t = configpara.l_t J = configpara.J t_T = configpara.t_T ################################################################################### def gr(gamma, A, B, C, D, lam, mu, mu_1, lam_1): g = np.zeros((n_area,p)) g = g + np.dot(gamma,P1) - np.dot(np.dot(np.transpose(A),gamma),np.transpose(P2)) g = g - np.dot(np.dot(A,gamma),P2) + np.dot(np.dot(np.dot(np.transpose(A),A),gamma),P5) tmp_1 = 0 tmp_2 = 0 for j in range(J): tmp_1 = tmp_1+np.dot(np.dot(B[:,:,j],gamma),P3[:,:,j]) tmp_2 = tmp_2+np.dot(np.dot(np.dot(np.transpose(A),B[:,:,j]),gamma),P6[:,:,j]) g = g-(tmp_1-tmp_2) g = g-np.dot(C,P4)+np.dot(np.dot(np.transpose(A),C),P7) g = g-np.dot(D,P8)+np.dot(np.dot(np.transpose(A),D),P9) tmp = 0 for l in range(J): tmp_1 = 0 for j in range(J): tmp_1 = np.dot(np.dot(B[:,:,j],gamma),P10[:,:,j,l]) tmp = tmp-np.dot(np.transpose(B[:,:,l]),(np.dot(gamma,np.transpose(P3[:,:,l])) - np.dot(np.dot(A,gamma),np.transpose(P6[:,:,l]))-tmp_1-np.dot(C,P13[:,:,l])-np.dot(D,P11[l,:].reshape((1,-1))))) g = g+tmp g = g*2*lam tmp1 = np.zeros((n_area,1)) tmp2 = np.zeros((n_area,J)) for m in range(n_area): tmp1[m,0] = np.sum(abs(A[:,m]))/np.dot(np.dot(gamma[m,:],P5),gamma[m,])**0.5 for j in range(J): tmp2[m,j] = np.sum(abs(B[:,m,j]))/np.dot(np.dot(gamma[m,:],P10[:,:,j,j]),gamma[m,:])**0.5 g = g + lam*mu*np.dot(gamma,np.transpose(P5))*tmp1 for j in range(J): g = g + lam*mu_1*np.dot(gamma,P10[:,:,j,j])*(tmp2[:,j].reshape((-1,1))) g = g + np.dot((np.dot(gamma,np.transpose(P12))-y),P12)*2 g = g + 2*lam_1*np.dot(gamma,np.transpose(Omega)) g[np.isnan(g)]=0 return g def cd_thre(tmp, tmp_1, mu): mu = mu/2.0 return np.maximum((abs(tmp)-mu*(tmp_1**0.5))/tmp_1,0)*np.sign(tmp) def update_A(n, gamma, A, B, C, D, mu): tmp_0 = 0 for j in range(J): tmp_0 = tmp_0 + np.dot(np.dot(np.dot(B[:,:,j],gamma),P6[:,:,j]),gamma[n,:]) tmp_1 = np.dot(np.dot(gamma[n,:],P5),gamma[n,:]) tmp = np.dot(gamma,np.dot(gamma[n,:],P2))-np.dot(np.dot(np.dot(A,gamma),P5),gamma[n,:])-tmp_0-np.dot(np.dot(C,P7),gamma[n,:])-D[:,0]*np.dot(gamma[n,:],P9[0,:])+A[:,n]*tmp_1 return cd_thre(tmp,tmp_1,mu) def update_B(n,j,gamma,A,B,C,D,mu): tmp_0 = 0 for l in range(J): tmp_0 = tmp_0 + np.dot(np.dot(np.dot(B[:,:,l],gamma),P10[:,:,l,j]),gamma[n,:]) tmp_1 = np.dot(np.dot(gamma[n,:],P10[:,:,j,j]),gamma[n,:]) tmp = np.dot(gamma,np.dot(gamma[n,:],P3[:,:,j]))-np.dot(np.dot(np.dot(A,gamma),np.transpose(P6[:,:,j])),gamma[n,:])-tmp_0-np.dot(np.dot(C,P13[:,:,j]),gamma[n,:])-D[:,0]*np.dot(gamma[n,:],P11[j,:])+B[:,n,j]*tmp_1 return cd_thre(tmp,tmp_1,mu) def update_C(n,gamma,A,B,C,D,mu): tmp_0 = 0 for j in range(J): tmp_0 = tmp_0+np.dot(np.dot(B[:,:,j],gamma),P13[n,:,j]) tmp_1 = P14[n,n] tmp = np.dot(gamma,P4[n,:])-np.dot(np.dot(A,gamma),P7[n,:])-tmp_0-np.dot(C,P14[n,:])-D[:,0]*P15[0,n]+C[:,n]*tmp_1 return cd_thre(tmp,tmp_1,mu) def update_D(gamma,A,B,C): tmp = np.dot(gamma,np.transpose(P8))-np.dot(np.dot(A,gamma),np.transpose(P9)) for j in range(J): tmp = tmp-np.dot(np.dot(B[:,:,j],gamma),P11[j,:]).reshape((-1,1)) tmp = tmp - np.dot(C,np.transpose(P15)) return tmp*1.0/t_T def likelihood(gamma, A, B, C, D, lam, mu, mu_1, mu_2, lam_1, p_t=False): e1 = np.sum((y-np.dot(gamma,np.transpose(P12)))**2) e2 = 0 tmp_0=0 for j in range(J): tmp_0 = tmp_0 + np.dot(np.dot(B[:,:,j],gamma),Q3[:,:,j]) tmp = np.dot(gamma,Q1)-np.dot(np.dot(A,gamma),Q2)-tmp_0-
np.dot(C,Q4)
numpy.dot
""" Example of how a multivariate linear regression problem can be solved with the package. """ import numpy as np from gustavgrad import Tensor # 100 training examples with 3 features x = Tensor(np.random.rand(100, 3)) # The function we want to learn coefs = Tensor([1.0, 3.0, 5.0]) bias = 2 y = x @ coefs + bias # Our model w = Tensor(np.random.randn(3), requires_grad=True) b = Tensor(np.random.rand(), requires_grad=True) # Train the model lr = 0.001 batch_size = 25 for _ in range(1000): # Train in batches idx =
np.arange(x.shape[0])
numpy.arange
import numpy as np import torch import torch.nn.functional as F import torchvision import PIL import itertools import datetime import random import skimage from skimage import filters def noise_permute(datapoint): """Permutes the pixels of an img and assigns the label (label, 'permuted'). The input should be an image (PIL, others like numpy arrays might work, too) with a label. The returned image is a PIL image. It is assumed that img has 3 dimensions, the last of which is the color channels. """ img, label = datapoint imgn = np.transpose(img.numpy(), (1,2,0)) assert len(imgn.shape) == 3 and imgn.shape[2] <=4, 'Unexpected image dimensions.' imgn_flat = imgn.reshape(imgn.shape[0]*imgn.shape[1], imgn.shape[2]) imgn_flat_permuted = np.random.permutation(imgn_flat) #this function shuffles the first axis imgn_permuted = imgn_flat_permuted.reshape(imgn.shape) return torch.from_numpy(np.transpose(imgn_permuted, (2,0,1))), label #(label, 'permuted') def filter_gauss(datapoint, srange=[1,1]): img, label = datapoint imgn = np.transpose(img.numpy(), (1,2,0)) sigma = srange[0] + np.random.random_sample()*(srange[1]-srange[0]) imgn_gaussed = skimage.filters.gaussian(imgn, sigma=sigma, multichannel=3) return torch.from_numpy(np.transpose(imgn_gaussed, (2,0,1))), label #+ ('gauss', sigma) def gaussed_noise_perm(x): x = noise_permute(x) x = filter_gauss(x, srange=[0.25,1.25]) return x def scale_full_range(datapoint): img_in = datapoint[0] img_0_based = img_in - img_in.min() img_scaled = img_0_based/(img_0_based.max()) return img_scaled, datapoint[1] def noise_uniform(datapoint): """Returns uniform noise with the same shape as the input. The input should be an image (PIL, others like numpy arrays might work, too) with a label. The returned image is a PIL image. It is assumed that img has 3 dimensions, the last of which is the color channels. """ img, label = datapoint assert len(img.shape) == 3, 'Unexpected image dimensions:' + str(img.shape) imgn = np.transpose(img.numpy(), (1,2,0)) if imgn.shape[2] != 1: assert imgn.shape[2] == 3, 'Unexpected last image dimensions:' + str(imgn.shape) imgn_random = np.float32(np.random.uniform(size=imgn.shape)) return torch.from_numpy(np.transpose(imgn_random, (2,0,1))), label else: imgn_random = np.float32(np.random.uniform(size=imgn.shape)) assert torch.from_numpy(np.transpose(imgn_random, (2,0,1))).shape == img.shape, 'torch.from_numpy(np.transpose(imgn_random, (2,0,1))).shape wrong: ' + str(torch.from_numpy(np.transpose(imgn_random, (2,0,1))).shape) return torch.from_numpy(np.transpose(imgn_random, (2,0,1))), label def noise_low_freq(datapoint): uniform = noise_uniform(datapoint) gaussed = filter_gauss(uniform, srange=[1,2.5]) low_freq = scale_full_range(gaussed) return low_freq def identity(datapoint): return datapoint class monochrome: def __init__(self, color): super().__init__() self.color = color def __call__(self, datapoint): img, label = datapoint assert len(img.shape) == 3, 'Unexpected image dimensions:' + str(img.shape) imgn = np.transpose(img.numpy(), (1,2,0)) imgn_monochrome = np.float32(self.color*
np.ones(imgn.shape)
numpy.ones
########################################################## # lane_detector.py # # SPDX-FileCopyrightText: Copyright 2021 <NAME> # # SPDX-License-Identifier: MIT # # Lane detection techniques # # ######################################################## # # Import libraries import cv2 import numpy as np import math from collections import deque class LaneDetector: def __init__(self, is_video=False, width=1280, height=720, draw_area = True, queue_len=10): # Roi self.vertices = None # Video pipline self.is_video = is_video # Frame dimension self.width = width self.height = height # Draw self.draw_area_err = True self.draw_area = draw_area self.road_color = (204, 255, 153) self.l_lane_color = (0, 0, 255) self.r_lane_color = (255, 0, 0) self.lane_thickness = 30 # Lane search self.n_windows = 9 self.margin = 100 self.nb_margin = 100 self.px_threshold = 50 self.radii_threshold = 10 self.min_lane_dis = 600 # Current lanes and radii self.l_curr_fit = None self.r_curr_fit = None self.l_diff_fit = 0 self.r_diff_fit = 0 self.l_curr_cr = 0 self.r_curr_cr = 0 self.lost_track = 0 self.lost_radii = 0 self.poly_thr_a = 0.001 self.poly_thr_b = 0.4 self.poly_thr_c = 150 # Convert px to meter self.px_to_m_y = 30/720 # meters per pixel in y dimension self.px_to_m_x = 3.7/700 # meters per pixel in x dimension # Averaging self.queue_len = queue_len self.l_fit_que = deque(maxlen=self.queue_len) self.r_fit_que = deque(maxlen=self.queue_len) self.l_rad_que = deque(maxlen=self.queue_len) self.r_rad_que = deque(maxlen=self.queue_len) self.weights = np.arange(1, self.queue_len + 1) / self.queue_len # No Text on frame self.no_text = False """ General methods for setting files and getting information """ def set_vertices(self, vertices): self.vertices = vertices def reset_detector(self): self.empty_queue() self.vertices = None self.l_curr_fit = None self.r_curr_fit = None self.l_diff_fit = 0 self.r_diff_fit = 0 self.l_curr_cr = 0 self.r_curr_cr = 0 self.lost_track = 0 self.lost_radii = 0 def empty_queue(self): self.l_fit_que = deque(maxlen=self.queue_len) self.r_fit_que = deque(maxlen=self.queue_len) self.l_rad_que = deque(maxlen=self.queue_len) self.r_rad_que = deque(maxlen=self.queue_len) """ Find lanes """ def calculate_histogram(self, frame): return np.sum(frame, axis=0) def get_hist_peaks(self, histogram): center = np.int(histogram.shape[0]//2) left_peak = np.argmax(histogram[:center]) right_peak = np.argmax(histogram[center:]) + center return left_peak, right_peak def cr_to_degree(self, cr, arc_length): dc = (180 * arc_length) / (math.pi * cr) return dc/2 def find_lanes(self, frame): self.check_track() if self.l_curr_fit is None or self.r_curr_fit is None: self.empty_queue() histogram = self.calculate_histogram(frame) left_peak, right_peak = self.get_hist_peaks(histogram) leftx, lefty, rightx, righty = self.sliding_window(frame, left_peak, right_peak) left_fit, right_fit = self.fit_polynomial(leftx, lefty, rightx, righty) left_fit_cr, right_fit_cr = self.fit_polynomial( leftx * self.px_to_m_x, lefty * self.px_to_m_y, rightx * self.px_to_m_x, righty * self.px_to_m_y) # Get radii of lane curvature left_rad, right_rad = self.calculate_poly_radii(frame, left_fit_cr, right_fit_cr) self.r_curr_cr = left_rad self.l_curr_cr = right_rad self.r_curr_fit = right_fit self.l_curr_fit = left_fit self.l_fit_que.append(left_fit) self.r_fit_que.append(right_fit) self.l_rad_que.append(left_rad) self.r_rad_que.append(right_rad) else: left_fit, right_fit, left_fit_cr, right_fit_cr, _ = self.nearby_search( frame, np.average(self.l_fit_que, 0, self.weights[-len(self.l_fit_que):]), np.average(self.r_fit_que, 0, self.weights[-len(self.r_fit_que):])) self.l_fit_que.append(left_fit) self.r_fit_que.append(right_fit) avg_rad = round(np.mean([np.average(self.r_rad_que, 0, self.weights[-len(self.r_rad_que):]), np.average(self.l_rad_que, 0, self.weights[-len(self.l_rad_que):])]),0) try: return (self.draw_lanes(frame, np.average(self.l_fit_que, 0, self.weights[-len(self.l_fit_que):]), np.average(self.r_fit_que, 0, self.weights[-len(self.r_fit_que):])), avg_rad) except: return (np.zeros_like(cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)), None) def sliding_window(self, frame, left_peak, right_peak): # Set window height window_height = np.int(frame.shape[0]//self.n_windows) # Find non-zero values nonzero = frame.nonzero() nonzero_y = np.array(nonzero[0]) nonzero_x = np.array(nonzero[1]) # Current positions to be updated later for each window in n_windows leftx_current = left_peak rightx_current = right_peak # Create empty lists to receive left and right lane pixel indices left_lane_inds = [] right_lane_inds = [] # Step through the windows one by one for window in range(self.n_windows): # Identify window boundaries in x and y (and right and left) win_y_low = frame.shape[0] - (window + 1) * window_height win_y_high = frame.shape[0] - window * window_height # Find the four below boundaries of the window win_xleft_low = leftx_current - self.margin win_xleft_high = leftx_current + self.margin win_xright_low = rightx_current - self.margin win_xright_high = rightx_current + self.margin # Identify the nonzero pixels in x and y within the window good_left_inds = ((nonzero_y >= win_y_low ) & (nonzero_y < win_y_high) &\ (nonzero_x >= win_xleft_low) & (nonzero_x < win_xleft_high)).nonzero()[0] good_right_inds = ((nonzero_y >= win_y_low ) & (nonzero_y < win_y_high) &\ (nonzero_x >= win_xright_low) & (nonzero_x < win_xright_high)).nonzero()[0] # Append these indices to the lists left_lane_inds.append(good_left_inds) right_lane_inds.append(good_right_inds) # If you found > px_threshold pixels, recenter next window # (`right` or `leftx_current`) on their mean position if len(good_left_inds) > self.px_threshold: leftx_current = np.int(np.mean(nonzero_x[good_left_inds])) if len(good_right_inds) > self.px_threshold: rightx_current = np.int(np.mean(nonzero_x[good_right_inds])) # Concatenate the arrays of indices (previously was a list of lists of pixels) try: left_lane_inds = np.concatenate(left_lane_inds) right_lane_inds = np.concatenate(right_lane_inds) except ValueError: # Avoids an error if the above is not implemented fully pass # Extract left and right line pixel positions leftx = nonzero_x[left_lane_inds] lefty = nonzero_y[left_lane_inds] rightx = nonzero_x[right_lane_inds] righty = nonzero_y[right_lane_inds] return leftx, lefty, rightx, righty def calculate_poly_radii(self, frame, left_fit, right_fit): frame_height = np.linspace(0, frame.shape[0] - 1, frame.shape[0]) max_px_window = np.max(frame_height) try: left_rad = ((1 + (2 * left_fit[0] * max_px_window * self.px_to_m_y + left_fit[1])**2)**1.5) / np.absolute(2 * left_fit[0]) right_rad = ((1 + (2 * right_fit[0] * max_px_window * self.px_to_m_y + right_fit[1])**2)**1.5) / np.absolute(2 * right_fit[0]) if math.isinf(left_rad) or math.isinf(right_rad): return self.l_curr_cr, self.r_curr_cr except: return self.l_curr_cr, self.r_curr_cr return int(left_rad), int(right_rad) def check_radii(self, left_rad, right_rad): avg_l = np.average(self.l_rad_que, 0, self.weights[-len(self.l_rad_que):]) avg_r = np.average(self.r_rad_que, 0, self.weights[-len(self.r_rad_que):]) abs_l__diff = np.absolute(avg_l - left_rad) abs_r__diff = np.absolute(avg_r - right_rad) if abs_l__diff > (avg_l / self.radii_threshold) and self.lost_radii < 5 and abs_r__diff > (avg_r / self.radii_threshold): self.lost_radii += 1 return False else: self.lost_radii = 0 return True def fit_polynomial(self, leftx, lefty, rightx, righty): try: left_fit = np.polyfit(lefty, leftx, 2) right_fit = np.polyfit(righty, rightx, 2) except: # Empty vector left_fit = self.l_curr_fit self.draw_area_err = False try: right_fit = np.polyfit(righty, rightx, 2) except: # Empty vector right_fit = self.r_curr_fit self.draw_area_err = False return left_fit, right_fit def insert_direction(self, frame, avg_rad): if not self.no_text: cv2.putText(frame, 'Curvature radius: {:.2f} m'.format(avg_rad), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2) else: self.no_text = False def insert_fps(self, frame, fps): cv2.putText(frame, 'FPS: {}'.format(int(fps)), (50, 100), cv2.FONT_HERSHEY_SIMPLEX, 1, (255,255,255), 2) def check_track(self): if self.lost_track > 5: print('Reset tracks') self.l_curr_fit = None self.r_curr_fit = None self.lost_track = 0 self.no_text = True def draw_lanes(self, warped_frame, left_fit, right_fit): # Convert to 3 channels frame_3channel = cv2.cvtColor(np.zeros_like(warped_frame), cv2.COLOR_GRAY2BGR) # Generate axis for polynomial frame_height = np.linspace(0, frame_3channel.shape[0] - 1, frame_3channel.shape[0]) # Frames to save results lanes =
np.zeros_like(frame_3channel)
numpy.zeros_like
from __future__ import print_function import numpy as np from keras.models import Model from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D from keras.optimizers import Adam from keras.optimizers import SGD from keras.callbacks import ModelCheckpoint, LearningRateScheduler from keras import backend as K working_path = "/home/qwerty/data/luna16/output/" K.set_image_dim_ordering('th') # Theano dimension ordering in this code img_rows = 512 img_cols = 512 smooth = 1. def dice_coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def dice_coef_np(y_true,y_pred): y_true_f = y_true.flatten() y_pred_f = y_pred.flatten() intersection = np.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (np.sum(y_true_f) + np.sum(y_pred_f) + smooth) def dice_coef_loss(y_true, y_pred): return -dice_coef(y_true, y_pred) def get_unet(): inputs = Input((1,img_rows, img_cols)) conv1 = Convolution2D(32, (3, 3), activation='relu', border_mode='same')(inputs) conv1 = Convolution2D(32, (3, 3), activation='relu', border_mode='same')(conv1) pool1 = MaxPooling2D(pool_size=(2, 2))(conv1) conv2 = Convolution2D(64, (3, 3), activation='relu', border_mode='same')(pool1) conv2 = Convolution2D(64, (3, 3), activation='relu', border_mode='same')(conv2) pool2 = MaxPooling2D(pool_size=(2, 2))(conv2) conv3 = Convolution2D(128, (3, 3), activation='relu', border_mode='same')(pool2) conv3 = Convolution2D(128, (3, 3), activation='relu', border_mode='same')(conv3) pool3 = MaxPooling2D(pool_size=(2, 2))(conv3) conv4 = Convolution2D(256, (3, 3), activation='relu', border_mode='same')(pool3) conv4 = Convolution2D(256, (3, 3), activation='relu', border_mode='same')(conv4) pool4 = MaxPooling2D(pool_size=(2, 2))(conv4) conv5 = Convolution2D(512, (3, 3), activation='relu', border_mode='same')(pool4) conv5 = Convolution2D(512, (3, 3), activation='relu', border_mode='same')(conv5) up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1) conv6 = Convolution2D(256, (3, 3), activation='relu', border_mode='same')(up6) conv6 = Convolution2D(256, (3, 3), activation='relu', border_mode='same')(conv6) up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1) conv7 = Convolution2D(128, (3, 3), activation='relu', border_mode='same')(up7) conv7 = Convolution2D(128, (3, 3), activation='relu', border_mode='same')(conv7) up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1) conv8 = Convolution2D(64, (3, 3), activation='relu', border_mode='same')(up8) conv8 = Convolution2D(64, (3, 3), activation='relu', border_mode='same')(conv8) up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1) conv9 = Convolution2D(32, (3, 3), activation='relu', border_mode='same')(up9) conv9 = Convolution2D(32, (3, 3), activation='relu', border_mode='same')(conv9) conv10 = Convolution2D(1, (1, 1), activation='sigmoid')(conv9) model = Model(input=inputs, output=conv10) model.compile(optimizer=Adam(lr=1.0e-5), loss=dice_coef_loss, metrics=[dice_coef]) return model def train_and_predict(use_existing): print('-'*30) print('Loading and preprocessing train data...') print('-'*30) imgs_train = np.load(working_path+"trainImages.npy").astype(np.float32) imgs_mask_train = np.load(working_path+"trainMasks.npy").astype(np.float32) imgs_test = np.load(working_path+"testImages.npy").astype(np.float32) imgs_mask_test_true =
np.load(working_path+"testMasks.npy")
numpy.load
import json import torch import numpy as np import argparse import pickle import pandas as pd from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm from scipy.stats import spearmanr, pearsonr from transformers import BertModel, BertTokenizer, GPT2Tokenizer, GPT2LMHeadModel torch.manual_seed(2000) np.random.seed(2000) def compute_fm_score(x, y): return max([x,y]) / min([x,y]) dataset_meta_info ={ 'fed-dial': { 'annotations': ['Coherent', 'Error recovery', 'Consistent', 'Diverse', 'Depth', 'Likeable', 'Understanding', 'Flexible', 'Informative', 'Inquisitive', 'Overall'], 'aggregation':np.mean}, 'persona-see': { 'annotations': ['enjoy', 'interest', 'listen', 'turing', 'avoid_rep', 'make_sense', 'fluency', 'inquisitive', 'persona_guess'], 'aggregation':np.mean}, } def normalize_df(dataset_name, df, ds_meta): dataset_meta = ds_meta[dataset_name] for annotation in dataset_meta['annotations']: df['annotations.' + annotation] = df['annotations.' + annotation].apply(dataset_meta['aggregation']) return df if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='persona-see') parser.add_argument('--device', type=str, default='cuda:0') parser.add_argument('--am_model_path', type=str, default='embedding_models/persona_am/') parser.add_argument('--fm_model_path', type=str, default='language_models/persona_fm') parser.add_argument('--criterion', nargs='+') args = parser.parse_args() print(args) globals().update(args.__dict__) bert_model = BertModel.from_pretrained(am_model_path).to(device) bert_tokenizer = BertTokenizer.from_pretrained(am_model_path) bert_model.eval() gpt2_tokenizer = GPT2Tokenizer.from_pretrained(fm_model_path) gpt2_model = GPT2LMHeadModel.from_pretrained(fm_model_path).to(device) gpt2_model.eval() with open('../../human_evaluation_data/{}_eval.json'.format(dataset)) as f: df = pd.json_normalize(json.load(f)) human_scores = {} annotations = ["annotations." + _ for _ in dataset_meta_info[dataset]["annotations"]] for k in annotations: human_scores[k] = list(df[k]) df = normalize_df(dataset, df, dataset_meta_info) dialog_list = df.dialog.to_list() full_human_model_pairs = [] for whole_dialog in dialog_list: human_model_pairs = [] for idx, utt in enumerate(whole_dialog): if utt['speaker'] == 'model' and idx != 0: prev_utt = whole_dialog[idx-1] human_model_pairs.append((prev_utt['text'], utt['text'])) full_human_model_pairs.append(human_model_pairs) # to handle the missing annotations for error recovery category new_human_scores = {} for k, v in human_scores.items(): new_human_scores[k] = [] for item in v: if 'Error recovery' in k: if len(item) == 0: new_human_scores[k].append((False, 0)) else: new_human_scores[k].append((True, np.mean(item))) else: new_human_scores[k].append((True, np.mean(item))) am_scores_dialog_level = [] with torch.no_grad(): for dialog in tqdm(full_human_model_pairs): am_scores_turn_level = [] for prev, cur in dialog: prev_inputs = {k:v.to(device) for k, v in bert_tokenizer(prev, return_tensors="pt").items()} cur_inputs = {k:v.to(device) for k, v in bert_tokenizer(cur, return_tensors="pt").items()} prev_outputs = bert_model(**prev_inputs, return_dict=True) cur_outputs = bert_model(**cur_inputs, return_dict=True) prev_pooler_output = prev_outputs.pooler_output.cpu().numpy() cur_pooler_output = cur_outputs.pooler_output.cpu().numpy() am_scores_turn_level.append(cosine_similarity(prev_pooler_output, cur_pooler_output)[0][0]) am_scores_dialog_level.append(np.mean(am_scores_turn_level)) cutoff = np.quantile(am_scores_dialog_level, 0.05) modified_rating = np.array([cutoff if t < cutoff else t for t in am_scores_dialog_level]) normed_am_scores_dialog_level = (modified_rating - cutoff) /
np.abs(cutoff)
numpy.abs
# -*- coding: utf-8 -*- """ Created on Tue Dec 5 09:25:46 2017 @author: ben """ import numpy as np import scipy.sparse as sp from LSsurf.fd_grid import fd_grid class lin_op: def __init__(self, grid=None, row_0=0, col_N=None, col_0=None, name=None): # a lin_op is an operator that represents a set of linear equations applied # to the nodes of a grid (defined in fd_grid.py) if col_0 is not None: self.col_0=col_0 elif grid is not None: self.col_0=grid.col_0 self.col_N=None if col_N is not None: self.col_N=col_N elif grid is not None: self.col_N=grid.col_N self.row_0=row_0 self.N_eq=0 self.name=name self.id=None self.r=np.array([], dtype=int) self.c=np.array([], dtype=int) self.v=np.array([], dtype=float) self.ind0=np.zeros([0], dtype=int) self.TOC={'rows':dict(),'cols':dict()} self.grid=grid self.dst_grid=None self.dst_ind0=None self.expected=None self.shape=None self.size=None def __update_size_and_shape__(self): self.shape = (self.N_eq, self.col_N) def diff_op(self, delta_subs, vals, which_nodes=None, valid_equations_only=True): # build an operator that calculates linear combination of the surrounding # values at each node of a grid. # A template, given by delta_subs and vals contains a list of offsets # in each direction of the grid, and a list of values corresponding # to each offset. Only those nodes for which the template falls # entirely inside the grid are included in the operator if valid_equations_only: # compute the maximum and minimum offset in each dimension. These # will be used to eliminate equations that extend outside the model # domain max_deltas=[np.max(delta_sub) for delta_sub in delta_subs] min_deltas=[np.min(delta_sub) for delta_sub in delta_subs] else: # treat the maximum and minimum offset in each dimension as zero, # so no equations are truncated max_deltas=[0 for delta_sub in delta_subs] min_deltas=[0 for delta_sub in delta_subs] #generate the center-node indices for each calculation # if in dimension k, min_delta=-a and max_delta = +b, the number of indices is N, # then the first valid center is a and the last is N-b sub0s=np.meshgrid(*[np.arange(np.maximum(0, -min_delta), np.minimum(Ni, Ni-max_delta)) for Ni, min_delta, max_delta in zip(self.grid.shape, min_deltas, max_deltas)], indexing='ij') sub0s=[sub.ravel() for sub in sub0s] if which_nodes is not None: temp_mask=np.in1d(self.grid.global_ind(sub0s), which_nodes) sub0s=[temp[temp_mask] for temp in sub0s] self.r, self.c=[np.zeros((len(sub0s[0]), len(delta_subs[0])), dtype=int) for _ in range(2)] self.v=np.zeros_like(self.r, dtype=float) self.N_eq=len(sub0s[0]) # loop over offsets for ii in range(len(delta_subs[0])): # build a list of subscripts over dimensions this_sub=[sub0+delta[ii] for sub0, delta in zip(sub0s, delta_subs)] self.r[:,ii]=self.row_0+np.arange(0, self.N_eq, dtype=int) if valid_equations_only: self.c[:,ii]=self.grid.global_ind(this_sub) self.v[:,ii]=vals[ii].ravel() else: # need to remove out-of-bound subscripts self.c[:,ii], valid_ind=self.grid.global_ind(this_sub, return_valid=True) self.v[:,ii]=vals[ii].ravel()*valid_ind.ravel() #if not valid_equations_only: [Leave this commented until it causes a problem] # # remove the elements that have v=0 # nonzero_v = self.v.ravel() != 0 # self.r = self.r.ravel()[nonzero_v] # self.c = self.c.ravel()[nonzero_v] # self.v = self.v.ravel()[nonzero_v] self.ind0 = self.grid.global_ind(sub0s).ravel() self.TOC['rows'] = {self.name:range(self.N_eq)} self.TOC['cols'] = {self.grid.name:np.arange(self.grid.col_0, self.grid.col_0+self.grid.N_nodes)} self.__update_size_and_shape__() return self def add(self, op): # combine a set of operators into a composite operator by adding them. # the same thing could be accomplished by converting the operators to # sparse arrays and adding the arrays, but this method keeps track of the # table of contents for the operators. # if a list of operators is provided, all are added together, or a single # operator can be added to an existing operator. if isinstance(op, list) or isinstance(op, tuple): for this_op in op: op.add(self, this_op) return self if self.r is not None: self.r=np.append(self.r, op.r) self.c=np.append(self.c, op.c) self.v=np.append(self.v, op.v) self.ind0=np.append(self.ind0, op.ind0) else: self.r=op.r self.c=op.c self.v=op.v self.ind0=op.ind0 # assume that the new op may have columns that aren't in self.cols, and # add any new columns to the table of contents for key in op.TOC['cols'].keys(): self.TOC['cols'][key]=op.TOC['cols'][key] self.col_N=np.maximum(self.col_N, op.col_N) self.__update_size_and_shape__() return self def interp_mtx(self, pts): # create a matrix that, when it multiplies a set of nodal values, # gives the bilinear interpolation between those nodes at a set of # data points pts=[pp.ravel() for pp in pts] # Identify the nodes surrounding each data point # The floating-point subscript expresses the point locations in terms # of their grid positions ii=self.grid.float_sub(pts) cell_sub=self.grid.cell_sub_for_pts(pts) # calculate the fractional part of each cell_sub i_local=[a-b for a, b in zip(ii,cell_sub)] # find the index of the node below each data point global_ind=self.grid.global_ind(cell_sub) # make a list of dimensions based on the dimensions of the grid if self.grid.N_dims==1: list_of_dims=np.mgrid[0:2] elif self.grid.N_dims==2: list_of_dims=np.mgrid[0:2, 0:2] elif self.grid.N_dims==3: list_of_dims=np.mgrid[0:2, 0:2, 0:2] delta_ind=np.c_[[kk.ravel() for kk in list_of_dims]] n_neighbors=delta_ind.shape[1] Npts=len(pts[0]) rr=np.zeros([Npts, n_neighbors], dtype=int) cc=np.zeros([Npts, n_neighbors], dtype=int) vv= np.ones([Npts, n_neighbors], dtype=float) # make lists of row and column indices and weights for the nodes for ii in range(n_neighbors): rr[:,ii]=np.arange(len(pts[0]), dtype=int) cc[:,ii]=global_ind+np.sum(self.grid.stride*delta_ind[:,ii]) for dd in range(self.grid.N_dims): if delta_ind[dd, ii]==0: vv[:,ii]*=(1.-i_local[dd]) else: vv[:,ii]*=i_local[dd] self.r=rr self.c=cc self.v=vv self.N_eq=Npts # in this case, sub0s is the index of the data points self.ind0=np.arange(0, Npts, dtype='int') # report the table of contents self.TOC['rows']={self.name:np.arange(self.N_eq, dtype='int')} self.TOC['cols']={self.grid.name:np.arange(self.grid.col_0, self.grid.col_0+self.grid.N_nodes)} self.__update_size_and_shape__() return self def grad(self, DOF='z'): coeffs=np.array([-1., 1.])/(self.grid.delta[0]) dzdx=lin_op(self.grid, name='d'+DOF+'_dx').diff_op(([0, 0],[-1, 0]), coeffs) dzdy=lin_op(self.grid, name='d'+DOF+'_dy').diff_op(([-1, 0],[0, 0]), coeffs) self.vstack((dzdx, dzdy)) self.__update_size_and_shape__() return self def grad_dzdt(self, DOF='z', t_lag=1): coeffs=np.array([-1., 1., 1., -1.])/(t_lag*self.grid.delta[0]*self.grid.delta[2]) d2zdxdt=lin_op(self.grid, name='d2'+DOF+'_dxdt').diff_op(([ 0, 0, 0, 0], [-1, 0, -1, 0], [-t_lag, -t_lag, 0, 0]), coeffs) d2zdydt=lin_op(self.grid, name='d2'+DOF+'_dydt').diff_op(([-1, 0, -1, 0], [ 0, 0, 0, 0], [-t_lag, -t_lag, 0, 0]), coeffs) self.vstack((d2zdxdt, d2zdydt)) self.__update_size_and_shape__() return self def diff(self, lag=1, dim=0): coeffs=np.array([-1., 1.])/(lag*self.grid.delta[dim]) deltas=[[0, 0] for this_dim in range(self.grid.N_dims)] deltas[dim]=[0, lag] self.diff_op((deltas), coeffs) self.__update_size_and_shape__() return self def dzdt(self, lag=1, DOF='dz'): coeffs=np.array([-1., 1.])/(lag*self.grid.delta[2]) self.diff_op(([0, 0], [0, 0], [0, lag]), coeffs) self.__update_size_and_shape__() self.update_dst_grid([0, 0, 0.5*lag*self.grid.delta[2]], np.array([1, 1, 1])) return self def d2z_dt2(self, DOF='dz', t_lag=1): coeffs=np.array([-1, 2, -1])/((t_lag*self.grid.delta[2])**2) self=lin_op(self.grid, name='d2'+DOF+'_dt2').diff_op(([0,0,0], [0,0,0], [-t_lag, 0, t_lag]), coeffs) self.__update_size_and_shape__() return self def grad2(self, DOF='z'): coeffs=np.array([-1., 2., -1.])/(self.grid.delta[0]**2) d2zdx2=lin_op(self.grid, name='d2'+DOF+'_dx2').diff_op(([0, 0, 0],[-1, 0, 1]), coeffs) d2zdy2=lin_op(self.grid, name='d2'+DOF+'_dy2').diff_op(([-1, 0, 1],[0, 0, 0]), coeffs) d2zdxdy=lin_op(self.grid, name='d2'+DOF+'_dxdy').diff_op(([-1, -1, 1,1],[-1, 1, -1, 1]), 0.5*np.array([-1., 1., 1., -1])/(self.grid.delta[0]**2)) self.vstack((d2zdx2, d2zdy2, d2zdxdy)) self.__update_size_and_shape__() return self def grad2_dzdt(self, DOF='z', t_lag=1): coeffs=np.array([-1., 2., -1., 1., -2., 1.])/(t_lag*self.grid.delta[0]**2.*self.grid.delta[2]) d3zdx2dt=lin_op(self.grid, name='d3'+DOF+'_dx2dt').diff_op(([0, 0, 0, 0, 0, 0],[-1, 0, 1, -1, 0, 1], [-t_lag,-t_lag,-t_lag, 0, 0, 0]), coeffs) d3zdy2dt=lin_op(self.grid, name='d3'+DOF+'_dy2dt').diff_op(([-1, 0, 1, -1, 0, 1], [0, 0, 0, 0, 0, 0], [-t_lag, -t_lag, -t_lag, 0, 0, 0]), coeffs) coeffs=np.array([-1., 1., 1., -1., 1., -1., -1., 1.])/(self.grid.delta[0]**2*self.grid.delta[2]) d3zdxdydt=lin_op(self.grid, name='d3'+DOF+'_dxdydt').diff_op(([-1, 0, -1, 0, -1, 0, -1, 0], [-1, -1, 0, 0, -1, -1, 0, 0], [-t_lag, -t_lag, -t_lag, -t_lag, 0, 0, 0, 0]), coeffs) self.vstack((d3zdx2dt, d3zdy2dt, d3zdxdydt)) self.__update_size_and_shape__() return self def normalize_by_unit_product(self, wt=1): # normalize an operator by its magnitude's product with a vector of ones. # optionally rescale the result by a factor of wt unit_op=lin_op(col_N=self.col_N) unit_op.N_eq=self.N_eq unit_op.r, unit_op.c, unit_op.v = [self.r, self.c, np.abs(self.v)] unit_op.__update_size_and_shape__() norm = unit_op.toCSR(row_N=unit_op.N_eq).dot(np.ones(self.shape[1])) scale = np.zeros_like(norm) scale[norm>0] = 1./norm[norm>0] self.v *= scale[self.r]*wt def mean_of_bounds(self, bds, mask=None): # make a linear operator that calculates the mean of all points # in its grid that fall within bounds specified by 'bnds', If an # empty matrix is specified for a dimension, the entire dimension is # included. # optionally, a 'mask' variable can be used to select from within the # bounds. coords=np.meshgrid(*self.grid.ctrs, indexing='ij') in_bds=np.ones_like(coords[0], dtype=bool) for dim, bnd in enumerate(bds): if bds[dim] is not None: in_bds=np.logical_and(in_bds, np.logical_and(coords[dim]>=bnd[0], coords[dim] <= bnd[1])); if mask is not None: in_bds=np.logical_and(in_bds, mask) self.c=self.grid.global_ind(np.where(in_bds)) self.r=np.zeros(in_bds.ravel().sum(), dtype=int) self.v=np.ones(in_bds.ravel().sum(), dtype=float)/np.sum(in_bds.ravel()) self.TOC['rows']={self.name:self.r} self.TOC['cols']={self.name:self.c} self.N_eq=1. self.__update_size_and_shape__() return self def mean_of_mask(self, mask, dzdt_lag=None): # make a linear operator that takes the mean of points multiplied by # a 2-D mask. If the grid has a time dimension, the operator takes the # mean for each time slice. If dzdt_lags are provided, it takes the # mean dzdt as a function of time coords=np.meshgrid(*self.grid.ctrs[0:2], indexing='ij') mask_g=mask.interp(coords[1], coords[0]) mask_g[~np.isfinite(mask_g)]=0 i0, j0 =
np.nonzero(mask_g)
numpy.nonzero
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Nov 26 11:38:14 2021 @author: christian """ from astropy import constants as const from astropy.io import fits from astropy.convolution import Gaussian1DKernel, convolve import datetime as dt import math import matplotlib.backends.backend_pdf import matplotlib.pyplot as plt from matplotlib.ticker import MultipleLocator, AutoMinorLocator import numpy as np from scipy.optimize import curve_fit import scipy.stats as stats from spectres import spectres from tqdm import tqdm import unyt as u import warnings def add_weight(line_pos, line_wid, w, err, pix_wid): """Lines up the two spectra by the amount of light absorpted in the area around the line. Parameters ---------- line_pos : float The position of the absorption line. line_wid : float The width of the absorption line. w : Array like A subarray with wavelength values around the line. err : Array like The corresponding error array. pix_wid : float The width of a pixel in wavelength. Returns ------- Two variable: weight : Array like An array that weights the corresponding flux values for the wavelength array w. """ i = 0 j = -1 npix = len(w) # Initially every pixel is weighted by their inverse variance weight = np.divide(np.ones(len(w)), np.square(err)) # Pixel at a lower wavelength than the specified window have weight = 0 while w[i] + pix_wid / 2 < line_pos - line_wid: weight[i] = 0.0 i += 1 npix -= 1 # Pixel at a higher wavelength than the specified window have weight = 0 while w[j] - pix_wid / 2 > line_pos + line_wid: weight[j] = 0.0 j -= 1 npix -= 1 # The pixels on the edge of the window have a reduced weight according to # their width within the window. weight[i] = weight[i] * (w[i] + pix_wid / 2 - line_pos + line_wid) / pix_wid weight[j] = weight[j] * (pix_wid / 2 + line_pos + line_wid - w[j]) / pix_wid # Number of pixels within the window takes into account fractions of pixels npix = npix - 2.0 + (pix_wid / 2 + line_pos + line_wid - w[j]) / \ pix_wid + (w[i] + pix_wid / 2 - line_pos + line_wid) / pix_wid # Normalising the weight by the heighest weight weight = np.divide(weight, max(weight)) return weight, npix def addSN(flux, time, vmag, DarkN, SkyN, n, norm_f, Boff=0.654, Roff=-0.352, Ioff=-0.7, HARSN=1000, HAR=False): """Adds noice to the inserted flux. The noise is dependent on the brightness of the target, the observation time, the dark noice and the sky noice. It simulates noice for a solar star. This simulates noise for a HERMES spectrum according to the capabilities of the spectrograph and telescope. Parameters ---------- flux : Array like An array holding the flux. time : float Observing time (s). vmag : float Brightness in the V band (mag). DarkN : float Dark noise total photon count. SkyN : float Relative sky brightness. n : int Band identifier (0: B, 1: V, 2: R, 3: IR). norm_f : Array like Normalised flux array. Boff : float B band offset from V band (mag). Solar offset by default. Roff : float R band offset from V band (mag). Solar offset by default. Ioff : float IR band offset from V band (mag). Solar offset by default. HARSN : float Previous SNR in the original HARPS spectrum. (negligible by default) HAR : Boolean Has been a HARPS spectrum before. Will take into account previous noise of spectrum. Returns ------- A variable: results : Library Contains: 'SN' keyword for the resulting SN as a float 'SNpp' keyword for SN per pixel as a float 'e' keyword for the error numpy array 'f' keyword for the new flux array """ results = {} # Determine the number of electrons observed in the specified band if n == 0: ne = time / 3600 * 10**(-0.4 * (0.993 * (vmag + Boff) - 24.05)) nepp = ne / 3.81 # number of measured electrons per pixel # Find the SNR of the initial HARPS spectrum for the wavelength region. # Increases SNR per pixel for HERMES cause of larger pixels try: harSN = min(HARSN[31:36]) * 2 except TypeError: harSN = HARSN * 2 harSNpp = harSN / 3.81 # HARPS SNR per HERMES pixel elif n == 1: ne = time / 3600 * 10**(-0.4*(1.18 * vmag - 26.25)) nepp = ne / 4.69 try: harSN = min(HARSN[52:56]) * 2 except TypeError: harSN = HARSN * 2 harSNpp = harSN / 4.69 elif n == 2: ne = time / 3600 * 10**(-0.4*(1.07 * (vmag + Roff) - 24.98)) nepp = ne / 3.74 try: harSN = min(HARSN[66:70]) * 2 except TypeError: harSN = HARSN * 2 harSNpp = harSN / 3.74 elif n == 3: ne = time / 3600 * 10**(-0.4*(0.89 * (vmag + Ioff) - 22.33)) nepp = ne / 3.74 harSN = HARSN * 2 harSNpp = harSN / 3.74 # Calculate the SNR (and SNR per pixel) and the number of sky pixel. skypp = SkyN * nepp * pow(2.5, vmag-17.552) SN = np.sqrt(ne) SNpp = math.sqrt(nepp + skypp) # Compute results for HARPS spectra (calculate individual uncertainties and # add random noise to the spectrum) if HAR: if harSN < SN: results['e'] = np.abs(np.divide(flux, np.sqrt(np.abs(norm_f))) / harSNpp) results['f'] = flux + DarkN * flux / ne results['SN'] = harSN results['SNpp'] = harSNpp else: SNadd = 1/math.sqrt(1/(SNpp**2) + 1/(harSNpp**2)) adderr = flux / SNadd results['f'] = np.add(flux, np.random.normal(0, adderr, len(flux))) + DarkN * flux / ne results['e'] = np.abs(np.divide(flux, np.sqrt(
np.abs(norm_f)
numpy.abs
import random from typing import Optional, List, Union import numpy as np from stable_baselines.common.segment_tree import SumSegmentTree, MinSegmentTree from stable_baselines.common.vec_env import VecNormalize class ReplayBuffer(object): __name__ = "ReplayBuffer" def __init__(self, size: int, extra_data_names=()): """ Implements a ring buffer (FIFO). :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = int(size) self._next_idx = 0 self._extra_data_names = sorted(extra_data_names) def __len__(self) -> int: return len(self._storage) @property def storage(self): """[(Union[np.ndarray, int], Union[np.ndarray, int], float, Union[np.ndarray, int], bool)]: content of the replay buffer""" return self._storage @property def buffer_size(self) -> int: """float: Max capacity of the buffer""" return self._maxsize def can_sample(self, n_samples: int) -> bool: """ Check if n_samples samples can be sampled from the buffer. :param n_samples: (int) :return: (bool) """ return len(self) >= n_samples def is_full(self) -> int: """ Check whether the replay buffer is full or not. :return: (bool) """ return len(self) == self.buffer_size def add(self, obs_t, action, reward, obs_tp1, done, *extra_data, **extra_data_kwargs): """ add a new transition to the buffer :param obs_t: (Union[np.ndarray, int]) the last observation :param action: (Union[np.ndarray, int]) the action :param reward: (float) the reward of the transition :param obs_tp1: (Union[np.ndarray, int]) the current observation :param done: (bool) is the episode done """ data = (obs_t, action, reward, obs_tp1, done, *extra_data, *[extra_data_kwargs[k] for k in sorted(extra_data_kwargs)]) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def extend(self, obs_t, action, reward, obs_tp1, done): """ add a new batch of transitions to the buffer :param obs_t: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the last batch of observations :param action: (Union[Tuple[Union[np.ndarray, int]]], np.ndarray]) the batch of actions :param reward: (Union[Tuple[float], np.ndarray]) the batch of the rewards of the transition :param obs_tp1: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the current batch of observations :param done: (Union[Tuple[bool], np.ndarray]) terminal status of the batch Note: uses the same names as .add to keep compatibility with named argument passing but expects iterables and arrays with more than 1 dimensions """ for data in zip(obs_t, action, reward, obs_tp1, done): if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize @staticmethod def _normalize_obs(obs: np.ndarray, env: Optional[VecNormalize] = None) -> np.ndarray: """ Helper for normalizing the observation. """ if env is not None: return env.normalize_obs(obs) return obs @staticmethod def _normalize_reward(reward: np.ndarray, env: Optional[VecNormalize] = None) -> np.ndarray: """ Helper for normalizing the reward. """ if env is not None: return env.normalize_reward(reward) return reward def _encode_sample(self, idxes: Union[List[int], np.ndarray], env: Optional[VecNormalize] = None): obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] extra_data = {name: [] for name in self._extra_data_names} for i in idxes: data = self._storage[i] obs_t, action, reward, obs_tp1, done, *extra_timestep_data = data obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) for data_i, extra_data_name in enumerate(self._extra_data_names): data = extra_timestep_data[data_i] if np.ndim(data) == 0: extra_data[extra_data_name].append(data) else: extra_data[extra_data_name].append(np.array(data, copy=False)) extra_data = {k: np.array(v) for k, v in extra_data.items()} return self._normalize_obs(np.array(obses_t), env), np.array(actions), \ self._normalize_reward(np.array(rewards), env), self._normalize_obs(np.array(obses_tp1), env), \ np.array(dones), extra_data def sample(self, batch_size: int, env: Optional[VecNormalize] = None, **_kwargs): """ Sample a batch of experiences. :param batch_size: (int) How many transitions to sample. :param env: (Optional[VecNormalize]) associated gym VecEnv to normalize the observations/rewards when sampling :return: - obs_batch: (np.ndarray) batch of observations - act_batch: (numpy float) batch of actions executed given obs_batch - rew_batch: (numpy float) rewards received as results of executing act_batch - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(idxes, env=env) # TODO: scan/"burn in" class RecurrentReplayBuffer(ReplayBuffer): __name__ = "RecurrentReplayBuffer" def __init__(self, size, sequence_length=1, scan_length=0, extra_data_names=(), rnn_inputs=(), her_k=4): super().__init__(size) self._sample_cycle = 0 self.her_k = her_k self._extra_data_names = sorted(extra_data_names) self._data_name_to_idx = {"obs": 0, "action": 1, "reward": 2, "obs_tp1": 3, "done": 4, **{name: 5 + i for i, name in enumerate(self._extra_data_names)}} self._current_episode_data = [] self.sequence_length = sequence_length assert self.sequence_length >= 1 self.scan_length = scan_length self._rnn_inputs = rnn_inputs assert self.scan_length == 0 or len(self._rnn_inputs) > 0 self._is_full = False def add(self, obs_t, action, reward, obs_tp1, done, *extra_data, **extra_data_kwargs): if self.her_k > 0: obs_t = [obs_t] obs_tp1 = [obs_tp1] reward = [reward] data = [obs_t, action, reward, obs_tp1, done, *extra_data, *[extra_data_kwargs[k] for k in sorted(extra_data_kwargs)]] # Data needs to be mutable self._current_episode_data.append(data) self._sample_cycle += 1 if done: self.store_episode() def store_episode(self): if len(self._current_episode_data) >= self.sequence_length + self.scan_length: if self._sample_cycle >= self.buffer_size: self._next_idx = 0 self._sample_cycle = 0 self._is_full = True if not self._is_full: self._storage.append(self._current_episode_data) else: try: self._storage[self._next_idx] = self._current_episode_data except IndexError: self._storage.append(self._current_episode_data) self._next_idx += 1 else: if self.her_k > 0: self._sample_cycle -= sum([len(t[0]) for t in self._current_episode_data]) else: self._sample_cycle -= len(self._current_episode_data) self._current_episode_data = [] def add_her(self, obs, obs_tp1, reward, timestep, ep_index=None): assert self.her_k > 0 if ep_index is not None: episode_data = self._storage[ep_index] else: episode_data = self._current_episode_data episode_data[timestep][0].append(obs) episode_data[timestep][2].append(reward) episode_data[timestep][3].append(obs_tp1) self._sample_cycle += 1 def sample(self, batch_size, sequence_length=None, **_kwargs): if sequence_length is None: sequence_length = self.sequence_length assert batch_size % sequence_length == 0 ep_idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size // sequence_length)] ep_ts = [random.randint(self.scan_length, len(self._storage[ep_i]) - 1 - (sequence_length - 1)) for ep_i in ep_idxes] extra_data = {name: [] for name in self._extra_data_names} extra_data.update({"scan_{}".format(name): [] for name in self._rnn_inputs}) obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] for i, ep_i in enumerate(ep_idxes): ep_data = self.storage[ep_i] ep_t = ep_ts[i] if self.her_k > 0: her_idx = random.randint(0, self.her_k + 2) for scan_t in range(ep_t - self.scan_length, ep_t): for scan_data_name in self._rnn_inputs: data = ep_data[scan_t][self._data_name_to_idx[scan_data_name]] if self.her_k > 0 and self._data_name_to_idx[scan_data_name] in [self._data_name_to_idx[n] for n in ["obs", "reward", "obs_tp1"]]: data = data[0] extra_data["scan_{}".format(scan_data_name)].append(data) for seq_i in range(sequence_length): obs_t, action, reward, obs_tp1, done, *extra_timestep_data = ep_data[ep_t + seq_i] if self.her_k > 0: try: # TODO: fix indexing with last timestep data not having her data obs_t, obs_tp1, reward = obs_t[her_idx], obs_tp1[her_idx], reward[her_idx] except IndexError: obs_t, obs_tp1, reward = obs_t[0], obs_tp1[0], reward[0] obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) for data_i, extra_data_name in enumerate(self._extra_data_names): if "state" in extra_data_name: if seq_i > 0: # For RNN states only get the first state in the sequence (or in the scan) continue data = ep_data[ep_t + seq_i - self.scan_length][self._data_name_to_idx[extra_data_name]] else: data = extra_timestep_data[data_i] if np.ndim(data) == 0: extra_data[extra_data_name].append(data) else: extra_data[extra_data_name].append(np.array(data, copy=False)) extra_data = {k: np.array(v) for k, v in extra_data.items()} extra_data["state_idxs"] = list(zip(ep_idxes, [t + sequence_length for t in ep_ts])) if self.scan_length > 0: extra_data["state_idxs_scan"] = list(zip(ep_idxes, ep_ts)) return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones), extra_data def update_state(self, idxs, data): for i, (ep_idx, t) in enumerate(idxs): try: for state_name, state_val in data.items(): self.storage[ep_idx][t][self._data_name_to_idx[state_name]] = state_val[i, :] except IndexError: # Hidden state computed for last sample in episode, doesnt belong to any sample pass def __len__(self): # TODO: consider if this is important enough to do right return max(self._sample_cycle - ((len(self._current_episode_data) - 1) * (1 + self.her_k) + 1), 0) \ if not self._is_full else self.buffer_size def is_full(self): return self._is_full # TODO: maybe add support for episode constant data class EpisodicRecurrentReplayBuffer(ReplayBuffer): __name__ = "EpisodicRecurrentReplayBuffer" def __init__(self, size, episode_length, sequence_length=10, extra_data_names=()): super().__init__(size // episode_length) self._current_episode_data = [] # self._episode_data = [] # Data which is constant within episode self._extra_data_names = sorted(extra_data_names) self._data_name_to_idx = {"obs": 0, "action": 1, "reward": 2, "obs_tp1": 3, "done": 4} self._data_name_to_idx.update({name: i + 5 for i, name in enumerate(self._extra_data_names)}) self._sequence_length = sequence_length # TODO: add scan length and assert is multiple of sample_consecutive_max def add(self, obs_t, action, reward, obs_tp1, done, *extra_data): self._current_episode_data.append( [obs_t, action, reward, obs_tp1, done, *extra_data]) # List to support updating states etc. if done: self.store_episode() def store_episode(self): if len(self._current_episode_data) == 0: return if self._next_idx >= len(self._storage): self._storage.append(self._current_episode_data) else: self._storage[self._next_idx] = self._current_episode_data self._next_idx = (self._next_idx + 1) % self._maxsize self._current_episode_data = [] def sample(self, batch_size, sequence_length=None): if sequence_length is None: sequence_length = self._sequence_length samples_left = batch_size obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] extra_data = [[] for i in range(len(self._extra_data_names))] state_idxs = [] while samples_left > 0: ep_idx = np.random.randint(0, len(self._storage) - 1) ep_data = self._storage[ep_idx] ep_start_idx = np.random.randint(0, max(len(ep_data) - sequence_length, 1)) ep_data = ep_data[ep_start_idx:ep_start_idx + sequence_length + 1] state_idxs.append((ep_idx, ep_start_idx + sequence_length)) if len(ep_data) > samples_left: ep_data = ep_data[:samples_left] for j, timestep in enumerate(ep_data): obs_t, action, reward, obs_tp1, done, *extra_timestep_data = timestep obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) for data_i, data in enumerate(extra_timestep_data): if np.ndim(data) == 0: extra_data[data_i].append(data) else: extra_data[data_i].append(np.array(data, copy=False)) samples_left -= len(ep_data) assert samples_left >= 0 extra_data_dict = {name: np.array(extra_data[i]) for i, name in enumerate(self._extra_data_names)} extra_data_dict["reset"] = np.zeros(shape=(batch_size,)) # np.array(resets) extra_data_dict["state"] = extra_data_dict["state"][::sequence_length] extra_data_dict["state_idxs"] = state_idxs return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array( dones), extra_data_dict def update_state(self, idxs, data): for i, (ep_idx, t) in enumerate(idxs): if isinstance(data, list): self.storage[ep_idx][t][self._data_name_to_idx["pi_state"]] = data[0][i, :] self.storage[ep_idx][t][self._data_name_to_idx["qf1_state"]] = data[1][i, :] self.storage[ep_idx][t][self._data_name_to_idx["qf2_state"]] = data[2][i, :] else: self.storage[ep_idx][t][self._data_name_to_idx["state"]] = data[i, :] def __len__(self): if len(self.storage) > 1: return sum([len(episode) for episode in self._storage]) else: return 0 class DRRecurrentReplayBuffer(ReplayBuffer): __name__ = "DRRecurrentReplayBuffer" def __init__(self, size, episode_max_len, scan_length, her_k=4): self.her_k = her_k super().__init__(size) self._scan_length = scan_length self._maxsize = self._maxsize // episode_max_len self._episode_my = [] def add(self, obs_t, action, reward, obs_tp1, done, goal, my=None): assert not (done and my is None) if self.her_k > 0: goal = [goal] reward = [reward] data = (obs_t, action, reward, obs_tp1, done, goal) self._current_episode_data.append(data) if done: if self._next_idx >= len(self._storage): self._storage.append(self._current_episode_data) self._episode_my.append(my) else: self._storage[self._next_idx] = self._current_episode_data self._episode_my[self._next_idx] = my self._next_idx = (self._next_idx + 1) % self._maxsize self._current_episode_data = [] def add_her(self, goal, reward, timestep, ep_index=None): assert self.her_k > 0 if ep_index is not None: episode_data = self._storage[ep_index] else: episode_data = self._current_episode_data episode_data[timestep][5].append(goal) episode_data[timestep][2].append(reward) def sample(self, batch_size, **_kwargs): if self.her_k > 0: num_episodes = len(self._storage) ep_idxes = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] ep_ts = [ random.randint(self._scan_length * (1 + self.her_k), (len(self._storage[ep_i]) - 1) * (1 + self.her_k)) for ep_i in ep_idxes] # - self._optim_length) return self._encode_sample(ep_idxes, ep_ts) else: return super(DRRecurrentReplayBuffer, self).sample(batch_size) def _encode_sample(self, ep_idxes, ep_ts): obses_t, actions, rewards, obses_tp1, dones, goals, mys, hists_o, hists_a = [], [], [], [], [], [], [], [], [] for i, ep_i in enumerate(ep_idxes): if self.her_k > 0: ep_t = int(ep_ts[i] / (self.her_k + 1)) else: ep_t = ep_ts[i] ep_data = self._storage[ep_i] obs_t, action, reward, obs_tp1, done, goal = ep_data[ep_t] if self.her_k > 0: goal = goal[ep_ts[i] - ep_t * (self.her_k + 1)] reward = reward[ep_ts[i] - ep_t * (self.her_k + 1)] if self._scan_length > 0: ep_scan_start = ep_t - self._scan_length if ep_t - self._scan_length >= 0 else 0 hist_o, hist_a = [], [] for hist_i in range(ep_scan_start, ep_t): hist_o.append(np.array(ep_data[hist_i][0])) if hist_i > 0: hist_a.append(np.array(ep_data[hist_i - 1][1])) else: hist_a.append(np.zeros(shape=(len(ep_data[0][1]),))) hist_o.append(np.array(obs_t)) hist_a.append(np.array(ep_data[ep_t - 1][1])) else: hist_o = [obs_t] hist_a = [ep_data[ep_t - 1][1]] obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) hists_o.extend(hist_o) hists_a.extend(hist_a) goals.append(np.array(goal, copy=False)) mys.append(np.array(self._episode_my[ep_i], copy=False)) return np.array(obses_t), np.array(actions), np.array(rewards), np.array(obses_tp1), np.array(dones), { "goal": np.array(goals), "obs_rnn": np.array(hists_o), "action_prev": np.array(hists_a), "my": np.array(mys)} class PrioritizedReplayBuffer(ReplayBuffer): __name__ = "PrioritizedReplayBuffer" def __init__(self, size, alpha): """ Create Prioritized Replay buffer. See Also ReplayBuffer.__init__ :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization) """ super(PrioritizedReplayBuffer, self).__init__(size) assert alpha >= 0 self._alpha = alpha it_capacity = 1 while it_capacity < size: it_capacity *= 2 self._it_sum = SumSegmentTree(it_capacity) self._it_min = MinSegmentTree(it_capacity) self._max_priority = 1.0 def add(self, obs_t, action, reward, obs_tp1, done): """ add a new transition to the buffer :param obs_t: (Any) the last observation :param action: ([float]) the action :param reward: (float) the reward of the transition :param obs_tp1: (Any) the current observation :param done: (bool) is the episode done """ idx = self._next_idx super().add(obs_t, action, reward, obs_tp1, done) self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha def extend(self, obs_t, action, reward, obs_tp1, done): """ add a new batch of transitions to the buffer :param obs_t: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the last batch of observations :param action: (Union[Tuple[Union[np.ndarray, int]]], np.ndarray]) the batch of actions :param reward: (Union[Tuple[float], np.ndarray]) the batch of the rewards of the transition :param obs_tp1: (Union[Tuple[Union[np.ndarray, int]], np.ndarray]) the current batch of observations :param done: (Union[Tuple[bool], np.ndarray]) terminal status of the batch Note: uses the same names as .add to keep compatibility with named argument passing but expects iterables and arrays with more than 1 dimensions """ idx = self._next_idx super().extend(obs_t, action, reward, obs_tp1, done) while idx != self._next_idx: self._it_sum[idx] = self._max_priority ** self._alpha self._it_min[idx] = self._max_priority ** self._alpha idx = (idx + 1) % self._maxsize def _sample_proportional(self, batch_size): mass = [] total = self._it_sum.sum(0, len(self._storage) - 1) # TODO(szymon): should we ensure no repeats? mass = np.random.random(size=batch_size) * total idx = self._it_sum.find_prefixsum_idx(mass) return idx def sample(self, batch_size: int, beta: float = 0, env: Optional[VecNormalize] = None): """ Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. :param batch_size: (int) How many transitions to sample. :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction) :param env: (Optional[VecNormalize]) associated gym VecEnv to normalize the observations/rewards when sampling :return: - obs_batch: (np.ndarray) batch of observations - act_batch: (numpy float) batch of actions executed given obs_batch - rew_batch: (numpy float) rewards received as results of executing act_batch - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ assert beta > 0 idxes = self._sample_proportional(batch_size) weights = [] p_min = self._it_min.min() / self._it_sum.sum() max_weight = (p_min * len(self._storage)) ** (-beta) p_sample = self._it_sum[idxes] / self._it_sum.sum() weights = (p_sample * len(self._storage)) ** (-beta) / max_weight encoded_sample = self._encode_sample(idxes, env=env) return tuple(list(encoded_sample) + {"is_weights": weights, "idxs": idxes}) def update_priorities(self, idxes, priorities): """ Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. :param idxes: ([int]) List of idxes of sampled transitions :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ assert len(idxes) == len(priorities) assert np.min(priorities) > 0 assert np.min(idxes) >= 0 assert np.max(idxes) < len(self.storage) self._it_sum[idxes] = priorities ** self._alpha self._it_min[idxes] = priorities ** self._alpha self._max_priority = max(self._max_priority, np.max(priorities)) class DiscrepancyReplayBuffer(ReplayBuffer): def __init__(self, size, scorer): """ Create Prioritized Replay buffer. See Also ReplayBuffer.__init__ :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization) """ super(DiscrepancyReplayBuffer, self).__init__(size) self.scores = [] self.scorer = scorer self.min_score = None self.max_score = None def add(self, obs_t, action, reward, obs_tp1, done): """ add a new transition to the buffer :param obs_t: (Any) the last observation :param action: ([float]) the action :param reward: (float) the reward of the transition :param obs_tp1: (Any) the current observation :param done: (bool) is the episode done """ idx = self._next_idx score = self.scorer(np.expand_dims(obs_tp1, axis=0))[0][0] if self.min_score is None or score < self.min_score: self.min_score = score if self.max_score is None or score > self.max_score: self.max_score = score if self._next_idx >= len(self._storage): self.scores.append(score) else: self.scores[idx] = score super().add(obs_t, action, reward, obs_tp1, done) self.storage[-1] += (self.scorer(np.expand_dims(obs_tp1, axis=0)),) def sample(self, batch_size, **_kwargs): """ Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. :param batch_size: (int) How many transitions to sample. :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction) :return: - obs_batch: (np.ndarray) batch of observations - act_batch: (numpy float) batch of actions executed given obs_batch - rew_batch: (numpy float) rewards received as results of executing act_batch - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ if not self.can_sample(batch_size): return self._encode_sample(list(range(len(self)))) scores = self._scale_scores(np.array(self.scores)) idxs = np.random.choice(np.arange(len(scores)), size=(batch_size,), p=scores / np.sum(scores), replace=False) return self._encode_sample(idxs) def update_priorities(self): """ Update priorities of sampled transitions. sets priority of transition at index idxes[i] in buffer to priorities[i]. :param idxes: ([int]) List of idxes of sampled transitions :param priorities: ([float]) List of updated priorities corresponding to transitions at the sampled idxes denoted by variable `idxes`. """ scores = self.scorer([transition[0] for transition in self.storage])[:, 0] for i, transition in enumerate(self.storage): transition[-1] = scores[i] def _scale_scores(self, vals): return (vals - self.min_score) / (self.max_score - self.min_score) * (1 - 0.1) + 0.1 class StableReplayBuffer(ReplayBuffer): __name__ = "StableReplayBuffer" def __init__(self, size): """ Create Prioritized Replay buffer. See Also ReplayBuffer.__init__ :param size: (int) Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. :param alpha: (float) how much prioritization is used (0 - no prioritization, 1 - full prioritization) """ super(StableReplayBuffer, self).__init__(size) self.scores = [] self.lower_clip = None self.upper_clip = None def add(self, obs_t, action, reward, obs_tp1, done, score=None): """ add a new transition to the buffer :param obs_t: (Any) the last observation :param action: ([float]) the action :param reward: (float) the reward of the transition :param obs_tp1: (Any) the current observation :param done: (bool) is the episode done """ idx = self._next_idx if self._next_idx >= len(self._storage): self.scores.append(score) else: self.scores[idx] = score super().add(obs_t, action, reward, obs_tp1, done) def sample(self, batch_size, **_kwargs): """ Sample a batch of experiences. compared to ReplayBuffer.sample it also returns importance weights and idxes of sampled experiences. :param batch_size: (int) How many transitions to sample. :param beta: (float) To what degree to use importance weights (0 - no corrections, 1 - full correction) :return: - obs_batch: (np.ndarray) batch of observations - act_batch: (numpy float) batch of actions executed given obs_batch - rew_batch: (numpy float) rewards received as results of executing act_batch - next_obs_batch: (np.ndarray) next set of observations seen after executing act_batch - done_mask: (numpy bool) done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. - weights: (numpy float) Array of shape (batch_size,) and dtype np.float32 denoting importance weight of each sampled transition - idxes: (numpy int) Array of shape (batch_size,) and dtype np.int32 idexes in buffer of sampled experiences """ if not self.can_sample(batch_size): return self._encode_sample(list(range(len(self)))) scores = np.array(self.scores) scores = np.clip(scores,
np.percentile(scores, 10)
numpy.percentile
## CPPN functions and classes # Imports import math import numpy from evolve_soft_2d import utility ################################################################################ class cppn: """The CPPN class object """ def __init__( self, seed: int, mod_n: int, scale: float, hl_n: int, hl_s: int, thresh: float, x: int, y: int, ) -> None: """The CPPN parameters Parameters ---------- seed : int The seed for the random generation mod_n : int The number of models to be generated from a particular seed scale : float The scale of the focus on the model hl_n : int The number of hidden layers hl_s : int The size of the initial hidden layer thresh : float The rounding/removal threshold x : int The number of elements in the x-direction y : int The number of elements in the y-direction """ self.seed = seed self.mod_n = mod_n self.scale = scale self.hl_n = hl_n self.hl_s = hl_s self.thresh = thresh self.x = x self.y = y # The resolution of the grid self.res = self.x*self.y # Build the grid self.grid = self.cppn_grid() def __repr__(self) -> str: """Format a representation of the CPPN Returns ------- str Formatted representation of the CPPN for the log """ r = "Model Dimensions: {}x{} elements\n".format(self.x, self.y) r += "Model Seed: {}\n".format(self.seed) r += "Number Of Models Generated: {}\n".format(self.mod_n) r += "Model Scale: 1:{}\n".format(self.scale) r += "Number Of Hidden Layers: {}\n".format(self.hl_n) r += "Size Of Initial Hidden Layer: {}\n".format(self.hl_s) if self.thresh < 1: r += "Rounding Threshold: {}\n".format(self.thresh) else: r += "Percentage Of Elements Removed: {}%\n".format(self.thresh) r += "Activation Functions:\n" for i in self.af: r += "{}\n".format(i) return r def cppn_grid(self) -> numpy.array: """Generates model grids Returns ------- numpy.array The model grid """ # Initialisations self.af = [] # The list of possible activation functions af_l = [self.cppn_sin, self.cppn_cos, self.cppn_tanh, self.cppn_sigm, self.cppn_srel] af_o = [self.cppn_sigm, self.cppn_srel] # Set the random generation seed numpy.random.seed(seed = self.seed) # Generate the initial hidden layer for each model hl = numpy.random.uniform(low = -1, high = 1, size = (self.mod_n, self.hl_s)).astype(numpy.float32) # Generate the grid matrix x_r = numpy.linspace(-1*self.scale, self.scale, num = self.x) x_m = numpy.matmul(numpy.ones((self.y, 1)), x_r.reshape((1, self.x))) y_r = numpy.linspace(-1*self.scale, self.scale, num = self.y) y_m = numpy.matmul(y_r.reshape((self.y, 1)), numpy.ones((1, self.x))) r_m = numpy.sqrt(x_m*x_m + y_m*y_m) x_d = numpy.tile(x_m.flatten(), self.mod_n).reshape(self.mod_n, self.res, 1) y_d = numpy.tile(y_m.flatten(), self.mod_n).reshape(self.mod_n, self.res, 1) r_d = numpy.tile(r_m.flatten(), self.mod_n).reshape(self.mod_n, self.res, 1) # Scale the initial hidden layers hl_scale = numpy.reshape(hl, (self.mod_n, 1, self.hl_s))*numpy.ones((self.res, 1), dtype = numpy.float32)*self.scale # Unwrap the grid matrices x_d_unwrap = numpy.reshape(x_d, (self.mod_n*self.res, 1)) y_d_unwrap = numpy.reshape(y_d, (self.mod_n*self.res, 1)) r_d_unwrap = numpy.reshape(r_d, (self.mod_n*self.res, 1)) hl_unwrap = numpy.reshape(hl_scale, (self.mod_n*self.res, self.hl_s)) # Build the network n = self.fully_connected(hl_unwrap, self.hl_n, True, self.seed) + self.fully_connected(x_d_unwrap, self.hl_n, False, self.seed + 1) + self.fully_connected(y_d_unwrap, self.hl_n, False, self.seed + 2) + self.fully_connected(r_d_unwrap, self.hl_n, False, self.seed + 3) # Transpose the network n = n.T if self.hl_n > 1: # Loop through the second to second-last hidden layers for i in range(1, self.hl_n - 1): # Set the seed for each layer numpy.random.seed(seed = self.seed + i) # Select and record the activation function n[i], af_c = numpy.random.choice(af_l)(n[i - 1]) self.af.append(af_c) # Set the seed for the final layer numpy.random.seed(seed = self.seed) # Apply and record the final function n[-1], af_o = numpy.random.choice(af_o)(n[-2]) self.af.append(af_o) else: # Set the seed for each layer numpy.random.seed(seed = self.seed) # Select and record the activation function n[0], af_c = numpy.random.choice(af_l)(n[0]) self.af.append(af_c) # Apply and record the final function n[0], af_o = numpy.random.choice(af_o)(n[0]) self.af.append(af_o) # Reshape the grid to fit the given dimensions mod = numpy.reshape(n[-1], (self.mod_n, self.x, self.y)) return mod def fully_connected( self, i_v: numpy.array, o_d, w_bias: bool, seed: int, ) -> numpy.array: """Connect all layers of the CPPN Parameters ---------- i_v : numpy.array The input vector o_d The output dimensions seed : int The random generation w_bias : bool If the layers should be connected with bias Returns ------- numpy.array The connected results """ # Set the random generation seed numpy.random.seed(seed = seed) # Generate the random matrix m = numpy.random.standard_normal(size = (i_v.shape[1], o_d)).astype(numpy.float32) # Multiply the input with the matrix result =
numpy.matmul(i_v, m)
numpy.matmul
# Copyright (c) 2020-2021 by Fraunhofer Institute for Energy Economics # and Energy System Technology (IEE), Kassel, and University of Kassel. All rights reserved. # Use of this source code is governed by a BSD-style license that can be found in the LICENSE file. import numpy as np import pandapipes.networks.simple_water_networks as nw import pytest from pandapipes.pipeflow import logger as pf_logger from pandapipes.test.stanet_comparison.pipeflow_stanet_comparison import pipeflow_stanet_comparison try: import pandaplan.core.pplog as logging except ImportError: import logging logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) pf_logger.setLevel(logging.WARNING) # ---------- TEST AREA: combined networks ---------- # district_N def test_case_district_grid_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_district_grid(method="n") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # district_PC def test_case_district_grid_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_district_grid(method="pc") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.03) assert np.all(v_diff_abs < 0.03) # ---------- TEST AREA: meshed networks ---------- # pumps_N def test_case_pumps_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_meshed_pumps(results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # delta_N def test_case_delta_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_meshed_delta(results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # two_valves_N def test_case_meshed_2valves_n(log_results=False): net = nw.water_meshed_2valves(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.001) assert np.all(v_diff_abs < 0.001) # two_valves_PC def test_case_meshed_2valves_pc(log_results=False): net = nw.water_meshed_2valves(method="pc", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.001) assert np.all(v_diff_abs < 0.001) # ---------- TEST AREA: one pipe ---------- # pipe_1_N def test_case_one_pipe1_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_one_pipe1(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # pipe_1_PC def test_case_one_pipe1_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_one_pipe1(method="pc", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # pipe_2_N def test_case_one_pipe2_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_one_pipe2(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # pipe_2_PC def test_case_one_pipe2_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_one_pipe2(method="pc", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # pipe_3_N def test_case_one_pipe3_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_one_pipe3(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # pipe_3_PC def test_case_one_pipe3_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_one_pipe3(method="pc", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # ---------- TEST AREA: strand net ---------- # strand_net_N def test_case_simple_strand_net_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_simple_strand_net(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # strand_net_PC def test_case_simple_strand_net_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_simple_strand_net(method="pc", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.01) assert np.all(v_diff_abs < 0.03) # two_pipes_N def test_case_two_pipes_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_strand_2pipes(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # two_pipes_PC def test_case_two_pipes_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_strand_2pipes(method="pc", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # cross_PC def test_case_cross_pc(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_strand_cross(results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results, friction_model="colebrook") assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # pump_N def test_case_pump_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_strand_pump() p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert np.all(v_diff_abs < 0.03) # ---------- TEST AREA: t_cross ---------- # t-cross_N def test_case_tcross_n(log_results=False): """ :param log_results: :type log_results: :return: :rtype: """ net = nw.water_tcross(method="n", results_from="stanet") p_diff, v_diff_abs = pipeflow_stanet_comparison(net, log_results) assert np.all(p_diff < 0.002) assert
np.all(v_diff_abs < 0.03)
numpy.all
from sklearn.preprocessing import StandardScaler import numpy as np from sklearn.model_selection import KFold def personal_normalisation(data): df = data.set_index('subject') for subj in df.index.unique(): aux = df.loc[subj].iloc[:, :-1] cols = aux.columns aux = StandardScaler().fit_transform(aux) df.loc[subj, cols] = aux return df.reset_index() def cv_leave_three_out(data, seed=123): train_indices = list() test_indices = list() subjects = data.subject.unique() np.random.seed(seed) np.random.shuffle(subjects) for i, subject in enumerate(subjects): testsubjects = [subjects[i], subjects[(i + 1) % len(subjects)], subjects[(i + 2) % len(subjects)]] trainsubjects = np.delete(subjects, [i, (i + 1) % len(subjects), (i + 2) % len(subjects)]) test_i = list() for tests in testsubjects: test_i.append(
np.array(data[data.subject == tests].index)
numpy.array
import pandas as pd import numpy as np from PIL import Image import matplotlib.pyplot as plt from skimage.transform import resize import itertools from sklearn.metrics import confusion_matrix,roc_auc_score, roc_curve, auc, precision_recall_curve, average_precision_score, f1_score import seaborn as sns import scipy from scipy import stats from sklearn.utils import resample def zero_pad(img, size=448): ''' pad zeros to make a square img for resize ''' h, w, c = img.shape if h > w: zeros = np.zeros([h, h - w, c]).astype(np.uint8) img_padded = np.hstack((img, zeros)) elif h < w: zeros = np.zeros([w - h, w, c]).astype(np.uint8) img_padded = np.vstack((img, zeros)) else: img_padded = img img_resized = (255 * resize(img_padded, (size, size), anti_aliasing=True)).astype(np.uint8) return img_resized def get_precision_recall(ax, y_true, y_pred, title, boostrap=5, plot=True): def delta_confidence_interval(data, confidence=0.95): a = 1.0 * np.array(data) n = len(a) m, se = np.mean(a), scipy.stats.sem(a) h = se * scipy.stats.t.ppf((1 + confidence) / 2., n - 1) return h ap_score = [] for i in range(boostrap): pred_bt, y_bt = resample(y_pred, y_true) ap_score.append(average_precision_score(y_bt, pred_bt)) AP = average_precision_score(y_true, y_pred) precision, recall, thresholds = precision_recall_curve(y_true, y_pred) if plot: delta = delta_confidence_interval(ap_score) sns.set_style('ticks') # plt.figure() ax.plot(recall, precision, color='red', lw=2, label='AUC = {:.3f}, \n95% C.I. = [{:.3f}, {:.3f}]'.format(AP, AP - delta, AP + delta), alpha=.8) ax.set_xlabel('Recall', fontsize=16, fontweight='bold') ax.set_ylabel('Precision', fontsize=16, fontweight='bold') ax.xaxis.set_tick_params(labelsize=16) ax.yaxis.set_tick_params(labelsize=16) ax.set_ylim(0, 1) ax.set_xlim(0, 1) ax.set_title(title, fontsize=16, fontweight='bold') ax.legend(fontsize=12, loc='lower right') ax.grid() return thresholds def get_auc(ax, y_true, y_score, title, plot=True): fpr_keras, tpr_keras, thresholds_keras = roc_curve(y_true, y_score) auc_keras = auc(fpr_keras, tpr_keras) optimal_idx = np.argmax(tpr_keras - fpr_keras) optimal_threshold = thresholds_keras[optimal_idx] if plot: ci = get_CI(y_true, y_score) sns.set_style('ticks') # plt.figure() ax.plot([0, 1], [0, 1], linestyle='--', lw=2, color='orange', label='Chance', alpha=.8) ax.plot(fpr_keras, tpr_keras, color='red', lw=2, label='AUC = {:.3f}, \n95% C.I. = [{:.3f}, {:.3f}]'.format(auc_keras, ci[0], ci[1]), alpha=.8) ax.set_xlabel('Specificity', fontsize=16, fontweight='bold') ax.set_ylabel('Sensitivity', fontsize=16, fontweight='bold') ax.xaxis.set_tick_params(labelsize=16) ax.yaxis.set_tick_params(labelsize=16) ax.set_ylim(0, 1) ax.set_xlim(0, 1) ax.set_title(title, fontsize=16, fontweight='bold') ax.legend(fontsize=12, loc='lower right') ax.grid() return optimal_threshold def get_CI(y_true, y_score, alpha=0.95): auc, auc_cov = delong_roc_variance(y_true, y_score) auc_std = np.sqrt(auc_cov) lower_upper_q = np.abs(np.array([0, 1]) - (1 - alpha) / 2) ci = stats.norm.ppf(lower_upper_q, loc=auc, scale=auc_std) ci[ci > 1] = 1 print('AUC:', auc) print('AUC COV:', auc_cov) print('95% AUC CI:', ci) return ci def delong_roc_variance(ground_truth, predictions, sample_weight=None): """ Computes ROC AUC variance for a single set of predictions Args: ground_truth: np.array of 0 and 1 predictions: np.array of floats of the probability of being class 1 """ order, label_1_count, ordered_sample_weight = compute_ground_truth_statistics( ground_truth, sample_weight) predictions_sorted_transposed = predictions[np.newaxis, order] aucs, delongcov = fastDeLong(predictions_sorted_transposed, label_1_count, ordered_sample_weight) assert len(aucs) == 1, "There is a bug in the code, please forward this to the developers" return aucs[0], delongcov def compute_ground_truth_statistics(ground_truth, sample_weight): assert np.array_equal(np.unique(ground_truth), [0, 1]) order = (-ground_truth).argsort() label_1_count = int(ground_truth.sum()) if sample_weight is None: ordered_sample_weight = None else: ordered_sample_weight = sample_weight[order] return order, label_1_count, ordered_sample_weight def fastDeLong(predictions_sorted_transposed, label_1_count, sample_weight): if sample_weight is None: return fastDeLong_no_weights(predictions_sorted_transposed, label_1_count) else: return fastDeLong_weights(predictions_sorted_transposed, label_1_count, sample_weight) def fastDeLong_weights(predictions_sorted_transposed, label_1_count, sample_weight): """ The fast version of DeLong's method for computing the covariance of unadjusted AUC. Args: predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples] sorted such as the examples with label "1" are first Returns: (AUC value, DeLong covariance) Reference: @article{sun2014fast, title={Fast Implementation of DeLong's Algorithm for Comparing the Areas Under Correlated Receiver Oerating Characteristic Curves}, author={<NAME> and <NAME>}, journal={IEEE Signal Processing Letters}, volume={21}, number={11}, pages={1389--1393}, year={2014}, publisher={IEEE} } """ # Short variables are named as they are in the paper m = label_1_count n = predictions_sorted_transposed.shape[1] - m positive_examples = predictions_sorted_transposed[:, :m] negative_examples = predictions_sorted_transposed[:, m:] k = predictions_sorted_transposed.shape[0] tx = np.empty([k, m], dtype=np.float) ty = np.empty([k, n], dtype=np.float) tz = np.empty([k, m + n], dtype=np.float) for r in range(k): tx[r, :] = compute_midrank_weight(positive_examples[r, :], sample_weight[:m]) ty[r, :] = compute_midrank_weight(negative_examples[r, :], sample_weight[m:]) tz[r, :] = compute_midrank_weight(predictions_sorted_transposed[r, :], sample_weight) total_positive_weights = sample_weight[:m].sum() total_negative_weights = sample_weight[m:].sum() pair_weights = np.dot(sample_weight[:m, np.newaxis], sample_weight[np.newaxis, m:]) total_pair_weights = pair_weights.sum() aucs = (sample_weight[:m] * (tz[:, :m] - tx)).sum(axis=1) / total_pair_weights v01 = (tz[:, :m] - tx[:, :]) / total_negative_weights v10 = 1. - (tz[:, m:] - ty[:, :]) / total_positive_weights sx = np.cov(v01) sy = np.cov(v10) delongcov = sx / m + sy / n return aucs, delongcov def fastDeLong_no_weights(predictions_sorted_transposed, label_1_count): """ The fast version of DeLong's method for computing the covariance of unadjusted AUC. Args: predictions_sorted_transposed: a 2D numpy.array[n_classifiers, n_examples] sorted such as the examples with label "1" are first Returns: (AUC value, DeLong covariance) Reference: @article{sun2014fast, title={Fast Implementation of DeLong's Algorithm for Comparing the Areas Under Correlated Receiver Oerating Characteristic Curves}, author={<NAME> and <NAME>}, journal={IEEE Signal Processing Letters}, volume={21}, number={11}, pages={1389--1393}, year={2014}, publisher={IEEE} } """ # Short variables are named as they are in the paper m = label_1_count n = predictions_sorted_transposed.shape[1] - m positive_examples = predictions_sorted_transposed[:, :m] negative_examples = predictions_sorted_transposed[:, m:] k = predictions_sorted_transposed.shape[0] tx = np.empty([k, m], dtype=np.float) ty = np.empty([k, n], dtype=np.float) tz = np.empty([k, m + n], dtype=np.float) for r in range(k): tx[r, :] = compute_midrank(positive_examples[r, :]) ty[r, :] = compute_midrank(negative_examples[r, :]) tz[r, :] = compute_midrank(predictions_sorted_transposed[r, :]) aucs = tz[:, :m].sum(axis=1) / m / n - float(m + 1.0) / 2.0 / n v01 = (tz[:, :m] - tx[:, :]) / n v10 = 1.0 - (tz[:, m:] - ty[:, :]) / m sx = np.cov(v01) sy = np.cov(v10) delongcov = sx / m + sy / n return aucs, delongcov def calc_pvalue(aucs, sigma): """Computes log(10) of p-values. Args: aucs: 1D array of AUCs sigma: AUC DeLong covariances Returns: log10(pvalue) """ l = np.array([[1, -1]]) z = np.abs(
np.diff(aucs)
numpy.diff
""" Adapted from the original NMpathAnalysis package, https://github.com/ZuckermanLab/NMpathAnalysis """ import numpy as np from msm_we.fpt import DirectFPT, MarkovFPT, NonMarkovFPT from msm_we.ensembles import DiscreteEnsemble, DiscretePathEnsemble from msm_we.utils import map_to_integers, normalize_markov_matrix from msm_we.utils import pops_from_nm_tmatrix, pops_from_tmatrix from msm_we.utils import pseudo_nm_tmatrix, weighted_choice class NonMarkovModel(DiscreteEnsemble): """Define a class for analyzing MD trajectories using Markovian or non-Markovian Model from a list of 1D trajectories of integers representing macrostates For example: trajectories = [ [1 , 2, 0, ...], [2, 2, 1, ...], [3, 1, 2, ...], ...] If only one sequence is given in trajectories, the format is the same: trajectories = [ [1 , 2, 0, ...] ] Parameters ---------- lag_time (integer, default: 1) Lag time of the model. sliding_window (boolean) Use a sliding window of length lag_time to compute the count matrix stateA, stateB (python lists) Define the initial and final macrostates in form of python lists for example: stateA=[0,2,5], stateB = [1] Attributes ---------- n_states : int nm_cmatrix: array, with shape (2 n_states, 2 n_states) Stores the number of transitions between states, the i,j element cij stores the number of transitions observed from i to j. populations: array, shape (n_states,) Equilibrium population, the steady state solution of of the transition matrix """ def __init__( self, trajectories, stateA, stateB, lag_time=1, clean_traj=False, sliding_window=True, reversible=True, markovian=False, coarse_macrostates=False, **kwargs ): """Initialize an object for Non Markovian Model Class""" if coarse_macrostates: for traj in trajectories: for i, _ in enumerate(traj): if traj[i] in stateA: traj[i] = stateA[0] elif traj[i] in stateB: traj[i] = stateB[0] stateA = [stateA[0]] stateB = [stateB[0]] self._lag_time = lag_time self.trajectories = trajectories self.stateA = stateA self.stateB = stateB self.sliding_window = sliding_window self.reversible = reversible self.markovian = markovian self.n_variables = 1 # by construction self.discrete = True # by construction if (self._lag_time < 1) or (int(self._lag_time) != int(self._lag_time)): raise ValueError( "The lag time should be an integer \ greater than 1" ) if clean_traj: self.n_states = max([max(traj) for traj in self.trajectories]) + 1 else: self._map_trajectories_to_integers() self.fit() def _map_trajectories_to_integers(self): # Clean the sequences seq_map = {} new_trajs = [] for seq in self.trajectories: newseq, m_dict = map_to_integers(seq, seq_map) new_trajs.append(newseq) self.stateA = [seq_map[i] for i in self.stateA] self.stateB = [seq_map[i] for i in self.stateB] self.n_states = len(seq_map) self.trajectories = new_trajs self.seq_map = seq_map def fit(self): """Fits the non-Markovian model from a list of sequences""" # Non-Markovian count matrix nm_cmatrix = np.zeros((2 * self.n_states, 2 * self.n_states)) # Markovian count matrix markov_cmatrix = np.zeros((self.n_states, self.n_states)) lag = self._lag_time if not self.sliding_window: step = lag else: step = 1 for traj in self.trajectories: for start in range(lag, 2 * lag, step): prev_color = None for i in range(start, len(traj), lag): # Color determination if traj[i] in self.stateA: color = "A" elif traj[i] in self.stateB: color = "B" else: color = prev_color # Count matrix for the given lag time if prev_color == "A" and color == "B": nm_cmatrix[2 * traj[i - lag], 2 * traj[i] + 1] += 1.0 elif prev_color == "B" and color == "A": nm_cmatrix[2 * traj[i - lag] + 1, 2 * traj[i]] += 1.0 elif prev_color == "A" and color == "A": nm_cmatrix[2 * traj[i - lag], 2 * traj[i]] += 1.0 elif prev_color == "B" and color == "B": nm_cmatrix[2 * traj[i - lag] + 1, 2 * traj[i] + 1] += 1.0 prev_color = color markov_cmatrix[traj[i - lag], traj[i]] += 1.0 nm_tmatrix = normalize_markov_matrix(nm_cmatrix) markov_tmatrix = normalize_markov_matrix(markov_cmatrix, reversible=True) self.nm_tmatrix = nm_tmatrix self.nm_cmatrix = nm_cmatrix self.markov_cmatrix = markov_cmatrix self.markov_tmatrix = markov_tmatrix @classmethod def from_nm_tmatrix(cls, transition_matrix, stateA, stateB, sim_length=None, initial_state=0): """Generates a discrete ensemble from the transition matrix""" if sim_length is None: raise Exception("The simulation length must be given") if not isinstance(transition_matrix, np.ndarray): transition_matrix = np.array(transition_matrix) n_states = len(transition_matrix) assert n_states == len(transition_matrix[0]) current_state = initial_state discrete_traj = [initial_state // 2] for i in range(sim_length): next_state = weighted_choice([k for k in range(n_states)], transition_matrix[current_state, :]) discrete_traj.append(next_state // 2) current_state = next_state return cls([np.array(discrete_traj)], stateA, stateB, clean_traj=True) @property def lag_time(self): return self._lag_time @lag_time.setter def lag_time(self, lag_time): self._lag_time = lag_time self.fit() def mfpts(self): if self.markovian: return MarkovFPT.mean_fpts(self.markov_tmatrix, self.stateA, self.stateB, lag_time=self._lag_time) else: return NonMarkovFPT.mean_fpts(self.nm_tmatrix, self.stateA, self.stateB, lag_time=self._lag_time) def empirical_mfpts(self): return DirectFPT.mean_fpts(self.trajectories, self.stateA, self.stateB, lag_time=self._lag_time) def empirical_fpts(self): return DirectFPT.fpts(self.trajectories, self.stateA, self.stateB, lag_time=self._lag_time) def populations(self): # In this case the results are going to be the same if self.markovian: return pops_from_tmatrix(self.markov_tmatrix) else: return pops_from_nm_tmatrix(self.nm_tmatrix) @property def popA(self): pop_A = 0 pops = self.populations() for i, p in enumerate(pops): if i in self.stateA: pop_A += p return pop_A @property def popB(self): pop_B = 0 pops = self.populations() for i, p in enumerate(pops): if i in self.stateB: pop_B += p return pop_B def tmatrixAB(self): if self.markovian: return self.markov_tmatrix matrixAB = [] for i in range(0, 2 * self.n_states, 2): for j in range(0, 2 * self.n_states, 2): if (i // 2 in self.stateB) and not (j // 2 in self.stateB): matrixAB.append(0.0) elif (i // 2 in self.stateB) and (j // 2 in self.stateB): if i // 2 == j // 2: matrixAB.append(1.0) else: matrixAB.append(0.0) elif not (i // 2 in self.stateB) and (j // 2 in self.stateB): matrixAB.append(self.nm_tmatrix[i, j + 1]) else: matrixAB.append(self.nm_tmatrix[i, j]) matrixAB = np.array(matrixAB) matrixAB = matrixAB.reshape((self.n_states, self.n_states)) return matrixAB def tmatrixBA(self): if self.markovian: return self.markov_tmatrix matrixBA = [] for i in range(1, 2 * self.n_states + 1, 2): for j in range(1, 2 * self.n_states + 1, 2): if (i // 2 in self.stateA) and not (j // 2 in self.stateA): matrixBA.append(0.0) elif (i // 2 in self.stateA) and (j // 2 in self.stateA): if i // 2 == j // 2: matrixBA.append(1.0) else: matrixBA.append(0.0) elif not (i // 2 in self.stateA) and (j // 2 in self.stateA): matrixBA.append(self.nm_tmatrix[i, j - 1]) else: matrixBA.append(self.nm_tmatrix[i, j]) matrixBA = np.array(matrixBA) matrixBA = matrixBA.reshape((self.n_states, self.n_states)) return matrixBA def fluxAB_distribution_on_B(self): if self.markovian: t_matrix = pseudo_nm_tmatrix(self.markov_tmatrix, self.stateA, self.stateB) else: t_matrix = self.nm_tmatrix distrib_on_B = np.zeros(len(self.stateB)) labeled_pops = pops_from_tmatrix(t_matrix) for i in range(0, 2 * self.n_states, 2): for j in range(2 * self.n_states): if j // 2 in self.stateB: distrib_on_B[self.stateB.index(j // 2)] += labeled_pops[i] * t_matrix[i, j] return distrib_on_B def fluxBA_distribution_on_A(self): if self.markovian: t_matrix = pseudo_nm_tmatrix(self.markov_tmatrix, self.stateA, self.stateB) else: t_matrix = self.nm_tmatrix distrib_on_A = np.zeros(len(self.stateA)) labeled_pops = pops_from_tmatrix(t_matrix) for i in range(1, 2 * self.n_states + 1, 2): for j in range(2 * self.n_states): if j // 2 in self.stateA: distrib_on_A[self.stateA.index(j // 2)] += labeled_pops[i] * t_matrix[i, j] return distrib_on_A def fpt_distrib_AB(self, max_x=1000, dt=1): return MarkovFPT.fpt_distribution( self.tmatrixAB(), self.stateA, self.stateB, self.fluxBA_distribution_on_A(), max_n_lags=max_x, lag_time=self._lag_time, dt=dt, ) def fpt_distrib_BA(self, max_x=1000, dt=1): return MarkovFPT.fpt_distribution( self.tmatrixBA(), self.stateB, self.stateA, self.fluxAB_distribution_on_B(), max_n_lags=max_x, lag_time=self._lag_time, dt=dt, ) def corr_function(self, times): """Compute the correlation function for a set of times. Parameters ---------- times (list of integers): List of dt values used to compute the correlation function. Returns ------- List of floats with the correlation values for the dt given in times """ pAA = [] pAB = [] pBA = [] pBB = [] t_matrix = self.markov_tmatrix if self.markovian else self.nm_tmatrix tot_n_states = self.n_states if self.markovian else (2 * self.n_states) for dt in times: if dt % self.lag_time != 0: raise ValueError("The times given should be " "multiple of the lag time") n = int(dt / self.lag_time) pops_eq = self.populations() t_matrixT_to_n = np.linalg.matrix_power(t_matrix.T, n) popsA_to_propagate = np.zeros(tot_n_states) popsB_to_propagate = np.zeros(tot_n_states) if self.markovian: for index in self.stateA: popsA_to_propagate[index] = pops_eq[index] for index in self.stateB: popsB_to_propagate[index] = pops_eq[index] final_dist_from_A = np.dot(t_matrixT_to_n, popsA_to_propagate) final_dist_from_B = np.dot(t_matrixT_to_n, popsB_to_propagate) pAA.append(sum([final_dist_from_A[i] for i in self.stateA])) pBB.append(sum([final_dist_from_B[i] for i in self.stateB])) pAB.append(sum([final_dist_from_B[i] for i in self.stateA])) pBA.append(sum([final_dist_from_A[i] for i in self.stateB])) else: for index in self.stateA: popsA_to_propagate[2 * index] = pops_eq[index] for index in self.stateB: popsB_to_propagate[2 * index + 1] = pops_eq[index] final_dist_from_A = np.dot(t_matrixT_to_n, popsA_to_propagate) final_dist_from_B = np.dot(t_matrixT_to_n, popsB_to_propagate) pAA.append(sum([final_dist_from_A[2 * i] for i in self.stateA])) pBB.append(sum([final_dist_from_B[2 * i + 1] for i in self.stateB])) pAB.append(sum([final_dist_from_B[2 * i] for i in self.stateA])) pBA.append(sum([final_dist_from_A[2 * i + 1] for i in self.stateB])) return pAA, pAB, pBA, pBB def empirical_weighted_FS(self, tmatrix_for_classification=None, symmetric=True): if tmatrix_for_classification is None: tmatrix_for_classification = self.markov_tmatrix ens = DiscretePathEnsemble.from_ensemble(self, self.stateA, self.stateB) return ens.weighted_fundamental_sequences(tmatrix_for_classification, symmetric) def weighted_FS(self, tmatrix_for_classification=None, n_paths=1000, symmetric=True): if tmatrix_for_classification is None: tmatrix_for_classification = self.markov_tmatrix if self.markovian: tmatrix_to_generate_paths = self.markov_tmatrix else: tmatrix_to_generate_paths = self.tmatrixAB() ens = DiscretePathEnsemble.from_transition_matrix(tmatrix_to_generate_paths, self.stateA, self.stateB, n_paths) return ens.weighted_fundamental_sequences(tmatrix_for_classification, symmetric) class MarkovPlusColorModel(NonMarkovModel): """Define a class for analyzing MD trajectories using Markovian Plus Color Model""" def __init__(self, trajectories, stateA, stateB, lag_time=1, clean_traj=False, sliding_window=True, hist_length=0, **kwargs): self.hist_length = hist_length super().__init__(trajectories, stateA, stateB, lag_time, clean_traj, sliding_window, **kwargs) def fit(self): """Fits the markov plus color model from a list of sequences""" # Non-Markovian count matrix nm_tmatrix = np.zeros((2 * self.n_states, 2 * self.n_states)) # Markovian transition matrix markov_tmatrix =
np.zeros((self.n_states, self.n_states))
numpy.zeros
#PoseGraph Pose graph import roboticstoolbox as rtb import pgraph from spatialmath import base, SE2 import matplotlib.pyplot as plt import numpy as np import scipy as sp import zipfile import time import math class PoseGraph: # properties # graph # ngrid # center # cellsize def __init__(self, filename, laser=False, verbose=False): # parse the file data # we assume g2o format # VERTEX* vertex_id X Y THETA # EDGE* startvertex_id endvertex_id X Y THETA IXX IXY IYY IXT IYT ITT # vertex numbers start at 0 self.laser = laser self.graph = pgraph.UGraph(verbose=verbose) path = rtb.path_to_datafile(filename) if filename.endswith('.zip'): zf = zipfile.ZipFile(path, 'r') opener = zf.open filename = filename[:-4] else: opener = open filename = path with opener(filename, 'r') as f: toroformat = False nlaser = 0 # indices into ROBOTLASER1 record for the 3x3 info matrix in column major # order g2o = [0, 1, 2, 1, 3, 4, 2, 4, 5] toro = [0, 1, 4, 1, 2, 5, 4, 5, 3] # we keep an array self. = vindex(gi) to map g2o vertex index to PGraph vertex index vindex = {} firstlaser = True for line in f: # for zip file, we get data as bytes not str if isinstance(line, bytes): line = line.decode() # is it a comment? if line.startswith('#'): continue tokens = line.split(' ') # g2o format records if tokens[0] == 'VERTEX_SE2': v = self.graph.add_vertex([float(x) for x in tokens[2:5]]) id = int(tokens[1]) vindex[id] = v v.id = id v.type = 'vertex' elif tokens[0] == 'VERTEX_XY': v = self.graph.add_vertex([float(x) for x in tokens[2:4]]) id = int(tokens[1]) vindex[id] = v v.id = id v.type = 'landmark' elif tokens[0] == 'EDGE_SE2': v1 = vindex[int(tokens[1])] v2 = vindex[int(tokens[2])] # create the edge e = self.graph.add_edge(v1, v2) # create the edge data as a structure # X Y T # 3 4 5 e.mean = np.array([float(x) for x in tokens[3:6]]) # IXX IXY IXT IYY IYT ITT # 6 7 8 9 10 11 info = np.array([float(x) for x in tokens[6:12]]) e.info = np.reshape(info[g2o], (3,3)) ## TORO format records elif tokens[0] == 'VERTEX2': toroformat = True v = self.graph.add_vertex([float(x) for x in tokens[2:5]]) id = int(tokens[1]) vindex[id] = v v.id = id v.type = 'vertex' elif tokens[0] == 'EDGE2': toroformat = True v1 = vindex[int(tokens[1])] v2 = vindex[int(tokens[2])] # create the edge e = self.graph.add_edge(v1, v2) # create the edge data as a structure # X Y T # 3 4 5 e.mean = [float(x) for x in tokens[3:6]] # IXX IXY IXT IYY IYT ITT # 6 7 8 9 10 11 info = np.array([float(x) for x in tokens[6:12]]) e.info = np.reshape(info[toro], (3,3)) elif tokens[0] == 'ROBOTLASER1': if not laser: continue # laser records are associated with the immediately preceding VERTEX record # not quite sure what all the fields are # 1 ? # 2 min scan angle # 3 scan range # 4 angular increment # 5 maximum range possible # 6 ? # 7 ? # 8 N = number of beams # 9 to 9+N laser range data # 9+N+1 ? # 9+N+2 ? # 9+N+3 ? # 9+N+4 ? # 9+N+5 ? # 9+N+6 ? # 9+N+7 ? # 9+N+8 ? # 9+N+9 ? # 9+N+10 ? # 9+N+11 ? # 9+N+12 timestamp (*nix timestamp) # 9+N+13 laser type (str) # 9+N+14 ? if firstlaser: nbeams = int(tokens[8]) lasermeta = tokens[2:6] firstlaser = False v.theta = np.arange(0, nbeams) * float(tokens[4]) + float(tokens[2]) v.range = np.array([float(x) for x in tokens[9:nbeams+9]]) v.time = float(tokens[21+nbeams]) nlaser+= 1 else: raise RuntimeError(f"Unexpected line {line} in {filename}") if toroformat: print(f"loaded TORO/LAGO format file: {self.graph.n} nodes, {self.graph.ne} edges") else: print(f"loaded g2o format file: {self.graph.n} nodes, {self.graph.ne} edges") if nlaser > 0: lasermeta = [float(x) for x in lasermeta] self._angmin = lasermeta[0] self._angmax = sum(lasermeta[0:2]) self._maxrange = lasermeta[3] fov = np.degrees([self._angmin, self._angmax]) print(f" {nlaser} laser scans: {nbeams} beams, fov {fov[0]:.1f}° to {fov[1]:.1f}°, max range {self._maxrange}") self.vindex = vindex def scan(self, i): v = self.vindex[i] return v.range, v.theta def scanxy(self, i): v = self.vindex[i] range, theta = self.scan(i) x = range *
np.cos(theta)
numpy.cos
""" This module contains our thermodynamic calculations. Calculation of pressure, fugacity coefficient, and max density are handled by an Eos object so that these functions can be used with any EOS. The thermodynamics module contains a series of wrapper to handle the inputs and outputs of these functions. """ import numpy as np from scipy import interpolate import scipy.optimize as spo from scipy.ndimage.filters import gaussian_filter1d import copy import logging import despasito.utils.general_toolbox as gtb from despasito import fundamental_constants as constants import despasito.utils.general_toolbox as gtb logger = logging.getLogger(__name__) def pressure_vs_volume_arrays( T, xi, Eos, min_density_fraction=(1.0 / 500000.0), density_increment=5.0, max_volume_increment=1.0e-4, pressure_min=100, maxiter=25, multfactor=2, extended_npts=20, max_density=None, density_max_opts={}, **kwargs ): r""" Output arrays with specific volume and pressure arrays calculated from the given EOS. This function is fundamental to every calculation, the options of which are passed through higher level calculation with the keyword variable ``density_opts``. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. min_density_fraction : float, Optional, default=(1.0/500000.0) Fraction of the maximum density used to calculate, and is equal to, the minimum density of the density array. The minimum density is the reciprocal of the maximum specific volume used to calculate the roots. density_increment : float, Optional, default=5.0 The increment between density values in the density array. max_volume_increment : float, Optional, default=1.0E-4 Maximum increment between specific volume array values. After conversion from density to specific volume, the increment values are compared to this value. pressure_min : float, Optional, default=100 Ensure pressure curve reaches down to this value multfactor : int, Optional, default=2 Multiplication factor to extend range extended_npts : int, Optional, default=20 Number of points in extended range maxiter : int, Optional, default=25 Number of times to multiply range by to obtain full pressure vs. specific volume curve max_density : float, Optional, default=None [mol/:math:`m^3`] Maximum molar density defined, if default of None is used then the Eos object method, density_max is used. density_max_opts : dict, Optional, default={} Keyword arguments for density_max method for EOS object Returns ------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_arrays' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.any(np.isnan(xi)): raise ValueError("Given mole fractions are NaN") if isinstance(xi, list): xi = np.array(xi) # estimate the maximum density based on the hard sphere packing fraction, part of EOS if not max_density: max_density = Eos.density_max(xi, T, **density_max_opts) elif gtb.isiterable(max_density): logger.error( " Maxrho should be type float. Given value: {}".format(max_density) ) max_density = max_density[0] if max_density > 1e5: raise ValueError( "Max density of {} mol/m^3 is not feasible, check parameters.".format( max_density ) ) # min rho is a fraction of max rho, such that minrho << rhogassat minrho = max_density * min_density_fraction # list of densities for P,rho and P,v if (max_density - minrho) < density_increment: raise ValueError( "Density range, {}, is less than increment, {}. Check parameters used in Eos.density_max().".format( (max_density - minrho), density_increment ) ) rholist = np.arange(minrho, max_density, density_increment) # check rholist to see when the spacing vspace = (1.0 / rholist[:-1]) - (1.0 / rholist[1:]) if np.amax(vspace) > max_volume_increment: vspaceswitch = np.where(vspace > max_volume_increment)[0][-1] rholist_2 = ( 1.0 / np.arange( 1.0 / rholist[vspaceswitch + 1], 1.0 / minrho, max_volume_increment )[::-1] ) rholist = np.append(rholist_2, rholist[vspaceswitch + 2 :]) # compute Pressures (Plist) for rholist Plist = Eos.pressure(rholist, T, xi) # Make sure enough of the pressure curve is obtained for i in range(maxiter): if Plist[0] > pressure_min: rhotmp = np.linspace(rholist[0] / 2, rholist[0], extended_npts)[:-1] Ptmp = Eos.pressure(rhotmp, T, xi) Plist = np.append(Ptmp, Plist) rholist = np.append(rhotmp, rholist) else: break # Flip Plist and rholist arrays Plist = Plist[:][::-1] rholist = rholist[:][::-1] vlist = 1.0 / rholist return vlist, Plist def pressure_vs_volume_spline(vlist, Plist): r""" Fit arrays of specific volume and pressure values to a cubic Univariate Spline. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Returns ------- Pvspline : obj Function object of pressure vs. specific volume roots : list List of specific volume roots. Subtract a system pressure from the output of Pvsrho to find density of vapor and/or liquid densities. extrema : list List of specific volume values corresponding to local minima and maxima. """ # Larger sigma value Psmoothed = gaussian_filter1d(Plist, sigma=1.0e-2) Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed) roots = Pvspline.roots().tolist() Pvspline = interpolate.InterpolatedUnivariateSpline(vlist, Psmoothed, k=4) extrema = Pvspline.derivative().roots().tolist() if extrema: if len(extrema) > 2: extrema = extrema[0:2] # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if np.any(np.isnan(Plist)): roots = [np.nan] return Pvspline, roots, extrema def pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=[], **kwargs): r""" Plot pressure vs. specific volume. Parameters ---------- vlist : numpy.ndarray [:math:`m^3`/mol] Specific volume array. Plist : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition Pvspline : obj Function object of pressure vs. specific volume markers : list, Optional, default=[] List of plot markers used in plot """ if len(kwargs) > 0: logger.debug( " 'pressure_vs_volume_plot' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) try: import matplotlib.pyplot as plt plt.figure(1) plt.plot(vlist, Plist, label="Orig.") plt.plot(vlist, Pvspline(vlist), label="Smoothed") plt.plot([vlist[0], vlist[-1]], [0, 0], "k") for k in range(len(markers)): plt.plot([markers[k], markers[k]], [min(Plist), max(Plist)], "k") plt.xlabel("Specific Volume [$m^3$/mol]"), plt.ylabel("Pressure [Pa]") # plt.ylim(min(Plist)/2,np.abs(min(Plist))/2) plt.legend(loc="best") plt.tight_layout() plt.show() except Exception: logger.error("Matplotlib package is not installed, could not plot") def calc_saturation_properties( T, xi, Eos, density_opts={}, tol=1e-6, Pconverged=1, **kwargs ): r""" Computes the saturated pressure, gas and liquid densities for a single component system. Parameters ---------- T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` tol : float, Optional, default=1e-6 Tolerance to accept pressure value Pconverged : float, Optional, default=1.0 If the pressure is negative (under tension), we search from a value just above vacuum Returns ------- Psat : float [Pa] Saturation pressure given system information rhov : float [mol/:math:`m^3`] Density of vapor at saturation pressure rhol : float [mol/:math:`m^3`] Density of liquid at saturation pressure """ if len(kwargs) > 0: logger.debug( " 'calc_saturation_properties' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.count_nonzero(xi) != 1: if np.count_nonzero(xi > 0.1) != 1: raise ValueError( "Multiple components have compositions greater than 10%, check code for source" ) else: ind = np.where((xi > 0.1) == True)[0] raise ValueError( "Multiple components have compositions greater than 0. Do you mean to obtain the saturation pressure of {} with a mole fraction of {}?".format( Eos.beads[ind], xi[ind] ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) if not extrema or len(extrema) < 2 or np.any(np.isnan(roots)): logger.warning(" The component is above its critical point") Psat, rhol, rhov = np.nan, np.nan, np.nan else: ind_Pmin1 = np.argwhere(np.diff(Plist) > 0)[0][0] ind_Pmax1 = np.argmax(Plist[ind_Pmin1:]) + ind_Pmin1 Pmaxsearch = Plist[ind_Pmax1] Pminsearch = max(Pconverged, np.amin(Plist[ind_Pmin1:ind_Pmax1])) # Using computed Psat find the roots in the maxwell construction to give liquid (first root) and vapor (last root) densities Psat = spo.minimize_scalar( objective_saturation_pressure, args=(Plist, vlist), bounds=(Pminsearch, Pmaxsearch), method="bounded", ) Psat = Psat.x obj_value = objective_saturation_pressure(Psat, Plist, vlist) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist - Psat) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) if obj_value < tol: logger.debug( " Psat found: {} Pa, obj value: {}, with {} roots and {} extrema".format( Psat, obj_value, np.size(roots), np.size(extrema) ) ) if len(roots) == 2: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:] - Psat, 1) vroot = -yroot / slope if vroot < 0.0: vroot = np.finfo(float).eps rho_tmp = spo.minimize( pressure_spline_error, 1.0 / vroot, args=(Psat, T, xi, Eos), bounds=[(1.0 / (vroot * 1e2), 1.0 / (1.1 * roots[-1]))], ) roots = np.append(roots, [1.0 / rho_tmp.x]) rhol = 1.0 / roots[0] rhov = 1.0 / roots[2] else: logger.warning( " Psat NOT found: {} Pa, obj value: {}, consider decreasing 'pressure_min' option in density_opts".format( Psat, obj_value ) ) Psat, rhol, rhov = np.nan, np.nan, np.nan tmpv, _, _ = calc_vapor_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) tmpl, _, _ = calc_liquid_fugacity_coefficient( Psat, T, xi, Eos, density_opts=density_opts ) logger.debug(" phiv: {}, phil: {}".format(tmpv, tmpl)) return Psat, rhol, rhov def objective_saturation_pressure(shift, Pv, vlist): r""" Objective function used to calculate the saturation pressure. Parameters ---------- shift : float [Pa] Guess in Psat value used to translate the pressure vs. specific volume curve Pv : numpy.ndarray [Pa] Pressure associated with specific volume of system with given temperature and composition vlist : numpy.ndarray [mol/:math:`m^3`] Specific volume array. Length depends on values in density_opts passed to :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- obj_value : float Output of objective function, the addition of the positive area between first two roots, and negative area between second and third roots, quantity squared. """ Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Pv - shift) if len(roots) >= 3: a = Pvspline.integral(roots[0], roots[1]) b = Pvspline.integral(roots[1], roots[2]) elif len(roots) == 2: a = Pvspline.integral(roots[0], roots[1]) # If the curve hasn't decayed to 0 yet, estimate the remaining area as a triangle. This isn't super accurate but we are just using the saturation pressure to get started. slope, yroot = np.polyfit(vlist[-4:], Pv[-4:] - shift, 1) b = ( Pvspline.integral(roots[1], vlist[-1]) + (Pv[-1] - shift) * (-yroot / slope - vlist[-1]) / 2 ) # raise ValueError("Pressure curve only has two roots. If the curve hasn't fully decayed, either increase maximum specific volume or decrease 'pressure_min' in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays`.") elif np.any(np.isnan(roots)): raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing pressure." ) else: raise ValueError( "Pressure curve without cubic properties has wrongly been accepted. Try decreasing min_density_fraction" ) # pressure_vs_volume_plot(vlist, Pv-shift, Pvspline, markers=extrema) return (a + b) ** 2 def calc_vapor_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes vapor density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhov: P {} Pa, roots {} m^3/mol".format(P, roots)) flag_NoOpt = False l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]) < 0: try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vlist[0], args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: logger.warning( " Flag 3: The T and yi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) flag = 3 rho_tmp = np.nan elif l_roots == 1: if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and yi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) elif l_roots == 2: if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and yi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and yi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: # 3 roots logger.debug( " Flag 0: This T and yi, {} {}, combination produces a vapor at this pressure.".format( T, xi ) ) rho_tmp = 1.0 / roots[2] flag = 0 if flag in [0, 2]: # vapor or critical fluid tmp = [rho_tmp * 0.99, rho_tmp * 1.01] if rho_tmp * 1.01 > Eos.density_max(xi, T, maxpack=0.99): tmp[1] = Eos.density_max(xi, T, maxpack=0.99) if ( pressure_spline_error(tmp[0], P, T, xi, Eos) * pressure_spline_error(tmp[1], P, T, xi, Eos) ) < 0: rho_tmp = spo.brentq( pressure_spline_error, tmp[0], tmp[1], args=(P, T, xi, Eos), rtol=0.0000001, ) else: if Plist[0] < 0: logger.warning( " Density value could not be bounded with (rhomin,rhomax), {}. Using approximate density value".format( tmp ) ) elif not flag_NoOpt: rho_tmp = spo.least_squares( pressure_spline_error, rho_tmp, args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x logger.debug(" Vapor Density: {} mol/m^3, flag {}".format(rho_tmp, flag)) # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) # Flag: 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas return rho_tmp, flag def calc_liquid_density(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes liquid density under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- rhol : float [mol/:math:`m^3`] Density of liquid at system pressure flag : int A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true """ if len(kwargs) > 0: logger.debug( " 'calc_liquid_density' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) # Get roots and local minima and maxima vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Plist = Plist - P Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) logger.debug(" Find rhol: P {} Pa, roots {} m^3/mol".format(P, str(roots))) flag_NoOpt = False if extrema: if len(extrema) == 1: logger.warning( " One extrema at {}, assume weird minima behavior. Check your parameters.".format( 1 / extrema[0] ) ) # Assess roots, what is the liquid density l_roots = len(roots) if np.any(np.isnan(roots)): rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( T, xi ) ) elif l_roots == 0: if Pvspline(1 / vlist[-1]): try: bounds = (1 / vlist[0], Eos.density_max(xi, T, maxpack=0.99)) rho_tmp = spo.least_squares( pressure_spline_error, np.mean(bounds), args=(P, T, xi, Eos), bounds=bounds, ) rho_tmp = rho_tmp.x if not len(extrema): flag = 2 logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: flag = 1 logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) except Exception: rho_tmp = np.nan flag = 3 logger.warning( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure, without density greater than max, {}".format( T, xi, Eos.density_max(xi, T, maxpack=0.99) ) ) flag_NoOpt = True elif min(Plist) + P > 0: slope, yroot = np.polyfit(vlist[-4:], Plist[-4:], 1) vroot = -yroot / slope try: rho_tmp = spo.least_squares( pressure_spline_error, 1.0 / vroot, args=(P, T, xi, Eos), bounds=(np.finfo("float").eps, 1.0 / (1.1 * roots[-1])), ) rho_tmp = rho_tmp.x flag = 0 except Exception: rho_tmp = np.nan flag = 4 if not len(extrema): logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) else: logger.debug( " Flag 0: This T and xi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: flag = 3 logger.error( " Flag 3: The T and xi, {} {}, won't produce a fluid (vapor or liquid) at this pressure".format( str(T), str(xi) ) ) rho_tmp = np.nan # pressure_vs_volume_plot(vlist, Plist, Pvspline, markers=extrema) elif l_roots == 2: # 2 roots if (Pvspline(roots[0]) + P) < 0.0: flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: This T and xi, {} {}, combination produces a liquid under tension at this pressure".format( T, xi ) ) else: # There should be three roots, but the values of specific volume don't go far enough to pick up the last one flag = 1 rho_tmp = 1.0 / roots[0] elif l_roots == 1: # 1 root if not len(extrema): flag = 2 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 2: The T and xi, {} {}, combination produces a critical fluid at this pressure".format( T, xi ) ) elif (Pvspline(roots[0]) + P) > (Pvspline(max(extrema)) + P): flag = 1 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) elif len(extrema) > 1: flag = 0 rho_tmp = 1.0 / roots[0] logger.debug( " Flag 0: This T and xi, {} {}, combination produces a vapor at this pressure. Warning! approaching critical fluid".format( T, xi ) ) else: # 3 roots rho_tmp = 1.0 / roots[0] flag = 1 logger.debug( " Flag 1: The T and xi, {} {}, combination produces a liquid at this pressure".format( T, xi ) ) if flag in [1, 2]: # liquid or critical fluid tmp = [rho_tmp * 0.99, rho_tmp * 1.01] P_tmp = [ pressure_spline_error(tmp[0], P, T, xi, Eos), pressure_spline_error(tmp[1], P, T, xi, Eos), ] if (P_tmp[0] * P_tmp[1]) < 0: rho_tmp = spo.brentq( pressure_spline_error, tmp[0], tmp[1], args=(P, T, xi, Eos), rtol=1e-7 ) else: if P_tmp[0] < 0: logger.warning( " Density value could not be bounded with (rhomin,rhomax), {}. Using approximate density value".format( tmp ) ) elif not flag_NoOpt: rho_tmp = spo.least_squares( pressure_spline_error, rho_tmp, args=(P, T, xi, Eos), bounds=( np.finfo("float").eps, Eos.density_max(xi, T, maxpack=0.99), ), ) rho_tmp = rho_tmp.x[0] logger.debug(" Liquid Density: {} mol/m^3, flag {}".format(rho_tmp, flag)) # Flag: 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true return rho_tmp, flag def pressure_spline_error(rho, Pset, T, xi, Eos): """ Calculate difference between set point pressure and computed pressure for a given density. Used to ensure an accurate value from the EOS rather than an estimate from a spline. Parameters ---------- rho : float [mol/:math:`m^3`] Density of system Pset : float [Pa] Guess in pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. Returns ------- pressure_spline_error : float [Pa] Difference in set pressure and predicted pressure given system conditions. """ Pguess = Eos.pressure(rho, T, xi) return Pguess - Pset def calc_vapor_fugacity_coefficient(P, T, yi, Eos, density_opts={}, **kwargs): r""" Computes vapor fugacity coefficient under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system yi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- phiv : float Fugacity coefficient of vapor at system pressure rhov : float [mol/:math:`m^3`] Density of vapor at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if len(kwargs) > 0: logger.debug( " 'calc_vapor_fugacity_coefficient' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) rhov, flagv = calc_vapor_density(P, T, yi, Eos, density_opts) if flagv == 4: phiv = np.ones_like(yi) rhov = 0.0 logger.info(" rhov set to 0.") elif flagv == 3: phiv = np.array([np.nan, np.nan]) else: phiv = Eos.fugacity_coefficient(P, rhov, yi, T) return phiv, rhov, flagv def calc_liquid_fugacity_coefficient(P, T, xi, Eos, density_opts={}, **kwargs): r""" Computes liquid fugacity coefficient under system conditions. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system xi : numpy.ndarray Mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- phil : float Fugacity coefficient of liquid at system pressure rhol : float [mol/:math:`m^3`] Density of liquid at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true. """ if len(kwargs) > 0: logger.debug( " 'calc_liquid_fugacity_coefficient' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) rhol, flagl = calc_liquid_density(P, T, xi, Eos, density_opts) if flagl == 3: phil = np.array([np.nan, np.nan]) else: phil = Eos.fugacity_coefficient(P, rhol, xi, T) return phil, rhol, flagl def calc_new_mole_fractions(phase_1_mole_fraction, phil, phiv, phase=None): r""" Calculate the alternative phase composition given the composition and fugacity coefficients of one phase, and the fugacity coefficients of the target phase. Parameters ---------- phase_1_mole_fraction : numpy.ndarray Mole fraction of each component, sum(mole fraction) must equal 1.0 phil : float Fugacity coefficient of liquid at system pressure phiv : float Fugacity coefficient of vapor at system pressure phase : str, default=None Use either 'vapor' or 'liquid' to define the mole fraction **being computed**. Default is None and it will fail to ensure the user specifies the correct phase Returns ------- phase_2_mole_fraction : numpy.ndarray Mole fraction of each component computed from fugacity coefficients, sum(xi) should equal 1.0 when the solution is found, but the resulting values may not during an equilibrium calculation (e.g. bubble point). """ if phase == None or phase not in ["vapor", "liquid"]: raise ValueError( "The user must specify the desired mole fraction as either 'vapor' or 'liquid'." ) if np.sum(phase_1_mole_fraction) != 1.0: raise ValueError("Given mole fractions must add up to one.") if np.any(np.isnan(phiv)): raise ValueError("Vapor fugacity coefficients should not be NaN") if np.any(np.isnan(phil)): raise ValueError("Liquid fugacity coefficients should not be NaN") phase_2_mole_fraction = np.zeros(len(phase_1_mole_fraction)) ind = np.where(phase_1_mole_fraction != 0.0)[0] if phase == "vapor": for i in ind: phase_2_mole_fraction[i] = phase_1_mole_fraction[i] * phil[i] / phiv[i] elif phase == "liquid": for i in ind: phase_2_mole_fraction[i] = phase_1_mole_fraction[i] * phiv[i] / phil[i] return phase_2_mole_fraction def equilibrium_objective(phase_1_mole_fraction, phil, phiv, phase=None): r""" Computes the objective value used to determine equilibrium between phases. sum(phase_1_mole_fraction * phase_1_phi / phase_2_phi ) - 1.0, where `phase` is phase 2. Parameters ---------- phase_1_mole_fraction : numpy.ndarray Mole fraction of each component, sum(mole fraction) must equal 1.0 phil : float Fugacity coefficient of liquid at system pressure phiv : float Fugacity coefficient of vapor at system pressure phase : str, default=None Use either 'vapor' or 'liquid' to define the mole fraction **being computed**. Default is None and it will fail to ensure the user specifies the correct phase Returns ------- objective_value : numpy.ndarray Objective value indicating how close to equilibrium we are """ if phase == None or phase not in ["vapor", "liquid"]: raise ValueError( "The user must specify the desired mole fraction as either 'vapor' or 'liquid'." ) if np.sum(phase_1_mole_fraction) != 1.0: raise ValueError("Given mole fractions must add up to one.") if np.any(np.isnan(phiv)): raise ValueError("Vapor fugacity coefficients should not be NaN") if np.any(np.isnan(phil)): raise ValueError("Liquid fugacity coefficients should not be NaN") if phase == "vapor": objective_value = float((np.nansum(phase_1_mole_fraction * phil / phiv)) - 1.0) elif phase == "liquid": objective_value = float((np.nansum(phase_1_mole_fraction * phiv / phil)) - 1.0) return objective_value def _clean_plot_data(x_old, y_old): r""" Reorder array and remove duplicates, then repeat process for the corresponding array. Parameters ---------- x_old : numpy.ndarray Original independent variable y_old : numpy.ndarray Original dependent variable Returns ------- x_new : numpy.ndarray New independent variable y_new : numpy.ndarray New dependent variable """ x_new = np.sort(np.array(list(set(x_old)))) y_new = np.array([y_old[np.where(np.array(x_old) == x)[0][0]] for x in x_new]) return x_new, y_new def calc_Prange_xi( T, xi, yi, Eos, density_opts={}, Pmin=None, Pmax=None, maxiter=200, mole_fraction_options={}, ptol=1e-2, xytol=0.01, maxfactor=2, minfactor=0.5, Pmin_allowed=100, **kwargs ): r""" Obtain minimum and maximum pressure values for bubble point calculation. The liquid mole fraction is set and the objective function at each of those values is of opposite sign. Parameters ---------- T : float Temperature of the system [K] xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : float, Optional, default=200 Maximum number of iterations in both the loop to find Pmin and the loop to find Pmax Pmin : float, Optional, default=1000.0 [Pa] Minimum pressure in pressure range that restricts searched space. Pmax : float, Optional, default=100000 If no local minima or maxima are identified for the liquid composition at this temperature, this value is used as an initial estimate of the maximum pressure range. Pmin_allowed : float, Optional, default=100 Minimum allowed pressure in search, before looking for a super critical fluid mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm ptol : float, Optional, default=1e-2 If two iterations in the search for the maximum pressure are within this tolerance, the search is discontinued xytol : float, Optional, default=0.01 If the sum of absolute relative difference between the vapor and liquid mole fractions are less than this total, the pressure is assumed to be super critical and the maximum pressure is sought at a lower value. maxfactor : float, Optional, default=2 Factor to multiply by the pressure if it is too low (produces liquid or positive objective value). Not used if an unfeasible maximum pressure is found to bound the problem (critical for NaN result). minfactor : float, Optional, default=0.5 Factor to multiply by the minimum pressure if it is too high (produces critical value). Returns ------- Prange : list List of min and max pressure range Pguess : float An interpolated guess in the equilibrium pressure from Prange """ if len(kwargs) > 0: logger.debug( "'calc_Prange_xi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _yi_global # Guess a range from Pmin to the local max of the liquid curve vlist, Plist = pressure_vs_volume_arrays(T, xi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) flag_hard_min = False if Pmin != None: flag_hard_min = True if gtb.isiterable(Pmin): Pmin = Pmin[0] elif len(extrema): Pmin = min(Pvspline(extrema)) if Pmin < 0: Pmin = 1e3 else: Pmin = 1e3 flag_hard_max = False if Pmax != None: flag_hard_max = True if gtb.isiterable(Pmax): Pmax = Pmax[0] elif len(extrema): Pmax = max(Pvspline(extrema)) else: Pmax = 1e5 if Pmax < Pmin: Pmax = Pmin * maxfactor Prange = np.array([Pmin, Pmax]) #################### Find Minimum Pressure and Objective Function Value ############### # Root of min from liquid curve is absolute minimum ObjRange = np.zeros(2) yi_range = yi flag_max = False flag_min = False flag_critical = False flag_liquid = False flag_vapor = False p = Prange[0] for z in range(maxiter): # Liquid properties phil, rhol, flagl = calc_liquid_fugacity_coefficient( p, T, xi, Eos, density_opts=density_opts ) if any(np.isnan(phil)): logger.error("Estimated minimum pressure is too high.") flag_max = True flag_liquid = True ObjRange[1] = np.inf Prange[1] = p if flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = minfactor * p if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan continue if flagl in [1, 2]: # 'liquid' phase is as expected # Calculate vapor phase properties and obj value yi_range, phiv_min, flagv_min = calc_vapor_composition( yi_range, xi, phil, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(xi, phil, phiv_min, phase="vapor") if np.any(np.isnan(yi_range)): logger.info("Estimated minimum pressure produces NaN") flag_max = True flag_liquid = True Prange[1] = p ObjRange[1] = obj phiv_max, flagv_max = phiv_min, flagv_min p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] # If within tolerance of liquid mole fraction elif np.sum(np.abs(xi - yi_range) / xi) < xytol and flagv_min == 2: logger.info( "Estimated minimum pressure reproduces xi: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if ( flag_max or flag_hard_max ) and flag_liquid: # If a liquid phase exists at a higher pressure, this must bound the lower pressure flag_min = True ObjRange[0] = obj Prange[0] = p p = (Prange[1] - Prange[0]) / 2 + Prange[0] if np.abs(Prange[1] - Prange[0]) < ptol: flag_critical = True flag_max = False ObjRange = [np.inf, np.inf] Prange = [Pmin, Pmax] if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * Pmin if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan elif ( flag_min or flag_hard_min ) and flag_vapor: # If the 'liquid' phase is vapor at a lower pressure, this must bound the upper pressure flag_max = True ObjRange[1] = obj Prange[1] = p phiv_max, flagv_max = phiv_min, flagv_min p = (Prange[1] - Prange[0]) / 2 + Prange[0] elif ( flag_critical ): # Couldn't find phase by lowering pressure, now raise it ObjRange[0] = obj Prange[0] = p if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * p if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: flag_max = True ObjRange[1] = obj Prange[1] = p phiv_max, flagv_max = phiv_min, flagv_min if flag_hard_min: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = minfactor * p if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan if p < Pmin_allowed: # Less than a kPa and can't find phase, go up flag_critical = True flag_max = False ObjRange = [np.inf, np.inf] Prange = [Pmin, Pmax] if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * Pmin if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan # If 'vapor' phase is liquid or unattainable elif flagv_min not in [0, 2, 4]: logger.info( "Estimated minimum pressure produces liquid: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if flag_hard_min and p <= Pmin: flag_critical = True if flag_max: flag_max = False flag_liquid = True if flag_critical: # Looking for a super critical fluid Prange[0] = p ObjRange[0] = obj flag_min = True if flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * maxfactor if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: # Looking for a vapor Prange[1] = p ObjRange[1] = obj flag_max = True phiv_max, flagv_max = phiv_min, flagv_min if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan # Found minimum pressure! elif obj > 0: logger.info( "Found estimated minimum pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) Prange[0] = p ObjRange[0] = obj break elif obj < 0: logger.info( "Estimated minimum pressure too high: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) flag_liquid = True flag_max = True ObjRange[1] = obj Prange[1] = p phiv_max, flagv_max = phiv_min, flagv_min if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan else: raise ValueError( "This shouldn't happen: xi {}, phil {}, flagl {}, yi {}, phiv {}, flagv {}, obj {}, flags: {} {} {}".format( xi, phil, flagl, yi_range, phiv_min, flagv_min, obj, flag_min, flag_max, flag_critical, ) ) else: logger.info( "Estimated minimum pressure produced vapor as a 'liquid' phase: {}, Range {}".format( p, Prange ) ) flag_vapor = True flag_min = True Prange[0] = p ObjRange[0] = np.nan if flag_max or flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = maxfactor * Prange[0] if ( (flag_hard_min or flag_min) and (flag_hard_max or flag_max) and (p < Prange[0] or p > Prange[1]) ): # if (p < Prange[0] and Prange[0] != Prange[1]) or (flag_max and p > Prange[1]): p = (Prange[1] - Prange[0]) / 1 + Prange[0] if p <= 0.0: raise ValueError( "Pressure, {}, cannot be equal to or less than zero. Given composition, {}, and T {}".format( p, xi, T ) ) if flag_hard_min and Pmin == p: raise ValueError( "In searching for the minimum pressure, the range {}, converged without a solution".format( Prange ) ) if z == maxiter - 1: raise ValueError( "Maximum Number of Iterations Reached: Proper minimum pressure for liquid density could not be found" ) # A flag value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means we should assume ideal gas #################### Find Maximum Pressure and Objective Function Value ############### # Be sure guess in upper bound is larger than lower bound if Prange[1] <= Prange[0]: Prange[1] = Prange[0] * maxfactor ObjRange[1] == 0.0 flag_min = ( False ) # Signals that the objective value starts to increase again and we must go back p = Prange[1] Parray = [Prange[1]] ObjArray = [ObjRange[1]] for z in range(maxiter): # Liquid properties phil, rhol, flagl = calc_liquid_fugacity_coefficient( p, T, xi, Eos, density_opts=density_opts ) if any(np.isnan(phil)): logger.info( "Liquid fugacity coefficient should not be NaN, pressure could be too high." ) flag_max = True Prange[1] = p ObjRange[1] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] continue # Calculate vapor phase properties and obj value yi_range, phiv_max, flagv_max = calc_vapor_composition( yi_range, xi, phil, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(xi, phil, phiv_max, phase="vapor") # If 'vapor' phase is a liquid if flagv_max not in [0, 2, 4] or np.any(np.isnan(yi_range)): logger.info( "New Maximum Pressure: {} isn't vapor, flag={}, Obj Func: {}, Range {}".format( p, flagv_max, obj, Prange ) ) if flag_critical: # looking for critical fluid Prange[0] = p ObjRange[0] = obj if flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * maxfactor if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: # Looking for vapor phase flag_max = True Prange[1] = p ObjRange[1] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] # If 'liquid' composition is reproduced elif np.sum(np.abs(xi - yi_range) / xi) < xytol: # If less than 2% logger.info( "Estimated Maximum Pressure Reproduces xi: {}, Obj. Func: {}".format( p, obj ) ) flag_max = True ObjRange[1] = obj Prange[1] = p p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] # Suitable objective value found elif obj < 0: logger.info( "New Max Pressure: {}, flag={}, Obj Func: {}, Range {}".format( p, flagv_max, obj, Prange ) ) if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_min = False break else: Parray.append(p) ObjArray.append(obj) # In an objective value "well" if (z > 0 and ObjArray[-1] > 1.1 * ObjArray[-2]) or flag_min: if not flag_min: flag_min = True Prange[1] = p ObjRange[1] = obj logger.info( "Maximum Pressure (if it exists) between Pressure: {} and Obj Range: {}".format( Prange, ObjRange ) ) P0 = np.mean(Prange) scale_factor = 10 ** (np.ceil(np.log10(P0))) args = (xi, T, Eos, density_opts, mole_fraction_options, scale_factor) p = gtb.solve_root( lambda x, xi, T, Eos, density_opts, mole_fraction_options, scale_factor: objective_bubble_pressure( x * scale_factor, xi, T, Eos, density_opts, mole_fraction_options, ), args=args, x0=P0 / scale_factor, method="TNC", bounds=Prange / scale_factor, ) p = p[0] * scale_factor obj = objective_bubble_pressure( p, xi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if p < 0: parray = np.linspace(Prange[0], Prange[1], 20) obj_array = [] for ptmp in parray: obj_tmp = objective_dew_pressure( ptmp, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) obj_array.append(obj_tmp) spline = interpolate.Akima1DInterpolator(parray, obj_array) p_min = spline.derivative().roots() if len(p_min) > 1: obj_tmp = [] for p_min_tmp in p_min: obj_tmp.append( objective_bubble_pressure( p_min_tmp, xi, T, Eos, density_opts=density_opts ) ) p_min = p_min[obj_tmp == np.nanmin(obj_tmp)] elif len(p_min) == 0: logger.error( "Could not find minimum in pressure range:\n Pressure: {}\n Obj Value: {}".format( parray, obj_array ) ) p = p_min obj = objective_bubble_pressure( p, xi, T, Eos, density_opts=density_opts ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if obj > 0: Prange[1] = p ObjRange[1] = obj logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_min = False else: logger.error( "Could not find maximum in pressure range:\n Pressure range {} best {}\n Obj Value range {} best {}".format( Prange, p, ObjRange, obj ) ) break elif flag_max: logger.info( "New Minimum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) Prange[0] = p ObjRange[0] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: logger.info( "New Maximum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if not flag_hard_max: if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] if flag_hard_max: p = (Prange[1] - Prange[0]) * np.random.rand(1)[0] + Prange[0] else: p = np.nanmax([-intercept / slope, maxfactor * Prange[1]]) if p <= 0.0: raise ValueError( "Pressure, {}, cannot be equal to or less than zero. Given composition, {}, and T {}".format( p, xi, T ) ) if np.abs(Prange[1] - Prange[0]) < ptol: raise ValueError( "In searching for the minimum pressure, the range {}, converged without a solution".format( Prange ) ) if z == maxiter - 1 or flag_min: if flag_min: logger.error( "Cannot reach objective value of zero. Final Pressure: {}, Obj. Func: {}".format( p, obj ) ) else: logger.error( "Maximum Number of Iterations Reached: A change in sign for the objective function could not be found, inspect progress" ) Prange = np.array([np.nan, np.nan]) Pguess = np.nan else: logger.info( "[Pmin, Pmax]: {}, Obj. Values: {}".format(str(Prange), str(ObjRange)) ) logger.info("Initial guess in pressure: {} Pa".format(Pguess)) _yi_global = yi_range return Prange, Pguess def calc_Prange_yi( T, xi, yi, Eos, density_opts={}, mole_fraction_options={}, Pmin=None, Pmax=None, Pmin_allowed=100, maxiter=200, ptol=1e-2, xytol=0.01, maxfactor=2, minfactor=0.5, **kwargs ): r""" Obtain min and max pressure values. The vapor mole fraction is set and the objective function at each of those values is of opposite sign. Parameters ---------- T : float Temperature of the system [K] xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : float, Optional, default=200 Maximum number of iterations in both the loop to find Pmin and the loop to find Pmax Pmin : float, Optional, default=1000.0 [Pa] Minimum pressure in pressure range that restricts searched space. Used if local minimum isn't available for pressure curve for vapor composition. Pmax : float, Optional, default=100000 If no local minima or maxima are identified for the liquid composition at this temperature, this value is used as an initial estimate of the maximum pressure range. Pmin_allowed : float, Optional, default=100 Minimum allowed pressure in search, before looking for a super critical fluid mole_fraction_options : dict, Optional, default={} Options used to solve the inner loop in the solving algorithm ptol : float, Optional, default=1e-2 If two iterations in the search for the maximum pressure are within this tolerance, the search is discontinued xytol : float, Optional, default=0.01 If the sum of absolute relative difference between the vapor and liquid mole fractions are less than this total, the pressure is assumed to be super critical and the maximum pressure is sought at a lower value. maxfactor : float, Optional, default=2 Factor to multiply by the pressure if it is too low (produces liquid or positive objective value). Not used if an unfeasible maximum pressure is found to bound the problem (critical for NaN result). minfactor : float, Optional, default=0.5 Factor to multiply by the minimum pressure if it is too high (produces critical value). Returns ------- Prange : list List of min and max pressure range Pguess : float An interpolated guess in the equilibrium pressure from Prange """ if len(kwargs) > 0: logger.debug( "'calc_Prange_yi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) global _xi_global # Guess a range from Pmin to the local max of the liquid curve vlist, Plist = pressure_vs_volume_arrays(T, yi, Eos, **density_opts) Pvspline, roots, extrema = pressure_vs_volume_spline(vlist, Plist) # Calculation the highest pressure possible flag_hard_min = False if Pmin != None: flag_hard_min = True if gtb.isiterable(Pmin): Pmin = Pmin[0] elif len(extrema): Pmin = min(Pvspline(extrema)) if Pmin < 0: Pmin = 1e3 else: Pmin = 1e3 flag_hard_max = False if Pmax != None: flag_hard_max = True if gtb.isiterable(Pmax): Pmax = Pmax[0] elif len(extrema): Pmax = max(Pvspline(extrema)) else: Pmax = 1e5 if Pmax < Pmin: Pmax = Pmin * maxfactor Prange = np.array([Pmin, Pmax]) ObjRange = np.zeros(2) xi_range = xi #################### Find Minimum Pressure and Objective Function Value ############### flag_min = False flag_max = False flag_critical = False flag_vapor = False p = Prange[0] for z in range(maxiter): # Vapor properties phiv, _, flagv = calc_vapor_fugacity_coefficient( p, T, yi, Eos, density_opts=density_opts ) if any(np.isnan(phiv)): logger.error("Estimated minimum pressure is too high.") flag_max = True ObjRange[1] = np.inf Prange[1] = p if flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = minfactor * p if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan continue if flagv in [0, 2, 4]: # Calculate the liquid phase properties xi_range, phil_min, flagl_min = calc_liquid_composition( xi_range, yi, phiv, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(yi, phil_min, phiv, phase="liquid") if np.any(np.isnan(xi_range)): logger.info("Estimated Minimum Pressure produces NaN") flag_max = True flag_vapor = True Prange[1] = p ObjRange[1] = obj if flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor elif ( np.sum(np.abs(yi - xi_range) / yi) < xytol and flagl_min == 2 ): # If within 2% of liquid mole fraction logger.info( "Estimated Minimum Pressure Reproduces yi: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if ( flag_critical ): # Couldn't find phase by lowering pressure, now raise it ObjRange[0] = obj Prange[0] = p if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * p if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: flag_max = True ObjRange[1] = obj Prange[1] = p phil_max, flagl_max = phil_min, flagl_min if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = minfactor * p if p < Pmin_allowed: # Less than a kPa and can't find phase, go up flag_critical = True flag_max = False ObjRange = [np.inf, np.inf] Prange = [Pmin, Pmax] if flag_hard_max: p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: p = maxfactor * Pmin if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan elif obj < 0: Prange[0] = p ObjRange[0] = obj logger.info( "Obtained estimated Minimum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) break elif obj > 0: flag_max = True logger.info( "Estimated Minimum Pressure too High: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) ObjRange[1] = obj Prange[1] = p phil_max, flagl_max = phil_min, flagl_min p = (Prange[1] - Prange[0]) * minfactor + Prange[0] else: logger.info( "Estimated Minimum Pressure Produced Liquid instead of Vapor Phase: {}, Range {}".format( p, Prange ) ) if flag_hard_min and p <= Pmin: flag_critical = True if flag_max: flag_max = False if flag_critical: # Looking for a super critical fluid Prange[0] = p ObjRange[0] = obj flag_min = True if flag_hard_max: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * maxfactor if p > Prange[1]: Prange[1] = p ObjRange[1] = np.nan else: # Looking for a vapor Prange[1] = p ObjRange[1] = obj flag_max = True if flag_min or flag_hard_min: p = (Prange[1] - Prange[0]) / 2 + Prange[0] else: p = p * minfactor if p < Prange[0]: Prange[0] = p ObjRange[0] = np.nan if Prange[0] > Prange[1]: if flag_max and not flag_min and not flag_hard_min: Prange[0] = minfactor * Prange[1] ObjRange[0] = ObjRange[1] elif not flag_hard_max: Prange[1] = maxfactor * Prange[0] ObjRange[1] = ObjRange[0] else: raise ValueError("Pmin should never be greater than Pmax") if ( (flag_max or flag_hard_max) and (flag_min or flag_hard_min) and not Prange[0] <= p <= Prange[1] ): p = (Prange[1] - Prange[0]) * np.random.rand(1)[0] + Prange[0] if flag_hard_min and Pmin == p: raise ValueError( "In searching for the minimum pressure, the range {}, converged without a solution".format( Prange ) ) if p <= 0.0: raise ValueError( "Pressure, {}, cannot be equal to or less than zero. Given composition, {}, and T {}, results in a supercritical value without a coexistent fluid.".format( p, xi, T ) ) if z == maxiter - 1: raise ValueError( "Maximum Number of Iterations Reached: Proper minimum pressure for liquid density could not be found" ) # Be sure guess in pressure is larger than lower bound if Prange[1] <= Prange[0]: Prange[1] = Prange[0] * 1.1 if z == 0: ObjRange[1] == 0.0 ## Check Pmax flag_sol = False flag_vapor = False flag_min = False p = Prange[1] Parray = [Prange[1]] ObjArray = [ObjRange[1]] for z in range(maxiter): # Calculate objective value phiv, _, flagv = calc_vapor_fugacity_coefficient( p, T, yi, Eos, density_opts=density_opts ) xi_range, phil, flagl = calc_liquid_composition( xi_range, yi, phiv, p, T, Eos, density_opts=density_opts, **mole_fraction_options ) obj = equilibrium_objective(yi, phil, phiv, phase="liquid") if z == 0: ObjRange[1] = obj if flagv not in [0, 2, 4]: # Ensure vapor is produced flag_vapor = True Prange[1] = p ObjRange[1] = obj logger.info( "New Max Pressure: {} doesn't produce vapor, flag={}, Obj Func: {}, Range {}".format( Prange[1], flagv, ObjRange[1], Prange ) ) p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] elif obj > 0: # Check pressure range if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj logger.info( "New Max Pressure: {}, flag={}, Obj Func: {}, Range {}".format( Prange[1], flagv, ObjRange[1], Prange ) ) logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_sol = True flag_min = False break elif flag_vapor: Prange[0] = p ObjRange[0] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] logger.info( "New Max Pressure: {}, Obj. Func: {}, Range {}".format( Prange[0], ObjRange[0], Prange ) ) else: Parray.append(p) ObjArray.append(obj) # In an objective value "well" if (z > 0 and ObjArray[-1] < 1.1 * ObjArray[-2]) or flag_min: if not flag_min: flag_min = True Prange[1] = p ObjRange[1] = obj logger.info( "Maximum Pressure (if it exists) between Pressure: {} and Obj Range: {}".format( Prange, ObjRange ) ) P0 = np.mean(Prange) scale_factor = 10 ** (np.ceil(np.log10(P0))) args = (yi, T, Eos, density_opts, mole_fraction_options, scale_factor) p = gtb.solve_root( lambda x, yi, T, Eos, density_opts, mole_fraction_options, scale_factor: -objective_dew_pressure( x * scale_factor, yi, T, Eos, density_opts, mole_fraction_options, ), args=args, x0=P0 / scale_factor, method="TNC", bounds=Prange / scale_factor, ) p = p[0] * scale_factor obj = objective_dew_pressure( p, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if p < 0: parray = np.linspace(Prange[0], Prange[1], 20) obj_array = [] for ptmp in parray: obj_tmp = objective_dew_pressure( ptmp, yi, T, Eos, density_opts=density_opts, mole_fraction_options=mole_fraction_options, ) obj_array.append(obj_tmp) spline = interpolate.Akima1DInterpolator(parray, obj_array) p_min = spline.derivative().roots() if len(p_min) > 1: obj_tmp = [] for p_min_tmp in p_min: obj_tmp.append( objective_bubble_pressure( p_min_tmp, xi, T, Eos, density_opts=density_opts ) ) p_min = p_min[obj_tmp == np.nanmin(obj_tmp)] elif len(p_min) == 0: logger.error( "Could not find minimum in pressure range:\n Pressure: {}\n Obj Value: {}".format( parray, obj_array ) ) p = p_min obj = objective_bubble_pressure( p, xi, T, Eos, density_opts=density_opts ) logger.info( "New Max Pressure: {}, Obj Func: {}, Range {}".format( p, obj, Prange ) ) if obj > 0: Prange[1] = p ObjRange[1] = obj logger.info("Got the pressure range!") slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] Pguess = -intercept / slope flag_min = False else: logger.error( "Could not find maximum in pressure range:\n Pressure range {} best {}\n Obj Value range {} best {}".format( Prange, p, ObjRange, obj ) ) break elif flag_hard_max: logger.info( "New Minimum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) Prange[0] = p ObjRange[0] = obj p = (Prange[1] - Prange[0]) / 2.0 + Prange[0] else: logger.info( "New Maximum Pressure: {}, Obj. Func: {}, Range {}".format( p, obj, Prange ) ) if not flag_hard_max: if Prange[1] < p: Prange[0] = Prange[1] ObjRange[0] = ObjRange[1] Prange[1] = p ObjRange[1] = obj slope = (ObjRange[1] - ObjRange[0]) / (Prange[1] - Prange[0]) intercept = ObjRange[1] - slope * Prange[1] p = np.nanmax([-intercept / slope, maxfactor * Prange[1]]) if z == maxiter - 1 or flag_min: if flag_min: logger.error( "Cannot reach objective value of zero. Final Pressure: {}, Obj. Func: {}".format( p, obj ) ) else: logger.error( "Maximum Number of Iterations Reached: A change in sign for the objective function could not be found, inspect progress" ) Prange = np.array([np.nan, np.nan]) Pguess = np.nan elif flag_sol: logger.info( "[Pmin, Pmax]: {}, Obj. Values: {}".format(str(Prange), str(ObjRange)) ) logger.info("Initial guess in pressure: {} Pa".format(Pguess)) else: logger.error( "Maximum Number of Iterations Reached: A change in sign for the objective function could not be found, inspect progress" ) _xi_global = xi_range return Prange, Pguess def calc_vapor_composition( yi, xi, phil, P, T, Eos, density_opts={}, maxiter=50, tol=1e-6, tol_trivial=0.05, **kwargs ): r""" Find vapor mole fraction given pressure, liquid mole fraction, and temperature. Objective function is the sum of the predicted "mole numbers" predicted by the computed fugacity coefficients. Note that by "mole number" we mean that the prediction will only sum to one when the correct pressure is chosen in the outer loop. In this inner loop, we seek to find a mole fraction that is converged to reproduce itself in a prediction. If it hasn't, the new "mole numbers" are normalized into mole fractions and used as the next guess. In the case that a guess doesn't produce a gas or critical fluid, we use another function to produce a new guess. Parameters ---------- yi : numpy.ndarray Guess in vapor mole fraction of each component, sum(xi) should equal 1.0 xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 phil : float Fugacity coefficient of liquid at system pressure P : float [Pa] Pressure of the system T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : int, Optional, default=50 Maximum number of iteration for both the outer pressure and inner vapor mole fraction loops tol : float, Optional, default=1e-6 Tolerance in sum of predicted yi "mole numbers" tol_trivial : float, Optional, default=0.05 If the vapor and liquid mole fractions are within this tolerance, search for a different composition kwargs : NA, Optional Other other keyword arguments for :func:`~despasito.thermodynamics.calc.find_new_yi` Returns ------- yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 phiv : float Fugacity coefficient of vapor at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if np.any(np.isnan(phil)): raise ValueError( "Cannot obtain vapor mole fraction with fugacity coefficients of NaN" ) global _yi_global yi_total = [np.sum(yi)] yi /= np.sum(yi) flag_check_vapor = True # Make sure we only search for vapor compositions once flag_trivial_sol = ( True ) # Make sure we only try to find alternative to trivial solution once logger.info(" Solve yi: P {}, T {}, xi {}, phil {}".format(P, T, xi, phil)) for z in range(maxiter): yi_tmp = yi / np.sum(yi) # Try yi phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi_tmp, Eos, density_opts=density_opts ) if ( any(np.isnan(phiv)) or flagv == 1 ) and flag_check_vapor: # If vapor density doesn't exist flag_check_vapor = False if all(yi_tmp != 0.0) and len(yi_tmp) == 2: logger.debug(" Composition doesn't produce a vapor, let's find one!") yi_tmp = find_new_yi( P, T, phil, xi, Eos, density_opts=density_opts, **kwargs ) flag_trivial_sol = False if np.any(np.isnan(yi_tmp)): phiv, _, flagv = [np.nan, np.nan, 3] yinew = yi_tmp break else: phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi_tmp, Eos, density_opts=density_opts ) yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") else: logger.debug( " Composition doesn't produce a vapor, we need a function to search compositions for more than two components." ) yinew = yi elif np.sum(np.abs(xi - yi_tmp) / xi) < tol_trivial and flag_trivial_sol: flag_trivial_sol = False if all(yi_tmp != 0.0) and len(yi_tmp) == 2: logger.debug( " Composition produces trivial solution, let's find a different one!" ) yi_tmp = find_new_yi( P, T, phil, xi, Eos, density_opts=density_opts, **kwargs ) flag_check_vapor = False else: logger.debug( " Composition produces trivial solution, using random guess to reset" ) yi_tmp = np.random.rand(len(yi_tmp)) yi_tmp /= np.sum(yi_tmp) if np.any(np.isnan(yi_tmp)): phiv, _, flagv = [np.nan, np.nan, 3] yinew = yi_tmp break else: phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi_tmp, Eos, density_opts=density_opts ) yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") else: yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") yinew[np.isnan(yinew)] = 0.0 yi2 = yinew / np.sum(yinew) phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) if any(np.isnan(phiv)): phiv = np.nan logger.error( "Fugacity coefficient of vapor should not be NaN, pressure could be too high." ) # Check for bouncing between values if len(yi_total) > 3: tmp1 = np.abs(np.sum(yinew) - yi_total[-2]) + np.abs( yi_total[-1] - yi_total[-3] ) if tmp1 < np.abs(np.sum(yinew) - yi_total[-1]) and flagv != flagv2: logger.debug( " Composition bouncing between values, let's find the answer!" ) bounds = np.sort([yi_tmp[0], yi2[0]]) yi2, obj = bracket_bounding_yi( P, T, phil, xi, Eos, bounds=bounds, density_opts=density_opts ) phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) _yi_global = yi2 logger.info( " Inner Loop Final (from bracketing bouncing values) yi: {}, Final Error on Smallest Fraction: {}".format( yi2, obj ) ) break logger.debug( " yi guess {}, yi calc {}, phiv {}, flag {}".format( yi_tmp, yinew, phiv, flagv ) ) logger.debug( " Old yi_total: {}, New yi_total: {}, Change: {}".format( yi_total[-1], np.sum(yinew), np.sum(yinew) - yi_total[-1] ) ) # Check convergence if abs(np.sum(yinew) - yi_total[-1]) < tol: ind_tmp = np.where(yi_tmp == min(yi_tmp[yi_tmp > 0]))[0] if np.abs(yi2[ind_tmp] - yi_tmp[ind_tmp]) / yi_tmp[ind_tmp] < tol: _yi_global = yi2 logger.info( " Inner Loop Final yi: {}, Final Error on Smallest Fraction: {}%".format( yi2, np.abs(yi2[ind_tmp] - yi_tmp[ind_tmp]) / yi_tmp[ind_tmp] * 100, ) ) break if z < maxiter - 1: yi_total.append(np.sum(yinew)) yi = yinew ## If yi wasn't found in defined number of iterations ind_tmp = np.where(yi_tmp == min(yi_tmp[yi_tmp > 0.0]))[0] if flagv == 3: yi2 = yinew / np.sum(yinew) logger.info(" Could not converged mole fraction") phiv2 = np.full(len(yi_tmp), np.nan) flagv2 = np.nan elif z == maxiter - 1: yi2 = yinew / np.sum(yinew) tmp = np.abs(yi2[ind_tmp] - yi_tmp[ind_tmp]) / yi_tmp[ind_tmp] logger.warning( " More than {} iterations needed. Error in Smallest Fraction: {}%".format( maxiter, tmp * 100 ) ) if tmp > 0.1: # If difference is greater than 10% yinew = find_new_yi( P, T, phil, xi, Eos, density_opts=density_opts, **kwargs ) yi2 = yinew / np.sum(yinew) y1 = spo.least_squares( objective_find_yi, yi2[0], bounds=(0.0, 1.0), args=(P, T, phil, xi, Eos, density_opts), ) yi = y1.x[0] yi2 = np.array([yi, 1 - yi]) phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) obj = objective_find_yi(yi2, P, T, phil, xi, Eos, density_opts=density_opts) logger.warning( " Find yi with root algorithm, yi {}, obj {}".format(yi2, obj) ) if obj > tol: logger.error("Could not converge mole fraction") phiv2 = np.full(len(yi_tmp), np.nan) flagv2 = 3 return yi2, phiv2, flagv2 def calc_liquid_composition( xi, yi, phiv, P, T, Eos, density_opts={}, maxiter=20, tol=1e-6, tol_trivial=0.05, **kwargs ): r""" Find liquid mole fraction given pressure, vapor mole fraction, and temperature. Objective function is the sum of the predicted "mole numbers" predicted by the computed fugacity coefficients. Note that by "mole number" we mean that the prediction will only sum to one when the correct pressure is chosen in the outer loop. In this inner loop, we seek to find a mole fraction that is converged to reproduce itself in a prediction. If it hasn't, the new "mole numbers" are normalized into mole fractions and used as the next guess. In the case that a guess doesn't produce a liquid or critical fluid, we use another function to produce a new guess. Parameters ---------- xi : numpy.ndarray Guess in liquid mole fraction of each component, sum(xi) should equal 1.0 yi : numpy.ndarray Vapor mole fraction of each component, sum(xi) should equal 1.0 phiv : float Fugacity coefficient of liquid at system pressure P : float [Pa] Pressure of the system T : float [K] Temperature of the system Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` maxiter : int, Optional, default=20 Maximum number of iteration for both the outer pressure and inner vapor mole fraction loops tol : float, Optional, default=1e-6 Tolerance in sum of predicted xi "mole numbers" tol_trivial : float, Optional, default=0.05 If the vapor and liquid mole fractions are within this tolerance, search for a different composition kwargs : dict, Optional Optional keywords for :func:`~despasito.thermodynamics.calc.find_new_xi` Returns ------- xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 phil : float Fugacity coefficient of liquid at system pressure flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true """ global _xi_global if np.any(np.isnan(phiv)): raise ValueError( "Cannot obtain liquid mole fraction with fugacity coefficients of NaN" ) xi /= np.sum(xi) xi_total = [np.sum(xi)] flag_check_liquid = True # Make sure we only search for liquid compositions once flag_trivial_sol = ( True ) # Make sure we only try to find alternative to trivial solution once logger.info(" Solve xi: P {}, T {}, yi {}, phiv {}".format(P, T, yi, phiv)) for z in range(maxiter): xi_tmp = xi / np.sum(xi) # Try xi phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi_tmp, Eos, density_opts=density_opts ) if (any(np.isnan(phil)) or flagl in [0, 4]) and flag_check_liquid: flag_check_liquid = False if all(xi_tmp != 0.0) and len(xi_tmp) == 2: logger.debug( " Composition doesn't produce a liquid, let's find one!" ) xi_tmp = find_new_xi( P, T, phiv, yi, Eos, density_opts=density_opts, **kwargs ) flag_trivial_sol = False if np.any(np.isnan(xi_tmp)): phil, rhol, flagl = [np.nan, np.nan, 3] xinew = xi_tmp break else: phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi_tmp, Eos, density_opts=density_opts ) xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") else: logger.debug( " Composition doesn't produce a liquid, we need a function to search compositions for more than two components." ) xinew = xi elif np.sum(np.abs(yi - xi_tmp) / yi) < tol_trivial and flag_trivial_sol: flag_trivial_sol = False if all(xi_tmp != 0.0) and len(xi_tmp) == 2: logger.debug( " Composition produces trivial solution, let's find a different one!" ) xi_tmp = find_new_xi( P, T, phiv, yi, Eos, density_opts=density_opts, **kwargs ) flag_check_liquid = False else: logger.debug( " Composition produces trivial solution, using random guess to reset" ) xi_tmp = np.random.rand(len(xi_tmp)) xi_tmp /= np.sum(xi_tmp) if np.any(np.isnan(xi_tmp)): phil, rhol, flagl = [np.nan, np.nan, 3] xinew = xi_tmp break else: phil, rhol, flagl = calc_liquid_fugacity_coefficient( P, T, xi_tmp, Eos, density_opts=density_opts ) xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") else: xinew = calc_new_mole_fractions(yi, phil, phiv, phase="liquid") xinew[np.isnan(xinew)] = 0.0 logger.debug( " xi guess {}, xi calc {}, phil {}".format( xi_tmp, xinew / np.sum(xinew), phil ) ) logger.debug( " Old xi_total: {}, New xi_total: {}, Change: {}".format( xi_total[-1], np.sum(xinew), np.sum(xinew) - xi_total[-1] ) ) # Check convergence if abs(np.sum(xinew) - xi_total[-1]) < tol: ind_tmp = np.where(xi_tmp == min(xi_tmp[xi_tmp > 0]))[0] xi2 = xinew / np.sum(xinew) if np.abs(xi2[ind_tmp] - xi_tmp[ind_tmp]) / xi_tmp[ind_tmp] < tol: _xi_global = xi2 logger.info( " Inner Loop Final xi: {}, Final Error on Smallest Fraction: {}%".format( xi2, np.abs(xi2[ind_tmp] - xi_tmp[ind_tmp]) / xi_tmp[ind_tmp] * 100, ) ) break if z < maxiter - 1: xi_total.append(np.sum(xinew)) xi = xinew xi2 = xinew / np.sum(xinew) ind_tmp = np.where(xi_tmp == min(xi_tmp[xi_tmp > 0]))[0] if z == maxiter - 1: tmp = np.abs(xi2[ind_tmp] - xi_tmp[ind_tmp]) / xi_tmp[ind_tmp] logger.warning( " More than {} iterations needed. Error in Smallest Fraction: {} %%".format( maxiter, tmp * 100 ) ) if tmp > 0.1: # If difference is greater than 10% xinew = find_new_xi( P, T, phiv, yi, Eos, density_opts=density_opts, **kwargs ) xinew = spo.least_squares( objective_find_xi, xinew[0], bounds=(0.0, 1.0), args=(P, T, phiv, yi, Eos, density_opts), ) xi = xinew.x[0] xi_tmp = np.array([xi, 1 - xi]) obj = objective_find_xi(xi_tmp, P, T, phiv, yi, Eos, density_opts=density_opts) logger.warning( " Find xi with root algorithm, xi {}, obj {}".format(xi_tmp, obj) ) return xi_tmp, phil, flagl def find_new_yi( P, T, phil, xi, Eos, bounds=(0.01, 0.99), npoints=30, density_opts={}, **kwargs ): r""" Search vapor mole fraction combinations for a new estimate that produces a vapor density. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system phil : float Fugacity coefficient of liquid at system pressure xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. bounds : tuple, Optional, default=(0.01, 0.99) These bounds dictate the lower and upper boundary for the first component in a binary system. npoints : float, Optional, default=30 Number of points to test between the bounds. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 """ if len(kwargs) > 0: logger.debug( " 'find_new_yi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) yi_ext = np.linspace(bounds[0], bounds[1], npoints) # Guess for yi obj_ext = np.zeros(len(yi_ext)) flag_ext = np.zeros(len(yi_ext)) for i, yi in enumerate(yi_ext): yi = np.array([yi, 1 - yi]) obj, flagv = objective_find_yi( yi, P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) flag_ext[i] = flagv obj_ext[i] = obj tmp = np.count_nonzero(~np.isnan(obj_ext)) logger.debug(" Number of valid mole fractions: {}".format(tmp)) if tmp == 0: yi_final = np.nan obj_final = np.nan else: # Remove any NaN obj_tmp = obj_ext[~np.isnan(obj_ext)] yi_tmp = yi_ext[~np.isnan(obj_ext)] # Fit spline spline = interpolate.Akima1DInterpolator(yi_tmp, obj_tmp) yi_min = spline.derivative().roots() if len(yi_min) > 1: # Remove local maxima yi_concav = spline.derivative(nu=2)(yi_min) yi_min = [yi_min[i] for i in range(len(yi_min)) if yi_concav[i] > 0.0] # Add end points if relevant if len(yi_tmp) > 1: if obj_tmp[0] < obj_tmp[1]: yi_min.insert(0, yi_tmp[0]) if obj_tmp[-1] < obj_tmp[-2]: yi_min.append(yi_tmp[-1]) yi_min = np.array(yi_min) ## Remove trivial solution obj_trivial = np.abs(yi_min - xi[0]) / xi[0] ind = np.where(obj_trivial == min(obj_trivial))[0][0] logger.debug( " Found multiple minima: {}, discard {} as trivial solution".format( yi_min, yi_min[ind] ) ) # Remove liquid roots yi_min = np.array([yi_min[ii] for ii in range(len(yi_min)) if ii != ind]) if len(yi_min) > 1: lyi = len(yi_min) obj_tmp2 = np.zeros(lyi) flagv_tmp2 = np.zeros(lyi) for ii in range(lyi): obj_tmp2[ii], flagv_tmp2[ii] = objective_find_yi( yi_min[ii], P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True, ) yi_tmp2 = [ yi_min[ii] for ii in range(len(yi_min)) if flagv_tmp2[ii] != 1 ] if len(yi_tmp2): obj_tmp2 = [ obj_tmp2[ii] for ii in range(len(obj_tmp2)) if flagv_tmp2[ii] != 1 ] yi_min = [yi_tmp2[np.where(obj_tmp2 == min(obj_tmp2))[0][0]]] else: yi_min = [yi_min[np.where(obj_tmp2 == min(obj_tmp2))[0][0]]] if not len(yi_min): # Choose values with lowest objective function ind = np.where(np.abs(obj_tmp) == min(np.abs(obj_tmp)))[0][0] obj_final = obj_tmp[ind] yi_final = yi_tmp[ind] else: yi_final = yi_min[0] obj_final = spline(yi_min[0]) logger.debug(" Found new guess in yi: {}, Obj: {}".format(yi_final, obj_final)) if not gtb.isiterable(yi_final): yi_final = np.array([yi_final, 1 - yi_final]) return yi_final def bracket_bounding_yi( P, T, phil, xi, Eos, bounds=(0.01, 0.99), maxiter=50, tol=1e-7, density_opts={}, **kwargs ): r""" Search binary vapor mole fraction combinations for a new estimate that produces a vapor density. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system phil : float Fugacity coefficient of liquid at system pressure xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. bounds : tuple, Optional, default=(0.01, 0.99) These bounds dictate the lower and upper boundary for the first component in a binary system. maxiter : int, Optional, default=50 Maximum number of iterations tol : float, Optional, default=1e-7 Tolerance to quit search for yi density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` Returns ------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 flag : int Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed """ if len(kwargs) > 0: logger.debug( " 'calc_saturation_properties' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) if np.size(bounds) != 2: raise ValueError("Given bounds on y1 must be of length two.") bounds = np.array(bounds) obj_bounds = np.zeros(2) flag_bounds = np.zeros(2) obj_bounds[0], flag_bounds[0] = objective_find_yi( bounds[0], P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) obj_bounds[1], flag_bounds[1] = objective_find_yi( bounds[1], P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) if flag_bounds[0] == flag_bounds[1]: logger.error( " Both mole fractions have flag, {}, continue seeking convergence".format( flag_bounds[0] ) ) y1 = bounds[1] flagv = flag_bounds[1] else: flag_high_vapor = False for i in np.arange(maxiter): y1 = np.mean(bounds) obj, flagv = objective_find_yi( y1, P, T, phil, xi, Eos, density_opts=density_opts, return_flag=True ) if not flag_high_vapor: ind = np.where(flag_bounds == flagv)[0][0] if flagv == 0 and obj > 1 / tol: flag_high_vapor = True bounds[0], obj_bounds[0], flag_bounds[0] = ( bounds[ind], obj_bounds[ind], flag_bounds[ind], ) ind = 1 else: if obj < obj_bounds[0]: ind = 0 else: ind = 1 bounds[ind], obj_bounds[ind], flag_bounds[ind] = y1, obj, flagv logger.debug( " Bouncing mole fraction new bounds: {}, obj: {}, flag: {}".format( bounds, obj_bounds, flag_bounds ) ) # Check convergence if np.abs(bounds[1] - bounds[0]) < tol: break ind_array = np.where(flag_bounds == 0)[0] if np.size(ind_array) == 1: ind = ind_array[0] else: ind = np.where(obj_bounds == np.min(obj_bounds))[0][0] y1, flagv = bounds[ind], flag_bounds[ind] if i == maxiter - 1: logger.debug( " Bouncing mole fraction, max iterations ended with, y1={}, flagv={}".format( y1, flagv ) ) else: logger.debug( " Bouncing mole fractions converged to y1={}, flagv={}".format(y1, flagv) ) return np.array([y1, 1 - y1]), flagv def objective_find_yi(yi, P, T, phil, xi, Eos, density_opts={}, return_flag=False): r""" Objective function for solving for stable vapor mole fraction. Parameters ---------- yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 P : float [Pa] Pressure of the system T : float [K] Temperature of the system phil : float Fugacity coefficient of liquid at system pressure xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` return_flag : bool, Optional, default=False If True, the objective value and flagv is returned, otherwise, just the objective value is returned Returns ------- obj : numpy.ndarray Objective function for solving for vapor mole fractions flag : int, Optional Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed. Only outputted when `return_flag` is True """ if type(yi) == float or np.size(yi) == 1: if gtb.isiterable(yi): yi = np.array([yi[0], 1 - yi[0]]) else: yi = np.array([yi, 1 - yi]) elif isinstance(yi, list): yi = np.array(yi) yi /= np.sum(yi) phiv, _, flagv = calc_vapor_fugacity_coefficient( P, T, yi, Eos, density_opts=density_opts ) yinew = calc_new_mole_fractions(xi, phil, phiv, phase="vapor") yi2 = yinew / np.sum(yinew) if np.any(np.isnan(yi2)): obj = np.nan else: phiv2, _, flagv2 = calc_vapor_fugacity_coefficient( P, T, yi2, Eos, density_opts=density_opts ) obj = np.sum(np.abs(yinew - xi * phil / phiv2)) logger.debug( " Guess yi: {}, calc yi: {}, diff={}, flagv {}".format(yi, yi2, obj, flagv) ) if return_flag: return obj, flagv else: return obj def find_new_xi( P, T, phiv, yi, Eos, density_opts={}, bounds=(0.001, 0.999), npoints=30, **kwargs ): r""" Search liquid mole fraction combinations for a new estimate that produces a liquid density. Parameters ---------- P : float [Pa] Pressure of the system T : float [K] Temperature of the system phiv : float Fugacity coefficient of vapor at system pressure yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` bounds : tuple, Optional, default=(0.001, 0.999) These bounds dictate the lower and upper boundary for the first component in a binary system. npoints : float, Optional, default=30 Number of points to test between the bounds. Returns ------- xi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 """ if len(kwargs) > 0: logger.debug( " 'find_new_xi' does not use the following keyword arguments: {}".format( ", ".join(list(kwargs.keys())) ) ) xi_ext = np.linspace(bounds[0], bounds[1], npoints) # Guess for yi obj_ext = np.zeros(len(xi_ext)) flag_ext = np.zeros(len(xi_ext)) for i, xi in enumerate(xi_ext): xi = np.array([xi, 1 - xi]) obj, flagl = objective_find_xi( xi, P, T, phiv, yi, Eos, density_opts=density_opts, return_flag=True ) flag_ext[i] = flagl obj_ext[i] = obj tmp = np.count_nonzero(~np.isnan(obj_ext)) logger.debug(" Number of valid mole fractions: {}".format(tmp)) if tmp == 0: xi_final = np.nan obj_final = np.nan else: # Remove any NaN obj_tmp = obj_ext[~np.isnan(obj_ext)] xi_tmp = xi_ext[~np.isnan(obj_ext)] spline = interpolate.Akima1DInterpolator(xi_tmp, obj_tmp) xi_min = spline.derivative().roots() if len(xi_min) > 1: # Remove local maxima xi_concav = spline.derivative(nu=2)(xi_min) xi_min = [xi_min[i] for i in range(len(xi_min)) if xi_concav[i] > 0.0] # Add end points if relevant if len(xi_tmp) > 1: if obj_tmp[0] < obj_tmp[1]: xi_min.insert(0, xi_tmp[0]) if obj_tmp[-1] < obj_tmp[-2]: xi_min.append(xi_tmp[-1]) xi_min = np.array(xi_min) # Remove trivial solution obj_trivial = np.abs(xi_min - yi[0]) / yi[0] ind = np.where(obj_trivial == min(obj_trivial))[0][0] logger.debug( " Found multiple minima: {}, discard {} as trivial solution".format( xi_min, xi_min[ind] ) ) xi_min = np.array([xi_min[ii] for ii in range(len(xi_min)) if ii != ind]) if not len(xi_min): # Choose values with lowest objective function ind = np.where(np.abs(obj_tmp) == min(np.abs(obj_tmp)))[0][0] obj_final = obj_tmp[ind] xi_final = xi_tmp[ind] else: xi_final = xi_min[0] obj_final = spline(xi_min[0]) logger.debug(" Found new guess in xi: {}, Obj: {}".format(xi_final, obj_final)) if not gtb.isiterable(xi_final): xi_final = np.array([xi_final, 1 - xi_final]) return xi_final def objective_find_xi(xi, P, T, phiv, yi, Eos, density_opts={}, return_flag=False): r""" Objective function for solving for stable vapor mole fraction. Parameters ---------- xi : numpy.ndarray Liquid mole fraction of each component, sum(xi) should equal 1.0 P : float [Pa] Pressure of the system T : float [K] Temperature of the system phiv : float Fugacity coefficient of vapor at system pressure yi : numpy.ndarray Vapor mole fraction of each component, sum(yi) should equal 1.0 Eos : obj An instance of the defined EOS class to be used in thermodynamic computations. density_opts : dict, Optional, default={} Dictionary of options used in calculating pressure vs. specific volume in :func:`~despasito.thermodynamics.calc.pressure_vs_volume_arrays` return_flag : bool, Optional, default=False If True, the objective value and flagl is returned, otherwise, just the objective value is returned Returns ------- obj : numpy.ndarray Objective function for solving for liquid mole fractions flag : int, Optional Flag identifying the fluid type. A value of 0 is vapor, 1 is liquid, 2 mean a critical fluid, 3 means that neither is true, 4 means ideal gas is assumed. Only outputted when `return_flag` is True """ if isinstance(xi, float) or len(xi) == 1: if gtb.isiterable(xi): xi =
np.array([xi[0], 1 - xi[0]])
numpy.array
# -*- coding: utf-8 -*- """ Created on Sun Nov 17 18:02:53 2019 @author: sayan """ from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.datasets import make_blobs import matplotlib.pyplot as plt import numpy as np import argparse def sigmoid_activation(x): return 1.0/(1+
np.exp(x)
numpy.exp
import numpy as np import matplotlib.pyplot as plt from transforms3d.euler import euler2mat from mpl_toolkits.mplot3d import Axes3D class Joint: def __init__(self, name, direction, length, axis, dof, limits): """ Definition of basic joint. The joint also contains the information of the bone between it's parent joint and itself. Refer [here](https://research.cs.wisc.edu/graphics/Courses/cs-838-1999/Jeff/ASF-AMC.html) for detailed description for asf files. Parameter --------- name: Name of the joint defined in the asf file. There should always be one root joint. String. direction: Default direction of the joint(bone). The motions are all defined based on this default pose. length: Length of the bone. axis: Axis of rotation for the bone. dof: Degree of freedom. Specifies the number of motion channels and in what order they appear in the AMC file. limits: Limits on each of the channels in the dof specification """ self.name = name self.direction = np.reshape(direction, [3, 1]) self.length = length axis = np.deg2rad(axis) self.C = euler2mat(*axis) self.Cinv = np.linalg.inv(self.C) self.limits = np.zeros([3, 2]) for lm, nm in zip(limits, dof): if nm == 'rx': self.limits[0] = lm elif nm == 'ry': self.limits[1] = lm else: self.limits[2] = lm self.parent = None self.children = [] self.coordinate = None self.matrix = None def set_motion(self, motion): if self.name == 'root': self.coordinate = np.reshape(np.array(motion['root'][:3]), [3, 1]) rotation = np.deg2rad(motion['root'][3:]) self.matrix = self.C.dot(euler2mat(*rotation)).dot(self.Cinv) else: idx = 0 rotation =
np.zeros(3)
numpy.zeros
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, True), (pd.CategoricalDtype, True), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), True), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, True), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), True), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), True), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), # TODO: Currently creating an empty Series of list type ignores the # provided type and instead makes a float64 Series. (cudf.Series([[1, 2], [3, 4, 5]]), False), # TODO: Currently creating an empty Series of struct type fails because # it uses a numpy utility that doesn't understand StructDtype. (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_categorical_dtype(obj, expect): assert types.is_categorical_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, True), (int, True), (float, True), (complex, True), (str, False), (object, False), # NumPy types. (np.bool_, True), (np.int_, True), (np.float64, True), (np.complex128, True), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), True), (np.int_(), True), (np.float64(), True), (np.complex128(), True), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), True), (np.dtype("int"), True), (np.dtype("float"), True), (np.dtype("complex"), True), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), True), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), True), (np.array([], dtype=np.complex128), True), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), True), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), True), (pd.Series(dtype="complex"), True), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, True), (cudf.Decimal64Dtype, True), (cudf.Decimal32Dtype, True), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), True), (cudf.Decimal64Dtype(5, 2), True), (cudf.Decimal32Dtype(5, 2), True), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), True), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), True), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), True), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), True), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_numeric_dtype(obj, expect): assert types.is_numeric_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, True), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, True), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), True), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), True), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), True), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), True), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer_dtype(obj, expect): assert types.is_integer_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), True), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), True), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_integer(obj, expect): assert types.is_integer(obj) == expect # TODO: Temporarily ignoring all cases of "object" until we decide what to do. @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, True), # (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, True), (np.unicode_, True), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), True), (np.unicode_(), True), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), True), (np.dtype("unicode"), True), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), # (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), True), (np.array([], dtype=np.unicode_), True), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), # (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), True), (pd.Series(dtype="unicode"), True), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), # (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), True), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_string_dtype(obj, expect): assert types.is_string_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, True), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), True), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), True), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), True), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), True), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), True), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_datetime_dtype(obj, expect): assert types.is_datetime_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, True), (cudf.StructDtype, False), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), True), (cudf.StructDtype({"a": int}), False), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), True), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), False), (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_list_dtype(obj, expect): assert types.is_list_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (np.array([], dtype=np.bool_), False), (np.array([], dtype=np.int_), False), (np.array([], dtype=np.float64), False), (np.array([], dtype=np.complex128), False), (np.array([], dtype=np.str_), False), (np.array([], dtype=np.unicode_), False), (np.array([], dtype=np.datetime64), False), (np.array([], dtype=np.timedelta64), False), (np.array([], dtype=object), False), # Pandas dtypes. (pd.core.dtypes.dtypes.CategoricalDtypeType, False), (pd.CategoricalDtype, False), # Pandas objects. (pd.Series(dtype="bool"), False), (pd.Series(dtype="int"), False), (pd.Series(dtype="float"), False), (pd.Series(dtype="complex"), False), (pd.Series(dtype="str"), False), (pd.Series(dtype="unicode"), False), (pd.Series(dtype="datetime64[s]"), False), (pd.Series(dtype="timedelta64[s]"), False), (pd.Series(dtype="category"), False), (pd.Series(dtype="object"), False), # cuDF dtypes. (cudf.CategoricalDtype, False), (cudf.ListDtype, False), (cudf.StructDtype, True), (cudf.Decimal128Dtype, False), (cudf.Decimal64Dtype, False), (cudf.Decimal32Dtype, False), # (cudf.IntervalDtype, False), # cuDF dtype instances. (cudf.CategoricalDtype("a"), False), (cudf.ListDtype(int), False), (cudf.StructDtype({"a": int}), True), (cudf.Decimal128Dtype(5, 2), False), (cudf.Decimal64Dtype(5, 2), False), (cudf.Decimal32Dtype(5, 2), False), # (cudf.IntervalDtype(int), False), # cuDF objects (cudf.Series(dtype="bool"), False), (cudf.Series(dtype="int"), False), (cudf.Series(dtype="float"), False), (cudf.Series(dtype="str"), False), (cudf.Series(dtype="datetime64[s]"), False), (cudf.Series(dtype="timedelta64[s]"), False), (cudf.Series(dtype="category"), False), (cudf.Series(dtype=cudf.Decimal128Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal64Dtype(5, 2)), False), (cudf.Series(dtype=cudf.Decimal32Dtype(5, 2)), False), (cudf.Series([[1, 2], [3, 4, 5]]), False), (cudf.Series([{"a": 1, "b": 2}, {"c": 3}]), True), # (cudf.Series(dtype=cudf.IntervalDtype(int)), False), ), ) def test_is_struct_dtype(obj, expect): # TODO: All inputs of interval types are currently disabled due to # inconsistent behavior of is_struct_dtype for interval types that will be # fixed as part of the array refactor. assert types.is_struct_dtype(obj) == expect @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (
np.dtype("float")
numpy.dtype
import sys, os, glob, string import numpy as np import astropy as ast import matplotlib.pyplot as plt from pyraf import iraf import odi_config as odi import pandas as pd from astropy.coordinates import SkyCoord from astropy import units as u from collections import OrderedDict def tpv_remove(img): """ Remove the TPV values from a final stacked image. Each OTA has a set of TPV header keywords that define the WCS solution. The way the final images are stacked, the TPV values from the last OTA in the list, OTA22 for example, are what are inherited by the final image. Without removing these values other Python scripts, and other program such as Source Extractor, will no be able to accurately convert an x,y position to Ra and Dec. Parameters ---------- img : str String containing name of the image currently in use. Returns ------- img : str Name of the new image produced by this function. Examples -------- >>> img = 'GCPair-F1_odi_g.fits' >>> new_img = tpv_remove(img) >>> print new_img >>> 'GCPair-F1_odi_g-nopv.fits' """ if not os.path.isfile(img.nofits()+'-nopv.fits'): print('Removing PV keywords from: ',img) hdulist = odi.fits.open(img.f) header = hdulist[0].header pvlist = header['PV*'] for pv in pvlist: header.remove(pv) hdulist.writeto(img.nofits()+'-nopv.fits') return img.nofits()+'-nopv.fits' def trim_img(img,x1,x2,y1,y2): """ Trim a stacked image based on the coordinates given. The image is trimmed using ``imcopy`` through pyraf, so the x and y pixel ranges should be given in the correct ``imcopy`` format. ``[x1:x2,y1:y2]`` Parameters --------- img : str String containing name of the image currently in use x1 : int Pixel coordinate of x1 x2 : int Pixel coordinate of x2 y1 : int Pixel coordinate of y1 y2 : int Pixel coordinate of y2 Returns ------- img : str The new image is given the extension ``.trim.fits``. """ x1,x2 = x1,x2 y1,y2 = y1,y2 input = img.nofits()+'['+repr(x1)+':'+repr(x2)+','+repr(y1)+':'+repr(y2)+']' output = img.nofits()+'.trim.fits' if not os.path.isfile(output): print('Trimming image: ' ,img) iraf.unlearn(iraf.imcopy) iraf.imcopy(input = input,output = output,verbose='no',mode='h') def full_sdssmatch(img1,img2,inst,gmaglim=19): """ This function requires two stacked images, one each filter that will be used in solving the color equations. The purpose of this function is to first collect all of the SDSS sources in a given field using the ``odi.sdss_coords_full`` function. After collecting a catalog of the SDSS sources in each image this function creates a catalog of the SDSS matches between the two fields. This is required to form the SDSS color that will be used in solving the color equations. The function returns a ``Pandas`` dataframe of the matched sources in each field. Parameters ---------- img1 : str Name of the stacked image in the first filter (e.g. odi_g) img2 : str Name of the stacked image in the second filter (e.g. odi_r) inst : str The version of ODI used to collect the data (podi or 5odi) gmaglim : float The g magnitude limit to set on the SDSS sources retrieved in each field. Returns ------- img1_match_df: pandas dataframe Pandas dataframe of matched sources in img 1 img2_match_df: pandas dataframe Pandas dataframe of matched sources in img 2 Examples -------- >>> img1 = 'GCPair-F1_odi_g.fits' >>> img2 = 'GCPair-F1_odi_r.fits' >>> inst = 'podi' >>> img1_match_df, img2_match_df = full_sdssmatch(img1,img2,inst) """ odi.sdss_coords_full(img1,inst,gmaglim=gmaglim) img1_sdss_cat = img1[:-5]+'.sdssxy' img1_match = img1[:-5]+'.match.sdssxy' odi.sdss_coords_full(img2,inst,gmaglim=gmaglim) img2_sdss_cat = img2[:-5]+'.sdssxy' img2_match = img2[:-5]+'.match.sdssxy' x_1, y_1, ras_1,decs_1,psfMag_u_1,psfMagErr_u_1,psfMag_g_1,psfMagErr_g_1,psfMag_r_1,psfMagErr_r_1,psfMag_i_1,psfMagErr_i_1,psfMag_z_1,psfMagErr_z_1 = np.loadtxt(img1_sdss_cat, usecols=(0,1,2,3,4,5,6,7,8,9,10,11,12,13), unpack=True) x_2, y_2, ras_2,decs_2,psfMag_u_2,psfMagErr_u_2,psfMag_g_2,psfMagErr_g_2,psfMag_r_2,psfMagErr_r_2,psfMag_i_2,psfMagErr_i_2,psfMag_z_2,psfMagErr_z_2 = np.loadtxt(img2_sdss_cat, usecols=(0,1,2,3,4,5,6,7,8,9,10,11,12,13), unpack=True) img1_catalog = SkyCoord(ra = ras_1*u.degree, dec= decs_1*u.degree) img2_catalog = SkyCoord(ra = ras_2*u.degree, dec= decs_2*u.degree) id_img1, id_img2, d2d, d3d = img2_catalog.search_around_sky(img1_catalog,0.000001*u.deg) x_1 = x_1[id_img1] y_1 = y_1[id_img1] ras_1 = ras_1[id_img1] decs_1 = decs_1[id_img1] psfMag_u_1 = psfMag_u_1[id_img1] psfMagErr_u_1 = psfMagErr_u_1[id_img1] psfMag_g_1 = psfMag_g_1[id_img1] psfMagErr_g_1 = psfMagErr_g_1[id_img1] psfMag_r_1 = psfMag_r_1[id_img1] psfMagErr_r_1 = psfMagErr_r_1[id_img1] psfMag_i_1 = psfMag_i_1[id_img1] psfMagErr_i_1 = psfMagErr_i_1[id_img1] psfMag_z_1 = psfMag_z_1[id_img1] psfMagErr_z_1 = psfMagErr_z_1[id_img1] img1_match_dict = OrderedDict([('x_1',x_1),('y_1',y_1),('ras_1',ras_1), ('decs_1',decs_1),('psfMag_u_1',psfMag_u_1), ('psfMagErr_u_1',psfMagErr_u_1), ('psfMag_g_1',psfMag_g_1),('psfMagErr_g_1',psfMagErr_g_1), ('psfMag_r_1',psfMag_r_1),('psfMagErr_r_1',psfMagErr_r_1), ('psfMag_i_1',psfMag_i_1),('psfMagErr_i_1',psfMagErr_i_1), ('psfMag_z_1',psfMag_z_1),('psfMagErr_z_1',psfMagErr_z_1)]) img1_match_df = pd.DataFrame.from_dict(img1_match_dict) img1_match_df.to_csv(img1_match,index=False,sep= ' ',header=False) x_2 = x_2[id_img2] y_2 = y_2[id_img2] ras_2 = ras_2[id_img2] decs_2 = decs_2[id_img2] psfMag_u_2 = psfMag_u_2[id_img2] psfMagErr_u_2 = psfMagErr_u_2[id_img2] psfMag_g_2 = psfMag_g_2[id_img2] psfMagErr_g_2 = psfMagErr_g_2[id_img2] psfMag_r_2 = psfMag_r_2[id_img2] psfMagErr_r_2 = psfMagErr_r_2[id_img2] psfMag_i_2 = psfMag_i_2[id_img2] psfMagErr_i_2 = psfMagErr_i_2[id_img2] psfMag_z_2 = psfMag_z_2[id_img2] psfMagErr_z_2 = psfMagErr_z_2[id_img2] img2_match_dict = OrderedDict([('x_2',x_2),('y_2',y_2),('ras_2',ras_2), ('decs_2',decs_2),('psfMag_u_2',psfMag_u_2), ('psfMagErr_u_2',psfMagErr_u_2), ('psfMag_g_2',psfMag_g_2),('psfMagErr_g_2',psfMagErr_g_2), ('psfMag_r_2',psfMag_r_2),('psfMagErr_r_2',psfMagErr_r_2), ('psfMag_i_2',psfMag_i_2),('psfMagErr_i_2',psfMagErr_i_2), ('psfMag_z_2',psfMag_z_2),('psfMagErr_z_2',psfMagErr_z_2)]) img2_match_df = pd.DataFrame.from_dict(img2_match_dict) img2_match_df.to_csv(img2_match,index=False,sep= ' ',header=False) return img1_match_df, img2_match_df def sdss_source_props_full(img): """ Use photutils to get the elongation of all of the sdss sources can maybe use for point source filter """"" hdulist = odi.fits.open(img.f) data = hdulist[0].data sdss_source_file = img.nofits()+'.match.sdssxy' x,y,ra,dec,g,g_err,r,r_err = np.loadtxt(sdss_source_file,usecols=(0,1,2,3, 6,7,8,9),unpack=True) box_centers = list(zip(y,x)) box_centers = np.reshape(box_centers,(len(box_centers),2)) source_dict = {} for i,center in enumerate(box_centers): x1 = center[0]-50 x2 = center[0]+50 y1 = center[1]-50 y2 = center[1]+50 #print x1,x2,y1,y2,center box = data[x1:x2,y1:y2] #odi.plt.imshow(box) #plt.show() mean, median, std = odi.sigma_clipped_stats(box, sigma=3.0) threshold = median + (std * 2.) segm_img = odi.detect_sources(box, threshold, npixels=20) source_props = odi.source_properties(box,segm_img) columns = ['xcentroid', 'ycentroid','elongation','semimajor_axis_sigma','semiminor_axis_sigma'] if i == 0: source_tbl = source_props.to_table(columns=columns) else: source_tbl.add_row((source_props[0].xcentroid,source_props[0].ycentroid, source_props[0].elongation,source_props[0].semimajor_axis_sigma, source_props[0].semiminor_axis_sigma)) elong_med,elong_std = np.median(source_tbl['elongation']),np.std(source_tbl['elongation']) hdulist.close() return elong_med,elong_std def read_proc(file,filter): """ This functions reads and collects information from the ``derived_props.txt`` file that is produced by ``odi_process.py``. Parameters ---------- file : str This can be anything, but most often will be ``derived_props.txt`` filter : str ODI filter string Returns ------- median_fwhm : float median fwhm measure of individual OTAs that went into a stack median_bg_mean : float mean fwhm measure of individual OTAs that went into a stack median_bg_median : float median background of individual OTAs that went into a stack median_bg_std : float median standard deviation of background in individual OTAs that went into a stack Note ----- The fwhm values need to be remeasured in the final stack. There is an additional function that completes this task. """ filter_str = np.loadtxt(file,usecols=(2,),unpack=True,dtype=str) fwhm,bg_mean,bg_med,bg_std = np.loadtxt(file,usecols=(3,6,7,8),unpack=True) median_fwhm = np.median(fwhm[np.where(filter_str == filter)]) median_bg_mean = np.median(bg_mean[np.where(filter_str == filter)]) median_bg_median = np.median(bg_med[np.where(filter_str == filter)]) median_bg_std = np.median(bg_std[np.where(filter_str == filter)]) return median_fwhm,median_bg_mean,median_bg_median,median_bg_std def get_airmass(image_list): """ Calculate the median arimass of all the dithers in a given filter """ airmasses = [] for img in image_list: hdulist = odi.fits.open(img.f) airmasses.append(hdulist[0].header['airmass']) hdulist.close() return
np.median(airmasses)
numpy.median
import time import shutil import os import sys import subprocess import math import pickle import glob import json from copy import deepcopy import warnings import random from multiprocessing import Pool # import emukit.multi_fidelity as emf # from emukit.model_wrappers.gpy_model_wrappers import GPyMultiOutputWrapper # from emukit.multi_fidelity.convert_lists_to_array import convert_x_list_to_array, convert_xy_lists_to_arrays try: moduleName = "emukit" import emukit.multi_fidelity as emf from emukit.model_wrappers.gpy_model_wrappers import GPyMultiOutputWrapper from emukit.multi_fidelity.convert_lists_to_array import convert_x_list_to_array, convert_xy_lists_to_arrays moduleName = "pyDOE" from pyDOE import lhs moduleName = "GPy" import GPy as GPy moduleName = "scipy" from scipy.stats import lognorm, norm moduleName = "numpy" import numpy as np error_tag=False except: error_tag=True class GpFromModel(object): def __init__(self, work_dir, run_type, os_type, inp, errlog): t_init = time.time() self.errlog = errlog self.work_dir = work_dir self.os_type = os_type self.run_type = run_type # # From external READ JSON FILE # rv_name = list() self.g_name = list() x_dim = 0 y_dim = 0 for rv in inp['randomVariables']: rv_name = rv_name + [rv['name']] x_dim += 1 if x_dim == 0: msg = 'Error reading json: RV is empty' errlog.exit(msg) for g in inp['EDP']: if g['length']==1: # scalar self.g_name = self.g_name + [g['name']] y_dim += 1 else: # vector for nl in range(g['length']): self.g_name = self.g_name + ["{}_{}".format(g['name'],nl+1)] y_dim += 1 if y_dim == 0: msg = 'Error reading json: EDP(QoI) is empty' errlog.exit(msg) # Accuracy is also sensitive to the range of X self.id_sim = 0 self.x_dim = x_dim self.y_dim = y_dim self.rv_name = rv_name self.do_predictive = False automate_doe = False surrogateInfo = inp["UQ_Method"]["surrogateMethodInfo"] try: self.do_parallel = surrogateInfo["parallelExecution"] except: self.do_parallel = True if self.do_parallel: if self.run_type.lower() == 'runninglocal': self.n_processor = os.cpu_count() from multiprocessing import Pool self.pool = Pool(self.n_processor) else: # Always from mpi4py import MPI from mpi4py.futures import MPIPoolExecutor self.world = MPI.COMM_WORLD self.pool = MPIPoolExecutor() self.n_processor = self.world.Get_size() #self.n_processor =20 print("nprocessor :") print(self.n_processor) #self.cal_interval = 5 self.cal_interval = self.n_processor else: self.pool = 0 self.cal_interval = 5 if surrogateInfo["method"] == "Sampling and Simulation": self.do_mf = False do_sampling = True do_simulation = True self.use_existing = surrogateInfo["existingDoE"] if self.use_existing: self.inpData = os.path.join(work_dir, "templatedir/inpFile.in") self.outData = os.path.join(work_dir, "templatedir/outFile.in") thr_count = surrogateInfo['samples'] # number of samples if surrogateInfo["advancedOpt"]: self.doe_method = surrogateInfo["DoEmethod"] if surrogateInfo["DoEmethod"] == "None": do_doe = False user_init = thr_count else: do_doe = True user_init = surrogateInfo["initialDoE"] else: self.doe_method = "pareto" #default do_doe = True user_init = -100 elif surrogateInfo["method"] == "Import Data File": self.do_mf = False do_sampling = False do_simulation = not surrogateInfo["outputData"] self.doe_method = "None" # default do_doe = False # self.inpData = surrogateInfo['inpFile'] self.inpData = os.path.join(work_dir, "templatedir/inpFile.in") if not do_simulation: # self.outData = surrogateInfo['outFile'] self.outData = os.path.join(work_dir, "templatedir/outFile.in") elif surrogateInfo["method"] == "Import Multi-fidelity Data File": self.do_mf = True self.doe_method = "None" # default self.hf_is_model = surrogateInfo['HFfromModel'] self.lf_is_model = surrogateInfo['LFfromModel'] if self. hf_is_model: self.use_existing_hf = surrogateInfo["existingDoE_HF"] self.samples_hf = surrogateInfo["samples_HF"] if self.use_existing_hf: self.inpData = os.path.join(work_dir, "templatedir/inpFile_HF.in") self.outData = os.path.join(work_dir, "templatedir/outFile_HF.in") else: self.inpData_hf = os.path.join(work_dir, "templatedir/inpFile_HF.in") self.outData_hf = os.path.join(work_dir, "templatedir/outFile_HF.in") self.X_hf = read_txt(self.inpData_hf, errlog) self.Y_hf = read_txt(self.outData_hf, errlog) if self.X_hf.shape[0] != self.Y_hf.shape[0]: msg = 'Error reading json: high fidelity input and output files should have the same number of rows' errlog.exit(msg) if self.lf_is_model: self.use_existing_lf = surrogateInfo["existingDoE_LF"] self.samples_lf = surrogateInfo["samples_LF"] if self.use_existing_lf: self.inpData = os.path.join(work_dir, "templatedir/inpFile_LF.in") self.outData = os.path.join(work_dir, "templatedir/outFile_LF.in") else: self.inpData_lf = os.path.join(work_dir, "templatedir/inpFile_LF.in") self.outData_lf = os.path.join(work_dir, "templatedir/outFile_LF.in") self.X_lf = read_txt(self.inpData_lf, errlog) self.Y_lf = read_txt(self.outData_lf, errlog) if self.X_lf.shape[0] != self.Y_lf.shape[0]: msg = 'Error reading json: low fidelity input and output files should have the same number of rows' errlog.exit(msg) if (not self.hf_is_model) and self.lf_is_model: self.mf_case = "data-model" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] self.use_existing = self.use_existing_lf if self.lf_is_model: if self.use_existing_lf: self.inpData = self.inpData_lf self.oupData = self.outData_lf else: self.inpData = self.inpData_lf self.outData = self.outData_lf if do_doe: user_init = -100 else: user_init = self.samples_lf thr_count = self.samples_lf # number of samples elif self.hf_is_model and (not self.lf_is_model): self.mf_case = "model-data" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] self.use_existing = self.use_existing_hf if self.hf_is_model: if self.use_existing_hf: self.inpData = self.inpData_hf self.oupData = self.outData_hf else: self.inpData = self.inpData_hf self.outData = self.outData_hf if do_doe: user_init = -100 else: user_init = self.samples_hf thr_count = self.samples_hf # number of samples elif self.hf_is_model and self.lf_is_model: self.mf_case = "model-model" do_sampling = True do_simulation = True do_doe = surrogateInfo["doDoE"] elif (not self.hf_is_model) and (not self.lf_is_model): self.mf_case = "data-data" do_sampling = False do_simulation = False do_doe = False self.inpData = self.inpData_lf self.outData = self.outData_lf else: msg = 'Error reading json: either select "Import Data File" or "Sampling and Simulation"' errlog.exit(msg) if surrogateInfo["advancedOpt"]: self.do_logtransform = surrogateInfo["logTransform"] kernel = surrogateInfo["kernel"] do_linear = surrogateInfo["linear"] nugget_opt = surrogateInfo["nuggetOpt"] try: self.nuggetVal = np.array(json.loads("[{}]".format(surrogateInfo["nuggetString"]))) except json.decoder.JSONDecodeError: msg = 'Error reading json: improper format of nugget values/bounds. Provide nugget values/bounds of each QoI with comma delimiter' errlog.exit(msg) if self.nuggetVal.shape[0]!=self.y_dim and self.nuggetVal.shape[0]!=0 : msg = 'Error reading json: Number of nugget quantities ({}) does not match # QoIs ({})'.format(self.nuggetVal.shape[0],self.y_dim) errlog.exit(msg) if nugget_opt == "Fixed Values": for Vals in self.nuggetVal: if (not np.isscalar(Vals)): msg = 'Error reading json: provide nugget values of each QoI with comma delimiter' errlog.exit(msg) elif nugget_opt == "Fixed Bounds": for Bous in self.nuggetVal: if (np.isscalar(Bous)): msg = 'Error reading json: provide nugget bounds of each QoI in brackets with comma delimiter, e.g. [0.0,1.0],[0.0,2.0],...' errlog.exit(msg) elif (isinstance(Bous,list)): msg = 'Error reading json: provide both lower and upper bounds of nugget' errlog.exit(msg) elif Bous.shape[0]!=2: msg = 'Error reading json: provide nugget bounds of each QoI in brackets with comma delimiter, e.g. [0.0,1.0],[0.0,2.0],...' errlog.exit(msg) elif Bous[0]>Bous[1]: msg = 'Error reading json: the lower bound of a nugget value should be smaller than its upper bound' errlog.exit(msg) # if self.do_logtransform: # mu = 0 # sig2 = self.nuggetVal # #median = np.exp(mu) # #mean = np.exp(mu + sig2/2) # self.nuggetVal = np.exp(2*mu + sig2)*(np.exp(sig2)-1) else: self.do_logtransform = False kernel = 'Matern 5/2' do_linear = False #do_nugget = True nugget_opt = "optimize" if not self.do_mf: if do_simulation: femInfo = inp["fem"] self.inpFile = femInfo["inputFile"] self.postFile = femInfo["postprocessScript"] self.appName = femInfo["program"] # # get x points # if do_sampling: thr_NRMSE = surrogateInfo["accuracyLimit"] thr_t = surrogateInfo["timeLimit"] * 60 np.random.seed(surrogateInfo['seed']) random.seed(surrogateInfo['seed']) self.xrange = np.empty((0, 2), float) for rv in inp['randomVariables']: if "lowerbound" not in rv: msg = 'Error in input RV: all RV should be set to Uniform distribution' errlog.exit(msg) self.xrange = np.vstack((self.xrange, [rv['lowerbound'], rv['upperbound']])) self.len = np.abs(np.diff(self.xrange).T[0]) if sum(self.len == 0) > 0: msg = 'Error in input RV: training range of RV should be greater than 0' errlog.exit(msg) # # Read existing samples # if self.use_existing: X_tmp = read_txt(self.inpData,errlog) Y_tmp = read_txt(self.outData,errlog) n_ex = X_tmp.shape[0] if self.do_mf: if X_tmp.shape[1] != self.X_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} RV column(s) but low fidelity model have {}.'.format( self.X_hf.shape[1], X_tmp.shape[1]) errlog.exit(msg) if Y_tmp.shape[1] != self.Y_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} QoI column(s) but low fidelity model have {}.'.format( self.Y_hf.shape[1], Y_tmp.shape[1]) errlog.exit(msg) if X_tmp.shape[1] != x_dim: msg = 'Error importing input data: dimension inconsistent: have {} RV(s) but have {} column(s).'.format( x_dim, X_tmp.shape[1]) errlog.exit(msg) if Y_tmp.shape[1] != y_dim: msg = 'Error importing input data: dimension inconsistent: have {} QoI(s) but have {} column(s).'.format( y_dim, Y_tmp.shape[1]) errlog.exit(msg) if n_ex != Y_tmp.shape[0]: msg = 'Error importing input data: numbers of samples of inputs ({}) and outputs ({}) are inconsistent'.format(n_ex, Y_tmp.shape[0]) errlog.exit(msg) else: n_ex = 0 if user_init ==0: #msg = 'Error reading json: # of initial DoE should be greater than 0' #errlog.exit(msg) user_init = -1; X_tmp = np.zeros((0, x_dim)) Y_tmp = np.zeros((0, y_dim)) if user_init < 0: n_init_ref = min(4 * x_dim, thr_count + n_ex - 1, 500) if self.do_parallel: n_init_ref = int(np.ceil(n_init_ref/self.n_processor)*self.n_processor) # Let's not waste resource if n_init_ref > n_ex: n_init = n_init_ref - n_ex else: n_init = 0 else: n_init = user_init n_iter = thr_count - n_init def FEM_batch(Xs, id_sim): return run_FEM_batch(Xs, id_sim, self.rv_name, self.do_parallel, self.y_dim, self.os_type, self.run_type, self.pool, t_init, thr_t) # check validity of datafile if n_ex > 0: #Y_test, self.id_sim = FEM_batch(X_tmp[0, :][np.newaxis], self.id_sim) # TODO : Fix this print(X_tmp[0, :][np.newaxis].shape) X_test, Y_test ,self.id_sim= FEM_batch(X_tmp[0, :][np.newaxis] ,self.id_sim) if np.sum(abs((Y_test - Y_tmp[0, :][np.newaxis]) / Y_test) > 0.01, axis=1) > 0: msg = 'Consistency check failed. Your data is not consistent to your model response.' errlog.exit(msg) if n_init>0: n_init -= 1 else: n_iter -= 1 # # generate initial samples # if n_init>0: U = lhs(x_dim, samples=(n_init)) X = np.vstack([X_tmp, np.zeros((n_init, x_dim))]) for nx in range(x_dim): X[n_ex:n_ex+n_init, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] else: X = X_tmp if sum(abs(self.len / self.xrange[:, 0]) < 1.e-7) > 1: msg = 'Error : upperbound and lowerbound should not be the same' errlog.exit(msg) n_iter = thr_count - n_init else: n_ex = 0 thr_NRMSE = 0.02 # default thr_t = float('inf') # # Read sample locations from directory # X = read_txt(self.inpData,errlog) if self.do_mf: if X.shape[1] != self.X_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} RV column(s) but low fidelity model have {}.'.format( self.X_hf.shape[1], X.shape[1]) errlog.exit(msg) if X.shape[1] != x_dim: msg = 'Error importing input data: Number of dimension inconsistent: have {} RV(s) but {} column(s).' \ .format(x_dim, X.shape[1]) errlog.exit(msg) self.xrange = np.vstack([np.min(X, axis=0), np.max(X, axis=0)]).T self.len = 2 * np.std(X, axis=0) thr_count = X.shape[0] n_init = thr_count n_iter = 0 # give error if thr_count <= 2: msg = 'Number of samples should be greater than 2.' errlog.exit(msg) if do_doe: ac = 1 # pre-screening time = time*ac ar = 1 # cluster n_candi = min(200 * x_dim, 2000) # candidate points n_integ = min(200 * x_dim, 2000) # integration points if user_init > thr_count: msg = 'Number of DoE cannot exceed total number of simulation' errlog.exit(msg) else: ac = 1 # pre-screening time = time*ac ar = 1 # cluster n_candi = 1 # candidate points n_integ = 1 # integration points user_init = thr_count # # get y points # if do_simulation: # # SimCenter workflow setting # if os.path.exists('{}/workdir.1'.format(work_dir)): is_left = True idx = 0 def change_permissions_recursive(path, mode): for root, dirs, files in os.walk(path, topdown=False): for dir in [os.path.join(root, d) for d in dirs]: os.chmod(dir, mode) for file in [os.path.join(root, f) for f in files]: os.chmod(file, mode) while is_left: idx = idx + 1 try: if os.path.exists('{}/workdir.{}/workflow_driver.bat'.format(work_dir, idx)): #os.chmod('{}/workdir.{}'.format(work_dir, idx), 777) change_permissions_recursive('{}/workdir.{}'.format(work_dir, idx), 0o777) my_dir = '{}/workdir.{}'.format(work_dir, idx) os.chmod(my_dir, 0o777) shutil.rmtree(my_dir) #shutil.rmtree('{}/workdir.{}'.format(work_dir, idx), ignore_errors=False, onerror=handleRemoveReadonly) except Exception as ex: print(ex) is_left = True break print("Cleaned the working directory") else: print("Work directory is clean") if os.path.exists('{}/dakotaTab.out'.format(work_dir)): os.remove('{}/dakotaTab.out'.format(work_dir)) if os.path.exists('{}/inputTab.out'.format(work_dir)): os.remove('{}/inputTab.out'.format(work_dir)) if os.path.exists('{}/outputTab.out'.format(work_dir)): os.remove('{}/outputTab.out'.format(work_dir)) if os.path.exists('{}/SimGpModel.pkl'.format(work_dir)): os.remove('{}/SimGpModel.pkl'.format(work_dir)) if os.path.exists('{}/verif.out'.format(work_dir)): os.remove('{}/verif.out'.format(work_dir)) # func = self.__run_FEM(X,self.id_sim, self.rv_name) # # Generate initial samples # t_tmp = time.time() X_fem, Y_fem ,self.id_sim= FEM_batch(X[n_ex:, :],self.id_sim) Y = np.vstack((Y_tmp,Y_fem)) X = np.vstack((X[0:n_ex, :],X_fem)) t_sim_all = time.time() - t_tmp if automate_doe: self.t_sim_each = t_sim_all / n_init else: self.t_sim_each = float("inf") # # Generate predictive samples # if self.do_predictive: n_pred = 100 Xt = np.zeros((n_pred, x_dim)) U = lhs(x_dim, samples=n_pred) for nx in range(x_dim): Xt[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] # # Yt = np.zeros((n_pred, y_dim)) # for ns in range(n_pred): # Yt[ns, :],self.id_sim = run_FEM(Xt[ns, :][np.newaxis],self.id_sim, self.rv_name) Yt = np.zeros((n_pred, y_dim)) Xt, Yt ,self.id_sim= FEM_batch(Xt,self.id_sim) else: # # READ SAMPLES FROM DIRECTORY # Y = read_txt(self.outData,errlog) if self.do_mf: if Y.shape[1] != self.Y_hf.shape[1]: msg = 'Error importing input data: dimension inconsistent: high fidelity data have {} QoI column(s) but low fidelity model have {}.'.format( self.Y_hf.shape[1], Y.shape[1]) errlog.exit(msg) if Y.shape[1] != y_dim: msg = 'Error importing input data: Number of dimension inconsistent: have {} QoI(s) but {} column(s).' \ .format(y_dim, Y.shape[1]) errlog.exit(msg) if X.shape[0] != Y.shape[0]: msg = 'Error importing input data: numbers of samples of inputs ({}) and outputs ({}) are inconsistent'.format(X.shape[0], Y.shape[0]) errlog.exit(msg) thr_count = 0 self.t_sim_each = float("inf") # # GP function # if kernel == 'Radial Basis': kr = GPy.kern.RBF(input_dim=x_dim, ARD=True) elif kernel == 'Exponential': kr = GPy.kern.Exponential(input_dim=x_dim, ARD=True) elif kernel == 'Matern 3/2': kr = GPy.kern.Matern32(input_dim=x_dim, ARD=True) elif kernel == 'Matern 5/2': kr = GPy.kern.Matern52(input_dim=x_dim, ARD=True) if do_linear: kr = kr + GPy.kern.Linear(input_dim=x_dim, ARD=True) if not self.do_mf: kg = kr self.m_list = list() for i in range(y_dim): self.m_list = self.m_list + [GPy.models.GPRegression(X, Y[:, i][np.newaxis].transpose(), kernel=kg.copy(),normalizer=True)] for parname in self.m_list[i].parameter_names(): if parname.endswith('lengthscale'): exec('self.m_list[i].' + parname + '=self.len') else: kgs = emf.kernels.LinearMultiFidelityKernel([kr.copy(), kr.copy()]) if not self.hf_is_model: if not X.shape[1]==self.X_hf.shape[1]: msg = 'Error importing input data: dimension of low ({}) and high ({}) fidelity models (datasets) are inconsistent'.format(X.shape[1], self.X_hf.shape[1]) errlog.exit(msg) if not self.lf_is_model: if not X.shape[1]==self.X_lf.shape[1]: msg = 'Error importing input data: dimension of low ({}) and high ({}) fidelity models (datasets) are inconsistent'.format(X.shape[1], self.X_hf.shape[1]) errlog.exit(msg) if self.mf_case == 'data-model' or self.mf_case=='data-data': X_list, Y_list = emf.convert_lists_to_array.convert_xy_lists_to_arrays([X, self.X_hf], [Y, self.Y_hf]) elif self.mf_case == 'model-data': X_list, Y_list = emf.convert_lists_to_array.convert_xy_lists_to_arrays([self.X_lf, X], [self.Y_lf, Y]) self.m_list = list() for i in range(y_dim): self.m_list = self.m_list + [GPyMultiOutputWrapper(emf.models.GPyLinearMultiFidelityModel(X_list, Y_list, kernel=kgs.copy(), n_fidelities=2), 2, n_optimization_restarts=15)] # # Verification measures # self.NRMSE_hist = np.zeros((1, y_dim), float) self.NRMSE_idx = np.zeros((1, 1), int) #leng_hist = np.zeros((1, self.m_list[0]._param_array_.shape[0]), int) if self.do_predictive: self.NRMSE_pred_hist = np.empty((1, y_dim), float) # # Run DoE # break_doe = False print("======== RUNNING GP DoE ===========") exit_code = 'count' # num iter i = 0 x_new = np.zeros((0,x_dim)) n_new = 0 doe_off = False # false if true while not doe_off: t = time.time() if self.doe_method == "random": do_cal = True elif self.doe_method == "pareto": do_cal = True elif np.mod(i, self.cal_interval) == 0: do_cal = True else: do_cal = False t_tmp = time.time() [x_new, self.m_list, err, idx, Y_cv, Y_cv_var] = self.__design_of_experiments(X, Y, ac, ar, n_candi, n_integ, self.m_list, do_cal, nugget_opt, do_doe) t_doe = time.time() - t_tmp print('DoE Time: {:.2f} s'.format(t_doe)) if automate_doe: if t_doe > self.t_sim_each: break_doe = True print('========>> DOE OFF') n_left = n_iter - i break if not self.do_mf: NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) else: if self.mf_case == 'data-model' or self.mf_case == 'data-data': NRMSE_val = self.__normalized_mean_sq_error(Y_cv, self.Y_hf) elif self.mf_case == 'model-data' : NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) self.NRMSE_hist = np.vstack((self.NRMSE_hist, np.array(NRMSE_val))) self.NRMSE_idx = np.vstack((self.NRMSE_idx, i)) if self.do_predictive: Yt_pred = np.zeros((n_pred, y_dim)) for ny in range(y_dim): y_pred_tmp, dummy = self.__predict(self.m_list[ny],Xt) Yt_pred[:, ny] = y_pred_tmp.transpose() if self.do_logtransform: Yt_pred = np.exp(Yt_pred) NRMSE_pred_val = self.__normalized_mean_sq_error(Yt_pred, Yt) self.NRMSE_pred_hist = np.vstack((self.NRMSE_pred_hist, np.array(NRMSE_pred_val))) if self.id_sim >= thr_count: n_iter = i exit_code = 'count' doe_off = True if not do_cal: break_doe = False n_left = 0 break if np.max(NRMSE_val) < thr_NRMSE: n_iter = i exit_code = 'accuracy' doe_off = True if not do_cal: break_doe = False n_left = n_iter - i break if time.time() - t_init > thr_t - self.calib_time: n_iter = i exit_code = 'time' doe_off = True if not do_cal: break_doe = False n_left = n_iter - i break n_new = x_new.shape[0] if not (n_new + self.id_sim < n_init + n_iter +1): n_new = n_init + n_iter - self.id_sim x_new = x_new[0:n_new, :] i = self.id_sim + n_new # y_new = np.zeros((n_new, y_dim)) # for ny in range(n_new): # y_new[ny, :],self.id_sim = run_FEM(x_new[ny, :][np.newaxis],self.id_sim, self.rv_name) x_new, y_new, self.id_sim = FEM_batch(x_new,self.id_sim) #print(">> {:.2f} s".format(time.time() - t_init)) X = np.vstack([X, x_new]) Y = np.vstack([Y, y_new]) print("======== RUNNING GP Calibration ===========") # not used if break_doe: X_tmp = np.zeros((n_left, x_dim)) Y_tmp = np.zeros((n_left, y_dim)) U = lhs(x_dim, samples=n_left) for nx in range(x_dim): # X[:,nx] = np.random.uniform(xrange[nx,0], xrange[nx,1], (1, n_init)) X_tmp[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] X_tmp, Y_tmp, self.id_sim = FEM_batch(X_tmp,self.id_sim) # for ns in np.arange(n_left): # Y_tmp[ns, :],self.id_sim = run_FEM(X_tmp[ns, :][np.newaxis],self.id_sim, self.rv_name) # print(">> {:.2f} s".format(time.time() - t_init)) # if time.time() - t_init > thr_t - self.calib_time: # X_tmp = X_tmp[:ns, :] # Y_tmp = Y_tmp[:ns, :] # break X = np.vstack((X, X_tmp)) Y = np.vstack((Y, Y_tmp)) do_doe = False # if not do_doe: # exit_code = 'count' # # do_cal = True # self.t_sim_each = float("inf") # so that calibration is not terminated in the middle # self.m_list, Y_cv, Y_cv_var = self.__design_of_experiments(X, Y, 1, 1, 1, 1, self.m_list, do_cal, # do_nugget, do_doe) # if not self.do_mf: # NRMSE_val = self.__normalized_mean_sq_error(Y_cv, Y) # else: # NRMSE_val = self.__normalized_mean_sq_error(Y_cv, self.Y_hf) sim_time = time.time() - t_init n_samp = Y.shape[0] # import matplotlib.pyplot as plt # if self.x_dim==1: # if self.do_mf: # for ny in range(y_dim): # # x_plot = np.linspace(0, 1, 200)[:, np.newaxis] # X_plot = convert_x_list_to_array([x_plot, x_plot]) # X_plot_l = X_plot[:len(x_plot)] # X_plot_h = X_plot[len(x_plot):] # # lf_mean_lin_mf_model, lf_var_lin_mf_model = self.__predict(self.m_list[ny],X_plot_l) # lf_std_lin_mf_model = np.sqrt(lf_var_lin_mf_model) # hf_mean_lin_mf_model, hf_var_lin_mf_model = self.__predict(self.m_list[ny],X_plot_h) # hf_std_lin_mf_model = np.sqrt(hf_var_lin_mf_model) # # # plt.plot(x_plot, lf_mean_lin_mf_model); # plt.plot(x_plot, hf_mean_lin_mf_model, '-'); # plt.plot(X, Y[:,ny], 'x'); # plt.plot(self.X_hf,self.Y_hf[:,ny], 'x'); # plt.show() # else: # for ny in range(y_dim): # x_plot = np.linspace(0, 1, 200)[:, np.newaxis] # # hf_mean_lin_mf_model, hf_var_lin_mf_model = self.__predict(self.m_list[ny], x_plot) # # plt.plot(x_plot, hf_mean_lin_mf_model, '-'); # plt.plot(X, Y[:, ny], 'x'); # plt.show() # # # plt.plot(Y_cv[:,0], self.Y_hf[:,0], 'x'); plt.show() # plt.show() # plt.plot(Y_cv[:,1], Y[:,1], 'x') # plt.show() print('my exit code = {}'.format(exit_code)) print('1. count = {}'.format(self.id_sim)) print('2. max(NRMSE) = {}'.format(np.max(NRMSE_val))) print('3. time = {:.2f} s'.format(sim_time)) # for user information if do_simulation: n_err = 1000 Xerr = np.zeros((n_err, x_dim)) U = lhs(x_dim, samples=n_err) for nx in range(x_dim): Xerr[:, nx] = U[:, nx] * (self.xrange[nx, 1] - self.xrange[nx, 0]) + self.xrange[nx, 0] y_pred_var = np.zeros((n_err, y_dim)) y_data_var = np.zeros((n_err, y_dim)) for ny in range(y_dim): # m_tmp = self.m_list[ny].copy() m_tmp = self.m_list[ny] if self.do_logtransform: #y_var_val = np.var(np.log(Y[:, ny])) log_mean = np.mean(np.log(Y[:, ny])) log_var = np.var(np.log(Y[:, ny])) y_var_val = np.exp(2*log_mean+log_var)*(np.exp(log_var)-1) # in linear space else: y_var_val = np.var(Y[:, ny]) for ns in range(n_err): y_pred_tmp, y_pred_var_tmp = self.__predict(m_tmp,Xerr[ns, :][np.newaxis]) if self.do_logtransform: y_pred_var[ns, ny] = np.exp(2 * y_pred_tmp + y_pred_var_tmp) * (np.exp(y_pred_var_tmp) - 1) else: y_pred_var[ns, ny] = y_pred_var_tmp y_data_var[ns, ny] = y_var_val #for parname in m_tmp.parameter_names(): # if ('Mat52' in parname) and parname.endswith('variance'): # exec('y_pred_prior_var[ns,ny]=m_tmp.' + parname) #error_ratio1_Pr = (y_pred_var / y_pred_prior_var) error_ratio2_Pr = (y_pred_var / y_data_var) #np.max(error_ratio1_Pr, axis=0) np.max(error_ratio2_Pr, axis=0) self.perc_thr = np.hstack([np.array([1]), np.arange(10, 1000, 50), np.array([999])]) error_sorted = np.sort(np.max(error_ratio2_Pr, axis=1), axis=0) self.perc_val = error_sorted[self.perc_thr] # criteria self.perc_thr = 1 - (self.perc_thr) * 0.001 # ratio=simulation/sampling corr_val =
np.zeros((y_dim,))
numpy.zeros
import numpy as np import os import re import requests import sys import time from netCDF4 import Dataset import pandas as pd from bs4 import BeautifulSoup from tqdm import tqdm # setup constants used to access the data from the different M2M interfaces BASE_URL = 'https://ooinet.oceanobservatories.org/api/m2m/' # base M2M URL SENSOR_URL = '12576/sensor/inv/' # Sensor Information # setup access credentials AUTH = ['OOIAPI-853A3LA6QI3L62', '<KEY>'] def M2M_Call(uframe_dataset_name, start_date, end_date): options = '?beginDT=' + start_date + '&endDT=' + end_date + '&format=application/netcdf' r = requests.get(BASE_URL + SENSOR_URL + uframe_dataset_name + options, auth=(AUTH[0], AUTH[1])) if r.status_code == requests.codes.ok: data = r.json() else: return None # wait until the request is completed print('Waiting for OOINet to process and prepare data request, this may take up to 20 minutes') url = [url for url in data['allURLs'] if re.match(r'.*async_results.*', url)][0] check_complete = url + '/status.txt' with tqdm(total=400, desc='Waiting') as bar: for i in range(400): r = requests.get(check_complete) bar.update(1) if r.status_code == requests.codes.ok: bar.n = 400 bar.last_print_n = 400 bar.refresh() print('\nrequest completed in %f minutes.' % elapsed) break else: time.sleep(3) elapsed = (i * 3) / 60 return data def M2M_Files(data, tag=''): """ Use a regex tag combined with the results of the M2M data request to collect the data from the THREDDS catalog. Collected data is gathered into an xarray dataset for further processing. :param data: JSON object returned from M2M data request with details on where the data is to be found for download :param tag: regex tag to use in discriminating the data files, so we only collect the correct ones :return: the collected data as an xarray dataset """ # Create a list of the files from the request above using a simple regex as a tag to discriminate the files url = [url for url in data['allURLs'] if re.match(r'.*thredds.*', url)][0] files = list_files(url, tag) return files def list_files(url, tag=''): """ Function to create a list of the NetCDF data files in the THREDDS catalog created by a request to the M2M system. :param url: URL to user's THREDDS catalog specific to a data request :param tag: regex pattern used to distinguish files of interest :return: list of files in the catalog with the URL path set relative to the catalog """ page = requests.get(url).text soup = BeautifulSoup(page, 'html.parser') pattern = re.compile(tag) return [node.get('href') for node in soup.find_all('a', text=pattern)] def M2M_Data(nclist,variables): thredds = 'https://opendap.oceanobservatories.org/thredds/dodsC/ooi/' #nclist is going to contain more than one url eventually for jj in range(len(nclist)): url=nclist[jj] url=url[25:] dap_url = thredds + url + '#fillmismatch' openFile = Dataset(dap_url,'r') for ii in range(len(variables)): dum = openFile.variables[variables[ii].name] variables[ii].data = np.append(variables[ii].data, dum[:].data) tmp = variables[0].data/60/60/24 time_converted = pd.to_datetime(tmp, unit='D', origin=pd.Timestamp('1900-01-01')) return variables, time_converted class var(object): def __init__(self): """A Class that generically holds data with a variable name and the units as attributes""" self.name = '' self.data = np.array([]) self.units = '' def __repr__(self): return_str = "name: " + self.name + '\n' return_str += "units: " + self.units + '\n' return_str += "data: size: " + str(self.data.shape) return return_str class structtype(object): def __init__(self): """ A class that imitates a Matlab structure type """ self._data = [] def __getitem__(self, index): """implement index behavior in the struct""" if index == len(self._data): self._data.append(var()) return self._data[index] def __len__(self): return len(self._data) def M2M_URLs(platform_name,node,instrument_class,method): var_list = structtype() #MOPAK if platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/telemetered/mopak_o_dcl_accel' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/telemetered/metbk_a_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'FLORT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/04-FLORTK000/telemetered/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[6].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' var_list[6].units = 'dbar' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/telemetered/fdchp_a_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/telemetered/dosta_abcdjm_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/telemetered/dosta_abcdjm_ctdbp_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'DOSTA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/02-DOFSTK000/telemetered/dofst_k_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'dofst_k_oxygen_l2' var_list[2].name = 'dofst_k_oxygen' var_list[3].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'Hz' var_list[3].units = 'dbar' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/telemetered/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #ZPLSC elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/telemetered/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_host/zplsc_c_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/telemetered/wavss_a_dcl_statistics' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/telemetered/velpt_ab_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/telemetered/pco2w_abc_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/telemetered/phsen_abcdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/telemetered/spkir_abj_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/telemetered/presf_abc_dcl_tide_measurement' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/telemetered/ctdbp_cdef_dcl_instrument' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/telemetered/vel3d_cd_dcl_velocity_data' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #VEL3DK elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'VEL3D' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/01-VEL3DK000/telemetered/vel3d_k_wfp_stc_instrument' var_list[0].name = 'time' var_list[1].name = 'vel3d_k_eastward_velocity' var_list[2].name = 'vel3d_k_northward_velocity' var_list[3].name = 'vel3d_k_upward_velocity' var_list[4].name = 'vel3d_k_heading' var_list[5].name = 'vel3d_k_pitch' var_list[6].name = 'vel3d_k_roll' var_list[7].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'ddegrees' var_list[5].units = 'ddegrees' var_list[6].units = 'ddegrees' var_list[7].units = 'dbar' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/telemetered/ctdpf_ckl_wfp_instrument' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/telemetered/pco2a_a_dcl_instrument_water' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #PARAD elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'PARAD' and method == 'Telemetered': uframe_dataset_name = 'CE09OSPM/WFP01/05-PARADK000/telemetered/parad_k__stc_imodem_instrument' var_list[0].name = 'time' var_list[1].name = 'parad_k_par' var_list[2].name = 'int_ctd_pressure' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol photons m-2 s-1' var_list[2].units = 'dbar' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/telemetered/optaa_dj_dcl_instrument' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'Telemetered': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/telemetered/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' ## #MOPAK elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSPM' and node == 'BUOY' and instrument_class == 'MOPAK' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSPM/SBS01/01-MOPAK0000/recovered_host/mopak_o_dcl_accel_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #METBK elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'METBK1' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/06-METBKA000/recovered_host/metbk_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'sea_surface_temperature' var_list[2].name = 'sea_surface_conductivity' var_list[3].name = 'met_salsurf' var_list[4].name = 'met_windavg_mag_corr_east' var_list[5].name = 'met_windavg_mag_corr_north' var_list[6].name = 'barometric_pressure' var_list[7].name = 'air_temperature' var_list[8].name = 'relative_humidity' var_list[9].name = 'longwave_irradiance' var_list[10].name = 'shortwave_irradiance' var_list[11].name = 'precipitation' var_list[12].name = 'met_heatflx_minute' var_list[13].name = 'met_latnflx_minute' var_list[14].name = 'met_netlirr_minute' var_list[15].name = 'met_sensflx_minute' var_list[16].name = 'eastward_velocity' var_list[17].name = 'northward_velocity' var_list[18].name = 'met_spechum' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[15].data = np.array([]) var_list[16].data = np.array([]) var_list[17].data = np.array([]) var_list[18].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'S/m' var_list[3].units = 'unitless' var_list[4].units = 'm/s' var_list[5].units = 'm/s' var_list[6].units = 'mbar' var_list[7].units = 'degC' var_list[8].units = '#' var_list[9].units = 'W/m' var_list[10].units = 'W/m' var_list[11].units = 'mm' var_list[12].units = 'W/m' var_list[13].units = 'W/m' var_list[14].units = 'W/m' var_list[15].units = 'W/m' var_list[16].units = 'm/s' var_list[17].units = 'm/s' var_list[18].units = 'g/kg' #FLORT elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'FLORT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/02-FLORTD000/recovered_host/flort_sample' var_list[0].name = 'time' var_list[1].name = 'seawater_scattering_coefficient' var_list[2].name = 'fluorometric_chlorophyll_a' var_list[3].name = 'fluorometric_cdom' var_list[4].name = 'total_volume_scattering_coefficient' var_list[5].name = 'optical_backscatter' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm-1' var_list[2].units = 'ug/L' var_list[3].units = 'ppb' var_list[4].units = 'm-1 sr-1' var_list[5].units = 'm-1' #FDCHP elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'FDCHP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/08-FDCHPA000/recovered_host/fdchp_a_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #DOSTA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/04-DOSTAD000/recovered_host/dosta_abcdjm_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'estimated_oxygen_concentration' var_list[3].name = 'optode_temperature' var_list[4].name = 'dosta_abcdjm_cspp_tc_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' var_list[3].units = 'degC' var_list[4].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'DOSTA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-DOSTAD000/recovered_host/dosta_abcdjm_ctdbp_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'dissolved_oxygen' var_list[2].name = 'dosta_ln_optode_oxygen' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/kg' var_list[2].units = 'umol/L' #ADCP elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_host/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' #WAVSS elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'WAVSS_Stats' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/05-WAVSSA000/recovered_host/wavss_a_dcl_statistics_recovered' var_list[0].name = 'time' var_list[1].name = 'number_zero_crossings' var_list[2].name = 'average_wave_height' var_list[3].name = 'mean_spectral_period' var_list[4].name = 'max_wave_height' var_list[5].name = 'significant_wave_height' var_list[6].name = 'significant_period' var_list[7].name = 'wave_height_10' var_list[8].name = 'wave_period_10' var_list[9].name = 'mean_wave_period' var_list[10].name = 'peak_wave_period' var_list[11].name = 'wave_period_tp5' var_list[12].name = 'wave_height_hmo' var_list[13].name = 'mean_direction' var_list[14].name = 'mean_spread' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[9].data = np.array([]) var_list[10].data = np.array([]) var_list[11].data = np.array([]) var_list[12].data = np.array([]) var_list[13].data = np.array([]) var_list[14].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'counts' var_list[2].units = 'm' var_list[3].units = 'sec' var_list[4].units = 'm' var_list[5].units = 'm' var_list[6].units = 'sec' var_list[7].units = 'm' var_list[8].units = 'sec' var_list[9].units = 'sec' var_list[10].units = 'sec' var_list[11].units = 'sec' var_list[12].units = 'm' var_list[13].units = 'degrees' var_list[14].units = 'degrees' #VELPT elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': #uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/04-VELPTA000/recovered_host/velpt_ab_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' #PCO2W elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PCO2W' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/05-PCO2WB000/recovered_host/pco2w_abc_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'pco2w_thermistor_temperature' var_list[2].name = 'pco2_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'uatm' #PHSEN elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PHSEN' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/06-PHSEND000/recovered_host/phsen_abcdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'phsen_thermistor_temperature' var_list[2].name = 'phsen_abcdef_ph_seawater' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' #SPKIR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'SPKIR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/08-SPKIRB000/recovered_host/spkir_abj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'spkir_abj_cspp_downwelling_vector' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uW cm-2 nm-1' #PRESF elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/02-PRESFA000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/02-PRESFB000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'PRESF' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/02-PRESFC000/recovered_host/presf_abc_dcl_tide_measurement_recovered' var_list[0].name = 'time' var_list[1].name = 'abs_seafloor_pressure' var_list[2].name = 'seawater_temperature' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'dbar' var_list[2].units = 'degC' #CTDBP elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_host/ctdbp_cdef_dcl_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'temp' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'pressure' var_list[5].name = 'conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' #VEL3D elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'VEL3D' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD35/01-VEL3DD000/recovered_host/vel3d_cd_dcl_velocity_data_recovered' var_list[0].name = 'time' var_list[1].name = 'vel3d_c_eastward_turbulent_velocity' var_list[2].name = 'vel3d_c_northward_turbulent_velocity' var_list[3].name = 'vel3d_c_upward_turbulent_velocity' var_list[4].name = 'seawater_pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = '0.001dbar' #PCO2A elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'PCO2A' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/SBD12/04-PCO2AA000/recovered_host/pco2a_a_dcl_instrument_water_recovered' var_list[0].name = 'time' var_list[1].name = 'partial_pressure_co2_ssw' var_list[2].name = 'partial_pressure_co2_atm' var_list[3].name = 'pco2_co2flux' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'uatm' var_list[2].units = 'uatm' var_list[3].units = 'mol m-2 s-1' #OPTAA elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID27/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/MFD37/01-OPTAAD000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'OPTAA' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/MFD37/01-OPTAAC000/recovered_host/optaa_dj_dcl_instrument_recovered' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' #NUTNR elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE01ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE02SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE04OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE06ISSM/RID16/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE07SHSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'NUTNR' and method == 'RecoveredHost': uframe_dataset_name = 'CE09OSSM/RID26/07-NUTNRB000/recovered_host/suna_dcl_recovered' var_list[0].name = 'time' var_list[1].name = 'nitrate_concentration' var_list[2].name = 'salinity_corrected_nitrate' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'umol/L' var_list[2].units = 'umol/L' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/RID16/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/06-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID27/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/03-CTDBPC000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'CTD' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/03-CTDBPE000/recovered_inst/ctdbp_cdef_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdbp_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdbp_seawater_pressure' var_list[5].name = 'ctdbp_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE09OSPM' and node == 'PROFILER' and instrument_class == 'CTD' and method == 'RecoveredWFP': uframe_dataset_name = 'CE09OSPM/WFP01/03-CTDPFK000/recovered_wfp/ctdpf_ckl_wfp_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'ctdpf_ckl_seawater_temperature' var_list[2].name = 'practical_salinity' var_list[3].name = 'density' var_list[4].name = 'ctdpf_ckl_seawater_pressure' var_list[5].name = 'ctdpf_ckl_seawater_conductivity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'degC' var_list[2].units = 'unitless' var_list[3].units = 'kg/m3' var_list[4].units = 'dbar' var_list[5].units = 'S/m' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/RID26/01-ADCPTA000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'NSIF' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/RID26/01-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD35/04-ADCPTM000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD35/04-ADCPTC000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ADCP' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD35/04-ADCPSJ000/recovered_inst/adcp_velocity_earth' var_list[0].name = 'time' var_list[1].name = 'bin_depths' var_list[2].name = 'heading' var_list[3].name = 'pitch' var_list[4].name = 'roll' var_list[5].name = 'eastward_seawater_velocity' var_list[6].name = 'northward_seawater_velocity' var_list[7].name = 'upward_seawater_velocity' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'meters' var_list[2].units = 'deci-degrees' var_list[3].units = 'deci-degrees' var_list[4].units = 'deci-degrees' var_list[5].units = 'm/s' var_list[6].units = 'm/s' var_list[7].units = 'm/s' elif platform_name == 'CE01ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE06ISSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE07SHSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE09OSSM' and node == 'MFN' and instrument_class == 'ZPLSC' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/MFD37/07-ZPLSCC000/recovered_inst/zplsc_echogram_data' var_list[0].name = 'time' var_list[0].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' elif platform_name == 'CE01ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE06ISSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE06ISSM/SBD17/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE07SHSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE07SHSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE09OSSM' and node == 'BUOY' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE09OSSM/SBD11/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE01ISSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE01ISSM/RID16/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE02SHSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE02SHSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data = np.array([]) var_list[4].data = np.array([]) var_list[5].data = np.array([]) var_list[6].data = np.array([]) var_list[7].data = np.array([]) var_list[8].data = np.array([]) var_list[0].units = 'seconds since 1900-01-01' var_list[1].units = 'm/s' var_list[2].units = 'm/s' var_list[3].units = 'm/s' var_list[4].units = 'deci-degrees' var_list[5].units = 'deci-degrees' var_list[6].units = 'deci-degrees' var_list[7].units = '0.01degC' var_list[8].units = '0.001dbar' elif platform_name == 'CE04OSSM' and node == 'NSIF' and instrument_class == 'VELPT' and method == 'RecoveredInst': uframe_dataset_name = 'CE04OSSM/RID26/04-VELPTA000/recovered_inst/velpt_ab_instrument_recovered' var_list[0].name = 'time' var_list[1].name = 'eastward_velocity' var_list[2].name = 'northward_velocity' var_list[3].name = 'upward_velocity' var_list[4].name = 'heading_decidegree' var_list[5].name = 'roll_decidegree' var_list[6].name = 'pitch_decidegree' var_list[7].name = 'temperature_centidegree' var_list[8].name = 'pressure_mbar' var_list[0].data = np.array([]) var_list[1].data = np.array([]) var_list[2].data = np.array([]) var_list[3].data =
np.array([])
numpy.array
# coding: UTF-8 import numpy as np import torch import time from utils import build_iterator, get_time_dif from importlib import import_module from tqdm import tqdm from generate_data import cut_para_many_times PAD, CLS = '[PAD]', '[CLS]' # padding符号, bert中综合信息符号 min_length = 64 label2class = { "财经" : "高风险", "时政" : "高风险", "房产" : "中风险", "科技" : "中风险", "教育" : "低风险", "时尚" : "低风险", "游戏" : "低风险", "家居" : "可公开", "体育" : "可公开", "娱乐" : "可公开", } label2num = { "财经" : 0, "时政" : 1, "房产" : 2, "科技" : 3, "教育" : 4, "时尚" : 5, "游戏" : 6, "家居" : 7, "体育" : 8, "娱乐" : 9, } num2label = { 0 : "财经", 1 : "时政", 2 : "房产", 3 : "科技", 4 : "教育", 5 : "时尚", 6 : "游戏", 7 : "家居", 8 : "体育", 9 : "娱乐" } class Predict_Baseline(): """ 第一种预测方法 不对预测的句子做任何处理 就直接尾部截断预测 优点: 快? 因为直接截断,数据量小了很多 问题: 无法看到篇章的全部信息 可能会继续做的方法(咕咕咕): 1. 把预测的序列变成多个,然后综合每个预测结果做出最终预测 2. 对篇章关键词抽取 / ... 等可能有用的方法, 然后建图,做谱聚类 (好像很难写...) """ def __init__(self, dataset, config): self.dataset = dataset self.config = config pass def load_dataset(self, path, pad_size): contents = [] config = self.config with open(path, 'r', encoding='utf-8') as fin: cnt = 0 for line in tqdm(fin): lin = line.strip() if not lin: continue cnt += 1 if cnt == 1: continue # print(cnt, lin + '\n\n\n') pos = lin.find(',') id = lin[:pos] content = lin[pos + 1:] # print('?????????? : ', id, content + '\n\n') token = config.tokenizer.tokenize(content) token = [CLS] + token seq_len = len(token) mask = [] token_ids = config.tokenizer.convert_tokens_to_ids(token) if pad_size: if len(token) < pad_size: mask = [1] * len(token_ids) + [0] * (pad_size - len(token)) token_ids += ([0] * (pad_size - len(token))) else: mask = [1] * pad_size token_ids = token_ids[:pad_size] seq_len = pad_size contents.append((token_ids, int(id), seq_len, mask)) # print('\nlen(contents) : ', str(len(contents))+'\n') return contents def build_dataset(self, path): # 加载数据集 # [(tokens, int(id), seq_len, mask)] config = self.config print('\nloading predict set ...') predict_data = self.load_dataset(path, config.pad_size) print('Done!') self.predict_iter = build_iterator(predict_data, config) def evaluate(self, model): config = self.config predict_iter = self.predict_iter model.eval() predict_all = np.array([], dtype=int) with torch.no_grad(): for texts, ids in tqdm(predict_iter): outputs = model(texts) # print('outputs : ', outputs) ids = ids.data.cpu().numpy() predict_label = torch.max(outputs.data, 1)[1].cpu().numpy() predict_all = np.append(predict_all, predict_label) return predict_all def predict(self, model): config = self.config predict_iter = self.predict_iter model.load_state_dict(torch.load(config.save_path)) model.eval() start_time = time.time() print('prediction ...') predict_labels = self.evaluate(model) time_dif = get_time_dif(start_time) print('Done !') print('prediction usage:',time_dif) return predict_labels def write_csv(self, labels, path): with open(path, 'w') as fout: cnt = 0 fout.write('id,class_label,rank_label'+'\n') for label in labels: fout.write(str(cnt) + ',' + num2label[label] + ',' + label2class[num2label[label]] + '\n') cnt += 1 class Predict_Cut_Paras(): """ 方法二 篇章切割,综合结果预测 type = 1 表示label投票 type = 2 表示得分softmax之和 type = 3 表示得分之和 others TBD -> ERROR """ def __init__(self, dataset, config, type=1): self.dataset = dataset self.config = config self.type = type if type == 1 or type == 2 or type == 3: pass else: raise ValueError def load_dataset(self, path, pad_size): contents = [] config = self.config # 篇章切割 print('cut paras ...') start_time = time.time() with open(path, 'r', encoding='utf-8') as fin: cnt = 0 data = [] for line in tqdm(fin): lin = line.strip() if not line: continue cnt += 1 if cnt == 1: continue pos = lin.find(',') id = lin[:pos] content = lin[pos + 1:] paras = cut_para_many_times(content) for para in paras: #if len(para) < min_length: # continue data.append((int(id), para)) print('Done!') print('\nparas:',len(data)) print('Time usage:',get_time_dif(start_time)) print('\n Getting tokens ...') for id, content in tqdm(data): token = config.tokenizer.tokenize(content) token = [CLS] + token seq_len = len(token) mask = [] token_ids = config.tokenizer.convert_tokens_to_ids(token) if pad_size: if len(token) < pad_size: mask = [1] * len(token_ids) + [0] * (pad_size - len(token)) token_ids += ([0] * (pad_size - len(token))) else: mask = [1] * pad_size token_ids = token_ids[:pad_size] seq_len = pad_size contents.append((token_ids, int(id), seq_len, mask)) # print('\nlen(contents) : ', str(len(contents))+'\n') return contents def build_dataset(self, path): # 加载数据集 # [(tokens, int(id), seq_len, mask)] config = self.config print('\nloading predict set ...') predict_data = self.load_dataset(path, config.pad_size) print('Done!') self.predict_iter = build_iterator(predict_data, config) def evaluate(self, model): config = self.config predict_iter = self.predict_iter model.eval() predict_all = np.array([], dtype=int) id_all = np.array([], dtype=int) score_all = np.array([[]], dtype=int) with torch.no_grad(): for texts, ids in tqdm(predict_iter): outputs = model(texts) # print('outputs : ', outputs) ids = ids.data.cpu().numpy() predict_label = torch.max(outputs.data, 1)[1].cpu().numpy() predict_all = np.append(predict_all, predict_label) id_all = np.append(id_all, ids) score_all = np.append(score_all, outputs.data.cpu().numpy()) if self.type == 1: return predict_all, id_all elif self.type == 2: return score_all, id_all elif self.type == 3: return score_all, id_all def predict(self, model): config = self.config model.load_state_dict(torch.load(config.save_path)) model.eval() start_time = time.time() print('prediction ...') predict_labels, ids = self.evaluate(model) time_dif = get_time_dif(start_time) print('Done !') print('prediction usage:',time_dif) return predict_labels, ids def softmax(self, score): score = np.array(score) score =
np.exp(score)
numpy.exp
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Generator to yield resampled volume data for training and validation """ # %% from keras.models import load_model, Model from matplotlib import pyplot as plt import numpy as np import os from os import path import random import SimpleITK as sitk from stl import mesh from utils import data_loading_funcs as dlf from utils import mhd_utils as mu from utils import reg_evaluator as regev from utils import volume_resampler_3d as vr import tensorflow as tf from utils import registration_reader as rr import scipy #from augment_data import augment # %% class VolumeDataGenerator(object): """Generate volume image for training or validation #Arguments """ def __init__(self, data_folder, case_num_range, case_num_range_2=None, max_registration_error = 20.0): self.data_folder = data_folder cases = [] # Go through all the case for caseIdx in range(case_num_range[0], case_num_range[1]+1): caseFolder = 'Case{:04d}'.format(caseIdx) full_case = path.join(data_folder, caseFolder) if not path.isdir(full_case): continue else: cases.append(caseIdx) if case_num_range_2 != None: for caseIdx in range(case_num_range_2[0], case_num_range_2[1]+1): caseFolder = 'Case{:04d}'.format(caseIdx) full_case = path.join(data_folder, caseFolder) if not path.isdir(full_case): continue else: cases.append(caseIdx) self.good_cases = np.asarray(cases, dtype=np.int32) self.num_cases = self.good_cases.size random.seed() self.e_t = 0.5 self.e_rot = 1 self.isMultiGauss = False self.max_error = max_registration_error print('VolumeDataGenerator: max_registration_error = {}'.format(self.max_error)) #self.width, self.height, self.depth = 96, 96, 32 # ----- # def get_sample_multi_gauss(self,mean,cov): return np.random.multivariate_normal(mean,cov) def get_num_cases(self): return self.num_cases # ----- # def _get_random_value(self, r, center, hasSign): randNumber = random.random() * r + center if hasSign: sign = random.random() > 0.5 if sign == False: randNumber *= -1 return randNumber # ----- # def get_array_from_itk_matrix(self, itk_mat): mat = np.reshape(np.asarray(itk_mat), (3,3)) return mat # ----- # def generate(self, shuffle=True, shape=(96,96,96)): """ """ currentIdx = 0 np.random.seed() (width, height, depth) = shape print('Shuffle = {}'.format(shuffle)) while True: idx = currentIdx % self.num_cases currentIdx += 1 # Shuffle cases if idx == 0: if shuffle: case_array = np.random.permutation(self.good_cases) else: case_array = self.good_cases case_no = case_array[idx] sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) #sampledFixed, sampledMoving, pos_neg, err, params = self.create_sample(450, shape) print('Sample generated frome Case{:04d}'.format(case_no)) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) yield sample4D, err, params # ----- # def generate_batch(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_errors = [] batch_params = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_errors.append([err]) batch_params.append(params) #yield (batch_samples, [np.asarray(batch_errors), np.asarray(batch_params)]) yield (batch_samples, np.asarray(batch_params)) #yield (batch_samples, np.asarray(batch_errors)) def generate_batch_classification(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 4), dtype=np.ubyte) #batch_labels = [] batch_labels = [] batch_errs = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed_i, sampledFixed_f, sampledMoving_i, sampledMoving_f, label, err1, err2 = self.create_sample_classification(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 4), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed_i) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving_i) sample4D[:,:,:,2] = sitk.GetArrayFromImage(sampledFixed_f) sample4D[:,:,:,3] = sitk.GetArrayFromImage(sampledMoving_f) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_labels.append(label) batch_errs.append([err1, err2]) yield (batch_samples, [np.asarray(batch_labels), np.asarray(batch_errs)]) def generate_batch_NIH(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_errors = [] batch_params = [] batch_segs = [] batch_trans = [] batch_case_nums = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params, segMesh, trans = self.create_sample_NIH(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_errors.append([err]) batch_params.append(params) batch_segs.append(segMesh) batch_trans.append(trans) batch_case_nums.append(case_no) yield (batch_samples, batch_params) def generate_batch_NIH_transform_prediction(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_transforms = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_transforms.append(params) #batch_errors.append([err]) yield (batch_samples, batch_transforms) def generate_batch_NIH_transform_prediction_2D_multiview(self, batch_size=32, shape=(224,222,220)): """Used for keras training and validation """ batch_index = 0 np.random.seed() slice_num = 3 (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 ax_batch_samples = np.zeros((current_batch_size, height, width, 2, slice_num), dtype=np.ubyte) sag_batch_samples = np.zeros((current_batch_size, depth, height, 2, slice_num), dtype=np.ubyte) cor_batch_samples = np.zeros((current_batch_size, depth, width, 2, slice_num), dtype=np.ubyte) #batch_labels = [] batch_transforms = [] ax_transforms = [] sag_transforms = [] cor_transforms = [] batch_errors = [] batch_segs = [] batch_affines = [] batch_tX = [] batch_tY = [] batch_tZ = [] batch_rotX = [] batch_rotY = [] batch_rotZ = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) # Put into 4D array ax_sample = np.zeros((height, width, 2, slice_num), dtype=np.ubyte) sag_sample = np.zeros((depth, height, 2, slice_num), dtype=np.ubyte) cor_sample = np.zeros((depth, width, 2, slice_num), dtype=np.ubyte) MR = sitk.GetArrayFromImage(sampledFixed) TRUS = sitk.GetArrayFromImage(sampledMoving) ax_sample[:,:,0,:] = np.reshape(MR[int(depth/2)-int((slice_num-1)/2):int(depth/2)+int((slice_num)/2)+1,:,:], (height, width, slice_num)) ax_sample[:,:,1,:] = np.reshape(TRUS[int(depth/2)-int((slice_num-1)/2):int(depth/2)+int((slice_num)/2)+1,:,:], (height, width, slice_num)) sag_sample[:,:,0,:] = np.reshape(MR[:,:,int(width/2)-int((slice_num-1)/2):int(width/2)+int((slice_num)/2)+1], (depth, height, slice_num)) sag_sample[:,:,1,:] = np.reshape(TRUS[:,:,int(width/2)-int((slice_num-1)/2):int(width/2)+int((slice_num)/2)+1], (depth, height, slice_num)) cor_sample[:,:,0,:] = np.reshape(MR[:,int(height/2)-int((slice_num-1)/2):int(height/2)+int((slice_num)/2)+1,:], (depth, width, slice_num)) cor_sample[:,:,1,:] = np.reshape(TRUS[:,int(height/2)-int((slice_num-1)/2):int(height/2)+int((slice_num)/2)+1,:], (depth, width, slice_num)) ax_batch_samples[k, :,:,:,:] = ax_sample sag_batch_samples[k, :,:,:,:] = sag_sample cor_batch_samples[k, :,:,:,:] = cor_sample #batch_labels.append(pos_neg) #params = tuple(-1*np.asarray(params)) batch_transforms.append(params) ax_transforms.append([params[0], params[1], params[5]]) sag_transforms.append([params[1], params[2], params[3]]) cor_transforms.append([params[0], params[2], params[4]]) batch_errors.append([err]) batch_tX.append(params[0]) batch_tY.append(params[1]) batch_tZ.append(params[2]) batch_rotX.append(params[3]) batch_rotY.append(params[4]) batch_rotZ.append(params[5]) #batch_segs.append(segMesh) #batch_affines.append(trans) yield ([ax_batch_samples, sag_batch_samples, cor_batch_samples], [np.asarray(batch_tX),np.asarray(batch_tY),np.asarray(batch_tZ),np.asarray(batch_rotX),np.asarray(batch_rotY),np.asarray(batch_rotZ),np.asarray(batch_transforms)]) def generate_batch_3D_transform_prediction(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_transforms = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params, segMesh, trans = self.create_sample_NIH(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_transforms.append(params) #batch_errors.append([err]) yield (batch_samples, batch_transforms) def generate_batch_US_regression(self, batch_size=32, shape=(96,96,32)): """ """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_params = np.zeros((current_batch_size, 6), dtype=np.float) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_params[k,:] = params yield (batch_samples, batch_params) def generate_batch_US_regression_siamese(self, batch_size=32, shape=(96,96,32)): """ """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 1), dtype=np.ubyte) batch_samples_GT = np.zeros((current_batch_size, depth, height, width, 1), dtype=np.ubyte) #batch_labels = [] batch_params = np.zeros((current_batch_size, 6), dtype=np.float) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, sampledMovingGT, err, params = self.create_sample_MRUS2US(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 1), dtype=np.ubyte) sample4D_GT = np.zeros((depth, height, width, 1), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledMoving) sample4D_GT[:,:,:,0] = sitk.GetArrayFromImage(sampledMovingGT) batch_samples[k, :,:,:,:] = sample4D batch_samples_GT[k, :,:,:,:] = sample4D_GT #batch_labels.append(pos_neg) batch_params[k,:] = params yield ([batch_samples, batch_samples_GT], batch_params) def generate_batch_transformation_regression(self, batch_size=32, shape=(96,96,32)): """ """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) #batch_labels = [] batch_params = np.zeros((current_batch_size, 6), dtype=np.float) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, sampledMovingGT, err, params = self.create_sample_MRUS2US(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledMoving) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledFixed) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) batch_params[k,:] = params yield (batch_samples, batch_params) def generate_batch_GAN_AE(self, batch_size=32, shape=(96,96,32), MR_TRUS='MR'): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 1), dtype=np.ubyte) valid = np.ones(current_batch_size,1) #batch_labels = [] for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) # Put into 4D array sample4D = np.zeros((depth, height, width, 1), dtype=np.ubyte) if MR_TRUS == 'MR': sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) else: sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D #batch_labels.append(pos_neg) yield (batch_samples) def generate_batch_AIRNet(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) batch_samples_GT = np.zeros((current_batch_size, depth, height, width, 2), dtype=np.ubyte) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, sampledMovingGT, err, params = self.create_sample_MRUS2US(case_no, shape) sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMoving) batch_samples[k, :,:,:,:] = sample4D sample4D = np.zeros((depth, height, width, 2), dtype=np.ubyte) sample4D[:,:,:,0] = sitk.GetArrayFromImage(sampledFixed) sample4D[:,:,:,1] = sitk.GetArrayFromImage(sampledMovingGT) batch_samples_GT[k, :,:,:,:] = sample4D yield (batch_samples, batch_samples_GT) def generate_batch_2D_AEMRax(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, height, width, 1), dtype=np.ubyte) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) sample4D = np.zeros((height, width, 1), dtype=np.ubyte) sample4D[:,:,0] = sitk.GetArrayFromImage(sampledFixed)[random.randint(0,sitk.GetArrayFromImage(sampledFixed).shape[0]-1)] batch_samples[k,:,:,:] = sample4D yield (batch_samples, batch_samples) def generate_batch_2D_AEUSax(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, height, width, 1), dtype=np.ubyte) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, err, params = self.create_sample(case_no, shape) sample4D = np.zeros((height, width, 1), dtype=np.ubyte) sample4D[:,:,0] = sitk.GetArrayFromImage(sampledMoving)[random.randint(0,sitk.GetArrayFromImage(sampledMoving).shape[0]-1)] batch_samples[k,:,:,:] = sample4D yield (batch_samples, batch_samples) def generate_batch_2D_MRUS_recon(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array = np.random.permutation(self.good_cases) #current_index = (batch_index * batch_size) % self.num_cases current_index = batch_index * batch_size if (current_index + batch_size) < self.num_cases: current_batch_size = batch_size batch_index += 1 else: # handle special case where only 1 sample left for the batch if (self.num_cases - current_index) > 1: current_batch_size = self.num_cases - current_index else: current_batch_size = 2 current_index -= 1 batch_index = 0 batch_samples = np.zeros((current_batch_size, height, width, 2), dtype=np.ubyte) for k in range(current_batch_size): case_no = case_array[k + current_index] #print(case_no) sampledFixed, sampledMoving, sampledMovingGT, err, params = self.create_sample_MRUS2US(case_no, shape) MR = sitk.GetArrayFromImage(sampledFixed) US = sitk.GetArrayFromImage(sampledMovingGT) idx = random.randint(0,MR.shape[0]-1) MR_ax = MR[idx] US_ax = US[idx] for i in range(US_ax.shape[0]): for j in range(US_ax.shape[1]): if US_ax[i][j] == 0: MR_ax[i][j] = 0 sample4D = np.zeros((height, width, 2), dtype=np.ubyte) sample4D[:,:,0] = MR_ax sample4D[:,:,1] = US_ax batch_samples[k,:,:,:] = sample4D yield (np.reshape(batch_samples[:,:,:,0],(current_batch_size,height,width,1)), [np.reshape(batch_samples[:,:,:,0],(current_batch_size,height,width,1)), np.reshape(batch_samples[:,:,:,1],(current_batch_size,height,width,1))]) def generate_batch_2D_MRUSax(self, batch_size=32, shape=(96,96,32)): """Used for keras training and validation """ batch_index = 0 np.random.seed() (width, height, depth) = shape while True: # Shuffle cases if batch_index == 0: case_array =
np.random.permutation(self.good_cases)
numpy.random.permutation
# -*- coding: iso-8859-1 -*- """ Create files (from Rugheimer metadata) that give the atmospheric profile, i.e. mixing ratio, temperature and pressure as a function of altitude. Since the Rugheimer T/P and mixing ratio files are generated from different codes, they have different abscissa, and so different files are generated for them. Interpolation is used in our code to match the two files. """ import numpy as np import pdb import matplotlib.pyplot as plt import scipy.stats from scipy import interpolate as interp import cookbook def extract_profiles_primitive_earth_rugheimer(): """ Purpose of this code is to form spectra, mixing ratio files, and T/P profiles for the revised Rugheimer Epoch 0 (3.9 Ga) Earth models. This is to triangulate the sources of our differences. """ #####Zeroth: set value of constants, specify filenames import cookbook filename='./Raw_Data/Rugheimer_Metadata/outchem_Ep0_A0.2_Frac1.0.dat' bar2Ba=1.0e6 #1 bar in Ba k=1.3806488e-16 #Boltzmann Constant in erg/K #####First, form the spectra for comparison. importeddata=np.genfromtxt(filename, skip_header=290, skip_footer=1277) #Remove the first wavelength bin which corresponds to Lyman Alpha and which does not have a bin width that fits with its neighbors. rugheimer_wav_centers=importeddata[1:,1]/10. #Convert wavelengths from Angstroms to nm rugheimer_s=importeddata[1:,4] #ratio of 4piJ(surf)/I_0 rugheimer_s[19]=3.16548e-128 #one element of rugheimer_s has value 3.16548e-128. Python has trouble with this and imports as a NaN. Here, we manually set its value. ###Form wavelength bins from Rugheimer wavelength centers rugheimer_wav_bin_leftedges=np.zeros(len(rugheimer_wav_centers)) rugheimer_wav_bin_rightedges=np.zeros(len(rugheimer_wav_centers)) #First ten FUV fluxes are 5 nm (50 A) bins (email from <EMAIL>, 3/12/2015) rugheimer_wav_bin_leftedges[0:9]=rugheimer_wav_centers[0:9]-2.5 rugheimer_wav_bin_rightedges[0:9]=rugheimer_wav_centers[0:9]+2.5 #Remainder of FUV fluxes are taken from a file that sarah sent me (<EMAIL>, 3/12/2015) del importeddata importeddata=np.genfromtxt('./Raw_Data/Rugheimer_Metadata/Active_M9_Teff2300_photo.pdat', skip_header=1, skip_footer=0) rugheimer_wav_bin_leftedges[9:]=importeddata[:,2]*0.1 #convert A to nm rugheimer_wav_bin_rightedges[9:]=importeddata[:,3]*0.1 #convert A to nm ####Check that bins are correct: ###print np.sum(rugheimer_wav_centers-0.5*(rugheimer_wav_bin_leftedges+rugheimer_wav_bin_rightedges)) #0 to within 1e-12 rounding error. ###Rebin Claire et al input. #Import 0.01-nm resolution Claire et al 3.9 Ga Sun model. del importeddata importeddata=np.genfromtxt('./Raw_Data/Claire_Model/claire_youngsun_highres.dat', skip_header=1, skip_footer=0) claire_wav=importeddata[:,0] #nm, 0.01 nm resolution claire_fluxes=importeddata[:,1]#erg/s/cm2/nm #Bin Claire et al model to resolution of Rugheimer model claire_fluxes_rebinned=np.zeros(len(rugheimer_wav_centers)) claire_wav_rebinned=np.zeros(len(claire_fluxes_rebinned))#This should be redundant with rugheimer_wav_centers. We include it as a check statistic that the rebinning is proceeding appropriately. for ind in range(0, len(rugheimer_wav_centers)): min_wav=rugheimer_wav_bin_leftedges[ind] max_wav=rugheimer_wav_bin_rightedges[ind] inds=(claire_wav >= min_wav) & (claire_wav <= max_wav) claire_fluxes_rebinned[ind]=np.mean(claire_fluxes[inds]) claire_wav_rebinned[ind]=np.mean(claire_wav[inds]) #check statistic. ###print np.sum((claire_wav_rebinned-rugheimer_wav_centers)/rugheimer_wav_centers) #check statistic. Good to within 1e-5 in all cases. Any problems caused by slight misalignment from 0.01 due to rounding error. Good enough. ###Compute bottom-of-atmosphere actinic flux, which is what is reported in Rugheimer+2015. rugheimer_ground_energies=claire_fluxes_rebinned*rugheimer_s #Let's print out the results spectable=np.zeros([len(rugheimer_wav_bin_leftedges),5]) spectable[:,0]=rugheimer_wav_bin_leftedges spectable[:,1]=rugheimer_wav_bin_rightedges spectable[:,2]=rugheimer_wav_centers spectable[:,3]=claire_fluxes_rebinned spectable[:,4]=rugheimer_ground_energies header='Left Bin Edge (nm) Right Bin Edge (nm) Bin Center (nm) Solar Flux at Earth (erg/s/nm/cm2) 3.9 Ga BOA Intensity (erg/s/nm/cm2)\n' f=open('./LiteratureSpectra/rugheimer_epoch0_recomputed_A0.2.dat', 'w') f.write(header) np.savetxt(f, spectable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Second, form the mixing ratio files importeddata1=np.genfromtxt(filename, skip_header=779, skip_footer=873) #O2, O3, H2O importeddata2=np.genfromtxt(filename, skip_header=837, skip_footer=817) #CH4, SO2 importeddata4=np.genfromtxt(filename, skip_header=958, skip_footer=704) #N2, CO2 #Let's print out the results. We have established that the z values are the same, so can use a common block printtable=np.zeros([np.shape(importeddata1)[0],9]) printtable[:,0]=importeddata1[:,0] #altitude in cm #N2 and CO2: We use the values from this block rather than block 1 because rugheimer et al force it to these values in their code, regardless of what the photochemistry code wants to do. printtable[:,1]=importeddata4[:,2] #N2. printtable[:,2]=importeddata4[:,1] #CO2 #The rest are normal printtable[:,3]=importeddata1[:,3] #H2O printtable[:,4]=importeddata2[:,2] #CH4 printtable[:,5]=importeddata2[:,9] #SO2 printtable[:,6]=importeddata1[:,2] #O2 printtable[:,7]=importeddata1[:,8] #O3 #printtable[:,8]# H2S; left as zeros since not included in Rugheimer model #print np.sum(printtable[:,1:],1) #pdb.set_trace() header0='Extracted from Rugheimer outchem_Ep0_A0.2_Frac1.0.dat\n' header1='Z (cm) N2 CO2 H2O CH4 SO2 O2 O3 H2S \n' f=open('./MixingRatios/rugheimer_earth_epoch0_recomputed_A0.2_mixingratios_v2.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, printtable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Third, form the T/P profiles #Extract temperature and pressure profile from climate model output #For whatever reason the very last line of the table is doubled. We remove this. importeddata=np.genfromtxt(filename, skip_header=1568, skip_footer=104) model_z=importeddata[:-1,0] #altitude in cm model_t=importeddata[:-1,1] #temperature in K model_n=importeddata[:-1,3] #number density in cm**-3. model_p=importeddata[:-1,4] #pressure, in bar (based on text in draft manuscript sent to me by <NAME>) #Let's print out the results printtable=np.zeros([len(model_z)+1,4]) printtable[1:,0]=model_z printtable[1:,1]=model_t printtable[1:,2]=model_n printtable[1:,3]=model_p #Rugheimer data file does not explicitly include t, P, n at z=0 (Surface). Our code requires z=0 data. To reconcile, we include these data manually as follows: printtable[0,0]=0. #z=0 case printtable[0,3]=1. #In the paper, p=1.0 bar at surface is specified printtable[0,1]=292.95 #From linear extrapolation from z=0.5 km and z=1.5 km points printtable[0,2]= 1.*bar2Ba/(k*292.95)#Compute number density self-consistently from temperature, pressure via Ideal Gas Law as is done elsewhere (n [cm**-3] = p [Barye]/(k*T [K]) header0='Extracted from Rugheimer outchem_Ep0_A0.2_Frac1.0.dat\n' header1='Z (cm) T (K) DEN (cm**-3) P (bar) \n' f=open('./TPProfiles/rugheimer_earth_epoch0_recomputed_A0.2_atmosphereprofile.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, printtable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() #extract_profiles_primitive_earth_rugheimer() def extract_profiles_modern_earth_rugheimer(): """ Purpose of this code is to form spectra, mixing ratio files, and T/P profiles for the Rugheimer+2014 modern Earth surface UV models. This is a test case. """ #####Zeroth: set value of constants, specify filenames import cookbook filename='./Raw_Data/Rugheimer_Metadata/output_couple_Sun_100.dat' bar2Ba=1.0e6 #1 bar in Ba k=1.3806488e-16 #Boltzmann Constant in erg/K #####First, form the spectra for comparison. #Extract spectra from Rugheimer file importeddata=np.genfromtxt(filename, skip_header=286, skip_footer=102) #Remove the first wavelength bin which corresponds to Lyman Alpha and which does not have a bin width that fits with its neighbors. spec_wav=importeddata[1:,0]*0.1 #A to nm spec_top=importeddata[1:,1]*1.e3 #W/m^2/nm to erg/cm^2/s/nm spec_gnd=importeddata[1:,2]*1.e3 #W/m^2/nm to erg/cm^2/s/nm #two elements of the file are not importing correctly, set them manually here spec_gnd[23]=2.92059e-121*1.e3 spec_gnd[24]=1.57780e-102 *1.e3 #Next, extract the edges of the spectral bins. bin_left_edges=np.zeros(np.shape(spec_wav)) bin_right_edges=np.zeros(np.shape(spec_wav)) #first 9 bins are 5-nm (50 angstrom) wide bins (See faruv_sun.pdat) bin_left_edges[0:9]=spec_wav[0:9]-2.5 bin_right_edges[0:9]=spec_wav[0:9]+2.5 #The edges for the rest of the bins can be taken from G2V_photo.pdat: importeddata=np.genfromtxt('./Raw_Data/Rugheimer_Metadata/G2V_photo.pdat', skip_header=1, skip_footer=0) bin_left_edges[9:]=importeddata[:,2]*0.1 #convert from A to nm bin_right_edges[9:]=importeddata[:,3]*0.1 #convert from A to nm ###let's validate our bin edges by computing the bin centers and making sure the residuals aren't too high ##diff=(0.5*(bin_left_edges+bin_right_edges)-spec_wav)#/spec_wav ##print diff ##print np.max(np.abs(diff)) ###this test shows very slight offsets, at the 0.05 nm level at maximum. Should not affect results given bins are >1nm in width. #Let's print out the results printtable=np.zeros([len(bin_left_edges),5]) printtable[:,0]=bin_left_edges printtable[:,1]=bin_right_edges printtable[:,2]=spec_wav printtable[:,3]=spec_top printtable[:,4]=spec_gnd header='Left Bin Edge (nm) Right Bin Edge (nm) Bin Center (nm) TOA Flux (erg/s/nm/cm2) BOA Actinic Flux (erg/s/nm/cm2) \n' f=open('./LiteratureSpectra/rugheimer_earth_modern.dat', 'w') f.write(header) np.savetxt(f, printtable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Second, form the mixing ratio files importeddata1=np.genfromtxt(filename, skip_header=78, skip_footer=323) #water, methane importeddata2=np.genfromtxt(filename, skip_header=182, skip_footer=222) #ozone, must derive from number density #Let's print out the results. We have established that the z values are the same, so can use a common block printtable=np.zeros([np.shape(importeddata1)[0],9]) printtable[:,0]=importeddata1[:,0]*1.e5 #altitude in cm (converted from km) #N2 O2, and CO2: Well-mixed #H2O, CH4, O3: tracked through atmosphere #SO2: Not tracked. Assume 0. printtable[:,1]=printtable[:,1]+ 0.78#N2; level tuned to assure 1 bar of surface pressure. Earth mean value given here. printtable[:,2]=printtable[:,2]+355.e-6 #CO2; level directly quoted in paper printtable[:,3]=importeddata1[:,2] #H2O printtable[:,4]=importeddata1[:,4] #CH4 #printtable[:,5]=printtable[:,5] #SO2; left as zeros since not included in the model printtable[:,6]=printtable[:,6]+0.21 #O2; level directly quoted in paper printtable[:,7]=importeddata2[:,4]/importeddata2[:,2]#O3 #printtable[:,8]=printtable[:,8]# H2S; left as zeros since not included in the model header0='Extracted from Rugheimer output_couple_Sun_100.dat\n' header1='Z (cm) N2 CO2 H2O CH4 SO2 O2 O3 H2S\n' f=open('./MixingRatios/rugheimer_earth_modern_mixingratios_v2.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, printtable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### ####Third, form the T/P profiles N_A=6.022e23 #Avogadro's number bar2Ba=1.0e6 #1 bar in Ba atm2bar=1.01325 #1 atm in bar k=83.14472/N_A #Boltzman constant in bar*cm^3/K, converted from bar*cm^3/(K*mol) (from http://www.engineeringtoolbox.com/individual-universal-gas-constant-d_588.html) #Extract temperature and pressure profile from climate model output importeddata=np.genfromtxt(filename, skip_header=409, skip_footer=0) model_z=importeddata[::-1,1]*1.e5 #altitude in cm, converted from km model_t=importeddata[::-1,2] #temperature in K model_p=importeddata[::-1,0]*atm2bar #pressure, in bar, converted from atm. model_n=model_p/(model_t*k) #number density in cm**-3, computed from ideal gas law. #Let's print out the results printtable=np.zeros([len(model_z),4]) printtable[:,0]=model_z printtable[:,1]=model_t printtable[:,2]=model_n printtable[:,3]=model_p header0='Extracted from Rugheimer output_couple_Sun_100.dat\n' header1='Z (cm) T (K) DEN (cm**-3) P (bar) \n' f=open('./TPProfiles/rugheimer_earth_modern_atmosphereprofile.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, printtable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() #extract_profiles_modern_earth_rugheimer() def form_profiles_wuttke(): """ Purpose of this code is to form the feedstock files to replicat the Wuttke+2006 Antarctic diffuse radiance measurements """ import cookbook #First, form the spectral file. #Define spectral bins. 0.25 nm from 280-500 nm, 1 nm from 500-1000 nm. We just go to 900 since that's what our data is good to. Also we start at 292.75 because that's where our graphclicked data starts bin_left_edges=np.concatenate((np.arange(292.75,500.,0.25),np.arange(500., 900.,1.))) bin_right_edges=np.concatenate((np.arange(293.,500.25,0.25),np.arange(501., 901.,1.))) bin_centers=0.5*(bin_left_edges+bin_right_edges) #load BOA diffuse zenith flux from Wuttke+2006 (extracted via GraphClick) importeddata=np.genfromtxt('./Raw_Data/UV_Surface_Measurements/wuttke.csv', skip_header=0, skip_footer=0, delimiter=',') dif_wav=importeddata[:,0] #nm dif_flux=importeddata[:,1]*2.*np.pi #mW/m2/nm/sr=erg/s/cm2/nm/sr; multiply by 2pi to convert to hemisphere-integrated total surface diffuse radiances dif_func=interp.interp1d(dif_wav, dif_flux, kind='linear') dif_flux_interp=dif_func(bin_centers) #load solar spectrum from Claire et al (2012) models, normalized to 1 au importeddata=np.genfromtxt('./Raw_Data/Claire_Model/claire_modernsun_highres.dat', skip_header=1, skip_footer=0) claire_wav=importeddata[:,0] #nm, 0.1 nm resolution, 100-900 nm. claire_fluxes=importeddata[:,1]#erg/s/cm2/nm #rebin claire spectrum claire_fluxes_rebinned=cookbook.rebin_uneven(np.arange(99.995,900.005,0.01), np.arange(100.005, 900.015,0.01),claire_fluxes,bin_left_edges, bin_right_edges) #Plot to make sure rebinning worked correctly fig, ax1=plt.subplots(1, figsize=(6,4)) ax1.plot(claire_wav, claire_fluxes, marker='s', color='black', label='Claire Fluxes') ax1.plot(bin_centers, claire_fluxes_rebinned, marker='s', color='blue', label='Binned Claire Fluxes') ax1.set_yscale('log') ax1.set_ylim([1.e-2, 1.e4]) ax1.set_xlim([280.,900.]) ax1.set_xlabel('nm') ax1.set_ylabel('erg/s/cm2/nm') ax1.legend(loc=0) plt.show() #Let's print out the results spectable=np.zeros([len(bin_left_edges),5]) spectable[:,0]=bin_left_edges spectable[:,1]=bin_right_edges spectable[:,2]=bin_centers spectable[:,3]=claire_fluxes_rebinned spectable[:,4]=dif_flux_interp header='Left Bin Edge (nm) Right Bin Edge (nm) Bin Center (nm) Top of Atm Flux (erg/s/nm/cm2) Zenith Diffuse Flux (erg/s/nm/cm2)\n' f=open('./LiteratureSpectra/wuttke2006.dat', 'w') f.write(header) np.savetxt(f, spectable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Second, form the mixing ratio files #####Form by replicating the Rugheimer modern Earth profile, then scaling down the H2O level and scaling up the O3 level. mixingratios=np.genfromtxt('./MixingRatios/rugheimer_earth_modern_mixingratios_v2.dat', skip_header=2, skip_footer=0) mixingratios[:,3]=mixingratios[:,3]*0.1 #scale down h2o by factor of 10 mixingratios[:,7]=mixingratios[:,7]*1.25 #scale up ozone by factor of 1.25 header0='Based on Rugheimer+2013 Modern Earth Model\n' header1='Z (cm) N2 CO2 H2O CH4 SO2 O2 O3 H2S\n' f=open('./MixingRatios/wuttke2006_mixingratios_v2.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, mixingratios, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Finally, form TP profile #####Form by duplicating Rugheimer+2013 modern Earth profile tpprofile=np.genfromtxt('./TPProfiles/rugheimer_earth_modern_atmosphereprofile.dat', skip_header=2, skip_footer=0) header0='Based on Rugheimer+2013 Modern Earth Model\n' header1='Z (cm) T (K) DEN (cm**-3) P (bar) \n' f=open('./TPProfiles/wuttke2006_atmosphereprofile.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, tpprofile, delimiter=' ', fmt='%1.7e', newline='\n') f.close() #form_profiles_wuttke() def form_profiles_woudc(): """ Purpose of this code is to form the feedstock files to replicate the irradiance measurements from the WOUDC website for Toronto (June 21 2003, SZA=20.376, O3=354, Brewer no. 145) """ ########First, form the spectral file. #load measured irradiances importeddata=np.genfromtxt('./Raw_Data/UV_Surface_Measurements/woudc_toronto_2003_145_cut.dat', skip_header=1, skip_footer=0, delimiter=' ') woudc_wav=importeddata[:,0] #nm woudc_flux=importeddata[:,1]*1.e3 #W/m2/nm=1000 erg/s/cm2/nm #woudc_func=interp.interp1d(woudc_wav, woudc_flux, kind='linear') #woudc_flux_interp=dif_func(bin_centers) #Define spectral bins. bin_centers=woudc_wav bin_left_edges=woudc_wav-0.25 bin_right_edges=woudc_wav+0.25 #load solar spectrum from Claire et al (2012) models, normalized to 1 au importeddata2=np.genfromtxt('/home/sranjan/IDL/UV/YoungSun/claire_modernsun_highres.dat', skip_header=1, skip_footer=0) claire_wav=importeddata2[:,0] #nm, 0.1 nm resolution, 100-900 nm. claire_fluxes=importeddata2[:,1]#erg/s/cm2/nm #rebin claire spectrum claire_fluxes_rebinned=cookbook.rebin_uneven(np.arange(99.995,900.005,0.01), np.arange(100.005, 900.015,0.01),claire_fluxes,bin_left_edges, bin_right_edges) #Plot to make sure rebinning worked correctly fig, ax1=plt.subplots(1, figsize=(6,4)) ax1.plot(claire_wav, claire_fluxes, marker='s', color='black', label='Claire Fluxes') ax1.plot(bin_centers, claire_fluxes_rebinned, marker='s', color='blue', label='Binned Claire Fluxes') ax1.set_yscale('log') ax1.set_ylim([1.e-2, 1.e4]) ax1.set_xlim([280.,360.]) ax1.set_xlabel('nm') ax1.set_ylabel('erg/s/cm2/nm') ax1.legend(loc=0) plt.show() #Let's print out the results spectable=np.zeros([len(bin_left_edges),5]) spectable[:,0]=bin_left_edges spectable[:,1]=bin_right_edges spectable[:,2]=bin_centers spectable[:,3]=claire_fluxes_rebinned spectable[:,4]=woudc_flux header='Left Bin Edge (nm) Right Bin Edge (nm) Bin Center (nm) Top of Atm Flux (erg/s/nm/cm2) Surface Flux (erg/s/nm/cm2)\n' f=open('./LiteratureSpectra/woudc.dat', 'w') f.write(header) np.savetxt(f, spectable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Second, form the mixing ratio files #####Form by replicating the Rugheimer modern Earth profile, then scaling down the H2O level and scaling up the O3 level. mixingratios=np.genfromtxt('./MixingRatios/rugheimer_earth_modern_mixingratios_v2.dat', skip_header=2, skip_footer=0) mixingratios[:,7]=mixingratios[:,7]*1.77 #scale up ozone by factor of 1.25 header0='Based on Rugheimer+2013 Modern Earth Model\n' header1='Z (cm) N2 CO2 H2O CH4 SO2 O2 O3 H2S\n' f=open('./MixingRatios/woudc_mixingratios_v2.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, mixingratios, delimiter=' ', fmt='%1.7e', newline='\n') f.close() ########################################################################################### ########################################################################################### ########################################################################################### #####Finally, form TP profile #####Form by duplicating Rugheimer+2013 modern Earth profile tpprofile=np.genfromtxt('./TPProfiles/rugheimer_earth_modern_atmosphereprofile.dat', skip_header=2, skip_footer=0) header0='Based on Rugheimer+2013 Modern Earth Model\n' header1='Z (cm) T (K) DEN (cm**-3) P (bar) \n' f=open('./TPProfiles/woudc_atmosphereprofile.dat', 'w') f.write(header0) f.write(header1) np.savetxt(f, tpprofile, delimiter=' ', fmt='%1.7e', newline='\n') f.close() #form_profiles_woudc() def form_spectral_feedstock_ourwork(): """ Purpose of this code is to form the spectral feedstock file to explore formally the dependence of UV surface intensity on various factors. The mixing ratio and TP profiles vary in each case though. """ import cookbook #Extract spectra to match and TOA intensity #Define spectral bins. bin_left_edges=np.arange(100.,500.,1.) bin_right_edges=np.arange(101.,501.,1.) bin_centers=0.5*(bin_left_edges+bin_right_edges) #There are no literature intensity values for this file, since at this point we are not comparing against any other datasets but are rather running our code internally. However, we can use the Rugheimer et al base case (60 degrees, 0.2) as a reference literature_intensities=np.zeros(np.shape(bin_centers)) importeddata=np.genfromtxt('./TwoStreamOutput/AlbZen/rugheimer_earth_epoch0_a=0.2_z=60.dat', skip_header=1, skip_footer=0) basecase_wav=importeddata[:,2] #nm, basecase_surface_intensities=importeddata[:,6] #erg/s/cm2/nm #load solar spectrum from Claire et al (2012) models, normalized to 1 au. These are really TOA intensities. Multiply by mu_0 to get TOA fluxes. importeddata=np.genfromtxt('./Raw_Data/Claire_Model/claire_youngsun_highres.dat', skip_header=1, skip_footer=0) claire_wav=importeddata[:,0] #nm, 0.01 nm resolution, 100-900 nm. claire_fluxes=importeddata[:,1]#erg/s/cm2/nm #rebin claire spectrum claire_fluxes_rebinned=cookbook.rebin_uneven(np.arange(99.995,900.005,0.01), np.arange(100.005, 900.015,0.01),claire_fluxes,bin_left_edges, bin_right_edges) #Plot to make sure rebinning worked correctly fig, ax1=plt.subplots(1, figsize=(6,4)) ax1.plot(claire_wav, claire_fluxes, marker='s', color='black', label='Claire Fluxes') ax1.plot(bin_centers, claire_fluxes_rebinned, marker='s', color='blue', label='Binned Claire Fluxes') ax1.set_yscale('log') ax1.set_ylim([1.e-2, 1.e4]) ax1.set_xlim([100.,500.]) ax1.set_xlabel('nm') ax1.set_ylabel('erg/s/cm2/nm') ax1.legend(loc=0) plt.show() #Let's print out the results spectable=np.zeros([len(bin_left_edges),5]) spectable[:,0]=bin_left_edges spectable[:,1]=bin_right_edges spectable[:,2]=bin_centers spectable[:,3]=claire_fluxes_rebinned spectable[:,4]=basecase_surface_intensities header='Left Bin Edge (nm) Right Bin Edge (nm) Bin Center (nm) Top of Atm Intensity (erg/s/nm/cm2) 3.9 Ga R+2015 Surface Intensity (erg/s/nm/cm2)\n' f=open('./LiteratureSpectra/general_spectral_input.dat', 'w') f.write(header) np.savetxt(f, spectable, delimiter=' ', fmt='%1.7e', newline='\n') f.close() #form_spectra_feedstock_ourwork() def form_profiles_co2limtests(): """ Purpose of this code is to form mixing ratio and T/P profile for our exploration of the surface environment on the 3.9 Ga Earth for a range of two-component atmospheres of CO2 and N2. N2 abundance is always fixed at 0.9 bar equivalent for consistency with Rugheimer et al (2015), while CO2 abundance varies. We derive these by reading in the values for the Rugheimer (2015) atmosphere, which is at 1 bar, and scaling it. """ k=1.38064852e-16 #Boltzman constant in erg/K bar2Ba=1.0e6 #1 bar in Ba multiples=np.array([0., 1.e-6, 1.e-5, 1.e-4, 1.e-3, 1.e-2, 1.e-1, 1., 1.e1, 1.e2, 1.e3, 1.33, 46.6, 470., .6, 8.93e-3]) #values we will be scaling the CO2 column by #################### ####Mixing ratios: #################### importeddata1=
np.genfromtxt('./MixingRatios/rugheimer_earth_epoch0_recomputed_A0.2_mixingratios_v2.dat', skip_header=2, skip_footer=0)
numpy.genfromtxt
import sys import numpy as np import scipy.integrate import scipy.special from ._dblquad import dblquad HAVE_PYGSL = False try: import pygsl.integrate import pygsl.sf HAVE_PYGSL = True except ImportError: pass class BinEB(object): def __init__( self, tmin, tmax, Nb, windows=None, linear=False, useArcmin=True, fname=None ): if fname is not None: self.read_data(fname) else: # set basic params if useArcmin: am2r = np.pi / 180.0 / 60.0 else: am2r = 1.0 self.Nb = Nb self.L = tmin * am2r self.H = tmax * am2r if linear: self.Lb = (self.H - self.L) / Nb * np.arange(Nb) + self.L self.Hb = (self.H - self.L) / Nb * (np.arange(Nb) + 1.0) + self.L else: self.Lb = np.exp(np.log(self.H / self.L) / Nb * np.arange(Nb)) * self.L self.Hb = ( np.exp(np.log(self.H / self.L) / Nb * (np.arange(Nb) + 1.0)) * self.L ) self.have_ell_win = False # make the bin window functions if windows is None: def _make_geomwin(L, H): return lambda x: 2.0 * x / (H * H - L * L) self.windows = [] for i in range(self.Nb): self.windows.append(_make_geomwin(self.Lb[i], self.Hb[i])) else: def _make_normwin(winf, norm): return lambda x: winf(x / am2r) / norm self.windows = [] assert ( len(windows) == Nb ), "binEB requires as many windows as angular bins!" for i in range(self.Nb): twin = _make_normwin(windows[i], 1.0) norm, err = scipy.integrate.quad(twin, self.Lb[i], self.Hb[i]) self.windows.append(_make_normwin(windows[i], norm)) # get fa and fb self.fa = np.zeros(self.Nb) self.fa[:] = 1.0 if HAVE_PYGSL: limit = 10 epsabs = 1e-8 epsrel = 1e-8 w = pygsl.integrate.workspace(limit) def fb_int(x, args): win = args[0] return win(x) * x * x self.fb = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(fb_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) self.fb[i] = val else: def fb_int(x, win): return win(x) * x * x self.fb = np.zeros(self.Nb) for i in range(self.Nb): val, err = scipy.integrate.quad( fb_int, self.Lb[i], self.Hb[i], args=(self.windows[i],) ) self.fb[i] = val self.fa_on = self.fa / np.sqrt(np.sum(self.fa * self.fa)) self.fb_on = self.fb - self.fa * np.sum(self.fa * self.fb) / np.sum( self.fa * self.fa ) self.fb_on = self.fb_on / np.sqrt(np.sum(self.fb_on * self.fb_on)) # get Mplus matrix if HAVE_PYGSL: limit = 10 epsabs = 1e-8 epsrel = 1e-8 w = pygsl.integrate.workspace(limit) def knorm_int(x, args): win = args[0] return win(x) * win(x) / x knorm = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(knorm_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) knorm[i] = val self.invnorm = knorm def inv2_int(x, args): win = args[0] return win(x) / x / x inv2 = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(inv2_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) inv2[i] = val def inv4_int(x, args): win = args[0] return win(x) / x / x / x / x inv4 = np.zeros(self.Nb) for i in range(self.Nb): args = [self.windows[i]] f = pygsl.integrate.gsl_function(inv4_int, args) code, val, err = pygsl.integrate.qags( f, self.Lb[i], self.Hb[i], epsabs, epsrel, limit, w ) inv4[i] = val else: def knorm_int(x, win): return win(x) * win(x) / x knorm = np.zeros(self.Nb) for i in range(self.Nb): val, err = scipy.integrate.quad( knorm_int, self.Lb[i], self.Hb[i], args=(self.windows[i],) ) knorm[i] = val self.invnorm = knorm def inv2_int(x, win): return win(x) / x / x inv2 =
np.zeros(self.Nb)
numpy.zeros
import torch.utils.data as data import pickle import PIL import numpy as np import torch import os import math, random import os.path import sys import cv2 import skimage from skimage.transform import rotate import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt WALL_THREAHOD = 5e-2 GC_THRESHOLD = 1e-1 VIZ = False def decompose_rotation(R): pitch_2 = math.atan2(-R[2,0], math.sqrt(R[0, 0]**2 + R[1, 0]**2)) roll_2 = math.atan2(R[2, 1]/math.cos(pitch_2), R[2, 2]/math.cos(pitch_2)) yaw_2 = math.atan2(R[1,0]/math.cos(pitch_2), R[0,0]/math.cos(pitch_2)) return [roll_2, pitch_2,yaw_2] def decompose_up_n(up_n): pitch = - math.asin(up_n[0]) sin_roll = up_n[1]/math.cos(pitch) roll = math.asin(sin_roll) return roll, pitch def get_xy_vector_from_rp(roll, pitch): rx = np.array( (math.cos(pitch) * math.cos(roll) , 0.0, math.sin(pitch) )) ry = np.array( (0.0, math.cos(roll), -math.sin(roll) )) return rx, ry def make_dataset(list_name): text_file = open(list_name, "r") images_list = text_file.readlines() text_file.close() return images_list def read_array(path): with open(path, "rb") as fid: width, height, channels = np.genfromtxt(fid, delimiter="&", max_rows=1, usecols=(0, 1, 2), dtype=int) fid.seek(0) num_delimiter = 0 byte = fid.read(1) while True: if byte == b"&": num_delimiter += 1 if num_delimiter >= 3: break byte = fid.read(1) array = np.fromfile(fid, np.float32) array = array.reshape((width, height, channels), order="F") return np.transpose(array, (1, 0, 2)).squeeze() def skew(x): return np.array([[0, -x[2], x[1]], [x[2], 0, -x[0]], [-x[1], x[0], 0]]) class InteriorNetRyFolder(data.Dataset): def __init__(self, opt, list_path, is_train): img_list = make_dataset(list_path) if len(img_list) == 0: raise(RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.list_path = list_path self.img_list = img_list self.opt = opt self.input_width = 384 self.input_height = 288 self.is_train = is_train self.rot_range = 10 self.reshape = False self.lr_threshold = 4. self.fx = 600. self.fy = 600. def load_imgs(self, img_path, normal_path, rot_path): img = cv2.imread(img_path) img = img[:, :, ::-1] normal = (np.float32(cv2.imread(normal_path, -1))/65535. * 2.0) - 1.0 normal = normal[:, :, ::-1] h, w, c = normal.shape cam_normal = normal[:, :w//2, :] global_normal = normal[:, w//2:, :] mask = np.float32(np.linalg.norm(cam_normal, axis=-1) > 0.9) * np.float32(np.linalg.norm(cam_normal, axis=-1) < 1.1) R_g_c = np.identity(3) with open(rot_path, 'r') as f: rot_row = f.readlines() for i in range(3): r1, r2, r3 = rot_row[i].split() R_g_c[i, :] = np.array((np.float32(r1), np.float32(r2), np.float32(r3))) return {'img': img, 'cam_normal':cam_normal, 'global_normal': global_normal, 'mask':mask, 'R_g_c': R_g_c} def resize_imgs(self, train_data, resized_width, resized_height): train_data['img'] = cv2.resize(train_data['img'], (resized_width, resized_height), interpolation=cv2.INTER_AREA) train_data['cam_normal'] = cv2.resize(train_data['cam_normal'], (resized_width, resized_height), interpolation=cv2.INTER_NEAREST) train_data['global_normal'] = cv2.resize(train_data['global_normal'], (resized_width, resized_height), interpolation=cv2.INTER_NEAREST) train_data['mask'] = cv2.resize(train_data['mask'], (resized_width, resized_height), interpolation=cv2.INTER_NEAREST) return train_data def crop_imgs(self, train_data, start_x, start_y, crop_w, crop_h): train_data['img'] = train_data['img'][start_y:start_y+crop_h, start_x:start_x+crop_w, :] train_data['cam_normal'] = train_data['cam_normal'][start_y:start_y+crop_h, start_x:start_x+crop_w, :] train_data['global_normal'] = train_data['global_normal'][start_y:start_y+crop_h, start_x:start_x+crop_w, :] train_data['mask'] = train_data['mask'][start_y:start_y+crop_h, start_x:start_x+crop_w] return train_data def load_precomputed_crop_hw(self, normal_path): crop_hw_path = normal_path.replace('normal_pair', 'precomputed_crop_hw')[:-4] + '.txt' with open(crop_hw_path, 'r') as f: crop_hw = f.readlines() crop_h, crop_w = crop_hw[0].split() return int(crop_h), int(crop_w) def rotate_normal(self, R, normal): normal_rot = np.dot(R, np.reshape(normal, (-1, 3)).T) normal_rot = np.reshape(normal_rot.T, (normal.shape[0], normal.shape[1], 3)) normal_rot = normal_rot/(np.maximum(np.linalg.norm(normal_rot, axis=2, keepdims=True), 1e-8)) normal_rot = np.clip(normal_rot, -1.0, 1.0) return normal_rot def create_geo_ry(self, cam_normal, global_normal, R_gc): wall_mask = np.abs(global_normal[:, :, 2]) < WALL_THREAHOD #* mask upright_u_y = global_normal[:, :, 0].copy() upright_u_z = global_normal[:, :, 2].copy() upright_u_z[wall_mask] = 0.0 upright_u_y[wall_mask] = 1.0 global_u_unit = np.stack((-upright_u_z, np.zeros_like(upright_u_z), upright_u_y), axis=2) global_u_unit = global_u_unit/(np.maximum(np.linalg.norm(global_u_unit, axis=2, keepdims=True), 1e-8)) cam_u_unit = self.rotate_normal(R_gc.T, global_u_unit) global_t_unit = np.cross(global_u_unit, global_normal) global_t_unit = global_t_unit/(np.maximum(np.linalg.norm(global_t_unit, axis=2, keepdims=True), 1e-8)) cam_t_unit = self.rotate_normal(R_gc.T, global_t_unit) cam_geo = np.concatenate((cam_normal, cam_u_unit, cam_t_unit), axis=2) global_geo = np.concatenate((global_normal[:, :, 2:3], global_u_unit[:, :, 2:3], global_t_unit[:, :, 2:3]), axis=2) global_geo = global_geo/(np.maximum(np.linalg.norm(global_geo, axis=2, keepdims=True), 1e-8)) return cam_geo, global_geo#, np.float32(wall_mask) def create_geo_rz(self, cam_normal, global_normal, R_gc): gc_mask = np.abs(np.abs(global_normal[:, :, 2]) - 1.0) < GC_THRESHOLD #* mask global_t_x = global_normal[:, :, 0].copy() global_t_y = global_normal[:, :, 1].copy() global_t_x[gc_mask] = -1.0 global_t_y[gc_mask] = 0.0 global_t_unit = np.stack( (-global_t_y, global_t_x, np.zeros_like(global_t_x)), axis=2) global_t_unit = global_t_unit/(np.maximum(np.linalg.norm(global_t_unit, axis=2, keepdims=True), 1e-8)) cam_t_unit = self.rotate_normal(R_gc.T, global_t_unit) global_u_unit = np.cross(global_normal, global_t_unit) global_u_unit = global_u_unit/(np.maximum(np.linalg.norm(global_u_unit, axis=2, keepdims=True), 1e-8)) cam_u_unit = self.rotate_normal(R_gc.T, global_u_unit) cam_geo = np.concatenate((cam_normal, cam_u_unit, cam_t_unit), axis=2) global_geo = np.concatenate((global_normal[:, :, 2:3], global_u_unit[:, :, 2:3], global_t_unit[:, :, 2:3]), axis=2) global_geo = global_geo/(np.maximum(np.linalg.norm(global_geo, axis=2, keepdims=True), 1e-8)) return cam_geo, global_geo#, np.float32(wall_mask) def __getitem__(self, index): targets_1 = {} normal_path = self.img_list[index].rstrip()#.split() img_path = normal_path.replace('normal_pair', 'rgb') #+ '.png' rot_path = normal_path.replace('normal_pair', 'gt_poses')[:-4] + '.txt' train_data = self.load_imgs(img_path, normal_path, rot_path) original_h, original_w = train_data['img'].shape[0], train_data['img'].shape[1] if self.is_train: crop_h = random.randint(380, original_h) crop_w = int(round(crop_h*float(original_w)/float(original_h))) start_y = random.randint(0, original_h - crop_h) start_x = random.randint(0, original_w - crop_w) train_data = self.crop_imgs(train_data, start_x, start_y, crop_w, crop_h) train_data = self.resize_imgs(train_data, self.input_width, self.input_height) else: crop_h, crop_w = self.load_precomputed_crop_hw(normal_path) start_y = int((original_h - crop_h)/2) start_x = int((original_w - crop_w)/2) train_data = self.crop_imgs(train_data, start_x, start_y, crop_w, crop_h) train_data = self.resize_imgs(train_data, self.input_width, self.input_height) ratio_x = float(train_data['img'].shape[1])/float(crop_w) ratio_y = float(train_data['img'].shape[0])/float(crop_h) fx = self.fx * ratio_x fy = self.fy * ratio_y img_1 = np.float32(train_data['img'])/255.0 cam_normal = train_data['cam_normal'] R_g_c = train_data['R_g_c'] global_normal = train_data['global_normal'] upright_normal = self.rotate_normal(R_g_c, cam_normal) mask = train_data['mask'] gt_up_vector = R_g_c[2, :] [gt_roll, gt_pitch, gt_yaw]= decompose_rotation(R_g_c) gt_rp = np.array([gt_roll, gt_pitch]) cam_geo, upright_geo = self.create_geo_ry(cam_normal, upright_normal, R_g_c) if VIZ: save_img_name = 'imgs/' + normal_path.split('/')[-3] + '_' + normal_path.split('/')[-1] save_img_name = save_img_name[:-4] + '.jpg' skimage.io.imsave(save_img_name, img_1) save_n_name = save_img_name[:-4] + '_n.jpg' cam_n_rgb = (cam_geo[:, :, 0:3] + 1.0)/2. skimage.io.imsave(save_n_name, cam_n_rgb) save_u_name = save_img_name[:-4] + '_u.jpg' cam_u_rgb = (cam_geo[:, :, 3:6] + 1.0)/2. skimage.io.imsave(save_u_name, cam_u_rgb) save_t_name = save_img_name[:-4] + '_t.jpg' cam_t_rgb = (cam_geo[:, :, 6:9] + 1.0)/2. skimage.io.imsave(save_t_name, cam_t_rgb) upright_v_name = save_img_name[:-4] + '_v.jpg' upright_geo_rgb = (upright_geo + 1.0)/2. skimage.io.imsave(upright_v_name, upright_geo_rgb) print('%s from rotation matrix: roll %f, pitch %f, yaw %f'%(img_path, math.degrees(gt_roll), math.degrees(gt_pitch), math.degrees(gt_yaw))) plt.figure(figsize=(12, 6)) plt.subplot(2,4,1) plt.imshow(img_1) plt.subplot(2,4,5) plt.imshow(mask, cmap='gray') plt.subplot(2,4,2) plt.imshow((cam_geo[:, :, 0:3] + 1.0)/2.) plt.subplot(2,4,6) plt.imshow((upright_geo[:, :, 0]+1.)/2.0, cmap='gray') plt.subplot(2,4,3) plt.imshow((cam_geo[:, :, 3:6] + 1.0)/2.) plt.subplot(2,4,7) plt.imshow( (upright_geo[:, :, 1]+1.0)/2., cmap='gray') plt.subplot(2,4,4) plt.imshow((cam_geo[:, :, 6:9] + 1.0)/2.) plt.subplot(2,4,8) plt.imshow( (upright_geo+1.0)/2.) plt.savefig(normal_path.split('/')[-3] + '_' + normal_path.split('/')[-1]) # combine_gt = np.concatenate((img_1, (cam_nu[:, :, 0:3] + 1.0)/2., (upright_nu[:, :, 0:3]+1.)/2.0, (cam_nu[:, :, 3:6] + 1.0)/2., (cam_nu[:, :, 3:6] + 1.0)/2.), axis=1) # save_img = np.uint16( np.clip(np.round(65535.0 * combine_gt), 0., 65535.)) # cv2.imwrite(normal_path.split('/')[-3] + '_' + normal_path.split('/')[-1], save_img[:, :, ::-1]) print('InteriorNet train we are good') sys.exit() final_img = torch.from_numpy(np.ascontiguousarray(img_1).transpose(2,0,1)).contiguous().float() targets_1['cam_geo'] = torch.from_numpy(np.ascontiguousarray(cam_geo).transpose(2,0,1)).contiguous().float() targets_1['upright_geo'] = torch.from_numpy(np.ascontiguousarray(upright_geo).transpose(2,0,1)).contiguous().float() targets_1['gt_mask'] = torch.from_numpy(np.ascontiguousarray(mask)).contiguous().float() targets_1['gt_rp'] = torch.from_numpy(np.ascontiguousarray(gt_rp)).contiguous().float() targets_1['R_g_c'] = torch.from_numpy(np.ascontiguousarray(R_g_c)).contiguous().float() targets_1['gt_up_vector'] = torch.from_numpy(np.ascontiguousarray(gt_up_vector)).contiguous().float() targets_1['img_path'] = img_path targets_1['normal_path'] = normal_path targets_1['fx'] = fx targets_1['fy'] = fy return final_img, targets_1 def __len__(self): return len(self.img_list) # class SUN360Folder(data.Dataset): # def __init__(self, opt, list_path, is_train): # img_list = make_dataset(list_path) # if len(img_list) == 0: # raise(RuntimeError("Found 0 images in: " + root + "\n" # "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) # # self.img_dir = img_dir # self.list_path = list_path # self.img_list = img_list # self.opt = opt # self.input_width = 384 # self.input_height = 288 # self.is_train = is_train # self.brightness_factor = 0.1 # self.contrast_factor = 0.1 # self.saturation_factor = 0.1 # self.rot_range = 20 # self.reshape = False # self.lr_threshold = 4. # def load_imgs(self, img_path, rot_path): # img = cv2.imread(img_path) # try: # img = img[:,:,::-1] # except: # print(img_path) # sys.exit() # R_g_c = np.identity(3) # R_g_c = np.identity(3) # with open(rot_path, 'r') as f: # rot_row = f.readlines() # for i in range(3): # r1, r2, r3 = rot_row[i].split() # R_g_c[i, :] = np.array((np.float32(r1), np.float32(r2), np.float32(r3))) # return {'img': img, # 'R_g_c': R_g_c} # def rotate_imgs(self, train_data, random_angle): # # first rotate input image # # then compute rotation matrix to transform camera normal # R_r_c = np.identity(3) # random_radius = - random_angle/180.0 * math.pi # R_r_c[0,0] = math.cos(random_radius) # R_r_c[0,2] = math.sin(random_radius) # R_r_c[2,0] = -math.sin(random_radius) # R_r_c[2,2] = math.cos(random_radius) # cam_normal_rot = np.dot(R_r_c, np.reshape(train_data['cam_normal'], (-1, 3)).T) # cam_normal_rot = np.reshape(cam_normal_rot.T, (train_data['cam_normal'].shape[0], train_data['cam_normal'].shape[1], 3)) # train_data['R_g_c'] = np.dot(train_data['R_g_c'], R_r_c.T) # resize = False # train_data['img'] = rotate(train_data['img'], random_angle, order=1, resize=resize) # train_data['cam_normal'] = rotate(cam_normal_rot, random_angle, order=0, resize=resize) # train_data['upright_normal'] = rotate(train_data['upright_normal'], random_angle, order=0, resize=resize) # train_data['mask'] = rotate(train_data['mask'], random_angle, order=0, resize=resize) # return train_data # def resize_imgs(self, train_data, resized_width, resized_height): # train_data['img'] = cv2.resize(train_data['img'], (resized_width, resized_height), interpolation=cv2.INTER_AREA) # return train_data # def crop_imgs(self, train_data, start_x, start_y, crop_w, crop_h): # train_data['img'] = train_data['img'][start_y:start_y+crop_h, start_x:start_x+crop_w, :] # return train_data # def load_intrinsic(self, intrinsic_path): # intrinsic = np.identity(3) # with open(intrinsic_path, 'r') as f: # rot_row = f.readlines() # for i in range(3): # r1, r2, r3 = rot_row[i].split() # intrinsic[i, :] = np.array((np.float32(r1), np.float32(r2), np.float32(r3))) # return intrinsic[0, 0]/2.0, intrinsic[1, 1]/2.0 # def __getitem__(self, index): # targets_1 = {} # img_path = self.img_list[index].rstrip()#.split() # poses_path = img_path.replace('rgb/', 'poses/').replace('.png', '_true_camera_rotation.txt') # intrinsic_path = img_path.replace('rgb/', 'intrinsic/').replace('.png', '_true_camera_intrinsic.txt') # train_data = self.load_imgs(img_path, poses_path) # original_h, original_w = train_data['img'].shape[0], train_data['img'].shape[1] # fx_o, fy_o = self.load_intrinsic(intrinsic_path) # train_data = self.resize_imgs(train_data, self.input_width, self.input_height) # ratio_x = float(train_data['img'].shape[1])/float(original_w) # ratio_y = float(train_data['img'].shape[0])/float(original_h) # fx = fx_o * ratio_x # fy = fy_o * ratio_y # img_h, img_w = train_data['img'].shape[0], train_data['img'].shape[1] # img_1 = np.float32(train_data['img'])/255.0 # mask = np.float32(np.mean(img_1, -1) > 1e-4) # R_g_c = train_data['R_g_c'] # [gt_roll, gt_pitch, gt_yaw]= decompose_rotation(R_g_c) # gt_vfov = 2 * math.atan(float(img_h)/(2*fy)) # gt_up_vector = R_g_c[2, :] # gt_rp = np.array([gt_roll, gt_pitch]) # if VIZ: # hl_left, hl_right = getHorizonLineFromAngles(gt_pitch, gt_roll, gt_vfov, img_h, img_w) # slope = np.arctan(hl_right - hl_left) # midpoint = (hl_left + hl_right) / 2.0 # offset = (midpoint - 0.5) / np.sqrt( 1 + (hl_right - hl_left)**2 ) # slope_idx = np.clip(np.digitize(slope, slope_bins), 0, len(slope_bins)-1) # offset_idx = np.clip(np.digitize(offset, offset_bins), 0, len(offset_bins)-1) # print('%s roll %f, pitch %f, yaw %f vfov %f'%(img_path, math.degrees(gt_roll), math.degrees(gt_pitch), math.degrees(gt_yaw), math.degrees(gt_vfov))) # plt.figure(figsize=(10, 6)) # plt.subplot(2,1,1) # plt.imshow(img_1) # plt.subplot(2,1,2) # plt.imshow(mask, cmap='gray') # # plt.subplot(2,2,3) # # plt.imshow((cam_normal+1.)/2.0) # # plt.subplot(2,2,4) # # plt.imshow((upright_normal+1.)/2.0) # plt.savefig(img_path.split('/')[-1]) # print('train we are good MP') # sys.exit() # final_img = torch.from_numpy(np.ascontiguousarray(img_1).transpose(2,0,1)).contiguous().float() # targets_1['gt_mask'] = torch.from_numpy(np.ascontiguousarray(mask)).contiguous().float() # targets_1['R_g_c'] = torch.from_numpy(np.ascontiguousarray(R_g_c)).contiguous().float() # targets_1['gt_rp'] = torch.from_numpy(np.ascontiguousarray(gt_rp)).contiguous().float() # targets_1['gt_up_vector'] = torch.from_numpy(np.ascontiguousarray(gt_up_vector)).contiguous().float() # targets_1['fx'] = torch.from_numpy(np.ascontiguousarray(fx)).contiguous().float() # targets_1['fy'] = torch.from_numpy(np.ascontiguousarray(fy)).contiguous().float() # targets_1['img_path'] = img_path # return final_img, targets_1 # def __len__(self): # return len(self.img_list) class ScanNetFolder(data.Dataset): def __init__(self, opt, list_path, is_train): img_list = make_dataset(list_path) if len(img_list) == 0: raise(RuntimeError("Found 0 images in: " + root + "\n" "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) self.list_path = list_path self.img_list = img_list self.opt = opt self.input_width = 384 self.input_height = 288 self.is_train = is_train self.rot_range = 10 self.reshape = False self.lr_threshold = 4. def load_imgs(self, img_path, normal_path, rot_path, intrinsic_path): img = cv2.imread(img_path) img = img[:, :, ::-1] normal = (np.float32(cv2.imread(normal_path, -1))/65535. * 2.0) - 1.0 cam_normal = normal[:, :, ::-1] mask = np.float32(np.linalg.norm(cam_normal, axis=-1) > 0.9) * np.float32(np.linalg.norm(cam_normal, axis=-1) < 1.1) #* np.float32(np.max(img,-1) > 1e-3) R_g_c =
np.identity(3)
numpy.identity
import numpy as np import AnalyticGeometryFunctions as ag class SheepPositionReset(): def __init__(self, initSheepPosition, initSheepPositionNoise): self.initSheepPosition = initSheepPosition self.initSheepPositionNoiseLow, self.initSheepPositionNoiseHigh = initSheepPositionNoise def __call__(self): noise = [np.random.uniform(self.initSheepPositionNoiseLow, self.initSheepPositionNoiseHigh) * np.random.choice([-1, 1]) for dim in range(len(self.initSheepPosition))] startSheepPosition = self.initSheepPosition + np.array(noise) return startSheepPosition class WolfPositionReset(): def __init__(self, initWolfPosition, initWolfPositionNoise): self.initWolfPosition = initWolfPosition self.initWolfPositionNoiseLow, self.initWolfPositionNoiseHigh = initWolfPositionNoise def __call__(self): noise = [np.random.uniform(self.initWolfPositionNoiseLow, self.initWolfPositionNoiseHigh) * np.random.choice([-1, 1]) for dim in range(len(self.initWolfPosition))] startWolfPosition = self.initWolfPosition + np.array(noise) return startWolfPosition class SheepPositionTransition(): def __init__(self, nDimOneAgentPhysicalState, positionIndex, checkBoundaryAndAdjust): self.nDimOneAgentPhysicalState = nDimOneAgentPhysicalState self.positionIndex = positionIndex self.checkBoundaryAndAdjust = checkBoundaryAndAdjust def __call__(self, oldAllAgentState, sheepId, sheepAction): oldSheepState = oldAllAgentState[self.nDimOneAgentPhysicalState * sheepId : self.nDimOneAgentPhysicalState * (sheepId + 1)] oldSheepPosition = oldSheepState[min(self.positionIndex) : max(self.positionIndex) + 1] newSheepVelocity = np.array(sheepAction) newSheepPosition = oldSheepPosition + newSheepVelocity checkedPosition, toWallDistance = self.checkBoundaryAndAdjust(newSheepPosition) return checkedPosition class WolfPositionTransition(): def __init__(self, nDimOneAgentPhysicalState, positionIndex, checkBoundaryAndAdjust, wolfSpeed): self.nDimOneAgentPhysicalState = nDimOneAgentPhysicalState self.positionIndex = positionIndex self.checkBoundaryAndAdjust = checkBoundaryAndAdjust self.wolfSpeed = wolfSpeed def __call__(self, oldAllAgentState, wolfId, sheepId): oldSheepState = oldAllAgentState[self.nDimOneAgentPhysicalState * sheepId : self.nDimOneAgentPhysicalState * (sheepId + 1)] oldSheepPosition = oldSheepState[min(self.positionIndex) : max(self.positionIndex) + 1] oldWolfState = oldAllAgentState[self.nDimOneAgentPhysicalState * wolfId : self.nDimOneAgentPhysicalState * (wolfId + 1)] oldWolfPosition = oldWolfState[min(self.positionIndex) : max(self.positionIndex) + 1] heatSeekingDirection = (oldSheepPosition - oldWolfPosition) /np.sqrt(np.sum(np.power(oldSheepPosition - oldWolfPosition, 2))) newWolfVelocity = self.wolfSpeed * heatSeekingDirection newWolfPosition = oldWolfPosition + newWolfVelocity checkedPosition, toWallDistance = self.checkBoundaryAndAdjust(newWolfPosition) return checkedPosition class CheckBoundaryAndAdjust(): def __init__(self, xBoundary, yBoundary): self.xBoundary = xBoundary self.yBoundary = yBoundary self.xMin, self.xMax = xBoundary self.yMin, self.yMax = yBoundary def __call__(self, position): if position[0] >= self.xMax: position[0] = 2 * self.xMax - position[0] if position[0] <= self.xMin: position[0] = 2 * self.xMin - position[0] if position[1] >= self.yMax: position[1] = 2 * self.yMax - position[1] if position[1] <= self.yMin: position[1] = 2 * self.yMin - position[1] toWallDistance =
np.concatenate([position[0] - self.xBoundary, position[1] - self.yBoundary, self.xBoundary, self.yBoundary])
numpy.concatenate
#!/usr/bin/env python # -*- coding: utf-8 -*- """ magnetCalibration.py Author: <NAME>, <NAME> Last Edited: 06.12.2018 Python Version: 3.6.5 Script to read the magnetic field generated in relation to the voltage applied from the DAQ measurement card. Generated Calibration File. Structure of this module: 1) Imports 2) Global Variables 3) Directory and File System Management 4) Initialize Hardware and Measurement Variables 5) Plot Result 6) Main Function """ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ 1 ) Imports ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # General Imports import os import shutil import sys import time as t from datetime import datetime import matplotlib.pyplot as plt import numpy as np import serial import nidaqmx from nidaqmx.constants import AcquisitionType, TaskMode, Slope, \ DigitalWidthUnits # Imports of own modules from GaussmeterCommunication import Gaussmeter from NI_CardCommunication_V2 import NI_CardCommunication # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ 2) Global Variables ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # Measurementpoints = 10 # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ 3) Directory and File System Management ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # def cleanUp(): """ Method for managing the file and directory structure. If an older calibration is found in the directory "Calibration", it gets moved to the folder of "OldCalibrations" and is saved with the date of the movement. This ensures that the newest calibration is always found in the "Calibration" Folder. """ # Definition of directory names sourceFolder = "Calibration" destinationFolder = "OldCalibrations" # Creates new directories if they dont exist already if not os.path.exists(sourceFolder): os.makedirs(sourceFolder) if not os.path.exists(destinationFolder): os.makedirs(destinationFolder) # checks if there is content in the Calibration folder # that needs to be moved # move content if len(os.listdir(sourceFolder)) != 0: timeStamp = createTimeStamp() if not os.path.exists(destinationFolder + "\\" + timeStamp): os.makedirs(destinationFolder + "\\" + timeStamp) listOfFiles = os.listdir(sourceFolder) for file in listOfFiles: shutil.move(sourceFolder + "\\" + file, destinationFolder + "\\" + timeStamp + "\\") os.chdir(sourceFolder) def createTimeStamp(): """ create a TimeStamp in format YYYYMMDD_HHMMSS for saving the old Calibration Files. :return: string timeStamp """ return str(datetime.now().strftime("%Y%m%d_%H%M%S")) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # ~~~ 4) Initialize Hardware and Measurement Variables ~~~~~~~~~~~~~~~~~~~~~~~ # def initializeWritingTask(): """ Initialize NI DAQ Measurement Task :return: NIDAQ Card Object, Task """ measurementCard = NI_CardCommunication() measurementCard.reset_device("Dev1") task = measurementCard.create_Task_ao0("Dev1/ao0") return measurementCard, task def initializeGaussmeter(): """ Initialize Communication with Gaussmeter :return: Gaussmeter Object """ gauss = Gaussmeter() gauss.openCommunication() return gauss def createMeasurementArray(): """ create the Array for which the values are measured. :return: Array : Measurement Parameters :return: resultList: List for entries """ Amplitude = 5.1 step = 0.05 startArray = np.arange(0, Amplitude+step, step) loopArray1 = np.arange(Amplitude+step, -1*(Amplitude+step), -1*step) loopArray2 = np.arange(-1*(Amplitude+step), Amplitude+step, step) loopArray = np.concatenate([loopArray1, loopArray2]) endArray = np.arange((Amplitude+step), 0-step, -step) Array =
np.concatenate([startArray, loopArray, endArray])
numpy.concatenate
import numpy as np import pandas as pd from commons.constants import CANDLE_CLOSE_COLUMN from commons.debug import print_dataframe def boll_trend(df): """ 布林线趋势信号,破上轨做多,下穿均线平多,破下轨做空,上穿均线平多 """ df_s1 = df.shift(1) # 做多 long_cond1 = df[CANDLE_CLOSE_COLUMN] > df['BBU'] # 收盘价 > 上轨 long_cond2 = df_s1[CANDLE_CLOSE_COLUMN] <= df_s1['BBU'] # 前收盘价 <= 前上轨 df['signal_long'] = np.where(long_cond1 & long_cond2, 1, np.NaN) # 破上轨做多 # 平多 cover_long_cond1 = df[CANDLE_CLOSE_COLUMN] < df['BBM'] # 收盘价 < 均线 cover_long_cond2 = df_s1[CANDLE_CLOSE_COLUMN] >= df_s1['BBM'] # 前收 >= 均线 df['signal_long'] = np.where(cover_long_cond1 & cover_long_cond2, 0, df['signal_long']) # 下破均线,平多 # 做空 short_cond1 = df[CANDLE_CLOSE_COLUMN] < df['BBL'] # 收盘价 < 下轨 short_cond2 = df_s1[CANDLE_CLOSE_COLUMN] >= df_s1['BBL'] # 前收盘价 >= 前下轨 df['signal_short'] = np.where(short_cond1 & short_cond2, -1, np.NaN) # 破下轨,做空 # 平空 cover_short_cond1 = df[CANDLE_CLOSE_COLUMN] > df['BBM'] # 收盘价 > 均线 cover_short_cond2 = df_s1[CANDLE_CLOSE_COLUMN] <= df_s1['BBM'] # 前收 <= 均线 df['signal_short'] = np.where(cover_short_cond1 & cover_short_cond2, 0, df['signal_short']) # 上穿均线,平空 return df def boll_trend_with_safe_distance(df, safe_distance_pct): """ 布林趋势,加入价格与均线距离,在安全距离内开仓 """ # 计算标准布林趋势指标 df = boll_trend(df) # 填充信号 df['signal_long'].fillna(method='ffill', inplace=True) df['signal_short'].fillna(method='ffill', inplace=True) # 计算持仓时收盘价与均线的距离(绝对值百分比) distance_pct = np.where((df['signal_long'] == 1) | (df['signal_short'] == -1),
np.abs(df[CANDLE_CLOSE_COLUMN] - df['BBM'])
numpy.abs
""" """ import pandas as pd import numpy as np from clintk.cat2vec.feature_selection import LassoSelector from numpy.testing import assert_array_equal values = {'feature1': [0, 0, 1, 1, 0], 'feature2': [0, 1, 1, 0, 1], 'feature3': [1, 0, 0, 0, 0], 'feature4': [1, 0, 0, 0, 1]} coefficients = {'coef': [0, 4.5, -1.2, 0.5], 'feature_name': ['feature1', 'feature2', 'feature3', 'feature4']} df = pd.DataFrame(values) # feature1 feature2 feature3 feature4 # 0 0 0 1 1 # 1 0 1 0 0 # 2 1 1 0 0 # 3 1 0 0 0 # 4 0 1 0 1 df_coef = pd.DataFrame(coefficients) # coef feature_name # 0 0.0 feature1 # 1 4.5 feature2 # 2 -1.2 feature3 # 3 0.5 feature4 class TestTransformation(object): def SetUp(self): return self def test_fit_transform(self): selector = LassoSelector(n_features=2, lasso_coefs=df_coef, feature_col='feature_name', coef_col='coef') # selector.fit(df_coef.feature_name, df_coef.coef) x_res = selector.transform(df) x_expected =
np.array([[0, 1], [1, 0], [1, 0], [0, 0], [1, 0]])
numpy.array
#!/usr/bin/python # coding=utf-8 """ @version: @author: <NAME> @license: Apache Licence @contact: <EMAIL> @site: @software: PyCharm Community Edition @file: fea.py @time: 05/15/17 17:25 PM """ import tensorflow as tf import numpy as np import sys # np fea opt def np_kaldi_fea_delt1(features): feats_padded = np.pad(features, [[1, 1], [0, 0]], "symmetric") feats_padded = np.pad(feats_padded, [[1, 1], [0, 0]], "symmetric") row, col = np.shape(features) l2 = feats_padded[:row] l1 = feats_padded[1: row + 1] r1 = feats_padded[3: row + 3] r2 = feats_padded[4: row + 4] delt1 = (r1 - l1) * 0.1 + (r2 - l2) * 0.2 return delt1 def np_kaldi_fea_delt2(features): feats_padded = np.pad(features, [[1, 1], [0, 0]], "symmetric") feats_padded = np.pad(feats_padded, [[1, 1], [0, 0]], "symmetric") feats_padded = np.pad(feats_padded, [[1, 1], [0, 0]], "symmetric") feats_padded = np.pad(feats_padded, [[1, 1], [0, 0]], "symmetric") row, col = np.shape(features) l4 = feats_padded[:row] l3 = feats_padded[1: row + 1] l2 = feats_padded[2: row + 2] l1 = feats_padded[3: row + 3] c = feats_padded[4: row + 4] r1 = feats_padded[5: row + 5] r2 = feats_padded[6: row + 6] r3 = feats_padded[7: row + 7] r4 = feats_padded[8: row + 8] delt2 = - 0.1 * c - 0.04 * (l1 + r1) + 0.01 * (l2 + r2) + 0.04 * (l3 + l4 + r4 + r3) return delt2 # def np_fea_delt(features): # row, col = np.shape(features) # l2 = np.pad(features, [[2, 0], [0, 0]], 'constant')[:row] # l1 = np.pad(features, [[1, 0], [0, 0]], 'constant')[:row] # r1 = np.pad(features, [[0, 1], [0, 0]], 'constant')[1:row + 1] # r2 = np.pad(features, [[0, 2], [0, 0]], 'constant')[2:row + 2] # delt = (r2 - l2) * 0.2 + (r1 - l1) * 0.1 # return delt def np_fea_add_delt(feature): fb = [] fb.append(feature) delt1 = np_kaldi_fea_delt1(feature) # delt1 = np_fea_delt(feature) fb.append(delt1) # delt2 = np_fea_delt(delt1) delt2 = np_kaldi_fea_delt2(feature) fb.append(delt2) fb =
np.concatenate(fb, 1)
numpy.concatenate
import struct from datetime import datetime import numpy as np from pySDC.helpers.pysdc_helper import FrozenClass from pySDC.implementations.sweeper_classes.generic_implicit import generic_implicit class _fault_stats(FrozenClass): def __init__(self): self.nfaults_called = 0 self.nfaults_injected_u = 0 self.nfaults_injected_f = 0 self.nfaults_detected = 0 self.ncorrection_attempts = 0 self.nfaults_missed = 0 self.nfalse_positives = 0 self.nfalse_positives_in_correction = 0 self.nclean_steps = 0 self._freeze() class implicit_sweeper_faults(generic_implicit): """ LU sweeper using LU decomposition of the Q matrix for the base integrator, special type of generic implicit sweeper """ def __init__(self, params): """ Initialization routine for the custom sweeper Args: params: parameters for the sweeper """ if 'allow_fault_correction' not in params: params['allow_fault_correction'] = False if 'detector_threshold' not in params: params['detector_threshold'] = 1.0 if 'dump_injections_filehandle' not in params: params['dump_injections_filehandle'] = None # call parent's initialization routine super(implicit_sweeper_faults, self).__init__(params) self.fault_stats = _fault_stats() self.fault_injected = False self.fault_detected = False self.in_correction = False self.fault_iteration = False def reset_fault_stats(self): """ Helper method to reset all fault related stats and flags. Will be called after the run in post-processing. """ self.fault_stats = _fault_stats() self.fault_injected = False self.fault_detected = False self.in_correction = False self.fault_iteration = False @staticmethod def bitsToFloat(b): """ Static helper method to get a number from bit into float representation Args: b: bit representation of a number Returns: float representation of b """ s = struct.pack('>q', b) return struct.unpack('>d', s)[0] @staticmethod def floatToBits(f): """ Static helper method to get a number from float into bit representation Args: f: float representation of a number Returns: bit representation of f """ s = struct.pack('>d', f) return struct.unpack('>q', s)[0] def do_bitflip(self, a, pos): """ Method to do a bit flip Args: a: float representation of a number pos (int between 0 and 63): position of bit flip Returns: float representation of a number after bit flip at pos """ # flip of mantissa (fraction) bit (pos between 0 and 51) or of exponent bit (pos between 52 and 62) if pos < 63: b = self.floatToBits(a) # mask: bit representation with 1 at pos and 0 elsewhere mask = 1 << pos # ^: bitwise xor-operator --> bit flip at pos c = b ^ mask return self.bitsToFloat(c) # "flip" of sign bit (pos = 63) elif pos == 63: return -a def inject_fault(self, type=None, target=None): """ Main method to inject a fault Args: type (str): string describing whether u of f should be affected target: data to be modified """ pos = 0 bitflip_entry = 0 # do bitflip in u if type == 'u': # do something to target = u here! # do a bitflip at random vector entry of u at random position in bit representation ulen = len(target.values) bitflip_entry =
np.random.randint(ulen)
numpy.random.randint
""" Created on Thu Jan 26 17:04:11 2017 @author: <NAME>, <EMAIL> """ #%matplotlib inline import numpy as np import pandas as pd import dicom import os import scipy.ndimage as ndimage import matplotlib.pyplot as plt import scipy.ndimage # added for scaling import cv2 import time import glob from skimage import measure, morphology, segmentation import SimpleITK as sitk RESIZE_SPACING = [2,2,2] # z, y, x (x & y MUST be the same) RESOLUTION_STR = "2x2x2" img_rows = 448 img_cols = 448 # global values DO_NOT_USE_SEGMENTED = True #STAGE = "stage1" STAGE_DIR_BASE = "../input/%s/" # on one cluster we had input_shared LUNA_MASKS_DIR = "../luna/data/original_lung_masks/" luna_subset = 0 # initial LUNA_BASE_DIR = "../luna/data/original_lungs/subset%s/" # added on AWS; data as well LUNA_DIR = LUNA_BASE_DIR % luna_subset CSVFILES = "../luna/data/original_lungs/CSVFILES/%s" LUNA_ANNOTATIONS = CSVFILES % "annotations.csv" LUNA_CANDIDATES = CSVFILES % "candidates.csv" # Load the scans in given folder path (loads the most recent acquisition) def load_scan(path): slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] #slices.sort(key = lambda x: int(x.InstanceNumber)) acquisitions = [x.AcquisitionNumber for x in slices] vals, counts = np.unique(acquisitions, return_counts=True) vals = vals[::-1] # reverse order so the later acquisitions are first (the np.uniques seems to always return the ordered 1 2 etc. counts = counts[::-1] ## take the acquistions that has more entries; if these are identical take the later entrye acq_val_sel = vals[np.argmax(counts)] ##acquisitions = sorted(np.unique(acquisitions), reverse=True) if len(vals) > 1: print ("WARNING ##########: MULTIPLE acquisitions & counts, acq_val_sel, path: ", vals, counts, acq_val_sel, path) slices2= [x for x in slices if x.AcquisitionNumber == acq_val_sel] slices = slices2 ## ONE path includes 2 acquisitions (2 sets), take the latter acquiisiton only whihch cyupically is better than the first/previous ones. ## example of the '../input/stage1/b8bb02d229361a623a4dc57aa0e5c485' #slices.sort(key = lambda x: int(x.ImagePositionPatient[2])) # from v 8, BUG should be float slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) # from v 9 try: slice_thickness = np.abs(slices[0].ImagePositionPatient[2] - slices[1].ImagePositionPatient[2]) except: slice_thickness = np.abs(slices[0].SliceLocation - slices[1].SliceLocation) for s in slices: s.SliceThickness = slice_thickness return slices def get_3d_data_slices(slices): # get data in Hunsfield Units slices.sort(key = lambda x: float(x.ImagePositionPatient[2])) # from v 9 image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) # ensure int16 (it may be here uint16 for some images ) image[image == -2000] = 0 #correcting cyindrical bound entrioes to 0 # Convert to Hounsfield units (HU) # The intercept is usually -1024 for slice_number in range(len(slices)): # from v 8 intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: # added 16 Jan 2016, evening image[slice_number] = slope * image[slice_number].astype(np.float64) image[slice_number] = image[slice_number].astype(np.int16) image[slice_number] += np.int16(intercept) return np.array(image, dtype=np.int16) def get_pixels_hu(slices): image = np.stack([s.pixel_array for s in slices]) image = image.astype(np.int16) # Set outside-of-scan pixels to 0 # The intercept is usually -1024, so air is approximately 0 image[image == -2000] = 0 # Convert to Hounsfield units (HU) ### slope can differ per slice -- so do it individually (case in point black_tset, slices 95 vs 96) ### Changes/correction - 31.01.2017 for slice_number in range(len(slices)): intercept = slices[slice_number].RescaleIntercept slope = slices[slice_number].RescaleSlope if slope != 1: image[slice_number] = slope * image[slice_number].astype(np.float64) image[slice_number] = image[slice_number].astype(np.int16) image[slice_number] += np.int16(intercept) return np.array(image, dtype=np.int16) MARKER_INTERNAL_THRESH = -400 MARKER_FRAME_WIDTH = 9 # 9 seems OK for the half special case ... def generate_markers(image): #Creation of the internal Marker useTestPlot = False if useTestPlot: timg = image plt.imshow(timg, cmap='gray') plt.show() add_frame_vertical = True if add_frame_vertical: # add frame for potentially closing the lungs that touch the edge, but only vertically fw = MARKER_FRAME_WIDTH # frame width (it looks that 2 is the minimum width for the algorithms implemented here, namely the first 2 operations for the marker_internal) xdim = image.shape[1] #ydim = image.shape[0] img2 = np.copy(image) #y3 = ydim // 3 img2 [:, 0] = -1024 img2 [:, 1:fw] = 0 img2 [:, xdim-1:xdim] = -1024 img2 [:, xdim-fw:xdim-1] = 0 marker_internal = img2 < MARKER_INTERNAL_THRESH else: marker_internal = image < MARKER_INTERNAL_THRESH # was -400 useTestPlot = False if useTestPlot: timg = marker_internal plt.imshow(timg, cmap='gray') plt.show() correct_edges2 = False ## NOT a good idea - no added value if correct_edges2: marker_internal[0,:] = 0 marker_internal[:,0] = 0 #marker_internal[:,1] = True #marker_internal[:,2] = True marker_internal[511,:] = 0 marker_internal[:,511] = 0 marker_internal = segmentation.clear_border(marker_internal, buffer_size=0) marker_internal_labels = measure.label(marker_internal) areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker external_a = ndimage.binary_dilation(marker_internal, iterations=10) # was 10 external_b = ndimage.binary_dilation(marker_internal, iterations=55) # was 55 marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed # Some of the starting Code is taken from ArnavJain, since it's more readable then my own def generate_markers_3d(image): #Creation of the internal Marker marker_internal = image < -400 marker_internal_labels = np.zeros(image.shape).astype(np.int16) for i in range(marker_internal.shape[0]): marker_internal[i] = segmentation.clear_border(marker_internal[i]) marker_internal_labels[i] = measure.label(marker_internal[i]) #areas = [r.area for r in measure.regionprops(marker_internal_labels)] areas = [r.area for i in range(marker_internal.shape[0]) for r in measure.regionprops(marker_internal_labels[i])] for i in range(marker_internal.shape[0]): areas = [r.area for r in measure.regionprops(marker_internal_labels[i])] areas.sort() if len(areas) > 2: for region in measure.regionprops(marker_internal_labels[i]): if region.area < areas[-2]: for coordinates in region.coords: marker_internal_labels[i, coordinates[0], coordinates[1]] = 0 marker_internal = marker_internal_labels > 0 #Creation of the external Marker # 3x3 structuring element with connectivity 1, used by default struct1 = ndimage.generate_binary_structure(2, 1) struct1 = struct1[np.newaxis,:,:] # expand by z axis . external_a = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=10) external_b = ndimage.binary_dilation(marker_internal, structure=struct1, iterations=55) marker_external = external_b ^ external_a #Creation of the Watershed Marker matrix #marker_watershed = np.zeros((512, 512), dtype=np.int) # origi marker_watershed = np.zeros((marker_external.shape), dtype=np.int) marker_watershed += marker_internal * 255 marker_watershed += marker_external * 128 return marker_internal, marker_external, marker_watershed BINARY_CLOSING_SIZE = 7 #was 7 before final; 5 for disk seems sufficient - for safety let's go with 6 or even 7 def seperate_lungs(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512))) ### was -2000 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def rescale_n(n,reduce_factor): return max( 1, int(round(n / reduce_factor))) def seperate_lungs_cv2(image): # for increased speed #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers(image) #image_size = image.shape[0] reduce_factor = 512 / image.shape[0] #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, 1) sobel_filtered_dy = ndimage.sobel(image, 0) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) useTestPlot = False if useTestPlot: timg = sobel_gradient plt.imshow(timg, cmap='gray') plt.show() #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) if useTestPlot: timg = marker_external plt.imshow(timg, cmap='gray') plt.show() #Reducing the image created by the Watershed algorithm to its outline #wsize = rescale_n(3,reduce_factor) # THIS IS TOO SMALL, dynamically adjusting the size for the watersehed algorithm outline = ndimage.morphological_gradient(watershed, size=(3,3)) # original (3,3), (wsize, wsize) is too small to create an outline outline = outline.astype(bool) outline_u = outline.astype(np.uint8) #added #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] use_reduce_factor = True if use_reduce_factor: blackhat_struct = ndimage.iterate_structure(blackhat_struct, rescale_n(8,reduce_factor)) # dyanmically adjust the number of iterattions; original was 8 else: blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct_cv2 = blackhat_struct.astype(np.uint8) #Perform the Black-Hat #outline += ndimage.black_tophat(outline, structure=blackhat_struct) # original slow #outline1 = outline + (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) #outline2 = outline + ndimage.black_tophat(outline, structure=blackhat_struct) #np.array_equal(outline1,outline2) # True outline += (cv2.morphologyEx(outline_u, cv2.MORPH_BLACKHAT, kernel=blackhat_struct_cv2)).astype(np.bool) # fats if useTestPlot: timg = outline plt.imshow(timg, cmap='gray') plt.show() #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) if useTestPlot: timg = lungfilter plt.imshow(timg, cmap='gray') plt.show() #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure2 = morphology.disk(2) # used to fill the gaos/holes close to the border (otherwise the large sttructure would create a gap by the edge) if use_reduce_factor: structure3 = morphology.disk(rescale_n(BINARY_CLOSING_SIZE,reduce_factor)) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case else: structure3 = morphology.disk(BINARY_CLOSING_SIZE) # dynanically adjust; better , 5 seems sufficient, we use 7 for safety/just in case ##lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, ORIGINAL iterations=3) # was structure=np.ones((5,5)) lungfilter2 = ndimage.morphology.binary_closing(lungfilter, structure=structure2, iterations=3) # ADDED lungfilter3 = ndimage.morphology.binary_closing(lungfilter, structure=structure3, iterations=3) lungfilter = np.bitwise_or(lungfilter2, lungfilter3) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) #image.shape #segmented = np.where(lungfilter == 1, image, -2000*np.ones((512, 512)).astype(np.int16)) # was -2000 someone suggested 30 segmented = np.where(lungfilter == 1, image, -2000*np.ones(image.shape).astype(np.int16)) # was -2000 someone suggested 30 return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def seperate_lungs_3d(image): #Creation of the markers as shown above: marker_internal, marker_external, marker_watershed = generate_markers_3d(image) #Creation of the Sobel-Gradient sobel_filtered_dx = ndimage.sobel(image, axis=2) sobel_filtered_dy = ndimage.sobel(image, axis=1) sobel_gradient = np.hypot(sobel_filtered_dx, sobel_filtered_dy) sobel_gradient *= 255.0 / np.max(sobel_gradient) #Watershed algorithm watershed = morphology.watershed(sobel_gradient, marker_watershed) #Reducing the image created by the Watershed algorithm to its outline outline = ndimage.morphological_gradient(watershed, size=(1,3,3)) outline = outline.astype(bool) #Performing Black-Tophat Morphology for reinclusion #Creation of the disk-kernel and increasing its size a bit blackhat_struct = [[0, 0, 1, 1, 1, 0, 0], [0, 1, 1, 1, 1, 1, 0], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1], [0, 1, 1, 1, 1, 1, 0], [0, 0, 1, 1, 1, 0, 0]] blackhat_struct = ndimage.iterate_structure(blackhat_struct, 8) blackhat_struct = blackhat_struct[np.newaxis,:,:] #Perform the Black-Hat outline += ndimage.black_tophat(outline, structure=blackhat_struct) # very long time #Use the internal marker and the Outline that was just created to generate the lungfilter lungfilter = np.bitwise_or(marker_internal, outline) #Close holes in the lungfilter #fill_holes is not used here, since in some slices the heart would be reincluded by accident ##structure = np.ones((BINARY_CLOSING_SIZE,BINARY_CLOSING_SIZE)) # 5 is not enough, 7 is structure = morphology.disk(BINARY_CLOSING_SIZE) # better , 5 seems sufficient, we use 7 for safety/just in case structure = structure[np.newaxis,:,:] lungfilter = ndimage.morphology.binary_closing(lungfilter, structure=structure, iterations=3) #, iterations=3) # was structure=np.ones((5,5)) ### NOTE if no iterattions, i.e. default 1 we get holes within lungs for the disk(5) and perhaps more #Apply the lungfilter (note the filtered areas being assigned -2000 HU) segmented = np.where(lungfilter == 1, image, -2000*np.ones(marker_internal.shape)) return segmented, lungfilter, outline, watershed, sobel_gradient, marker_internal, marker_external, marker_watershed def get_slice_location(dcm): return float(dcm[0x0020, 0x1041].value) def thru_plane_position(dcm): """Gets spatial coordinate of image origin whose axis is perpendicular to image plane. """ orientation = tuple((float(o) for o in dcm.ImageOrientationPatient)) position = tuple((float(p) for p in dcm.ImagePositionPatient)) rowvec, colvec = orientation[:3], orientation[3:] normal_vector = np.cross(rowvec, colvec) slice_pos = np.dot(position, normal_vector) return slice_pos def resample(image, scan, new_spacing=[1,1,1]): # Determine current pixel spacing spacing = map(float, ([scan[0].SliceThickness] + scan[0].PixelSpacing)) spacing = np.array(list(spacing)) #scan[2].SliceThickness resize_factor = spacing / new_spacing new_real_shape = image.shape * resize_factor new_shape = np.round(new_real_shape) real_resize_factor = new_shape / image.shape new_spacing = spacing / real_resize_factor image = scipy.ndimage.interpolation.zoom(image, real_resize_factor, mode='nearest') ### early orig modified return image, new_spacing def segment_all(stage, part=0, processors=1, showSummaryPlot=True): # stage added to simplify the stage1 and stage2 calculations count = 0 STAGE_DIR = STAGE_DIR_BASE % stage folders = glob.glob(''.join([STAGE_DIR,'*'])) if len(folders) == 0: print ("ERROR, check directory, no folders found in: ", STAGE_DIR ) for folder in folders: count += 1 if count % processors == part: # do this part in this process, otherwise skip path = folder slices = load_scan(path) image_slices = get_3d_data_slices(slices) #mid = len(image_slices) // 2 #img_sel = mid useTestPlot = False if useTestPlot: print("Shape before segmenting\t", image_slices.shape) plt.hist(image_slices.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() start = time.time() resampleImages = True if resampleImages: image_resampled, spacing = resample(image_slices, slices, RESIZE_SPACING) # let's start wkith this small resolutuion for workign our the system (then perhaps 2, 0.667, 0.667) print("Shape_before_&_after_resampling\t", image_slices.shape,image_resampled.shape) if useTestPlot: plt.imshow(image_slices[image_slices.shape[0]//2], cmap=plt.cm.bone) plt.show() plt.imshow(image_resampled[image_resampled.shape[0]//2], cmap=plt.cm.bone) np.max(image_slices) np.max(image_resampled) np.min(image_slices) np.min(image_resampled) plt.show() image_slices = image_resampled shape = image_slices.shape l_segmented = np.zeros(shape).astype(np.int16) l_lungfilter = np.zeros(shape).astype(np.bool) l_outline = np.zeros(shape).astype(np.bool) l_watershed = np.zeros(shape).astype(np.int16) l_sobel_gradient = np.zeros(shape).astype(np.float32) l_marker_internal = np.zeros(shape).astype(np.bool) l_marker_external = np.zeros(shape).astype(np.bool) l_marker_watershed = np.zeros(shape).astype(np.int16) # start = time.time() i=0 for i in range(shape[0]): l_segmented[i], l_lungfilter[i], l_outline[i], l_watershed[i], l_sobel_gradient[i], l_marker_internal[i], l_marker_external[i], l_marker_watershed[i] = seperate_lungs_cv2(image_slices[i]) print("Rescale & Seg time, and path: ", ((time.time() - start)), path ) if useTestPlot: plt.hist(image_slices.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() plt.hist(l_segmented.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() img_sel_i = shape[0] // 2 # Show some slice in the middle plt.imshow(image_slices[img_sel_i], cmap=plt.cm.gray) plt.show() # Show some slice in the middle plt.imshow(l_segmented[img_sel_i], cmap='gray') plt.show() path_rescaled = path.replace(stage, ''.join([stage, "_", RESOLUTION_STR]), 1) path_segmented = path.replace(stage, ''.join([stage, "_segmented_", RESOLUTION_STR]), 1) path_segmented_crop = path.replace(stage, ''.join([stage, "_segmented_", RESOLUTION_STR, "_crop"]), 1) np.savez_compressed (path_rescaled, image_slices) np.savez_compressed (path_segmented, l_segmented) mask = l_lungfilter.astype(np.int8) regions = measure.regionprops(mask) # this measures the largest region and is a bug when the mask is not the largest region !!! bb = regions[0].bbox #print(bb) zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] dx = 0 # could be reduced ## have to reduce dx as for istance at least image the lungs stretch right to the border evebn without cropping ## namely for '../input/stage1/be57c648eb683a31e8499e278a89c5a0' crop_max_ratio_z = 0.6 # 0.8 is to big make_submit2(45, 1) crop_max_ratio_y = 0.4 crop_max_ratio_x = 0.6 bxy_min = np.min(bb[1:3]) bxy_max = np.max(bb[4:6]) mask_shape= mask.shape image_shape = l_segmented.shape mask_volume = zlen*ylen*zlen /(mask_shape[0] * mask_shape[1] * mask_shape[2]) mask_volume_thresh = 0.08 # anything below is too small (maybe just one half of the lung or something very small0) mask_volume_check = mask_volume > mask_volume_thresh # print ("Mask Volume: ", mask_volume ) ### DO NOT allow the mask to touch x & y ---> if it does it is likely a wrong one as for: ## folders[3] , path = '../input/stage1/9ba5fbcccfbc9e08edcfe2258ddf7 maskOK = False if bxy_min >0 and bxy_max < 512 and mask_volume_check and zlen/mask_shape[0] > crop_max_ratio_z and ylen/mask_shape[1] > crop_max_ratio_y and xlen/mask_shape[2] > crop_max_ratio_x: ## square crop and at least dx elements on both sides on x & y bxy_min = np.min(bb[1:3]) bxy_max = np.max(bb[4:6]) if bxy_min == 0 or bxy_max == 512: # Mask to bigg, auto-correct print("The following mask likely too big, autoreducing by:", dx) bxy_min = np.max((bxy_min, dx)) bxy_max = np.min ((bxy_max, mask_shape[1] - dx)) image = l_segmented[bb[0]:bb[3], bxy_min:bxy_max, bxy_min:bxy_max] mask = mask[bb[0]:bb[3], bxy_min:bxy_max, bxy_min:bxy_max] #maskOK = True print ("Shape, cropped, bbox ", mask_shape, mask.shape, bb) elif bxy_min> 0 and bxy_max < 512 and mask_volume_check and zlen/mask.shape[0] > crop_max_ratio_z: ## cut on z at least image = l_segmented[bb[0]:bb[3], dx: image_shape[1] - dx, dx: image_shape[2] - dx] #mask = mask[bb[0]:bb[3], dx: mask_shape[1] - dx, dx: mask_shape[2] - dx] print("Mask too small, NOT auto-cropping x-y: shape, cropped, bbox, ratios, violume:", mask_shape, image.shape, bb, path, zlen/mask_shape[0], ylen/mask_shape[1], xlen/mask_shape[2], mask_volume) else: image = l_segmented[0:mask_shape[0], dx: image_shape[1] - dx, dx: image_shape[2] - dx] #mask = mask[0:mask_shape[0], dx: mask_shape[1] - dx, dx: mask_shape[2] - dx] print("Mask wrong, NOT auto-cropping: shape, cropped, bbox, ratios, volume:", mask_shape, image.shape, bb, path, zlen/mask_shape[0], ylen/mask_shape[1], xlen/mask_shape[2], mask_volume) if showSummaryPlot: img_sel_i = shape[0] // 2 # Show some slice in the middle useSeparatePlots = False if useSeparatePlots: plt.imshow(image_slices[img_sel_i], cmap=plt.cm.gray) plt.show() # Show some slice in the middle plt.imshow(l_segmented[img_sel_i], cmap='gray') plt.show() else: f, ax = plt.subplots(1, 2, figsize=(6,3)) ax[0].imshow(image_slices[img_sel_i],cmap=plt.cm.bone) ax[1].imshow(l_segmented[img_sel_i],cmap=plt.cm.bone) plt.show() # Show some slice in the middle #plt.imshow(image[image.shape[0] // 2], cmap='gray') # don't show it for simpler review #plt.show() np.savez_compressed(path_segmented_crop, image) #print("Mask count: ", count) #print ("Shape: ", image.shape) return part, processors, count # the following 3 functions to read LUNA files are from: https://www.kaggle.com/arnavkj95/data-science-bowl-2017/candidate-generation-and-luna16-preprocessing/notebook ''' This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image. ''' def load_itk(filename): # Reads the image using SimpleITK itkimage = sitk.ReadImage(filename) # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x ct_scan = sitk.GetArrayFromImage(itkimage) # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa. origin = np.array(list(reversed(itkimage.GetOrigin()))) # Read the spacing along each dimension spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing ''' This function is used to convert the world coordinates to voxel coordinates using the origin and spacing of the ct_scan ''' def world_2_voxel(world_coordinates, origin, spacing): stretched_voxel_coordinates = np.absolute(world_coordinates - origin) voxel_coordinates = stretched_voxel_coordinates / spacing return voxel_coordinates ''' This function is used to convert the voxel coordinates to world coordinates using the origin and spacing of the ct_scan. ''' def voxel_2_world(voxel_coordinates, origin, spacing): stretched_voxel_coordinates = voxel_coordinates * spacing world_coordinates = stretched_voxel_coordinates + origin return world_coordinates def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) else: return([]) ''' This function is used to create spherical regions in binary masks at the given locations and radius. ''' #image = lung_img #spacing = new_spacing def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask image_mask = np.zeros(image.shape, dtype=np.int16) #run over all the nodules in the lungs for ca in cands.values: #get middel x-,y-, and z-worldcoordinate of the nodule #radius = np.ceil(ca[4])/2 ## original: replaced the ceil with a very minor increase of 1% .... radius = (ca[4])/2 + 0.51 * spacing[0] # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net . coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule #noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) # original, uniform spacing noduleRange_z = seq(-radius, radius, spacing[0]) noduleRange_y = seq(-radius, radius, spacing[1]) noduleRange_x = seq(-radius, radius, spacing[2]) #x = y = z = -2 #create the mask for x in noduleRange_x: for y in noduleRange_y: for z in noduleRange_z: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: ### original (contrained to a uniofrm RESIZE) if (np.linalg.norm((image_coord-coords) * spacing)) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask ''' This function takes the path to a '.mhd' file as input and is used to create the nodule masks and segmented lungs after rescaling to 1mm size in all directions. It saved them in the .npz format. It also takes the list of nodule locations in that CT Scan as input. ''' def load_scans_masks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() sids = [] scans = [] masks = [] cnt = 0 skipped = 0 for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series #useAll = True if (len(cands) > 0 or useAll): sids.append(seriesuid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) #scan_z.keys() scan = scan_z['arr_0'] mask_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) mask = mask_z['arr_0'] scans.append(scan) masks.append(mask) cnt += 1 else: print("Skipping non-nodules entry ", seriesuid) skipped += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids def load_scans_masks_or_blanks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() candidates = pd.read_csv(LUNA_CANDIDATES) candidates_false = candidates[candidates["class"] == 0] # only select the false candidates candidates_true = candidates[candidates["class"] == 1] # only select the false candidates sids = [] scans = [] masks = [] blankids = [] # class/id whether scan is with nodule or without, 0 - with, 1 - without cnt = 0 skipped = 0 #file=files[7] for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series ctrue = candidates_true[seriesuid == candidates_true.seriesuid] cfalse = candidates_false[seriesuid == candidates_false.seriesuid] #useAll = True blankid = 1 if (len(cands) == 0 and len(ctrue) == 0 and len(cfalse) > 0) else 0 skip_nodules_entirely = False # was False use_only_nodules = False # was True if skip_nodules_entirely and blankid ==0: ## manual switch to generate extra data for the corrupted set print("Skipping nodules (skip_nodules_entirely) ", seriesuid) skipped += 1 elif use_only_nodules and (len(cands) == 0): ## manual switch to generate only nodules data due lack of time and repeat etc time pressures print("Skipping blanks (use_only_nodules) ", seriesuid) skipped += 1 else: # NORMAL operations if (len(cands) > 0 or (blankid >0) or useAll): sids.append(seriesuid) blankids.append(blankid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) #scan_z.keys() scan = scan_z['arr_0'] #mask_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) mask_z = np.load(''.join((path_segmented + '_nodule_mask_wblanks' + '.npz'))) mask = mask_z['arr_0'] testPlot = False if testPlot: maskcheck_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) maskcheck = maskcheck_z['arr_0'] f, ax = plt.subplots(1, 2, figsize=(10,5)) ax[0].imshow(np.sum(np.abs(maskcheck), axis=0),cmap=plt.cm.gray) ax[1].imshow(np.sum(np.abs(mask), axis=0),cmap=plt.cm.gray) #ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() scans.append(scan) masks.append(mask) cnt += 1 else: print("Skipping non-nodules and non-blank entry ", seriesuid) skipped += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids, blankids #return scans, masks, sids # not yet, old style def load_scans_masks_no_nodules(luna_subset, use_unsegmented=True): # load only the ones that do not contain nodules #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() sids = [] scans = [] masks = [] cnt = 0 skipped = 0 for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series #useAll = True if (len(cands)): print("Skipping entry with nodules ", seriesuid) skipped += 1 else: sids.append(seriesuid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) #scan_z.keys() scan = scan_z['arr_0'] mask_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) mask = mask_z['arr_0'] scans.append(scan) masks.append(mask) cnt += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids MIN_BOUND = -1000.0 MAX_BOUND = 400.0 def normalize(image): image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>1] = 1. image[image<0] = 0. return image PIXEL_MEAN = 0.028 ## for LUNA subset 0 and our preprocessing, only with nudels was 0.028, all was 0.020421744071562546 (in the tutorial they used 0.25) def zero_center(image): image = image - PIXEL_MEAN return image def load_scans(path): # function used for testing slices = [dicom.read_file(path + '/' + s) for s in os.listdir(path)] slices.sort(key=lambda x: int(x.InstanceNumber)) return np.stack([s.pixel_array for s in slices]) def get_scans(df,scans_list): scans=np.stack([load_scans(scan_folder+df.id[i_scan[0]])[i_scan[1]] for i_scan in scans_list]) scans=process_scans(scans) view_scans(scans) return(scans) def process_scans(scans): # used for tesing scans1=np.zeros((scans.shape[0],1,img_rows,img_cols)) for i in range(scans.shape[0]): img=scans[i,:,:] img = 255.0 / np.amax(img) * img img =img.astype(np.uint8) img =cv2.resize(img, (img_rows, img_cols)) scans1[i,0,:,:]=img return (scans1) only_with_nudels = True def convert_scans_and_masks(scans, masks, only_with_nudels): flattened1 = [val for sublist in scans for val in sublist[1:-1]] # skip one element at the beginning and at the end scans1 = np.stack(flattened1) flattened1 = [val for sublist in masks for val in sublist[1:-1]] # skip one element at the beginning and at the end masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: nudels_pix_count = np.sum(masks1, axis = (1,2)) scans1 = scans1[nudels_pix_count>0] masks1 = masks1[nudels_pix_count>0] # 493 -- circa 5 % with nudeles oters without #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans = zero_center(scans) masks = np.copy(masks1) ## if needed do the resize here .... img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed img_cols = scans.shape[2] scans1=np.zeros((scans.shape[0],1,img_rows,img_cols)) for i in range(scans.shape[0]): img=scans[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed scans1[i,0,:,:]=img masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 #scans = [scans[i]] #masks = [masks[i]] def convert_scans_and_masks_xd_ablanks(scans, masks, blankids, only_with_nudels, dim=3): # reuse scan to reduce memory footprint dim_orig = dim add_blank_spacing_size = dim * 8 #### use 4 for [0 - 3] and 8 for [4 - 7] ???initial trial (should perhaps be just dim ....) #skip = dim // 2 # old skip_low = dim // 2 # dim shoudl be uneven -- it is recalculated anyway to this end skip_high = dim -skip_low - 1 do_not_allow_even_dim = False ## now we allow odd numbers ... if do_not_allow_even_dim: dim = 2 * skip_low + 1 skip_low = dim // 2 skip_high = dim -skip_low - 1 if dim != dim_orig: print ("convert_scans_and_masks_x: Dim must be uneven, corrected from .. to:", dim_orig, dim) work = [] # 3 layers #scan = scans[0] for scan in scans: ##TEMP tmp = [] #i = 1 #for i in range(1, scan.shape[0]-1, 3): # SKIP EVERY 3 for i in range(skip_low, scan.shape[0]-skip_high): #img1 = scan[i-1] #img2 = scan[i] #img3 = scan[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(scan[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) #flattened1 = [val for sublist in work for val in sublist ] # NO skipping as we have already cut the first and the last layer #scans1 = np.stack(flattened1) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. blanks_per_axis = 4 # skip border crop = 16 dx = (img_cols - 2 * crop) // (blanks_per_axis + 2) dy = (img_rows - 2 * crop) // (blanks_per_axis + 2) for mask in masks: if (np.sum(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for i in range(skip_low, mask.shape[0]-skip_high, add_blank_spacing_size): for ix in range(blanks_per_axis): xpos = crop + (ix+1)*dx + dx //2 for iy in range(blanks_per_axis): ypos = crop + (iy+1)*dy + dy //2 #print (xpos, ypos) mask[skip_low, ypos, xpos] = -1 # negative pixel to be picked up below and corrected back to none #for k in range(len(blankids)): # if blankids[k] > 0: # mask = masks[k] # ## add the blanls # for i in range(skip_low, mask.shape[0]-skip_high, add_blank_spacing_size): # mask[skip_low, 0, 0] = -1 # negative pixel to be picked up below and corrected back to none use_3d_mask = True ## if use_3d_mask: work = [] # 3 layers #mask = masks[0] for mask in masks: tmp = [] #i = 0 for i in range(skip_low, mask.shape[0]-skip_high): #img1 = mask[i-1] #img2 = mask[i] #img3 = mask[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(mask[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[skip_low:-skip_high]] ) # skip one element at the beginning and at the end #masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: if use_3d_mask: nudels_pix_count = np.sum(masks1[:,skip_low], axis = (1,2)) ## abd added for the potential blanks; modified that the centre mask be mask! else: nudels_pix_count = np.sum(masks1, axis = (1,2)) scans1 = scans1[nudels_pix_count != 0] masks1 = masks1[nudels_pix_count != 0] #blank_mask_factor = np.sign(nudels_pix_count)[nudels_pix_count != 0] #sum(blank_mask_factor) #blank_mask_factor[blank_mask_factor <0] = 0 #mask1_orig = masks1 #np.sum(mask1_orig) #np.min(masks1) #masks1 = masks1[nudels_pix_count != 0] * blank_mask_factor # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask masks1[masks1 < 0] = 0 # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #masks1[nudels_pix_count < 0] = 0 # making empty mask for balancing training set #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans1 = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans1 = zero_center(scans1) #masks = np.copy(masks1) ## if needed do the resize here .... (img_rows and img_cols are global values defined externally) #img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed #img_cols = scans.shape[2] # scans already are in the tensor mode with 3 rgb elements .... #scans1 = scans ## no change #scans1=np.zeros((scans.shape[0],3,img_rows,img_cols)) #for i in range(scans.shape[0]): # img=scans[i,:,:] # ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed # scans1[i,0,:,:]=img if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 #scans = [scans[j]] #masks = [masks[j]] def convert_scans_and_masks_xd3(scans, masks, only_with_nudels, dim=3, crop=16, blanks_per_axis = 4, add_blank_spacing_size=0, add_blank_layers = 0): # reuse scan to reduce memory footprint dim_orig = dim #add_blank_spacing_size = 0 # dim *4 # dim # was dim ### set to 0 for version_16 #### initial trial (should perhaps be just dim ....), if 0 - do not add ... #add_blank_layers = 0 # was 4 #skip = dim // 2 # old skip_low = dim // 2 # dim shoudl be uneven -- it is recalculated anyway to this end skip_high = dim -skip_low - 1 do_not_allow_even_dim = False ## now we allow odd numbers ... if do_not_allow_even_dim: dim = 2 * skip_low + 1 skip_low = dim // 2 skip_high = dim -skip_low - 1 if dim != dim_orig: print ("convert_scans_and_masks_x: Dim must be uneven, corrected from .. to:", dim_orig, dim) work = [] # 3 layers #scan = scans[0] for scan in scans: ##TEMP tmp = [] #i = 1 #for i in range(1, scan.shape[0]-1, 3): # SKIP EVERY 3 for i in range(skip_low, scan.shape[0]-skip_high): #img1 = scan[i-1] #img2 = scan[i] #img3 = scan[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(scan[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) #flattened1 = [val for sublist in work for val in sublist ] # NO skipping as we have already cut the first and the last layer #scans1 = np.stack(flattened1) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] ##blanks_per_axis = 6 # cover all slice ##crop = 44 dxrange = scans[0].shape[-1] - 2 * crop dyrange = scans[0].shape[-2] - 2 * crop #dx = (img_cols - 2 * crop) // (blanks_per_axis) #dy = (img_rows - 2 * crop) // (blanks_per_axis) #dx = dxrange // (blanks_per_axis+1) #dy = dyrange // (blanks_per_axis+1) ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. if add_blank_spacing_size > 0: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for i in range(skip_low+(add_blank_spacing_size//2), mask.shape[0]-skip_high, add_blank_spacing_size): mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none if add_blank_layers > 0: for mask in masks: if (np.min(mask) < 0): dzrange = mask.shape[0]-dim ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for k in range(add_blank_layers): i = np.random.randint(0, dzrange) + skip_low #print ("dz position, random, mask.shape ", i, mask.shape) mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none #mask = masks[0] add_random_blanks_in_blanks = False ## NO need for the extra random blank pixels now, 20170327 if add_random_blanks_in_blanks: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. #zlow = skip_low #zhigh = mask.shape[0]-skip_high pix_sum = np.sum(mask, axis=(1,2)) idx_blanks = np.min(mask, axis=(1,2)) < 0 ## don't use it - let's vary the position across the space for iz in range(mask.shape[0]): if (np.min(mask[iz])) < 0: for ix in range(blanks_per_axis): #xpos = crop + (ix)*dx + dx //2 for iy in range(blanks_per_axis): #ypos = crop + (iy)*dy + dy //2 xpos = crop + np.random.randint(0,dxrange) ypos = crop + np.random.randint(0,dyrange) #print (iz, xpos, ypos) #mask[idx_blanks, ypos, xpos] = -1 # negative pixel to be picked up below and corrected back to none mask[iz, ypos, xpos] = -1 use_3d_mask = True ## if use_3d_mask: work = [] # 3 layers #mask = masks[0] for mask in masks: tmp = [] #i = 0 for i in range(skip_low, mask.shape[0]-skip_high): #img1 = mask[i-1] #img2 = mask[i] #img3 = mask[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(mask[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[skip_low:-skip_high]] ) # skip one element at the beginning and at the end #masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: if use_3d_mask: #nudels_pix_count = np.sum(np.abs(masks1[:,skip_low]), axis = (1,2)) ## CHANGE IT WED - use ANY i.e. remove skip_low abd added for the potential blanks; modified that the centre mask be mask! nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2,3)) ## USE ANY March 1; CHANGE IT WED - use ANY i.e. remove skip_low abd added for the potential blanks; modified that the centre mask be mask! else: nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2)) scans1 = scans1[nudels_pix_count != 0] masks1 = masks1[nudels_pix_count != 0] #blank_mask_factor = np.sign(nudels_pix_count)[nudels_pix_count != 0] #sum(blank_mask_factor) #blank_mask_factor[blank_mask_factor <0] = 0 #mask1_orig = masks1 #np.sum(mask1_orig) #np.min(masks1) #masks1 = masks1[nudels_pix_count != 0] * blank_mask_factor # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #masks1[masks1 < 0] = 0 # !!!!!!!!!!!!!! in GRID version do NOT do that - do it in the key version 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #masks1[nudels_pix_count < 0] = 0 # making empty mask for balancing training set #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans1 = normalize(scans1) ### after this scans1 becomes float64 .... useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans1 = zero_center(scans1) #masks = np.copy(masks1) scans1 = scans1.astype(np.float32) # make it float 32 (not point carring 64, also because kears operates on float32, and originals were in int ## if needed do the resize here .... (img_rows and img_cols are global values defined externally) #img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed #img_cols = scans.shape[2] # scans already are in the tensor mode with 3 rgb elements .... #scans1 = scans ## no change #scans1=np.zeros((scans.shape[0],3,img_rows,img_cols)) #for i in range(scans.shape[0]): # img=scans[i,:,:] # ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed # scans1[i,0,:,:]=img if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 def convert_scans_and_masks_3d(scans, masks, only_with_nudels): # reuse scan to reduce memory footprint work = [] # 3 layers #scan = scans[0] for scan in scans: tmp = [] #i = 0 #for i in range(1, scan.shape[0]-1, 3): # SKIP EVERY 3 for i in range(1, scan.shape[0]-1): img1 = scan[i-1] img2 = scan[i] img3 = scan[i+1] rgb = np.stack((img1, img2, img3)) tmp.append(rgb) work.append(np.array(tmp)) #flattened1 = [val for sublist in work for val in sublist ] # NO skipping as we have already cut the first and the last layer #scans1 = np.stack(flattened1) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] use_3d_mask = False if use_3d_mask: work = [] # 3 layers #mask = masks[0] for mask in masks: tmp = [] #i = 0 for i in range(1, mask.shape[0]-1, 3): # SKIP EVERY 3 img1 = mask[i-1] img2 = mask[i] img3 = mask[i+1] rgb = np.stack((img1, img2, img3)) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[1:-1]] ) # skip one element at the beginning and at the end #masks1 = np.stack(flattened1) # 10187 #only_with_nudels = True if only_with_nudels: if use_3d_mask: nudels_pix_count = np.sum(masks1, axis = (1,2,3)) else: nudels_pix_count = np.sum(masks1, axis = (1,2)) scans1 = scans1[nudels_pix_count>0] masks1 = masks1[nudels_pix_count>0] # 493 -- circa 5 % with nudeles oters without; 232 if we skip over every 3 layers and use a 3d mask #nudels2 = np.where(masks1 == 1, scans1, -4000*np.ones(( masks1.shape[1], masks1.shape[2))) ### was -2000 #nudels1 = np.where(masks1 == 1, scans1, masks1 - 4000) ### was -2000 #nudles1_rf = nudels1.flatten() #nudles1_rf = nudles1_rf[nudles1_rf > -4000] scans1 = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() #for i in range(scans.shape[0]): for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() #np.mean(scans) # 0.028367 / 0.0204 #np.min(scans) # 0 #np.max(scans) # scans1 = zero_center(scans1) #masks = np.copy(masks1) ## if needed do the resize here .... (img_rows and img_cols are global values defined externally) #img_rows = scans.shape[1] ### redefine img_rows/ cols and add resize if needed #img_cols = scans.shape[2] # scans already are in the tensor mode with 3 rgb elements .... #scans1 = scans ## no change #scans1=np.zeros((scans.shape[0],3,img_rows,img_cols)) #for i in range(scans.shape[0]): # img=scans[i,:,:] # ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed # scans1[i,0,:,:]=img if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 def view_scans(scans): #%matplotlib inline for i in range(scans.shape[0]): print ('scan '+str(i)) plt.imshow(scans[i,0,:,:], cmap=plt.cm.gray) plt.show() def view_scans_widget(scans): #%matplotlib tk for i in range(scans.shape[0]): plt.figure(figsize=(7,7)) plt.imshow(scans[i,0,:,:], cmap=plt.cm.gray) plt.show() def get_masks(scans,masks_list): #%matplotlib inline scans1=scans.copy() maxv=255 masks=np.zeros(shape=(scans.shape[0],1,img_rows,img_cols)) for i_m in range(len(masks_list)): for i in range(-masks_list[i_m][3],masks_list[i_m][3]+1): for j in range(-masks_list[i_m][3],masks_list[i_m][3]+1): masks[masks_list[i_m][0],0,masks_list[i_m][2]+i,masks_list[i_m][1]+j]=1 for i1 in range(-masks_list[i_m][3],masks_list[i_m][3]+1): scans1[masks_list[i_m][0],0,masks_list[i_m][2]+i1,masks_list[i_m][1]+masks_list[i_m][3]]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]+i1,masks_list[i_m][1]-masks_list[i_m][3]]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]+masks_list[i_m][3],masks_list[i_m][1]+i1]=maxv=255 scans1[masks_list[i_m][0],0,masks_list[i_m][2]-masks_list[i_m][3],masks_list[i_m][1]+i1]=maxv=255 for i in range(scans.shape[0]): print ('scan '+str(i)) f, ax = plt.subplots(1, 2,figsize=(10,5)) ax[0].imshow(scans1[i,0,:,:],cmap=plt.cm.gray) ax[1].imshow(masks[i,0,:,:],cmap=plt.cm.gray) plt.show() return(masks) def augmentation(scans,masks,n): datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, rotation_range=25, # was 25 width_shift_range=0.3, # ws 0.3; was 0.1# tried 0.01 height_shift_range=0.3, # was 0.3; was 0.1 # tried 0.01 horizontal_flip=True, vertical_flip=True, zoom_range=False) i=0 scans_g=scans.copy() for batch in datagen.flow(scans, batch_size=1, seed=1000): scans_g=np.vstack([scans_g,batch]) i += 1 if i > n: break i=0 masks_g=masks.copy() for batch in datagen.flow(masks, batch_size=1, seed=1000): masks_g=np.vstack([masks_g,batch]) i += 1 if i > n: break return((scans_g,masks_g)) def hu_to_pix (hu): return (hu - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) - PIXEL_MEAN def pix_to_hu (pix): return (pix + PIXEL_MEAN) * (MAX_BOUND - MIN_BOUND) + MIN_BOUND from scipy import stats def eliminate_incorrectly_segmented(scans, masks): skip = dim // 2 # To Change see below ... sxm = scans * masks near_air_thresh = (-900 - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) - PIXEL_MEAN # version 3 # -750 gives one more (for 0_3, d4, -600 give 15 more than -900 near_air_thresh #0.08628 for -840 # 0.067 # for -867; 0.1148 for -800 cnt = 0 for i in range(sxm.shape[0]): #sx = sxm[i,skip] sx = sxm[i] mx = masks[i] if np.sum(mx) > 0: # only check non-blanks ...(keep blanks) sx_max = np.max(sx) if (sx_max) <= near_air_thresh: cnt += 1 print ("Entry, count # and max: ", i, cnt, sx_max) print (stats.describe(sx, axis=None)) #plt.imshow(sx, cmap='gray') plt.imshow(sx[0,skip], cmap='gray') # selecting the mid entry plt.show() s_eliminate = np.max(sxm, axis=(1,2,3,4)) <= near_air_thresh # 3d s_preserve = np.max(sxm, axis=(1,2,3,4)) > near_air_thresh #3d s_eliminate_sum = sum(s_eliminate) s_preserve_sum = sum(s_preserve) print ("Eliminate, preserve =", s_eliminate_sum, s_preserve_sum) masks = masks[s_preserve] scans = scans[s_preserve] del(sxm) return scans, masks # the following 3 functions to read LUNA files are from: https://www.kaggle.com/arnavkj95/data-science-bowl-2017/candidate-generation-and-luna16-preprocessing/notebook ''' This funciton reads a '.mhd' file using SimpleITK and return the image array, origin and spacing of the image. ''' def load_itk(filename): # Reads the image using SimpleITK itkimage = sitk.ReadImage(filename) # Convert the image to a numpy array first and then shuffle the dimensions to get axis in the order z,y,x ct_scan = sitk.GetArrayFromImage(itkimage) # Read the origin of the ct_scan, will be used to convert the coordinates from world to voxel and vice versa. origin = np.array(list(reversed(itkimage.GetOrigin()))) # Read the spacing along each dimension spacing = np.array(list(reversed(itkimage.GetSpacing()))) return ct_scan, origin, spacing ''' This function is used to convert the world coordinates to voxel coordinates using the origin and spacing of the ct_scan ''' def world_2_voxel(world_coordinates, origin, spacing): stretched_voxel_coordinates = np.absolute(world_coordinates - origin) voxel_coordinates = stretched_voxel_coordinates / spacing return voxel_coordinates ''' This function is used to convert the voxel coordinates to world coordinates using the origin and spacing of the ct_scan. ''' def voxel_2_world(voxel_coordinates, origin, spacing): stretched_voxel_coordinates = voxel_coordinates * spacing world_coordinates = stretched_voxel_coordinates + origin return world_coordinates def seq(start, stop, step=1): n = int(round((stop - start)/float(step))) if n > 1: return([start + step*i for i in range(n+1)]) else: return([]) ''' This function is used to create spherical regions in binary masks at the given locations and radius. ''' def draw_circles(image,cands,origin,spacing): #make empty matrix, which will be filled with the mask image_mask = np.zeros(image.shape, dtype=np.int16) #run over all the nodules in the lungs for ca in cands.values: #get middel x-,y-, and z-worldcoordinate of the nodule #radius = np.ceil(ca[4])/2 ## original: replaced the ceil with a very minor increase of 1% .... radius = (ca[4])/2 + 0.51 * spacing[0] # increasing by circa half of distance in z direction .... (trying to capture wider region/border for learning ... and adress the rough net . coord_x = ca[1] coord_y = ca[2] coord_z = ca[3] image_coord = np.array((coord_z,coord_y,coord_x)) #determine voxel coordinate given the worldcoordinate image_coord = world_2_voxel(image_coord,origin,spacing) #determine the range of the nodule #noduleRange = seq(-radius, radius, RESIZE_SPACING[0]) # original, uniform spacing noduleRange_z = seq(-radius, radius, spacing[0]) noduleRange_y = seq(-radius, radius, spacing[1]) noduleRange_x = seq(-radius, radius, spacing[2]) #x = y = z = -2 #create the mask for x in noduleRange_x: for y in noduleRange_y: for z in noduleRange_z: coords = world_2_voxel(np.array((coord_z+z,coord_y+y,coord_x+x)),origin,spacing) #if (np.linalg.norm(image_coord-coords) * RESIZE_SPACING[0]) < radius: ### original (contrained to a uniofrm RESIZE) if (np.linalg.norm((image_coord-coords) * spacing)) < radius: image_mask[int(np.round(coords[0])),int(np.round(coords[1])),int(np.round(coords[2]))] = int(1) return image_mask ''' This function takes the path to a '.mhd' file as input and is used to create the nodule masks and segmented lungs after rescaling to 1mm size in all directions. It saved them in the .npz format. It also takes the list of nodule locations in that CT Scan as input. ''' def load_scans_masks_or_blanks(luna_subset, useAll, use_unsegmented=True): #luna_subset = "[0-6]" LUNA_DIR = LUNA_BASE_DIR % luna_subset files = glob.glob(''.join([LUNA_DIR,'*.mhd'])) annotations = pd.read_csv(LUNA_ANNOTATIONS) annotations.head() candidates = pd.read_csv(LUNA_CANDIDATES) candidates_false = candidates[candidates["class"] == 0] # only select the false candidates candidates_true = candidates[candidates["class"] == 1] # only select the false candidates sids = [] scans = [] masks = [] blankids = [] # class/id whether scan is with nodule or without, 0 - with, 1 - without cnt = 0 skipped = 0 #file=files[7] for file in files: imagePath = file seriesuid = file[file.rindex('/')+1:] # everything after the last slash seriesuid = seriesuid[:len(seriesuid)-len(".mhd")] # cut out the suffix to get the uid path = imagePath[:len(imagePath)-len(".mhd")] # cut out the suffix to get the uid if use_unsegmented: path_segmented = path.replace("original_lungs", "lungs_2x2x2", 1) else: path_segmented = path.replace("original_lungs", "segmented_2x2x2", 1) cands = annotations[seriesuid == annotations.seriesuid] # select the annotations for the current series ctrue = candidates_true[seriesuid == candidates_true.seriesuid] cfalse = candidates_false[seriesuid == candidates_false.seriesuid] blankid = 1 if (len(cands) == 0 and len(ctrue) == 0 and len(cfalse) > 0) else 0 skip_nodules_entirely = False # was False use_only_nodules = False if skip_nodules_entirely and blankid ==0: ## manual switch to generate extra data for the corrupted set print("Skipping nodules (skip_nodules_entirely) ", seriesuid) skipped += 1 elif use_only_nodules and (len(cands) == 0): ## manual switch to generate only nodules data due lack of time and repeat etc time pressures print("Skipping blanks (use_only_nodules) ", seriesuid) skipped += 1 else: # NORMAL operations if (len(cands) > 0 or (blankid >0) or useAll): sids.append(seriesuid) blankids.append(blankid) if use_unsegmented: scan_z = np.load(''.join((path_segmented + '_lung' + '.npz'))) else: scan_z = np.load(''.join((path_segmented + '_lung_seg' + '.npz'))) scan = scan_z['arr_0'] mask_z = np.load(''.join((path_segmented + '_nodule_mask_wblanks' + '.npz'))) mask = mask_z['arr_0'] testPlot = False if testPlot: maskcheck_z = np.load(''.join((path_segmented + '_nodule_mask' + '.npz'))) maskcheck = maskcheck_z['arr_0'] f, ax = plt.subplots(1, 2, figsize=(10,5)) ax[0].imshow(np.sum(np.abs(maskcheck), axis=0),cmap=plt.cm.gray) ax[1].imshow(np.sum(np.abs(mask), axis=0),cmap=plt.cm.gray) #ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() scans.append(scan) masks.append(mask) cnt += 1 else: print("Skipping non-nodules and non-blank entry ", seriesuid) skipped += 1 print ("Summary: cnt & skipped: ", cnt, skipped) return scans, masks, sids, blankids MIN_BOUND = -1000.0 MAX_BOUND = 400.0 def normalize(image): image = (image - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) image[image>1] = 1. image[image<0] = 0. return image PIXEL_MEAN = 0.028 ## for LUNA subset 0 and our preprocessing, only with nudels was 0.028, all was 0.020421744071562546 (in the tutorial they used 0.25) def zero_center(image): image = image - PIXEL_MEAN return image def convert_scans_and_masks_xd3(scans, masks, only_with_nudels, dim=3, crop=16, blanks_per_axis = 4, add_blank_spacing_size=0, add_blank_layers = 0): # reuse scan to reduce memory footprint dim_orig = dim skip_low = dim // 2 # dim shoudl be uneven -- it is recalculated anyway to this end skip_high = dim -skip_low - 1 do_not_allow_even_dim = False ## now we allow odd numbers ... if do_not_allow_even_dim: dim = 2 * skip_low + 1 skip_low = dim // 2 skip_high = dim -skip_low - 1 if dim != dim_orig: print ("convert_scans_and_masks_x: Dim must be uneven, corrected from .. to:", dim_orig, dim) work = [] for scan in scans: tmp = [] for i in range(skip_low, scan.shape[0]-skip_high): #img1 = scan[i-1] #img2 = scan[i] #img3 = scan[i+1] #rgb = np.stack((img1, img2, img3)) rgb = np.stack(scan[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) scans1 = np.stack([val for sublist in work for val in sublist ]) # NO skipping as we have already cut the first and the last layer work = [] dxrange = scans[0].shape[-1] - 2 * crop dyrange = scans[0].shape[-2] - 2 * crop if add_blank_spacing_size > 0: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for i in range(skip_low+(add_blank_spacing_size//2), mask.shape[0]-skip_high, add_blank_spacing_size): mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none if add_blank_layers > 0: for mask in masks: if (np.min(mask) < 0): dzrange = mask.shape[0]-dim ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. for k in range(add_blank_layers): i = np.random.randint(0, dzrange) + skip_low #print ("dz position, random, mask.shape ", i, mask.shape) mask[i, np.random.randint(0,dyrange), np.random.randint(0,dxrange)] = -1 # negative pixel to be picked up below and corrected back to none add_random_blanks_in_blanks = False ## NO need for the extra random blank pixels now, 20170327 if add_random_blanks_in_blanks: for mask in masks: if (np.min(mask) < 0): ## we have a blank ### ADD ariticial mask pixel every add_blank_spacing layers for each blankids ... # set the (0,0) pixel to -1 every add_blank_spacing_size for blanks .. #zlow = skip_low #zhigh = mask.shape[0]-skip_high pix_sum = np.sum(mask, axis=(1,2)) idx_blanks = np.min(mask, axis=(1,2)) < 0 ## don't use it - let's vary the position across the space for iz in range(mask.shape[0]): if (np.min(mask[iz])) < 0: for ix in range(blanks_per_axis): #xpos = crop + (ix)*dx + dx //2 for iy in range(blanks_per_axis): #ypos = crop + (iy)*dy + dy //2 xpos = crop + np.random.randint(0,dxrange) ypos = crop + np.random.randint(0,dyrange) #print (iz, xpos, ypos) #mask[idx_blanks, ypos, xpos] = -1 # negative pixel to be picked up below and corrected back to none mask[iz, ypos, xpos] = -1 use_3d_mask = True ## if use_3d_mask: work = [] # 3 layers for mask in masks: tmp = [] #i = 0 for i in range(skip_low, mask.shape[0]-skip_high): rgb = np.stack(mask[i-skip_low:i+skip_high+1]) tmp.append(rgb) work.append(np.array(tmp)) masks1 = np.stack([val for sublist in work for val in sublist ] )# NO skipping as we have already cut the first and the last layer else: masks1 = np.stack([val for sublist in masks for val in sublist[skip_low:-skip_high]] ) # skip one element at the beginning and at the end if only_with_nudels: if use_3d_mask: nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2,3)) ## USE ANY March 1; CHANGE IT WED - use ANY i.e. remove skip_low abd added for the potential blanks; modified that the centre mask be mask! else: nudels_pix_count = np.sum(np.abs(masks1), axis = (1,2)) scans1 = scans1[nudels_pix_count != 0] masks1 = masks1[nudels_pix_count != 0] scans1 = normalize(scans1) useTestPlot = False if useTestPlot: plt.hist(scans1.flatten(), bins=80, color='c') plt.xlabel("Hounsfield Units (HU)") plt.ylabel("Frequency") plt.show() for i in range(20): print ('scan '+str(i)) f, ax = plt.subplots(1, 3, figsize=(15,5)) ax[0].imshow(scans1[i,:,:],cmap=plt.cm.gray) ax[1].imshow(scans[i,:,:],cmap=plt.cm.gray) ax[2].imshow(masks1[i,:,:],cmap=plt.cm.gray) plt.show() scans1 = zero_center(scans1) scans1 = scans1.astype(np.float32) # make it float 32 (not point carring 64, also because kears operates on float32, and originals were in int if use_3d_mask: done = 1 # nothing to do else: masks = np.copy(masks1) masks1=np.zeros((masks.shape[0],1,img_rows,img_cols)) for i in range(masks.shape[0]): img=masks[i,:,:] ###img =cv2.resize(img, (img_rows, img_cols)) ## add/test resizing if needed masks1[i,0,:,:]=img return scans1, masks1 def eliminate_incorrectly_segmented(scans, masks): skip = dim // 2 # To Change see below ... sxm = scans * masks near_air_thresh = (-900 - MIN_BOUND) / (MAX_BOUND - MIN_BOUND) - PIXEL_MEAN # version 3 # -750 gives one more (for 0_3, d4, -600 give 15 more than -900 #near_air_thresh #0.08628 for -840 # 0.067 # for -867; 0.1148 for -800 cnt = 0 for i in range(sxm.shape[0]): #sx = sxm[i,skip] sx = sxm[i] mx = masks[i] if np.sum(mx) > 0: # only check non-blanks ...(keep blanks) sx_max = np.max(sx) if (sx_max) <= near_air_thresh: cnt += 1 print ("Entry, count # and max: ", i, cnt, sx_max) print (stats.describe(sx, axis=None)) #plt.imshow(sx, cmap='gray') plt.imshow(sx[0,skip], cmap='gray') # selecting the mid entry plt.show() s_eliminate = np.max(sxm, axis=(1,2,3,4)) <= near_air_thresh # 3d s_preserve = np.max(sxm, axis=(1,2,3,4)) > near_air_thresh #3d s_eliminate_sum = sum(s_eliminate) s_preserve_sum = sum(s_preserve) print ("Eliminate, preserve =", s_eliminate_sum, s_preserve_sum) masks = masks[s_preserve] scans = scans[s_preserve] del(sxm) return scans, masks def grid_data(source, grid=32, crop=16, expand=12): gridsize = grid + 2 * expand stacksize = source.shape[0] height = source.shape[3] # should be 224 for our data width = source.shape[4] gridheight = (height - 2 * crop) // grid # should be 6 for our data gridwidth = (width - 2 * crop) // grid cells = [] for j in range(gridheight): for i in range (gridwidth): cell = source[:,:,:, crop+j*grid-expand:crop+(j+1)*grid+expand, crop+i*grid-expand:crop+(i+1)*grid+expand] cells.append(cell) cells = np.vstack (cells) return cells, gridwidth, gridheight def data_from_grid (cells, gridwidth, gridheight, grid=32): height = cells.shape[3] # should be 224 for our data width = cells.shape[4] crop = (width - grid ) // 2 ## for simplicity we are assuming the same crop (and grid) vertically and horizontally dspacing = gridwidth * gridheight layers = cells.shape[0] // dspacing if crop > 0: # do NOT crop with 0 as we get empty cells ... cells = cells[:,:,:,crop:-crop,crop:-crop] if crop > 2*grid: print ("data_from_grid Warning, unusually large crop (> 2*grid); crop, & grid, gridwith, gridheight: ", (crop, grid, gridwidth, gridheight)) shape = cells.shape new_shape_1_dim = shape[0]// (gridwidth * gridheight) # ws // 36 -- Improved on 20170306 new_shape = (gridwidth * gridheight, new_shape_1_dim, ) + tuple([x for x in shape][1:]) # was 36, Improved on 20170306 cells = np.reshape(cells, new_shape) cells = np.moveaxis(cells, 0, -3) shape = cells.shape new_shape2 = tuple([x for x in shape[0:3]]) + (gridheight, gridwidth,) + tuple([x for x in shape[4:]]) cells = np.reshape(cells, new_shape2) cells = cells.swapaxes(-2, -3) shape = cells.shape combine_shape =tuple([x for x in shape[0:3]]) + (shape[-4]*shape[-3], shape[-2]*shape[-1],) cells = np.reshape(cells, combine_shape) return cells def data_from_grid_by_proximity (cells, gridwidth, gridheight, grid=32): # disperse the sequential dats into layers and then use data_from_grid dspacing = gridwidth * gridheight layers = cells.shape[0] // dspacing shape = cells.shape new_shape_1_dim = shape[0]// (gridwidth * gridheight) # ws // 36 -- Improved on 20170306 ### NOTE tha we invert the order of shapes below to get the required proximity type ordering new_shape = (new_shape_1_dim, gridwidth * gridheight, ) + tuple([x for x in shape][1:]) # was 36, Improved on 20170306 # swap ordering of axes cells = np.reshape(cells, new_shape) cells = cells.swapaxes(0, 1) cells = np.reshape(cells, shape) cells = data_from_grid (cells, gridwidth, gridheight, grid) return cells def find_voxels(dim, grid, images3, images3_seg, pmasks3, nodules_threshold=0.999, voxelscountmax = 1000, mid_mask_only = True, find_blanks_also = True, centralcutonly=True): zsel = dim // 2 sstart = 0 send = images3.shape[0] if mid_mask_only: pmav = pmasks3[:,0,dim // 2] # using the mid mask pmav.shape else: pmav = pmasks3[:,0] ### NOTE this variant has NOT been tested fully YET run_UNNEEDED_code = False ims = images3[sstart:send,0,zsel] # selecting the zsel cut for nodules calc ... ims_seg = images3_seg[sstart:send,0,zsel] ims.shape #pms = pmasks3[sstart:send,0,0] pms = pmav[sstart:send] images3.shape thresh = nodules_threshold # for testing , set it here and skip the loop segment = 2 # for compatibility of the naming convention # threshold the precited nasks ... #for thresh in [0.5, 0.9, 0.9999]: #for thresh in [0.5, 0.75, 0.9, 0.95, 0.98, 0.99, 0.999, 0.9999, 0.99999, 0.999999, 0.9999999]: for thresh in [nodules_threshold]: # jusst this one - keeping loop for a while if find_blanks_also: idx = np.abs(pms) > thresh else: idx = pms > thresh idx.shape nodls = np.zeros(pms.shape).astype(np.int16) nodls[idx] = 1 nx = nodls[idx] nodules_pixels = ims[idx] # flat nodules_hu = pix_to_hu(nodules_pixels) part_name = ''.join([str(segment), '_', str(thresh)]) ### DO NOT do them here use_corrected_nodules = True # do it below from 20170311 if not use_corrected_nodules: df = hu_describe(nodules_hu, uid=uid, part=part_name) add_projections = False axis = 1 nodules_projections = [] for axis in range(3): nodls_projection = np.max(nodls, axis=axis) naxis_name = ''.join(["naxis_", str(axis),"_", part_name]) if add_projections: df[naxis_name] = np.sum(nodls_projection) nodules_projections.append(nodls_projection) idx.shape ## find the individual nodules ... as per the specified probabilities labs, labs_num = measure.label(idx, return_num = True, neighbors = 8 , background = 0) # label the nodules in 3d, allow for diagonal connectivity voxels = [] vmasks = [] if labs_num > 0 and labs.shape[0] >1: # checking for height > 1 is needed as measure.regionprops fails when it is not, for instance for shape (1, 20, 20) we get ValueError: Label and intensity image must have the same shape. print("Befpre measure.regionprops, labs & intensity shapes: ", labs.shape, ims.shape) regprop = measure.regionprops(labs, intensity_image=ims) # probkem here on 20170327 voxel_volume = np.product(RESIZE_SPACING) areas = [rp.area for rp in regprop] # this is in cubic mm now (i.e. should really be called volume) volumes = [rp.area * voxel_volume for rp in regprop] diameters = [2 * (3* volume / (4 * np.pi ))**0.3333 for volume in volumes] labs_ids = [rp.label for rp in regprop] #ls = [rp.label for rp in regprop] max_val = np.max(areas) max_index = areas.index(max_val) max_label = regprop[max_index].label bboxes = [r.bbox for r in regprop] idl = labs == regprop[max_index].label # 400 nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) if run_UNNEEDED_code: nodules_hu_reg = [] for rp in regprop: idl = labs == rp.label nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) nodules_hu_reg.append(nodules_hu) # NOTE some are out of interest, i.e. are equal all (or near all) to MAX_BOUND (400) dfn = pd.DataFrame( { "area": areas, "diameter": diameters, "bbox": bboxes }, index=labs_ids) nodules_count = len(dfn) # 524 for file 1 of part 8 .. max_nodules_count = voxelscountmax n=0 for n in range(max_nodules_count): if n < len(dfn): # use the nodule data, otheriwse empty bb = dfn.iloc[n]["bbox"] zmin = bb[0] zmax = bb[3] zlen = bb[3] - bb[0] ylen = bb[4] - bb[1] xlen = bb[5] - bb[2] xmin = np.max([bb[2] - np.max([(grid - xlen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image xmax = np.min([xmin + grid, ims.shape[2]]) ## do not beyond the right side xmin = xmax - grid if (xmax - xmin) != grid: print ("ERROR in calculating the cut-offs ..., xmin, xmax =", xmin, xmax) ymin = np.max([bb[1] - np.max([(grid - ylen ) //2, 0]), 0]) ## do not go beyond 0/left side of the image ymax = np.min([ymin + grid, ims.shape[1]]) ## do not beyond the right side ymin = ymax - grid if (ymax - ymin) != grid: print ("ERROR in calculating the cut-offs ..., ymin, ymax =", ymin, ymax) zmin_sel = zmin zmax_sel = zmax if centralcutonly: #include only one voxel representation zmin_sel = zmin + zlen // 2 zmax_sel = zmin_sel + 1 iz=zmin_sel # for testing for iz in range(zmin_sel,zmax_sel): voxel = images3[iz,:,:, ymin:ymax, xmin:xmax] vmask = pmasks3[iz,:,:, ymin:ymax, xmin:xmax] voxels.append(voxel) vmasks.append(vmask) testPlot = False if testPlot: print ('scan '+str(iz)) f, ax = plt.subplots(1, 8, figsize=(24,3)) ax[0].imshow(nodls[iz,ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[1].imshow(ims[iz,ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[2].imshow(images3_amp[iz,0, dim//2, ymin:ymax, xmin:xmax],cmap=plt.cm.gray) ax[3].imshow(voxel[0,dim//2],cmap=plt.cm.gray) ax[4].imshow(voxel[0,dim],cmap=plt.cm.gray) ax[5].imshow(voxel[0,dim+1],cmap=plt.cm.gray) ax[6].imshow(voxel[0,dim+2],cmap=plt.cm.gray) ax[7].imshow(voxel[0,dim+3],cmap=plt.cm.gray) if len(voxels) > 0: voxel_stack = np.stack(voxels) vmask_stack = np.stack(vmasks) else: print_warning = False if print_warning: print("WARNING, find_voxels, not single voxel found even though expected") voxel_stack = [] vmask_stack = [] if testPlot: print ('voxels count ', len(voxel_stack)) for ii in range(0,len(voxel_stack),len(voxel_stack)//10): f, ax = plt.subplots(1, 2, figsize=(6,3)) ax[0].imshow(voxel_stack[ii, 0, dim // 2],cmap=plt.cm.gray) ax[1].imshow(vmask_stack[ii, 0, dim // 2],cmap=plt.cm.gray) return voxel_stack, vmask_stack def measure_voxels(labs, ims): #print("Befpre measure.regionprops, labs & intensity shapes: ", labs.shape, ims.shape) regprop = measure.regionprops(labs, intensity_image=ims) # probkem here on 20170327 voxel_volume = np.product(RESIZE_SPACING) areas = [rp.area for rp in regprop] # this is in cubic mm now (i.e. should really be called volume) volumes = [rp.area * voxel_volume for rp in regprop] diameters = [2 * (3* volume / (4 * np.pi ))**0.3333 for volume in volumes] labs_ids = [rp.label for rp in regprop] #ls = [rp.label for rp in regprop] max_val = np.max(areas) max_index = areas.index(max_val) max_label = regprop[max_index].label bboxes = [r.bbox for r in regprop] #max_ls = ls[max_index] idl = labs == regprop[max_index].label # 400 nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) run_UNNEEDED_code = False if run_UNNEEDED_code: nodules_hu_reg = [] for rp in regprop: idl = labs == rp.label nodules_pixels = ims[idl] nodules_hu = pix_to_hu(nodules_pixels) nodules_hu_reg.append(nodules_hu) # NOTE some are out of interest, i.e. are equal all (or near all) to MAX_BOUND (400) dfn = pd.DataFrame( { #"zcenter": zcenters, #"ycenter": ycenters, #"xcenter": xcenters, "area": areas, "diameter": diameters, #"irreg_vol": irreg_vol, #"irreg_shape": irreg_shape, #"nodules_hu": nodules_hu_reg, "bbox": bboxes }, index=labs_ids) return dfn def find_voxels_and_blanks(dim, grid, images3, images3_seg, pmasks3, nodules_threshold=0.999, voxelscountmax = 1000, find_blanks_also = True, centralcutonly=True, diamin=2, diamax=10): if np.sum(pmasks3) > 0: centralcutonly = False # override centralcut for True nodule masks zsel = dim // 2 if centralcutonly else range(0,dim) pmav = pmasks3[:,0,zsel] ims = images3[:,0,zsel] # selecting the zsel cut for nodules calc ... ims_seg = images3_seg[:,0,zsel] sstart = 0 send = images3.shape[0] pms = pmav[sstart:send] run_UNNEEDED_code = False thresh = nodules_threshold # for testing , set it here and skip the loop segment = 2 # for compatibility of the naming convention for thresh in [nodules_threshold]: # jusst this one - keeping loop for a while if find_blanks_also: idx = np.abs(pms) > thresh else: idx = pms > thresh idx.shape nodls = np.zeros(pms.shape).astype(np.int16) nodls[idx] = 1 nx = nodls[idx] volume = np.sum(nodls) # A check calculation ... :wcounted as a count within hu_describe nodules_pixels = ims[idx] # flat nodules_hu = pix_to_hu(nodules_pixels) part_name = ''.join([str(segment), '_', str(thresh)]) ### DO NOT do them here use_corrected_nodules = True # do it below from 20170311 if not use_corrected_nodules: df = hu_describe(nodules_hu, uid=uid, part=part_name) add_projections = False if add_projections: nodules_projections = [] for axis in range(3): #sxm_projection = np.max(sxm, axis = axis) nodls_projection = np.max(nodls, axis=axis) naxis_name = ''.join(["naxis_", str(axis),"_", part_name]) if add_projections: df[naxis_name] =
np.sum(nodls_projection)
numpy.sum
# -*- coding: utf-8 -*- """ Batch learner for temporal difference Q learning Should converge to standard temporal difference Q learning for batchsize=1 """ import numpy as np class QBatch(): ''' Nice doc string. ''' def __init__(self, obs_action_space, alpha, beta, gamma, batchsize=1, Xinit=None, Qoa=None): self.alpha = alpha # learning stepsize / rate self.beta = beta # intensity of choice self.gamma = gamma # discout factor # value table: gets updateded while acting with the same policy self.valQoa = self._init_ObsActionValues(obs_action_space) # actor table: used for acting, gets updated in learning step self.actQoa = self._init_ObsActionValues(obs_action_space) if Xinit is not None and Xinit.shape == self.valQoa.shape: assert np.allclose(Xinit.sum(-1), 1), 'Xinit must be probabiliy' self.valQoa = (np.log(Xinit)/self.beta)\ - np.mean(
np.log(Xinit)
numpy.log
import numpy as np import pandas as pd def create_ranked_movies(movies_df: pd.DataFrame, reviews_df: pd.DataFrame): ''' INPUT movies - the movies dataframe reviews - the reviews dataframe OUTPUT ranked_movies - a dataframe with movies that are sorted by highest avg rating, more reviews, then time, and must have more than 4 ratings ''' rating_mean = reviews_df.groupby('movie_id')['rating'].mean() rating_count = reviews_df.groupby('movie_id')['user_id'].count() rating_latest = reviews_df.groupby('movie_id')['timestamp'].max() rating_df = pd.concat([rating_mean, rating_count, rating_latest], axis=1) rating_df.columns = ['mean', 'count', 'latest_ts'] ranked_movies = movies_df.merge(rating_df, left_on='movie_id', right_index=True) ranked_movies = ranked_movies.sort_values(["mean","count","latest_ts"], ascending=False) ranked_movies = ranked_movies[ranked_movies['count'] > 4][["movie", "mean","count","latest_ts"]] return ranked_movies def popular_recommendation(n_top:int, ranked_movies:pd.DataFrame): ''' INPUT: n_top - the number of recommendation returned ranked_movies - DataFrame of ranked movie OUTPUT: result - list of recommended movies name ''' return list(ranked_movies['movie'].head(n_top)) def find_similiar_movies(movie_id:int, movies_df:pd.DataFrame) -> str: ''' INPUT: movie_id - movie id movies_df - movie DataFrame OUTPUT: result - name of the recommended movie ''' #get row of given movie_id feature movie_mat = np.array(movies_df[movies_df['movie_id'] == movie_id].iloc[:,5:])[0] #get feature matrix of all movies movies_mat = np.array(movies_df.iloc[:,5:]) #calculate similiarity between given movie and all movie dot_prod = movie_mat.dot(movies_mat.transpose()) #get the most likely movie movie_rows = np.where(dot_prod ==
np.max(dot_prod)
numpy.max
""" linear_network.py This code is based off of mnielsen's work with a couple of modifications The original code can be found at https://github.com/mnielsen/neural-networks-and-deep-learning/blob/master/src/network.py """ #### Libraries # Standard library import random # Third-party libraries import numpy as np class LinearNetwork: def __init__(self, sizes): """The list ``sizes`` contains the number of neurons in the respective layers of the network. For example, if the list was [2, 3, 1] then it would be a three-layer network, with the first layer containing 2 neurons, the second layer 3 neurons, and the third layer 1 neuron. The biases and weights for the network are initialized randomly, using a Gaussian distribution with mean 0, and variance 1. Note that the first layer is assumed to be an input layer, and by convention we won't set any biases for those neurons, since biases are only ever used in computing the outputs from later layers.""" self.num_layers = len(sizes) self.sizes = sizes self.biases = [np.random.randn(y, 1) for y in sizes[1:]] self.weights = [np.random.randn(y, x) for x, y in zip(sizes[:-1], sizes[1:])] def feedforward(self, a): """Return the output of the network if ``a`` is input.""" for b, w in zip(self.biases, self.weights): a = identity_func(np.dot(w, a) + b) return a def SGD(self, training_data, epochs, mini_batch_size, eta, test_data=None): """Train the neural network using mini-batch stochastic gradient descent. The ``training_data`` is a list of tuples ``(x, y)`` representing the training inputs and the desired outputs.""" if not test_data: test_data = training_data n = len(training_data) for j in range(epochs): random.shuffle(training_data) mini_batches = [ training_data[k:k+mini_batch_size] for k in range(0, n, mini_batch_size)] for mini_batch in mini_batches: self.update_mini_batch(mini_batch, eta) print("Epoch {0}: {1}".format(j, self.evaluate(test_data))) def update_mini_batch(self, mini_batch, eta): """Update the network's weights and biases by applying gradient descent using backpropagation to a single mini batch. The ``mini_batch`` is a list of tuples ``(x, y)``, and ``eta`` is the learning rate.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] x = np.column_stack([example[0] for example in mini_batch]) y = np.column_stack([example[1] for example in mini_batch]) nabla_b, nabla_w = self.backprop(x, y) self.weights = [w-(eta/len(mini_batch))*nw for w, nw in zip(self.weights, nabla_w)] self.biases = [b-(eta/len(mini_batch))*nb for b, nb in zip(self.biases, nabla_b)] def backprop(self, x, y): """Return a tuple ``(nabla_b, nabla_w)`` representing the gradient for the cost function C_x. ``nabla_b`` and ``nabla_w`` are layer-by-layer lists of numpy arrays, similar to ``self.biases`` and ``self.weights``.""" nabla_b = [np.zeros(b.shape) for b in self.biases] nabla_w = [np.zeros(w.shape) for w in self.weights] # feedforward activation = x activations = [x] # list to store all the activations, layer by layer zs = [] # list to store all the z vectors, layer by layer for b, w in zip(self.biases, self.weights): z =
np.dot(w, activation)
numpy.dot
#!usr/bin/python 3.6 #-*-coding:utf-8-*- ''' @file: da.py, deterministic annealing algorithm @Author: <NAME> (<EMAIL>) @Date: 11/28/2019 @Paper reference: Clustering with Capacity and Size Constraints: A Deterministic Approach ''' import numpy as np import matplotlib.pyplot as plt from copy import deepcopy import collections import random from scipy.spatial.distance import cdist import os import sys path = os.path.dirname(os.path.abspath(__file__)) sys.path.append(path) import base class DeterministicAnnealing(base.Base): def __init__(self, n_clusters, distribution, max_iters=1000, distance_func=cdist, random_state=42, T=None): ''' Args: n_clusters (int): number of clusters distribution (list): a list of ratio distribution for each cluster T (list): inverse choice of beta coefficients ''' super(DeterministicAnnealing, self).__init__(n_clusters, max_iters, distance_func) self.lamb = distribution assert np.sum(distribution) == 1 assert len(distribution) == n_clusters assert isinstance(T, list) or T is None self.beta = None self.T = T self.cluster_centers_ = None self.labels_ = None self._eta = None self._demands_prob = None random.seed(random_state) np.random.seed(random_state) def fit(self, X, demands_prob=None): # setting T, loop T = [1, 0.1, 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8] solutions = [] diff_list = [] is_early_terminated = False n_samples, n_features = X.shape self.capacity = [n_samples * d for d in self.lamb] if demands_prob is None: demands_prob = np.ones((n_samples, 1)) else: demands_prob = np.asarray(demands_prob).reshape((-1, 1)) assert demands_prob.shape[0] == X.shape[0] demands_prob = demands_prob / sum(demands_prob) for t in T: self.T = t centers = self.initial_centers(X) eta = self.lamb labels = None for _ in range(self.max_iters): self.beta = 1. / self.T distance_matrix = self.distance_func(X, centers) eta = self.update_eta(eta, demands_prob, distance_matrix) gibbs = self.update_gibbs(eta, distance_matrix) centers = self.update_centers(demands_prob, gibbs, X) self.T *= 0.999 labels = np.argmax(gibbs, axis=1) if self._is_satisfied(labels): break solutions.append([labels, centers]) resultant_clusters = len(collections.Counter(labels)) diff_list.append(abs(resultant_clusters - self.n_clusters)) if resultant_clusters == self.n_clusters: is_early_terminated = True break # modification for non-strictly satisfaction, only works for one demand per location # labels = self.modify(labels, centers, distance_matrix) if not is_early_terminated: best_index = np.argmin(diff_list) labels, centers = solutions[best_index] self.cluster_centers_ = centers self.labels_ = labels self._eta = eta self._demands_prob = demands_prob def predict(self, X): distance_matrix = self.distance_func(X, self.cluster_centers_) eta = self.update_eta(self._eta, self._demands_prob, distance_matrix) gibbs = self.update_gibbs(eta, distance_matrix) labels = np.argmax(gibbs, axis=1) return labels def modify(self, labels, centers, distance_matrix): centers_distance = self.distance_func(centers, centers) adjacent_centers = {i: np.argsort(centers_distance, axis=1)[i, 1:3].tolist() for i in range(self.n_clusters)} while not self._is_satisfied(labels): count = collections.Counter(labels) cluster_id_list = list(count.keys()) random.shuffle(cluster_id_list) for cluster_id in cluster_id_list: num_points = count[cluster_id] diff = num_points - self.capacity[cluster_id] if diff <= 0: continue adjacent_cluster = None adjacent_cluster = random.choice(adjacent_centers[cluster_id]) if adjacent_cluster is None: continue cluster_point_id = np.where(labels==cluster_id)[0].tolist() diff_distance = distance_matrix[cluster_point_id, adjacent_cluster] \ - distance_matrix[cluster_point_id, cluster_id] remove_point_id = np.asarray(cluster_point_id)[np.argsort(diff_distance)[:diff]] labels[remove_point_id] = adjacent_cluster return labels def initial_centers(self, X): selective_centers = random.sample(range(X.shape[0]), self.n_clusters) centers = X[selective_centers] return centers def _is_satisfied(self, labels): count = collections.Counter(labels) for cluster_id in range(len(self.capacity)): if cluster_id not in count: return False num_points = count[cluster_id] if num_points > self.capacity[cluster_id]: return False return True def update_eta(self, eta, demands_prob, distance_matrix): n_points, n_centers = distance_matrix.shape eta_repmat = np.tile(np.asarray(eta).reshape(1, -1), (n_points, 1)) exp_term = np.exp(- self.beta * distance_matrix) divider = exp_term / np.sum(np.multiply(exp_term, eta_repmat), axis=1).reshape((-1, 1)) eta = np.divide(np.asarray(self.lamb), np.sum(divider * demands_prob, axis=0)) return eta def update_gibbs(self, eta, distance_matrix): n_points, n_centers = distance_matrix.shape eta_repmat = np.tile(np.asarray(eta).reshape(1, -1), (n_points, 1)) exp_term = np.exp(- self.beta * distance_matrix) factor = np.multiply(exp_term, eta_repmat) gibbs = factor / np.sum(factor, axis=1).reshape((-1, 1)) return gibbs def update_centers(self, demands_prob, gibbs, X): n_points, n_features = X.shape divide_up = gibbs.T.dot(X * demands_prob)# n_cluster, n_features p_y = np.sum(gibbs * demands_prob, axis=0) # n_cluster, p_y_repmat = np.tile(p_y.reshape(-1, 1), (1, n_features)) centers = np.divide(divide_up, p_y_repmat) return centers if __name__ == "__main__": X = [] n_points = 1000 random_state = 42 random.seed(random_state) np.random.seed(random_state) # demands = np.random.randint(1, 24, (n_points, 1)) X = np.random.rand(n_points, 2) demands =
np.ones((n_points, 1))
numpy.ones
import numpy as np import scipy from numpy.fft import rfft,irfft import os import time import librosa from Audio_proc_lib.audio_proc_functions import * import multiprocessing import scipy.signal as sg class scale_frame: #FOR THE IMPLEMENTATION OF THE IRREGULAR MATRIX i assumed that Ln (window len) = Mn (FFT len) #Painless case Ln<=Mn #CONSTRUCTOR PARAMETERS #1)ksi_s : sampling rate #2)min_scl : minimal scale given in samples #3)overlap_factor : the amount of overlap each new constructed window will have to its previous one (and the next one) given as a ratio # Notes-> i.e. overlap_factor of 1/2 means that if the previous window is 512samples then the next one will overlap in 256samples (similar to hop size in STFT) # For the first and the last windowes we used a tukey window and an overlap of 1/2 . #4)onset_seq : The sequence of onsets produced by an onset detection algorithm #5)middle_window : The middle window used in each get_window_interval procedure given as an object i.e. np.hanning or scipy.signal.tukey #6)L : signal length in samples #7)matrix_form : flag to indicate if will be calculated a regular matrix or irregular matrix #8)multiproc : flag to indicate if it will use multiprocessing to compute the window for each onset interval indices in the get_window_interval procedure # (recommended True) def timeis(func): '''Decorator that reports the execution time.''' def wrap(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() print(func.__name__, end-start) return result return wrap def cputime(self): utime, stime, cutime, cstime, elapsed_time = os.times() return utime g = [] g_dual = [] def __init__(self,ksi_s,min_scl,overlap_factor,onset_seq,middle_window,L,matrix_form,multiproc): self.ksi_s = ksi_s self.onsets = onset_seq self.min_scl=min_scl self.overlap_factor = overlap_factor self.multiprocessing = multiproc self.middle_window = middle_window self.L=L self.matrix_form=matrix_form #writing in the correct order the function calls in order for the FORWARD AND BACKWARD methods to work #Creating the onset_tuples sequence self.get_onset_tuples() #Construction of the windows indices if self.multiprocessing: pool = multiprocessing.Pool(processes=4) all_inds_list = list( pool.imap(self.get_windows_interval, self.onset_tuples) ) else: all_inds_list = list( map( lambda x : self.get_windows_interval(x) , self.onset_tuples ) ) self.all_inds = [] for interval_inds in all_inds_list: self.all_inds += interval_inds self.get_first_last_window() self.N = len(self.all_inds) self.get_frame_operator() def get_onset_tuples(self): #onsets = librosa.onset.onset_detect(y=sig, sr=self.ksi_s, units="samples") #putting manualy some onsets in the start and the end #and then creating a sequence of onset tuples (each tuple contains two successive onsets) self.onsets = np.insert( self.onsets , [0,len(self.onsets)] , [self.min_scl,(self.L-1)-self.min_scl] ) self.onset_tuples = [] for i in range(len(self.onsets)-1): self.onset_tuples.append( (self.onsets[i],self.onsets[i+1]) ) def get_windows_interval(self,onset_tuple): #Function to get the window start (a) , end (b) indices and window length #for the windows between 2 onsets #Params: #1)onsets_tuple: the first and last onset for the interval under considaration #2)self.min_scl: is the minimal scale that we apply to the two onsets (because they are the transient positions) (POWER OF 2) #3)overlap_fact: the amount of the previous window that the next will overlap to the previous (must be a fraction greater than 1) #Idea implemented: #In the first onset we use the minimal scale and for the following windows we increase the scale by doubling it each time # until the median (end + start)/2 of the interval . We use the symmetric windows in order to reash gradually the minimal # scale again in the position of the second onset. For the median position we use another window. # #Constructing the windows for all onset intervals----------------------------------------------------------------------------------- start = onset_tuple[0] end = onset_tuple[1] middle = (start + end )//2 win_len = self.min_scl #Constructing the first symmetric windows-------------------------------------------------------------------- inds_dict = [ { "window" : np.hanning , "win_len" : win_len , "a" : start - win_len//2 , "b" : start + win_len//2 } ] k = 0 while True: k+=1 ovrlp = int(inds_dict[k-1]["win_len"]*self.overlap_factor) window = np.hanning win_len = win_len*2 a = inds_dict[k-1]["b"] - ovrlp b = a + win_len if b>middle: break # if (a+b)/2>middle: # break else: inds_dict.append( { "window" : window , "win_len" : win_len , "a" : a , "b" : b } ) #Constructing the middle window--------------------------------------------------------------------------------------- window = self.middle_window ovrlp = int(inds_dict[-1]["win_len"]*self.overlap_factor) a = inds_dict[-1]["b"] - ovrlp b = int( 2*middle - inds_dict[-1]["b"] ) + ovrlp win_len = b - a inds_dict.append( { "window" : window , "win_len" : win_len , "a" : a , "b" : b } ) #Constructing the first symmetric windows -------------------------------------------------------------------------------- # (we dont need the last symmetric window thats why the for loop goes until 0 ) for k in range(len(inds_dict)-2,0,-1): tmp = inds_dict[k].copy() tmp["a"] = int( 2*middle - inds_dict[k]["b"] ) tmp["b"] = int( 2*middle - inds_dict[k]["a"] ) inds_dict.append(tmp) return inds_dict def get_first_last_window(self): #first_window ovrlp = int(self.all_inds[0]["win_len"]*self.overlap_factor) ovrlp = int(self.all_inds[0]["win_len"]*(1/2)) a = 0 b = self.all_inds[0]["a"] + ovrlp win_len = b - a first_window_inds = { "win_len" : win_len , "a" : a , "b" : b } #last_window #ovrlp = int(self.all_inds[len(self.all_inds)-1]["win_len"]*self.overlap_factor) ovrlp = int(self.all_inds[len(self.all_inds)-1]["win_len"]*(1/2)) a = self.all_inds[len(self.all_inds)-1]["b"] - ovrlp b = self.L win_len = b - a last_window_inds = { "win_len" : win_len , "a" : a , "b" : b } self.all_inds = [first_window_inds] + self.all_inds + [last_window_inds] def plot_windows(self): #Plot the windows for a small 3sec exerpt of the signal if self.L/44100<=7.0: #first window using Tukey z_tmp = np.zeros(self.L) inds = np.arange( self.all_inds[0]["a"],self.all_inds[0]["b"] ) Ln = self.all_inds[0]["win_len"] gn = np.roll( sg.tukey( Ln*2 ) , Ln )[:Ln] z_tmp[inds] = gn plt.plot(z_tmp) for k in range(1,self.N-1): z_tmp = np.zeros(self.L) inds = np.arange( self.all_inds[k]["a"],self.all_inds[k]["b"] ) z_tmp[inds] = self.all_inds[k]["window"]( self.all_inds[k]["win_len"] ) plt.plot(z_tmp) #last window using Tukey z_tmp = np.zeros(self.L) inds = np.arange( self.all_inds[self.N-1]["a"],self.all_inds[self.N-1]["b"] ) Ln = self.all_inds[self.N-1]["win_len"] gn = np.roll( sg.tukey( Ln*2 ) , Ln )[Ln:] z_tmp[inds] = gn plt.plot(z_tmp) plt.show() # plt.axvline(start) # plt.axvline(end) # plt.axvline(middle) # plt.show() def get_frame_operator(self): #CONSTRUCTING THE FRAME OPERATOR----------------------------------------------- self.frame_operator = np.zeros(self.L) #MATRIX FORM CASE: if self.matrix_form: #calculate the max window length: self.M = np.array( list( map( lambda x : x["win_len"] , self.all_inds ) ) ).max() #first window using Tukey nb_zeros_concat = self.M-self.all_inds[0]["win_len"] bnew = self.all_inds[0]["b"] + nb_zeros_concat inds = np.arange( self.all_inds[0]["a"],bnew ) Ln = self.all_inds[0]["win_len"] gn = np.roll( sg.tukey( Ln*2 ) , Ln )[:Ln] gn = np.concatenate(( gn,np.zeros(nb_zeros_concat) )) self.frame_operator[ inds ] += (gn**2) #The remaining windows-------------------------------------------------------------------- for n in range(1,self.N//2): nb_zeros_concat = self.M-self.all_inds[n]["win_len"] bnew = self.all_inds[n]["b"] + nb_zeros_concat inds = np.arange( self.all_inds[n]["a"],bnew ) Ln = self.all_inds[n]["win_len"] gn = self.all_inds[n]["window"]( Ln ) gn = np.concatenate(( gn,np.zeros(nb_zeros_concat) )) self.frame_operator[ inds ] += (gn**2) #After the self.N//2 window we update the a inds in order to avoid indices problems out of range for n in range(self.N//2,self.N-1): nb_zeros_concat = self.M-self.all_inds[n]["win_len"] anew = self.all_inds[n]["a"] - nb_zeros_concat inds = np.arange( anew,self.all_inds[n]["b"] ) Ln = self.all_inds[n]["win_len"] gn = self.all_inds[n]["window"]( Ln ) gn = np.concatenate(( np.zeros(nb_zeros_concat),gn )) self.frame_operator[ inds ] += (gn**2) #last window using Tukey nb_zeros_concat = self.M-self.all_inds[self.N-1]["win_len"] anew = self.all_inds[self.N-1]["a"] - nb_zeros_concat inds = np.arange( anew,self.all_inds[self.N-1]["b"] ) Ln = self.all_inds[self.N-1]["win_len"] gn = np.roll( sg.tukey( Ln*2 ) , Ln )[Ln:] gn = np.concatenate(( np.zeros(nb_zeros_concat) ,gn )) self.frame_operator[ inds ] += (gn**2) #IRREGULAR MATRIX CASE: else: #first window using Tukey inds = np.arange( self.all_inds[0]["a"],self.all_inds[0]["b"] ) Ln = self.all_inds[0]["win_len"] gn = np.roll( sg.tukey( Ln*2 ) , Ln )[:Ln] self.frame_operator[ inds ] += (gn**2) #The remaining windows for n in range(1,self.N-1): inds = np.arange( self.all_inds[n]["a"],self.all_inds[n]["b"] ) Ln = self.all_inds[n]["win_len"] gn = self.all_inds[n]["window"]( Ln ) self.frame_operator[ inds ] += (gn**2) #last window using Tukey inds = np.arange( self.all_inds[self.N-1]["a"],self.all_inds[self.N-1]["b"] ) Ln = self.all_inds[self.N-1]["win_len"] gn = np.roll( sg.tukey( Ln*2 ) , Ln )[Ln:] self.frame_operator[ inds ] += (gn**2) @timeis def forward(self,signal): c = [] #MATRIX FORM CASE: if self.matrix_form: #first window using Tukey nb_zeros_concat = self.M-self.all_inds[0]["win_len"] bnew = self.all_inds[0]["b"] + nb_zeros_concat inds = np.arange( self.all_inds[0]["a"],bnew ) fft_len = self.all_inds[0]["win_len"] gn = np.roll( sg.tukey( fft_len*2 ) , fft_len )[:fft_len] gn = np.concatenate(( gn,np.zeros(nb_zeros_concat) )) c.append( rfft( signal[inds]*gn , norm="ortho" ) ) #The remaining windows---------------------------------------------------------------------------------------- for n in range(1,self.N//2): nb_zeros_concat = self.M-self.all_inds[n]["win_len"] bnew = self.all_inds[n]["b"] + nb_zeros_concat inds = np.arange( self.all_inds[n]["a"],bnew ) fft_len = self.all_inds[n]["win_len"] gn = self.all_inds[n]["window"](fft_len) gn = np.concatenate(( gn,np.zeros(nb_zeros_concat) )) c.append( rfft( signal[inds]*gn , norm="ortho" ) ) #After the self.N//2 window we update the a inds in order to avoid indices problems out of range for n in range(self.N//2,self.N-1): nb_zeros_concat = self.M-self.all_inds[n]["win_len"] anew = self.all_inds[n]["a"] - nb_zeros_concat inds = np.arange( anew,self.all_inds[n]["b"] ) fft_len = self.all_inds[n]["win_len"] gn = self.all_inds[n]["window"](fft_len) gn = np.concatenate(( np.zeros(nb_zeros_concat),gn )) c.append( rfft( signal[inds]*gn , norm="ortho" ) ) #last window using Tukey nb_zeros_concat = self.M-self.all_inds[self.N-1]["win_len"] anew = self.all_inds[self.N-1]["a"] - nb_zeros_concat inds = np.arange( anew,self.all_inds[self.N-1]["b"] ) fft_len = self.all_inds[self.N-1]["win_len"] gn = np.roll( sg.tukey( fft_len*2 ) , fft_len )[fft_len:] gn = np.concatenate(( np.zeros(nb_zeros_concat) ,gn )) c.append( rfft( signal[inds]*gn , norm="ortho" ) ) #IRREGULAR MATRIX CASE: else: #first window using Tukey inds = np.arange( self.all_inds[0]["a"],self.all_inds[0]["b"] ) fft_len = self.all_inds[0]["win_len"] gn = np.roll( sg.tukey( fft_len*2 ) , fft_len )[:fft_len] c.append( rfft( signal[inds]*gn , norm="ortho" ) ) #The remaining windows for n in range(1,self.N-1): fft_len = self.all_inds[n]["win_len"] inds = np.arange(self.all_inds[n]["a"],self.all_inds[n]["b"]) gn = self.all_inds[n]["window"](fft_len) c.append( rfft( signal[inds]*gn , norm="ortho" ) ) #last window using Tukey inds = np.arange( self.all_inds[self.N-1]["a"],self.all_inds[self.N-1]["b"] ) fft_len = self.all_inds[self.N-1]["win_len"] gn = np.roll( sg.tukey( fft_len*2 ) , fft_len )[fft_len:] c.append( rfft( signal[inds]*gn , norm="ortho" ) ) return c @timeis def backward(self,c): f_rec = np.zeros(self.L) if self.matrix_form: #first window using Tukey nb_zeros_concat = self.M-self.all_inds[0]["win_len"] bnew = self.all_inds[0]["b"] + nb_zeros_concat inds = np.arange( self.all_inds[0]["a"],bnew ) fft_len = self.all_inds[0]["win_len"] fn = np.real( irfft( c[0] , norm="ortho" ) ) gn_dual = np.roll( sg.tukey( fft_len*2 ) , fft_len )[:fft_len] gn_dual = np.concatenate(( gn_dual,np.zeros(nb_zeros_concat) ))/self.frame_operator[inds] f_rec[inds] += fn*gn_dual for n in range(1,self.N//2): nb_zeros_concat = self.M-self.all_inds[n]["win_len"] bnew = self.all_inds[n]["b"] + nb_zeros_concat inds = np.arange( self.all_inds[n]["a"],bnew ) fft_len = self.all_inds[n]["win_len"] fn = np.real( irfft( c[n] , norm="ortho" ) ) gn_dual = self.all_inds[n]["window"](fft_len) gn_dual = np.concatenate(( gn_dual,np.zeros(nb_zeros_concat) ))/self.frame_operator[inds] f_rec[inds] += fn*gn_dual #After the self.N//2 window we update the a inds in order to avoid indices problems out of range for n in range(self.N//2,self.N-1): nb_zeros_concat = self.M-self.all_inds[n]["win_len"] anew = self.all_inds[n]["a"] - nb_zeros_concat inds = np.arange( anew,self.all_inds[n]["b"] ) fft_len = self.all_inds[n]["win_len"] fn = np.real( irfft( c[n] , norm="ortho" ) ) gn_dual = self.all_inds[n]["window"](fft_len) gn_dual = np.concatenate(( np.zeros(nb_zeros_concat),gn_dual ))/self.frame_operator[inds] f_rec[inds] += fn*gn_dual #last window using Tukey nb_zeros_concat = self.M-self.all_inds[self.N-1]["win_len"] anew = self.all_inds[self.N-1]["a"] - nb_zeros_concat inds = np.arange( anew,self.all_inds[self.N-1]["b"] ) fft_len = self.all_inds[self.N-1]["win_len"] fn = np.real( irfft( c[self.N-1] , norm="ortho" ) ) gn_dual = np.roll( sg.tukey( fft_len*2 ) , fft_len )[fft_len:] gn_dual = np.concatenate(( np.zeros(nb_zeros_concat),gn_dual ))/self.frame_operator[inds] f_rec[inds] += fn*gn_dual else: #self.get_frame_operator() #first window using Tukey inds = np.arange( self.all_inds[0]["a"],self.all_inds[0]["b"] ) fft_len = self.all_inds[0]["win_len"] fn = np.real( irfft( c[0] , norm="ortho" ) ) gn_dual = np.roll( sg.tukey( fft_len*2 ) , fft_len )[:fft_len]/self.frame_operator[inds] f_rec[inds] += fn*gn_dual for n in range(1,self.N-1): fft_len = self.all_inds[n]["win_len"] inds = np.arange(self.all_inds[n]["a"],self.all_inds[n]["b"]) fn = np.real( irfft( c[n] , norm="ortho" ) ) gn_dual = self.all_inds[n]["window"](fft_len)/self.frame_operator[inds] f_rec[inds] += fn*gn_dual #last window using Tukey inds =
np.arange( self.all_inds[self.N-1]["a"],self.all_inds[self.N-1]["b"] )
numpy.arange
import numpy as np import csv import math class Logger: def __init__(self, path, num_classes, seq_len): self.acc_plot = [] self.conf_mat = None self.len_plot = None self.len_stats = None self.len_buckets = None self.path = path self.num_classes = num_classes self.seq_len = seq_len #in case you want to record accuracy during training. Not used currently. def record_val_acc(self, time, acc): self.acc_plot.append([time, acc]) #data: (x, y) pairs before onehot encoding, pred: predicted class integers def confusion_matrix(self, data, pred): self.conf_mat = np.zeros((self.num_classes, self.num_classes), dtype=np.int32) for i in range(len(data)): self.conf_mat[data[i][1], pred[i]] += 1 #no longer used, replaced by length_histograms def length_plot(self, data, pred): lengths = [] for (x, y) in data: lengths.append(len(x)) self.len_plot = [] for i in range(len(data)): correct = 1 if data[i][1] == pred[i] else 0 self.len_plot.append([lengths[i], correct]) def length_stats(self, data, pred): class_lengths = [] for i in range(self.num_classes): class_lengths.append([]) for (x, y) in data: class_lengths[y].append(len(x)) self.len_stats = [] for i in range(self.num_classes): l = class_lengths[i] self.len_stats.append([i, np.mean(l), np.median(l), np.std(l),
np.var(l)
numpy.var
""" isicarchive.imfunc This module provides image helper functions and doesn't have to be imported from outside the main package functionality (IsicApi). Functions --------- color_superpixel Paint the pixels belong to a superpixel list in a specific color column_period Guess periodicity of data (image) column display_image Display an image (in a Jupyter notebook!) image_compose Compose an image from parts image_corr Correlate pixel values across two images image_crop Crop an image according to coordinates (or superpixel index) image_dice Compute DICE coefficient of two images image_gradient Compute image gradient (and components) image_gray Generate gray-scale version of image image_mark_border Mark border pixels of image with encoded content (string, bytes) image_mark_pixel Mark pixel in image border image_mark_work Mark set of pixels (word) in image border image_mix Mix two (RGB or gray) image, with either max or blending image_overlay Mix an RGB image with a heatmap overlay (resampled) image_read_border Read encoded image border image_register Perform rigid-body alignment of images based on gradient image_resample Cheap (!) resampling of an image image_rotate Rotate an image (ndarray) lut_lookup Color lookup from a table (LUT) segmentation_outline Extract outline from a segmentation mask image superpixel_dice Compute DICE coefficient for superpixel lists superpixel_neighbors Generate neighbors lists for each superpixel in an image superpixel_outlines Extract superpixel (outline) shapes from superpixel map superpixel_values Return the values of a superpixel write_image Write an image to file or buffer (bytes) """ # specific version for file __version__ = '0.4.11' # imports (needed for majority of functions) from typing import Any, List, Optional, Tuple, Union import warnings import numpy from .vars import ISIC_DICE_SHAPE, ISIC_FUNC_PPI, ISIC_IMAGE_DISPLAY_SIZE_MAX # color superpixels in an image def color_superpixels( image:Union[numpy.ndarray, Tuple], splst:Union[list, numpy.ndarray], spmap:numpy.ndarray, color:Union[list, numpy.ndarray], alpha:Union[float, numpy.float, list, numpy.ndarray] = 1.0, almap:numpy.ndarray = None, spval:Union[float, numpy.float, list, numpy.ndarray, None] = None, copy_image:bool = False) -> numpy.ndarray: """ Paint the pixels belong to a superpixel list in a specific color. Parameters ---------- image : numpy.ndarray or 2- or 3-element Tuple with image size Image to be colored, if shape tuple, will be all 0 (black) splst : list or flat numpy.ndarray List of superpixels to color in the image spmap : numpy.ndarray Mapping array from func.superpixels_map(...) color : either a list or numpy.ndarray RGB Color code or list of codes to use to color superpixels alpha : either float or numpy.float value or None Alpha (opacity) value between 0.0 and 1.0, if None, set to 1.0 spval : optional numpy.ndarray Per-pixel opacity value (e.g. confidence, etc.) copy_image : bool Copy the input image prior to painting, default: False Returns ------- image : numpy.ndarray Image with superpixels painted """ # check inputs if isinstance(image, tuple): if len(image) == 2 and (isinstance(image[0], int) and isinstance(image[1], int)): im_shape = image image = numpy.zeros(image[0] * image[1], dtype=numpy.uint8) elif len(image) == 3 and (isinstance(image[0], int) and isinstance(image[1], int) and isinstance(image[2], int) and (image[2] == 1 or image[2] == 3)): im_shape = image image = numpy.zeros(image[0] * image[1] * image[2], dtype=numpy.uint8).reshape((image[0] * image[1], image[2])) else: raise ValueError('Invalid image shape.') copy_image = False else: im_shape = image.shape num_cols = im_shape[1] has_almap = False if not almap is None: if almap.size != (im_shape[0] * im_shape[1]): raise ValueError('Invalid alpha map.') has_almap = True am_shape = almap.shape try: almap.shape = (almap.size,) except: raise if copy_image: image = numpy.copy(image) if len(im_shape) == 3 or im_shape[1] > 3: planes = im_shape[2] if len(im_shape) == 3 else 1 else: if len(im_shape) > 1: planes = im_shape[1] else: planes = 1 image.shape = (im_shape[0] * im_shape[1], planes) has_alpha = False if planes > 3: planes = 3 has_alpha = True numsp = len(splst) if spval is None: spval = numpy.ones(numsp, dtype=numpy.float32) elif isinstance(spval, float) or isinstance(spval, numpy.float): spval = spval * numpy.ones(numsp, dtype=numpy.float32) elif len(spval) != numsp: spval = numpy.ones(numsp, dtype=numpy.float32) if len(color) == 3 and isinstance(color[0], int): color = [color] * numsp if alpha is None: alpha = 1.0 if isinstance(alpha, float): alpha = [alpha] * numsp if isinstance(alpha, list): if len(alpha) != numsp: raise ValueError('alpha list must match number of superpixels') sp_skip = 6.0 * numpy.trunc(0.75 + 0.25 * numpy.sqrt([ im_shape[0] * im_shape[1] / spmap.shape[0]]))[0] # for each superpixel (index) for idx in range(numsp): # get pixel indices, compute inverse alpha, and then set pixel values spcol = color[idx] singlecol = False num_colors = 1 if isinstance(spcol, list): if isinstance(spcol[0], int): singlecol = True else: num_colors = len(spcol) elif isinstance(spcol, numpy.ndarray): if spcol.size == 3: singlecol = True else: num_colors = spcol.shape[0] if num_colors > 6: num_colors = 6 spalpha = alpha[idx] if isinstance(spalpha, float) and not singlecol: spalpha = [spalpha] * num_colors spidx = splst[idx] spnum = spmap[spidx, -1] sppidx = spmap[spidx, 0:spnum] if singlecol: spalpha = spalpha * spval[idx] spinv_alpha = 1.0 - spalpha for p in range(planes): if spalpha == 1.0: image[sppidx, p] = spcol[p] else: image[sppidx, p] = numpy.round( spalpha * spcol[p] + spinv_alpha * image[sppidx, p]) if has_alpha: image[sppidx, 3] = numpy.round(255.0 * 1.0 - (1.0 - 255.0 * image[sppidx, 3]) * (1.0 - 255.0 * spalpha)) elif has_almap: almap[sppidx] = 1.0 - (1.0 - almap[sppidx]) * spinv_alpha else: sppval = spval[idx] if not (isinstance(sppval, list) or isinstance(sppval, numpy.ndarray)): sppval = [sppval] * num_colors elif len(sppval) < num_colors: sppval = [sppval[0]] * num_colors sppidxx = sppidx % num_cols sppidxy = sppidx // num_cols float_num = float(num_colors) spcidx = numpy.trunc(0.5 + (sppidxx + sppidxy).astype(numpy.float) * (float_num / sp_skip)).astype(numpy.int32) % num_colors for cc in range(num_colors): spcsel = spcidx == cc spcidxxy = sppidxx[spcsel] + sppidxy[spcsel] * num_cols spccol = spcol[cc] spcalpha = spalpha[cc] * sppval[cc] spinv_alpha = 1.0 - spcalpha for p in range(planes): if spcalpha == 1.0: image[spcidxxy, p] = spccol[p] else: image[spcidxxy, p] = numpy.round( spcalpha * spccol[p] + spinv_alpha * image[spcidxxy, p]) if has_alpha: image[spcidxxy, 3] = numpy.round(255.0 * 1.0 - (1.0 - 255.0 * image[spcidxxy, 3]) * (1.0 - 255.0 * spcalpha)) elif has_almap: almap[spcidxxy] = 1.0 - (1.0 - almap[spcidxxy]) * spinv_alpha image.shape = im_shape if has_almap: almap.shape = am_shape return image # column period def column_period(c:numpy.ndarray, thresh:int=0): """ Guess the periodicity of a column of (image) data Parameters ---------- c : ndarray Column of data (e.g. pixel values) thresh : int Optional threshold (default: 0) Returns ------- p : int (or float) Guessed periodicity """ cc = numpy.zeros(c.size//2) for ck in range(1, cc.size): cc[ck] = numpy.corrcoef(c[:-ck],c[ck:])[0,1] cc[numpy.isnan(cc)] = 0.0 ccc = numpy.zeros(cc.size//2) for ck in range(3, ccc.size): ccc[ck-1] = numpy.corrcoef(cc[1:-ck], cc[ck:-1])[0,1] ccc[numpy.isnan(ccc)] = -1.0 ccs = numpy.argsort(-ccc) ccsv = numpy.median(ccc[ccs[0:3]]) * 0.816 ccsl = numpy.sort(ccs[ccc[ccs]>=ccsv]) while thresh > 0 and len(ccsl) > 1 and ccsl[0] < thresh: ccsl = ccsl[1:] if len(ccsl) == 1: return ccsl[0] while len(ccsl) > 3 and ccsl[0] < ccsl[1] // 3: ccsl = ccsl[1:] ccsy = ccsl[-1] ccsx = ccsl[0] ccsr = ccsy % ccsx if ccsr == 0: return ccsx if ccsx - ccsr < (ccsx // 4): ccsr = ccsx - ccsr if ccsr < (ccsx // 4) and ccsx >= 6 and len(ccsl) > 3: ccst = ccsl.astype(numpy.float64) / float(ccsx) ccsi = numpy.trunc(ccst + 0.5) ccsd = float(ccsx) * (ccst - ccsi) ccsx = float(ccsx) + numpy.sum(ccsd) / numpy.sum(ccsi) return ccsx while ccsy % ccsx != 0: (ccsy, ccsx) = (ccsx, ccsy % ccsx) return ccsx # display image def display_image( image_data:Union[bytes, str, numpy.ndarray], image_shape:Tuple = None, max_size:int = ISIC_IMAGE_DISPLAY_SIZE_MAX, library:str = 'matplotlib', ipython_as_object:bool = False, mpl_axes:object = None, **kwargs, ) -> Optional[object]: """ Display image in a Jupyter notebook; supports filenames, bytes, arrays Parameters ---------- image_data : bytes, str, ndarray/imageio Array Image specification (file data, filename, or image array) image_shape : tuple Image shape (necessary if flattened array!) max_size : int Desired maximum output size on screen library : str Either 'matplotlib' (default) or 'ipython' mpl_axes : object Optional existing matplotlib axes object No returns """ # IMPORT DONE HERE TO SAVE TIME AT MODULE INIT import imageio # check inputs if image_data is None: return if not isinstance(library, str): raise ValueError('Invalid library selection.') library = library.lower() if not library in ['ipython', 'matplotlib']: raise ValueError('Invalid library selection.') if (isinstance(image_data, numpy.ndarray) or isinstance(image_data, imageio.core.util.Array)): if library == 'ipython': try: image_data = write_image(image_data, 'buffer', 'jpg') except: raise elif isinstance(image_data, str) and (len(image_data) < 256): try: with open(image_data, 'rb') as image_file: image_data = image_file.read() except: raise if library == 'matplotlib' and isinstance(image_data, bytes): try: image_data = imageio.imread(image_data) except: raise if not isinstance(max_size, int) or (max_size < 32) or (max_size > 5120): max_size = ISIC_IMAGE_DISPLAY_SIZE_MAX if image_shape is None: try: if library == 'ipython': image_array = imageio.imread(image_data) image_shape = image_array.shape else: image_shape = image_data.shape except: raise image_height = image_shape[0] image_width = image_shape[1] image_max_xy = max(image_width, image_height) shrink_factor = max(1.0, image_max_xy / max_size) image_width = int(image_width / shrink_factor) image_height = int(image_height / shrink_factor) # depending on library call appropriate function if library == 'ipython': # IMPORT DONE HERE TO SAVE TIME BETWEEN LIBRARY CHOICES from ipywidgets import Image as ipy_Image from IPython.display import display as ipy_display try: image_out = ipy_Image(value=image_data, width=image_width, height=image_height) if not ipython_as_object: ipy_display(image_out) return None return image_out except Exception as e: warnings.warn('Problem producing image for display: ' + str(e)) return None else: # IMPORT DONE HERE TO SAVE TIME BETWEEN LIBRARY CHOICES import matplotlib import matplotlib.pyplot as mpl_pyplot try: display_width = image_width / ISIC_FUNC_PPI display_height = image_height / ISIC_FUNC_PPI if mpl_axes is None: if 'figsize' in kwargs: mpl_pyplot.figure(figsize=kwargs['figsize']) else: mpl_pyplot.figure(figsize=(display_width, display_height)) ax_img = mpl_pyplot.imshow(image_data, interpolation='hanning') ax_img.axes.set_axis_off() mpl_pyplot.show() else: mpl_axes.imshow(image_data) except Exception as e: warnings.warn('Problem producing image for display: ' + str(e)) return None # image center ([y,x coord] * 0.5) def image_center(image:numpy.ndarray) -> numpy.ndarray: try: imsh = image.shape return 0.5 * numpy.asarray([imsh[0], imsh[1]]).astype(numpy.float64) except: raise # image composition (from other images) def image_compose( imlist:list, outsize:Tuple, bgcolor:list = [255,255,255], ) -> numpy.ndarray: """ Compose image from parts Parameters ---------- imlist : list List of image parts, each element a 3-element list with image (ndarray), x- and y-position in the output image outsize : Tuple Size of output image bgcolor : list 3-element list, default: [255, 255, 255] (white) Returns ------- out_image : ndarray Output image composed of input images """ if not isinstance(outsize, tuple) and not isinstance(outsize, list): raise ValueError('Invalid outsize parameter.') if (len(outsize) != 2 or not isinstance(outsize[0], int) or not isinstance(outsize[1], int) or outsize[0] < 1 or outsize[1] < 1 or (outsize[0] * outsize[2] > 16777216)): raise ValueError('Invalid image dimensions in outsize parameter.') # generate output out = numpy.zeros(3 * outsize[0] * outsize[1], dtype=numpy.uint8).reshape( (outsize[1], outsize[0], 3,)) im_shape = out.shape # set background color if (isinstance(bgcolor, tuple) or isinstance(bgcolor, list)) and len(bgcolor) == 3: try: out[:,:,0] = bgcolor[0] except: pass try: out[:,:,1] = bgcolor[1] except: pass try: out[:,:,2] = bgcolor[2] except: pass # iterare over particles for ii in imlist: # if not a minimally formatted list if not isinstance(ii, list) or len(ii) < 3: continue # get image and inupt shape, check dims ii_image = ii[0] ii_shape = ii_image.shape if len(ii_shape) < 2 or len(ii_shape) > 3: continue elif len(ii_shape) == 3 and not ii_shape[2] in [1, 3]: continue # get target position (top left) ii_x = ii[1] ii_y = ii[2] if ii_x >= im_shape[1] or ii_y >= im_shape[0]: continue # and process alpha if len(ii) == 3: ii_alpha = 1.0 else: ii_alpha = ii[3] if not (isinstance(ii_alpha, float) or isinstance(ii_alpha, numpy.ndarray)): continue if isinstance(ii_alpha, float): if ii_alpha <= 0.0: continue if ii_alpha > 1.0: ii_alpha = 1.0 else: if ii_alpha.ndim != 2: continue if ii_alpha.shape[0] != im_shape[0] or ii_alpha.shape[1] != im_shape[1]: continue ii_alpha[ii_alpha < 0.0] = 0.0 ii_alpha[ii_alpha > 1.0] = 1.0 # resizing of image if len(ii) > 5 and ((isinstance(ii[4], int) and isinstance(ii[5], int)) or (isinstance(ii[4], float) and isinstance(ii[5], float))): from .sampler import Sampler s = Sampler() if isinstance(ii_alpha, numpy.ndarray): ii_alpha = s.sample_grid(ii_alpha, ii[4:6], 'linear') if len(ii) > 6 and isinstance(ii[6], str): ikern = ii[6] else: ikern = 'cubic' ii_image = s.sample_grid(ii_image, ii[4:6], ikern) im_shape = ii_image.shape # check arguments for compatibility if not (isinstance(ii_image, numpy.ndarray) and isinstance(ii_x, int) and isinstance(ii_y, int) and (isinstance(ii_alpha, float) or ( isinstance(ii_alpha, numpy.ndarray) and ii_alpha.ndim == 2 and ii_alpha.shape[0] == ii_image.shape[0]))): continue sfrom_x = 0 sfrom_y = 0 sto_x = ii_shape[1] sto_y = ii_shape[0] tfrom_x = ii_x tfrom_y = ii_y if tfrom_x < 0: sfrom_x -= tfrom_x tfrom_x = 0 if tfrom_y < 0: sfrom_y -= tfrom_y tfrom_y = 0 from_x = sto_x - sfrom_x from_y = sto_y - sfrom_y if from_x <= 0 or from_y <= 0: continue tto_x = tfrom_x + from_x tto_y = tfrom_y + from_y if tto_x > im_shape[1]: shrink = tto_x - im_shape[1] tto_x -= shrink sto_x -= shrink if tto_y > im_shape[0]: shrink = tto_y - im_shape[0] tto_y -= shrink sto_y -= shrink if tto_x <= tfrom_x or tto_y <= tfrom_y: continue if len(ii_shape) == 2: if sfrom_x == 0 and sfrom_y == 0 and sto_x == ii_shape[1] and sto_y == ii_shape[0]: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image, ii_alpha) else: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image[sfrom_y:sto_y, sfrom_x:sto_x], ii_alpha) else: if sfrom_x == 0 and sfrom_y == 0 and sto_x == ii_shape[1] and sto_y == ii_shape[0]: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image, ii_alpha) else: out[tfrom_y:tto_y, tfrom_x:tto_x, :] = image_mix( out[tfrom_y:tto_y, tfrom_x:tto_x, :], ii_image[sfrom_y:sto_y, sfrom_x:sto_x, :], ii_alpha) return out # image correlation (pixel values) def image_corr( im1:numpy.ndarray, im2:numpy.ndarray, immask:numpy.ndarray = None, ) -> float: """ Correlate pixel values for two images Parameters ---------- im1, im2 : ndarray Image arrays (of same size!) immask : ndarray Optional masking array (in which case only over those pixels) Returns ------- ic : float Correlation coefficient """ if im1.size != im2.size: raise ValueError('Images must match in size.') if immask is None: cc = numpy.corrcoef(im1.reshape(im1.size), im2.reshape(im2.size)) else: if immask.size != im1.size: immask = image_resample(numpy.uint8(255) * immask.astype(numpy.uint8), (im1.shape[0], im1.shape[1])) >= 128 if immask.dtype != numpy.bool: immask = (immask > 0) cc = numpy.corrcoef(im1[immask], im2[immask]) return cc[0,1] # crop image def image_crop( image:numpy.ndarray, cropping:Any, padding:int = 0, masking:str = None, spmap:numpy.ndarray = None, spnei:List = None, spnei_degree:int = 1, ) -> numpy.ndarray: """ Crops an image to a rectangular region of interest. Parameters ---------- image : ndarray Image (2D or 2D-3) array cropping : Any Cropping selection, either of - [y0, x0, y1, x1] rectangle (y1/x1 non inclusive) - int(S), superpixel index, requires spmap! padding : int Additional padding around cropping in pixels masking : str Masking operation, if requested, either of 'smoothnei' - smooth the neighboring region spmap : ndarray Superpixel mapping array spnei : list Superpixel (list of) list(s) of neighbors spnei_degree : int How many degrees of neighbors to include (default: 1) """ im_shape = image.shape if not isinstance(padding, int) or padding < 0: padding = 0 if isinstance(cropping, list) and len(cropping) == 4: y0 = max(0, cropping[0]-padding) x0 = max(0, cropping[1]-padding) y1 = min(im_shape[0], cropping[2]+padding) x1 = min(im_shape[1], cropping[2]+padding) elif isinstance(cropping, int) and cropping >= 0: if spmap is None or not isinstance(spmap, numpy.ndarray): raise ValueError('Missing spmap parameter.') spidx = cropping sppix = spmap[spidx,:spmap[spidx,-1]] sppiy = sppix // im_shape[1] sppix = sppix % im_shape[1] y0 = max(0, numpy.amin(sppiy)-padding) x0 = max(0, numpy.amin(sppix)-padding) y1 = min(im_shape[0], numpy.amax(sppiy)+padding) x1 = min(im_shape[1], numpy.amax(sppix)+padding) yd = y1 - y0 xd = x1 - x0 dd = (yd + xd) // 2 if isinstance(spnei, list): if len(spnei) > 8: spnei = [spnei] if not isinstance(spnei_degree, int) or spnei_degree < 1: spnei_degree = 0 elif spnei_degree > len(spnei): spnei_degree = len(spnei) - 1 else: spnei_degree -= 1 spnei = spnei[spnei_degree] try: nei = spnei[spidx] for n in nei: sppix = spmap[n,:spmap[n,-1]] sppiy = sppix // im_shape[1] sppix = sppix % im_shape[1] y0 = min(y0, max(0, numpy.amin(sppiy)-padding)) x0 = min(x0, max(0, numpy.amin(sppix)-padding)) y1 = max(y1, min(im_shape[0], numpy.amax(sppiy)+padding)) x1 = max(x1, min(im_shape[1], numpy.amax(sppix)+padding)) except: raise if isinstance(masking, str) and masking == 'smoothnei': from .sampler import Sampler s = Sampler() yd = y1 - y0 xd = x1 - x0 try: if len(im_shape) > 2: ci = image[y0:y1,x0:x1,:] else: ci = image[y0:y1,x0:x1] cim = numpy.zeros(yd * xd).reshape((yd,xd,)) cim[yd//2, xd//2] = 1.0 cims = s.sample_grid(cim, 1.0, 'gauss' + str(dd)) cims /=
numpy.amax(cims)
numpy.amax
import unittest import numpy as np from sklearn.datasets import ( load_breast_cancer, load_iris ) from msitrees._core import ( gini_impurity, gini_information_gain, entropy, get_class_and_proba, classif_best_split ) class TestGiniImpurity(unittest.TestCase): def test_input_type_list(self): try: gini_impurity([0, 0]) except TypeError: self.fail('Exception on allowed input type - list') def test_input_type_tuple(self): try: gini_impurity((0, 0)) except TypeError: self.fail('Exception on allowed input type - tuple') def test_input_type_numpy(self): try: gini_impurity(np.array([0, 0])) except TypeError: self.fail('Exception on allowed input type - np.ndarray') def test_input_int(self): with self.assertRaises(ValueError): gini_impurity(0) def test_input_other(self): with self.assertRaises(TypeError): gini_impurity('foo') with self.assertRaises(TypeError): gini_impurity({'foo': 1}) def test_input_wrong_shape(self): with self.assertRaises(ValueError): gini_impurity(
np.array([[1, 0], [1, 0]])
numpy.array
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Dict, Any import soundfile as sf import librosa import numpy as np import argparse import yaml import json import jsonlines import concurrent.futures from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from pathlib import Path import tqdm from operator import itemgetter from praatio import tgio import logging from config import get_cfg_default def logmelfilterbank(audio, sr, n_fft=1024, hop_length=256, win_length=None, window="hann", n_mels=80, fmin=None, fmax=None, eps=1e-10): """Compute log-Mel filterbank feature. Parameters ---------- audio : ndarray Audio signal (T,). sr : int Sampling rate. n_fft : int FFT size. (Default value = 1024) hop_length : int Hop size. (Default value = 256) win_length : int Window length. If set to None, it will be the same as fft_size. (Default value = None) window : str Window function type. (Default value = "hann") n_mels : int Number of mel basis. (Default value = 80) fmin : int Minimum frequency in mel basis calculation. (Default value = None) fmax : int Maximum frequency in mel basis calculation. (Default value = None) eps : float Epsilon value to avoid inf in log calculation. (Default value = 1e-10) Returns ------- np.ndarray Log Mel filterbank feature (#frames, num_mels). """ # get amplitude spectrogram x_stft = librosa.stft( audio, n_fft=n_fft, hop_length=hop_length, win_length=win_length, window=window, pad_mode="reflect") spc = np.abs(x_stft) # (#bins, #frames,) # get mel basis fmin = 0 if fmin is None else fmin fmax = sr / 2 if fmax is None else fmax mel_basis = librosa.filters.mel(sr, n_fft, n_mels, fmin, fmax) return np.log10(np.maximum(eps,
np.dot(mel_basis, spc)
numpy.dot
# Copyright 2018 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for LSTM layer.""" # pylint: disable=g-direct-tensorflow-import import copy import os import shutil from absl.testing import parameterized import keras from keras.layers.rnn import gru_lstm_utils from keras.testing_infra import test_combinations from keras.testing_infra import test_utils from keras.utils import np_utils import numpy as np import tensorflow.compat.v2 as tf from tensorflow.core.protobuf import rewriter_config_pb2 from tensorflow.python.framework import test_util as tf_test_util # Global config for grappler setting that is used for graph mode test. _rewrites = rewriter_config_pb2.RewriterConfig() _rewrites.implementation_selector = rewriter_config_pb2.RewriterConfig.ON _rewrites.min_graph_nodes = -1 _graph_options = tf.compat.v1.GraphOptions(rewrite_options=_rewrites) _config = tf.compat.v1.ConfigProto(graph_options=_graph_options) @test_combinations.run_all_keras_modes(config=_config) class LSTMGraphRewriteTest(test_combinations.TestCase): input_shape = 10 output_shape = 8 rnn_state_size = 8 timestep = 4 batch = 100 epoch = 1 @parameterized.named_parameters( ('non_tan_activation', 'relu', 'sigmoid', 0, False, True), ('non_sigmoid_recur_activation', 'tanh', 'relu', 0, False, True), ('use_recurrent_dropout', 'tanh', 'sigmoid', 0.1, False, True), ('unroll', 'tanh', 'sigmoid', 0, True, True), ('not_use_bias', 'tanh', 'sigmoid', 0, False, False), ) @test_utils.run_v2_only def test_could_use_defun_backend(self, activation, recurrent_activation, recurrent_dropout, unroll, use_bias): layer = keras.layers.LSTM( 1, activation=activation, recurrent_activation=recurrent_activation, recurrent_dropout=recurrent_dropout, unroll=unroll, use_bias=use_bias) self.assertFalse(layer._could_use_gpu_kernel) @test_utils.run_v2_only def test_use_on_default_activation_with_gpu_kernel(self): layer = keras.layers.LSTM(1, activation=tf.tanh) self.assertTrue(layer._could_use_gpu_kernel) layer = keras.layers.LSTM(1, recurrent_activation=tf.sigmoid) self.assertTrue(layer._could_use_gpu_kernel) def test_static_shape_inference_LSTM(self): # Github issue: 15165 timesteps = 3 embedding_dim = 4 units = 2 model = keras.models.Sequential() inputs = keras.layers.Dense( embedding_dim, input_shape=(timesteps, embedding_dim)) model.add(inputs) layer = keras.layers.LSTM(units, return_sequences=True) model.add(layer) outputs = model.layers[-1].output self.assertEqual(outputs.shape.as_list(), [None, timesteps, units]) def test_dynamic_behavior_LSTM(self): num_samples = 2 timesteps = 3 embedding_dim = 4 units = 2 layer = keras.layers.LSTM(units, input_shape=(None, embedding_dim)) model = keras.models.Sequential() model.add(layer) model.compile(tf.compat.v1.train.GradientDescentOptimizer(0.001), 'mse') x = np.random.random((num_samples, timesteps, embedding_dim)) y = np.random.random((num_samples, units)) model.train_on_batch(x, y) def test_stacking_LSTM(self): inputs = np.random.random((2, 3, 4)) targets = np.abs(np.random.random((2, 3, 5))) targets /= targets.sum(axis=-1, keepdims=True) model = keras.models.Sequential() model.add(keras.layers.LSTM(10, return_sequences=True, unroll=False)) model.add(keras.layers.LSTM(5, return_sequences=True, unroll=False)) model.compile( loss='categorical_crossentropy', optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01)) model.fit(inputs, targets, epochs=1, batch_size=2, verbose=1) def test_from_config_LSTM(self): layer_class = keras.layers.LSTM for stateful in (False, True): l1 = layer_class(units=1, stateful=stateful) l2 = layer_class.from_config(l1.get_config()) assert l1.get_config() == l2.get_config() def test_specify_initial_state_keras_tensor(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 # Test with Keras tensor inputs = keras.Input((timesteps, embedding_dim)) initial_state = [keras.Input((units,)) for _ in range(num_states)] layer = keras.layers.LSTM(units) if len(initial_state) == 1: output = layer(inputs, initial_state=initial_state[0]) else: output = layer(inputs, initial_state=initial_state) self.assertTrue( any(initial_state[0] is t for t in layer._inbound_nodes[0].input_tensors)) model = keras.models.Model([inputs] + initial_state, output) model.compile( loss='categorical_crossentropy', optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01)) inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets = np.random.random((num_samples, units)) model.train_on_batch([inputs] + initial_state, targets) def test_specify_initial_state_non_keras_tensor(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 # Test with non-Keras tensor inputs = keras.Input((timesteps, embedding_dim)) initial_state = [ keras.backend.random_normal_variable((num_samples, units), 0, 1) for _ in range(num_states) ] layer = keras.layers.LSTM(units) output = layer(inputs, initial_state=initial_state) model = keras.models.Model(inputs, output) model.compile( loss='categorical_crossentropy', optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01)) inputs = np.random.random((num_samples, timesteps, embedding_dim)) targets = np.random.random((num_samples, units)) model.train_on_batch(inputs, targets) def test_reset_states_with_values(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 layer = keras.layers.LSTM(units, stateful=True) layer.build((num_samples, timesteps, embedding_dim)) initial_weight_count = len(layer.weights) layer.reset_states() assert len(layer.states) == num_states assert layer.states[0] is not None self.assertAllClose( keras.backend.eval(layer.states[0]), np.zeros(keras.backend.int_shape(layer.states[0])), atol=1e-4) state_shapes = [keras.backend.int_shape(state) for state in layer.states] values = [np.ones(shape) for shape in state_shapes] if len(values) == 1: values = values[0] layer.reset_states(values) self.assertAllClose( keras.backend.eval(layer.states[0]), np.ones(keras.backend.int_shape(layer.states[0])), atol=1e-4) # Test with invalid data with self.assertRaises(ValueError): layer.reset_states([1] * (len(layer.states) + 1)) self.assertEqual(initial_weight_count, len(layer.weights)) # Variables in "states" shouldn't show up in .weights layer.states = tf.nest.map_structure(tf.Variable, values) layer.reset_states() self.assertEqual(initial_weight_count, len(layer.weights)) def test_specify_state_with_masking(self): num_states = 2 timesteps = 3 embedding_dim = 4 units = 3 num_samples = 2 inputs = keras.Input((timesteps, embedding_dim)) _ = keras.layers.Masking()(inputs) initial_state = [keras.Input((units,)) for _ in range(num_states)] output = keras.layers.LSTM(units)( inputs, initial_state=initial_state) model = keras.models.Model([inputs] + initial_state, output) model.compile( loss='categorical_crossentropy', optimizer=tf.compat.v1.train.GradientDescentOptimizer(0.01)) inputs = np.random.random((num_samples, timesteps, embedding_dim)) initial_state = [ np.random.random((num_samples, units)) for _ in range(num_states) ] targets =
np.random.random((num_samples, units))
numpy.random.random
import roslib import sys import rospy import cv2 import math import imutils import statistics import numpy as np from std_msgs.msg import String from sensor_msgs.msg import Image from std_msgs.msg import Float64MultiArray, Float64 from cv_bridge import CvBridge, CvBridgeError from scipy.spatial import distance as dist class image_converter: # Defines publisher and subscriber def __init__(self): # initialize the node named image_processing rospy.init_node('image_processing', anonymous=True) # initialize a publisher to send images from camera1 to a topic named image_topic1 self.image_pub1 = rospy.Publisher("image_topic1", Image, queue_size=1) self.image_pub2 = rospy.Publisher("image_topic2", Image, queue_size=1) #Initialize a publisher to send joints angular posiion toa topic called joints_pos self.joints_pub=rospy.Publisher("joints_pos",Float64MultiArray,queue_size=10) #initialize a publisher for the robot end effector self.vision_end_effector_pub=rospy.Publisher("vision_end_effector",Float64MultiArray,queue_size=10) self.fk_end_effector_pub = rospy.Publisher("fk_end_effector", Float64MultiArray, queue_size=10) self.actual_target_trajectory_pub = rospy.Publisher("actual_target_trajectory", Float64MultiArray,queue_size=10) self.vision_target_trajectory_pub = rospy.Publisher("vision_target_trajectory", Float64MultiArray,queue_size=10) #initialize a publisher for the four angles self.robot_joint1_pub = rospy.Publisher("/robot/joint1_position_controller/command", Float64, queue_size=10) self.robot_joint2_pub = rospy.Publisher("/robot/joint2_position_controller/command", Float64, queue_size=10) self.robot_joint3_pub = rospy.Publisher("/robot/joint3_position_controller/command", Float64, queue_size=10) self.robot_joint4_pub = rospy.Publisher("/robot/joint4_position_controller/command", Float64, queue_size=10) #Initialize the publisher for t target self.target_x_pub = rospy.Publisher("/target/x_position_controller/command", Float64, queue_size=10) self.target_y_pub = rospy.Publisher("/target/y_position_controller/command", Float64, queue_size=10) self.target_z_pub = rospy.Publisher("/target/z_position_controller/command", Float64, queue_size=10) # initialize a subscriber to recieve messages rom a topic named /robot/camera1/image_raw and use callback function to recieve data self.image_sub1 = rospy.Subscriber("/camera1/robot/image_raw", Image, self.callback1) self.image_sub2 = rospy.Subscriber("/camera2/robot/image_raw", Image, self.callback2) #initialize a publisher to send desired trajectory self.time_trajectory = rospy.get_time() #initialize variables self.red = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64') self.green = np.array([0.0, 0.0, 0.0, 0.0], dtype='float64') self.p2m = np.array([0.0], dtype='float64') self.joint1 = np.array([0.0], dtype='float64') self.joint2 = np.array([0.0], dtype='float64') self.joint3 = np.array([0.0], dtype='float64') self.joint4 = np.array([0.0], dtype='float64') # initialize errors self.time_previous_step = np.array([rospy.get_time()], dtype='float64') self.time_previous_step2 = np.array([rospy.get_time()], dtype='float64') # initialize error and derivative of error for trajectory tracking self.error = np.array([0.0, 0.0,0.0], dtype='float64') self.error_d = np.array([0.0, 0.0,0.0], dtype='float64') # initialize the bridge between openCV and ROS self.bridge = CvBridge() # Recieve data from camera 1, process it, and publish def callback1(self, data): # Recieve the image try: self.image1 = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) def callback2(self, data): # Recieve the image try: self.image2 = self.bridge.imgmsg_to_cv2(data, "bgr8") except CvBridgeError as e: print(e) #Blob detection starts here------------------------------------------------------- #Same to 2_1_joint_estimation.py def detect_red(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([0, 200, 0]) higher_red1 = np.array([0, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([0, 200, 0]) higher_red2 = np.array([0, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_blue(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([70, 0, 0]) higher_red1 = np.array([255, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([70, 0, 0]) higher_red2 = np.array([255, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_green(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([55, 0, 0]) higher_red1 = np.array([100, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([55, 0, 0]) higher_red2 = np.array([100, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_yellow(self,image1, image2): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([16, 244, 0]) higher_red1 = np.array([51, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy, cz1 = (int(x1), int(y1)) radius1 = int(radius1) image_gau_blur2 = cv2.GaussianBlur(image2, (1, 1), 0) hsv2 = cv2.cvtColor(image_gau_blur2, cv2.COLOR_BGR2HSV) lower_red2 = np.array([16, 244, 0]) higher_red2 = np.array([51, 255, 255]) red_range2 = cv2.inRange(hsv2, lower_red2, higher_red2) res_red2 = cv2.bitwise_and(image_gau_blur2, image_gau_blur2, mask=red_range2) red_s_gray2 = cv2.cvtColor(res_red2, cv2.COLOR_BGR2GRAY) canny_edge2 = cv2.Canny(red_s_gray2, 30, 70) contours2, hierarchy2 = cv2.findContours(canny_edge2, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x2, y2), radius2 = cv2.minEnclosingCircle(contours2[0]) cx, cz2 = (int(x2), int(y2)) radius2 = int(radius2) return np.array([cx, cy, cz1, cz2]) def detect_blue_contours(image1): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([70, 0, 0]) higher_red1 = np.array([255, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) return np.array([contours1]) def detect_yellow_contours(image1): image_gau_blur1 = cv2.GaussianBlur(image1, (1, 1), 0) hsv1 = cv2.cvtColor(image_gau_blur1, cv2.COLOR_BGR2HSV) lower_red1 = np.array([16, 244, 0]) higher_red1 = np.array([51, 255, 255]) red_range1 = cv2.inRange(hsv1, lower_red1, higher_red1) res_red1 = cv2.bitwise_and(image_gau_blur1, image_gau_blur1, mask=red_range1) red_s_gray1 = cv2.cvtColor(res_red1, cv2.COLOR_BGR2GRAY) canny_edge1 = cv2.Canny(red_s_gray1, 30, 70) contours1, hierarchy1 = cv2.findContours(canny_edge1,cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) (x1, y1), radius1 = cv2.minEnclosingCircle(contours1[0]) cy,cz1 = (int(x1), int(y1)) return np.array([contours1]) def get_y1_y2(yellow_contours, blue_contours): y1 = np.min(yellow_contours, axis = 0) y1 = y1[0][1] y1 = y1[:,1] y2 = np.max(blue_contours, axis = 0) y2 = y2[0][1] y2 = y2[:,1] return y1, y2 def pixelTometer(self, image1,image2): yellow_contours = detect_yellow_contours(image2) blue_contours = detect_blue_contours(image2) y2 = detect_blue(self, image1, image2) y2 = y2[3] y1, y2 = get_y1_y2(yellow_contours, blue_contours) p2m = 2.5/(y1 - y2) #65 is the best number return p2m #---------------------------------------------------------------------------------------------- #Angle Detection starts here #This part is same as 2_1_joint_estimation.py def detect_angles_blob(self,image1,image2): try: p=pixelTometer(self,image1,image2) self.p2m = p except Exception as e: p = self.p2m try: green = detect_green(self, image1, image2) self.green = green except Exception as e: green = self.green try: red = detect_red(self, image1, image2) self.red = red except Exception as e: red = self.red p=pixelTometer(self,image1,image2) yellow=p*detect_yellow(self,image1,image2) blue=p*detect_blue(self,image1,image2) ja1=0.0 ja2=np.pi/2-np.arctan2((blue[2] - green[2]), (blue[1] - green[1])) ja3 = np.arctan2((blue[3] - green[3]), (blue[0] - green[0]))-np.pi/2 ja4 = np.arctan2((green[2] - red[2]), -(green[1] - red[1]))-np.pi/2-ja2 return np.array([ja1,ja2,ja3,ja4]) def angle_trajectory(self): curr_time = np.array([rospy.get_time() - self.time_trajectory]) ja1 = 0.1 ja2 = float((np.pi / 2) * np.sin((np.pi / 15) * curr_time)) ja3 = float((np.pi / 2) * np.sin((np.pi / 18) * curr_time)) ja4 = float((np.pi / 2) * np.sin((np.pi / 20) * curr_time)) return np.array([ja1, ja2, ja3, ja4]) def actual_target_position(self): curr_time = np.array([rospy.get_time() - self.time_trajectory]) x_d = float((2.5 * np.cos(curr_time * np.pi / 15))+0.5) y_d = float(2.5 * np.sin(curr_time * np.pi / 15)) z_d = float((1 * np.sin(curr_time * np.pi / 15))+7.0) return np.array([x_d,y_d,z_d]) #FK starts here-------------------------------------------------------------------------------- #This part is same as 3_1_FK.py def end_effector_position(self, image1, image2): try: p=pixelTometer(self,image1,image2) self.p2m = p except Exception as e: p = self.p2m yellow_posn = detect_yellow(self,image1, image2) red_posn = detect_red(self, image1, image2) yellow_posn[3] = 800 - yellow_posn[3] red_posn[3] = 800 - red_posn[3] cx, cy, cz1, cz2 = p * (red_posn - yellow_posn) ee_posn = np.array([cx, cy, cz2]) ee_posn = np.round(ee_posn,1) return ee_posn #Calculate the jacobian def calculate_jacobian(self,image1,image2): ja1,ja2,ja3,ja4=detect_angles_blob(self,image1,image2) jacobian=np.array([[3*np.cos(ja1)*np.sin(ja2)*np.cos(ja3)*np.cos(ja4) +3.5*np.cos(ja1)*np.sin(ja2)*np.cos(ja3) -3*np.sin(ja1)*np.cos(ja4)*np.sin(ja3) -3.5*np.sin(ja1)*np.sin(ja3) +3*np.cos(ja1)*np.cos(ja2)*np.sin(ja4), 3*np.sin(ja1)*np.cos(ja2)*np.cos(ja3)*np.cos(ja4) +3.5*np.sin(ja1)*np.cos(ja2)*np.cos(ja3) -3*np.sin(ja1)*np.sin(ja2)*np.sin(ja4), -3*np.sin(ja1)*np.sin(ja2)*np.sin(ja3)*np.cos(ja4) -3.5*np.sin(ja1)*np.sin(ja2)*np.sin(ja3) +3*np.cos(ja1)*np.cos(ja4)*np.cos(ja3) +3.5*np.cos(ja1)*np.cos(ja3), -3*np.sin(ja1)*np.sin(ja2)*np.cos(ja3)*np.sin(ja4) -3*np.cos(ja1)*np.sin(ja4)*np.sin(ja3) +3*np.sin(ja1)*np.cos(ja2)*np.cos(ja4) ], [ 3*np.sin(ja1)*np.sin(ja2)*np.cos(ja3)*np.cos(ja4) +3.5*np.sin(ja1)*np.sin(ja2)*np.cos(ja3) +3*np.cos(ja1)*np.cos(ja4)*np.sin(ja3) +3.5*np.cos(ja1)*np.sin(ja3) +3*np.sin(ja1)*np.cos(ja2)*np.sin(ja4), -3*np.cos(ja1)*np.cos(ja2)*np.cos(ja3)*np.cos(ja4) -3.5*np.cos(ja1)*np.cos(ja2)*np.cos(ja3) +3*np.cos(ja1)*np.sin(ja2)*np.sin(ja4), +3*np.cos(ja1)*np.sin(ja2)*np.sin(ja3)*np.cos(ja4) +3.5*np.cos(ja1)*np.sin(ja2)*np.sin(ja3) +3*np.sin(ja1)*np.cos(ja4)*np.cos(ja3) +3.5*np.sin(ja1)*np.cos(ja3), +3*np.cos(ja1)*np.sin(ja2)*np.cos(ja3)*np.sin(ja4) -3*np.sin(ja1)*np.sin(ja4)*np.sin(ja3) -3*np.cos(ja1)*np.cos(ja2)*np.cos(ja4) ], [ 0, -3*np.cos(ja3)*np.cos(ja4)*np.sin(ja2) -3.5*np.cos(ja3)*np.sin(ja2) -3*np.sin(ja4)*np.cos(ja2), -3*np.sin(ja3)*np.cos(ja4)*np.cos(ja2) -3.5*np.sin(ja3)*np.cos(ja2), -3*np.cos(ja3)*np.sin(ja4)*np.cos(ja2) -3*np.cos(ja4)*
np.sin(ja2)
numpy.sin
import matplotlib.pyplot as plt import numpy as np import scipy import scipy.io def feature_normalize(samples): """ Feature-normalize samples :param samples: samples. :return: normalized feature """ means = np.mean(samples,axis=0) X_normalized = samples - means std = np.std(samples,axis=0,ddof=0) X_normalized = X_normalized/std return X_normalized def get_usv(sample_norm): m = sample_norm.shape[0] Sigma = (1/m)*np.matmul(sample_norm.T,sample_norm) U,S,V = scipy.linalg.svd(Sigma) return U,S,V def project_data(samples, U, K): """ Computes the reduced data representation when projecting only on to the top "K" eigenvectors """ # Reduced U is the first "K" columns in U reduced_U = U[:,0:K] reduced_samples = np.matmul(samples,reduced_U) return reduced_samples def recover_data(Z, U, K): recovered_sample =
np.matmul(Z,U[:,0:K].T)
numpy.matmul
import os import numpy as np import random import torch import torch.utils.data as dataf import torch.nn as nn import matplotlib.pyplot as plt from scipy import io from sklearn.decomposition import PCA # setting parameters DataPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/Houston.mat' TRPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TRLabel.mat' TSPath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/Houston/TSLabel.mat' savepath = '/home/hrl/PycharmProjects/untitled/Hyperspectral/Data/FixedTrainSam/W3-DLSection/HU2013/2DCNN-14.mat' patchsize = 16 # input spatial size for 2D-CNN batchsize = 128 # select from [16, 32, 64, 128], the best is 64 EPOCH = 200 LR = 0.001 # load data Data = io.loadmat(DataPath) TrLabel = io.loadmat(TRPath) TsLabel = io.loadmat(TSPath) Data = Data['Houston'] Data = Data.astype(np.float32) TrLabel = TrLabel['TRLabel'] TsLabel = TsLabel['TSLabel'] # without dimensionality reduction pad_width = np.floor(patchsize/2) pad_width = np.int(pad_width) # normalization method 2: map to zero mean and one std [m, n, l] = np.shape(Data) # x2 = np.empty((m+pad_width*2, n+pad_width*2, l), dtype='float32') for i in range(l): mean = np.mean(Data[:, :, i]) std = np.std(Data[:, :, i]) Data[:, :, i] = (Data[:, :, i] - mean)/std # x2[:, :, i] = np.pad(Data[:, :, i], pad_width, 'symmetric') # # extract the first principal component # x = np.reshape(Data, (m*n, l)) # pca = PCA(n_components=0.995, copy=True, whiten=False) # x = pca.fit_transform(x) # _, l = x.shape # x = np.reshape(x, (m, n, l)) # # print x.shape # # plt.figure() # # plt.imshow(x) # # plt.show() x = Data # boundary interpolation temp = x[:,:,0] pad_width = np.floor(patchsize/2) pad_width =
np.int(pad_width)
numpy.int
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. from __future__ import absolute_import import numpy as np import json import os import sys import cv2 import copy import paddlex.utils.logging as logging # fix linspace problem for pycocotools while numpy > 1.17.2 backup_linspace = np.linspace def fixed_linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None, axis=0): num = int(num) return backup_linspace(start, stop, num, endpoint, retstep, dtype, axis) def eval_results(results, metric, coco_gt, with_background=True, resolution=None, is_bbox_normalized=False, map_type='11point'): """Evaluation for evaluation program results""" box_ap_stats = [] coco_gt_data = copy.deepcopy(coco_gt) eval_details = {'gt': copy.deepcopy(coco_gt.dataset)} if metric == 'COCO': np.linspace = fixed_linspace if 'proposal' in results[0]: proposal_eval(results, coco_gt_data) if 'bbox' in results[0]: box_ap_stats, xywh_results = coco_bbox_eval( results, coco_gt_data, with_background, is_bbox_normalized=is_bbox_normalized) if 'mask' in results[0]: mask_ap_stats, segm_results = mask_eval(results, coco_gt_data, resolution) ap_stats = [box_ap_stats, mask_ap_stats] eval_details['bbox'] = xywh_results eval_details['mask'] = segm_results return ap_stats, eval_details np.linspace = backup_linspace else: if 'accum_map' in results[-1]: res = np.mean(results[-1]['accum_map'][0]) logging.debug('mAP: {:.2f}'.format(res * 100.)) box_ap_stats.append(res * 100.) elif 'bbox' in results[0]: box_ap, xywh_results = voc_bbox_eval( results, coco_gt_data, with_background, is_bbox_normalized=is_bbox_normalized, map_type=map_type) box_ap_stats.append(box_ap) eval_details['bbox'] = xywh_results return box_ap_stats, eval_details def proposal_eval(results, coco_gt, outputfile, max_dets=(100, 300, 1000)): assert 'proposal' in results[0] assert outfile.endswith('.json') xywh_results = proposal2out(results) assert len( xywh_results) > 0, "The number of valid proposal detected is zero.\n \ Please use reasonable model and check input data." with open(outfile, 'w') as f: json.dump(xywh_results, f) cocoapi_eval(xywh_results, 'proposal', coco_gt=coco_gt, max_dets=max_dets) # flush coco evaluation result sys.stdout.flush() def coco_bbox_eval(results, coco_gt, with_background=True, is_bbox_normalized=False): assert 'bbox' in results[0] from pycocotools.coco import COCO cat_ids = coco_gt.getCatIds() # when with_background = True, mapping category to classid, like: # background:0, first_class:1, second_class:2, ... clsid2catid = dict( {i + int(with_background): catid for i, catid in enumerate(cat_ids)}) xywh_results = bbox2out( results, clsid2catid, is_bbox_normalized=is_bbox_normalized) results = copy.deepcopy(xywh_results) if len(xywh_results) == 0: logging.warning( "The number of valid bbox detected is zero.\n Please use reasonable model and check input data.\n stop eval!" ) return [0.0], results map_stats = cocoapi_eval(xywh_results, 'bbox', coco_gt=coco_gt) # flush coco evaluation result sys.stdout.flush() return map_stats, results def loadRes(coco_obj, anns): """ Load result file and return a result api object. :param resFile (str) : file name of result file :return: res (obj) : result api object """ from pycocotools.coco import COCO import pycocotools.mask as maskUtils import time res = COCO() res.dataset['images'] = [img for img in coco_obj.dataset['images']] tic = time.time() assert type(anns) == list, 'results in not an array of objects' annsImgIds = [ann['image_id'] for ann in anns] assert set(annsImgIds) == (set(annsImgIds) & set(coco_obj.getImgIds())), \ 'Results do not correspond to current coco set' if 'caption' in anns[0]: imgIds = set([img['id'] for img in res.dataset['images']]) & set( [ann['image_id'] for ann in anns]) res.dataset['images'] = [ img for img in res.dataset['images'] if img['id'] in imgIds ] for id, ann in enumerate(anns): ann['id'] = id + 1 elif 'bbox' in anns[0] and not anns[0]['bbox'] == []: res.dataset['categories'] = copy.deepcopy( coco_obj.dataset['categories']) for id, ann in enumerate(anns): bb = ann['bbox'] x1, x2, y1, y2 = [bb[0], bb[0] + bb[2], bb[1], bb[1] + bb[3]] if not 'segmentation' in ann: ann['segmentation'] = [[x1, y1, x1, y2, x2, y2, x2, y1]] ann['area'] = bb[2] * bb[3] ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'segmentation' in anns[0]: res.dataset['categories'] = copy.deepcopy( coco_obj.dataset['categories']) for id, ann in enumerate(anns): # now only support compressed RLE format as segmentation results ann['area'] = maskUtils.area(ann['segmentation']) if not 'bbox' in ann: ann['bbox'] = maskUtils.toBbox(ann['segmentation']) ann['id'] = id + 1 ann['iscrowd'] = 0 elif 'keypoints' in anns[0]: res.dataset['categories'] = copy.deepcopy( coco_obj.dataset['categories']) for id, ann in enumerate(anns): s = ann['keypoints'] x = s[0::3] y = s[1::3] x0, x1, y0, y1 = np.min(x), np.max(x), np.min(y), np.max(y) ann['area'] = (x1 - x0) * (y1 - y0) ann['id'] = id + 1 ann['bbox'] = [x0, y0, x1 - x0, y1 - y0] res.dataset['annotations'] = anns res.createIndex() return res def mask_eval(results, coco_gt, resolution, thresh_binarize=0.5): assert 'mask' in results[0] from pycocotools.coco import COCO clsid2catid = {i + 1: v for i, v in enumerate(coco_gt.getCatIds())} segm_results = mask2out(results, clsid2catid, resolution, thresh_binarize) results = copy.deepcopy(segm_results) if len(segm_results) == 0: logging.warning( "The number of valid mask detected is zero.\n Please use reasonable model and check input data." ) return None, results map_stats = cocoapi_eval(segm_results, 'segm', coco_gt=coco_gt) return map_stats, results def cocoapi_eval(anns, style, coco_gt=None, anno_file=None, max_dets=(100, 300, 1000)): """ Args: anns: Evaluation result. style: COCOeval style, can be `bbox` , `segm` and `proposal`. coco_gt: Whether to load COCOAPI through anno_file, eg: coco_gt = COCO(anno_file) anno_file: COCO annotations file. max_dets: COCO evaluation maxDets. """ assert coco_gt != None or anno_file != None from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval if coco_gt == None: coco_gt = COCO(anno_file) logging.debug("Start evaluate...") coco_dt = loadRes(coco_gt, anns) if style == 'proposal': coco_eval = COCOeval(coco_gt, coco_dt, 'bbox') coco_eval.params.useCats = 0 coco_eval.params.maxDets = list(max_dets) else: coco_eval = COCOeval(coco_gt, coco_dt, style) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval.stats def proposal2out(results, is_bbox_normalized=False): xywh_res = [] for t in results: bboxes = t['proposal'][0] lengths = t['proposal'][1][0] im_ids = np.array(t['im_id'][0]).flatten() assert len(lengths) == im_ids.size if bboxes.shape == (1, 1) or bboxes is None: continue k = 0 for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i]) for j in range(num): dt = bboxes[k] xmin, ymin, xmax, ymax = dt.tolist() if is_bbox_normalized: xmin, ymin, xmax, ymax = \ clip_bbox([xmin, ymin, xmax, ymax]) w = xmax - xmin h = ymax - ymin else: w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': 1, 'bbox': bbox, 'score': 1.0 } xywh_res.append(coco_res) k += 1 return xywh_res def bbox2out(results, clsid2catid, is_bbox_normalized=False): """ Args: results: request a dict, should include: `bbox`, `im_id`, if is_bbox_normalized=True, also need `im_shape`. clsid2catid: class id to category id map of COCO2017 dataset. is_bbox_normalized: whether or not bbox is normalized. """ xywh_res = [] for t in results: bboxes = t['bbox'][0] lengths = t['bbox'][1][0] im_ids = np.array(t['im_id'][0]).flatten() if bboxes.shape == (1, 1) or bboxes is None: continue k = 0 for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i]) for j in range(num): dt = bboxes[k] clsid, score, xmin, ymin, xmax, ymax = dt.tolist() catid = (clsid2catid[int(clsid)]) if is_bbox_normalized: xmin, ymin, xmax, ymax = \ clip_bbox([xmin, ymin, xmax, ymax]) w = xmax - xmin h = ymax - ymin im_shape = t['im_shape'][0][i].tolist() im_height, im_width = int(im_shape[0]), int(im_shape[1]) xmin *= im_width ymin *= im_height w *= im_width h *= im_height else: w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': catid, 'bbox': bbox, 'score': score } xywh_res.append(coco_res) k += 1 return xywh_res def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5): import pycocotools.mask as mask_util scale = (resolution + 2.0) / resolution segm_res = [] # for each batch for t in results: bboxes = t['bbox'][0] lengths = t['bbox'][1][0] im_ids = np.array(t['im_id'][0]) if bboxes.shape == (1, 1) or bboxes is None: continue if len(bboxes.tolist()) == 0: continue masks = t['mask'][0] s = 0 # for each sample for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i][0]) im_shape = t['im_shape'][0][i] bbox = bboxes[s:s + num][:, 2:] clsid_scores = bboxes[s:s + num][:, 0:2] mask = masks[s:s + num] s += num im_h = int(im_shape[0]) im_w = int(im_shape[1]) expand_bbox = expand_boxes(bbox, scale) expand_bbox = expand_bbox.astype(np.int32) padded_mask = np.zeros((resolution + 2, resolution + 2), dtype=np.float32) for j in range(num): xmin, ymin, xmax, ymax = expand_bbox[j].tolist() clsid, score = clsid_scores[j].tolist() clsid = int(clsid) padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :] catid = clsid2catid[clsid] w = xmax - xmin + 1 h = ymax - ymin + 1 w = np.maximum(w, 1) h = np.maximum(h, 1) resized_mask = cv2.resize(padded_mask, (w, h)) resized_mask = np.array( resized_mask > thresh_binarize, dtype=np.uint8) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) x0 = min(max(xmin, 0), im_w) x1 = min(max(xmax + 1, 0), im_w) y0 = min(max(ymin, 0), im_h) y1 = min(max(ymax + 1, 0), im_h) im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), ( x0 - xmin):(x1 - xmin)] segm = mask_util.encode( np.array(im_mask[:, :, np.newaxis], order='F'))[0] catid = clsid2catid[clsid] segm['counts'] = segm['counts'].decode('utf8') coco_res = { 'image_id': im_id, 'category_id': catid, 'segmentation': segm, 'score': score } segm_res.append(coco_res) return segm_res def expand_boxes(boxes, scale): """ Expand an array of boxes by a given scale. """ w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def voc_bbox_eval(results, coco_gt, with_background=False, overlap_thresh=0.5, map_type='11point', is_bbox_normalized=False, evaluate_difficult=False): """ Bounding box evaluation for VOC dataset Args: results (list): prediction bounding box results. class_num (int): evaluation class number. overlap_thresh (float): the postive threshold of bbox overlap map_type (string): method for mAP calcualtion, can only be '11point' or 'integral' is_bbox_normalized (bool): whether bbox is normalized to range [0, 1]. evaluate_difficult (bool): whether to evaluate difficult gt bbox. """ assert 'bbox' in results[0] logging.debug("Start evaluate...") from pycocotools.coco import COCO cat_ids = coco_gt.getCatIds() # when with_background = True, mapping category to classid, like: # background:0, first_class:1, second_class:2, ... clsid2catid = dict( {i + int(with_background): catid for i, catid in enumerate(cat_ids)}) class_num = len(clsid2catid) + int(with_background) detection_map = DetectionMAP( class_num=class_num, overlap_thresh=overlap_thresh, map_type=map_type, is_bbox_normalized=is_bbox_normalized, evaluate_difficult=evaluate_difficult) xywh_res = [] det_nums = 0 gt_nums = 0 for t in results: bboxes = t['bbox'][0] bbox_lengths = t['bbox'][1][0] im_ids = np.array(t['im_id'][0]).flatten() if bboxes.shape == (1, 1) or bboxes is None: continue gt_boxes = t['gt_box'][0] gt_labels = t['gt_label'][0] difficults = t['is_difficult'][0] if not evaluate_difficult \ else None if len(t['gt_box'][1]) == 0: # gt_box, gt_label, difficult read as zero padded Tensor bbox_idx = 0 for i in range(len(gt_boxes)): gt_box = gt_boxes[i] gt_label = gt_labels[i] difficult = None if difficults is None \ else difficults[i] bbox_num = bbox_lengths[i] bbox = bboxes[bbox_idx:bbox_idx + bbox_num] gt_box, gt_label, difficult = prune_zero_padding( gt_box, gt_label, difficult) detection_map.update(bbox, gt_box, gt_label, difficult) bbox_idx += bbox_num det_nums += bbox_num gt_nums += gt_box.shape[0] im_id = int(im_ids[i]) for b in bbox: clsid, score, xmin, ymin, xmax, ymax = b.tolist() w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': clsid2catid[clsid], 'bbox': bbox, 'score': score } xywh_res.append(coco_res) else: # gt_box, gt_label, difficult read as LoDTensor gt_box_lengths = t['gt_box'][1][0] bbox_idx = 0 gt_box_idx = 0 for i in range(len(bbox_lengths)): bbox_num = bbox_lengths[i] gt_box_num = gt_box_lengths[i] bbox = bboxes[bbox_idx:bbox_idx + bbox_num] gt_box = gt_boxes[gt_box_idx:gt_box_idx + gt_box_num] gt_label = gt_labels[gt_box_idx:gt_box_idx + gt_box_num] difficult = None if difficults is None else \ difficults[gt_box_idx: gt_box_idx + gt_box_num] detection_map.update(bbox, gt_box, gt_label, difficult) bbox_idx += bbox_num gt_box_idx += gt_box_num im_id = int(im_ids[i]) for b in bbox: clsid, score, xmin, ymin, xmax, ymax = b.tolist() w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': clsid2catid[clsid], 'bbox': bbox, 'score': score } xywh_res.append(coco_res) logging.debug("Accumulating evaluatation results...") detection_map.accumulate() map_stat = 100. * detection_map.get_map() logging.debug("mAP({:.2f}, {}) = {:.2f}".format(overlap_thresh, map_type, map_stat)) return map_stat, xywh_res def prune_zero_padding(gt_box, gt_label, difficult=None): valid_cnt = 0 for i in range(len(gt_box)): if gt_box[i, 0] == 0 and gt_box[i, 1] == 0 and \ gt_box[i, 2] == 0 and gt_box[i, 3] == 0: break valid_cnt += 1 return (gt_box[:valid_cnt], gt_label[:valid_cnt], difficult[:valid_cnt] if difficult is not None else None) def bbox_area(bbox, is_bbox_normalized): """ Calculate area of a bounding box """ norm = 1. - float(is_bbox_normalized) width = bbox[2] - bbox[0] + norm height = bbox[3] - bbox[1] + norm return width * height def jaccard_overlap(pred, gt, is_bbox_normalized=False): """ Calculate jaccard overlap ratio between two bounding box """ if pred[0] >= gt[2] or pred[2] <= gt[0] or \ pred[1] >= gt[3] or pred[3] <= gt[1]: return 0. inter_xmin = max(pred[0], gt[0]) inter_ymin = max(pred[1], gt[1]) inter_xmax = min(pred[2], gt[2]) inter_ymax = min(pred[3], gt[3]) inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax], is_bbox_normalized) pred_size = bbox_area(pred, is_bbox_normalized) gt_size = bbox_area(gt, is_bbox_normalized) overlap = float(inter_size) / (pred_size + gt_size - inter_size) return overlap class DetectionMAP(object): """ Calculate detection mean average precision. Currently support two types: 11point and integral Args: class_num (int): the class number. overlap_thresh (float): The threshold of overlap ratio between prediction bounding box and ground truth bounding box for deciding true/false positive. Default 0.5. map_type (str): calculation method of mean average precision, currently support '11point' and 'integral'. Default '11point'. is_bbox_normalized (bool): whther bounding boxes is normalized to range[0, 1]. Default False. evaluate_difficult (bool): whether to evaluate difficult bounding boxes. Default False. """ def __init__(self, class_num, overlap_thresh=0.5, map_type='11point', is_bbox_normalized=False, evaluate_difficult=False): self.class_num = class_num self.overlap_thresh = overlap_thresh assert map_type in ['11point', 'integral'], \ "map_type currently only support '11point' "\ "and 'integral'" self.map_type = map_type self.is_bbox_normalized = is_bbox_normalized self.evaluate_difficult = evaluate_difficult self.reset() def update(self, bbox, gt_box, gt_label, difficult=None): """ Update metric statics from given prediction and ground truth infomations. """ if difficult is None: difficult = np.zeros_like(gt_label) # record class gt count for gtl, diff in zip(gt_label, difficult): if self.evaluate_difficult or int(diff) == 0: self.class_gt_counts[int(
np.array(gtl)
numpy.array