prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
import gym import numpy as np from gym import spaces from gym.utils import seeding class WizardsEnv(gym.Env): metadata = {'render.modes': ['human']} def __init__(self, suits=4, max_card=13, players=4, seed=None): self.suits = suits self.max_card = max_card self.players = players self.cards_per_player = (suits * max_card) // players # self.action_space = spaces.Discrete(self.cards_per_player) self.action_space = spaces.Box(low=0.0, high=1.0, shape=[self.cards_per_player], dtype=np.float32) self.unflattened_observation_space = spaces.Tuple(( spaces.MultiDiscrete([max_card + 1, suits + 1] * self.cards_per_player), # cards in hand spaces.MultiDiscrete([max_card + 1, suits + 1] * players), # cards played this turn spaces.MultiDiscrete([self.cards_per_player + 1] * players) # scores )) self.observation_space = spaces.Box(low=-float('inf'), high=float('inf'), shape=(spaces.flatdim(self.unflattened_observation_space), ), dtype=np.float32) self.seed(seed) self.reset() def seed(self, seed): self.np_random, seed = seeding.np_random(seed) return [seed] def step(self, action): assert self.action_space.contains(action) # play the card the agent has chosen card_id = action.argmax() chosen_card = np.array(self.hands[0][card_id]) if chosen_card[0] == 0: return self._lost("played card that was played before") self.hands[0][card_id] = [0, 0] self.played_cards[0] = chosen_card # check whether the correct suit was played played_suits = [card[1] for card in self.played_cards[1:] if not card[1] == 0] if len(played_suits) > 0: called_suite = played_suits[0] if not chosen_card[1] == called_suite and len([card for card in self.hands[0] if card[1] == called_suite]) > 0: return self._lost("did not play suite called for") else: called_suite = chosen_card[1] # play cards by other agents until the round is finished for i in range(1, self.players): if not self.played_cards[i][0] == 0: continue self._play_card(i, called_suite) # determin winner of the round and distribute scores winner = max(range(self.players), key=lambda player: self.played_cards[player][0] + (1 if self.played_cards[player][1] == called_suite else 0) * self.max_card) self.scores[winner] += 1 self.played_cards = [[0, 0]] * self.players called_suite = -1 # set up return values reward = self.scores[0] done = max([card[0] for card in self.hands[0]]) == 0 info = {} # simulate beginning of next round until the agent has to take an action if not done and not winner == 0: for i in range(max(1, winner), self.players): called_suite = self._play_card(i, called_suite) return self._get_observations(), reward, done, info def _lost(self, reason): return self._get_observations(), -1000 + 10*sum(self.scores) + self.scores[0], True, {"reason": reason} def reset(self): deck = [[i, suit] for i in range(1, self.max_card + 1) for suit in range(1, self.suits + 1)] shuffled_deck = self.np_random.permutation(deck) self.hands = shuffled_deck[:self.players * self.cards_per_player].reshape(self.players, -1, 2) self.scores = [0] * self.players self.played_cards = [[0, 0]] * self.players return self._get_observations() def render(self, mode='human'): print("scores: {}".format(self.scores)) print("hands: {}".format(self.hands)) print("played cards: {}".format(self.played_cards)) def close(self): pass def _play_card(self, player, called_suite): # play cards left to right for now legal_cards = [i for i in range(self.cards_per_player) if self.hands[player][i][1] == called_suite] if len(legal_cards) == 0: legal_cards = [i for i in range(self.cards_per_player) if not self.hands[player][i][0] == 0] card_idx = min(legal_cards) self.played_cards[player] =
np.array(self.hands[player][card_idx])
numpy.array
"""Spike sorting classes and window""" from __future__ import division from __future__ import print_function __authors__ = ['<NAME>', '<NAME>'] import os import sys import time import datetime from copy import copy import operator import random import shutil import hashlib import multiprocessing as mp from PyQt4 import QtCore, QtGui from PyQt4.QtCore import Qt from PyQt4.QtGui import QAction, QIcon, QApplication import numpy as np import scipy import scipy.signal #from scipy.cluster.hierarchy import fclusterdata import pylab as pl import pyximport pyximport.install(build_in_temp=False, inplace=True) from . import util # .pyx file from . import core from .core import (WaveForm, Gaussian, MAXLONGLONG, R, toiter, intround, printflush, lstrip, rstrip, lrstrip, pad, td2days, SpykeToolWindow, NList, NSList, dist, USList, ClusterChange, SpikeSelectionSlider, lrrep2Darrstripis, rollwin2D) from .detect import DEBUG from .surf import EPOCH from .plot import SpikeSortPanel, CLUSTERCOLOURDICT, WHITE from .__version__ import __version__ #MAXCHANTOLERANCE = 100 # um NSLISTWIDTH = 70 # minimize nslist width, enough for 7 digit spike IDs PANELWIDTHPERCOLUMN = 120 # sort panel width per column of channels PANELHEIGHTPERROW = 50 # sort panel height per row of channels VSCROLLBARWIDTH = 14 # hack SORTWINDOWHEIGHT = 1035 # TODO: this should be set programmatically MINSORTWINDOWWIDTH = 566 MEANWAVEMAXSAMPLES = 2000 NPCSPERCHAN = 7 PCALIB = 'mdp' ICALIB = 'sklearn' DEFMINISI = 50 # default minimum ISI to check for on export, us MAXGROUPISI = 100000 # us (100 ms) MAXGROUPDT = 100000000 # us (100 s) class Sort(object): """A spike sorting session, in which you can detect spikes and sort them into Neurons. A .sort file is a single Python2-pickled Sort object. A .json file is a jsonpickle-pickled Sort object""" def __init__(self, detector=None, stream=None, tw=None): self.__version__ = __version__ self.fname = '' self.user = '' self.notes = '' self.detector = detector # this Sort's current Detector object self.tw = tw # time window (us) relative to spike time self.stream = stream self.probe = stream.probe # only one probe design per sort allowed self.converter = stream.converter self.neurons = {} self.clusters = {} # neurons with multidm params scaled for plotting self.norder = [] # stores order of neuron ids display in nlist self.npcsperchan = NPCSPERCHAN def get_nextnid(self): """nextnid is used to retrieve the next unique single unit ID""" nids = list(self.neurons) if len(nids) == 0: return 1 # single unit nids start at 1 else: return max(max(nids) + 1, 1) # at least 1 nextnid = property(get_nextnid) def get_nextmuid(self): """nextmuid is used to retrieve the next unique multiunit ID""" nids = list(self.neurons) if len(nids) == 0: return -1 # multiunit ids start at -1 else: return min(min(nids) - 1, -1) # at most -1 nextmuid = property(get_nextmuid) def get_good(self): """Return array of nids marked by user as 'good'""" good = [] for neuron in self.neurons.values(): try: if neuron.good: good.append(neuron.id) except AttributeError: # neuron is from older sort, no .good attrib neuron.good = False return np.asarray(good) def set_good(self, good): """Set good flag to True for nids in good, False otherwise""" nids = list(self.neurons) assert np.all([ nid in nids for nid in good ]) # make sure all nids in good exist notgood = np.setdiff1d(nids, good) for nid in notgood: neuron = self.neurons[nid] neuron.good = False for nid in good: neuron = self.neurons[nid] neuron.good = True good = property(get_good, set_good) def get_stream(self): try: return self._stream except AttributeError: # this is likely a brand new sort, has yet to be assigned a Stream return None def set_stream(self, stream=None): """Check stream type and name and probe type, and restore filtmeth, car, sampfreq and shcorrect to stream when binding/modifying stream to self""" oldstream = self.stream if stream != None and oldstream != None: # do stream types match? if type(stream) != type(oldstream): raise ValueError("Stream types don't match: %s, %s" % (type(oldstream), type(stream))) # do stream probe types match? if type(stream.probe) != type(oldstream.probe): raise ValueError("Stream probe types don't match: %s, %s" % (type(oldstream.probe), type(stream.probe))) # is one stream fname a superset of the other? if (stream.fname not in oldstream.fname) and (oldstream.fname not in stream.fname): raise ValueError("Stream file names are not supersets of each other: %s, %s" % (oldstream.fname, stream.fname)) else: print('Stream file names are similar enough to proceed: %s, %s' % (stream.fname, oldstream.fname)) try: stream.filtmeth = self.filtmeth stream.car = self.car stream.sampfreq = self.sampfreq stream.shcorrect = self.shcorrect except AttributeError: pass # one of the above aren't bound self._stream = stream # set it print('Bound stream %r to sort %r' % (stream.fname, self.fname)) # now that tres is known, calculate window timepoints wrt spike time: self.calc_twts_twi() stream = property(get_stream, set_stream) def calc_twts_twi(self): """Calculate temporal window timepoints wrt spike time, and the indices of these timepoints wrt spike time""" tres = self.tres tw = self.tw twts = np.arange(tw[0], tw[1], tres) twts += twts[0] % tres # get rid of mod, so twts go through zero self.twts = twts self.twi = intround(twts[0] / tres), intround(twts[-1] / tres) #info('twi = %s' % (self.twi,)) def update_tw(self, tw): """Update tw and everything that depends on it. Note that this shouldn't be called directly by the user. Call SpykeWindow.update_spiketw() instead""" oldtw = self.tw self.tw = tw self.calc_twts_twi() dtw = np.asarray(tw) - np.asarray(oldtw) # new minus old self.spikes['t0'] += dtw[0] self.spikes['t1'] += dtw[1] self.spikes['tis'] = self.spikes['tis'] - intround(dtw[0] / self.tres) # recalculate any existing templates: for neuron in self.neurons.values(): if neuron.wave.data != None: neuron.update_wave() print('WARNING: all spike waveforms need to be reloaded!') def get_tres(self): return self.stream.tres tres = property(get_tres) def __getstate__(self): """Get object state for pickling""" # copy it cuz we'll be making changes, this is fast because it's just a shallow copy d = self.__dict__.copy() # Spikes and wavedata arrays are (potentially) saved separately. # usids and PCs/ICs can be regenerated from the spikes array. for attr in ['spikes', 'wavedata', 'usids', 'X', 'Xhash']: # keep _stream during normal pickling for multiprocessing, but remove it # manually when pickling to sort file try: del d[attr] except KeyError: pass return d def get_nspikes(self): try: return len(self.spikes) except AttributeError: return 0 nspikes = property(get_nspikes) def update_usids(self): """Update usids, which is an array of indices of unsorted spikes""" nids = self.spikes['nid'] self.usids, = np.where(nids == 0) # 0 means unclustered def get_spikes_sortedby(self, attr='id'): """Return array of all spikes, sorted by attribute 'attr'""" vals = self.spikes[attr] spikes = self.spikes[vals.argsort()] return spikes def get_wave(self, sid): """Return WaveForm corresponding to spike sid""" spikes = self.spikes nchans = spikes['nchans'][sid] chans = spikes['chans'][sid, :nchans] t0 = spikes['t0'][sid] t1 = spikes['t1'][sid] wavedata = self.wavedata[sid, 0:nchans] ts = np.arange(t0, t1, self.tres) # build them up return WaveForm(data=wavedata, ts=ts, chans=chans, tres=self.tres) def get_maxchan_wavedata(self, sid=None, nid=None): """Return wavedata of maxchan of spike sid or neuron nid""" if sid != None: assert nid == None chani = self.spikes['chani'][sid] return self.wavedata[sid, chani] elif nid != None: assert sid == None neuron = self.neurons[nid] chani, = np.where(neuron.chans == neuron.chan) assert len(chani) == 1 chani = chani[0] # pull out of length 1 array return neuron.wave.data[chani] def get_mean_wave(self, sids, nid=None): """Return the mean and std waveform of spike waveforms in sids""" spikes = self.spikes nsids = len(sids) if nsids > MEANWAVEMAXSAMPLES: step = nsids // MEANWAVEMAXSAMPLES + 1 s = ("get_mean_wave() sampling every %d spikes instead of all %d" % (step, nsids)) if nid != None: s = "neuron %d: " % nid + s print(s) sids = sids[::step] nsids = len(sids) # update chanss = spikes['chans'][sids] nchanss = spikes['nchans'][sids] chanslist = [ chans[:nchans] for chans, nchans in zip(chanss, nchanss) ] # list of arrays chanpopulation = np.concatenate(chanslist) groupchans = np.unique(chanpopulation) # comes out sorted wavedata = self.wavedata[sids] if wavedata.ndim == 2: # should be 3, get only 2 if nsids == 1 wavedata.shape = 1, wavedata.shape[0], wavedata.shape[1] # give it a singleton 3rd dim nt = wavedata.shape[-1] maxnchans = len(groupchans) data = np.zeros((maxnchans, nt)) # all spikes have same nt, but not necessarily same nchans, keep track of # how many spikes contributed to each of the group's chans nspikes = np.zeros((maxnchans, 1), dtype=int) for chans, wd in zip(chanslist, wavedata): chanis = groupchans.searchsorted(chans) # each spike's chans is a subset of groupchans data[chanis] += wd[:len(chans)] # accumulate nspikes[chanis] += 1 # inc spike count for this spike's chans #t0 = time.time() data /= nspikes # normalize all data points appropriately, this is now the mean var = np.zeros((maxnchans, nt)) for chans, wd in zip(chanslist, wavedata): chanis = groupchans.searchsorted(chans) # each spike's chans is a subset of groupchans var[chanis] += (wd[:len(chans)] - data[chanis]) ** 2 # accumulate 2nd moment var /= nspikes # normalize all data points appropriately, this is now the variance std = np.sqrt(var) # keep only those chans that at least 1/2 the spikes contributed to bins = list(groupchans) + [np.inf] # concatenate rightmost bin edge hist, bins = np.histogram(chanpopulation, bins=bins) chans = groupchans[hist >= nsids/2] chanis = groupchans.searchsorted(chans) data = data[chanis] std = std[chanis] return WaveForm(data=data, std=std, chans=chans) def check_ISIs(self, nids='good'): """Check that interspike intervals of spikes in each nid never fall below DEFMINISI""" print('Checking inter-spike intervals') if nids == 'good': nids = self.good elif nids == 'all': nids = sorted(self.neurons) for nid in nids: neuron = self.neurons[nid] spikets = self.spikes['t'][neuron.sids] # should be a sorted copy assert spikets.flags['OWNDATA'] # safe to modify in place spikets.sort() # just in case it isn't perfectly sorted ndupl = (np.diff(spikets) < DEFMINISI).sum() if ndupl > 0: msg = ('n%d has %d duplicate spikes (given DEFMINISI=%d us).\n' 'Remove duplicate spikes with the ISI tool in the Verify tab' % (nid, ndupl, DEFMINISI)) raise RuntimeError(msg) def check_wavealign(self, nids='good', maxdti=1): """Check that each neurons's primary peak on the max chan is no more than +/- maxdti timepoints away from the t=0 alignment timepoint""" print('Checking neuron mean waveform alignment') if nids == 'good': nids = self.good elif nids == 'all': nids = sorted(self.neurons) nt = self.twi[1] - self.twi[0] + 1 # expected number of points of each chan's wavedata for nid in nids: neuron = self.neurons[nid] wd = self.get_maxchan_wavedata(nid=nid) assert len(wd) == nt # find biggest positive and negative peaks, check which comes first, ensure # the primary peak is within maxdti of t=0 alignment timepoint: ppeakis, _ = scipy.signal.find_peaks(wd) # positive peak indices npeakis, _ = scipy.signal.find_peaks(-wd) # negative peak indices pmaxi = ppeakis[wd[ppeakis].argmax()] # max positive peak index nmaxi = npeakis[wd[npeakis].argmin()] # max negative peak index if nmaxi < pmaxi: # usual case: -ve then +ve peak peak1i = nmaxi else: # less common: +ve then -ve peak, make sure +ve peak is worthy of alignment pmax, nmax = wd[pmaxi], wd[nmaxi] if pmax > abs(nmax): # +ve peak is bigger than -ve peak, align to +ve peak peak1i = pmaxi else: peak1i = nmaxi # default to -ve peak alignti = 0 - self.twi[0] # +ve dti = peak1i - alignti #print("n%d: dti=%d" % (nid, dti)) if abs(dti) > maxdti: peak1uV = self.converter.AD2uV(wd[peak1i]) peak1us = intround(self.tres*(peak1i-alignti)) msg = ('Primary peak (%+d uV @ t=%d us) of n%d is %+d timepoints away from ' 'the t=0 us alignment point. Shift it closer and try again' % (peak1uV, peak1us, nid, dti)) raise RuntimeError(msg) def check_wavepadding(self, nids='good', npad=2): """Check if any spikes are edge padded, presumably due to being shifted but not reloaded. For robustness, check for consistent signs of padding across all channels. An edge is considered padded if it does not change over npad datapoints""" print('Checking spike waveform padding') assert npad >= 2 # need at least 2 points to do a diff if nids == 'good': nids = self.good elif nids == 'all': nids = sorted(self.neurons) for nid in nids: neuron = self.neurons[nid] for sid in neuron.sids: wd = self.wavedata[sid] # multichannel waveform data # are left and right edges of wavedata identical for npad number of points? l, r = wd[:, :npad], wd[:, -npad:] # shape (nchans, npad) leftpadded = (np.diff(l, axis=1) == 0).all() rightpadded = (np.diff(r, axis=1) == 0).all() # handle case where spike is right after or right before a 0-padded # region of data due to gaps between experiments: if leftpadded: if (wd[:, 0] == 0).all(): leftpadded = False if rightpadded: if (wd[:, -1] == 0).all(): rightpadded = False if leftpadded or rightpadded: msg = ('n%d has s%d that looks like it has been padded.\n' 'leftpadded, rightpadded = %r, %r\n' 'Reload s%d or n%d or all spikes and try again' % (nid, sid, leftpadded, rightpadded, sid, nid)) raise RuntimeError(msg) def check_contiguous_nids(self): """Check that neuron IDs are contiguous (no gaps)""" print('Checking that neuron IDs are contiguous') nids = np.array(list(self.neurons)) nids = nids[nids > 0] # only consider +ve nids nids.sort() if (np.diff(nids) != 1).any(): raise RuntimeError('Neuron IDs are not contiguous, renumber all and try again') def exportptcsfiles(self, basepath, sortpath, user='', notes=''): """Export spike data to binary .ptcs files under basepath, one file per recording""" # First check to make sure various things are OK before exporting: self.check_ISIs() self.check_wavealign() self.check_wavepadding() self.check_contiguous_nids() spikes = self.spikes exportdt = str(datetime.datetime.now()) # get an export datetime stamp exportdt = exportdt.split('.')[0] # ditch the us if self.stream.is_multi(): # self.stream is a MultiStream streams = self.stream.streams else: # self.stream is a single Stream streams = [self.stream] print('Exporting "good" clusters to:') # do a separate export for each recording: # absolute start and stop times of all streams, rounded to nearest raw timepoint: tranges = self.stream.tranges t0 = tranges[0, 0] # absolute start time of first stream for stream, trange in zip(streams, tranges): abst0 = trange[0] # absolute start time of this stream relative to t0 # time delta between this stream and first stream, to nearest raw timepoint, us: dt = abst0 - t0 dt = intround(dt) # to nearest int us self.exportptcsfile(stream, basepath, dt, exportdt, sortpath, user=user, notes=notes) def exportptcsfile(self, stream, basepath, dt, exportdt, sortpath, user='', notes=''): """Export spike data of all "good" spikes to binary .ptcs file in basepath. Constrain to spikes in stream, and undo any time delta in spike times. dt is the integer time difference between start of stream and start of first stream in the track, rounded to the nearest us (spike times are stored as int64 us in .ptcs)""" # build up list of PTCSNeuronRecords that have spikes in this stream, # and tally their spikes nsamplebytes = 4 # float32 nrecs = [] nspikes = 0 # only export neurons marked as "good", could be single or multi unit: for nid in sorted(self.good): neuron = self.neurons[nid] spikets = self.spikes['t'][neuron.sids] # should be a sorted copy assert spikets.flags['OWNDATA'] # safe to modify in place spikets.sort() # just in case it isn't perfectly sorted spikets -= dt # export spike times relative to t=0 of this recording # only include spikes that occurred during this recording lo, hi = spikets.searchsorted([stream.t0, stream.t1]) spikets = spikets[lo:hi] if len(spikets) == 0: continue # don't save empty neurons nrec = PTCSNeuronRecord(neuron, spikets, nsamplebytes, descr='') nrecs.append(nrec) nspikes += len(spikets) nneurons = len(nrecs) # create the header and write everything to file: path = os.path.join(basepath, stream.srcfnameroot) try: os.mkdir(path) except OSError: pass # path already exists? fname = stream.srcfnameroot + '.ptcs' fullfname = os.path.join(path, fname) header = PTCSHeader(self, sortpath, stream, nneurons, nspikes, nsamplebytes, fullfname, exportdt, user=user, notes=notes) with open(fullfname, 'wb') as f: header.write(f) for nrec in nrecs: nrec.write(f) print(fullfname) def exportcsv(self, fname): """Export all "good" spikes to a .csv file with time (s), nid, and maxchan as the columns""" sids = [] #chans = [] for nid in sorted(self.good): neuron = self.neurons[nid] sids.append(neuron.sids) # the alternative is to export each spike's unit's channel: #chans.append(np.tile(neuron.chan, neuron.nspikes)) sids = np.hstack(sids) spikes = self.spikes[sids] tsecs = spikes['t'] / 1e6 # convert from us to s nids = spikes['nid'] chans = spikes['chan'] #chans = np.hstack(chans) data = np.column_stack([tsecs, nids, chans]) print('Exporting (tsec, nid, chan) of all spikes marked as "good" to %s' % fname) np.savetxt(fname, data, fmt='%.6f, %d, %d') def exporttschid(self, basepath): """Export int64 (timestamp, channel, neuron id) 3 tuples to binary file""" raise NotImplementedError('Needs to be redone to work with multiple streams') spikes = self.spikes[self.spikes['nid'] > 0] # don't export unsorted/multiunit spikes dt = str(datetime.datetime.now()) # get an export timestamp dt = dt.split('.')[0] # ditch the us dt = dt.replace(' ', '_') dt = dt.replace(':', '.') srffnameroot = srffnameroot.replace(' ', '_') tschidfname = dt + '_' + srffnameroot + '.tschid' tschid = np.empty((len(spikes), 3), dtype=np.int64) tschid[:, 0] = spikes['t'] tschid[:, 1] = spikes['chan'] tschid[:, 2] = spikes['nid'] tschid.tofile(os.path.join(path, tschidfname)) # save it print(tschidfname) def exportdin(self, basepath): """Export stimulus din(s) to binary .din file(s) in basepath""" if self.stream.is_multi(): # self.stream is a MultiStream streams = self.stream.streams else: # self.stream is a single Stream streams = [self.stream] dinfiledtype=[('TimeStamp', '<i8'), ('SVal', '<i8')] # pairs of int64s print('Exporting DIN(s) to:') for stream in streams: try: # neither of these attribs should exist for recordings with no stimuli: svrecs = stream.srff.digitalsvalrecords dsprecs = stream.srff.displayrecords except AttributeError: continue # no din to export for this stream if len(svrecs) == 0 or stream.srff.ndigitalsvalrecords == 0: raise ValueError("digitalsvalrecords are empty for stream %r. Attribute " "shouldn't exist" % stream.fname) path = os.path.join(basepath, stream.srcfnameroot) try: os.mkdir(path) except OSError: pass # path already exists? # upcast SVal field from uint16 to int64, creates a copy, # but it's not too expensive: svrecs = svrecs.astype(dinfiledtype) # convert to normal n x 2 int64 array svrecs = svrecs.view(np.int64).reshape(-1, 2) # Some old recordings (<= ptc15) contain multiple experiments. # To deal with this, iterate over stream.srff.displayrecords, export one .din # per displayrecord. Append experiment ID to each .din filename, if necessary. svrects = svrecs[:, 0] dsprects = [ dsprec.TimeStamp for dsprec in dsprecs ] svalrecis = svrects.searchsorted(dsprects) assert svalrecis[0] == 0 svalrecis = svalrecis[1:] # exclude the trivial 0 index # split sval records according to displayrecord timestamps: dins = np.split(svrecs, svalrecis) assert len(dins) == len(dsprecs) for eid, din in enumerate(dins): if eid == 0 and len(dins) == 1: eidstr = '' elif len(dins) < 10: eidstr = '.%d' % eid else: # include leading zero to maintain alphabetical fname order eidstr = '.%02d' % eid dinfname = stream.srcfnameroot + eidstr + '.din' fullfname = os.path.join(path, dinfname) din.tofile(fullfname) # save it print(fullfname) def exporttextheader(self, basepath): """Export stimulus text header(s) to .textheader file(s) in basepath""" if self.stream.is_multi(): # self.stream is a MultiStream streams = self.stream.streams else: # self.stream is a single Stream streams = [self.stream] print('Exporting text header(s) to:') for stream in streams: try: dsprecs = stream.srff.displayrecords except AttributeError: # no textheader to export for this stream continue if len(dsprecs) == 0: raise ValueError("displayrecords are empty for stream %r. Attribute " "shouldn't exist" % stream.fname) path = os.path.join(basepath, stream.srcfnameroot) try: os.mkdir(path) except OSError: pass # path already exists? # Some old recordings (<= ptc15) contain multiple experiments. # To deal with this, iterate over stream.srff.displayrecords, export one # .textheader per displayrecord. Append experiment ID to each .textheader # filename, if necessary. for eid, dsprec in enumerate(dsprecs): textheader = dsprec.Header.python_tbl if eid == 0 and len(dsprecs) == 1: eidstr = '' elif len(dsprecs) < 10: eidstr = '.%d' % eid else: # include leading zero to maintain alphabetical fname order eidstr = '.%02d' % eid textheaderfname = stream.srcfnameroot + eidstr + '.textheader' fullfname = os.path.join(path, textheaderfname) with open(fullfname, 'w') as f: f.write(textheader) # save it print(fullfname) def exportall(self, basepath, sortpath): """Export spike data, stimulus din and textheader to basepath""" self.exportptcsfiles(basepath, sortpath) self.exportdin(basepath) self.exporttextheader(basepath) def exportspikewaves(self, sids, selchans, tis, fname, format): """Export spike waveform data of selected sids, selchans and tis to binary .spikes.zip file or text .spikes.csv file""" nspikes = len(sids) chans, chanslist = self.get_common_chans(sids, selchans) nchans = len(chans) ti0, ti1 = tis nt = ti1 - ti0 # fill in 3D data array: dtype = self.wavedata.dtype data = np.zeros((nspikes, nchans, nt), dtype=dtype) for sii, sid in enumerate(sids): spikechans = chanslist[sii] spikechanis = spikechans.searchsorted(chans) data[sii] = self.wavedata[sid][spikechanis, ti0:ti1] if format == 'text': # flatten timepoints of all chans into columns data.shape = nspikes, nchans*nt stream = self.stream assert stream.kind == 'highpass' # should be the only type ever saved to self if format == 'binary': nids = self.spikes['nid'][sids] spiketimes = self.spikes['t'][sids] chanpos = stream.probe.siteloc_arr() uVperAD = stream.converter.AD2uV(1) # convert 1 AD unit to uV with open(fname, 'wb') as f: np.savez_compressed(f, data=data, sids=sids, nids=nids, spiketimes=spiketimes, chans=chans, tis=tis, chanpos=chanpos, uVperAD=uVperAD) elif format == 'text': np.savetxt(fname, data, fmt='%d', delimiter=',') # data should be int else: raise ValueError('Unknown format: %r' % format) print('Exported %d spikes on chans=%r and tis=%r to %s' % (nspikes, list(chans), list(tis), fname)) def get_param_matrix(self, kind=None, sids=None, tis=None, selchans=None, norm=False, dims=None, scale=True): """Organize dims parameters from sids into a data matrix, each column corresponding to a dim. To do PCA/ICA clustering on all spikes, one maxchan at a time, caller needs to call this multiple times, one for each set of maxchan unique spikes,""" spikes = self.spikes dtypefields = list(spikes.dtype.fields) if sids is None: sids = spikes['id'] # default to all spikes comps = [ dim for dim in dims if dim.startswith('c') and dim[-1].isdigit() ] rmserror = np.any([ dim == 'RMSerror' for dim in dims ]) ncomp = len(comps) hascomps = ncomp > 0 if hascomps: X = self.get_component_matrix(kind, sids, tis=tis, chans=selchans, minncomp=ncomp, norm=norm) if rmserror: rms = self.get_rms_error(sids, tis=tis, chans=selchans) data = [] for dim in dims: if dim in dtypefields: data.append( np.float32(spikes[dim][sids]) ) elif dim.startswith('c') and dim[-1].isdigit(): compid = int(lstrip(dim, 'c')) data.append( np.float32(X[:, compid]) ) elif dim == 'RMSerror': data.append( np.float32(rms) ) else: raise RuntimeError('Unknown dim %r' % dim) # np.column_stack returns a copy, not modifying the original array data = np.column_stack(data) if scale: # ensure 0 mean, and unit variance/stdev for dim, d in zip(dims, data.T): # d iterates over columns d -= d.mean() if dim in ['x0', 'y0'] and self.probe.ncols > 1: try: x0std # normalize spatial params by x0 std except NameError: x0std = spikes['x0'].std() if x0std != 0.0: d /= x0std #elif dim == 't': # the longer the recording in hours, the greater the # # scaling in time # trange = d.max() - d.min() # tscale = trange / (60*60*1e6) # d *= tscale / d.std() else: # normalize all other dims by their std dstd = d.std() if dstd != 0.0: d /= dstd return data def get_component_matrix(self, kind, sids, tis=None, chans=None, minncomp=None, norm=False): """Find set of chans common to all sids, and do PCA/ICA on those waveforms. Or, if chans are specified, limit PCA/ICA to them. Return component matrix with at least minncomp dimensions""" spikes = self.spikes nt = self.wavedata.shape[2] if tis is None: # use full waveform tis = np.asarray([0, nt]) #print('tis: %r' % (tis,)) ti0, ti1 = tis assert ti0 < ti1 <= nt nt = ti1 - ti0 chans, chanslist = self.get_common_chans(sids, chans) nchans = len(chans) nspikes = len(sids) if nspikes < 2: raise RuntimeError("Need at least 2 spikes for %s" % kind) if nchans == 0: raise RuntimeError("Spikes have no common chans for %s" % kind) # check if desired components have already been calculated (cache hit): Xhash = self.get_Xhash(kind, sids, tis, chans, self.npcsperchan, norm) self.Xhash = Xhash # save as key to most recent component matrix in self.X try: self.X except AttributeError: self.X = {} # init the dimension reduction cache attrib if Xhash in self.X: print('Cache hit, using cached %ss from tis=%r, chans=%r of %d spikes' % (kind[:-1], list(tis), list(chans), nspikes)) return self.X[Xhash] # no need to recalculate print('Cache miss, (re)calculating %ss' % kind[:-1]) # collect data between tis from chans from all spikes: print('Doing %s on tis=%r, chans=%r of %d spikes' % (kind, list(tis), list(chans), nspikes)) # MDP complains of roundoff errors with float32 for large covariance matrices data = np.zeros((nspikes, nchans, nt), dtype=np.float64) for sii, sid in enumerate(sids): spikechans = chanslist[sii] spikechanis = spikechans.searchsorted(chans) spikedata = self.wavedata[sid][spikechanis, ti0:ti1] if norm: # normalize by Vpp of chan with max Vpp: maxptp = spikedata.ptp(axis=1).max() if maxptp != 0: # prevent div by 0 spikedata = spikedata / maxptp data[sii] = spikedata print('Input shape for %s: %r' % (kind, data.shape)) t0 = time.time() data.shape = nspikes, nchans*nt # flatten timepoints of all chans into columns print('Reshaped input for %s: %r' % (kind, data.shape)) if kind == 'PCA': # principal components analysis if PCALIB == 'mdp': import mdp # delay as late as possible X = mdp.pca(data, output_dim=5, svd=False) # svd=False is default elif PCALIB == 'sklearn': # sklearn's PCA is about 8x slower than mdp.pca, I think because it # doesn't tap into scipy.linalg.eig compiled code. RandomizedPCA is faster # than PCA, but isn't deterministic, and is still 2-3x slower than mdp.pca from sklearn.decomposition import PCA pca = PCA(n_components=5) X = pca.fit_transform(data) # do both the fit and the transform else: raise ValueError('Invalid PCALIB %r' % PCALIB) if X.shape[1] < minncomp: raise RuntimeError("Can't satisfy minncomp=%d request" % minncomp) elif kind == 'sPCA': # sparse principal components analysis from sklearn.decomposition import SparsePCA n_components = 5 alpha = 1 # sparseness parameter n_jobs = mp.cpu_count() spca = SparsePCA(n_components=n_components, alpha=alpha, n_jobs=n_jobs) X = spca.fit_transform(data) # do both the fit and the transform elif kind == 'mbsPCA': # mini batch sparse principal components analysis from sklearn.decomposition import MiniBatchSparsePCA n_components = 5 alpha = 1 # sparseness parameter n_jobs = mp.cpu_count() mbspca = MiniBatchSparsePCA(n_components=n_components, alpha=alpha, n_jobs=n_jobs) X = mbspca.fit_transform(data) # do both the fit and the transform elif kind == 'NMF': # non-negative matrix factorization from sklearn.decomposition import NMF n_components = 5 init = None # 'random', 'nndsvd', 'nndsvda', 'nndsvdar', 'custom' nmf = NMF(n_components=n_components, init=init) X = nmf.fit_transform(data) # do both the fit and the transform elif kind == 'tSNE': # t-distributed stochastic neighbor embedding # limit number of PCs to feed into ICA, keep up to npcsperchan components per # chan on average: ncomp = min((self.npcsperchan*nchans, data.shape[1])) print('ncomp: %d' % ncomp) import mdp # delay as late as possible # do PCA first, to reduce dimensionality and speed up ICA: data = mdp.pca(data, output_dim=ncomp) from sklearn.manifold import TSNE n_components = 3 # not suited for any more than 3, according to the paper #init = 'random', 'pca' tsne = TSNE(n_components=n_components) X = tsne.fit_transform(data) # do both the fit and the transform elif kind == 'ICA': # independent components analysis # ensure nspikes >= ndims**2 for good ICA convergence maxncomp = intround(np.sqrt(nspikes)) if maxncomp < minncomp: raise RuntimeError("Can't satisfy minncomp=%d request" % minncomp) if data.shape[0] <= data.shape[1]: raise RuntimeError('Need more observations than dimensions for ICA') # limit number of PCs to feed into ICA, keep up to npcsperchan components per # chan on average: ncomp = min((self.npcsperchan*nchans, maxncomp, data.shape[1])) if ICALIB == 'mdp': import mdp # delay as late as possible # do PCA first, to reduce dimensionality and speed up ICA: print('ncomp: %d' % ncomp) data = mdp.pca(data, output_dim=ncomp) # nonlinearity g='pow3', ie x**3. tanh seems to separate better, # but is a bit slower. gaus seems to be slower still, and no better # than tanh, but these are just vague impressions. # defaults to whitened=False, ie assumes data isn't whitened node = mdp.nodes.FastICANode(g='pow3') X = node(data) pm = node.get_projmatrix() X = X[:, np.any(pm, axis=0)] # keep only the non zero columns elif ICALIB == 'sklearn': from sklearn.decomposition import FastICA # when whiten=True (default), FastICA preprocesses the data using PCA, and # n_components is the number of PCs that are kept before doing ICA. alg = 'parallel' # parallel or deflation, default is parallel fun = 'logcosh' # logcosh, exp, or cube, default is logcosh maxiter = 100 # default is 200 tol = 0.5 # default is 0.0001, seems need >~ 0.1 to exit faster ## TODO: make FastICA algorithm (parallel, deflation), nonlinearity (logcosh, ## exp, cube) and IC sort method (abs(kurtosis) vs. negentropy) GUI options print('ncomp=%d, alg=%r, fun=%r, maxiter=%d, tol=%g' % (ncomp, alg, fun, maxiter, tol)) fastica = FastICA(n_components=ncomp, algorithm=alg, whiten=True, fun=fun, fun_args=None, max_iter=maxiter, tol=tol, w_init=None, random_state=None) X = fastica.fit_transform(data) # do both the fit and the transform #pm = fastica.components_ print('fastica niters: %d' % (fastica.n_iter_)) else: raise ValueError('Invalid ICALIB %r' % ICALIB) if X.shape[1] < 3: raise RuntimeError('Need at least 3 columns') # Sort ICs by decreasing kurtosis or negentropy. For kurtosis, see Scholz2004 (or # rather, opposite to their approach, which picked ICs with most negative # kurtosis). For methods of estimating negentropy, see Hyvarinen1997. ''' # sort by abs(kurtosis) of each IC (column) k = scipy.stats.kurtosis(X, axis=0) ki = abs(k).argsort()[::-1] # decreasing order of abs(kurtosis) print('Sort by abs(kurtosis):') print(k[ki]) X = X[:, ki] # sort the ICs ''' # sort by negentropy of each IC (column), this seems to work better than kurtosis # at separating clusters of similar size: ne = core.negentropy(X, axis=0) assert (ne > 0).all() nei = ne.argsort()[::-1] # decreasing order of negentropy print('Sort by negentropy:') print(ne[nei]) X = X[:, nei] # sort the ICs ''' import pylab as pl pl.figure() pl.imshow(pm) pl.colorbar() pl.title('original projmatrix') pl.figure() pl.imshow(pm[:, ki]) pl.colorbar() pl.title('decreasing abs(kurtosis) projmatrix') pl.figure() pl.imshow(pm[:, nei]) pl.colorbar() pl.title('decreasing negentropy projmatrix') ''' else: raise ValueError('Unknown kind %r' % kind) print('Output shape for %s: %r' % (kind, X.shape)) self.X[Xhash] = X # cache for fast future retrieval print('%s took %.3f sec' % (kind, time.time()-t0)) unids = list(np.unique(spikes['nid'][sids])) # set of all nids that sids span for nid in unids: # don't update pos of junk cluster, if any, since it might not have any chans # common to all its spikes, and therefore can't have PCA/ICA done on it if nid != 0: self.clusters[nid].update_comppos(X, sids) return X def get_rms_error(self, sids, tis=None, chans=None): """Calculate RMS error of spike waveforms (all from the same cluster) relative to their cluster's mean waveform. Consider only selected tis and chans""" spikes = self.spikes nids = np.unique(spikes['nid'][sids]) nid = nids[0] if len(nids) > 1 or nid == 0: raise RuntimeError("Spikes must all belong to the same (non-junk) cluster for " "RMS error calculation") nt = self.wavedata.shape[2] if tis is None: # use full waveform tis = np.asarray([0, nt]) #print('tis: %r' % (tis,)) ti0, ti1 = tis assert ti0 < ti1 <= nt nt = ti1 - ti0 chans, chanslist = self.get_common_chans(sids, chans) nchans = len(chans) nspikes = len(sids) if nchans == 0: raise RuntimeError("Spikes have no common chans for RMS error") # collect data between tis from chans from all spikes: print('Getting RMS error on tis=%r, chans=%r of %d spikes' % (list(tis), list(chans), nspikes)) data = np.zeros((nspikes, nchans, nt), dtype=np.float64) for sii, sid in enumerate(sids): spikechans = chanslist[sii] spikechanis = spikechans.searchsorted(chans) data[sii] = self.wavedata[sid][spikechanis, ti0:ti1] # get cluster mean waveform between tis on chans: wave = self.neurons[nid].get_wave() chanis = wave.chans.searchsorted(chans) meandata = np.float64(wave.data[chanis, ti0:ti1]) # calculate RMS error between each spike and the cluster mean waveform: se = (data - meandata) ** 2 # squared error # take mean across timepoints and chans, but not across spikes: mse = se.mean(axis=2).mean(axis=1) # mean squared error return np.sqrt(mse) def get_common_chans(self, sids, chans=None): """Find channels common to all sids, and optionally to chans as well. Also, return chanslist, ie list of arrays of chans of sids""" spikes = self.spikes chanss = spikes['chans'][sids] nchanss = spikes['nchans'][sids] #t0 = time.time() chanslist = [ cs[:ncs] for cs, ncs in zip(chanss, nchanss) ] # list of arrays #print('Building chanslist took %.3f sec' % (time.time()-t0)) commonchans = util.intersect1d_uint8(chanslist) # find intersection if chans is not None and len(chans) > 0: # values in chans but not in commonchans: diffchans = np.setdiff1d(chans, commonchans) commonchans = np.intersect1d(chans, commonchans) # values in both if len(diffchans) > 0: print('WARNING: ignored chans %r not common to all spikes' % list(diffchans)) return commonchans, chanslist def get_Xhash(self, kind, sids, tis, chans, npcsperchan, norm): """Return MD5 hex digest of args, for uniquely identifying the matrix resulting from dimension reduction of spike data""" h = hashlib.md5() h.update(kind.encode()) h.update(sids) h.update(tis) h.update(chans) if kind == 'ICA': # consider npcsperchan only if doing ICA h.update(str(npcsperchan).encode()) h.update(str(norm).encode()) return h.hexdigest() def create_neuron(self, id=None, inserti=None): """Create and return a new Neuron with a unique ID""" if id == None: id = self.nextnid if id in self.neurons: raise RuntimeError('Neuron %d already exists' % id) id = int(id) # get rid of numpy ints neuron = Neuron(self, id) # add neuron to self self.neurons[neuron.id] = neuron if inserti == None: self.norder.append(neuron.id) else: self.norder.insert(inserti, neuron.id) return neuron def remove_neuron(self, id): try: del self.neurons[id] # may already be removed due to recursive call del self.clusters[id] self.norder.remove(id) except (KeyError, ValueError): pass def shift(self, sids, nt): """Shift sid waveforms by nt timepoints: -ve shifts waveforms left, +ve shifts right. For speed, pad waveforms with edge values at the appropriate end""" spikes = self.spikes wd = self.wavedata for sid in sids: # maybe there's a more efficient way than iterating over sids core.shiftpad(wd[sid], nt) # modifies wd in-place # update spike parameters: dt = intround(nt * self.tres) # amount of time to shift by, signed, in us # so we can later reload the wavedata accurately, shifting the waveform right and # padding it on its left requires decrementing the associated timepoints # (and vice versa) spikes['t'][sids] -= dt spikes['t0'][sids] -= dt spikes['t1'][sids] -= dt # might result in some out of bounds tis because the original peaks # have shifted off the ends. Opposite sign wrt timepoints above, referencing within # wavedata: spikes['tis'][sids] = spikes['tis'][sids] + nt # this in-place operation raises a TypeError in numpy 1.11.2, something related to # subtracting an int from an unsigned int: #spikes['tis'][sid] += nt # caller should treat all sids as dirty ''' # replaced by util.alignbest_cy(): def alignbest(self, sids, tis, chans): """Align all sids between tis on chans by best fit according to mean squared error. chans are assumed to be a subset of channels of sids. Return sids that were actually moved and therefore need to be marked as dirty""" spikes = self.spikes nspikes = len(sids) nchans = len(chans) wd = self.wavedata nt = wd.shape[2] # num timepoints in each waveform ti0, ti1 = tis subnt = ti1 - ti0 # num timepoints to slice from each waveform # TODO: make maxshift a f'n of interpolation factor maxshift = 2 # shift +/- this many timepoints subntdiv2 = subnt // 2 #print('subntdiv2 on either side of t=0: %d' % subntdiv2) if subntdiv2 < maxshift: raise ValueError("Selected waveform duration too short") #maxshiftus = maxshift * self.stream.tres # NOTE: in this case, it may be faster to keep shifts and sti0s and sti1s as lists # of ints instead of np int arrays, maybe because their values are faster to iterate # over or index with in python loops and lists: shifts = range(-maxshift, maxshift+1) # from -maxshift to maxshift, inclusive nshifts = len(shifts) sti0s = [ ti0+shifti for shifti in range(nshifts) ] # shifted ti0 values sti1s = [ ti1+shifti for shifti in range(nshifts) ] # shifted ti1 values sti0ssti1s = zip(sti0s, sti1s) print("Padding waveforms with up to +/- %d points of fake data" % maxshift) # not worth subsampling here while calculating meandata, since all this # stuff in this loop is needed in the shift loop below subsd = np.zeros((nspikes, nchans, subnt), dtype=wd.dtype) # subset of spike data spikechanis = np.zeros((nspikes, nchans), dtype=np.int64) t0 = time.time() for sidi, sid in enumerate(sids): spike = spikes[sid] nspikechans = spike['nchans'] spikechans = spike['chans'][:nspikechans] spikechanis[sidi] = spikechans.searchsorted(chans) subsd[sidi] = wd[sid, spikechanis[sidi], ti0:ti1] print('Mean prep loop for best shift took %.3f sec' % (time.time()-t0)) t0 = time.time() meandata = subsd.mean(axis=0) # float64 print('Mean for best shift took %.3f sec' % (time.time()-t0)) # choose best shifted waveform for each spike # widesd holds current spike data plus padding on either side # to allow for full width slicing for all time shifts: maxnchans = spikes['nchans'].max() # of all spikes in sort widesd = np.zeros((maxnchans, maxshift+nt+maxshift), dtype=wd.dtype) shiftedsubsd = subsd.copy() # init tempsubshifts = np.zeros((nshifts, nchans, subnt), dtype=wd.dtype) dirtysids = [] t0 = time.time() for sidi, sid in enumerate(sids): # for speed, instead of adding real data, pad start and end with fake values chanis = spikechanis[sidi] sd = wd[sid] # sid's spike data widesd[:, maxshift:-maxshift] = sd # 2D widesd[:, :maxshift] = sd[:, 0, None] # pad start with first point per chan widesd[:, -maxshift:] = sd[:, -1, None] # pad end with last point per chan wideshortsd = widesd[chanis] # sid's padded spike data on chanis, 2D # keep this inner loop as fast as possible: for shifti, (sti0, sti1) in enumerate(sti0ssti1s): tempsubshifts[shifti] = wideshortsd[:, sti0:sti1] # len: subnt errors = tempsubshifts - meandata # (nshifts, nchans, subnt) - (nchans, subnt) # get sum squared errors by taking sum across highest two dims - for purpose # of error comparison, don't need to take mean or square root. Also, order # of summation along axes doesn't matter, as long as it's done on the highest two: sserrors = (errors**2).sum(axis=2).sum(axis=1) # nshifts long bestshifti = sserrors.argmin() bestshift = shifts[bestshifti] if bestshift != 0: # no need to update sort.wavedata[sid] if there's no shift # update time values: dt = bestshift * self.tres # time to shift by, signed, in us spikes['t'][sid] += dt # should remain halfway between t0 and t1 spikes['t0'][sid] += dt spikes['t1'][sid] += dt # might result in some out of bounds tis because the original peaks # have shifted off the ends. Opposite sign, referencing within wavedata: spikes['tis'][sid] -= bestshift # update sort.wavedata wd[sid] = widesd[:, bestshifti:bestshifti+nt] shiftedsubsd[sidi] = tempsubshifts[bestshifti] dirtysids.append(sid) # mark sid as dirty print('Shifting loop took %.3f sec' % (time.time()-t0)) AD2uV = self.converter.AD2uV stdevbefore = AD2uV(subsd.std(axis=0).mean()) stdevafter = AD2uV(shiftedsubsd.std(axis=0).mean()) print('stdev went from %.3f to %.3f uV' % (stdevbefore, stdevafter)) return dirtysids ''' def alignminmax(self, sids, to): """Align sids by their min or max. Return those that were actually moved and therefore need to be marked as dirty""" if not self.stream.is_open(): raise RuntimeError("No open stream to reload spikes from") spikes = self.spikes V0s = spikes['V0'][sids] V1s = spikes['V1'][sids] Vss = np.column_stack((V0s, V1s)) alignis = spikes['aligni'][sids] b = np.column_stack((alignis==0, alignis==1)) # 2D boolean array if to == 'min': i = Vss[b] > 0 # indices into sids of spikes aligned to the max peak elif to == 'max': i = Vss[b] < 0 # indices into sids of spikes aligned to the min peak else: raise ValueError('Unknown to %r' % to) sids = sids[i] # sids that need realigning nspikes = len(sids) print("Realigning %d spikes" % nspikes) if nspikes == 0: # nothing to do return [] # no sids to mark as dirty multichantis = spikes['tis'][sids] # nspikes x nchans x 2 arr chanis = spikes['chani'][sids] # nspikes arr of max chanis # peak tis on max chan of each spike, convert from uint8 to int32 for safe math tis = np.int32(multichantis[np.arange(nspikes), chanis]) # nspikes x 2 arr # NOTE: tis aren't always in temporal order! dpeaktis = tis[:, 1] - tis[:, 0] # could be +ve or -ve dpeaks = spikes['dt'][sids] # stored as +ve # for each spike, decide whether to add or subtract dpeak to/from its temporal values ordered = dpeaktis > 0 # in temporal order reversed = dpeaktis < 0 # in reversed temporal order alignis = spikes['aligni'][sids] alignis0 = alignis == 0 alignis1 = alignis == 1 dpeaki = np.zeros(nspikes, dtype=int) # add dpeak to temporal values to align to later peak dpeaki[ordered & alignis0 | reversed & alignis1] = 1 # subtact dpeak from temporal values to align to earlier peak dpeaki[ordered & alignis1 | reversed & alignis0] = -1 # upcast aligni from 1 byte to an int before doing arithmetic on it: #dalignis = -np.int32(alignis)*2 + 1 dts = dpeaki * dpeaks dtis = -dpeaki * abs(dpeaktis) # shift values spikes['t'][sids] += dts spikes['t0'][sids] += dts spikes['t1'][sids] += dts spikes['tis'][sids] = spikes['tis'][sids] + dtis[:, None, None] # update wrt new t0i spikes['aligni'][sids[alignis0]] = 1 spikes['aligni'][sids[alignis1]] = 0 # update wavedata for each shifted spike self.reload_spikes(sids) return sids # mark all sids as dirty def choose_new_meanchans(self, sids): """Get mean waveform of all sids, then find the mean's chan with max Vpp, then choose det.maxnchansperspike channels around that maxchan. Return meanchans, furthestchan, and furthestchani""" print('Choosing new channel set for all selected spikes') det = self.detector meanwave = self.get_mean_wave(sids) # mean chan with max Vpp: maxchan = meanwave.chans[meanwave.data.ptp(axis=1).argmax()] maxchani = det.chans.searchsorted(maxchan) distances = det.dm.data[maxchani] # keep the maxnchansperspike closest chans to maxchan, including maxchan: chanis = distances.argsort()[:det.maxnchansperspike] meanchans = det.chans[chanis] meanchans.sort() # keep them sorted print('meanchans: %r' % list(meanchans)) furthestchan = det.chans[chanis[-1]] print('furthestchan: %d' % furthestchan) furthestchani = meanchans.searchsorted(furthestchan) # sanity checks: assert len(meanchans) == det.maxnchansperspike assert maxchan in meanchans return meanchans, furthestchan, furthestchani def reload_spikes(self, sids, usemeanchans=False): """Update wavedata of designated spikes from stream. Optionally fix incorrect time values from .sort 0.3 files. Optionally choose new set of channels for all sids based on the chans closest to the mean of the sids. It's the caller's responsibility to mark sids as dirty and trigger resaving of .wave file""" ## TODO: add findmaxchan=False and recenteronmaxchan=False kwargs nsids = len(sids) print('(Re)loading %d spikes' % nsids) stream = self.stream if not stream.is_open(): raise RuntimeError("No open stream to reload spikes from") spikes = self.spikes det = self.detector ver_lte_03 = float(self.__version__) <= 0.3 if ver_lte_03: print('Fixing potentially incorrect time values during spike reloading') nfixed = 0 treload = time.time() if usemeanchans: if ver_lte_03: raise RuntimeError("Best not to choose new chans from mean until after " "converting to .sort >= 0.4") meanchans, furthestchan, furthestchani = self.choose_new_meanchans(sids) nmeanchans = len(meanchans) # split up sids into groups efficient for loading from stream: ts = spikes[sids]['t'] # noncontig, not a copy # ensure they're in temporal order: if not (np.diff(ts) >= 0).all(): print("Selected sids aren't in temporal order, sorting by time...") tsis = ts.argsort() sids = sids[tsis] print("Done sorting sids by time") # break up spikes by ISIs >= MAXGROUPISI: splitis = np.where(np.diff(ts) >= MAXGROUPISI)[0] + 1 groups = np.split(sids, splitis) # limit each group of sids to no more than MAXGROUPDT: groupi = 0 while groupi < len(groups): group = groups[groupi] # group of sids all with ISIs < MAXGROUPISI ## TODO: not a copy: is this the optimal way to get the times in this case? relts = spikes[group]['t'] - spikes[group[0]]['t'] splitis = np.where(np.diff(relts // MAXGROUPDT) > 0)[0] + 1 nsubgroups = len(splitis) + 1 if nsubgroups > 1: # del original group, replace with subgroups del groups[groupi] subgroups = np.split(group, splitis) groups[groupi:groupi] = subgroups groupi += len(subgroups) else: groupi += 1 print('ngroups: %d' % len(groups)) # process each group: sidi = 0 # init sid index across all groups, used as status counter for groupi, group in enumerate(groups): printflush('<%d>' % groupi, end='') assert len(group) > 0 # otherwise something went wrong above t0 = spikes[group[0]]['t0'] t1 = spikes[group[-1]]['t1'] if ver_lte_03: # load a little extra, in case we need to reload misaligned first and/or # last spike in this group t0 -= 5000 # -5 ms t1 += 5000 # +5 ms """ Find union of chans of sids in this group, ask Stream for only those such that no unnecessary resampling takes place on unneeded chans. Note that this doesn't make a difference when CAR is enabled in the stream, because the full set of enabled chans have to be maintained in Stream.__call__ until the very end. Don't bother cutting out the correct nchans for each sid. At worst, chan 0 (the "empty" chans array value) will be unnecessarily added to unionchans, and we'll retrieve one extra chan when creating tempwave, which will then later be discarded: """ unionchans = np.unique(spikes['chans'][group]) if usemeanchans: # now that we have the original unionchans of this group, # update this group's spikes array entries with meanchans: spikes['nchans'][group] = nmeanchans # we're using the max num chans, so assign the full array: spikes['chans'][group] = meanchans # now update unionchans as well: unionchans = np.unique(np.hstack((unionchans, meanchans))) if 0 not in stream.chans: # if chan 0 is disabled in stream # remove 0 from unionchans, otherwise an error would be raised when # calling stream() unionchans = unionchans[unionchans != 0] # load and resample only what's needed for this group: tempwave = stream(t0, t1, unionchans) # slice out each spike's reloaded data from tempwave: for sid in group: # print status: if sidi % 10000 == 0: printflush(sidi, end='') elif sidi % 1000 == 0: printflush('.', end='') if usemeanchans: # already checked above that ver_lte_03 == False # this spike's chans have been set to meanchans, now # check that each spike's maxchan is in meanchans: chan = spikes[sid]['chan'] if chan not in meanchans: # replace furthest chan with spike's maxchan: print("spike %d: replacing furthestchan %d with spike's maxchan %d" % (sid, furthestchan, chan)) nchans = spikes[sid]['nchans'] chans = spikes[sid]['chans'][:nchans] # replace furthest chan with max chan, modifies spikes array in-place: chans[furthestchani] = chan # make sure chans remain sorted: chans.sort() # this isn't necessary, because all the above was in-place: #spikes['chans'][sid][:nchans] = chans spike = spikes[sid] nchans = spike['nchans'] chans = spike['chans'][:nchans] rd = tempwave[spike['t0']:spike['t1']][chans].data # reloaded data if ver_lte_03: # fix potentially incorrect spike tis result = self.reload_spike_ver_lte_03(sid, nchans, tempwave, rd) if result == None: sidi += 1 # inc status counter continue # rollwin2D won't work, skip to next sid else: rd, fixed = result if fixed: nfixed += 1 nt = rd.shape[1] self.wavedata[sid, :nchans, :nt] = rd # update wavedata sidi += 1 # inc status counter print() if ver_lte_03: print('Fixed time values of %d spikes' % nfixed) print('(Re)loaded %d spikes, took %.3f sec' % (len(sids), time.time()-treload)) def reload_spike_ver_lte_03(self, sid, nchans, tempwave, rd): """In sort.__version__ <= 0.3, t, t0, t1, and tis were not updated during alignbest() calls. To fix this, load new data with old potentially incorrect t0 and t1 values, and compare this new data to existing old data in wavedata array. Find where the non-repeating parts of the old data fits into the new, and calculate the correction needed to fix the time values. Finally, reload new data according to these corrected time values.""" #print('Reloading sid from ver_lte_03: %d' % sid) od = self.wavedata[sid, :nchans] # old data # indices that strip const values from left and right ends: lefti, righti = lrrep2Darrstripis(od) od = od[:, lefti:righti] # stripped old data # reloaded data rd uses old incorrect t0 and t1, but they should be # wide enough to encompass the non-repeating parts of the old data width = od.shape[1] # rolling window width if not width <= rd.shape[1]: print('') # newline print("WARNING: od.shape[1]=%d > rd.shape[1]=%d for sid %d" % (od.shape[1], rd.shape[1], sid)) #import pdb; pdb.set_trace() return odinndis = np.where((rollwin2D(rd, width) == od).all(axis=1).all(axis=1))[0] if len(odinndis) == 0: # no hits of old data in new dnt = 0 # reload data based on current timepoints elif len(odinndis) == 1: # exactly 1 hit of old data in new odinndi = odinndis[0] # pull it out dnt = odinndi - lefti # num timepoints to correct by, signed else: raise RuntimeError("Multiple hits of old data in new, don't know " "how to reload spike %d" % sid) newrd, fixed = rd, False if dnt != 0: dt = intround(dnt * self.tres) # time to correct by, signed, in us spikes['t'][sid] += dt # should remain halfway between t0 and t1 spikes['t0'][sid] += dt spikes['t1'][sid] += dt # might result in some out of bounds tis because the original peaks # have shifted off the ends. Use opposite sign because we're # referencing within wavedata: # in versions <= 0.3, 'tis' were named 'phasetis': spikes['phasetis'][sid] = spikes['phasetis'][sid] - dnt spike = spikes[sid] # reslice tempwave again now that t0 and t1 have changed newrd = tempwave[spike['t0']:spike['t1']][chans].data fixed = True #printflush('F', end='') return newrd, fixed def reload_spikes_and_templates(self, sids, usemeanchans=False): self.reload_spikes(sids, usemeanchans=usemeanchans) # update neuron templates: unids = np.unique(self.spikes['nid'][sids]) unids = unids[unids != 0] # exclude junk cluster, which doesn't have a neuron neurons = [ self.neurons[nid] for nid in unids ] for neuron in neurons: neuron.update_wave() # update affected mean waveforms def init_spike_alignment(self): """Set initial spike alignment points according to alignment points of each spike's neuron""" print('Setting initial spike alignment points') ntis, nalignis = {}, {} # tis and aligni derived from each neuron's mean waveform for neuron in self.neurons.values(): nwave = neuron.get_wave() # update and return mean waveform mintis = nwave.data.argmin(axis=1) maxtis = nwave.data.argmax(axis=1) ntis[neuron.id] = np.column_stack([mintis, maxtis]) # choose aligni with least variance: nalignis[neuron.id] = np.argmin([mintis.std(), maxtis.std()]) AD2uV = self.converter.AD2uV for s, wd in zip(self.spikes, self.wavedata): sid = s['id'] # print out progress on a regular basis: if sid % 100000 == 0: printflush(sid, end='') elif sid % 10000 == 0: printflush('.', end='') nid = s['nid'] #chan = s['chan'] nchans = s['nchans'] chans = s['chans'][:nchans] neuronchans = self.neurons[nid].wave.chans assert (chans == neuronchans).all() s['tis'][:nchans] = ntis[nid] # set according to its neuron, wrt t0i=0 s['aligni'] = nalignis[nid] # set according to its neuron maxchani = s['chani'] t0i, t1i = int(s['tis'][maxchani, 0]), int(s['tis'][maxchani, 1]) s['dt'] = abs(t1i - t0i) / self.sampfreq * 1e6 # us # note that V0 and V1 might not be of opposite sign, because tis are derived # from mean neuron waveform, not from each individual spike: s['V0'], s['V1'] = AD2uV(wd[maxchani, t0i]), wd[maxchani, t1i] # uV s['Vpp'] = abs(s['V1'] - s['V0']) # uV print() def spatially_localize_spikes(self, sortwin, method='fit'): """Assuming that wavedata have been extracted and neuron mean waveforms calculated, find tis and perform spatial localization of every spike in self""" det = self.detector weights2f = self.extractor.weights2spatial weights2spatialmean = self.extractor.weights2spatialmean f = self.extractor.f nreject = 0 # number spikes rejected during spatial localization print('Running spatial localization on all %d spikes' % self.nspikes) tstart = time.clock() ## TODO: chan this be multithreaded/processed? for s, wd in zip(self.spikes, self.wavedata): # Get Vpp at each inclchan's tis, use as spatial weights: # see core.rowtake() or util.rowtake_cy() for indexing explanation: sid = s['id'] # print out progress on a regular basis: if sid % 10000 == 0: printflush(sid, end='') elif sid % 1000 == 0: printflush('.', end='') chan = s['chan'] nchans = s['nchans'] chans = s['chans'][:nchans] maxchani = s['chani'] chanis = det.chans.searchsorted(chans) w = np.float32(wd[np.arange(s['nchans'])[:, None], s['tis'][:nchans]]) # nchans x 2 w = abs(w).sum(axis=1) # Vpp for each chan, measured at t0i and t1i x = det.siteloc[chanis, 0] # 1D array (row) y = det.siteloc[chanis, 1] if method == 'fit': # localize by fitting extractor.f function to wavedata params = weights2f(f, w, x, y, maxchani) elif method == 'mean': # set localization to Vpp-weighted spatial mean and 0 sigma: x0, y0 = weights2spatialmean(w, x, y) # a very ad-hoc guess for spatial sigma: sx = 2 * dist((x0, y0), self.probe.SiteLoc[chan]) params = x0, y0, sx, sx else: print('Unknown method %r' % method) if params == None: # presumably a non-localizable many-channel noise event #printflush('X', end='') # to indicate a rejected spike if DEBUG: spiket = intround(s['t']) # nearest us det.log("Reject spike %d at t=%d based on fit params" % (sid, spiket)) neuron = self.neurons[s['nid']] # remove from its neuron, add to unsorted list of spikes: sortwin.MoveSpikes2List(neuron, [sid], update=False) # manually set localization params to Vpp-weighted spatial mean and 0 sigma: x0, y0 = weights2spatialmean(w, x, y) # set sigma to 0 um, and then later round lockr up to 1 um so that only one # raster tick shows up for each rejected spike, reducing clutter params = x0, y0, 0, 0 nreject += 1 # Save spatial fit params, and "lockout" only the channels within lockrx*sx # of the fit spatial location of the spike, up to a max of inclr. "Lockout" # in this case only refers to which channels are highlighted with a raster tick # for each spike: s['x0'], s['y0'], s['sx'], s['sy'] = params x0, y0 = s['x0'], s['y0'] # lockout radius for this spike: lockr = min(det.lockrx*s['sx'], det.inclr) # in um lockr = max(lockr, 1) # at least 1 um, so at least the maxchan gets a tick # test y coords of chans in y array, ylockchaniis can be used to index # into x, y and chans: ylockchaniis, = np.where(np.abs(y - y0) <= lockr) # convert bool arr to int # test Euclid distance from x0, y0 for each ylockchani: lockchaniis = ylockchaniis.copy() for ylockchanii in ylockchaniis: if dist((x[ylockchanii], y[ylockchanii]), (x0, y0)) > lockr: # Euclidean distance is too great, remove ylockchanii from lockchaniis: lockchaniis = lockchaniis[lockchaniis != ylockchanii] lockchans = chans[lockchaniis] nlockchans = len(lockchans) s['lockchans'][:nlockchans], s['nlockchans'] = lockchans, nlockchans print('Spatial localization of spikes took %.3f s' % (time.clock() - tstart)) return nreject ''' def get_component_matrix(self, dims=None, weighting=None): """Convert spike param matrix into pca/ica data for clustering""" import mdp # can't delay this any longer X = self.get_param_matrix(dims=dims) if weighting == None: return X if weighting.lower() == 'ica': node = mdp.nodes.FastICANode() elif weighting.lower() == 'pca': node = mdp.nodes.PCANode() else: raise ValueError, 'unknown weighting %r' % weighting node.train(X) features = node.execute(X) # returns all available components #self.node = node #self.weighting = weighting #self.features = features return features def get_ids(self, cids, spikes): """Convert a list of cluster ids into 2 dicts: n2sids maps neuron IDs to spike IDs; s2nids maps spike IDs to neuron IDs""" cids = np.asarray(cids) cids = cids - cids.min() # make sure cluster IDs are 0-based uniquecids = set(cids) nclusters = len(uniquecids) # neuron ID to spike IDs (plural) mapping n2sids = dict(zip(uniquecids, [ [] for i in range(nclusters) ])) s2nids = {} # spike ID to neuron ID mapping for spike, nid in zip(spikes, cids): s2nids[spike['id']] = nid n2sids[nid].append(spike['id']) return n2sids, s2nids def write_spc_input(self): """Generate input data file to SPC""" X = self.get_component_matrix() # write to space-delimited .dat file. Each row is a spike, each column a param spykedir = os.path.dirname(__file__) dt = str(datetime.datetime.now()) dt = dt.split('.')[0] # ditch the us dt = dt.replace(' ', '_') dt = dt.replace(':', '.') self.spcdatfname = os.path.join(spykedir, 'spc', dt+'.dat') # not sure why spc adds the dg_01 part: self.spclabfname = os.path.join(spykedir, 'spc', dt+'.dg_01.lab') f = open(self.spcdatfname, 'w') for params in X: # write text data to file, one row at a time params.tofile(f, sep=' ', format='%.6f') f.write('\n') f.close() def parse_spc_lab_file(self, fname=None): """Parse output .lab file from SPC. Each row in the file is the assignment of each spin (datapoint) to a cluster, one row per temperature datapoint. First column is temperature run number (0-based). 2nd column is the temperature. All remaining columns correspond to the datapoints in the order presented in the input .dat file. Returns (Ts, cids)""" #spikes = self.get_spikes_sortedby('id') if fname == None: defaultDir = r"C:\Documents and Settings\Administrator\Desktop\Charlie\From" dlg = wx.FileDialog(None, message="Open SPC .lab file", defaultDir=defaultDir, defaultFile='', wildcard="All files (*.*)|*.*|.lab files (*.lab)|*.lab|", style=wx.OPEN) if dlg.ShowModal() == wx.ID_OK: fname = dlg.GetPath() dlg.Destroy() data = np.loadtxt(fname, dtype=np.float32) Ts = data[:, 1] # 2nd column cids = np.int32(data[:, 2:]) # 3rd column on print('Parsed %r' % fname) return Ts, cids def parse_charlies_output(self, fname=None): if fname == None: fname = (r'C:\Documents and Settings\Administrator\Desktop\Charlie\' 'From\2009-07-20\clustered_events_coiflet_T0.125.txt') nids = np.loadtxt(fname, dtype=int) # one neuron id per spike return nids def write_spc_app_input(self): """Generate input data file to spc_app""" spikes = self.get_spikes_sortedby('id') X = self.get_component_matrix() # write to tab-delimited data file. Each row is a param, each column a spike # (this is the transpose of X) # first row has labels "AFFX", "NAME", and then spike ids # first col has labels "AFFX", and then param names f = open(r'C:\home\mspacek\Desktop\Work\SPC\Weizmann\spc_app\spc_app_input.txt', 'w') f.write('AFFX\tNAME\t') for spike in spikes: f.write('s%d\t' % spike['id']) f.write('\n') for parami, param in enumerate(['Vpp', 'dt', 'x0', 'y0', 'sx', 'sy', 'theta']): f.write(param+'\t'+param+'\t') for val in X[:, parami]: f.write('%f\t' % val) f.write('\n') f.close() def hcluster(self, t=1.0): """Hierarchically cluster self.spikes TODO: consider doing multiple cluster runs. First, cluster by spatial location (x0, y0). Then split those clusters up by Vpp. Then those by spatial distrib (sy/sx, theta), then by temporal distrib (dt, s1, s2). This will ensure that the lousier params will only be considered after the best ones already have, and therefore that you start off with pretty good clusters that are then only slightly refined using the lousy params """ spikes = self.get_spikes_sortedby('id') X = self.get_component_matrix() print(X) # try 'weighted' or 'average' with 'mahalanobis' cids = fclusterdata(X, t=t, method='single', metric='euclidean') n2sids, s2nids = self.get_ids(cids, spikes) return n2sids def export2Charlie(self, fname='spike_data', onlymaxchan=False, nchans=3, npoints=32): """Export spike data to a text file, one spike per row. Columns are x0, y0, followed by most prominent npoints datapoints (1/4, 3/4 wrt spike time) of each nearest nchans. This is to give to Charlie to do WPD and SPC on""" if onlymaxchan: nchans = 1 assert np.log2(npoints) % 1 == 0, 'npoints is not a power of 2' # get ti - time index each spike is assumed to be centered on self.spikes[0].update_wave(self.stream) # make sure it has a wave ti = intround(self.spikes[0].wave.data.shape[-1] / 4) # 13 for 50 kHz, 6 for 25 kHz dims = self.nspikes, 2+nchans*npoints output = np.empty(dims, dtype=np.float32) dm = self.detector.dm chanis = np.arange(len(dm.data)) coords = np.asarray(dm.coords) xcoords = coords[:, 0] ycoords = coords[:, 1] sids = list(self.spikes) # self.spikes is a dict! sids.sort() for sid in sids: spike = self.spikes[sid] chani = spike.chani # max chani x0, y0 = spike.x0, spike.y0 if onlymaxchan: nearestchanis = np.asarray([chani]) else: # find closest chans to x0, y0 d2s = (xcoords - x0)**2 + (ycoords - y0)**2 # squared distances sortis = d2s.argsort() nearestchanis = chanis[sortis][0:nchans] # pick the first nchan nearest chans if chani not in nearestchanis: print("WARNING: max chani %d is not among the %d chanis nearest " "(x0, y0) = (%.1f, %.1f) for spike %d at t=%d" % (chani, nchans, x0, y0, sid, spike.t)) if spike.wave.data is None: spike.update_wave(self.stream) row = [x0, y0] for chani in nearestchanis: chan = dm.chans[chani] # dereference try: data = spike.wave[chan].data[0] # pull out singleton dimension except IndexError: # empty array data = np.zeros(data.shape[-1], data.dtype) row.extend(data[ti-npoints/4:ti+npoints*3/4]) output[sid] = row dt = str(datetime.datetime.now()) dt = dt.split('.')[0] # ditch the us dt = dt.replace(' ', '_') dt = dt.replace(':', '.') fname += '.' + dt + '.txt' np.savetxt(fname, output, fmt='%.1f', delimiter=' ') def match(self, templates=None, weighting='signal', sort=True): """Match templates to all .spikes with nearby maxchans, save error values to respective templates. Note: slowest step by far is loading in the wave data from disk. (First match is slow, subsequent ones are ~ 15X faster.) Unless something's done about that in advance, don't bother optimizing here much. Right now, once waves are loaded, performance is roughly 20000 matches/sec TODO: Nick's alternative to gaussian distance weighting: have two templates: a mean template, and an stdev template, and weight the error between each matched spike and the mean on each chan at each timepoint by the corresponding stdev value (divide the error by the stdev, so that timepoints with low stdev are more sensitive to error) TODO: looks like I still need to make things more nonlinear - errors at high signal values aren't penalized enough, while errors at small signal values are penalized too much. Try cubing both signals, then taking sum(err**2) DONE: maybe even better, instead of doing an elaborate cubing of signal, followed by a rather elaborate gaussian spatiotemporal weighting of errors, just take difference of signals, and weight the error according to the abs(template_signal) at each point in time and across chans. That way, error in parts of the signal far from zero are considered more important than deviance of perhaps similar absolute value for signal close to zero """ # None defaults to matching all templates: templates = templates or self.templates.values() sys.stdout.write('matching') t0 = time.time() nspikes = len(self.spikes) dm = self.detector.dm for template in templates: template.err = [] # overwrite any existing .err attrib tw = template.tw templatewave = template.wave[template.chans] # pull out template's enabled chans #stdev = template.get_stdev()[template.chans] # pull out template's enabled chans # replace any 0s with 1s - TODO: what's best way to avoid singularities?: #stdev[stdev == 0] = 1 # Gaussian weighting in space and/or time: weights = template.get_weights(weighting=weighting, sstdev=self.detector.slock/2, tstdev=self.detector.tlock/2) for spike in self.spikes.values(): # check if spike.maxchan is outside some minimum distance from template.maxchan if dm[template.maxchan, spike.maxchan] > MAXCHANTOLERANCE: # um continue # don't even bother if spike.wave.data is None or template.tw != TW: # make sure their data line up spike.update_wave(tw) # this slows things down a lot, but is necessary # slice template's enabled chans out of spike, calculate sum of # squared weighted error # first impression is that dividing by stdev makes separation worse, not better # low stdev means more sensitive to error: #err = (templatewave.data - spike.wave[template.chans].data) / stdev * weights # pull out template's enabled chans from spike: spikewave = spike.wave[template.chans] if weighting == 'signal': tsdata = np.asarray([templatewave.data, spikewave.data]) # take elementwise max of abs of template and spike data: weights = np.abs(tsdata).max(axis=0) err = (templatewave.data - spikewave.data) * weights # weighted error err = (err**2).sum(axis=None) # sum of squared weighted error template.err.append((spike.id, intround(err))) template.err = np.asarray(template.err, dtype=np.int64) if sort and len(template.err) != 0: i = template.err[:, 1].argsort() # row indices that sort by error template.err = template.err[i] sys.stdout.write('.') print('\nmatch took %.3f sec' % (time.time()-t0)) ''' class Neuron(object): """A collection of spikes that have been deemed somehow, whether manually or automatically, to have come from the same cell. A Neuron's waveform is the mean of its member spikes""" def __init__(self, sort, id=None): self.sort = sort self.id = id # neuron id self.wave = WaveForm() # init to empty waveform self.sids = np.array([], dtype=int) # indices of spikes that make up this neuron # relative reference timestamp, here for symmetry with fellow spike rec # (obj.t comes up sometimes): self.t = 0 self.plt = None # Plot currently holding self self.cluster = None self.good = False # user can mark this neuron as "good" if so desired #self.fname # not here, let's allow neurons to have spikes from different files? def get_chans(self): if self.wave.data is None: self.update_wave() return self.wave.chans # self.chans just refers to self.wave.chans chans = property(get_chans) def get_chan(self): if self.wave.data is None: self.update_wave() return self.wave.chans[self.wave.data.ptp(axis=1).argmax()] # chan with max Vpp chan = property(get_chan) def get_nspikes(self): return len(self.sids) nspikes = property(get_nspikes) def __getstate__(self): """Get object state for pickling""" d = self.__dict__.copy() # don't save any calculated PCs/ICs: #d.pop('X', None) #d.pop('Xhash', None) # don't save plot self is assigned to, since that'll change anyway on unpickle d['plt'] = None return d def get_wave(self): """Check for valid mean and std waveform before returning it""" # many neuron waveforms saved in old .sort files won't have a wave.std field: try: self.wave.std except AttributeError: return self.update_wave() if self.wave == None or self.wave.data is None or self.wave.std is None: return self.update_wave() else: return self.wave # return existing waveform def update_wave(self): """Update mean and std of self's waveform""" sort = self.sort spikes = sort.spikes if len(self.sids) == 0: # no member spikes, perhaps I should be deleted? raise RuntimeError("n%d has no spikes and its waveform can't be updated" % self.id) meanwave = sort.get_mean_wave(self.sids, nid=self.id) # update self's Waveform object self.wave.data = meanwave.data self.wave.std = meanwave.std self.wave.ts = sort.twts.copy() # meanwave has no .ts, copy for clean jsonpickle self.wave.chans = meanwave.chans self.wave.tres = sort.tres # meanwave has no .tres return self.wave def __sub__(self, other): """Return difference array between self and other neurons' waveforms on common channels""" selfwavedata, otherwavedata = self.getCommonWaveData(other.chan, other.chans, other.wave.data) return selfwavedata - otherwavedata def getCommonWaveData(self, otherchan, otherchans, otherwavedata): """Return waveform data common to self's chans and otherchans, while requiring that both include the other's maxchan""" chans = np.intersect1d(self.chans, otherchans, assume_unique=True) if len(chans) == 0: raise ValueError('No common chans') if self.chan not in chans or otherchan not in chans: raise ValueError("maxchans aren't part of common chans") selfchanis = self.chans.searchsorted(chans) otherchanis = otherchans.searchsorted(chans) return self.wave.data[selfchanis], otherwavedata[otherchanis] ''' def get_stdev(self): """Return 2D array of stddev of each timepoint of each chan of member spikes. Assumes self.update_wave has already been called""" data = [] # TODO: speed this up by pre-allocating memory and then filling in the array for spike in self.spikes: data.append(spike.wave.data) # collect spike's data stdev = np.asarray(data).std(axis=0) return stdev def get_weights(self, weighting=None, sstdev=None, tstdev=None): """Returns unity, spatial, temporal, or spatiotemporal Gaussian weights for self's enabled chans in self.wave.data, given spatial and temporal stdevs""" nchans = len(self.wave.chans) nt = len(self.wave.data[0]) # assume all chans have the same number of timepoints if weighting == None: weights = 1 elif weighting == 'spatial': weights = self.get_gaussian_spatial_weights(sstdev) # vector elif weighting == 'temporal': weights = self.get_gaussian_temporal_weights(tstdev) # vector elif weighting == 'spatiotemporal': sweights = self.get_gaussian_spatial_weights(sstdev) tweights = self.get_gaussian_temporal_weights(tstdev) weights = np.outer(sweights, tweights) # matrix, outer product of the two elif weighting == 'signal': weights = None # this is handled by caller #print('\nweights:\n%r' % weights) return weights def get_gaussian_spatial_weights(self, stdev): """Return a vector that weights self.chans according to a 2D gaussian centered on self.maxchan with standard deviation stdev in um""" g = Gaussian(mean=0, stdev=stdev) # distances between maxchan and all enabled chans: d = self.sort.detector.dm[self.maxchan, self.chans] weights = g[d] weights.shape = (-1, 1) # vertical vector with nchans rows, 1 column return weights def get_gaussian_temporal_weights(self, stdev): """Return a vector that weights timepoints in self's mean waveform by a gaussian centered on t=0, with standard deviation stdev in us""" g = Gaussian(mean=0, stdev=stdev) ts = self.wave.ts # template mean timepoints relative to t=0 spike time weights = g[ts] # horizontal vector with 1 row, nt timepoints return weights ''' class PTCSHeader(object): """ Polytrode clustered spikes file header: formatversion: int64 (currently version 3) ndescrbytes: uint64 (nbytes, keep as multiple of 8 for nice alignment) descr: ndescrbytes of ASCII text (padded with null bytes if needed for 8 byte alignment) nneurons: uint64 (number of neurons) nspikes: uint64 (total number of spikes) nsamplebytes: uint64 (number of bytes per template waveform sample) samplerate: uint64 (Hz) npttypebytes: uint64 (nbytes, keep as multiple of 8 for nice alignment) pttype: npttypebytes of ASCII text (padded with null bytes if needed for 8 byte alignment) nptchans: uint64 (total num chans in polytrode) chanpos: nptchans * 2 * float64 (array of (x, y) positions, in um, relative to top of polytrode, indexed by 0-based channel IDs) nsrcfnamebytes: uint64 (nbytes, keep as multiple of 8 for nice alignment) srcfname: nsrcfnamebytes of ASCII text (source file name, probably .srf, padded with null bytes if needed for 8 byte alignment) datetime: float64 (absolute datetime corresponding to t=0 us timestamp, stored as days since epoch: December 30, 1899 at 00:00) ndatetimestrbytes: uint64 datetimestr: ndatetimestrbytes of ASCII text (human readable string representation of datetime, preferrably ISO 8601, padded with null bytes if needed for 8 byte alignment) """ FORMATVERSION = 3 # overall .ptcs file format version, not header format version def __init__(self, sort, sortpath, stream, nneurons, nspikes, nsamplebytes, fullfname, exportdt, user='', notes=''): self.sort = sort self.stream = stream self.nneurons = nneurons self.nspikes = nspikes self.nsamplebytes = nsamplebytes homelessfullfname = lstrip(fullfname, os.path.expanduser('~')) sortfname = sort.fname sortfullfname = os.path.join(sortpath, sortfname) sortfmoddt = str(datetime.datetime.fromtimestamp(os.path.getmtime(sortfullfname))) sortfmoddt = sortfmoddt.split('.')[0] # ditch the us sortfsize = os.path.getsize(sortfullfname) # in bytes d = {'file_type': '.ptcs (polytrode clustered spikes) file', 'original_fname': homelessfullfname, 'export_time': exportdt, 'sort': {'fname': sortfname, 'path': sortpath, 'fmtime': sortfmoddt, 'fsize': sortfsize}, 'user': user, 'notes': notes} descr = str(d) self.descr = pad(descr, align=8) self.srcfname = pad(lstrip(stream.fname, '../'), align=8) self.pttype = pad(stream.probe.name, align=8) self.dt = stream.datetime self.dtstr = pad(self.dt.isoformat(), align=8) def write(self, f): s = self.sort np.int64(self.FORMATVERSION).tofile(f) # formatversion np.uint64(len(self.descr)).tofile(f) # ndescrbytes f.write(self.descr) # descr np.uint64(self.nneurons).tofile(f) # nneurons np.uint64(self.nspikes).tofile(f) # nspikes np.uint64(self.nsamplebytes).tofile(f) # nsamplebytes np.uint64(s.sampfreq).tofile(f) # samplerate np.uint64(len(self.pttype)).tofile(f) # npttypebytes f.write(self.pttype) # pttype np.uint64(s.stream.probe.nchans).tofile(f) # nptchans np.float64(s.stream.probe.siteloc_arr()).tofile(f) # chanpos np.uint64(len(self.srcfname)).tofile(f) # nsrcfnamebytes f.write(self.srcfname) # srcfname np.float64(td2days(self.dt - EPOCH)).tofile(f) # datetime (in days) np.uint64(len(self.dtstr)).tofile(f) # ndatetimestrbytes f.write(self.dtstr) class PTCSNeuronRecord(object): """ Polytrode clustered spikes file neuron record: nid: int64 (signed neuron id, could be -ve, could be non-contiguous with previous) ndescrbytes: uint64 (nbytes, keep as multiple of 8 for nice alignment, defaults to 0) descr: ndescrbytes of ASCII text (padded with null bytes if needed for 8 byte alignment) clusterscore: float64 xpos: float64 (um) ypos: float64 (um) sigma: float64 (um) (Gaussian spatial sigma) nchans: uint64 (num chans in template waveforms) chanids: nchans * uint64 (0 based IDs of channels in template waveforms) maxchanid: uint64 (0 based ID of max channel in template waveforms) nt: uint64 (num timepoints per template waveform channel) nwavedatabytes: uint64 (nbytes, keep as multiple of 8 for nice alignment) wavedata: nwavedatabytes of nsamplebytes sized floats (template waveform data, laid out as nchans * nt, in uV, padded with null bytes if needed for 8 byte alignment) nwavestdbytes: uint64 (nbytes, keep as multiple of 8 for nice alignment) wavestd: nwavestdbytes of nsamplebytes sized floats (template waveform standard deviation, laid out as nchans * nt, in uV, padded with null bytes if needed for 8 byte alignment) nspikes: uint64 (number of spikes in this neuron) spike timestamps: nspikes * uint64 (us, should be sorted) """ def __init__(self, neuron, spikets=None, nsamplebytes=None, descr=''): n = neuron AD2uV = n.sort.converter.AD2uV self.neuron = neuron self.spikets = spikets # constrained to stream range, may be < neuron.sids self.wavedtype = {2: np.float16, 4: np.float32, 8: np.float64}[nsamplebytes] if n.wave.data is None or n.wave.std is None: # some may have never been displayed n.update_wave() # wavedata and wavestd are nchans * nt * nsamplebytes long: self.wavedata = pad(self.wavedtype(AD2uV(n.wave.data)), align=8) self.wavestd = pad(self.wavedtype(AD2uV(n.wave.std)), align=8) self.descr = pad(descr, align=8) def write(self, f): n = self.neuron np.int64(n.id).tofile(f) # nid np.uint64(len(self.descr)).tofile(f) # ndescrbytes f.write(self.descr) # descr, bytes np.float64(np.nan).tofile(f) # clusterscore np.float64(n.cluster.pos['x0']).tofile(f) # xpos (um) np.float64(n.cluster.pos['y0']).tofile(f) # ypos (um) np.float64(n.cluster.pos['sx']).tofile(f) # sigma (um) np.uint64(len(n.wave.chans)).tofile(f) # nchans np.uint64(n.wave.chans).tofile(f) # chanids np.uint64(n.chan).tofile(f) # maxchanid np.uint64(len(n.wave.ts)).tofile(f) # nt np.uint64(self.wavedata.nbytes).tofile(f) # nwavedatabytes self.wavedata.tofile(f) # wavedata np.uint64(self.wavestd.nbytes).tofile(f) # nwavestdbytes self.wavestd.tofile(f) # wavestd np.uint64(len(self.spikets)).tofile(f) # nspikes np.uint64(self.spikets).tofile(f) # spike timestamps (us) class PanelScrollArea(QtGui.QScrollArea): """A scroll area for the spikesortpanel""" def keyPressEvent(self, event): key = event.key() # seems the ENTER key needs be handled to directly call plot, unlike in sortwin # where the event is passed on to be handled by the list widgets if key in [Qt.Key_Enter, Qt.Key_Return]: sortwin = self.topLevelWidget() sortwin.parent().ui.plotButton.click() else: QtGui.QScrollArea.keyPressEvent(self, event) # pass it on class SortWindow(SpykeToolWindow): """Sort window""" def __init__(self, parent, pos=None): SpykeToolWindow.__init__(self, parent, flags=QtCore.Qt.Tool) self.spykewindow = parent ncols = self.sort.probe.ncols nrows = self.sort.probe.nrows # try and allow the same amount of horizontal space per column for 2 and 3 col probes: if ncols <= 2: self.MAINSPLITTERPOS = 300 else: self.MAINSPLITTERPOS = 265 # move it more to the left # make horizontal sort slider use as little vertical space as possible self.VSPLITTERPOS = 1 panelwidth = PANELWIDTHPERCOLUMN * ncols panelheight = PANELHEIGHTPERROW * nrows width = max(self.MAINSPLITTERPOS + panelwidth + VSCROLLBARWIDTH, MINSORTWINDOWWIDTH) size = (width, SORTWINDOWHEIGHT) self.setWindowTitle('Sort Window') self.move(*pos) self.resize(*size) self._source = None # source cluster for comparison self.slider = SpikeSelectionSlider(Qt.Horizontal, self) self.slider.setInvertedControls(True) self.slider.setToolTip('Position of sliding spike selection time window') self.connect(self.slider, QtCore.SIGNAL('valueChanged(int)'), self.on_slider_valueChanged) self.connect(self.slider, QtCore.SIGNAL('sliderPressed()'), self.on_slider_sliderPressed) self.nlist = NList(self) self.nlist.setToolTip('Neuron list') self.nslist = NSList(self) self.nslist.setToolTip('Sorted spike list') self.uslist = USList(self) # should really be multicolumn tableview self.uslist.setToolTip('Unsorted spike list') tw = self.spykewindow.sort.tw self.panel = SpikeSortPanel(self, tw=tw) self.panel.setMinimumSize(QtCore.QSize(panelwidth, panelheight)) self.panelscrollarea = PanelScrollArea(self) self.panelscrollarea.setWidget(self.panel) self.panelscrollarea.setMinimumWidth(panelwidth + VSCROLLBARWIDTH) self.panelscrollarea.setWidgetResizable(True) # allows panel to size bigger than min self.vsplitter = QtGui.QSplitter(Qt.Vertical) self.vsplitter.addWidget(self.slider) self.vsplitter.addWidget(self.nlist) self.vsplitter.addWidget(self.nslist) self.vsplitter.addWidget(self.uslist) self.mainsplitter = QtGui.QSplitter(Qt.Horizontal) self.mainsplitter.addWidget(self.vsplitter) self.mainsplitter.addWidget(self.panelscrollarea) self.layout = QtGui.QVBoxLayout() self.layout.setContentsMargins(0, 0, 0, 0) self.layout.addWidget(self.mainsplitter) mainwidget = QtGui.QWidget(self) mainwidget.setLayout(self.layout) self.setCentralWidget(mainwidget) self.toolbar = self.setupToolbar() self.addToolBar(self.toolbar) def setupToolbar(self): toolbar = QtGui.QToolBar(self) toolbar.setObjectName('toolbar') toolbar.setFloatable(True) toolbar.setIconSize(QtCore.QSize(16, 16)) # like in main spyke window actionDelete = QAction(QIcon('res/edit-delete.svg'), 'Del', self) tt = ('<nobr><b>Del</b> &nbsp; Delete selected spikes or clusters</nobr>\n' '<nobr><b>CTRL+Del</b> &nbsp; Delete selected spikes</nobr>') actionDelete.setToolTip(tt) self.connect(actionDelete, QtCore.SIGNAL('triggered()'), self.on_actionDelete_triggered) toolbar.addAction(actionDelete) actionMergeClusters = QAction('M', self) tt = '<nobr><b>M</b> &nbsp; Merge clusters</nobr>' actionMergeClusters.setToolTip(tt) self.connect(actionMergeClusters, QtCore.SIGNAL('triggered()'), self.on_actionMergeClusters_triggered) toolbar.addAction(actionMergeClusters) #actionToggleClustersGood = QAction(QIcon('res/dialog-apply.svg'), 'G', self) actionToggleClustersGood = QAction('G', self) tt = '<nobr><b>G</b> &nbsp; Toggle clusters as "good"</nobr>' actionToggleClustersGood.setToolTip(tt) self.connect(actionToggleClustersGood, QtCore.SIGNAL('triggered()'), self.on_actionToggleClustersGood_triggered) toolbar.addAction(actionToggleClustersGood) actionSplit = QAction('+', self) tt = '<nobr><b>+</b> &nbsp; Split off selected spikes</nobr>' actionSplit.setToolTip(tt) self.connect(actionSplit, QtCore.SIGNAL('triggered()'), self.on_actionSplit_triggered) toolbar.addAction(actionSplit) actionLabelMultiunit = QAction('-', self) tt = '<nobr><b>-</b> &nbsp; Label clusters as multiunit</nobr>' actionLabelMultiunit.setToolTip(tt) self.connect(actionLabelMultiunit, QtCore.SIGNAL('triggered()'), self.on_actionLabelMultiunit_triggered) toolbar.addAction(actionLabelMultiunit) actionChanSplitClusters = QAction('/', self) tt = '<nobr><b>/</b> &nbsp; Split clusters by channels</nobr>' actionChanSplitClusters.setToolTip(tt) self.connect(actionChanSplitClusters, QtCore.SIGNAL('triggered()'), self.on_actionChanSplitClusters_triggered) toolbar.addAction(actionChanSplitClusters) actionDensitySplit = QAction('P', self) tt = ('<nobr><b>P</b> &nbsp; Split cluster pair by density along line between ' 'their centers</nobr>') actionDensitySplit.setToolTip(tt) self.connect(actionDensitySplit, QtCore.SIGNAL('triggered()'), self.on_actionDensitySplit_triggered) toolbar.addAction(actionDensitySplit) actionRandomSplit = QAction('\\', self) tt = ('<nobr><b>\\</b> &nbsp; Randomly split each selected cluster in half</nobr>') actionRandomSplit.setToolTip(tt) self.connect(actionRandomSplit, QtCore.SIGNAL('triggered()'), self.on_actionRandomSplit_triggered) toolbar.addAction(actionRandomSplit) #actionRenumber = QAction(QIcon('res/gtk-edit.svg'), '#', self) actionRenumber = QAction('#', self) tt = ('<nobr><b>#</b> &nbsp; Renumber all clusters in vertical spatial order</nobr>\n' '<nobr><b>CTRL+#</b> &nbsp; Renumber selected cluster</nobr>') actionRenumber.setToolTip(tt) self.connect(actionRenumber, QtCore.SIGNAL('triggered()'), self.on_actionRenumber_triggered) toolbar.addAction(actionRenumber) actionFind = QAction(QIcon('res/edit-find.svg'), 'Find', self) tt = ('<nobr><b>CTRL+F</b> &nbsp; Find spike in cluster plot</nobr>') actionFind.setToolTip(tt) self.connect(actionFind, QtCore.SIGNAL('triggered()'), self.on_actionFind_triggered) toolbar.addAction(actionFind) actionSelectRandomSpikes = QAction('R', self) tt = '<nobr><b>R</b> &nbsp; Select random sample of spikes of current clusters</nobr>' actionSelectRandomSpikes.setToolTip(tt) self.connect(actionSelectRandomSpikes, QtCore.SIGNAL('triggered()'), self.on_actionSelectRandomSpikes_triggered) toolbar.addAction(actionSelectRandomSpikes) actionToggleErrors = QAction('E', self) actionToggleErrors.setCheckable(True) actionToggleErrors.setChecked(self.panel.enable_fills) tt = '<nobr><b>CTRL+E</b> &nbsp; Toggle visibility of template error limits</nobr>' actionToggleErrors.setToolTip(tt) self.connect(actionToggleErrors, QtCore.SIGNAL('toggled(bool)'), self.on_actionToggleErrors_toggled) toolbar.addAction(actionToggleErrors) self.actionToggleErrors = actionToggleErrors nsamplesComboBox = QtGui.QComboBox(self) nsamplesComboBox.setToolTip('Number of spikes per cluster to randomly select') nsamplesComboBox.setFocusPolicy(Qt.NoFocus) nsamplesComboBox.addItems(['100', '50', '20', '10', '5', '1']) nsamplesComboBox.setCurrentIndex(2) toolbar.addWidget(nsamplesComboBox) self.connect(nsamplesComboBox, QtCore.SIGNAL('activated(int)'), self.on_actionSelectRandomSpikes_triggered) self.nsamplesComboBox = nsamplesComboBox gainComboBox = QtGui.QComboBox(self) gainComboBox.setToolTip('Waveform gain (default: 1.5)') gainComboBox.setFocusPolicy(Qt.NoFocus) gainComboBox.addItems(['4', '3.75', '3.5', '3.25', '3', '2.75', '2.5', '2.25', '2', '1.75', '1.5', '1.25', '1', '0.75', '0.5', '0.25']) gainComboBox.setCurrentIndex(3) toolbar.addWidget(gainComboBox) self.connect(gainComboBox, QtCore.SIGNAL('activated(int)'), self.on_gainComboBox_triggered) self.gainComboBox = gainComboBox #actionAlignMin = QAction(QIcon('res/go-bottom.svg'), 'Min', self) actionAlignMin = QAction('Min', self) actionAlignMin.setToolTip('Align selected spikes to min') self.connect(actionAlignMin, QtCore.SIGNAL('triggered()'), self.on_actionAlignMin_triggered) toolbar.addAction(actionAlignMin) #actionAlignMax = QAction(QIcon('res/go-top.svg'), 'Max', self) actionAlignMax = QAction('Max', self) actionAlignMax.setToolTip('Align selected spikes to max') self.connect(actionAlignMax, QtCore.SIGNAL('triggered()'), self.on_actionAlignMax_triggered) toolbar.addAction(actionAlignMax) #actionAlignBest = QAction(QIcon('res/emblem-OK.png'), 'Best', self) actionAlignBest = QAction('B', self) tt = '<nobr><b>B</b> &nbsp; Align selected spikes by best fit</nobr>' actionAlignBest.setToolTip(tt) self.connect(actionAlignBest, QtCore.SIGNAL('triggered()'), self.on_actionAlignBest_triggered) toolbar.addAction(actionAlignBest) actionShiftLeft = QAction('[', self) tt = ('<nobr><b>[</b> &nbsp; Shift selected spikes 2 points left</nobr>\n' '<nobr><b>CTRL+[</b> &nbsp; Shift selected spikes 1 point left</nobr>') actionShiftLeft.setToolTip(tt) self.connect(actionShiftLeft, QtCore.SIGNAL('triggered()'), self.on_actionShiftLeft_triggered) toolbar.addAction(actionShiftLeft) actionShiftRight = QAction(']', self) tt = ('<nobr><b>]</b> &nbsp; Shift selected spikes 2 points right</nobr>\n' '<nobr><b>CTRL+]</b> &nbsp; Shift selected spikes 1 point right</nobr>') actionShiftRight.setToolTip(tt) self.connect(actionShiftRight, QtCore.SIGNAL('triggered()'), self.on_actionShiftRight_triggered) toolbar.addAction(actionShiftRight) incltComboBox = QtGui.QComboBox(self) incltComboBox.setToolTip("Waveform duration (us) to include for component " "analysis,\nasymmetric around spike time") incltComboBox.setFocusPolicy(Qt.NoFocus) dtw = self.sort.tw[1] - self.sort.tw[0] # spike time window width incltstep = intround(dtw / 10) # evenly spaced inclt values incltvals = np.arange(dtw, 0, -incltstep) incltComboBox.addItems([ str(incltval) for incltval in incltvals ]) incltComboBox.setCurrentIndex(0) toolbar.addWidget(incltComboBox) self.connect(incltComboBox, QtCore.SIGNAL('activated(int)'), self.on_incltComboBox_triggered) self.incltComboBox = incltComboBox #incltunitsLabel = QtGui.QLabel('us', self) #toolbar.addWidget(incltunitsLabel) nPCsPerChanSpinBox = QtGui.QSpinBox(self) nPCsPerChanSpinBox.setToolTip("Number of PCs to use per channel to feed into ICA") nPCsPerChanSpinBox.setFocusPolicy(Qt.NoFocus) toolbar.addWidget(nPCsPerChanSpinBox) nPCsPerChanSpinBox.setMinimum(1) self.connect(nPCsPerChanSpinBox, QtCore.SIGNAL('valueChanged(int)'), self.on_nPCsPerChanSpinBox_valueChanged) nPCsPerChanSpinBox.setValue(self.sort.npcsperchan) self.nPCsPerChanSpinBox = nPCsPerChanSpinBox #actionFindPrevMostSimilar = QAction(QIcon('res/go-previous.svg'), '<', self) actionFindPrevMostSimilar = QAction('<', self) tt = '<nobr><b>&lt;</b> &nbsp; Find previous most similar cluster</nobr>' actionFindPrevMostSimilar.setToolTip(tt) self.connect(actionFindPrevMostSimilar, QtCore.SIGNAL('triggered()'), self.on_actionFindPrevMostSimilar_triggered) toolbar.addAction(actionFindPrevMostSimilar) #actionFindNextMostSimilar = QAction(QIcon('res/go-next.svg'), '>', self) actionFindNextMostSimilar = QAction('>', self) tt = '<nobr><b>&gt;</b> &nbsp; Find next most similar cluster</nobr>' actionFindNextMostSimilar.setToolTip(tt) self.connect(actionFindNextMostSimilar, QtCore.SIGNAL('triggered()'), self.on_actionFindNextMostSimilar_triggered) toolbar.addAction(actionFindNextMostSimilar) actionReloadSpikes = QAction(QIcon('res/view-refresh.svg'), 'Reload', self) tt = ('<nobr><b>F5</b> &nbsp; Reload waveforms of selected spikes. ' 'If none selected, reload all</nobr>\n' '<nobr><b>CTRL+F5</b> &nbsp; Use mean waveform to choose chans to reload</nobr>') actionReloadSpikes.setToolTip(tt) self.connect(actionReloadSpikes, QtCore.SIGNAL('triggered()'), self.on_actionReloadSpikes_triggered) toolbar.addAction(actionReloadSpikes) actionSave = QAction(QIcon('res/document-save.svg'), '&Save', self) actionSave.setToolTip('Save sort panel to file') self.connect(actionSave, QtCore.SIGNAL('triggered()'), self.on_actionSave_triggered) toolbar.addAction(actionSave) return toolbar def get_sort(self): return self.spykewindow.sort sort = property(get_sort) # make this a property for proper behaviour after unpickling def closeEvent(self, event): self.spykewindow.HideWindow('Sort') def mousePressEvent(self, event): """These are mostly passed on up from spyke list views and sort panel. Left clicks are (or should be) filtered out""" buttons = event.buttons() if buttons == QtCore.Qt.MiddleButton: #self.on_actionSelectRandomSpikes_triggered() self.spykewindow.ui.plotButton.click() # same as hitting ENTER in nslist elif buttons == QtCore.Qt.RightButton: self.clear() def keyPressEvent(self, event): """Alpha character keypresses are by default caught by the child lists for quickly scrolling down to and selecting list items. However, the appropriate alpha keypresses have been set in the child lists to be ignored, so they propagate up to here""" key = event.key() modifiers = event.modifiers() ctrl = modifiers & Qt.ControlModifier # ctrl is down spw = self.spykewindow if key == Qt.Key_A: # ignored in SpykeListViews spw.ui.plotButton.click() # same as hitting ENTER in nslist elif key == Qt.Key_X: # ignored in SpykeListViews spw.ui.plotXcorrsButton.click() elif key == Qt.Key_N: # ignored in SpykeListViews spw.ui.normButton.click() elif key == Qt.Key_Escape: # deselect all spikes and all clusters self.clear() elif key == Qt.Key_Delete: self.on_actionDelete_triggered() elif key == Qt.Key_M: # ignored in SpykeListViews self.on_actionMergeClusters_triggered() elif key == Qt.Key_G: # ignored in SpykeListViews self.on_actionToggleClustersGood_triggered() elif key == Qt.Key_Equal: # ignored in SpykeListViews self.on_actionSplit_triggered() elif key == Qt.Key_Minus: # ignored in SpykeListViews self.on_actionLabelMultiunit_triggered() elif key == Qt.Key_Slash: # ignored in SpykeListViews self.on_actionChanSplitClusters_triggered() elif key == Qt.Key_P: # ignored in SpykeListViews self.on_actionDensitySplit_triggered() elif key == Qt.Key_Backslash: # ignored in SpykeListViews self.on_actionRandomSplit_triggered() elif key == Qt.Key_NumberSign: # ignored in SpykeListViews self.on_actionRenumber_triggered() elif key == Qt.Key_F: # ignored in SpykeListViews if ctrl: self.FindSpike() else: self.FindCluster() elif key == Qt.Key_R: # ignored in SpykeListViews self.on_actionSelectRandomSpikes_triggered() elif key == Qt.Key_Space: # ignored in SpykeListViews if ctrl: SpykeToolWindow.keyPressEvent(self, event) # pass it on else: spw.on_clusterButton_clicked() elif key == Qt.Key_B: # ignored in SpykeListViews self.on_actionAlignBest_triggered() elif key == Qt.Key_BracketLeft: # ignored in SpykeListViews self.on_actionShiftLeft_triggered() elif key == Qt.Key_BracketRight: # ignored in SpykeListViews self.on_actionShiftRight_triggered() elif key == Qt.Key_Comma: # ignored in SpykeListViews self.on_actionFindPrevMostSimilar_triggered() elif key == Qt.Key_Period: # ignored in SpykeListViews self.on_actionFindNextMostSimilar_triggered() elif key == Qt.Key_F5: # ignored in SpykeListViews self.on_actionReloadSpikes_triggered() elif key == Qt.Key_E: # ignored in SpykeListViews if ctrl: self.actionToggleErrors.toggle() else: self.clear() # E is synonymous with ESC elif key == Qt.Key_C: # toggle between PCA and ICA, ignored in SpykeListViews c = str(spw.ui.componentAnalysisComboBox.currentText()) if c == 'PCA': index = spw.ui.componentAnalysisComboBox.findText('ICA') spw.ui.componentAnalysisComboBox.setCurrentIndex(index) elif c == 'ICA': index = spw.ui.componentAnalysisComboBox.findText('PCA') spw.ui.componentAnalysisComboBox.setCurrentIndex(index) spw.on_plotButton_clicked() elif key == Qt.Key_T: # toggle plotting against time, ignored in SpykeListViews z = str(spw.ui.zDimComboBox.currentText()) if z == 't': spw.on_c0c1c2Button_clicked() # plot in pure component analysis space else: spw.on_c0c1tButton_clicked() # plot against time elif key == Qt.Key_W: # toggle plotting against RMSError, ignored in SpykeListViews z = str(spw.ui.zDimComboBox.currentText()) if z == 'RMSerror': spw.on_c0c1c2Button_clicked() # plot in pure component analysis space else: spw.ui.zDimComboBox.setCurrentIndex(3) spw.on_plotButton_clicked() # plot against RMSError elif key in [Qt.Key_Enter, Qt.Key_Return]: # this is handled at a lower level by on_actionItem_triggered # in the various listview controls pass else: SpykeToolWindow.keyPressEvent(self, event) # pass it on def clear(self): """Clear selections in this order: unsorted spikes, sorted spikes, cluster automatically selected for comparison, cluster 0, clusters""" spw = self.spykewindow clusters = spw.GetClusters() if len(self.uslist.selectedIndexes()) > 0: self.uslist.clearSelection() elif self.nslist.nrowsSelected > 0: self.nslist.clearSelection() elif len(clusters) == 2 and self._source in clusters: clusters.remove(self._source) spw.SelectClusters(clusters, on=False) elif 0 in spw.GetClusterIDs(): for cluster in spw.GetClusters(): if cluster.id == 0: spw.SelectClusters([cluster], on=False) break else: self.nlist.clearSelection() # reset colours in cluster plot: gw = spw.windows['Cluster'].glWidget gw.colour() gw.updateGL() def on_actionDelete_triggered(self): """Delete explicity selected spikes, or clusters""" selsids = self.spykewindow.GetSpikes() # IDs of explicitly selected spikes nselsids = len(selsids) if (QApplication.instance().keyboardModifiers() & Qt.ControlModifier or nselsids > 0): self.delete_spikes() else: self.delete_clusters() def delete_clusters(self): """Del button press/click""" spw = self.spykewindow clusters = spw.GetClusters() s = self.sort spikes = s.spikes sids = [] for cluster in clusters: sids.append(cluster.neuron.sids) sids = np.concatenate(sids) # save some undo/redo stuff message = 'delete clusters %r' % [ c.id for c in clusters ] cc = ClusterChange(sids, spikes, message) cc.save_old(clusters, s.norder, s.good) # deselect and delete clusters spw.DelClusters(clusters) if len(s.clusters) > 0: # select cluster that replaces the first of the deleted clusters in norder selrows = [ cc.oldnorder.index(oldunid) for oldunid in cc.oldunids ] if len(selrows) > 0: selrow = selrows[0] nlist = spw.windows['Sort'].nlist nlist.selectRows(selrow) # TODO: this sets selection, but not focus #else: # first of deleted clusters was last in norder, don't select anything # save more undo/redo stuff newclusters = [] cc.save_new(newclusters, s.norder, s.good) spw.AddClusterChangeToStack(cc) print(cc.message) def delete_spikes(self): """CTRL+Del button press/click""" self.spykewindow.SplitSpikes(delete=True) def on_actionSplit_triggered(self): """+ button click. Split off selected clusters into their own cluster""" self.spykewindow.SplitSpikes(delete=False) def on_actionMergeClusters_triggered(self): """Merge button (M) click. Merge selected clusters. Easier to use than running gac() on selected clusters using a really big sigma to force them to all merge""" spw = self.spykewindow clusters = spw.GetClusters() s = self.sort spikes = s.spikes sids = [] # spikes to merge for cluster in clusters: sids.append(cluster.neuron.sids) # merge any selected usids as well sids.append(spw.GetUnsortedSpikes()) sids = np.concatenate(sids) if len(sids) == 0: return # save some undo/redo stuff message = 'merge clusters %r' % [ c.id for c in clusters ] cc = ClusterChange(sids, spikes, message) cc.save_old(clusters, s.norder, s.good) # decide on newnid and where to insert it into norder newnid = None # merge by default into a new highest numbered nid inserti = None # order new cluster by default to end of nlist if len(clusters) == 1: # keep same position of this one nid in norder, regardless of whether it's # single-unit, multiunit, or junk inserti = s.norder.index(clusters[0].id) elif len(clusters) > 1: oldunids = np.asarray(cc.oldunids) suids = oldunids[oldunids > 0] # selected single unit nids if len(suids) > 0: # merge into largest selected single unit nid: spikecounts = np.asarray([ s.neurons[suid].nspikes for suid in suids ]) newnid = suids[spikecounts.argmax()] inserti = s.norder.index(newnid) # correct for shift due to deletion of oldunids that precede newnid in norder: inserti -= sum([ s.norder.index(oldunid) < inserti for oldunid in oldunids]) # delete selected clusters and deselect selected usids spw.DelClusters(clusters, update=False) self.uslist.clearSelection() # create new cluster #t0 = time.time() newcluster = spw.CreateCluster(update=False, id=newnid, inserti=inserti) neuron = newcluster.neuron self.MoveSpikes2Neuron(sids, neuron, update=False) plotdims = spw.GetClusterPlotDims() newcluster.update_pos() # save more undo/redo stuff cc.save_new([newcluster], s.norder, s.good) spw.AddClusterChangeToStack(cc) # now do some final updates spw.UpdateClustersGUI() spw.ColourPoints(newcluster) #print('applying clusters to plot took %.3f sec' % (time.time()-t0)) # select newly created cluster spw.SelectClusters(newcluster) cc.message += ' into cluster %d' % newcluster.id print(cc.message) def on_actionToggleClustersGood_triggered(self): """'Good' button (G) click. Toggle 'good' flag of all selected clusters""" spw = self.spykewindow clusters = spw.GetClusters() cids = [] for cluster in clusters: cluster.neuron.good = not cluster.neuron.good cids.append(cluster.id) self.nlist.updateAll() # nlist item colouring will change as a result print("Toggled 'good' flag of clusters %r" % cids) def on_actionLabelMultiunit_triggered(self): """- button click. Label all selected clusters as multiunit by deleting them and creating new ones with -ve IDs""" spw = self.spykewindow clusters = spw.GetClusters() s = self.sort spikes = s.spikes # only relabel single unit clusters: clusters = [ cluster for cluster in clusters if cluster.id > 0 ] if len(clusters) == 0: return sids = [] for cluster in clusters: sids.append(cluster.neuron.sids) sids = np.concatenate(sids) # save some undo/redo stuff message = 'label as multiunit clusters %r' % [ c.id for c in clusters ] cc = ClusterChange(sids, spikes, message) cc.save_old(clusters, s.norder, s.good) # delete old clusters inserti = s.norder.index(clusters[0].id) # collect cluster sids before cluster deletion sidss = [ cluster.neuron.sids for cluster in clusters ] spw.DelClusters(clusters, update=False) # create new multiunit clusters newclusters = [] for sids in sidss: muid = s.get_nextmuid() newcluster = spw.CreateCluster(update=False, id=muid, inserti=inserti) neuron = newcluster.neuron self.MoveSpikes2Neuron(sids, neuron, update=False) newcluster.update_pos() newclusters.append(newcluster) inserti += 1 # select newly labelled multiunit clusters spw.SelectClusters(newclusters) # save more undo/redo stuff cc.save_new(newclusters, s.norder, s.good) spw.AddClusterChangeToStack(cc) print(cc.message) def on_actionChanSplitClusters_triggered(self): """Split by channels button (/) click""" ## TODO: make sure this works on .srf files! Why was chancombosplit being used? self.spykewindow.maxchansplit() #self.spykewindow.chancombosplit() def on_actionDensitySplit_triggered(self): """Split cluster pair by density along line between their centers""" self.spykewindow.densitysplit() def on_actionRandomSplit_triggered(self): """Randomly split each selected cluster in half""" self.spykewindow.randomsplit() def on_actionRenumber_triggered(self): if QApplication.instance().keyboardModifiers() & Qt.ControlModifier: self.renumber_selected_cluster() else: self.renumber_all_clusters() def renumber_selected_cluster(self): """Renumber a single selected cluster to whatever free ID the user wants, for colouring purposes""" spw = self.spykewindow s = self.sort spikes = s.spikes cluster = spw.GetCluster() # exactly one selected cluster oldid = cluster.id newid = max(s.norder) + 1 newid, ok = QtGui.QInputDialog.getInt(self, "Renumber cluster", "This will clear the undo/redo stack, and is not undoable.\n" "Enter new ID:", value=newid) if not ok: return if newid in s.norder: print("Choose a non-existing nid to renumber to") return # deselect cluster spw.SelectClusters(cluster, on=False) # rename to newid cluster.id = newid # this indirectly updates neuron.id # update cluster and neuron dicts, and spikes array s.clusters[newid] = cluster s.neurons[newid] = cluster.neuron sids = cluster.neuron.sids spikes['nid'][sids] = newid # remove duplicate oldid dict entries del s.clusters[oldid] del s.neurons[oldid] # replace oldid with newid in norder s.norder[s.norder.index(oldid)] = newid # update colour of any relevant points in cluster plot spw.ColourPoints(cluster) # reselect cluster spw.SelectClusters(cluster) # some cluster changes in stack may no longer be applicable, reset cchanges del spw.cchanges[:] spw.cci = -1 print('Renumbered neuron %d to %d' % (oldid, newid)) def renumber_all_clusters(self): """Renumber single unit clusters consecutively from 1, ordered by y position. Do the same for multiunit (-ve number) clusters, starting from -1. Sorting by y position makes user inspection of clusters more orderly, makes the presence of duplicate clusters more obvious, and allows for maximal spatial separation between clusters of the same colour, reducing colour conflicts""" val = QtGui.QMessageBox.question(self.panel, "Renumber all clusters", "Are you sure? This will clear the undo/redo stack, and is not undoable.", QtGui.QMessageBox.Yes, QtGui.QMessageBox.No) if val == QtGui.QMessageBox.No: return spw = self.spykewindow s = self.sort spikes = s.spikes # get spatially and numerically ordered lists of new ids oldids = np.asarray(s.norder) oldsuids = oldids[oldids > 0] oldmuids = oldids[oldids < 0] # this is a bit confusing: find indices that would sort old ids by y pos, but then # what you really want is to find the y pos *rank* of each old id, so you need to # take argsort again: newsuids = np.asarray([ s.clusters[cid].pos['y0'] for cid in oldsuids ]).argsort().argsort() + 1 newmuids = np.asarray([ s.clusters[cid].pos['y0'] for cid in oldmuids ]).argsort().argsort() + 1 newmuids = -newmuids # multiunit, followed by single unit, no 0 junk cluster. Can't seem to do it the other # way around as of Qt 4.7.2 - it seems QListViews don't like having a -ve value in # the last entry. Doing so causes all 2 digit values in the list to become blank, # suggests a spacing calculation bug. Reproduce by making last entry multiunit, # undoing then redoing. Actually, maybe the bug is it doesn't like having a number # in the last entry with fewer digits than the preceding entry. Only seems to be a # problem when setting self.setUniformItemSizes(True). newids = np.concatenate([newmuids, newsuids]) # test if np.all(oldids == newids): print('Nothing to renumber: cluster IDs already ordered in y0 and contiguous') return # update for replacing oldids with newids oldids = np.concatenate([oldmuids, oldsuids]) # deselect current selections selclusters = spw.GetClusters() oldselids = [ cluster.id for cluster in selclusters ] spw.SelectClusters(selclusters, on=False) # delete junk cluster, if it exists if 0 in s.clusters: s.remove_neuron(0) print('Deleted junk cluster 0') if 0 in oldselids: oldselids.remove(0) # replace old ids with new ids cw = spw.windows['Cluster'] oldclusters = s.clusters.copy() # no need to deepcopy, just copy refs, not clusters dims = spw.GetClusterPlotDims() for oldid, newid in zip(oldids, newids): newid = int(newid) # keep as Python int, not numpy int if oldid == newid: continue # no need to waste time removing and recreating this cluster # change all occurences of oldid to newid cluster = oldclusters[oldid] cluster.id = newid # this indirectly updates neuron.id # update cluster and neuron dicts s.clusters[newid] = cluster s.neurons[newid] = cluster.neuron sids = cluster.neuron.sids spikes['nid'][sids] = newid # remove any orphaned cluster ids for oldid in oldids: if oldid not in newids: del s.clusters[oldid] del s.neurons[oldid] # reset norder s.norder = [] s.norder.extend(sorted([ int(newid) for newid in newmuids ])[::-1]) s.norder.extend(sorted([ int(newid) for newid in newsuids ])) # now do some final updates spw.UpdateClustersGUI() spw.ColourPoints(s.clusters.values()) # reselect the previously selected (but now renumbered) clusters, # helps user keep track oldiis = [ list(oldids).index(oldselid) for oldselid in oldselids ] newselids = newids[oldiis] spw.SelectClusters([s.clusters[cid] for cid in newselids]) # all cluster changes in stack are no longer applicable, reset cchanges del spw.cchanges[:] spw.cci = -1 print('Renumbering complete') def on_actionFind_triggered(self): """Find current cluster or spike""" ctrl = QApplication.instance().keyboardModifiers() & Qt.ControlModifier if ctrl: self.FindSpike() else: self.FindCluster() def FindCluster(self): """Move focus to location of currently selected (single) cluster""" spw = self.spykewindow try: cluster = spw.GetCluster() except RuntimeError as err: print(err) return gw = spw.windows['Cluster'].glWidget dims = spw.GetClusterPlotDims() gw.focus = np.float32([ cluster.normpos[dim] for dim in dims ]) gw.panTo() # pan to new focus gw.updateGL() def FindSpike(self): """Move focus to location of currently selected (single) spike""" spw = self.spykewindow try: sid = spw.GetSpike() except RuntimeError as err: print(err) return gw = spw.windows['Cluster'].glWidget pointis = gw.sids.searchsorted(sid) gw.focus = gw.points[pointis] gw.panTo() # pan to new focus gw.updateGL() def on_actionSelectRandomSpikes_triggered(self): """Select random sample of spikes in current cluster(s), or random sample of unsorted spikes if no cluster(S) selected""" nsamples = int(self.nsamplesComboBox.currentText()) if len(self.nslist.neurons) > 0: slist = self.nslist else: slist = self.uslist slist.clearSelection() # emits selectionChanged signal, .reset() doesn't slist.selectRandom(nsamples) def on_gainComboBox_triggered(self): """Set gain of panel based on gainComboBox selection""" panel = self.panel panel.gain = float(self.gainComboBox.currentText()) panel.do_layout() # resets axes lims and recalcs panel.pos panel._update_scale() panel.draw_refs() panel.updateAllItems() def on_actionAlignMin_triggered(self): self.Align('min') def on_actionAlignMax_triggered(self): self.Align('max') def on_actionAlignBest_triggered(self): self.Align('best') def on_actionShiftLeft_triggered(self): if QApplication.instance().keyboardModifiers() & Qt.ControlModifier: nt = -1 else: nt = -2 self.Shift(nt) def on_actionShiftRight_triggered(self): if QApplication.instance().keyboardModifiers() & Qt.ControlModifier: nt = 1 else: nt = 2 self.Shift(nt) def on_incltComboBox_triggered(self): """Change length of chan selection lines, optionally trigger cluster replot""" self.panel.update_selvrefs() self.panel.draw_refs() #self.spykewindow.ui.plotButton.click() def get_inclt(self): """Return inclt value in incltComboBox""" return float(self.incltComboBox.currentText()) # us inclt = property(get_inclt) def get_tis(self): """Return tis (start and end timepoint indices) of duration inclt, asymmetric around t=0 spike time. Note that any changes to the code here should also be made in the timepoint selection display code in SortPanel.update_selvrefs()""" s = self.sort inclt = self.inclt # duration to include, asymmetric around t=0 spike time (us) tw = self.panel.tw dtw = tw[1] - tw[0] # spike time window width left = intround(abs(tw[0]) / dtw * inclt) # left fraction wrt t=0 spike time right = inclt - left # right fraction wrt t=0 spike time tis = s.twts.searchsorted([-left, right]) return tis tis = property(get_tis) def on_nPCsPerChanSpinBox_valueChanged(self, val): self.sort.npcsperchan = val def on_actionReloadSpikes_triggered(self): spw = self.spykewindow sids = spw.GetAllSpikes() sort = self.sort if len(sids) == 0: # if no spikes specified, reload all spikes sids = sort.spikes['id'] usemeanchans = False if QApplication.instance().keyboardModifiers() & Qt.ControlModifier: usemeanchans = True sort.reload_spikes_and_templates(sids, usemeanchans=usemeanchans) # add sids to the set of dirtysids to be resaved to .wave file: spw.update_dirtysids(sids) # auto-refresh all plots: self.panel.updateAllItems() def on_actionFindPrevMostSimilar_triggered(self): self.findMostSimilarCluster('previous') def on_actionFindNextMostSimilar_triggered(self): self.findMostSimilarCluster('next') def on_actionToggleErrors_toggled(self, checked): self.panel.showFills(checked) def on_slider_valueChanged(self, slideri): self.nslist.clearSelection() # emits selectionChanged signal, .reset() doesn't if self.nslist.model().sliding == False: self.nslist.model().sids.sort() # change from nid order to sid order self.nslist.updateAll() # update to reflect new ordering self.nslist.model().sliding = True nsamples = int(self.nsamplesComboBox.currentText()) rows = np.arange(slideri, slideri+nsamples) self.nslist.selectRows(rows) def on_slider_sliderPressed(self): """Make slider click (without movement) highlight the first nsamples or fewer spikes when slider is at 0 position""" slideri = self.slider.value() if slideri == 0: nsamples = int(self.nsamplesComboBox.currentText()) nsamples = min(nsamples, self.nslist.model().nspikes) rows = np.arange(nsamples) self.nslist.selectRows(rows) def update_slider(self): """Update slider limits and step sizes""" nsamples = int(self.nsamplesComboBox.currentText()) nsids = len(self.nslist.sids) ulim = max(nsids-nsamples, 1) # upper limit self.slider.setRange(0, ulim) self.slider.setSingleStep(1) self.slider.setPageStep(nsamples) def findMostSimilarCluster(self, which='next'): """If no chans selected, compare source to next or previous most similar cluster based on chans the two have in common, while requiring the two have each others' max chans in common. If chans have been selected, use them as a starting set of chans to compare on. Also, use only the timepoint range selected in incltComboBox""" try: source = self.getClusterComparisonSource() except RuntimeError as err: print(err) return destinations = list(self.sort.clusters.values()) destinations.remove(source) selchans = np.sort(self.panel.chans_selected) if len(selchans) > 0: srcchans = np.intersect1d(source.neuron.wave.chans, selchans) if len(srcchans) == 0: print("Source cluster doesn't overlap with selected chans") return else: srcchans = source.neuron.wave.chans if self.spykewindow.ui.normButton.isChecked(): print("NOTE: findMostSimilarCluster() doesn't currently take spike amplitude " "normalization into account. To see the true amplitudes used to compare " "neuron pairs, turn off normalization") errors = [] dests = [] t0i, t1i = self.tis # timepoint range selected in incltComboBox # try and compare source neuron waveform to all destination neuron waveforms for dest in destinations: if dest.neuron.wave.data is None: # hasn't been calculated yet dest.neuron.update_wave() dstchans = dest.neuron.wave.chans if len(selchans) > 0: if not set(selchans).issubset(dstchans): continue dstchans = selchans cmpchans = np.intersect1d(srcchans, dstchans) if len(cmpchans) == 0: # not comparable continue # ensure maxchan of both source and dest neuron are both in cmpchans if source.neuron.chan not in cmpchans or dest.neuron.chan not in cmpchans: continue srcwavedata = source.neuron.wave[cmpchans].data[:, t0i:t1i] dstwavedata = dest.neuron.wave[cmpchans].data[:, t0i:t1i] error = core.rms(srcwavedata - dstwavedata) errors.append(error) dests.append(dest) if len(errors) == 0: print("No sufficiently overlapping clusters on selected chans to compare to") return errors = np.asarray(errors) dests = np.asarray(dests) desterrsortis = errors.argsort() if which == 'next': self._cmpid += 1 elif which == 'previous': self._cmpid -= 1 else: raise ValueError('Unknown which: %r' % which) self._cmpid = max(self._cmpid, 0) self._cmpid = min(self._cmpid, len(dests)-1) dest = dests[desterrsortis][self._cmpid] self.spykewindow.SelectClusters(dest) desterr = errors[desterrsortis][self._cmpid] print('n%d to n%d rmserror: %.2f uV' % (source.id, dest.id, self.sort.converter.AD2uV(desterr))) def getClusterComparisonSource(self): selclusters = self.spykewindow.GetClusters() errmsg = 'unclear which cluster to use as source for comparison' if len(selclusters) == 1: source = selclusters[0] self._source = source self._cmpid = -1 # init/reset elif len(selclusters) == 2: source = self._source if source not in selclusters: raise RuntimeError(errmsg) # deselect old destination cluster: selclusters.remove(source) self.spykewindow.SelectClusters(selclusters, on=False) else: self._source = None # reset for tidiness raise RuntimeError(errmsg) return source def Shift(self, nt): """Shift selected sids by nt timepoints""" s = self.sort spikes = s.spikes spw = self.spykewindow sids = np.concatenate((spw.GetClusterSpikes(), spw.GetUnsortedSpikes())) self.sort.shift(sids, nt) print('Shifted %d spikes by %d timepoints' % (len(sids), nt)) unids = np.unique(spikes['nid'][sids]) neurons = [ s.neurons[nid] for nid in unids ] for neuron in neurons: neuron.update_wave() # update affected mean waveforms # add dirtysids to the set to be resaved to .wave file: spw.update_dirtysids(sids) # auto-refresh all plots self.panel.updateAllItems() def Align(self, to): """Align all implicitly selected spikes to min or max, or best fit on selected chans""" s = self.sort spikes = s.spikes spw = self.spykewindow sids = np.concatenate((spw.GetClusterSpikes(), spw.GetUnsortedSpikes())) if to == 'best': tis = self.tis # find which chans are common to all sids: commonchans = s.get_common_chans(sids)[0] # check selected chans selchans = spw.get_selchans(sids) for selchan in selchans: if selchan not in commonchans: print("Chan %d not common to all spikes, pick from %r" % (selchan, list(commonchans))) return print('Best fit aligning %d spikes between tis=%r on chans=%r' % (len(sids), list(tis), selchans)) # numpy implementation: #dirtysids = s.alignbest(sids, tis, selchans) # cython implementation: dirtysids = util.alignbest_cy(s, sids, tis, np.int64(selchans)) else: # to in ['min', 'max'] print('Aligning %d spikes to %s' % (len(sids), to)) dirtysids = s.alignminmax(sids, to) paligned = len(dirtysids) / len(sids) * 100 print('Aligned %d/%d (%.1f%%) spikes' % (len(dirtysids), len(sids), paligned)) unids = np.unique(spikes['nid'][dirtysids]) neurons = [ s.neurons[nid] for nid in unids ] for neuron in neurons: neuron.update_wave() # update affected mean waveforms # add dirtysids to the set to be resaved to .wave file: spw.update_dirtysids(dirtysids) # auto-refresh all plots: self.panel.updateAllItems() def RemoveNeuron(self, neuron, update=True): """Remove neuron and all its spikes from the GUI and the Sort""" self.MoveSpikes2List(neuron, neuron.sids, update=update) self.sort.remove_neuron(neuron.id) if update: self.nlist.updateAll() def MoveSpikes2Neuron(self, sids, neuron=None, update=True): """Assign spikes from sort.spikes to a neuron, and trigger eventual update of mean wave. If neuron is None, create a new one""" sids = toiter(sids) spikes = self.sort.spikes if neuron == None: neuron = self.sort.create_neuron() neuron.sids = np.union1d(neuron.sids, sids) # update spikes['nid'][sids] = neuron.id if update: self.sort.update_usids() self.uslist.updateAll() if neuron in self.nslist.neurons: self.nslist.neurons = self.nslist.neurons # trigger nslist refresh # TODO: selection doesn't seem to be working, always jumps to top of list #self.uslist.Select(row) # automatically select the new item at that position neuron.wave.data = None # trigger template mean update return neuron def MoveSpikes2List(self, neuron, sids, update=True): """Move spikes from a neuron back to the unsorted spike list control""" sids = toiter(sids) if len(sids) == 0: return # nothing to do spikes = self.sort.spikes neuron.sids = np.setdiff1d(neuron.sids, sids) # return what's in 1st arr and not in 2nd spikes['nid'][sids] = 0 # unbind neuron id of sids in spikes struct array if update: self.sort.update_usids() self.uslist.updateAll() # this only makes sense if the neuron is currently selected in the nlist: if neuron in self.nslist.neurons: self.nslist.neurons = self.nslist.neurons # this triggers a refresh neuron.wave.data = None # triggers an update when it's actually needed def PlotClusterHistogram(self, X, nids): """Plot histogram of given clusters along a single dimension. If two clusters are given, project them onto axis connecting their centers, and calculate separation indices between them. Otherwise, plot the distribution of all given clusters (up to a limit) along the first dimension in X.""" spw = self.spykewindow mplw = spw.OpenWindow('MPL') unids = np.unique(nids) # each unid corresponds to a cluster, except possibly unid 0 nclusters = len(unids) if nclusters == 0: mplw.ax.clear() mplw.figurecanvas.draw() print("No spikes selected") return elif nclusters > 5: # to prevent slowdowns, don't plot too many mplw.ax.clear() mplw.figurecanvas.draw() print("Too many clusters selected for cluster histogram") return elif nclusters == 2: calc_measures = True else: calc_measures = False projdimi = 0 ndims = X.shape[1] points = [] # list of projection of each cluster's points onto dimi for unid in unids: sidis, =
np.where(nids == unid)
numpy.where
import torch import torch.nn as nn from torch.nn import Module import torch.nn.functional as F from torch.autograd import Function import numpy as np def shift(x): #TODO: edge case, when x contains 0 return 2.**torch.round(torch.log2(x)) def S(bits): return 2.**(bits-1) def SR(x): r = torch.cuda.FloatTensor(*x.size()).uniform_() return torch.floor(x+r) def C(x, bits): if bits > 15 or bits == 1: delta = 0 else: delta = 1. / S(bits) upper = 1 - delta lower = -1 + delta return torch.clamp(x, lower, upper) def Q(x, bits): assert bits != -1 if bits==1: return torch.sign(x) if bits > 15: return x return torch.round(x*S(bits))/S(bits) def QW(x, bits, scale=1.0): y = Q(C(x, bits), bits) # per layer scaling if scale>1.8: y /= scale return y def QE(x, bits): max_entry = x.abs().max() assert max_entry != 0, "QE blow" #if max_entry != 0: x /= shift(max_entry) return Q(C(x, bits), bits) def QG(x, bits_G, lr): max_entry = x.abs().max() assert max_entry != 0, "QG blow" #if max_entry != 0: x /= shift(max_entry) norm = lr * x norm = SR(norm) return norm / S(bits_G) def Retention(x, t, v, detect, target): lower = -1.0 upper = 1.0 if detect == 1: # need to define the sign of v sign = torch.zeros_like(x) truncateX = (x+1)/2 truncateTarget = (target+1)/2 sign = torch.sign(torch.add(torch.zeros_like(x),truncateTarget)-truncateX) ratio = t**(v*sign) else : # random generate target for each cell sign = torch.randint_like(x, -1, 2) truncateX = (x+1)/2 ratio = t**(v*sign) return torch.clamp((2*truncateX*ratio-1), lower, upper) def NonLinearQuantizeOut(x, bit): # minQ = torch.min(x) # delta = torch.max(x) - torch.min(x) k=7.0 minQ = -k*x.abs().mean() maxQ = k*x.abs().mean() delta = maxQ - minQ #print(minQ) #print(delta) if (bit == 3) : # 3-bit ADC y = x.clone() base = torch.zeros_like(y) bound = np.array([0.02, 0.08, 0.12, 0.18, 0.3, 0.5, 0.7, 1]) out = np.array([0.01, 0.05, 0.1, 0.15, 0.24, 0.4, 0.6, 0.85]) ref = torch.from_numpy(bound).float() quant = torch.from_numpy(out).float() y = torch.where(y<(minQ+ref[0]*delta), torch.add(base,(minQ+quant[0]*delta)), y) y = torch.where(((minQ+ref[0]*delta)<=y) & (y<(minQ+ref[1]*delta)), torch.add(base,(minQ+quant[1]*delta)), y) y = torch.where(((minQ+ref[1]*delta)<=y) & (y<(minQ+ref[2]*delta)), torch.add(base,(minQ+quant[2]*delta)), y) y = torch.where(((minQ+ref[2]*delta)<=y) & (y<(minQ+ref[3]*delta)), torch.add(base,(minQ+quant[3]*delta)), y) y = torch.where(((minQ+ref[3]*delta)<=y) & (y<(minQ+ref[4]*delta)), torch.add(base,(minQ+quant[4]*delta)), y) y = torch.where(((minQ+ref[4]*delta)<=y) & (y<(minQ+ref[5]*delta)), torch.add(base,(minQ+quant[5]*delta)), y) y = torch.where(((minQ+ref[5]*delta)<=y) & (y<(minQ+ref[6]*delta)), torch.add(base,(minQ+quant[6]*delta)), y) y = torch.where(((minQ+ref[6]*delta)<=y) & (y<(minQ+ref[7]*delta)), torch.add(base,(minQ+quant[7]*delta)), y) elif (bit == 4): y = x.clone() # 4-bit ADC base = torch.zeros_like(y) # good for 2-bit cell bound = np.array([0.02, 0.05, 0.08, 0.12, 0.16, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.85, 1]) out = np.array([0.01, 0.035, 0.065, 0.1, 0.14, 0.18, 0.225, 0.275, 0.325, 0.375, 0.425, 0.475, 0.55, 0.65, 0.775, 0.925]) ref = torch.from_numpy(bound).float() quant = torch.from_numpy(out).float() y = torch.where(y.data<(minQ+ref[0]*delta), torch.add(base,(minQ+quant[0]*delta)), y) y = torch.where(((minQ+ref[0]*delta)<=y.data) & (y.data<(minQ+ref[1]*delta)), torch.add(base,(minQ+quant[1]*delta)), y) y = torch.where(((minQ+ref[1]*delta)<=y.data) & (y.data<(minQ+ref[2]*delta)), torch.add(base,(minQ+quant[2]*delta)), y) y = torch.where(((minQ+ref[2]*delta)<=y.data) & (y.data<(minQ+ref[3]*delta)), torch.add(base,(minQ+quant[3]*delta)), y) y = torch.where(((minQ+ref[3]*delta)<=y.data) & (y.data<(minQ+ref[4]*delta)), torch.add(base,(minQ+quant[4]*delta)), y) y = torch.where(((minQ+ref[4]*delta)<=y.data) & (y.data<(minQ+ref[5]*delta)), torch.add(base,(minQ+quant[5]*delta)), y) y = torch.where(((minQ+ref[5]*delta)<=y.data) & (y.data<(minQ+ref[6]*delta)), torch.add(base,(minQ+quant[6]*delta)), y) y = torch.where(((minQ+ref[6]*delta)<=y.data) & (y.data<(minQ+ref[7]*delta)), torch.add(base,(minQ+quant[7]*delta)), y) y = torch.where(((minQ+ref[7]*delta)<=y.data) & (y.data<(minQ+ref[8]*delta)), torch.add(base,(minQ+quant[8]*delta)), y) y = torch.where(((minQ+ref[8]*delta)<=y.data) & (y.data<(minQ+ref[9]*delta)), torch.add(base,(minQ+quant[9]*delta)), y) y = torch.where(((minQ+ref[9]*delta)<=y.data) & (y.data<(minQ+ref[10]*delta)), torch.add(base,(minQ+quant[10]*delta)), y) y = torch.where(((minQ+ref[10]*delta)<=y.data) & (y.data<(minQ+ref[11]*delta)), torch.add(base,(minQ+quant[11]*delta)), y) y = torch.where(((minQ+ref[11]*delta)<=y.data) & (y.data<(minQ+ref[12]*delta)), torch.add(base,(minQ+quant[12]*delta)), y) y = torch.where(((minQ+ref[12]*delta)<=y.data) & (y.data<(minQ+ref[13]*delta)), torch.add(base,(minQ+quant[13]*delta)), y) y = torch.where(((minQ+ref[13]*delta)<=y.data) & (y.data<(minQ+ref[14]*delta)), torch.add(base,(minQ+quant[14]*delta)), y) y = torch.where(((minQ+ref[14]*delta)<=y.data) & (y.data<(minQ+ref[15]*delta)), torch.add(base,(minQ+quant[15]*delta)), y) elif (bit == 5): y = x.clone() # 5-bit ADC base = torch.zeros_like(y) # good for 2-bit cell # bound = np.array([0.02, 0.04, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18, 0.2, 0.22, 0.24, 0.26, 0.28, 0.3, 0.32, 0.34, 0.36, 0.4, 0.44, 0.48, 0.52, 0.56, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]) # bound = np.array([0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30, 0.34, 0.38, 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.66, 0.68, 0.72, 0.76, 0.80, 0.84, 0.88, 0.92, 0.96]) # out = np.array([0.0, 0.04, 0.08, 0.12, 0.16, 0.20, 0.24, 0.28, 0.32, 0.36, 0.39, 0.41, 0.43, 0.45, 0.47, 0.49, 0.51, 0.53, 0.55, 0.57, 0.59, 0.61, 0.63, 0.65, 0.67, 0.70, 0.74, 0.78, 0.82, 0.86, 0.90, 0.94]) bound =
np.array([0.02, 0.06, 0.1, 0.14, 0.18, 0.22, 0.26, 0.30, 0.34, 0.36, 0.38, 0.40, 0.42, 0.44, 0.46, 0.48, 0.50, 0.52, 0.54, 0.56, 0.58, 0.60, 0.62, 0.64, 0.68, 0.72, 0.76, 0.80, 0.84, 0.88, 0.92, 0.96])
numpy.array
import os import numpy as np import matplotlib.pyplot as plt from matplotlib.pyplot import plot, figure, imshow, show, xlabel, ylabel, legend, gca, subplot, title, tight_layout, savefig import matplotlib.ticker as mtick from cycler import cycler # Load timings cwd = os.getcwd() path_r5 = cwd + '/results/run_r5_max_cpu/' path_c5n = cwd + '/results/run_c5n_max_cpus/' file_list_r5 = os.listdir(path_r5) file_list_c5n = os.listdir(path_c5n) file_timings_r5 = [] file_timings_c5n = [] num_instances = np.array([1,2,4,8,16]) num_scalings = len(num_instances) num_runs_per_scaling = 3 for batchsize in num_instances: for run in range(num_runs_per_scaling): for filename in file_list_r5: if filename[0:int(23 + len(str(batchsize)) + len(str(run)))] == \ 'timings_num_nodes_' + str(batchsize) + '_run_' + str(run): file_timings_r5.append(filename) for filename in file_list_c5n: if filename[0:int(23 + len(str(batchsize)) + len(str(run)))] == \ 'timings_num_nodes_' + str(batchsize) + '_run_' + str(run): file_timings_c5n.append(filename) print("Found ", len(file_timings_r5), " R5 file(s).") print("Found ", len(file_timings_c5n), " C5n file(s).") timings_r5 = [] timings_c5n = [] for filename in file_timings_r5: timings_r5.append(np.load(path_r5 + filename, allow_pickle=True)) # timings: list of num_files entries: 1 x 6 for filename in file_timings_c5n: timings_c5n.append(np.load(path_c5n + filename, allow_pickle=True)) # Timings # create=0; start=1; end=2; var=3; devito=4; script=5 job_runtime_r5 = np.zeros((num_scalings, num_runs_per_scaling)) container_runtime_r5 = np.zeros((num_scalings, num_runs_per_scaling)) kernel_runtime_r5 = np.zeros((num_scalings, num_runs_per_scaling)) devito_runtime_r5 = np.zeros((num_scalings, num_runs_per_scaling)) script_runtime_r5 = np.zeros((num_scalings, num_runs_per_scaling)) job_runtime_c5n = np.zeros((num_scalings, num_runs_per_scaling)) container_runtime_c5n = np.zeros((num_scalings, num_runs_per_scaling)) kernel_runtime_c5n = np.zeros((num_scalings, num_runs_per_scaling)) devito_runtime_c5n = np.zeros((num_scalings, num_runs_per_scaling)) script_runtime_c5n = np.zeros((num_scalings, num_runs_per_scaling)) idx = 0 for j in range(num_scalings): for k in range(num_runs_per_scaling): T = timings_r5[idx].reshape(7) job_runtime_r5[j,k] = (T[2] - T[0]) / 1e3 container_runtime_r5[j,k] = (T[2] - T[1]) / 1e3 kernel_runtime_r5[j,k] = T[4] / num_instances[j] devito_runtime_r5[j,k] = T[5] script_runtime_r5[j,k] = T[6] T = timings_c5n[idx].reshape(7) job_runtime_c5n[j,k] = (T[2] - T[0]) / 1e3 container_runtime_c5n[j,k] = (T[2] - T[1]) / 1e3 kernel_runtime_c5n[j,k] = T[4] / num_instances[j] devito_runtime_c5n[j,k] = T[5] script_runtime_c5n[j,k] = T[6] idx += 1 # Timings plot fig, ax = plt.subplots(figsize=(3.33, 3)) #ax.set_xscale("log", nonposx='clip') #ax.set_yscale("log", nonposy='clip') bar1 = ax.bar(np.log(num_instances), np.mean(container_runtime_r5, axis=1), align='edge', alpha=0.8, ecolor='black', width=-.2, capsize=3) bar2 = ax.bar(np.log(num_instances), np.mean(container_runtime_c5n, axis=1), align='edge', alpha=0.8, ecolor='black', width=.2, capsize=3) plt.xticks(np.log(num_instances), ('1', '2', '4', '8', '16'), size=10) ax.set_xlabel('No. of instances', fontsize=10) ax.set_ylabel('Devito kernel runtime [s]', fontsize=10) ax.tick_params(axis='y', labelsize=10) ax.tick_params(axis='x', labelsize=10) ax.set_ylim([0, 500]) plt.legend(['r5 family', 'c5n family'], loc='upper right', fontsize=9) def autolabel(rects, labels, scale): """ Attach a text label above each bar displaying its height """ i=0 for rect in rects: height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/scale, 10, labels[i], va='bottom', fontsize=9, rotation=90, color='white') i+=1 labels_r5 = ['r5.12xlarge (24)', 'r5.4xlarge (16)', 'r5.2xlarge (16)', 'r5.xlarge (16)', 'r5.large (16)'] labels_c5n = ['c5n.18xlarge (18)', 'c5n.9xlarge (36)', 'c5n.4xlarge (32)', 'c5n.2xlarge (32)', 'c5n.xlarge (32)'] autolabel(bar1, labels_c5n, 1.15) autolabel(bar2, labels_r5, 7) plt.tight_layout() savefig('strong_scaling_runtime_max_threads.png', dpi=600, format='png') # Cost r5 vs c5n # Cost plot (<NAME>, May 13, 2019, 10:04 PM) r5_on_demand = np.array([3.024, 1.008, 0.504, 0.252, 0.126])/60/60 # r5.12xlarge, r5.4xlarge, r5.2xlarge, r5.xlarge, r5.large r5_spot = np.array([0.8766, 0.2959, 0.1491, 0.0732, 0.0356])/60/60 c5n_on_demand = np.array([3.888, 1.944, 0.864, 0.432, 0.216])/60/60 # c5n.18xlarge, c5n.9xlarge, c5n.4xlarge, c5n.2xlarge, c5n.xlarge c5n_spot =
np.array([1.1659, 0.583, 0.2591, 0.1295, 0.0648])
numpy.array
import torch import torch.nn as nn from mmcv.cnn import normal_init import numpy as np import cv2 import math #import torch.nn.functional as F from mmdet.core import multi_apply, multiclass_nms, distance2bbox, force_fp32 from ..builder import build_loss from ..registry import HEADS from ..utils import bias_init_with_prob, Scale, ConvModule INF = 1e8 @HEADS.register_module class MatrixCenterHead(nn.Module): def __init__(self, num_classes, # init 80 in_channels, feat_channels=256, stacked_convs=1, strides=(4, 4, 4, 8, 8, 8, 8, 16, 16, 16, 16, 16, 32, 32, 32, 32, 64, 64, 64), regress_ranges=((-1, 48), (48, 96), (96, 192), (192, 384), (384, INF)), flags = [[0, 0, 0, 1, 1], [0, 0, 0, 0, 1], [0, 0, 0, 0, 0], [1, 0, 0, 0, 0], [1, 1, 0, 0, 0]], index_map = {0:0, 1:1, 2:2, 5:3, 6:4, 7:5, 8:6, 10:7, 11:8, 12:9, 13:10, 14:11, 16:12, 17:13, 18:14, 19:15, 22:16, 23:17, 24:18}, # use i * 5 + j to get the featmap loss_hm = dict( type="CenterFocalLoss" ), # 这里实现 CenterFocalLoss loss_wh = dict( type="L1Loss", loss_weight=0.1 ), loss_offset = dict( type="L1Loss", loss_weight=1.0 ), conv_cfg=None, norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)): super(MatrixCenterHead, self).__init__() self.num_classes = num_classes # self.cls_out_channels = num_classes - 1 self.cls_out_channels = num_classes self.in_channels = in_channels self.feat_channels = feat_channels self.stacked_convs = stacked_convs self.strides = strides self.regress_ranges = regress_ranges self.featmap_sizes = None self.loss_hm = build_loss(loss_hm) self.loss_wh = build_loss(loss_wh) self.loss_offset = build_loss(loss_offset) self.conv_cfg = conv_cfg self.norm_cfg = norm_cfg self.fp16_enabled = False self.flags = flags self.index_map = index_map self._init_layers() def _init_layers(self): self.cls_convs = nn.ModuleList() self.wh_convs = nn.ModuleList() self.offset_convs = nn.ModuleList() for i in range(self.stacked_convs): chn = self.in_channels if i == 0 else self.feat_channels self.cls_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.wh_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.offset_convs.append( ConvModule( chn, self.feat_channels, 3, stride=1, padding=1, conv_cfg=self.conv_cfg, norm_cfg=self.norm_cfg, bias=self.norm_cfg is None)) self.center_hm = nn.Conv2d(self.feat_channels, self.cls_out_channels, 3, padding=1, bias=True) self.center_wh = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.center_offset = nn.Conv2d(self.feat_channels, 2, 3, padding=1, bias=True) self.scales = nn.ModuleList([Scale(1.0) for _ in self.strides]) #self.scales = nn.ModuleList([Scale(1.0) for _ in 19]) def init_weights(self): # for m in self.cls_convs: # normal_init(m.conv, std=0.01) # for m in self.wh_convs: # normal_init(m.conv, std=0.01) # for m in self.offset_convs: # normal_init(m.conv, std=0.01) #bias_hm = bias_init_with_prob(0.01) # 这里的初始化? #normal_init(self.center_hm, std=0.01, bias=bias_hm) self.center_hm.bias.data.fill_(-2.19) nn.init.constant_(self.center_wh.bias, 0) nn.init.constant_(self.center_offset.bias, 0) # normal_init(self.center_hm, std=0.01) # normal_init(self.center_wh, std=0.01) # normal_init(self.center_offset, std=0.01) def forward(self, feats): return multi_apply(self.forward_single, feats, self.scales) def forward_single(self, x, scale): cls_feat = x wh_feat = x offset_feat = x for cls_layer in self.cls_convs: cls_feat = cls_layer(cls_feat) cls_score = self.center_hm(cls_feat) for wh_layer in self.wh_convs: wh_feat = wh_layer(wh_feat) wh_pred = self.center_wh(wh_feat) for offset_layer in self.offset_convs: offset_feat = offset_layer(offset_feat) offset_pred = self.center_offset(offset_feat) return cls_score, wh_pred, offset_pred @force_fp32(apply_to=('cls_scores', 'wh_preds', 'offset_preds')) def loss(self, cls_scores, wh_preds, offset_preds, gt_bboxes, gt_labels, img_metas, cfg, gt_bboxes_ignore=None): assert len(cls_scores) == len(wh_preds) == len(offset_preds) featmap_sizes = [featmap.size()[-2:] for featmap in cls_scores] self.featmap_sizes = featmap_sizes all_level_points = self.get_points(featmap_sizes, offset_preds[0].dtype, offset_preds[0].device) #print(img_metas) #self.c = img_metas['c'] #self.s = img_metas['s'] self.tensor_dtype = offset_preds[0].dtype self.tensor_device = offset_preds[0].device heatmaps, wh_targets, offset_targets = self.center_target(gt_bboxes, gt_labels, img_metas, all_level_points) # 所有层的concat的, 每张图对应一个 num_imgs = cls_scores[0].size(0) # batch_size #print(num_imgs) # flatten cls_scores, bbox_preds and centerness flatten_cls_scores = [ cls_score.permute(0, 2, 3, 1).reshape(-1, self.cls_out_channels) for cls_score in cls_scores ] # cls_scores(num_levels, batch_size, 80, h, w) => (num_levels, batch_size * w * h, 80) flatten_wh_preds = [ wh_pred.permute(0, 2, 3, 1).reshape(-1, 2) # batchsize, h, w, 2 => batchsize, h, w, 2 for wh_pred in wh_preds ] flatten_offset_preds = [ offset_pred.permute(0, 2, 3, 1).reshape(-1, 2) for offset_pred in offset_preds ] flatten_cls_scores = torch.cat(flatten_cls_scores) flatten_wh_preds = torch.cat(flatten_wh_preds) flatten_offset_preds = torch.cat(flatten_offset_preds) # targets flatten_heatmaps = torch.cat(heatmaps) flatten_wh_targets = torch.cat(wh_targets) # torch.Size([all_level_points, 2]) flatten_offset_targets = torch.cat(offset_targets) # repeat points to align with bbox_preds # flatten_points = torch.cat( # [points.repeat(num_imgs, 1) for points in all_level_points]) # pos_inds = flatten_labels.nonzero().reshape(-1) #print(flatten_wh_targets.shape) #print(flatten_wh_targets.nonzero()) center_inds = flatten_wh_targets[...,0].nonzero().reshape(-1) #print(center_inds) num_center = len(center_inds) #print(num_center) # what about use the centerness * labels to indict an object # loss_cls = self.loss_cls( # flatten_cls_scores, flatten_labels, # labels gt is small area # avg_factor=num_pos + num_imgs) # avoid num_pos is 0 flatten_cls_scores = torch.clamp(flatten_cls_scores.sigmoid_(), min=1e-4, max=1-1e-4) loss_hm = self.loss_hm(flatten_cls_scores, flatten_heatmaps) pos_wh_targets = flatten_wh_targets[center_inds] #print(pos_wh_targets.shape) pos_wh_preds = flatten_wh_preds[center_inds] pos_offset_preds = flatten_offset_preds[center_inds] pos_offset_targets = flatten_offset_targets[center_inds] if num_center > 0: # TODO: use the iou loss # center_points = flatten_points[center_inds] # center_decoded_bbox_preds = wh_offset2bbox(center_points, pos_wh_preds, pos_offset_preds) # center_decoded_bbox_targets = wh_offset2bbox(center_points, pos_wh_targets, pos_offset_targets) loss_wh = self.loss_wh(pos_wh_preds, pos_wh_targets, avg_factor=num_center + num_imgs) #loss_wh = F.l1_loss(pos_wh_preds, pos_wh_targets, reduction='sum') / (num_center + num_imgs) #loss_wh = 0.1 * loss_wh loss_offset = self.loss_offset(pos_offset_preds, pos_offset_targets, avg_factor=num_center + num_imgs) else: loss_wh = pos_wh_preds.sum() loss_offset = pos_offset_preds.sum() return dict( loss_hm = loss_hm, loss_wh = loss_wh, loss_offset = loss_offset) def get_points(self, featmap_sizes, dtype, device): """Get points according to feature map sizes. Args: featmap_sizes (list[tuple]): Multi-level feature map sizes. dtype (torch.dtype): Type of points. device (torch.device): Device of points. Returns: tuple: points of each image. """ mlvl_points = [] for i in range(len(featmap_sizes)): mlvl_points.append( self.get_points_single(featmap_sizes[i], self.strides[i], dtype, device)) return mlvl_points def get_points_single(self, featmap_size, stride, dtype, device): h, w = featmap_size x_range = torch.arange( 0, w * stride, stride, dtype=dtype, device=device) # 以一定间隔取x的值 y_range = torch.arange( 0, h * stride, stride, dtype=dtype, device=device) y, x = torch.meshgrid(y_range, x_range) # 得到featmap的所有点 points = torch.stack( (x.reshape(-1), y.reshape(-1)), dim=-1) + stride // 2 return points def center_target(self, gt_bboxes_list, gt_labels_list, img_metas, all_level_points): #assert len(self.featmap_sizes) == len(self.regress_ranges) assert len(self.featmap_sizes) == len(self.strides) # get heatmaps and targets of each image # heatmaps in heatmaps_list: [num_points, 80] # wh_targets: [num_points, 2] => [batch_size, num_points, 2] heatmaps_list, wh_targets_list, offset_targets_list = multi_apply( self.center_target_single, gt_bboxes_list, gt_labels_list, img_metas ) # split to per img, per level num_points = [center.size(0) for center in all_level_points] # 每一层多少个点 all_level_points [[12414, 2], []] heatmaps_list = [heatmaps.split(num_points, 0) for heatmaps in heatmaps_list] wh_targets_list = [wh_targets.split(num_points, 0) for wh_targets in wh_targets_list] offset_targets_list = [offset_targets.split(num_points, 0) for offset_targets in offset_targets_list] # concat per level image, 同一层的concat # [(batch_size,featmap_size[1]), ...) concat_lvl_heatmaps = [] concat_lvl_wh_targets = [] concat_lvl_offset_targets = [] num_levels = len(self.featmap_sizes) for i in range(num_levels): concat_lvl_heatmaps.append( torch.cat([heatmaps[i] for heatmaps in heatmaps_list])) # (num_levels, batch_size * w * h, 80) concat_lvl_wh_targets.append( torch.cat( [wh_targets[i] for wh_targets in wh_targets_list])) concat_lvl_offset_targets.append( torch.cat( [offset_targets[i] for offset_targets in offset_targets_list])) return concat_lvl_heatmaps, concat_lvl_wh_targets, concat_lvl_offset_targets def center_target_single(self, gt_bboxes, gt_labels, img_meta): """ single image gt_bboxes:torch.Size([6, 4]) gt_labels:torch.Size([6]) tensor([34, 34, 34, 34, 34, 34], device='cuda:0') featmap_sizes:(list[tuple]): Multi-level feature map sizes. regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 512),(512, INF)) """ # transform the gt_bboxes, gt_labels to numpy gt_bboxes = gt_bboxes.data.cpu().numpy() gt_labels = gt_labels.data.cpu().numpy() #print(gt_bboxes, gt_labels) num_objs = gt_labels.shape[0] #print(num_objs) # heatmaps [level1, level2, level3, level4, level5] num_levels = len(self.featmap_sizes) heatmaps_targets = [] wh_targets = [] offset_targets = [] # get the target shape for each image for i in range(num_levels): # 一共有19层 h, w = self.featmap_sizes[i] hm = np.zeros((self.cls_out_channels, h, w), dtype=np.float32) heatmaps_targets.append(hm) wh = np.zeros((h, w, 2), dtype=np.float32) wh_targets.append(wh) offset = np.zeros((h, w, 2), dtype=np.float32) offset_targets.append(offset) for k in range(num_objs): bbox = gt_bboxes[k] cls_id = gt_labels[k] if img_meta['flipped']: bbox[[0, 2]] = img_meta['width'] - bbox[[2, 0]] - 1 # condition: in the regress_ranges origin_h, origin_w = bbox[3] - bbox[1], bbox[2] - bbox[0] # 根据h, w在哪一层将output设置为当前层的 index_i = 0 index_j = 0 for i in range(5): min_regress_distance, max_regress_distance = self.regress_ranges[i] if (origin_w > min_regress_distance) and (origin_w <= max_regress_distance): index_i = i break for j in range(5): min_regress_distance, max_regress_distance = self.regress_ranges[j] if (origin_h > min_regress_distance) and (origin_h <= max_regress_distance): index_j = j break if self.flags[i][j] == 1: continue index_level = self.index_map[index_i * 5 + index_j] output_h, output_w = self.featmap_sizes[index_level] #print(output_h, output_w) hm = heatmaps_targets[index_level] wh = wh_targets[index_level] offset = offset_targets[index_level] # c, s is passed by meta trans_output = get_affine_transform(img_meta['c'], img_meta['s'], 0, [output_w, output_h]) bbox[:2] = affine_transform(bbox[:2], trans_output) bbox[2:] = affine_transform(bbox[2:], trans_output) bbox[[0, 2]] =
np.clip(bbox[[0, 2]], 0, output_w - 1)
numpy.clip
# Author: <NAME> # email: <EMAIL> # this file includes functions about transforming the bounding box import numpy as np, math, time, copy from math import radians as rad from .private import safe_bbox, safe_center_bbox, bboxcheck_TLBR, bboxcheck_TLWH from .math_geometry import get_2dline_from_pts_slope, get_2dpts_from_lines from .math_conversion import imagecoor2cartesian, cartesian2imagecoor from xinshuo_miscellaneous import isnparray, is2dptsarray, is2dptsarray_occlusion, is2dptsarray_confidence, is2dpts, isinteger, isbbox, islist, iscenterbbox # general format instruction # TLBR: top left bottom right, stands for two corner points, the top left point is included, the bottom right point is not included # e.g., TLBR = [5, 5, 10, 10], it indicates point coordinates from 5 to 9, not including 10 # TLWH: top left width height, stands for one corner point and range, the range means how many points are included along an axis # e.g., TLWH = [0, 0, 5, 5], it indicates point coordinates from 0 to 4, not including 5 ############################################# format transform ################################# def bbox_TLBR2TLWH(bboxes_in, warning=True, debug=True): ''' transform the input bounding box with TLBR format to TLWH format parameters: bboxes_in: TLBR format, a list of 4 elements, a listoflist of 4 elements: e.g., [[1,2,3,4], [5,6,7,8]], a numpy array with shape or (N, 4) or (4, ) outputs: bbox_TLWH: N X 4 numpy array, TLWH format ''' np_bboxes = safe_bbox(bboxes_in, warning=warning, debug=debug) if debug: assert bboxcheck_TLBR(np_bboxes, warning=warning, debug=debug), 'the input bounding box should be TLBR format' bbox_TLWH = np.zeros_like(np_bboxes) bbox_TLWH[:, 0] = np_bboxes[:, 0] bbox_TLWH[:, 1] = np_bboxes[:, 1] bbox_TLWH[:, 2] = np_bboxes[:, 2] - np_bboxes[:, 0] bbox_TLWH[:, 3] = np_bboxes[:, 3] - np_bboxes[:, 1] return bbox_TLWH def bbox_TLWH2TLBR(bboxes_in, warning=True, debug=True): ''' transform the input bounding box with TLWH format to TLBR format parameters: bboxes_in: TLWH format, a list of 4 elements, a listoflist of 4 elements: e.g., [[1,2,3,4], [5,6,7,8]], a numpy array with shape or (N, 4) or (4, ) outputs: bbox_TLBR: N X 4 numpy array, TLBR format ''' np_bboxes = safe_bbox(bboxes_in, warning=warning, debug=debug) if debug: assert bboxcheck_TLWH(np_bboxes, warning=warning, debug=debug), 'the input bounding box should be TLBR format' bbox_TLBR = np.zeros_like(np_bboxes) bbox_TLBR[:, 0] = np_bboxes[:, 0] bbox_TLBR[:, 1] = np_bboxes[:, 1] bbox_TLBR[:, 2] = np_bboxes[:, 2] + np_bboxes[:, 0] bbox_TLBR[:, 3] = np_bboxes[:, 3] + np_bboxes[:, 1] return bbox_TLBR ############################################# 2D transform ################################# def clip_bboxes_TLBR(bboxes_in, im_width, im_height, warning=True, debug=True): ''' this function clips bboxes inside the image boundary, the coordinates in the clipped bbox are half-included [x, y) parameters: bboxes_in: TLBR format, a list of 4 elements, a listoflist of 4 elements: e.g., [[1,2,3,4], [5,6,7,8]], a numpy array with shape or (N, 4) or (4, ) im_width/im_height: scalar outputs: clipped_bboxes: TLBR format, numpy array with shape of (N, 4) ''' np_bboxes = safe_bbox(bboxes_in, warning=warning, debug=debug) if debug: assert isinteger(im_width) and isinteger(im_height), 'the image width and height are not correct' assert bboxcheck_TLBR(np_bboxes, warning=warning, debug=debug), 'the input bboxes are not good' clipped_bboxes = np.zeros_like(np_bboxes) clipped_bboxes[:, 0] = np.maximum(np.minimum(np_bboxes[:, 0], im_width), 0) # x1 >= 0 & x1 <= width, included clipped_bboxes[:, 1] = np.maximum(np.minimum(np_bboxes[:, 1], im_height), 0) # y1 >= 0 & y1 <= height, included clipped_bboxes[:, 2] = np.maximum(np.minimum(np_bboxes[:, 2], im_width), 0) # x2 >= 0 & x2 <= width, not included clipped_bboxes[:, 3] = np.maximum(np.minimum(np_bboxes[:, 3], im_height), 0) # y2 >= 0 & y2 <= height, not included return clipped_bboxes def clip_bboxes_TLWH(bboxes_in, im_width, im_height, warning=True, debug=True): ''' this function clips bboxes inside the image boundary parameters: bboxes_in: TLWH format, a list of 4 elements, a listoflist of 4 elements: e.g., [[1,2,3,4], [5,6,7,8]], a numpy array with shape or (N, 4) or (4, ) im_width/im_height: scalar outputs: clipped_bboxes_TLWH: TLWH format, numpy array with shape of (N, 4) ''' np_bboxes = safe_bbox(bboxes_in, warning=warning, debug=debug) if debug: assert isinteger(im_width) and isinteger(im_height), 'the image width and height are not correct' assert bboxcheck_TLWH(np_bboxes, warning=warning, debug=debug), 'the input bboxes are not good' bboxes_TLBR = bbox_TLWH2TLBR(np_bboxes, debug=debug) clipped_bboxes_TLBR = clip_bboxes_TLBR(bboxes_TLBR, im_width, im_height, warning=warning, debug=debug) clipped_bboxes_TLWH = bbox_TLBR2TLWH(clipped_bboxes_TLBR, warning=warning, debug=debug) return clipped_bboxes_TLWH def get_center_crop_bbox(center_bboxes_in, im_width=None, im_height=None, warning=True, debug=True): ''' obtain a bbox to crop around a center point parameters: center_bboxes_in: a list of 2 or 4 scalar elements, or (N, 2) / (N, 4) numpy array 2 - > [crop_width, crop_height], the center is the image center 4 - > [center_x, center_y, crop_width, crop_height] im_width/im_height: scalar outputs: crop_bboxes: TLHW format, an int64 numpy array with shape of (N, 4) ''' np_center_bboxes = safe_center_bbox(center_bboxes_in, warning=warning, debug=debug) if debug: assert iscenterbbox(np_center_bboxes), 'the center bbox does not have a good shape' if np_center_bboxes.shape[1] == 4: # crop around the given center and width and height center_x = np_center_bboxes[:, 0] center_y = np_center_bboxes[:, 1] crop_width = np_center_bboxes[:, 2] crop_height = np_center_bboxes[:, 3] else: # crop around the center of the image if debug: assert (im_width is not None) and (im_height is not None), 'the image shape should be known when center is not provided' center_x = np.ceil(im_width / 2) center_y = np.ceil(im_height / 2) crop_width = np_center_bboxes[:, 0] crop_height = np_center_bboxes[:, 1] xmin = center_x - np.ceil(crop_width / 2) ymin = center_y - np.ceil(crop_height / 2) crop_bboxes = np.hstack((xmin.reshape((-1, 1)), ymin.reshape((-1, 1)), crop_width.reshape((-1, 1)), crop_height.reshape((-1, 1)))) crop_bboxes = crop_bboxes.astype('int64') return crop_bboxes ############################################# pts related transform ################################# def pts2bbox(pts, debug=True, vis=False): ''' convert a set of 2d points to a bounding box parameter: pts: 2 x N numpy array, N should >= 2 return: bbox: 1 x 4 numpy array, TLBR format ''' if debug: assert is2dptsarray(pts) or is2dptsarray_occlusion(pts), 'the input points should have shape: 2 or 3 x num_pts vs %d x %s' % (pts.shape[0], pts.shape[1]) assert pts.shape[1] >= 2, 'number of points should be larger or equal than 2' bbox = np.zeros((1, 4), dtype='float32') bbox[0, 0] = np.min(pts[0, :]) # x coordinate of left top point bbox[0, 1] = np.min(pts[1, :]) # y coordinate of left top point bbox[0, 2] = np.max(pts[0, :]) # x coordinate of bottom right point bbox[0, 3] = np.max(pts[1, :]) # y coordinate of bottom right point # if vis: # fig = plt.figure() # pts = imagecoor2cartesian(pts) # plt.scatter(pts[0, :], pts[1, :], color='r') # plt.scatter(bbox[0, 0], -bbox[0, 1], color='b') # -1 is to convert the coordinate from image to cartesian # plt.scatter(bbox[0, 2], -bbox[0, 3], color='b') # plt.show() # plt.close(fig) return bbox def bbox2center(bboxes_in, debug=True, vis=False): ''' convert a bounding box to a point, which is the center of this bounding box parameter: bbox: N x 4 numpy array, TLBR format return: center: 2 x N numpy array, x and y correspond to first and second row respectively ''' np_bboxes = safe_bbox(bboxes_in, debug=debug) if debug: assert bboxcheck_TLBR(np_bboxes), 'the input bounding box should be TLBR format' num_bbox = np_bboxes.shape[0] center = np.zeros((num_bbox, 2), dtype='float32') center[:, 0] = (np_bboxes[:, 0] + np_bboxes[:, 2]) / 2. center[:, 1] = (np_bboxes[:, 1] + np_bboxes[:, 3]) / 2. # if vis: # fig = plt.figure() # plt.scatter(np_bboxes[0, 0], -np_bboxes[0, 1], color='b') # -1 is to convert the coordinate from image to cartesian # plt.scatter(np_bboxes[0, 2], -np_bboxes[0, 3], color='b') # center_show = imagecoor2cartesian(center) # plt.scatter(center_show[0], center_show[1], color='r') # plt.show() # plt.close(fig) return np.transpose(center) def pts_conversion_bbox(pts_array, bboxes_in, debug=True): ''' convert pts in the original image to pts in the cropped image parameters: bboxes_in: 1 X 4 numpy array, TLBR or TLWH format pts_array: 2(3) x N numpy array, N should >= 1 ''' np_bboxes = safe_bbox(bboxes_in, debug=debug) if debug: assert is2dptsarray(pts_array) or is2dptsarray_occlusion(pts_array) or is2dptsarray_confidence(pts_array), 'the input points should have shape: 2 or 3 x num_pts vs %d x %s' % (pts_array.shape[0], pts_array.shape[1]) assert isbbox(np_bboxes), 'the input bounding box is not correct' pts_out = pts_array.copy() pts_out[0, :] = pts_array[0, :] - np_bboxes[0, 0] pts_out[1, :] = pts_array[1, :] - np_bboxes[0, 1] return pts_out def pts_conversion_back_bbox(pts_array, bboxes_in, debug=True): ''' convert pts in the cropped image to the pts in the original image parameters: bboxes_in: 1 X 4 numpy array, TLBR or TLWH format pts_array: 2(3) x N numpy array, N should >= 1 ''' np_bboxes = safe_bbox(bboxes_in, debug=debug) if debug: assert is2dptsarray(pts_array) or is2dptsarray_occlusion(pts_array) or is2dptsarray_confidence(pts_array), 'the input points should have shape: 2 or 3 x num_pts vs %d x %s' % (pts_array.shape[0], pts_array.shape[1]) assert isbbox(np_bboxes), 'the input bounding box is not correct' pts_out = pts_array.copy() pts_out[0, :] = pts_array[0, :] + np_bboxes[0, 0] pts_out[1, :] = pts_array[1, :] + np_bboxes[0, 1] return pts_out ############################################# to test ################################# def bbox_transform(ex_rois, gt_rois): ex_widths = ex_rois[:, 2] - ex_rois[:, 0] + 1.0 ex_heights = ex_rois[:, 3] - ex_rois[:, 1] + 1.0 ex_ctr_x = ex_rois[:, 0] + 0.5 * ex_widths ex_ctr_y = ex_rois[:, 1] + 0.5 * ex_heights gt_widths = gt_rois[:, 2] - gt_rois[:, 0] + 1.0 gt_heights = gt_rois[:, 3] - gt_rois[:, 1] + 1.0 gt_ctr_x = gt_rois[:, 0] + 0.5 * gt_widths gt_ctr_y = gt_rois[:, 1] + 0.5 * gt_heights targets_dx = (gt_ctr_x - ex_ctr_x) / ex_widths targets_dy = (gt_ctr_y - ex_ctr_y) / ex_heights targets_dw = np.log(gt_widths / ex_widths) targets_dh = np.log(gt_heights / ex_heights) targets = np.vstack((targets_dx, targets_dy, targets_dw, targets_dh)).transpose() return targets def bbox_transform_inv(boxes, deltas, debug=True): ''' boxes are from RPN, deltas are from boxes regression parameter ''' if boxes.shape[0] == 0: return np.zeros((0, deltas.shape[1]), dtype=deltas.dtype) boxes = boxes.astype(deltas.dtype, copy=False) widths = boxes[:, 2] - boxes[:, 0] + 1.0 heights = boxes[:, 3] - boxes[:, 1] + 1.0 ctr_x = boxes[:, 0] + 0.5 * widths # center of the boxes ctr_y = boxes[:, 1] + 0.5 * heights dx = deltas[:, 0::4] dy = deltas[:, 1::4] dw = deltas[:, 2::4] dh = deltas[:, 3::4] pred_ctr_x = dx * widths[:, np.newaxis] + ctr_x[:, np.newaxis] pred_ctr_y = dy * heights[:, np.newaxis] + ctr_y[:, np.newaxis] pred_w = np.exp(dw) * widths[:, np.newaxis] pred_h = np.exp(dh) * heights[:, np.newaxis] pred_boxes = np.zeros(deltas.shape, dtype=deltas.dtype) pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w # x1 pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h # y1 pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w # x2 pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h # y2 return pred_boxes def bbox_rotation_inv(bbox_in, angle_in_degree, image_shape, debug=True): ''' bbox_in is two coordinate angle is clockwise ''' if debug: assert isnparray(bbox_in) and bbox_in.size == 4, 'box is not correct' im_width = image_shape[1] im_height = image_shape[0] coor_in_tl =
np.array([(bbox_in[0] - im_width/2)/im_width*2, (bbox_in[1] - im_height/2)/im_height*2, 1])
numpy.array
# -*- coding: UTF-8 -*- import math import pymatgen as mg from ase.utils import gcd, basestring from ase.build import bulk from copy import deepcopy from numpy.linalg import norm, solve from pymatgen.analysis.graphs import MoleculeGraph, StructureGraph from pymatgen.core.structure import Molecule from pymatgen.io.vasp.inputs import Poscar from ase import io import networkx.algorithms.isomorphism as iso import numpy as np import networkx as nx from pymatgen.core.lattice import Lattice from pymatgen.core.sites import PeriodicSite # used for deciding which atoms are bonded from pymatgen.analysis.local_env import JmolNN import os import sys import time from functools import wraps from collections import Counter def from_ASE_to_pymatgen(working_dir, images): """ change ASE structure to pymatgen structure """ file_name = working_dir + "/temp.POSCAR.vasp" io.write(file_name, images) modify_poscar(file_name) slab = mg.Structure.from_file(file_name) os.remove(file_name) return slab def modify_poscar(file): """ Change the file to compliant POSCAR. """ index = 0 prev_file = open(file, 'r') new_file = open(file+'.new', 'w') for line in prev_file: if index == 0: tmp = line new_file.write('slab\n') elif index == 5: #new_file.write(tmp) new_file.write(line) else: new_file.write(line) index = index+1 prev_file.close() new_file.close() os.remove(file) os.rename(file+'.new', file) def surface(lattice, indices, layers, tol=1e-10, termination=0): """Create surface from a given lattice and Miller indices. lattice: Atoms object or str Bulk lattice structure of alloy or pure metal. Note that the unit-cell must be the conventional cell - not the primitive cell. One can also give the chemical symbol as a string, in which case the correct bulk lattice will be generated automatically. indices: sequence of three int Surface normal in Miller indices (h,k,l). layers: int Number of equivalent layers of the slab. termination: int The termination "number" for your crystal. The same value will not produce the same termination for different symetrically identical bulk structures, but changing this value allows your to explore all the possible terminations for the bulk structure you provide it. note: this code is not well tested """ indices = np.asarray(indices) if indices.shape != (3,) or not indices.any() or indices.dtype != int: raise ValueError('%s is an invalid surface type' % indices) if isinstance(lattice, basestring): lattice = bulk(lattice, cubic=True) h, k, l = indices h0, k0, l0 = (indices == 0) if termination != 0: # changing termination import warnings warnings.warn('Work on changing terminations is currently in ' 'progress. Code may not behave as expected.') lattice1 = deepcopy(lattice) cell = lattice1.get_cell() pt = [0, 0, 0] millers = list(indices) for index, item in enumerate(millers): if item == 0: millers[index] = 10 ** 9 # make zeros large numbers elif pt == [0, 0, 0]: # for numerical stability pt = list(cell[index] / float(item) / np.linalg.norm(cell[index])) h1, k1, l1 = millers N = np.array(cell[0] / h1 + cell[1] / k1 + cell[2] / l1) n = N / np.linalg.norm(N) # making a unit vector normal to cut plane d = [np.round(np.dot(n, (a - pt)), 4) for a in lattice.get_scaled_positions()] d = set(d) d = sorted(list(d)) d = [0] + d # distances of atoms from cut plane displacement = (h * cell[0] + k * cell[1] + l * cell[2]) * d[termination] lattice1.positions += displacement lattice = lattice1 if h0 and k0 or h0 and l0 or k0 and l0: # if two indices are zero if not h0: c1, c2, c3 = [(0, 1, 0), (0, 0, 1), (1, 0, 0)] if not k0: c1, c2, c3 = [(0, 0, 1), (1, 0, 0), (0, 1, 0)] if not l0: c1, c2, c3 = [(1, 0, 0), (0, 1, 0), (0, 0, 1)] else: p, q = ext_gcd(k, l) a1, a2, a3 = lattice.cell # constants describing the dot product of basis c1 and c2: # dot(c1,c2) = k1+i*k2, i in Z k1 = np.dot(p * (k * a1 - h * a2) + q * (l * a1 - h * a3), l * a2 - k * a3) k2 = np.dot(l * (k * a1 - h * a2) - k * (l * a1 - h * a3), l * a2 - k * a3) if abs(k2) > tol: i = -int(round(k1 / k2)) # i corresponding to the optimal basis p, q = p + i * l, q - i * k a, b = ext_gcd(p * k + q * l, h) c1 = (p * k + q * l, -p * h, -q * h) c2 = np.array((0, l, -k)) // abs(gcd(l, k)) c3 = (b, a * p, a * q) surf = build(lattice, np.array([c1, c2, c3]), layers, tol) return surf def ext_gcd(a, b): """ Extended Euclidean Algorithm. Find the result for ax + by = gcd(a, b). Parameters ---------- a: int b: int """ if b == 0: return 1, 0 elif a % b == 0: return 0, 1 else: x, y = ext_gcd(b, a % b) return y, x - y * (a // b) def build(lattice, basis, layers, tol): """ Transform the structure to original surface based on basis. Parameters ---------- basis: 3 * 3 matrix, [[a, b, c], ...] the basis vectors of the target surfaces. lattice: Atoms object or str Bulk lattice structure of alloy or pure metal. Note that the unit-cell must be the conventional cell - not the primitive cell. One can also give the chemical symbol as a string, in which case the correct bulk lattice will be generated automatically. layers: int Number of equivalent layers of the slab. """ surf = lattice.copy() scaled = solve(basis.T, surf.get_scaled_positions().T).T scaled -= np.floor(scaled + tol) surf.set_scaled_positions(scaled) surf.set_cell(np.dot(basis, surf.cell), scale_atoms=True) surf *= (1, 1, layers) return surf def modify_cell(structure): """ This is the final step of a molecular reconstruction step, and would align z direction to be perpendicular to the surface Parameters --------- structure: Atoms object or str In this structure, the z direction might not be perpendicular to the target surface. """ slab = structure.copy() a1, a2, a3 = slab.cell slab.set_cell([a1, a2, np.cross(a1, a2) * np.dot(a3, np.cross(a1, a2)) / norm(np.cross(a1, a2)) ** 2]) # Change unit cell to have the x-axis parallel with a surface vector # and z perpendicular to the surface: a1, a2, a3 = slab.cell slab.set_cell([(norm(a1), 0, 0), (np.dot(a1, a2) / norm(a1), np.sqrt(norm(a2) ** 2 - (np.dot(a1, a2) / norm(a1)) ** 2), 0), (0, 0, norm(a3))], scale_atoms=True) slab.pbc = (True, True, False) scaled = slab.get_scaled_positions() scaled[:, :2] %= 1 slab.set_scaled_positions(scaled) return slab def handle_with_molecules(slab_move, delta, down=True): """ Move some very tiny fragments of broken molecule to the other side. This is a preparation step for the move_method, which could minimize the limitations. Parameters ---------- slab_move: Atoms structure slab_move is the original surfaces that is generated by ase library. delta: list of double, [delta_x, delta_y, delta_z] Add or subtract the delta (cart_coords) to the tiny broken molecules to initially repair parts of molecules. down: bool True: Add a delta to the tiny broken molecules that are located at the bottom, False: subtract a delta to the tiny broken molecules that are located at the top. """ slab_sg = StructureGraph.with_local_env_strategy(slab_move, JmolNN()) slab_supercell_sg = slab_sg * (3, 3, 1) slab_sg_graph = nx.Graph(slab_supercell_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (slab_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(slab_supercell_sg.structure[n].specie)) molecules = [] for subgraph in super_subgraphs: coords = [slab_supercell_sg.structure[n].coords for n in subgraph.nodes()] # get the frac_cood of every atom for every molecules coord_z_list = [slab_move.lattice.get_fractional_coords( coord)[-1] for coord in coords] if down is True: temp = [coord_z < 0.5 for coord_z in coord_z_list] else: temp = [coord_z > 0.5 for coord_z in coord_z_list] if not all(temp) or len(coords) > 6: continue species = [slab_supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) # molecules are the list of molecules that need to be moved move_list = [] move_sites = reduced_sites(molecules, slab_move) for move_site in move_sites: for i, atom in enumerate(slab_move): if atom.is_periodic_image(move_site): move_list.append(i) break coords_move = slab_move.cart_coords species_move = slab_move.species slab_move.remove_sites(move_list) for i in move_list: if down is True: new_coord = np.array(coords_move[i]) + np.array(delta) else: new_coord = np.array(coords_move[i]) - np.array(delta) slab_move.append(species_move[i], new_coord, coords_are_cartesian=True) return slab_move def Find_Broken_Molecules(slab, sg, species_intact, coords_intact, unique_bulk_subgraphs): """ Use molecular identification method to find those molecules in the surface that are different from that in the bulk. Parameters ---------- slab: Atoms structure The surface that is generated by ase library and might have broken molecules. sg: list of Molecules Unique Molecules in bulk Structure. species_intact: list, ['specie_1', 'specie_2', ...] A list of atomic species of intact molecules. coords_intact: list, [[coord_1_1, coord_1_2, coord_1_3], ...] A list of atomic cart_coords of intact molecules. unique_bulk_subgraphs: list of graphs A list of intact molecules' graphs. Note that every graph is this list is unique """ slab_sg = StructureGraph.with_local_env_strategy(slab, JmolNN()) # enlarge the cell to a (3 * 3 * 1) super_cell slab_supercell_sg = slab_sg * (3, 3, 1) different_subgraphs_in_slab, slab_molecules = \ get_slab_different_subgraphs(slab_supercell_sg, unique_bulk_subgraphs) slab_molecules = double_screen(slab_molecules, sg) # the molecules in slab_original would be the template #print("The number of molecules that need to be fixed : " + # str(len(slab_molecules))) # slab_molecules are the molecules that are broken and need to be fixed delete_sites = reduced_sites(slab_molecules, slab) # delete_list is the list of broken atoms delete_list = [] for delete_site in delete_sites: for i, atom in enumerate(slab): if atom.is_periodic_image(delete_site): delete_list.append(i) break species_all = slab.species coords_all = slab.cart_coords for i, atom in enumerate(slab): temp = [i == delete for delete in delete_list] if not any(temp): species_intact.append(species_all[i]) coords_intact.append(coords_all[i]) delete_list = [] # remove intact molecules in the slab for convenience #print("Delete all atoms!") for i, atom in enumerate(slab): delete_list.append(i) slab.remove_sites(delete_list) sites = [] for slab_molecule in slab_molecules: for curr_site in slab_molecule: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) for site in sites: # add the broken molecules into the system slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def get_broken_molecules(self, bulk_subgraphs, use_weights=False): # compare each molecule in slab to each molecule in the bulk, # get rid of isomorohic, molecules store the brokens """ Retrieve broken_subgraphs as molecules Will return nonunique molecules, duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). Returns: ------- : list of nonunique broken Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic supercell_sg = self*(3, 3, 1) # make undirected to find connected subgraphs supercell_sg.graph = nx.Graph(supercell_sg.graph) # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs(supercell_sg.graph)) # discount subgraphs that lie across *supercell* boundaries # these will subgraphs representing crystals molecule_subgraphs = [] for subgraph in all_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: molecule_subgraphs.append(subgraph) # add specie names to graph to be able to test for isomorphism for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True nm = iso.categorical_node_match("specie", "ERROR") # remove complete molecules in subgraphs different_subgraphs = [] start = time.time() for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=nm) for g in bulk_subgraphs] if not any(already_present): different_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in different_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) # shift so origin is at center of mass #molecule = molecule.get_centered_molecule() molecules.append(molecule) return molecules # now define how we test for isomorphism def node_match(n1, n2): """the strategy for node matching in is_isomorphic. Parameters ------ n1, n2 : node Returns: ------- True of false : bool based on whether the species of two nodes are the same. """ return n1['specie'] == n2['specie'] def get_bulk_molecules(self, use_weights=False): # get rid of the repetitve molecule in bulk, only left with unique molecule###### """ Retrieve subgraphs as molecules, useful for extracting molecules from periodic crystals. Will only return unique molecules, not any duplicates present in the crystal (a duplicate defined as an isomorphic subgraph). Parameters: ------ use_weights: (bool) If True, only treat subgraphs as isomorphic if edges have the same weights. Typically, this means molecules will need to have the same bond lengths to be defined as duplicates, otherwise bond lengths can differ. This is a fairly robust approach, but will treat e.g. enantiomers as being duplicates. Returns: ------- list of unique Molecules in Structure """ # creating a supercell is an easy way to extract # molecules (and not, e.g., layers of a 2D crystal) # without adding extra logic # enlarge the structureGraph object to a supercell supercell_sg = self*(3, 3, 1) # make undirected to find connected subgraphs # create networkx undirected graph object to supercell_sg.graph = nx.Graph(supercell_sg.graph) # store the input graph # find subgraphs all_subgraphs = list(nx.connected_component_subgraphs( supercell_sg.graph)) # add specie names to graph to be able to test for isomorphism for subgraph in all_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(supercell_sg.structure[n].specie)) # now define how we test for isomorphism def node_match(n1, n2): return n1['specie'] == n2['specie'] def edge_match(e1, e2): if use_weights: return e1['weight'] == e2['weight'] else: return True nm = iso.categorical_node_match("specie", "ERROR") # prune duplicate subgraphs unique_subgraphs = [] for subgraph in all_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_subgraphs] if not any(already_present): unique_subgraphs.append(subgraph) # get Molecule objects for each subgraph molecules = [] for subgraph in unique_subgraphs: coords = [supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = Molecule(species, coords) molecules.append(molecule) return molecules, unique_subgraphs #################convert to undirected mx.graph and then determine if isomorphic############### def isomorphic_to(self, other): """ Checks if the graphs of two MoleculeGraphs are isomorphic to one another. In order to prevent problems with misdirected edges, both graphs are converted into undirected nx.Graph objects. Parameters: ---------- other: MoleculeGraph object to be compared. Returns: ------- bool """ if self.molecule.composition != other.molecule.composition: return False else: self_undir = self.graph.to_undirected() other_undir = other.graph.to_undirected() nm = iso.categorical_node_match("specie", "ERROR") isomorphic = nx.is_isomorphic(self_undir, other_undir, node_match=nm) return isomorphic def reduced_sites(molecules, slab): """ Find atoms that appear again due to the periodicity. Parameters: ----------- molecules: List[molecule]. All molecules that might be within or out of the slab boundary. slab: ASE structure. Slab structure. Returns: -------- sites: List[atom]. """ sites = [] for molecule in molecules: for curr_site in molecule: curr_site = PeriodicSite( curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) return sites def is_isomorphic(molecule1, molecule2): """ Determin whether two molecules are the same. Parameters: ----------- molecule1 and molecule2. Returns: -------- bool. """ return isomorphic_to(MoleculeGraph.with_local_env_strategy(molecule1, JmolNN()), MoleculeGraph.with_local_env_strategy(molecule2, JmolNN())) def double_screen(slab_molecules, bulk_molecules): """ Double check with bulk if there is any molecule already present in bulk """ delete_list = [] for bulk_molecule in bulk_molecules: for i, slab_molecule in enumerate(slab_molecules): if is_isomorphic(bulk_molecule, slab_molecule): delete_list.append(i) tmp = [x for i, x in enumerate(slab_molecules) if i not in delete_list] return tmp def print_run_time(func): """ One wrapper that output the run_time of a funtion. """ @wraps(func) def wrapper(*args, **kw): local_time = time.time() func(*args, **kw) print('Current Function [%s] run time is %.2fs' % (func.__name__, time.time() - local_time)) return wrapper def updatePOSCAR(output_file): """This function is used to correct the output file (POSCAR) of ase. Parameters: ---------- output_file : str The file of surface written by the write function of ase. Returns: ------- file : str The file that is corrected. """ with open(output_file, 'r') as original_file: lines = original_file.readlines() line1 = lines[0] lines.insert(5, " " + line1) with open(output_file, 'w') as final_file_1: for i in range(len(lines)): final_file_1.writelines(lines[i]) structure = mg.Structure.from_file(output_file) lattice = Lattice(structure.lattice.matrix) frac_coords = lattice.get_fractional_coords(structure.cart_coords) for i in range(frac_coords.shape[0]): for j in range(frac_coords.shape[1]): if abs(frac_coords[i][j] - 1) < 1e-5: frac_coords[i][j] = 1 if abs(frac_coords[i][j] - 0) < 1e-5: frac_coords[i][j] = 0 with open(output_file, 'r') as final_file_2: lines = final_file_2.readlines() lines[7] = 'Direct' + '\n' for i in range(np.array(frac_coords).shape[0]): lines[8 + i] = " " + str(np.array(frac_coords)[i, :][0]) + ' ' + str(np.array(frac_coords)[i, :][1]) +\ ' ' + str(np.array(frac_coords)[i, :][2]) + '\n' with open(output_file, 'w') as final_file: for i in range(len(lines)): final_file.writelines(lines[i]) def edge_match(e1, e2): """the strategy for edge matching in is_isomorphic. Parameters: ---------- e1, e2 : edge). Returns: ------- True or false : bool based on whether the length of bonds are the same or close to each other. """ return abs(e1['weight'] - e2['weight']) / e2['weight'] < 1e-5 def get_bulk_subgraphs(bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk. Parameters: ----------- bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: in_boundary = any([d['to_jimage'] == (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if in_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) for subgraph in super_subgraphs: if len(subgraph) == 1 and "H" in [str(bulk_structure_sg.structure[n].specie) for n in subgraph.nodes()]: super_subgraphs.remove(subgraph) continue molecules = [] for subgraph in super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return super_subgraphs, molecules def get_bulk_subgraphs_v2(bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk. Parameters: ----------- bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) for subgraph in all_super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) molecules = [] for subgraph in all_super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return all_super_subgraphs, molecules def get_bulk_subgraphs_v3(slab_first, bulk_structure_sg): """ Get all subgraphs of molecules that within or crosses the boundary of original bulk and generate HashGraph to modify atoms' positions. Parameters: ----------- slab_first: pymatgen structure. Original slab structure that cleaved by ASE bulk_structure_sg: StructureGraph. The structure graph of bulk with local env strategy. Returns: -------- delta_cart: List[float]. c_difference between two adajacent layers. super_graphs : List[graph]. Represent the subgraphs of molecules that within or crosses the boundary of original bulk. molecules : List[molecule]. Molecules that are correlated to the subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) for subgraph in all_super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) frac_coods = [0] * len(bulk_structure_sg.structure) initial_index = -100 molecules = [] for subgraph in all_super_subgraphs: HashGraph = {} for u, v, d in subgraph.edges(data=True): change_z = list(d['to_jimage'])[-1] if change_z != 0: change_z = 1 if slab_first.lattice.get_fractional_coords(bulk_structure_sg.structure[u].coords)[-1] > slab_first.lattice.get_fractional_coords(bulk_structure_sg.structure[v].coords)[-1] else -1 try: HashGraph[str(u)].append([str(v), change_z]) except KeyError: HashGraph[str(u)] = [initial_index, [str(v), change_z]] try: HashGraph[str(v)].append([str(u), -change_z]) except KeyError: HashGraph[str(v)] = [initial_index, [str(u), -change_z]] first_node = list(HashGraph.keys())[0] count = 1 HashGraph[first_node][0] = 0 Pending_node = [first_node] Pending_node_2 = [] while(count < len(list(HashGraph.keys()))): for node in Pending_node: for value in HashGraph[node][1: ]: if HashGraph[value[0]][0] == initial_index: count += 1 HashGraph[value[0]][0] = HashGraph[node][0] + value[1] Pending_node_2.append(value[0]) Pending_node = deepcopy(Pending_node_2) Pending_node_2 = [] # min_z = min([value[0] for value in HashGraph.values()]) min_z = int(Counter([value[0] for value in HashGraph.values()]).most_common(1)[0][0]) delta = np.array(slab_first.lattice.matrix[-1]) for key in HashGraph.keys(): HashGraph[key][0] -= min_z coords = [bulk_structure_sg.structure[n].coords + delta * HashGraph[str(n)][0] for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return delta, all_super_subgraphs, molecules def get_bulk_subgraphs_unique(bulk_structure_sg): """ get unique subgraphs of bulk based on graph algorithm. This function would only return unique molecules and its graphs, but not any duplicates present in the crystal. (A duplicate defined as an isomorphic crystals. Parameters: ----------- bulk_structure_sg : nx.SturctureGraph class, this one is actually the supercell one that is equal to(3, 3, 3) * unit cell. Returns: -------- unique_super_graphs : (list) [graph, ...], represent the unique subgraphs in the supercell and expecially in the boundary of supercell. molecules : (list) [molecule, ...], represent the molecules that are correlated to the unque subgraphs. """ bulk_super_structure_sg_graph = nx.Graph(bulk_structure_sg.graph) all_super_subgraphs = list(nx.connected_component_subgraphs (bulk_super_structure_sg_graph)) super_subgraphs = [] for subgraph in all_super_subgraphs: intersects_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersects_boundary: super_subgraphs.append(subgraph) for subgraph in super_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str(bulk_structure_sg.structure[n].specie)) unique_super_subgraphs = [] for subgraph in super_subgraphs: if len(subgraph) == 1 and "H" in [str(bulk_structure_sg.structure[n].specie) for n in subgraph.nodes()]: continue already_present = [nx.is_isomorphic(subgraph, g, node_match=node_match, edge_match=edge_match) for g in unique_super_subgraphs] if not any(already_present): unique_super_subgraphs.append(subgraph) molecules = [] for subgraph in unique_super_subgraphs: coords = [bulk_structure_sg.structure[n].coords for n in subgraph.nodes()] species = [bulk_structure_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules.append(molecule) return unique_super_subgraphs, molecules def get_slab_different_subgraphs(slab_supercell_sg, unique_super_bulk_subgraphs): """this function is used to find all the subgraphs in slab that are different from those in bulk. Parameters: ---------- slab_supercell_sg : nx.StructureGraph, the graph of the whole slabs. Note: In order to thoughtoutly describe the graph, the slab_supercell_sg = (3, 3, 1) * slab_sg unique_super_bulk_subgraphs : list. Returns: ------- different_subgraphs : list [different_subgraph, ...], which is the list of subgraphs that are different from those in bulk. In this function, we would only find the different subgraphs based on its species. slab_molecules : list [slab_molecule, ...], slab_molecule is the mg.Molecule of diffenert_subgraphs. """ slab_supercell_sg_graph = nx.Graph(slab_supercell_sg.graph) all_subgraphs = list(nx.connected_component_subgraphs (slab_supercell_sg_graph)) molecule_subgraphs = [] for subgraph in all_subgraphs: intersets_boundary = any([d['to_jimage'] != (0, 0, 0) for u, v, d in subgraph.edges(data=True)]) if not intersets_boundary: molecule_subgraphs.append(subgraph) #print("molecule_subgraphs : ", len(molecule_subgraphs)) for subgraph in molecule_subgraphs: for n in subgraph: subgraph.add_node(n, specie=str( slab_supercell_sg.structure[n].specie)) nm = iso.categorical_node_match("specie", "ERROR") different_subgraphs = [] for subgraph in molecule_subgraphs: already_present = [nx.is_isomorphic(subgraph, g, node_match=nm) for g in unique_super_bulk_subgraphs] if not any(already_present): different_subgraphs.append(subgraph) slab_molecules = [] for subgraph in different_subgraphs: coords = [slab_supercell_sg.structure[n].coords for n in subgraph.nodes()] species = [slab_supercell_sg.structure[n].specie for n in subgraph.nodes()] molecule = mg.Molecule(species=species, coords=coords) slab_molecules.append(molecule) return different_subgraphs, slab_molecules def belong_to(species1, species2): """ Determine whether species1 are totally included by species2. """ if len(species1) > len(species2): return False i = 0 species_1 = species1[:] species_2 = species2[:] while i < len(species_1): find = False for j in range(len(species_2)): if species_1[i] == species_2[j]: del species_1[i] find = True del species_2[j] break if find is False: return False return True def length_belong_to(weights1, weights2): """ Determine whether weights1 are totally included by weights2 weights are the list [weight, weight, ...] of one node """ if len(weights1) > len(weights2): return False i = 0 weights_1 = weights1[:] weights_2 = weights2[:] while i < len(weights_1): find = False for j in range(len(weights_2)): if abs((weights_1[i] - weights_2[j]) / weights_2[j]) < 1e-5: del weights_1[i] find = True del weights_2[j] break if find is False: return False return True def weights_all_belong_to(all_weight1, all_weight2, species1, species2): """ Determine whether one graph is totally included by another graph by comparing species and weights. """ if len(all_weight1) > len(all_weight2): return False i = 0 account = 0 total = len(all_weight1) all_weight_1 = all_weight1[:] all_weight_2 = all_weight2[:] species_1 = species1[:] species_2 = species2[:] while i < len(all_weight_1): find = False for j in range(len(all_weight_2)): if length_belong_to(all_weight_1[i], all_weight_2[j]) and species_1[i] == species_2[j]: del all_weight_1[i] del species_1[i] del species_2[j] account += 1 del all_weight_2[j] find = True break if not find: i += 1 if account >= 2.0 / 3.0 * total: return True return False def brokenMolecules_and_corresspoundingIntactMolecules(new_different_subgraphs, unique_super_subgraphs): """ NOT used in current reconstruction method!!! Determine the intact molecules that each molecule (broken or intact) belongs to by compcomparing the species and weights of broken molecules and intact molecules. Parameters: ----------- new_different_subgraphs: List[subgraph]. Subgraphs of all molecules. unique_super_subgraphs: List[subgraph]. Subgraphs of all bulk's unique molecules. Returns: -------- qualified_subgraphs: List[subgraph]. List of subgraph of molecules in the raw slab. unique_super_subgraphs: List[subgraph]. List of subgraph of corresspounding intact molecules. The length of qualified_unique_subgraphs should be the same as the length of qualified_subgraphs. """ qualified_subgraphs = [] qualified_unique_subgraphs = [] # account = 1 #print("trying to find the connection between broken molecules " # "and intact molecules") for subgraph in new_different_subgraphs: subgraph_species = [] weights_all = [] for n, nbrs in subgraph.adjacency(): subgraph_species.append(subgraph.node[n]['specie']) weights = [] for nbr, eattr in nbrs.items(): weights.append(eattr['weight']) weights_all.append(weights) find = False for unique_subgraph in unique_super_subgraphs: unique_subgraph_species = [] unique_weights_all = [] for n, nbrs in unique_subgraph.adjacency(): unique_subgraph_species.append( unique_subgraph.node[n]['specie']) weights = [] for nbr, eattr in nbrs.items(): weights.append(eattr['weight']) unique_weights_all.append(weights) if not belong_to(subgraph_species, unique_subgraph_species): continue else: if not weights_all_belong_to(weights_all, unique_weights_all, subgraph_species, unique_subgraph_species): continue else: find = True qualified_subgraphs.append(subgraph) qualified_unique_subgraphs.append(unique_subgraph) break if find is False: print("can't find the qualified subgraphs") sys.exit() return qualified_subgraphs, qualified_unique_subgraphs def fix_broken_molecules(qualified_subgraphs, qualified_unique_subgraphs, bulk_super_structure_sg, slab_supercell_sg, slab, c_frac_min, fixed_c_negative=False): """ NOT used in the current reconstruction method!!! Fix broken molecules based on graph theory. After determine the affiliation between all molecules in raw slabs and intact molecules in the original bulk, this function would replace those broken molecules with intact molecules. Parameters: ----------- qualified_subgraphs: List[subgraph]. List of subgraphs of all molecules in the raw molecules. qualified_unique_subgraphs: List[subgraph]. Each element in the list is the subgraph of corresspounding intact molecule of "qualified_subgraphs" in the previous list. bulk_super_structure_sg: StructureGraph. Structure Graph of supercell (3 x 3 x 3) of original bulk. slab_supercell_sg: StructureGraph. Structure Graph of supercell (3 x 3 x 3) of raw slab. slab: ASE structure. Raw slab after ASE cleaving. c_frac_min: float. Fractional coordinate of the lowest atom in raw slabs in c direction. fixed_c_negative: bool Fix the broken molecules in the lower side or not? Default option is False. Returns: -------- slab: pymatgen structure. Slab after reconstruction. """ molecules_new = [] #print("trying to fix the broken molecules...") for i in range(len(qualified_subgraphs)): qualified_subgraphs_species = [] qualified_subgraphs_nodes_neibs = [] qualified_subgraphs_all_weights = [] nodes_qualified_subgraphs = [] for n, nbrs in qualified_subgraphs[i].adjacency(): nodes_qualified_subgraphs.append(n) neibs = [] weights = [] qualified_subgraphs_species.append( qualified_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) qualified_subgraphs_nodes_neibs.append(neibs) qualified_subgraphs_all_weights.append(weights) qualified_unique_subgraphs_species = [] qualified_unique_subgraphs_nodes_neibs = [] qualified_unique_subgraphs_all_weights = [] nodes_qualified_unique_subgraphs = [] for n, nbrs in qualified_unique_subgraphs[i].adjacency(): nodes_qualified_unique_subgraphs.append(n) neibs = [] weights = [] qualified_unique_subgraphs_species.append( qualified_unique_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) qualified_unique_subgraphs_all_weights.append(weights) qualified_unique_subgraphs_nodes_neibs.append(neibs) node1 = [] node2 = [] account = 0 for t in range(len(qualified_subgraphs_species)): account = 0 for k in range(len(qualified_unique_subgraphs_species)): account = 0 if qualified_subgraphs_species[t] == qualified_unique_subgraphs_species[k] \ and length_belong_to(qualified_subgraphs_all_weights[t], qualified_unique_subgraphs_all_weights[k]) \ and len(qualified_subgraphs_all_weights[t]) == 3: node1 = [nodes_qualified_subgraphs[t]] node2 = [nodes_qualified_unique_subgraphs[k]] account = 0 for a_index, a_weight in enumerate(qualified_subgraphs_all_weights[t]): for index, weight in enumerate(qualified_unique_subgraphs_all_weights[k]): has1 = qualified_subgraphs_nodes_neibs[t][a_index] in node1 has2 = qualified_unique_subgraphs_nodes_neibs[k][index] in node2 if abs(weight - a_weight) / weight < 1e-5 and has1 is False and has2 is False: node1.append( qualified_subgraphs_nodes_neibs[t][a_index]) node2.append( qualified_unique_subgraphs_nodes_neibs[k][index]) account += 1 break if account >= 3: break if account >= 3: break if account < 3: print("can't find the corresspounding point") sys.exit() coords1 = [slab_supercell_sg.structure[n].coords for n in node1] coords2 = [bulk_super_structure_sg.structure[n].coords for n in node2] relative1 = np.array([np.array(coords1[n]) - np.array(coords1[0]) for n in list(range(1, 4))]) relative2 = np.array([np.array(coords2[n]) - np.array(coords2[0]) for n in list(range(1, 4))]) try: rotationMatrix = np.dot(relative1.T, np.linalg.inv(relative2.T)) except np.linalg.LinAlgError as err: if 'Singular matrix' in str(err): for m in range(relative1.shape[0]): if relative1[m, 0] == 0 and relative1[m, 1] == 0 and relative1[m, 2] == 0: relative1[m, 0] = 1e-9 relative1[m, 2] = -1e-9 for m in range(relative1.shape[1]): if relative1[0, m] == 0 and relative1[1, m] == 0 and relative1[2, m] == 0: relative1[0, m] = 1e-9 relative1[2, m] = -1e-9 for m in range(relative2.shape[0]): if relative2[m, 0] == 0 and relative2[m, 1] == 0 and relative2[m, 2] == 0: relative2[m, 0] = 1e-9 relative2[m, 2] = -1e-9 for m in range(relative2.shape[1]): if relative2[0, m] == 0 and relative2[1, m] == 0 and relative2[2, m] == 0: relative2[0, m] = 1e-9 relative2[2, m] = -1e-9 rotationMatrix = np.dot( relative1.T, np.linalg.inv(relative2.T)) else: print('failed') sys.exit() relative = np.array([np.array(bulk_super_structure_sg.structure[n].coords) - np.array(coords2[0]) for n in qualified_unique_subgraphs[i].nodes()]) new_relatives = np.dot(rotationMatrix, relative.T).T coords = [np.array(coords1[0]) + new_relative for new_relative in new_relatives] species = [bulk_super_structure_sg.structure[n].specie for n in qualified_unique_subgraphs[i].nodes()] molecule = mg.Molecule(species=species, coords=coords) molecules_new.append(molecule) sites = [] molecules_new_backup = list(molecules_new) if not fixed_c_negative: i = 0 while i < len(molecules_new): under = False for curr_site in molecules_new[i]: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) if curr_site.frac_coords[2] < c_frac_min: del molecules_new[i] under = True break if under is False: i += 1 if len(molecules_new) == 0: molecules_new = molecules_new_backup for molecule in molecules_new: for curr_site in molecule: curr_site = mg.PeriodicSite(curr_site.specie, curr_site.coords, slab.lattice, coords_are_cartesian=True) tmp = [curr_site.is_periodic_image(site) for site in sites] if not any(tmp): sites.append(curr_site) for site in sites: slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def put_everyatom_into_cell(slab): """ Some atoms might be out of the boundary of slab. Put all atoms into the boundary in the case that atoms don't overlap. """ coords = slab.frac_coords for i in range(coords.shape[0]): for j in range(coords.shape[1]): coords[i, j] = coords[i, j] % 1 species = slab.species molecule = mg.Molecule(species, coords) sites = [] for site in molecule: site = mg.PeriodicSite(site.specie, site.coords, slab.lattice) tmp = [site.is_periodic_image(item, tolerance=1e-5) for item in sites] if not any(tmp): sites.append(site) delete_list = [] for i, atom in enumerate(slab): delete_list.append(i) slab.remove_sites(delete_list) for site in sites: slab.append(species=site.specie, coords=site.coords, coords_are_cartesian=True) return slab def less_fix_broken_molecules(less_broken_subgraphs, less_intact_subgraphs, bulk_super_structure_sg, slab_supercell_sg, slab, c_frac_min, fixed_c_negative=True): """ NOT used in the current reconstruction method!!! An optimized function of fix_broken_molecules() but does exactly the same thing. It can deal with more small broken molecules. """ molecules_new = [] for i in range(len(less_broken_subgraphs)): broken_subgraphs_species = [] broken_subgraphs_nodes_neibs = [] broken_subgraphs_weights = [] nodes_broken_subgraphs = [] for n, nbrs in less_broken_subgraphs[i].adjacency(): nodes_broken_subgraphs.append(n) neibs = [] weights = [] broken_subgraphs_species.append( less_broken_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) broken_subgraphs_nodes_neibs.append(neibs) broken_subgraphs_weights.append(weights) intact_subgraphs_species = [] intact_subgraphs_nodes_neibs = [] intact_subgraphs_weights = [] nodes_intact_subgraphs = [] for n, nbrs in less_intact_subgraphs[i].adjacency(): nodes_intact_subgraphs.append(n) neibs = [] weights = [] intact_subgraphs_species.append( less_intact_subgraphs[i].node[n]['specie']) for nbr, eattr in nbrs.items(): neibs.append(nbr) weights.append(eattr['weight']) intact_subgraphs_nodes_neibs.append(neibs) intact_subgraphs_weights.append(weights) Find = False nodes1 = [] nodes2 = [] for j in range(len(broken_subgraphs_species)): if len(broken_subgraphs_nodes_neibs[j]) == 2: nodes1 = [] weights1 = [] nodes1.append(nodes_broken_subgraphs[j]) for index, neib in enumerate(broken_subgraphs_nodes_neibs[j]): nodes1.append(neib) weights1.append(broken_subgraphs_weights[j][index]) nodes2 = [] for k in range(len(intact_subgraphs_species)): if broken_subgraphs_species[j] == intact_subgraphs_species[k]\ and length_belong_to(broken_subgraphs_weights[j], intact_subgraphs_weights[k]): nodes2.append(nodes_intact_subgraphs[k]) for index, weight in enumerate(weights1): for index_intact, weight_intact in enumerate(intact_subgraphs_weights[k]): if abs(weight - weight_intact) / weight_intact < 1e-5\ and less_broken_subgraphs[i].\ node[nodes1[index + 1]]['specie'] == less_intact_subgraphs[i].\ node[intact_subgraphs_nodes_neibs[k][index_intact]]['specie']: nodes2.append( intact_subgraphs_nodes_neibs[k][index_intact]) if len(nodes2) == 3: Find = True break if Find is True: # print('Find it') break if Find is False: #print("Sucks") sys.exit() rest_item = -1 rest_index = -1 for index, item in enumerate(nodes_broken_subgraphs): if item not in nodes1: rest_item = item rest_index = index nodes1.append(rest_item) Find = False for j in range(len(intact_subgraphs_species)): if intact_subgraphs_species[j] == broken_subgraphs_species[rest_index]\ and length_belong_to(broken_subgraphs_weights[rest_index], intact_subgraphs_weights[j]): neibs = intact_subgraphs_nodes_neibs[j] temp = [neib == node2 for neib in neibs for node2 in nodes2] if any(temp): nodes2.append(nodes_intact_subgraphs[j]) Find = True break if Find is not True: print("didn't find the fourth one!") sys.exit() node1, node2 = nodes1, nodes2 coords1 = [slab_supercell_sg.structure[n].coords for n in node1] coords2 = [bulk_super_structure_sg.structure[n].coords for n in node2] relative1 = np.array([
np.array(coords1[n])
numpy.array
''' file: hum36m_dataloader.py author: zhangxiong(<EMAIL>) date: 2018_05_09 purpose: load hum3.6m data ''' import sys from torch.utils.data import Dataset, DataLoader import os import glob import numpy as np import random import cv2 import json import h5py import torch sys.path.append('./src') from util import calc_aabb, cut_image, flip_image, draw_lsp_14kp__bone, rectangle_intersect, get_rectangle_intersect_ratio, convert_image_by_pixformat_normalize, reflect_pose, reflect_lsp_kp from config import args from timer import Clock class hum36m_dataloader(Dataset): def __init__(self, data_set_path, use_crop, scale_range, use_flip, min_pts_required, pix_format = 'NHWC', normalize = False, flip_prob = 0.3): self.data_folder = data_set_path self.use_crop = use_crop self.scale_range = scale_range self.use_flip = use_flip self.flip_prob = flip_prob self.min_pts_required = min_pts_required self.pix_format = pix_format self.normalize = normalize self._load_data_set() def _load_data_set(self): clk = Clock() self.images = [] self.kp2ds = [] self.boxs = [] self.kp3ds = [] self.shapes = [] self.poses = [] print('start loading hum3.6m data.') anno_file_path = os.path.join(self.data_folder, 'annot.h5') with h5py.File(anno_file_path) as fp: total_kp2d = np.array(fp['gt2d']) total_kp3d = np.array(fp['gt3d']) total_shap = np.array(fp['shape']) total_pose = np.array(fp['pose']) total_image_names = np.array(fp['imagename']) assert len(total_kp2d) == len(total_kp3d) and len(total_kp2d) == len(total_image_names) and \ len(total_kp2d) == len(total_shap) and len(total_kp2d) == len(total_pose) l = len(total_kp2d) def _collect_valid_pts(pts): r = [] for pt in pts: if pt[2] != 0: r.append(pt) return r for index in range(l): kp2d = total_kp2d[index].reshape((-1, 3)) if np.sum(kp2d[:, 2]) < self.min_pts_required: continue lt, rb, v = calc_aabb(_collect_valid_pts(kp2d)) self.kp2ds.append(np.array(kp2d.copy(), dtype = np.float)) self.boxs.append((lt, rb)) self.kp3ds.append(total_kp3d[index].copy().reshape(-1, 3)) self.shapes.append(total_shap[index].copy()) self.poses.append(total_pose[index].copy()) self.images.append(os.path.join(self.data_folder, 'image') + total_image_names[index].decode()) print('finished load hum3.6m data, total {} samples'.format(len(self.kp3ds))) clk.stop() def __len__(self): return len(self.images) def __getitem__(self, index): image_path = self.images[index] kps = self.kp2ds[index].copy() box = self.boxs[index] kp_3d = self.kp3ds[index].copy() scale = np.random.rand(4) * (self.scale_range[1] - self.scale_range[0]) + self.scale_range[0] image, kps = cut_image(image_path, kps, scale, box[0], box[1]) ratio = 1.0 * args.crop_size / image.shape[0] kps[:, :2] *= ratio dst_image = cv2.resize(image, (args.crop_size, args.crop_size), interpolation = cv2.INTER_CUBIC) trival, shape, pose =
np.zeros(3)
numpy.zeros
#v2.3 import numpy as np from util import * L_SOFTPLUS = 0 L_RELU = 1 L_LINEAR = 2 L_SIGMOID = 3 L_DISCRETE = 4 L_BINARY_Z = 5 L_BINARY_N = 6 LS_REAL = [L_SOFTPLUS, L_RELU, L_LINEAR, L_SIGMOID] LS_DISCRETE = [L_DISCRETE, L_BINARY_Z, L_BINARY_N, ] ACT_F = {L_SOFTPLUS: softplus, L_RELU: relu, L_SIGMOID: sigmoid, L_LINEAR: lambda x: x, L_BINARY_Z: sigmoid, L_BINARY_N: lambda x: 2*sigmoid(x)-1, } ACT_D_F = {L_SOFTPLUS: sigmoid, L_RELU: relu_d, L_SIGMOID: sigmoid_d, L_LINEAR: lambda x: 1, L_BINARY_Z: sigmoid_d, L_BINARY_N: lambda x: 2*sigmoid_d(x), } class eq_prop_layer(): def __init__(self, name, input_size, output_size, optimizer, var, temp, l_type, unbiased=False): if l_type not in [L_SOFTPLUS, L_RELU, L_LINEAR, L_SIGMOID, L_DISCRETE, L_BINARY_Z, L_BINARY_N, ]: raise Exception('l_type (%d) not implemented' % l_type) self.name = name self.input_size = input_size self.output_size = output_size self.optimizer = optimizer self.l_type = l_type self.temp = temp if l_type in LS_DISCRETE else 1 self.unbiased = unbiased lim = np.sqrt(6 / (input_size + output_size)) if l_type == L_DISCRETE: output_size -= 1 self._w = np.random.uniform(-lim, lim, size=(input_size, output_size)) self._b = np.random.uniform(-1e-3, 1e-3, size=(output_size)) self._inv_var = np.full(output_size, 1/var) if var > 0 else None self.prev_layer = None # Set manually self.next_layer = None # Set manually self.values = np.zeros((1, output_size)) self.w_trace = np.zeros((1, input_size, output_size,)) self.b_trace = np.zeros((1, output_size,)) if self.unbiased: self.p_w_trace = np.zeros((1, input_size, output_size,)) self.p_b_trace = np.zeros((1, output_size,)) def sample(self, inputs, det=False): self.compute_pot_mean(inputs) if self.l_type in LS_REAL: if self._inv_var is None or det: self.values = self.mean else: sigma = np.sqrt(1/self._inv_var) self.values = self.mean + sigma * np.random.normal(size=self.pot.shape) elif self.l_type == L_DISCRETE: self.values = multinomial_rvs(n=1, p=self.mean) elif self.l_type in [L_BINARY_Z]: if not det: self.values = np.random.binomial(1, self.mean, size=self.mean.shape) else: self.values = (self.mean > 0.5).astype(np.float) elif self.l_type == L_BINARY_N: if not det: self.values = np.random.binomial(1, (self.mean+1)/2, size=self.mean.shape)*2-1 else: self.values = (self.mean > 0).astype(np.float) return self.values def compute_pot_mean(self, inputs): # Compute potential (pre-activated mean value) and mean value of layer self.inputs = inputs self.pot = (inputs.dot(self._w) + self._b)/self.temp if self.l_type in LS_REAL + [L_BINARY_Z, L_BINARY_N]: self.mean = ACT_F[self.l_type](self.pot) elif self.l_type == L_DISCRETE: self.pot = np.concatenate([self.pot, np.zeros((inputs.shape[0], 1))], axis=-1) self.mean = softmax(self.pot, axis=-1) def record_trace(self, lambda_=0, det=False, zero_learn=False): dev = 1 if det else (self.values - self.mean) if self.l_type in LS_REAL: v_ch = dev * ACT_D_F[self.l_type](self.pot) * self._inv_var elif self.l_type in [L_BINARY_Z, L_BINARY_N]: v_ch = dev / self.temp if self.unbiased: act_p = sigmoid(zero_to_neg(self.values) * self.pot) elem_sum = self.inputs[:,:,np.newaxis]*self._w[np.newaxis, :, :] v_ch_w = (act_p[:, np.newaxis, :] - sigmoid(zero_to_neg(self.values)[:, np.newaxis, :] * (self.pot[:, np.newaxis, :] - elem_sum)))/self._w v_ch_b = (act_p - sigmoid(zero_to_neg(self.values)* (self.pot - self._b)))/self._b v_ch_w /= act_p[:, np.newaxis, :] v_ch_b /= act_p self.p_w_trace = lambda_ * self.p_w_trace + v_ch_w self.p_b_trace = lambda_ * self.p_b_trace + v_ch_b elif self.l_type == L_DISCRETE: v_ch = (dev / self.temp)[:, :-1] if self.unbiased: act_p = np.sum(self.mean * self.values, axis=-1) elem_sum = self.inputs[:,:,np.newaxis]*self._w[np.newaxis, :, :] elem_sum = np.concatenate([elem_sum, np.zeros((elem_sum.shape[0], elem_sum.shape[1], 1))], axis=-1) expanded = np.zeros(elem_sum.shape + elem_sum.shape[-1:], dtype=elem_sum.dtype) diagonals = np.diagonal(expanded, axis1=-2, axis2=-1) diagonals.setflags(write=True) diagonals[:] = elem_sum v_ch_w = (act_p[:, np.newaxis, np.newaxis] - np.sum(softmax(self.pot[:, np.newaxis, np.newaxis, :] - expanded, axis=-1)*self.values[:, np.newaxis, np.newaxis, :], -1))[:, :, :-1]/self._w b_z = np.concatenate([self._b,
np.zeros(1)
numpy.zeros
# -- coding: utf-8 -- ''' Script for comparing our Bayesian preference learning approach with the results from Habernal 2016. Steps in this test: 1. Load word embeddings for the original text data that were used in the NN approach in Habernal 2016. -- done, but only using averages to combine them. 2. Load feature data that was used in the SVM-based approach in Habernal 2016. 3. Load the crowdsourced data. -- done. 4. Copy a similar testing setup to Habernal 2016 (training/test split?) and run the Bayesian approach (during testing, we can set aside some held-out data). -- done, results saved to file with no metrics computed yet except acc. 5. Print some simple metrics that are comparable to those used in Habernal 2016. Thoughts: 1. NN takes into account sequence of word embeddings; here we need to use a combined embedding for whole text to avoid a 300x300 dimensional input space. 2. So our method can only learn which elements of the embedding are important, but cannot learn from patterns in the sequence, unless we can find a way to encode those. 3. However, the SVM-based approach also did well. Which method is better, NN or SVM, and by how much? 4. We should be able to improve on the SVM-based approach. 5. The advantages of our method: ranking with sparse data; personalised predictions to the individual annotators; uncertainty estimates for active learning and decision-making confidence thresholds. Created on 20 Mar 2017 @author: simpson ''' import logging from scipy.stats.stats import pearsonr from sklearn.metrics import log_loss from sklearn.svm.classes import NuSVR, SVC logging.basicConfig(level=logging.DEBUG) import sys import os from sklearn.metrics.ranking import roc_auc_score sys.path.append("./python") sys.path.append("./python/analysis") sys.path.append("./python/models") sys.path.append("./python/analysis/habernal_comparison") svm_python_path = '~/libsvm-3.22/python' sys.path.append(os.path.expanduser("~/git/HeatMapBCC/python")) sys.path.append(os.path.expanduser("~/git/pyIBCC/python")) sys.path.append(os.path.expanduser("~/data/personalised_argumentation/embeddings/skip-thoughts")) sys.path.append(os.path.expanduser("~/data/personalised_argumentation/embeddings/Siamese-CBOW/siamese-cbow")) sys.path.append(os.path.expanduser(svm_python_path)) import pickle import time from gp_pref_learning import GPPrefLearning, pref_likelihood from gp_classifier_svi import GPClassifierSVI from gp_classifier_vb import compute_median_lengthscales from sklearn.svm import SVR from embeddings import load_embeddings, load_siamese_cbow_embeddings, load_skipthoughts_embeddings from data_loader import data_root_dir, load_train_test_data, load_ling_features import numpy as np ndebug_features = 10 def save_fold_order(resultsdir, folds=None, dataset=None): if folds is None and dataset is not None: folds, _, _, _, _ = load_train_test_data(dataset) elif folds is None: print("Need to provide a dataset label or a set of fold data...") return np.savetxt(resultsdir + "/foldorder.txt", np.array(list(folds.keys()))[:, None], fmt="%s") # Lengthscale initialisation ------------------------------------------------------------------------------------------- # use the median heuristic to find a reasonable initial length-scale. This is the median of the distances. # First, grab a sample of points because N^2 could be too large. def compute_lengthscale_heuristic(feature_type, embeddings_type, embeddings, ling_feat_spmatrix, docids, folds, index_to_word_map): # get the embedding values for the test data -- need to find embeddings of the whole piece of text if feature_type == 'both' or feature_type == 'embeddings' or feature_type == 'debug': docidxs = [] doc_tok_seqs = [] doctexts = [] for f in folds: doc_tok_seqs.append(folds.get(f)["test"][0]) doc_tok_seqs.append(folds.get(f)["test"][1]) testids = np.array([ids_pair.split('_') for ids_pair in folds.get(f)["test"][3]]) docidxs.append(get_docidxs_from_ids(docids, testids[:, 0])) docidxs.append(get_docidxs_from_ids(docids, testids[:, 1])) doctexts.append(folds.get(f)["test"][5]) doctexts.append(folds.get(f)["test"][6]) X, _, utexts = get_doc_token_seqs(docidxs, doc_tok_seqs, doctexts) if embeddings_type == 'word_mean': items_feat = get_mean_embeddings(embeddings, X) elif embeddings_type == 'skipthoughts': global skipthoughts import skipthoughts items_feat = skipthoughts.encode(embeddings, utexts) elif embeddings_type == 'siamese-cbow': items_feat = np.array([embeddings.getAggregate(index_to_word_map[Xi]) for Xi in X]) else: logging.info("invalid embeddings type! %s" % embeddings_type) if feature_type == 'both' or feature_type == 'debug': items_feat = np.concatenate((items_feat, ling_feat_spmatrix.toarray()), axis=1) if feature_type == 'ling': items_feat = ling_feat_spmatrix.toarray() if feature_type == 'debug': items_feat = items_feat[:, :ndebug_features] starttime = time.time() #for f in range(items_feat.shape[1]): ls_initial = compute_median_lengthscales(items_feat, N_max=3000) endtime = time.time() logging.info('@@@ Selected initial lengthscales in %f seconds' % (endtime - starttime)) return ls_initial def get_doc_token_seqs(ids, X_list, texts=None): ''' ids -- list of document IDs X_list -- list of lists of word indices for each argument corresponding to the ids texts -- list of texts corresponding to the ids returns X -- list of lists of word indices for each argument corresponding to the uids uids -- list of unique document IDs utexts -- unique texts corresponding to the uids ''' # X_train_a1 and a1_train both have one entry per observation. We want to replace them with a list of # unique arguments, and the indexes into that list. First, get the unique argument ids from trainids and testids: if hasattr(ids[0], '__len__'): allids = np.concatenate(ids) else: allids = ids uids, uidxs = np.unique(allids, return_index=True) # get the word index vectors corresponding to the unique arguments X = np.zeros(np.max(uids) + 1, dtype=object) if texts is not None: utexts = np.zeros(np.max(uids) + 1, dtype=object) utexts[:] = '' start = 0 fin = 0 for i in range(len(X_list)): fin += len(X_list[i]) idxs = (uidxs>=start) & (uidxs<fin) # keep the original IDs to try to make life easier. This means the IDs become indexes into X X[uids[idxs]] = np.array(X_list[i])[uidxs[idxs] - start] if texts is not None: utexts[uids[idxs]] = np.array(texts[i])[uidxs[idxs] - start] start += len(X_list[i]) if texts is not None: utexts = [utext for utext in utexts] return X, uids, utexts else: return X, uids def get_mean_embeddings(word_embeddings, X): return np.array([np.mean(word_embeddings[Xi, :], axis=0) for Xi in X]) def get_docidxs_from_ids(all_docids, ids_to_map): return np.array([np.argwhere(docid==all_docids)[0][0] for docid in ids_to_map]) def get_fold_data(folds, fold, docids): #X_train_a1, X_train_a2 are lists of lists of word indexes X_train_a1, X_train_a2, prefs_train, ids_train, person_train, tr_a1, tr_a2 = folds.get(fold)["training"] X_test_a1, X_test_a2, prefs_test, ids_test, person_test, test_a1, test_a2 = folds.get(fold)["test"] #a1_train, a2_train are lists of argument ids trainids = np.array([ids_pair.split('_') for ids_pair in ids_train]) if docids is None: docids = np.arange(np.unique(trainids).size) a1_train = get_docidxs_from_ids(docids, trainids[:, 0]) a2_train = get_docidxs_from_ids(docids, trainids[:, 1]) testids = np.array([ids_pair.split('_') for ids_pair in ids_test]) a1_test = get_docidxs_from_ids(docids, testids[:, 0]) a2_test = get_docidxs_from_ids(docids, testids[:, 1]) X, uids, utexts = get_doc_token_seqs((a1_train, a2_train, a1_test, a2_test), [X_train_a1, X_train_a2, X_test_a1, X_test_a2], (tr_a1, tr_a2, test_a1, test_a2)) print(("Training instances ", len(X_train_a1), " training labels ", len(prefs_train))) print(("Test instances ", len(X_test_a1), " test labels ", len(prefs_test))) prefs_train = np.array(prefs_train) prefs_test = np.array(prefs_test) person_train = np.array(person_train) person_test = np.array(person_test) personIDs = np.concatenate((person_train, person_test)) _, personIdxs = np.unique(personIDs, return_inverse=True) person_train = personIdxs[:len(person_train)] person_test = personIdxs[len(person_train):] return a1_train, a2_train, prefs_train, person_train, a1_test, a2_test, prefs_test, person_test, \ X, uids, utexts def get_noisy_fold_data(folds, fold, docids, acc, tr_pair_subset=None): a1_train, a2_train, prefs_train, person_train, a1_test, a2_test, prefs_test, person_test, X, \ uids, utexts = get_fold_data(folds, fold, docids) # now subsample the training data N = len(a1_train) if tr_pair_subset is not None: Nsub = N * tr_pair_subset subidxs = np.random.choice(N, Nsub, replace=False) a1_train = a1_train[subidxs] a2_train = a2_train[subidxs] prefs_train = prefs_train[subidxs] person_train = person_train[subidxs] else: Nsub = N if acc != 1.0: # now we add noise to the training data flip_labels = np.random.rand(Nsub) > acc prefs_train[flip_labels] = 2 - prefs_train[flip_labels] # labels are 0, 1 or 2 return a1_train, a2_train, prefs_train, person_train, a1_test, a2_test, prefs_test, person_test, \ X, uids, utexts def get_fold_regression_data(folds_regression, fold, docids): if folds_regression is not None: _, scores_rank_train, argids_rank_train, person_rank_train, _ = folds_regression.get(fold)["training"] # blank argument is turkIDs_rank_test item_idx_ranktrain = np.array([np.argwhere(trainid==docids)[0][0] for trainid in argids_rank_train]) scores_rank_train = np.array(scores_rank_train) argids_rank_train = np.array(argids_rank_train) _, scores_rank_test, argids_rank_test, personIDs_rank_test, _ = folds_regression.get(fold)["test"] # blank argument is turkIDs_rank_test item_idx_ranktest = np.array([np.argwhere(testid==docids)[0][0] for testid in argids_rank_test]) scores_rank_test = np.array(scores_rank_test) argids_rank_test = np.array(argids_rank_test) else: item_idx_ranktrain = None scores_rank_train = None argids_rank_train = None person_rank_train = None item_idx_ranktest = None scores_rank_test = None argids_rank_test = None personIDs_rank_test = None return item_idx_ranktrain, scores_rank_train, argids_rank_train, person_rank_train,\ item_idx_ranktest, scores_rank_test, argids_rank_test, personIDs_rank_test def subsample_tr_data(subsample_amount, a1_train, a2_train): item_subsample_ids = [] nselected = 0 while nselected < subsample_amount: idx = np.random.choice(len(a1_train), 1) if a1_train[idx] not in item_subsample_ids: item_subsample_ids.append(a1_train[idx]) if a2_train[idx] not in item_subsample_ids: item_subsample_ids.append(a2_train[idx]) nselected = len(item_subsample_ids) pair_subsample_idxs = np.argwhere(np.in1d(a1_train, item_subsample_ids) & np.in1d(a2_train, item_subsample_ids)).flatten() # pair_subsample_idxs = np.random.choice(len(a1_train), subsample_amount, replace=False) return pair_subsample_idxs class TestRunnerSingleFold: def __init__(self, current_expt_output_dir, datasets, feature_types, embeddings_types, methods, dataset_increment, expt_tag='kmeans'): self.folds = None self.initial_pair_subset = {} self.default_ls_values = {} self.expt_output_dir = current_expt_output_dir self.expt_tag = expt_tag self.datasets = datasets self.feature_types = feature_types self.embeddings_types = embeddings_types self.methods = methods self.dataset_increment = dataset_increment def load_features(self, feature_type, embeddings_type, a1_train, a2_train, uids, utexts=None): ''' Load all the features specified by the type into an items_feat object. Remove any features where the values are all zeroes. ''' # get the embedding values for the test data -- need to find embeddings of the whole piece of text if feature_type == 'both' or feature_type == 'embeddings' or feature_type=='debug': logging.info("Converting texts to mean embeddings (we could use a better sentence embedding?)...") if embeddings_type == 'word_mean': items_feat = get_mean_embeddings(self.embeddings, self.X) elif embeddings_type == 'skipthoughts': global skipthoughts import skipthoughts items_feat = skipthoughts.encode(self.embeddings, utexts) elif embeddings_type == 'siamese-cbow': items_feat = np.array([self.embeddings.getAggregate(self.index_to_word_map[Xi]) for Xi in self.X]) else: logging.info("invalid embeddings type! %s" % embeddings_type) logging.info("...embeddings loaded.") # trim away any features not in the training data because we can't learn from them valid_feats = np.sum((items_feat[a1_train] != 0) + (items_feat[a2_train] != 0), axis=0) > 0 items_feat = items_feat[:, valid_feats] self.ling_items_feat = None # will get overwritten if we load the linguistic features further down. self.embeddings_items_feat = items_feat elif feature_type == 'ling': items_feat =
np.zeros((self.X.shape[0], 0))
numpy.zeros
# coding: utf-8 # Copyright (c) Pymatgen Development Team. # Distributed under the terms of the MIT License. from __future__ import division, unicode_literals import math import itertools import warnings from six.moves import map, zip import random import json import numpy as np from numpy.linalg import inv from numpy import pi, dot, transpose, radians from monty.json import MSONable from monty.dev import deprecated from pymatgen_core.util.num import abs_cap import pymatgen_core.core.units as units import logging logger = logging.getLogger(__name__) """ This module defines the classes relating to 3D lattices. .. Changes :: * * * * """ __author__ = "<NAME>, <NAME>" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Production" __date__ = "Sep 23, 2011" import pymatgen_core.core.units as units class Lattice(units.ObjectUnits): """ A lattice object. Essentially a matrix with conversion matrices. In general, it is assumed that length units are in Angstroms and angles are in degrees unless otherwise stated. """ # Properties lazily generated for efficiency. @property def unit_conf(self): return self._unit_conf @property def matrix(self): return self._property['matrix'] @property def constants(self): return self._property['constants'] @property def angles(self): return self._property['angles'] @property def lengths(self): return self._property['lengths'] @matrix.setter def matrix(self,matrix): m = np.array(matrix, dtype=np.float64).reshape((self.n_dim, self.n_dim)) lengths = np.sqrt(np.sum(m ** 2, axis=1)) angles = np.zeros(self.n_dim) for i in range(self.n_dim): j = (i + 1) % self.n_dim k = (i + 2) % self.n_dim angles[i] = abs_cap(dot(m[j], m[k]) / (lengths[j] * lengths[k])) self._property['lengths'] = lengths self._property['angles'] = np.arccos(angles) if( self.unit_conf['angle'] == 'degree' ): self._property['angles'] = self._property['angles']* 180/np.pi self._property['constants'] = np.zeros(6) self._property['constants'][0:3] = self._property['lengths'] self._property['constants'][3:6] = self._property['angles'] self._property['matrix'] = m self.is_orthogonal = all([abs(a - 90) < 1e-5 for a in self.angles]) def get_rad_angles(self): '''Return angles in radians ''' if( self._unit_conf['angle'] == 'degree'): alpha_r = np.deg2rad(self._property['angles'][0] ) beta_r = np.deg2rad(self._property['angles'][1] ) gamma_r = np.deg2rad(self._property['angles'][2] ) elif( self._unit_conf['angle'] == 'radian'): alpha_r = self._property['angles'][0] beta_r = self._property['angles'][1] gamma_r = self._property['angles'][2] else: raise KeyError('angle unit {} not supported '.format( self._unit_conf['angle'] )) return alpha_r,beta_r,gamma_r def constants2matrix(self,a,b,c,alpha_r,beta_r,gamma_r): '''Calculate the matrix based on the lattice constants Args: * a (float): lattice constant a * b (float): lattice constant b * c (float): lattice constant c * alpha (float): lattice angle alpha in radians * beta (float): lattice angle beta in radians * gamma (float): lattice angle gamma in radians ''' # val = (np.cos(alpha_r) * np.cos(beta_r) - np.cos(gamma_r))\ / (np.sin(alpha_r) *
np.sin(beta_r)
numpy.sin
import tiledb, numpy as np import json import sys import os import io from collections import OrderedDict import warnings from tiledb import TileDBError if sys.version_info >= (3,3): unicode_type = str else: unicode_type = unicode unicode_dtype = np.dtype(unicode_type) # TODO # - handle missing values # - handle extended datatypes # - implement distributed CSV import # - implement support for read CSV via TileDB VFS from any supported FS TILEDB_KWARG_DEFAULTS = { 'ctx': None, 'sparse': True, 'index_dims': None, 'allows_duplicates': True, 'mode': 'ingest', 'attrs_filters': None, 'coords_filters': None, 'full_domain': False, 'tile': None, 'row_start_idx': None, 'fillna': None, 'column_types': None, 'capacity': None, 'date_spec': None, 'cell_order': 'row-major', 'tile_order': 'row-major', 'debug': None, } def parse_tiledb_kwargs(kwargs): args = dict(TILEDB_KWARG_DEFAULTS) for key in TILEDB_KWARG_DEFAULTS.keys(): if key in kwargs: args[key] = kwargs.pop(key) return args class ColumnInfo: def __init__(self, dtype, repr=None): self.dtype = dtype self.repr = repr def dtype_from_column(col): import pandas as pd col_dtype = col.dtype # TODO add more basic types here if col_dtype in (np.int32, np.int64, np.uint32, np.uint64, np.float, np.double, np.uint8): return ColumnInfo(col_dtype) # TODO this seems kind of brittle if col_dtype.base == np.dtype('M8[ns]'): if col_dtype == np.dtype('datetime64[ns]'): return ColumnInfo(col_dtype) elif hasattr(col_dtype, 'tz'): raise ValueError("datetime with tz not yet supported") else: raise ValueError("unsupported datetime subtype ({})".format(type(col_dtype))) # Pandas 1.0 has StringDtype extension type if col_dtype.name == 'string': return ColumnInfo(unicode_dtype) if col_dtype == 'bool': return ColumnInfo(np.uint8, repr=np.dtype('bool')) if col_dtype == np.dtype("O"): # Note: this does a full scan of the column... not sure what else to do here # because Pandas allows mixed string column types (and actually has # problems w/ allowing non-string types in object columns) inferred_dtype = pd.api.types.infer_dtype(col) if inferred_dtype == 'bytes': return ColumnInfo(np.bytes_) elif inferred_dtype == 'string': # TODO we need to make sure this is actually convertible return ColumnInfo(unicode_dtype) elif inferred_dtype == 'mixed': raise ValueError( "Column '{}' has mixed value dtype and cannot yet be stored as a TileDB attribute".format(col.name) ) raise ValueError( "Unhandled column type: '{}'".format( col_dtype ) ) # TODO make this a staticmethod on Attr? def attrs_from_df(df, index_dims=None, filters=None, column_types=None, ctx=None): attr_reprs = dict() if ctx is None: ctx = tiledb.default_ctx() if column_types is None: column_types = dict() attrs = list() for name, col in df.items(): # ignore any column used as a dim/index if index_dims and name in index_dims: continue if name in column_types: spec_type = column_types[name] # Handle ExtensionDtype if hasattr(spec_type, 'type'): spec_type = spec_type.type attr_info = ColumnInfo(spec_type) else: attr_info = dtype_from_column(col) attrs.append(tiledb.Attr(name=name, dtype=attr_info.dtype, filters=filters)) if attr_info.repr is not None: attr_reprs[name] = attr_info.repr return attrs, attr_reprs def dim_info_for_column(ctx, df, col, tile=None, full_domain=False, index_dtype=None): if isinstance(col, np.ndarray): col_values = col else: col_values = col.values if len(col_values) < 1: raise ValueError("Empty column '{}' cannot be used for dimension!".format(col_name)) if index_dtype is not None: dim_info = ColumnInfo(index_dtype) elif col_values.dtype is np.dtype('O'): col_val0_type = type(col_values[0]) if col_val0_type in (bytes, unicode_type): # TODO... core only supports TILEDB_ASCII right now dim_info = ColumnInfo(np.bytes_) else: raise TypeError("Unknown column type not yet supported ('{}')".format(col_val0_type)) else: dim_info = dtype_from_column(col_values) return dim_info def dim_for_column(ctx, name, dim_info, col, tile=None, full_domain=False, ndim=None): if isinstance(col, np.ndarray): col_values = col else: col_values = col.values if tile is None: if ndim is None: raise TileDBError("Unexpected Nonetype ndim") if ndim == 1: tile = 10000 elif ndim == 2: tile = 1000 elif ndim == 3: tile = 100 else: tile = 10 dtype = dim_info.dtype if full_domain: if not dim_info.dtype in (np.bytes_, np.unicode): # Use the full type domain, deferring to the constructor (dtype_min, dtype_max) = tiledb.libtiledb.dtype_range(dim_info.dtype) dim_max = dtype_max if dtype.kind == 'M': date_unit = np.datetime_data(dtype)[0] dim_min = np.datetime64(dtype_min + 1, date_unit) tile_max = np.iinfo(np.uint64).max - tile if np.abs(
np.uint64(dtype_max)
numpy.uint64
import pdb import numpy as np from scipy import linalg, optimize import cov class GP(object): def __init__(self,X,y,cov_type='covSEard'): self.X = X # training inputs, 2d array self.y = y # training outputs, 1d array self.cov_type = cov_type # string specifying covariance function # initialise all log params to 0 if self.cov_type == 'covSEiso': self.params = np.asarray([0.0]*3) self.params[-1] = np.log(0.01) elif self.cov_type == 'covSEard': self.params = np.asarray([0.0]*(self.input_dim+2)) self.params[0:self.input_dim] = np.log(np.std(X,axis=0)) self.params[-2] = np.log(np.var(y,axis=0)) self.params[-1] = self.params[-2]-np.log(10) # cache for the Cholesky factor self.L_cache = np.empty((self.size,self.size),dtype=X.dtype) # cache for the K^{-1}y vector self.Kinvy_cache = np.empty((self.size),dtype=X.dtype) # cache for the Q = invK - outer(Kinvy,Kinvy) matrix self.Q_cache = np.empty((self.size,self.size),dtype=X.dtype) self.L_cached_at = None # parameters at which cached L, Kinvy values hold self.Q_cached_at = None # parameters at which cached Q values hold def NLML(self,params=None,derivs=False): # negative log marginal likelihood and derivatives params = self.params if params is None else params cov_params = params[:-1] sig_noise = np.exp(params[-1]) L = self.L_cache Kinvy = self.Kinvy_cache if self.L_cached_at is None or not np.all(self.L_cached_at == params): # if parameters differ from cached ones, compute # generate covariance k(X,X) K = cov.cov(self.cov_type,self.X,self.X,cov_params) K += np.eye(self.size)*sig_noise # account for Gaussian likelihood # Cholesky factor of k(X,X) L[:] = linalg.cholesky(K,lower=True) # k(X,X)^-1*y Kinvy[:] = linalg.cho_solve((L,True),self.y) self.L_cached_at = np.array(params,copy=True) # log determinant of Cholesky factor of k(X,X) # = 0.5*log determinant of k(X,X) logdetL = np.sum(np.log(np.diag(L))) if not derivs: NLML = 0.5*np.dot(self.y,Kinvy) # 0.5 * y^T * K^-1 * y NLML += logdetL # 0.5 * log det(K) NLML += 0.5*float(self.size)*np.log(2.0*np.pi) # 0.5*N*log(2*pi) NLML = NLML/float(self.size) return NLML Q = self.Q_cache if self.Q_cached_at is None or not
np.all(self.Q_cached_at == params)
numpy.all
# -*- coding: utf-8 -*- import os, math import cv2 import dlib import numpy as np import argparse import multiprocessing def parseArgs(): parser = argparse.ArgumentParser(description='Choose model and treadnumbers to align face images', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--input_dir', required=True, type=str, help='where to input movie images') parser.add_argument('--output_dir', required=True, type=str, help='where to save movie images') parser.add_argument('--face_detector', required=True, type=str, help='which face detect function to use') parser.add_argument('--landmark_detector', required=True, type=str, help='which landmark detect function to use') parser.add_argument('--threads', required=True, type=int, help='process number to run face detect function') args = parser.parse_args() return args dlib_detector = dlib.get_frontal_face_detector() def dlibFrontalFaceDetect(img, upsampling=1): ''' Using dlib frontal face detector to detect faces in image. 使用dlib提供的前脸检测器进行人脸检测。 :param img: face image :param upsampling: upsample ratio for dlib frontal face detector :return result: face box in format [[xmin, ymin, xmax, ymax], ] ''' if type(img) == str: img = dlib.load_rgb_image(img) faces = dlib_detector(img, upsampling) if len(faces) == 0: return None result = [] for face in faces: result.append([face.left(), face.top(), face.right(), face.bottom()]) return result dlib_cnn_face_detector = dlib.cnn_face_detection_model_v1('../data/mmod_human_face_detector.dat') def dlibCNNFaceDetect(img): ''' Using dlib cnn face detector to detect faces in image. 使用dlib的cnn人脸检测器进行人脸检测。 :param img: face image :return result: face box in format [[xmin, ymin, xmax, ymax], ] ''' if type(img) == str: img = dlib.load_rgb_image(img) faces = dlib_cnn_face_detector(img, 1) if len(faces) == 0: return None result = [] for face in faces: result.append([face.rect.left(), face.rect.top(), face.rect.right(), face.rect.bottom()]) return result def faceCrop(img, xmin, ymin, xmax, ymax, scale=2.0): ''' Input an image and the location of face, crop face with margin. 输入图片和人脸坐标,将带有边缘的人脸剪裁返回。 :param img: image, numpy ndarray :param xmin,ymin,amax,ymax: face box location :param scale: the bigger the scale is, the bigger the margin around face is :return face: face with margin, numpy ndarray ''' hmax, wmax, _ = img.shape x = (xmin + xmax) / 2 y = (ymin + ymax) / 2 w = (xmax - xmin) * scale h = (ymax - ymin) * scale # new xmin, ymin, xmax and ymax xmin = x - w/2 xmax = x + w/2 ymin = y - h/2 ymax = y + h/2 # 坐标修正为有效数字 xmin = max(0, int(xmin)) ymin = max(0, int(ymin)) xmax = min(wmax, int(xmax)) ymax = min(hmax, int(ymax)) # crop and return face = img[ymin:ymax,xmin:xmax,:] return face def findEye(landmarks): ''' Find out the center coordinate of left eye and right eye, then they will be used to rotate face. 找出左右眼中心的x,y坐标值,用于脸部的旋转对齐。 ''' left_eye = landmarks[36:42] left_eye = np.array([p for p in left_eye]) left_eye = left_eye.mean(axis=0) right_eye = landmarks[42:48] right_eye = np.array([p for p in right_eye]) right_eye = right_eye.mean(axis=0) return left_eye, right_eye def findNose(landmarks): ''' Find out the center coordinate of nose. 找到鼻子的中心点(暂时无用)。 ''' nose = landmarks[31:36] nose =
np.array([p for p in nose])
numpy.array
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function import numpy as np __author__ = ['<NAME>', '<NAME>'] __email__ = ['<EMAIL>', '<EMAIL>'] class Optimizer (object): ''' Abstract base class for the optimizers Parameters ---------- lr : float (default=2e-2) Learning rate value decay : float (default=0.) Learning rate decay lr_min : float (default=0.) Minimum of learning rate domain lr_max : float (default=np.inf) Maximum of learning rate domain *args : list Class specialization variables. **kwargs : dict Class Specialization variables. ''' def __init__ (self, lr=1e-3, decay=0., lr_min=0., lr_max=np.inf, *args, **kwargs): self.lr = lr self.decay = decay self.lr_min = lr_min self.lr_max = lr_max self.iterations = 1 def update (self, params, gradients): ''' Update the optimizer parameters Parameters ---------- params : list List of parameters to update gradients : list List of corresponding gradients Returns ------- self ''' self.lr *= 1. / (self.decay * self.iterations + 1.) self.lr = np.clip(self.lr, self.lr_min, self.lr_max) self.iterations += 1 def __repr__ (self): ''' Representation ''' class_name = self.__class__.__qualname__ try: params = super(type(self), self).__init__.__code__.co_varnames except AttributeError: params = self.__init__.__code__.co_varnames params = set(params) - {'self', 'args', 'kwargs'} args = ', '.join(['{0}={1}'.format(k, str(getattr(self, k))) if not isinstance(getattr(self, k), str) else '{0}="{1}"'.format(k, str(getattr(self, k))) for k in params]) return '{0}({1})'.format(class_name, args) def __str__ (self): ''' Printer ''' return self.__class__.__name__ class SGD (Optimizer): ''' Stochastic Gradient Descent specialization Update the parameters according to the rule .. code-block:: python parameter -= learning_rate * gradient Parameters ---------- *args : list Class specialization variables. **kwargs : dict Class Specialization variables. ''' def __init__ (self, *args, **kwargs): super(SGD, self).__init__(*args, **kwargs) def update (self, params, gradients): ''' Update the given parameters according to the class optimization algorithm Parameters ---------- params : list List of parameters to update gradients : list List of corresponding gradients Returns ------- params : list The updated parameters ''' for p, g in zip(params, gradients): p -= self.lr * g # np.clip(g, -1., 1.) super(SGD, self).update(params, gradients) return params class Momentum (Optimizer): ''' Stochastic Gradient Descent with Momentum specialiation Update the parameters according to the rule .. code-block:: python v = momentum * v - lr * gradient parameter += v - learning_rate * gradient Parameters ---------- momentum : float (default=0.9) Momentum value *args : list Class specialization variables. **kwargs : dict Class Specialization variables. ''' def __init__ (self, momentum=.9, *args, **kwargs): super(Momentum, self).__init__(*args, **kwargs) self.momentum = momentum self.velocity = None def update (self, params, gradients): ''' Update the given parameters according to the class optimization algorithm Parameters ---------- params : list List of parameters to update gradients : list List of corresponding gradients Returns ------- params : list The updated parameters ''' if self.velocity is None: self.velocity = [
np.zeros(shape=p.shape, dtype=float)
numpy.zeros
import numpy as NP from astropy.io import fits from astropy.io import ascii import scipy.constants as FCNST from scipy import interpolate import matplotlib.pyplot as PLT import matplotlib.colors as PLTC import matplotlib.cm as CMAP import matplotlib.animation as MOV from matplotlib import ticker from scipy.interpolate import griddata import datetime as DT import time import progressbar as PGB import healpy as HP import geometry as GEOM import interferometry as RI import catalog as CTLG import constants as CNST import my_DSP_modules as DSP import my_operations as OPS import primary_beams as PB import baseline_delay_horizon as DLY import lookup_operations as LKP import ipdb as PDB ## Input/output parameters telescope_id = 'custom' element_size = 0.74 element_shape = 'delta' phased_array = True if (telescope_id == 'mwa') or (telescope_id == 'mwa_dipole'): element_size = 0.74 element_shape = 'dipole' elif telescope_id == 'vla': element_size = 25.0 element_shape = 'dish' elif telescope_id == 'gmrt': element_size = 45.0 element_shape = 'dish' elif telescope_id == 'hera': element_size = 14.0 element_shape = 'dish' elif telescope_id == 'custom': if (element_shape is None) or (element_size is None): raise ValueError('Both antenna element shape and size must be specified for the custom telescope type.') elif element_size <= 0.0: raise ValueError('Antenna element size must be positive.') elif telescope_id == 'mwa_tools': pass else: raise ValueError('telescope ID must be specified.') if telescope_id == 'custom': if element_shape == 'delta': telescope_id = 'delta' else: telescope_id = '{0:.1f}m_{1:}'.format(element_size, element_shape) if phased_array: telescope_id = telescope_id + '_array' telescope_str = telescope_id+'_' ground_plane = 0.3 # height of antenna element above ground plane if ground_plane is None: ground_plane_str = 'no_ground_' else: if ground_plane > 0.0: ground_plane_str = '{0:.1f}m_ground_'.format(ground_plane) else: raise ValueError('Height of antenna element above ground plane must be positive.') obs_mode = 'custom' avg_drifts = False beam_switch = False snapshot_type_str = '' if avg_drifts: snapshot_type_str = 'drift_averaged_' if beam_switch: snapshot_type_str = 'beam_switches_' n_sky_sectors = 4 sky_sector = 3 # if None, use all sky sector. Accepted values are None, 0, 1, 2, or 3 if sky_sector is None: sky_sector_str = '_all_sky_' n_sky_sectors = 1 sky_sector = 0 else: sky_sector_str = '_sky_sector_{0:0d}_'.format(sky_sector) Tsys = 90.0 # System temperature in K freq = 185.0 * 1e6 # foreground center frequency in Hz freq_resolution = 80e3 # in Hz coarse_channel_resolution = 1.28e6 # in Hz bpass_shape = 'bnw' f_pad = 1.0 oversampling_factor = 1.0 + f_pad n_channels = 384 nchan = n_channels max_abs_delay = 2.5 # in micro seconds window = n_channels * DSP.windowing(n_channels, shape=bpass_shape, pad_width=0, centering=True, area_normalize=True) nside = 64 use_GSM = False use_DSM = True use_CSM = False use_NVSS = False use_SUMSS = False use_MSS = False use_GLEAM = False use_PS = False if use_GSM: fg_str = 'asm' elif use_DSM: fg_str = 'dsm' elif use_CSM: fg_str = 'csm' elif use_SUMSS: fg_str = 'sumss' elif use_GLEAM: fg_str = 'gleam' elif use_PS: fg_str = 'point' elif use_NVSS: fg_str = 'nvss' else: fg_str = 'other' antenna_file = '/data3/t_nithyanandan/project_MWA/MWA_128T_antenna_locations_MNRAS_2012_Beardsley_et_al.txt' ant_locs = NP.loadtxt(antenna_file, skiprows=6, comments='#', usecols=(0,1,2,3)) bl, bl_id = RI.baseline_generator(ant_locs[:,1:], ant_id=ant_locs[:,0].astype(int).astype(str), auto=False, conjugate=False) bl_length = NP.sqrt(NP.sum(bl**2, axis=1)) bl_orientation = NP.angle(bl[:,0] + 1j * bl[:,1], deg=True) sortind = NP.argsort(bl_length, kind='mergesort') bl = bl[sortind,:] bl_length = bl_length[sortind] bl_orientation = bl_orientation[sortind] bl_id = bl_id[sortind] n_bins_baseline_orientation = 4 n_bl_chunks = 32 baseline_chunk_size = 64 neg_bl_orientation_ind = bl_orientation < 0.0 # neg_bl_orientation_ind = NP.logical_or(bl_orientation < -0.5*180.0/n_bins_baseline_orientation, bl_orientation > 180.0 - 0.5*180.0/n_bins_baseline_orientation) bl[neg_bl_orientation_ind,:] = -1.0 * bl[neg_bl_orientation_ind,:] bl_orientation = NP.angle(bl[:,0] + 1j * bl[:,1], deg=True) total_baselines = bl_length.size baseline_bin_indices = range(0,total_baselines,baseline_chunk_size) bl_chunk = range(len(baseline_bin_indices)) bl_chunk = bl_chunk[:n_bl_chunks] bl = bl[:baseline_bin_indices[n_bl_chunks],:] bl_length = bl_length[:baseline_bin_indices[n_bl_chunks]] bl_orientation = bl_orientation[:baseline_bin_indices[n_bl_chunks]] bl_id = bl_id[:baseline_bin_indices[n_bl_chunks]] neg_bl_orientation_ind = bl_orientation > 90.0 + 0.5*180.0/n_bins_baseline_orientation ## Plot distribution of baseline lengths and distributions bl_length_binsize = 20.0 bl_length_bins = NP.linspace(0.0, NP.ceil(bl_length.max()/bl_length_binsize) * bl_length_binsize, NP.ceil(bl_length.max()/bl_length_binsize)+1) bl_orientation_binsize=180.0/(2*n_bins_baseline_orientation) bl_orientation_bins = NP.linspace(bl_orientation.min(), bl_orientation.max(), 2*n_bins_baseline_orientation+1) labels = [] labels += ['B{0:0d}'.format(i+1) for i in xrange(bl.shape[0])] roifile = '/data3/t_nithyanandan/project_MWA/roi_info_'+telescope_str+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6)+'.fits' roi = RI.ROI_parameters(init_file=roifile) telescope = roi.telescope # telescope = {} # telescope['id'] = telescope_id # telescope['shape'] = element_shape # telescope['size'] = element_size # telescope['orientation'] = element_orientation # telescope['ocoords'] = element_ocoords # telescope['groundplane'] = ground_plane fig = PLT.figure(figsize=(6,6)) ax1 = fig.add_subplot(211) n, bins, patches = ax1.hist(bl_length, bins=bl_length_bins, histtype='step', lw=2, color='black') ax1.xaxis.tick_top() ax1.xaxis.set_label_position('top') ax1.set_xlabel('Baseline Length [m]', fontsize=18, weight='medium') ax1.set_ylabel('Number in bin', fontsize=18, weight='medium') ax1.tick_params(which='major', length=18, labelsize=12) ax1.tick_params(which='minor', length=12, labelsize=12) for axis in ['top','bottom','left','right']: ax1.spines[axis].set_linewidth(2) xticklabels = PLT.getp(ax1, 'xticklabels') yticklabels = PLT.getp(ax1, 'yticklabels') PLT.setp(xticklabels, fontsize=15, weight='medium') PLT.setp(yticklabels, fontsize=15, weight='medium') ax2 = fig.add_subplot(212) n, bins, patches = ax2.hist(bl_orientation, bins=bl_orientation_bins, histtype='step', lw=2, color='black') ax2.set_xlabel('Baseline Orientation [deg]', fontsize=18, weight='medium') ax2.set_ylabel('Number in bin', fontsize=18, weight='medium') ax2.tick_params(which='major', length=18, labelsize=12) ax2.tick_params(which='minor', length=12, labelsize=12) for axis in ['top','bottom','left','right']: ax2.spines[axis].set_linewidth(2) xticklabels = PLT.getp(ax2, 'xticklabels') yticklabels = PLT.getp(ax2, 'yticklabels') PLT.setp(xticklabels, fontsize=15, weight='medium') PLT.setp(yticklabels, fontsize=15, weight='medium') PLT.savefig('/data3/t_nithyanandan/project_MWA/figures/baseline_properties.eps', bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/project_MWA/figures/baseline_properties.png', bbox_inches=0) ## Animation set up backdrop_xsize = 100 fps = 0.5 interval = 100 animation_format = 'MP4' if animation_format == 'MP4': anim_format = '.mp4' else: anim_format = 'gif' animation_file = None if animation_file is None: animation_file = '/data3/t_nithyanandan/project_MWA/animations/multi_baseline_noiseless_visibilities_'+snapshot_type_str+obs_mode+'_'+'{0:0d}'.format(n_bl_chunks*baseline_chunk_size)+'_baselines_{0:0d}_orientations_'.format(n_bins_baseline_orientation)+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_{0:0d}_sectors'.format(n_bins_baseline_orientation) animation2_file = None if animation2_file is None: animation2_file = '/data3/t_nithyanandan/project_MWA/animations/delay_emission_map_'+snapshot_type_str+obs_mode+'_'+'{0:0d}'.format(n_bl_chunks*baseline_chunk_size)+'_baselines_{0:0d}_orientations_'.format(n_bins_baseline_orientation)+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_{0:0d}_sectors'.format(n_bins_baseline_orientation) lags = None skyvis_lag = None vis_lag = None # # progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(), PGB.ETA()], maxval=n_bl_chunks).start() # # for i in range(0, n_bl_chunks): # # infile = '/data3/t_nithyanandan/project_MWA/multi_baseline_visibilities_'+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[i]],bl_length[min(baseline_bin_indices[i]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_part_{0:0d}'.format(i) # # hdulist = fits.open(infile+'.fits') # # # extnames = [hdu.header['EXTNAME'] for hdu in hdulist] # # if i == 0: # # lags = hdulist['SPECTRAL INFO'].data.field('lag') # # vis_lag = hdulist['real_lag_visibility'].data + 1j * hdulist['imag_lag_visibility'].data # # skyvis_lag = hdulist['real_lag_sky_visibility'].data + 1j * hdulist['imag_lag_sky_visibility'].data # # latitude = hdulist[0].header['latitude'] # # pointing_coords = hdulist[0].header['pointing_coords'] # # pointings_table = hdulist['POINTING INFO'].data # # lst = pointings_table['LST'] # # n_snaps = lst.size # # if pointing_coords == 'altaz': # # pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) # # pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') # # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # # elif pointing_coords == 'radec': # # pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # # pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) # # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # # elif pointing_coords == 'hadec': # # pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # # pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) # # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # # else: # # vis_lag = NP.vstack((vis_lag, hdulist['real_lag_visibility'].data + 1j * hdulist['imag_lag_visibility'].data)) # # skyvis_lag = NP.vstack((skyvis_lag, hdulist['real_lag_sky_visibility'].data + 1j * hdulist['imag_lag_sky_visibility'].data)) # # hdulist.close() # # progress.update(i+1) # # progress.finish() # progress = PGB.ProgressBar(widgets=[PGB.Percentage(), PGB.Bar(), PGB.ETA()], maxval=n_bl_chunks).start() # for i in range(0, n_bl_chunks): # infile = '/data3/t_nithyanandan/project_MWA/multi_baseline_visibilities_'+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[i]],bl_length[min(baseline_bin_indices[i]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'{0:.1f}_MHz_'.format(nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_part_{0:0d}'.format(i) # if i == 0: # ia = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') # hdulist = fits.open(infile+'.fits') # latitude = hdulist[0].header['latitude'] # pointing_coords = hdulist[0].header['pointing_coords'] # pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data # lst = pointings_table['LST'] # n_snaps = lst.size # hdulist.close() # if pointing_coords == 'altaz': # pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) # pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # elif pointing_coords == 'radec': # pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # elif pointing_coords == 'hadec': # pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) # pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) # pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') # pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # else: # ia_next = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') # ia.concatenate(ia_next, axis=0) # progress.update(i+1) # progress.finish() infile = '/data3/t_nithyanandan/project_MWA/'+telescope_str+'multi_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_baseline_range_{0:.1f}-{1:.1f}_'.format(bl_length[baseline_bin_indices[0]],bl_length[min(baseline_bin_indices[n_bl_chunks-1]+baseline_chunk_size-1,total_baselines-1)])+'gaussian_FG_model_'+fg_str+sky_sector_str+'nside_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_{2:.1f}_MHz'.format(Tsys, freq/1e6, nchan*freq_resolution/1e6) ia = RI.InterferometerArray(None, None, None, init_file=infile+'.fits') hdulist = fits.open(infile+'.fits') latitude = hdulist[0].header['latitude'] pointing_coords = hdulist[0].header['pointing_coords'] pointings_table = hdulist['POINTING AND PHASE CENTER INFO'].data lst = pointings_table['LST'] n_snaps = lst.size hdulist.close() if pointing_coords == 'altaz': pointings_altaz = NP.hstack((pointings_table['pointing_latitude'].reshape(-1,1), pointings_table['pointing_longitude'].reshape(-1,1))) pointings_hadec = GEOM.altaz2hadec(pointings_altaz, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'radec': pointings_radec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_hadec = NP.hstack(((lst-pointings_radec[:,0]).reshape(-1,1), pointings_radec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') elif pointing_coords == 'hadec': pointings_hadec = NP.hstack((pointings_table['pointing_longitude'].reshape(-1,1), pointings_table['pointing_latitude'].reshape(-1,1))) pointings_radec = NP.hstack(((lst-pointings_hadec[:,0]).reshape(-1,1), pointings_hadec[:,1].reshape(-1,1))) pointings_altaz = GEOM.hadec2altaz(pointings_hadec, latitude, units='degrees') pointings_dircos = GEOM.altaz2dircos(pointings_altaz, units='degrees') # pc = NP.asarray([90.0, 90.0]).reshape(1,-1) # pc = NP.asarray([266.416837, -29.00781]).reshape(1,-1) pc = NP.asarray([0.0, 0.0, 1.0]).reshape(1,-1) pc_coords = 'dircos' ia.phase_centering(phase_center=pc, phase_center_coords=pc_coords) ################################################################################# # Find any negative orientation baselines and conjugate those visibilities simdata_bl_orientation = NP.angle(ia.baselines[:,0] + 1j * ia.baselines[:,1], deg=True) simdata_neg_bl_orientation_ind = simdata_bl_orientation < 0.0 simdata_bl_orientation[simdata_neg_bl_orientation_ind] += 180.0 ia.baselines[simdata_neg_bl_orientation_ind,:] = -ia.baselines[simdata_neg_bl_orientation_ind,:] # ia.baseline_orientations[simdata_neg_bl_orientation_ind] = 180.0 + ia.baseline_orientations[simdata_neg_bl_orientation_ind] ia.vis_freq[simdata_neg_bl_orientation_ind,:,:] = ia.vis_freq[simdata_neg_bl_orientation_ind,:,:].conj() ia.skyvis_freq[simdata_neg_bl_orientation_ind,:,:] = ia.skyvis_freq[simdata_neg_bl_orientation_ind,:,:].conj() ia.vis_noise_freq[simdata_neg_bl_orientation_ind,:,:] = ia.vis_noise_freq[simdata_neg_bl_orientation_ind,:,:].conj() ia.delay_transform(f_pad, freq_wts=window) # delay transform re-estimate lags = ia.lags vis_lag = ia.vis_lag skyvis_lag = ia.skyvis_lag if max_abs_delay is not None: small_delays_ind = NP.abs(lags) <= max_abs_delay * 1e-6 lags = lags[small_delays_ind] vis_lag = vis_lag[:,small_delays_ind,:] skyvis_lag = skyvis_lag[:,small_delays_ind,:] ## Delay limits re-estimation delay_matrix = DLY.delay_envelope(ia.baselines, pointings_dircos, units='mks') fig = PLT.figure(figsize=(6,8)) ax1 = fig.add_subplot(211) # ax1.set_xlabel('Baseline Length [m]', fontsize=18) # ax1.set_ylabel(r'lag [$\mu$s]', fontsize=18) # dspec1 = ax1.pcolorfast(bl_length, 1e6*lags, NP.abs(skyvis_lag[:-1,:-1,0].T), norm=PLTC.LogNorm(vmin=NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag)))) # ax1.set_xlim(bl_length[0], bl_length[-1]) # ax1.set_ylim(1e6*lags[0], 1e6*lags[-1]) ax1.set_xlabel('Baseline Index', fontsize=18) ax1.set_ylabel(r'lag [$\mu$s]', fontsize=18) dspec1 = ax1.imshow(NP.abs(skyvis_lag[:,:,0].T), origin='lower', extent=(0, skyvis_lag.shape[0]-1, NP.amin(lags*1e6), NP.amax(lags*1e6)), norm=PLTC.LogNorm(NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag))), interpolation=None) ax1.set_aspect('auto') ax2 = fig.add_subplot(212) # ax2.set_xlabel('Baseline Length [m]', fontsize=18) # ax2.set_ylabel(r'lag [$\mu$s]', fontsize=18) # dspec2 = ax2.pcolorfast(bl_length, 1e6*lags, NP.abs(skyvis_lag[:-1,:-1,1].T), norm=PLTC.LogNorm(vmin=NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag)))) # ax2.set_xlim(bl_length[0], bl_length[-1]) # ax2.set_x=ylim(1e6*lags[0], 1e6*lags[-1]) ax2.set_xlabel('Baseline Index', fontsize=18) ax2.set_ylabel(r'lag [$\mu$s]', fontsize=18) dspec2 = ax2.imshow(NP.abs(skyvis_lag[:,:,1].T), origin='lower', extent=(0, skyvis_lag.shape[0]-1, NP.amin(lags*1e6), NP.amax(lags*1e6)), norm=PLTC.LogNorm(vmin=NP.amin(NP.abs(skyvis_lag)), vmax=NP.amax(NP.abs(skyvis_lag))), interpolation=None) ax2.set_aspect('auto') cbax = fig.add_axes([0.88, 0.08, 0.03, 0.9]) cb = fig.colorbar(dspec2, cax=cbax, orientation='vertical') cbax.set_ylabel('Jy Hz', labelpad=-60, fontsize=18) PLT.tight_layout() fig.subplots_adjust(right=0.8) fig.subplots_adjust(left=0.1) PLT.savefig('/data3/t_nithyanandan/project_MWA/figures/'+telescope_str+'multi_combined_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_'.format(Tsys, nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_{0:0d}_snapshots.eps'.format(skyvis_lag.shape[2]), bbox_inches=0) PLT.savefig('/data3/t_nithyanandan/project_MWA/figures/'+telescope_str+'multi_combined_baseline_visibilities_'+ground_plane_str+snapshot_type_str+obs_mode+'_gaussian_FG_model_'+fg_str+'_{0:0d}_'.format(nside)+'Tsys_{0:.1f}K_{1:.1f}_MHz_'.format(Tsys, nchan*freq_resolution/1e6)+bpass_shape+'{0:.1f}'.format(oversampling_factor)+'_{0:0d}_snapshots.png'.format(skyvis_lag.shape[2]), bbox_inches=0) ################################################################################# backdrop_coords = 'radec' if use_DSM or use_GSM: backdrop_coords = 'radec' if backdrop_coords == 'radec': xmin = -180.0 xmax = 180.0 ymin = -90.0 ymax = 90.0 xgrid, ygrid = NP.meshgrid(NP.linspace(xmin, xmax, backdrop_xsize), NP.linspace(ymin, ymax, backdrop_xsize/2)) xvect = xgrid.ravel() yvect = ygrid.ravel() elif backdrop_coords == 'dircos': xmin = -1.0 xmax = 1.0 ymin = -1.0 ymax = 1.0 xgrid, ygrid = NP.meshgrid(NP.linspace(xmin, xmax, backdrop_xsize), NP.linspace(ymin, ymax, backdrop_xsize)) nanind = (xgrid**2 + ygrid**2) > 1.0 goodind = (xgrid**2 + ygrid**2) <= 1.0 zgrid = NP.empty_like(xgrid) zgrid[nanind] = NP.nan zgrid[goodind] = NP.sqrt(1.0 - (xgrid[goodind]**2 + ygrid[goodind]**2)) xvect = xgrid.ravel() yvect = ygrid.ravel() zvect = zgrid.ravel() xyzvect = NP.hstack((xvect.reshape(-1,1), yvect.reshape(-1,1), zvect.reshape(-1,1))) if use_DSM or use_GSM: dsm_file = '/data3/t_nithyanandan/project_MWA/foregrounds/gsmdata_{0:.1f}_MHz_nside_{1:0d}.fits'.format(freq/1e6,nside) hdulist = fits.open(dsm_file) dsm_table = hdulist[1].data ra_deg = dsm_table['RA'] dec_deg = dsm_table['DEC'] temperatures = dsm_table['T_{0:.0f}'.format(freq/1e6)] fluxes = temperatures backdrop = HP.cartview(temperatures.ravel(), coord=['G','E'], rot=[0,0,0], xsize=backdrop_xsize, return_projected_map=True) elif use_GLEAM or use_SUMSS or use_NVSS or use_CSM: if use_GLEAM: catalog_file = '/data3/t_nithyanandan/project_MWA/foregrounds/mwacs_b1_131016.csv' # GLEAM catalog catdata = ascii.read(catalog_file, data_start=1, delimiter=',') dec_deg = catdata['DEJ2000'] ra_deg = catdata['RAJ2000'] fpeak = catdata['S150_fit'] ferr = catdata['e_S150_fit'] freq_catalog = 1.4 # GHz spindex = -0.83 + NP.zeros(fpeak.size) fluxes = fpeak * (freq_catalog * 1e9 / freq)**spindex elif use_SUMSS: SUMSS_file = '/data3/t_nithyanandan/project_MWA/foregrounds/sumsscat.Mar-11-2008.txt' catalog = NP.loadtxt(SUMSS_file, usecols=(0,1,2,3,4,5,10,12,13,14,15,16)) ra_deg = 15.0 * (catalog[:,0] + catalog[:,1]/60.0 + catalog[:,2]/3.6e3) dec_dd = NP.loadtxt(SUMSS_file, usecols=(3,), dtype="|S3") sgn_dec_str = NP.asarray([dec_dd[i][0] for i in range(dec_dd.size)]) sgn_dec = 1.0*NP.ones(dec_dd.size) sgn_dec[sgn_dec_str == '-'] = -1.0 dec_deg = sgn_dec * (NP.abs(catalog[:,3]) + catalog[:,4]/60.0 + catalog[:,5]/3.6e3) fmajax = catalog[:,7] fminax = catalog[:,8] fpa = catalog[:,9] dmajax = catalog[:,10] dminax = catalog[:,11] PS_ind = NP.logical_and(dmajax == 0.0, dminax == 0.0) ra_deg = ra_deg[PS_ind] dec_deg = dec_deg[PS_ind] fint = catalog[PS_ind,6] * 1e-3 fmajax = fmajax[PS_ind] fminax = fminax[PS_ind] fpa = fpa[PS_ind] dmajax = dmajax[PS_ind] dminax = dminax[PS_ind] bright_source_ind = fint >= 1.0 ra_deg = ra_deg[bright_source_ind] dec_deg = dec_deg[bright_source_ind] fint = fint[bright_source_ind] fmajax = fmajax[bright_source_ind] fminax = fminax[bright_source_ind] fpa = fpa[bright_source_ind] dmajax = dmajax[bright_source_ind] dminax = dminax[bright_source_ind] valid_ind = NP.logical_and(fmajax > 0.0, fminax > 0.0) ra_deg = ra_deg[valid_ind] dec_deg = dec_deg[valid_ind] fint = fint[valid_ind] fmajax = fmajax[valid_ind] fminax = fminax[valid_ind] fpa = fpa[valid_ind] freq_catalog = 0.843 # in GHz spindex = -0.83 + NP.zeros(fint.size) fluxes = fint * (freq_catalog*1e9/freq)**spindex elif use_NVSS: pass else: freq_SUMSS = 0.843 # in GHz SUMSS_file = '/data3/t_nithyanandan/project_MWA/foregrounds/sumsscat.Mar-11-2008.txt' catalog = NP.loadtxt(SUMSS_file, usecols=(0,1,2,3,4,5,10,12,13,14,15,16)) ra_deg_SUMSS = 15.0 * (catalog[:,0] + catalog[:,1]/60.0 + catalog[:,2]/3.6e3) dec_dd = NP.loadtxt(SUMSS_file, usecols=(3,), dtype="|S3") sgn_dec_str = NP.asarray([dec_dd[i][0] for i in range(dec_dd.size)]) sgn_dec = 1.0*NP.ones(dec_dd.size) sgn_dec[sgn_dec_str == '-'] = -1.0 dec_deg_SUMSS = sgn_dec * (NP.abs(catalog[:,3]) + catalog[:,4]/60.0 + catalog[:,5]/3.6e3) fmajax = catalog[:,7] fminax = catalog[:,8] fpa = catalog[:,9] dmajax = catalog[:,10] dminax = catalog[:,11] PS_ind = NP.logical_and(dmajax == 0.0, dminax == 0.0) ra_deg_SUMSS = ra_deg_SUMSS[PS_ind] dec_deg_SUMSS = dec_deg_SUMSS[PS_ind] fint = catalog[PS_ind,6] * 1e-3 spindex_SUMSS = -0.83 + NP.zeros(fint.size) fmajax = fmajax[PS_ind] fminax = fminax[PS_ind] fpa = fpa[PS_ind] dmajax = dmajax[PS_ind] dminax = dminax[PS_ind] bright_source_ind = fint >= 10.0 * (freq_SUMSS*1e9/freq)**spindex_SUMSS ra_deg_SUMSS = ra_deg_SUMSS[bright_source_ind] dec_deg_SUMSS = dec_deg_SUMSS[bright_source_ind] fint = fint[bright_source_ind] fmajax = fmajax[bright_source_ind] fminax = fminax[bright_source_ind] fpa = fpa[bright_source_ind] dmajax = dmajax[bright_source_ind] dminax = dminax[bright_source_ind] spindex_SUMSS = spindex_SUMSS[bright_source_ind] valid_ind = NP.logical_and(fmajax > 0.0, fminax > 0.0) ra_deg_SUMSS = ra_deg_SUMSS[valid_ind] dec_deg_SUMSS = dec_deg_SUMSS[valid_ind] fint = fint[valid_ind] fmajax = fmajax[valid_ind] fminax = fminax[valid_ind] fpa = fpa[valid_ind] spindex_SUMSS = spindex_SUMSS[valid_ind] freq_catalog = freq_SUMSS*1e9 + NP.zeros(fint.size) catlabel = NP.repeat('SUMSS', fint.size) ra_deg = ra_deg_SUMSS + 0.0 dec_deg = dec_deg_SUMSS spindex = spindex_SUMSS majax = fmajax/3.6e3 minax = fminax/3.6e3 fluxes = fint + 0.0 nvss_file = '/data3/t_nithyanandan/project_MWA/foregrounds/NVSS_catalog.fits' freq_NVSS = 1.4 # in GHz hdulist = fits.open(nvss_file) ra_deg_NVSS = hdulist[1].data['RA(2000)'] dec_deg_NVSS = hdulist[1].data['DEC(2000)'] nvss_fpeak = hdulist[1].data['PEAK INT'] nvss_majax = hdulist[1].data['MAJOR AX'] nvss_minax = hdulist[1].data['MINOR AX'] hdulist.close() spindex_NVSS = -0.83 + NP.zeros(nvss_fpeak.size) not_in_SUMSS_ind = NP.logical_and(dec_deg_NVSS > -30.0, dec_deg_NVSS <= min(90.0, latitude+90.0)) bright_source_ind = nvss_fpeak >= 10.0 * (freq_NVSS*1e9/freq)**(spindex_NVSS) PS_ind = NP.sqrt(nvss_majax**2-(0.75/60.0)**2) < 14.0/3.6e3 count_valid = NP.sum(NP.logical_and(
NP.logical_and(not_in_SUMSS_ind, bright_source_ind)
numpy.logical_and
""" The MIT License (MIT) Copyright (c) 2015 <NAME> (AKA Gato) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from camera import OrthoCamera import libs.transformations as T import numpy as N from glcompat import * from mathtools import floatArray class Scene(object): def __init__(self): self._model_m_changed = True self._camera = None self._default_camera = OrthoCamera() self.setCamera(None) self._model_m = T.identity_matrix() self._model_m_stack = [T.identity_matrix()] self._light_position = floatArray([1000.0, 1000.0, 1000.0]) # these are computed and cached: self._normal_m = None self._modelview_m = None self._light_m = None self._view_m = self._projection_m = None def pushTransform(self, add_transform=None): self._model_m_stack.append(self._model_m) if add_transform is not None: self._model_m = N.dot(self._model_m, add_transform) self._model_m_changed = True def popTransform(self): if len(self._model_m_stack)>1: self._model_m = self._model_m_stack.pop() else: self._model_m = T.identity_matrix() self._model_m_changed = True def resetTransform(self): self._model_m = T.identity_matrix() del self._model_m_stack[1:] self._model_m_changed = True def replaceLastTransform(self, transform): self._model_m = N.dot(self._model_m_stack[-1], transform) self._model_m_changed = True def _prepareMatrices(self): if self._model_m_changed or self._camera_changed: if self._camera_changed: self._view_m, self._projection_m = self._camera.getMatrices() self._camera_changed = False self._light_m = self._view_m self._modelview_m = N.dot(self._view_m, self._model_m) self._model_m_changed = False m = self._modelview_m[0:3,0:3] try: self._normal_m = N.transpose(
N.linalg.inv(m)
numpy.linalg.inv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np import sys,os curr_dir = os.getcwd() PyCore_dir = os.path.dirname(curr_dir) sys.path.append(PyCore_dir) #%% import PyCORe_main as pcm import time start_time = time.time() map2d_scan =
np.zeros([],dtype=complex)
numpy.zeros
import pickle import numpy as np import zipfile import gzip import os import random import copy from collections import OrderedDict from astrodash.create_arrays import AgeBinning, CreateLabels, ArrayTools, CreateArrays from astrodash.helpers import temp_list random.seed(42) class CreateTrainingSet(object): def __init__(self, snidTemplateLocation, snidTempFileList, w0, w1, nw, nTypes, minAge, maxAge, ageBinSize, typeList, minZ, maxZ, numOfRedshifts, galTemplateLocation, galTempFileList, hostTypes, nHostTypes, trainFraction): self.snidTemplateLocation = snidTemplateLocation self.snidTempFileList = snidTempFileList self.galTemplateLocation = galTemplateLocation self.galTempFileList = galTempFileList self.w0 = w0 self.w1 = w1 self.nw = nw self.nTypes = nTypes self.minAge = minAge self.maxAge = maxAge self.ageBinSize = ageBinSize self.typeList = typeList self.trainFraction = trainFraction self.ageBinning = AgeBinning(self.minAge, self.maxAge, self.ageBinSize) self.numOfAgeBins = self.ageBinning.age_bin(self.maxAge - 0.1) + 1 self.nLabels = self.nTypes * self.numOfAgeBins * nHostTypes self.createArrays = CreateArrays(w0, w1, nw, nTypes, minAge, maxAge, ageBinSize, typeList, minZ, maxZ, numOfRedshifts, hostTypes, nHostTypes) self.arrayTools = ArrayTools(self.nLabels, self.nw) def type_amounts(self, labels): counts = self.arrayTools.count_labels(labels) return counts def all_templates_to_arrays(self, snTempFileList, galTemplateLocation): """ Parameters ---------- snTempFileList : list or dictionary galTemplateLocation Returns ------- """ images, labels, filenames, typeNames = self.createArrays.combined_sn_gal_arrays_multiprocessing( self.snidTemplateLocation, snTempFileList, galTemplateLocation, self.galTempFileList) arraysShuf = self.arrayTools.shuffle_arrays(images=images, labels=labels, filenames=filenames, typeNames=typeNames, memmapName='all') typeAmounts = self.type_amounts(labels) return arraysShuf, typeAmounts def train_test_split(self): """ Split training set before creating arrays. Maybe should change this to include ages in train/test split instead of just SN files. """ snTempFileList = copy.copy(self.snidTempFileList) fileList = temp_list(snTempFileList) snAndAgeIdxDict = OrderedDict() spectraList = [] # SPLIT BY SPECTRA # Get number of spectra per file for i, sn in enumerate(fileList): with open(os.path.join(self.snidTemplateLocation, sn), 'r') as FileObj: for lineNum, line in enumerate(FileObj): # Read Header Info if lineNum == 0: header = (line.strip('\n')).split(' ') header = [x for x in header if x != ''] numAges, nwx, w0x, w1x, mostKnots, tname, dta, ttype, ittype, itstype = header numAges, mostKnots = map(int, (numAges, mostKnots)) elif lineNum == mostKnots + 2: ages = np.array(line.split()[1:]).astype(float) agesIndexesInRange =
np.where((ages >= self.minAge) & (ages <= self.maxAge))
numpy.where
import pytest import numpy as np import torch from torch.nn import Sequential from hdrl import agents import hdrl.experiment as experiment import hdrl.models as models """ GLOBALS """ SEED = 314 STATE =
np.array([1.1, 2.2, 3.3, 4.4])
numpy.array
import geopandas as gpd from osgeo import gdal, osr, ogr from osgeo import gdal_array import matplotlib.pyplot as plt import numpy as np import pandas as pd import pyproj from ..base import GeoArray def read_shp(path, encoding='utf-8'): return gpd.read_file(path, encoding=encoding) def write_shp(shp, path, encoding='utf-8'): shp.to_file(path, encoding) def read_hdf(path, chans=None): ds = gdal.Open(path) sds = ds.GetSubDatasets() imgs = [] if chans is None: chans = range(len(sds)) if isinstance(chans, int): chans = [chans] for i in chans: ds = gdal.Open(sds[i][0]) img = ds.ReadAsArray() m = ds.GetGeoTransform() m = np.array(m).reshape((2,3)) prj = ds.GetProjection() imgs.append(img) if len(chans) == 1: imgs = imgs[0] else: imgs = np.array(imgs).transpose((1,2,0)) return GeoArray(imgs, prj, m) def read_tif(path, chans=None): ds = gdal.Open(path) if chans is None: chans = range(ds.RasterCount) if isinstance(chans, int): chans = [chans] prj = ds.GetProjection() m = ds.GetGeoTransform() m =
np.array(m)
numpy.array
import numpy as np import cv2 import matplotlib.pyplot as plt import os from PIL import Image import torch def create_class_mask(img, color_map, is_normalized_img=True, is_normalized_map=False, show_masks=False): """ Function to create C matrices from the segmented image, where each of the C matrices is for one class with all ones at the pixel positions where that class is present img = The segmented image color_map = A list with tuples that contains all the RGB values for each color that represents some class in that image is_normalized_img = Boolean - Whether the image is normalized or not If normalized, then the image is multiplied with 255 is_normalized_map = Boolean - Represents whether the color map is normalized or not, if so then the color map values are multiplied with 255 show_masks = Wherether to show the created masks or not """ if is_normalized_img and (not is_normalized_map): img *= 255 if is_normalized_map and (not is_normalized_img): img = img / 255 mask = [] hw_tuple = img.shape[:-1] for color in color_map: color_img = [] for idx in range(3): color_img.append(np.ones(hw_tuple) * color[idx]) color_img = np.array(color_img, dtype=np.uint8).transpose(1, 2, 0) mask.append(np.uint8((color_img == img).sum(axis = -1) == 3)) return
np.array(mask)
numpy.array
#!/usr/bin/env python3 """ Gaussian mixture fitting with Nested Sampling. This module was tested in the main `nestfit` repo on bare arrays and Gaussian components -- without a spectral axis, units, or other necessary complications. The `.wrapped` references a Cython implementation of the Gaussian model class. """ import ctypes import operator from pathlib import Path import h5py import numpy as np import pandas as pd from scipy import (special, stats) from matplotlib import ticker from matplotlib import pyplot as plt import corner import pymultinest from .wrapped import CGaussianModel plt.rc('font', size=10, family='serif') plt.rc('text', usetex=True) plt.rc('xtick', direction='out', top=True) plt.rc('ytick', direction='out', right=True) ROOT_DIR = Path('/lustre/aoc/users/bsvoboda/temp/nestfit') DATA_DIR = ROOT_DIR / Path('data') PLOT_DIR = ROOT_DIR / Path('plots') class SyntheticSpectrum: def __init__(self, xaxis, amp, cen, std, noise=0.03, set_seed=False): """ Construct a mixture of Gaussians expressed as: f(x) = A * exp(-(x - c)^2 / (2 * s^2)) for "A" amplitude, "c" centroid, and "s" standard deviation. Parameters ---------- xaxis : np.ndarray amp : np.ndarray Array of Gaussian amplitudes cen : np.ndarray Array of Gaussian centroid positions std : np.ndarray Array of Guassian standard deviations noise : float, default=0.03 Noise standard deviation set_seed : bool, default=False If `True` will use a default seed of 5 for the np.random module. """ if set_seed: np.random.seed(5) else: np.random.seed() self.xaxis = xaxis.reshape(-1, 1) self.ncomp = len(amp) self.size = self.xaxis.shape[0] self.amp = amp self.cen = cen self.std = std self.truths = np.concatenate([amp, cen, std]) self.noise = noise self.components = self.profile().T self.sum_spec = self.components.sum(axis=0) self.noise_spec = np.random.normal(scale=self.noise, size=self.size) self.sampled_spec = self.sum_spec + self.noise_spec def profile(self): return self.amp * np.exp(-(self.xaxis - self.cen)**2 / (2 * self.std**2)) def resample_spectrum(self, noise=None): if noise is not None: self.noise = noise noise_spec = np.random.normal(scale=self.noise, size=self.size) self.noise_spec = noise_spec self.sampled_spec = self.sum_spec + self.noise_spec def test_spectrum(): return SyntheticSpectrum( np.linspace(-6, 6, 100), amp=np.array([0.3, 0.5, 0.4]), cen=np.array([-1, 0, 3]), std=np.array([1.5, 1.0, 0.5]), noise=0.03, set_seed=True, ) class GaussianModel: model_name = 'gaussian' def __init__(self, xaxis, ydata, noise, ncomp): self.xaxis = xaxis.reshape(-1, 1) self.size = xaxis.shape[0] self.ydata = ydata self.noise = noise self.ncomp = ncomp self.n_params = 3 * ncomp self.lnpin = -self.size / 2 * np.log(2 * np.pi * noise**2) self.null_lnZ = self.lnpin - np.sum(ydata**2) / (2 * self.noise**2) #self.array_type = np.ctypeslib.ndpointer( # ctypes.c_double, 1, (self.n_params,), 'C_CONTIGUOUS') @property def par_labels(self): comps = range(1, self.ncomp+1) return [ f'{label}{n}' for label in ('a', 'c', 's') for n in comps ] def loglikelihood(self, theta, ndim, nparams): n = self.ncomp #atheta = ctypes.cast(theta, self.array_type).contents atheta = np.ctypeslib.as_array(theta, shape=(self.n_params,)) amp = atheta[0 : n] cen = atheta[ n:2*n] std = atheta[2*n:3*n] ymodel = np.sum( amp *
np.exp(-(self.xaxis - cen)**2 / (2 * std**2))
numpy.exp
import sys import ctypes from PIL import Image Image.MAX_IMAGE_PIXELS = None import cv2 import numpy as np #from pyassimp import load, release from gibson2.core.render.mesh_renderer.glutils.meshutil import perspective, lookat, xyz2mat, quat2rotmat, mat2xyz, \ safemat2quat, xyzw2wxyz from transforms3d.quaternions import axangle2quat, mat2quat from transforms3d.euler import quat2euler, mat2euler from gibson2.core.render.mesh_renderer import MeshRendererContext from gibson2.core.render.mesh_renderer.get_available_devices import get_available_devices import gibson2.core.render.mesh_renderer as mesh_renderer import pybullet as p import gibson2 import os from gibson2.core.render.mesh_renderer import tinyobjloader import platform import logging class VisualObject(object): """ A visual object manages a set of VAOs and textures, one wavefront obj file loads into openGL, and managed by a VisualObject """ def __init__(self, filename, VAO_ids, id, renderer): """ :param filename: filename of the obj file :param VAO_ids: VAO_ids in OpenGL :param id: renderer maintains a list of visual objects, id is the handle of a visual object :param renderer: pointer to the renderer """ self.VAO_ids = VAO_ids self.filename = filename self.texture_ids = [] self.id = id self.renderer = renderer def __str__(self): return "Object({})->VAO({})".format(self.id, self.VAO_ids) def __repr__(self): return self.__str__() class InstanceGroup(object): """ InstanceGroup is a set of visual objects, it is grouped together because they are kinematically connected. Robots and articulated objects are represented as instance groups. """ def __init__(self, objects, id, link_ids, pybullet_uuid, class_id, poses_trans, poses_rot, dynamic, robot=None): """ :param objects: visual objects :param id: id this instance_group :param link_ids: link_ids in pybullet :param pybullet_uuid: body id in pybullet :param class_id: class_id to render semantics :param poses_trans: initial translations for each visual object :param poses_rot: initial rotation matrix for each visual object :param dynamic: is the instance group dynamic or not :param robot: The robot associated with this InstanceGroup """ # assert(len(objects) > 0) # no empty instance group self.objects = objects self.poses_trans = poses_trans self.poses_rot = poses_rot self.id = id self.link_ids = link_ids self.class_id = class_id self.robot = robot if len(objects) > 0: self.renderer = objects[0].renderer else: self.renderer = None self.pybullet_uuid = pybullet_uuid self.dynamic = dynamic self.tf_tree = None def render(self): """ Render this instance group """ if self.renderer is None: return self.renderer.r.initvar_instance_group(self.renderer.shaderProgram, self.renderer.V, self.renderer.P, self.renderer.lightpos, self.renderer.lightcolor) for i, visual_object in enumerate(self.objects): for object_idx in visual_object.VAO_ids: self.renderer.r.init_material_pos_instance(self.renderer.shaderProgram, self.poses_trans[i], self.poses_rot[i], float(self.class_id) / 255.0, self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].kd[:3], float(self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].is_texture())) try: texture_id = self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].texture_id if texture_id is None: texture_id = -1 if self.renderer.msaa: buffer = self.renderer.fbo_ms else: buffer = self.renderer.fbo self.renderer.r.draw_elements_instance(self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].is_texture(), texture_id, self.renderer.texUnitUniform, self.renderer.VAOs[object_idx], self.renderer.faces[object_idx].size, self.renderer.faces[object_idx], buffer) finally: self.renderer.r.cglBindVertexArray(0) self.renderer.r.cglUseProgram(0) def get_pose_in_camera(self): mat = self.renderer.V.dot(self.pose_trans.T).dot(self.pose_rot).T pose = np.concatenate([mat2xyz(mat), safemat2quat(mat[:3, :3].T)]) return pose def set_position(self, pos): """ Set positions for each part of this InstanceGroup :param pos: New translations """ self.pose_trans = np.ascontiguousarray(xyz2mat(pos)) def set_rotation(self, quat): """ Set rotations for each part of this InstanceGroup :param quat: New quaternion in w,x,y,z """ self.pose_rot = np.ascontiguousarray(quat2rotmat(quat)) def __str__(self): return "InstanceGroup({}) -> Objects({})".format( self.id, ",".join([str(object.id) for object in self.objects])) def __repr__(self): return self.__str__() class Robot(InstanceGroup): def __init__(self, *args, **kwargs): super(Robot, self).__init__(*args, **kwargs) def __str__(self): return "Robot({}) -> Objects({})".format( self.id, ",".join([str(object.id) for object in self.objects])) class Instance(object): """ Instance is one instance of a visual object. One visual object can have multiple instances to save memory. """ def __init__(self, object, id, class_id, pybullet_uuid, pose_trans, pose_rot, dynamic, softbody): self.object = object self.pose_trans = pose_trans self.pose_rot = pose_rot self.id = id self.class_id = class_id self.renderer = object.renderer self.pybullet_uuid = pybullet_uuid self.dynamic = dynamic self.softbody = softbody def render(self): """ Render this instance """ if self.renderer is None: return # softbody: reload vertex position if self.softbody: # construct new vertex position into shape format object_idx = self.object.VAO_ids[0] vertices = p.getMeshData(self.pybullet_uuid)[1] vertices_flattened = [item for sublist in vertices for item in sublist] vertex_position = np.array(vertices_flattened).reshape((len(vertices_flattened)//3, 3)) shape = self.renderer.shapes[object_idx] n_indices = len(shape.mesh.indices) np_indices = shape.mesh.numpy_indices().reshape((n_indices,3)) shape_vertex_index = np_indices[:,0] shape_vertex = vertex_position[shape_vertex_index] # update new vertex position in buffer data new_data = self.renderer.vertex_data[object_idx] new_data[:, 0:shape_vertex.shape[1]] = shape_vertex new_data = new_data.astype(np.float32) # transform and rotation already included in mesh data self.pose_trans = np.eye(4) self.pose_rot = np.eye(4) # update buffer data into VBO self.renderer.r.render_softbody_instance(self.renderer.VAOs[object_idx], self.renderer.VBOs[object_idx], new_data) self.renderer.r.initvar_instance(self.renderer.shaderProgram, self.renderer.V, self.renderer.P, self.pose_trans, self.pose_rot, self.renderer.lightpos, self.renderer.lightcolor) for object_idx in self.object.VAO_ids: self.renderer.r.init_material_instance(self.renderer.shaderProgram, float(self.class_id) / 255.0, self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].kd, float(self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].is_texture())) try: texture_id = self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].texture_id if texture_id is None: texture_id = -1 if self.renderer.msaa: buffer = self.renderer.fbo_ms else: buffer = self.renderer.fbo self.renderer.r.draw_elements_instance(self.renderer.materials_mapping[self.renderer.mesh_materials[object_idx]].is_texture(), texture_id, self.renderer.texUnitUniform, self.renderer.VAOs[object_idx], self.renderer.faces[object_idx].size, self.renderer.faces[object_idx], buffer) finally: self.renderer.r.cglBindVertexArray(0) self.renderer.r.cglUseProgram(0) def get_pose_in_camera(self): mat = self.renderer.V.dot(self.pose_trans.T).dot(self.pose_rot).T pose = np.concatenate([mat2xyz(mat), safemat2quat(mat[:3, :3].T)]) return pose def set_position(self, pos): self.pose_trans = np.ascontiguousarray(xyz2mat(pos)) def set_rotation(self, quat): """ :param quat: New quaternion in w,x,y,z """ self.pose_rot = np.ascontiguousarray(quat2rotmat(quat)) def __str__(self): return "Instance({}) -> Object({})".format(self.id, self.object.id) def __repr__(self): return self.__str__() class Material(object): def __init__(self, type='color', kd=[0.5, 0.5, 0.5], texture_id=None): self.type = type self.kd = kd self.texture_id = texture_id def is_texture(self): return self.type == 'texture' def __str__(self): return "Material(type: {}, texture_id: {}, color: {})".format(self.type, self.texture_id, self.kd) def __repr__(self): return self.__str__() class MeshRenderer(object): """ MeshRenderer is a lightweight OpenGL renderer. It manages a set of visual objects, and instances of those objects. It also manage a device to create OpenGL context on, and create buffers to store rendering results. """ def __init__(self, width=512, height=512, vertical_fov=90, device_idx=0, use_fisheye=False, msaa=False): """ :param width: width of the renderer output :param height: width of the renderer output :param vertical_fov: vertical field of view for the renderer :param device_idx: which GPU to run the renderer on :param use_fisheye: use fisheye shader or not """ self.shaderProgram = None self.fbo = None self.color_tex_rgb, self.color_tex_normal, self.color_tex_semantics, self.color_tex_3d = None, None, None, None self.depth_tex = None self.VAOs = [] self.VBOs = [] self.textures = [] self.objects = [] self.visual_objects = [] self.vertex_data = [] self.shapes = [] self.texUnitUniform = None self.width = width self.height = height self.faces = [] self.instances = [] self.fisheye = use_fisheye # self.context = glcontext.Context() # self.context.create_opengl_context((self.width, self.height)) available_devices = get_available_devices() if device_idx < len(available_devices): device = available_devices[device_idx] logging.info("Using device {} for rendering".format(device)) else: logging.info("Device index is larger than number of devices, falling back to use 0") device = 0 self.device_idx = device_idx self.device_minor = device self.msaa = msaa if platform.system() == 'Darwin': from gibson2.core.render.mesh_renderer import GLFWRendererContext self.r = GLFWRendererContext.GLFWRendererContext(width, height) else: self.r = MeshRendererContext.MeshRendererContext(width, height, device) self.r.init() self.glstring = self.r.getstring_meshrenderer() logging.debug('Rendering device and GL version') logging.debug(self.glstring) self.colors = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] self.lightcolor = [1, 1, 1] logging.debug('Is using fisheye camera: {}'.format(self.fisheye)) if self.fisheye: [self.shaderProgram, self.texUnitUniform] = self.r.compile_shader_meshrenderer( "".join(open( os.path.join(os.path.dirname(mesh_renderer.__file__), 'shaders/fisheye_vert.shader')).readlines()).replace( "FISHEYE_SIZE", str(self.width / 2)), "".join(open( os.path.join(os.path.dirname(mesh_renderer.__file__), 'shaders/fisheye_frag.shader')).readlines()).replace( "FISHEYE_SIZE", str(self.width / 2))) else: [self.shaderProgram, self.texUnitUniform] = self.r.compile_shader_meshrenderer( "".join(open( os.path.join(os.path.dirname(mesh_renderer.__file__), 'shaders/vert.shader')).readlines()), "".join(open( os.path.join(os.path.dirname(mesh_renderer.__file__), 'shaders/frag.shader')).readlines())) self.lightpos = [0, 0, 0] self.setup_framebuffer() self.vertical_fov = vertical_fov self.camera = [1, 0, 0] self.target = [0, 0, 0] self.up = [0, 0, 1] P = perspective(self.vertical_fov, float(self.width) / float(self.height), 0.01, 100) V = lookat(self.camera, self.target, up=self.up) self.V = np.ascontiguousarray(V, np.float32) self.P = np.ascontiguousarray(P, np.float32) self.materials_mapping = {} self.mesh_materials = [] def setup_framebuffer(self): """ Set up RGB, surface normal, depth and segmentation framebuffers for the renderer """ [self.fbo, self.color_tex_rgb, self.color_tex_normal, self.color_tex_semantics, self.color_tex_3d, self.depth_tex] = self.r.setup_framebuffer_meshrenderer(self.width, self.height) if self.msaa: [self.fbo_ms, self.color_tex_rgb_ms, self.color_tex_normal_ms, self.color_tex_semantics_ms, self.color_tex_3d_ms, self.depth_tex_ms] = self.r.setup_framebuffer_meshrenderer_ms(self.width, self.height) def load_object(self, obj_path, scale=
np.array([1, 1, 1])
numpy.array
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import numpy as np from gym.spaces import Box, Discrete import smarts from envision.client import Client as Envision from smarts.core.agent_interface import AgentInterface, AgentType from smarts.core.scenario import Scenario from smarts.core.smarts import SMARTS from smarts.core.sumo_traffic_simulation import SumoTrafficSimulation from .adapters.action_adapter import ( DEFAULT_ACTION_SPACE, N_ACTIONS, default_action_adapter, ) from .adapters.observation_adapter import DEFAULT_OBSERVATION_SPACE, default_obs_adapter from .adapters.reward_adapter import default_reward_adapter from .adapters.state_adapter import DEFAULT_STATE_SPACE, default_state_adapter class PyMARLHiWayEnv: """This class adheres to the PyMARL MultiAgentEnv so it can be run by PyMARL. See: https://git.io/JvMb9 This environment will want a specific configuration: config: a dictionary with the environment configuration agent_specs: a dictionary of agent_ids to agents that will run in the environment (required) scenarios: a list of directories of the scenarios that will be run (required) sim_name: a string that gives this simulation a name (default None) envision_record_data_replay_path: used to specify envision's data replay output directory (default None) envision_endpoint: used to specify envision's uri (default None) headless: true|false envision disabled (default True) num_external_sumo_clients: the number of SUMO clients beyond SMARTS (default 0) seed: the seed for random number generation (default 42) sumo_auto_start: true|false sumo will start automatically (default False) sumo_headless: true|false for sumo|sumo-gui (default False) sumo_port: used to specify a specific sumo port (default None) fixed_timestep_sec: the step length for all components of the simulation (default 0.1) """ def __init__(self, config): self._config = config # XXX: These are intentionally left public at PyMARL's request self.n_agents = config.get("n_agents", 1) self.episode_limit = config.get("episode_limit", 1000) self.observation_space = config.get( "observation_space", DEFAULT_OBSERVATION_SPACE ) self.action_space = config.get("action_space", DEFAULT_ACTION_SPACE) self.state_space = config.get("state_space", DEFAULT_STATE_SPACE) self._agent_ids = ["Agent %i" % i for i in range(self.n_agents)] self._reward_adapter = config.get("reward_adapter", default_reward_adapter) self._observation_adapter = config.get( "observation_adapter", default_obs_adapter ) self._action_adapter = config.get("action_adapter", default_action_adapter) self._done_adapter = config.get( "done_adapter", lambda dones: list(dones.values()) ) self._state_adapter = config.get("state_adapter", default_state_adapter) self._headless = config.get("headless", False) self._fixed_timestep_sec = config.get("fixed_timestep_sec", 0.01) self._observations = None self._state = None self._steps = 0 self._dones_registered = 0 seed = self._config.get("seed", 42) smarts.core.seed(seed) self._scenarios_iterator = Scenario.scenario_variations( config["scenarios"], self._agent_ids ) agent_interfaces = { agent_id: AgentInterface.from_type( config.get("agent_type", AgentType.Laner), max_episode_steps=self.episode_limit, debug=config.get("debug", False), ) for i, agent_id, in enumerate(self._agent_ids) } envision = None if not self._headless or config.get("envision_record_data_replay_path", None): envision = Envision( endpoint=config.get("envision_endpoint", None), sim_name=config.get("sim_name", None), output_dir=config.get("envision_record_data_replay_path", None), ) self._smarts = SMARTS( agent_interfaces=agent_interfaces, traffic_sim=SumoTrafficSimulation(time_resolution=self._fixed_timestep_sec), envision=envision, fixed_timestep_sec=self._fixed_timestep_sec, ) def get_obs(self): """ Returns all agent observations in a list. """ return self._observations def get_obs_agent(self, agent_id): """ Returns the observation for the given agent. """ return self._observations[agent_id] def get_obs_size(self): """ Returns the total size of all agent observation data. """ obs_size = 0 for obs in self.observation_space.spaces.values(): if type(obs) is Box: obs_size += np.prod(obs.shape) elif type(obs) is Discrete: obs_size += obs.n return obs_size def get_state(self): """ Returns the concatenated observations. """ return
np.concatenate(self._observations)
numpy.concatenate
import datetime from random import gauss import numpy as np import tkinter as tk import pyscreenshot as ImageGrab # For Linux from . import config as c class GUI(object): def __init__(self): drawscale = 250.0 width = 3.0 # with 1.5 to each side height = 2.0 gui = tk.Tk() gui.title("Simulator") gui.resizable(False, False) self.panel_width = drawscale * width self.panel_height = drawscale * height panel = tk.Canvas( gui, width=self.panel_width, height=self.panel_height, background="white") panel.pack() groundHeight = 0 centerX = self.panel_width / 2 self.groundY = self.panel_height - groundHeight # Draw grid for step in range(0, int(self.panel_width+1), 20): panel.create_line((step, 0, step, self.groundY), fill='lightgray') panel.create_line((0, step, self.panel_width, step), fill='lightgray') panel.create_rectangle( 1, 1, self.panel_width-1, self.groundY-1, fill='', width=10) self.agents = [] self.gui = gui self.panel = panel self.drawscale = drawscale self.centerX = centerX self.marker_id = None self.marker_color = 'yellow' self.marker_rad = drawscale * 0.03 self.is_marked = False self.time_step_id = panel.create_text(10, 10, text='', anchor=tk.W) self.time_step_text = '' # If true, no line from the ball position to the first prediction # position will be drawn self.hide_first_line = False self.sensor_dirs = calc_sensor_dirs() def register(self, agent): self.agents.append(agent) def add_terrain(self, terrain): terrain_start = self.scale(np.copy(terrain.start)) terrain_end = self.scale(np.copy(terrain.end)) self.panel.create_rectangle( *terrain_start, *terrain_end, fill=terrain.color, width=0) # Draw grid for step in range(0, int(self.panel_width+1), 20): self.panel.create_line((step, 0, step, self.groundY), fill='lightgray') self.panel.create_line((0, step, self.panel_width, step), fill='lightgray') self.panel.create_rectangle( 1, 1, self.panel_width-1, self.groundY-1, fill='', width=10) def mark(self, position): self.is_marked = True self.marker_pos = self.scale(position) def scale(self, coordinates): result = np.zeros_like(coordinates) if(coordinates.shape == (2,)): result[0] = self.centerX + (coordinates[0] * self.drawscale) result[1] = self.groundY - (coordinates[1] * self.drawscale) # result = [result[i].item() for i in range(len(result))] elif(len(coordinates.shape) == 2 and coordinates.shape[1] == 2): result[:, 0] = self.centerX + (coordinates[:, 0] * self.drawscale) result[:, 1] = self.groundY - (coordinates[:, 1] * self.drawscale) # for i in range(result.shape[0]): # for j in range(result.shape[1]): # result[i, j] = result[i, j].item() else: raise SystemExit("Wrong Dimensionality in gui.scale()") return result def unscale(self, gui_coordinates): result = np.zeros_like(gui_coordinates, dtype=np.float32) result[0] = (gui_coordinates[0] - self.centerX) / self.drawscale result[1] = (self.groundY - gui_coordinates[1]) / self.drawscale return result def update_time_step(self, from_step, to_step=None): if(to_step is None): self.time_step_text = 't: ' + str(from_step) else: self.time_step_text = 't: ' + str( from_step) + ' to ' + str(to_step) ''' Variables that draw needs: ballPos thrust_activity: the values of the thrust activity. Depends on the motor activity. thrust_ids: array of ids of all thrusts. shape (num_of_thrusts) Constants that run needs: ballRad thrustDirections. X and y coordinates per thrust. Shape (num_of_thrusts, 2) thrustColor ballColor dtmsec: the update frequency ''' def draw(self): for a in self.agents: if a.gui_att.scv_points is not None and a.gui_att.show_scv_targets is True: a.gui_att.scv_ids = self.draw_scv_targets( a.gui_att.predictions, a.gui_att.scv_points, a.gui_att.scv_ids, a.gui_att.scv_text_ids) a.gui_att.thrust_ids = self.draw_thrusts( a.gui_att.thrust_ids, a.gui_att.num_thrusts, a.gui_att.ball_pos, a.gui_att.thrust_directions, a.gui_att.thrust_activity, a.gui_att.thrust_factor, a.gui_att.thrust_color, a.gui_att.ball_rad) a.gui_att.ball_id = self.draw_ball( a.gui_att.ball_id, a.gui_att.ball_pos, a.gui_att.ball_rad, a.gui_att.ball_color) a.gui_att.ball_real_id = self.draw_ball_real( a.gui_att.ball_real_id, a.gui_att.is_ball_real_pos_set, a.gui_att.ball_real_pos, a.gui_att.ball_rad) if a.gui_att.show_target is True: a.gui_att.target_id = self.draw_target( a.gui_att.target_id, a.gui_att.target_pos, a.gui_att.target_rad, a.gui_att.target_color) if a.gui_att.show_predictions is True and a.gui_att.predictions is not None: a.gui_att.prediction_ids, a.gui_att.prediction_point_ids = self.draw_prediction_line( a.gui_att.prediction_ids, a.gui_att.prediction_point_ids, a.gui_att.ball_pos, a.gui_att.predictions) if a.gui_att.show_simulated_positions is True and a.gui_att.simulated_positions is not None: a.gui_att.simulated_position_ids = self.draw_simulated_positions_line( a.gui_att.simulated_position_ids, a.gui_att.is_ball_real_pos_set, a.gui_att.ball_real_pos, a.gui_att.ball_pos, a.gui_att.simulated_positions) a.gui_att.ball_name_id = self.draw_ball_name( a.gui_att.ball_name_id, a.id, a.gui_att.ball_pos, a.gui_att.ball_rad, a.gui_att.ball_name_color) # if a.gui_att.sensor_activity is not None: # a.gui_att.sensor_ray_ids = self.draw_sensor_activity(a.gui_att.sensor_ray_ids, a.gui_att.sensor_activity, a.gui_att.ball_pos, a.gui_att.sensor_ray_length) if a.gui_att.sensor_predictions is not None: a.gui_att.sensor_prediction_ids = self.draw_sensor_predictions( a.gui_att.sensor_predictions, a.gui_att.sensor_prediction_ids, a.gui_att.predictions) if self.marker_id is not None: self.panel.delete(self.marker_id) if self.is_marked: self.marker_id = self.panel.create_oval( self.marker_pos[0] + self.marker_rad, self.marker_pos[1] + self.marker_rad, self.marker_pos[0] - self.marker_rad, self.marker_pos[1] - self.marker_rad, fill=self.marker_color, outline='black' ) self.panel.itemconfigure(self.time_step_id, text=self.time_step_text) # Now Update the GUI self.gui.update_idletasks() self.gui.update() # ----------- # Draw methods # ----------- def draw_thrusts(self, thrust_ids, num_thrusts, ball_pos, thrust_directions, thrust_activity, thrust_factor, thrust_color, ball_rad): ball_pos = self.scale(np.copy(ball_pos)) for i in range(num_thrusts): r = gauss(0, 0.1) points = [ball_pos[0] - int((1.0 + r) * thrust_directions[i, 0] * thrust_activity[i] * thrust_factor * (ball_rad * self.drawscale)), ball_pos[1] + int((1.0 + r) * thrust_directions[i, 1] * thrust_activity[i] * thrust_factor * (ball_rad * self.drawscale)), ball_pos[0], ball_pos[1] - 5, ball_pos[0], ball_pos[1] + 5] if thrust_ids[i] is not None: self.panel.delete(thrust_ids[i]) points = [points[i].item() for i in range(len(points))] thrust_ids[i] = self.panel.create_polygon( points, fill=thrust_color) return thrust_ids def draw_ball(self, ball_id, ball_pos, ball_rad, ball_color): ball_pos = self.scale(
np.copy(ball_pos)
numpy.copy
from __future__ import print_function import itertools import math import os import random import shutil import tempfile import unittest import uuid import numpy as np import tensorflow as tf import coremltools import coremltools.models.datatypes as datatypes from coremltools.models import _MLMODEL_FULL_PRECISION, _MLMODEL_HALF_PRECISION from coremltools.models import neural_network as neural_network from coremltools.models.utils import macos_version from coremltools.models.neural_network import flexible_shape_utils np.random.seed(10) MIN_MACOS_VERSION_REQUIRED = (10, 13) LAYERS_10_15_MACOS_VERSION = (10, 15) def _get_unary_model_spec(x, mode, alpha=1.0): input_dim = x.shape input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_unary(name='unary', input_name='data', output_name='output', mode=mode, alpha=alpha) return builder.spec class CorrectnessTest(unittest.TestCase): def runTest(self): pass def _compare_shapes(self, np_preds, coreml_preds): return np.squeeze(np_preds).shape == np.squeeze(coreml_preds).shape def _compare_nd_shapes(self, np_preds, coreml_preds, shape=()): if shape: return coreml_preds.shape == shape else: return coreml_preds.shape == np_preds.shape def _compare_predictions(self, np_preds, coreml_preds, delta=.01): np_preds = np_preds.flatten() coreml_preds = coreml_preds.flatten() for i in range(len(np_preds)): max_den = max(1.0, np_preds[i], coreml_preds[i]) if np.abs( np_preds[i] / max_den - coreml_preds[i] / max_den) > delta: return False return True @staticmethod def _compare_moments(model, inputs, expected, use_cpu_only=True, num_moments=10): """ This utility function is used for validate random distributions layers. It validates the first 10 moments of prediction and expected values. """ def get_moment(data, k): return np.mean(np.power(data - np.mean(data), k)) if isinstance(model, str): model = coremltools.models.MLModel(model) model = coremltools.models.MLModel(model, useCPUOnly=use_cpu_only) prediction = model.predict(inputs, useCPUOnly=use_cpu_only) for output_name in expected: np_preds = expected[output_name] coreml_preds = prediction[output_name] np_moments = [get_moment(np_preds.flatten(), k) for k in range(num_moments)] coreml_moments = [get_moment(coreml_preds.flatten(), k) for k in range(num_moments)] np.testing.assert_almost_equal(np_moments, coreml_moments, decimal=2) # override expected values to allow element-wise compares for output_name in expected: expected[output_name] = prediction[output_name] def _test_model(self, model, input, expected, model_precision=_MLMODEL_FULL_PRECISION, useCPUOnly=False, output_name_shape_dict={}, validate_shapes_only=False): model_dir = None # if we're given a path to a model if isinstance(model, str): model = coremltools.models.MLModel(model) # If we're passed in a specification, save out the model # and then load it back up elif isinstance(model, coremltools.proto.Model_pb2.Model): model_dir = tempfile.mkdtemp() model_name = str(uuid.uuid4()) + '.mlmodel' model_path = os.path.join(model_dir, model_name) coremltools.utils.save_spec(model, model_path) model = coremltools.models.MLModel(model, useCPUOnly=useCPUOnly) # If we want to test the half precision case if model_precision == _MLMODEL_HALF_PRECISION: model = coremltools.utils.convert_neural_network_weights_to_fp16( model) prediction = model.predict(input, useCPUOnly=useCPUOnly) for output_name in expected: if self.__class__.__name__ == "SimpleTest": assert (self._compare_shapes(expected[output_name], prediction[output_name])) else: if output_name in output_name_shape_dict: output_shape = output_name_shape_dict[output_name] else: output_shape = [] if len(output_shape) == 0 and len(expected[output_name].shape) == 0: output_shape = (1,) assert (self._compare_nd_shapes(expected[output_name], prediction[output_name], output_shape)) if not validate_shapes_only: assert (self._compare_predictions(expected[output_name], prediction[output_name])) # Remove the temporary directory if we created one if model_dir and os.path.exists(model_dir): shutil.rmtree(model_dir) @unittest.skipIf(macos_version() < MIN_MACOS_VERSION_REQUIRED, 'macOS 10.13+ is required. Skipping tests.') class SimpleTest(CorrectnessTest): def test_tiny_upsample_linear_mode(self): input_dim = (1, 1, 3) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_upsample(name='upsample', scaling_factor_h=2, scaling_factor_w=3, input_name='data', output_name='output', mode='BILINEAR') input = { 'data': np.reshape(np.array([1.0, 2.0, 3.0]), (1, 1, 3)) } expected = { 'output': np.array( [[1, 1.333, 1.666, 2, 2.333, 2.666, 3, 3, 3], [1, 1.333, 1.6666, 2, 2.33333, 2.6666, 3, 3, 3] ]) } self._test_model(builder.spec, input, expected) def test_LRN(self): input_dim = (1, 3, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_lrn(name='lrn', input_name='data', output_name='output', alpha=2, beta=3, local_size=1, k=8) input = { 'data': np.ones((1, 3, 3)) } expected = { 'output': 1e-3 * np.ones((1, 3, 3)) } self._test_model(builder.spec, input, expected) def test_MVN(self): input_dim = (2, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_mvn(name='mvn', input_name='data', output_name='output', across_channels=False, normalize_variance=False) input = { 'data': np.reshape(np.arange(8, dtype=np.float32), (2, 2, 2)) } expected = { 'output': np.reshape(np.arange(8) - np.array( [1.5, 1.5, 1.5, 1.5, 5.5, 5.5, 5.5, 5.5]), (2, 2, 2)) } self._test_model(builder.spec, input, expected) def test_L2_normalize(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', datatypes.Array(*input_dim))] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_l2_normalize(name='mvn', input_name='data', output_name='output') input = { 'data': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) } expected = { 'output': np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) / np.sqrt(14) } self._test_model(builder.spec, input, expected) def test_unary_sqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.sqrt(x)} spec = _get_unary_model_spec(x, 'sqrt') self._test_model(spec, input, expected) def test_unary_rsqrt(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / np.sqrt(x)} spec = _get_unary_model_spec(x, 'rsqrt') self._test_model(spec, input, expected) def test_unary_inverse(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 1 / x} spec = _get_unary_model_spec(x, 'inverse') self._test_model(spec, input, expected) def test_unary_power(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x ** 3} spec = _get_unary_model_spec(x, 'power', 3) self._test_model(spec, input, expected) def test_unary_exp(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.exp(x)} spec = _get_unary_model_spec(x, 'exp') self._test_model(spec, input, expected) def test_unary_log(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.log(x)} spec = _get_unary_model_spec(x, 'log') self._test_model(spec, input, expected) def test_unary_abs(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.abs(x)} spec = _get_unary_model_spec(x, 'abs') self._test_model(spec, input, expected) def test_unary_threshold(self): x = np.reshape(np.arange(1, 5, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': np.maximum(x, 2)} spec = _get_unary_model_spec(x, 'threshold', 2) self._test_model(spec, input, expected) def test_split(self): input_dim = (9, 2, 2) x = np.random.rand(*input_dim) input_features = [('data', datatypes.Array(*input_dim))] output_names = [] output_features = [] for i in range(3): out = 'out_' + str(i) output_names.append(out) output_features.append((out, None)) builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_split(name='split', input_name='data', output_names=output_names) input = {'data': x} expected = { 'out_0': x[0: 3, :, :], 'out_1': x[3: 6, :, :], 'out_2': x[6: 9, :, :] } self._test_model(builder.spec, input, expected) def test_scale_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_scale(name='scale', W=5, b=45, has_bias=True, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': 5 * x + 45} self._test_model(builder.spec, input, expected) def test_scale_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_scale(name='scale', W=W, b=None, has_bias=False, input_name='data', output_name='output', shape_scale=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': W * x} self._test_model(builder.spec, input, expected) def test_bias_constant(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_bias(name='bias', b=45, input_name='data', output_name='output') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + 45} self._test_model(builder.spec, input, expected) def test_bias_matrix(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected) def test_load_constant(self, model_precision=_MLMODEL_FULL_PRECISION): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_load_constant(name='load_constant', output_name='bias', constant_value=b, shape=[1, 2, 2]) builder.add_elementwise(name='add', input_names=['data', 'bias'], output_name='output', mode='ADD') x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, model_precision) def test_load_constant_half_precision(self): self.test_load_constant(model_precision=_MLMODEL_HALF_PRECISION) def test_min(self): input_dim = (1, 2, 2) input_features = [('data_0', datatypes.Array(*input_dim)), ('data_1', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_elementwise(name='min', input_names=['data_0', 'data_1'], output_name='output', mode='MIN') x1 = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) x2 = np.reshape(np.arange(2, 6, dtype=np.float32), (1, 2, 2)) input = {'data_0': x1, 'data_1': x2} expected = {'output': np.minimum(x1, x2)} self._test_model(builder.spec, input, expected) def test_conv_same_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='conv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='same', groups=1, W=W, b=None, has_bias=False, input_name='data', output_name='output', same_padding_asymmetry_mode='TOP_LEFT_HEAVY') x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 8, 8)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_valid_padding(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) W = np.random.rand(3, 3, 10, 20) builder.add_convolution(name='deconv', kernel_channels=10, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=1, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_deconv_non_unit_groups(self): input_dim = (16, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) W = np.random.rand(3, 3, 16, 5) builder.add_convolution(name='deconv', kernel_channels=16, output_channels=20, height=3, width=3, stride_height=2, stride_width=2, border_mode='valid', groups=4, W=W, b=None, has_bias=False, is_deconv=True, input_name='data', output_name='output', padding_top=2, padding_bottom=3, padding_left=2, padding_right=3) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.random.rand(20, 26, 26)} self._test_model( builder.spec, input, expected, validate_shapes_only=True) def test_linear_activation(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected) def test_padding_constant(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features) builder.add_padding(name='pad', left=1, right=0, top=2, bottom=0, value=-1, input_name='data', output_name='output') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape( np.array([[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, 1, 2, 3], [-1, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_padding_replication(self): input_dim = (1, 2, 3) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_padding(name='pad', left=1, top=2, input_name='data', output_name='output', padding_type='replication') x = np.reshape(np.array([[1, 2, 3], [4, 5, 6]]), (1, 2, 3)).astype( np.float32) input = {'data': x} y = np.reshape(np.array([[1, 1, 2, 3], [1, 1, 2, 3], [1, 1, 2, 3], [4, 4, 5, 6]]), (1, 4, 4)).astype(np.float32) expected = {'output': y} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_3(self): input_dim = (1, 2, 5) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=(10, 1, 1), mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (10, 1, 1))} self._test_model(builder.spec, input, expected) def test_reshape_target_shape_4(self): input_dim = (1, 2, 5) # (C,H,W) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_reshape(name='reshape', input_name='data', output_name='output', target_shape=(1, 10, 1, 1), mode=0) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': np.reshape(x, (1, 10, 1, 1))} self._test_model(builder.spec, input, expected) def test_bias_matrix_cpu(self): input_dim = (1, 2, 2) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) b = np.reshape(np.arange(5, 9), (1, 2, 2)) builder.add_bias(name='bias', b=b, input_name='data', output_name='output', shape_bias=[1, 2, 2]) x = np.reshape(np.arange(4, dtype=np.float32), (1, 2, 2)) input = {'data': x} expected = {'output': x + b} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_linear_activation_cpu(self): input_dim = (10, 15, 15) input_features = [('data', datatypes.Array(*input_dim))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features) builder.add_activation(name='activation', non_linearity='LINEAR', input_name='data', output_name='output', params=[34.0, 67.0]) x = np.random.rand(*input_dim) input = {'data': x} expected = {'output': 34.0 * x + 67.0} self._test_model(builder.spec, input, expected, useCPUOnly=True) @unittest.skipIf(macos_version() < LAYERS_10_15_MACOS_VERSION, 'macOS 10.15+ required. Skipping tests.') class NewLayersSimpleTest(CorrectnessTest): def test_shape_flexibility_range(self): input_features = [('data', datatypes.Array(*(3,4)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec flexible_shape_utils.set_multiarray_ndshape_range(spec, feature_name='data', lower_bounds=[1,1], upper_bounds=[-1,5]) shapes = [(3,4), (1,5), (60,5), (22,4), (5,3)] for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) @unittest.skip('TO FIX') def test_shape_flexibility_enumeration(self): input_features = [('data', datatypes.Array(*(3,4,6)))] builder = neural_network.NeuralNetworkBuilder(input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_sin(name='sin', input_name='data', output_name='output') spec = builder.spec shapes = [(1, 5, 7), (60, 5, 2), (22, 4, 9), (5, 3, 56)] flexible_shape_utils.add_multiarray_ndshape_enumeration(spec, feature_name='data', enumerated_shapes=shapes) shapes.append((3,4,6)) for s in shapes: x = np.random.rand(*s) expected = {'output': np.sin(x)} self._test_model(spec, {'data': x}, expected, useCPUOnly=True) def test_transpose_cpu(self): for rank in range(1, 6): axes = np.random.permutation(rank) axes = [axis - rank if np.random.choice([True, False]) else axis for axis in axes] input_shape = np.random.randint(low=2, high=6, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_transpose(name='TransposeND', axes=axes, input_name='data', output_name='output') x = np.random.rand(*input_shape) input = {'data': x} expected = {'output': np.transpose(x, axes)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_batched_mat_mul_cpu(self): a_shapes = [(10,), (4, 10), (10,), (10,), (2, 3), (1, 3, 4), (1, 3, 1, 2, 3), (2, 3, 1, 3, 4)] b_shapes = [(10,), (10,), (10, 3), (2, 10, 3), (3, 4), (3, 2, 4, 5), (1, 4, 3, 2), (2, 1, 2, 4, 5)] out_shapes = [(1, 1), (4, 1), (1, 3), (2, 1, 3), (2, 4), (3, 2, 3, 5), (1, 3, 4, 2, 2), (2, 3, 2, 3, 5)] for a_shape, b_shape, outShape in zip(a_shapes, b_shapes, out_shapes): input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['A', 'B'], output_name='output', transpose_a=False, transpose_b=False) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) input = {'A': a, 'B': b} expected = {'output': np.array(np.matmul(a, b))} shape_dict = {'output': outShape} self._test_model(builder.spec, input, expected, useCPUOnly=True, output_name_shape_dict=shape_dict) def test_batched_mat_mul_with_transposes_cpu(self): for transpose_a, transpose_b in itertools.product([True, False], [True, False]): a_shape = (3, 4) b_shape = (4, 5) a_shape = a_shape[::-1] if transpose_a else a_shape b_shape = b_shape[::-1] if transpose_b else b_shape input_shapes = [a_shape, b_shape] input_features = [ ('A', datatypes.Array(*input_shapes[0])), ('B', datatypes.Array(*input_shapes[1])) ] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True ) builder.add_batched_mat_mul( name='BatchedMatMul', input_names=['A', 'B'], output_name='output', transpose_a=transpose_a, transpose_b=transpose_b ) a = np.random.rand(*input_shapes[0]) b = np.random.rand(*input_shapes[1]) inputs = {'A': a, 'B': b} a = a.T if transpose_a else a b = b.T if transpose_b else b expected = {'output': np.matmul(a, b)} self._test_model(builder.spec, inputs, expected, useCPUOnly=True) def test_batched_mat_mul_single_input_cpu( self, model_precision=_MLMODEL_FULL_PRECISION): X1 = 11 X2 = 23 W = np.random.rand(X1, X2) bias = np.random.rand(X2) input_shapes = [(X1,), (5, X1), (2, 3, X1), (4, 1, X1), (12, 5, 8, X1), (2, 3, 1, 5, X1)] for input_shape in input_shapes: x = np.random.rand(*input_shape) np_out = np.matmul(x, W) + bias expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_batched_mat_mul(name='batched_mat_mul', input_names=['data'], output_name='output', weight_matrix_rows=X1, weight_matrix_columns=X2, W=W, bias=bias) inputs = {'data': x} self._test_model( builder.spec, inputs, expected, model_precision=model_precision, useCPUOnly=True) def test_batched_mat_mul_single_input_half_precision_cpu(self): self.test_batched_mat_mul_single_input_cpu( model_precision=_MLMODEL_HALF_PRECISION) def test_embedding_nd_cpu( self, model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=True): vocab_size = 10 embedding_size = 19 W = np.random.rand(embedding_size, vocab_size) input_shapes = [(5, 1), (2, 3, 1), (4, 1, 1), (12, 5, 8, 1), (2, 3, 1, 5, 1)] for input_shape in input_shapes: x = np.random.randint(vocab_size, size=input_shape) np_out = np.take(np.transpose(W), np.squeeze(x, axis=-1), axis=0) expected = {'output': np_out} input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_embedding_nd(name='embedding_nd', input_name='data', output_name='output', vocab_size=vocab_size, embedding_size=embedding_size, W=W) input = {'data': x.astype(np.float32)} self._test_model( builder.spec, input, expected, model_precision=model_precision, useCPUOnly=use_cpu_only) def test_embedding_nd_half_precision_cpu(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=True) def test_embedding_nd_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_FULL_PRECISION, use_cpu_only=False) def test_embedding_nd_half_precision_GPU(self): self.test_embedding_nd_cpu( model_precision=_MLMODEL_HALF_PRECISION, use_cpu_only=False) def test_softmax_nd_cpu(self): for rank in range(1, 6): for axis in range(-rank, rank): input_shape = np.random.randint(low=2, high=5, size=rank) input_features = [('data', datatypes.Array(*input_shape))] output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder( input_features, output_features, disable_rank5_shape_mapping=True) builder.add_softmax_nd(name='softmax_nd', input_name='data', output_name='output', axis=axis) x = np.random.rand(*input_shape) input = {'data': x} y = np.exp(x - np.max(x, axis=axis, keepdims=True)) y = y / np.sum(y, axis=axis, keepdims=True) expected = {'output': y} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_concat_nd_cpu(self): for rank in range(1, 6): for axis in range(-rank, rank): n_inputs = np.random.choice(range(2, 5)) output_shape = np.random.randint(low=2, high=5, size=rank) output_shape[axis] = 0 input_shapes = [] input_features = [] input_names = [] for _ in range(n_inputs): input_shapes.append(np.copy(output_shape)) input_shapes[-1][axis] = np.random.choice(range(2, 8)) output_shape[axis] += input_shapes[-1][axis] for i, input_dim in enumerate(input_shapes): input_name = 'input_%s' % str(i) input_names.append(input_name) input_features.append((input_name, datatypes.Array(*input_dim))) output_features = [('output', None)] builder = neural_network.NeuralNetworkBuilder(input_features, output_features, disable_rank5_shape_mapping=True) builder.add_concat_nd(name='concat_nd', input_names=input_names, output_name='output', axis=axis) input_tensors = [] for input_dim in input_shapes: input_tensors.append(np.random.rand(*input_dim)) input = dict(zip(input_names, input_tensors)) expected = {'output': np.concatenate(input_tensors, axis)} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_fill_like_cpu(self): for rank in range(1, 6): target_shape = np.random.randint(low=2, high=6, size=rank) value = float(np.random.rand()) input_features = [('tensor', datatypes.Array(*target_shape))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_like(name='fill_like', input_name='tensor', output_name='output', value=value) tensor = np.random.rand(*target_shape) input = {'tensor': tensor} expected = {'output': np.zeros(target_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_fill_static_cpu(self): for rank in range(1, 6): shape = np.random.randint(low=2, high=8, size=rank) input_features = [('data', datatypes.Array(*shape))] value = float(np.random.rand()) builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_static(name='fill_static', output_name='tmp', output_shape=list(shape), value=value) builder.add_elementwise('add_layer', ['data', 'tmp'], 'output', mode='ADD') data = np.random.rand(*shape) input = {'data': data} expected = {'output': data + value} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_fill_dynamic_cpu(self): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) value = float(np.random.rand()) input_features = [('shape', datatypes.Array(len(input_shape)))] builder = neural_network.NeuralNetworkBuilder( input_features, [('output', None)], disable_rank5_shape_mapping=True) builder.add_fill_dynamic(name='fill_dynamic', input_name='shape', output_name='output', value=value) input = {'shape': np.array(input_shape, dtype='float')} expected = {'output': np.zeros(input_shape) + value} self._test_model(builder.spec, input, expected, useCPUOnly=True) def test_broadcast_to_like_cpu(self): for rank in range(1, 6): input_shape = np.random.randint(low=2, high=8, size=rank) mask = [np.random.choice([True, False, False]) for _ in range(rank)] input_shape = np.where(mask, 1, input_shape) target_rank =
np.random.randint(low=rank, high=6)
numpy.random.randint
import os, sys import numpy as np import torch import open3d as o3d from . import pcd_utils class Colors(): red = [0.8, 0.2, 0] green = [0, 0.7, 0.2] blue = [0, 0, 1] gold = [1, 0.706, 0] greenish = [0, 0.8, 0.506] def visualize_point_tensor( points_list, R, t, colors_list=None, compute_bbox_list=None, additional_pcds=[], exit_after=False, convert_to_opengl_coords=True ): assert len(points_list) == len(colors_list) == len(compute_bbox_list) # World frame referece_frame = create_frame(size=1.0) additional_pcds.append(referece_frame) # camera frame camera_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=[0, 0, 0] ) camera_frame.rotate(R, pcd_utils.origin) camera_frame.translate(t, relative=True) additional_pcds.append(camera_frame) # Unit bbox unit_bbox = create_unit_bbox() additional_pcds.append(unit_bbox) # Go over list of numpy arrays and convert them to o3d.geometry.PointClouds # (maybe also create bboxes around them) pcds = [] bboxes = [] for i, points in enumerate(points_list): if torch.is_tensor(points): points_np = points.cpu().numpy() elif isinstance(points, type(np.empty(0))): points_np = points if len(points_np.shape) == 3: # we then assume the first dimension is the batch_size points_np = points_np.squeeze(axis=0) if points_np.shape[1] > points_np.shape[0] and points_np.shape[0] == 3: points_np = np.moveaxis(points_np, 0, -1) # [N, 3] # transform to opengl coordinates if convert_to_opengl_coords: points_np = pcd_utils.transform_pointcloud_to_opengl_coords(points_np) pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points_np)) if colors_list is not None: if colors_list[i] is not None: color_np = colors_list[i] * np.ones_like(points_np) pcd.colors = o3d.utility.Vector3dVector(color_np) pcds.append(pcd) if compute_bbox_list is not None: if compute_bbox_list[i]: bbox = pcd_utils.BBox(points_np) bboxes.append(bbox.get_bbox_as_line_set()) # sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) # sphere = sphere.translate(np.array([0, -1, 0]), relative=True) # sphere.paint_uniform_color([1.0, 0.0, 0.0]) # additional_pcds.append(sphere) # sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) # sphere = sphere.translate(np.array([0, 0, 1]), relative=True) # sphere.paint_uniform_color([1.0, 0.0, 0.0]) # additional_pcds.append(sphere) # transform also additional_pcds if necessary if convert_to_opengl_coords: for additional_pcd in additional_pcds: additional_pcd.transform(pcd_utils.T_opengl_cv_homogeneous) o3d.visualization.draw_geometries([*additional_pcds, *pcds, *bboxes]) if exit_after: exit() def create_unit_bbox(): # unit bbox unit_bbox = pcd_utils.BBox.compute_bbox_from_min_point_and_max_point( np.array([-1, -1, -1]), np.array([1, 1, 1]) ) return unit_bbox def create_frame(size=1.0, origin=[0, 0, 0]): frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=size, origin=origin ) return frame def create_lines_from_start_and_end_points(start_points, end_points, color=[201/255, 177/255, 14/255]): if start_points.shape[1] > start_points.shape[0] and start_points.shape[0] == 3: start_points = start_points.transpose() end_points = end_points.transpose() num_pairs = start_points.shape[0] all_points = np.concatenate((start_points, end_points), axis=0) lines = [[i, i + num_pairs] for i in range(0, num_pairs, 1)] line_colors = [color for i in range(num_pairs)] line_set = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(all_points), lines=o3d.utility.Vector2iVector(lines), ) line_set.colors = o3d.utility.Vector3dVector(line_colors) return line_set def create_lines_from_view_vectors( view_vectors_original, offsets_original, dist_original, R, t, return_geoms=False, convert_to_opengl_coords=False ): view_vectors = np.copy(view_vectors_original) offsets = np.copy(offsets_original) dist = np.copy(dist_original) # Move coordinates to the last axis view_vectors = np.moveaxis(view_vectors, 0, -1) # [N, 3] offsets = np.moveaxis(offsets, 0, -1) # [N, 3] len_dist_shape = len(dist.shape) if len_dist_shape == 1: dist = dist[:, np.newaxis] else: dist = np.moveaxis(dist, 0, -1) # [N, 1] N = offsets.shape[0] # number of points (and lines) # Advance along the view_vectors by a distance of "dist" end_points = offsets + view_vectors * dist # Concatenate offsets and end_points into one array points = np.concatenate((offsets, end_points), axis=0) # Compute list of edges between offsets and end_points lines = [[i, i + N] for i in range(0, N, 1)] line_colors = [[201/255, 177/255, 14/255] for i in range(N)] line_set = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(points), lines=o3d.utility.Vector2iVector(lines), ) line_set.colors = o3d.utility.Vector3dVector(line_colors) # Offsets PointCloud offsets_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(offsets)) offsets_pcd.paint_uniform_color(Colors.red) # End points PointCloud end_points_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(end_points)) end_points_pcd.paint_uniform_color(Colors.green) # Concatenate PointClouds pcds = [offsets_pcd, end_points_pcd] # Convert to opengl coordinates if necessary if not return_geoms or convert_to_opengl_coords: offsets_pcd.transform(pcd_utils.T_opengl_cv_homogeneous) end_points_pcd.transform(pcd_utils.T_opengl_cv_homogeneous) line_set.transform(pcd_utils.T_opengl_cv_homogeneous) if return_geoms: return line_set, pcds else: # camera frame camera_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=[0, 0, 0] ) camera_frame.rotate(R, pcd_utils.origin) camera_frame.translate(t, relative=True) camera_frame.rotate(pcd_utils.T_opengl_cv, pcd_utils.origin) # convert to opengl coordinates for visualization o3d.visualization.draw_geometries([camera_frame, *pcds, line_set]) exit() def viz_and_exit(pcd_list): o3d.visualization.draw_geometries(pcd_list) exit() def visualize_mesh(mesh_path): # world frame world_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=[0, 0, 0] ) mesh = o3d.io.read_triangle_mesh(mesh_path) o3d.visualization.draw_geometries([world_frame, mesh]) def visualize_grid(points_list, colors=None, exit_after=True): # world frame world_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.5, origin=[0, 0, 0] ) world_frame = pcd_utils.rotate_around_axis(world_frame, axis_name="x", angle=-np.pi) pcds = [] for i, points in enumerate(points_list): pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(np.moveaxis(points, 0, -1))) pcd = pcd_utils.rotate_around_axis(pcd, "x", np.pi) if colors: pcd.paint_uniform_color(colors[i]) pcds.append(pcd) o3d.visualization.draw_geometries([world_frame, *pcds]) if exit_after: exit() def visualize_sphere(): import marching_cubes as mcubes from utils.sdf_utils import sphere_tsdf # Extract sphere with Marching cubes. dim = 20 # Extract the 0-isosurface. X, Y, Z = np.meshgrid(np.arange(-1, 1, 2.0 / dim), np.arange(-1, 1, 2.0 / dim), np.arange(-1, 1, 2.0 / dim)) sdf = sphere_tsdf(X, Y, Z) vertices, triangles = mcubes.marching_cubes(sdf, 0) # Convert extracted surface to o3d mesh. mesh_sphere = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(triangles)) mesh_sphere.compute_vertex_normals() o3d.visualization.draw_geometries([mesh_sphere]) def merge_line_sets(line_sets): # Compute total number of vertices and faces. num_points = 0 num_lines = 0 num_line_colors = 0 for i in range(len(line_sets)): num_points += np.asarray(line_sets[i].points).shape[0] num_lines += np.asarray(line_sets[i].lines).shape[0] num_line_colors += np.asarray(line_sets[i].colors).shape[0] # Merge points and faces. points = np.zeros((num_points, 3), dtype=np.float64) lines = np.zeros((num_lines, 2), dtype=np.int32) line_colors = np.zeros((num_line_colors, 3), dtype=np.float64) vertex_offset = 0 line_offset = 0 vertex_color_offset = 0 for i in range(len(line_sets)): current_points = np.asarray(line_sets[i].points) current_lines = np.asarray(line_sets[i].lines) current_line_colors = np.asarray(line_sets[i].colors) points[vertex_offset:vertex_offset + current_points.shape[0]] = current_points lines[line_offset:line_offset + current_lines.shape[0]] = current_lines + vertex_offset line_colors[vertex_color_offset:vertex_color_offset + current_line_colors.shape[0]] = current_line_colors vertex_offset += current_points.shape[0] line_offset += current_lines.shape[0] vertex_color_offset += current_line_colors.shape[0] # Create a merged line set object. line_set = o3d.geometry.LineSet(o3d.utility.Vector3dVector(points), o3d.utility.Vector2iVector(lines)) line_set.colors = o3d.utility.Vector3dVector(line_colors) return line_set def merge_meshes(meshes): # Compute total number of vertices and faces. num_vertices = 0 num_triangles = 0 num_vertex_colors = 0 for i in range(len(meshes)): num_vertices += np.asarray(meshes[i].vertices).shape[0] num_triangles += np.asarray(meshes[i].triangles).shape[0] num_vertex_colors += np.asarray(meshes[i].vertex_colors).shape[0] # Merge vertices and faces. vertices = np.zeros((num_vertices, 3), dtype=np.float64) triangles = np.zeros((num_triangles, 3), dtype=np.int32) vertex_colors =
np.zeros((num_vertex_colors, 3), dtype=np.float64)
numpy.zeros
import itertools import textwrap import warnings from datetime import datetime from inspect import getfullargspec from typing import Any, Iterable, Mapping, Tuple, Union import numpy as np import pandas as pd from ..core.options import OPTIONS from ..core.utils import is_scalar try: import nc_time_axis # noqa: F401 nc_time_axis_available = True except ImportError: nc_time_axis_available = False ROBUST_PERCENTILE = 2.0 _registered = False def register_pandas_datetime_converter_if_needed(): # based on https://github.com/pandas-dev/pandas/pull/17710 global _registered if not _registered: pd.plotting.register_matplotlib_converters() _registered = True def import_matplotlib_pyplot(): """Import pyplot as register appropriate converters.""" register_pandas_datetime_converter_if_needed() import matplotlib.pyplot as plt return plt def _determine_extend(calc_data, vmin, vmax): extend_min = calc_data.min() < vmin extend_max = calc_data.max() > vmax if extend_min and extend_max: extend = "both" elif extend_min: extend = "min" elif extend_max: extend = "max" else: extend = "neither" return extend def _build_discrete_cmap(cmap, levels, extend, filled): """ Build a discrete colormap and normalization of the data. """ import matplotlib as mpl if not filled: # non-filled contour plots extend = "max" if extend == "both": ext_n = 2 elif extend in ["min", "max"]: ext_n = 1 else: ext_n = 0 n_colors = len(levels) + ext_n - 1 pal = _color_palette(cmap, n_colors) new_cmap, cnorm = mpl.colors.from_levels_and_colors(levels, pal, extend=extend) # copy the old cmap name, for easier testing new_cmap.name = getattr(cmap, "name", cmap) # copy colors to use for bad, under, and over values in case they have been # set to non-default values try: # matplotlib<3.2 only uses bad color for masked values bad = cmap(np.ma.masked_invalid([np.nan]))[0] except TypeError: # cmap was a str or list rather than a color-map object, so there are # no bad, under or over values to check or copy pass else: under = cmap(-np.inf) over = cmap(np.inf) new_cmap.set_bad(bad) # Only update under and over if they were explicitly changed by the user # (i.e. are different from the lowest or highest values in cmap). Otherwise # leave unchanged so new_cmap uses its default values (its own lowest and # highest values). if under != cmap(0): new_cmap.set_under(under) if over != cmap(cmap.N - 1): new_cmap.set_over(over) return new_cmap, cnorm def _color_palette(cmap, n_colors): import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap colors_i = np.linspace(0, 1.0, n_colors) if isinstance(cmap, (list, tuple)): # we have a list of colors cmap = ListedColormap(cmap, N=n_colors) pal = cmap(colors_i) elif isinstance(cmap, str): # we have some sort of named palette try: # is this a matplotlib cmap? cmap = plt.get_cmap(cmap) pal = cmap(colors_i) except ValueError: # ValueError happens when mpl doesn't like a colormap, try seaborn try: from seaborn import color_palette pal = color_palette(cmap, n_colors=n_colors) except (ValueError, ImportError): # or maybe we just got a single color as a string cmap = ListedColormap([cmap], N=n_colors) pal = cmap(colors_i) else: # cmap better be a LinearSegmentedColormap (e.g. viridis) pal = cmap(colors_i) return pal # _determine_cmap_params is adapted from Seaborn: # https://github.com/mwaskom/seaborn/blob/v0.6/seaborn/matrix.py#L158 # Used under the terms of Seaborn's license, see licenses/SEABORN_LICENSE. def _determine_cmap_params( plot_data, vmin=None, vmax=None, cmap=None, center=None, robust=False, extend=None, levels=None, filled=True, norm=None, _is_facetgrid=False, ): """ Use some heuristics to set good defaults for colorbar and range. Parameters ========== plot_data: Numpy array Doesn't handle xarray objects Returns ======= cmap_params : dict Use depends on the type of the plotting function """ import matplotlib as mpl if isinstance(levels, Iterable): levels = sorted(levels) calc_data = np.ravel(plot_data[np.isfinite(plot_data)]) # Handle all-NaN input data gracefully if calc_data.size == 0: # Arbitrary default for when all values are NaN calc_data = np.array(0.0) # Setting center=False prevents a divergent cmap possibly_divergent = center is not False # Set center to 0 so math below makes sense but remember its state center_is_none = False if center is None: center = 0 center_is_none = True # Setting both vmin and vmax prevents a divergent cmap if (vmin is not None) and (vmax is not None): possibly_divergent = False # Setting vmin or vmax implies linspaced levels user_minmax = (vmin is not None) or (vmax is not None) # vlim might be computed below vlim = None # save state; needed later vmin_was_none = vmin is None vmax_was_none = vmax is None if vmin is None: if robust: vmin = np.percentile(calc_data, ROBUST_PERCENTILE) else: vmin = calc_data.min() elif possibly_divergent: vlim = abs(vmin - center) if vmax is None: if robust: vmax = np.percentile(calc_data, 100 - ROBUST_PERCENTILE) else: vmax = calc_data.max() elif possibly_divergent: vlim = abs(vmax - center) if possibly_divergent: levels_are_divergent = ( isinstance(levels, Iterable) and levels[0] * levels[-1] < 0 ) # kwargs not specific about divergent or not: infer defaults from data divergent = ( ((vmin < 0) and (vmax > 0)) or not center_is_none or levels_are_divergent ) else: divergent = False # A divergent map should be symmetric around the center value if divergent: if vlim is None: vlim = max(abs(vmin - center), abs(vmax - center)) vmin, vmax = -vlim, vlim # Now add in the centering value and set the limits vmin += center vmax += center # now check norm and harmonize with vmin, vmax if norm is not None: if norm.vmin is None: norm.vmin = vmin else: if not vmin_was_none and vmin != norm.vmin: raise ValueError("Cannot supply vmin and a norm with a different vmin.") vmin = norm.vmin if norm.vmax is None: norm.vmax = vmax else: if not vmax_was_none and vmax != norm.vmax: raise ValueError("Cannot supply vmax and a norm with a different vmax.") vmax = norm.vmax # if BoundaryNorm, then set levels if isinstance(norm, mpl.colors.BoundaryNorm): levels = norm.boundaries # Choose default colormaps if not provided if cmap is None: if divergent: cmap = OPTIONS["cmap_divergent"] else: cmap = OPTIONS["cmap_sequential"] # Handle discrete levels if levels is not None: if is_scalar(levels): if user_minmax: levels = np.linspace(vmin, vmax, levels) elif levels == 1: levels = np.asarray([(vmin + vmax) / 2]) else: # N in MaxNLocator refers to bins, not ticks ticker = mpl.ticker.MaxNLocator(levels - 1) levels = ticker.tick_values(vmin, vmax) vmin, vmax = levels[0], levels[-1] # GH3734 if vmin == vmax: vmin, vmax = mpl.ticker.LinearLocator(2).tick_values(vmin, vmax) if extend is None: extend = _determine_extend(calc_data, vmin, vmax) if levels is not None or isinstance(norm, mpl.colors.BoundaryNorm): cmap, newnorm = _build_discrete_cmap(cmap, levels, extend, filled) norm = newnorm if norm is None else norm return dict( vmin=vmin, vmax=vmax, cmap=cmap, extend=extend, levels=levels, norm=norm ) def _infer_xy_labels_3d(darray, x, y, rgb): """ Determine x and y labels for showing RGB images. Attempts to infer which dimension is RGB/RGBA by size and order of dims. """ assert rgb is None or rgb != x assert rgb is None or rgb != y # Start by detecting and reporting invalid combinations of arguments assert darray.ndim == 3 not_none = [a for a in (x, y, rgb) if a is not None] if len(set(not_none)) < len(not_none): raise ValueError( "Dimension names must be None or unique strings, but imshow was " "passed x=%r, y=%r, and rgb=%r." % (x, y, rgb) ) for label in not_none: if label not in darray.dims: raise ValueError(f"{label!r} is not a dimension") # Then calculate rgb dimension if certain and check validity could_be_color = [ label for label in darray.dims if darray[label].size in (3, 4) and label not in (x, y) ] if rgb is None and not could_be_color: raise ValueError( "A 3-dimensional array was passed to imshow(), but there is no " "dimension that could be color. At least one dimension must be " "of size 3 (RGB) or 4 (RGBA), and not given as x or y." ) if rgb is None and len(could_be_color) == 1: rgb = could_be_color[0] if rgb is not None and darray[rgb].size not in (3, 4): raise ValueError( "Cannot interpret dim %r of size %s as RGB or RGBA." % (rgb, darray[rgb].size) ) # If rgb dimension is still unknown, there must be two or three dimensions # in could_be_color. We therefore warn, and use a heuristic to break ties. if rgb is None: assert len(could_be_color) in (2, 3) rgb = could_be_color[-1] warnings.warn( "Several dimensions of this array could be colors. Xarray " "will use the last possible dimension (%r) to match " "matplotlib.pyplot.imshow. You can pass names of x, y, " "and/or rgb dimensions to override this guess." % rgb ) assert rgb is not None # Finally, we pick out the red slice and delegate to the 2D version: return _infer_xy_labels(darray.isel(**{rgb: 0}), x, y) def _infer_xy_labels(darray, x, y, imshow=False, rgb=None): """ Determine x and y labels. For use in _plot2d darray must be a 2 dimensional data array, or 3d for imshow only. """ assert x is None or x != y if imshow and darray.ndim == 3: return _infer_xy_labels_3d(darray, x, y, rgb) if x is None and y is None: if darray.ndim != 2: raise ValueError("DataArray must be 2d") y, x = darray.dims elif x is None: if y not in darray.dims and y not in darray.coords: raise ValueError("y must be a dimension name if x is not supplied") x = darray.dims[0] if y == darray.dims[1] else darray.dims[1] elif y is None: if x not in darray.dims and x not in darray.coords: raise ValueError("x must be a dimension name if y is not supplied") y = darray.dims[0] if x == darray.dims[1] else darray.dims[1] elif any(k not in darray.coords and k not in darray.dims for k in (x, y)): raise ValueError("x and y must be coordinate variables") return x, y def get_axis(figsize, size, aspect, ax): import matplotlib as mpl import matplotlib.pyplot as plt if figsize is not None: if ax is not None: raise ValueError("cannot provide both `figsize` and " "`ax` arguments") if size is not None: raise ValueError("cannot provide both `figsize` and " "`size` arguments") _, ax = plt.subplots(figsize=figsize) elif size is not None: if ax is not None: raise ValueError("cannot provide both `size` and `ax` arguments") if aspect is None: width, height = mpl.rcParams["figure.figsize"] aspect = width / height figsize = (size * aspect, size) _, ax = plt.subplots(figsize=figsize) elif aspect is not None: raise ValueError("cannot provide `aspect` argument without `size`") if ax is None: ax = plt.gca() return ax def label_from_attrs(da, extra="", wrap_width=30): """ Makes informative labels if variable metadata (attrs) follows CF conventions. """ if da.attrs.get("long_name"): name = da.attrs["long_name"] elif da.attrs.get("standard_name"): name = da.attrs["standard_name"] elif da.name is not None: name = da.name else: name = "" if da.attrs.get("units"): units = " [{}]".format(da.attrs["units"]) else: units = "" return "\n".join(textwrap.wrap(name + extra + units, wrap_width)) def _interval_to_mid_points(array): """ Helper function which returns an array with the Intervals' mid points. """ return np.array([x.mid for x in array]) def _interval_to_bound_points(array): """ Helper function which returns an array with the Intervals' boundaries. """ array_boundaries = np.array([x.left for x in array]) array_boundaries = np.concatenate((array_boundaries, np.array([array[-1].right]))) return array_boundaries def _interval_to_double_bound_points(xarray, yarray): """ Helper function to deal with a xarray consisting of pd.Intervals. Each interval is replaced with both boundaries. I.e. the length of xarray doubles. yarray is modified so it matches the new shape of xarray. """ xarray1 = np.array([x.left for x in xarray]) xarray2 = np.array([x.right for x in xarray]) xarray = list(itertools.chain.from_iterable(zip(xarray1, xarray2))) yarray = list(itertools.chain.from_iterable(zip(yarray, yarray))) return xarray, yarray def _resolve_intervals_1dplot(xval, yval, xlabel, ylabel, kwargs): """ Helper function to replace the values of x and/or y coordinate arrays containing pd.Interval with their mid-points or - for step plots - double points which double the length. """ # Is it a step plot? (see matplotlib.Axes.step) if kwargs.get("drawstyle", "").startswith("steps-"): # Convert intervals to double points if _valid_other_type(np.array([xval, yval]), [pd.Interval]): raise TypeError("Can't step plot intervals against intervals.") if _valid_other_type(xval, [pd.Interval]): xval, yval = _interval_to_double_bound_points(xval, yval) if _valid_other_type(yval, [pd.Interval]): yval, xval = _interval_to_double_bound_points(yval, xval) # Remove steps-* to be sure that matplotlib is not confused del kwargs["drawstyle"] # Is it another kind of plot? else: # Convert intervals to mid points and adjust labels if _valid_other_type(xval, [pd.Interval]): xval = _interval_to_mid_points(xval) xlabel += "_center" if _valid_other_type(yval, [pd.Interval]): yval = _interval_to_mid_points(yval) ylabel += "_center" # return converted arguments return xval, yval, xlabel, ylabel, kwargs def _resolve_intervals_2dplot(val, func_name): """ Helper function to replace the values of a coordinate array containing pd.Interval with their mid-points or - for pcolormesh - boundaries which increases length by 1. """ label_extra = "" if _valid_other_type(val, [pd.Interval]): if func_name == "pcolormesh": val = _interval_to_bound_points(val) else: val = _interval_to_mid_points(val) label_extra = "_center" return val, label_extra def _valid_other_type(x, types): """ Do all elements of x have a type from types? """ return all(any(isinstance(el, t) for t in types) for el in np.ravel(x)) def _valid_numpy_subdtype(x, numpy_types): """ Is any dtype from numpy_types superior to the dtype of x? """ # If any of the types given in numpy_types is understood as numpy.generic, # all possible x will be considered valid. This is probably unwanted. for t in numpy_types: assert not np.issubdtype(np.generic, t) return any(np.issubdtype(x.dtype, t) for t in numpy_types) def _ensure_plottable(*args): """ Raise exception if there is anything in args that can't be plotted on an axis by matplotlib. """ numpy_types = [np.floating, np.integer, np.timedelta64, np.datetime64, np.bool_] other_types = [datetime] try: import cftime cftime_datetime = [cftime.datetime] except ImportError: cftime_datetime = [] other_types = other_types + cftime_datetime for x in args: if not ( _valid_numpy_subdtype(np.array(x), numpy_types) or _valid_other_type(np.array(x), other_types) ): raise TypeError( "Plotting requires coordinates to be numeric, boolean, " "or dates of type numpy.datetime64, " "datetime.datetime, cftime.datetime or " f"pandas.Interval. Received data of type {np.array(x).dtype} instead." ) if ( _valid_other_type(np.array(x), cftime_datetime) and not nc_time_axis_available ): raise ImportError( "Plotting of arrays of cftime.datetime " "objects or arrays indexed by " "cftime.datetime objects requires the " "optional `nc-time-axis` (v1.2.0 or later) " "package." ) def _is_numeric(arr): numpy_types = [np.floating, np.integer] return _valid_numpy_subdtype(arr, numpy_types) def _add_colorbar(primitive, ax, cbar_ax, cbar_kwargs, cmap_params): cbar_kwargs.setdefault("extend", cmap_params["extend"]) if cbar_ax is None: cbar_kwargs.setdefault("ax", ax) else: cbar_kwargs.setdefault("cax", cbar_ax) fig = ax.get_figure() cbar = fig.colorbar(primitive, **cbar_kwargs) return cbar def _rescale_imshow_rgb(darray, vmin, vmax, robust): assert robust or vmin is not None or vmax is not None # Calculate vmin and vmax automatically for `robust=True` if robust: if vmax is None: vmax = np.nanpercentile(darray, 100 - ROBUST_PERCENTILE) if vmin is None: vmin = np.nanpercentile(darray, ROBUST_PERCENTILE) # If not robust and one bound is None, calculate the default other bound # and check that an interval between them exists. elif vmax is None: vmax = 255 if np.issubdtype(darray.dtype, np.integer) else 1 if vmax < vmin: raise ValueError( "vmin=%r is less than the default vmax (%r) - you must supply " "a vmax > vmin in this case." % (vmin, vmax) ) elif vmin is None: vmin = 0 if vmin > vmax: raise ValueError( "vmax=%r is less than the default vmin (0) - you must supply " "a vmin < vmax in this case." % vmax ) # Scale interval [vmin .. vmax] to [0 .. 1], with darray as 64-bit float # to avoid precision loss, integer over/underflow, etc with extreme inputs. # After scaling, downcast to 32-bit float. This substantially reduces # memory usage after we hand `darray` off to matplotlib. darray = ((darray.astype("f8") - vmin) / (vmax - vmin)).astype("f4") return np.minimum(np.maximum(darray, 0), 1) def _update_axes( ax, xincrease, yincrease, xscale=None, yscale=None, xticks=None, yticks=None, xlim=None, ylim=None, ): """ Update axes with provided parameters """ if xincrease is None: pass elif xincrease and ax.xaxis_inverted(): ax.invert_xaxis() elif not xincrease and not ax.xaxis_inverted(): ax.invert_xaxis() if yincrease is None: pass elif yincrease and ax.yaxis_inverted(): ax.invert_yaxis() elif not yincrease and not ax.yaxis_inverted(): ax.invert_yaxis() # The default xscale, yscale needs to be None. # If we set a scale it resets the axes formatters, # This means that set_xscale('linear') on a datetime axis # will remove the date labels. So only set the scale when explicitly # asked to. https://github.com/matplotlib/matplotlib/issues/8740 if xscale is not None: ax.set_xscale(xscale) if yscale is not None: ax.set_yscale(yscale) if xticks is not None: ax.set_xticks(xticks) if yticks is not None: ax.set_yticks(yticks) if xlim is not None: ax.set_xlim(xlim) if ylim is not None: ax.set_ylim(ylim) def _is_monotonic(coord, axis=0): """ >>> _is_monotonic(np.array([0, 1, 2])) True >>> _is_monotonic(np.array([2, 1, 0])) True >>> _is_monotonic(np.array([0, 2, 1])) False """ if coord.shape[axis] < 3: return True else: n = coord.shape[axis] delta_pos = coord.take(np.arange(1, n), axis=axis) >= coord.take( np.arange(0, n - 1), axis=axis ) delta_neg = coord.take(np.arange(1, n), axis=axis) <= coord.take( np.arange(0, n - 1), axis=axis ) return np.all(delta_pos) or np.all(delta_neg) def _infer_interval_breaks(coord, axis=0, check_monotonic=False): """ >>> _infer_interval_breaks(np.arange(5)) array([-0.5, 0.5, 1.5, 2.5, 3.5, 4.5]) >>> _infer_interval_breaks([[0, 1], [3, 4]], axis=1) array([[-0.5, 0.5, 1.5], [ 2.5, 3.5, 4.5]]) """ coord = np.asarray(coord) if check_monotonic and not _is_monotonic(coord, axis=axis): raise ValueError( "The input coordinate is not sorted in increasing " "order along axis %d. This can lead to unexpected " "results. Consider calling the `sortby` method on " "the input DataArray. To plot data with categorical " "axes, consider using the `heatmap` function from " "the `seaborn` statistical plotting library." % axis ) deltas = 0.5 *
np.diff(coord, axis=axis)
numpy.diff
import ROOT import numpy as np import melp from melp import Detector from melp.clustering.misc import* import melp.clustering.spatial_cluster as sclump import melp.clustering.three_frame_cluster as clump_3 #---------------------------------------------- #simple threshold 1d time clustering def time_clustering_frame(ttree_mu3e, printing = None): time_clusters = {} #same as time_clusters but without time information so it can be used with usual plotting routine cluster_for_plt = {} #set maximum time between hits to get assigned to same cluster time_threshold = 0.4 #ns #get hittimes (and hit tiles) in frame hittimes_frame = hittimes_in_frame (ttree_mu3e) hit_tiles_frame_arr = [] hit_times_frame_arr = [] for key in hittimes_frame.keys(): hit_tiles_frame_arr.append(key) hit_times_frame_arr.append(hittimes_frame[key][0]) #build clusters added_tiles = [] for key1 in hittimes_frame.keys(): if key1 not in added_tiles: time_cluster_tmp = [] cluster_for_plt_tmp = [] time_cluster_tmp.append([key1, hittimes_frame[key1][0]]) cluster_for_plt_tmp.append(key1) added_tiles.append(key1) for key2 in hittimes_frame.keys(): if key2 not in added_tiles: if np.abs(hittimes_frame[key1][0] - hittimes_frame[key2][0]) < time_threshold and key2 != key1: time_cluster_tmp.append([key2, hittimes_frame[key2][0]]) cluster_for_plt_tmp.append(key2) added_tiles.append(key2) time_clusters[key1] = time_cluster_tmp cluster_for_plt[key1] = cluster_for_plt_tmp #get highest and lowest time hittimes_frame = hittimes_in_frame (ttree_mu3e) times_arr = [] for key in hittimes_frame.keys(): times_arr.append(hittimes_frame[key][0]) if printing == True: print("Highest time: ", np.max(times_arr), " ns") print("Lowest time: ",
np.min(times_arr)
numpy.min
import unittest import numpy as np import scipy.sparse from autosklearn.pipeline.implementations.MinorityCoalescer import MinorityCoalescer class MinorityCoalescerTest(unittest.TestCase): @property def X1(self): # Generates an array with categories 3, 4, 5, 6, 7 and occurences of 30%, # 30%, 30%, 5% and 5% respectively X = np.vstack(( np.ones((30, 10)) * 3, np.ones((30, 10)) * 4, np.ones((30, 10)) * 5, np.ones((5, 10)) * 6, np.ones((5, 10)) * 7, )) for col in range(X.shape[1]):
np.random.shuffle(X[:, col])
numpy.random.shuffle
# -*- coding: utf-8 -*- ''' Tests for NDCube ''' from collections import OrderedDict import datetime import pytest import numpy as np import astropy.units as u from ndcube import NDCube, NDCubeOrdered from ndcube.utils.wcs import WCS, _wcs_slicer from ndcube.tests import helpers from ndcube.ndcube_sequence import NDCubeSequence # sample data for tests # TODO: use a fixture reading from a test file. file TBD. ht = {'CTYPE3': 'HPLT-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.5, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2, 'CTYPE2': 'WAVE ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 3, 'CTYPE1': 'TIME ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 4} wt = WCS(header=ht, naxis=3) data = np.array([[[1, 2, 3, 4], [2, 4, 5, 3], [0, -1, 2, 3]], [[2, 4, 5, 1], [10, 5, 2, 2], [10, 3, 3, 0]]]) hm = {'CTYPE1': 'WAVE ', 'CUNIT1': 'Angstrom', 'CDELT1': 0.2, 'CRPIX1': 0, 'CRVAL1': 10, 'NAXIS1': 4, 'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5, 'NAXIS2': 3, 'CTYPE3': 'HPLN-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.4, 'CRPIX3': 2, 'CRVAL3': 1, 'NAXIS3': 2} wm = WCS(header=hm, naxis=3) h_disordered = { 'CTYPE1': 'TIME ', 'CUNIT1': 'min', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 2, 'CTYPE2': 'WAVE ', 'CUNIT2': 'Angstrom', 'CDELT2': 0.2, 'CRPIX2': 0, 'CRVAL2': 10, 'NAXIS2': 4, 'CTYPE3': 'HPLT-TAN', 'CUNIT3': 'deg', 'CDELT3': 0.5, 'CRPIX3': 2, 'CRVAL3': 0.5, 'NAXIS3': 3, 'CTYPE4': 'HPLN-TAN', 'CUNIT4': 'deg', 'CDELT4': 0.4, 'CRPIX4': 2, 'CRVAL4': 1, 'NAXIS4': 2} w_disordered = WCS(header=h_disordered, naxis=4) data_disordered = np.zeros((2, 3, 4, 2)) data_disordered[:, :, :, 0] = data data_disordered[:, :, :, 1] = data h_ordered = { 'CTYPE1': 'HPLN-TAN', 'CUNIT1': 'deg', 'CDELT1': 0.4, 'CRPIX1': 2, 'CRVAL1': 1, 'NAXIS1': 2, 'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'deg', 'CDELT2': 0.5, 'CRPIX2': 2, 'CRVAL2': 0.5, 'NAXIS2': 3, 'CTYPE3': 'WAVE ', 'CUNIT3': 'Angstrom', 'CDELT3': 0.2, 'CRPIX3': 0, 'CRVAL3': 10, 'NAXIS3': 4, 'CTYPE4': 'TIME ', 'CUNIT4': 'min', 'CDELT4': 0.4, 'CRPIX4': 0, 'CRVAL4': 0, 'NAXIS4': 2} w_ordered = WCS(header=h_ordered, naxis=4) data_ordered = np.zeros((2, 4, 3, 2)) data_ordered[0] = data.transpose() data_ordered[1] = data.transpose() h_rotated = {'CTYPE1': 'HPLN-TAN', 'CUNIT1': 'arcsec', 'CDELT1': 0.4, 'CRPIX1': 0, 'CRVAL1': 0, 'NAXIS1': 5, 'CTYPE2': 'HPLT-TAN', 'CUNIT2': 'arcsec', 'CDELT2': 0.5, 'CRPIX2': 0, 'CRVAL2': 0, 'NAXIS2': 5, 'CTYPE3': 'Time ', 'CUNIT3': 'seconds', 'CDELT3': 0.3, 'CRPIX3': 0, 'CRVAL3': 0, 'NAXIS3': 2, 'PC1_1': 0.714963912964, 'PC1_2': -0.699137151241, 'PC1_3': 0.0, 'PC2_1': 0.699137151241, 'PC2_2': 0.714963912964, 'PC2_3': 0.0, 'PC3_1': 0.0, 'PC3_2': 0.0, 'PC3_3': 1.0} w_rotated = WCS(header=h_rotated, naxis=3) data_rotated = np.array([[[1, 2, 3, 4, 6], [2, 4, 5, 3, 1], [0, -1, 2, 4, 2], [3, 5, 1, 2, 0]], [[2, 4, 5, 1, 3], [1, 5, 2, 2, 4], [2, 3, 4, 0, 5], [0, 1, 2, 3, 4]]]) mask_cubem = data > 0 mask_cube = data >= 0 uncertaintym = data uncertainty = np.sqrt(data) mask_disordered = data_disordered > 0 uncertainty_disordered = data_disordered mask_ordered = data_ordered > 0 uncertainty_ordered = data_ordered cubem = NDCube( data, wm, mask=mask_cubem, uncertainty=uncertaintym, extra_coords=[('time', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hello', 1, u.Quantity(range(data.shape[1]), unit=u.pix)), ('bye', 2, u.Quantity(range(data.shape[2]), unit=u.pix))]) cube_disordered_inputs = ( data_disordered, w_disordered, mask_disordered, uncertainty_disordered, [('spam', 0, u.Quantity(range(data_disordered.shape[0]), unit=u.pix)), ('hello', 1, u.Quantity(range(data_disordered.shape[1]), unit=u.pix)), ('bye', 2, u.Quantity(range(data_disordered.shape[2]), unit=u.pix))]) cube_disordered = NDCube(cube_disordered_inputs[0], cube_disordered_inputs[1], mask=cube_disordered_inputs[2], uncertainty=cube_disordered_inputs[3], extra_coords=cube_disordered_inputs[4]) cube_ordered = NDCubeOrdered( data_ordered, w_ordered, mask=mask_ordered, uncertainty=uncertainty_ordered, extra_coords=[('spam', 3, u.Quantity(range(data_disordered.shape[0]), unit=u.pix)), ('hello', 2, u.Quantity(range(data_disordered.shape[1]), unit=u.pix)), ('bye', 1, u.Quantity(range(data_disordered.shape[2]), unit=u.pix))]) cube = NDCube( data, wt, mask=mask_cube, uncertainty=uncertainty, missing_axis=[False, False, False, True], extra_coords=[('time', 0, u.Quantity(range(data.shape[0]), unit=u.pix)), ('hello', 1, u.Quantity(range(data.shape[1]), unit=u.pix)), ('bye', 2, u.Quantity(range(data.shape[2]), unit=u.pix))]) cubet = NDCube( data, wm, mask=mask_cubem, uncertainty=uncertaintym, extra_coords=[('time', 0, np.array([datetime.datetime(2000, 1, 1)+datetime.timedelta(minutes=i) for i in range(data.shape[0])])), ('hello', 1, u.Quantity(range(data.shape[1]), unit=u.pix)), ('bye', 2, u.Quantity(range(data.shape[2]), unit=u.pix))]) cube_rotated = NDCube( data_rotated, w_rotated, mask=mask_cube, uncertainty=uncertainty, missing_axis=[False, False, False], extra_coords=[('time', 0, u.Quantity(range(data_rotated.shape[0]), unit=u.pix)), ('hello', 1, u.Quantity(range(data_rotated.shape[1]), unit=u.pix)), ('bye', 2, u.Quantity(range(data_rotated.shape[2]), unit=u.pix))]) @pytest.mark.parametrize( "test_input,expected,mask,wcs,uncertainty,dimensions,world_axis_physical_types,extra_coords", [(cubem[:, 1], NDCube, mask_cubem[:, 1], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), 1)), data[:, 1], u.Quantity((2, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'em.wl'), {'bye': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}} ), (cubem[:, 0:2], NDCube, mask_cubem[:, 0:2], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), slice(0, 2, None))), data[:, 0:2], u.Quantity((2, 2, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat', 'em.wl'), {'bye': {'axis': 2, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(2), unit=u.pix)}, 'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}} ), (cubem[:, :], NDCube, mask_cubem[:, :], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), slice(None, None, None))), data[:, :], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[1, 1], NDCube, mask_cubem[1, 1], _wcs_slicer(wm, [False, False, False], (1, 1)), data[1, 1], u.Quantity((4, ), unit=u.pix), tuple(['em.wl']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[1, 0:2], NDCube, mask_cubem[1, 0:2], _wcs_slicer(wm, [False, False, False], (1, slice(0, 2, None))), data[1, 0:2], u.Quantity((2, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(2), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[1, :], NDCube, mask_cubem[1, :], _wcs_slicer(wm, [False, False, False], (1, slice(None, None, None))), data[1, :], u.Quantity((3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cube[:, 1], NDCube, mask_cube[:, 1], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), 1)), uncertainty[:, 1], u.Quantity((2, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[:, 0:2], NDCube, mask_cube[:, 0:2], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), slice(0, 2, None))), uncertainty[:, 0:2], u.Quantity((2, 2, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(2), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[:, :], NDCube, mask_cube[:, :], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), slice(None, None, None))), uncertainty[:, :], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[1, 1], NDCube, mask_cube[1, 1], _wcs_slicer(wt, [True, False, False, False], (1, 1)), uncertainty[1, 1], u.Quantity((4, ), unit=u.pix), tuple(['time']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[1, 0:2], NDCube, mask_cube[1, 0:2], _wcs_slicer(wt, [True, False, False, False], (1, slice(0, 2, None))), uncertainty[1, 0:2], u.Quantity((2, 4), unit=u.pix), ('em.wl', 'time'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(2), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[1, :], NDCube, mask_cube[1, :], _wcs_slicer(wt, [True, False, False, False], (1, slice(0, 2, None))), uncertainty[1, :], u.Quantity((3, 4), unit=u.pix), ('em.wl', 'time'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} )]) def test_slicing_second_axis(test_input, expected, mask, wcs, uncertainty, dimensions, world_axis_physical_types, extra_coords): assert isinstance(test_input, expected) assert np.all(test_input.mask == mask) helpers.assert_wcs_are_equal(test_input.wcs, wcs[0]) assert test_input.missing_axis == wcs[1] assert test_input.uncertainty.array.shape == uncertainty.shape assert np.all(test_input.dimensions.value == dimensions.value) assert test_input.dimensions.unit == dimensions.unit assert test_input.world_axis_physical_types == world_axis_physical_types helpers.assert_extra_coords_equal(test_input.extra_coords, extra_coords) @pytest.mark.parametrize( "test_input,expected,mask,wcs,uncertainty,dimensions,world_axis_physical_types,extra_coords", [(cubem[1], NDCube, mask_cubem[1], _wcs_slicer(wm, [False, False, False], 1), data[1], u.Quantity((3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[0:2], NDCube, mask_cubem[0:2], _wcs_slicer(wm, [False, False, False], slice(0, 2, None)), data[0:2], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(2), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[:], NDCube, mask_cubem[:], _wcs_slicer(wm, [False, False, False], slice(None, None, None)), data[:], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cube[1], NDCube, mask_cube[1], _wcs_slicer(wt, [True, False, False, False], 1), uncertainty[1], u.Quantity((3, 4), unit=u.pix), ('em.wl', 'time'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[0:2], NDCube, mask_cube[0:2], _wcs_slicer(wt, [True, False, False, False], slice(0, 2, None)), uncertainty[0:2], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(2), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[:], NDCube, mask_cube[:], _wcs_slicer(wt, [True, False, False, False], slice(None, None, None)), uncertainty[:], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} )]) def test_slicing_first_axis(test_input, expected, mask, wcs, uncertainty, dimensions, world_axis_physical_types, extra_coords): assert isinstance(test_input, expected) assert np.all(test_input.mask == mask) helpers.assert_wcs_are_equal(test_input.wcs, wcs[0]) assert test_input.missing_axis == wcs[1] assert test_input.uncertainty.array.shape == uncertainty.shape assert np.all(test_input.dimensions.value == dimensions.value) assert test_input.dimensions.unit == dimensions.unit assert test_input.world_axis_physical_types == world_axis_physical_types helpers.assert_extra_coords_equal(test_input.extra_coords, extra_coords) @pytest.mark.parametrize( "test_input,expected,mask,wcs,uncertainty,dimensions,world_axis_physical_types,extra_coords", [(cubem[:, :, 1], NDCube, mask_cubem[:, :, 1], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), slice(None, None, None), 1)), data[:, :, 1], u.Quantity((2, 3), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cubem[:, :, 0:2], NDCube, mask_cubem[:, :, 0:2], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), slice(None, None, None), slice(0, 2, None))), data[:, :, 0:2], u.Quantity((2, 3, 2), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cubem[:, :, :], NDCube, mask_cubem[:, :, :], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), slice(None, None, None), slice(None, None, None))), data[:, :, :], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[:, 1, 1], NDCube, mask_cubem[:, 1, 1], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), 1, 1)), data[:, 1, 1], u.Quantity((2, ), unit=u.pix), tuple(['custom:pos.helioprojective.lon']), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cubem[:, 1, 0:2], NDCube, mask_cubem[:, 1, 0:2], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), 1, slice(0, 2, None))), data[:, 1, 0:2], u.Quantity((2, 2), unit=u.pix), ('custom:pos.helioprojective.lon', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cubem[:, 1, :], NDCube, mask_cubem[:, 1, :], _wcs_slicer(wm, [False, False, False], (slice(None, None, None), 1, slice(None, None, None))), data[:, 1, :], u.Quantity((2, 4), unit=u.pix), ('custom:pos.helioprojective.lon', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[1, :, 1], NDCube, mask_cubem[1, :, 1], _wcs_slicer(wm, [False, False, False], (1, slice(None, None, None), 1)), data[1, :, 1], u.Quantity((3, ), unit=u.pix), tuple(['custom:pos.helioprojective.lat']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cubem[1, :, 0:2], NDCube, mask_cubem[1, :, 0:2], _wcs_slicer(wm, [False, False, False], (1, slice(None, None, None), slice(0, 2, None))), data[1, :, 0:2], u.Quantity((3, 2), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cubem[1, :, :], NDCube, mask_cubem[1, :, :], _wcs_slicer(wm, [False, False, False], (1, slice(None, None, None), slice(None, None, None))), data[1, :, :], u.Quantity((3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cubem[1, 1, 1], NDCube, mask_cubem[1, 1, 1], _wcs_slicer(wm, [False, False, False], (1, 1, 1)), data[1, 1, 1], u.Quantity((), unit=u.pix), (), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cubem[1, 1, 0:2], NDCube, mask_cubem[1, 1, 0:2], _wcs_slicer(wm, [False, False, False], (1, 1, slice(0, 2, None))), data[1, 1, 0:2], u.Quantity((2, ), unit=u.pix), tuple(['em.wl']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 0, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cubem[1, 1, :], NDCube, mask_cubem[1, 1, :], _wcs_slicer(wm, [False, False, False], (1, 1, slice(None, None, None))), data[1, 1, :], u.Quantity((4, ), unit=u.pix), tuple(['em.wl']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 0, 'value': u.Quantity(range(int(cubem.dimensions[2].value)), unit=u.pix)}} ), (cube[:, :, 1], NDCube, mask_cube[:, :, 1], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), slice(None, None, None), 1)), uncertainty[:, :, 1], u.Quantity((2, 3), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cube[:, :, 0:2], NDCube, mask_cube[:, :, 0:2], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), slice(None, None, None), slice(0, 2, None))), uncertainty[:, :, 0:2], u.Quantity((2, 3, 2), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cube[:, :, :], NDCube, mask_cube[:, :, :], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), slice(None, None, None), slice(None, None, None))), uncertainty[:, :, :], u.Quantity((2, 3, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'em.wl', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 2, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[:, 1, 1], NDCube, mask_cube[:, 1, 1], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), 1, 1)), uncertainty[:, 1, 1], u.Quantity((2, ), unit=u.pix), tuple(['custom:pos.helioprojective.lat']), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cube[:, 1, 0:2], NDCube, mask_cube[:, 1, 0:2], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), 1, slice(0, 2, None))), uncertainty[:, 1, 0:2], u.Quantity((2, 2), unit=u.pix), ('custom:pos.helioprojective.lat', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cube[:, 1, :], NDCube, mask_cube[:, 1, :], _wcs_slicer(wt, [True, False, False, False], (slice(None, None, None), 1, slice(None, None, None))), uncertainty[:, 1, :], u.Quantity((2, 4), unit=u.pix), ('custom:pos.helioprojective.lat', 'time'), {'time': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[0].value)), unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[1, :, 1], NDCube, mask_cube[1, :, 1], _wcs_slicer(wt, [True, False, False, False], (1, slice(None, None, None), 1)), uncertainty[1, :, 1], u.Quantity((3, ), unit=u.pix), tuple(['em.wl']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cube[1, :, 0:2], NDCube, mask_cube[1, :, 0:2], _wcs_slicer(wt, [True, False, False, False], (1, slice(None, None, None), slice(0, 2, None))), uncertainty[1, :, 0:2], u.Quantity((3, 2), unit=u.pix), ('em.wl', 'time'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cube[1, :, :], NDCube, mask_cube[1, :, :], _wcs_slicer(wt, [True, False, False, False], (1, slice(None, None, None), slice(None, None, None))), uncertainty[1, :, :], u.Quantity((3, 4), unit=u.pix), ('em.wl', 'time'), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[1].value)), unit=u.pix)}, 'bye': {'axis': 1, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} ), (cube[1, 1, 1], NDCube, mask_cube[1, 1, 1], _wcs_slicer(wt, [True, False, False, False], (1, 1, 1)), uncertainty[1, 1, 1], u.Quantity((), unit=u.pix), (), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}} ), (cube[1, 1, 0:2], NDCube, mask_cube[1, 1, 0:2], _wcs_slicer(wt, [True, False, False, False], (1, 1, slice(0, 2, None))), uncertainty[1, 1, 0:2], u.Quantity((2, ), unit=u.pix), tuple(['time']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 0, 'value': u.Quantity(range(2), unit=u.pix)}} ), (cube[1, 1, :], NDCube, mask_cube[1, 1, :], _wcs_slicer(wt, [True, False, False, False], (1, 1, slice(0, 2, None))), uncertainty[1, 1, :], u.Quantity((4, ), unit=u.pix), tuple(['time']), {'time': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'hello': {'axis': None, 'value': u.Quantity(1, unit=u.pix)}, 'bye': {'axis': 0, 'value': u.Quantity(range(int(cube.dimensions[2].value)), unit=u.pix)}} )]) def test_slicing_third_axis(test_input, expected, mask, wcs, uncertainty, dimensions, world_axis_physical_types, extra_coords): assert isinstance(test_input, expected) assert np.all(test_input.mask == mask) helpers.assert_wcs_are_equal(test_input.wcs, wcs[0]) assert test_input.missing_axis == wcs[1] assert test_input.uncertainty.array.shape == uncertainty.shape assert np.all(test_input.dimensions.value == dimensions.value) assert test_input.dimensions.unit == dimensions.unit assert test_input.world_axis_physical_types == world_axis_physical_types helpers.assert_extra_coords_equal(test_input.extra_coords, extra_coords) @pytest.mark.parametrize("test_input", [(cubem)]) def test_slicing_error(test_input): with pytest.raises(IndexError): test_input[None] with pytest.raises(IndexError): test_input[0, None] @pytest.mark.parametrize("test_input,expected", [ (cubem[1].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[0], wm.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wm.wcs.crpix[2] - 1, 0)[-2]), (cubem[1].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[1], wm.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wm.wcs.crpix[2] - 1, 0)[0]), (cubem[0:2].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[0], wm.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), 0)[-1]), (cubem[0:2].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[1], wm.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), 0)[1]), (cubem[0:2].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[2], wm.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), 0)[0]), (cube[1].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[0], wt.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wt.wcs.crpix[2] - 1, wt.wcs.crpix[3] - 1, 0)[1]), (cube[1].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[1], wt.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wt.wcs.crpix[2] - 1, wt.wcs.crpix[3] - 1, 0)[0]), (cube[0:2].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[0], wt.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wt.wcs.crpix[3] - 1, 0)[2]), (cube[0:2].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[1], wt.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wt.wcs.crpix[3] - 1, 0)[1]), (cube[0:2].pixel_to_world(*[ u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix) ])[2], wt.all_pix2world( u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), u.Quantity(np.arange(4), unit=u.pix), wt.wcs.crpix[3] - 1, 0)[0])]) def test_pixel_to_world(test_input, expected): assert np.all(test_input.value == expected) @pytest.mark.parametrize("test_input,expected", [ (cubem[1].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m) ])[1], wm.all_world2pix( u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m), wm.wcs.crpix[2] - 1, 0)[0]), (cubem[0:2].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m) ])[0], wm.all_world2pix( u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m), 0)[-1]), (cubem[0:2].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m) ])[1], wm.all_world2pix( u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m), 0)[1]), (cubem[0:2].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m) ])[2], wm.all_world2pix( u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m), 0)[0]), (cube[1].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.m), u.Quantity(np.arange(4), unit=u.min) ])[0], wt.all_world2pix( u.Quantity(np.arange(4), unit=u.m), u.Quantity(np.arange(4), unit=u.min), wt.wcs.crpix[2] - 1, wt.wcs.crpix[3] - 1, 0)[1]), (cube[1].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.m), u.Quantity(np.arange(4), unit=u.min) ])[1], wt.all_world2pix( u.Quantity(np.arange(4), unit=u.m), u.Quantity(np.arange(4), unit=u.min), wt.wcs.crpix[2] - 1, wt.wcs.crpix[3] - 1, 0)[0]), (cube[0:2].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m), u.Quantity(np.arange(4), unit=u.min) ])[0], wt.all_world2pix( u.Quantity(np.arange(4), unit=u.deg), u.Quantity(np.arange(4), unit=u.m), u.Quantity(np.arange(4), unit=u.min), wt.wcs.crpix[3] - 1, 0)[2]), (cube[0:2].world_to_pixel(*[ u.Quantity(np.arange(4), unit=u.deg), u.Quantity(
np.arange(4)
numpy.arange
#!/usr/bin/env python3 # dcfac0e3-1ade-11e8-9de3-00505601122b # dce9cf60-42b6-11e9-b0fd-00505601122b # 7d179d73-3e93-11e9-b0fd-00505601122b import argparse import sys import matplotlib.pyplot as plt import numpy as np import sklearn.metrics from sklearn.metrics.pairwise import rbf_kernel,polynomial_kernel def kernel(x,y,gamma,degree,kernel): if kernel == 'poly': xTy = x.T * y result = gamma * xTy + 1 return result**degree elif kernel == 'rbf': euclid = np.sum( (x - y) ** 2 ) result = -gamma * euclid return np.exp(result) def loss(true,preds,weights,bias): bias = 0 result = 1/2 * np.square(true - preds - bias) result = np.mean(result) + 1/2 * args.l2 * np.dot(weights,weights) return result if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--examples", default=50, type=int, help="Number of examples") parser.add_argument("--kernel", default="rbf", type=str, help="Kernel type [poly|rbf]") parser.add_argument("--kernel_degree", default=5, type=int, help="Degree for poly kernel") parser.add_argument("--kernel_gamma", default=1.0, type=float, help="Gamma for poly and rbf kernel") parser.add_argument("--iterations", default=1000, type=int, help="Number of training iterations") parser.add_argument("--l2", default=0.0, type=float, help="L2 regularization weight") parser.add_argument("--learning_rate", default=0.01, type=float, help="Learning rate") parser.add_argument("--plot", default=False, action="store_true", help="Plot progress") parser.add_argument("--seed", default=42, type=int, help="Random seed") args = parser.parse_args() # Set random seed np.random.seed(args.seed) # Generate an artifical regression dataset train_data = np.linspace(-1, 1, args.examples) train_targets = np.sin(5 * train_data) + np.random.normal(scale=0.25, size=args.examples) + 1 test_data = np.linspace(-1.2, 1.2, 2 * args.examples) test_targets =
np.sin(5 * test_data)
numpy.sin
#!/usr/bin/env python # # slicecanvas.py - The SliceCanvas class. # # Author: <NAME> <<EMAIL>> # """This module provides the :class:`SliceCanvas` class, which contains the functionality to display a 2D slice from a collection of 3D overlays. """ import logging import OpenGL.GL as gl import numpy as np import fsl.data.image as fslimage import fsl.utils.idle as idle import fsleyes_widgets.utils.status as status import fsleyes_props as props import fsleyes.strings as strings import fsleyes.displaycontext.canvasopts as canvasopts import fsleyes.gl.routines as glroutines import fsleyes.gl.resources as glresources import fsleyes.gl.globject as globject import fsleyes.gl.textures as textures import fsleyes.gl.annotations as annotations log = logging.getLogger(__name__) class SliceCanvas(object): """The ``SliceCanvas`` represents a canvas which may be used to display a single 2D slice from a collection of 3D overlays. See also the :class:`.LightBoxCanvas`, a sub-class of ``SliceCanvas``. .. note:: The :class:`SliceCanvas` class is not intended to be instantiated directly - use one of these subclasses, depending on your use-case: - :class:`.OSMesaSliceCanvas` for static off-screen rendering of a scene using OSMesa. - :class:`.WXGLSliceCanvas` for interactive rendering on a :class:`wx.glcanvas.GLCanvas` canvas. The ``SliceCanvas`` creates a :class:`.SliceCanvasOpts` instance to manage its settings. The scene scene displayed on a ``SliceCanvas`` instance can be manipulated via the properties of its ``SliceCanvasOpts`` instnace, which is accessed via the ``opts`` attribute. **GL objects** The ``SliceCanvas`` draws :class:`.GLObject` instances. When created, a ``SliceCanvas`` creates a :class:`.GLObject` instance for every overlay in the :class:`.OverlayList`. When an overlay is added or removed, it creates/destroys ``GLObject`` instances accordingly. Furthermore, whenever the :attr:`.Display.overlayType` for an existing overlay changes, the ``SliceCanvas`` destroys the old ``GLObject`` associated with the overlay, and creates a new one. The ``SliceCanvas`` also uses an :class:`.Annotations` instance, for drawing simple annotations on top of the overlays. This ``Annotations`` instance can be accessed with the :meth:`getAnnotations` method. **Performance optimisations** The :attr:`.SliceCanvasOpts.renderMode` property controls the way in which the ``SliceCanvas`` renders :class:`.GLObject` instances. It has three settings: ============= ============================================================ ``onscreen`` ``GLObject`` instances are rendered directly to the canvas. ``offscreen`` ``GLObject`` instances are rendered off-screen to a fixed size 2D texture (a :class:`.RenderTexture`). This texture is then rendered to the canvas. One :class:`.RenderTexture` is used for every overlay in the :class:`.OverlayList`. ``prerender`` A stack of 2D slices for every ``GLObject`` instance is pre-generated off-screen, and cached, using a :class:`.RenderTextureStack`. When the ``SliceCanvas`` needs to display a particular Z location, it retrieves the appropriate slice from the stack, and renders it to the canvas. One :class:`.RenderTextureStack` is used for every overlay in the :class:`.OverlayList`. ============= ============================================================ **Attributes and methods** The following attributes are available on a ``SliceCanvas``: =============== =========================================== ``name`` A unique name for this ``SliceCanvas`` ``opts`` Reference to the :class:`.SliceCanvasOpts`. ``overlayList`` Reference to the :class:`.OverlayList`. ``displayCtx`` Reference to the :class:`.DisplayContext`. =============== =========================================== The following convenience methods are available on a ``SliceCanvas``: .. autosummary:: :nosignatures: canvasToWorld worldToCanvas pixelSize panDisplayBy centreDisplayAt panDisplayToShow zoomTo resetDisplay getAnnotations getViewport """ def __init__(self, overlayList, displayCtx, zax=0, opts=None): """Create a ``SliceCanvas``. :arg overlayList: An :class:`.OverlayList` object containing a collection of overlays to be displayed. :arg displayCtx: A :class:`.DisplayContext` object which describes how the overlays should be displayed. :arg zax: Display coordinate system axis perpendicular to the plane to be displayed (the *depth* axis), default 0. """ if opts is None: opts = canvasopts.SliceCanvasOpts() self.opts = opts self.overlayList = overlayList self.displayCtx = displayCtx self.name = '{}_{}'.format(self.__class__.__name__, id(self)) # A GLObject instance is created for # every overlay in the overlay list, # and stored in this dictionary self._glObjects = {} # A copy of the final viewport is # stored here on each call to _draw. # It is accessible via the getViewport # method. self.__viewport = None # If render mode is offscren or prerender, these # dictionaries will contain a RenderTexture or # RenderTextureStack instance for each overlay in # the overlay list. These dictionaries are # respectively of the form: # { overlay : RenderTexture } # { overlay : (RenderTextureStack, name) } # self._offscreenTextures = {} self._prerenderTextures = {} # The zax property is the image axis which # maps to the 'depth' axis of this canvas. opts.zax = zax # when any of the properties of this # canvas change, we need to redraw opts.addListener('zax', self.name, self._zAxisChanged) opts.addListener('pos', self.name, self.Refresh) opts.addListener('displayBounds', self.name, self.Refresh) opts.addListener('bgColour', self.name, self.Refresh) opts.addListener('cursorColour', self.name, self.Refresh) opts.addListener('showCursor', self.name, self.Refresh) opts.addListener('cursorGap', self.name, self.Refresh) opts.addListener('invertX', self.name, self.Refresh) opts.addListener('invertY', self.name, self.Refresh) opts.addListener('zoom', self.name, self._zoomChanged) opts.addListener('renderMode', self.name, self._renderModeChange) opts.addListener('highDpi', self.name, self._highDpiChange) # When the overlay list changes, refresh the # display, and update the display bounds self.overlayList.addListener('overlays', self.name, self._overlayListChanged) self.displayCtx .addListener('overlayOrder', self.name, self.Refresh) self.displayCtx .addListener('bounds', self.name, self._overlayBoundsChanged) self.displayCtx .addListener('displaySpace', self.name, self._displaySpaceChanged) self.displayCtx .addListener('syncOverlayDisplay', self.name, self._syncOverlayDisplayChanged) # The zAxisChanged method # will kick everything off self._annotations = annotations.Annotations(self, self.opts.xax, self.opts.yax) self._zAxisChanged() def destroy(self): """This method must be called when this ``SliceCanvas`` is no longer being used. It removes listeners from all :class:`.OverlayList`, :class:`.DisplayContext`, and :class:`.Display` instances, and destroys OpenGL representations of all overlays. """ opts = self.opts opts.removeListener('zax', self.name) opts.removeListener('pos', self.name) opts.removeListener('displayBounds', self.name) opts.removeListener('showCursor', self.name) opts.removeListener('invertX', self.name) opts.removeListener('invertY', self.name) opts.removeListener('zoom', self.name) opts.removeListener('renderMode', self.name) opts.removeListener('highDpi', self.name) self.overlayList.removeListener('overlays', self.name) self.displayCtx .removeListener('bounds', self.name) self.displayCtx .removeListener('displaySpace', self.name) self.displayCtx .removeListener('overlayOrder', self.name) for overlay in self.overlayList: disp = self.displayCtx.getDisplay(overlay) globj = self._glObjects.get(overlay) disp.removeListener('overlayType', self.name) disp.removeListener('enabled', self.name) # globj could be None, or could # be False - see genGLObject. if globj: globj.deregister(self.name) globj.destroy() rt, rtName = self._prerenderTextures.get(overlay, (None, None)) ot = self._offscreenTextures.get(overlay, None) if rt is not None: glresources.delete(rtName) if ot is not None: ot .destroy() self.opts = None self.overlayList = None self.displayCtx = None self._glObjects = None self._prerenderTextures = None self._offscreenTextures = None @property def destroyed(self): """Returns ``True`` if a call to :meth:`destroy` has been made, ``False`` otherwise. """ return self.overlayList is None def canvasToWorld(self, xpos, ypos, invertX=None, invertY=None): """Given pixel x/y coordinates on this canvas, translates them into xyz display coordinates. :arg invertX: If ``None``, taken from :attr:`.invertX`. :arg invertY: If ``None``, taken from :attr:`.invertY`. """ opts = self.opts if invertX is None: invertX = opts.invertX if invertY is None: invertY = opts.invertY realWidth = opts.displayBounds.xlen realHeight = opts.displayBounds.ylen canvasWidth, canvasHeight = [float(s) for s in self.GetSize()] if invertX: xpos = canvasWidth - xpos if invertY: ypos = canvasHeight - ypos if realWidth == 0 or \ canvasWidth == 0 or \ realHeight == 0 or \ canvasHeight == 0: return None xpos = opts.displayBounds.xlo + (xpos / canvasWidth) * realWidth ypos = opts.displayBounds.ylo + (ypos / canvasHeight) * realHeight pos = [None] * 3 pos[opts.xax] = xpos pos[opts.yax] = ypos pos[opts.zax] = opts.pos[opts.zax] return pos def worldToCanvas(self, pos): """Converts a location in the display coordinate system into an x/y location in pixels relative to this ``SliceCanvas``. """ opts = self.opts xpos = pos[opts.xax] ypos = pos[opts.yax] invertX = opts.invertX invertY = opts.invertY xmin = opts.displayBounds.xlo xlen = opts.displayBounds.xlen ymin = opts.displayBounds.ylo ylen = opts.displayBounds.ylen width, height = [float(s) for s in self.GetSize()] if xlen == 0 or \ ylen == 0 or \ width == 0 or \ height == 0: return None xpos = width * ((xpos - xmin) / xlen) ypos = height * ((ypos - ymin) / ylen) if invertX: xpos = width - xpos if invertY: ypos = height - ypos return xpos, ypos def pixelSize(self): """Returns the current (x, y) size of one logical pixel in display coordinates. """ w, h = self.GetSize() xlen = self.opts.displayBounds.xlen ylen = self.opts.displayBounds.ylen return (xlen / w, ylen / h) def panDisplayBy(self, xoff, yoff): """Pans the canvas display by the given x/y offsets (specified in display coordinates). """ if len(self.overlayList) == 0: return xmin, xmax, ymin, ymax = self.opts.displayBounds[:] xmin = xmin + xoff xmax = xmax + xoff ymin = ymin + yoff ymax = ymax + yoff self.opts.displayBounds[:] = [xmin, xmax, ymin, ymax] def centreDisplayAt(self, xpos, ypos): """Pans the display so the given x/y position is in the centre. """ xcentre, ycentre = self.getDisplayCentre() self.panDisplayBy(xpos - xcentre, ypos - ycentre) def getDisplayCentre(self): """Returns the horizontal/vertical position, in display coordinates, of the current centre of the display bounds. """ bounds = self.opts.displayBounds xcentre = bounds.xlo + (bounds.xhi - bounds.xlo) * 0.5 ycentre = bounds.ylo + (bounds.yhi - bounds.ylo) * 0.5 return xcentre, ycentre def panDisplayToShow(self, xpos, ypos): """Pans the display so that the given x/y position (in display coordinates) is visible. """ bounds = self.opts.displayBounds # Do nothing if the position # is already being displayed if xpos >= bounds.xlo and xpos <= bounds.xhi and \ ypos >= bounds.ylo and ypos <= bounds.yhi: return xoff = 0 yoff = 0 if xpos <= bounds.xlo: xoff = xpos - bounds.xlo elif xpos >= bounds.xhi: xoff = xpos - bounds.xhi if ypos <= bounds.ylo: yoff = ypos - bounds.ylo elif ypos >= bounds.yhi: yoff = ypos - bounds.yhi if xoff != 0 or yoff != 0: self.panDisplayBy(xoff, yoff) def zoomTo(self, xlo, xhi, ylo, yhi): """Zooms the canvas to the given rectangle, specified in horizontal/vertical display coordinates. """ # We are going to convert the rectangle specified by # the inputs into a zoom value, set the canvas zoom # level, and then centre the canvas on the rectangle. # Middle of the rectangle, used # at the end for centering xmid = xlo + (xhi - xlo) / 2.0 ymid = ylo + (yhi - ylo) / 2.0 # Size of the rectangle rectXlen = abs(xhi - xlo) rectYlen = abs(yhi - ylo) if rectXlen == 0: return if rectYlen == 0: return # Size of the overlay bounding # box, and the zoom value limits opts = self.opts xmin, xmax = self.displayCtx.bounds.getRange(opts.xax) ymin, ymax = self.displayCtx.bounds.getRange(opts.yax) zoommin = opts.getAttribute('zoom', 'minval') zoommax = opts.getAttribute('zoom', 'maxval') xlen = xmax - xmin ylen = ymax - ymin zoomlen = zoommax - zoommin # Calculate the ratio of the # rectangle to the canvas limits xratio = rectXlen / xlen yratio = rectYlen / ylen ratio = max(xratio, yratio) # Calculate the zoom from this ratio - # this is the inverse of the zoom->canvas # bounds calculation, as implemented in # _applyZoom. zoom = zoommin / ratio zoom = ((zoom - zoommin) / zoomlen) ** (1.0 / 3.0) zoom = zoommin + zoom * zoomlen # Update the zoom value, call updateDisplayBounds # to apply the new zoom to the display bounds, # then centre the display on the calculated # centre point. with props.skip(opts, 'zoom', self.name), \ props.skip(opts, 'displayBounds', self.name): opts.zoom = zoom self._updateDisplayBounds() self.centreDisplayAt(xmid, ymid) self.Refresh() def resetDisplay(self): """Resets the :attr:`zoom` to 100%, and sets the canvas display bounds to the overaly bounding box (from the :attr:`.DisplayContext.bounds`) """ opts = self.opts with props.skip(opts, 'zoom', self.name): opts.zoom = 100 with props.suppress(opts, 'displayBounds'): self._updateDisplayBounds() self.Refresh() def getAnnotations(self): """Returns an :class:`.Annotations` instance, which can be used to annotate the canvas. """ return self._annotations def getGLObject(self, overlay): """Returns the :class:`.GLObject` associated with the given ``overlay``, or ``None`` if there isn't one. """ globj = self._glObjects.get(overlay, None) # globjs can be set to False if not globj: return None else: return globj def getViewport(self): """Return the current viewport, as two tuples containing the ``(xlo, ylo, zlo)`` and ``(xhi, yhi, zhi)`` bounds. This method will return ``None`` if :meth:`_draw` has not yet been called. """ return self.__viewport @property def viewMatrix(self): """Returns the current model view matrix. """ return gl.glGetFloat(gl.GL_MODELVIEW_MATRIX) @property def projectionMatrix(self): """Returns the current projection matrix. """ return gl.glGetFloat(gl.GL_PROJECTION_MATRIX) def _initGL(self): """Call the :meth:`_overlayListChanged` method - it will generate any necessary GL data for each of the overlays. """ self._overlayListChanged() def _updateRenderTextures(self): """Called when the :attr:`renderMode` changes, when the overlay list changes, or when the GLObject representation of an overlay changes. If the :attr:`renderMode` property is ``onscreen``, this method does nothing. Otherwise, creates/destroys :class:`.RenderTexture` or :class:`.RenderTextureStack` instances for newly added/removed overlays. """ renderMode = self.opts.renderMode if renderMode == 'onscreen': return # If any overlays have been removed from the overlay # list, destroy the associated render texture stack if renderMode == 'offscreen': for ovl, texture in list(self._offscreenTextures.items()): if ovl not in self.overlayList: self._offscreenTextures.pop(ovl) texture.destroy() elif renderMode == 'prerender': for ovl, (texture, name) in list(self._prerenderTextures.items()): if ovl not in self.overlayList: self._prerenderTextures.pop(ovl) glresources.delete(name) # If any overlays have been added to the list, # create a new render textures for them for overlay in self.overlayList: if renderMode == 'offscreen': if overlay in self._offscreenTextures: continue elif renderMode == 'prerender': if overlay in self._prerenderTextures: continue globj = self._glObjects.get(overlay, None) display = self.displayCtx.getDisplay(overlay) if not globj: continue # For offscreen render mode, GLObjects are # first rendered to an offscreen texture, # and then that texture is rendered to the # screen. The off-screen texture is managed # by a RenderTexture object. if renderMode == 'offscreen': opts = self.opts name = '{}_{}_{}'.format(display.name, opts.xax, opts.yax) rt = textures.GLObjectRenderTexture( name, globj, opts.xax, opts.yax) self._offscreenTextures[overlay] = rt # For prerender mode, slices of the # GLObjects are pre-rendered on a # stack of off-screen textures, which # is managed by a RenderTextureStack # object. elif renderMode == 'prerender': rt, name = self._getPreRenderTexture(globj, overlay) self._prerenderTextures[overlay] = rt, name self.Refresh() def _getPreRenderTexture(self, globj, overlay): """Creates/retrieves a :class:`.RenderTextureStack` for the given :class:`.GLObject`. A tuple containing the ``RenderTextureStack``, and its name, as passed to the :mod:`.resources` module, is returned. :arg globj: The :class:`.GLObject` instance. :arg overlay: The overlay object. """ display = self.displayCtx.getDisplay(overlay) copts = self.opts dopts = display.opts name = '{}_{}_zax{}'.format( id(overlay), textures.RenderTextureStack.__name__, copts.zax) # If all display/opts properties # are synchronised to the parent, # then we use a texture stack that # might be shared across multiple # views. # # But if any display/opts properties # are not synchronised, we'll use our # own texture stack. if not (display.getParent() and display.allSyncedToParent() and dopts .getParent() and dopts .allSyncedToParent()): name = '{}_{}'.format(id(self.displayCtx), name) if glresources.exists(name): rt = glresources.get(name) else: rt = textures.RenderTextureStack(globj) rt.setAxes(copts.xax, copts.yax) glresources.set(name, rt) return rt, name def _renderModeChange(self, *a): """Called when the :attr:`renderMode` property changes.""" renderMode = self.opts.renderMode log.debug('Render mode changed: {}'.format(renderMode)) # destroy any existing render textures for ovl, texture in list(self._offscreenTextures.items()): self._offscreenTextures.pop(ovl) texture.destroy() for ovl, (texture, name) in list(self._prerenderTextures.items()): self._prerenderTextures.pop(ovl) glresources.delete(name) # Onscreen rendering - each GLObject # is rendered directly to the canvas # displayed on the screen, so render # textures are not needed. if renderMode == 'onscreen': self.Refresh() return # Off-screen or prerender rendering - update # the render textures for every GLObject self._updateRenderTextures() def _highDpiChange(self, *a): """Called when the :attr:`.SliceCanvasOpts.highDpi` property changes. Calls the :meth:`.GLCanvasTarget.EnableHighDPI` method. """ self.EnableHighDPI(self.opts.highDpi) def _syncOverlayDisplayChanged(self, *a): """Called when the :attr:`.DisplayContext.syncOverlayDisplay` property changes. If the current :attr:`renderMode` is ``prerender``, the :class:`.RenderTextureStack` instances for each overlay are re-created. This is done because, if all display properties for an overlay are synchronised, then a single ``RenderTextureStack`` can be shared across multiple displays. However, if any display properties are not synchronised, then a separate ``RenderTextureStack`` is needed for the :class:`.DisplayContext` used by this ``SliceCanvas``. """ if self.opts.renderMode == 'prerender': self._renderModeChange(self) def _zAxisChanged(self, *a): """Called when the :attr:`zax` property is changed. Notifies the :class:`.Annotations` instance, and calls :meth:`resetDisplay`. """ opts = self.opts log.debug('{}'.format(opts.zax)) self._annotations.setAxes(opts.xax, opts.yax) self.resetDisplay() # If pre-rendering is enabled, the # render textures need to be updated, as # they are configured in terms of the # display axes. Easiest way to do this # is to destroy and re-create them self._renderModeChange() def __overlayTypeChanged(self, value, valid, display, name): """Called when the :attr:`.Display.overlayType` setting for any overlay changes. Makes sure that an appropriate :class:`.GLObject` has been created for the overlay (see the :meth:`__genGLObject` method). """ log.debug('GLObject representation for {} ' 'changed to {}'.format(display.name, display.overlayType)) self.__regenGLObject(display.overlay) self.Refresh() def __regenGLObject(self, overlay, updateRenderTextures=True, refresh=True): """Destroys any existing :class:`.GLObject` associated with the given ``overlay``, and creates a new one (via the :meth:`__genGLObject` method). If ``updateRenderTextures`` is ``True`` (the default), and the :attr:`.SliceCanvasOpts.renderMode` is ``offscreen`` or ``prerender``, any render texture associated with the overlay is destroyed. """ renderMode = self.opts.renderMode # Tell the previous GLObject (if # any) to clean up after itself globj = self._glObjects.pop(overlay, None) if globj: globj.deregister(self.name) globj.destroy() if updateRenderTextures: if renderMode == 'offscreen': tex = self._offscreenTextures.pop(overlay, None) if tex is not None: tex.destroy() elif renderMode == 'prerender': tex, name = self._prerenderTextures.pop( overlay, (None, None)) if tex is not None: glresources.delete(name) self.__genGLObject(overlay, updateRenderTextures, refresh) def __genGLObject(self, overlay, updateRenderTextures=True, refresh=True): """Creates a :class:`.GLObject` instance for the given ``overlay``. Does nothing if a ``GLObject`` already exists for the given overlay. If ``updateRenderTextures`` is ``True`` (the default), and the :attr:`.SliceCanvasOpts.renderMode` is ``offscreen`` or ``prerender``, any textures for the overlay are updated. If ``refresh`` is ``True`` (the default), the :meth:`Refresh` method is called after the ``GLObject`` has been created. .. note:: If running in ``wx`` (i.e. via a :class:`.WXGLSliceCanvas`), the :class:`.GLObject` instnace will be created on the ``wx.EVT_IDLE`` lopp (via the :mod:`.idle` module). """ display = self.displayCtx.getDisplay(overlay) if overlay in self._glObjects: return # We put a placeholder value in # the globjects dictionary, so # that the _draw method knows # that creation for this overlay # is pending. self._glObjects[overlay] = False def create(): if not self or self.destroyed: return # The overlay has been removed from the # globjects dictionary between the time # the pending flag was set above, and # the time that this create() call was # executed. Possibly because the overlay # was removed between these two events. # All is well, just ignore it. if overlay not in self._glObjects: return # We need a GL context to create a new GL # object. If we can't get it now, the GL # object creation will be re-scheduled on # the next call to _draw (via _getGLObjects). if not self._setGLContext(): # Clear the pending flag so # this GLObject creation # gets re-scheduled. self._glObjects.pop(overlay) return globj = globject.createGLObject(overlay, self.overlayList, self.displayCtx, self, False) if globj is not None: globj.register(self.name, self.__onGLObjectUpdate) # A hack which allows us to easily # retrieve the overlay associated # with a given GLObject. See the # __onGLObjectUpdate method. globj._sc_overlay = overlay self._glObjects[overlay] = globj if updateRenderTextures: self._updateRenderTextures() display.addListener('overlayType', self.name, self.__overlayTypeChanged, overwrite=True) display.addListener('enabled', self.name, self.Refresh, overwrite=True) if refresh: self.Refresh() create = status.reportErrorDecorator( strings.titles[ self, 'globjectError'], strings.messages[self, 'globjectError'].format(overlay.name))( create) idle.idle(create) def __onGLObjectUpdate(self, globj, *a): """Called when a :class:`.GLObject` has been updated, and needs to be redrawn. """ # we can sometimes get called after # being destroyed (e.g. during testing) if self.destroyed: return # If we are in prerender mode, we # need to tell the RenderTextureStack # for this GLObject to update itself. if self.opts.renderMode == 'prerender': overlay = globj._sc_overlay rt, name = self._prerenderTextures.get(overlay, (None, None)) if rt is not None: rt.onGLObjectUpdate() self.Refresh() def _overlayListChanged(self, *args, **kwargs): """This method is called every time an overlay is added or removed to/from the overlay list. For newly added overlays, calls the :meth:`__genGLObject` method, which initialises the OpenGL data necessary to render the overlay. """ if self.destroyed: return # Destroy any GL objects for overlays # which are no longer in the list for ovl, globj in list(self._glObjects.items()): if ovl not in self.overlayList: self._glObjects.pop(ovl) if globj: globj.destroy() # Create a GL object for any new overlays, # and attach a listener to their display # properties so we know when to refresh # the canvas. for overlay in self.overlayList: # A GLObject already exists # for this overlay if overlay in self._glObjects: continue self.__regenGLObject(overlay, updateRenderTextures=False, refresh=False) # All the GLObjects are created using # idle.idle, so we call refresh in the # same way to make sure it gets called # after all the GLObject creations. def refresh(): # This SliceCanvas might get # destroyed before this idle # task is executed if not self or self.destroyed: return self._updateRenderTextures() self.Refresh() idle.idle(refresh) def _getGLObjects(self): """Called by :meth:`_draw`. Builds a list of all :class:`.GLObjects` to be drawn. :returns: A list of overlays, and a list of corresponding :class:`.GLObjects` to be drawn. """ overlays = [] globjs = [] for ovl in self.displayCtx.getOrderedOverlays(): globj = self._glObjects.get(ovl, None) # If an overlay does not yet have a corresponding # GLObject, we presume that it hasn't been created # yet, so we'll tell genGLObject to create one for # it. if globj is None: self.__genGLObject(ovl) # If there is a value for this overlay in # the globjects dictionary, but it evaluates # to False, then GLObject creation has been # scheduled for the overlay - see genGLObject. elif globj: overlays.append(ovl) globjs .append(globj) return overlays, globjs def _overlayBoundsChanged(self, *args, **kwargs): """Called when the :attr:`.DisplayContext.bounds` are changed. Initialises/resets the display bounds, and/or preserves the zoom level if necessary. :arg preserveZoom: Must be passed as a keyword argument. If ``True`` (the default), the :attr:`zoom` value is adjusted so that the effective zoom is preserved """ preserveZoom = kwargs.get('preserveZoom', True) opts = self.opts xax = opts.xax yax = opts.yax xmin = self.displayCtx.bounds.getLo(xax) xmax = self.displayCtx.bounds.getHi(xax) ymin = self.displayCtx.bounds.getLo(yax) ymax = self.displayCtx.bounds.getHi(yax) width, height = self.GetSize() if np.isclose(xmin, xmax) or width == 0 or height == 0: return if not preserveZoom or opts.displayBounds.xlen == 0: self.resetDisplay() return # Figure out the scaling factor that # would preserve the current zoom # level for the new display bounds. xmin, xmax, ymin, ymax = glroutines.preserveAspectRatio( width, height, xmin, xmax, ymin, ymax) scale = opts.displayBounds.xlen / (xmax - xmin) # Adjust the zoom value so that the # effective zoom stays the same with props.suppress(opts, 'zoom'): opts.zoom = self.scaleToZoom(scale) def _displaySpaceChanged(self, *a): """Called when the :attr:`.DisplayContext.displaySpace` changes. Resets the display bounds and zoom. """ self.resetDisplay() def _zoomChanged(self, *a): """Called when the :attr:`zoom` property changes. Updates the display bounds. """ opts = self.opts loc = [opts.pos[opts.xax], opts.pos[opts.yax]] self._updateDisplayBounds(oldLoc=loc) def zoomToScale(self, zoom): """Converts the given zoom value into a scaling factor that can be multiplied by the display bounds width/height. Zoom is specified as a percentage. At 100% the full scene takes up the full display. In order to make the zoom smoother at low levels, we re-scale the zoom value to be exponential across the range. This is done by transforming the zoom from ``[zmin, zmax]`` into ``[0.0, 1.0]``, then turning it from linear ``[0.0, 1.0]`` to exponential ``[0.0, 1.0]``, and then finally transforming it back to ``[zmin - zmax]``. However there is a slight hack in that, if the zoom value is less than 100%, it will be applied linearly (i.e. 50% will cause the width/height to be scaled by 50%). """ # Assuming that minval == 100.0 opts = self.opts zmin = opts.getAttribute('zoom', 'minval') zmax = opts.getAttribute('zoom', 'maxval') zlen = zmax - zmin # Don't break the maths below if zoom <= 0: zoom = 1 # Normal behaviour if zoom >= 100: # [100 - zmax] -> [0.0 - 1.0] -> exponentify -> [100 - zmax] zoom = (zoom - zmin) / zlen zoom = zmin + (zoom ** 3) * zlen # Then we transform the zoom from # [100 - zmax] to [1.0 - 0.0] - # this value is used to scale the # bounds. scale = zmin / zoom # Hack for zoom < 100 else: scale = 100.0 / zoom return scale def scaleToZoom(self, scale): """Converts the given zoom scaling factor into a zoom percentage. This method performs the reverse operation to the :meth:`zoomToScale` method. """ opts = self.opts zmin = opts.getAttribute('zoom', 'minval') zmax = opts.getAttribute('zoom', 'maxval') zlen = zmax - zmin if scale > 1: zoom = 100.0 / scale else: # [100 - zmax] -> [0.0 - 1.0] -> de-exponentify -> [100 - zmax] zoom = zmin / scale zoom = (zoom - zmin) / zlen zoom = np.power(zoom, 1.0 / 3.0) zoom = zmin + zoom * zlen return zoom def _applyZoom(self, xmin, xmax, ymin, ymax): """*Zooms* in to the given rectangle according to the current value of the zoom property Returns a 4-tuple containing the updated bound values. """ zoomFactor = self.zoomToScale(self.opts.zoom) xlen = xmax - xmin ylen = ymax - ymin newxlen = xlen * zoomFactor newylen = ylen * zoomFactor # centre the zoomed-in rectangle # on the provided limits xmid = xmin + 0.5 * xlen ymid = ymin + 0.5 * ylen # new x/y min/max bounds xmin = xmid - 0.5 * newxlen xmax = xmid + 0.5 * newxlen ymin = ymid - 0.5 * newylen ymax = ymid + 0.5 * newylen return (xmin, xmax, ymin, ymax) def _updateDisplayBounds(self, bbox=None, oldLoc=None): """Called on canvas resizes, overlay bound changes, and zoom changes. Calculates the bounding box, in display coordinates, to be displayed on the canvas. Stores this bounding box in the :attr:`displayBounds` property. If any of the parameters are not provided, the :attr:`.DisplayContext.bounds` are used. .. note:: This method is used internally, and also by the :class:`.WXGLSliceCanvas` class. .. warning:: This code assumes that, if the display coordinate system has changed, the display context location has already been updated. See the :meth:`.DisplayContext.__displaySpaceChanged` method. :arg bbox: Tuple containing four values: - Minimum x (horizontal) value to be in the display bounds. - Maximum x value to be in the display bounds. - Minimum y (vertical) value to be in the display bounds. - Maximum y value to be in the display bounds. :arg oldLoc: If provided, should be the ``(x, y)`` location shown on this ``SliceCanvas`` - the new display bounds will be adjusted so that this location remains the same, with respect to the new field of view. """ opts = self.opts if bbox is None: bbox = (self.displayCtx.bounds.getLo(opts.xax), self.displayCtx.bounds.getHi(opts.xax), self.displayCtx.bounds.getLo(opts.yax), self.displayCtx.bounds.getHi(opts.yax)) xmin = bbox[0] xmax = bbox[1] ymin = bbox[2] ymax = bbox[3] # Save the display bounds in case # we need to preserve them with # respect to the current display # location. width, height = self.GetSize() oldxmin, oldxmax, oldymin, oldymax = opts.displayBounds[:] log.debug('{}: Required display bounds: ' 'X: ({: 5.1f}, {: 5.1f}) Y: ({: 5.1f}, {: 5.1f})'.format( opts.zax, xmin, xmax, ymin, ymax)) # Adjust the bounds to preserve the # x/y aspect ratio, and according to # the current zoom level. xmin, xmax, ymin, ymax = glroutines.preserveAspectRatio( width, height, xmin, xmax, ymin, ymax) xmin, xmax, ymin, ymax = self._applyZoom(xmin, xmax, ymin, ymax) # If a location (oldLoc) has been provided, # adjust the bounds so they are consistent # with respect to that location. if oldLoc and (oldxmax > oldxmin) and (oldymax > oldymin): # Calculate the normalised distance from the # old cursor location to the old bound corner oldxoff = (oldLoc[0] - oldxmin) / (oldxmax - oldxmin) oldyoff = (oldLoc[1] - oldymin) / (oldymax - oldymin) # Re-set the new bounds to the current # display location, offset by the same # amount that it used to be (as # calculated above). # # N.B. This code assumes that, if the display # coordinate system has changed, the display # context location has already been updated. # See the DisplayContext.__displaySpaceChanged # method. xloc = opts.pos[opts.xax] yloc = opts.pos[opts.yax] xlen = xmax - xmin ylen = ymax - ymin xmin = xloc - oldxoff * xlen ymin = yloc - oldyoff * ylen xmax = xmin + xlen ymax = ymin + ylen log.debug('{}: Final display bounds: ' 'X: ({: 5.1f}, {: 5.1f}) Y: ({: 5.1f}, {: 5.1f})'.format( opts.zax, xmin, xmax, ymin, ymax)) opts.displayBounds[:] = (xmin, xmax, ymin, ymax) def _setViewport(self, invertX=None, invertY=None): """Sets up the GL canvas size, viewport, and projection. :arg invertX: Invert the X axis. If not provided, taken from :attr:`invertX`. :arg invertY: Invert the Y axis. If not provided, taken from :attr:`invertY`. :returns: A sequence of three ``(low, high)`` values, defining the display coordinate system bounding box. """ opts = self.opts xax = opts.xax yax = opts.yax zax = opts.zax xmin = opts.displayBounds.xlo xmax = opts.displayBounds.xhi ymin = opts.displayBounds.ylo ymax = opts.displayBounds.yhi zmin = self.displayCtx.bounds.getLo(zax) zmax = self.displayCtx.bounds.getHi(zax) width, height = self.GetScaledSize() if invertX is None: invertX = opts.invertX if invertY is None: invertY = opts.invertY # If there are no images to be displayed, # or no space to draw, do nothing if (len(self.overlayList) == 0) or \ (width == 0) or \ (height == 0) or \ (xmin == xmax) or \ (ymin == ymax): return [(0, 0), (0, 0), (0, 0)] log.debug('Setting canvas bounds (size {}, {}): ' 'X {: 5.1f} - {: 5.1f},' 'Y {: 5.1f} - {: 5.1f},' 'Z {: 5.1f} - {: 5.1f}'.format( width, height, xmin, xmax, ymin, ymax, zmin, zmax)) # Add a bit of padding to the depth limits zmin -= 1e-3 zmax += 1e-3 lo = [None] * 3 hi = [None] * 3 lo[xax], hi[xax] = xmin, xmax lo[yax], hi[yax] = ymin, ymax lo[zax], hi[zax] = zmin, zmax # store a copy of the final bounds - # interested parties can retrieve it # via the getViewport method. self.__viewport = (tuple(lo), tuple(hi)) # set up 2D orthographic drawing glroutines.show2D(xax, yax, width, height, lo, hi, invertX, invertY) return [(lo[0], hi[0]), (lo[1], hi[1]), (lo[2], hi[2])] def _drawCursor(self): """Draws a green cursor at the current X/Y position.""" copts = self.opts ovl = self.displayCtx.getSelectedOverlay() xmin, xmax = self.displayCtx.bounds.getRange(copts.xax) ymin, ymax = self.displayCtx.bounds.getRange(copts.yax) x = copts.pos[copts.xax] y = copts.pos[copts.yax] lines = [] # Just show a vertical line at xpos, # and a horizontal line at ypos if not copts.cursorGap: lines.append((x, ymin, x, ymax)) lines.append((xmin, y, xmax, y)) # Draw vertical/horizontal cursor lines, # with a gap at the cursor centre # Not a NIFTI image - just # use a fixed gap size elif ovl is None or not isinstance(ovl, fslimage.Nifti): lines.append((xmin, y, x - 0.5, y)) lines.append((x + 0.5, y, xmax, y)) lines.append((x, ymin, x, y - 0.5)) lines.append((x, y + 0.5, x, ymax)) # If the current overlay is NIFTI, make # the gap size match its voxel size else: # Get the current voxel # coordinates, dopts = self.displayCtx.getOpts(ovl) vox = dopts.getVoxel(vround=False) # Out of bounds of the current # overlay, fall back to using # a fixed size gap if vox is None: xlow = x - 0.5 xhigh = x + 0.5 ylow = y - 0.5 yhigh = y + 0.5 else: vox = np.array(vox, dtype=np.float32) # Figure out the voxel coord axes # that (approximately) correspond # with the display x/y axes. axes = ovl.axisMapping(dopts.getTransform('voxel', 'display')) axes = np.abs(axes) - 1 xax = axes[copts.xax] yax = axes[copts.yax] # Clamp the voxel x/y coords to # the voxel edge (round, then # offset by 0.5 - integer coords # correspond to the voxel centre). vox[xax] = np.round(vox[xax]) - 0.5 vox[yax] = np.round(vox[yax]) - 0.5 # Get the voxels that are above # and next to our current voxel. voxx = np.copy(vox) voxy =
np.copy(vox)
numpy.copy
import gym import time from gym import spaces from maplewrapper import wrapper import numpy as np import pydirectinput import cv2 class MapleEnv(gym.Env): """ Description: Gym environment of MapleStory v.90 and below using extracted information from maplewrapper. See https://github.com/vinmorel/MapleWrapper Observation: Type: Dict "MapleWrapper" : box(4) Num Observation Min Max 1 Player X1 0 825 2 Mob X1 (1) 0 825 3 Player Facing Direction 0 1 4 Attacked 0 1 Actions: Type: Discrete(4) Num Action 0 Walk left 1 Walk right 2 Attack 1 3 Attack 2 Reward: Reward is the sum of gained exp minus health damage, mp consumption and time penalities Starting State: All observations are intialized according to game information Episode Termination: Episode terminates every 10 minutes """ metadata = {'render.modes': ['human']} def __init__(self,w): pydirectinput.PAUSE = 0.0 self.w = w self.lvl, self.max_hp, self.max_mp, self.max_exp = self.w.get_basestats() self.B_X = 850 # Bounding box max X self.Min =
np.array([0] * 4,dtype=np.float32)
numpy.array
# -*- coding: utf-8 -*- # @Author: <NAME> # @Date: 2019-08-02 14:38:36 # @Last Modified by: <NAME> # @Last Modified time: 2020-07-03 09:23:07 # @Email: <EMAIL> import cv2 import math import numpy as np import torch import transforms3d class Compose(object): def __init__(self, transforms): self.transformers = [] for tr in transforms: transformer = eval(tr['callback']) parameters = tr['parameters'] if 'parameters' in tr else None self.transformers.append({ 'callback': transformer(parameters), 'objects': tr['objects'] }) # yapf: disable def __call__(self, data): for tr in self.transformers: transform = tr['callback'] objects = tr['objects'] rnd_value = np.random.uniform(0, 1) if transform.__class__ in [NormalizeObjectPose]: data = transform(data) else: for k, v in data.items(): if k in objects and k in data: if transform.__class__ in [ RandomCrop, RandomFlip, RandomRotatePoints, RandomScalePoints, RandomMirrorPoints ]: data[k] = transform(v, rnd_value) else: data[k] = transform(v) return data class ToTensor(object): def __init__(self, parameters): pass def __call__(self, arr): shape = arr.shape if len(shape) == 3: # RGB/Depth Images arr = arr.transpose(2, 0, 1) # Ref: https://discuss.pytorch.org/t/torch-from-numpy-not-support-negative-strides/3663/2 return torch.from_numpy(arr.copy()).float() class Normalize(object): def __init__(self, parameters): self.mean = parameters['mean'] self.std = parameters['std'] def __call__(self, arr): arr = arr.astype(np.float32) arr /= self.std arr -= self.mean return arr class CenterCrop(object): def __init__(self, parameters): self.img_size_h = parameters['img_size'][0] self.img_size_w = parameters['img_size'][1] self.crop_size_h = parameters['crop_size'][0] self.crop_size_w = parameters['crop_size'][1] def __call__(self, img): img_w, img_h, _ = img.shape x_left = (img_w - self.crop_size_w) * .5 x_right = x_left + self.crop_size_w y_top = (img_h - self.crop_size_h) * .5 y_bottom = y_top + self.crop_size_h # Crop the image img = cv2.resize(img[int(y_top):int(y_bottom), int(x_left):int(x_right)], (self.img_size_w, self.img_size_h)) img = img[..., np.newaxis] if len(img.shape) == 2 else img return img class RandomCrop(object): def __init__(self, parameters): self.img_size_h = parameters['img_size'][0] self.img_size_w = parameters['img_size'][1] self.crop_size_h = parameters['crop_size'][0] self.crop_size_w = parameters['crop_size'][1] def __call__(self, img, rnd_value): img_w, img_h, _ = img.shape x_left = (img_w - self.crop_size_w) * rnd_value x_right = x_left + self.crop_size_w y_top = (img_h - self.crop_size_h) * rnd_value y_bottom = y_top + self.crop_size_h # Crop the image img = cv2.resize(img[int(y_top):int(y_bottom), int(x_left):int(x_right)], (self.img_size_w, self.img_size_h)) img = img[..., np.newaxis] if len(img.shape) == 2 else img return img class RandomFlip(object): def __init__(self, parameters): pass def __call__(self, img, rnd_value): if rnd_value > 0.5: img = np.fliplr(img) return img class RandomPermuteRGB(object): def __init__(self, parameters): pass def __call__(self, img): rgb_permutation = np.random.permutation(3) return img[..., rgb_permutation] class RandomBackground(object): def __init__(self, parameters): self.random_bg_color_range = parameters['bg_color'] def __call__(self, img): img_h, img_w, img_c = img.shape if not img_c == 4: return img r, g, b = [ np.random.randint(self.random_bg_color_range[i][0], self.random_bg_color_range[i][1] + 1) for i in range(3) ] alpha = (np.expand_dims(img[:, :, 3], axis=2) == 0).astype(np.float32) img = img[:, :, :3] bg_color = np.array([[[r, g, b]]]) / 255. img = alpha * bg_color + (1 - alpha) * img return img class UpSamplePoints(object): def __init__(self, parameters): self.n_points = parameters['n_points'] def __call__(self, ptcloud): curr = ptcloud.shape[0] need = self.n_points - curr if need < 0: return ptcloud[np.random.permutation(self.n_points)] while curr <= need: ptcloud = np.tile(ptcloud, (2, 1)) need -= curr curr *= 2 choice = np.random.permutation(need) ptcloud = np.concatenate((ptcloud, ptcloud[choice])) return ptcloud class RandomSamplePoints(object): def __init__(self, parameters): self.n_points = parameters['n_points'] def __call__(self, ptcloud): choice = np.random.permutation(ptcloud.shape[0]) ptcloud = ptcloud[choice[:self.n_points]] if ptcloud.shape[0] < self.n_points: zeros = np.zeros((self.n_points - ptcloud.shape[0], 3)) ptcloud = np.concatenate([ptcloud, zeros]) return ptcloud class RandomClipPoints(object): def __init__(self, parameters): self.sigma = parameters['sigma'] if 'sigma' in parameters else 0.01 self.clip = parameters['clip'] if 'clip' in parameters else 0.05 def __call__(self, ptcloud): ptcloud += np.clip(self.sigma * np.random.randn(*ptcloud.shape), -self.clip, self.clip).astype(np.float32) return ptcloud class RandomRotatePoints(object): def __init__(self, parameters): pass def __call__(self, ptcloud, rnd_value): trfm_mat = transforms3d.zooms.zfdir2mat(1) angle = 2 * math.pi * rnd_value trfm_mat = np.dot(transforms3d.axangles.axangle2mat([0, 1, 0], angle), trfm_mat) ptcloud[:, :3] = np.dot(ptcloud[:, :3], trfm_mat.T) return ptcloud class RandomScalePoints(object): def __init__(self, parameters): self.scale = parameters['scale'] def __call__(self, ptcloud, rnd_value): trfm_mat = transforms3d.zooms.zfdir2mat(1) scale = np.random.uniform(1.0 / self.scale * rnd_value, self.scale * rnd_value) trfm_mat = np.dot(transforms3d.zooms.zfdir2mat(scale), trfm_mat) ptcloud[:, :3] = np.dot(ptcloud[:, :3], trfm_mat.T) return ptcloud class RandomMirrorPoints(object): def __init__(self, parameters): pass def __call__(self, ptcloud, rnd_value): trfm_mat = transforms3d.zooms.zfdir2mat(1) trfm_mat_x = np.dot(transforms3d.zooms.zfdir2mat(-1, [1, 0, 0]), trfm_mat) trfm_mat_z = np.dot(transforms3d.zooms.zfdir2mat(-1, [0, 0, 1]), trfm_mat) if rnd_value <= 0.25: trfm_mat = np.dot(trfm_mat_x, trfm_mat) trfm_mat = np.dot(trfm_mat_z, trfm_mat) elif rnd_value > 0.25 and rnd_value <= 0.5: # lgtm [py/redundant-comparison] trfm_mat = np.dot(trfm_mat_x, trfm_mat) elif rnd_value > 0.5 and rnd_value <= 0.75: trfm_mat = np.dot(trfm_mat_z, trfm_mat) ptcloud[:, :3] =
np.dot(ptcloud[:, :3], trfm_mat.T)
numpy.dot
import operator import os import sys import numpy as np import pandas as pd from scipy import stats from sklearn.ensemble import GradientBoostingClassifier, RandomForestClassifier from sklearn.metrics import classification_report from sklearn.metrics.scorer import accuracy_scorer, precision_scorer, recall_scorer, f1_scorer from sklearn.model_selection import GridSearchCV from sklearn.svm import LinearSVC from tqdm import tqdm from xgboost import XGBClassifier from features import get_features, boosting_params, rf_params, svm_params from results_records import TestResults, ResultsRecord, AnswersResults from utils import LOGGER from common.utils import OUTPUTS_DIR pd.set_option('display.max_columns', None) pd.set_option('display.expand_frame_repr', False) pd.set_option('max_colwidth', -1) scoring = { 'accuracy': accuracy_scorer, 'precision': precision_scorer, 'recall': recall_scorer, 'f1': f1_scorer, } def classify_cv_results(X, y, model, params, test_name, debug, cv=5): """ Used to get cross-validated results. :param X: features :param y: gold label :param model: model to fit :param params: parameters for GridSearchCV :param test_name: name of the test :param debug: print debug info to logger :param cv: cross validation number :return: classifier_name, accuracy, precision, recall, f1 """ gcv = GridSearchCV(model, params, cv=cv, scoring=scoring, refit='accuracy', iid=False) gcv.fit(X, y) best_model = gcv.best_estimator_ classifier_name = best_model.__class__.__name__ accuracy =
np.mean(gcv.cv_results_['mean_test_accuracy'])
numpy.mean
#!/usr/bin/env python # coding: utf-8 # Edited May, 27th 2020 ## This is vHULK: viral Host Unveiling Kit # Developed by <NAME> and <NAME> # Creative commons # Import required Python modules import numpy as np import pandas as pd from Bio import SeqIO import re import sys import os os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3" import subprocess import datetime import argparse import warnings import csv warnings.filterwarnings("ignore", category=DeprecationWarning) warnings.simplefilter(action="ignore", category=FutureWarning) from time import gmtime, strftime from tensorflow.keras.layers import Dense, Activation, LeakyReLU, ReLU from tensorflow.keras.models import load_model from scipy.special import entr # Function declarations # Run prokka def run_prokka(binn, input_folder, threads): # Check the fasta format prefix = get_prefix(binn) # Filehandle where the output of prokka will be saved # output_prokka = open(str(prefix)+'prokka.output', mode='w') # Full command line for prokka command_line = ( "prokka --kingdom Viruses --centre X --compliant --gcode 11 --cpus " + threads + " --force --quiet --prefix prokka_results_" + str(prefix) + " --fast --norrna --notrna --outdir " + input_folder + "results/prokka/" + str(prefix) + " --cdsrnaolap --noanno " + input_folder + str(binn) ).split() return_code = subprocess.call(command_line, stderr=subprocess.PIPE) # Check with prokka run smothly if return_code == 1: print("Prokka may not be correctly installed. Please check that.") sys.exit(1) # Get prefix from bins def get_prefix(binn): if re.search(".fasta", binn): prefix = re.sub(".fasta", "", binn) else: prefix = re.sub(".fa", "", binn) return prefix # Extract Matrix ### ### Main code ### # Set arguments # Modification to use argparse parser = argparse.ArgumentParser( description="Predict phage draft genomes in metagenomic bins." ) parser.add_argument( "-i", action="store", required=True, dest="input_folder", help="Path to a folder containing metagenomic bins in .fa or .fasta format (required!)", ) parser.add_argument( "-t", action="store", dest="threads", default="1", help="Number of CPU threads to be used by Prokka and hmmscan (default=1)", ) args = parser.parse_args() # Greeting message print("\n**Welcome v.HULK, a toolkit for phage host prediction!\n") # Verify databases if not os.path.isfile("/opt/vHULK/models/all_vogs_hmm_profiles_feb2018.hmm"): print( "**Your database and models are not set. Please, run: python download_and_set_models.py \n" ) sys.exit(1) # Create Filehandle for warnings # warnings_handle = open('marvel-warnings.txt', 'w') # Important variables input_folder = args.input_folder threads = args.threads # Fix input folder path if missing '/' if not re.search("/$", input_folder): input_folder = input_folder + "/" # Take the input folder and list all multifasta (bins) contained inside it # print(input_folder) list_bins_temp = os.listdir(input_folder) list_bins = [] count_bins = 0 # Empty folder if list_bins_temp == []: print("**Input folder is empty. Exiting...\n") sys.exit(1) else: for each_bin in list_bins_temp: if re.search(".fasta$", each_bin, re.IGNORECASE): list_bins.append(each_bin) count_bins += 1 elif re.search(".fa$", each_bin, re.IGNORECASE): list_bins.append(each_bin) count_bins += 1 if count_bins == 0: print( "**There is no valid genome inside the input folder (%s).\n\ Genome or bins should be in '.fasta' or '.fa' format.\nExiting..." % input_folder ) sys.exit(1) print( "**Arguments are OK. Checked the input folder and found %d genomes.\n" % count_bins ) print("**" + str(datetime.datetime.now())) # Create results folder try: os.stat(input_folder + "results/") except: os.mkdir(input_folder + "results/") ##### # PROKKA ##### # Running prokka for all the bins multfasta files in input folder # Perform a check in each bin, then call the execute_prokka function individually # It may take awhile count_prokka = 0 print("**Prokka has started, this may take awhile. Be patient.\n") for binn in list_bins: # Verify bin/Genome size len_bin = 0 for record in SeqIO.parse(input_folder + binn, "fasta"): len_bin += len(record.seq) # If a bin/genome is too short, skip it if len_bin < 5000: print( "**v.HULK has found a genome or bin, which is too short to code \ proteins (<5000pb). As CDSs are an important feature for v.HULK, \ we will be skipping this: " + binn ) continue run_prokka(binn, input_folder, threads) count_prokka += 1 if count_prokka % 10 == 0: print("**Done with %d genomes..." % count_prokka) print("**Prokka tasks have finished!\n") #### # HMM SEARCHES #### print("**" + str(datetime.datetime.now())) print("**Starting HMM scan, this may take awhile. Be patient.\n") # print(str(datetime.datetime.now())) # Create a new results folder for hmmscan output try: os.stat(input_folder + "results/hmmscan/") except: os.mkdir(input_folder + "results/hmmscan/") # Call HMMscan to all genomes dic_matrices_by_genome = {} prop_hmms_hits = {} count_hmm = 0 for binn in list_bins: # Prefix for naming results prefix = get_prefix(binn) command_line_hmmscan = ( "hmmscan -o " + input_folder + "results/hmmscan/" + prefix + "_hmmscan.out --cpu " + threads + " --tblout " + input_folder + "results/hmmscan/" + prefix + "_hmmscan.tbl --noali /opt/vHULK/models/all_vogs_hmm_profiles_feb2018.hmm " + input_folder + "results/prokka/" + prefix + "/prokka_results_" + prefix + ".faa" ) # print(command_line_hmmscan) # Use -E 1 for next time running HMMscan or leave the fix down there # In case hmmscan returns an error - Added only because it stopped in half # if os.path.exists(input_folder + 'results/hmmscan/' + prefix + '_hmmscan.tbl'): # continue try: subprocess.call(command_line_hmmscan, shell=True) # Comment line above and uncomment line below in case you want to run v.HULK without running hmmscan all over again # True except: print("**Error calling HMMscan:", command_line_hmmscan) sys.exit(1) count_hmm += 1 # Iteration control print("**Done with %d bins HMM searches..." % count_hmm) ## Create dictionary as ref of collumns - pVOGs dic_vogs_headers = {} with open("/opt/vHULK/files/VOGs_header.txt", "r") as file2: for line2 in file2: key = re.match("(.+)\n", line2).group(1) dic_vogs_headers[key] = np.float32(0.0) # # Parse hmmscan results by gene num_proteins_bin = 0 with open( input_folder + "results/prokka/" + prefix + "/prokka_results_" + prefix + ".faa", "r", ) as faa: for line in faa: if re.search("^>", line): num_proteins_bin += 1 # Get gene name here gene_name = re.search("^>(.*)", line).group(1) dic_matches = {} # Parse hmmout with open( input_folder + "results/hmmscan/" + prefix + "_hmmscan.tbl", "r" ) as hmmscan_out: dic_genes_scores = {} for line in hmmscan_out: vog = "" gene = "" evalue = np.float32(0.0) score = np.float32(0.0) bias = np.float32(0.0) if re.match("^VOG", line): matches = re.match( "^(VOG[\d\w]+)\s+-\s+([^\s]+)[^\d]+([^\s]+)\s+([^\s]+)\s+([^\s]+)", line, ) vog = matches[1] gene = matches[2] evalue = float(matches[3]) score = float(matches[4]) bias = float(matches[5]) if gene in dic_genes_scores: dic_genes_scores[gene].append([vog, evalue, score, bias]) else: dic_genes_scores[gene] = [[vog, evalue, score, bias]] # Here goes the continuation # Create a matrix by accession dic_matrices_by_genome[prefix] = pd.DataFrame( index=dic_genes_scores.keys(), columns=dic_vogs_headers.keys(), dtype=float, ) dic_matrices_by_genome[prefix].fillna(value=np.float32(0.0), inplace=True) # Fill in evalue values for gene in dic_genes_scores: for each_match in dic_genes_scores[gene]: # print(each_match[1], gene) # Fix for evalue values greater than 1 if each_match[1] > 1: # print(each_match[1]) each_match[1] = 1 # print(each_match[1]) dic_matrices_by_genome[prefix][each_match[0]][gene] = np.float32( 1.0 ) - np.float32(each_match[1]) print("\n**HMMscan has finished.") # Condense matrices to array by suming up columns list_condensed_matrices = [] list_file_names = [] for matrix in dic_matrices_by_genome: temp = list(dic_matrices_by_genome[matrix].sum(axis=0, skipna=True)) list_file_names.append(matrix) # Parse tag # if re.search('^NC_.*', matrix): # matrix = matrix.replace("NC_", "NC") # [0]accession [1]genus [2]species # tags = matrix.split("_") # For Genus # temp.append(tags[1]) # temp.append(tags[0]) # For Species # temp.append(tag[1]+"_"+tag[2]) # temp.append(tag[0]) list_condensed_matrices.append(temp) # Convert to array # import numpy as np array = np.array(list_condensed_matrices) # print("ARRAY-SHAPE: ", len(array)) ### # Predictions ### print("\n**Starting deeplearning predictions...") # load models model_genus_relu = load_model( "/opt/vHULK/models/model_genus_total_fixed_relu_08mar_2020.h5", custom_objects={"LeakyReLU": LeakyReLU, "ReLU": ReLU}, ) model_genus_sm = load_model( "/opt/vHULK/models/model_genus_total_fixed_softmax_01mar_2020.h5", custom_objects={"LeakyReLU": LeakyReLU, "ReLU": ReLU}, ) model_species_relu = load_model( "/opt/vHULK/models/model_species_total_fixed_relu_08mar_2020.h5", custom_objects={"LeakyReLU": LeakyReLU, "ReLU": ReLU}, ) model_species_sm = load_model( "/opt/vHULK/models/model_species_total_fixed_softmax_01mar_2020.h5", custom_objects={"LeakyReLU": LeakyReLU, "ReLU": ReLU}, ) with open(input_folder + "results/results.csv", "w") as file: file.write( "BIN/genome,pred_genus_relu,score_genus_relu,Pred_genus_softmax,score_genus_softmax,pred_species_relu,score_species_relu,pred_species_softmax,score_species_softmax,final_prediction,entropy\n" ) for i in range(0, len(array)): # Genus ReLu # print(list_file_names[i]) pred_gen_relu = model_genus_relu.predict(np.array([array[i]])) # print("Genus:ReLu") # print(pred_gen_relu) position_pred_gen_relu = np.argmax(pred_gen_relu) if not pred_gen_relu.any(): name_pred_gen_relu = "None" score_pred_gen_relu = "0" else: list_hosts_genus = [ line.rstrip("\n") for line in open("/opt/vHULK/files/list_hosts_genus.txt") ] name_pred_gen_relu = list_hosts_genus[position_pred_gen_relu] score_pred_gen_relu = str(pred_gen_relu[0][position_pred_gen_relu]) # print(list_hosts_genus[position_pred_gen_relu]) # print(position_pred_gen_relu, pred_gen_relu[0][position_pred_gen_relu]) # Genus softmax pred_gen_sm = model_genus_sm.predict(np.array([array[i]])) # print("Genus:Softmax") # print(pred_gen_sm) position_pred_gen_sm = np.argmax(pred_gen_sm) list_hosts_genus = [ line.rstrip("\n") for line in open("/opt/vHULK/files/list_hosts_genus.txt") ] name_pred_gen_sm = list_hosts_genus[position_pred_gen_sm] score_pred_gen_sm = str(pred_gen_sm[0][position_pred_gen_sm]) # print(list_hosts_genus[position_pred_gen_sm]) # print(position_pred_gen_sm, pred_gen_sm[0][position_pred_gen_sm]) # Species Relu pred_sp_relu = model_species_relu.predict(np.array([array[i]])) # print("Species:ReLu") # print(pred_sp_relu) position_pred_sp_relu = np.argmax(pred_sp_relu) if not pred_sp_relu.any(): name_pred_sp_relu = "None" score_pred_sp_relu = "0" else: list_hosts_sp = [ line.rstrip("\n") for line in open("/opt/vHULK/files/list_hosts_species.txt") ] # print(list_hosts_sp) name_pred_sp_relu = list_hosts_sp[position_pred_sp_relu] score_pred_sp_relu = str(pred_sp_relu[0][position_pred_sp_relu]) # print(list_hosts_sp[position_pred_sp_relu]) # print(position_pred_sp_relu, pred_sp_relu[0][position_pred_sp_relu]) # Species softmax pred_sp_sm = model_species_sm.predict(np.array([array[i]])) # print("Species:Softmax") # print(pred_sp_sm) position_pred_sp_sm =
np.argmax(pred_sp_sm)
numpy.argmax
import numpy as np from integrator import * from qoi import * import parallel as par def simSetUp(inpt): Sim = {} Ndof = int(inpt['Ndof']) Timestep = float(inpt['Timestep']) Tf = float(inpt['Tf']) NSim = int(inpt['NSim']) Sim['Simulation name'] = inpt['Simulation name'] Sim['Ndof'] = Ndof Sim['Timestep'] = Timestep Sim['Tf'] = Tf Sim['NSim'] = NSim Sim['Record solution'] = (inpt['Record solution']=="True") # MPI parallelization nSim_, startSim_ = par.partitionSim(NSim) Sim['nSim_'] = nSim_ Sim['startSim_'] = startSim_ if par.nProc > 1: Sim['reconstruct Sol'] = (inpt['reconstruct Sol']=="True") Sim['reconstruct QOI'] = (inpt['reconstruct QOI']=="True") # Post proc Sim['Plot'] = (inpt['Plot']=="True") Sim['Build CDF'] = (inpt['Build CDF']=="True") if Sim['Build CDF']: Sim['Plot CDF'] = (inpt['Plot CDF']=="True") Sim['Build rare paths'] = (inpt['Build rare paths']=="True") if Sim['Build rare paths']: Sim['Levels'] = [float(lev) for lev in inpt['Levels'].split()] Sim['Plot rare paths'] = (inpt['Plot rare paths']=="True") if inpt['Simulation name'] == 'KS': # scalars for ETDRK4 h = Timestep Sim['Lx/pi'] = float(inpt['Lx/pi']) k = np.transpose(np.conj(np.concatenate((np.arange(0, Ndof/2.0), np.array([0]), np.arange(-Ndof/2.0+1.0, 0))))) / (float(inpt['Lx/pi'])/2.0) ksorted = list(abs(k)) ksorted.sort() kalias = ksorted[int(len(ksorted)*2/3)] indexAlias = np.argwhere(abs(k)>kalias) L = k**2 - k**4 E = np.exp(h*L) E_2 = np.exp(h*L/2) M = 16 r = np.exp(1j*np.pi*(np.arange(1, M+1)-0.5) / M) LR = h*np.transpose(np.repeat([L], M, axis=0)) + np.repeat([r], Ndof, axis=0) Q = h*np.real(np.mean((np.exp(LR/2)-1)/LR, axis=1)) f1 = h*np.real(np.mean((-4-LR+np.exp(LR)*(4-3*LR+LR**2))/LR**3, axis=1)) f2 = h*np.real(np.mean((2+LR+np.exp(LR)*(-2+LR))/LR**3, axis=1)) f3 = h*np.real(np.mean((-4-3*LR-LR**2+np.exp(LR)*(4-LR))/LR**3, axis=1)) tmax = Tf nmax = round(tmax/h) g = -0.5j*k # Necessary data for simulations Sim['x'] = float(inpt['Lx/pi'])*np.pi*np.linspace(1,Ndof,Ndof)/Ndof Sim['E'] = np.reshape(E,(Ndof,1)) Sim['E_2'] = np.reshape(E_2,(Ndof,1)) Sim['Q'] = np.reshape(Q,(Ndof,1)) Sim['f1'] = np.reshape(f1,(Ndof,1)) Sim['f2'] = np.reshape(f2,(Ndof,1)) Sim['f3'] = np.reshape(f3,(Ndof,1)) Sim['nmax'] = nmax Sim['nplt'] = 1 Sim['g'] = np.reshape(g,(Ndof,1)) Sim['k'] = np.reshape(k,(Ndof,1)) Sim['indexAlias'] = indexAlias Sim['epsilon_init'] = float(inpt['epsilon_init']) # forward step and qoi Sim['stepFunc'] = ksStepETDRK4 Sim['qoiFunc'] = ksqoi # Initial conditions ICType = inpt['ICType'] if ICType=='file': fileNameIC = inpt['fileNameIC'] Sim['u0'] = np.load(fileNameIC) elif ICType=='default': x = Sim['x'] Sim['u0'] = np.cos(x/16)*(1+np.sin(x/16)) else : print('IC type not recognized') if inpt['Simulation name'] == 'KSFrontBack': # scalars for ETDRK4 h = Timestep Sim['Lx/pi'] = float(inpt['Lx/pi']) k = np.transpose(np.conj(np.concatenate((np.arange(0, Ndof/2.0), np.array([0]), np.arange(-Ndof/2.0+1.0, 0))))) / (float(inpt['Lx/pi'])/2.0) ksorted = list(abs(k)) ksorted.sort() kalias = ksorted[int(len(ksorted)*2/3)] indexAlias = np.argwhere(abs(k)>kalias) L = k**2 - k**4 E = np.exp(h*L) E_2 = np.exp(h*L/2) M = 16 r = np.exp(1j*np.pi*(np.arange(1, M+1)-0.5) / M) LR = h*np.transpose(np.repeat([L], M, axis=0)) + np.repeat([r], Ndof, axis=0) Q = h*np.real(np.mean((np.exp(LR/2)-1)/LR, axis=1)) f1 = h*np.real(np.mean((-4-LR+np.exp(LR)*(4-3*LR+LR**2))/LR**3, axis=1)) f2 = h*np.real(np.mean((2+LR+np.exp(LR)*(-2+LR))/LR**3, axis=1)) f3 = h*np.real(np.mean((-4-3*LR-LR**2+np.exp(LR)*(4-LR))/LR**3, axis=1)) tmax = Tf nmax = round(tmax/h) g = -0.5j*k Sim['x'] = float(inpt['Lx/pi'])*np.pi*np.linspace(1,Ndof,Ndof)/Ndof Sim['E'] = np.reshape(E,(Ndof,1)) Sim['E_2'] = np.reshape(E_2,(Ndof,1)) Sim['Q'] = np.reshape(Q,(Ndof,1)) Sim['f1'] = np.reshape(f1,(Ndof,1)) Sim['f2'] = np.reshape(f2,(Ndof,1)) Sim['f3'] = np.reshape(f3,(Ndof,1)) Sim['nmax'] = nmax Sim['nplt'] = 1 Sim['g'] = np.reshape(g,(Ndof,1)) Sim['k'] = np.reshape(k,(Ndof,1)) Sim['indexAlias'] = indexAlias # Necessary data for simulations beta = float(inpt['beta']) Lback = (k**2 - k**4)/(1+beta*k**4) Eback = np.exp(-h*Lback) E_2back = np.exp(-h*Lback/2) LRback = -h*np.transpose(np.repeat([Lback], M, axis=0)) + np.repeat([r], Ndof, axis=0) Qback = -h*np.real(np.mean((np.exp(LRback/2)-1)/LRback, axis=1)) f1back = -h*np.real(np.mean((-4-LRback+np.exp(LRback)*(4-3*LRback+LRback**2))/LRback**3, axis=1)/(1+beta*k**4)) f2back = -h*np.real(np.mean((2+LRback+np.exp(LRback)*(-2+LRback))/LRback**3, axis=1)/(1+beta*k**4)) f3back = -h*np.real(np.mean((-4-3*LRback-LRback**2+np.exp(LRback)*(4-LRback))/LRback**3, axis=1)/(1+beta*k**4)) g = -0.5j*k Sim['Eback'] = np.reshape(Eback,(Ndof,1)) Sim['E_2back'] = np.reshape(E_2back,(Ndof,1)) Sim['Qback'] = np.reshape(Qback,(Ndof,1)) Sim['f1back'] = np.reshape(f1back,(Ndof,1)) Sim['f2back'] = np.reshape(f2back,(Ndof,1)) Sim['f3back'] = np.reshape(f3back,(Ndof,1)) Sim['beta'] = float(inpt['beta']) # forward step and qoi Sim['forwardStepFunc'] = ksStepETDRK4 Sim['backwardStepFunc'] = ksStepBackRegularizedETDRK4 Sim['qoiFunc'] = ksqoi # Initial conditions Sim['epsilon_init'] = float(inpt['epsilon_init']) ICType = inpt['ICType'] if ICType=='file': fileNameIC = inpt['fileNameIC'] Sim['u0'] = np.load(fileNameIC) elif ICType=='default': Sim['u0'] = np.cos(x/16)*(1+np.sin(x/16)) else : print('IC type not recognized') # Initial conditions ICType = inpt['ICType'] if ICType=='file': fileNameIC = inpt['fileNameIC'] Sim['u0'] =
np.load(fileNameIC)
numpy.load
import os.path import random import cv2 import numpy as np from PIL import Image from torch.utils.data.dataset import Dataset from utils.dataset_utils import letterbox_image # 随机数生成,用于随机数据增强 def rand(a=0, b=1): return np.random.rand() * (b - a) + a # DataLoader中collate_fn参数 将一个batch中的np数组类型的图像和标签拼接起来 # batchsize=64时,images (192, 3, 224, 224) def dataset_collate(batch): images = [] labels = [] for img, label in batch: images.append(img) labels.append(label) images1 = np.array(images)[:, 0, :, :, :] images2 = np.array(images)[:, 1, :, :, :] images3 = np.array(images)[:, 2, :, :, :] images = np.concatenate([images1, images2, images3], 0) labels1 = np.array(labels)[:, 0] labels2 = np.array(labels)[:, 1] labels3 = np.array(labels)[:, 2] labels = np.concatenate([labels1, labels2, labels3], 0) return images, labels class DogFaceDataset(Dataset): # input_shape (H, W, C) (224, 224, 3) def __init__(self, input_shape, dataset_path, num_train, num_classes): super(DogFaceDataset, self).__init__() self.dataset_path = dataset_path self.image_height = input_shape[0] self.image_width = input_shape[1] self.channel = input_shape[2] self.paths = [] self.labels = [] self.num_train = num_train self.num_classes = num_classes self.load_dataset() def __len__(self): return self.num_train # 从cls_train.txt中读取信息,获得路径和标签 def load_dataset(self): for path in self.dataset_path: # cls_train.txt 中,;前为类别,后为路径 path_split = path.split(";") self.paths.append(path_split[1].split()[0]) self.labels.append(int(path_split[0])) self.paths =
np.array(self.paths, dtype=np.object)
numpy.array
import tensorflow as tf import tensorflow_datasets as tfds import numpy as np from pdb import set_trace import cvnn.layers as complex_layers from cvnn.montecarlo import run_montecarlo def normalize_img(image, label): """Normalizes images: `uint8` -> `float32`.""" return tf.cast(image, tf.float32) / 255., label def get_dataset(): (ds_train, ds_test), ds_info = tfds.load( 'mnist', split=['train', 'test'], shuffle_files=False, as_supervised=True, with_info=True, ) ds_train = ds_train.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_train = ds_train.cache() # ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples) ds_train = ds_train.batch(128) ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE) ds_test = ds_test.map(normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE) ds_test = ds_test.batch(128) ds_test = ds_test.cache() ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE) return ds_train, ds_test @tf.autograph.experimental.do_not_convert def simple_random_example(): tf.random.set_seed(0) layer = complex_layers.ComplexDropout(.2, input_shape=(2,), seed=0) data = np.arange(10).reshape(5, 2).astype(np.float32) data = tf.complex(data, data) outputs = layer(data, training=True) expected_out = np.array([[0. + 0.j, 0. + 0.j], [0. + 0.j, 3.75 + 3.75j], [5. + 5.j, 6.25 + 6.25j], [7.5 + 7.5j, 8.75 + 8.75j], [10. + 10.j, 11.25 + 11.25j]]) assert np.all(data == layer(data, training=False)) assert np.all(outputs == expected_out) tf.random.set_seed(0) layer = tf.keras.layers.Dropout(.2, input_shape=(2,), seed=0) real_outputs = layer(tf.math.real(data), training=True) assert np.all(real_outputs == tf.math.real(outputs)) def get_real_mnist_model(): in1 = tf.keras.layers.Input(shape=(28, 28, 1)) flat = tf.keras.layers.Flatten(input_shape=(28, 28, 1))(in1) dense = tf.keras.layers.Dense(128, activation='cart_relu')(flat) # drop = complex_layers.ComplexDropout(rate=0.5)(dense) drop = tf.keras.layers.Dropout(0.5)(dense) out = tf.keras.layers.Dense(10, activation='softmax_real_with_abs', kernel_initializer="ComplexGlorotUniform")(drop) real_model = tf.keras.Model(in1, out, name="tf_rvnn") real_model.compile( loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(0.001), metrics=['accuracy'], ) real_intermediate_model = tf.keras.Model(in1, drop) return real_model, real_intermediate_model def get_complex_mnist_model(): inputs = complex_layers.complex_input(shape=(28, 28, 1), dtype=np.float32) flat = complex_layers.ComplexFlatten(input_shape=(28, 28, 1), dtype=np.float32)(inputs) dense = complex_layers.ComplexDense(128, activation='cart_relu', dtype=np.float32)(flat) drop = complex_layers.ComplexDropout(rate=0.5)(dense) out = complex_layers.ComplexDense(10, activation='softmax_real_with_abs', dtype=np.float32)(drop) complex_model = tf.keras.Model(inputs, out, name="rvnn") complex_model.compile( loss='sparse_categorical_crossentropy', optimizer=tf.keras.optimizers.Adam(0.001), metrics=['accuracy'], ) complex_intermediate_model = tf.keras.Model(inputs, drop) return complex_model, complex_intermediate_model def dropout(): ds_train, ds_test = get_dataset() train_images, train_labels = convert_to_numpy(ds_train) test_images, test_labels = convert_to_numpy(ds_test) img, label = next(iter(ds_test)) tf.random.set_seed(0) complex_model, complex_intermediate_model = get_complex_mnist_model() tf.random.set_seed(0) real_model, real_intermediate_model = get_real_mnist_model() c_before_train_eval = complex_intermediate_model(img, training=False) r_before_train_eval = real_intermediate_model(img, training=False) assert np.all(r_before_train_eval == c_before_train_eval), f"Results are not equal after drop with training=False" assert np.all(real_model.layers[2].get_weights()[0] == complex_model.layers[2].get_weights()[ 0]), f"Output layer weights are not equal before any call" assert np.all(real_model.layers[-1].get_weights()[0] == complex_model.layers[-1].get_weights()[ 0]), f"Output layer weights are not equal before any call" c_before_train_eval = complex_model(img, training=False) r_before_train_eval = real_model(img, training=False) assert
np.all(r_before_train_eval == c_before_train_eval)
numpy.all
# Authors: <NAME> # License: BSD 3 Clause """ PyMF Convex Hull Non-negative Matrix Factorization [1] CHNMF(NMF) : Class for Convex-hull NMF quickhull : Function for finding the convex hull in 2D [1] <NAME>, <NAME>, and <NAME>. Convex Non-Negative Matrix Factorization in the Wild. ICDM 2009. """ import numpy as np from itertools import combinations from pymf.dist import vq from pymf.pca import PCA from pymf.aa import AA __all__ = ["CHNMF"] def quickhull(sample): """ Find data points on the convex hull of a supplied data set Args: sample: data points as column vectors n x d n - number samples d - data dimension (should be two) Returns: a k x d matrix containint the convex hull data points """ link = lambda a, b: np.concatenate((a, b[1:])) edge = lambda a, b: np.concatenate(([a], [b])) def dome(sample, base): h, t = base dists = np.dot(sample - h, np.dot(((0, -1), (1, 0)), (t - h))) outer = np.repeat(sample, dists > 0, axis=0) if len(outer): pivot = sample[np.argmax(dists)] return link(dome(outer, edge(h, pivot)), dome(outer, edge(pivot, t))) else: return base if len(sample) > 2: axis = sample[:, 0] base = np.take(sample, [np.argmin(axis),
np.argmax(axis)
numpy.argmax
""" The classes defined here are for querying the `ATNF pulsar catalogue <http://www.atnf.csiro.au/people/pulsar/psrcat/>`_ and viewing the resulting information. """ from __future__ import print_function, division import warnings from collections import OrderedDict import re import six from six.moves import cPickle as pickle from six import string_types import numpy as np from astropy.coordinates import SkyCoord, ICRS, BarycentricTrueEcliptic, Galactic import astropy.units as aunits from astropy.constants import c, GM_sun from astropy.table import Table from pandas import DataFrame, Series from copy import deepcopy from .config import ATNF_BASE_URL, PSR_ALL, PSR_ALL_PARS, PSR_TYPE, PSR_ASSOC_TYPE, PSR_BINARY_TYPE from .utils import condition, age_pdot, B_field_pdot class QueryATNF(object): """ A class to generate a query of the `ATNF pulsar catalogue <http://www.atnf.csiro.au/people/pulsar/psrcat/>`_. By default, this class will download and cache the latest version of the catalogue database file. The catalogue can be queried for specificpulsar parameters and for specific named pulsars. Conditions on the parameter can be specified. The results will be stored as a :class:`pandas.DataFrame`, but can also be accessed as an :class:`astropy.table.Table`. Args: params (str, :obj:`list`): a list of strings with the pulsar `parameters <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html?type=expert#par_list>`_ to query. The parameter names are case insensitive. If this is not given, then all parameters will be returned by default. condition (str): a string with logical conditions for the returned parameters. The allowed format of the condition string is given `here <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html#condition>`_. Defaults to None. psrtype (str, :obj:`list`): a list of strings, or single string, of conditions on the `type <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html#psr_types>`_ of pulsars to return (logical AND will be used for any listed types). Defaults to None. assoc (:obj:`list`, str): a condition on the associations of pulsars to return (logical AND will be used for any listed associations). Defaults to None. bincomp (str, :obj:`list`): a list of strings, or single string, of conditions on the `binary <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html#bincomp_type>`_ companion types of pulsars to return (logical AND will be used for any listed associations). Defaults to None. exactmatch (bool): a boolean stating whether associations and types given as the condition should be an exact match. Defaults to False. sort_attr (str): the (case insensitive) parameter name on which with sort the returned pulsars. Defaults to ``JName``. sort_ord (str): the order of the sorting, can be either ``asc`` or ``desc``. Defaults to ascending. psrs (:obj:`list`): a list of pulsar names for which to get the requested parameters. Defaults to None. circular_boundary (:obj:`list`, tuple): a list containing three entries defining the centre (in right ascension and declination), and radius of a circle in which to search for and return pulsars. The first entry is the centre point right ascension as a string in format 'hh:mm:ss', the second entry is the centre point declination as a string in format 'dd:mm:ss', and the final entry is the circle's radius in degrees. This condition will only be applied if viewing the results as an :class:`astropy.table.Table`. Alternatively, `coord1`, `coord2`, and `radius` can be used. coord1 (str): a string containing a right ascension in the format ('hh:mm:ss') that centres a circular boundary in which to search for pulsars (requires coord2 and radius to be set). coord2 (str): a string containing a declination in the format ('dd:mm:ss') that centres a circular boundary in which to search for pulsars (requires coord1 and radius to be set). radius (float): the radius (in degrees) of a circular boundary in which to search for pulsars (requires coord1 and coord2 to be set). include_errs (bool): Set if wanting parameter errors to be returned. Defaults to True. include_refs (bool): Set if wanting to include references tags in the output tables. Defaults to False. adsref (bool): Set if wanting to use an :class:`ads.search.SearchQuery` to get reference information. Defaults to False. loadfromdb (str): Load a pulsar database file from a given path rather than using the ATNF Pulsar Catalogue database. Defaults to None. loadquery (str): load an instance of :class:`~psrqpy.search.QueryATNF` from the given file, rather than performing a new query. This was `loadfromfile` in earlier versions, which still works but has been deprecated. Defaults to None. cache (bool): Cache the catalogue database file for future use. This is ignored if `loadfromdb` is given. Defaults to True. checkupdate (bool): If True then check whether a cached catalogue file has an update available, and re-download if there is an update. Defaults to False. frompandas (:class:`pandas.DataFrame`): create a new :class:`psrqpy.QueryATNF` object from an existing :class:`pandas.DataFrame`. fromtable (:class:`astropy.table.Table`): create a new :class:`psrqpy.QueryATNF` object from an existing :class:`astropy.table.Table`. """ def __init__(self, params=None, condition=None, psrtype=None, assoc=None, bincomp=None, exactmatch=False, sort_attr='jname', sort_order='asc', psrs=None, include_errs=True, include_refs=False, adsref=False, loadfromfile=None, loadquery=None, loadfromdb=None, cache=True, checkupdate=False, circular_boundary=None, coord1=None, coord2=None, radius=0., frompandas=None, fromtable=None): if loadfromfile is not None and loadquery is None: loadquery = loadfromfile if loadquery: self.load(loadquery) return self.__dataframe = DataFrame() self.include_errs = include_errs self._include_refs = include_refs self._savefile = None # file to save class to self._loadfile = None # file class loaded from self.condition = condition self.exactmatch = exactmatch self.psrs = psrs self._sort_order = sort_order self.sort_key = sort_attr.upper() self._useads = adsref # conditions for finding pulsars within a circular boundary self._coord1 = coord1 self._coord2 = coord2 self._radius = radius if isinstance(circular_boundary, (list, tuple)): if len(circular_boundary) != 3: raise ValueError("Circular boundary must contain three values") self._coord1 = circular_boundary[0] self._coord2 = circular_boundary[1] self._radius = circular_boundary[2] elif self._coord1 is None or self._coord2 is None or self._radius == 0.: # if any are not set then we can't define a boundary self._coord1 = self._coord2 = '' self._radius = 0. else: if (not isinstance(self._coord1, string_types) or not isinstance(self._coord2, string_types)): raise ValueError("Circular boundary centre coordinates must " "be strings") if not isinstance(self._radius, float) and not isinstance(self._radius, int): raise ValueError("Circular boundary radius must be a float or " "int") self._coord = None if self._coord1 and self._coord2 and self._radius != 0.: if params is None: params = [] # set centre coordinate as an astropy SkyCoord self._coord = SkyCoord(self._coord1, self._coord2, unit=(aunits.hourangle, aunits.deg)) # set conditions condparse = self.parse_conditions(psrtype=psrtype, assoc=assoc, bincomp=bincomp) if len(condparse) > 0: if self.condition is None: self.condition = condparse else: self._condition += ' && {}'.format(condparse) self.query_params = params self._refs = None # set of pulsar references self._pulsars = None # gets set to a Pulsars object by get_pulsars() # store passed pandas DataFrame if isinstance(frompandas, DataFrame): self.__dataframe = frompandas.copy() return # store passed astropy Table if isinstance(fromtable, Table): self.__dataframe = fromtable.to_pandas() return # download and cache (if requested) the database file try: _ = self.get_catalogue(path_to_db=loadfromdb, cache=cache, update=checkupdate) except IOError: raise IOError("Could not get catalogue database file") # perform requested sorting _ = self.sort(inplace=True) def get_references(self, useads=False, cache=True): """ Get a dictionary of short reference tags keyed to the full reference string. If requested also get a dictionary of reference tags keyed to NASA ADS URLs for the given reference. This uses the function :func:`psrqpy.utils.get_references`. Args: useads (bool): Set this to True to get the NASA ADS reference URLs. Defaults to False. cache (bool): The flag sets whether or not to use a pre-cached database of references. Defaults to True. """ from .utils import get_references self._refs = None self._adsrefs = None useadst = useads or self._useads if useadst: self._refs, self._adsrefs = get_references(useadst, cache=cache) else: self._refs = get_references(False, cache=cache) def parse_ref(self, refs, useads=False): """ This function takes a short format reference string from the ATNF Pulsar Catalogue and returns the full format reference. It can also return a NASA ADS URL if requested and present. Args: refs (str, array_like): a single short reference string, or an array of reference strings. useads (bool): Set whether or not to also return a NASA ADS reference URL if present. Returns: array_like: a single full reference string, or an array of full reference strings. If NASA ADS URLs are requested, each return value will be a tuple containing the reference string and URL. """ useadst = useads or self._useads if self._refs is None: self.get_references(useads=useadst) elif self._adsrefs is None and useadst: self.get_references(useads=useadst) singleref = False if isinstance(refs, string_types): singleref = True refs = [refs] # check refs is an iterable object if not hasattr(refs, '__iter__'): raise ValueError("Reference tags must be a string or array like") refstrs = [] for ref in refs: if isinstance(ref, string_types): if ref in self._refs: if useadst: if ref in self._adsrefs: refstrs.append((self._refs[ref], self._adsrefs[ref])) else: refstrs.append((self._refs[ref], None)) else: refstrs.append(self._refs[ref]) else: if useadst: refstrs.append((None, None)) else: refstrs.append(None) else: if useadst: refstrs.append((None, None)) else: refstrs.append(None) # just return a single value if only one input if singleref: return refstrs[0] return refstrs def get_catalogue(self, path_to_db=None, cache=True, update=False, overwrite=True): """ Call the :func:`psrqpy.utils.get_catalogue` function to download the ATNF Pulsar Catalogue, or load a given catalogue path. Args: path_to_db (str): if the path to a local version of the database file is given then that will be read in rather than attempting to download the file (defaults to None). cache (bool): cache the downloaded ATNF Pulsar Catalogue file. Defaults to True. This is ignored if `path_to_db` is given. update (bool): if True the ATNF Pulsar Catalogue will be re-downloaded and cached if there has been a change compared to the currently cached version. This is ignored if `path_to_db` is given. overwrite (bool): if True the returned catalogue will overwrite the catalogue currently contained within the :class:`~psrqpy.QueryATNF` class. If False then a new :class:`~psrqpy.QueryATNF` copy of the catalogue will be returned. Returns: :class:`psrqpy.QueryATNF`: a table containing the catalogue. """ from .utils import get_catalogue try: dbtable = get_catalogue(path_to_db=path_to_db, cache=cache, update=update, pandas=True) except Exception as e: raise RuntimeError("Problem getting catalogue: {}".format(str(e))) if not overwrite: newcatalogue = QueryATNF(params=self.query_params, condition=self.condition, exactmatch=self.exactmatch, sort_attr=self._sort_attr, sort_order=self._sort_order, psrs=self.psrs, include_errs=self._include_errs, include_refs=self._include_refs, adsref=self._useads, cache=False, coord1=self._coord1, coord2=self._coord2, radius=self._radius, frompandas=dbtable) return newcatalogue # update current catalogue self.__dataframe = DataFrame(dbtable) self.__dataframe.version = dbtable.version self._dbfile = path_to_db self._checkupdate = update self._cache = cache # calculate derived parameters self.set_derived() self.parse_types() return self @property def columns(self): """ Return the table column names. """ return self.__dataframe.columns def update(self, column, name=None, overwrite=False): """ Update a column in the internal :class:`pandas.DataFrame` table using :meth:`pandas.DataFrame.update`. If the column does not exist, it will be added to the table. Args: column (:class:`pandas.Series`): a named column of values. name (str): the name of the column (required if `column` is not a :class:`pandas.Series`, or to overwrite the current column name) overwrite (bool): set whether to overwrite non-NA values or not if the column already exists. Defaults to False, so non-NA values will not be overwritten. """ # get column name to update/add if name is not None: # use input `name` by default colname = name else: try: colname = column.name except AttributeError: colname = None if colname is not None: if colname in self.columns: if not isinstance(column, Series): column = Series(column, name=colname) if column.dtype == self.__dataframe[colname].dtype: self.__dataframe.update(column, overwrite=overwrite) else: raise ValueError("Could not update table with " "supplied column") else: try: self.catalogue[colname] = column except Exception as e: raise ValueError("Could not add supplied columns to " "table: {}".format(str(e))) else: raise ValueError("No column name given") @property def sort_key(self): return self._sort_attr @sort_key.setter def sort_key(self, value): """ Set the parameter to sort on. """ if not isinstance(value, string_types): raise ValueError("Sort parameter must be a string") self._sort_attr = value def sort(self, sort_attr='JNAME', sort_order='asc', inplace=False): """ Sort the generated catalogue :class:`~pandas.DataFrame` on a given attribute and in either ascending or descending order. Args: sort_attr (str): The parameter on which to perform the sorting of the query output. Defaults to 'JNAME'. sort_order (str): Set to 'asc' to sort the parameter values in ascending order, or 'desc' to sort in descending order. Defaults to ascending. inplace (bool): If True, and sorting the class' internal :class:`~pandas.DataFrame`, then the sorting will be done in place without returning a copy of the table, otherwise a sorted copy of the table will be returned. Returns: :class:`~pandas.DataFrame`: a table containing the sorted catalogue. """ if sort_attr is not None: self.sort_key = sort_attr.upper() if self.sort_key not in self.columns: raise KeyError("Sorting by attribute '{}' is not possible as it " "is not in the table".format(self.sort_key)) self._sort_order = sort_order # check sort order is either 'asc' or 'desc' (or some synonyms) if self._sort_order.lower() in ['asc', 'ascending', 'up', '^']: self._sort_order = 'asc' elif self._sort_order.lower() in ['desc', 'descending', 'down', 'v']: self._sort_order = 'desc' else: warnings.warn("Unrecognised sort order '{}', defaulting to " "'ascending'".format(sort_order), UserWarning) self._sort_order = 'asc' sortorder = True if self._sort_order == 'asc' else False if inplace: # sort the stored dataframe _ = self.__dataframe.sort_values(self.sort_key, ascending=sortorder, inplace=inplace) return self.__dataframe else: return self.__dataframe.sort_values(self.sort_key, ascending=sortorder) def __getitem__(self, key): if key not in self.pandas.columns: raise KeyError("Key '{}' not in queried results".format(key)) # return astropy table column return self.table[key] def __getstate__(self): """ Define to allow pickling of whole object. See, e.g., https://stackoverflow.com/a/2050357/1862861. """ # Pulsars() object can cause pickling issues (in Python 2.7), so have # workaround from .pulsar import Pulsars if isinstance(self._pulsars, Pulsars): del self._pulsars self._pulsars = True # save ATNF version information from DataFrame separately self._atnf_version = self.catalogue.version return self.__dict__ def __setstate__(self, d): """ Define to allow pickling. """ self.__dict__.update(d) # restore ATNF version info to catalogue self.__dataframe.version = self._atnf_version # Pulsars() object can cause pickling issues (in Python 2.7), so have # workaround if isinstance(self._pulsars, bool): from .pulsar import Pulsars if self._pulsars: # get the Pulsars() object self._pulsars = None _ = self.get_pulsars() def save(self, fname): """ Output the :class:`~psrqpy.search.QueryATNF` instance to a pickle file for future loading. Args: fname (str): the filename to output the pickle to """ try: fp = open(fname, 'wb') pickle.dump(self, fp, 2) fp.close() self._savefile = fname except IOError: raise IOError("Error outputing class to pickle file") def load(self, fname): """ Load a previously saved pickle of this class. Args: fname (str): the filename of the pickled object """ try: fp = open(fname, 'rb') tmpdict = pickle.load(fp) fp.close() self.__dict__.clear() # clear current self self.__dict__.update(tmpdict.__dict__) self._loadfile = fname except IOError: raise IOError("Error reading in pickle") def as_array(self): """ Returns: :class:`~numpy.ndarray`: the output table as an array. """ return self.table.as_array() @property def psrs(self): """ Return the name(s) of particular pulsars asked for in the query. """ return self._psrs @psrs.setter def psrs(self, psrnames=None): """ Set a list of names of pulsars to be returned by the query. Args: psrnames (str, list): a list of names, or a single name, of pulsars to be returned by the query. """ # set the pulsar name list if psrnames is None: self._psrs = None else: if isinstance(psrnames, string_types): self._psrs = [psrnames] elif isinstance(psrnames, list): self._psrs = psrnames elif isinstance(psrnames, np.ndarray): if psrnames.dtype == np.str or psrnames.dtype == np.unicode: self._psrs = psrnames.tolist() else: raise TypeError("psrnames must be a list of strings") else: raise TypeError("psrnames must be a list of strings") @property def num_pulsars(self): """ Return the number of pulsars found in with query """ return len(self) @property def table(self): """ Return a :class:`astropy.table.Table` based on the query. """ # convert to astropy table thistable = Table.from_pandas(self.pandas) # add units if known for key in PSR_ALL_PARS: if key in thistable.colnames: if PSR_ALL[key]['units']: thistable.columns[key].unit = PSR_ALL[key]['units'] if (PSR_ALL[key]['err'] and key+'_ERR' in thistable.colnames): thistable.columns[key+'_ERR'].unit = PSR_ALL[key]['units'] # add catalogue version to metadata thistable.meta['version'] = self.get_version return thistable @property def catalogue_table(self): """ Return the full catalogue as a :class:`astropy.table.Table` without any query conditions applied. Note: in this returned table any references will not be converted into actual reference strings, but will still be the ATNF Pulsar Catalogue tags. """ # convert catalogue to astropy table thistable = Table.from_pandas(self.catalogue) # add units if known for key in PSR_ALL_PARS: if key in thistable.colnames: if PSR_ALL[key]['units']: thistable.columns[key].unit = PSR_ALL[key]['units'] if (PSR_ALL[key]['err'] and key+'_ERR' in thistable.colnames): thistable.columns[key+'_ERR'].unit = PSR_ALL[key]['units'] # add catalogue version to metadata thistable.meta['version'] = self.get_version return thistable @property def empty(self): """ Return True if the :class:`pandas.DataFrame` containing the catalogue is empty. """ return self.__dataframe.empty def query_table(self, query_params=None, usecondition=True, useseparation=True): """ Return an :class:`astropy.table.Table` from the query with new parameters or conditions if given. Args: query_params (str, list): a parameter, or list of parameters, to return from the query. If this is None then all parameters are returned. usecondition (bool, str): If True then the condition parsed to the :class:`psrqpy.QueryATNF`: class will be used when returning the table. If False no condition will be applied to the returned table. If a string is given then that will be the assumed condition string. useseparation (bool): If True and a set of sky coordinates and radius around which to return pulsars was set in the :class:`psrqpy.QueryATNF`: class then only pulsars within the given radius of the sky position will be returned. Otherwise all pulsars will be returned. Returns: :class:`astropy.table.Table`: a table of the pulsar data returned by the query. """ if not self.empty: # convert to Table if DataFrame is not empty if query_params is None: query_params = self.columns elif isinstance(query_params, string_types): query_params = [query_params] elif not isinstance(query_params, list): raise TypeError("query_params must be a string or list.") # convert to numpy array query_params = np.array(query_params) # check parameters are in table intab = np.array([par in self.columns for par in query_params]) if not np.all(intab): warnings.warn("Not all request parameters '{}' were in the " "table".format(query_params[~intab].tolist())) if not np.any(intab): warnings.warn("No requested parameters were in the table") # return given the condition expression = None if usecondition is True and isinstance(self.condition, string_types): expression = self.condition elif isinstance(usecondition, string_types): expression = usecondition # sort table dftable = self.sort(self.sort_key, self._sort_order) if expression is not None: # apply conditions dftable = condition(dftable, expression, self._exactmatch) # return only requested parameters and convert to table table = Table.from_pandas(dftable[query_params[intab].tolist()]) # add units if known for key in PSR_ALL_PARS: if key in table.colnames: if PSR_ALL[key]['units']: table.columns[key].unit = PSR_ALL[key]['units'] if PSR_ALL[key]['err'] and key+'_ERR' in table.colnames: table.columns[key+'_ERR'].unit = PSR_ALL[key]['units'] # add catalogue version to metadata table.meta['version'] = self.get_version table.meta['ATNF Pulsar Catalogue'] = ATNF_BASE_URL if (useseparation and self._coord is not None and 'RAJ' in table.colnames and 'DECJ' in table.colnames): # apply sky coordinate constraint catalog = SkyCoord(table['RAJ'], table['DECJ'], unit=(aunits.hourangle, aunits.deg)) # get seperations d2d = self._coord.separation(catalog) # find seperations within required radius catalogmsk = d2d < self._radius*aunits.deg table = table[catalogmsk] return table else: # return an empty table return Table() @property def condition(self): """ Return the string of logical conditions applied to the pulsars. """ return self._condition @condition.setter def condition(self, expression): """ Set the logical condition string to apply to queried pulsars. Args: expression (str): A string containing logical expressions to apply to queried pulsars. """ if not isinstance(expression, string_types) and expression is not None: raise TypeError("Condition must be a string") self._condition = expression @property def include_errs(self): """ Return a boolean stating whether errors are to be included. """ return self._include_errs @include_errs.setter def include_errs(self, inclerr): """ Set whether to include errors with queried pulsars. Args: inclerr (bool): Set to True to include errors. """ if isinstance(inclerr, (bool, int)): self._include_errs = bool(inclerr) else: TypeError("Flag must be boolean") @property def exactmatch(self): """ Return the boolean stating whether certain conditions should apply an exact match. """ return self._exactmatch @exactmatch.setter def exactmatch(self, match): """ Set whether to apply an exact match criterion for certain conditions. Args: match (bool): A boolean stating whether or not to apply an exact match. """ if not isinstance(match, bool): if isinstance(match, int): if match != 0 and match != 1: raise TypeError("Exact match requires boolean") else: raise TypeError("Exact match requires boolean") self._exactmatch = bool(match) @property def query_params(self): """ Return the parameters required for the query. """ return self._query_params @query_params.setter def query_params(self, params): """ Set the parameters with which to query from the catalogue. Args: params (list, str): A list of parameter names to query from the catalogue. """ self._query_params = None if isinstance(params, list): if len(params) == 0: print('No query parameters have been specified') for p in params: if not isinstance(p, string_types): raise TypeError("Non-string value '{}' found in params " "list".format(p)) self._query_params = [p.upper() for p in params] elif isinstance(params, string_types): # make sure parameter is all upper case self._query_params = [params.upper()] elif params is not None: raise TypeError("'params' must be a list or string") # remove any duplicate if self._query_params is not None: self._query_params = list(set(self._query_params)) for p in list(self._query_params): if p not in PSR_ALL_PARS: warnings.warn("Parameter '{}' not recognised.".format(p), UserWarning) @property def catalogue(self): """ Return the entire stored :class:`~pandas.DataFrame` catalogue without any sorting or conditions applied. """ return self.__dataframe @property def dataframe(self): """ Return the query table as a :class:`pandas.DataFrame`. """ return self.pandas @property def pandas(self): """ Return the query table as a :class:`pandas.DataFrame`. """ # get only required parameters and sort dftable = self.sort(self.sort_key, self._sort_order) if (self._coord is not None and 'RAJD' in dftable.columns and 'DECJD' in dftable.columns): # apply sky coordinate constraint catalog = SkyCoord(dftable['RAJD'], dftable['DECJD'], unit=(aunits.deg, aunits.deg)) # get seperations d2d = self._coord.separation(catalog) # find seperations within required radius catalogmsk = d2d < self._radius*aunits.deg dftable = dftable[catalogmsk] if self._condition is not None: # apply condition dftable = condition(dftable, self._condition, self._exactmatch) # return only requested pulsars if self.psrs is not None: jnames = np.zeros(len(dftable), dtype=np.bool) if 'JNAME' in dftable.columns: jnames = np.array([psr in self.psrs for psr in dftable['JNAME']]) bnames = np.zeros(len(dftable), dtype=np.bool) if 'BNAME' in dftable.columns: bnames = np.array([psr in self.psrs for psr in dftable['BNAME']]) if np.any(jnames) and np.any(bnames): allnames = jnames | bnames elif np.any(jnames): allnames = jnames elif np.any(bnames): allnames = bnames else: warnings.warn("No requested pulsars '{}' were " "found.".format(self.psrs), UserWarning) return DataFrame() # empty dataframe dftable = dftable[allnames] # return only the required query parameters if isinstance(self.query_params, list): retpars = list(self.query_params) # return parameters for par in self.query_params: if par in PSR_ALL_PARS: if PSR_ALL[par]['err'] and self._include_errs: retpars.append(par+'_ERR') if PSR_ALL[par]['ref'] and self._include_refs: retpars.append(par+'_REF') retpars = list(set(retpars)) # remove duplicates dftable = dftable[retpars] # reset the indices to zero in the dataframe return dftable.reset_index(drop=True) def parse_types(self): """ Parse information in 'ASSOC', 'TYPE', and 'BINCOMP', as described in `<http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html#psr_types>`_. """ self.parse_assoc() # parse the association parameter self.parse_type() # parse the type parameter self.parse_bincomp() # parse the binary companion parameter def parse_assoc(self): """ Parse default string representing source associations, extracting (first) value and reference. Multiple values and references currently not supported. """ if 'ASSOC' not in self.columns: return # Save original parameter in new column ASSOCorig = self.catalogue['ASSOC'].copy() ASSOCorig.name = 'ASSOC_ORIG' self.update(ASSOCorig, name='ASSOC_ORIG') ASSOCnew = self.catalogue['ASSOC'].copy() idxassoc = ~ASSOCnew.isna() # Set references first if 'ASSOC_REF' not in self.columns: ASSOCREFnew = Series(np.full(self.catalogue_len, '', dtype='U64'), name='ASSOC_REF') else: ASSOCREFnew = self.catalogue['ASSOC_REF'].copy() ASSOCREFnew[idxassoc] = ASSOCnew[idxassoc].apply(lambda x: re.split(r'\]', re.split(r'\[', x)[1])[0] if len(re.split(r'\[', x)) > 1 else np.nan) # Set values ASSOCnew[idxassoc] = ASSOCnew[idxassoc].apply(lambda x: re.split(r'\[|,|\(|:', x)[0]) self.update(ASSOCnew, overwrite=True) self.update(ASSOCREFnew, overwrite=True) def parse_type(self): """ Parse default string representing source type, extracting (first) value and reference. Multiple values and references currently not supported. """ if 'TYPE' not in self.columns: return # Save original parameter in new column TYPEorig = self.catalogue['TYPE'].copy() TYPEorig.name = 'TYPE_ORIG' self.update(TYPEorig, 'TYPE_ORIG') TYPEnew = self.catalogue['TYPE'].copy() idxtype = ~TYPEnew.isna() # Set references first if 'TYPE_REF' not in self.columns: TYPEREFnew = Series(np.full(self.catalogue_len, '', dtype='U64'), name='TYPE_REF') else: TYPEREFnew = self.catalogue['TYPE_REF'].copy() TYPEREFnew[idxtype] = TYPEnew[idxtype].apply(lambda x: re.split(r'\]', re.split(r'\[', x)[1])[0] if len(re.split(r'\[', x)) > 1 else np.nan) # Set values TYPEnew[idxtype] = TYPEnew[idxtype].apply(lambda x: re.split(r'\[|,|\(|:', x)[0]) self.update(TYPEnew, overwrite=True) self.update(TYPEREFnew, overwrite=True) def parse_bincomp(self): """ Parse default string representing source companion type, extracting (first) value and reference. Multiple values and references currently not supported. """ if 'BINCOMP' not in self.columns: return # Save original parameter in new column BINCOMPorig = self.catalogue['BINCOMP'].copy() BINCOMPorig.name = 'BINCOMP_ORIG' self.update(BINCOMPorig) BINCOMPnew = self.catalogue['BINCOMP'].copy() idxbincomp = ~BINCOMPnew.isna() # Set references first if 'BINCOMP_REF' not in self.columns: BINCOMPREFnew = Series(np.full(self.catalogue_len, '', dtype='U64'), name='BINCOMP_REF') else: BINCOMPREFnew = self.catalogue['BINCOMP_REF'].copy() BINCOMPREFnew[idxbincomp] = BINCOMPnew[idxbincomp]\ .apply(lambda x: re.split(r'\]', re.split(r'\[', x)[1])[0] if len(re.split(r'\[', x)) > 1 else np.nan) # Set values BINCOMPnew[idxbincomp] = BINCOMPnew[idxbincomp]\ .apply(lambda x: re.split(r'\[|,|\(|:', x)[0]) self.update(BINCOMPnew, overwrite=True) self.update(BINCOMPREFnew, overwrite=True) def set_derived(self): """ Compute any derived parameters and add them to the class. These calculations are based on those in the `readCatalogue.c` and `defineParameters.c` files from the `PSRCAT` `code <http://www.atnf.csiro.au/research/pulsar/psrcat/download.html>`_. """ self.define_dist() # define the DIST and DIST1 parameters self.derived_ecliptic() # derive the ecliptic coordinates if not given self.derived_equatorial() # derive equatorial coords from ecliptic self.define_galactic() # define the galactic coordinates self.derived_p0() # derive P0 from F0 if not given self.derived_f0() # derive F0 from P0 if not given self.derived_p1() # derive P1 from F1 if not given self.derived_f1() # derive F1 from P1 if not given self.derived_pb() # derive binary period from FB0 self.derived_pbdot() # derive Pbdot from FB1 self.derived_fb0() # derive orbital frequency from period self.derived_fb1() # derive FB1 from PBDOT self.derived_age() # characteristic age self.derived_bsurf() # surface magnetic field self.derived_b_lc() # magnetic field at light cylinder self.derived_edot() # spin-down luminosity self.derived_edotd2() # spin-down flux at Sun self.derived_pmtot() # total proper motion self.derived_vtrans() # transverse velocity self.derived_p1_i() # instrinsic period derivative self.derived_age_i() # intrinsic age self.derived_bsurf_i() # intrinsic Bsurf self.derived_edot_i() # intrinsic luminosity self.derived_flux() # radio flux self.derived_binary() # derived binary parameters def define_dist(self): """ Set the `DIST` and `DIST1` parameters using other values. """ if 'PX' in self.columns: PX = self.catalogue['PX'] else: PX = np.full(self.catalogue_len, np.nan) if 'PX_ERR' in self.columns: PXERR = self.catalogue['PX_ERR'] else: PXERR = np.full(self.catalogue_len, np.nan) if 'DIST_A' in self.columns: DIST_A = self.catalogue['DIST_A'] else: DIST_A = np.full(self.catalogue_len, np.nan) if 'DIST_AMN' in self.columns: DIST_AMN = self.catalogue['DIST_AMN'] else: DIST_AMN = np.full(self.catalogue_len, np.nan) if 'DIST_AMX' in self.columns: DIST_AMX = self.catalogue['DIST_AMX'] else: DIST_AMX = np.full(self.catalogue_len, np.nan) if 'DIST_DM' in self.columns: DIST_DM = self.catalogue['DIST_DM'] else: DIST_DM = np.full(self.catalogue_len, np.nan) if 'DIST_DM1' in self.columns: DIST_DM1 = self.catalogue['DIST_DM1'] else: DIST_DM1 = np.full(self.catalogue_len, np.nan) # DIST defaults to DM distance DIST = DIST_DM.copy() # DIST1 defaults to DM1 distance DIST1 = DIST_DM1.copy() ONEAU = 149597870. # AU in km (from psrcat.h) ONEPC = 30.857e12 # 1 pc in km (from psrcat.h) idxpx = np.isfinite(PX) & np.isfinite(PXERR) # set distances using parallax if parallax has greater than 3 sigma significance pxsigma = np.zeros(self.catalogue_len) pxsigma[idxpx] = np.abs(PX[idxpx])/PXERR[idxpx] # use DIST_A if available idxdista = np.isfinite(DIST_A) DIST[idxdista] = DIST_A[idxdista] DIST1[idxdista] = DIST_A[idxdista] # indexes of parallaxes with greater than 3 sigma significance idxpxgt3 = (pxsigma > 3.) & ~np.isfinite(DIST_A) DIST[idxpxgt3] = (ONEAU/ONEPC)*(60.*60.*180)/(PX[idxpxgt3]*np.pi) DIST1[idxpxgt3] = (ONEAU/ONEPC)*(60.*60.*180)/(PX[idxpxgt3]*np.pi) # if dist_amn and dist_amx exist and dist_dm lies within boundary # then use dist_dm else use the closest limit to dist_dm # if dist_dm is not defined then use (dism_amn + dist_amx)/2 idxdist = np.isfinite(DIST) & ~idxpxgt3 idxdist1 = np.isfinite(DIST1) & ~idxpxgt3 # ignore warnings from comparisons that involve NaN with np.errstate(invalid='ignore'): idxa = ~((DIST <= DIST_AMX) & (DIST >= DIST_AMN)) idxa1 = ~((DIST1 <= DIST_AMX) & (DIST1 >= DIST_AMN)) DIST[idxa & idxdist & (DIST >= DIST_AMX)] = DIST_AMX[idxa & idxdist & (DIST >= DIST_AMX)] DIST1[idxa1 & idxdist1 & (DIST1 >= DIST_AMX)] = DIST_AMX[(idxa1 & idxdist1 & (DIST1 >= DIST_AMX))] DIST[idxa & idxdist & (DIST < DIST_AMX)] = DIST_AMN[idxa & idxdist & (DIST < DIST_AMX)] DIST1[idxa1 & idxdist1 & (DIST1 < DIST_AMX)] = DIST_AMN[(idxa1 & idxdist1 & (DIST1 < DIST_AMX))] idxdist = (~np.isfinite(DIST) & ~idxpxgt3 & np.isfinite(DIST_AMN) & np.isfinite(DIST_AMX)) idxdist1 = (~np.isfinite(DIST) & ~idxpxgt3 & np.isfinite(DIST_AMN) & np.isfinite(DIST_AMX)) DIST[idxdist] = 0.5*(DIST_AMN[idxdist] + DIST_AMX[idxdist]) DIST1[idxdist1] = 0.5*(DIST_AMN[idxdist1] + DIST_AMX[idxdist1]) self.update(DIST, name='DIST') self.update(DIST1, name='DIST1') def derived_equatorial(self): """ Calculate equatorial coordinates if only ecliptic coordinates are given. Unlike `psrcat` this function does not currently convert errors on ecliptic coordinates into equavalent errors on equatorial coordinates. """ reqpar = ['ELONG', 'ELAT'] if not np.all([p in self.columns for p in reqpar]): return ELONG = self.catalogue['ELONG'] ELAT = self.catalogue['ELAT'] RAJDnew = np.full(self.catalogue_len, np.nan) DECJDnew = np.full(self.catalogue_len, np.nan) RAJnew = np.full(self.catalogue_len, '', dtype='U32') DECJnew = np.full(self.catalogue_len, '', dtype='U32') idx = np.isfinite(ELONG) & np.isfinite(ELAT) # get sky coordinates sc = BarycentricTrueEcliptic(ELONG.values[idx]*aunits.deg, ELAT.values[idx]*aunits.deg ).transform_to(ICRS()) RAJDnew[idx] = sc.ra.value DECJDnew[idx] = sc.dec.value RAJnew[idx] = sc.ra.to('hourangle').to_string(sep=':', pad=True) DECJnew[idx] = sc.dec.to_string(sep=':', pad=True, alwayssign=True) self.update(RAJDnew, name='RAJD') self.update(DECJDnew, name='DECJD') self.update(RAJnew, name='RAJ') self.update(DECJnew, name='DECJ') # set references if 'ELONG_REF' in self.columns: RAJREFnew = np.full(self.catalogue_len, '', dtype='U32') DECJREFnew = np.full(self.catalogue_len, '', dtype='U32') ELONGREF = self.catalogue['ELONG_REF'] DECJREFnew[idx] = ELONGREF[idx] RAJREFnew[idx] = ELONGREF[idx] self.update(DECJREFnew, name='RAJ_REF') self.update(RAJREFnew, name='DECJ_REF') # get PMRA and PMDEC if not given reqpar = ['PMELONG', 'PMELAT'] if np.all([p in self.columns for p in reqpar]): PMELONG = self.catalogue['PMELONG'] PMELAT = self.catalogue['PMELAT'] PMRAnew = np.full(self.catalogue_len, np.nan) PMDECnew = np.full(self.catalogue_len, np.nan) idx = idx & np.isfinite(PMELONG) & np.isfinite(PMELAT) sc = BarycentricTrueEcliptic( ELONG[idx].values*aunits.deg, ELAT[idx].values*aunits.deg, pm_lon_coslat=PMELONG[idx].values*aunits.mas/aunits.yr, pm_lat=PMELAT[idx].values*aunits.mas/aunits.yr ).transform_to(ICRS()) PMRAnew[idx] = sc.pm_ra_cosdec.value PMDECnew[idx] = sc.pm_dec.value self.update(PMRAnew, name='PMRA') self.update(PMDECnew, name='PMDEC') def derived_ecliptic(self): """ Calculate the ecliptic coordinates, and proper motions, from the right ascension and declination if they are not already given. The ecliptic used here is the astropy's `BarycentricTrueEcliptic <http://docs.astropy.org/en/stable/api/astropy.coordinates.BarycentricTrueEcliptic.html>`_, which may not exactly match that used in `psrcat`. """ reqpar = ['RAJD', 'DECJD'] if not np.all([p in self.columns for p in reqpar]): return RAJD = self.catalogue['RAJD'] DECJD = self.catalogue['DECJD'] ELONGnew = np.full(self.catalogue_len, np.nan) ELATnew = np.full(self.catalogue_len, np.nan) idx = np.isfinite(RAJD) & np.isfinite(DECJD) # get sky coordinates sc = SkyCoord(RAJD[idx].values*aunits.deg, DECJD[idx].values*aunits.deg) ELONGnew[idx] = sc.barycentrictrueecliptic.lon.value ELATnew[idx] = sc.barycentrictrueecliptic.lat.value self.update(ELONGnew, name='ELONG') self.update(ELATnew, name='ELAT') # get references refpar = ['RAJ_REF', 'DECJ_REF'] if np.all([p in self.columns for p in refpar]): RAJREF = self.catalogue['RAJ_REF'] DECJREF = self.catalogue['DECJ_REF'] ELONGREFnew = np.full(self.catalogue_len, '', dtype='U32') ELATREFnew = np.full(self.catalogue_len, '', dtype='U32') ELONGREFnew[idx] = RAJREF[idx] ELATREFnew[idx] = DECJREF[idx] self.update(ELONGREFnew, name='ELONG_REF') self.update(ELATREFnew, name='ELAT_REF') # get PMELONG and PMELAT if not given reqpar = ['PMRA', 'PMDEC'] if np.all([p in self.columns for p in reqpar]): PMELONGnew = np.full(self.catalogue_len, np.nan) PMELATnew = np.full(self.catalogue_len, np.nan) PMRA = self.catalogue['PMRA'] PMDEC = self.catalogue['PMDEC'] idx = idx & np.isfinite(PMRA) & np.isfinite(PMDEC) sc = ICRS( RAJD[idx].values*aunits.deg, DECJD[idx].values*aunits.deg, pm_ra_cosdec=PMRA[idx].values*aunits.mas/aunits.yr, pm_dec=PMDEC[idx].values*aunits.mas/aunits.yr ).transform_to(BarycentricTrueEcliptic()) PMELONGnew[idx] = sc.pm_lon_coslat.value PMELATnew[idx] = sc.pm_lat.value self.update(PMELONGnew, name='PMELONG') self.update(PMELATnew, name='PMELAT') def define_galactic(self): """ Calculate the galactic longitude, latitude and position. .. note:: The cartesian galactic coordinates returned by this function *do not* match those returned by the ATNF Pulsar Catalogue and the ``psrcat`` software. They are defined using the conventions in the :class:`astropy.coordinates.Galactocentric` class. This uses a Galactic centre distance of 8.3 kpc compared to 8.5 kpc in ``psrcat`` and rotated 90 degrees anticlockwise compared to ``psrcat``. The Galactic coordinate proper motions returned by this function *do not* match those returned by the ATNF Pulsar Catalogue and the ``psrcat`` software. The values returned here convert the observed proper motions in right ascension and declination (or elliptic longitude and latitude) into equivalent values in the Galactic coordinate system (via the :class:`astropy.coordinates.Galactic` class). However, the values returned by the ATNF Pulsar Catalogue and the ``psrcat`` software are in the Galactic cooridinate system, but additionally have the local solar system velocity and Galactic rotation of the pulsar removed from them as described in Section 3 of `<NAME> & Anderson (1993) <https://ui.adsabs.harvard.edu/?#abs/1993MNRAS.261..113H>`_. """ galpars = ['GL', 'GB', 'ZZ', 'XX', 'YY', 'DMSINB'] if np.all([p in self.columns for p in galpars]): return reqpars = ['RAJD', 'DECJD'] if not np.all([p in self.columns for p in reqpars]): return # get distance if required if 'DIST' not in self.columns: self.define_dist() if 'DIST' not in self.columns: return RAJD = self.catalogue['RAJD'].values.copy() DECJD = self.catalogue['DECJD'].values.copy() DIST = self.catalogue['DIST'].values.copy() GL = np.full(self.catalogue_len, np.nan) GB = np.full(self.catalogue_len, np.nan) idx = np.isfinite(RAJD) & np.isfinite(DECJD) & np.isfinite(DIST) # get sky coordinates sc = SkyCoord(RAJD[idx]*aunits.deg, DECJD[idx]*aunits.deg, DIST[idx]*aunits.kpc) GL[idx] = sc.galactic.l.value GB[idx] = sc.galactic.b.value # set galactic longitude and latitude self.update(GL, name='GL') self.update(GB, name='GB') XX = np.full(self.catalogue_len, np.nan) YY = np.full(self.catalogue_len, np.nan) ZZ = np.full(self.catalogue_len, np.nan) # set galactocentric cartesian position (these seem to have a # different orientation (rotated 90 deg anticlockwise) to that # defined in the ATNF catalogue, and using a slightly different # distance to the galactic centre 8.3 kpc in astropy and 8.5 in psrcat) XX[idx] = sc.galactocentric.cartesian.x.value YY[idx] = sc.galactocentric.cartesian.y.value ZZ[idx] = sc.galactocentric.cartesian.z.value self.update(XX, name='XX') self.update(YY, name='YY') self.update(ZZ, name='ZZ') # set DMSINB if 'DM' in self.columns: DM = self.catalogue['DM'] GB = self.catalogue['GB'] DMSINB = np.full(self.catalogue_len, np.nan) idx = np.isfinite(GB) & np.isfinite(DM) DMSINB[idx] = DM[idx]*np.sin(np.deg2rad(GB[idx])) self.update(DMSINB, name='DMSINB') # galactic proper motion (in the Local Standard of Rest) if not np.all([p in self.columns for p in ['PMB', 'PML']]): reqpar = ['PMRA', 'PMDEC'] if np.all([p in self.columns for p in reqpar]): PMRA = self.catalogue['PMRA'].values.copy() PMDEC = self.catalogue['PMDEC'].values.copy() PMB = np.full(self.catalogue_len, np.nan) PML = np.full(self.catalogue_len, np.nan) idx = (np.isfinite(PMRA) & np.isfinite(PMDEC) & np.isfinite(RAJD) & np.isfinite(DECJD) & np.isfinite(DIST)) sc = ICRS(RAJD[idx]*aunits.deg, DECJD[idx]*aunits.deg, distance=DIST[idx]*aunits.kpc, pm_ra_cosdec=PMRA[idx]*aunits.mas/aunits.yr, pm_dec=PMDEC[idx]*aunits.mas/aunits.yr ).transform_to(Galactic()) PMB[idx] = sc.pm_b.value PML[idx] = sc.pm_l_cosb.value self.update(PMB, name='PMB') self.update(PML, name='PML') def derived_binary(self): """ Calculate derived binary system parameters. """ MASS_PSR = 1.35 # canonical pulsar mass (solar masses) # derive mass function reqpars = ['A1', 'PB'] if np.all([p in self.columns for p in reqpars]): A1 = self.catalogue['A1'].values.copy()*c.value # convert to m PB = self.catalogue['PB'].values.copy()*86400. # convert to sec idx = np.isfinite(A1) & np.isfinite(PB) MASSFN = np.full(self.catalogue_len, np.nan) MASSFN[idx] = (4.*np.pi**2/GM_sun.value)*A1[idx]**3/(PB[idx]**2) self.update(MASSFN, name='MASSFN') # derive minimum, median and 90% UL for mass MINMASS = np.full(self.catalogue_len, np.nan) MEDMASS = np.full(self.catalogue_len, np.nan) UPRMASS = np.full(self.catalogue_len, np.nan) from scipy.optimize import newton def solfunc(m2, sini, mf, m1): return (m1 + m2)**2 - (m2*sini)**3/mf SINI_MIN = 1.0 # inclination for minimum mass SINI_MED = 0.866025403 # inclination of 60deg for median mass SINI_90 = 0.438371146 # inclination for 90% UL mass for i, mf in enumerate(MASSFN): if ~np.isfinite(mf): continue try: MINMASS[i] = newton(solfunc, MASS_PSR, args=(SINI_MIN, mf, MASS_PSR), maxiter=1000) except RuntimeError: MINMASS[i] = np.nan try: MEDMASS[i] = newton(solfunc, MASS_PSR, args=(SINI_MED, mf, MASS_PSR), maxiter=1000) except RuntimeError: MEDMASS[i] = np.nan try: UPRMASS[i] = newton(solfunc, MASS_PSR, args=(SINI_90, mf, MASS_PSR), maxiter=1000) except RuntimeError: UPRMASS[i] = np.nan self.update(MINMASS, name='MINMASS') self.update(MEDMASS, name='MEDMASS') self.update(UPRMASS, name='UPRMASS') # add uncertainty on mass function reqpars = ['A1_ERR', 'PB_ERR'] if np.all([p in self.columns for p in reqpars]): # convert to metres A1ERR = self.catalogue['A1_ERR'].values.copy()*c.value # convert to seconds PBERR = self.catalogue['PB_ERR'].values.copy()*86400. idx = (np.isfinite(MASSFN) & np.isfinite(A1ERR) & np.isfinite(PBERR)) MASSFN_ERR = np.full(self.catalogue_len, np.nan) MASSFN_ERR[idx] = ( MASSFN[idx] * np.sqrt((3.*A1ERR[idx]/A1[idx])**2 + (2.*PBERR[idx]/PB[idx])**2) ) self.update(MASSFN_ERR, name='MASSFN_ERR') # derive eccentricity from EPS1 and EPS2 reqpars = ['EPS1', 'EPS2'] if np.all([p in self.columns for p in reqpars]): EPS1 = self.catalogue['EPS1'].values.copy() EPS2 = self.catalogue['EPS2'].values.copy() ECCnew = np.full(self.catalogue_len, np.nan) OMnew = np.full(self.catalogue_len, np.nan) idx = np.isfinite(EPS1) & np.isfinite(EPS2) # set eccentricities ECCnew[idx] = np.sqrt(EPS1[idx]**2+EPS2[idx]**2) self.update(ECCnew, name='ECC') # set angle of peristron idxn = idx & (ECCnew != 0.) OMnew[idxn] = np.arctan2(EPS1[idxn], EPS2[idxn])*180./np.pi OMnew = np.mod(OMnew+360., 360.) # make sure angles are positive self.update(OMnew, name='OM') # set errors reqpars = ['EPS1_ERR', 'EPS2_ERR'] if np.all([p in self.columns for p in reqpars]): EPS1ERR = self.catalogue['EPS1_ERR'].values.copy() EPS2ERR = self.catalogue['EPS2_ERR'].values.copy() ECCERRnew = np.full(self.catalogue_len, np.nan) OMERRnew = np.full(self.catalogue_len, np.nan) idxn = idx & (np.isfinite(EPS1ERR) & np.isfinite(EPS2ERR) & (ECCnew != 0.)) OMERRnew[idxn] = ( np.sqrt((EPS2[idxn]*EPS1ERR[idxn])**2 + (EPS1[idxn]*EPS2ERR[idxn])**2) / (ECCnew[idxn])**2 )*180.0/np.pi self.update(OMERRnew, name='OM_ERR') ECCERRnew[idxn] = ( np.sqrt((EPS1[idxn]*EPS1ERR[idxn])**2 + (EPS2[idxn]*EPS2ERR[idxn])**2) / ECCnew[idxn] ) self.update(ECCERRnew, name='ECC_ERR') # derive EPS1 and EPS2 from ECC and OM reqpars = ['ECC', 'OM'] if np.all([p in self.columns for p in reqpars]): ECC = self.catalogue['ECC'].values.copy() OM = self.catalogue['OM'].values.copy() EPS1new = np.full(self.catalogue_len, np.nan) EPS2new = np.full(self.catalogue_len, np.nan) idx = np.isfinite(ECC) & np.isfinite(OM) EPS1new[idx] = ECC[idx] * np.sin(OM[idx]) EPS2new[idx] = ECC[idx] * np.cos(OM[idx]) self.update(EPS1new, name='EPS1') self.update(EPS2new, name='EPS2') # set errors reqpars = ['ECC_ERR', 'OM_ERR'] if np.all([p in self.columns for p in reqpars]): ECCERR = self.catalogue['ECC_ERR'].values.copy() OMERR = self.catalogue['OM_ERR'].values.copy() EPS1ERRnew = np.full(self.catalogue_len, np.nan) EPS2ERRnew = np.full(self.catalogue_len, np.nan) idxn = idx & np.isfinite(ECCERR) & np.isfinite(OMERR) EPS1ERRnew[idxn] = ( np.abs(EPS1new[idxn]) * np.sqrt((ECCERR[idxn]/ECC[idxn])**2 + (np.abs(np.cos(np.deg2rad(OM[idxn]))) * np.deg2rad(OMERR[idxn]) / np.abs(np.sin(np.deg2rad(OM[idxn]))))**2) ) EPS2ERRnew[idxn] = ( np.abs(EPS2new[idxn]) * np.sqrt((ECCERR[idxn]/ECC[idxn])**2 + (np.abs(np.sin(np.deg2rad(OM[idxn]))) * np.deg2rad(OMERR[idxn]) / np.abs(np.cos(np.deg2rad(OM[idxn]))))**2) ) self.update(EPS1ERRnew, name='EPS1_ERR') self.update(EPS2ERRnew, name='EPS2_ERR') # derive MINOMDOT reqpars = ['ECC', 'PB', 'MINMASS'] if np.all([p in self.columns for p in reqpars]): MINMASS = self.catalogue['MINMASS'].values.copy() PB = self.catalogue['PB'].values.copy()*86400. ECC = self.catalogue['ECC'].values.copy() MINOMDOT = np.full(self.catalogue_len, np.nan) idx = np.isfinite(MINMASS) & np.isfinite(PB) & np.isfinite(ECC) MINOMDOT[idx] = (3.*(2.*np.pi/PB[idx])**(5./3.) * ((MASS_PSR+MINMASS[idx]) * 4.925490946e-6)**(2./3.) / (1.-ECC[idx]**2)) MINOMDOT[idx] = np.rad2deg(MINOMDOT[idx])*86400.*365.25 self.update(MINOMDOT, name='MINOMDOT') def derived_p0(self): """ Calculate the period from the frequency in cases where period is not given. """ if 'F0' not in self.columns: return F0 = self.catalogue['F0'] P0new = np.full(self.catalogue_len, np.nan) # find indices where P0 needs to be set from F0 idx = np.isfinite(F0) P0new[idx] = 1./F0[idx] self.update(P0new, name='P0') # set the references if 'F0_REF' in self.columns: P0REFnew = np.full(self.catalogue_len, '', dtype='U32') F0REF = self.catalogue['F0_REF'] P0REFnew[idx] = F0REF[idx] self.update(P0REFnew, 'P0_REF') # set the errors if 'F0_ERR' in self.columns: P0ERRnew = np.full(self.catalogue_len, np.nan) F0ERR = self.catalogue['F0_ERR'] idx = idx & np.isfinite(F0ERR) P0ERRnew[idx] = F0ERR[idx]*P0new[idx]**2 self.update(P0ERRnew, 'P0_ERR') def derived_f0(self): """ Calculate the frequency from the period in cases where frequency is not given. """ if 'P0' not in self.columns: return P0 = self.catalogue['P0'] F0new = np.full(self.catalogue_len, np.nan) # find indices where F0 needs to be set from P0 idx = np.isfinite(P0) F0new[idx] = 1./P0[idx] self.update(F0new, name='F0') # set the references if 'P0_REF' in self.columns: F0REFnew = np.full(self.catalogue_len, '', dtype='U32') P0REF = self.catalogue['P0_REF'] F0REFnew[idx] = P0REF[idx] self.update(F0REFnew, name='F0_REF') # set the errors if 'P0_ERR' in self.columns: F0ERRnew = np.full(self.catalogue_len, np.nan) P0ERR = self.catalogue['P0_ERR'] idx = idx & np.isfinite(P0ERR) F0ERRnew[idx] = P0ERR[idx]*F0new[idx]**2 self.update(F0ERRnew, name='F0_ERR') def derived_p1(self): """ Calculate the period derivative from the frequency derivative in cases where period derivative is not given. """ reqpars = ['P0', 'F1'] if not np.all([p in self.columns for p in reqpars]): return P0 = self.catalogue['P0'] F1 = self.catalogue['F1'] P1new = np.full(self.catalogue_len, np.nan) # find indices where P0 needs to be set from F0 idx = np.isfinite(P0) & np.isfinite(F1) P1new[idx] = -(P0[idx]**2)*F1[idx] self.update(P1new, name='P1') # set the references if 'F1_REF' in self.columns: P1REFnew = np.full(self.catalogue_len, '', dtype='U32') F1REF = self.catalogue['F1_REF'] P1REFnew[idx] = F1REF[idx] self.update(P1REFnew, name='P1_REF') # set the errors reqpars = ['F0_ERR', 'F1_ERR'] if np.all([p in self.columns for p in reqpars]): P1ERRnew = np.full(self.catalogue_len, np.nan) F1ERR = self.catalogue['F1_ERR'] F0ERR = self.catalogue['F0_ERR'] idx = idx & (np.isfinite(F1ERR) & np.isfinite(F0ERR)) P1ERRnew[idx] = np.sqrt( (P0[idx]**2*F1ERR[idx])**2 + (2.0*P0[idx]**3*F1[idx]*F0ERR[idx])**2) self.update(P1ERRnew, name='P1_ERR') def derived_f1(self): """ Calculate the frequency derivative from the period derivative in cases where frequency derivative is not given. """ reqpars = ['F0', 'P1'] if not np.all([p in self.columns for p in reqpars]): return F0 = self.catalogue['F0'] P1 = self.catalogue['P1'] F1new = np.full(self.catalogue_len, np.nan) # find indices where P0 needs to be set from F0 idx = np.isfinite(P1) & np.isfinite(F0) F1new[idx] = -(F0[idx]**2)*P1[idx] self.update(F1new, name='F1') # set the references if 'P1_REF' in self.columns: F1REFnew = np.full(self.catalogue_len, '', dtype='U32') P1REF = self.catalogue['P1_REF'] F1REFnew[idx] = P1REF[idx] self.update(F1REFnew, name='F1_REF') # set the errors reqpars = ['P0_ERR', 'P1_ERR'] if np.all([p in self.columns for p in reqpars]): F1ERRnew = np.full(self.catalogue_len, np.nan) P1ERR = self.catalogue['P1_ERR'] P0ERR = self.catalogue['P0_ERR'] idx = idx & np.isfinite(P1ERR) & np.isfinite(P0ERR) F1ERRnew[idx] = np.sqrt( (F0[idx]**2*P1ERR[idx])**2 + (2.0*F0[idx]**3*P1[idx]*P0ERR[idx])**2) self.update(F1ERRnew, name='F1_ERR') def derived_pb(self): """ Calculate binary orbital period from orbital frequency. """ if 'FB0' not in self.columns: return FB0 = self.catalogue['FB0'] PBnew = np.full(self.catalogue_len, np.nan) idx = np.isfinite(FB0) PBnew[idx] = 1./(FB0[idx]*86400.) self.update(PBnew, name='PB') # set the references if 'FB0_REF' in self.columns: PBREFnew = np.full(self.catalogue_len, '', dtype='U32') FB0REF = self.catalogue['FB0_REF'] PBREFnew[idx] = FB0REF[idx] self.update(PBREFnew, name='PB_REF') # set the errors if 'FB0_ERR' in self.columns: PBERRnew = np.full(self.catalogue_len, np.nan) FB0ERR = self.catalogue['FB0_ERR'] idx = idx & np.isfinite(FB0ERR) PBERRnew[idx] = FB0ERR[idx]*PBnew[idx]**2*86400. self.update(PBERRnew, name='PB_ERR') def derived_pbdot(self): """ Calculate binary orbital period derivative from orbital frequency derivative. """ reqpars = ['FB1', 'PB'] if not np.all([p in self.columns for p in reqpars]): return FB1 = self.catalogue['FB1'] PB = self.catalogue['PB'] PBDOTnew = np.full(self.catalogue_len, np.nan) idx = np.isfinite(PB) & np.isfinite(FB1) PBDOTnew[idx] = -(PB[idx]**2*FB1[idx]) self.update(PBDOTnew, name='PBDOT') # set the references if 'FB1_REF' in self.columns: PBDOTREFnew = np.full(self.catalogue_len, '', dtype='U32') FB1REF = self.catalogue['FB1_REF'] PBDOTREFnew[idx] = FB1REF[idx] self.update(PBDOTREFnew, name='PBDOT_REF') # set the errors reqpars = ['FB1_ERR', 'FB0_ERR'] if np.all([p in self.columns for p in reqpars]): PBDOTERRnew = np.full(self.catalogue_len, np.nan) FB1ERR = self.catalogue['FB1_ERR'] FB0ERR = self.catalogue['FB0_ERR'] idx = idx & np.isfinite(FB1ERR) & np.isfinite(FB0ERR) PBDOTERRnew[idx] = np.sqrt((PB[idx]**2 * FB1ERR[idx])**2 + (2.0 * PB[idx]**3 * FB1[idx] * FB0ERR[idx])**2) self.update(PBDOTERRnew, name='PBDOT_ERR') def derived_fb0(self): """ Calculate orbital frequency from orbital period. """ if 'PB' not in self.columns: return PB = self.catalogue['PB'] FB0new = np.full(self.catalogue_len, np.nan) idx = np.isfinite(PB) FB0new[idx] = 1./(PB[idx]*86400.) self.update(FB0new, name='FB0') # set the references if 'PB_REF' in self.columns: FB0REFnew = np.full(self.catalogue_len, '', dtype='U32') PBREF = self.catalogue['PB_REF'] FB0REFnew[idx] = PBREF[idx] self.update(FB0REFnew, name='FB0_REF') # set the errors if 'PB_ERR' in self.columns: FB0ERRnew = np.full(self.catalogue_len, np.nan) PBERR = self.catalogue['PB_ERR'] idx = idx & np.isfinite(PBERR) FB0ERRnew[idx] = PBERR[idx]*(FB0new[idx]**2)*86400. self.update(FB0ERRnew, name='FB0_ERR') def derived_fb1(self): """ Calculate the orbital frequency derivative from the binary orbital period derivative. """ reqpars = ['PBDOT', 'FB0'] if not np.all([p in self.columns for p in reqpars]): return PBDOT = self.catalogue['PBDOT'] FB0 = self.catalogue['FB0'] FB1new = np.full(self.catalogue_len, np.nan) idx = np.isfinite(FB0) & np.isfinite(PBDOT) FB1new[idx] = -(FB0[idx]**2*PBDOT[idx]) self.update(FB1new, name='FB1') # set the references if 'PBDOT_REF' in self.columns: FB1REFnew = np.full(self.catalogue_len, '', dtype='U32') PBDOTREF = self.catalogue['PBDOT_REF'] FB1REFnew[idx] = PBDOTREF[idx] self.update(FB1REFnew, name='FB1_REF') # set the errors reqpars = ['PBDOT_ERR', 'PB_ERR'] if np.all([p in self.columns for p in reqpars]): FB1ERRnew = np.full(self.catalogue_len, np.nan) PBDOTERR = self.catalogue['PBDOT_ERR'] PBERR = self.catalogue['PB_ERR'] idx = idx & np.isfinite(PBERR) & np.isfinite(PBDOTERR) FB1ERRnew[idx] = np.sqrt( (FB0[idx]**2 * PBDOTERR[idx])**2 + (2.0 * FB0[idx]**3 * PBDOT[idx] * PBERR[idx] * 86400.)**2) self.update(FB1ERRnew, name='FB1_ERR') def derived_p1_i(self): """ Calculate the intrinsic period derivative. """ if 'VTRANS' not in self.columns: self.derived_vtrans() reqpars = ['VTRANS', 'P0', 'P1', 'DIST'] if not np.all([p in self.columns for p in reqpars]): return # get required parameters VTRANS = self.catalogue['VTRANS'] P0 = self.catalogue['P0'] P1 = self.catalogue['P1'] DIST = self.catalogue['DIST'] P1I = np.full(self.catalogue_len, np.nan) idx = (np.isfinite(P1) & np.isfinite(P0) & np.isfinite(VTRANS) & np.isfinite(DIST)) P1I[idx] = ((P1[idx]/1.0e-15) - VTRANS[idx]**2 * 1.0e10 * P0[idx] / (DIST[idx] * 3.086e6)/2.9979e10) * 1.0e-15 self.update(P1I, name='P1_I') def derived_age(self): """ Calculate the characteristic age in years (see :func:`~psrqpy.utils.characteristic_age`, with an assumed braking index of n=3). """ from .utils import characteristic_age if not np.all([p in self.columns for p in ['P0', 'P1']]): return # get period and period derivative P0 = self.catalogue['P0'] P1 = self.catalogue['P1'] AGE = characteristic_age(P0, P1) self.update(AGE, name='AGE') def derived_age_i(self): """ Calculate the characteristic age (in years), dervied from period and intrinsic period derivative. """ from .utils import characteristic_age if 'P1_I' not in self.columns: self.derived_p1_i() if not np.all([p in self.columns for p in ['P0', 'P1_I']]): return # get period and period derivative P0 = self.catalogue['P0'] P1_I = self.catalogue['P1_I'] AGEI = characteristic_age(P0, P1_I) self.update(AGEI, name='AGE_I') def derived_bsurf(self): """ Calculate the surface magnetic field strength (see :func:`~psrqpy.utils.B_field`). """ from .utils import B_field if not np.all([p in self.columns for p in ['P0', 'P1']]): return # get period and period derivative P0 = self.catalogue['P0'] P1 = self.catalogue['P1'] BSURF = B_field(P0, P1) self.update(BSURF, name='BSURF') def derived_bsurf_i(self): """ Calculate the surface magnetic field strength, dervied from period and intrinsic period derivative. """ from .utils import B_field if 'P1_I' not in self.columns: self.derived_p1_i() if not np.all([p in self.columns for p in ['P0', 'P1_I']]): return # get period and period derivative P0 = self.catalogue['P0'] P1_I = self.catalogue['P1_I'] BSURFI = B_field(P0, P1_I) self.update(BSURFI, name='BSURF_I') def derived_b_lc(self): """ Calculate the magnetic field strength at the light cylinder. """ if not np.all([p in self.columns for p in ['P0', 'P1']]): return # get period and period derivative P0 = self.catalogue['P0'] P1 = self.catalogue['P1'] BLC = np.full(self.catalogue_len, np.nan) idx = (P1 > 0.) & np.isfinite(P1) & np.isfinite(P0) BLC[idx] = 3.0e8*np.sqrt(P1[idx])*np.abs(P0[idx])**(-5./2.) self.update(BLC, name='B_LC') def derived_edot(self): """ Calculate the spin-down luminosity. """ if not np.all([p in self.columns for p in ['P0', 'P1']]): return # get period and period derivative P0 = self.catalogue['P0'] P1 = self.catalogue['P1'] EDOT = np.full(self.catalogue_len, np.nan) idx = (P1 > 0.) & np.isfinite(P1) & np.isfinite(P0) EDOT[idx] = 4.0 * np.pi**2 * 1e45 * P1[idx] / P0[idx]**3 self.update(EDOT, name='EDOT') def derived_edot_i(self): """ Calculate the spin-down luminosity, dervied from period and intrinsic period derivative. """ if 'P1_I' not in self.columns: self.derived_p1_i() if not np.all([p in self.columns for p in ['P0', 'P1_I']]): return # get period and period derivative P0 = self.catalogue['P0'] P1_I = self.catalogue['P1_I'] EDOT_I = np.full(self.catalogue_len, np.nan) idx = (P1_I > 0.) & np.isfinite(P1_I) & np.isfinite(P0) EDOT_I[idx] = 4.0 * np.pi**2 * 1e45 * P1_I[idx] / P0[idx]**3 self.update(EDOT_I, name='EDOT_I') def derived_edotd2(self): """ Calculate the spin-down luminosity flux at the Sun. """ reqpars = ['P0', 'P1', 'DIST'] if not np.all([p in self.columns for p in reqpars]): return # get period, period derivative and distance P0 = self.catalogue['P0'] P1 = self.catalogue['P1'] DIST = self.catalogue['DIST'] EDOTD2 = np.full(self.catalogue_len, np.nan) idx = (P0 > 0.) & np.isfinite(P1) & np.isfinite(P0) & np.isfinite(DIST) EDOTD2[idx] = 4.0*np.pi**2*1e45*((P1[idx]/P0[idx]**3)/DIST[idx]**2) self.update(EDOTD2, name='EDOTD2') def derived_pmtot(self): """ Calculate the total proper motion and error. """ reqpars = ['PMRA', 'PMDEC', 'PMELONG', 'PMELAT'] if not np.all([p in self.columns for p in reqpars]): return # get PMRA and PMDEC PMRA = self.catalogue['PMRA'].copy() PMDEC = self.catalogue['PMDEC'].copy() PMELONG = self.catalogue['PMELONG'] PMELAT = self.catalogue['PMELAT'] # use PM ELONG or ELAT if no RA and DEC useelong = ~np.isfinite(PMRA) & np.isfinite(PMELONG) useelat = ~np.isfinite(PMDEC) & np.isfinite(PMELAT) PMRA[useelong] = PMELONG[useelong] PMDEC[useelat] = PMELAT[useelat] PMTOT = np.sqrt(PMRA**2+PMDEC**2) self.update(PMTOT, name='PMTOT') # get the error reqpars1 = ['PMRA_ERR', 'PMDEC_ERR'] reqpars2 = ['PMELONG_ERR', 'PMELAT_ERR'] if (not np.all([p in self.columns for p in reqpars1]) and not np.all([p in self.columns for p in reqpars2])): return if 'PMRA_ERR' in self.columns: PMRA_ERR = self.catalogue['PMRA_ERR'].copy() else: PMRA_ERR = np.full(self.catalogue_len, np.nan) if 'PMDEC_ERR' in self.columns: PMDEC_ERR = self.catalogue['PMDEC_ERR'].copy() else: PMDEC_ERR = np.full(self.catalogue_len, np.nan) if 'PMELONG_ERR' in self.columns: PMELONG_ERR = self.catalogue['PMELONG_ERR'].copy() else: PMELONG_ERR = np.full(self.catalogue_len, np.nan) if 'PMELAT_ERR' in self.columns: PMELAT_ERR = self.catalogue['PMELAT_ERR'].copy() else: PMELAT_ERR = np.full(self.catalogue_len, np.nan) PMLAT = np.full(self.catalogue_len, np.nan) PMLONG = np.full(self.catalogue_len, np.nan) PMLATERR = np.full(self.catalogue_len, np.nan) PMLONGERR = np.full(self.catalogue_len, np.nan) idx = np.isfinite(PMELONG) & np.isfinite(PMELONG_ERR) PMLONG[idx] = PMELONG[idx] PMLONGERR[idx] = PMELONG_ERR[idx] idx = np.isfinite(PMRA) & np.isfinite(PMRA_ERR) PMLONG[idx] = PMRA[idx] PMLONGERR[idx] = PMRA_ERR[idx] idx = np.isfinite(PMELAT) & np.isfinite(PMELAT_ERR) PMLAT[idx] = PMELAT[idx] PMLATERR[idx] = PMELAT_ERR[idx] idx = np.isfinite(PMDEC) & np.isfinite(PMDEC_ERR) PMLAT[idx] = PMDEC[idx] PMLATERR[idx] = PMDEC_ERR[idx] PMTOTERR = np.sqrt(((PMLONG*PMLONGERR)**2+(PMLAT*PMLATERR)**2) / (PMLONG**2 + PMLAT**2)) self.update(PMTOTERR, name='PMTOT_ERR') def derived_vtrans(self): """ Calculate the transverse velocity. """ if 'PMTOT' not in self.columns: self.derived_pmtot() if not np.all([p in self.columns for p in ['PMTOT', 'DIST']]): return PMTOT = self.catalogue['PMTOT'] DIST = self.catalogue['DIST'] VTRANS = np.full(self.catalogue_len, np.nan) idx = np.isfinite(PMTOT) & np.isfinite(DIST) VTRANS[idx] = (PMTOT[idx] * np.pi / (1000.0*3600.0*180.0*365.25 * 86400.0))*3.086e16*DIST[idx] self.update(VTRANS, name='VTRANS') def derived_flux(self): """ Calculate spectral index between 400 and 1400 MHz and radio flux at 400 and 1400 MHz. """ if not np.all([p in self.columns for p in ['S1400', 'S400']]): return S1400 = self.catalogue['S1400'] S400 = self.catalogue['S400'] SI414 = np.full(self.catalogue_len, np.nan) idx = np.isfinite(S1400) & np.isfinite(S400) & (S1400 > 0.) & (S400 > 0.) fac = np.log10(400.0/1400.0) SI414[idx] = -(np.log10(S400[idx]/S1400[idx])/fac) self.update(SI414, name='SI414') # need distance for flux if 'DIST' not in self.columns: self.define_dist() if 'DIST' not in self.columns: return DIST = self.catalogue['DIST'] R_LUM = np.full(self.catalogue_len, np.nan) idx = np.isfinite(S400) & np.isfinite(DIST) R_LUM[idx] = S400[idx] * DIST[idx]**2 self.update(R_LUM, name='R_LUM') R_LUM14 = np.full(self.catalogue_len, np.nan) idx = np.isfinite(S1400) & np.isfinite(DIST) R_LUM14[idx] = S1400[idx] * DIST[idx]**2 self.update(R_LUM14, name='R_LUM14') def get_pulsar(self, psr, selected=False): """ Return the table row for a particular pulsar for all the catalogue parameters. Args: psr (str): The name of a pulsar to return. selected (bool): If True then output return a table row containing parameters specified by :meth:`~psrqpy.QueryATNF.query_params`, otherwise return all parameters. Defaults to False. Returns: :class:`astropy.table.Table`: a table row """ namepars = ['PSRJ', 'PSRB', 'BNAME', 'JNAME', 'NAME'] if not np.any([p in self.columns for p in namepars]): warnings.warn("No 'NAME' parameter in table!") return None # try searching for the name in each potential name-type for namepar in namepars: if namepar in self.columns: names = self.catalogue[namepar] if np.any(psr == names): psrrow = self.catalogue_table[(psr == names).tolist()] if selected: return psrrow[self.query_params] else: return psrrow return None def get_ephemeris(self, psr, precision=15, selected=False): """ Return the table row for a particular pulsar and output it as an ephemeris-style string output. Args: psr (str): The name of a pulsar to return. precision (int): The precision (number of decimal places) at which to output numbers. Defaults to 15. selected (bool): If True only output the parameters specified by :meth:`~psrqpy.QueryATNF.query_params`, otherwise output all parameters. Defaults to False. Returns: str: an ephemeris """ psr = self.get_pulsar(psr, selected=selected) if psr is None: return None ephemstr = '' # get variables that are set variables = [] values = [] errors = [] for par in PSR_ALL_PARS: if par in psr.columns: parval = psr[par] if not parval.mask[0]: variables.append(par) values.append(parval[0]) if par+'_ERR' in psr.columns: errval = psr[par+'_ERR'] if not errval.mask[0]: errors.append(errval[0]) else: errors.append(None) else: errors.append(None) mkl = max([len(kn) for kn in variables])+2 # max key length for output alignment vlb = precision + 10 # allow extra space for minus sign/exponents outputstr = '{{name: <{0}}}{{value: <{1}}}\t{{error}}'.format(mkl, vlb) for varname, varval, varerr in zip(variables, values, errors): outputdic = {} outputdic['name'] = varname if isinstance(varval, float): if varval.is_integer(): precstr = '{0:.0f}' # print out an integer else: precstr = '{{0:.{}f}}'.format(precision) # print out float if abs(varval) < 1e-6 or abs(varval) > 1e6: # print out float in scientific notation precstr = '{{0:.{}e}}'.format(precision) if varerr is not None: if varerr.is_integer(): precstre = '{0:.0f}' # print out an integer else: precstre = '{{0:.{}f}}'.format(precision) # print out float if varerr is not None: if abs(varerr) < 1e-6 or abs(varerr) > 1e6: # print out float in scientific notation precstre = '{{0:.{}e}}'.format(precision) outputdic['value'] = precstr.format(varval) outputdic['error'] = precstre.format(varerr) if varerr is not None else '' else: outputdic['value'] = varval if isinstance(varerr, float): precstre = '{{0:.{}f}}'.format(precision) # print out float if abs(varerr) < 1e-6 or abs(varerr) > 1e6: # print out float in scientific notation precstre = '{{0:.{}e}}'.format(precision) outputdic['error'] = precstre.format(varerr) else: outputdic['error'] = '' ephemstr += outputstr.format(**outputdic).strip()+'\n' return ephemstr def get_pulsars(self): """ Returns: :class:`psrqpy.pulsar.Pulsars`: the queried pulsars returned as a :class:`~psrqpy.pulsar.Pulsars` object, which is a dictionary of :class:`~psrqpy.pulsar.Pulsar` objects. """ if not self._pulsars: from .pulsar import Pulsar, Pulsars self._pulsars = Pulsars() # add pulsars one by one qparams = deepcopy(self.query_params) if isinstance(qparams, list): if 'JNAME' not in qparams: self.query_params = self.query_params + ['JNAME'] else: self.query_params = ['JNAME'] psrtable = self.table for row in psrtable: P = Pulsar(row['JNAME'], query=self) self._pulsars.add_pulsar(P) self.query_params = qparams # revert to previous query parameters return self._pulsars @property def get_version(self): """ Return a string with the ATNF version number, or None if not found. Returns: str: the ATNF version number. """ return self.catalogue.version def parse_conditions(self, psrtype=None, assoc=None, bincomp=None): """ Parse a string of `conditions <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html#condition>`_, i.e., logical statements with which to apply to a catalogue query, e.g., ``condition = 'f0 > 2.5 && assoc(GC)'``, so that they are in the format required for the query URL. Args: psrtype (list, str): a list of strings, or single string, of conditions on the `type <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html#psr_types>`_ of pulsars to return (logical AND will be used for any listed types) assoc (list, str): a list of strings, or single string, of conditions on the associations of pulsars to return (logical AND will be used for any listed associations) bincomp (list, str): a list of strings, or single string, of conditions on the `binary companion <http://www.atnf.csiro.au/research/pulsar/psrcat/psrcat_help.html?type=normal#bincomp_type>`_ types of pulsars to return (logical AND will be used for any listed associations) exactmatch (bool): a boolean stating whether assciations and types given as the condition should be an exact match Returns: str: a string with the format required for use in :attr:`~psrqpy.config.QUERY_URL` """ conditionparse = '' # add on any extra given pulsar types if psrtype is not None: if isinstance(psrtype, list): if len(psrtype) == 0: raise Exception("No pulsar types in list") for p in psrtype: if not isinstance(p, string_types): raise Exception("Non-string value '{}' found in pulsar type list" .format(p)) self._query_psr_types = psrtype else: if isinstance(psrtype, string_types): self._query_psr_types = [psrtype] else: raise Exception("'psrtype' must be a list or string") for p in list(self._query_psr_types): if p.upper() not in PSR_TYPE: warnings.warn("Pulsar type '{}' is not recognised, no type will be required" .format(p)) self._query_psr_types.remove(p) else: if len(conditionparse) == 0: conditionparse = 'type({})'.format(p.upper()) else: conditionparse += ' && type({})'.format(p.upper()) # add on any extra given associations if assoc is not None: if isinstance(assoc, list): if len(assoc) == 0: raise Exception("No pulsar types in list") for p in assoc: if not isinstance(p, string_types): raise Exception("Non-string value '{}' found in associations list" .format(p)) self._query_assocs = assoc else: if isinstance(assoc, string_types): self._query_assocs = [assoc] else: raise Exception("'assoc' must be a list or string") for p in list(self._query_assocs): if p.upper() not in PSR_ASSOC_TYPE: warnings.warn("Pulsar association '{}' is not recognised, " "no type will be required".format(p)) self._query_assocs.remove(p) else: if len(conditionparse) == 0: conditionparse = 'assoc({})'.format(p.upper()) else: conditionparse += ' && assoc({})'.format(p.upper()) # add on any extra given binary companion types if bincomp is not None: if isinstance(bincomp, list): if len(assoc) == 0: raise Exception("No pulsar types in list") for p in bincomp: if not isinstance(p, string_types): raise Exception("Non-string value '{}' found in binary " "companions list".format(p)) self._query_bincomps = bincomp else: if isinstance(bincomp, string_types): self._query_bincomps = [bincomp] else: raise Exception("'bincomp' must be a list or string") for p in list(self._query_bincomps): if p.upper() not in PSR_BINARY_TYPE: warnings.warn("Pulsar binary companion '{}' is not recognised, " "no type will be required".format(p)) self._query_bincomps.remove(p) else: if len(conditionparse) == 0: conditionparse = 'bincomp({})'.format(p.upper()) else: conditionparse += ' && bincomp({})'.format(p.upper()) return conditionparse @property def catalogue_shape(self): """ The shape of the entire catalogue table as a tuple containing the number of rows and the number of columns. """ return self.catalogue.shape @property def catalogue_nrows(self): """ The number of rows in the entire catalogue, i.e. the number of pulsars it contains. """ return self.catalogue.shape[0] @property def catalogue_ncols(self): """ The number of columns in the entire catalogue, i.e. the number of parameters it contains. """ return self.catalogue.shape[1] @property def catalogue_len(self): """ The length of the entire catalogue, i.e., the number of pulsars it contains. This should be the same as `catalogue_nrows`. """ return len(self.catalogue) def __len__(self): """ Returns: int: :func:`len` method returns the number of pulsars """ return len(self.pandas) def __str__(self): """ Returns: str: :func:`str` method returns the str method of an :class:`astropy.table.Table`. """ return str(self.table) def __repr__(self): """ Returns: str: :func:`repr` method returns the repr method of an :class:`astropy.table.Table`. """ return repr(self.table) def ppdot(self, intrinsicpdot=False, excludeGCs=False, showtypes=[], showGCs=False, showSNRs=False, markertypes={}, deathline=True, deathmodel='Ip', filldeath=True, filldeathtype={}, showtau=True, brakingidx=3, tau=None, showB=True, Bfield=None, pdotlims=None, periodlims=None, usecondition=True, rcparams={}): """ Draw a lovely period vs period derivative diagram. Args: intrinsicpdot (bool): use the intrinsic period derivative corrected for the `Shklovskii effect <https://en.wikibooks.org/wiki/Pulsars_and_neutron_stars/Pulsar_properties#Pulse_period>`_ rather than the observed value. Defaults to False. excludeGCs (bool): exclude globular cluster pulsars as their period derivatives can be contaminated by intra-cluster accelerations. Defaults to False. showtypes (list, str): a list of pulsar types to highlight with markers in the plot. These can contain any of the following: ``BINARY``, ``HE``, ``NRAD``, ``RRAT``, ``XINS``, ``AXP`` or ``SGR``, or ``ALL`` to show all types. Default to showing no types. showGCs (bool): show markers to denote the pulsars in globular clusters. Defaults to False. showSNRs (bool): show markers to denote the pulsars with supernova remnants associated with them. Defaults to False. markertypes (dict): a dictionary of marker styles and colors keyed to the pulsar types above deathline (bool): draw the pulsar death line. Defaults to True. deathmodel (str): the type of death line to draw based on the models in :func:`psrqpy.utils.death_line`. Defaults to ``'Ip'``. filldeath (bool): set whether to fill the pulsar graveyard under the death line. Defaults to True. filldeathtype (dict): a dictionary of keyword arguments for the fill style of the pulsar graveyard. showtau (bool): show lines for a selection of characteritic ages. Defaults to True, and shows lines for :math:`10^5` through to :math:`10^9` yrs with steps in powers of 10. brakingidx (int): a braking index to use for the calculation of the characteristic age lines. Defaults to 3 for magnetic dipole radiation. tau (list): a list of characteristic ages to show on the plot. showB (bool): show lines of constant magnetic field strength. Defaults to True, and shows lines for :math:`10^{10}` through to :math:`10^{14}` gauss with steps in powers of 10. Bfield (list): a list of magnetic field strengths to plot. periodlims (array_like): the [min, max] period limits to plot with pdotlims (array_like): the [min, max] pdot limits to plot with usecondition (bool): if True create the P-Pdot diagram only with pulsars that conform the the original query condition values. Defaults to True. rcparams (dict): a dictionary of :py:obj:`matplotlib.rcParams` setup parameters for the plot. Returns: :class:`matplotlib.figure.Figure`: the figure object """ try: import matplotlib as mpl from matplotlib import pyplot as pl except ImportError: raise ImportError('Cannot produce P-Pdot plot as Matplotlib is ' 'not available') from .utils import death_line, label_line # get table containing all required parameters table = self.query_table(usecondition=usecondition, query_params=['P0', 'P1', 'P1_I', 'ASSOC', 'BINARY', 'TYPE']) if len(table) == 0: print("No pulsars found, so no P-Pdot plot has been produced") return None if isinstance(showtypes, string_types): nshowtypes = [showtypes] else: nshowtypes = showtypes for stype in list(nshowtypes): if 'ALL' == stype.upper(): nshowtypes = list(PSR_TYPE) # remove radio as none are returned as this del nshowtypes[nshowtypes.index('RADIO')] break elif stype.upper() not in list(PSR_TYPE): warnings.warn('"TYPE" {} is not recognised, so will not be ' 'included'.format(stype)) del nshowtypes[nshowtypes.index(stype)] if 'SGR' == stype.upper(): # synonym for AXP nshowtypes[nshowtypes.index(stype)] = 'AXP' # set plot parameters rcparams['figure.figsize'] = rcparams['figure.figsize'] if \ 'figure.figsize' in rcparams else (9, 9.5) rcparams['figure.dpi'] = rcparams['figure.dpi'] if \ 'figure.dpi' in rcparams else 250 rcparams['text.usetex'] = rcparams['text.usetex'] if \ 'text.usetex' in rcparams else True rcparams['axes.linewidth'] = rcparams['axes.linewidth'] if \ 'axes.linewidth' in rcparams else 0.5 rcparams['axes.grid'] = rcparams['axes.grid'] if \ 'axes.grid' in rcparams else False rcparams['font.family'] = rcparams['font.family'] if \ 'font.family' in rcparams else 'sans-serif' rcparams['font.sans-serif'] = rcparams['font.sans-serif'] if \ 'font.sans-serif' in rcparams else \ 'Avant Garde, Helvetica, Computer Modern Sans serif' rcparams['font.size'] = rcparams['font.size'] if \ 'font.size' in rcparams else 20 rcparams['legend.fontsize'] = rcparams['legend.fontsize'] if \ 'legend.fontsize' in rcparams else 16 rcparams['legend.frameon'] = rcparams['legend.frameon'] if \ 'legend.frameon' in rcparams else False mpl.rcParams.update(rcparams) fig, ax = pl.subplots() # extract periods and period derivatives periods = table['P0'] pdots = table['P1'] if intrinsicpdot: # use instrinsic period derivatives if requested ipdotidx = np.isfinite(table['P1_I']) pdots[ipdotidx] = table['P1_I'][ipdotidx] # get only finite values pidx = (
np.isfinite(periods)
numpy.isfinite
''' Created on Nov 27, 2017 @author: fan ''' import numpy as np import scipy.stats import pyfan.amto.array.mesh as mesh def three_vec_grids(vara_min, vara_max, vara_grid, vara_grid_add=None, varb_min=None, varb_max=None, varb_grid=None, varb_grid_add=None, varc_min=None, varc_max=None, varc_grid=None, varc_grid_add=None, gridtype='grid', tomesh=False, return_joint=False, return_single_col=False, seed=999): """Grid for VFI Temporary code, so that I can deal with minimal school hour. should be deleted in the future. and combined with the method above """ if (gridtype == 'grid'): a = np.linspace(vara_min, vara_max, vara_grid) if (varb_grid is not None): b = np.linspace(varb_min, varb_max, varb_grid) if (varc_grid is not None): c = np.linspace(varc_min, varc_max, varc_grid) if (varc_grid_add is not None): c = np.append(c, varc_grid_add) if (gridtype == 'rand'): np.random.seed(seed) a = random_vector_min_max(vara_min, vara_max, vara_grid) if (varb_grid is not None): b = random_vector_min_max(varb_min, varb_max, varb_grid) if (varc_grid is not None): c = random_vector_min_max(varc_min, varc_max, varc_grid) if (vara_grid_add is not None): a = np.append(a, vara_grid_add) if (varb_grid_add is not None): b = np.append(b, varb_grid_add) if (varc_grid_add is not None): c = np.append(c, varc_grid_add) a = np.sort(a) a =
np.reshape(a, (-1, 1))
numpy.reshape
from builtins import range from functools import reduce import numpy as np """ Factor Graph classes forming structure for PGMs Basic structure is port of MATLAB code by <NAME> Central difference: nbrs stored as references, not ids (makes message propagation easier) Note to self: use %pdb and %load_ext autoreload followed by %autoreload 2 """ class Node(object): """ Superclass for graph nodes """ epsilon = 10**(-4) def __init__(self, nid): self.enabled = True self.nid = nid self.nbrs = [] self.incoming = [] self.outgoing = [] self.oldoutgoing = [] def reset(self): self.enabled = True def disable(self): self.enabled = False def enable(self): self.enabled = True for n in self.nbrs: # don't call enable() as it will recursively enable entire graph n.enabled = True def nextStep(self): """ Used to have this line in prepMessages but it didn't work? """ self.oldoutgoing = self.outgoing[:] def normalizeMessages(self): """ Normalize to sum to 1 """ self.outgoing = [x / np.sum(x) for x in self.outgoing] def receiveMessage(self, f, m): """ Places new message into correct location in new message list """ if self.enabled: i = self.nbrs.index(f) self.incoming[i] = m def sendMessages(self): """ Sends all outgoing messages """ for i in range(0, len(self.outgoing)): self.nbrs[i].receiveMessage(self, self.outgoing[i]) def checkConvergence(self): """ Check if any messages have changed """ if self.enabled: for i in range(0, len(self.outgoing)): # check messages have same shape self.oldoutgoing[i].shape = self.outgoing[i].shape delta = np.absolute(self.outgoing[i] - self.oldoutgoing[i]) if (delta > Node.epsilon).any(): # if there has been change return False return True else: # Always return True if disabled to avoid interrupting check return True class VarNode(Node): """ Variable node in factor graph """ def __init__(self, name, dim, nid): super(VarNode, self).__init__(nid) self.name = name self.dim = dim self.observed = -1 # only >= 0 if variable is observed def reset(self): super(VarNode, self).reset() size = range(0, len(self.incoming)) self.incoming = [np.ones((self.dim,1)) for i in size] self.outgoing = [np.ones((self.dim,1)) for i in size] self.oldoutgoing = [np.ones((self.dim,1)) for i in size] self.observed = -1 def condition(self, observation): """ Condition on observing certain value """ self.enable() self.observed = observation # set messages (won't change) for i in range(0, len(self.outgoing)): self.outgoing[i] = np.zeros((self.dim,1)) self.outgoing[i][self.observed] = 1. self.nextStep() # copy into oldoutgoing def prepMessages(self): """ Multiplies together incoming messages to make new outgoing """ # compute new messages if no observation has been made if self.enabled and self.observed < 0 and len(self.nbrs) > 1: # switch reference for old messages self.nextStep() for i in range(0, len(self.incoming)): # multiply together all excluding message at current index curr = self.incoming[:] del curr[i] self.outgoing[i] = reduce(np.multiply, curr) # normalize once finished with all messages self.normalizeMessages() class FacNode(Node): """ Factor node in factor graph """ def __init__(self, P, nid, *args): super(FacNode, self).__init__(nid) self.P = P self.nbrs = list(args) # list storing refs to variable nodes # num of edges numNbrs = len(self.nbrs) numDependencies = self.P.squeeze().ndim # init messages for i in range(0,numNbrs): v = self.nbrs[i] vdim = v.dim # init for factor self.incoming.append(np.ones((vdim,1))) self.outgoing.append(np.ones((vdim,1))) self.oldoutgoing.append(np.ones((vdim,1))) # init for variable v.nbrs.append(self) v.incoming.append(np.ones((vdim,1))) v.outgoing.append(np.ones((vdim,1))) v.oldoutgoing.append(np.ones((vdim,1))) # error check assert (numNbrs == numDependencies), "Factor dimensions does not match size of domain." def reset(self): super(FacNode, self).reset() for i in range(0, len(self.incoming)): self.incoming[i] = np.ones((self.nbrs[i].dim,1)) self.outgoing[i] =
np.ones((self.nbrs[i].dim,1))
numpy.ones
import os import intake_io import numpy as np import xarray as xr from am_utils.parallel import run_parallel from am_utils.utils import walk_dir from cellpose import models from scipy import ndimage from skimage import filters from skimage.feature import blob_log from skimage.morphology import remove_small_objects from skimage.segmentation import clear_border as sk_clear_border from skimage.segmentation import watershed from tqdm import tqdm from .preprocess import rescale_intensity from .utils import display_cellpose_results def __get_images(dataset, do_3D, channel): channels = [0, 0] if 'c' in dataset.dims: if channel is not None: ch_names = dataset.coords['c'].data channel = np.ravel(channel) if len(channel) == 1: imgs = dataset.loc[dict(c=ch_names[channel[0]])]['image'].data else: nuclei = dataset.loc[dict(c=ch_names[channel[0]])]['image'].data cells = dataset.loc[dict(c=ch_names[channel[1]])]['image'].data imgs = np.array([np.zeros_like(nuclei), cells, nuclei]) imgs = np.moveaxis(imgs, 0, -1) channels = [2, 3] else: raise ValueError("The image has multiples channels. Provide channel to segment.") else: imgs = dataset['image'].data # imgs = rescale_intensity(np.array(imgs)) if 'z' not in dataset.dims: imgs = [imgs] if do_3D: spacing = intake_io.get_spacing(dataset) anisotropy = spacing[0] / spacing[-1] imgs = [imgs] else: anisotropy = None return imgs, anisotropy, channels def __reshape_output(masks, dataset, do_3D): if 'z' not in dataset.dims or do_3D: masks = masks[0] else: masks = np.array(masks) return masks def __combine_3D(masks, do_3D, diameter, remove_small_mode='3D', remove_small_diam_fraction=0.5, clear_border=False): if do_3D is False and len(masks.shape) > 2: area = (masks > 0).sum(-1).sum(-1) if len(area) > 21: ind = np.argmax(area[10:-10]) + 10 else: ind = np.argmax(area) minrad = diameter / 2 * remove_small_diam_fraction labels = masks[ind:ind + 1].copy() if clear_border: labels = np.expand_dims(sk_clear_border(labels.max(0)), 0) masks = ndimage.median_filter(masks > 0, 3) if remove_small_mode == '3D': masks = masks * labels minvol = 4. / 3 * np.pi * minrad ** 3 masks = remove_small_objects(masks, min_size=minvol) elif remove_small_mode == '2D': minarea = np.pi * minrad ** 2 labels = remove_small_objects(labels, min_size=minarea) masks = masks * labels else: raise ValueError("Invalid value for 'remove_small_mode', must be '3D' or '2D'") return masks def segment_roi(dataset, channel=None, do_3D=False, gpu=True, model_type='cyto', diameter=None, remove_small_mode='3D', remove_small_diam_fraction=0.5, clear_border=False, add_to_input=False, show_cellpose_debug=False, **cellpose_kwargs): """ Segment ROI (cells or nuclei) in one image using cellpose. Parameters ---------- dataset : xr.Dataset Image in the form of an xarrray dataset (read with intake_io). channel : int, optional Channel number to use for segmentation, starting from 0. If the image has only one channel, this can be left out. do_3D : bool, optional If True, segment in the 3D mode with cellpose (computationally expensive). If False, segment each z-layer and then label in 3D. Default is False. gpu : bool, optional If True, use gpu for cellpose segmentation. Default: True model_type : str Cellpose model type ('cyto' or 'nuclei') Use 'cyto' for irregular nuclei. Default: 'cyto'. channels : tuple or list The 'channels' parameter of cellpose. Default: [0,0] (gray scale) diameter : int, optional Target ROI diameter in pixels. If None, will be calculated as 12 microns converted to pixels. Default: None. remove_small_mode : str, optional '2D', or '3D'. Used to remove small ROI by volume (3D) or area (2D). For a thin stack (as in the example data), use '2D'. Default: 3D. remove_small_diam_fraction : float, optional Minimal diameter for the ROI. Provided as a fraction of the target diameter (the `diameter` parameter of the Cellpose). Default: 0.5. clear_border : bool, optional If True, will remove ROI touching image border (in xy only). Default: False add_to_input : bool If True, return an xarray dataset with combined input and output. Default: False show_cellpose_debug : bool If True, return flows with masks. Default: False cellpose_kwargs : key value Cellpose arguments Returns ------- masks = np.ndarray or xr.Dataset Segmented image or input with segmented image """ imgs, anisotropy, channels = __get_images(dataset, do_3D, channel) if len(imgs) > 1: imgs = [img for img in rescale_intensity(np.array(imgs))] else: imgs = [rescale_intensity(np.array(img)) for img in imgs] model = models.Cellpose(gpu=gpu, model_type=model_type) masks, flows, styles, diams = model.eval(imgs, anisotropy=anisotropy, diameter=diameter, channels=channels, do_3D=do_3D, **cellpose_kwargs) masks = __reshape_output(masks, dataset, do_3D) if diameter is None: diameter = 12 / intake_io.get_spacing(dataset)[-1] masks = __combine_3D(masks, do_3D, diameter, remove_small_mode=remove_small_mode, remove_small_diam_fraction=remove_small_diam_fraction, clear_border=clear_border) if show_cellpose_debug: flows = np.array([flows[i][0] for i in range(len(flows))]) if do_3D: imgs = imgs[0] flows = flows[0] display_cellpose_results(imgs, masks, flows, channels, is_3d='z' in dataset.dims) if add_to_input: masks = __add_segmentation_to_image(dataset['image'].data, masks) if 'c' in dataset.dims: ch_names = list(dataset.coords['c'].data) else: ch_names = ['channel 0'] masks = __image_to_dataset(masks, ch_names + ['ROI segmentation'], dataset) return masks def __add_segmentation_to_image(img, masks): if len(img.shape) > len(masks.shape): nshape = (img.shape[0] + 1,) + img.shape[1:] else: nshape = (2,) + img.shape new_img = np.zeros(nshape) new_img[:-1] = img new_img[-1] = masks return new_img.astype(np.uint16) def __image_to_dataset(img, channel_names, template_dataset): coords = dict(c=channel_names) for c in ['x', 'y', 'z']: if c in template_dataset.dims: coords[c] = template_dataset.coords[c] dims = template_dataset['image'].dims if 'c' not in dims: dims = ('c',) + dims dataset = xr.Dataset(data_vars=dict(image=(dims, img)), coords=coords, attrs=template_dataset.attrs) return dataset def segment_roi_batch(input_dir: str, output_dir: str, channel: int, **kwargs): """ Segment ROI (cells or nuclei) in all images in a given folder. Parameters ---------- input_dir : str Input directory output_dir : str Directory to save segmentation results. Segmentation is combined with the raw data into a multi-page tiff channel : int Channel number to use for segmentation, starting from 0. kwargs : key value Arguments for `segment_image` (see below) Attributes --------- do_3D : bool, optional If True, segment in the 3D mode with cellpose (computationally expensive). If False, segment each z-layer and then label in 3D. Default is False. gpu : bool, optional If True, use gpu for cellpose segmentation. Default: True model_type : str Cellpose model type ('cyto' or 'nuclei') Use 'cyto' for irregular nuclei. Default: 'cyto'. channels : tuple or list The 'channels' parameter of cellpose. Default: [0,0] (gray scale) diameter : int, optional Target ROI diameter in pixels. If None, will be calculated as 12 microns converted to pixels. Default: None. remove_small_mode : str, optional '2D', or '3D'. Used to remove small ROI by volume (3D) or area (2D). For a thin stack (as in the example data), use '2D'. Default: 3D. remove_small_diam_fraction : float, optional Minimal diameter for the ROI. Provided as a fraction of the target diameter (the `diameter` parameter of the Cellpose). Default: 0.5. clear_border : bool, optional If True, will remove ROI touching image border (in xy only). Default: False cellpose_kwargs : key value Cellpose arguments """ samples = walk_dir(input_dir) for i, sample in enumerate(samples): print(sample) print(fr'Processing sample {i + 1} of {len(samples)}') dataset = intake_io.imload(sample) output = segment_roi(dataset, channel, add_to_input=True, **kwargs) fn = sample[len(input_dir):].replace(os.path.splitext(sample)[-1], '.tif') os.makedirs(os.path.dirname(output_dir + fn), exist_ok=True) intake_io.imsave(output, output_dir + fn) def __filter_laplace(img, minsize_um, maxsize_um, num_sigma, spacing): laplace = np.zeros(img.shape, dtype=np.float32) for sigma in np.linspace(minsize_um, maxsize_um, int(num_sigma), endpoint=True): gauss = filters.gaussian(img, sigma=sigma / spacing) laplace = np.max(np.stack([laplace, filters.laplace(gauss)]), axis=0) return laplace def centers_to_markers(logblobs, img, bg_img, threshold_background): markers = np.zeros(img.shape) ind = np.int_(np.round_(logblobs[:, :len(img.shape)])).transpose() markers[tuple(ind)] = 1 markers = markers * (img > bg_img * threshold_background) markers = ndimage.label(markers)[0] return markers def calculate_background_image(img, roi, global_background=True, global_background_percentile=95., background_percentile=50.): if roi is not None and len(np.unique(roi)) > 1: llist = np.unique(roi)[1:] if background_percentile == 50: bg = ndimage.median(img, roi, llist) else: bg = np.array([np.percentile(img[roi == lb], background_percentile) for lb in llist]) if global_background: bg_img = np.ones_like(img) * np.percentile(bg, global_background_percentile) else: bg_img = np.zeros_like(img) for i, l in enumerate(llist): bg_img[np.where(roi == l)] = bg[i] else: bg_img = np.zeros_like(img) return bg_img def threshold_puncta(img, bg_img, roi, minsize_um, maxsize_um, num_sigma, spacing, segmentation_mode, threshold_segmentation, global_background=True, global_background_percentile=95., background_percentile=50.): if segmentation_mode == 0: intensity_image = __filter_laplace(img, minsize_um, maxsize_um, num_sigma, spacing) bg_img = np.ones_like(bg_img) elif segmentation_mode == 1: intensity_image = __filter_laplace(img, minsize_um, maxsize_um, num_sigma, spacing) bg_img = calculate_background_image(intensity_image, roi, global_background=global_background, global_background_percentile=global_background_percentile, background_percentile=background_percentile) elif segmentation_mode == 2: intensity_image = img else: raise ValueError(rf'{segmentation_mode} is invalid value for segmentation_mode, must be 0, 1, or 2') mask = intensity_image > threshold_segmentation * bg_img return mask def segment_puncta(dataset, channel=None, roi=None, minsize_um=0.2, maxsize_um=2, num_sigma=5, overlap=1, threshold_detection=0.001, threshold_background=0, global_background=True, global_background_percentile=95, background_percentile=50, threshold_segmentation=50, segmentation_mode=1, remove_out_of_roi=False, maxrad_um=None): """ Parameters ---------- dataset : xr.Dataset Image in the form of an xarray dataset (read with intake_io). channel : int, optional Channel number to use for segmentation, starting from 0. If the image has only one channel, this can be left out. roi : np.ndarray, optional Labeled segmentation masks for cells/nuclei. Default: None minsize_um : float Minimal sigma for the Laplacian of Gaussian detection (microns). Default: 0.2 maxsize_um : float Maximal sigma for the Laplacian of Gaussian detection (microns). Default: 2 num_sigma : int Number of sigma values for the Laplacian of Gaussian detection. Default: 5 overlap : float Value between 0 and 1. If two blobs overlap by a fraction greater than this value, the smaller blob is eliminated. Default: 1 (blobs are removed only if overlapping completely) threshold_detection : float Threshold for detecting LoG blobs. The absolute lower bound for scale space maxima. Local maxima smaller than thresh are ignored. Reduce this to detect blobs with less intensities. Default: 0.001. threshold_background : float Threshold used to post-filter puncta in cells with diffuse signal. This threshold is provided relative to the median intensity inside cells. E.g, `threshold_background` = 2 will remove all puncta with intensity lower than two background values. Set to 0 to keep all puncta. global_background : bool If True, the background value is calculated globally as the `global_background_percentile` of all cells. Default: True global_background_percentile : float Percentile (between 0 and 100) of cell background values to calculate the global background value. Default: 95. background_percentile : float Percentile (between 0 and 100) of image intensity inside cell to calculate the background value. Default: 50 (median). threshold_segmentation : float Threshold for puncta segmentation. Used in combination with `segmentation_mode`. For segmentation_mode 0, choose values in the order of 0.001 For segmentation_mode 1, choose values in the order of 50. For segmentation_mode 2, choose values in the order of 3. Reduce to detect more/larger puncta, increase to detect fewer/smaller puncta. Default: 50 (segmentation_mode 1). segmentation_mode : int 0, 1, or 2. Determines the mode how `threshold_segmentation` is applied. 0: apply absolute threshold in LoG space. 1: apply threshold relative to background in LoG space. 2: apply threshold relative to the background in image intensity space. Default: 1 remove_out_of_roi : bool If True, remove all puncta (parts) that are not inside cells/nuclei. Default: False. maxrad_um : float If not None, remove puncta with a radius larger than this value. Default: None Returns ------- puncta : np.ndarray Labeled segmentation mask for puncta """ # get image and spacing spacing = np.array(intake_io.get_spacing(dataset)) if 'c' in dataset.dims: img = dataset.loc[dict(c=dataset.coords['c'].data[channel])]['image'].data else: img = dataset['image'].data # find blob centers with scale-adapted LoG logblobs = blob_log(img, min_sigma=minsize_um / spacing, max_sigma=maxsize_um / spacing, num_sigma=int(num_sigma), overlap=overlap, threshold=threshold_detection) # calculate background image bg_img = calculate_background_image(img, roi, global_background, global_background_percentile, background_percentile) # convert the blob centers to watershed markers, filter by background markers = centers_to_markers(logblobs, img, bg_img, threshold_background) # segment puncta mask = threshold_puncta(img, bg_img, roi, minsize_um, maxsize_um, num_sigma, spacing, segmentation_mode, threshold_segmentation, global_background=True, global_background_percentile=global_background_percentile, background_percentile=background_percentile) if remove_out_of_roi and roi is not None: mask = mask * (roi > 0) dist = ndimage.distance_transform_edt(mask, sampling=tuple(spacing)) puncta = watershed(-dist, markers, mask=mask) if maxrad_um is not None: llist =
np.unique(puncta)
numpy.unique
import pandas as pd # import matplotlib.pyplot as plt import cv2 import math import numpy as np import sys import os from Model.BoundaryDescriptor import get_contours_binary, calc_contour_feature, get_crop_imgs, draw_bbox def get_mask(img, en_pix): en_pix.split(' ') rle = list(map(int, en_pix.split(' '))) pixel, pixel_count = [], [] [pixel.append(rle[i]) if i % 2 == 0 else pixel_count.append(rle[i]) for i in range(0, len(rle)-1)] # print('pixel starting points:\n', pixel) # print('pixel counting:\n', pixel_count) rle_pixels = [list(range(pixel[i], pixel[i]+pixel_count[i])) for i in range(0, len(pixel)-1)] # print('rle_pixels\n:', rle_pixels) rle_mask_pixels = sum(rle_pixels, []) # print('rle mask pixels:\n', rle_mask_pixels) # cv2.imshow("img", img) # cv2.waitKey(0) # plt.imshow(img) # plt.show() img_size = img.shape[0] * img.shape[1] mask_img = np.zeros((img_size, 1), dtype=int) mask_img[rle_mask_pixels] = 255 l, b = img.shape[0], img.shape[1] mask =
np.reshape(mask_img, (b, l))
numpy.reshape
import numpy as np import torch import matplotlib.pylab from fiery.utils.instance import predict_instance_segmentation_and_trajectories DEFAULT_COLORMAP = matplotlib.pylab.cm.jet def flow_to_image(flow: np.ndarray, autoscale: bool = False) -> np.ndarray: """ Applies colour map to flow which should be a 2 channel image tensor HxWx2. Returns a HxWx3 numpy image Code adapted from: https://github.com/liruoteng/FlowNet/blob/master/models/flownet/scripts/flowlib.py """ u = flow[0, :, :] v = flow[1, :, :] # Convert to polar coordinates rad = np.sqrt(u ** 2 + v ** 2) maxrad = np.max(rad) # Normalise flow maps if autoscale: u /= maxrad + np.finfo(float).eps v /= maxrad + np.finfo(float).eps # visualise flow with cmap return np.uint8(compute_color(u, v) * 255) def _normalise(image: np.ndarray) -> np.ndarray: lower = np.min(image) delta = np.max(image) - lower if delta == 0: delta = 1 image = (image.astype(np.float32) - lower) / delta return image def apply_colour_map( image: np.ndarray, cmap: matplotlib.colors.LinearSegmentedColormap = DEFAULT_COLORMAP, autoscale: bool = False ) -> np.ndarray: """ Applies a colour map to the given 1 or 2 channel numpy image. if 2 channel, must be 2xHxW. Returns a HxWx3 numpy image """ if image.ndim == 2 or (image.ndim == 3 and image.shape[0] == 1): if image.ndim == 3: image = image[0] # grayscale scalar image if autoscale: image = _normalise(image) return cmap(image)[:, :, :3] if image.shape[0] == 2: # 2 dimensional UV return flow_to_image(image, autoscale=autoscale) if image.shape[0] == 3: # normalise rgb channels if autoscale: image = _normalise(image) return np.transpose(image, axes=[1, 2, 0]) raise Exception('Image must be 1, 2 or 3 channel to convert to colour_map (CxHxW)') def heatmap_image( image: np.ndarray, cmap: matplotlib.colors.LinearSegmentedColormap = DEFAULT_COLORMAP, autoscale: bool = True ) -> np.ndarray: """Colorize an 1 or 2 channel image with a colourmap.""" if not issubclass(image.dtype.type, np.floating): raise ValueError(f"Expected a ndarray of float type, but got dtype {image.dtype}") if not (image.ndim == 2 or (image.ndim == 3 and image.shape[0] in [1, 2])): raise ValueError(f"Expected a ndarray of shape [H, W] or [1, H, W] or [2, H, W], but got shape {image.shape}") heatmap_np = apply_colour_map(image, cmap=cmap, autoscale=autoscale) heatmap_np = np.uint8(heatmap_np * 255) return heatmap_np def compute_color(u: np.ndarray, v: np.ndarray) -> np.ndarray: assert u.shape == v.shape [h, w] = u.shape img = np.zeros([h, w, 3]) nan_mask = np.isnan(u) | np.isnan(v) u[nan_mask] = 0 v[nan_mask] = 0 colorwheel = make_color_wheel() ncols = np.size(colorwheel, 0) rad = np.sqrt(u ** 2 + v ** 2) a = np.arctan2(-v, -u) / np.pi f_k = (a + 1) / 2 * (ncols - 1) + 1 k_0 = np.floor(f_k).astype(int) k_1 = k_0 + 1 k_1[k_1 == ncols + 1] = 1 f = f_k - k_0 for i in range(0, np.size(colorwheel, 1)): tmp = colorwheel[:, i] col0 = tmp[k_0 - 1] / 255 col1 = tmp[k_1 - 1] / 255 col = (1 - f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1 - rad[idx] * (1 - col[idx]) notidx = np.logical_not(idx) col[notidx] *= 0.75 img[:, :, i] = col * (1 - nan_mask) return img def make_color_wheel() -> np.ndarray: """ Create colour wheel. Code adapted from https://github.com/liruoteng/FlowNet/blob/master/models/flownet/scripts/flowlib.py """ red_yellow = 15 yellow_green = 6 green_cyan = 4 cyan_blue = 11 blue_magenta = 13 magenta_red = 6 ncols = red_yellow + yellow_green + green_cyan + cyan_blue + blue_magenta + magenta_red colorwheel = np.zeros([ncols, 3]) col = 0 # red_yellow colorwheel[0:red_yellow, 0] = 255 colorwheel[0:red_yellow, 1] = np.transpose(np.floor(255 * np.arange(0, red_yellow) / red_yellow)) col += red_yellow # yellow_green colorwheel[col: col + yellow_green, 0] = 255 - np.transpose( np.floor(255 * np.arange(0, yellow_green) / yellow_green) ) colorwheel[col: col + yellow_green, 1] = 255 col += yellow_green # green_cyan colorwheel[col: col + green_cyan, 1] = 255 colorwheel[col: col + green_cyan, 2] = np.transpose(np.floor(255 * np.arange(0, green_cyan) / green_cyan)) col += green_cyan # cyan_blue colorwheel[col: col + cyan_blue, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, cyan_blue) / cyan_blue)) colorwheel[col: col + cyan_blue, 2] = 255 col += cyan_blue # blue_magenta colorwheel[col: col + blue_magenta, 2] = 255 colorwheel[col: col + blue_magenta, 0] = np.transpose(np.floor(255 * np.arange(0, blue_magenta) / blue_magenta)) col += +blue_magenta # magenta_red colorwheel[col: col + magenta_red, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, magenta_red) / magenta_red)) colorwheel[col: col + magenta_red, 0] = 255 return colorwheel def make_contour(img, colour=[0, 0, 0], double_line=False): h, w = img.shape[:2] out = img.copy() # Vertical lines out[np.arange(h),
np.repeat(0, h)
numpy.repeat
import sys from firebase_admin import credentials, firestore, storage from datetime import datetime from flask import Flask, request import optparse import firebase_admin import cv2 import numpy as np import json # ======================Khai Bao=================================# app = Flask(__name__) classes = None class_ids = [] cred = credentials.Certificate('./Credentials.json') firebase_admin.initialize_app(cred, { 'storageBucket': "objectdetection-python.appspot.com" }) firestore.client() bucket = storage.bucket() with open("models_config_label/yolov3.txt", 'r') as f: classes = [line.strip() for line in f.readlines()] COLORS = np.random.uniform(0, 255, size=(len(classes), 3)) # ==========================///Khai Bao///=============================# # ======================Utils Function=================================# def get_output_layers(net): layer_names = net.getLayerNames() output_layers = [layer_names[i[0] - 1] for i in net.getUnconnectedOutLayers()] return output_layers def draw_prediction(index, img, class_id, confidence, x, y, x_plus_w, y_plus_h): # label = str(classes[class_id]) color = COLORS[class_id] # cv2.putText(img, label, (x - 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2) cv2.rectangle(img, (x, y), (x_plus_w, y_plus_h), color, 2) print(str(classes[class_id]) + " sub rect: " + str(x) + ", " + str(y) + ", " + str(x_plus_w) + ", " + str(y_plus_h)) cv2.imwrite("./img_detected/big-object-detection.jpg", img) cv2.imwrite("./img_detected/object-detection-" + str(index) + ".jpg", img[y: y_plus_h, x: x_plus_w]) return "./img_detected/object-detection-" + str(index) + ".jpg" # ======================///Utils Function///=================================# # ======================Flask Function=================================# @app.route("/") def index(): return "Hello world!!!" @app.route('/image_upload', methods=['GET', 'POST']) def detect(): path_to_upload = [] dt = datetime.now() file = request.files['image'] filename = file.filename pathStored = "./img_store/" + str(dt.microsecond) + filename file.save(pathStored) # image = cv2.imread(pathStored) # image = cv2.imread("/Users/leclev1/Desktop/MU # -loan-vi-Alexis-Sanchez-Sao-qua-ta-chieu-menh-Mourinho-sanchez3-1526877991-226-width660height397.jpg") confidences = [] boxes = [] conf_threshold = 0.5 nms_threshold = 0.4 Width = image.shape[1] Height = image.shape[0] print("Width Height " + str(Width) + ", " + str(Height)) # scale = 0.00392 scale = 0.00784 net = cv2.dnn.readNet("models_config_label/yolov3.weights", "models_config_label/yolov3.cfg") blob = cv2.dnn.blobFromImage(image, scale, (608, 608), (0, 0, 0), True, crop=False) net.setInput(blob) outs = net.forward(get_output_layers(net)) for out in outs: for detection in out: scores = detection[5:] class_id =
np.argmax(scores)
numpy.argmax
# # Copyright 2005- ECMWF. # # This software is licensed under the terms of the Apache Licence Version 2.0 # which can be obtained at http://www.apache.org/licenses/LICENSE-2.0. # # In applying this licence, ECMWF does not waive the privileges and immunities # granted to it by virtue of its status as an intergovernmental organisation # nor does it submit to any jurisdiction. # # Python implementation: bufr_read_tempf # # # Description: read and print radiosonde data from TEMP BUFR messages. # If available this version also lists the position information from the WMO list # (now OSCAR/Surface) appended to the reports by ECMWF # # Author: <NAME> # # Please note that TEMP reports can be encoded in various ways in BUFR. # Therefore the code below might not work directly for other types of TEMP # messages than the one used in the example. It is advised to use bufr_dump to # understand the structure of the messages. # from __future__ import print_function import sys import traceback import numpy as np from eccodes import * INPUT = "../../data/bufr/PraticaTemp.bufr" VERBOSE = 1 # verbose error reporting def example(): # open BUFR file f = open(INPUT, "rb") llstdonly = 1 cnt = 0 # loop over the messages in the file while 1: # get handle for message bufr = codes_bufr_new_from_file(f) if bufr is None: break cnt += 1 # desc = codes_get_array(bufr, 'unexpandedDescriptors') # if all(desc != 309056): # descent reports # codes_release(bufr) # continue # Skip other templates # we need to instruct ecCodes to expand all the descriptors # i.e. unpack the data section codes_set(bufr, "unpack", 1) # get header information from the message try: sid = codes_get(bufr, "aircraftRegistrationNumberOrOtherIdentification") except Exception: sid = "UNKNOWN" statid = "00000 " try: block = codes_get(bufr, "blockNumber") stnum = codes_get(bufr, "stationNumber") if (block > 0) and (block < 100): # or block != CODES_MISSING_LONG statid = str.format("%.2i%.3i " % (block, stnum)) except Exception: statid = "00000 " if statid == "00000 ": statid = sid[0:8] # subtype = codes_get(bufr,'rdbSubtype') sondetype = codes_get(bufr, "radiosondeType") slat = codes_get_array(bufr, "latitude") slon = codes_get_array(bufr, "longitude") try: htg = codes_get(bufr, "heightOfStationGroundAboveMeanSeaLevel") except Exception: htg = -999.0 try: htp = codes_get(bufr, "heightOfBarometerAboveMeanSeaLevel") except Exception: htp = -999.0 year = codes_get(bufr, "year") month = codes_get(bufr, "month") day = codes_get(bufr, "day") hour = codes_get(bufr, "hour") minute = codes_get(bufr, "minute") try: second = codes_get(bufr, "second") except Exception: second = 0.0 date = str.format("%i%.2i%.2i" % (year, month, day)) time = str.format("%.2i%.2i%.2i" % (hour, minute, second)) try: windsp = codes_get_array(bufr, "windSpeed") except Exception: codes_release(bufr) continue print( "Ob: %7i %s %s %s %7.3f %8.3f %6.1f %6.1f %3i %4i" % ( cnt, statid, date, time, slat[0], slon[0], htg, htp, sondetype, len(windsp), ) ) try: rsnumber = codes_get(bufr, "radiosondeSerialNumber") rssoftware = codes_get(bufr, "softwareVersionNumber") balloonwt = codes_get(bufr, "weightOfBalloon") print("RS number/software/balloonwt ", rsnumber, rssoftware, balloonwt) except Exception: rsnumber = 0 try: htec = codes_get( bufr, "heightOfStation" ) # Height from WMO list (appended by ECMWF) print("WMO list lat, lon, ht: %7.3f %8.3f %6.1f" % (slat[1], slon[1], htec)) except Exception: htec = 0 # get all the timePeriods dtime = codes_get_array(bufr, "timePeriod") try: pressure = codes_get_array(bufr, "pressure") except Exception: codes_release(bufr) continue vsSignif = codes_get_array(bufr, "extendedVerticalSoundingSignificance") try: geopoth = codes_get_array(bufr, "nonCoordinateGeopotentialHeight") except Exception: codes_release(bufr) continue dlat = codes_get_array(bufr, "latitudeDisplacement") dlon = codes_get_array(bufr, "longitudeDisplacement") airt = codes_get_array(bufr, "airTemperature") dewt = codes_get_array(bufr, "dewpointTemperature") windd = codes_get_array(bufr, "windDirection") dtime =
np.where(dtime != CODES_MISSING_LONG, dtime, np.nan)
numpy.where
# Copyright (c) 2019, MD2K Center of Excellence # - <NAME> <<EMAIL>> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import re import sys from typing import List import math import pandas as pd import numpy as np from datetime import timedelta from pyspark.sql import DataFrame from pyspark.sql import functions as F from pyspark.sql.functions import udf from pyspark.sql.types import * # from pyspark.sql.functions import pandas_udf,PandasUDFType from operator import attrgetter from pyspark.sql.types import StructType from pyspark.sql.functions import pandas_udf, PandasUDFType from pyspark.sql.window import Window from cerebralcortex.core.metadata_manager.stream.metadata import Metadata, DataDescriptor, ModuleMetadata from cerebralcortex.core.plotting.basic_plots import BasicPlots from cerebralcortex.core.plotting.stress_plots import StressStreamPlots class DataStream(DataFrame): def __init__(self, data: object = None, metadata: Metadata = None ): """ DataStream object contains pyspark dataframe and metadata linked to it. Args: data (DataFrame): pyspark dataframe metadata (Metadata): metadata of data """ self._data = data self._metadata = metadata self._basic_plots = BasicPlots() self._stress_plots = StressStreamPlots() if isinstance(data, DataFrame): super(self.__class__, self).__init__(data._jdf, data.sql_ctx) if self._metadata is not None and not isinstance(self.metadata,list) and len(self.metadata.data_descriptor)==0 and data is not None: self.metadata = self._gen_metadata() # !!!! Disable some of dataframe operations !!! def write(self): raise NotImplementedError def writeStream(self): raise NotImplementedError def get_metadata(self, version: int = None) -> Metadata: """ get stream metadata Args: version (int): version of a stream Returns: Metadata: single version of a stream Raises: Exception: if specified version is not available for the stream """ for md in self._metadata: if md.version == version: return md else: raise Exception("Version '" + str(version) + "' is not available for this stream.") return None @property def metadata(self): """ return stream metadata Returns: Metadata: """ return self._metadata @metadata.setter def metadata(self, metadata): """ set stream metadata Args: metadata (Metadata): """ self._metadata = metadata @property def data(self): """ get stream data Returns (DataFrame): """ # raise Exception("Cannot access data. Please use DataStream object to perform all the operations.") return self._data @data.setter def data(self, value): """ set stream data Args: value (DataFrame): """ self._data = value # !!!! STAT METHODS !!! def compute_average(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute average of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): average will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="avg", columnName=colmnName) def compute_sqrt(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute square root of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): square root will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="sqrt", columnName=colmnName) def compute_sum(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute sum of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): average will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="sum", columnName=colmnName) def compute_variance(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute variance of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): variance will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="variance", columnName=colmnName) def compute_stddev(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute standard deviation of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): standard deviation will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="stddev", columnName=colmnName) def compute_min(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute min of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): min value will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="min", columnName=colmnName) def compute_max(self, windowDuration: int = None, slideDuration:int=None, startTime=None, colmnName: str = None) -> object: """ Window data and compute max of a windowed data of a single or all columns Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided colmnName (str): max will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ return self._compute_stats(windowDuration=windowDuration, slideDuration=slideDuration,startTime=startTime, methodName="max", columnName=colmnName) def _compute_stats(self, windowDuration: int = None, slideDuration:int=None, startTime=None, methodName: str = None, columnName: List[str] = []) -> object: """ Compute stats on pyspark dataframe Args: windowDuration (int): duration of a window in seconds. If it is not set then stats will be computed for the whole data in a column(s) slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided methodName (str): pyspark stat method name columnName (str): max will be computed for all the columns if columnName param is not provided (for all windows) Returns: DataStream: this will return a new datastream object with blank metadata """ exprs = self._get_column_names(columnName=columnName, methodName=methodName) if windowDuration: windowDuration = str(windowDuration) + " seconds" win = F.window("timestamp", windowDuration=windowDuration, slideDuration=slideDuration, startTime=startTime) result = self._data.groupBy(['user','version', win]).agg(exprs) else: result = self._data.groupBy(['user','version']).agg(exprs) result = result.withColumn("timestamp",result.window.start) # to get local time - agg/window won't return localtimestamp col offset = (self._data.first().timestamp - self._data.first().localtime).total_seconds() result = result.withColumn("localtime", result.window.start+F.expr("INTERVAL "+str(offset)+" SECONDS")) result = self._update_column_names(result) return DataStream(data=result, metadata=Metadata()) # !!!! WINDOWING METHODS !!! def window(self, windowDuration: int = 60, groupByColumnName: List[str] = [], columnName: List[str] = [], slideDuration: int = None, startTime=None, preserve_ts=False): """ Window data into fixed length chunks. If no columnName is provided then the windowing will be performed on all the columns. Args: windowDuration (int): duration of a window in seconds groupByColumnName List[str]: groupby column names, for example, groupby user, col1, col2 columnName List[str]: column names on which windowing should be performed. Windowing will be performed on all columns if none is provided slideDuration (int): slide duration of a window startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided preserve_ts (bool): setting this to True will return timestamps of corresponding to each windowed value Returns: DataStream: this will return a new datastream object with blank metadata Note: This windowing method will use collect_list to return values for each window. collect_list is not optimized. """ windowDuration = str(windowDuration) + " seconds" if slideDuration is not None: slideDuration = str(slideDuration) + " seconds" exprs = self._get_column_names(columnName=columnName, methodName="collect_list", preserve_ts=preserve_ts) win = F.window("timestamp", windowDuration=windowDuration, slideDuration=slideDuration, startTime=startTime) if len(groupByColumnName) > 0: groupByColumnName.append("user") groupByColumnName.append("version") groupByColumnName.append(win) windowed_data = self._data.groupBy(groupByColumnName).agg(exprs) else: windowed_data = self._data.groupBy(['user', 'version', win]).agg(exprs) data = windowed_data data = self._update_column_names(data) return DataStream(data=data, metadata=Metadata()) def _update_column_names(self, data): columns = [] for column in data.columns: if "(" in column: m = re.search('\((.*?)\)', column) columns.append(m.group(1)) else: columns.append(column) return data.toDF(*columns) def map_stream(self, window_ds): """ Map/join a stream to a windowed stream Args: window_ds (Datastream): windowed datastream object Returns: Datastream: joined/mapped stream """ window_ds = window_ds.data.drop("version", "user") df = window_ds.join(self.data, self.data.timestamp.between(F.col("window.start"), F.col("window.end"))) return DataStream(data=df, metadata=Metadata()) def filter_user(self, user_ids: List): """ filter data to get only selective users' data Args: user_ids (List[str]): list of users' UUIDs Returns: DataStream: this will return a new datastream object with blank metadata """ if not isinstance(user_ids, list): user_ids = [user_ids] data = self._data.where(self._data["user"].isin(user_ids)) return DataStream(data=data, metadata=Metadata()) def filter_version(self, version: List): """ filter data to get only selective users' data Args: version (List[str]): list of stream versions Returns: DataStream: this will return a new datastream object with blank metadata Todo: Metadata version should be return with the data """ if not isinstance(version, list): version = [version] data = self._data.where(self._data["version"].isin(version)) return DataStream(data=data, metadata=Metadata()) def compute_magnitude(self, col_names=[], magnitude_col_name="magnitude"): if len(col_names)<1: raise Exception("col_names param is missing.") tmp = "" for col_name in col_names: tmp += 'F.col("'+col_name+'")*F.col("'+col_name+'")+' tmp = tmp.rstrip("+") data = self._data.withColumn(magnitude_col_name, F.sqrt(eval(tmp))) return DataStream(data=data, metadata=Metadata()) def interpolate(self, freq=16, method='linear', axis=0, limit=None, inplace=False, limit_direction='forward', limit_area=None, downcast=None): """ Interpolate values according to different methods. This method internally uses pandas interpolation. Args: freq (int): Frequency of the signal method (str): default ‘linear’ - ‘linear’: Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. - ‘time’: Works on daily and higher resolution data to interpolate given length of interval. - ‘index’, ‘values’: use the actual numerical values of the index. - ‘pad’: Fill in NaNs using existing values. - ‘nearest’, ‘zero’, ‘slinear’, ‘quadratic’, ‘cubic’, ‘spline’, ‘barycentric’, ‘polynomial’: Passed to scipy.interpolate.interp1d. These methods use the numerical values of the index. Both ‘polynomial’ and ‘spline’ require that you also specify an order (int), e.g. df.interpolate(method='polynomial', order=5). - ‘krogh’, ‘piecewise_polynomial’, ‘spline’, ‘pchip’, ‘akima’: Wrappers around the SciPy interpolation methods of similar names. See Notes. - ‘from_derivatives’: Refers to scipy.interpolate.BPoly.from_derivatives which replaces ‘piecewise_polynomial’ interpolation method in scipy 0.18. axis {0 or ‘index’, 1 or ‘columns’, None}: default None. Axis to interpolate along. limit (int): optional. Maximum number of consecutive NaNs to fill. Must be greater than 0. inplace (bool): default False. Update the data in place if possible. limit_direction {‘forward’, ‘backward’, ‘both’}: default ‘forward’. If limit is specified, consecutive NaNs will be filled in this direction. limit_area {None, ‘inside’, ‘outside’}: default None. If limit is specified, consecutive NaNs will be filled with this restriction. - None: No fill restriction. - ‘inside’: Only fill NaNs surrounded by valid values (interpolate). - ‘outside’: Only fill NaNs outside valid values (extrapolate). downcast optional, ‘infer’ or None: defaults to None **kwargs: Keyword arguments to pass on to the interpolating function. Returns DataStream: interpolated data """ schema = self._data.schema sample_freq = 1000/freq @pandas_udf(schema, PandasUDFType.GROUPED_MAP) def interpolate_data(pdf): pdf.set_index("timestamp", inplace=True) pdf = pdf.resample(str(sample_freq)+"ms").bfill(limit=1).interpolate(method=method, axis=axis, limit=limit,inplace=inplace, limit_direction=limit_direction, limit_area=limit_area, downcast=downcast) pdf.ffill(inplace=True) pdf.reset_index(drop=False, inplace=True) pdf.sort_index(axis=1, inplace=True) return pdf data = self._data.groupby(["user", "version"]).apply(interpolate_data) return DataStream(data=data,metadata=Metadata()) def complementary_filter(self, freq:int=16, accelerometer_x:str="accelerometer_x",accelerometer_y:str="accelerometer_y",accelerometer_z:str="accelerometer_z", gyroscope_x:str="gyroscope_x", gyroscope_y:str="gyroscope_y", gyroscope_z:str="gyroscope_z"): """ Compute complementary filter on gyro and accel data. Args: freq (int): frequency of accel/gryo. Assumption is that frequency is equal for both gyro and accel. accelerometer_x (str): name of the column accelerometer_y (str): name of the column accelerometer_z (str): name of the column gyroscope_x (str): name of the column gyroscope_y (str): name of the column gyroscope_z (str): name of the column """ dt = 1.0 / freq # 1/16.0; M_PI = math.pi; hpf = 0.90; lpf = 0.10; window = Window.partitionBy(self._data['user']).orderBy(self._data['timestamp']) data = self._data.withColumn("thetaX_accel", ((F.atan2(-F.col(accelerometer_z), F.col(accelerometer_y)) * 180 / M_PI)) * lpf) \ .withColumn("roll", (F.lag("thetaX_accel").over(window) + F.col(gyroscope_x) * dt) * hpf + F.col("thetaX_accel")).drop("thetaX_accel") \ .withColumn("thetaY_accel", ((F.atan2(-F.col(accelerometer_x), F.col(accelerometer_z)) * 180 / M_PI)) * lpf) \ .withColumn("pitch", (F.lag("thetaY_accel").over(window) + F.col(gyroscope_y) * dt) * hpf + F.col("thetaY_accel")).drop("thetaY_accel")\ .withColumn("thetaZ_accel", ((F.atan2(-F.col(accelerometer_y), F.col(accelerometer_x)) * 180 / M_PI)) * lpf) \ .withColumn("yaw", (F.lag("thetaZ_accel").over(window) + F.col(gyroscope_z) * dt) * hpf + F.col("thetaZ_accel")).drop("thetaZ_accel") return DataStream(data=data.dropna(),metadata=Metadata()) def compute(self, udfName, windowDuration: int = None, slideDuration: int = None, groupByColumnName: List[str] = [], startTime=None): """ Run an algorithm. This method supports running an udf method on windowed data Args: udfName: Name of the algorithm windowDuration (int): duration of a window in seconds slideDuration (int): slide duration of a window groupByColumnName List[str]: groupby column names, for example, groupby user, col1, col2 startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided Returns: DataStream: this will return a new datastream object with blank metadata """ if slideDuration: slideDuration = str(slideDuration) + " seconds" if 'custom_window' in self._data.columns: data = self._data.groupby('user', 'custom_window').apply(udfName) else: groupbycols = ["user", "version"] if windowDuration: windowDuration = str(windowDuration) + " seconds" win = F.window("timestamp", windowDuration=windowDuration, slideDuration=slideDuration, startTime=startTime) groupbycols.append(win) if len(groupByColumnName) > 0: groupbycols.extend(groupByColumnName) data = self._data.groupBy(groupbycols).apply(udfName) return DataStream(data=data, metadata=Metadata()) # def compute(self, udfName, timeInterval=None): # if 'custom_window' in self._data.columns: # data = self._data.groupby('user', 'custom_window').apply(udfName) # else: # data = self._data.groupby('user','version').apply(udfName) # return DataStream(data=data, metadata=Metadata()) # def run_algorithm(self, udfName, columnNames: List[str] = [], windowDuration: int = 60, slideDuration: int = None, # groupByColumnName: List[str] = [], startTime=None): # """ # Run an algorithm. This method supports running an udf method on windowed data # # Args: # udfName: Name of the algorithm # columnName List[str]: column names on which windowing should be performed. Windowing will be performed on all columns if none is provided # windowDuration (int): duration of a window in seconds # slideDuration (int): slide duration of a window # groupByColumnName List[str]: groupby column names, for example, groupby user, col1, col2 # startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided # Returns: # DataStream: this will return a new datastream object with blank metadata # # """ # windowDuration = str(windowDuration) + " seconds" # groupbycols = ["user", "version"] # # win = F.window("timestamp", windowDuration=windowDuration, slideDuration=slideDuration, startTime=startTime) # # if len(groupByColumnName) > 0: # groupbycols.extend(groupByColumnName) # # groupbycols.append(win) # # # if len(columnNames) == 0: # # raise ValueError("columnNames list cannot be empty.") # # # tmp = "" # # for col in columnNames: # # tmp += "collect_list({}{}{}){}".format('"', col, '"', ",") # # # tmp = "{}{}{}{}".format("udfName", "(", tmp.rstrip(","), ")") # merged_column = self._data.groupBy(groupbycols).apply(udfName) # # # cols = merged_column.schema.fields # # new_cols = ["timestamp"] # # for col in cols: # # if col.name == "merged_column": # # for cl in col.dataType.names: # # new_cols.append("merged_column." + cl) # # else: # # new_cols.append(col.name) # # # # merged_column = merged_column.withColumn("timestamp", merged_column.window.start) # # # # data = merged_column.select(new_cols) # # return DataStream(data=merged_column, metadata=Metadata()) def _get_column_names(self, columnName: List[str], methodName: str, preserve_ts: bool = False): """ Get data column names and build expression for pyspark aggregate method Args: columnName(List[str]): get all column names expression if columnName is empty methodName (str): name of the method that should be applied on the column Todo: update non-data column names Returns: dict: {columnName: methodName} """ columns = self._data.columns black_list_column = ["timestamp", "localtime", "user", "version"] if "localtime" not in columns: black_list_column.pop(1) elif preserve_ts: black_list_column.pop(1) if preserve_ts: black_list_column.pop(0) if columnName: if isinstance(columns, str): columns = [columnName] elif isinstance(columns, list): columns = columnName else: columns = list(set(columns) - set(black_list_column)) exprs = {x: methodName for x in columns} return exprs ############################### PLOTS ############################### def _sort_values(self, pdf): if "timestamp" in pdf.columns: return pdf.sort_values('timestamp') return pdf def plot(self, y_axis_column=None): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._basic_plots.timeseries(pdf, y_axis_column=y_axis_column) def plot_hist(self, x_axis_column=None): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._basic_plots.hist(pdf, x_axis_column=x_axis_column) def plot_gps_cords(self, zoom=5): pdf = self._data.toPandas() pdf = self._sort_values(pdf) return self._basic_plots.plot_gps_cords(pdf, zoom=zoom) def plot_stress_pie(self, x_axis_column="stresser_main"): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._stress_plots.plot_pie(pdf, x_axis_column) def plot_stress_gantt(self): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._stress_plots.plot_gantt(pdf) def plot_stress_sankey(self, cat_cols=["stresser_main", "stresser_sub"], value_cols='density', title="Stressers' Sankey Diagram"): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._stress_plots.plot_sankey(df=pdf, cat_cols=cat_cols, value_cols=value_cols, title=title) def plot_stress_bar(self, x_axis_column="stresser_main"): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._stress_plots.plot_bar(pdf, x_axis_column=x_axis_column) def plot_stress_comparison(self, x_axis_column="stresser_main", usr_id=None, compare_with="all"): pdf = self._data.toPandas() pdf = self._sort_values(pdf) self._stress_plots.plot_comparison(pdf, x_axis_column=x_axis_column, usr_id=usr_id, compare_with=compare_with) ############################################################################# # Wrapper for PySpark Methods # ############################################################################# def alias(self, alias): """ Returns a new DataStream with an alias set. Args: alias: string, an alias name to be set for the datastream. Returns: object: DataStream object Examples: >>> df_as1 = df.alias("df_as1") >>> df_as2 = df.alias("df_as2") """ data = self._data.alias(alias) return DataStream(data=data, metadata=Metadata()) def agg(self, *exprs): """ Aggregate on the entire DataStream without groups Args: *exprs: Returns: DataStream: this will return a new datastream object with blank metadata Examples: >>> ds.agg({"age": "max"}).collect() >>> # Below example shows how to use pyspark functions in add method >>> from pyspark.sql import functions as F >>> ds.agg(F.min(ds.age)).collect() """ data = self._data.agg(*exprs) return DataStream(data=data, metadata=Metadata()) def approxQuantile(self,col, probabilities, relativeError): """ Calculates the approximate quantiles of numerical columns of a DataStream. The result of this algorithm has the following deterministic bound: If the DataStream has N elements and if we request the quantile at probability p up to error err, then the algorithm will return a sample x from the DataStream so that the exact rank of x is close to (p * N). More precisely, floor((p - err) * N) <= rank(x) <= ceil((p + err) * N). This method implements a variation of the Greenwald-Khanna algorithm (with some speed optimizations). The algorithm was first present in [[http://dx.doi.org/10.1145/375663.375670 Space-efficient Online Computation of Quantile Summaries]] by Greenwald and Khanna. Note that null values will be ignored in numerical columns before calculation. For columns only containing null values, an empty list is returned. Args: col (str[list]): Can be a single column name, or a list of names for multiple columns. probabilities: a list of quantile probabilities Each number must belong to [0, 1]. For example 0 is the minimum, 0.5 is the median, 1 is the maximum. relativeError: The relative target precision to achieve (>= 0). If set to zero, the exact quantiles are computed, which could be very expensive. Note that values greater than 1 are accepted but give the same result as 1. Returns: the approximate quantiles at the given probabilities. If the input col is a string, the output is a list of floats. If the input col is a list or tuple of strings, the output is also a list, but each element in it is a list of floats, i.e., the output is a list of list of floats. """ return self._data.approxQuantile(col=col,probabilities=probabilities,relativeError=relativeError) # def between(self, column_name, lowerBound, upperBound): # """ # A boolean expression that is evaluated to true if the value of this expression is between the given columns. # Args: # column_name (str): name of the column # lowerBound: # upperBound: # Examples: # >>> ds.select(ds.timestamp, ds.between("column-name",2, 4)).show() # Returns: # DataStream object # """ # # data = self._data[column_name].between(lowerBound=lowerBound, upperBound=upperBound) # return DataStream(data=data, metadata=Metadata()) # def cast(self, dataType, columnName): # """ # Convert the column into type dataType (int, string, double, float). # Args: # dataType (str): new dataType of the column # columnName (str): name of the column # Examples: # >>> ds.select(ds.col_name.cast("string").alias('col_name')).collect() # Returns: # DataStream object # """ # # data = self._data[columnName].cast(dataType=dataType) # return DataStream(data=data, metadata=Metadata()) def colRegex(self,colName): """ Selects column based on the column name specified as a regex and returns it as Column. Args: colName (str): column name specified as a regex. Returns: DataStream: Examples: >>> ds.colRegex("colName") """ return DataStream(data=self._data.colRegex(colName=colName), metadata=Metadata()) def collect(self): """ Collect all the data to master node and return list of rows Returns: List: rows of all the dataframe Examples: >>> ds.collect() """ return self._data.collect() def crossJoin(self, other): """ Returns the cartesian product with another DataStream Args: other: Right side of the cartesian product. Returns: DataStream object with joined streams Examples: >>> ds.crossJoin(ds2.select("col_name")).collect() """ data = self._data.crossJoin(other=other) return DataStream(data=data, metadata=Metadata()) def crosstab(self, col1, col2): """ Computes a pair-wise frequency table of the given columns. Also known as a contingency table. The number of distinct values for each column should be less than 1e4. At most 1e6 non-zero pair frequencies will be returned. The first column of each row will be the distinct values of col1 and the column names will be the distinct values of col2. The name of the first column will be $col1_$col2. Pairs that have no occurrences will have zero as their counts. Args: col1 (str): The name of the first column. Distinct items will make the first item of each row. col2 (str): The name of the second column. Distinct items will make the column names of the DataStream. Returns: DataStream object Examples: >>> ds.crosstab("col_1", "col_2") """ data = self._data.crosstab(col1=col1, col2=col2) return DataStream(data=data, metadata=Metadata()) def corr(self, col1, col2, method=None): """ Calculates the correlation of two columns of a DataStream as a double value. Currently only supports the Pearson Correlation Coefficient. Args: col1 (str): The name of the first column col2 (str): The name of the second column method (str): The correlation method. Currently only supports “pearson” Returns: DataStream: this will return a new datastream object with blank metadata Examples: >>> ds.corr("cal1", "col2", "pearson").collect() """ data = self._data.corr(col1, col2, method) return DataStream(data=data, metadata=Metadata()) def cov(self, col1, col2): """ Calculate the sample covariance for the given columns, specified by their names, as a double value. Args: col1 (str): The name of the first column col2 (str): The name of the second column Returns: DataStream: this will return a new datastream object with blank metadata Examples: >>> ds.cov("cal1", "col2", "pearson").collect() """ data = self._data.cov(col1, col2) return DataStream(data=data, metadata=Metadata()) def count(self): """ Returns the number of rows in this DataStream. Examples: >>> ds.count() """ return self._data.count() def distinct(self): """ Returns a new DataStream containing the distinct rows in this DataStream. Returns: DataStream: this will return a new datastream object with blank metadata Examples: >>> ds.distinct().count() """ data = self._data.distinct() return DataStream(data=data, metadata=Metadata()) def drop(self, *cols): """ Returns a new Datastream that drops the specified column. This is a no-op if schema doesn’t contain the given column name(s). Args: *cols: a string name of the column to drop, or a Column to drop, or a list of string name of the columns to drop. Returns: Datastream: Examples: >>> ds.drop('col_name') """ data = self._data.drop(*cols) return DataStream(data=data, metadata=Metadata()) def describe(self, *cols): """ Computes basic statistics for numeric and string columns. This include count, mean, stddev, min, and max. If no columns are given, this function computes statistics for all numerical or string columns. Args: *cols: Examples: >>> ds.describe(['col_name']).show() >>> ds.describe().show() """ return self._data.describe() def dropDuplicates(self, subset=None): """ Return a new DataStream with duplicate rows removed, optionally only considering certain columns. Args: subset: optional list of column names to consider. Returns: Datastream: Examples: >>> ds.dropDuplicates().show() >>> # Example on how to use it with params >>> ds.dropDuplicates(['col_name1', 'col_name2']).show() """ data = self._data.dropDuplicates(subset=subset) return DataStream(data=data, metadata=Metadata()) def dropna(self, how='any', thresh=None, subset=None): """ Returns a new DataStream omitting rows with null values. Args: how: ‘any’ or ‘all’. If ‘any’, drop a row if it contains any nulls. If ‘all’, drop a row only if all its values are null. thresh: int, default None If specified, drop rows that have less than thresh non-null values. This overwrites the how parameter. subset: optional list of column names to consider. Returns: Datastream: Examples: >>> ds.dropna() """ data = self._data.dropna(how=how, thresh=thresh, subset=subset) return DataStream(data=data, metadata=Metadata()) def explain(self, extended=False): """ Prints the (logical and physical) plans to the console for debugging purpose. Args: extended: boolean, default False. If False, prints only the physical plan. Examples: >>> ds.explain() """ self._data.explain() def exceptAll(self, other): """ Return a new DataStream containing rows in this DataStream but not in another DataStream while preserving duplicates. Args: other: other DataStream object Returns: Datastream: Examples: >>> ds1.exceptAll(ds2).show() """ data = self._data.exceptAll(other=other._data) return DataStream(data=data, metadata=Metadata()) def fillna(self, value, subset=None): """ Replace null values Args: value: int, long, float, string, bool or dict. Value to replace null values with. If the value is a dict, then subset is ignored and value must be a mapping from column name (string) to replacement value. The replacement value must be an int, long, float, boolean, or string. subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if value is a string, and subset contains a non-string column, then the non-string column is simply ignored. Returns: Datastream: Examples: >>> ds.fill(50).show() >>> ds.fill({'col1': 50, 'col2': 'unknown'}).show() """ data = self._data.fillna(value=value, subset=subset) return DataStream(data=data, metadata=Metadata()) def repartition(self, numPartitions, *cols): """ Returns a new DataStream partitioned by the given partitioning expressions. The resulting DataStream is hash partitioned. numPartitions can be an int to specify the target number of partitions or a Column. If it is a Column, it will be used as the first partitioning column. If not specified, the default number of partitions is used. Args: numPartitions: *cols: Returns: """ data = self._data.repartition(numPartitions,*cols) return DataStream(data=data, metadata=Metadata()) def filter(self, condition): """ Filters rows using the given condition Args: condition: a Column of types.BooleanType or a string of SQL expression. Returns: DataStream: this will return a new datastream object with blank metadata Examples: >>> ds.filter("age > 3") >>> df.filter(df.age > 3) """ data = self._data.filter(condition) return DataStream(data=data, metadata=Metadata()) def foreach(self, f): """ Applies the f function to all Row of DataStream. This is a shorthand for df.rdd.foreach() Args: f: function Returns: DataStream object Examples: >>> def f(person): ... print(person.name) >>> ds.foreach(f) """ data = self._data.foreach(f) return DataStream(data=data, metadata=Metadata()) def first(self): """ Returns the first row as a Row. Returns: First row of a DataStream Examples: >>> ds.first() """ return self._data.first() def freqItems(self, cols, support=None): """ Finding frequent items for columns, possibly with false positives. Using the frequent element count algorithm described in “http://dx.doi.org/10.1145/762471.762473, proposed by Karp, Schenker, and Papadimitriou”. Returns: DataStream: Examples: >>> ds.freqItems("col-name") """ data = self._data.freqItems(cols=cols,support=support) return DataStream(data=data, metadata=Metadata()) def groupby(self, *cols): """ Groups the DataFrame using the specified columns, so we can run aggregation on them. Args: list of columns to group by. Each element should be a column name (string) or an expression (Column) Returns: """ data = self._data.groupby(*cols) return DataStream(data=data, metadata=Metadata()) def head(self, n=None): """ Returns the first n rows. Args: n (int): default 1. Number of rows to return. Returns: If n is greater than 1, return a list of Row. If n is 1, return a single Row. Notes: This method should only be used if the resulting array is expected to be small, as all the data is loaded into the driver’s memory. Examples: >>> ds.head(5) """ return self._data.head(n=n) def intersect(self, other): """ Return a new DataFrame containing rows only in both this frame and another frame. This is equivalent to INTERSECT in SQL. Args: other (int): DataStream object Returns: If n is greater than 1, return a list of Row. If n is 1, return a single Row. Examples: >>> ds.intersect(other=ds2) """ data = self._data.intersect(other=other._data) return DataStream(data=data, metadata=Metadata()) def intersectAll(self, other): """ Return a new DataFrame containing rows in both this dataframe and other dataframe while preserving duplicates. Args: other (int): DataStream object Returns: If n is greater than 1, return a list of Row. If n is 1, return a single Row. Examples: >>> ds.intersectAll(ds2).show() """ data = self._data.intersectAll(other=other._data) return DataStream(data=data, metadata=Metadata()) def join(self, other, on=None, how=None): """ Joins with another DataStream, using the given join expression. Args: other (DataStream): Right side of the join on – a string for the join column name, a list of column names, a join expression (Column), or a list of Columns. If on is a string or a list of strings indicating the name of the join column(s), the column(s) must exist on both sides, and this performs an equi-join. how (str) – str, default inner. Must be one of: inner, cross, outer, full, full_outer, left, left_outer, right, right_outer, left_semi, and left_anti. Examples: >>> ds.join(ds2, 'user', 'outer').show() Returns: DataStream object with joined streams """ data = self._data.join(other=other._data, on=on, how=how) return DataStream(data=data, metadata=Metadata()) def limit(self, num): """ Limits the result count to the number specified. Args: num: Returns: Datastream: """ data = self._data.limit(num=num) return DataStream(data=data, metadata=Metadata()) def orderBy(self, *cols): """ order by column name Args: *cols: Returns: Datastream: """ data = self._data.orderBy(*cols) return DataStream(data=data, metadata=Metadata()) def printSchema(self): """ Prints out the schema in the tree format. Examples: >>> ds.printSchema() """ self._data.printSchema() def replace(self, to_replace, value, subset=None): """ Returns a new DataStream replacing a value with another value. Values to_replace and value must have the same type and can only be numerics, booleans, or strings. Value can have None. When replacing, the new value will be cast to the type of the existing column. For numeric replacements all values to be replaced should have unique floating point representation. In case of conflicts (for example with {42: -1, 42.0: 1}) and arbitrary replacement will be used. Args: to_replace: bool, int, long, float, string, list or dict. Value to be replaced. If the value is a dict, then value is ignored or can be omitted, and to_replace must be a mapping between a value and a replacement. value: bool, int, long, float, string, list or None. The replacement value must be a bool, int, long, float, string or None. If value is a list, value should be of the same length and type as to_replace. If value is a scalar and to_replace is a sequence, then value is used as a replacement for each item in to_replace. subset: optional list of column names to consider. Columns specified in subset that do not have matching data type are ignored. For example, if value is a string, and subset contains a non-string column, then the non-string column is simply ignored. Returns: Datastream: Examples: >>> ds.replace(10, 20).show() >>> ds.replace('some-str', None).show() >>> ds.replace(['old_val1', 'new_val1'], ['old_val2', 'new_val2'], 'col_name').show() """ data = self._data.replace(to_replace, value, subset) return DataStream(data=data, metadata=Metadata()) def select(self, *cols): """ Projects a set of expressions and returns a new DataStream Args: cols(str): list of column names (string) or expressions (Column). If one of the column names is ‘*’, that column is expanded to include all columns in the current DataStream Returns: DataStream: this will return a new datastream object with selected columns Examples: >>> ds.select('*') >>> ds.select('name', 'age') >>> ds.select(ds.name, (ds.age + 10).alias('age')) """ data = self._data.select(*cols) return DataStream(data=data, metadata=Metadata()) def selectExpr(self, *expr): """ This is a variant of select() that accepts SQL expressions. Projects a set of expressions and returns a new DataStream Args: expr(str): Returns: DataStream: this will return a new datastream object with selected columns Examples: >>> ds.selectExpr("age * 2") """ data = self._data.selectExpr(*expr) return DataStream(data=data, metadata=Metadata()) def sort(self, *cols, **kwargs): """ Returns a new DataStream sorted by the specified column(s). Args: cols: list of Column or column names to sort by. ascending: boolean or list of boolean (default True). Sort ascending vs. descending. Specify list for multiple sort orders. If a list is specified, length of the list must equal length of the cols. Returns: object: DataStream object Examples: >>> ds.sort("col_name", ascending=False) """ data = self._data.sort(*cols, **kwargs) return DataStream(data=data, metadata=Metadata()) def summary(self, *statistics): """ Computes specified statistics for numeric and string columns. Available statistics are: - count - mean - stddev - min - max - arbitrary approximate percentiles specified as a percentage (eg, 75%) If no statistics are given, this function computes count, mean, stddev, min, approximate quartiles (percentiles at 25%, 50%, and 75%), and max. Args: *statistics: Examples: >>> ds.summary().show() >>> ds.summary("count", "min", "25%", "75%", "max").show() >>> # To do a summary for specific columns first select them: >>> ds.select("col1", "col2").summary("count").show() """ self._data.summary().show(truncate=False) def take(self,num): """ Returns the first num rows as a list of Row. Returns: Row(list): row(s) of a DataStream Examples: >>> ds.take() """ return self._data.take(num=num) def toPandas(self): """ This method converts pyspark dataframe into pandas dataframe. Notes: This method will collect all the data on master node to convert pyspark dataframe into pandas dataframe. After converting to pandas dataframe datastream objects helper methods will not be accessible. Returns: Datastream (Metadata, pandas.DataFrame): this will return a new datastream object with blank metadata Examples: >>> CC = CerebralCortex("/directory/path/of/configs/") >>> ds = CC.get_stream("STREAM-NAME") >>> new_ds = ds.toPandas() >>> new_ds.data.head() """ pdf = self._data.toPandas() return pdf def union(self, other): """ Return a new Datastream containing union of rows in this and another frame. This is equivalent to UNION ALL in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by distinct(). Also as standard in SQL, this function resolves columns by position (not by name). Args: other(DataStream): Returns: Datastream: Examples: >>> ds.union(ds2).collect() """ data = self._data.union(other=other._data) return DataStream(data=data, metadata=Metadata()) def unionByName(self, other): """ Returns a new Datastream containing union of rows in this and another frame. This is different from both UNION ALL and UNION DISTINCT in SQL. To do a SQL-style set union (that does deduplication of elements), use this function followed by distinct(). The difference between this function and union() is that this function resolves columns by name (not by position): Args: other(DataStream): Returns: Datastream: Examples: >>> ds.unionByName(ds2).show() """ data = self._data.unionByName(other=other._data) return DataStream(data=data, metadata=Metadata()) def where(self, condition): """ where() is an alias for filter(). Args: condition: Returns: Datastream: Examples: >>> ds.filter("age > 3").collect() """ data = self._data.where(condition) return DataStream(data=data, metadata=Metadata()) def withColumnRenamed(self, existing, new): """ Returns a new DataStream by renaming an existing column. This is a no-op if schema doesn’t contain the given column name. Args: existing (str): string, name of the existing column to rename. new (str): string, new name of the column. Examples: >>> ds.withColumnRenamed('col_name', 'new_col_name') Returns: DataStream object with new column name(s) """ data = self._data.withColumnRenamed(existing=existing, new=new) return DataStream(data=data, metadata=Metadata()) def withColumn(self, colName, col): """ Returns a new DataStream by adding a column or replacing the existing column that has the same name. The column expression must be an expression over this DataStream; attempting to add a column from some other datastream will raise an error. Args: colName (str): name of the new column. col: a Column expression for the new column. Examples: >>> ds.withColumn('col_name', ds.col_name + 2) """ data = self._data.withColumn(colName=colName, col=col) return DataStream(data=data, metadata=Metadata()) # !!!! END Wrapper for PySpark Methods !!! ##################### !!!!!!!!!!!!!!!! FEATURE COMPUTATION UDFS !!!!!!!!!!!!!!!!!!! ################################ ### COMPUTE FFT FEATURES def compute_fourier_features(self, exclude_col_names: list = [], feature_names = ["fft_centroid", 'fft_spread', 'spectral_entropy', 'spectral_entropy_old', 'fft_flux', 'spectral_folloff'], windowDuration: int = None, slideDuration: int = None, groupByColumnName: List[str] = [], startTime=None): """ Transforms data from time domain to frequency domain. Args: exclude_col_names list(str): name of the columns on which features should not be computed feature_names list(str): names of the features. Supported features are fft_centroid, fft_spread, spectral_entropy, spectral_entropy_old, fft_flux, spectral_folloff windowDuration (int): duration of a window in seconds slideDuration (int): slide duration of a window groupByColumnName List[str]: groupby column names, for example, groupby user, col1, col2 startTime (datetime): The startTime is the offset with respect to 1970-01-01 00:00:00 UTC with which to start window intervals. For example, in order to have hourly tumbling windows that start 15 minutes past the hour, e.g. 12:15-13:15, 13:15-14:15... provide startTime as 15 minutes. First time of data will be used as startTime if none is provided Returns: DataStream object with all the existing data columns and FFT features """ eps = 0.00000001 exclude_col_names.extend(["timestamp", "localtime", "user", "version"]) data = self._data.drop(*exclude_col_names) df_column_names = data.columns basic_schema = StructType([ StructField("timestamp", TimestampType()), StructField("localtime", TimestampType()), StructField("user", StringType()), StructField("version", IntegerType()), StructField("start_time", TimestampType()), StructField("end_time", TimestampType()) ]) features_list = [] for cn in df_column_names: for sf in feature_names: features_list.append(StructField(cn + "_" + sf, FloatType(), True)) features_schema = StructType(basic_schema.fields + features_list) def stSpectralCentroidAndSpread(X, fs): """Computes spectral centroid of frame (given abs(FFT))""" ind = (np.arange(1, len(X) + 1)) * (fs / (2.0 * len(X))) Xt = X.copy() Xt = Xt / Xt.max() NUM = np.sum(ind * Xt) DEN = np.sum(Xt) + eps # Centroid: C = (NUM / DEN) # Spread: S = np.sqrt(np.sum(((ind - C) ** 2) * Xt) / DEN) # Normalize: C = C / (fs / 2.0) S = S / (fs / 2.0) return (C, S) def stSpectralFlux(X, Xprev): """ Computes the spectral flux feature of the current frame ARGUMENTS: X: the abs(fft) of the current frame Xpre: the abs(fft) of the previous frame """ # compute the spectral flux as the sum of square distances: sumX = np.sum(X + eps) sumPrevX = np.sum(Xprev + eps) F = np.sum((X / sumX - Xprev / sumPrevX) ** 2) return F def stSpectralRollOff(X, c, fs): """Computes spectral roll-off""" totalEnergy = np.sum(X ** 2) fftLength = len(X) Thres = c * totalEnergy # Ffind the spectral rolloff as the frequency position where the respective spectral energy is equal to c*totalEnergy CumSum = np.cumsum(X ** 2) + eps [a, ] = np.nonzero(CumSum > Thres) if len(a) > 0: mC = np.float64(a[0]) / (float(fftLength)) else: mC = 0.0 return (mC) def stSpectralEntropy(X, numOfShortBlocks=10): """Computes the spectral entropy""" L = len(X) # number of frame samples Eol = np.sum(X ** 2) # total spectral energy subWinLength = int(np.floor(L / numOfShortBlocks)) # length of sub-frame if L != subWinLength * numOfShortBlocks: X = X[0:subWinLength * numOfShortBlocks] subWindows = X.reshape(subWinLength, numOfShortBlocks, order='F').copy() # define sub-frames (using matrix reshape) s = np.sum(subWindows ** 2, axis=0) / (Eol + eps) # compute spectral sub-energies En = -np.sum(s * np.log2(s + eps)) # compute spectral entropy return En def spectral_entropy(data, sampling_freq, bands=None): psd = np.abs(np.fft.rfft(data)) ** 2 psd /= np.sum(psd) # psd as a pdf (normalised to one) if bands is None: power_per_band = psd[psd > 0] else: freqs = np.fft.rfftfreq(data.size, 1 / float(sampling_freq)) bands = np.asarray(bands) freq_limits_low = np.concatenate([[0.0], bands]) freq_limits_up = np.concatenate([bands, [np.Inf]]) power_per_band = [np.sum(psd[
np.bitwise_and(freqs >= low, freqs < up)
numpy.bitwise_and
from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import re import tensorflow as tf import numpy as np from PIL import Image from tqdm import tqdm from os import listdir from os.path import join, isdir # from sklearn.metrics import \ # precision_score, recall_score, f1_score, accuracy_score from models import utils class Test(object): def __init__(self, cfg, multi_gpu=False, version=None, load_last_ckp=True, during_training=False, epoch_train=None, step_train=None, model_arch_info=None): # Config self.cfg = cfg self.multi_gpu = multi_gpu self.version = version self.load_last_ckp = load_last_ckp self.during_training = during_training self.epoch_train = epoch_train self.step_train = step_train self.append_info = self.info[0] # Use encode transfer learning if self.cfg.TRANSFER_LEARNING == 'encode': self.tl_encode = True else: self.tl_encode = False # Get paths for testing self.checkpoint_path, self.test_log_path, self.test_image_path = \ self._get_paths() # Save config utils.save_config_log(self.test_log_path, self.cfg, model_arch_info) # Load data self.x_test, self.y_test, self.imgs_test = self._load_data() @property def info(self): """Get information of the class.""" return '', 'Single-object' def _get_ckp_idx(self): """Get checkpoint index.""" if self.load_last_ckp: ckp_indices = [] for f_name in listdir(join(self.cfg.CHECKPOINT_PATH, self.version)): m = re.match('.*-(\d*).meta', f_name) if m: ckp_indices.append(int(m.group(1))) return max(ckp_indices) else: return self.cfg.TEST_CKP_IDX def _get_paths(self): """Get paths for testing.""" if self.during_training: # Get log path test_log_path_ = join( self.cfg.TEST_LOG_PATH, self.version) + self.append_info test_log_path = test_log_path_ i_append_info = 0 if self.epoch_train == 0: while isdir(test_log_path): i_append_info += 1 test_log_path = test_log_path_ + '({})'.format(i_append_info) # Path for saving images if self.epoch_train == 'end': test_image_path = join(test_log_path, 'images') else: test_image_path = join( join(test_log_path, 'images'), 'epoch-{}_batch-{}'.format(self.epoch_train, self.step_train)) checkpoint_path = None else: ckp_idx = self._get_ckp_idx() # Get checkpoint path checkpoint_path = join( self.cfg.CHECKPOINT_PATH, '{}/models.ckpt-{}'.format(self.version, ckp_idx)) # Get log path, append information if the directory exist. test_log_path_ = join( self.cfg.TEST_LOG_PATH, '{}-{}'.format(self.version, ckp_idx)) + self.append_info test_log_path = test_log_path_ i_append_info = 0 while isdir(test_log_path): i_append_info += 1 test_log_path = test_log_path_ + '({})'.format(i_append_info) # Path for saving images test_image_path = join(test_log_path, 'images') # Check directory of paths utils.check_dir([test_log_path, test_image_path]) return checkpoint_path, test_log_path, test_image_path def _load_data(self): utils.thick_line() print('Loading data...') utils.thin_line() if self.cfg.DATABASE_MODE is not None: preprocessed_path_ = join( '../data/{}'.format(self.cfg.DATABASE_MODE), self.cfg.DATABASE_NAME) else: preprocessed_path_ = join(self.cfg.DPP_DATA_PATH, self.cfg.DATABASE_NAME) x = utils.load_pkls( preprocessed_path_, 'x_test' + self.append_info, tl=self.tl_encode, add_n_batch=1) y = utils.load_pkls( preprocessed_path_, 'y_test' + self.append_info) imgs = utils.load_pkls( preprocessed_path_, 'imgs_test' + self.append_info) utils.thin_line() print('Data info:') utils.thin_line() print('x_test: {}\ny_test: {}\nimgs_test: {}'.format( x.shape, y.shape, imgs.shape)) return x, y, imgs def _get_tensors(self, loaded_graph): """Get inputs, labels, loss, and accuracy tensor from <loaded_graph>.""" with loaded_graph.as_default(): utils.thin_line() print('Loading graph and tensors...') inputs_ = loaded_graph.get_tensor_by_name('inputs:0') labels_ = loaded_graph.get_tensor_by_name('labels:0') input_imgs_ = loaded_graph.get_tensor_by_name('input_imgs:0') is_training = loaded_graph.get_tensor_by_name('is_training:0') if self.multi_gpu: accuracy_ = loaded_graph.get_tensor_by_name('total_acc:0') loss_ = loaded_graph.get_tensor_by_name('total_loss:0') clf_preds_ = loaded_graph.get_tensor_by_name('total_clf_preds:0') if self.cfg.TEST_WITH_REC: clf_loss_ = loaded_graph.get_tensor_by_name('total_clf_loss:0') rec_loss_ = loaded_graph.get_tensor_by_name('total_rec_loss:0') rec_imgs_ = loaded_graph.get_tensor_by_name('total_rec_imgs:0') return inputs_, labels_, input_imgs_, is_training, \ loss_, accuracy_, clf_loss_, clf_preds_, rec_loss_, rec_imgs_ else: return inputs_, labels_, input_imgs_, is_training, \ clf_preds_, loss_, accuracy_ else: accuracy_ = loaded_graph.get_tensor_by_name('accuracy:0') loss_ = loaded_graph.get_tensor_by_name('loss:0') clf_preds_ = loaded_graph.get_tensor_by_name('clf_preds:0') if self.cfg.TEST_WITH_REC: clf_loss_ = loaded_graph.get_tensor_by_name('clf_loss:0') rec_loss_ = loaded_graph.get_tensor_by_name('rec_loss:0') rec_imgs_ = loaded_graph.get_tensor_by_name('rec_imgs:0') return inputs_, labels_, input_imgs_, is_training, \ loss_, accuracy_, clf_loss_, clf_preds_, rec_loss_, rec_imgs_ else: return inputs_, labels_, input_imgs_, is_training, \ clf_preds_, loss_, accuracy_ def _get_top_n_accuracy(self, preds_vec): """Get top N accuracy.""" accuracy_top_n_list = [] for top_n in self.cfg.TOP_N_LIST: accuracy_top_n = [] for pred_vec, y_true in zip(preds_vec, self.y_test): y_pred_idx_top_n = np.argsort(pred_vec)[-top_n:] y_true_idx = np.argmax(y_true) if y_true_idx in y_pred_idx_top_n: accuracy_top_n.append(1) else: accuracy_top_n.append(0) accuracy_top_n = np.mean(accuracy_top_n) accuracy_top_n_list.append(accuracy_top_n) assert len(accuracy_top_n_list) == len(self.cfg.TOP_N_LIST) return accuracy_top_n_list def _get_preds_int(self, preds_vec): """Get integer predictions.""" utils.thin_line() print('Converting prediction vectors to ints...') preds = np.argmax(np.array(preds_vec), axis=1) # Save preds if self.cfg.SAVE_TEST_PRED: if self.during_training and (self.epoch_train != 'end'): utils.save_test_pred_is_training( self.test_log_path, self.epoch_train, self.step_train, self.y_test, preds, preds_vec, save_num=20, pred_is_int=True) else: utils.save_test_pred(self.test_log_path, self.y_test, preds, preds_vec, pred_is_int=True) return preds def _save_images(self, sess, rec_imgs, inputs, labels, is_training, x, y, imgs, step=None): """Save reconstructed images.""" rec_imgs_ = sess.run( rec_imgs, feed_dict={inputs: x, labels: y, is_training: False}) utils.save_imgs( real_imgs=imgs, rec_imgs=rec_imgs_, img_path=self.test_image_path, database_name=self.cfg.DATABASE_NAME, max_img_in_col=self.cfg.MAX_IMAGE_IN_COL, step=step, silent=True, test_flag=True) def _eval_on_batches(self, sess, inputs, labels, input_imgs, is_training, preds, loss, acc, clf_loss, rec_loss, rec_imgs): """Calculate losses and accuracies of full train set.""" pred_all = [] loss_all = [] acc_all = [] clf_loss_all = [] rec_loss_all = [] step = 0 batch_generator = utils.get_batches( x=self.x_test, y=self.y_test, imgs=self.imgs_test, batch_size=self.cfg.TEST_BATCH_SIZE, keep_last=True) if len(self.x_test) % self.cfg.TEST_BATCH_SIZE == 0: n_batch = (len(self.x_test) // self.cfg.TEST_BATCH_SIZE) else: n_batch = (len(self.x_test) // self.cfg.TEST_BATCH_SIZE) + 1 if self.cfg.TEST_WITH_REC: for _ in tqdm(range(n_batch), total=n_batch, ncols=100, unit=' batch'): step += 1 x_batch, y_batch, imgs_batch = next(batch_generator) len_batch = len(x_batch) if len_batch == self.cfg.TEST_BATCH_SIZE: pred_i, loss_i, clf_loss_i, rec_loss_i, acc_i = \ sess.run([preds, loss, clf_loss, rec_loss, acc], feed_dict={inputs: x_batch, labels: y_batch, input_imgs: imgs_batch, is_training: False}) loss_all.append(loss_i) clf_loss_all.append(clf_loss_i) rec_loss_all.append(rec_loss_i) acc_all.append(acc_i) # Save reconstruct images if self.cfg.TEST_SAVE_IMAGE_STEP: if step % self.cfg.TEST_SAVE_IMAGE_STEP == 0: self._save_images(sess, rec_imgs, inputs, labels, is_training, x_batch, y_batch, imgs_batch, step=step) else: # The last batch which has less examples for i in range(self.cfg.TEST_BATCH_SIZE - len_batch): x_batch = np.append(x_batch, np.expand_dims( np.zeros_like(x_batch[0]), axis=0), axis=0) assert len(x_batch) == self.cfg.TEST_BATCH_SIZE pred_i = sess.run(preds, feed_dict={inputs: x_batch, is_training: False}) pred_i = pred_i[:len_batch] pred_all.extend(list(pred_i)) clf_loss_ = sum(clf_loss_all) / len(clf_loss_all) rec_loss_ = sum(rec_loss_all) / len(rec_loss_all) else: for _ in tqdm(range(n_batch), total=n_batch, ncols=100, unit=' batches'): x_batch, y_batch, imgs_batch = next(batch_generator) len_batch = len(x_batch) if len_batch == self.cfg.TEST_BATCH_SIZE: pred_i, loss_i, acc_i = \ sess.run([preds, loss, acc], feed_dict={inputs: x_batch, labels: y_batch, input_imgs: imgs_batch, is_training: False}) loss_all.append(loss_i) acc_all.append(acc_i) else: # The last batch which has less examples for i in range(self.cfg.TEST_BATCH_SIZE - len_batch): x_batch = np.append(x_batch, np.expand_dims( np.zeros_like(x_batch[0]), axis=0), axis=0) assert len(x_batch) == self.cfg.TEST_BATCH_SIZE pred_i = sess.run(preds, feed_dict={inputs: x_batch, is_training: False}) pred_i = pred_i[:len_batch] pred_all.extend(list(pred_i)) clf_loss_, rec_loss_ = None, None loss_ = sum(loss_all) / len(loss_all) acc_ = sum(acc_all) / len(acc_all) assert len(pred_all) == len(self.x_test), (len(pred_all), len(self.x_test)) preds_vec = np.array(pred_all) return preds_vec, loss_, clf_loss_, rec_loss_, acc_ def tester(self, sess, inputs, labels, input_imgs, is_training, clf_preds, rec_imgs, start_time, loss=None, acc=None, clf_loss=None, rec_loss=None): utils.thin_line() print('Calculating loss and accuracy of test set...') # Get losses and accuracies clf_preds_vec_test, loss_test, clf_loss_test, rec_loss_test, acc_test = \ self._eval_on_batches( sess, inputs, labels, input_imgs, is_training, clf_preds, loss, acc, clf_loss, rec_loss, rec_imgs) # Get integer predictions _ = self._get_preds_int(preds_vec=clf_preds_vec_test) # Get top N accuracy if self.cfg.TOP_N_LIST is not None: acc_top_n_list = self._get_top_n_accuracy(clf_preds_vec_test) else: acc_top_n_list = None # Print losses and accuracy utils.thin_line() print('Test Loss: {:.4f}'.format(loss_test)) if self.cfg.TEST_WITH_REC: print('Test Classifier Loss: {:.4f}'.format(clf_loss_test)) print('Test Reconstruction Loss: {:.4f}'.format(rec_loss_test)) print('Test Accuracy: {:.4f}%'.format(acc_test * 100)) if self.cfg.TOP_N_LIST is not None: utils.thin_line() for i, top_n in enumerate(self.cfg.TOP_N_LIST): print('Top_{} Test Accuracy: {:.4f}%'.format( top_n, acc_top_n_list[i] * 100)) # Save test log if self.during_training and (self.epoch_train != 'end'): utils.save_test_log_is_training( self.test_log_path, self.epoch_train, self.step_train, loss_test, acc_test, clf_loss_test, rec_loss_test, self.cfg.TEST_WITH_REC, self.cfg.TOP_N_LIST, acc_top_n_list) else: utils.save_test_log( self.test_log_path, loss_test, acc_test, clf_loss_test, rec_loss_test, self.cfg.TEST_WITH_REC, self.cfg.TOP_N_LIST, acc_top_n_list) utils.thin_line() print('Testing finished! Using time: {:.2f}' .format(time.time() - start_time)) utils.thick_line() def test(self): """Test models.""" start_time = time.time() tf.reset_default_graph() loaded_graph = tf.Graph() utils.thick_line() print('Testing on {} test set...'.format(self.info[1])) with tf.Session(graph=loaded_graph) as sess: # Load saved models loader = tf.train.import_meta_graph(self.checkpoint_path + '.meta') loader.restore(sess, self.checkpoint_path) # Get Tensors from loaded models if self.cfg.TEST_WITH_REC: inputs, labels, input_imgs, is_training, \ loss, acc, clf_loss, clf_preds, rec_loss, rec_imgs = \ self._get_tensors(loaded_graph) else: inputs, labels, input_imgs, is_training, clf_preds, loss, acc = \ self._get_tensors(loaded_graph) clf_loss, rec_loss, rec_imgs = None, None, None self.tester(sess, inputs, labels, input_imgs, is_training, clf_preds, rec_imgs, start_time, loss=loss, acc=acc, clf_loss=clf_loss, rec_loss=rec_loss) class TestMultiObjects(Test): def __init__(self, cfg, multi_gpu=False, version=None, load_last_ckp=True, during_training=False, epoch_train=None, step_train=None, model_arch_info=None): super(TestMultiObjects, self).__init__(cfg, multi_gpu=multi_gpu, version=version, load_last_ckp=load_last_ckp, during_training=during_training, epoch_train=epoch_train, step_train=step_train, model_arch_info=model_arch_info) @property def info(self): """Get information of the class.""" return '_multi_obj', 'Multi-object' def _get_tensors(self, loaded_graph): """Get inputs, labels, loss, and accuracy tensor from <loaded_graph>.""" with loaded_graph.as_default(): utils.thin_line() print('Loading graph and tensors...') inputs_ = loaded_graph.get_tensor_by_name('inputs:0') labels_ = loaded_graph.get_tensor_by_name('labels:0') input_imgs_ = loaded_graph.get_tensor_by_name('input_imgs:0') is_training = loaded_graph.get_tensor_by_name('is_training:0') if self.multi_gpu: clf_preds_ = loaded_graph.get_tensor_by_name('total_clf_preds:0') if self.cfg.TEST_WITH_REC: rec_imgs_ = loaded_graph.get_tensor_by_name('total_rec_imgs:0') return inputs_, labels_, input_imgs_, \ is_training, clf_preds_, rec_imgs_ else: return inputs_, labels_, input_imgs_, is_training, clf_preds_ else: clf_preds_ = loaded_graph.get_tensor_by_name('clf_preds:0') if self.cfg.TEST_WITH_REC: rec_imgs_ = loaded_graph.get_tensor_by_name('rec_imgs:0') return inputs_, labels_, input_imgs_, \ is_training, clf_preds_, rec_imgs_ else: return inputs_, labels_, input_imgs_, is_training, clf_preds_ def _get_preds_vector(self, sess, inputs, preds, is_training): """Get prediction vectors of full train set.""" utils.thin_line() print('Getting prediction vectors...') pred_all = [] _batch_generator = utils. get_batches( self.x_test, batch_size=self.cfg.TEST_BATCH_SIZE, keep_last=True) if len(self.x_test) % self.cfg.TEST_BATCH_SIZE == 0: n_batch = (len(self.x_test) // self.cfg.TEST_BATCH_SIZE) else: n_batch = (len(self.x_test) // self.cfg.TEST_BATCH_SIZE) + 1 for _ in tqdm(range(n_batch), total=n_batch, ncols=100, unit=' batch'): x_batch = next(_batch_generator) # The last batch which has less examples len_batch = len(x_batch) if len_batch != self.cfg.TEST_BATCH_SIZE: for i in range(self.cfg.TEST_BATCH_SIZE - len_batch): x_batch = np.append(x_batch, np.expand_dims( np.zeros_like(x_batch[0]), axis=0), axis=0) assert len(x_batch) == self.cfg.TEST_BATCH_SIZE pred_i = sess.run(preds, feed_dict={inputs: x_batch, is_training: False}) if len_batch != self.cfg.TEST_BATCH_SIZE: pred_i = pred_i[:len_batch] pred_all.extend(list(pred_i)) assert len(pred_all) == len(self.x_test), (len(pred_all), len(self.x_test)) return np.array(pred_all) def _get_preds_binary(self, preds_vec): """Get binary predictions. -> [0, 0, 1, ..., 0, 1, 0] as labels """ utils.thin_line() print('Converting prediction vectors to binaries...') preds = np.array(preds_vec) if self.cfg.MOD_PRED_MODE == 'top_n': for pred_i in preds: pos_idx = np.argsort(pred_i)[-self.cfg.MOD_PRED_MAX_NUM:] neg_idx = np.argsort(pred_i)[:-self.cfg.MOD_PRED_MAX_NUM] pred_i[pos_idx] = 1 pred_i[neg_idx] = 0 elif self.cfg.MOD_PRED_MODE == 'length_rate': for pred_i in preds: pred_i_copy = pred_i.copy() max_ = pred_i.max() pred_i[pred_i < (max_ * self.cfg.MOD_PRED_THRESHOLD)] = 0 pred_i[pred_i >= (max_ * self.cfg.MOD_PRED_THRESHOLD)] = 1 if np.sum(pred_i) > self.cfg.MOD_PRED_MAX_NUM: pos_idx = np.argsort(pred_i_copy)[-self.cfg.MOD_PRED_MAX_NUM:] neg_idx = np.argsort(pred_i_copy)[:-self.cfg.MOD_PRED_MAX_NUM] pred_i[pos_idx] = 1 pred_i[neg_idx] = 0 else: raise ValueError( 'Wrong Mode Name! Find {}!'.format(self.cfg.MOD_PRED_MODE)) if self.cfg.SAVE_TEST_PRED: if self.during_training and (self.epoch_train != 'end'): utils.save_test_pred_is_training( self.test_log_path, self.epoch_train, self.step_train, self.y_test, preds, preds_vec, save_num=20) else: utils.save_test_pred(self.test_log_path, self.y_test, preds, preds_vec) return np.array(preds, dtype=int) def _get_multi_obj_scores(self, preds, preds_vec): """Get evaluation scores for multi-objects detection.""" utils.thin_line() print('Calculating evaluation scores for {} detection...'.format( self.info[1])) def _f_beta_score(p, r, beta): if p + r == 0: return 0. else: return ((1 + (beta ** 2)) * p * r) / ((beta ** 2) * p + r) # Calculate scores manually precision = [] recall = [] accuracy = [] f1score = [] f05score = [] f2score = [] for pred_vec, y_true in zip(preds, self.y_test): # true positive tp = np.sum(np.multiply(y_true, pred_vec)) # false positive fp = np.sum(np.logical_and(np.equal(y_true, 0), np.equal(pred_vec, 1))) # false negative fn = np.sum(np.logical_and(np.equal(y_true, 1), np.equal(pred_vec, 0))) # true negative tn = np.sum(np.logical_and(np.equal(y_true, 0), np.equal(pred_vec, 0))) precision_ = tp / (tp + fp) accuracy_ = (tp + tn) / (tp + fp + tn + fn) recall_ = tp / (tp + fn) precision.append(precision_) accuracy.append(accuracy_) recall.append(recall_) f1score.append(_f_beta_score(precision_, recall_, 1.)) f05score.append(_f_beta_score(precision_, recall_, 0.5)) f2score.append(_f_beta_score(precision_, recall_, 2.)) precision = np.mean(precision) recall = np.mean(recall) accuracy = np.mean(accuracy) f1score = np.mean(f1score) f05score = np.mean(f05score) f2score = np.mean(f2score) # true positive tp = np.sum(np.multiply(preds, self.y_test)) print('TRUE POSITIVE: ', tp) # false positive fp = np.sum(np.logical_and(np.equal(self.y_test, 0), np.equal(preds, 1))) print('FALSE POSITIVE: ', fp) # false negative fn = np.sum(np.logical_and(np.equal(self.y_test, 1), np.equal(preds, 0))) print('TRUE NEGATIVE: ', fn) # true negative tn = np.sum(np.logical_and(np.equal(self.y_test, 0), np.equal(preds, 0))) print('FALSE NEGATIVE: ', tn) # Calculate scores by using scikit-learn tools # precision = precision_score(self.y_test, preds, average='samples') # recall = recall_score(self.y_test, preds, average='samples') # accuracy = accuracy_score(self.y_test, preds) # f1score = f1_score(self.y_test, preds, average='samples') # Top_N precision_top_n_list = [] if self.cfg.TOP_N_LIST is not None: for top_n in self.cfg.TOP_N_LIST: precision_top_n = [] for pred_vec, y_true in zip(preds_vec, self.y_test): y_pred_idx_top_n = np.argsort(pred_vec)[-top_n:] y_true_idx = [] for i_, y_i in enumerate(y_true): if y_i == 1: y_true_idx.append(i_) tp_top_n = 0 fp_top_n = 0 for y_idx in y_true_idx: if y_idx in y_pred_idx_top_n: tp_top_n += 1 else: fp_top_n += 1 assert tp_top_n + fp_top_n == len(y_true_idx) precision_top_n_ = tp_top_n / (tp_top_n + fp_top_n) precision_top_n.append(precision_top_n_) precision_top_n = np.mean(precision_top_n) precision_top_n_list.append(precision_top_n) assert len(precision_top_n_list) == len(self.cfg.TOP_N_LIST) # Print evaluation information utils.print_multi_obj_eval( precision, recall, accuracy, f1score, f05score, f2score, self.cfg.TOP_N_LIST, precision_top_n_list) # Save evaluation scores of multi-objects detection. if self.during_training and (self.epoch_train != 'end'): utils.save_multi_obj_scores_is_training( self.test_log_path, self.epoch_train, self.step_train, precision, recall, accuracy, f1score, f05score, f2score, self.cfg.TOP_N_LIST, precision_top_n_list) else: utils.save_multi_obj_scores( self.test_log_path, precision, recall, accuracy, f1score, f05score, f2score, self.cfg.TOP_N_LIST, precision_top_n_list) def _save_images_mo(self, sess, rec_imgs, inputs, labels, is_training, preds_binary, preds_vector): """Save reconstructed images.""" utils.thin_line() print('Getting reconstruction images...') if len(self.y_test) > self.cfg.MAX_IMAGE_IN_COL ** 2: n_test_img = self.cfg.MAX_IMAGE_IN_COL ** 2 test_img_idx = np.random.choice(len(self.y_test), n_test_img) else: test_img_idx = list(range(len(self.y_test))) rec_imgs_ = [] preds_vec_ = [] if self.cfg.LABEL_FOR_TEST == 'pred': label_for_img = preds_binary elif self.cfg.LABEL_FOR_TEST == 'real': label_for_img = self.y_test else: raise ValueError('Wrong LABEL_FOR_TEST Name!') for x, y_hat, pred_ in tqdm(zip(self.x_test[test_img_idx], label_for_img[test_img_idx], preds_vector[test_img_idx]), total=len(test_img_idx), ncols=100, unit=' image'): # Get new x and y_hat list in which each y contain single object # [0, 1, 0, 1, 0] -> [[0, 1, 0, 0, 0], # [0, 0, 0, 1, 0]] x_new = [] y_hat_new = [] preds_vec_new = [] for i, y_i in enumerate(y_hat): if y_i == 1: y_hat_new_i = np.zeros_like(y_hat) y_hat_new_i[i] = 1 assert y_hat_new_i[i] == y_hat[i] x_new.append(x) y_hat_new.append(y_hat_new_i) preds_vec_new.append(pred_[i]) preds_vec_.append(preds_vec_new) # Filling x and y tensor to batch size for testing # [[0, 1, 0, 0, 0], # [0, 0, 0, 1, 0]] -> [[0, 1, 0, 0, 0], # [0, 0, 0, 1, 0], # ... # [0, 0, 0, 0, 0]] n_y = len(y_hat_new) assert n_y == int(
np.sum(y_hat)
numpy.sum
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Oct 9 10:12:43 2019 @author: amandaash """ import numpy as np import scipy.optimize as opt import matplotlib.pyplot as plt """ t1 = np.arange(0,1,0.001) t2 = np.arange(1, 1000, 0.1) def reduced_B_funcn(t): m = np.tanh(m/t) return(m) def reduced_B(t): f = np.tanh(m/t) - m return f roots_below = [] for temp in t1: roots1 = opt.newton(reduced_B(temp), 8.5) roots_below.append(roots1) """ t = np.arange(0,0.999,0.001) roots_t1 = [] for temp in t: def reduced_B(m): f = np.tanh(m/temp) - m return f roots_t1.append(opt.newton(reduced_B, 1)) print(temp, opt.newton(reduced_B, 1)) def reduced_B_05(m): f = np.tanh(m/0.5) - m return f print(opt.bisect(reduced_B_05, 0.8,1.3)) #plt.vlines(0, 10, x = roots_t1) plt.plot(t, roots_t1, '.') plt.xlabel('t') plt.ylabel('m(t)') plt.savefig('mvt.pdf') plt.show() m = np.arange(0,10,0.01) def reduced_B(m,t): f =
np.tanh(m/t)
numpy.tanh
"""Test dephasing.""" import numpy as np from toqito.channels import dephasing from toqito.channel_ops import apply_channel def test_dephasing_completely_dephasing(): """The completely dephasing channel kills everything off diagonal.""" test_input_mat = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) expected_res = np.array([[1, 0, 0, 0], [0, 6, 0, 0], [0, 0, 11, 0], [0, 0, 0, 16]]) res = apply_channel(test_input_mat, dephasing(4)) bool_mat = np.isclose(expected_res, res) np.testing.assert_equal(np.all(bool_mat), True) def test_dephasing_partially_dephasing(): """The partially dephasing channel for `p = 0.5`.""" test_input_mat = np.array([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12], [13, 14, 15, 16]]) expected_res = np.array([[17.5, 0, 0, 0], [0, 20, 0, 0], [0, 0, 22.5, 0], [0, 0, 0, 25]]) res = apply_channel(test_input_mat, dephasing(4, 0.5)) bool_mat =
np.isclose(expected_res, res)
numpy.isclose
# -*- coding: utf-8 -*- """ Created on Thu Jul 8 11:10:46 2021 @author: arash """ import pandas as pd import numpy as np from sklearn.metrics import pairwise_distances def AugmentDic(): expert=pd.read_csv('expert.csv').dropna() for a in expert.columns[1:]: expert[a]=expert[a]/max(expert[a]) A=expert.to_numpy() P=pairwise_distances(A[:,1:]) D=dict() for ind, row in expert.iterrows(): P[ind,ind]=10000 a=np.argmin(P[ind,:]) D[row['name']]=expert.loc[a,'name'] return D def Augment(by_user, D, user): lis=list(by_user.keys()) for k in lis: X=pd.DataFrame(by_user[k]) random=np.random.randint(3000,7000) u=user[user['id']==k] u['id']=random user=user.append(u) idx=np.random.randint(0, len(X), size=10) Y=X.copy() for idx2 in idx: try: tempD=D[Y.loc[idx2,'activity']] Y.loc[idx2,'activity']=
np.random.choice(tempD)
numpy.random.choice
# This code is a part of XMM: Generate and Analyse (XGA), a module designed for the XMM Cluster Survey (XCS). # Last modified by <NAME> (<EMAIL>) 21/04/2021, 17:37. Copyright (c) <NAME> from multiprocessing.dummy import Pool from typing import List, Tuple, Union from warnings import warn import numpy as np from astropy.units import Quantity, pix, kpc from matplotlib import pyplot as plt from matplotlib.ticker import ScalarFormatter from tqdm import tqdm from ..exceptions import NoRegionsError, NoProductAvailableError, XGAFitError, ModelNotAssociatedError, \ ParameterNotAssociatedError from ..imagetools.profile import radial_brightness from ..samples.extended import ClusterSample from ..sources import GalaxyCluster from ..utils import NUM_CORES from ..xspec.fakeit import cluster_cr_conv from ..xspec.fit import single_temp_apec def _stack_setup_checks(sources: ClusterSample, scale_radius: str = "r200", lo_en: Quantity = Quantity(0.5, 'keV'), hi_en: Quantity = Quantity(2.0, 'keV'), psf_corr: bool = False, psf_model: str = "ELLBETA", psf_bins: int = 4, psf_algo: str = "rl", psf_iter: int = 15): """ Internal function that was originally split off from radial data stack. This performs checks to make sure passed in values are valid for all types of stacking available in this part of XGA. :param ClusterSample sources: The source objects that will contribute to the stacked brightness profile. :param str scale_radius: The over-density radius to scale the cluster radii by, all GalaxyCluster objects must have an entry for this radius. :param Quantity lo_en: The lower energy limit of the data that goes into the stacked profiles. :param Quantity hi_en: The upper energy limit of the data that goes into the stacked profiles. :param bool psf_corr: If True, PSF corrected ratemaps will be used to make the brightness profile stack. :param str psf_model: If PSF corrected, the PSF model used. :param int psf_bins: If PSF corrected, the number of bins per side. :param str psf_algo: If PSF corrected, the algorithm used. :param int psf_iter: If PSF corrected, the number of algorithm iterations. """ # Checking that all the sources are GalaxyClusters if not all([isinstance(s, GalaxyCluster) for s in sources]): raise TypeError("Currently only GalaxyCluster source objects may be analysed in this way.") # Checking that every single GalaxyCluster object was supplied with the scale radius chosen by the user if scale_radius.lower() == "r200": rad_check = [s.r200 is not None for s in sources] elif scale_radius.lower() == "r500": rad_check = [s.r500 is not None for s in sources] elif scale_radius.lower() == "r2500": rad_check = [s.r2500 is not None for s in sources] else: raise ValueError("{0} is not an acceptable overdensity radius, please use r200, r500, or " "r2500.".format(scale_radius)) if not all(rad_check): raise NoRegionsError("Some GalaxyCluster objects are missing the {} region".format(scale_radius)) if psf_corr: psf_key = "bound_{l}-{u}_{m}_{n}_{a}{i}".format(l=lo_en.value, u=hi_en.value, m=psf_model, n=psf_bins, a=psf_algo, i=psf_iter) psf_corr_avail = [len(source.get_products("combined_ratemap", extra_key=psf_key)) != 0 for source in sources] if False in psf_corr_avail: raise NoProductAvailableError("At least one source does not have PSF corrected " "image products available.") def _create_stack(sb: np.ndarray, sources: ClusterSample, scale_radius: str, lo_en: Quantity, hi_en: Quantity, custom_temps: Quantity, sim_met: Union[float, List] = 0.3, abund_table: str = 'angr') \ -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, List]: """ Internal function that was originally split off from radial data stack. Takes the surface brightness profiles that have been generated for radii as a fraction of the scale radius. It then calculates the scaling factors and combines them into a single stacked profile. :param np.ndarray sb: The surface brightness data output for all the sources. :param ClusterSample sources: The source objects that will contribute to the stacked brightness profile. :param str scale_radius: The overdensity radius to scale the cluster radii by, all GalaxyCluster objects must have an entry for this radius. :param Quantity lo_en: The lower energy limit of the data that goes into the stacked profiles. :param Quantity hi_en: The upper energy limit of the data that goes into the stacked profiles. :param Quantity custom_temps: Temperatures at which to calculate conversion factors for each cluster in sources, they will overwrite any temperatures measured by XGA. A single temperature can be passed to be used for all clusters in sources. If None, appropriate temperatures will be retrieved from the source objects. :param float/List sim_met: The metallicity(s) to use when calculating the conversion factor. Pass a single float to use the same value for all sources, or pass a list to use a different value for each. :param str abund_table: The abundance table to use for the temperature fit and conversion factor calculation. :return: The average profile, all scaled profiles, the covariance matrix, normalised covariance, and names of successful profiles. :rtype: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, List] """ # Now, we have all the brightness values at common radii (in units of R200 so scaled properly), now we have # to weight the SB values so they are directly comparable. This accounts for redshift, nH, and sort-of for # the temperature of each cluster. # Calculate all the conversion factors if custom_temps is not None: # I'm not going to give the user the ability to choose the specifics of the spectra that are # being used to calculate conversion factors - I'll use standard settings. This function will # also make sure that they've actually been generated. cluster_cr_conv(sources, scale_radius, custom_temps, sim_met=sim_met, abund_table=abund_table) else: # Use a simple single_temp_apec to fit said spectra, but only if we haven't had custom temperatures # passed in single_temp_apec(sources, scale_radius, abund_table=abund_table) temp_temps = [] for src in sources: try: # A temporary temperature variable temp_temp = src.get_temperature(scale_radius, "constant*tbabs*apec")[0] except (ModelNotAssociatedError, ParameterNotAssociatedError): warn("{s}'s temperature fit is not valid, so I am defaulting to a temperature of " "3keV".format(s=src.name)) temp_temp = Quantity(3, 'keV') temp_temps.append(temp_temp.value) temps = Quantity(temp_temps, 'keV') cluster_cr_conv(sources, scale_radius, sim_temp=temps, sim_met=sim_met, abund_table=abund_table) combined_factors = [] # Now to generate a combined conversion factor from count rate to luminosity for source in sources: combined_factors.append(source.combined_lum_conv_factor(scale_radius, lo_en, hi_en).value) # Check for NaN values in the brightness profiles we've retrieved - very bad if they exist no_nan = np.where(~np.isnan(sb.sum(axis=1)))[0] # Selects only those clusters that don't have nans in their brightness profiles combined_factors = np.array(combined_factors)[no_nan] # Multiplies each cluster profile by the matching conversion factor to go from countrate to luminosity luminosity = (sb[no_nan, :].T * combined_factors).T # Finds the highest value in the profile of each cluster max_lums = np.max(luminosity, axis=1) # Finds the mean of the maximum values and calculates scaling factors so that the maximum # value in each profile is now equal to the average scale_factors = max_lums.mean() / max_lums # Applied the rescaling factors scaled_luminosity = (luminosity.T * scale_factors).T # Calculates normalised and the usual covariance matrices norm_cov = np.corrcoef(scaled_luminosity, rowvar=False) cov = np.cov(scaled_luminosity, rowvar=False) average_profile = np.mean(scaled_luminosity, axis=0) stack_names = [] for src_ind, src in enumerate(sources): if src_ind not in no_nan: warn("A NaN value was detected in {}'s brightness profile, and as such it has been excluded from the " "stack.".format(src.name)) else: stack_names.append(src.name) return average_profile, scaled_luminosity, cov, norm_cov, stack_names def _view_stack(results: Tuple, scale_radius: str, radii: np.ndarray, figsize: Tuple): """ Internal function to plot the results of a stack function. :param Tuple results: The results tuple from a stack function, this is what will be plotted. :param str scale_radius: The overdensity radius to scale the cluster radii by, all GalaxyCluster objects must have an entry for this radius. :param ndarray radii: The radii (in units of scale_radius) at which to measure and stack surface brightness. :param tuple figsize: The desired figure size for the plot. """ # Gets the average profile from the results av_prof = results[0] # Gets the individual scaled profiles from results all_prof = results[1] # The covariance matrix cov = results[3] # The normalised covariance matrix norm_cov = results[4] # Finds the standard deviations by diagonalising the covariance matrix and taking the sqrt sd = np.sqrt(np.diagonal(cov)) fig, ax = plt.subplots(nrows=2, ncols=2, figsize=figsize) ax[0, 0].set_title("Average Profile") ax[0, 0].set_xlabel("Radius [{}]".format(scale_radius)) ax[0, 1].set_title("All Profiles") ax[0, 1].set_xlabel("Radius [{}]".format(scale_radius)) ax[0, 0].plot(radii, av_prof, color="black", label="Average Profile") ax[0, 0].errorbar(radii, av_prof, fmt="kx", yerr=sd, capsize=2) for i in range(0, all_prof.shape[0]): ax[0, 1].plot(radii, all_prof[i, :]) ax[0, 0].set_xscale("log") ax[0, 0].set_yscale("log") ax[0, 1].set_xscale("log") ax[0, 1].set_yscale("log") ax[0, 0].xaxis.set_major_formatter(ScalarFormatter()) ax[0, 1].xaxis.set_major_formatter(ScalarFormatter()) ax[1, 0].set_title("Covariance Matrix") ax[1, 0].tick_params(axis='both', direction='in', which='both', top=False, right=False) ax[1, 0].xaxis.set_ticklabels([]) ax[1, 0].yaxis.set_ticklabels([]) im = ax[1, 0].imshow(cov, cmap="gnuplot2", origin="lower") fig.colorbar(im, ax=ax[1, 0]) ax[1, 1].set_title("Normalised Covariance Matrix") ax[1, 1].tick_params(axis='both', direction='in', which='both', top=False, right=False) ax[1, 1].xaxis.set_ticklabels([]) ax[1, 1].yaxis.set_ticklabels([]) im = ax[1, 1].imshow(norm_cov, cmap="gnuplot2", origin="lower") fig.colorbar(im, ax=ax[1, 1]) fig.tight_layout() plt.show() def radial_data_stack(sources: ClusterSample, scale_radius: str = "r200", use_peak: bool = True, pix_step: int = 1, radii: np.ndarray = np.linspace(0.01, 1, 20), min_snr: float = 0.0, lo_en: Quantity = Quantity(0.5, 'keV'), hi_en: Quantity = Quantity(2.0, 'keV'), custom_temps: Quantity = None, sim_met: Union[float, List] = 0.3, abund_table: str = 'angr', psf_corr: bool = False, psf_model: str = "ELLBETA", psf_bins: int = 4, psf_algo: str = "rl", psf_iter: int = 15, num_cores: int = NUM_CORES) \ -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray, list]: """ Creates and scales radial brightness profiles for a set of galaxy clusters so that they can be combined and compared, like for like. This particular function does not fit models, and outputs a mean brightness profile, as well as the scaled stack data and covariance matrices. This is based on the method in https://doi.org/10.1093/mnras/stv1366, though modified to work with profiles rather than 2D images. :param ClusterSample sources: The source objects that will contribute to the stacked brightness profile. :param str scale_radius: The overdensity radius to scale the cluster radii by, all GalaxyCluster objects must have an entry for this radius. :param bool use_peak: Controls whether the peak position is used as the centre of the brightness profile for each GalaxyCluster object. :param int pix_step: The width (in pixels) of each annular bin for the individual profiles, default is 1. :param ndarray radii: The radii (in units of scale_radius) at which to measure and stack surface brightness. :param int/float min_snr: The minimum allowed signal to noise for individual cluster profiles. Default is 0, which disables automatic rebinning. :param Quantity lo_en: The lower energy limit of the data that goes into the stacked profiles. :param Quantity hi_en: The upper energy limit of the data that goes into the stacked profiles. :param Quantity custom_temps: Temperatures at which to calculate conversion factors for each cluster in sources, they will overwrite any temperatures measured by XGA. A single temperature can be passed to be used for all clusters in sources. If None, appropriate temperatures will be retrieved from the source objects. :param float/List sim_met: The metallicity(s) to use when calculating the conversion factor. Pass a single float to use the same value for all sources, or pass a list to use a different value for each. :param str abund_table: The abundance table to use for the temperature fit and conversion factor calculation. :param bool psf_corr: If True, PSF corrected ratemaps will be used to make the brightness profile stack. :param str psf_model: If PSF corrected, the PSF model used. :param int psf_bins: If PSF corrected, the number of bins per side. :param str psf_algo: If PSF corrected, the algorithm used. :param int psf_iter: If PSF corrected, the number of algorithm iterations. :param int num_cores: The number of cores to use when calculating the brightness profiles, the default is 90% of available cores. :return: This function returns the average profile, the scaled brightness profiles with the cluster changing along the y direction and the bin changing along the x direction, an array of the radii at which the brightness was measured (in units of scale_radius), and finally the covariance matrix and normalised covariance matrix. I also return a list of source names that WERE included in the stack. :rtype: Tuple[ndarray, ndarray, ndarray, ndarray, ndarray, list] """ def construct_profile(src_obj: GalaxyCluster, src_id: int, lower: Quantity, upper: Quantity) \ -> Tuple[Quantity, int]: """ Constructs a brightness profile for the given galaxy cluster, and interpolates to find values at the requested radii in units of scale_radius. :param GalaxyCluster src_obj: The GalaxyCluster to construct a profile for. :param int src_id: An identifier that enables the constructed profile to be placed correctly in the results array. :param Quantity lower: The lower energy limit to use. :param Quantity upper: The higher energy limit to use. :return: The scaled profile, the cluster identifier, and the original generated surface brightness profile. :rtype: Tuple[Quantity, int] """ # The storage key is different based on whether the user wishes to generate profiles from PSF corrected # ratemaps or not. if not psf_corr: storage_key = "bound_{l}-{u}".format(l=lower.value, u=upper.value) else: storage_key = "bound_{l}-{u}_{m}_{n}_{a}{i}".format(l=lower.value, u=upper.value, m=psf_model, n=psf_bins, a=psf_algo, i=psf_iter) # Retrieving the relevant ratemap object, as well as masks rt = [r[-1] for r in src_obj.get_products("combined_ratemap", just_obj=False) if storage_key in r][0] # The user can choose to use the original user passed coordinates, or the X-ray centroid if use_peak: central_coord = src_obj.peak else: central_coord = src_obj.ra_dec # We obviously want to remove point sources from the profiles we make, so get the mask that removes # interlopers int_mask = src_obj.get_interloper_mask() # Tells the source object to give us the requested scale radius in units of kpc rad = src_obj.get_radius(scale_radius, kpc) # This fetches any profiles that might have already been generated to our required specifications prof_prods = src_obj.get_products("combined_brightness_profile") if len(prof_prods) == 1: matching_profs = [p for p in list(prof_prods[0].values()) if p.check_match(rt, central_coord, pix_step, min_snr, rad)] else: matching_profs = [] # This is because a ValueError can be raised by radial_brightness when there is a problem with the # background mask try: if len(matching_profs) == 0: sb_prof, success = radial_brightness(rt, central_coord, rad, float(src_obj.background_radius_factors[0]), float(src_obj.background_radius_factors[1]), int_mask, src_obj.redshift, pix_step, kpc, src_obj.cosmo, min_snr) src_obj.update_products(sb_prof) elif len(matching_profs) == 1: sb_prof = matching_profs[0] elif len(matching_profs) > 1: raise ValueError("This shouldn't be possible.") # Calculates the value of pixel radii in terms of the scale radii scaled_radii = (sb_prof.radii / rad).value # Interpolating brightness profile values at the radii passed by the user interp_brightness = np.interp(radii, scaled_radii, (sb_prof.values - sb_prof.background).value) except ValueError as ve: # This will mean that the profile is thrown away in a later step interp_brightness = np.full(radii.shape, np.NaN) # But will also raise a warning so the user knows warn(str(ve).replace("you're looking at", "{s} is".format(s=src_obj.name)).replace(".", "") + " - profile set to NaNs.") return interp_brightness, src_id # This is an internal function that does setup checks common to both stacking of data and models _stack_setup_checks(sources, scale_radius, lo_en, hi_en, psf_corr, psf_model, psf_bins, psf_algo, psf_iter) sb = np.zeros((len(sources), len(radii))) # Sets up a multiprocessing pool with tqdm(total=len(sources), desc="Generating Brightness Profiles") as onwards, Pool(num_cores) as pool: def callback(results): nonlocal sb nonlocal onwards b, s_id = results sb[s_id, :] = b onwards.update(1) def err_callback(err): onwards.update() raise err for s_ind, s in enumerate(sources): pool.apply_async(construct_profile, callback=callback, error_callback=err_callback, args=(s, s_ind, lo_en, hi_en)) pool.close() pool.join() onwards.close() average_profile, scaled_luminosity, cov, norm_cov, stack_names = _create_stack(sb, sources, scale_radius, lo_en, hi_en, custom_temps, sim_met, abund_table) return average_profile, scaled_luminosity, radii, cov, norm_cov, stack_names def view_radial_data_stack(sources: ClusterSample, scale_radius: str = "r200", use_peak: bool = True, pix_step: int = 1, radii: np.ndarray =
np.linspace(0.01, 1, 20)
numpy.linspace
from __future__ import division, absolute_import, print_function import sys from itertools import product import numpy as np from numpy.core import zeros, float64 from numpy.testing import dec, TestCase, assert_almost_equal, assert_, \ assert_raises, assert_array_equal, assert_allclose, assert_equal from numpy.core.multiarray import inner as inner_ DECPREC = 14 class TestInner(TestCase): def test_vecself(self): """Ticket 844.""" # Inner product of a vector with itself segfaults or give meaningless # result a = zeros(shape = (1, 80), dtype = float64) p = inner_(a, a) assert_almost_equal(p, 0, decimal = DECPREC) try: import numpy.core._dotblas as _dotblas except ImportError: _dotblas = None @dec.skipif(_dotblas is None, "Numpy is not compiled with _dotblas") def test_blasdot_used(): from numpy.core import dot, vdot, inner, alterdot, restoredot assert_(dot is _dotblas.dot) assert_(vdot is _dotblas.vdot) assert_(inner is _dotblas.inner) assert_(alterdot is _dotblas.alterdot) assert_(restoredot is _dotblas.restoredot) def test_dot_2args(): from numpy.core import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(): np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): np.dot(f, v, r) assert_equal(sys.getrefcount(r), 2) r2 = np.dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is np.dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = np.dot(f, v) assert_(r is np.dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(): np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, np.dot, f, v, r) assert_raises(ValueError, np.dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, np.dot, f, v, r[:, ::2]) assert_raises(ValueError, np.dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, np.dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, np.dot, f, v, r) def test_dot_array_order(): """ Test numpy dot with different order C, F Comparing results with multiarray dot. Double and single precisions array are compared using relative precision of 7 and 5 decimals respectively. Use 30 decimal when comparing exact operations like: (a.b)' = b'.a' """ _dot = np.core.multiarray.dot a_dim, b_dim, c_dim = 10, 4, 7 orders = ["C", "F"] dtypes_prec = {np.float64: 7, np.float32: 5} np.random.seed(7) for arr_type, prec in dtypes_prec.items(): for a_order in orders: a = np.asarray(np.random.randn(a_dim, a_dim), dtype=arr_type, order=a_order) assert_array_equal(np.dot(a, a), a.dot(a)) # (a.a)' = a'.a', note that mse~=1e-31 needs almost_equal assert_almost_equal(a.dot(a), a.T.dot(a.T).T, decimal=prec) # # Check with making explicit copy # a_T = a.T.copy(order=a_order) assert_almost_equal(a_T.dot(a_T), a.T.dot(a.T), decimal=prec) assert_almost_equal(a.dot(a_T), a.dot(a.T), decimal=prec) assert_almost_equal(a_T.dot(a), a.T.dot(a), decimal=prec) # # Compare with multiarray dot # assert_almost_equal(a.dot(a), _dot(a, a), decimal=prec) assert_almost_equal(a.T.dot(a), _dot(a.T, a), decimal=prec) assert_almost_equal(a.dot(a.T), _dot(a, a.T), decimal=prec) assert_almost_equal(a.T.dot(a.T), _dot(a.T, a.T), decimal=prec) for res in a.dot(a), a.T.dot(a), a.dot(a.T), a.T.dot(a.T): assert res.flags.c_contiguous for b_order in orders: b = np.asarray(np.random.randn(a_dim, b_dim), dtype=arr_type, order=b_order) b_T = b.T.copy(order=b_order) assert_almost_equal(a_T.dot(b), a.T.dot(b), decimal=prec) assert_almost_equal(b_T.dot(a), b.T.dot(a), decimal=prec) # (b'.a)' = a'.b assert_almost_equal(b.T.dot(a), a.T.dot(b).T, decimal=prec) assert_almost_equal(a.dot(b), _dot(a, b), decimal=prec) assert_almost_equal(b.T.dot(a), _dot(b.T, a), decimal=prec) for c_order in orders: c = np.asarray(np.random.randn(b_dim, c_dim), dtype=arr_type, order=c_order) c_T = c.T.copy(order=c_order) assert_almost_equal(c.T.dot(b.T), c_T.dot(b_T), decimal=prec) assert_almost_equal(c.T.dot(b.T).T, b.dot(c), decimal=prec) assert_almost_equal(b.dot(c), _dot(b, c), decimal=prec) assert_almost_equal(c.T.dot(b.T), _dot(c.T, b.T), decimal=prec) @dec.skipif(True) # ufunc override disabled for 1.9 def test_dot_override(): class A(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return "A" class B(object): def __numpy_ufunc__(self, ufunc, method, pos, inputs, **kwargs): return NotImplemented a = A() b = B() c = np.array([[1]]) assert_equal(np.dot(a, b), "A") assert_equal(c.dot(a), "A") assert_raises(TypeError, np.dot, b, c) assert_raises(TypeError, c.dot, b) def test_npdot_segfault(): if sys.platform != 'darwin': return # Test for float32 np.dot segfault # https://github.com/numpy/numpy/issues/4007 def aligned_array(shape, align, dtype, order='C'): # Make array shape `shape` with aligned at `align` bytes d = dtype() # Make array of correct size with `align` extra bytes N =
np.prod(shape)
numpy.prod
import h5py import pickle import numpy as np def load_weights(): fff = h5py.File('Mybase/mask_rcnn_coco.h5','r') #打开h5文件 #print(list(f.keys())) mydict = {} mydict['global_step:0'] = 1000 ########res1######## dset = fff['conv1'] a = dset['conv1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn_conv1'] a = dset['bn_conv1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ########res2######## dset = fff['res2a_branch1'] a = dset['res2a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch1'] a = dset['bn2a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2a'] a = dset['res2a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2a'] a = dset['bn2a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2b'] a = dset['res2a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2b'] a = dset['bn2a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2a_branch2c'] a = dset['res2a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2a_branch2c'] a = dset['bn2a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res2b_branch2a'] a = dset['res2b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2a'] a = dset['bn2b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2b'] a = dset['res2b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2b'] a = dset['bn2b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2b_branch2c'] a = dset['res2b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2b_branch2c'] a = dset['bn2b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res2c_branch2a'] a = dset['res2c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2a'] a = dset['bn2c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2b'] a = dset['res2c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2b'] a = dset['bn2c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res2c_branch2c'] a = dset['res2c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn2c_branch2c'] a = dset['bn2c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_0/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res3######## dset = fff['res3a_branch1'] a = dset['res3a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch1'] a = dset['bn3a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2a'] a = dset['res3a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2a'] a = dset['bn3a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2b'] a = dset['res3a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2b'] a = dset['bn3a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3a_branch2c'] a = dset['res3a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3a_branch2c'] a = dset['bn3a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res3b_branch2a'] a = dset['res3b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2a'] a = dset['bn3b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2b'] a = dset['res3b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2b'] a = dset['bn3b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3b_branch2c'] a = dset['res3b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3b_branch2c'] a = dset['bn3b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3c_branch2a'] a = dset['res3c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2a'] a = dset['bn3c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2b'] a = dset['res3c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2b'] a = dset['bn3c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3c_branch2c'] a = dset['res3c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3c_branch2c'] a = dset['bn3c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res3d_branch2a'] a = dset['res3d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2a'] a = dset['bn3d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2b'] a = dset['res3d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2b'] a = dset['bn3d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res3d_branch2c'] a = dset['res3d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn3d_branch2c'] a = dset['bn3d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_1/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res4######## dset = fff['res4a_branch1'] a = dset['res4a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch1'] a = dset['bn4a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2a'] a = dset['res4a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2a'] a = dset['bn4a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2b'] a = dset['res4a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2b'] a = dset['bn4a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4a_branch2c'] a = dset['res4a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4a_branch2c'] a = dset['bn4a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res4b_branch2a'] a = dset['res4b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2a'] a = dset['bn4b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2b'] a = dset['res4b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2b'] a = dset['bn4b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4b_branch2c'] a = dset['res4b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4b_branch2c'] a = dset['bn4b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4c_branch2a'] a = dset['res4c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2a'] a = dset['bn4c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2b'] a = dset['res4c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2b'] a = dset['bn4c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4c_branch2c'] a = dset['res4c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4c_branch2c'] a = dset['bn4c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_2/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4d_branch2a'] a = dset['res4d_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2a'] a = dset['bn4d_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2b'] a = dset['res4d_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2b'] a = dset['bn4d_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4d_branch2c'] a = dset['res4d_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4d_branch2c'] a = dset['bn4d_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_3/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4e_branch2a'] a = dset['res4e_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2a'] a = dset['bn4e_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2b'] a = dset['res4e_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2b'] a = dset['bn4e_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4e_branch2c'] a = dset['res4e_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4e_branch2c'] a = dset['bn4e_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_4/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4f_branch2a'] a = dset['res4f_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2a'] a = dset['bn4f_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2b'] a = dset['res4f_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2b'] a = dset['bn4f_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4f_branch2c'] a = dset['res4f_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4f_branch2c'] a = dset['bn4f_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_5/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4g_branch2a'] a = dset['res4g_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2a'] a = dset['bn4g_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2b'] a = dset['res4g_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2b'] a = dset['bn4g_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4g_branch2c'] a = dset['res4g_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4g_branch2c'] a = dset['bn4g_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_6/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4h_branch2a'] a = dset['res4h_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2a'] a = dset['bn4h_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2b'] a = dset['res4h_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2b'] a = dset['bn4h_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4h_branch2c'] a = dset['res4h_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4h_branch2c'] a = dset['bn4h_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_7/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4i_branch2a'] a = dset['res4i_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2a'] a = dset['bn4i_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2b'] a = dset['res4i_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2b'] a = dset['bn4i_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4i_branch2c'] a = dset['res4i_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4i_branch2c'] a = dset['bn4i_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_8/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4j_branch2a'] a = dset['res4j_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2a'] a = dset['bn4j_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2b'] a = dset['res4j_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2b'] a = dset['bn4j_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4j_branch2c'] a = dset['res4j_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4j_branch2c'] a = dset['bn4j_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_9/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4k_branch2a'] a = dset['res4k_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2a'] a = dset['bn4k_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2b'] a = dset['res4k_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2b'] a = dset['bn4k_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4k_branch2c'] a = dset['res4k_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4k_branch2c'] a = dset['bn4k_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_10/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4l_branch2a'] a = dset['res4l_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2a'] a = dset['bn4l_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2b'] a = dset['res4l_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2b'] a = dset['bn4l_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4l_branch2c'] a = dset['res4l_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4l_branch2c'] a = dset['bn4l_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_11/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4m_branch2a'] a = dset['res4m_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2a'] a = dset['bn4m_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2b'] a = dset['res4m_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2b'] a = dset['bn4m_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4m_branch2c'] a = dset['res4m_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4m_branch2c'] a = dset['bn4m_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_12/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4n_branch2a'] a = dset['res4n_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2a'] a = dset['bn4n_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4n_branch2b'] a = dset['res4n_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2b'] a = dset['bn4n_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4n_branch2c'] a = dset['res4n_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4n_branch2c'] a = dset['bn4n_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_13/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4o_branch2a'] a = dset['res4o_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4o_branch2a'] a = dset['bn4o_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4o_branch2b'] a = dset['res4o_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4o_branch2b'] a = dset['bn4o_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4o_branch2c'] a = dset['res4o_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4o_branch2c'] a = dset['bn4o_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_14/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4p_branch2a'] a = dset['res4p_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4p_branch2a'] a = dset['bn4p_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4p_branch2b'] a = dset['res4p_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4p_branch2b'] a = dset['bn4p_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4p_branch2c'] a = dset['res4p_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4p_branch2c'] a = dset['bn4p_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_15/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4q_branch2a'] a = dset['res4q_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4q_branch2a'] a = dset['bn4q_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4q_branch2b'] a = dset['res4q_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4q_branch2b'] a = dset['bn4q_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4q_branch2c'] a = dset['res4q_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4q_branch2c'] a = dset['bn4q_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_16/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4r_branch2a'] a = dset['res4r_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4r_branch2a'] a = dset['bn4r_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4r_branch2b'] a = dset['res4r_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4r_branch2b'] a = dset['bn4r_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4r_branch2c'] a = dset['res4r_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4r_branch2c'] a = dset['bn4r_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_17/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4s_branch2a'] a = dset['res4s_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4s_branch2a'] a = dset['bn4s_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4s_branch2b'] a = dset['res4s_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4s_branch2b'] a = dset['bn4s_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4s_branch2c'] a = dset['res4s_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4s_branch2c'] a = dset['bn4s_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_18/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4t_branch2a'] a = dset['res4t_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4t_branch2a'] a = dset['bn4t_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4t_branch2b'] a = dset['res4t_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4t_branch2b'] a = dset['bn4t_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4t_branch2c'] a = dset['res4t_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4t_branch2c'] a = dset['bn4t_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_19/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4u_branch2a'] a = dset['res4u_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4u_branch2a'] a = dset['bn4u_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4u_branch2b'] a = dset['res4u_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4u_branch2b'] a = dset['bn4u_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4u_branch2c'] a = dset['res4u_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4u_branch2c'] a = dset['bn4u_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_20/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4v_branch2a'] a = dset['res4v_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4v_branch2a'] a = dset['bn4v_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4v_branch2b'] a = dset['res4v_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4v_branch2b'] a = dset['bn4v_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4v_branch2c'] a = dset['res4v_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4v_branch2c'] a = dset['bn4v_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_21/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res4w_branch2a'] a = dset['res4w_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4w_branch2a'] a = dset['bn4w_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4w_branch2b'] a = dset['res4w_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4w_branch2b'] a = dset['bn4w_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res4w_branch2c'] a = dset['res4w_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn4w_branch2c'] a = dset['bn4w_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_2/resnet_unit2_22/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ########res5######## dset = fff['res5a_branch1'] a = dset['res5a_branch1'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5a_branch1'] a = dset['bn5a_branch1'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5a_branch2a'] a = dset['res5a_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5a_branch2a'] a = dset['bn5a_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5a_branch2b'] a = dset['res5a_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5a_branch2b'] a = dset['bn5a_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5a_branch2c'] a = dset['res5a_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5a_branch2c'] a = dset['bn5a_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_0/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ################################ dset = fff['res5b_branch2a'] a = dset['res5b_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5b_branch2a'] a = dset['bn5b_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5b_branch2b'] a = dset['res5b_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5b_branch2b'] a = dset['bn5b_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5b_branch2c'] a = dset['res5b_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5b_branch2c'] a = dset['bn5b_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn1_1/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_1/conv_bn1_1/batchnorm1_0/BatchNorm/beta:0' ] = h ############################ dset = fff['res5c_branch2a'] a = dset['res5c_branch2a'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5c_branch2a'] a = dset['bn5c_branch2a'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_2/conv_bn_relu1_0/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5c_branch2b'] a = dset['res5c_branch2b'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5c_branch2b'] a = dset['bn5c_branch2b'] d = np.array(a['beta:0' ], dtype=np.float32) e = np.array(a['gamma:0'], dtype=np.float32) f = np.array(a['moving_mean:0' ], dtype=np.float32) g = np.array(a['moving_variance:0'], dtype=np.float32) h = ((c - f) / g) * e + d mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/conv1_0/weights:0'] = b mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/gamma:0'] = e mydict['layers_module1_1/resnet_block2_0_3/resnet_unit2_2/conv_bn_relu1_1/conv_bn1_0/batchnorm1_0/BatchNorm/beta:0' ] = h ######### dset = fff['res5c_branch2c'] a = dset['res5c_branch2c'] b = np.array(a['kernel:0'], dtype=np.float32) c = np.array(a['bias:0' ], dtype=np.float32) dset = fff['bn5c_branch2c'] a = dset['bn5c_branch2c'] d = np.array(a['beta:0' ], dtype=np.float32) e =
np.array(a['gamma:0'], dtype=np.float32)
numpy.array
from cuda import cuda, nvrtc import numpy as np import util.RotRep as Rot import util.Simulation as Gsim from config import Config import h5py import time import gpuarray from collections import Counter from scipy.sparse import coo_matrix from scipy.ndimage import gaussian_filter from run_cuda import run_cuda_function from cuda_python_compile import create_module class Initializer: def __init__(self, Cfg): module = create_module('strain_device_mjw_3.cu') self.sim_strain_func = cuda.cuModuleGetFunction(module, b'Simulate_for_Strain')[1] self.sim_pos_func = cuda.cuModuleGetFunction(module, b'Simulate_for_Pos')[1] self.KL_total_func = cuda.cuModuleGetFunction(module, b'KL_total')[1] self.KL_diff_func = cuda.cuModuleGetFunction(module, b'KL_diff')[1] self.One_func = cuda.cuModuleGetFunction(module, b'ChangeOne')[1] self.hit_func = cuda.cuModuleGetFunction(module, b'Hit_Score')[1] self.Cfg = Cfg self.mode = Cfg.mode self.ImLoaded = False self.GsLoaded = False self.GsGenerated = False self.windowD = gpuarray.to_gpu(np.array(self.Cfg.window).astype(np.int32)) # Det parameters self.Det = Gsim.Detector(psizeJ=Cfg.pixelSize / 1000.0, psizeK=Cfg.pixelSize / 1000.0, J=Cfg.JCenter, K=Cfg.KCenter, trans=np.array([Cfg.Ldistance, 0, 0]), tilt=Rot.EulerZXZ2Mat(np.array(Cfg.tilt) / 180.0 * np.pi)) afDetInfoH = np.concatenate( [[Cfg.JPixelNum, Cfg.KPixelNum, Cfg.pixelSize / 1000.0, Cfg.pixelSize / 1000.0], self.Det.CoordOrigin, self.Det.Norm, self.Det.Jvector, self.Det.Kvector]).astype(np.float32) self.afDetInfoD = gpuarray.to_gpu(afDetInfoH) # sample parameters # hack!! only for Hexagonal self.sample = Gsim.CrystalStr() self.sample.PrimA = Cfg.lattice[0] * np.array([1, 0, 0]) self.sample.PrimB = Cfg.lattice[1] * np.array([np.cos(np.pi * 2 / 3), np.sin(np.pi * 2 / 3), 0]) self.sample.PrimC = Cfg.lattice[2] * np.array([0, 0, 1]) Atoms = Cfg.atoms for ii in range(len(Atoms)): self.sample.addAtom(list(map(eval, Atoms[ii][0:3])), Atoms[ii][3]) self.sample.getRecipVec() self.sample.getGs(Cfg.maxQ) if self.mode == 'rec': f = h5py.File(Cfg.peakFile, 'r') # Lim for window position self.LimH = np.array(f['limits']).astype(np.int32) self.LimD = gpuarray.to_gpu(self.LimH) # whichOmega for choosing between omega1 and omega2 self.whichOmega = np.array(f['whichOmega']).astype(np.int32) self.whichOmegaD = gpuarray.to_gpu(self.whichOmega) # MaxInt for normalize the weight of each spot # (because different spots have very different intensity but we want them equal weighted) self.MaxInt = np.array(f['MaxInt'], dtype=np.float32) self.MaxIntD = gpuarray.to_gpu(self.MaxInt) self.Gs = np.array(f['Gs'], dtype=np.float32) self.NumG = len(self.Gs) print(self.NumG) self.orienM = np.array(f['OrienM']) self.avg_distortion = np.array(f['avg_distortion']) self.GsGenerated = True # transfer the ExpImgs and all Gs to texture memory def loadIm(self): f = h5py.File(self.Cfg.peakFile, 'r') AllIm = np.zeros(shape=(self.Cfg.window[1], self.Cfg.window[0], self.NumG * self.Cfg.window[2]), dtype=np.uint32, order='F') for ii in range(self.NumG): tmp = np.array(f['Imgs']['Im{0:d}'.format(ii)]) AllIm[:tmp.shape[0], :tmp.shape[1], ii * self.Cfg.window[2]:(ii + 1) * self.Cfg.window[2]] = tmp self.ImLoaded = True Im = np.array(AllIm).astype(np.uint32) self.tcExp = gpuarray.to_gpu(Im.ravel()) def loadGs(self): if not self.GsGenerated: raise RuntimeError('Gs are not generated yet') self.tG = gpuarray.to_gpu(np.array(np.transpose(self.Gs).astype(np.float32),order='F')) self.GsLoaded = True def generateGs(self, pos, orien, avg_distortion): self.pos = np.array(pos) self.orien = np.array(orien) self.orienM = Rot.EulerZXZ2Mat(self.orien / 180.0 * np.pi) self.avg_distortion = avg_distortion Ps, self.Gs, Info = Gsim.GetProjectedVertex(self.Det, self.sample, self.avg_distortion.dot(self.orienM), self.Cfg.etalimit / 180.0 * np.pi, self.pos, getPeaksInfo=True, omegaL=self.Cfg.omgRange[0], omegaU=self.Cfg.omgRange[1], energy=self.Cfg.energy) self.NumG = len(self.Gs) Lims = [] dx = 150 dy = 80 for ii in range(self.NumG): omegid = int((self.Cfg.omgRange[2] - Ps[ii, 2]) / self.Cfg.omgInterval) - 22 # becuase store 45 frames if omegid < 0: omegid += int(self.Cfg.omgRange[2] / self.Cfg.omgInterval) elif omegid >= int(self.Cfg.omgRange[2] / self.Cfg.omgInterval): omegid -= int(self.Cfg.omgRange[2] / self.Cfg.omgInterval) x1 = int(2047 - Ps[ii, 0] - dx) y1 = int(Ps[ii, 1] - dy) x2 = x1 + 2 * dx y2 = y1 + 2 * dy # ignore camera boundary limit, I'm just lazy, will correct it later Lims.append((x1, x2, y1, y2, omegid)) self.LimH = np.array(Lims, dtype=np.int32) self.LimD = gpuarray.to_gpu(self.LimH) # whichOmega for choosing between omega1 and omega2 self.whichOmega = np.zeros(len(Lims), dtype=np.int32) for ii in range(len(Lims)): if Info[ii]['WhichOmega'] == 'b': self.whichOmega[ii] = 2 else: self.whichOmega[ii] = 1 self.whichOmegaD = gpuarray.to_gpu(self.whichOmega) self.GsGenerated = True def MoveDet(self, dJ=0, dK=0, dD=0, dT=
np.eye(3)
numpy.eye
import pickle import numpy as np import matplotlib.pyplot as plt import seaborn as sns from helperFunctions import * from IPython import embed from mne.stats import permutation_cluster_test header = 'target_loc' def paired_t(*args): """Call scipy.stats.ttest_rel, but return only f-value.""" from scipy.stats import ttest_rel return ttest_rel(*args)[0] def ipsiContra(): ''' ''' #sns.set(font_scale=2.5) sns.set_style('white') sns.set_style('white', {'axes.linewidth': 2}) plt.figure(figsize = (20,10)) with open('/home/dvmoors1/big_brother/Dist_suppression/erp/plot_dict.pickle','rb') as handle: plot = pickle.load(handle) times = plot['times'] with open('/home/dvmoors1/big_brother/Dist_suppression/erp/ipsi_contra.pickle' ,'rb') as handle: erps = pickle.load(handle) ax = plt.subplot(1,2 , 1, title = 'Target repeat diff', ylabel = 'mV') for cnd in ['DvTr_0','DvTr_3']:#['DvTr0','DvTr1','DvTr2','DvTr3']: ipsi_t = np.mean(np.vstack([erps[key][cnd]['ipsi'] for key in erps.keys()]), axis = 0) contra_t = np.mean(np.vstack([erps[key][cnd]['contra'] for key in erps.keys()]), axis = 0) plt.plot(times, contra_t - ipsi_t, label = cnd) plt.legend(loc = 'best') ax = plt.subplot(1,2 , 2, title = 'Distractor repeat diff', ylabel = 'mV') for cnd in ['DrTv_0','DrTv_3']: #['DrTv0','DrTv1','DrTv2','DrTv3']: ipsi_d = np.mean(np.vstack([erps[key][cnd]['ipsi'] for key in erps.keys()]), axis = 0) contra_d = np.mean(np.vstack([erps[key][cnd]['contra'] for key in erps.keys()]), axis = 0) plt.plot(times, contra_d - ipsi_d, label = cnd) plt.legend(loc = 'best') sns.despine() plt.tight_layout() plt.savefig('/home/dvmoors1/big_brother/Dist_suppression/erp/n2pc_Pd_modulation.pdf') plt.close() def ipsiContra(): ''' ''' #sns.set(font_scale=2.5) sns.set_style('white') sns.set_style('white', {'axes.linewidth': 2}) plt.figure(figsize = (20,20)) with open('/Users/dirk/Desktop/suppression/erp/{}/plot_dict.pickle'.format(header) ,'rb') as handle: plot = pickle.load(handle) time = [-0.3, 0.8] start, end = [np.argmin(abs(plot['times'] - t)) for t in time] times = plot['times'][start:end] with open('/Users/dirk/Desktop/suppression/erp/{}/ipsi_contra.pickle'.format('target_loc') ,'rb') as handle: erps_t = pickle.load(handle) with open('/Users/dirk/Desktop/suppression/erp/{}/ipsi_contra.pickle'.format('dist_loc') ,'rb') as handle: erps_d = pickle.load(handle) # plot ipsi and contra (target left and distractor right) ipsi_t = np.mean(np.vstack([erps_t[key]['all']['ipsi'] for key in erps_t.keys()]), axis = 0) contra_t = np.mean(np.vstack([erps_t[key]['all']['contra'] for key in erps_t.keys()]), axis = 0) diff_t = contra_t - ipsi_t ipsi_d = np.mean(np.vstack([erps_d[key]['all']['ipsi'] for key in erps_d.keys()]), axis = 0) contra_d = np.mean(np.vstack([erps_d[key]['all']['contra'] for key in erps_d.keys()]), axis = 0) diff_d = contra_d - ipsi_d ax = plt.subplot(3,2 , 1, title = 'Target ERPs', ylabel = 'mV') plt.plot(times, ipsi_t, label = 'ipsi') plt.plot(times, contra_t, label = 'contra') plt.legend(loc = 'best') ax = plt.subplot(3,2 , 2, title = 'Distractor ERPS', ylabel = 'mV') plt.plot(times, ipsi_d, label = 'ipsi') plt.plot(times, contra_d, label = 'contra') plt.legend(loc = 'best') ax = plt.subplot(3,2 , 3, title = 'Target diff', ylabel = 'mV') plt.plot(times, contra_t - ipsi_t) ax = plt.subplot(3,2 , 4, title = 'Distractor diff', ylabel = 'mV') plt.plot(times, contra_d - ipsi_d) ax = plt.subplot(3,2 , 5, title = 'Target repeat diff', ylabel = 'mV') for cnd in ['DvTr0','DvTr3']:#['DvTr0','DvTr1','DvTr2','DvTr3']: ipsi_t = np.mean(np.vstack([erps_t[key][cnd]['ipsi'] for key in erps_t.keys()]), axis = 0) contra_t = np.mean(np.vstack([erps_t[key][cnd]['contra'] for key in erps_t.keys()]), axis = 0) plt.plot(times, contra_t - ipsi_t, label = cnd) plt.legend(loc = 'best') ax = plt.subplot(3,2 , 6, title = 'Distractor repeat diff', ylabel = 'mV') for cnd in ['DrTv0','DrTv3']: #['DrTv0','DrTv1','DrTv2','DrTv3']: ipsi_d = np.mean(np.vstack([erps_d[key][cnd]['ipsi'] for key in erps_d.keys()]), axis = 0) contra_d = np.mean(np.vstack([erps_d[key][cnd]['contra'] for key in erps_d.keys()]), axis = 0) plt.plot(times, contra_d - ipsi_d, label = cnd) plt.legend(loc = 'best') sns.despine() plt.tight_layout() plt.savefig('/Users/dirk/Desktop/suppression/erp/n2pc_Pd_modulation.pdf') plt.close() def plotCTFSlopeAcrossTime(header, power, channel = 'posterior', freqs = 'all'): ''' ''' # plotting parameters sns.set(font_scale=2.5) sns.set_style('white') sns.set_style('white', {'axes.linewidth': 2}) # read in CTF data ctf = [] for sj in subject_id: # read in classification dict with open('/home/dvmoors1/big_brother/Dist_suppression/ctf/{}_channels/{}/{}_slopes_{}.pickle'.format(channel,header,sj, freqs) ,'rb') as handle: ctf.append(pickle.load(handle)) with open('/home/dvmoors1/big_brother/Dist_suppression/ctf/{}_channels/{}/{}_info.pickle'.format(channel,header, freqs),'rb') as handle: plot_dict = pickle.load(handle) if header == 'target_loc': rep_cond = ['DvTr_0','DvTr_3'] else: rep_cond = ['DrTv_0','DrTv_3'] plt.figure(figsize = (20,10)) for idx, plot in enumerate(['variable', 'repeat']): ax = plt.subplot(1,2, idx + 1, title = plot, ylabel = 'CTF slope', ylim = (-0.2, 0.2)) if plot == 'variable': diff = [] for i, cnd in enumerate(['DvTv_0','DvTv_3']): X = np.vstack([ctf[j][cnd][power] for j in range(len(ctf))]) diff.append(X) error = bootstrap(X) X = X.mean(axis = 0) plt.plot(plot_dict['times'], X, color = ['g','r'][i], label = cnd) plt.fill_between(plot_dict['times'], X + error, X - error, alpha = 0.2, color = ['g','r'][i]) plt.axhline(y=0, ls = '--', color = 'black') plt.axvline(x=0.258, ls = '--', color = 'grey', label = 'onset gabor') T_obs, clusters, cluster_pv, HO = permutation_cluster_test(diff, stat_fun = paired_t) print('T',header, cluster_pv) mask = np.zeros(plot_dict['times'].size,dtype = bool) for cl in
np.array(clusters)
numpy.array
from dataclasses import dataclass, field from functools import partial from typing import List, Tuple, AnyStr, Iterator, Dict import numpy as np from pandas import DataFrame from rulelist.datastructure.attribute.attribute import Attribute, Item from rulelist.util.bitset_operations import indexes2bitset, bitset2indexes def activation_numeric(df: DataFrame, attribute_name: AnyStr, minval: float, maxval: float) -> DataFrame: """Checks in which instances the numerical conditions are True. Parameters ---------- df : pandas.DataFrame List of items that describe single-numeric attribute. attribute_name : str Name of attribute. minval: float Minimum value in the condition x >= minval. maxval Maximum value in the condition x < maxval. Returns ---------- activated_indexes : np.ndarray Boolean array with True for values where the conditions are true. """ activated_indexes = (df[attribute_name] >= minval) & (df[attribute_name] < maxval) return activated_indexes def find_cutpoints(values: np.ndarray, n_cutpoints: int) -> Tuple[np.ndarray, int]: """ Finds the n quantile values as if done with equal frequency binning. Parameters ---------- values : np.ndarray Array of values to discretize. n_cutpoints : int Number of cut points selected. Returns ---------- value_quantiles : np.ndarray Array of the quantile values. real_ncutpoints : int In case the values do not allow n_cutpoints it returns a smaller value. """ if n_cutpoints > len(values): n_cutpoints = len(values) quantile_percentage = [1 / (n_cutpoints + 1) * ncut for ncut in range(0, n_cutpoints + 2)] value_quantiles = np.nanquantile(values, quantile_percentage, interpolation='midpoint')[1:-1] # if np.isnan(val_quantiles).any(): continu value_quantiles = np.unique(value_quantiles) real_ncutpoints = len(value_quantiles) return value_quantiles, real_ncutpoints def create_item(indexes, variable_name, min_val, max_val, description, number_operations): """ Creates a class of type Item from the values of a NumericAttribute. Parameters ---------- indexes : np.ndarray Array of indexes where the item is present in the training datastructure. variable_name : str Name of the attribute/variable that this item is attached to. min_val : float Minimum value covered by this item. item > min_val. max_val : float Maximum value covered by this item. item < max_val. description : str Text describing the interval defined by the item. item < max_val = 1; min_val < item < max_val = 2. number_operations : int Number of logical operators used to define the interval. Returns ---------- Item : Item class object Item with the characteristics described by the arguments. """ bit_array = indexes2bitset(indexes) activation_function = partial(activation_numeric, attribute_name=variable_name, minval=min_val, maxval=max_val) return Item(bit_array, variable_name, description, number_operations, activation_function) @dataclass class NumericAttribute(Attribute): """ Describes a single-numeric attribute or variable. Inherits from class Attribute. Attributes ---------- items : List[Item] List of items that describe single-numeric attribute. n_items : int Number of items in this attribute. Parameters ---------- Attribute : class object that represents a variable. Methods ------- create_items_numeric Creates the items by making binary partitions of the values using the cutpoints of equal frequency binning. """ n_cutpoints : int discretization : AnyStr items : List[Item] = field(default_factory=list, init=False) cardinality_operator: Dict[int,int] = field(default_factory=dict, init=False) #TODO: it would be interesting to add a generator instead of a list to do dynamic creation def __post_init__(self): self.items, self.cardinality_operator = self.create_items() def create_items(self,indexes=None) -> Tuple[List[Item], Dict[int, int]]: """ Creates a list of items from the numerical atrribute. Makes a list of items using equal frequency binning, ignoring NANs, based on the values of the Numeric attribute Returns ---------- List[Item] : List of Items A list of all items based on the possible combinations of cutpoints. """ if indexes is None: values = self.values else: values = self.values[indexes] #values = self.values[self.values.index.intersection(indexes)] value_quantiles, self.n_cutpoints = find_cutpoints(values, self.n_cutpoints) cardinality_operator = {1:0,2:0} items = [] for iq, value_quantile1 in enumerate(value_quantiles): # makes binary intervals x<val and x >=val # condition x<val index_down = np.where(values < value_quantile1)[0] if indexes is not None: index_down = indexes[index_down] description_down = str(self.name) + " < " + str(value_quantile1) items.append(create_item(index_down,variable_name= self.name, min_val=np.NINF, max_val=value_quantile1, description = description_down,number_operations=1)) cardinality_operator[1] += 1 if self.n_cutpoints == 1: break # if there is only one unique value we only need one item # condition x >=val index_up =
np.where(values >= value_quantile1)
numpy.where
import numpy as np from scipy.special import erf from scipy.interpolate import interp1d from scipy.integrate import quad,cumtrapz,trapz,solve_ivp from scipy.optimize import fmin,brentq,fixed_point import scipy.linalg as linalg import time # helper function for the peak number density (BBKS 1986) def f(x): return np.where(x>.03, .5*(x**3-3*x)*(erf(2.5**.5*x)+erf(2.5**.5*.5*x))+(2./(5*np.pi))**.5*((7.75*x**2+1.6)*np.exp(-.625*x**2)+(.5*x**2-1.6)*np.exp(-2.5*x**2)), 3**5*5**1.5/(7*2**11*(2*np.pi)**.5)*x**8*(1-.625*x**2) ) # moments of the power spectrum def sigmaj2(j,k,Pk): integrand = Pk*k**(2*j) return trapz(integrand,x=np.log(k),axis=0) def sigmaj(j,k,Pk): return np.sqrt(sigmaj2(j,k,Pk)) # ellipsoidal collapse threshold def ec_func(f,e,p): return 1+0.47*(5*(e**2-p*np.abs(p))*f**2)**0.615 def ec_scale(e,p): func = lambda f: ec_func(f,e,p) try: return fixed_point(func,1.1,maxiter=25) except: return 0 dc = 3./5*(3*np.pi/2)**(2./3) # linear delta at collapse dv = 3./5*(3./4 + 9*np.pi/8)**(2./3) # linear delta at virialization dt = 3./5*(3*np.pi/4)**(2./3) # linear delta at turnaround # window functions def sinc(x): return np.where(x > 0.1, np.divide(np.sin(x),x,where=x>0.1), 1. - x**2/6. + x**4/120. - x**6/5040. + x**8/362880.) def W(x): return 3*np.where(x > 0.1, np.divide(np.sin(x)-x*np.cos(x),x**3,where=x>0.1), 1./3. - x**2/30. + x**4/840. - x**6/45360. + x**8/3991680.) # peak ellipticity/prolateness distributions def fep(e,p,nu): return 1125./np.sqrt(10*np.pi)*e*(e**2-p**2)*nu**5*np.exp(-5./2*nu**2*(3*e**2+p**2)) def fe(e,nu): return 45*e*np.exp(-10*e**2*nu**2)*nu**2*(e*np.sqrt(10./np.pi)*nu+np.exp(5./2*e**2*nu**2)*(-1+5*e**2*nu**2)*erf(np.sqrt(5./2)*e*nu)) def Fe(e,nu): return -3*np.exp(-10*e**2*nu**2)*e*np.sqrt(10/np.pi)*nu+np.exp(-15./2*e**2*nu**2)*(1-15*e**2*nu**2)*erf(np.sqrt(5./2)*e*nu)+erf(np.sqrt(10)*e*nu) def Fp(e,p,nu): return (np.exp(-5./2*p**2*nu**2)*(10*(e*np.exp(5./2*p**2*nu**2)+np.exp(5./2*e**2*nu**2)*p)*nu+np.exp(5./2*(e**2+p**2)*nu**2)*np.sqrt(10*np.pi)*(-1+5*e**2*nu**2)*(erf(np.sqrt(5./2)*e*nu)+erf(np.sqrt(5./2)*p*nu))))/(2*(10*e*nu+np.exp(5./2*e**2*nu**2)*np.sqrt(10*np.pi)*(-1+5*e**2*nu**2)*erf(np.sqrt(5./2)*e*nu))) class Cosmology(object): ''' Class for the generation of halo populations using the method in arXiv:1905.05766. Instantiate the class once per cosmological scenario and then use it to generate halos. Parameters: k, pk: a tabulation of the dimensionless matter power spectrum P(k), scaled such that P(k,a) = P(k) a^{2g} during matter domination. Here, g ~ 0.9 due to the noncontribution of baryons to clustering at microhalo scales (g=1 if baryons are neglected). a: the scale factor at which the halo population is desired. Can be changed later. Default 1. method: the method for determining r_max and M_max (radius of and mass enclosing maximum circular velocity). See Section IV of arXiv:1905.05766 for detail. Possible values are 'turnaround', 's=0', and 's=1' currently. Can be changed later. Default 's=1'. numax: only sample peaks with height delta < numax*sigma, where sigma is the rms variance of the density field. Must be finite. Default 7. nr: resolution of radius grid to use in sampling r_max, M_max. Default nr=300 radius points. Rmin: minimum radius of grid, in units of the characteristic comoving correlation length Rstar (typically, Rstar is roughly the reciprocal of the power spectrum cutoff wavenumber). Default 0.03. Rmax: maximum radius of grid, in units of Rstar. Material that initially lies beyond the comoving radius Rmax*Rstar is neglected in sampling r_max and M_max. Default 300. OmegaM: present-day matter density in units of the critical density. Default 0.3089. OmegaB: present-day baryon density in units of the critical density. Default 0.048859. rhoCrit: present-day critical density. Default 127.313454. no_cov: if True, do not generate covariance matrices. Covariance matrices are only required to sample r_max and M_max. Default False. Methods: sample_A(N): sample N instances of the r^-3/2 asymptotic coefficients A. sample_rM(N): sample N instances of r_max and M_max. sample(N): jointly sample A with r_max and M_max. sample_profile(): sample_peak(N): set_scale(a): change the scale factor at which to generate halos. set_method(method): change the method used to sample r_max and M_max. ''' # distributions def dndnudx(self,nu,x): return np.exp(-.5*nu**2)/((2*np.pi)**2*self.Rstar**3)*f(x)*np.exp(-.5*(x-self.gamma*nu)**2/(1.-self.gamma**2))/np.sqrt(2*np.pi*(1-self.gamma**2)) def dndx(self,x): return f(x)/(2*(2*np.pi)**2*self.Rstar**3)*np.exp(-x**2/2.)*(1+erf(x*self.gamma/(2*(1-self.gamma**2))**.5)) def _covariance(self): self.r = np.geomspace(self.Rmin,self.Rmax,self.nr)*self.Rstar self.rm = self.r[1:] self.lnr = np.log(self.r) self.lnrm = np.log(self.rm) # give everything a leading r index (nr) pshape = (self.nk, 1, 1,) # k index, for integration vshape = ( 1,self.nr, 1,) # vector index kr = self.k.reshape(pshape)*self.r.reshape(vshape) # vector index skr = sinc(kr) time_start = time.time() # column vectors, shape (1,nr,1) self.cov_delta_nu = 1./self.sigma0*trapz(self.pk.reshape(pshape) *skr,x=self.lnk,axis=0) self.cov_delta_x = 1./self.sigma2*trapz((self.pk*self.k**2).reshape(pshape)*skr,x=self.lnk,axis=0) # matrices, shape (1,nr,nr) self.cov_delta_delta = trapz(self.pk.reshape(pshape)*skr*skr.reshape((self.nk,1,self.nr)),x=self.lnk,axis=0) del kr, skr # delta(r) distribution delta_cov = self.cov_delta_delta-1./(1-self.gamma**2)*(np.matmul(self.cov_delta_nu,self.cov_delta_nu.T)+np.matmul(self.cov_delta_x,self.cov_delta_x.T)-self.gamma*(np.matmul(self.cov_delta_nu,self.cov_delta_x.T)+np.matmul(self.cov_delta_x,self.cov_delta_nu.T))) self.delta_vals, self.delta_vecs = linalg.eigh(delta_cov) # vecs.T@vecs = 1, vecs.T@M@vecs = np.diag(vals), [email protected](vals)@vecs.T = M self.delta_vals[self.delta_vals<0]=0 print(' covariance matrices computed in %.2fs'%(time.time() - time_start)) def set_scale(self,a): ''' Change the scale factor at which to generate the halo population. ''' self.a = a self.dcoll = dc/self.a**self.g self.dvir = dc/self.a**self.g def set_method(self,method): ''' Change the method used to sample r_max and M_max. ''' if method in ['ta' or 'turnaround']: self.s = 'ta' self.beta = .131 self.betaM = 0.273 elif method in ['s=0']: self.s = 0 self.beta = .414 self.betaM = 0.441 elif method in ['s=1']: self.s = 1 self.beta = .846 self.betaM = 0.658 else: raise ValueError('method must be turnaround, s=0, or s=1') def __init__(self,k,pk,a=1,method='s=1',numax=7,nr=300,Rmin=0.03,Rmax=300, OmegaM=0.3089,OmegaB=0.048859,rhoCrit=127.313454,no_cov=False,): # power spectrum table self.k = k self.pk = pk self.nk = len(k) self.lnk = np.log(k) # power spectrum properties self.sigma0 = sigmaj(0,k,pk) self.sigma1 = sigmaj(1,k,pk) self.sigma2 = sigmaj(2,k,pk) self.gamma = self.sigma1**2/(self.sigma0*self.sigma2) self.Rstar = 3**.5*self.sigma1/self.sigma2 # cosmology self.g = 5./4*(1-24./25*OmegaB/OmegaM)**.5-1./4 self.rhoC = rhoCrit*(OmegaM-OmegaB) # total number density, reduced distributions self.n = quad(self.dndx,0,np.inf)[0] self.fx = lambda x: self.dndx(x)/self.n self.fnux = lambda nu,x: self.dndnudx(nu,x)/self.n # halo generation options self.set_scale(a) self.set_method(method) self.alpha = 12.1 self.numax = numax self.nr = nr self.Rmin = Rmin self.Rmax = Rmax # prepare covariance matrices if not no_cov: self._covariance() def init(self,*args,**kwargs): self.__init__(*args,**kwargs) def sample_nux(self,N): ''' Sample peak properties nu and x (height and "steepness") as defined in BBKS 1986. ''' fnuxmax = self.fnux(*fmin(lambda nux: -self.fnux(nux[0],nux[1]),[1,1],disp=False)) sample = lambda N: (np.random.rand(N)*self.numax, np.random.rand(N)*self.numax) test = lambda nu,x: np.random.rand(nu.size)*fnuxmax < self.fnux(nu,x) time_start = time.time() nu,x = sample(N) accept = test(nu,x) reject, = np.where(~accept) while reject.size > 0: nu_,x_ = sample(reject.size) accept = test(nu_,x_) nu[reject[accept]] = nu_[accept] x[reject[accept]] = x_[accept] reject = reject[~accept] print(' nu, x sampled in %.2fs'%(time.time() - time_start)) return nu,x def sample_ep(self,nu,x): ''' Sample peak properties e and p (ellipticity and prolateness) as defined in BBKS 1986. ''' # use inverse transform method N = len(nu) P = np.random.rand(N,2) e = np.zeros(N) p = np.zeros(N) time_start = time.time() for i in range(N): e[i] = brentq(lambda e: Fe(e,nu[i])-P[i,0],0,2./nu[i])#,rtol=1e-3) p[i] = brentq(lambda p: Fp(e[i],p,nu[i])-P[i,1],-e[i],e[i])#,rtol=1e-3) print(' e, p sampled in %.2fs'%(time.time() - time_start)) return e,p def _sample_A(self,nu,x,e,p,return_ac=False,return_ace=False): ''' Predict A given peak parameters ''' N = len(nu) # compute asymptote d = nu*self.sigma0 d2d = x*self.sigma2 #A = d**2.25*d2d**-.75*self.rhoC A = dc**(1.5*(1-1./self.g))*d**(.75*(2./self.g+1))*d2d**-.75*self.rhoC ec_mod = np.zeros(N) time_start = time.time() for i in range(N): ec_mod[i] = ec_scale(e[i],p[i]) print(' A sampled in %.2fs'%(time.time() - time_start)) idx = (ec_mod>0)&(d>self.dcoll*ec_mod) Ae = A.copy() Ae[~idx] = -1 Ae[idx] *= ec_mod[idx]**(-1.5/self.g)*self.alpha if not (return_ac or return_ace): return Ae else: ret = [Ae] if return_ac: ret += [(dc/d)**(1./self.g)] if return_ace: ret += [(ec_mod*dc/d)**(1./self.g)] return ret def _sample_delta(self,nu,x,return_Delta=False,return_eps=False): ''' Sample density profile about given peak ''' delta_mean = 1./(1-self.gamma**2)*((self.cov_delta_nu-self.gamma*self.cov_delta_x)*nu+(self.cov_delta_x-self.gamma*self.cov_delta_nu)*x) kappa = np.random.normal(0,self.delta_vals**.5).reshape((self.nr,1)) delta = (delta_mean+np.matmul(self.delta_vecs,kappa)) delta.shape = (self.nr) if not (return_Delta or return_eps): return delta else: d = nu*self.sigma0 Delta = 3./self.rm**3*(cumtrapz(delta*self.r**2,x=self.r)+d*self.r[0]**3/3.) ret = [delta] if return_Delta: ret += [Delta] if return_eps: ret += [1.-delta[1:]/Delta] return tuple(ret) def _profile(self,d,delta,Delta,eps,return_X=False,return_dlnXdlnq=False): ''' Predict halo mass profile given peak profile ''' fail = [-1,-1] if return_X: fail += [-1] if return_dlnXdlnq: fail += [-1] if d < self.dcoll: return fail # interpolation d_interp = interp1d(self.lnr,delta,kind='cubic',fill_value='extrapolate') D_interp = interp1d(self.lnrm,Delta,kind='cubic',fill_value='extrapolate') e_interp = lambda lnr: 1-d_interp(lnr)/D_interp(lnr) # get limits try: ic1 = np.where(Delta<self.dvir)[0][0] lnrc1 = brentq(lambda lnr: D_interp(lnr)-self.dvir,self.lnrm[ic1-1],self.lnrm[ic1]) except: ic1 = len(self.rm)-1 lnrc1 = self.lnrm[-1] try: ic2 =
np.where((eps<0)&(self.rm>self.Rstar))
numpy.where
import numpy as np fmt_dict = { 'sep': ',', 'cast_type': int } def solve(data, day_targets=(80, 256)): initial_population = np.array(data, dtype=int) age_counts = np.array([np.sum(initial_population == i) for i in range(9)], dtype=np.uint64) result = {day:0 for day in day_targets} for day in range(1, max(day_targets)+1): age_counts =
np.roll(age_counts, -1)
numpy.roll
import sys import os import json from numpy.core.fromnumeric import shape from torch._C import dtype from torch.utils.data import Dataset import torch import numpy as np from skimage import io, transform import matplotlib.pyplot as plt import math from utils import image_proc from timeit import default_timer as timer import random import scipy import torchvision.transforms.functional as TF from utils.utils import load_flow, load_graph_nodes, load_graph_edges, load_graph_edges_weights, load_graph_node_deformations, \ load_graph_clusters, load_int_image, load_float_image from utils import image_proc from NeuralNRT._C import compute_pixel_anchors_geodesic as compute_pixel_anchors_geodesic_c from NeuralNRT._C import compute_pixel_anchors_euclidean as compute_pixel_anchors_euclidean_c from NeuralNRT._C import compute_mesh_from_depth as compute_mesh_from_depth_c from NeuralNRT._C import compute_mesh_from_depth_and_color as compute_mesh_from_depth_and_color_c from NeuralNRT._C import erode_mesh as erode_mesh_c from NeuralNRT._C import sample_nodes as sample_nodes_c from NeuralNRT._C import compute_edges_geodesic as compute_edges_geodesic_c from NeuralNRT._C import compute_edges_euclidean as compute_edges_euclidean_c from NeuralNRT._C import construct_regular_graph as construct_regular_graph_c from utils import utils import open3d as o3d import numba import cv2 class StaticCenterCrop(object): def __init__(self, image_size, crop_size): self.th, self.tw = crop_size self.h, self.w = image_size def __call__(self, img): if len(img.shape) == 2: return img[(self.h-self.th)//2:(self.h+self.th)//2, (self.w-self.tw)//2:(self.w+self.tw)//2] else: return img[(self.h-self.th)//2:(self.h+self.th)//2, (self.w-self.tw)//2:(self.w+self.tw)//2, :] class DeformDataset(Dataset): def __init__( self, dataset_base_dir, data_version, input_width, input_height, max_boundary_dist ): self.dataset_base_dir = dataset_base_dir self.data_version_json = os.path.join( self.dataset_base_dir, data_version + ".json") self.input_width = input_width self.input_height = input_height self.max_boundary_dist = max_boundary_dist self.cropper = None self._load() def _load(self): with open(self.data_version_json) as f: self.labels = json.loads(f.read()) def __len__(self): return len(self.labels) def __getitem__(self, index): data = self.labels[index] src_color_image_path = os.path.join( self.dataset_base_dir, data["source_color"]) src_depth_image_path = os.path.join( self.dataset_base_dir, data["source_depth"]) tgt_color_image_path = os.path.join( self.dataset_base_dir, data["target_color"]) tgt_depth_image_path = os.path.join( self.dataset_base_dir, data["target_depth"]) graph_nodes_path = os.path.join( self.dataset_base_dir, data["graph_nodes"]) graph_edges_path = os.path.join( self.dataset_base_dir, data["graph_edges"]) graph_edges_weights_path = os.path.join( self.dataset_base_dir, data["graph_edges_weights"]) graph_node_deformations_path = os.path.join( self.dataset_base_dir, data["graph_node_deformations"]) graph_clusters_path = os.path.join( self.dataset_base_dir, data["graph_clusters"]) pixel_anchors_path = os.path.join( self.dataset_base_dir, data["pixel_anchors"]) pixel_weights_path = os.path.join( self.dataset_base_dir, data["pixel_weights"]) optical_flow_image_path = os.path.join( self.dataset_base_dir, data["optical_flow"]) scene_flow_image_path = os.path.join( self.dataset_base_dir, data["scene_flow"]) # Load source, target image and flow. source, _, cropper = DeformDataset.load_image( src_color_image_path, src_depth_image_path, data[ "intrinsics"], self.input_height, self.input_width ) target, target_boundary_mask, _ = DeformDataset.load_image( tgt_color_image_path, tgt_depth_image_path, data[ "intrinsics"], self.input_height, self.input_width, cropper=cropper, max_boundary_dist=self.max_boundary_dist, compute_boundary_mask=True ) optical_flow_gt, optical_flow_mask, scene_flow_gt, scene_flow_mask = DeformDataset.load_flow( optical_flow_image_path, scene_flow_image_path, cropper ) # Load/compute graph. graph_nodes, graph_edges, graph_edges_weights, graph_node_deformations, graph_clusters, pixel_anchors, pixel_weights = DeformDataset.load_graph_data( graph_nodes_path, graph_edges_path, graph_edges_weights_path, graph_node_deformations_path, graph_clusters_path, pixel_anchors_path, pixel_weights_path, cropper ) # Compute groundtruth transformation for graph nodes. num_nodes = graph_nodes.shape[0] # Check that flow mask is valid for at least one pixel. assert np.sum( optical_flow_mask) > 0, "Zero flow mask for sample: " + json.dumps(data) # Store intrinsics. fx = data["intrinsics"]["fx"] fy = data["intrinsics"]["fy"] cx = data["intrinsics"]["cx"] cy = data["intrinsics"]["cy"] fx, fy, cx, cy = image_proc.modify_intrinsics_due_to_cropping( fx, fy, cx, cy, self.input_height, self.input_width, original_h=480, original_w=640 ) intrinsics = np.zeros((4), dtype=np.float32) intrinsics[0] = fx intrinsics[1] = fy intrinsics[2] = cx intrinsics[3] = cy return { "source": source, "target": target, "target_boundary_mask": target_boundary_mask, "optical_flow_gt": optical_flow_gt, "optical_flow_mask": optical_flow_mask, "scene_flow_gt": scene_flow_gt, "scene_flow_mask": scene_flow_mask, "graph_nodes": graph_nodes, "graph_edges": graph_edges, "graph_edges_weights": graph_edges_weights, "graph_node_deformations": graph_node_deformations, "graph_clusters": graph_clusters, "pixel_anchors": pixel_anchors, "pixel_weights": pixel_weights, "num_nodes": np.array(num_nodes, dtype=np.int64), "intrinsics": intrinsics, "index": np.array(index, dtype=np.int32) } def get_metadata(self, index): return self.labels[index] @staticmethod def backproject_depth(depth_image, fx, fy, cx, cy, normalizer=1000.0): return image_proc.backproject_depth(depth_image, fx, fy, cx, cy, normalizer=1000.0) @staticmethod def load_image( color_image_path, depth_image_path, intrinsics, input_height, input_width, cropper=None, max_boundary_dist=0.1, compute_boundary_mask=False ): # Load images. color_image = io.imread(color_image_path) # (h, w, 3) depth_image = io.imread(depth_image_path) # (h, w) # Backproject depth image. depth_image = image_proc.backproject_depth( depth_image, intrinsics["fx"], intrinsics["fy"], intrinsics["cx"], intrinsics["cy"]) # (3, h, w) depth_image = depth_image.astype(np.float32) depth_image = np.moveaxis(depth_image, 0, -1) # (h, w, 3) image_size = color_image.shape[:2] # Crop, since we need it to be divisible by 64 if cropper is None: cropper = StaticCenterCrop(image_size, (input_height, input_width)) color_image = cropper(color_image) depth_image = cropper(depth_image) # Construct the final image. image = np.zeros((6, input_height, input_width), dtype=np.float32) image[:3, :, :] = np.moveaxis( color_image, -1, 0) / 255.0 # (3, h, w) assert np.max(image[:3, :, :]) <= 1.0, np.max(image[:3, :, :]) image[3:, :, :] = np.moveaxis( depth_image, -1, 0) # (3, h, w) if not compute_boundary_mask: return image, None, cropper else: assert max_boundary_dist boundary_mask = image_proc.compute_boundary_mask( depth_image, max_boundary_dist) return image, boundary_mask, cropper @staticmethod def load_flow(optical_flow_image_path, scene_flow_image_path, cropper): # Load flow images. optical_flow_image = load_flow(optical_flow_image_path) # (2, h, w) scene_flow_image = load_flow(scene_flow_image_path) # (3, h, w) # Temporarily move axis for cropping optical_flow_image = np.moveaxis( optical_flow_image, 0, -1) # (h, w, 2) scene_flow_image = np.moveaxis(scene_flow_image, 0, -1) # (h, w, 3) # Crop for dimensions to be divisible by 64 optical_flow_image = cropper(optical_flow_image) scene_flow_image = cropper(scene_flow_image) # Compute flow mask. # (h, w, 2) optical_flow_mask = np.isfinite(optical_flow_image) optical_flow_mask = np.logical_and( optical_flow_mask[..., 0], optical_flow_mask[..., 1]) # (h, w) # (h, w, 1) optical_flow_mask = optical_flow_mask[..., np.newaxis] optical_flow_mask = np.repeat( optical_flow_mask, 2, axis=2) # (h, w, 2) # (h, w, 3) scene_flow_mask = np.isfinite(scene_flow_image) scene_flow_mask = np.logical_and( scene_flow_mask[..., 0], scene_flow_mask[..., 1], scene_flow_mask[..., 2]) # (h, w) # (h, w, 1) scene_flow_mask = scene_flow_mask[..., np.newaxis] # (h, w, 3) scene_flow_mask = np.repeat(scene_flow_mask, 3, axis=2) # set invalid pixels to zero in the flow image optical_flow_image[optical_flow_mask == False] = 0.0 scene_flow_image[scene_flow_mask == False] = 0.0 # put channels back in first axis optical_flow_image = np.moveaxis( optical_flow_image, -1, 0).astype(np.float32) # (2, h, w) optical_flow_mask = np.moveaxis( optical_flow_mask, -1, 0).astype(np.int64) # (2, h, w) scene_flow_image = np.moveaxis( scene_flow_image, -1, 0).astype(np.float32) # (3, h, w) scene_flow_mask = np.moveaxis( scene_flow_mask, -1, 0).astype(np.int64) # (3, h, w) return optical_flow_image, optical_flow_mask, scene_flow_image, scene_flow_mask @staticmethod def load_graph_data( graph_nodes_path, graph_edges_path, graph_edges_weights_path, graph_node_deformations_path, graph_clusters_path, pixel_anchors_path, pixel_weights_path, cropper ): # Load data. graph_nodes = load_graph_nodes(graph_nodes_path) graph_edges = load_graph_edges(graph_edges_path) graph_edges_weights = load_graph_edges_weights( graph_edges_weights_path) graph_node_deformations = load_graph_node_deformations( graph_node_deformations_path) if graph_node_deformations_path is not None else None graph_clusters = load_graph_clusters(graph_clusters_path) pixel_anchors = cropper(load_int_image(pixel_anchors_path)) pixel_weights = cropper(load_float_image(pixel_weights_path)) assert np.isfinite(graph_edges_weights).all(), graph_edges_weights assert np.isfinite(pixel_weights).all(), pixel_weights if graph_node_deformations is not None: assert np.isfinite( graph_node_deformations).all(), graph_node_deformations assert graph_node_deformations.shape[1] == 3 assert graph_node_deformations.dtype == np.float32 return graph_nodes, graph_edges, graph_edges_weights, graph_node_deformations, graph_clusters, pixel_anchors, pixel_weights @staticmethod def collate_with_padding(batch): batch_size = len(batch) # Compute max number of nodes. item_keys = 0 max_num_nodes = 0 for sample_idx in range(batch_size): item_keys = batch[sample_idx].keys() num_nodes = batch[sample_idx]["num_nodes"] if num_nodes > max_num_nodes: max_num_nodes = num_nodes # Convert merged parts into torch tensors. # We pad graph nodes, edges and deformation ground truth with zeros. batch_converted = {} for key in item_keys: if key == "graph_nodes" or key == "graph_edges" or \ key == "graph_edges_weights" or key == "graph_node_deformations" or \ key == "graph_clusters": batched_sample = torch.zeros( (batch_size, max_num_nodes, batch[0][key].shape[1]), dtype=torch.from_numpy(batch[0][key]).dtype) for sample_idx in range(batch_size): batched_sample[sample_idx, :batch[sample_idx][key].shape[0], :] = torch.from_numpy( batch[sample_idx][key]) batch_converted[key] = batched_sample else: batched_sample = torch.zeros( (batch_size, *batch[0][key].shape), dtype=torch.from_numpy(batch[0][key]).dtype) for sample_idx in range(batch_size): batched_sample[sample_idx] = torch.from_numpy( batch[sample_idx][key]) batch_converted[key] = batched_sample return [ batch_converted["source"], batch_converted["target"], batch_converted["target_boundary_mask"], batch_converted["optical_flow_gt"], batch_converted["optical_flow_mask"], batch_converted["scene_flow_gt"], batch_converted["scene_flow_mask"], batch_converted["graph_nodes"], batch_converted["graph_edges"], batch_converted["graph_edges_weights"], batch_converted["graph_node_deformations"], batch_converted["graph_clusters"], batch_converted["pixel_anchors"], batch_converted["pixel_weights"], batch_converted["num_nodes"], batch_converted["intrinsics"], batch_converted["index"] ] def erode_mesh(vertexPositions, faceIndices, nIterations, minNeighbors): """[summary] Args: vertexPositions ([type]): [N,3] faceIndices ([type]): [N,3] nIterations ([type]): int minNeighbors ([type]): int Returns: [type]: [description] """ nonErodedVertices = erode_mesh_c( vertexPositions, faceIndices, nIterations, minNeighbors) return nonErodedVertices def sample_nodes(vertexPositions, nonErodedVertices, nodeCoverage, useOnlyValidIndices): nodePositions = np.zeros(shape=vertexPositions.shape, dtype=np.float32) nodeIndices = np.zeros( shape=[vertexPositions.shape[0], 1], dtype=np.int) nodeIndices[:, :] = -1 nodes_size = sample_nodes_c(vertexPositions, nonErodedVertices, nodePositions, nodeIndices, nodeCoverage, useOnlyValidIndices) return nodePositions, nodeIndices, nodes_size def sample_node_py_v2(vertexPositions, nodeCoverage=0.05): nodeCoverage2 = nodeCoverage * nodeCoverage nVertices = vertexPositions.shape[0] shuffledVertices = [i for i in range(nVertices)] np.random.shuffle(shuffledVertices) nodePositionsVec = [] nodeIndices = [] for vertexIdx in shuffledVertices: point = vertexPositions[vertexIdx] bIsNode = True for node in nodePositionsVec: if np.sum((point-node) ** 2) <= nodeCoverage2: bIsNode = False break if bIsNode: nodePositionsVec.append(vertexPositions[vertexIdx]) nodeIndices.append(vertexIdx) return np.array(nodePositionsVec, dtype=np.float32), np.array(nodeIndices, np.int) def sample_nodes_v3(vertexPositions, nodeCoverage=0.05): # down-sampling vertices at frist, then sample nodes org_pcd = o3d.geometry.PointCloud() org_pcd.points = o3d.utility.Vector3dVector(vertexPositions) output, cubic_id, original_indices = org_pcd.voxel_down_sample_and_trace( voxel_size=nodeCoverage*0.8, min_bound=vertexPositions.min(0), max_bound=vertexPositions.max(0)) sampled_vertices = np.asarray(output.points) return sampled_vertices def sample_nodes_py(vertexPositions, radius=0.05): pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(vertexPositions) pcd.colors = o3d.utility.Vector3dVector( np.ones_like(vertexPositions, dtype=np.uint8)*np.array([0, 0, 255])) # sample nodes python downpcd = pcd.voxel_down_sample(voxel_size=0.025*0.7) graph_nodes = downpcd.points graph_nodes = sample_nodes(graph_nodes, radius=radius) return np.array(graph_nodes) def compute_edges_geodesic(vertexPositions, faceIndices, nodeIndices, nMaxNeighbors, maxInfluence): graphEdges = compute_edges_geodesic_c( vertexPositions, faceIndices, nodeIndices, nMaxNeighbors, maxInfluence) return graphEdges def compute_edges_geodesic_py(vertexPositions, faceIndices, nodeIndices, nMaxNeighbors, maxInfluence): from queue import PriorityQueue nVertices = vertexPositions.shape[0] nFaces = faceIndices.shape[0] nNodes = nodeIndices.shape[0] vertexNeighbors = [[] for i in range(nVertices)] # Preprocess vertex neighbors. for faceIdx in range(nFaces): for j in range(3): v_idx = faceIndices[faceIdx, j] for k in range(3): n_idx = faceIndices[faceIdx, k] if(v_idx == n_idx): continue vertexNeighbors[v_idx].append(n_idx) # Compute inverse vertex -> node relationship. mapVertexToNode = np.array([-1 for i in range(nVertices)]) for nodeId in range(nNodes): vertexIdx = nodeIndices[nodeId] if vertexIdx > 0: mapVertexToNode[vertexIdx] = nodeId graphEdges = -np.ones(shape=[nNodes, nMaxNeighbors], dtype=np.int) for nodeId in range(nNodes): nextVerticesWithIds = PriorityQueue() visitedVertices = [] # Add node vertex as the first vertex to be visited nodeVertexIdx = nodeIndices[nodeId] if nodeVertexIdx < 0: continue nextVerticesWithIds.put([0., nodeVertexIdx, ]) # Traverse all neighbors in the monotonically increasing order. neighborNodeIds = [] while not nextVerticesWithIds.empty(): nextVertexDist, nextVertexIdx = nextVerticesWithIds.get() # We skip the vertex, if it was already visited before. if nextVertexIdx in visitedVertices: continue # We check if the vertex is a node. nextNodeId = mapVertexToNode[nextVertexIdx] if nextNodeId >= 0 and nextNodeId != nodeId: neighborNodeIds.append(nextNodeId) if len(neighborNodeIds) > nMaxNeighbors: break # We visit the vertex, and check all his neighbors. # We add only vertices under a certain distance. visitedVertices.append(nextVertexIdx) nextVertexPos = vertexPositions[nextVertexIdx] nextNeighbors = vertexNeighbors[nextVertexIdx] for neighborIdx in nextNeighbors: neighborVertexPos = vertexPositions[neighborIdx] dist = nextVertexDist + \ np.linalg.norm(nextVertexPos - neighborVertexPos, ord=2) if dist <= maxInfluence: nextVerticesWithIds.put([dist, neighborIdx]) # If we don't get any geodesic neighbors, we take one nearest Euclidean neighbor, # to have a constrained optimization system at non-rigid tracking. if len(neighborNodeIds) == 0: nearestDistance2 = np.inf nearestNodeId = -1 nodePos = vertexPositions[nodeVertexIdx] for i in range(nNodes): vertexIdx = nodeIndices[i] if i != nodeId and vertexIdx >= 0: neighborPos = vertexPositions[vertexIdx] distance2 = np.linalg.norm(neighborPos - nodePos, ord=2) if distance2 < nearestDistance2: nearestDistance2 = distance2 nearestNodeId = i if (nearestNodeId >= 0): neighborNodeIds.append(nearestNodeId) nNeighbors = min(nMaxNeighbors, len(neighborNodeIds)) for i in range(nNeighbors): graphEdges[nodeId, i] = neighborNodeIds[i] for i in range(nNeighbors, nMaxNeighbors): graphEdges[nodeId, i] = -1 return graphEdges def compute_edges_euclidean(nodePositions, nMaxNeighbors=8): graphEdges = compute_edges_euclidean_c(nodePositions, nMaxNeighbors) return graphEdges @numba.jit() def compute_distance(src_points, target_points): num_src = src_points.shape[0] num_tgt = target_points.shape[0] distance = np.zeros(shape=[num_src, num_tgt]) for i in range(num_src): for j in range(num_tgt): distance[i, j] = np.linalg.norm( src_points[i] - target_points[j], ord=2) return distance def compute_edges_py(graph_nodes, nMaxNeighbors=8): distance = compute_distance(graph_nodes, graph_nodes) sorted_index = np.argsort(distance) graph_edges = sorted_index[:, 1:nMaxNeighbors] return graph_edges def compute_pixel_anchors_geodesic(graphNodes, graphEdges, pointImage, neighborhoodDepth, nodeCoverage): nMaxNeighbors = graphEdges.shape[1] _, height, width = pointImage.shape pixelAnchors = np.zeros(shape=[height, width, nMaxNeighbors], dtype=np.int) pixelAnchors[:] = -1 pixelWeights = np.zeros( shape=[height, width, nMaxNeighbors], dtype=np.float32) compute_pixel_anchors_geodesic_c( graphNodes, graphEdges, pointImage, neighborhoodDepth, nodeCoverage, pixelAnchors, pixelWeights) return pixelAnchors, pixelWeights @numba.jit() def compute_pixel_anchors_geodesic_py(pixelAnchors, pixelWeights, graphNodes, graphEdges, pointImage, neighborhoodDepth, nodeCoverage): numNodes, numNeighbors = graphNodes.shape GRAPH_K = 4 _, height, width = pointImage.shape for y in range(height): for x in range(width): pixelPos = pointImage[:, y, x] if pixelPos[2] <= 0: continue # find nearest Euclidean graph node. dists = np.sqrt(((graphNodes-pixelPos) ** 2).sum(axis=1)) nearestNodeId = np.argsort(dists) # Compute the geodesic neighbor candidates. neighbors = set([nearestNodeId, ]) newNeighbors = set([nearestNodeId, ]) for i in range(neighborhoodDepth): currentNeighbors = set() for neighborId in newNeighbors: for k in range(numNeighbors): currentNeighborId = graphEdges[neighborId, k] if currentNeighborId >= 0: currentNeighbors.add(currentNeighborId) newNeighbors.clear() newNeighbors = currentNeighbors - neighbors neighbors.union(newNeighbors) # Keep only the k nearest geodesic neighbors. nodes_distances = [np.linalg.norm( graphNodes[neighborId] - pixelPos, ord=2) for neighborId in neighbors] nearestNodes = np.argsort(nodes_distances)[:GRAPH_K] # Compute skinning weights. nearestGeodesicNodeIds, skinningWeights = [], [] weightSum = 0 for nodeId in nearestNodes: nodePose = graphNodes[nodeId] weight = np.exp(-(np.linalg.norm(pixelPos - nodePose, ord=2)) ** 2 / (2*nodeCoverage*nodeCoverage)) weightSum += weight nearestGeodesicNodeIds.append(nodeId) skinningWeights.append(weight) nAnchors = len(nearestGeodesicNodeIds) if weightSum > 0: for i in range(nAnchors): skinningWeights[i] = skinningWeights[i]/weightSum elif nAnchors > 0: for i in range(nAnchors): skinningWeights[i] = 1 / nAnchors # Store the results for i in range(nAnchors): pixelAnchors[y, x] = np.array(nearestGeodesicNodeIds[i]) pixelWeights[y, x] = np.array(skinningWeights[i]) return pixelAnchors, pixelWeights @numba.jit() def compute_mesh_anchors_geodesic_py(Anchors, Weights, graphNodes, graphEdges, verts, neighborhoodDepth, nodeCoverage): numNodes, numNeighbors = graphEdges.shape GRAPH_K = 4 nverts, _ = verts.shape for x in range(nverts): vertPos = verts[x] if vertPos[2] <= 0: continue # find nearest Euclidean graph node. dists = np.sqrt(((graphNodes-vertPos) ** 2).sum(axis=1)) nearestNodeId = np.argsort(dists)[0] # Compute the geodesic neighbor candidates. neighbors = set([nearestNodeId, ]) newNeighbors = set([nearestNodeId, ]) for i in range(neighborhoodDepth): currentNeighbors = set() for neighborId in newNeighbors: for k in range(numNeighbors): currentNeighborId = graphEdges[neighborId, k] if currentNeighborId >= 0: currentNeighbors.add(currentNeighborId) newNeighbors.clear() newNeighbors = currentNeighbors - neighbors neighbors = neighbors.union(newNeighbors) # Keep only the k nearest geodesic neighbors. dists = [np.linalg.norm( graphNodes[neighborId] - vertPos, ord=2) for neighborId in neighbors] neighbors = np.argsort(dists)[:GRAPH_K] # Compute skinning weights. nearestNodeIds, skinningWeights = [], [] weightSum = 0 for nodeId in neighbors: dist = dists[nodeId] if dist > nodeCoverage: continue weight = np.exp(-dist ** 2 / (2*nodeCoverage*nodeCoverage)) weightSum += weight nearestNodeIds.append(nodeId) skinningWeights.append(weight) nAnchors = len(nearestNodeIds) if weightSum > 0: for i in range(nAnchors): skinningWeights[i] = skinningWeights[i]/weightSum elif nAnchors > 0: for i in range(nAnchors): skinningWeights[i] = 1 / nAnchors # Store the results for i in range(nAnchors): Anchors[x, i] = np.array(nearestNodeIds[i]) Weights[x, i] = np.array(skinningWeights[i]) return Anchors, Weights @numba.jit() def compute_mesh_anchors_euclidean_py(Anchors, Weights, graphNodes, verts, nodeCoverage): GRAPH_K = 4 nverts, _ = verts.shape for x in range(nverts): vertPos = verts[x] if vertPos[2] <= 0: continue # find nearest Euclidean graph node. dists = np.sqrt(((graphNodes-vertPos) ** 2).sum(axis=1)) neighbors = np.argsort(dists)[:GRAPH_K] # Compute skinning weights. nearestNodeIds, skinningWeights = [], [] weightSum = 0 for nodeId in neighbors: dist = dists[nodeId] if dist > nodeCoverage: continue weight = np.exp(-dist ** 2 / (2*nodeCoverage*nodeCoverage)) weightSum += weight nearestNodeIds.append(nodeId) skinningWeights.append(weight) nAnchors = len(nearestNodeIds) if weightSum > 0: for i in range(nAnchors): skinningWeights[i] = skinningWeights[i]/weightSum elif nAnchors > 0: for i in range(nAnchors): skinningWeights[i] = 1 / nAnchors # Store the results for i in range(nAnchors): Anchors[x, i] = np.array(nearestNodeIds[i]) Weights[x, i] = np.array(skinningWeights[i]) return Anchors, Weights def compute_pixel_anchors_euclidean(graphNodes, pointImage, nodeCoverage): nMaxNeighbors = graphNodes.shape[0] _, height, width = pointImage.shape pixelAnchors = - \ np.ones(shape=[height, width, nMaxNeighbors], dtype=np.int) pixelWeights = np.zeros( shape=[height, width, nMaxNeighbors], dtype=np.float32) compute_pixel_anchors_euclidean_c( graphNodes, pointImage, nodeCoverage, pixelAnchors, pixelWeights) return pixelAnchors, pixelWeights @numba.jit() def compute_pixel_anchors_euclidean_py(graphNodes, pointImage, nodeCoverage): GRAPH_K = 4 _, height, width = pointImage.shape pixelAnchors = -np.ones(shape=[height, width, GRAPH_K], dtype=np.int) pixelWeights = np.zeros( shape=[height, width, GRAPH_K], dtype=np.float32) for y in range(height): for x in range(width): pixelPos = pointImage[:, y, x] if pixelPos[2] < 0: continue # find nearest Euclidean graph node. dists = np.sqrt(((graphNodes-pixelPos) ** 2).sum(axis=1)) neighbors = np.argsort(dists)[:GRAPH_K] # Compute skinning weights. nearestEuclideanNodeIds, skinningWeights = [], [] weightSum = 0 for nodeId in neighbors: distance = dists[nodeId] if distance > nodeCoverage: continue weight = np.exp(-distance ** 2 / (2*nodeCoverage*nodeCoverage)) weightSum += weight nearestEuclideanNodeIds.append(nodeId) skinningWeights.append(weight) nAnchors = len(nearestEuclideanNodeIds) if weightSum > 0: for i in range(nAnchors): skinningWeights[i] = skinningWeights[i]/weightSum elif nAnchors > 0: for i in range(nAnchors): skinningWeights[i] = 1 / nAnchors # Store the results for i in range(nAnchors): pixelAnchors[y, x, i] = np.array(nearestEuclideanNodeIds[i]) pixelWeights[y, x, i] = np.array(skinningWeights[i]) return pixelAnchors, pixelWeights @ numba.jit() def compute_voxel_anchors(voxel_anchors, voxel_weigths, transfromed_graphNodes, w2d_r, w2d_t, cell_size, nodeCoverage): X_SIZE, Y_SIZE, Z_SIZE = voxel_anchors.shape[:3] GRAPH_K = 4 for ix in range(X_SIZE): for iy in range(Y_SIZE): for iz in range(Z_SIZE): voxelPos = (np.array([ix, iy, iz]) + 0.5) * cell_size voxel_depth_frame = np.dot(voxelPos, w2d_r) + w2d_t if (voxel_depth_frame[2] < 0): continue # find nearest Euclidean graph node. dists = np.sqrt( ((transfromed_graphNodes-voxelPos) ** 2).sum(axis=1)) neighbors =
np.argsort(dists)
numpy.argsort
####################################### # load mnist # import mnist import numpy as np def normalize(img): fac = 0.99 / 255 return img * fac + 0.01 def digit_to_layer(digit): return (np.arange(10) == digit).astype(np.float) train_images = np.array([normalize(img) for img in mnist.train_images()]) train_labels = np.array([digit_to_layer(digit) for digit in mnist.train_labels()]) test_images = np.array([normalize(img) for img in mnist.test_images()]) test_labels = np.array([digit_to_layer(digit) for digit in mnist.test_labels()]) ### import math from functools import reduce padding = 'valid' padding = 'same' padding = 'full' # I x I x C # O x O x K def init_tuple_counter(count_to: tuple) -> tuple: return tuple(np.zeros(len(count_to.shape), dtype=int)) def adder(counter: tuple, max: tuple) -> tuple: if counter == max: return counter counter_array = np.array(counter) length = len(counter_array) carry = True for i in range(length - 1, -1, -1): counter_array[i] = counter_array[i] + 1 carry = False if counter_array[i] > max[i]: counter_array[i] = 0 carry = True if not carry: break counted = [max[:-1] == counter_array[:-1]] if carry and counted: counter_array = max return tuple(counter_array) def conv2d(input: np.array, output: np.array, filters: np.array, stride: tuple([int, int]) = (1, 1)) \ -> np.array: ## padding needs to be implemented ## proper strides kernel_y = len(filters) kernel_x = len(filters[0]) kernel_channels = len(filters[0][0]) num_filters = len(filters[0][0][0]) batch_shape = input.shape[:-3] layer_shape = input.shape[-3:] layer_height = layer_shape[0] layer_width = layer_shape[1] layer_channel = layer_shape[2] stride_x = stride[0] stride_y = stride[1] padding = 0 ## assert padding is valid I x I x K conv_out_height = int(((layer_height - kernel_y + 2 * padding) / stride_y)) \ + 1 conv_out_width = int(((layer_width - kernel_x + 2 * padding) / stride_x)) \ + 1 conv_shape = batch_shape + (conv_out_height, conv_out_width, num_filters) # conv_out = np.ndarray(shape=conv_shape) batch_idx = np.zeros(len(batch_shape), dtype=int) while batch_idx != batch_shape: ## probably needs to be changed layer = input[tuple(batch_idx)] for y_idx in range(0, conv_out_height): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, conv_out_width): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) kernel = layer[y_start:y_end, x_start:x_end] for filter_idx in range(num_filters): filter = filters[:, :, :, filter_idx] multi = np.multiply(kernel, filter) product_idx = (y_idx, x_idx, filter_idx) output[tuple(batch_idx) + product_idx] = np.sum(multi) batch_idx = adder(batch_idx, batch_shape) return output def conv_output_size(layer_dimensions: tuple, kernel_dimensions: tuple, stride_dimensionsensions: tuple, padding: int): return (int(((layer_dimensions[0] - kernel_dimensions[0] + 2 * padding) \ / stride_dimensionsensions[0])) + 1, int(((layer_dimensions[1] - kernel_dimensions[1] + 2 * padding) \ / stride_dimensionsensions[1])) + 1, kernel_dimensions[3]) def generate_conv2d_filters(kernel_dimensions: tuple, k: float = 2.0) -> np.array: kernel_y = kernel_dimensions[0] kernel_x = kernel_dimensions[1] kernel_channels = kernel_dimensions[2] num_filters = kernel_dimensions[3] filters = np.ndarray(shape=kernel_dimensions) filter_shape = tuple([kernel_y, kernel_x, kernel_channels]) nl = kernel_x * kernel_y * kernel_channels std = math.sqrt(k / nl) for filter_idx in range(num_filters): filter = np.random.normal(scale=std, size=nl) filter = filter.reshape(filter_shape) filters[:, :, :, filter_idx] = filter return filters def lif_neuron(Vm: float, V_reset: float, V_th: float, tau_m: float, fire=True, leaky=True) -> np.array: if Vm >= V_th and fire: spike = 1 Vm = V_reset else: spike = 0 if leaky: Vm = Vm * math.exp(-1 / tau_m) return [Vm, spike] def flatten(input: np.array, output: np.array, flatten_dim: int): self.input_shape batch_dimensions = input.shape[:flatten_dim] flattened_dimension = tuple([math.prod(input.shape[flatten_dim:])]) output = np.reshape(input, batch_dimensions + flattened_dimension) return output def lif_neuron_pool(Vin: np.array, Vout: np.array, spike_out: np.array, Vreset: float = 0, Vth: float = 0.75, tau_m: int = 100, fire: bool = True, leaky: bool = True, time_index: int = 0) -> np.array: # [batch][time][spike_train] # [batch][ Vin ] # adequate dimensions to process # a dimensions to # assert (len(Vin.shape[-4]) > 2) #if (Vin != NULL): # s = 1 # TODO: implement smth here # generate output arrays # Vout = np.zero(shape=(Vin.shape)) # spike_out = np.zero(shape=(Vin.shape)) assert(Vin.shape == Vout.shape) # process batches batch_dimensions = Vin.shape[:max(time_index-1,0)] spike_train_length = Vin.shape[time_index] membrane_dimensions = Vin.shape[time_index+1:] for batch_idx in np.ndindex(batch_dimensions): for neuron_idx in np.ndindex(membrane_dimensions): for t_idx in range(1, spike_train_length): # membrane voltage for this step t_current = batch_idx + tuple([t_idx]) + neuron_idx t_previous = batch_idx + tuple([t_idx - 1]) + neuron_idx Vm = Vin[t_current] + Vout[t_previous] # simulate lif-neuron [Vout[t_current], spike_out[t_current]] = lif_neuron(Vm, Vreset, Vth, tau_m, fire, leaky) return [Vout, spike_out] def generate_spike_train(p: float, t: int) -> np.array: dist = np.random.uniform(1, 0, t) return np.array([int(item < p) for item in dist]) def generate_layer_spike_train(layer: np.array, train_length: int): layer_height = len(layer) layer_width = len(layer[0]) spike_layer = np.ndarray(shape=(train_length, layer_height, layer_width, 1)) for y in range(0, layer_height): for x in range(0, layer_width): train = np.array(generate_spike_train(layer[y][x], train_length)) for t in range(0, train_length): spike_layer[t, y, x, 0] = train[t] return spike_layer def avg_pool(input: np.array, output:np.array, kernel_size: tuple([int, int]) = (2, 2), stride: tuple([int, int]) = (1, 1)) -> np.array: pool = output ## padding needs to be implemented ## proper strides kernel_y = kernel_size[1] kernel_x = kernel_size[0] batch_shape = input.shape[:-3] layer_shape = input.shape[-3:] layer_height = layer_shape[0] layer_width = layer_shape[1] layer_channel = layer_shape[2] stride_x = stride[0] stride_y = stride[1] padding = 0 pool_height = int(((layer_height - kernel_y + 2 * padding) / stride_y)) + 1 pool_width = int(((layer_width - kernel_x + 2 * padding) / stride_x)) + 1 pool_shape = batch_shape + (pool_height, pool_width, layer_channel) # pool = np.ndarray(shape=pool_shape) # TODO: Update this code batch_idx = np.zeros(len(batch_shape), dtype=int) while batch_idx != batch_shape: layer = input[tuple(batch_idx)] for y_idx in range(0, pool_height): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, pool_width): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) for channel_idx in range(0, layer_channel): kernel = layer[y_start:y_end, x_start:x_end, channel_idx] product = np.sum(kernel) / kernel.size product_idx = (y_idx, x_idx, channel_idx) pool[tuple(batch_idx) + product_idx] = product batch_idx = adder(batch_idx, batch_shape) return pool def generate_dense_layer_weights(input_dimensions: tuple, num_neuron_output: int, k: float = 2.0) -> np.array: axons_per_neuron = math.prod(input_dimensions) synapses = np.ndarray(shape=(num_neuron_output, axons_per_neuron)) nl = axons_per_neuron std = math.sqrt(k / nl) for i in range(num_neuron_output): synapses[i] = np.random.normal(scale=std, size=nl) return synapses def dense_forward(input_neurons: np.array, output_neurons: np.array, weights: np.array) -> np.array: ins = input_neurons.shape ons = output_neurons.shape ws = weights.shape # [batch][spike time] batch_dimensions = input_neurons.shape[:-1] # [][] num_input_neurons = weights.shape[1] num_output_neurons = weights.shape[0] #[neuron y][neuron x][channel] for batch_idx in np.ndindex(batch_dimensions): for output_neuron_idx in range(num_output_neurons): # action_potential = 0 # dot product # for input_neuron_idx in range(num_input_neurons): # ax = input_neurons[batch_idx][input_neuron_idx] # wx = weights[output_neuron_idx][input_neuron_idx] # action_potential = action_potential + ax*wx output_neurons[batch_idx][output_neuron_idx] = np.dot(input_neurons[batch_idx], weights[output_neuron_idx]) return output_neurons def generate_membrane(membrane_dimensions: tuple, value: float = 0.0): membrane = np.ndarray(shape=membrane_dimensions) membrane.fill(value) return membrane # This gains the term da_lif / d_net def differentiate_spike_train(spike_train, Vth = 1): # sum of decay over time gamma = sum(spike_train) if gamma == 0: return 0 tau_m = len(spike_train) total_decay = 0 t = tk = 1 for activation in spike_train: if activation: if t != tk: decay = math.exp(-(t - tk) / tau_m) total_decay = total_decay - (1 / tau_m) * decay tk = t + 1 t = t + 1 return (1/Vth) * (1 + (1/gamma) * total_decay) class Layer: def __init__(self): self.trainable = True self.input_shape = None self.output_shape = None def count_parameters(self): raise NotImplementedError() def compute_output_shape(self, input_shape): raise NotImplementedError() def forward_propagate(self, A): raise NotImplementedError() def backward_propagate(self, dZ, cache): raise NotImplementedError() def get_weights(self): raise NotImplementedError() def set_weights(self, weights): raise NotImplementedError() def build(self, input_shape): self.input_shape = input_shape class Dropout(Layer): def __init__(self, probability): super().__init__() self.probability = probability self.mask = None def build(self, input_shape): self.input_shape = input_shape self.output_shape = input_shape self.reset() def reset(self): self.mask = np.random.binomial(1, 1-self.probability, size=self.output_shape) def forward_propagate(self, A): masked = np.multiply(self.mask, A) cache = [{"mask" : self.mask, "output" : masked}] return masked, cache def backward_propagate(self, dZ, cache): assert(dZ.shape == self.mask.shape) return np.multiply(self.mask * dZ) def compute_output_shape(self, input_shape): return input_shape class AveragePool2D(Layer): def __init__(self, kernel_size, strides): super().__init__() assert (len(kernel_size) == 2) assert (len(strides) == 2) self.kernel_size = kernel_size self.strides = strides def build(self, input_shape): self.input_shape = input_shape self.output_shape = self.compute_output_shape(input_shape) def compute_output_shape(self, input_shape): # incorrect input dimensions assert(len(input_shape) >= 3) # dimensions for sample / instance in the input sample_shape = input_shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] kernel_x = self.kernel_size[1] kernel_y = self.kernel_size[0] stride_x = self.strides[0] stride_y = self.strides[1] padding = 0 return (int(((sample_y - kernel_y + 2 * padding) / stride_y)) + 1, int(((sample_x - kernel_x + 2 * padding) / stride_x)) + 1, sample_channels) def forward_propagate(self, A): # padding needs to be implemented # separate batches batch_shape = A.shape[:-3] # unpack sample shape sample_shape = A.shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] # unpack kernel kernel_y = self.kernel_size[0] kernel_x = self.kernel_size[1] # unpack stride shape stride_y = self.strides[0] stride_x = self.strides[1] # unpack pooling layer shape pool_shape = self.compute_output_shape(A.shape) pool_y = pool_shape[0] pool_x = pool_shape[1] # initialize the output convolution Z_shape = batch_shape + pool_shape Z = np.zeros(shape=Z_shape) Z.fill(-9e99) # begin pooling for batch_idx in np.ndindex(batch_shape): layer = A[batch_idx] for y_idx in range(0, pool_y): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, pool_x): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) for channel_idx in range(0, sample_channels): kernel = layer[y_start:y_end, x_start:x_end, channel_idx] product = np.sum(kernel) / kernel.size product_idx = (y_idx, x_idx, channel_idx) Z[batch_idx + product_idx] = product return Z, None class Convolution2D(Layer): def __init__(self, number_of_filters, kernel_size, strides): super().__init__() self.number_of_filters = number_of_filters self.kernel_size = kernel_size self.strides = strides self.filters = [] self.kernel_shape = [] self.padding = 0 def build(self, input_shape): k = 2 sample_shape = input_shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] self.input_shape = sample_shape kernel_y = self.kernel_size[0] kernel_x = self.kernel_size[1] kernel_channels = sample_channels kernel_filters = self.number_of_filters self.kernel_shape = tuple([kernel_y, kernel_x, kernel_channels, kernel_filters]) self.output_shape = self.compute_output_shape(sample_shape) self.filters = np.ndarray(shape=self.kernel_shape) filter_shape = tuple([kernel_y, kernel_x, kernel_channels]) nl = kernel_x * kernel_y * kernel_channels std = math.sqrt(k / nl) for filter_idx in range(self.number_of_filters): filter = np.random.normal(scale=std, size=nl) filter = filter.reshape(filter_shape) self.filters[:, :, :, filter_idx] = filter def compute_output_shape(self, input_shape): sample_shape = input_shape[-3:] batch_shape = input_shape[:-3] input_x = sample_shape[1] input_y = sample_shape[0] kernel_x = self.kernel_size[1] kernel_y = self.kernel_size[0] stride_x = self.strides[1] stride_y = self.strides[0] padding = 0 return (int(((input_y - kernel_y + 2 * padding) / stride_y)) + 1, int(((input_x - kernel_x + 2 * padding) / stride_x)) + 1, self.number_of_filters) def forward_propagate(self, A): # padding needs to be implemented # separate batches batch_shape = A.shape[:-3] # unpack sample shape sample_shape = A.shape[-3:] sample_y = sample_shape[0] sample_x = sample_shape[1] sample_channels = sample_shape[2] assert(sample_shape == self.input_shape) # unpack kernel kernel_y = self.kernel_size[0] kernel_x = self.kernel_size[1] # unpack stride shape stride_y = self.strides[0] stride_x = self.strides[1] # unpack convolution conv_shape = self.compute_output_shape(A.shape) conv_y = conv_shape[0] conv_x = conv_shape[1] # initialize the output convolution output_shape = batch_shape + conv_shape output = np.zeros(shape= output_shape) output.fill(-9e99) # begin convolution for batch_idx in np.ndindex(batch_shape): layer = A[batch_idx] for y_idx in range(0, conv_y): y_start = y_idx * stride_y y_end = (y_idx * stride_y + kernel_y) for x_idx in range(0, conv_x): x_start = x_idx * stride_x x_end = (x_idx * stride_x + kernel_x) kernel = layer[y_start:y_end, x_start:x_end] for filter_idx in range(self.number_of_filters): filter = self.filters[:, :, :, filter_idx] multi = np.multiply(kernel, filter) product_idx = (y_idx, x_idx, filter_idx) output[batch_idx + product_idx] = np.sum(multi) return output, None def backward_propagate(self, dZ, cache): raise NotImplementedError() def get_weights(self): return self.filters def set_weights(self, weights): self.filters = weights class Flatten(Layer): def __init__(self): super().__init__() self.input_shape = None self.output_shape = None def compute_output_shape(self, sample_shape): return tuple([math.prod(sample_shape)]) def build(self, input_shape): self.input_shape = input_shape self.output_shape = self.compute_output_shape(input_shape) def forward_propagate(self, A): sample_dimensions = len(self.input_shape) sample_shape = A.shape[-sample_dimensions:] flattened_shape = tuple([math.prod(sample_shape)]) batch_shape = A.shape[:-sample_dimensions] return np.reshape(A, batch_shape + flattened_shape), None def backward_propagate(self, dZ, cache): batch_shape = input_shape[:-3] return np.reshape(dZ, batch_shape + self.input_shape) def get_weights(self): return [] def set_weights(self, weights): pass class Dense(Layer): def __init__(self, num_outputs): super().__init__() self.num_outputs = num_outputs self.num_inputs = 0 self.weights = np.zeros(0) self.output_shape = tuple([num_outputs]) def build(self, input_shape, k = 2): self.input_shape = input_shape sample_shape = input_shape[-3:] self.num_inputs = math.prod(sample_shape) self.weights = np.ndarray(shape=(self.num_outputs, self.num_inputs)) nl = self.num_inputs std = math.sqrt(k / nl) for i in range(self.num_outputs): self.weights[i] = np.random.normal(scale=std, size=nl) def set_weights(self, weights): assert(len(weights.shape) == 2) self.num_inputs = weights.shape[1] self.num_outputs = weights.shape[0] return self.weights def get_weights(self): return self.weights def compute_output_shape(self, input_shape): return tuple([self.num_outputs]) def forward_propagate(self, A): print(A.shape) print(self.weights.shape) num_input_dimensions = len(self.input_shape) sample_shape = A.shape[-num_input_dimensions:] assert(self.input_shape == sample_shape) batch_shape = A.shape[:-num_input_dimensions] output_shape = batch_shape + self.output_shape Z = np.zeros(shape=output_shape) Z.fill(-9e99) for batch_idx in np.ndindex(batch_shape): Z[batch_idx] = self.weights @ A[batch_idx] cache = { 'A' : A } return Z, cache def backward_propagate(self, dZ, cache): A_prev = cache['A'] batch_shape = dZ.shape[:-1] dW = np.ndarray(shape=batch_shape + self.weights.shape) db = None dA = np.ndarray(shape=batch_shape + A_prev.shape) for batch_idx in np.ndindex(batch_shape): DW = np.dot(self.weights.T, dZ[batch_idx]) DA = np.dot(dZ[batch_idx], A_prev[batch_idx].T) dW[batch_idx] = np.dot(self.weights.T, dZ[batch_idx]) db = None dA[batch_idx] = np.dot(dZ[batch_idx], A.T) assert (dA.shape == A.shape) assert (dW.shape == self.weights.shape) return dZ, dW, db class Membrane: def __init__(self): pass def reset(self): pass def activate(self, Z): return 0 def differentiate(self, dA, cache): return 0 class LeakyIntegrateAndFire(Membrane): def __init__(self, Vreset: float, Vth: float, tau_m: float, fire=True, leaky=True): super().__init__() self.Vreset = Vreset self.Vth = Vth self.tau_m = tau_m self.fire = fire self.leaky = leaky self.input_shape = None self.__num_input_dimensions = None self.output_shape = None def build(self, input_shape): self.input_shape = input_shape self.__num_input_dimensions = len(self.input_shape) self.output_shape = input_shape def neuron_activation(self, Vm): spike = None if Vm >= self.Vth and self.fire: spike = 1 self.Vm = self.Vreset else: spike = 0 if self.leaky: Vm = Vm * math.exp(-1 / self.tau_m) # TODO: 1 / t needs to be implemented return [Vm, spike] def activate(self, Vin): # this function can be optimised given that only the final Vm is required # assert (Vin.shape == Vout.shape) batch_shape = Vin.shape[:-self.__num_input_dimensions-1] spike_train_length = Vin.shape[-self.__num_input_dimensions-1] membrane_shape = Vin.shape[-self.__num_input_dimensions:] activation = batch_shape + tuple([spike_train_length]) + membrane_shape activation_shape = activation Vout = np.ndarray(shape=(activation_shape)) Vout.fill(self.Vreset) Vp = np.ndarray(shape=(batch_shape + membrane_shape)) Vp.fill(-9e99) spike_train = np.ndarray(shape=(activation_shape)) spike_train.fill(0) t_current = None t_previous = None for batch_idx in np.ndindex(batch_shape): for neuron_idx in np.ndindex(membrane_shape): for t_idx in range(1, spike_train_length): # membrane voltage for this step t_current = batch_idx + tuple([t_idx]) + neuron_idx t_previous = batch_idx + tuple([t_idx - 1]) + neuron_idx Vm = Vin[t_current] + Vout[t_previous] # simulate lif-neuron [Vout[t_current], spike_train[t_current]] = self.neuron_activation(Vm) # store the final membrane voltage Vp_idx = batch_idx + neuron_idx Vp[Vp_idx] = Vout[t_current] cache = { 'Vp' : Vp, 'Vout' : Vout, 'spike_train' : spike_train, 'tau_m' : tau_m } return spike_train, cache @staticmethod def __compute_spike_train_decay(spike_train): # sum of decay over time total_decay = 0 gamma = sum(spike_train) if gamma == 0: return [total_decay, gamma] total_decay = 0 t = tk = 1 for activation in spike_train: if activation: if t != tk: decay = math.exp(-(t - tk) / tau_m) total_decay = total_decay - (1 / tau_m) * decay tk = t + 1 t = t + 1 return [total_decay, gamma] def __diff_LIF(self, dA, cache): Vp = cache['Vp'] spike_trains = cache['spike_train'] tau_m = cache['tau_m'] batch_shape = Vp.shape[:-self.__num_input_dimensions] membrane_shape = Vp.shape[-self.__num_input_dimensions:] dZ_shape = batch_shape + membrane_shape dZ = np.ndarray(shape=dZ_shape) dZ.fill(-9e99) for batch_idx in np.ndindex(batch_shape): for neuron_idx in np.ndindex(membrane_shape): idx = batch_idx + neuron_idx spike_train = spike_trains[idx] [total_decay, gamma] = LeakyIntegrateAndFire.__compute_spike_train_decay(spike_train) dZ[idx] = dA[idx] * (1 / self.Vth) * (1 + (1 / gamma) * total_decay) return dZ def __diff_LI(self, dA, cache): Vp = cache['Vp'] spike_trains = cache['spike_train'] tau_m = cache['tau_m'] batch_shape = Vp.shape[:-self.__num_input_dimensions] membrane_shape = Vp.shape[-self.__num_input_dimensions:] dZ_shape = batch_shape + membrane_shape dZ = np.ndarray(shape=dZ_shape, dtype=np.float64) dZ.fill(-9e99) for batch_idx in np.ndindex(batch_shape): for neuron_idx in np.ndindex(membrane_shape): idx = batch_idx + neuron_idx dZ[idx] = (1/tau_m) * (Vp[idx]) * dA[idx] return dZ def __diff_IF(self, dA, cache): return None def __diff_I(self, dA, cache): return None def differentiate(self, dA, cache): if self.leaky: if self.fire: return self.__diff_LIF(dA, cache) else: return self.__diff_LI(dA, cache) else: if self.fire: return self.__diff_IF(dA, cache) else: return self.__diff_I(dA, cache) def get_output_shape(self): return self.output_shape # the idea of this model is to process everything LIF class SpikingNeuralNetwork: @staticmethod def __traverse_batch(start, end, step): i = start while i < end: yield i i += step yield end def __init__(self): self.__layers = [] self.__membrane = [] pass def build(self, input_shape): # set input shape for model self.input_shape = input_shape self.tau_m = input_shape[0] for layer_idx in range(0, len(self.__layers)): layer = self.__layers[layer_idx] membrane = self.__membrane[layer_idx] print(str(layer_idx) + ":" + str(layer)) layer.build(input_shape=input_shape) input_shape = layer.compute_output_shape(input_shape) if membrane is not None: membrane.build(input_shape) # last layers output shape to models output shape self.output_shape = input_shape def add_layer(self, layer: Layer, activation: Membrane = None): self.__layers.append(layer) self.__membrane.append(activation) def forward_propagation(self, X): caches = [] A = X for layer_idx in range(0, len(self.__layers)): layer = self.__layers[layer_idx] membrane = self.__membrane[layer_idx] print(layer) Z, linear_cache = layer.forward_propagate(A) print("Z: " + str(np.amax(Z))) if membrane is not None: print(membrane) A, activation_cache = membrane.activate(Z) print("A: " + str(np.amax(A))) cache = { 'linear_cache' : linear_cache, 'activation_cache' : activation_cache } caches.append({ 'A': A, 'Z': Z, 'cache': cache}) else: print("Z: " + str(np.amax(Z))) A = Z cache = { 'linear_cache' : linear_cache, 'activation_cache' : None } caches.append({ 'A': None, 'Z': Z, 'cache': cache}) return A, caches def compute_cost(self, A, Y): return 0.5 * np.sum(np.power((A - Y), 2)) def compute_loss(self, A, Y): # np.mean(np.square(Y - A), axis=-2) <- MSE loss return Y - A def backward_propagation(self, AL, caches, Y): grads = [] L = len(self.__layers) m = AL.shape[1] ## figure this out # gradients dZ, dW, db = (None, None, None) # derivative of activation in final layer dAL = self.compute_loss(AL, Y) grad = [ { "dZ": None, "dA": dAL, "dW": None, "db": None } ] grads.insert(0, grad) # backwards propagating the loss for layer_idx in range(L-1, 0, -1): layer = self.__layers[layer_idx] A, Z, cache = (caches[layer_idx]['A'], caches[layer_idx]['Z'], caches[layer_idx]['cache']) linear_cache, activation_cache = (cache['linear_cache'], cache['activation_cache']) membrane = self.__membrane[layer_idx] if membrane is not None: dZ = membrane.differentiate(dAL, activation_cache) dAL, dW, db = layer.backward_propagate(dZ, linear_cache) else: dAL, dW, db = layer.backward_propagate(dAL, linear_cache) grad = [ { "dZ":dZ, "dA":dAL, "dW":dW, "db":db } ] grads.insert(0, grad) return grads def fit(self, X=None, Y=None, epochs=1, batch_size=None, learning_rate=0.002): # batch_size + (time, height, width, channel) num_input_dimensions = len(self.input_shape) num_output_dimensions = len(self.output_shape) batch_shape = X.shape[:-num_input_dimensions] batch_ndim = len(batch_shape) num_samples = math.prod(batch_shape) sample_shape = X.shape[-num_input_dimensions:] sample_label_shape = Y.shape[-batch_ndim:] assert(sample_label_shape == self.output_shape) batch_samples = np.zeros(shape=tuple([batch_size]) + sample_shape) batch_samples_labels = np.zeros(shape=tuple([batch_size]) + sample_label_shape) # output from the opperation output =
np.zeros(shape=batch_shape+Y.shape)
numpy.zeros
from __future__ import absolute_import, print_function, division, unicode_literals # credit to: https://github.com/matthias-k/pysaliency/blob/master/pysaliency/metrics.py import numpy as np def normalize_saliency_map(saliency_map, cdf, cdf_bins): """ Normalize saliency to make saliency values distributed according to a given CDF """ smap = saliency_map.copy() shape = smap.shape smap = smap.flatten() smap = np.argsort(np.argsort(smap)).astype(float) smap /= 1.0 * len(smap) inds = np.searchsorted(cdf, smap, side='right') smap = cdf_bins[inds] smap = smap.reshape(shape) smap = smap.reshape(shape) return smap def convert_saliency_map_to_density(saliency_map, minimum_value=0.0): if saliency_map.min() < 0: saliency_map = saliency_map - saliency_map.min() saliency_map = saliency_map + minimum_value saliency_map_sum = saliency_map.sum() if saliency_map_sum: saliency_map = saliency_map / saliency_map_sum else: saliency_map[:] = 1.0 saliency_map /= saliency_map.sum() return saliency_map def NSS(saliency_map, xs, ys): xs = np.asarray(xs, dtype=np.int) ys = np.asarray(ys, dtype=np.int) mean = saliency_map.mean() std = saliency_map.std() value = saliency_map[ys, xs].copy() value -= mean if std: value /= std return value def CC(saliency_map_1, saliency_map_2): def normalize(saliency_map): saliency_map -= saliency_map.mean() std = saliency_map.std() if std: saliency_map /= std return saliency_map, std == 0 smap1, constant1 = normalize(saliency_map_1.copy()) smap2, constant2 = normalize(saliency_map_2.copy()) if constant1 and not constant2: return 0.0 else: return np.corrcoef(smap1.flatten(), smap2.flatten())[0, 1] def probabilistic_image_based_kl_divergence(logp1, logp2, log_regularization=0, quotient_regularization=0): if log_regularization or quotient_regularization: return (np.exp(logp2) * np.log(log_regularization + np.exp(logp2) / (np.exp(logp1) + quotient_regularization))).sum() else: return (
np.exp(logp2)
numpy.exp
from os import environ PHA_DIR = environ['PHA_DIR'] ADD_TO_PATH = PHA_DIR + '/scripts/python_scripts' from sys import path path.append(ADD_TO_PATH) from processcsv import ProcessCSV from processcsv import StatEnum import sys import utility as util import copy import csv import numpy as np from itertools import izip #import matplotlib #matplotlib.use('Agg') #import matplotlib.pyplot as plt from scipy import stats import shutil import os class LGReader(ProcessCSV): """ class LGReader Performs various functions related to the output file from PHA code """ default_data_dir = os.environ['PHA_DIR'] + '/data' default_results_dir = os.environ['PHA_DIR'] + '/results' default_ip_opt_fname = default_data_dir + '/' + "ip_opt.csv" default_in_fname = default_results_dir + '/' + "pha.csv" max_num_dec_places = 10 # Column names colname_inst = "INSTANCE" colname_lpobj = "LP OBJ" colname_lpopt = "LP OBJ" colname_lpbound = "LP OBJ" colname_ipopt = "IP OBJ" colname_ipobj = "IP OBJ" colname_ipbound = "IP OBJ" colname_numrows = "NUM ROWS" colname_numcols = "NUM COLS" colname_fraccore = "FRAC CORE" colname_numpoints = "NUM POINTS (TOTAL)" colname_numfinalpoints = "NUM FINAL POINTS (TOTAL)" colname_numsics = "NUM SIC" colname_numpha = "NUM PHA" colname_sicbound = "SIC BOUND" colname_phabound = "PHA BOUND" colname_allcutsbound = "ALL CUTS (WITH SIC)" colname_activesics = "ACTIVE SIC" colname_activegics = "ACTIVE PHA" colname_objtried = "OBJ" colname_dupsicfails = "DUPLICATE_SIC_FAILS" colname_dupgicfails = "DUPLICATE_GIC_FAILS" colname_totaltime = "TOTAL_TIME" colname_cutfails = [ "DUAL_CUT_SOLVER_FAILS", "DUPLICATE_SIC_FAILS", "DUPLICATE_GIC_FAILS", "ORTHOGONALITY_FAILS", "TIMELIMIT_FAILS", "ITERATION_FAILS", "ABANDONED_FAILS", "NON_CUTTING_FAILS", "SCALING_FAILS", "UNSPEC_FAILS", "CUT_LIMIT_FAILS", "PRIMAL_CUT_SOLVER_FAILS", "PRIMAL_CUT_SOLVER_NO_OBJ_FAILS", "NUMERICAL_ISSUES_WARNING_NO_OBJ", "NUMERICAL_ISSUES_NO_OBJ" ] colname_numcuts = [ "CUT_VERTICES_CUT_HEUR", # "DUMMY_OBJ_CUT_HEUR", "ITER_BILINEAR_CUT_HEUR", "UNIT_VECTORS_CUT_HEUR", "TIGHT_POINTS_CUT_HEUR", "SPLIT_SHARE_CUT_HEUR" ] colname_activecuts = [ "ACTIVE CUT_VERTICES_CUT_HEUR", "ACTIVE DUMMY_OBJ_CUT_HEUR", "ACTIVE ITER_BILINEAR_CUT_HEUR", "ACTIVE UNIT_VECTORS_CUT_HEUR", "ACTIVE TIGHT_POINTS_CUT_HEUR", "ACTIVE SPLIT_SHARE_CUT_HEUR" ] def __init__(self, in_fname = None, hasipval = None, fill_ip_vals = None, ip_opt_fname = None, out_fname = None, inst_name = None, col_info = None, num_header_lines = None, compute_gap_closed = True): """ Constructor, sets reader object and instances to all instances """ if (in_fname is None): self._in_fname = copy.deepcopy(self.default_in_fname) else: self._in_fname = copy.deepcopy(in_fname) if __debug__: print( "\n## In LGReader(): Opening file %s for reading ##" % self._in_fname ) # If requested, set IP values if they are not available if (fill_ip_vals is None): fill_ip_vals = False if (hasipval is None): self._hasipval = True # This is so we do not needlessly recreate the ip file else: self._hasipval = hasipval if (ip_opt_fname is not None): self._ip_opt_fname = copy.deepcopy(ip_opt_fname) else: self._ip_opt_fname = copy.deepcopy(self.default_ip_opt_fname) if ((not self._hasipval) and fill_ip_vals): self.fill_ip_opt(out_fname = self._in_fname) # Do overwrite the input file self._hasipval = True super(LGReader, self).__init__(self._in_fname, inst_name, col_info, num_header_lines, compute_gap_closed) # If the IP values exist, calculate gap closed # Note that we check the hasipval boolean, since otherwise gap_closed() # will grab the IP values whether or not fill_ip_vals is True if ((inst_name is not None) and (self._hasipval) and (not hasattr(self, '_ip_opt'))): self.get_ip_opt() if (compute_gap_closed): self.gap_closed() def set_inst(self, inst_name = None, compute_gap_closed = True): """ Override set_inst from parent class so class values will be reset """ super(LGReader, self).set_inst(inst_name, compute_gap_closed) if ((inst_name is not None) and (self._hasipval)): self._ip_opt = None self.get_ip_opt() if (compute_gap_closed): self.gap_closed() def get_ip_opt(self, ip_opt_fname = None): """ Grabs IP optimum values from ip_opt file, only for relevant instances Saves the values internally as self._ip_opt, a numpy array """ # TODO fix bug here that ip_opt_fname might have changed... really not a bug if ((hasattr(self, '_ip_opt')) and (self._ip_opt is not None)): return self._ip_opt if (ip_opt_fname is None): ip_opt_fname = copy.deepcopy(self._ip_opt_fname) if __debug__: print( "\n## Reading IP file: %s ##" % ip_opt_fname ) # Read IP opt file in ip_opt_reader = ProcessCSV(ip_opt_fname, num_header_lines = 1) ip_opt_reader._num_dec_places = self.max_num_dec_places inst_names = super(LGReader, self).get_param(self.colname_inst) self._ip_opt = ['' for i in range(len(inst_names))] for inst in range(len(inst_names)): curr_inst = inst_names[inst] # find_first_val returns a table, with a header row # The first row contains all the column information val_str = ip_opt_reader.find_first_val(col_info = self.colname_ipobj, inst_name = curr_inst)[1][1] if (len(val_str) > 0): curr_inst_ip_obj = float(val_str) self._ip_opt[inst] = curr_inst_ip_obj if __debug__: print( "Instance: %s\tIP obj: %f" % (curr_inst, curr_inst_ip_obj) ) elif __debug__: print( "Instance %s not found in IP file" % curr_inst ) del ip_opt_reader self._ip_opt = np.asarray(self._ip_opt) return self._ip_opt def inst_info(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, cut_presolve = None): """ Get instance basic information (rows, columns, avg time) """ stat = [StatEnum.FIRST, StatEnum.FIRST, StatEnum.AVG] col_info = [self.colname_numrows, self.colname_numcols, self.colname_totaltime] typecol = [int, int, float] if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, cut_presolve) # Remove the columns that are not relevant tab = [[tab[i][j] for j in [0,1,3,5]] for i in range(len(tab))] tab[0] = ["Instance", "Rows", "Cols", "Time"] # num_rows col_index = 1 self._num_rows = np.asarray([int(round(float(tab[i][col_index]))) for i in range(1,len(tab))]) # num_cols col_index += 1 self._num_cols = np.asarray([int(round(float(tab[i][col_index]))) for i in range(1,len(tab))]) util.print_pretty_table(tab) return tab def get_best_row(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None): """ Get best-performing row per instance """ stat = [StatEnum.MAX] col_info = [self.colname_allcutsbound] #[self.colname_activesics, self.colname_numpha, self.colname_activegics] typecol = [float] #[int, int, int] secondary_stat = [StatEnum.MAXRATIO] secondary_col_info = [[self.colname_activegics, self.colname_numpha]] tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve, secondary_stat = secondary_stat, secondary_col_info = secondary_col_info) # Get best row for each instance self._best_row = [int(tab[i][2]) for i in range(1,len(tab))] def obj_fails_table(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, cut_presolve = None): """ Analyze number of cuts generated in relation to maximum possible, as well as some potential common problems (e.g., duplicate SICs in the cut LP) Returns 2D list with the information [instance, num splits, num sics, num active sics, num gics, num active gics, obj tried, fails...] """ if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) num_inst = len(inst_name) if (not hasattr(self, '_best_row')): self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) #stat = [StatEnum.MAX] #col_info = [self.colname_activesics, self.colname_numpha, self.colname_activegics] #typecol = [int, int, int] #tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, # num_alg2_rounds, num_rays_cut, cut_limit, # use_split_share, num_cuts_iter_bilinear, # use_cut_vert_heur, cut_presolve) out_tab = [[ "Instance", "Splits", "SICs", "Active SICs", "GICs", "Active GICs", "Obj", #"Duplicate tilt", "Unbounded tilt", "Unbounded", "Dup SIC", "Dup GIC", "Orth", "Time limit", "Iter limit", "Abandoned", "Non-cutting", "Scaling", "Unspec", "Cut limit", "Primal infeas", "Primal infeas (setup)", "Numerics warnings", "Numerics errors"]] outcol_obj_tried = out_tab[0].index("Obj"); numcols_out_tab = len(out_tab[0]); np_out_tab = np.zeros(shape = (num_inst, numcols_out_tab), dtype=int) # Get column indices for each of the relevant stats index_numsplits = super(LGReader, self).get_col_index(self.colname_fraccore) index_numsics = super(LGReader, self).get_col_index(self.colname_numsics) index_activesics = super(LGReader, self).get_col_index(self.colname_activesics) index_numpha = super(LGReader, self).get_col_index(self.colname_numpha) index_activegics = super(LGReader, self).get_col_index(self.colname_activegics) index_objtried = super(LGReader, self).get_col_index(self.colname_objtried) index_cutfail = [-1 for i in range(len(self.colname_cutfails))] for i in range(len(self.colname_cutfails)): index_cutfail[i] = super(LGReader, self).get_col_index(self.colname_cutfails[i]) for i in range(len(np_out_tab)): if __debug__: print( "## Obj_fails_table: Filling in information for instance %d with name %s ##" % (i,inst_name[i]) ) if self._best_row[i] >= 0: row = super(LGReader, self).get_row(self._best_row[i]) np_out_tab[i,1] = int(row[index_numsplits]) np_out_tab[i,2] = int(row[index_numsics]) np_out_tab[i,3] = int(row[index_activesics]) np_out_tab[i,4] = int(row[index_numpha]) np_out_tab[i,5] = int(row[index_activegics]) obj_tried = int(row[index_objtried]) np_out_tab[i,outcol_obj_tried] = obj_tried for j in range(len(index_cutfail)): curr_fail = int(row[index_cutfail[j]]) np_out_tab[i,outcol_obj_tried+1+j] = 100. * curr_fail / obj_tried else: for j in range(len(index_cutfail)): np_out_tab[i,outcol_obj_tried+1+j] = 0 out_tab.extend(np_out_tab.tolist()) for i in range(1,num_inst+1): out_tab[i][0] = inst_name[i-1] util.print_pretty_table(out_tab) return out_tab def active_cuts_table(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None): """ Analyze which heuristics led to most active cuts Returns 2D list with the information [instance, num sics, num active sics, num gics, num active gics, active from which heur...] """ if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) num_inst = len(inst_name) if (not hasattr(self, '_best_row')): self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) out_tab = [[ "Instance", "SICs", "Active SICs", "GICs", "Active GICs", "V", "Active V", # "B", "Active B", "R", "Active R", "T", "Active T", "S", "Active S" ]] numcols_out_tab = len(out_tab[0]); np_out_tab = np.zeros(shape = (num_inst, numcols_out_tab), dtype=int) # Get column indices for number of each type of cut # Number active of that type is the subsequent column (be aware could change) colindex_first = [super(LGReader, self).get_col_index(self.colname_numsics), super(LGReader, self).get_col_index(self.colname_activesics), super(LGReader, self).get_col_index(self.colname_numpha), super(LGReader, self).get_col_index(self.colname_activegics)] colindex_numcuts = [super(LGReader, self).get_col_index(self.colname_numcuts[i]) for i in range(len(self.colname_numcuts))] for i in range(len(np_out_tab)): if __debug__: print( "## Active_cuts_table: Filling in information for instance %d with name %s ##" % (i,inst_name[i]) ) if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) for j in range(len(colindex_first)): np_out_tab[i,j+1] = curr_row[colindex_first[j]] for j in range(len(colindex_numcuts)): np_out_tab[i,2*j+1+len(colindex_first)] = curr_row[colindex_numcuts[j]] np_out_tab[i,2*j+1+len(colindex_first)+1] = curr_row[colindex_numcuts[j]+1] else: for j in range(len(colindex_first)): np_out_tab[i,j+1] = 0 for j in range(len(colindex_numcuts)): np_out_tab[i,2*j+1+len(colindex_first)] = 0 np_out_tab[i,2*j+1+len(colindex_first)+1] = 0 out_tab.extend(np_out_tab.tolist()) for i in range(1,num_inst+1): out_tab[i][0] = inst_name[i-1] util.print_pretty_table(out_tab) return out_tab def write_best_params(self, out_dir = None): """ Writes best parameters for each instance to file """ if (out_dir is None): out_dir = self.default_data_dir + "/params" try: os.makedirs(out_dir) except OSError: # for the race condition, however unlikely if not os.path.isdir(out_dir): raise #num_params = super(LGReader, self)._param_container.num_params num_params = self._param_container.num_params inst_names = super(LGReader, self).get_param(self.colname_inst) if (not hasattr(self, '_best_row')): self.get_best_row(inst_names, cut_limit=[1000], cut_presolve=[0]) # these are current defaults we want to report for, but this can be confusing if we forget we set it... out_tab = [copy.deepcopy(self._header[0])] out_tab.append(copy.deepcopy(self._header[1])) for i in range(len(inst_names)): inst = inst_names[i] row = super(LGReader, self).get_row(self._best_row[i]) if self._best_row[i] >= 0 else [0 for i in range(num_params)] out_tab.append(row) curr_fname = out_dir + '/' + inst + "_params.txt" with open(curr_fname, 'wb') as out_f: if __debug__: print( "## Writing parameters for %s ##" % inst ) for p in range(1,num_params): out_f.write(str(self._param_container.param_names[p]).lower() + ' ') curr_val = self._param_container.type_param[p](row[p]) out_f.write(str(curr_val) + '\n') # Save parameter information with open(out_dir + '/' + "best_runs.csv", 'wb') as out_f: out_writer = csv.writer(out_f) out_writer.writerows(out_tab) del out_writer def gap_closed(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None, recompute_best_row = None): """ Adds gap closed information to the instance of LGReader In addition, keeps lp opt, ip opt, osic best, and all cuts best Defaults to all instances, unless inst_name is specified """ # Make sure that ip values are available # (i.e., reread the file if necessary with ip values filled) if (not self._hasipval): self.fill_ip_opt(out_fname = self._in_fname) self._hasipval = True # Get best_row if (not hasattr(self, '_best_row')) or recompute_best_row: self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) # Set defaults col_info = [self.colname_lpobj, self.colname_sicbound, self.colname_allcutsbound] stat = [StatEnum.FIRST, StatEnum.MAX, StatEnum.MAX] typecol = [float, float, float] if (inst_name is None): inst_name = super(LGReader, self).get_param(self.colname_inst) # Save the current number of output decimal places, and set current outputted decimal places saved_num_dec_places = self._num_dec_places self._num_dec_places = self.max_num_dec_places if __debug__: print( "\n## Calculating gap_closed ##" ) # tab will have columns # [inst, lp opt, row, osic opt, row, all cut opt, row, num rows] tab = super(LGReader, self).stat_col(stat, col_info, typecol, inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) self._num_dec_places = saved_num_dec_places #self._best_row = [int(tab[i][6]) for i in range(1,len(tab))] # ip opt if (not hasattr(self, '_ip_opt')): self.get_ip_opt() # Add information from instances lp_col_index = super(LGReader, self).get_col_index(self.colname_lpobj) sics_col_index = super(LGReader, self).get_col_index(self.colname_sicbound) allcuts_col_index = super(LGReader, self).get_col_index(self.colname_allcutsbound) self._lp_opt = [] self._sic_opt= [] self._sics_gap = [] self._allcuts_opt = [] self._allcuts_gap = [] self._gap_closed = [] for i in range(len(inst_name)): if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) self._lp_opt.append(float(curr_row[lp_col_index])) self._sic_opt.append(float(curr_row[sics_col_index])) self._sics_gap.append(100 * (self._sic_opt[i] - self._lp_opt[i]) / (self._ip_opt[i] - self._lp_opt[i])) self._allcuts_opt.append(float(curr_row[allcuts_col_index])) self._allcuts_gap.append(100 * (self._allcuts_opt[i] - self._lp_opt[i]) / (self._ip_opt[i] - self._lp_opt[i])) self._gap_closed.append(100 * (self._allcuts_opt[i] - self._sic_opt[i]) / (self._ip_opt[i] - self._lp_opt[i])) else: self._lp_opt.append(0.0) self._sic_opt.append(0.0) self._sics_gap.append(0.0) self._allcuts_opt.append(0.0) self._allcuts_gap.append(0.0) self._gap_closed.append(0.0) return self._gap_closed def gap_closed_table(self, inst_name = None, pha_act_option = None, num_alg2_rounds = None, num_rays_cut = None, max_frac_var = None, cut_limit = None, use_split_share = None, num_cuts_iter_bilinear = None, use_unit_vectors_heur = None, use_cut_vert_heur = None, use_tight_points_heur = None, cut_presolve = None, recompute = False): """ Create table with gap closed information """ if (not hasattr(self, '_gap_closed')) or recompute: self.gap_closed(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve, recompute) if (not hasattr(self, '_num_rows') or not hasattr(self, '_num_cols')): self.inst_info() if (not hasattr(self, '_best_row')): self.get_best_row(inst_name, pha_act_option, num_alg2_rounds, num_rays_cut, max_frac_var, cut_limit, use_split_share, num_cuts_iter_bilinear, use_unit_vectors_heur, use_cut_vert_heur, use_tight_points_heur, cut_presolve) append_average = True eps = 1e-5 nonzero_gap_indices = [i for i in range(len(self._gap_closed)) if (self._allcuts_gap[i] > eps)] zero_gap_indices = [i for i in range(len(self._gap_closed)) if (self._allcuts_gap[i] <= eps)] # Set up transpose of out_table out_tab_tr = [[super(LGReader, self).get_param(self.colname_inst)[i] for i in nonzero_gap_indices]] out_tab_tr.append(np.around([self._num_rows[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._num_cols[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._lp_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._ip_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._sic_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._allcuts_opt[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._sics_gap[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._allcuts_gap[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr.append(np.around([self._gap_closed[i] for i in nonzero_gap_indices], decimals=self._num_dec_places).tolist()) # Also add num SICs, num active SICs, num GICs, num active GICs numsics_col_index = super(LGReader, self).get_col_index(self.colname_numsics) activesics_col_index = super(LGReader, self).get_col_index(self.colname_activesics) numpha_col_index = super(LGReader, self).get_col_index(self.colname_numpha) activegics_col_index = super(LGReader, self).get_col_index(self.colname_activegics) num_sics_tab = [] num_active_sics_tab = [] num_gics_tab = [] num_active_gics_tab = [] percent_active_tab = [] for i in nonzero_gap_indices: if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) num_sics_tab.append(int(curr_row[numsics_col_index])) num_active_sics_tab.append(int(curr_row[activesics_col_index])) num_gics_tab.append(int(curr_row[numpha_col_index])) num_active_gics_tab.append(int(curr_row[activegics_col_index])) num_pha = float(curr_row[numpha_col_index]) percent_active_tab.append( (100. * float(curr_row[activegics_col_index]) / num_pha) if num_pha > 0 else 0) else: num_sics_tab.append(0) num_active_sics_tab.append(0) num_gics_tab.append(0) num_active_gics_tab.append(0) percent_active_tab.append(0.0) out_tab_tr.append(num_sics_tab) # num SICs out_tab_tr.append(num_active_sics_tab) # active SICs out_tab_tr.append(num_gics_tab) # num GICs out_tab_tr.append(num_active_gics_tab) # active GICs out_tab_tr.append(percent_active_tab) # % active # Header out_tab = [ [ '', '', '', "Opt", "Opt", "Opt", "Opt", "Best % gap closed", "Best % gap closed", "Best % gap closed", "# cuts", "# cuts", "# cuts", "# cuts", '' ], [ "Instance", "Rows", "Cols", "LP", "IP", "SIC", "GIC+SIC", "SIC", "GIC", "Diff", "SICs", "Active SICs", "GICs", "Active GICs", "% active" ] ] out_tab.extend([list(t) for t in izip(*out_tab_tr)]) if (append_average): out_tab.append( [ "Average",'','','','','','', np.around(np.mean([self._sics_gap[i] for i in nonzero_gap_indices], dtype=np.float64), decimals=self._num_dec_places), np.around(np.mean([self._allcuts_gap[i] for i in nonzero_gap_indices], dtype=np.float64), decimals=self._num_dec_places), np.around(np.mean([self._gap_closed[i] for i in nonzero_gap_indices], dtype=np.float64), decimals=self._num_dec_places), '','','','', np.around(np.mean(percent_active_tab, dtype=np.float64), decimals=self._num_dec_places) ] ) out_tab_tr_zero = [[super(LGReader, self).get_param(self.colname_inst)[i] for i in zero_gap_indices]] out_tab_tr_zero.append(np.around([self._num_rows[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._num_cols[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._lp_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._ip_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._sic_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._allcuts_opt[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._sics_gap[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._allcuts_gap[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) out_tab_tr_zero.append(np.around([self._gap_closed[i] for i in zero_gap_indices], decimals=self._num_dec_places).tolist()) num_sics_tab = [] num_active_sics_tab = [] num_gics_tab = [] num_active_gics_tab = [] percent_active_tab = [] for i in zero_gap_indices: if self._best_row[i] >= 0: curr_row = super(LGReader, self).get_row(self._best_row[i]) num_sics_tab.append(int(curr_row[numsics_col_index])) num_active_sics_tab.append(int(curr_row[activesics_col_index])) num_gics_tab.append(int(curr_row[numpha_col_index])) num_active_gics_tab.append(int(curr_row[activegics_col_index])) num_pha = float(curr_row[numpha_col_index]) percent_active_tab.append( (100. * float(curr_row[activegics_col_index]) / num_pha) if num_pha > 0 else 0) else: num_sics_tab.append(0) num_active_sics_tab.append(0) num_gics_tab.append(0) num_active_gics_tab.append(0) percent_active_tab.append(0.0) out_tab_tr_zero.append(num_sics_tab) # num SICs out_tab_tr_zero.append(num_active_sics_tab) # active SICs out_tab_tr_zero.append(num_gics_tab) # num GICs out_tab_tr_zero.append(num_active_gics_tab) # active GICs out_tab_tr_zero.append(percent_active_tab) # % active out_tab.extend([list(t) for t in izip(*out_tab_tr_zero)]) util.print_pretty_table(out_tab) return out_tab def hplane_analysis(self, hh_start = 0, hh_end = 2, num_act_start = 0, num_act_end = 4): """ Sees effect of the various hplane selection heuristics, as well as the number of activated hyperplanes Outputs 2D list with the data """ if (not hasattr(self, '_gap_closed')): self.gap_closed() col_name = [self.colname_allcutsbound] stat = StatEnum.MAX make_int = False inst_names = super(LGReader, self).get_param(self.colname_inst) numpoints_col_index = super(LGReader, self).get_col_index(self.colname_numpoints) numfinalpoints_col_index = super(LGReader, self).get_col_index(self.colname_numfinalpoints) points_tab_tr = [] finalpoints_tab_tr = [] out_tab_tr = [super(LGReader, self).get_param(self.colname_inst)] out_tab_tr.append(np.around(self._sics_gap, self._num_dec_places).tolist()) out_tab_tr.append(np.around(self._allcuts_gap, self._num_dec_places).tolist()) out_tab_tr.append(np.around(self._gap_closed, self._num_dec_places).tolist()) append_average = True if (append_average): out_tab_tr[0].append("Average") out_tab_tr[1].append(np.around(
np.mean(self._sics_gap, dtype=np.float64)
numpy.mean
import numpy as np import re import random def prepare_data(): """This method prepares input positive and negative datasets as bitvectors for the Rap1 binding problem. Output: three lists of bitvectors, one containing positive samples, negative samples that are similar to positive samples, and negative examples that are randomly chosen from the fasta sequences. All bitvectors are 17 bp (34 bits) long""" # read in all positive data, convert to bitvectors pos_str = read_positives() pos_vec = str_to_vec(pos_str) # read in all negative data. then, remove false negatives from the negative fa sequences and their reverse complements. Call this new set of sequences and their reverse complements "neg_str". neg_str = read_negatives() neg_str = remove_falseneg(neg_str, pos_str) rc_neg_str = reverse_complement(neg_str) rc_neg_str = remove_falseneg(rc_neg_str, pos_str) neg_str = reverse_complement(rc_neg_str) neg_str = neg_str + rc_neg_str # cache interesting cases as "neg_simiar". interesting cases are those that look similar to the positive sequences (in that they contain cysteines at positions 5, 6, and 10) but are considered negative. also cache randomly chosen sequences, so that the neural net can be trained on sequences that are not similar to positive examples. neg_sim, neg_rand = cache_cases(neg_str) neg_sim_vec = str_to_vec(neg_sim) neg_rand_vec = str_to_vec(neg_rand) return pos_vec, neg_sim_vec, neg_rand_vec def read_positives(): "reads in positive samples as strings" seqs = [] file = '/Users/cjmathy/Documents/courses/bmi203/Final-Project/ann_bmi203/rap1-lieb-positives.txt' with open(file, 'rb') as f: for seq in f: seqs.append(seq.strip()) return seqs def read_negatives(): "reads in negative samples as strings" seqs = [] file = '/Users/cjmathy/Documents/courses/bmi203/Final-Project/ann_bmi203/yeast-upstream-1k-negative.fa' with open(file, 'rb') as f: sequence = '' for line in f: if line[0] is not '>': sequence += line.strip() else: if sequence: seqs.append(sequence) sequence = "" return seqs def str_to_vec(sequences): """converts nucleotide strings into vectors using a 2-bit encoding scheme.""" vecs = [] nuc2bit = {"A": (0, 0), "C": (0, 1), "T": (1, 0), "G": (1, 1)} for seq in sequences: vec = [] for nuc in seq: vec.append(nuc2bit[nuc][0]) vec.append(nuc2bit[nuc][1]) vecs.append(vec) return vecs def remove_falseneg(negatives, positives): """this method removes any negative fasta sequences that contain one of the positive sample sequences (essentially making them false negatives.""" seqs = [] for n in negatives: if not any(p in n for p in positives): seqs.append(n) return seqs def reverse_complement(sequences): """returns a list of reverse complemented sequences""" rc = [] complement = {'A': 'T', 'C': 'G', 'G': 'C', 'T': 'A'} for seq in sequences: seq = list(seq) seq = reversed([complement.get(nuc) for nuc in seq]) seq = ''.join(seq) rc.append(seq) return rc def cache_cases(sequences): """this method separates the negative data into two sets: those that contain the Rap1 binding signature sequence, and a set that is randomly chosen from the negative data.""" # 1) cache negative cases that are similar to positives sim_cache = [] for seq in sequences: matches = re.findall(r'....CC...C.......', seq) for match in matches: sim_cache.append(match) sim_cache = list(set(sim_cache)) # 2) cache randomly chosen 17 bp negatives. 5 from each fa sequence (including reverse complements). there are about 30000 neg_sim samples, so this will create about 30000 neg_rand samples from the 3000 sequences and their 3000 reverse complements. bp = 17 rand_cache = [] for seq in sequences: for _ in xrange(5): i = random.randint(0, len(seq)-bp) substr = seq[i:i+bp] rand_cache.append(substr) return sim_cache, rand_cache def build_training_set(pos, neg_sim, neg_rand): """Builds a training set using 50% positive data, and 50% negative data. Negative data consists equally of similar-to-positve and random negative sequences""" # we have 137 positive examples, 30000 special negative examples, and 30000 random negative examples, all 34 bits long. take 69 special negative examples and 68 random negative examples. add them to the positive examples to make our training set. neg = [] for _ in xrange(69): i = np.random.randint(0, len(neg_sim)) neg.append(neg_sim[i]) for _ in xrange(68): i = np.random.randint(0, len(neg_rand)) neg.append(neg_rand[i]) Xp = np.array(pos) Xn = np.array(neg) X = np.concatenate((Xp, Xn), axis=0) # nd array, 274 x 34 yp = np.ones((Xp.shape[0],)) yn = np.zeros((Xn.shape[0],)) y = np.concatenate((yp, yn), axis=0) # nd array, 34 x 1 return X, y def build_training_set_100(pos, neg_sim, neg_rand): """same as above, but allowing for some positive and negative samples to be held out as a test set""" neg = [] for _ in xrange(50): i = np.random.randint(0, len(neg_sim)) neg.append(neg_sim[i]) for _ in xrange(50): i = np.random.randint(0, len(neg_rand)) neg.append(neg_rand[i]) Xp =
np.array(pos)
numpy.array
import autograd.numpy as np import tensorflow as tf import torch from numpy import linalg as la from numpy import random as rnd import pymanopt from examples._tools import ExampleRunner from pymanopt.manifolds import PSDFixedRank from pymanopt.solvers import TrustRegions SUPPORTED_BACKENDS = ("Autograd", "Callable", "PyTorch", "TensorFlow") def create_cost_egrad_ehess(manifold, matrix, backend): egrad = ehess = None if backend == "Autograd": @pymanopt.function.Autograd(manifold) def cost(Y): return np.linalg.norm(Y @ Y.T - matrix, "fro") ** 2 elif backend == "Callable": @pymanopt.function.Callable(manifold) def cost(Y): return
la.norm(Y @ Y.T - matrix, "fro")
numpy.linalg.norm
# Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Module for measuring mutual information using kNN method. Using binning method for computing mutual information of ordinal features is not applicable in real use cases due to the bad accuracy. Instead, this module implements: (1) the algorithm in PRE paper 10.1103/PhysRevE.69.066138 (See the paper online at http://arxiv.org/abs/cond-mat/0305641v1) for estimating the mutual information between ordinal features. (2) the algorithm in PLOS paper PLoS ONE 9(2): e87357 ( http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0087357) for estimating the mutual information between ordinal features and categorical features. Besides, this module also handles missing values and weighted samples. For each algorithm there are two estimate methods '1' and '2' as described in the PRE paper. Scikit-learn(dev) and several other Python open source implementations only provide the method '1' with feature dimension 2 and without handling missing values or weights. The two methods should usually produce similar results. Method '1' has smaller statistical errors, while method '2' has smaller systematic errors. So method '1' is more suitable for low dimensional small data sets, while method '2' is more preferred for high dimensional larger data sets. The default method is '2'. In this implementation, we use the more understandable names 'smaller_data' and 'larger_data' to represent the methods '1' and '2'. The results are insensitive to the value of k. In practice, usually people use k = 3. Larger values are also fine. The major problem with kNN estimation method is that it would fail if the features have lots of samples have the same value or very close values. The PRE paper has two suggestions that usually work: (a) Add a tiny noise. This not only breaks the data degeneracy but also speeds up the computation a lot. This is because it decreases the number of neighbors by breaking the data degeneracy. And this trick does not affect the quality of the result. This functionality is controlled by 'seed' and '_NOISE_AMPLITUDE' constant. (b) Reparametrize the features, for example, M.Log(A) can re-distribute data within a small range into a wider range. Any homeomorphism transformation of a feature does not alter the mutual information, so this does not affect the result either. Of course any homeomorphism is fine. This is helpful especially when the feature value distributed is highly skewed. Strictly speaking, this is not required, but it usually decreases the error. Re-scaling the features to have unit variance also helps decreasing errors. """ # NOTE: In the code, some variable names start with "c" and some with "d"; this # is because the key distinction between categorical vs ordinal features is # closely related to, hence vaguely conflated with, "continuous" vs "discrete". import functools import itertools import math from typing import Any, List, Optional, Tuple, Union import uuid import numpy as np import pandas as pd import scipy.special import sklearn.neighbors # For categorical features, we will use this unique string to represent missing # values and handle it as if it was a normal value. _NONE_STR = str(uuid.uuid4()).encode() # For ordinal features, we will use Max(feat) + Max(feat) - Min(feat) # + _NONE_NUM to represent missing values and handle it as if it was a normal # value. _NONE_NUM = 10. # When considering the k nearest neighbors, it could cause problems if two # neighbors have the same distance. Do we want to include one of them or both of # them? So we use a tiny noise to break the tie, which does not affect the # mutual information value. _NOISE_AMPLITUDE = 1e-10 def mutual_information( feature_list0: List[np.ndarray], feature_list1: List[np.ndarray], is_categorical_list0: List[bool], is_categorical_list1: List[bool], k: int = 3, estimate_method: str = 'larger_data', weight_feature: Optional[np.ndarray] = None, filter_feature: Optional[np.ndarray] = None, output_each: bool = False, seed: Optional[int] = None) -> Union[np.float, Tuple[np.float, np.ndarray]]: """Computes MI between two lists of features (numpy arrays). The mutual information value is scaled by log(2) in the end so that the unit is bit. The paper (1) in the module doc string gives the method for computing MI between two lists of ordinal features. The paper (2) provides the method for computing MI between a list of ordinal features and a list of categorical features. For the general case, suppose we have ordinal feature set C0, C1, and categorical feature set D0, D1. Then we can derive I({C0,D0};{C1,D1}) = I({C0,C1};{D0,D1}) + I(C0;C1) + I(D0;D1) - I(C0;D0) - I(C1;D1), where the right hand side terms can all be computed by using the methods in the two papers. Args: feature_list0: (list(np.ndarray)) A list of features. feature_list1: (list(np.ndarray)) A list of features. is_categorical_list0: (list(bool)) Whether the first list of features are categorical or not. is_categorical_list1: (list(bool)) Whether the second list of features are categorical or not. k: (int) The number of nearest neighbors. It has to be an integer no less than 3. estimate_method: (str) 'smaller_data' or 'larger_data' estimator in the above paper. weight_feature: (np.ndarray) A feature that contains weights for each sample. filter_feature: (np.ndarray) A feature that is used as the filter to drop all data where this filter has missing values. By default, it is None and no filtering is done. output_each: (bool) Whether to output the contribution from each individual sample. The output values are not scaled by the number of samples. seed: (int) Random seed for the tiny noise. Returns: (float | (float, np.ndarray)) The mutual information between the features in feature_list0 and feature_list1. If output_each is True, an np array of the contributions from all samples is also output, whose mean is equal to the mutual information. """ _validate_args(feature_list0, feature_list1, is_categorical_list0, is_categorical_list1, k, estimate_method, weight_feature, filter_feature, output_each, seed) cf_list0, cf_list1, df_list0, df_list1, weights = _feature_list_to_numpy_arrays( feature_list0, feature_list1, is_categorical_list0, is_categorical_list1, weight_feature, filter_feature) # Try to reuse these data in later computations to avoid converting Feature to # numpy array multiple times. final_mi, each = _mi_for_arrays(cf_list0, cf_list1, df_list0, df_list1, weights, k, estimate_method, seed) if output_each: return final_mi, each return final_mi def adjusted_mutual_information( feature_list0: List[np.ndarray], feature_list1: List[np.ndarray], is_categorical_list0: List[bool], is_categorical_list1: List[bool], k: int = 3, estimate_method: str = 'larger_data', weight_feature: Optional[np.ndarray] = None, filter_feature: Optional[np.ndarray] = None, seed: Optional[int] = None, ) -> float: """Computes adjusted MI between two lists of features. Args: feature_list0: (list(np.ndarray)) a list of features represented as numpy arrays. feature_list1: (list(np.ndarray)) a list of features represented as numpy arrays. is_categorical_list0: (list(bool)) Whether the first list of features are categorical or not. is_categorical_list1: (list(bool)) Whether the second list of features are categorical or not. k: (int) The number of nearest neighbors. It has to be an integer no less than 3. estimate_method: (str) 'smaller_data' or 'larger_data' estimator in the above paper. weight_feature: (np.ndarray) numpy array that are weights for each example. filter_feature: (np.ndarray) numpy array that is used as the filter to drop all data where this has missing values. By default, it is None and no filtering is done. seed: (int) the numpy random seed. Returns: The adjusted mutual information between the features in feature_list0 and feature_list1. """ _validate_args(feature_list0, feature_list1, is_categorical_list0, is_categorical_list1, k, estimate_method, weight_feature, filter_feature, False, seed) cf_list0, cf_list1, df_list0, df_list1, weights = _feature_list_to_numpy_arrays( feature_list0, feature_list1, is_categorical_list0, is_categorical_list1, weight_feature, filter_feature) return _adjusted_mi_for_arrays(cf_list0, cf_list1, df_list0, df_list1, weights, k, estimate_method, seed) def _mi_for_arrays(c_arrs0: List[np.ndarray], c_arrs1: List[np.ndarray], d_arrs0: List[np.ndarray], d_arrs1: List[np.ndarray], weights: Optional[np.ndarray] = None, k: int = 3, estimate_method: str = 'larger_data', seed: Optional[int] = None) -> Tuple[float, np.ndarray]: """Computes MI for a list of np.ndarrays.""" assert (bool(c_arrs0 + d_arrs0) and bool(c_arrs1 + d_arrs1)), 'Both sides are expected to be nonempty.' fs = list(itertools.chain(c_arrs0, c_arrs1, d_arrs0, d_arrs1)) for other_f in fs[1:]: assert len(fs[0]) == len(other_f) np.random.seed(seed) # Scale ordinal features, and replace missing values in all features. c_arrs0 = [ _replace_none_categorical(_unit_variance_scale(f)) for f in c_arrs0 ] c_arrs1 = [ _replace_none_categorical(_unit_variance_scale(f)) for f in c_arrs1 ] d_arrs0 = [_to_dense_discrete_array(f) for f in d_arrs0] d_arrs1 = [_to_dense_discrete_array(f) for f in d_arrs1] arr0 = _to_noisy_numpy_array(c_arrs0) arr1 = _to_noisy_numpy_array(c_arrs1) df0 = _merge_categorical(d_arrs0) df1 = _merge_categorical(d_arrs1) if weights is None: weights = np.ones_like(fs[0], dtype=float) if (arr0 is None and arr1 is None) or (df0 is None and df1 is None): mi_c01_d01, each_c01_d01 = 0., 0. else: arr = np.hstack(([] if arr0 is None else [arr0]) + ([] if arr1 is None else [arr1])) df = _merge_categorical(([] if df0 is None else [df0]) + ([] if df1 is None else [df1])) mi_c01_d01, each_c01_d01 = _mi_high_dim_cd(arr, df, k, estimate_method, weights) if arr0 is None or arr1 is None: mi_c0_c1, each_c0_c1 = 0., 0. else: mi_c0_c1, each_c0_c1 = _mi_high_dim_cc(arr0, arr1, k, estimate_method, weights) if df0 is None or df1 is None: mi_d0_d1, each_d0_d1 = 0., 0. else: mi_d0_d1, each_d0_d1 = _mi_high_dim_dd(df0, df1, weights) if arr0 is None or df0 is None: mi_c0_d0, each_c0_d0 = 0., 0. else: mi_c0_d0, each_c0_d0 = _mi_high_dim_cd(arr0, df0, k, estimate_method, weights) if arr1 is None or df1 is None: mi_c1_d1, each_c1_d1 = 0., 0. else: mi_c1_d1, each_c1_d1 = _mi_high_dim_cd(arr1, df1, k, estimate_method, weights) final_mi = max(0., mi_c01_d01 + mi_c0_c1 + mi_d0_d1 - mi_c0_d0 - mi_c1_d1) each = each_c01_d01 + each_c0_c1 + each_d0_d1 - each_c0_d0 - each_c1_d1 assert isinstance(each, np.ndarray) return final_mi, each def _adjusted_mi_for_arrays( c_arrs0: List[np.ndarray], c_arrs1: List[np.ndarray], d_arrs0: List[np.ndarray], d_arrs1: List[np.ndarray], weights: Optional[np.ndarray] = None, k: int = 3, estimate_method: str = 'larger_data', seed: Optional[int] = None, ) -> float: """Computes AdjustedMutualInformation for given np.ndarrays. Args: c_arrs0: Continuous arrays for side 0. c_arrs1: Continuous arrays for side 1. d_arrs0: Discrete arrays for side 0. d_arrs1: Discrete arrays for side 1. weights: Weights for data points. k: The number of nearest neighbors to check when computing MI. estimate_method: Underlying estimate method for computing MI. seed: The seed for RNGs. Returns: AMI """ if seed is not None: np.random.seed(seed) # Always set `output_each` to be False. seed1 = None if seed is None else np.random.randint(0, 1000) mi, _ = _mi_for_arrays(c_arrs0, c_arrs1, d_arrs0, d_arrs1, weights, k, estimate_method, seed1) # We use the same seed to shuffle several features together. shuffle_seed = np.random.randint(0, 1000) # a fixed seed for shuffling array_length = next(itertools.chain(c_arrs0, c_arrs1, d_arrs0, d_arrs1)).size np.random.seed(shuffle_seed) shuffled_index = np.random.permutation(array_length) shuffled_c_arrs0 = [a[shuffled_index] for a in c_arrs0] shuffled_d_arrs0 = [a[shuffled_index] for a in d_arrs0] seed2 = None if seed is None else np.random.randint(0, 1000) mi_shuffled, _ = _mi_for_arrays(shuffled_c_arrs0, c_arrs1, shuffled_d_arrs0, d_arrs1, weights, k, estimate_method, seed2) return max(mi - mi_shuffled, 0.0) def _to_dense_discrete_array(f: np.ndarray) -> np.ndarray: ret = f.astype(bytes) ret[pd.isnull(f)] = _NONE_STR return ret def _replace_none_categorical(f: np.ndarray) -> np.ndarray: """Replaces missing values in a ordinal feature.""" if np.all(np.isnan(f)): return np.full_like(f, _NONE_NUM) # Replace the missing value with a large enough float value so that when # looking for k nearest neighbors, samples with missing values are treated # separately (only samples with the same missing values are taken into account # for nearest neighbors). return np.nan_to_num( f, copy=True, nan=2 * np.nanmax(f) - np.nanmin(f) + _NONE_NUM) def _unit_variance_scale(f: np.ndarray) -> np.ndarray: """Rescales a feature to have a unit variance.""" f_nan_max = np.nanmax(f) f_nan_min = np.nanmin(f) if np.isnan(f_nan_max) or np.isnan(f_nan_min): raise ValueError('Continuous feature all missing.') if f_nan_max == f_nan_min: ret = np.full_like(f, np.nan, dtype=float) ret[~np.isnan(f)] = 0 return ret return (f - np.nanmean(f)) / np.nanstd(f, ddof=1) def _merge_categorical(discrete_fs: List[np.ndarray]) -> Any: """Merges a list of categorical features into a single categorical feature.""" if not discrete_fs: return None operand_list = [] for i in range(2 * len(discrete_fs) - 1): if i % 2 == 0: operand_list.append(discrete_fs[i // 2].astype(bytes)) else: operand_list.append(b':') # use ':' to join values return functools.reduce(np.char.add, operand_list) def _entropy_discrete(discrete_f: np.ndarray, weight_f: np.ndarray) -> Tuple[float, np.ndarray]: """Computes the entropy of a list of categorical features with weights.""" _, inverse_idx, unique_counts = np.unique( discrete_f, return_inverse=True, return_counts=True) group_counts = unique_counts[inverse_idx] each = -np.log2(group_counts / discrete_f.size) * weight_f return np.mean(each), each def _assert_feature_list(feature_list: List[np.ndarray], list_name: str) -> None: """Validates the contents of feature_list arg for `mutual_information`.""" for f in feature_list: if f.dtype == np.float: mask = (f == float('inf')) | (f == float('-inf')) assert np.sum(mask) == 0, ( 'Feature list: %s in list %s contains infinite values, which ' 'currently are not supported.' % (f, list_name)) def _validate_args( feature_list0: List[np.ndarray], feature_list1: List[np.ndarray], is_categorical_list0: List[bool], is_categorical_list1: List[bool], k: int, estimate_method: str, weight_feature: np.ndarray, filter_feature: np.ndarray, output_each: bool, seed: Optional[int]) -> None: """Validates the arguments of the function `mutual_information`.""" assert len(set(len(f) for f in feature_list0 + feature_list1)) == 1, ( 'The features have different number of items.') assert len(is_categorical_list0) == len(feature_list0), ( 'is_categorical_list0 is not the same length as feature_list0.') assert len(is_categorical_list1) == len(feature_list1), ( 'is_categorical_list1 is not the same length as feature_list1.') assert isinstance(k, int) and k >= 3, 'k has to be an integer no less than 3.' assert estimate_method in ['smaller_data', 'larger_data'] def assert_feature(f, f_name): assert (f is None or isinstance(f, np.ndarray) and len(f) == len(feature_list0[0])), ( '%s must be None or a feature with the same item number.' % f_name) assert_feature(weight_feature, 'weight_feature') assert_feature(filter_feature, 'filter_feature') assert isinstance(output_each, bool) assert seed is None or isinstance(seed, int) and seed > 0 def _fill_missing_values(f: np.ndarray, is_categorical: bool) -> np.ndarray: """Fills `f` with `np.nan` for missing values. Missing values are represented with `np.nan`, regardless of the dtype of the returned np.ndarray. All continuous features (i.e. is_categorical == False) are cast to float. E.g. np.array([1, 2, None]) -> np.array([1.0, 2.0, nan], dtype=float) np.array(['a', None, None]) -> np.array(['a', nan, nan], dtype=object) Args: f: np.ndarray. is_categorical: bool. Returns: np.ndarray. """ if is_categorical: f = f.astype(object) f[pd.isnull(f)] = np.nan return f else: # Converting to np.float64 is necessary for getting smaller errors. return f.astype(float) def _feature_list_to_numpy_arrays( feature_list0: List[np.ndarray], feature_list1: List[np.ndarray], is_categorical_list0: List[bool], is_categorical_list1: List[bool], weight_feature: Optional[np.ndarray], filter_feature: Optional[np.ndarray] ) -> Tuple[List[np.ndarray], List[np.ndarray], List[np.ndarray], List[np.ndarray], np.ndarray]: """Converts feature lists into np.ndarray lists for MI computation.""" n_samples = len(feature_list0[0]) if weight_feature is None: # the default weight is constant 1 weights = np.ones(n_samples).astype(float) else: weights = weight_feature.astype(float) # We will handle ordinal and categorical features differently. def select_features(feature_list, is_categorical_list, keep_fn): return [ _fill_missing_values(f, is_categorical) for f, is_categorical in zip(feature_list, is_categorical_list) if keep_fn(is_categorical) ] # Select ordinal features and categorical features. cf_list0 = select_features(feature_list0, is_categorical_list0, lambda a: not a) cf_list1 = select_features(feature_list1, is_categorical_list1, lambda a: not a) df_list0 = select_features(feature_list0, is_categorical_list0, lambda a: a) df_list1 = select_features(feature_list1, is_categorical_list1, lambda a: a) # Ignore those samples whose the filter_feature is missing. if filter_feature is not None: cf_list0 = [f[filter_feature] for f in cf_list0] df_list0 = [f[filter_feature] for f in df_list0] cf_list1 = [f[filter_feature] for f in cf_list1] df_list1 = [f[filter_feature] for f in df_list1] weights = weights[filter_feature] return cf_list0, cf_list1, df_list0, df_list1, weights def _to_noisy_numpy_array(cf_list: List[np.ndarray]) -> Optional[np.ndarray]: """Adds a tiny noise onto ordinal features.""" # In order to use double precision computation to get smaller errors, we add # noise after the features have been converted to numpy arrays. if not cf_list: return None arr = np.hstack([l.reshape((-1, 1)) for l in cf_list]) # This may add a noise that is too big for features with very small mean. So # far it works fine, but should change it if it poses a problem. means = np.maximum(1, np.mean(np.abs(arr), axis=0)) arr += (_NOISE_AMPLITUDE * means * np.random.randn(*arr.shape)) return arr def _process_high_dim(arr: np.ndarray, radius: int, estimate_method: str, weights: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: """Processes high dimensional feature in the same way as 1-d feature.""" kd_tree = sklearn.neighbors.KDTree(arr, metric='chebyshev') radius_ns = kd_tree.query_radius(X=arr, r=radius, count_only=True) if estimate_method == 'smaller_data': each = -scipy.special.digamma(radius_ns) * weights elif estimate_method == 'larger_data': each = -scipy.special.digamma(radius_ns - 1) * weights return np.sum(each), each def _mi_high_dim_cc(arr0: np.ndarray, arr1: np.ndarray, k: int, estimate_method: str, weights: np.ndarray) -> Tuple[float, np.ndarray]: """Computes high dimensional MI for ordinal features.""" arr = np.hstack([arr0, arr1]) m0 = arr0.shape[1] n_samples, _ = arr.shape nn = sklearn.neighbors.NearestNeighbors( metric='chebyshev', n_neighbors=k, n_jobs=1) nn.fit(arr) k_neighbors = nn.kneighbors() if estimate_method == 'smaller_data': # Use one radius for all features. Exclude the point on the boundary by # taking a radius slightly smaller than the distance to the k-th nearest # neighbor. r = np.nextafter(k_neighbors[0][:, -1], 0).reshape((-1, 1)) radius = np.hstack([r, r]) elif estimate_method == 'larger_data': # Treat arr0 and arr1 as two high dimensional features and each of them uses # its own projection of the radius. The idea is to look at the k nearest # neighbors and find the radius (largest distance) in the two sub-spaces # separately. The following code does this for chebyshev distance metric. ind = k_neighbors[1][:, 0] r = np.fabs(arr - arr[ind]) for i in range(1, k_neighbors[1].shape[1]): ind = k_neighbors[1][:, i] r = np.maximum(r, np.fabs(arr - arr[ind])) r0 = np.max(r[:, :m0], axis=1).reshape((-1, 1)) r1 = np.max(r[:, m0:], axis=1).reshape((-1, 1)) radius = np.hstack([r0, r1]) mi0, each0 = _process_high_dim(arr0, radius[:, 0], estimate_method, weights) mi1, each1 = _process_high_dim(arr1, radius[:, 1], estimate_method, weights) mi = (mi0 + mi1) / float(n_samples) if estimate_method == 'smaller_data': extra = (scipy.special.digamma(k) + scipy.special.digamma(n_samples)) * weights elif estimate_method == 'larger_data': extra = (scipy.special.digamma(k) + scipy.special.digamma(n_samples) - 1. / k) * weights mi += np.mean(extra) each = each0 + each1 + extra final_mi = max(0., mi / math.log(2)) return final_mi, each / math.log(2) def _mi_high_dim_cd(arr: np.ndarray, arr_d: np.ndarray, k: int, estimate_method: str, weights: np.ndarray) -> Tuple[float, np.ndarray]: """Computes high dimensional MI between ordinal and categorical features.""" n_samples = arr_d.size radius = np.empty(n_samples) label_counts =
np.empty(n_samples)
numpy.empty
import functools import unittest import hypothesis as hp, hypothesis.strategies as hps import hypothesis.extra.numpy as hpn import numpy as np import tensorflow as tf import fsph, fsph.tf_ops class TestTensorflow(unittest.TestCase): @hp.settings(deadline=None, print_blob=True) @hp.given(hps.integers(0, 64), hps.booleans(), hpn.arrays(np.float32, hpn.array_shapes(max_dims=1), elements=hps.floats(0, np.float32(np.pi), width=32)), hpn.arrays(np.float32, hpn.array_shapes(max_dims=1), elements=hps.floats(0, np.float32(2*np.pi), width=32))) def test_basic(self, lmax, negative_m, phis, thetas): phis = phis[:min(len(phis), len(thetas))] thetas = thetas[:min(len(phis), len(thetas))] Ys_fsph = fsph.pointwise_sph(phis, thetas, lmax, negative_m) inputs = np.array([phis, thetas]).T Ys_tf = fsph.tf_ops.spherical_harmonic_series(inputs, lmax, negative_m) self.assertEqual(Ys_fsph.shape, Ys_tf.shape) np.testing.assert_allclose(Ys_fsph, Ys_tf, atol=1e-4) @hp.settings(deadline=None, print_blob=True) @hp.given(hps.integers(0, 12), hps.booleans(), hpn.arrays(np.float32, hpn.array_shapes(max_dims=1), elements=hps.floats(np.float32(.1), np.float32(np.pi - .1), width=32)), hpn.arrays(np.float32, hpn.array_shapes(max_dims=1), elements=hps.floats(np.float32(.1), np.float32(2*np.pi - .1), width=32))) def test_numeric_gradient(self, lmax, negative_m, phis, thetas): phis = phis[:min(len(phis), len(thetas))] thetas = thetas[:min(len(phis), len(thetas))] Y0 = fsph.pointwise_sph(phis, thetas, lmax, negative_m) grad_numeric = [] for dim in range(2): dx = 1e-3 if dim == 0: Y = fsph.pointwise_sph(phis + dx, thetas, lmax, negative_m) else: Y = fsph.pointwise_sph(phis, thetas + dx, lmax, negative_m) dY = Y - Y0 grad_numeric.append(dY/dx) grad_numeric = np.transpose(grad_numeric, (1, 2, 0)) inputs = np.array([phis, thetas]).T grad_tf = fsph.tf_ops.spherical_harmonic_series_grad(inputs, lmax, negative_m) np.testing.assert_allclose(grad_numeric, grad_tf, atol=5e-2) @hp.settings(deadline=None, print_blob=True) @hp.given(hps.integers(0, 12), hps.booleans(), hpn.arrays(np.float32, hpn.array_shapes(max_dims=1), elements=hps.floats(np.float32(.1), np.float32(np.pi - .1), width=32)), hpn.arrays(np.float32, hpn.array_shapes(max_dims=1), elements=hps.floats(
np.float32(.1)
numpy.float32
import numpy as np def get_input(path: str): input = [] with open(path, 'r') as f: for line in f.readlines(): input.append(translate_line(line.strip())) return np.array(input) def translate_line(line: str): return [0 if char == "L" else None for char in line] def change_seats(array: np.array, max_seats_occcupied: int, adjacent: bool): new_array = np.copy(array) for x in range(len(array)): for y in range(len(array[0])): if array[x, y] is None: continue seats_occupied = get_occupied_seats(array, x, y, adjacent) if array[x, y] == 0 and seats_occupied == 0: new_array[x, y] = 1 elif array[x, y] == 1 and seats_occupied > max_seats_occcupied: new_array[x, y] = 0 return new_array def get_occupied_seats(array: np.array, x: int, y: int, adjacent: bool) -> int: if adjacent: x0, x1, y0, y1 = max(0, x - 1), min(len(array), x + 2), max(0, y - 1), min(len(array[0]), y + 2) return
np.count_nonzero(array[x0:x1, y0:y1])
numpy.count_nonzero
""" File: continuous.py Author: <NAME> Email: <EMAIL> Github: https://github.com/ComeBertrand Description: Classical continuous functions for performance evaluation of metaheuristics. All theses functions were taken from the following website : https://www.sfu.ca/~ssurjano/optimization.html """ import numpy as np from ...models import Problem from ...common.representation import RealEncoding, Boundaries from ...common.fitness import Objective from ...operators.neighborhood import NeighborhoodOperator, move_distance_continuous, ContinuousLogMoveRange class ContinuousProblem(Problem): """Problems that are defined by a continuous function. # TODO: Do it in a more abstract way and move it in abstract Args: n_dim (int): Number of dimensions. min_vals (np.array): Minimum values for each dimension. max_vals (np.array): Maximum values for each dimension. move_range (MoveRange): Range of the move step. known_min (float): Minimum of the continuous function. None means that the minimum is not known. """ def __init__(self, n_dim, min_vals, max_vals, move_range, known_min): nb_neighbors = n_dim * 100 # TODO: shall be an argument of the object neighborhood = NeighborhoodOperator(move_distance_continuous, move_range, nb_neighbors) boundaries = Boundaries(min_vals, max_vals, np.float) encoding = RealEncoding(boundaries) objective = Objective(self._eval_func) super().__init__(objective, encoding, neighborhood=neighborhood, known_min=known_min) def _eval_func(self, solution): """Actual evaluation of a solution by the continuous function. Args: solution (Solution): Solution to be evaluated. Returns: float: function value of the solution. """ raise NotImplementedError("Abstract Class") # --------------------------------------------------------------------------- # # Functions with many local minima # # --------------------------------------------------------------------------- # class Ackleys(ContinuousProblem): """Ackley's function. Args: n_dim (int): Number of dimensions. """ def __init__(self, n_dim): min_vals = np.array([-32.768] * n_dim, np.float) max_vals = np.array([32.768] * n_dim, np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): n = len(solution) part1 = -0.2 * np.sqrt(1/n * np.sum(solution * solution)) part2 = 1/n * np.sum(np.cos(2 * np.pi * solution)) return 20 - 20 * np.exp(part1) + np.e - np.exp(part2) class Bukin6(ContinuousProblem): """Bukin funtion N.6.""" def __init__(self): n_dim = 2 min_vals = np.array([-15.0, -3.0], np.float) max_vals = np.array([-5.0, 3.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = 0.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.abs(solution[1] - 0.01 * solution[0] * solution[0]) part2 = np.abs(solution[0] + 10) return 100 * np.sqrt(part1) + 0.01 * part2 class CrossInTray(ContinuousProblem): """Cross-in-tray function.""" def __init__(self): n_dim = 2 min_vals = np.array([-10.0, -10.0], np.float) max_vals = np.array([10.0, 10.0], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -2.06261 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): part1 = np.abs(100 - np.sqrt(np.sum(solution * solution)) / np.pi) part2 = np.sin(solution[0]) * np.sin(solution[1]) final = np.abs(part2 * np.exp(part1)) + 1.0 return -0.0001 * np.power(final, 0.1) class DropWave(ContinuousProblem): """Drop-Wave function.""" def __init__(self): n_dim = 2 min_vals = np.array([-5.12, -5.12], np.float) max_vals = np.array([5.12, 5.12], np.float) move_range = ContinuousLogMoveRange(0.01, 1.0) known_min = -1.0 super().__init__(n_dim, min_vals, max_vals, move_range, known_min) def _eval_func(self, solution): sum_sol_sq =
np.sum(solution * solution)
numpy.sum
''' Implementation of Classifier Training, partly described inside Fanello et al. ''' import sys import signal import errno import glob import numpy as np import class_objects as co import action_recognition_alg as ara import cv2 import os.path import cPickle as pickle import logging import yaml import time from OptGridSearchCV import optGridSearchCV # pylint: disable=no-member,R0902,too-many-public-methods,too-many-arguments # pylint: disable=too-many-locals, too-many-branches, too-many-statements def timeit(func): ''' Decorator to time extraction ''' def wrapper(self, *arg, **kw): t1 = time.time() res = func(self, *arg, **kw) t2 = time.time() self.time.append(t2 - t1) del self.time[:-5000] return res return wrapper class Classifier(object): ''' Class to hold all Classifier specific methods. <descriptors>:['pca','ghog','3dhof'] <action_type>:True if no buffers are used <sparsecoding_level> is True if sparse coding is used Classifier Parameters, for example <AdaBoost_n_estimators> or <RDF_n_estimators> or <kernel> can be a list, which will be reduced using optimized grid search with cross validation. ''' def __init__(self, log_lev='INFO', visualize=False, masks_needed=True, buffer_size=co.CONST['buffer_size'], sparse_dim_rat=co.CONST['sparse_dim_rat'], descriptors='', ptpca=False, ptpca_components=None, action_type='Dynamic', classifiers_used='SVM', num_of_cores=4, name='', svm_c=None, AdaBoost_n_estimators=None, RDF_n_estimators=None, add_info=None, sparsecoding_level=None, kernel=None, save_all_steps=False, post_scores_processing_method=None, hardcore=False, for_app=False): ''' sparsecoding_level = [Buffer, Features, None] ''' if not os.path.isdir(co.CONST['AppData']): os.makedirs(co.CONST['AppData']) self.app_dir = co.CONST['AppData'] self.for_app = for_app self.time = [] self.classifiers_ids = None self.test_ind = None # General configuration if not isinstance(descriptors, list): descriptors = [descriptors] descriptors = sorted(descriptors) ### features_params = {} coders_params = {} for descriptor in descriptors: features_params[descriptor] = {} features_params[descriptor]['params'] = {attrib.replace(descriptor, ''): co.CONST[attrib] for attrib in co.CONST if attrib.startswith(descriptor)} features_params[descriptor]['sparsecoded'] = sparsecoding_level features_params[descriptor]['action_type'] = action_type coders_params[descriptor] = {} if not sparsecoding_level: features_params[descriptor]['sparse_params'] = None else: features_params[descriptor]['sparse_params'] = { attrib.replace('sparse', ''): co.CONST[attrib] for attrib in co.CONST if attrib.startswith('sparse')} coders_params[descriptor] = { attrib.replace('sparse', ''): co.CONST[attrib] for attrib in co.CONST if attrib.startswith('sparse') and 'fss' not in attrib} self.test_name = None self.kernel = kernel self.svm_c = svm_c self.RDF_n_estimators = RDF_n_estimators self.AdaBoost_n_estimators = AdaBoost_n_estimators self.sparse_dim_rat = sparse_dim_rat if 'SVM' in classifiers_used and kernel is None: self.kernel = 'linear' if 'SVM' in classifiers_used: if svm_c is None: self.svm_c = co.CONST['SVM_C'] if post_scores_processing_method == 'CProb': LOG.warning('Invalid post_scores_processing_method for SVM') if hardcore: raise Exception else: LOG.warning('Changing method to CSTD') post_scores_processing_method = 'CSTD' if 'RDF' in classifiers_used or 'AdaBoost' in classifiers_used: if svm_c is not None: LOG.warning( 'svm_c is not None for RDF or AdaBoost experimentation') if hardcore: raise Exception if post_scores_processing_method is None: if 'RDF' in classifiers_used or 'AdaBoost' in classifiers_used: post_scores_processing_method = 'CProb' else: post_scores_processing_method = 'CSTD' classifier_params = {} if 'RDF' in classifiers_used and RDF_n_estimators is None: self.RDF_n_estimators = co.CONST['RDF_trees'] if 'AdaBoost' in classifiers_used and AdaBoost_n_estimators is None: self.AdaBoost_n_estimators = co.CONST['AdaBoost_Estimators'] if 'SVM' in classifiers_used: classifier_params['SVM_kernel'] = self.kernel classifier_params['SVM_C'] = self.svm_c if 'RDF' in classifiers_used: classifier_params['RDF_n_estimators'] = self.RDF_n_estimators if 'AdaBoost' in classifiers_used: classifier_params['AdaBoost_n_estimators'] = self.AdaBoost_n_estimators if action_type != 'Passive': dynamic_params = {'buffer_size': buffer_size, 'buffer_confidence_tol': co.CONST['buffer_confidence_tol'], 'filter_window_size': co.CONST['STD_big_filt_window']} else: dynamic_params = {'buffer_size': 1} if ptpca and ptpca_components is None: ptpca_components = co.CONST['PTPCA_components'] ptpca_params = {'PTPCA_components': ptpca_components} for descriptor in descriptors: features_params[descriptor]['dynamic_params'] = dynamic_params if sparsecoding_level: if not isinstance(sparse_dim_rat, list): sparse_dim_rat = [sparse_dim_rat] * len(descriptors) if len(list(sparse_dim_rat)) != len(descriptors): raise Exception('<sparse_dim_rat> should be either an integer/None or' + ' a list with same length with <descriptors>') sparse_params = dict(zip(descriptors, sparse_dim_rat)) sparse_params['fss_max_iter'] = co.CONST['sparse_fss_max_iter'] else: sparse_params = None testing_params = {'online': None} testing_params['post_scores_processing_method'] = \ post_scores_processing_method fil = os.path.join(co.CONST['rosbag_location'], 'gestures_type.csv') self.passive_actions = None self.dynamic_actions = None if os.path.exists(fil): with open(fil, 'r') as inp: for line in inp: if line.split(':')[0] == 'Passive': self.passive_actions = line.split( ':')[1].rstrip('\n').split(',') elif line.split(':')[0] == 'Dynamic': self.dynamic_actions = line.split( ':')[1].rstrip('\n').split(',') action_params = {'Passive': self.passive_actions, 'Dynamic': self.dynamic_actions} LOG.debug('Extracting: ' + str(descriptors)) self.parameters = {'classifier': classifiers_used, 'descriptors': descriptors, 'features_params': features_params, 'coders_params': coders_params, 'dynamic_params': dynamic_params, 'classifier_params': classifier_params, 'sparse_params': sparse_params, 'action_type': action_type, 'sparsecoded': sparsecoding_level, 'testing': False, 'testing_params': testing_params, 'actions_params': action_params, 'PTPCA': ptpca, 'PTPCA_params': ptpca_params} self.training_parameters = {k: self.parameters[k] for k in ('classifier', 'descriptors', 'features_params', 'dynamic_params', 'classifier_params', 'sparse_params', 'action_type', 'sparsecoded', 'PTPCA', 'PTPCA_params') if k in self.parameters} self.descriptors = descriptors self.add_info = add_info self.log_lev = log_lev self.visualize = visualize self.buffer_size = buffer_size self.masks_needed = masks_needed self.action_type = action_type self.classifiers_used = classifiers_used self.num_of_cores = num_of_cores self.name = name self.ptpca = ptpca self.action_recog = ara.ActionRecognition( self.parameters, log_lev=log_lev) if not self.for_app: self.available_tests = sorted(os.listdir(co.CONST['test_save_path'])) else: self.available_tests = [] self.update_experiment_info() if 'SVM' in self.classifiers_used: from sklearn.svm import LinearSVC self.classifier_type = LinearSVC( class_weight='balanced', C=self.svm_c, multi_class='ovr', dual=False) elif 'RDF' in self.classifiers_used: from sklearn.ensemble import RandomForestClassifier self.classifier_type =\ RandomForestClassifier(self.RDF_n_estimators) elif 'AdaBoost' in self.classifiers_used: from sklearn.ensemble import AdaBoostClassifier self.classifier_type =\ AdaBoostClassifier(n_estimators=self.AdaBoost_n_estimators) self.unified_classifier = None if sparsecoding_level: if not(sparsecoding_level == 'Features' or sparsecoding_level == 'Buffer'): raise Exception('Invalid sparsecoding_level, its value shoud be ' + 'None/False/Buffer/Features') self.sparsecoded = sparsecoding_level self.decide = None # Training variables self.training_data = None self.train_ground_truth = None # is loaded from memory after training self.train_classes = None # is loaded from memory after training # Testing general variables self.accuracy = None self.f1_scores = None self.confusion_matrix = None self.scores_savepath = None self.scores_std = [] self.scores_std_mean = [] self.scores = None self.scores_filter_shape = None self.std_big_filter_shape = None self.std_small_filter_shape = None self.recognized_classes = [] self.crossings = None self.testname = '' self.save_fold = None self.online = False # Testing offline variables self.testdataname = '' self.test_instances = None # Testing online variables self.count_prev = None self.buffer_exists = None self.scores_exist = None self.img_count = -1 self._buffer = [] self.scores_running_mean_vec = [] self.big_std_running_mean_vec = [] self.small_std_running_mean_vec = [] self.saved_buffers_scores = [] self.new_action_starts_count = 0 self.test_ground_truth = None self.mean_from = -1 self.on_action = False self.act_inds = [] self.max_filtered_score = 0 self.less_filtered_scores_std = None self.high_filtered_scores_std = None self.classifier_folder = None self.testing_initialized = False self.classifiers_list = {} self.classifier_savename = 'trained_' self.classifier_savename += self.full_info.replace(' ', '_').lower() try: [self.unified_classifier, info] = co.file_oper.load_labeled_data( ['Classifier'] + self.classifier_id) co.file_oper.save_labeled_data(['Classifier'], [self.unified_classifier, self.training_parameters], name=self.app_dir) if isinstance(info, tuple): self.training_params = info[0] self.additional_params = info[1:] else: self.training_params = info self.loaded_classifier = True LOG.info('Loaded Classifier') except TypeError: if self.for_app: [self.unified_classifier, info] = co.file_oper.load_labeled_data( ['Classifier'], name=self.app_dir) self.loaded_classifier = True else: self.loaded_classifier = False LOG.info('Classifier not Loaded') self.load_tests() try: self.classifier_folder = str(self.classifiers_list[ self.classifier_savename]) except KeyError: self.classifier_folder = str(len(self.classifiers_list)) self.coders_to_train = [] # parameters bound variables self.frames_preproc = ara.FramesPreprocessing(self.parameters) available_descriptors =\ ara.Actions(self.parameters).available_descriptors try: self.features_extractors = [available_descriptors[nam]( self.parameters, self.frames_preproc) for nam in self.parameters['descriptors']] self.buffer_operators = [ ara.BufferOperations(self.parameters) for nam in self.parameters['descriptors']] if self.sparsecoded: [self.action_recog. actions.load_sparse_coder(ind) for ind in range( len(self.parameters['descriptors']))] except BaseException: pass def load_tests(self, reset=True): if reset: self.testdata = [None] * len(self.available_tests) self.fscores = [None] * len(self.available_tests) self.accuracies = [None] * len(self.available_tests) self.results = [None] * len(self.available_tests) self.conf_mats = [None] * len(self.available_tests) self.test_times = [None] * len(self.available_tests) for count, test in enumerate(self.available_tests): if (self.testdata[count] is None or self.testdata[count]['Accuracy'] is None): self.testdata[count] = co.file_oper.load_labeled_data( ['Testing'] + self.tests_ids[count]) if (self.testdata[count] is not None and self.testdata[count]['Accuracy'] is not None): self.accuracies[count] = self.testdata[count]['Accuracy'] self.fscores[count] = self.testdata[count]['FScores'] self.results[count] = self.testdata[count]['Results'] self.conf_mats[count] = self.testdata[count]['ConfMat'] self.test_times[count] = self.testdata[count]['TestTime'] try: self.partial_accuracies[count] = self.testdata[count][ 'PartialAccuracies'] except BaseException: pass else: self.testdata[count] = {} self.testdata[count]['Accuracy'] = {} self.testdata[count]['FScores'] = {} self.testdata[count]['Results'] = {} self.testdata[count]['ConfMat'] = {} self.testdata[count]['TestTime'] = {} self.testdata[count]['Labels'] = {} try: self.testdata[count]['PartialAccuracies'] = {} except BaseException: pass def update_experiment_info(self): if self.parameters['action_type'] == 'Passive': info = 'passive ' else: info = 'dynamic ' info = info + self.name + ' ' + self.classifiers_used + ' ' info += 'using' if self.parameters['sparsecoded']: info += ' sparsecoded' for feature in self.parameters['descriptors']: info += ' ' + feature info += ' descriptors ' if 'SVM' in self.parameters['classifier']: info += 'with ' + self.parameters[ 'classifier_params']['SVM_kernel'] + ' kernel' elif 'RDF' in self.parameters['classifier']: info += ('with ' + str(self.parameters['classifier_params'][ 'RDF_n_estimators']) + ' estimators') elif 'AdaBoost' in self.parameters['classifier']: info += ('with ' + str(self.parameters['classifier_params'][ 'AdaBoost_n_estimators']) + ' estimators') if self.parameters['action_type'] == 'Dynamic': info += ' with buffer size ' + str(self.buffer_size) if self.parameters['sparsecoded']: info += ' with sparsecoding by ratio of ' + \ str(self.sparse_dim_rat) if self.ptpca: info += (' with ' + str(self.parameters['PTPCA_params']['PTPCA_components']) + ' post-time-pca components') self.full_info = info.title() if self.add_info: info += self.add_info self.classifier_savename = 'trained_' self.classifier_savename += self.full_info.replace(' ', '_').lower() self.update_classifier_id() self.update_tests_ids() def update_classifier_id(self): self.features_file_id = [] self.features_id = [] for count in range(len(self.parameters['descriptors'])): _id, file_id = self.action_recog.actions.retrieve_descriptor_possible_ids(count, assume_existence=True) self.features_id.append(_id) self.features_file_id.append(file_id) self.classifier_id = [co.dict_oper.create_sorted_dict_view( {'Classifier': str(self.classifiers_used)}), co.dict_oper.create_sorted_dict_view( {'ClassifierParams': str(co.dict_oper.create_sorted_dict_view( self.parameters['classifier_params']))}), co.dict_oper.create_sorted_dict_view( {'ActionsType': str(self.action_type)}), co.dict_oper.create_sorted_dict_view( {'FeaturesParams': str(self.features_file_id)})] def update_tests_ids(self): self.tests_ids = [] for count, test in enumerate(self.available_tests): self.tests_ids.append([co.dict_oper.create_sorted_dict_view({'Test': str(test)}), co.dict_oper.create_sorted_dict_view( {'TestingParams': str(co.dict_oper.create_sorted_dict_view( self.parameters['testing_params']))})] + [self.classifier_id]) def initialize_classifier(self, classifier): ''' Add type to classifier and set methods ''' self.unified_classifier = classifier if 'SVM' in self.classifiers_used: self.unified_classifier.decide = self.unified_classifier.decision_function self.unified_classifier.predict = self.unified_classifier.predict elif 'RDF' in self.classifiers_used or 'AdaBoost' in self.classifiers_used: self.unified_classifier.decide = self.unified_classifier.predict_proba self.unified_classifier.predict = self.unified_classifier.predict co.file_oper.save_labeled_data(['Classifier'] + self.classifier_id, [self.unified_classifier, self.training_parameters]) co.file_oper.save_labeled_data(['Classifier'], [self.unified_classifier, self.training_parameters], name=self.app_dir) def reset_offline_test(self): ''' Reset offline testing variables ''' # Testing general variables self.scores_std = [] self.scores_std_mean = [] self.scores = None self.recognized_classes = [] self.crossings = None self.save_fold = None self.testing_initialized = True # Testing offline variables def reset_online_test(self): ''' Reset online testing variables ''' # Testing general variables self.scores_std = [] self.scores_std_mean = [] self.scores = [] self.recognized_classes = [] self.crossings = [] self.save_fold = None # Testing online variables self.count_prev = None self.buffer_exists = [] self.scores_exist = [] self.img_count = -1 self._buffer = [] self.scores_running_mean_vec = [] self.big_std_running_mean_vec = [] self.small_std_running_mean_vec = [] self.saved_buffers_scores = [] self.new_action_starts_count = 0 self.test_ground_truth = None self.mean_from = -1 self.on_action = False self.act_inds = [] self.max_filtered_score = 0 self.less_filtered_scores_std = None self.high_filtered_scores_std = None self.testing_initialized = True def add_train_classes(self, training_datapath): ''' Set the training classes of the classifier ''' try: self.train_classes = [name for name in os.listdir(training_datapath) if os.path.isdir(os.path.join(training_datapath, name))][::-1] except: if self.for_app: with open(os.path.join(self.app_dir, 'train_classes'),'r') as inp: self.train_classes = pickle.load(inp) else: raise self.all_actions = ['Undefined'] + self.train_classes # Compare actions in memory with actions in file 'gestures_type.csv' if self.passive_actions is not None: passive_actions = [clas for clas in (self.passive_actions) if clas in self.train_classes] if self.dynamic_actions is not None: dynamic_actions = [clas for clas in (self.dynamic_actions) if clas in self.train_classes] if (self.dynamic_actions is not None and self.passive_actions is not None): if 'Sync' in self.classifiers_used: self.train_classes = {'Passive': passive_actions, 'Dynamic': dynamic_actions} else: classes = [] if self.action_type == 'Dynamic' or self.action_type == 'All': classes += dynamic_actions if self.action_type == 'Passive' or self.action_type == 'All': classes += passive_actions self.train_classes = classes with open(os.path.join(self.app_dir, 'train_classes'),'w') as out: pickle.dump(self.train_classes, out) def run_training(self, coders_retrain=False, classifiers_retrain=False, training_datapath=None, classifier_savename=None, num_of_cores=4, classifier_save=True, max_act_samples=None, min_dict_iterations=5, visualize_feat=False, just_sparse=False, init_sc_traindata_num=200, train_all=False): ''' <Arguments> For coders training: Do not train coders if coder already exists or <coders_retrain> is False. <min_dict_iterations> denote the minimum training iterations to take place after the whole data has been processed from the trainer of the coder.<init_dict_traindata_num> denotes how many samples will be used in the first iteration of the sparse coder training For svm training: Train ClassifierS with <num_of_cores>. Save them if <classifier_save> is True to <classifiers_savepath>. Do not train if <classifiers_savepath> already exists and <classifiers_retrain> is False. ''' self.train_all = train_all self.parameters['testing'] = False LOG.info(self.full_info + ':') if classifier_savename is not None: self.classifier_savename = classifier_savename if training_datapath is None: training_datapath = co.CONST['actions_path'] self.add_train_classes(training_datapath) if self.unified_classifier is None: LOG.info('Missing trained classifier:' + self.full_info) LOG.info('Classifier will be retrained') classifiers_retrain = True else: if not self.sparsecoded: return self.prepare_training_data(training_datapath, max_act_samples, visualize_feat=visualize_feat) if just_sparse: return if self.sparsecoded and self.coders_to_train and classifiers_retrain: # Enters only if coders were not initially trained or had to be # retrained. Otherwise, sparse descriptors are computed when #<Action.add_features> is called LOG.info('Trained' + str([self.parameters['descriptors'][coder] for coder in self.coders_to_train])) LOG.info('Making Sparse Features..') self.action_recog = ara.ActionRecognition( self.parameters, log_lev=self.log_lev, feat_filename=os.path.join(co.CONST['feat_save_path'], 'saved')) self.prepare_training_data(training_datapath, max_act_samples, visualize_feat=visualize_feat) self.process_training(num_of_cores, classifiers_retrain, self.classifier_savename, classifier_save) def prepare_training_data(self, path=None, max_act_samples=None, visualize_feat=False): ''' Read actions from the <path> and name them according to their parent folder name ''' LOG.info('Adding actions..') while True: self.training_data = [] self.training_samples_inds = [] for act_count, action in enumerate(self.train_classes): LOG.info('Action:' + action) descriptors, samples_indices, mean_depths, _, trained_coders, _ = self.add_action(name=action, data=os.path.join( path, action), use_dexter=False, action_type=self.action_type, max_act_samples=max_act_samples) if not(self.sparsecoded and None in trained_coders): descriptors = np.hstack(tuple(descriptors)) fmask = np.prod(np.isfinite( descriptors), axis=1).astype(bool) descriptors = descriptors[fmask] LOG.info('Action \'' + action + '\' has ' + 'descriptors of shape ' + str(descriptors.shape)) self.training_data.append(descriptors) self.training_samples_inds.append( np.array(samples_indices)[fmask]) else: self.training_samples_inds = [] self.training_data = [] self.train_ground_truth = [] if self.training_data: if self.action_type == 'Dynamic': self.training_data = co.preproc_oper.equalize_samples( samples=self.training_data, utterance_indices=self.training_samples_inds, mode='random') self.train_ground_truth = [] for act_count, clas in enumerate(self.training_data): self.train_ground_truth += clas.shape[0] * [act_count] self.training_data = np.vstack((self.training_data)) if None in trained_coders and self.sparsecoded: self.action_recog.actions.train_sparse_dictionary() else: break finite_samples = np.prod( np.isfinite( self.training_data), axis=1).astype(bool) self.train_ground_truth = np.array( self.train_ground_truth)[finite_samples] self.training_data = self.training_data[finite_samples, :] LOG.info('Total Training Data has shape:' + str(self.training_data.shape)) def process_training(self, num_of_cores=4, retrain=False, savepath=None, save=True): ''' Train (or load trained) Classifiers with number of cores num_of_cores, with buffer size (stride is 1) <self.buffer_size>. If <retrain> is True, Classifiers are retrained, even if <save_path> exists. ''' loaded = 0 if save and savepath is None: raise Exception('savepath needed') if retrain or self.unified_classifier is None: if retrain and self.unified_classifier is not None: LOG.info('retrain switch is True, so the Classifier ' + 'is retrained') classifier_params = {elem.replace(self.classifiers_used + '_', ''): self.parameters['classifier_params'][elem] for elem in self.parameters['classifier_params'] if elem.startswith(self.classifiers_used)} if any([isinstance(classifier_params[elem], list) for elem in classifier_params]): grid_search_params = classifier_params.copy() from sklearn.multiclass import OneVsRestClassifier if isinstance(self.classifier_type, OneVsRestClassifier): grid_search_params = {('estimator__' + key): classifier_params[key] for key in classifier_params} grid_search_params = {key: (grid_search_params[key] if isinstance( grid_search_params[key], list) else [ grid_search_params[key]]) for key in classifier_params} best_params, best_scores, best_estimators = optGridSearchCV( self.classifier_type, self.training_data, self.train_ground_truth, grid_search_params, n_jobs=4, fold_num=3) best_params = best_params[-1] best_scores = best_scores[-1] best_estimator = best_estimators[-1] if isinstance(self.classifier_type, OneVsRestClassifier): best_params = {key.replace('estimator__', ''): classifier_params[ key.replace('estimator__', '')] for key in best_params} classifier_params = {self.classifiers_used + '_' + key: best_params[key] for key in best_params} self.parameters['classifier_params'].update(classifier_params) self.training_parameters['classifier_params'].update( classifier_params) self.classifier_type = best_estimator self.update_experiment_info() savepath = self.classifier_savename self.initialize_classifier(self.classifier_type.fit(self.training_data, self.train_ground_truth)) def compute_testing_time(self, testname): testing_time = {} features_extraction_time = 0 if not self.online: for count in range(len(self.parameters['descriptors'])): try: loaded = co.file_oper.load_labeled_data( [str(self.features_id[count][-1])] + self.features_file_id[count] + [str(testname)]) (_, _, _, feat_times) = loaded except BaseException: return None for key in feat_times: LOG.info('Time:' + str(key) + ':' + str(np.mean(feat_times[key]))) features_extraction_time += np.mean(feat_times[key]) try: testing_time['Classification'] = self.time[ -1] / float(self.scores.shape[0]) except IndexError: testing_time['Classification'] = ( co.file_oper.load_labeled_data( ['Testing'] + self.tests_ids[ self.available_tests.index( testname)])['TestTime'][ 'Classification']) else: testing_time['Classification'] = np.mean(self.time) testing_time['Features Extraction'] = features_extraction_time return testing_time def add_action(self, name=None, data=None, visualize=False, offline_vis=False, to_visualize=[], exit_after_visualization=False, use_dexter=False, action_type=None, max_act_samples=None): return self.action_recog.add_action( name=name, use_dexter=use_dexter, action_type=self.action_type, max_act_samples=max_act_samples, data=data, offline_vis=offline_vis, to_visualize=to_visualize, exit_after_visualization=exit_after_visualization) def offline_testdata_processing(self, datapath): ''' Offline testing data processing, using data in <datapath>. ''' LOG.info('Processing test data..') LOG.info('Extracting descriptors..') (descriptors, _, mean_depths, test_name, _, _) = self.add_action( name=None, data=datapath) testdata = np.hstack(tuple(descriptors)) self.parameters['testing_params'][test_name] = test_name self.parameters['testing_params']['current'] = test_name return testdata def save_plot(self, fig, lgd=None, display_all=False, info=None): ''' <fig>: figure <lgd>: legend of figure <display_all>: whether to save as Total plot Saves plot if the action resides in self.available_tests ''' filename = None if display_all: testname = self.action_type.lower() filename = os.path.join(*self.save_fold.split(os.sep)[:-1] + ['Total', testname + '.pdf']) else: if self.test_name is None: self.test_name = (self.name + ' ' + self.classifiers_used).title() if self.test_name in self.available_tests: if self.save_fold is None: if not self.online: fold_name = co.file_oper.load_labeled_data(['Testing'], just_catalog=True, include_all_catalog=True)[ str(self.tests_ids[ self.available_tests. index(self.test_name)])] else: fold_name = 'Online' self.save_fold = os.path.join( co.CONST['results_fold'], 'Classification', fold_name, self.test_name) if self.add_info is not None: self.save_fold = os.path.join( self.save_fold, self.add_info.replace(' ', '_').lower()) co.makedir(self.save_fold) LOG.info('Saving to ' + self.save_fold) if info is not None: filename = os.path.join( self.save_fold, (self.testname + ' ' + info + '.pdf').replace(' ','_')) else: filename = os.path.join( self.save_fold, self.testname.replace(' ','_') + '.pdf') else: LOG.warning('Requested figure to plot belongs to an' + ' action that does not reside in <self.'+ 'available_tests> .Skipping..') filename = None import matplotlib.pyplot as plt if filename is not None: if lgd is None: plt.savefig(filename) else: plt.savefig(filename, bbox_extra_artists=(lgd,), bbox_inches='tight') plt.close() def plot_result(self, data, info=None, save=True, xlabel='Frames', ylabel='', labels=None, colors=None, linewidths=None, alphas=None, xticks_names=None, yticks_names=None, xticks_locs=None, yticks_locs=None, markers=None, markers_sizes=None, zorders=None, ylim=None, xlim=None, display_all=False, title=False): ''' <data> is a numpy array dims (n_points, n_plots), <labels> is a string list of dimension (n_plots) <colors> ditto ''' import matplotlib from matplotlib import pyplot as plt #matplotlib.rcParams['text.usetex'] = True #matplotlib.rcParams['text.latex.unicode'] = True # plt.style.classifiers_used('seaborn-ticks') if len(data.shape) == 1: data = np.atleast_2d(data).T fig, axes = plt.subplots() if xticks_locs is not None: axes.set_xticks(xticks_locs, minor=True) axes.xaxis.grid(True, which='minor') if yticks_locs is not None: axes.set_yticks(yticks_locs, minor=True) axes.yaxis.grid(True, which='minor') if xticks_names is not None: plt.xticks(range(len(xticks_names)), xticks_names) if yticks_names is not None: plt.yticks(range(len(yticks_names)), yticks_names) if markers is None: markers = [','] * data.shape[1] if markers_sizes is None: markers_sizes = [10] * data.shape[1] if colors is None: colors = ['r', 'g', 'b', 'c', 'm', 'y', 'k'] if alphas is None: alphas = data.shape[1] * [1] if zorders is None: zorders = data.shape[1] * [0] while len(colors) < data.shape[1]: colors += [tuple(np.random.random(3))] if linewidths is None: linewidths = [1] * data.shape[1] lgd = None for count in range(data.shape[1]): if labels is not None: axes.plot(data[:, count], label='%s' % labels[count], color=colors[count], linewidth=linewidths[count], marker=markers[count], alpha=alphas[count], zorder=zorders[count], markersize=markers_sizes[count]) lgd = co.plot_oper.put_legend_outside_plot(axes, already_reshaped=True) else: axes.plot(data[:, count], color=colors[count], linewidth=linewidths[count], marker=markers[count], alpha=alphas[count], zorder=zorders[count], markersize=markers_sizes[count]) if title: if info is not None: plt.title(self.testname + '\n Dataset: ' + self.testdataname + '\n' + info.title()) else: plt.title(self.testname + '\n Dataset ' + self.testdataname) info = '' plt.xlabel(xlabel) plt.ylabel(ylabel) if ylim is not None: plt.ylim(ylim) if xlim is not None: plt.xlim(xlim) if save: self.save_plot(fig, lgd, display_all=display_all, info=info) return fig, lgd, axes def init_testing(self, data=None, online=True, save=True, load=True, testname=None, scores_savepath=None, scores_filter_shape=5, std_small_filter_shape=co.CONST['STD_small_filt_window'], std_big_filter_shape=co.CONST['STD_big_filt_window'], testdatapath=None, save_results=True): ''' Initializes paths and names used in testing to save, load and visualize data. Built as a convenience method, in case <self.run_testing> gets overriden. ''' self.parameters['testing'] = True self.parameters['testing_params']['online'] = online if online: self.reset_online_test() else: self.reset_offline_test() self.scores_filter_shape = scores_filter_shape self.std_small_filter_shape = std_small_filter_shape self.std_big_filter_shape = std_big_filter_shape self.online = online if testname is not None: self.testname = testname.title() else: self.testname = (self.name + ' ' + self.classifiers_used).title() if self.add_info is not None: self.testname += ' ' + self.add_info.title() self.parameters['testing_params']['current'] = self.testname if online: if testdatapath is not None: self.testdataname = ('online (using ' + os.path.basename(testdatapath) + ')') else: self.testdataname = 'online' else: self.testdataname = os.path.basename(data) if not self.online: if self.test_ind is not None: available_tests_ids = co.file_oper.load_labeled_data(['Testing'], just_catalog=True, include_all_catalog=True) if available_tests_ids is None: fold_name = '0' else: curr_test_id = self.tests_ids[self.available_tests. index(self.test_name)] if str(curr_test_id) in available_tests_ids: fold_name = str(available_tests_ids[str(curr_test_id)]) else: fold_name = str(len(available_tests_ids)) else: self.test_name = 'Online' try: fold_name = os.path.join(*[co.CONST['results_fold'], 'Classification', 'Online']) except OSError: fold_name = '0' if self.test_ind is not None: self.save_fold = os.path.join( co.CONST['results_fold'], 'Classification', self.test_name, fold_name) co.makedir(self.save_fold) if save or load: fold_name = self.classifier_folder if scores_savepath is None: self.scores_savepath = self.testdataname + '_scores_for_' self.scores_savepath += self.full_info.replace(' ', '_').lower() self.scores_savepath += '.pkl' else: self.scores_savepath = scores_savepath return True def run_testing(self, data=None, derot_angle=None, derot_center=None, online=True, scores_filter_shape=5, std_small_filter_shape=co.CONST['STD_small_filt_window'], std_big_filter_shape=co.CONST['STD_big_filt_window'], ground_truth_type=None, img_count=None, save=True, scores_savepath=None, load=False, testname=None, display_scores=True, construct_gt=True, just_scores=False, testdatapath=None, compute_perform=True, save_results=True): ''' Test Classifiers using data (.png files) located in <data>. If <online>, the testing is online, with <data> being a numpy array, which has been firstly processed by <hand_segmentation_alg>. The scores retrieved from testing are filtered using a box filter of shape <box_filter_shape>. The running mean along a buffer of the data is computed with a running window of length <mean_filter_shape>. The ground truth for the testing data is given by <ground_truth_type> (for further info about the variable refer to <co.gd_oper.construct_ground_truth>). If the training is online, the count of the frame is passed by <img_count>. If <save> is True, testing results are saved to <scores_savepath>, or a path constructed by the configuration. <testname> overrides the first line of the plots. If <load> is True and <scores_save_path> exists, testing is bypassed and all the necessary results are loaded from memory. If <just_scores> is True, the classification stage is not done and only scores are computed. If <testdatapath> is not <None> and <online> is True, then it will be assumed that a pseudoonline testing is taking place ''' loaded = False if not online: LOG.info('Testing:' + data) try: self.test_ind = self.available_tests.index(data) self.test_name = data except BaseException: if data.split(os.sep)[-1] in self.available_tests: self.test_ind = ( self.available_tests.index(data.split(os.sep)[-1])) self.test_name = data.split(os.sep)[-1] elif data in self.dynamic_actions or data in self.passive_actions: self.test_ind = None elif data.split(os.sep)[-1] in self.dynamic_actions or \ data.split(os.sep)[-1] in self.passive_actions: self.test_ind = None else: raise Exception('test data must be inside test_save_path,' + ' check config.yaml') if construct_gt and ground_truth_type is None: ground_truth_type =os.path.join( co.CONST['ground_truth_fold'], self.test_name + '.csv') elif isinstance(data, tuple): derot_angle = data[1] derot_center = data[2] data = data[0] if not self.testing_initialized or not online: if not self.init_testing(data=data, online=online, save=save, load=load, testname=testname, scores_savepath=scores_savepath, scores_filter_shape=scores_filter_shape, std_small_filter_shape=std_small_filter_shape, std_big_filter_shape=std_big_filter_shape, testdatapath=testdatapath, save_results=save_results): return False if not online: if self.test_ind is not None and ( load and self.accuracies[self.available_tests.index(self.test_name)] is not None): LOG.info('Tests already performed, loaded data') try: self.scores = self.results['Scores'] loaded = True except: pass if not loaded: if self.test_ind is not None: testdata = self.offline_testdata_processing( os.path.join(co.CONST['test_save_path'], self.test_name)) else: testdata = self.offline_testdata_processing( data) try: self.test_ind = self.available_tests.index(data) except BaseException: self.test_ind = None LOG.info(self.full_info + ':') LOG.info('Testing Classifiers using testdata with size: ' + str(testdata.shape)) fmask = np.prod(np.isfinite(testdata), axis=1).astype(bool) fin_scores = self.unified_classifier.decide( testdata[fmask, :]) self.scores = np.zeros( (testdata.shape[0], fin_scores.shape[1])) self.scores[:] = None self.scores[fmask] = fin_scores if self.test_ind is not None: self.testdata[self.test_ind]['Results']['Scores'] = self.scores if construct_gt: LOG.info('Constructing ground truth vector..') self.test_ground_truth, self.test_breakpoints = co.gd_oper.construct_ground_truth( os.path.join(co.CONST['test_save_path'], self.test_name), classes_namespace=self.train_classes, length=self.scores.shape[0], ground_truth_type=ground_truth_type, ret_breakpoints=True) utterances_inds = co.gd_oper.merge_utterances_vectors( co.gd_oper.create_utterances_vectors( self.test_breakpoints, len(self.test_ground_truth)), self.train_classes) if not just_scores: self.classify_offline(save=save, display=display_scores, compute_perform=compute_perform, extraction_method= self.parameters[ 'testing_params']['post_scores_processing_method']) self.correlate_with_ground_truth(save=save, display=display_scores, compute_perform=compute_perform, utterances_inds=utterances_inds) self.display_scores_and_time(save=save) if self.test_ind is not None: co.file_oper.save_labeled_data(['Testing'] +self.tests_ids[ self.test_ind], self.testdata[self.test_ind]) if not just_scores: if display_scores: if self.parameters['testing_params'][ 'post_scores_processing_method'] == 'CSTD': self.plot_result(np.concatenate(( self.less_filtered_scores_std[:, None], self.high_filtered_scores_std[:, None]), axis=1), info='Scores Statistics', xlabel='Frames', labels=['STD', 'STD Mean'], colors=['r', 'g'], save=save) mean_diff = (np.array(self.high_filtered_scores_std) - np.array(self.less_filtered_scores_std)) mean_diff = (mean_diff) / float(np.max(np.abs(mean_diff[ np.isfinite(mean_diff)]))) plots = [mean_diff] labels = ['ScoresSTD - ScoresSTDMean'] if self.test_ground_truth is not None: plots += [((self.test_ground_truth - np.mean(self.test_ground_truth[ np.isfinite(self.test_ground_truth)])) / float( np.max(self.test_ground_truth[ np.isfinite(self.test_ground_truth)])))[:, None]] labels += ['Ground Truth'] self.plot_result(np.concatenate(plots, axis=1), labels=labels, info='Metric of actions starting and ending ' + 'points', xlabel='Frames', save=save) if display_scores: self.plot_result(self.scores, labels=self.train_classes, info='Scores', xlabel='Frames', save=save, ) return True, self.scores else: ''' input is processed from hand_segmentation_alg (any data processed in such way, that the result is the same with my processing, is acceptable, eg. Dexter) There must be a continuous data streaming (method called in every loop), even if the result of the previous algorithm is None ''' scores_exist, score = self.process_online_data(data, img_count, derot_angle, derot_center, just_scores=just_scores) return scores_exist, score def visualize_action(self, action, save=True, save_name=None, *args, **kwargs): ''' Visualizes action or a testing dataset using predefined locations in config.yaml and the method co.draw_oper.plot_utterances ''' dataset_loc = '/media/vassilis/Thesis/Datasets/PersonalFarm/' results_loc = '/home/vassilis/Thesis/KinectPainting/Results/DataVisualization' ground_truth, breakpoints, labels = co.gd_oper.load_ground_truth(action, ret_labs=True, ret_breakpoints=True) testing =True images_base_loc = os.path.join(dataset_loc, 'actions', 'sets' if not testing else 'whole_result') images_loc = os.path.join( images_base_loc, action.replace( '_', ' ').title()) imgs, masks, sync, angles, centers, samples_indices = co.imfold_oper.load_frames_data( images_loc, masks_needed=True) import cv2 masks_centers = [] xdim = 0 ydim = 0 conts = [] tmp = [] for mask, img in zip(masks, imgs): conts = cv2.findContours( mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[1] conts_areas = [cv2.contourArea(cont) for cont in conts] tmp.append(np.sum(mask*img >0)) if np.sum(mask*img >0) < 500: masks_centers.append(None) else: cont = conts[
np.argmax(conts_areas)
numpy.argmax
import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow from sklearn.metrics import accuracy_score, confusion_matrix from sklearn.model_selection import train_test_split from keras.models import Sequential, Model from keras.layers import Dense from keras.utils import np_utils, plot_model # https://keras.io/guides/sequential_model/ # https://appliedmachinelearning.blog/2019/07/29/transfer-learning-using-feature-extraction-from-trained-models-food-images-cmodellassification/ def feedForward(X,y,epoch, batch_size): X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) # Normalize the images. train_images = X_train.astype('float32') test_images = X_test.astype('float32') train_images /= 255 test_images /= 255 train_labels = np_utils.to_categorical(Y_train, num_classes=10, dtype='uint8') test_labels = np_utils.to_categorical(Y_test, num_classes=10, dtype='uint8') # Build the model model = Sequential() model.add(Dense(28, activation='relu',input_shape=(784,))) model.add(Dense(28, activation='relu')) model.add(Dense(10, activation='softmax', name="Layer")) # Compile the model model.compile(optimizer='adam',loss='categorical_crossentropy',metrics=['accuracy']) model.summary() model.layers plot_model(model, to_file='multilayer_graph.png') # extracting the features from the last layer of the network feature_extractor = Model(inputs=model.inputs, outputs=model.get_layer(name="Layer").output) # Call feature extractor on test input. x = test_images print("x_shape: \n", test_images.shape) print("x : \n", test_images) features = feature_extractor.predict(x) print("features shape: \n", features.shape) print("features: \n", features) X = np.arange(10) plt.figure() index = 0 while index<100: plt.scatter(X , features[index]) index+=1 plt.show() # Train the model model.fit(train_images, train_labels, epochs=epoch, batch_size=batch_size, verbose=0) # Evaluate the model results = model.evaluate(test_images, test_labels, verbose=0) print("test loss, test acc: \n", results) # Save the model to disk model.save_weights('model.h1') # Load the model from disk later using: # model.load_weights('model.h1') # Predict on the first 5 test images. preds = np.argmax(model.predict(test_images[0:10]), axis=1) print("Prediction Shape: \n", preds.shape) # Print our model's predictions. print("prediction: \n", preds) # Check our predictions against the ground truths. print("test_labels shape: \n", test_labels[0:10].shape) print("test_labels: \n", test_labels[0:10]) print("test_labels argmax: \n", np.argmax(test_labels[0:10],axis=1)) print("\nAccuracy on Test Data: ", accuracy_score(np.argmax(test_labels[0:10], axis=1), preds)) print("\nNumber of correctly identified images: ", accuracy_score(
np.argmax(test_labels[0:10], axis=1)
numpy.argmax
from unittest import TestCase import numpy as np from numpy.testing import assert_allclose from statsmodels.regression.linear_model import WLS from statsmodels.regression._tools import _MinimalWLS class TestMinimalWLS(TestCase): @classmethod def setUpClass(cls): rs = np.random.RandomState(1234) cls.exog1 = rs.randn(200,5) cls.endog1 = cls.exog1.sum(1) + rs.randn(200) cls.weights1 = 1.0 + np.sin(
np.arange(200.0)
numpy.arange
""" Functions used in Metabolite annotation """ import numpy as np from scipy.interpolate import interpolate from scipy.optimize import leastsq def find(a,cond): b=np.nonzero(cond) return b def cauchy(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) arg=((1/(p3[0]*3.14159))/((1/p3[0])**2+(X*X)))*((1/(p3[1]*3.14159))/((1/p3[1])**2+(Y*Y))) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def expon(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) #arg=((1/p3[0])/((1/p3[0])**2+(X*X)))*((1/p3[1])/((1/p3[1])**2+(Y*Y))) arg=(1/6.28)*(1/p3[0])*np.exp(-X*X/(2*p3[0]**2))*(1/p3[1])*np.exp(-X*X/(2*p3[1]**2)) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def exponcauchy(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) #arg=((1/p3[0])/((1/p3[0])**2+(X*X)))*((1/p3[1])/((1/p3[1])**2+(Y*Y))) arg=(1/3.14159)*(1/p3[0])*np.exp(-X*X/(2*p3[0]**2))*((1/(p3[1]*3.14159))/((1/p3[1])**2+(Y*Y))) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def cauchyexpon(p2,p3): siz=(p2-1)/2*(np.ones(2)) xxrange = np.arange(-siz[1],siz[1]+1) yyrange = np.arange(-siz[1],siz[1]+1) X,Y = np.meshgrid(xxrange,yyrange) #arg=((1/p3[0])/((1/p3[0])**2+(X*X)))*((1/p3[1])/((1/p3[1])**2+(Y*Y))) arg=((1/(p3[0]*3.14159))/((1/p3[0])**2+(X*X)))*(1/3.14159)*(1/p3[1])*np.exp(-Y*Y/(2*p3[0]**2)) eps=2.2204*10**(-16) h=arg h[h<(eps*np.amax(h))]=0 sumh=np.sum(h) if sumh!=0: h=h/sumh h=h/np.amax(h) return h def subpix2(z,ii,jj): trange = np.arange(7) ttrange = np.arange(7) X,Y = np.meshgrid(trange,ttrange) outgrid = interpolate.interp2d(X,Y,z,kind='quintic') xx=yy=np.arange(61)/10. l=outgrid(xx,yy) l=l[30-9:30+10,30-9:30+10] ind=find(l,l==np.amax(l)) #print l #print ind[0][0],ind[1][0] ni=ii+(ind[0][0]-9.)/10 nj=jj+(ind[1][0]-9.)/10 #print ii,jj #print ni,nj return[ni,nj] def dephcl(z): e = lambda v,z,: np.sum(np.abs(z-z[9,9]*cauchy(19,v)),1) vi=[0.3,0.3] v, success = leastsq(e, vi, args=(z), maxfev=1000) if v[0]<0.001 or v[0]>2 or v[1]<0.001 or v[1]>2 : v[0]=v[1]=0.3+np.random.normal(0, 0.05, 1) return v def dephcg(z): e = lambda v,z,: np.sum(np.abs(z-z[9,9]*expon(19,v)),1) vi=[1,1] #z[z<0]=0 v, success = leastsq(e, vi, args=(z), maxfev=1000) if v[0]<0.1 or v[0]>4 or v[1]<0.1 or v[1]>4 : v[0]=v[1]=2+np.random.normal(0, 0.05, 1) return v def dephcaprio(z,a,b,c): if c[0]=='g' and c[1]=='g': e = lambda v,z,: np.sum(np.abs(z-z[9,9]*expon(19,v)),1) vi=[a,b] #z[z<0]=0 v, success = leastsq(e, vi, args=(z), maxfev=1000) if np.abs(float(v[0]-a))>1 or v[0]<0.5 or v[0]>6: v[0]=a+np.random.normal(0, 0.05, 1) if np.abs(float(v[1]-b))>1 or v[0]<0.5 or v[0]>6: v[1]=b+
np.random.normal(0, 0.05, 1)
numpy.random.normal
'''plotting ODS methods and utilities ------- ''' # NOTEs: https://git.iter.org/projects/IMAS/repos/idstools/browse/bin has some plotting utilities that may be worth checking out from .omas_utils import * from .omas_physics import cocos_transform from .omas_symbols import latexit __all__ = [] __ods__ = [] def add_to__ODS__(f): """ anything wrapped here will be available as a ODS method with name 'plot_'+f.__name__ """ __ods__.append(f.__name__) return f def add_to__ALL__(f): __all__.append(f.__name__) return f # ================================ # plotting helper functions # ================================ def uerrorbar(x, y, ax=None, **kwargs): r""" Given arguments y or x,y where x and/or y have uncertainties, feed the appropriate terms to matplotlib's errorbar function. If y or x is more than 1D, it is flattened along every dimension but the last. :param x: array of independent axis values :param y: array of values with uncertainties, for which shaded error band is plotted :param ax: The axes instance into which to plot (default: gca()) :param \**kwargs: Passed to ax.errorbar :return: list. A list of ErrorbarContainer objects containing the line, bars, and caps of each (x,y) along the last dimension. """ result = [] # set default key word arguments if ax is None: from matplotlib import pyplot ax = pyplot.gca() kwargs.setdefault('marker', 'o') if 'linestyle' not in kwargs and 'ls' not in kwargs: kwargs['linestyle'] = '' if numpy.all(std_devs(y) == 0) and numpy.all(std_devs(x) == 0): kwargs.setdefault('capsize', 0) # enable combinations of 1D and 2D x's and y's y = numpy.array(y) y = y.reshape(-1, y.shape[-1]) x = numpy.array(x) x = x.reshape(-1, x.shape[-1]) if x.shape[0] == 1 and y.shape[0] > 1: # one x for all y's x = numpy.tile(x[0, :], y.shape[0]).reshape(-1, x.shape[-1]) # plot each (x,y) and collect container objects for xi, yi in zip(x, y): tmp = ax.errorbar(nominal_values(xi), nominal_values(yi), xerr=std_devs(xi), yerr=std_devs(yi), **kwargs) result.append(tmp) return result class Uband(object): """ This class wraps the line and PollyCollection(s) associated with a banded errorbar plot for use in the uband function. """ def __init__(self, line, bands): """ :param line: Line2D A line of the x,y nominal values :param bands: list of PolyCollections The fill_between and/or fill_betweenx PollyCollections spanning the std_devs of the x,y data """ from matplotlib.cbook import flatten self.line = line # matplotlib.lines.Line2D self.bands = list(flatten([bands])) # matplotlib.collections.PolyCollection(s) def __getattr__(self, attr): if attr in ['set_color', 'set_lw', 'set_linewidth', 'set_dashes', 'set_linestyle']: def _band_line_method(self, method, *args, **kw): """ Call the same method for line and band. Returns Line2D method call result. """ for band in self.bands: getattr(band, method)(*args, **kw) return getattr(self.line, method)(*args, **kw) return lambda method=attr, *args, **kw: _band_line_method(method, *args, **kw) else: return getattr(self.line, attr) def uband(x, y, ax=None, fill_kw={'alpha': 0.25}, **kw): r""" Given arguments x,y where either or both have uncertainties, plot x,y using pyplt.plot of the nominal values and surround it with with a shaded error band using matplotlib's fill_between and/or fill_betweenx. If y or x is more than 1D, it is flattened along every dimension but the last. :param x: array of independent axis values :param y: array of values with uncertainties, for which shaded error band is plotted :param ax: axes instance into which to plot (default: gca()) :param fill_kw: dict. Passed to pyplot.fill_between :param \**kw: Passed to pyplot.plot :return: list. A list of Uband objects containing the line and bands of each (x,y) along the last dimension. """ from matplotlib import pyplot result = [] if ax is None: ax = pyplot.gca() # enable combinations of 1D and 2D x's and y's y = numpy.array(y) y = y.reshape(-1, y.shape[-1]) x = numpy.array(x) x = x.reshape(-1, x.shape[-1]) if x.shape[0] == 1 and y.shape[0] > 1: # one x for all y's x = numpy.tile(x[0, :], y.shape[0]).reshape(-1, x.shape[-1]) # plot each (x,y) and collect the lines/bands into a single object for xi, yi in zip(x, y): xnom = numpy.atleast_1d(numpy.squeeze(nominal_values(xi))) xerr = numpy.atleast_1d(numpy.squeeze(std_devs(xi))) ynom = numpy.atleast_1d(numpy.squeeze(nominal_values(yi))) yerr = numpy.atleast_1d(numpy.squeeze(std_devs(yi))) (l,) = ax.plot(xnom, ynom, **kw) fkw = copy.copy(fill_kw) # changes to fill_kw propagate to the next call of uband! fkw.setdefault('color', l.get_color()) bands = [] if numpy.any(yerr != 0): bandy = ax.fill_between(xnom, ynom - yerr, ynom + yerr, **fkw) bands.append(bandy) if numpy.any(xerr != 0): bandx = ax.fill_betweenx(ynom, xnom - xerr, xnom + xerr, **fkw) bands.append(bandx) tmp = Uband(l, bands) result.append(tmp) return result def imas_units_to_latex(unit): """ converts units to a nice latex format for plot labels :param unit: string with unit in imas format :return: string with unit in latex format """ unit = re.sub('(\-?[0-9]+)', r'{\1}', unit) unit = re.sub('\.', r'\,', unit) return f' [${unit}$]' @add_to__ALL__ def get_channel_count(ods, hw_sys, check_loc=None, test_checker=None, channels_name='channel'): """ Utility function for CX hardware overlays. Gets a channel count for some hardware systems. Provide check_loc to make sure some data exist. :param ods: OMAS ODS instance :param hw_sys: string Hardware system to check. Must be a valid top level IDS name, like 'thomson_scattering' :param check_loc: [optional] string If provided, an additional check will be made to ensure that some data exist. If this check fails, channel count will be set to 0 Example: 'thomson_scattering.channel.0.position.r' :param test_checker: [optional] string to evaluate into bool Like "checker > 0", where checker = ods[check_loc]. If this test fails, nc will be set to 0 :param channels_name: string Use if you need to generalize to something that doesn't have real channels but has something analogous, like how 'gas_injection' has 'pipe' that's shaped like 'channel' is in 'thomson_scattering'. :return: Number of channels for this hardware system. 0 indicates empty. """ try: nc = len(ods[hw_sys][channels_name]) if check_loc is not None: checker = ods[check_loc] if test_checker is not None: assert eval(test_checker) except (TypeError, AssertionError, ValueError, IndexError, KeyError): nc = 0 if nc == 0: printd('{} overlay could not find sufficient data to make a plot'.format(hw_sys)) return nc def gas_filter(label, which_gas): """ Utility: processes the mask / which_gas selector for gas_injection_overlay :param label: string Label for a gas pipe / inlet to be tested :param which_gas: string or list See gas_injection_overlay docstring :return: bool Flag indicating whether or not a pipe with this label should be shown """ include = False if isinstance(which_gas, str): if which_gas == 'all': include = True elif isinstance(which_gas, list): include = any(wg in label for wg in which_gas) return include def gas_arrow(ods, r, z, direction=None, r2=None, z2=None, snap_to=numpy.pi / 4.0, ax=None, color=None, pad=1.0, **kw): """ Draws an arrow pointing in from the gas inlet :param ods: ODS instance :param r: float R position of gas injector (m) :param z: float Z position of gas injector (m) :param r2: float [optional] R coordinate of second point, at which the gas injector is aiming inside the vessel :param z2: float [optional] Z coordinate of second point, at which the gas injector is aiming inside the vessel :param direction: float Direction of injection (radians, COCOS should match ods.cocos). None = try to guess. :param snap_to: float Snap direction angle to nearest value. Set snap to pi/4 to snap to 0, pi/4, pi/2, 3pi/4, etc. No in-between. :param ax: axes instance into which to plot (default: gca()) :param color: matplotlib color specification :param pad: float Padding between arrow tip and specified (r,z) """ from matplotlib import pyplot def pick_direction(): """Guesses the direction for the arrow (from injector toward machine) in case you don't know""" dr = ods['equilibrium']['time_slice'][0]['global_quantities']['magnetic_axis']['r'] - r dz = ods['equilibrium']['time_slice'][0]['global_quantities']['magnetic_axis']['z'] - z theta = numpy.arctan2(dz, -dr) if snap_to > 0: theta = snap_to * round(theta / snap_to) return theta if (r2 is not None) and (z2 is not None): direction = numpy.arctan2(z2 - z, r - r2) elif direction is None: direction = pick_direction() else: direction = cocos_transform(ods.cocos, 11)['BP'] * direction if ax is None: ax = pyplot.gca() shaft_len = 3.5 * (1 + pad) / 2.0 da = numpy.pi / 10 # Angular half width of the arrow head x0 = numpy.cos(-direction) * pad y0 = numpy.sin(-direction) * pad head_mark = [ (x0, y0), (x0 + numpy.cos(-direction + da), y0 + numpy.sin(-direction + da)), (x0 + numpy.cos(-direction), y0 + numpy.sin(-direction)), (x0 + shaft_len * numpy.cos(-direction), y0 + shaft_len * numpy.sin(-direction)), (x0 + numpy.cos(-direction), y0 + numpy.sin(-direction)), (x0 + numpy.cos(-direction - da), y0 + numpy.sin(-direction - da)), ] kw.pop('marker', None) # Ignore this return ax.plot(r, z, marker=head_mark, color=color, markersize=100 * (pad + shaft_len) / 5, **kw) def geo_type_lookup(geometry_type, subsys, imas_version=omas_rcparams['default_imas_version'], reverse=False): """ Given a geometry type code :param geometry_type: int (or string if reverse=True) Geometry type code (or geometry name if reverse) :param subsys: string Name of subsystem or ODS, like 'pf_active' :param imas_version: string IMAS version to use when mapping :param reverse: bool Switches the roles of param geometry_type and return :return: string (or int if reverse=True) Name of the field indicated by geometry_type (or type code if reverse=True). For example: In IMAS 3.19.0, `pf_active.coil[:].element[:].geometry.geometry_type = 1` means 'outline'. In version 3.19.0 the following geometry types exist {1: 'outline', 2: 'rectangle', 4: 'arcs of circle'} """ # Fetch information from IMAS data description of geometry_type for the relevant subsys lookup = { 'ic_antennas': 'ic_antennas.antenna.:.strap.:.geometry.geometry_type', 'pf_active': 'pf_active.coil.:.element.:.geometry.geometry_type', } if subsys not in lookup.keys(): printe('Warning: unrecognized IMAS substructure ({})'.format(subsys)) return None try: doc = omas_info_node(lookup[subsys], imas_version=imas_version)['documentation'] except ValueError as _excp: printe(repr(_excp)) return None geo_map = eval('{%s}' % doc.split('(')[-1][:-2]) if 3 not in geo_map: geo_map[3] = 'oblique' # For backward compatibility if reverse: # https://stackoverflow.com/a/13149770/6605826 return list(geo_map.keys())[list(geo_map.values()).index(geometry_type)] else: return geo_map.get(geometry_type, None) def padded_extension(values_in, n, fill_value): """ Forces values_in to be at least length n by appending copies of fill_value as needed :param values_in: scalar or 1D iterable :param n: int :param fill_value: scalar :return: 1D array with length >= n """ x = numpy.atleast_1d(values_in).tolist() if len(x) < n: x += [fill_value] * (n - len(x)) return numpy.array(x) def text_alignment_setup(n, default_ha='left', default_va='baseline', **kw): """ Interprets text alignment instructions :param n: int Number of labels that need alignment instructions :param default_ha: string or list of n strings Default horizontal alignment. If one is supplied, it will be copied n times. :param default_va: string or list of n strings Default vertical alignment. If one is supplied, it will be copied n times. :param kw: keywords caught by overlay method :return: (list of n strings, list of n strings, kw) Horizontal alignment instructions Vertical alignment instructions Updated keywords """ label_ha = padded_extension(kw.pop('label_ha', None), n, None) label_va = padded_extension(kw.pop('label_va', None), n, None) default_ha = numpy.atleast_1d(default_ha).tolist() default_va = numpy.atleast_1d(default_va).tolist() if len(default_ha) == 1: default_ha *= n if len(default_va) == 1: default_va *= n for i in range(n): label_ha[i] = default_ha[i] if label_ha[i] is None else label_ha[i] label_va[i] = default_va[i] if label_va[i] is None else label_va[i] return label_ha, label_va, kw def label_shifter(n, kw): """ Interprets label shift instructions :param n: int Number of labels that need shift instructions :param kw: dict Keywords passed to main plot script; label shifting keywords will be removed :return: (1D array with length >= n, 1D array with length >= n) R shifts Z shifts """ label_dr = kw.pop('label_r_shift', 0) label_dz = kw.pop('label_z_shift', 0) label_dr = padded_extension(label_dr, n, fill_value=label_dr if numpy.isscalar(label_dr) else 0) label_dz = padded_extension(label_dz, n, fill_value=label_dz if numpy.isscalar(label_dz) else 0) return label_dr, label_dz # hold last 100 references of matplotlib.widgets.Slider _stimes = [] def ods_time_plot(ods_plot_function, ods, time_index, time, **kw): r""" Utility function for generating time dependent plots :param ods_plot_function: ods plot function to be called this function must accept ax (either a single or a list of axes) and must return the axes (or list of axes) it used :param ods: ods :param time_index: time indexes to be scanned :param time: array of times :param \**kw: extra aruments to passed to ods_plot_function :return: slider instance and list of axes used """ from matplotlib import pyplot from matplotlib.widgets import Slider time_index = numpy.atleast_1d(time_index) time = time[time_index] axs = {} def do_clean(time0): if axs is not None: for ax in axs: if axs[ax] is not None: axs[ax].cla() def update(time0): if 'ax' in kw: ax = kw.pop('ax') elif not len(axs): ax = None elif len(axs) == 1: ax = list(axs.values())[0] else: ax = axs time_index0 = time_index[numpy.argmin(abs(time - time0))] tmp = ods_plot_function(ods, time_index0, ax=ax, **kw)['ax'] if isinstance(tmp, dict): axs.update(tmp) else: axs[1, 1, 1] = tmp stime, axtime = kw.pop('stime', (None, None)) update(time[0]) if stime is None: axtime = pyplot.axes([0.1, 0.96, 0.75, 0.03]) min_time = min(time) max_time = max(time) if min_time == max_time: min_time = min_time - 1 max_time = max_time + 1 stime = Slider(axtime, 'Time[s]', min_time, max_time, valinit=min(time), valstep=min(numpy.diff(time))) if stime not in _stimes: _stimes.append(stime) if len(_stimes) > 100: _stimes.pop(0) stime.on_changed(do_clean) stime.on_changed(update) for time0 in time: axtime.axvline(time0, color=['r', 'y', 'c', 'm'][stime.cnt - 2]) return {'stime': (stime, axtime), 'ax': axs} def cached_add_subplot(fig, ax_cache, *args, **kw): r""" Utility function that works like matplotlib add_subplot but reuses axes if these were already used before :param fig: matplotlib figure :param ax_cache: caching dictionary :param \*args: arguments passed to matplotlib add_subplot :param \**kw: keywords arguments passed to matplotlib add_subplot :return: matplotlib axes """ if args in ax_cache: return ax_cache[args] else: ax = fig.add_subplot(*args, **kw) ax_cache[args] = ax return ax # ================================ # ODSs' plotting methods # ================================ def handle_time(ods, time_location, time_index, time): """ Given either time_index or time returns both time_index and time consistent with one another NOTE: time takes precedence over time_index :param time_location: location of which to get the time :param time_index: int or list of ints :param time: float or list of floats :return: time_index, time """ if time is not None: tds = ods.time(time_location) time_index = [] for t in numpy.atleast_1d(time): time_index.append(numpy.argmin(abs(tds - t))) if time_index is None: time = ods.time(time_location) if time is None: time_index = 0 else: time_index = numpy.arange(len(time)) return time_index, numpy.atleast_1d(time) @add_to__ODS__ def equilibrium_CX( ods, time_index=None, time=None, levels=None, contour_quantity='rho_tor_norm', allow_fallback=True, ax=None, sf=3, label_contours=None, show_wall=True, xkw={}, ggd_points_triangles=None, **kw, ): r""" Plot equilibrium cross-section as per `ods['equilibrium']['time_slice'][time_index]` :param ods: ODS instance input ods containing equilibrium data :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param levels: sorted numeric iterable values to pass to 2D plot as contour levels :param contour_quantity: string quantity to contour, anything in eq['profiles_1d'] or eq['profiles_2d'] or psi_norm :param allow_fallback: bool If rho/phi is requested but not available, plot on psi instead if allowed. Otherwise, raise ValueError. :param ax: Axes instance axes to plot in (active axes is generated if `ax is None`) :param sf: int Resample scaling factor. For example, set to 3 to resample to 3x higher resolution. Makes contours smoother. :param label_contours: bool or None True/False: do(n't) label contours None: only label if contours are of q :param show_wall: bool Plot the inner wall or limiting surface, if available :param xkw: dict Keywords to pass to plot call to draw X-point(s). Disable X-points by setting xkw={'marker': ''} :param ggd_points_triangles: Caching of ggd data structure as generated by omas_physics.grids_ggd_points_triangles() method :param \**kw: keywords passed to matplotlib plot statements :return: Axes instance """ # caching of ggd data if ggd_points_triangles is None and 'equilibrium.grids_ggd' in ods: from .omas_physics import grids_ggd_points_triangles ggd_points_triangles = grids_ggd_points_triangles(ods['equilibrium.grids_ggd[0].grid[0]']) if allow_fallback is True: allow_fallback = 'psi' # time animation time_index, time = handle_time(ods, 'equilibrium', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot( equilibrium_CX, ods, time_index, time, levels=levels, contour_quantity=contour_quantity, allow_fallback=allow_fallback, ax=ax, sf=sf, label_contours=label_contours, show_wall=show_wall, xkw=xkw, ggd_points_triangles=ggd_points_triangles, **kw, ) import matplotlib from matplotlib import pyplot if ax is None: ax = pyplot.gca() return_dict = {'ax': ax} wall = None eq = ods['equilibrium']['time_slice'][time_index] if 'wall' in ods: if time_index in ods['wall']['description_2d']: wall = ods['wall']['description_2d'][time_index]['limiter']['unit'] elif 0 in ods['wall']['description_2d']: wall = ods['wall']['description_2d'][0]['limiter']['unit'] # Plotting style kw.setdefault('linewidth', 1) label = kw.pop('label', '') kw1 = copy.deepcopy(kw) kw1['linewidth'] = kw['linewidth'] + 1 for contour_only_keyword in ['linestyles', 'linewidths', 'colors']: kw1.pop(contour_only_keyword, None) # Remove keywords that only affect contours so they don't offend plot # Boundary ax.plot(eq['boundary.outline.r'], eq['boundary.outline.z'], label=label, **kw1) kw1.setdefault('color', ax.lines[-1].get_color()) # Magnetic axis if 'global_quantities.magnetic_axis.r' in eq and 'global_quantities.magnetic_axis.z': ax.plot(eq['global_quantities']['magnetic_axis']['r'], eq['global_quantities']['magnetic_axis']['z'], '+', **kw1) # get 2d data either from grid or ggd def get2d(contour_quantity): pr2d = None if 'profiles_2d' in eq and 'profiles_2d.0.%s' % contour_quantity in eq: pr2d = eq['profiles_2d.0.%s' % contour_quantity] elif 'ggd.0.%s.0.values' % contour_quantity in eq: pr2d = eq['ggd.0.%s.0.values' % contour_quantity] return pr2d # Choose quantity to plot for fallback in range(2): # Most robust thing is to use PSI2D and interpolate 1D quantities over it if ( get2d('psi') is not None and 'psi' in eq['profiles_1d'] and contour_quantity in eq['profiles_1d'] or contour_quantity == 'psi_norm' ): x_value_1d = eq['profiles_1d']['psi'] m = x_value_1d[0] M = x_value_1d[-1] x_value_1d = (x_value_1d - m) / (M - m) x_value_2d = (get2d('psi') - m) / (M - m) if contour_quantity == 'psi_norm': value_1d = x_value_1d else: value_1d = eq['profiles_1d'][contour_quantity] value_2d = omas_interp1d(x_value_2d, x_value_1d, value_1d) break # Next get 2D quantity elif get2d(contour_quantity) is not None: value_1d = None value_2d = get2d(contour_quantity) break elif allow_fallback and not fallback: print('No %s equilibrium CX data to plot. Fallback on %s.' % (contour_quantity, allow_fallback)) contour_quantity = allow_fallback # allow fallback elif fallback: txt = 'No %s equilibrium CX data to plot. Aborting.' % contour_quantity if allow_fallback: print(txt) return ax else: raise ValueError(txt) return_dict['contour_quantity'] = contour_quantity # handle levels if levels is None and value_1d is not None: if contour_quantity == 'q': max_q = int(numpy.round(omas_interp1d(0.95, x_value_1d, value_1d))) levels = numpy.arange(max_q) else: levels = numpy.linspace(numpy.min(value_1d), numpy.max(value_1d), 11)[1:-1] levels = numpy.hstack((levels, levels[-1] + (levels[1] - levels[0]) * numpy.arange(100)[1:])) # Wall clipping if wall is not None: path = matplotlib.path.Path(numpy.transpose(numpy.array([wall[0]['outline']['r'], wall[0]['outline']['z']]))) wall_path = matplotlib.patches.PathPatch(path, facecolor='none', edgecolor='none') ax.add_patch(wall_path) kw.setdefault('colors', kw1['color']) kw.pop('color', '') kw['linewidths'] = kw.pop('linewidth') if 'profiles_2d.0' in eq: # Contours if 'r' in eq['profiles_2d.0'] and 'z' in eq['profiles_2d.0']: r = eq['profiles_2d.0.r'] z = eq['profiles_2d.0.z'] else: z, r = numpy.meshgrid(eq['profiles_2d.0.grid.dim2'], eq['profiles_2d.0.grid.dim1']) # sanitize value_2d = value_2d.copy() value_2d[:, -1] = value_2d[:, -2] value_2d[-1, :] = value_2d[-2, :] value_2d[-1, -1] = value_2d[-2, -2] # Resample if sf > 1: value_2d[numpy.isnan(value_2d)] = numpy.nanmean(value_2d) import scipy.ndimage r = scipy.ndimage.zoom(r, sf) z = scipy.ndimage.zoom(z, sf) value_2d = scipy.ndimage.zoom(value_2d, sf) cs = ax.contour(r, z, value_2d, levels, **kw) if label_contours or ((label_contours is None) and (contour_quantity == 'q')): ax.clabel(cs) elif 'ggd' in eq: cs = ax.tricontour( ggd_points_triangles[0][:, 0], ggd_points_triangles[0][:, 1], ggd_points_triangles[1], value_2d, levels=levels, **kw ) else: raise Exception('No 2D equilibrium data to plot') if contour_quantity == 'q': ax.clabel(cs, cs.levels, inline=True, fontsize=10) # X-point(s) xkw.setdefault('marker', 'x') if xkw['marker'] not in ['', ' ']: from matplotlib import rcParams xkw.setdefault('color', cs.colors) xkw.setdefault('linestyle', '') xkw.setdefault('markersize', rcParams['lines.markersize'] * 1.5) xkw.setdefault('mew', rcParams['lines.markeredgewidth'] * 1.25 + 1.25) xp = eq['boundary']['x_point'] for i in range(len(xp)): try: xr, xz = xp[i]['r'], xp[i]['z'] except ValueError: pass else: ax.plot(xr, xz, **xkw) # Internal flux surfaces w/ or w/o masking if wall is not None: for collection in cs.collections: collection.set_clip_path(wall_path) # Wall if wall is not None and show_wall: ax.plot(wall[0]['outline']['r'], wall[0]['outline']['z'], 'k', linewidth=2) ax.axis([min(wall[0]['outline']['r']), max(wall[0]['outline']['r']), min(wall[0]['outline']['z']), max(wall[0]['outline']['z'])]) # Axes ax.set_aspect('equal') ax.set_frame_on(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') return return_dict @add_to__ODS__ def equilibrium_CX_topview(ods, time_index=None, time=None, ax=None, **kw): r""" Plot equilibrium toroidal cross-section as per `ods['equilibrium']['time_slice'][time_index]` :param ods: ODS instance input ods containing equilibrium data :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: arguments passed to matplotlib plot statements :return: Axes instance """ # time animation time_index, time = handle_time(ods, 'equilibrium', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(equilibrium_CX_topview, time, ods, time_index, ax=ax, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() wall = None eq = ods['equilibrium']['time_slice'][time_index] if 'wall' in ods: if time_index in ods['wall']['description_2d']: wall = ods['wall']['description_2d'][time_index]['limiter']['unit'] elif 0 in ods['wall']['description_2d']: wall = ods['wall']['description_2d'][0]['limiter']['unit'] # Plotting style kw.setdefault('linewidth', 1) label = kw.pop('label', '') kw1 = copy.deepcopy(kw) t_angle = numpy.linspace(0.0, 2.0 * numpy.pi, 100) sint = numpy.sin(t_angle) cost = numpy.cos(t_angle) Rout = numpy.max(eq['boundary']['outline']['r']) Rin = numpy.min(eq['boundary']['outline']['r']) Xout = Rout * cost Yout = Rout * sint Xin = Rin * cost Yin = Rin * sint ax.plot(Xin, Yin, **kw1) kw1.setdefault('color', ax.lines[-1].get_color()) ax.plot(Xout, Yout, **kw1) # Wall if wall is not None: Rout = numpy.max(wall[0]['outline']['r']) Rin = numpy.min(wall[0]['outline']['r']) Xout = Rout * cost Yout = Rout * sint Xin = Rin * cost Yin = Rin * sint ax.plot(Xin, Yin, 'k', label=label, linewidth=2) ax.plot(Xout, Yout, 'k', label=label, linewidth=2) ax.axis('equal') # Axes ax.set_aspect('equal') ax.set_frame_on(False) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') return {'ax': ax} nice_names = { 'rho_tor_norm': '$\\rho$', 'rho_tor': '$\\rho [m]$', 'rho_volume_norm': '$\\rho_{\\rm vol}$', 'psi_norm': '$\\psi$', 'psi': '$\\psi$ [Wb]', 'phi': '$\\phi$ [Wb]', 'phi_norm': '$\\phi$', 'q': '$q$', } @add_to__ODS__ def equilibrium_summary(ods, time_index=None, time=None, fig=None, ggd_points_triangles=None, **kw): """ Plot equilibrium cross-section and P, q, P', FF' profiles as per `ods['equilibrium']['time_slice'][time_index]` :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param fig: figure to plot in (a new figure is generated if `fig is None`) :param ggd_points_triangles: Caching of ggd data structure as generated by omas_physics.grids_ggd_points_triangles() method :param kw: arguments passed to matplotlib plot statements :return: figure handler """ # caching of ggd data if ggd_points_triangles is None and 'equilibrium.grids_ggd' in ods: from .omas_physics import grids_ggd_points_triangles ggd_points_triangles = grids_ggd_points_triangles(ods['equilibrium.grids_ggd[0].grid[0]']) from matplotlib import pyplot axs = kw.pop('ax', {}) if axs is None: axs = {} if not len(axs) and fig is None: fig = pyplot.figure() # time animation time_index, time = handle_time(ods, 'equilibrium', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot( equilibrium_summary, ods, time_index, time, fig=fig, ggd_points_triangles=ggd_points_triangles, ax=axs, **kw ) ax = cached_add_subplot(fig, axs, 1, 3, 1) contour_quantity = kw.pop('contour_quantity', 'rho_tor_norm') tmp = equilibrium_CX( ods, time_index=time_index, ax=ax, contour_quantity=contour_quantity, ggd_points_triangles=ggd_points_triangles, **kw ) eq = ods['equilibrium']['time_slice'][time_index] # x if tmp['contour_quantity'] in eq['profiles_1d']: raw_xName = tmp['contour_quantity'] x = eq['profiles_1d'][raw_xName] else: raw_xName = 'psi' x = eq['profiles_1d']['psi_norm'] x = (x - min(x)) / (max(x) - min(x)) xName = nice_names.get(raw_xName, raw_xName) # pressure ax = cached_add_subplot(fig, axs, 2, 3, 2) ax.plot(x, eq['profiles_1d']['pressure'], **kw) kw.setdefault('color', ax.lines[-1].get_color()) ax.set_title(r'$\,$ Pressure') ax.ticklabel_format(style='sci', scilimits=(-1, 2), axis='y') pyplot.setp(ax.get_xticklabels(), visible=False) # q ax = cached_add_subplot(fig, axs, 2, 3, 3, sharex=ax) ax.plot(x, eq['profiles_1d']['q'], **kw) ax.set_title('$q$ Safety factor') ax.ticklabel_format(style='sci', scilimits=(-1, 2), axis='y') if 'label' in kw: leg = ax.legend(loc=0) import matplotlib if compare_version(matplotlib.__version__, '3.1.0') >= 0: leg.set_draggable(True) else: leg.draggable(True) pyplot.setp(ax.get_xticklabels(), visible=False) # dP_dpsi ax = cached_add_subplot(fig, axs, 2, 3, 5, sharex=ax) ax.plot(x, eq['profiles_1d']['dpressure_dpsi'], **kw) ax.set_title(r"$P\,^\prime$ source function") ax.ticklabel_format(style='sci', scilimits=(-1, 2), axis='y') pyplot.xlabel(xName) # FdF_dpsi ax = cached_add_subplot(fig, axs, 2, 3, 6, sharex=ax) ax.plot(x, eq['profiles_1d']['f_df_dpsi'], **kw) ax.set_title(r"$FF\,^\prime$ source function") ax.ticklabel_format(style='sci', scilimits=(-1, 2), axis='y') pyplot.xlabel(xName) if raw_xName.endswith('norm'): ax.set_xlim([0, 1]) return {'ax': axs} @add_to__ODS__ def core_profiles_currents_summary(ods, time_index=None, time=None, ax=None, **kw): """ Plot currents in core_profiles_1d :param ods: input ods :param fig: figure to plot in (a new figure is generated if `fig is None`) :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # time animation time_index, time = handle_time(ods, 'core_profiles', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(core_profiles_currents_summary, ods, time_index, time, fig=fig, ax=axs, **kw) assert 'j_total' in ods['core_profiles.profiles_1d'][time_index], "j_total not in core profiles" ax.plot( ods[f'core_profiles.profiles_1d[{time_index}].grid.rho_tor_norm'], ods[f'core_profiles.profiles_1d[{time_index}]']['j_total'], label='total current', ls='--', ) for item in ods['core_profiles.profiles_1d'][time_index]: if 'j_' in item and item not in ['j_tor', 'j_total']: ax.plot( ods[f'core_profiles.profiles_1d[{time_index}].grid.rho_tor_norm'], ods[f'core_profiles.profiles_1d[{time_index}]'][item], label=' '.join(item[2:].split(sep='_')), ) ax.legend(loc=0) ax.set_ylabel(r'Parallel current density $[A\,m^-{2}]$') ax.set_xlabel(r'$\rho_{tor}$') return {'ax': ax} @add_to__ODS__ def core_profiles_summary(ods, time_index=None, time=None, fig=None, ods_species=None, quantities=['density_thermal', 'temperature'], **kw): """ Plot densities and temperature profiles for electrons and all ion species as per `ods['core_profiles']['profiles_1d'][time_index]` :param ods: input ods :param fig: figure to plot in (a new figure is generated if `fig is None`) :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ods_species: list of ion specie indices as listed in the core_profiles ods (electron index = -1) if None selected plot all the ion speciess :param quantities: list of strings to plot from the profiles_1d ods like zeff, temperature & rotation_frequency_tor_sonic :param kw: arguments passed to matplotlib plot statements :return: figure handler """ from matplotlib import pyplot axs = kw.pop('ax', {}) if axs is None: axs = {} if not len(axs) and fig is None: fig = pyplot.figure() # time animation time_index, time = handle_time(ods, 'core_profiles', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot( core_profiles_summary, ods, time_index, time, fig=fig, ods_species=ods_species, quantities=quantities, ax=axs, **kw ) prof1d = ods['core_profiles']['profiles_1d'][time_index] rho = prof1d['grid.rho_tor_norm'] # Determine subplot rows x colls if ods_species is None: ncols = len(prof1d['ion']) + 1 ods_species = [-1] + list(prof1d['ion']) else: ncols = len(ods_species) nplots = sum([ncols if 'density' in i or 'temperature' in i else 1 for i in quantities]) nrows = int(numpy.ceil(nplots / ncols)) # Generate species with corresponding name species_in_tree = [f"ion.{i}" if i >= 0 else 'electrons' for i in ods_species] names = [f"{prof1d[i]['label']} ion" if i != 'electrons' else "electron" for i in species_in_tree] plotting_list = [] label_name = [] label_name_z = [] unit_list = [] for q in quantities: if 'density' in q or 'temperature' in q: for index, specie in enumerate(species_in_tree): unit_list.append(omas_info_node(o2u(f"core_profiles.profiles_1d.0.{specie}.{q}"))['units']) if q in prof1d[specie]: if 'density' in q and 'ion' in specie and prof1d[specie]['element[0].z_n'] != 1.0: plotting_list.append(prof1d[specie][q] * prof1d[specie]['element[0].z_n']) label_name_z.append(r'$\times$' + f" {int(prof1d[specie]['element[0].z_n'])}") else: plotting_list.append(prof1d[specie][q]) label_name_z.append("") label_name.append(f'{names[index]} {q.capitalize()}') else: plotting_list.append(numpy.zeros(len(rho))) else: unit_list.append(omas_info_node(o2u(f"core_profiles.profiles_1d.0.{q}"))['units']) plotting_list.append(prof1d[q]) label_name.append(q.capitalize()) for index, y in enumerate(plotting_list): plot = index + 1 if index % ncols == 0: sharey = None sharex = None elif 'Density' in label_name[index] or 'Temperature' in label_name[index]: sharey = ax sharex = ax ax = cached_add_subplot(fig, axs, nrows, ncols, plot, sharex=sharex, sharey=sharey) uband(rho, y, ax=ax, **kw) if "Temp" in label_name[index]: ax.set_ylabel(r'$T_{}$'.format(label_name[index][0]) + imas_units_to_latex(unit_list[index])) elif "Density" in label_name[index]: ax.set_ylabel(r'$n_{}$'.format(label_name[index][0]) + imas_units_to_latex(unit_list[index]) + label_name_z[index]) else: ax.set_ylabel(label_name[index][:10] + imas_units_to_latex(unit_list[index])) if (nplots - plot) < ncols: ax.set_xlabel('$\\rho$') if 'label' in kw: ax.legend(loc='lower center') ax.set_xlim([0, 1]) return {'ax': axs, 'fig': fig} @add_to__ODS__ def core_profiles_pressures(ods, time_index=None, time=None, ax=None, **kw): """ Plot pressures in `ods['core_profiles']['profiles_1d'][time_index]` :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :return: axes handler """ # time animation time_index, time = handle_time(ods, 'core_profiles', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(core_profiles_pressures, ods, time_index, time, ax=ax) import matplotlib from matplotlib import pyplot if ax is None: ax = pyplot.gca() prof1d = ods['core_profiles']['profiles_1d'][time_index] x = prof1d['grid.rho_tor_norm'] for item in prof1d.paths(): item = l2o(item) if 'pressure' in item: if 'ion' in item: try: i = int(item.split("ion.")[-1].split('.')[0]) label = prof1d['ion'][i]['label'] except ValueError: label = item elif 'electrons' in item: label = 'e$^-$' else: label = item if item != label: label += ' (thermal)' if 'thermal' in item else '' label += ' (fast)' if 'fast' in item else '' uband(x, prof1d[item], ax=ax, label=label) ax.set_xlim([0, 1]) ax.set_ylabel('Pressure (Pa)') ax.set_xlabel('$\\rho_N$') leg = ax.legend(loc=0) if compare_version(matplotlib.__version__, '3.1.0') >= 0: leg.set_draggable(True) else: leg.draggable(True) return {'ax': ax} @add_to__ODS__ def core_transport_fluxes(ods, time_index=None, time=None, fig=None, show_total_density=True, plot_zeff=False, **kw): """ Plot densities and temperature profiles for all species, rotation profile, TGYRO fluxes and fluxes from power_balance per STEP state. :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param fig: figure to plot in (a new figure is generated if `fig is None`) :param show_total_density: bool Show total thermal+fast in addition to thermal/fast breakdown if available :param plot_zeff: if True, plot zeff below the plasma rotation :kw: matplotlib plot parameters :return: axes """ from matplotlib import pyplot axs = kw.pop('ax', {}) if axs is None: axs = {} if not len(axs) and fig is None: fig = pyplot.figure() # time animation time_index, time = handle_time(ods, 'core_profiles', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot( core_transport_fluxes, ods, time_index, time, fig=fig, ax=axs, show_total_density=show_total_density, plot_zeff=plot_zeff, **kw, ) def sum_density_types(specie_index): final_density = numpy.zeros(len(prof1d['grid.rho_tor_norm'])) for therm_fast in ['_thermal', '_fast']: if not show_total_density and therm_fast != "_thermal": continue # Skip total thermal+fast because the flag turned it off density = ods_species[specie_index] + '.density' + therm_fast if density not in prof1d: continue final_density += prof1d[density] return final_density def plot_function(x, y, plot_num, ylabel, sharex=None, sharey=None): ax = cached_add_subplot(fig, axs, nrows, ncols, plot_num, sharex=sharex, sharey=sharey) uband(x, y, ax=ax, **kw) ax.set_ylabel(ylabel) return ax if plot_zeff: nrows = 5 else: nrows = 4 ncols = 2 if "core_profiles" in ods: prof1d = ods['core_profiles']['profiles_1d'][time_index] equilibrium = ods['equilibrium']['time_slice'][time_index] rho_core_prof = prof1d['grid.rho_tor_norm'] ods_species = ['electrons'] + ['ion[%d]' % k for k in range(len(prof1d['ion']))] species_name = ['Electrons'] + [prof1d['ion[%d].label' % k] + ' ion' for k in range(len(prof1d['ion']))] # Temperature electrons ax = plot_function(x=rho_core_prof, y=prof1d[ods_species[0]]['temperature'] / 1e3, plot_num=1, ylabel='$T_{e}\,[keV]$') pyplot.setp(ax.get_xticklabels(), visible=False) # Temperature main ion species ax = plot_function( x=rho_core_prof, y=prof1d[ods_species[1]]['temperature'] / 1e3, plot_num=3, ylabel='$T_{i}\,[keV]$', sharey=ax, sharex=ax ) pyplot.setp(ax.get_xticklabels(), visible=False) # Density electrons ax = plot_function(x=rho_core_prof, y=sum_density_types(specie_index=0), plot_num=5, ylabel='$n_{e}\,[m^{-3}]$', sharex=ax) pyplot.setp(ax.get_xticklabels(), visible=False) # Rotation if 'rotation_frequency_tor_sonic' in prof1d and 'psi' in prof1d['grid']: from .omas_physics import omas_environment with omas_environment( ods, coordsio={ f'equilibrium.time_slice.{k}.profiles_1d.psi': prof1d['grid']['psi'] for k in range(len(ods['equilibrium.time_slice'])) }, ): rotation = (equilibrium['profiles_1d']['r_outboard'] - equilibrium['profiles_1d']['r_inboard']) / 2 + equilibrium[ 'profiles_1d' ]['geometric_axis']['r'] * -prof1d['rotation_frequency_tor_sonic'] ax = plot_function(x=rho_core_prof, y=rotation, plot_num=7, ylabel='R*$\Omega_0$ (m/s)', sharex=ax) if not plot_zeff: ax.set_xlabel('$\\rho$') # Zeff if plot_zeff: pyplot.setp(ax.get_xticklabels(), visible=False) ax = plot_function(x=rho_core_prof, y=prof1d['zeff'], plot_num=9, ylabel='$Z_{eff}$', sharex=ax) ax.set_xlabel('$\\rho$') # Fluxes if "core_transport" in ods: core_transport = ods['core_transport']['model'] rho_transport_model = core_transport[0]['profiles_1d'][time_index]['grid_d']['rho_tor'] # Qe ax = plot_function( x=rho_transport_model, y=core_transport[2]['profiles_1d'][time_index]['electrons']['energy']['flux'], plot_num=2, ylabel='$Q_e$ [W/$m^2$]', sharex=ax, ) color = ax.lines[-1].get_color() uband( x=rho_transport_model, y=core_transport[3]['profiles_1d'][time_index]['electrons']['energy']['flux'], ax=ax, marker='o', ls='None', color=color, ) uband( x=rho_core_prof, y=core_transport[4]['profiles_1d'][time_index]['electrons']['energy']['flux'], ax=ax, ls='--', color=color ) pyplot.setp(ax.get_xticklabels(), visible=False) # Add legend on top (black) as it applies to all lines from matplotlib.lines import Line2D legend_elements = [ Line2D([0], [0], color='k', ls='--', label='Power Balance'), Line2D([0], [0], color='k', label='Model total'), Line2D([0], [0], marker='o', ls='None', color='k', label='Model target', markersize=6), ] fig.legend(handles=legend_elements).set_draggable(True) # Qi ax = plot_function( x=rho_transport_model, y=core_transport[2]['profiles_1d'][time_index]['total_ion_energy']['flux'], plot_num=4, ylabel='$Q_i$ [W/$m^2$]', sharex=ax, sharey=ax, ) uband( x=rho_transport_model, y=core_transport[3]['profiles_1d'][time_index]['total_ion_energy']['flux'], ax=ax, marker='o', ls='None', color=color, ) uband(x=rho_core_prof, y=core_transport[4]['profiles_1d'][time_index]['total_ion_energy']['flux'], ax=ax, ls='--', color=color) pyplot.setp(ax.get_xticklabels(), visible=False) # Particle flux (electron particle source) ax = plot_function( x=rho_transport_model, y=3 / 2 * core_transport[2]['profiles_1d'][time_index]['electrons']['particles']['flux'], plot_num=6, ylabel=r'$ \frac{3}{2}T_{e}\Gamma_{e}$ [W/$m^2$]', sharex=ax, ) uband( x=rho_transport_model, y=3 / 2 * core_transport[3]['profiles_1d'][time_index]['electrons']['particles']['flux'], ax=ax, marker='o', ls='None', color=color, ) pyplot.setp(ax.get_xticklabels(), visible=False) # Pi (toroidal momentum flux) ax = plot_function( x=rho_transport_model, y=core_transport[2]['profiles_1d'][time_index]['momentum_tor']['flux'], plot_num=8, ylabel='$\Pi_{i}$ [N/$m$]', sharex=ax, ) ax.set_xlabel('$\\rho$') uband( x=rho_transport_model, y=core_transport[3]['profiles_1d'][time_index]['momentum_tor']['flux'], ax=ax, marker='o', ls='None', color=color, ) uband(x=rho_core_prof, y=core_transport[4]['profiles_1d'][time_index]['momentum_tor']['flux'], ax=ax, ls='--', color=color) ax.set_xlim(0, 1) return {'ax': axs, 'fig': fig} @add_to__ODS__ def core_sources_summary(ods, time_index=None, time=None, fig=None, **kw): """ Plot sources for electrons and all ion species :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param fig: figure to plot in (a new figure is generated if `fig is None`) :param kw: arguments passed to matplotlib plot statements :return: axes """ import matplotlib from matplotlib import pyplot axs = kw.pop('ax', {}) if axs is None: axs = {} if not len(axs) and fig is None: fig = pyplot.figure() # time animation time_index, time = handle_time(ods, 'core_sources', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(core_sources, ods, time_index, time, fig=fig, ax=axs ** kw) colors = [k['color'] for k in list(matplotlib.rcParams['axes.prop_cycle'])] lss = ['-', '--', 'dotted'] colors, lss = numpy.meshgrid(colors, lss) if len(ods[f'core_sources.source']) > len(colors): colors = colors.T lss = lss.T colors = colors.flatten() lss = lss.flatten() # if list is too small use all colors if len(ods[f'core_sources.source']) > len(colors): import matplotlib.colors as mcolors colors = list(mcolors.CSS4_COLORS.keys()) for k, s in enumerate(ods['core_sources.source']): rho = ods[f'core_sources.source.{s}.profiles_1d.{time_index}.grid.rho_tor_norm'] label = ods[f'core_sources.source.{s}.identifier.name'] tmp = {} tmp[f'core_sources.source.{s}.profiles_1d.{time_index}.electrons.energy'] = ('$q_e$', 'linear') tmp[f'core_sources.source.{s}.profiles_1d.{time_index}.total_ion_energy'] = ('$q_i$', 'linear') tmp[None] = None tmp[f'core_sources.source.{s}.profiles_1d.{time_index}.electrons.particles'] = ('$p_e$', 'linear') tmp[f'core_sources.source.{s}.profiles_1d.{time_index}.j_parallel'] = ('$J_\parallel$', 'linear') tmp[f'core_sources.source.{s}.profiles_1d.{time_index}.momentum_tor'] = (r'$\pi_i$', 'linear') ax = None for kp, item in enumerate(tmp): if item is None: continue ax = cached_add_subplot(fig, axs, 2, 3, kp + 1, sharex=ax) if item in ods: ax.plot(rho, ods[item], label=label, color=colors[k], ls=lss[k]) else: ax.plot(numpy.nan, numpy.nan, label=label, color=colors[k], ls=lss[k]) ax.set_title(tmp[item][0]) ax.set_yscale(tmp[item][1]) ax.legend(loc=0) return {'ax': axs, 'fig': fig} @add_to__ODS__ def pf_active_data(ods, equilibrium_constraints=True, ax=None, **kw): """ plot pf_active time traces :param equilibrium_constraints: plot equilibrium constraints if present :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: Additional keywords for plot :return: axes instance """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # time traces for channel in ods['pf_active.coil']: label = ods[f'pf_active.coil.{channel}.element[0].identifier'] turns = ods[f'pf_active.coil.{channel}.element[0].turns_with_sign'] data = ods[f'pf_active.coil.{channel}.current.data'] time = ods[f'pf_active.coil.{channel}.current.time'] ax.plot(time, data * turns, label=label, **kw) # equilibrium constraints if equilibrium_constraints: for channel in ods['pf_active.coil']: if f'equilibrium.time_slice.0.constraints.pf_current.{channel}.measured' in ods: ax.plot( ods[f'equilibrium.time'], ods[f'equilibrium.time_slice.:.constraints.pf_current.{channel}.measured'], marker='o', color='k', mec='none', ) return ax @add_to__ODS__ def magnetics_bpol_probe_data(ods, equilibrium_constraints=True, ax=None, **kw): """ plot bpol_probe time traces and equilibrium constraints :param equilibrium_constraints: plot equilibrium constraints if present :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: Additional keywords for plot :return: axes instance """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # time traces for channel in ods['magnetics.b_field_pol_probe']: valid = ods.get(f'magnetics.b_field_pol_probe.{channel}.field.validity', 0) if valid == 0: label = ods[f'magnetics.b_field_pol_probe.{channel}.identifier'] data = ods[f'magnetics.b_field_pol_probe.{channel}.field.data'] time = ods[f'magnetics.b_field_pol_probe.{channel}.field.time'] ax.plot(time, data, label=label, **kw) # equilibrium constraints if equilibrium_constraints: for channel in ods['magnetics.b_field_pol_probe']: valid = ods.get(f'magnetics.b_field_pol_probe.{channel}.field.validity', 0) if valid == 0: if f'equilibrium.time_slice.0.constraints.bpol_probe.{channel}.measured' in ods: ax.plot( ods[f'equilibrium.time'], ods[f'equilibrium.time_slice.:.constraints.bpol_probe.{channel}.measured'], marker='o', color='k', mec='none', ) return ax @add_to__ODS__ def magnetics_flux_loop_data(ods, equilibrium_constraints=True, ax=None, **kw): """ plot flux_loop time traces and equilibrium constraints :param equilibrium_constraints: plot equilibrium constraints if present :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: Additional keywords for plot :return: axes instance """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # time traces for channel in ods['magnetics.flux_loop']: valid = ods.get(f'magnetics.flux_loop.{channel}.flux.validity', 0) if valid == 0: label = ods[f'magnetics.flux_loop.{channel}.identifier'] data = ods[f'magnetics.flux_loop.{channel}.flux.data'] time = ods[f'magnetics.flux_loop.{channel}.flux.time'] ax.plot(time, data, label=label, **kw) # equilibrium constraints if equilibrium_constraints: for channel in ods['magnetics.flux_loop']: valid = ods.get(f'magnetics.flux_loop.{channel}.flux.validity', 0) if valid == 0: if f'equilibrium.time_slice.0.constraints.flux_loop.{channel}.measured' in ods: ax.plot( ods[f'equilibrium.time'], ods[f'equilibrium.time_slice.:.constraints.flux_loop.{channel}.measured'], marker='o', color='k', mec='none', ) return ax @add_to__ODS__ def magnetics_ip_data(ods, equilibrium_constraints=True, ax=None, **kw): """ plot ip time trace and equilibrium constraint :param equilibrium_constraints: plot equilibrium constraints if present :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: Additional keywords for plot :return: axes instance """ return _plot_signal_eq_constraint( ods, 'magnetics.ip.0.time', 'magnetics.ip.0.data', 'equilibrium.time_slice.:.constraints.ip.measured', equilibrium_constraints, ax, label='ip', **kw, ) @add_to__ODS__ def magnetics_diamagnetic_flux_data(ods, equilibrium_constraints=True, ax=None, **kw): """ plot diamagnetic_flux time trace and equilibrium constraint :param equilibrium_constraints: plot equilibrium constraints if present :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: Additional keywords for plot :return: axes instance """ return _plot_signal_eq_constraint( ods, 'magnetics.diamagnetic_flux.0.time', 'magnetics.diamagnetic_flux.0.data', 'equilibrium.time_slice.:.constraints.diamagnetic_flux.measured', equilibrium_constraints, ax, label='dflux', **kw, ) @add_to__ODS__ def tf_b_field_tor_vacuum_r_data(ods, equilibrium_constraints=True, ax=None, **kw): """ plot b_field_tor_vacuum_r time trace and equilibrium constraint :param equilibrium_constraints: plot equilibrium constraints if present :param ax: Axes instance [optional] axes to plot in (active axes is generated if `ax is None`) :param \**kw: Additional keywords for plot :return: axes instance """ return _plot_signal_eq_constraint( ods, 'tf.b_field_tor_vacuum_r.time', 'tf.b_field_tor_vacuum_r.data', 'equilibrium.time_slice.:.constraints.b_field_tor_vacuum_r.measured', equilibrium_constraints, ax, label='bt', **kw, ) def _plot_signal_eq_constraint(ods, time, data, constraint, equilibrium_constraints, ax, **kw): """ Utility function to plot individual signal and their constraint in equilibrium IDS :param time: ods location for time :param data: ods location for data :param constraint: ods location fro equilibrium constraint :param ax: axes where to plot :param kw: extra arguments passed to :return: """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # time traces time = ods[time] data = ods[data] ax.plot(time, data, **kw) # equilibrium constraints if equilibrium_constraints and constraint in ods: ax.plot(ods['equilibrium.time'], ods[constraint], ls='', marker='o', color='k', mec='none') return ax # ================================ # actuator aimings # ================================ @add_to__ODS__ def pellets_trajectory_CX(ods, time_index=None, time=None, ax=None, **kw): """ Plot pellets trajectory in poloidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :return: axes handler """ # time animation time_index, time = handle_time(ods, 'pellets', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(pellets_trajectory_CX, ods, time_index, time, ax=ax, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() pellets = ods['pellets']['time_slice'][time_index]['pellet'] for pellet in pellets: R0 = pellets[pellet]['path_geometry.first_point.r'] R1 = pellets[pellet]['path_geometry.second_point.r'] Z0 = pellets[pellet]['path_geometry.first_point.z'] Z1 = pellets[pellet]['path_geometry.second_point.z'] ax.plot([R0, R1], [Z0, Z1], '--', **kw) return {'ax': ax} @add_to__ODS__ def pellets_trajectory_CX_topview(ods, time_index=None, time=None, ax=None, **kw): """ Plot pellet trajectory in toroidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :return: axes handler """ # time animation time_index, time = handle_time(ods, 'pellets', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(pellets_trajectory_CX_topview, ods, time_index, time, ax=ax, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() pellets = ods['pellets']['time_slice'][time_index]['pellet'] for pellet in pellets: R0 = pellets[pellet]['path_geometry.first_point.r'] R1 = pellets[pellet]['path_geometry.second_point.r'] phi0 = pellets[pellet]['path_geometry.first_point.phi'] phi1 = pellets[pellet]['path_geometry.second_point.phi'] x0 = R0 * numpy.cos(phi0) y0 = R0 * numpy.sin(phi0) x1 = R1 * numpy.cos(phi1) y1 = R1 * numpy.sin(phi1) ax.plot([x0, x1], [y0, y1], '--', **kw) return {'ax': ax} @add_to__ODS__ def lh_antennas_CX(ods, time_index=None, time=None, ax=None, antenna_trajectory=None, **kw): """ Plot LH antenna position in poloidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param antenna_trajectory: length of antenna on plot :param kw: arguments passed to matplotlib plot statements :return: axes handler """ # time animation time_index, time = handle_time(ods, 'lh_antennas', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(lh_antennas_CX, ods, time_index, time, ax=ax, antenna_trajectory=antenna_trajectory, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() equilibrium = ods['equilibrium']['time_slice'][time_index] antennas = ods['lh_antennas']['antenna'] if antenna_trajectory is None: antenna_trajectory = 0.1 * ods['equilibrium']['vacuum_toroidal_field.r0'] for antenna in antennas: R = antennas[antenna]['position.r.data'] Z = antennas[antenna]['position.z.data'] # just point to magnetic axis for now (is there a better way?) Raxis = equilibrium['global_quantities.magnetic_axis.r'] Zaxis = equilibrium['global_quantities.magnetic_axis.z'] Rvec = Raxis - R Zvec = Zaxis - Z R1 = R + Rvec * antenna_trajectory / numpy.sqrt(Rvec ** 2 + Zvec ** 2) Z1 = Z + Zvec * antenna_trajectory / numpy.sqrt(Rvec ** 2 + Zvec ** 2) ax.plot([R, R1], [Z, Z1], 's-', markevery=2, **kw) return {'ax': ax} @add_to__ODS__ def lh_antennas_CX_topview(ods, time_index=None, time=None, ax=None, antenna_trajectory=None, **kw): """ Plot LH antenna in toroidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :param antenna_trajectory: length of antenna on plot :return: axes handler """ # time animation time_index, time = handle_time(ods, 'lh_antennas', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(lh_antennas_CX_topview, ods, time_index, time, ax=ax, antenna_trajectory=antenna_trajectory, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() equilibrium = ods['equilibrium'] antennas = ods['lh_antennas']['antenna'] if antenna_trajectory is None: antenna_trajectory = 0.1 * equilibrium['vacuum_toroidal_field.r0'] for antenna in antennas: R = antennas[antenna]['position.r.data'] phi = antennas[antenna]['position.phi.data'] x0 = R * numpy.cos(phi) y0 = R * numpy.sin(phi) x1 = (R - antenna_trajectory) * numpy.cos(phi) y1 = (R - antenna_trajectory) * numpy.sin(phi) ax.plot([x0, x1], [y0, y1], 's-', markevery=2, **kw) return {'ax': ax} @add_to__ODS__ def ec_launchers_CX(ods, time_index=None, time=None, ax=None, launcher_trajectory=None, **kw): """ Plot EC launchers in poloidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :param launcher_trajectory: length of launcher on plot :return: axes handler """ # time animation time_index, time = handle_time(ods, 'ec_launchers', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(ec_launchers_CX, ods, time_index, time, ax=ax, launcher_trajectory=launcher_trajectory, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() equilibrium = ods['equilibrium'] launchers = ods['ec_launchers.launcher'] if launcher_trajectory is None: launcher_trajectory = 0.1 * equilibrium['vacuum_toroidal_field.r0'] for launcher in launchers: R0 = launchers[launcher]['launching_position.r'] Z0 = launchers[launcher]['launching_position.z'] ang_tor = launchers[launcher]['steering_angle_tor.data'] ang_pol = launchers[launcher]['steering_angle_pol.data'] ang_pol_proj = 0.5 * numpy.pi - numpy.arctan2(numpy.tan(ang_pol), numpy.cos(ang_tor)) R1 = R0 - launcher_trajectory * numpy.cos(ang_pol_proj) Z1 = Z0 - launcher_trajectory * numpy.sin(ang_pol_proj) ax.plot([R0, R1], [Z0, Z1], 'o-', markevery=2, **kw) R1 = R0 - launcher_trajectory * numpy.cos(ang_pol) Z1 = Z0 - launcher_trajectory * numpy.sin(ang_pol) ax.plot([R0, R1], [Z0, Z1], 'o-', markevery=2, **kw) return {'ax': ax} @add_to__ODS__ def ec_launchers_CX_topview(ods, time_index=None, time=None, ax=None, launcher_trajectory=None, **kw): """ Plot EC launchers in toroidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :param launcher_trajectory: length of launcher on plot :return: axes handler """ # time animation time_index, time = handle_time(ods, 'ec_launchers', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(ec_launchers_CX_topview, ods, time_index, time, ax=ax, launcher_trajectory=launcher_trajectory, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() equilibrium = ods['equilibrium'] launchers = ods['ec_launchers.launcher'] if launcher_trajectory is None: launcher_trajectory = 0.1 * equilibrium['vacuum_toroidal_field.r0'] for launcher in launchers: R = launchers[launcher]['launching_position.r'] phi = launchers[launcher]['launching_position.phi'] ang_tor = launchers[launcher]['steering_angle_tor.data'] x0 = R * numpy.cos(phi) y0 = R * numpy.sin(phi) x1 = x0 - launcher_trajectory * numpy.cos(ang_tor + phi) y1 = y0 - launcher_trajectory * numpy.sin(ang_tor + phi) ax.plot([x0, x1], [y0, y1], 'o-', markevery=2, **kw) return {'ax': ax} # ================================ # Heating and current drive # ================================ @add_to__ODS__ def waves_beam_CX(ods, time_index=None, time=None, ax=None, **kw): """ Plot waves beams in poloidal cross-section :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :return: axes handler """ # time animation time_index, time = handle_time(ods, 'waves', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(waves_beam_CX, ods, time_index, time, ax=ax, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() coherent_wave = ods['waves.coherent_wave'] for cw in coherent_wave: bt = coherent_wave[cw]['beam_tracing'][time_index] for b in bt['beam'].values(): ax.plot(b['position.r'], b['position.z'], **kw) # plotc(b['position.r'], b['position.z'], b['electrons.power']/max(b['electrons.power']), ax=ax, **kw) return {'ax': ax} @add_to__ODS__ def waves_beam_profile(ods, time_index=None, time=None, what=['power_density', 'current_parallel_density'][0], ax=None, **kw): """ Plot 1d profiles of waves beams given quantity :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param quantity: quantity to plot :param ax: axes to plot in (active axes is generated if `ax is None`) :param kw: arguments passed to matplotlib plot statements :return: axes handler """ # time animation time_index, time = handle_time(ods, 'waves', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(waves_beam_profile, ods, time_index, time, what=what, ax=ax, **kw) from matplotlib import pyplot if ax is None: ax = pyplot.gca() coherent_wave = ods['waves.coherent_wave'] for cw in coherent_wave: b = coherent_wave[cw]['profiles_1d'][time_index] ax.plot(b['grid.rho_tor_norm'], b[what], **kw) ax.set_title(what.replace('_', ' ').capitalize()) ax.set_ylabel('[%s]' % omas_info_node(b.ulocation + '.' + what)['units']) ax.set_xlabel('rho') return {'ax': ax} @add_to__ODS__ def waves_beam_summary(ods, time_index=None, time=None, fig=None, **kw): """ Plot waves beam summary: CX, power_density, and current_parallel_density :param ods: input ods :param time_index: int, list of ints, or None time slice to plot. If None all timeslices are plotted. :param time: float, list of floats, or None time to plot. If None all timeslicess are plotted. if not None, it takes precedence over time_index :param fig: figure to plot in (a new figure is generated if `fig is None`) :param kw: arguments passed to matplotlib plot statements :return: figure handler """ from matplotlib import pyplot axs = kw.pop('ax', {}) if axs is None: axs = {} if not len(axs) and fig is None: fig = pyplot.figure() # time animation time_index, time = handle_time(ods, 'waves', time_index, time) if isinstance(time_index, (list, numpy.ndarray)): if len(time) == 1: time_index = time_index[0] else: return ods_time_plot(waves_beam_summary, ods, time_index, time, fig=fig, ax={}, **kw) ax = cached_add_subplot(fig, axs, 1, 2, 1) waves_beam_CX(ods, time_index=time_index, ax=ax, **kw) ax = cached_add_subplot(fig, axs, 2, 2, 2) waves_beam_profile(ods, time_index=time_index, what='power_density', ax=ax, **kw) ax.set_xlabel('') ax = cached_add_subplot(fig, axs, 2, 2, 4, sharex=ax) waves_beam_profile(ods, time_index=time_index, what='current_parallel_density', ax=ax, **kw) ax.set_xlim([0, 1]) return {'ax': axs} @add_to__ODS__ def nbi_summary(ods, ax=None): """ Plot summary of NBI power time traces :param ods: input ods :param ax: axes to plot in (active axes is generated if `ax is None`) :return: axes handler """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() time = ods['nbi.time'] nbi = ods['nbi.unit'] tmp = [] for beam in nbi: tmp.append(nbi[beam]['power_launched.data']) ax.plot(time, tmp[-1], label=nbi[beam]['identifier']) ax.plot(time, numpy.sum(tmp, 0), 'k', lw=2, label='Total') ax.set_title('Neutral Beam Injectors power') ax.set_xlabel('Time [s]') ax.set_ylabel('Power [W]') ax.legend() return {'ax': ax} # ================================ # Hardware overlays # ================================ @add_to__ODS__ def overlay(ods, ax=None, allow_autoscale=True, debug_all_plots=False, return_overlay_list=False, **kw): r""" Plots overlays of hardware/diagnostic locations on a tokamak cross section plot :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param allow_autoscale: bool Certain overlays will be allowed to unlock xlim and ylim, assuming that they have been locked by equilibrium_CX. If this option is disabled, then hardware systems like PF-coils will be off the plot and mostly invisible. :param debug_all_plots: bool Individual hardware systems are on by default instead of off by default. :param return_overlay_list: Return list of possible overlays that could be plotted :param \**kw: additional keywords for selecting plots. - Select plots by setting their names to True; e.g.: if you want the gas_injection plot, set gas_injection=True as a keyword. If debug_all_plots is True, then you can turn off individual plots by, for example, set_gas_injection=False. - Instead of True to simply turn on an overlay, you can pass a dict of keywords to pass to a particular overlay method, as in thomson={'labelevery': 5}. After an overlay pops off its keywords, remaining keywords are passed to plot, so you can set linestyle, color, etc. - Overlay functions accept these standard keywords: * mask: bool array Set of flags for switching plot elements on/off. Must be equal to the number of channels or items to be plotted. * labelevery: int Sets how often to add labels to the plot. A setting of 0 disables labels, 1 labels every element, 2 labels every other element, 3 labels every third element, etc. * notesize: matplotlib font size specification Applies to annotations drawn on the plot. Examples: 'xx-small', 'medium', 16 * label_ha: None or string or list of (None or string) instances Descriptions of how labels should be aligned horizontally. Either provide a single specification or a list of specs matching or exceeding the number of labels expected. Each spec should be: 'right', 'left', or 'center'. None (either as a scalar or an item in the list) will give default alignment for the affected item(s). * label_va: None or string or list of (None or string) instances Descriptions of how labels should be aligned vertically. Either provide a single specification or a list of specs matching or exceeding the number of labels expected. Each spec should be: 'top', 'bottom', 'center', 'baseline', or 'center_baseline'. None (either as a scalar or an item in the list) will give default alignment for the affected item(s). * label_r_shift: float or float array/list. Add an offset to the R coordinates of all text labels for the current hardware system. (in data units, which would normally be m) Scalar: add the same offset to all labels. Iterable: Each label can have its own offset. If the list/array of offsets is too short, it will be padded with 0s. * label_z_shift: float or float array/list Add an offset to the Z coordinates of all text labels for the current hardware system (in data units, which would normally be m) Scalar: add the same offset to all labels. Iterable: Each label can have its own offset. If the list/array of offsets is too short, it will be padded with 0s. * Additional keywords are passed to the function that does the drawing; usually matplotlib.axes.Axes.plot(). :return: axes handler """ if return_overlay_list: return [k.replace('_overlay', '') for k in __ods__ if k.endswith('_overlay') and k.replace('_overlay', '') in ods] from matplotlib import pyplot if ax is None: ax = pyplot.gca() special_subs = ['position_control'] for hw_sys in list_structures(ods.imas_version) + special_subs: if kw.get(hw_sys, debug_all_plots): try: overlay_function = eval('{}_overlay'.format(hw_sys)) except NameError: continue overlay_kw = kw.get(hw_sys, {}) if isinstance(kw.get(hw_sys, {}), dict) else {} for k in ['mask', 'labelevery', 'notesize', 'label_ha', 'label_va', 'label_r_shift', 'label_z_shift']: if k in kw and k not in overlay_kw: overlay_kw[k] = kw[k] if allow_autoscale and hw_sys in ['pf_active', 'gas_injection']: # Not all systems need expanded range to fit everything ax.set_xlim(auto=True) ax.set_ylim(auto=True) overlay_function(ods, ax, **overlay_kw) return {'ax': ax} @add_to__ODS__ def wall_overlay(ods, ax=None, component_index=None, types=['limiter', 'mobile', 'vessel'], unit_index=None, **kw): """ Plot walls on a tokamak cross section plot :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param component_index: list of index of components to plot :param types: list with one or more of ['limiter','mobile','vessel'] :param unit_index: list of index of units of the component to plot :return: axes handler """ from matplotlib import pyplot for k in ['mask', 'labelevery', 'notesize', 'label_ha', 'label_va', 'label_r_shift', 'label_z_shift']: kw.pop(k, None) kw.setdefault('color', 'k') if ax is None: ax = pyplot.gca() if component_index is None: component_index = ods['wall.description_2d'].keys() elif isinstance(component_index, int): component_index = [component_index] elif isinstance(component_index, str): component_index = [ods['wall.description_2d[:].limiter.type.name'].index(component_index)] for component in component_index: for type in types: if type not in ods[f'wall.description_2d[{component}]']: continue if unit_index is None: unit_index = ods[f'wall.description_2d[{component}].{type}.unit'].keys() elif isinstance(unit_index, int): component_index = [unit_index] elif isinstance(unit_index, str): component_index = [ods[f'wall.description_2d[{component}].{type}.unit[{unit}].type.name'].index(component_index)] for unit in ods[f'wall.description_2d[{component}].{type}.unit']: ax.plot( ods[f'wall.description_2d[{component}].{type}.unit[{unit}].outline.r'], ods[f'wall.description_2d[{component}].{type}.unit[{unit}].outline.z'], **kw, ) ax.set_aspect('equal') return {'ax': ax} @add_to__ODS__ def gas_injection_overlay( ods, ax=None, angle_not_in_pipe_name=False, which_gas='all', show_all_pipes_in_group=True, simple_labels=False, label_spacer=0, colors=None, draw_arrow=True, **kw, ): r""" Plots overlays of gas injectors :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param angle_not_in_pipe_name: bool Set this to include (Angle) at the end of injector labels. Useful if injector/pipe names don't already include angles in them. :param which_gas: string or list Filter for selecting which gas pipes to display. - If string: get a preset group, like 'all'. - If list: only pipes in the list will be shown. Abbreviations are tolerated; e.g. GASA is recognized as GASA_300. One abbreviation can turn on several pipes. There are several injection location names starting with RF_ on DIII-D, for example. :param show_all_pipes_in_group: bool Some pipes have the same R,Z coordinates of their exit positions (but different phi locations) and will appear at the same location on the plot. If this keyword is True, labels for all the pipes in such a group will be displayed together. If it is False, only the first one in the group will be labeled. :param simple_labels: bool Simplify labels by removing suffix after the last underscore. :param label_spacer: int Number of blank lines and spaces to insert between labels and symbol :param colors: list of matplotlib color specifications. These colors control the display of various gas ports. The list will be repeated to make sure it is long enough. Do not specify a single RGB tuple by itself. However, a single tuple inside list is okay [(0.9, 0, 0, 0.9)]. If the color keyword is used (See \**kw), then color will be popped to set the default for colors in case colors is None. :param draw_arrow: bool or dict Draw an arrow toward the machine at the location of the gas inlet. If dict, pass keywords to arrow drawing func. :param \**kw: Additional keywords for gas plot: * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Remaining keywords are passed to plot call for drawing markers at the gas locations. """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # Make sure there is something to plot or else just give up and return npipes = get_channel_count( ods, 'gas_injection', check_loc='gas_injection.pipe.0.exit_position.r', channels_name='pipe', test_checker='~numpy.isnan(checker)' ) if npipes == 0: return {'ax': ax} mask = kw.pop('mask', numpy.ones(npipes, bool)) pipes = ods['gas_injection']['pipe'] # Shortcut # Identify gas injectors with the same poloidal location and group them so that their labels won't overlap. locations = {} for i in pipes: if mask[i]: pipe = pipes[i] label = pipe['name'] if not gas_filter(label, which_gas): continue # Skip this pipe because it's not active r, z = pipe['exit_position']['r'], pipe['exit_position']['z'] location_name = f'{r:0.3f}_{z:0.3f}' if simple_labels: label = '_'.join(label.split('_')[:-1]) locations.setdefault(location_name, []) locations[location_name] += [label] if angle_not_in_pipe_name: try: label += ' ({:0d})'.format(int(round(pipe['exit_position']['phi'] * 180 / numpy.pi))) except (TypeError, ValueError): pass try: r2, z2 = pipe['second_point']['r'], pipe['second_point']['z'] except (LookupError, ValueError): if len(locations[location_name]) > 3: # If an item has already been added at this location, use its r2, z2 to fill in missing values r2 = locations[location_name][-3] z2 = locations[location_name][-2] else: r2 = z2 = None locations[location_name] += [r2, z2] try: rsplit = ods['equilibrium.time_slice'][0]['global_quantities.magnetic_axis.r'] except ValueError: draw_arrow = False # This won't work without magnetic axis data, either. rsplit = numpy.mean([float(loc.split('_')[0]) for loc in locations]) kw.setdefault('marker', 'd') kw.setdefault('linestyle', ' ') labelevery = kw.pop('labelevery', 1) notesize = kw.pop('notesize', 'xx-small') default_ha = [['left', 'right'][int(float(loc.split('_')[0]) < rsplit)] for loc in locations] default_va = [['top', 'bottom'][int(float(loc.split('_')[1]) > 0)] for loc in locations] label_ha, label_va, kw = text_alignment_setup(len(locations), default_ha=default_ha, default_va=default_va, **kw) label_dr, label_dz = label_shifter(len(locations), kw) # For each unique poloidal location, draw a marker and write a label describing all the injectors at this location. default_color = kw.pop('color', None) colors = numpy.atleast_1d(default_color if colors is None else colors).tolist() colors2 = colors * int(numpy.ceil(len(locations) / float(len(colors)))) # Make sure the list is long enough. for i, loc in enumerate(locations): r, z = numpy.array(loc.split('_')).astype(float) if show_all_pipes_in_group: show_locs = list(set(locations[loc][::3])) # Each pipe has ['label', r2, z2], so fc00:e968:6179::de52:7100 selects just labels. else: show_locs = [locations[loc][0]] label = '{spacer:}\n{spacer:}'.format(spacer=' ' * label_spacer).join([''] + show_locs + ['']) if draw_arrow: kw.update(draw_arrow if isinstance(draw_arrow, dict) else {}) gas_mark = gas_arrow(ods, r, z, r2=locations[loc][-2], z2=locations[loc][-1], ax=ax, color=colors2[i], **kw) else: gas_mark = ax.plot(r, z, color=colors2[i], **kw) kw.pop('label', None) # Prevent label from being applied every time through the loop to avoid spammy legend if (labelevery > 0) and ((i % labelevery) == 0): label = '\n' * label_spacer + label if label_va[i] == 'top' else label + '\n' * label_spacer ax.text( r + label_dr[i], z + label_dz[i], label, color=gas_mark[0].get_color(), va=label_va[i], ha=label_ha[i], fontsize=notesize ) return {'ax': ax} @add_to__ODS__ def pf_active_overlay(ods, ax=None, **kw): r""" Plots overlays of active PF coils. INCOMPLETE: only the oblique geometry definition is treated so far. More should be added later. :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param \**kw: Additional keywords scalex, scaley: passed to ax.autoscale_view() call at the end * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Remaining keywords are passed to matplotlib.patches.Polygon call Hint: you may want to set facecolor instead of just color """ import matplotlib from matplotlib import pyplot if ax is None: ax = pyplot.gca() nc = get_channel_count( ods, 'pf_active', check_loc='pf_active.coil.0.element.0.geometry.geometry_type', channels_name='coil', test_checker='checker > -1' ) if nc == 0: return {'ax': ax} kw.setdefault('label', 'Active PF coils') kw.setdefault('facecolor', 'gray') kw.setdefault('edgecolor', 'k') kw.setdefault('alpha', 0.7) labelevery = kw.pop('labelevery', 0) notesize = kw.pop('notesize', 'xx-small') mask = kw.pop('mask', numpy.ones(nc, bool)) scalex, scaley = kw.pop('scalex', True), kw.pop('scaley', True) label_ha, label_va, kw = text_alignment_setup(nc, default_ha='center', default_va='center', **kw) label_dr, label_dz = label_shifter(nc, kw) def path_rectangle(rectangle): """ :param rectangle: ODS sub-folder: element.*.geometry.rectangle :return: n x 2 array giving the path around the outline of the coil element, suitable for input to Polygon() """ x = rectangle['r'] y = rectangle['z'] dx = rectangle['width'] dy = rectangle['height'] return numpy.array( [[x - dx / 2.0, x - dx / 2.0, x + dx / 2.0, x + dx / 2.0], [y - dy / 2.0, y + dy / 2.0, y + dy / 2.0, y - dy / 2.0]] ).T def path_outline(outline): """ :param outline: ODS sub-folder: element.*.geometry.outline :return: n x 2 array giving the path around the outline of the coil element, suitable for input to Polygon() """ return numpy.array([outline['r'], outline['z']]).T patches = [] for c in range(nc): if mask[c]: for e in ods['pf_active.coil'][c]['element']: try: geometry_type = geo_type_lookup( ods['pf_active.coil'][c]['element'][e]['geometry.geometry_type'], 'pf_active', ods.imas_version ) except (IndexError, ValueError): geometry_type = 'unrecognized' try: path = eval('path_{}'.format(geometry_type))(ods['pf_active.coil'][c]['element'][e]['geometry'][geometry_type]) except NameError: print('Warning: unrecognized geometry type for pf_active coil {}: {}'.format(c, geometry_type)) continue patches.append(matplotlib.patches.Polygon(path, closed=True, **kw)) kw.pop('label', None) # Prevent label from being placed on more than one patch try: pf_id = ods['pf_active.coil'][c]['element'][e]['identifier'] except ValueError: pf_id = None if labelevery > 0 and c % labelevery == 0 and pf_id is not None: ax.text( numpy.mean(path[:, 0]) + label_dr[c], numpy.mean(path[:, 1]) + label_dz[c], pf_id, ha=label_ha[c], va=label_va[c], fontsize=notesize, ) for p in patches: ax.add_patch(p) # Using patch collection breaks auto legend labeling, so add patches individually. ax.autoscale_view(scalex=scalex, scaley=scaley) # add_patch doesn't include this ax.set_aspect('equal') return {'ax': ax} @add_to__ODS__ def magnetics_overlay( ods, ax=None, show_flux_loop=True, show_bpol_probe=True, show_btor_probe=True, flux_loop_style={'marker': 's'}, pol_probe_style={}, tor_probe_style={'marker': '.'}, **kw, ): """ Plot magnetics on a tokamak cross section plot :param ods: OMAS ODS instance :param flux_loop_style: dictionary with matplotlib options to render flux loops :param pol_probe_style: dictionary with matplotlib options to render poloidal magnetic probes :param tor_probe_style: dictionary with matplotlib options to render toroidal magnetic probes :param ax: axes to plot in (active axes is generated if `ax is None`) :return: axes handler """ from matplotlib import pyplot kw0 = copy.copy(kw) if ax is None: ax = pyplot.gca() # flux loops nfl = get_channel_count( ods, 'magnetics', check_loc='magnetics.flux_loop.0.position.0.r', channels_name='flux_loop', test_checker='~numpy.isnan(checker)' ) if show_flux_loop and nfl: kw = copy.copy(kw0) labelevery = kw.pop('labelevery', 0) notesize = kw.pop('notesize', 'xx-small') label_ha, label_va, kw = text_alignment_setup(nfl, **kw) label_dr, label_dz = label_shifter(nfl, kw) for k, (r, z) in enumerate(zip(ods[f'magnetics.flux_loop.:.position[0].r'], ods[f'magnetics.flux_loop.:.position[0].z'])): ax.plot(r, z, **flux_loop_style) flux_loop_style.setdefault('color', ax.lines[-1].get_color()) if labelevery > 0 and k % labelevery == 0: ax.text( r + label_dr[k], z + label_dz[k], ods.get(f'magnetics.flux_loop.{k}.identifier', str(k)), color=flux_loop_style['color'], fontsize=notesize, ha=label_ha[k], va=label_va[k], ) # poloidal magnetic probes nbp = get_channel_count( ods, 'magnetics', check_loc='magnetics.b_field_pol_probe.0.position.r', channels_name='b_field_pol_probe', test_checker='~numpy.isnan(checker)', ) if show_bpol_probe and nbp: kw = copy.copy(kw0) labelevery = kw.pop('labelevery', 0) notesize = kw.pop('notesize', 'xx-small') label_ha, label_va, kw = text_alignment_setup(nbp, **kw) label_dr, label_dz = label_shifter(nbp, kw) from .omas_physics import probe_endpoints PX, PY = probe_endpoints( ods['magnetics.b_field_pol_probe[:].position.r'], ods['magnetics.b_field_pol_probe[:].position.z'], ods['magnetics.b_field_pol_probe[:].poloidal_angle'], ods['magnetics.b_field_pol_probe[:].length'], ods.cocosio, ) for k, (px, py) in enumerate(zip(PX, PY)): r = numpy.mean(px) z = numpy.mean(py) if show_bpol_probe: ax.plot(px, py, label='_' + ods.get(f'magnetics.b_field_pol_probe[{k}].identifier', str(k)), **pol_probe_style, **kw) pol_probe_style.setdefault('color', ax.lines[-1].get_color()) if labelevery > 0 and k % labelevery == 0: ax.text( r + label_dr[k], z + label_dz[k], ods.get(f'magnetics.b_field_pol_probe[{k}].identifier', str(k)), color=pol_probe_style['color'], fontsize=notesize, ha=label_ha[k], va=label_va[k], ) # toroidal magnetic probes nbt = get_channel_count( ods, 'magnetics', check_loc='magnetics.b_field_tor_probe.0.position.r', channels_name='b_field_tor_probe', test_checker='~numpy.isnan(checker)', ) if show_btor_probe and nbt: kw = copy.copy(kw0) labelevery = kw.pop('labelevery', 0) notesize = kw.pop('notesize', 'xx-small') label_ha, label_va, kw = text_alignment_setup(nbt, **kw) label_dr, label_dz = label_shifter(nbt, kw) for k, (r, z) in enumerate(zip(ods['magnetics.b_field_tor_probe[:].position.r'], ods['magnetics.b_field_tor_probe[:].position.z'])): ax.plot(r, z, '.m', label='_' + ods.get(f'magnetics.b_field_tor_probe[{k}].identifier', str(k)), **tor_probe_style, **kw) tor_probe_style.setdefault('color', ax.lines[-1].get_color()) if labelevery > 0 and k % labelevery == 0: ax.text( r + label_dr[k], z + label_dz[k], ods.get(f'magnetics.b_field_tor_probe[{k}].identifier', str(k)), color=tor_probe_style['color'], fontsize=notesize, ha=label_ha[k], va=label_va[k], ) ax.set_aspect('equal') return {'ax': ax} @add_to__ODS__ def interferometer_overlay(ods, ax=None, **kw): r""" Plots overlays of interferometer chords. :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param \**kw: Additional keywords * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Remaining keywords are passed to plot call """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # Make sure there is something to plot or else just give up and return nc = get_channel_count( ods, 'interferometer', check_loc='interferometer.channel.0.line_of_sight.first_point.r', test_checker='~numpy.isnan(checker)' ) if nc == 0: return {'ax': ax} color = kw.pop('color', None) labelevery = kw.pop('labelevery', 1) mask = kw.pop('mask', numpy.ones(nc, bool)) notesize = kw.pop('notesize', 'medium') label_ha, label_va, kw = text_alignment_setup(nc, default_ha='left', default_va='top', **kw) label_dr, label_dz = label_shifter(nc, kw) j = 0 for i in range(nc): if mask[i]: ch = ods['interferometer.channel'][i] los = ch['line_of_sight'] r1, z1, r2, z2 = los['first_point.r'], los['first_point.z'], los['second_point.r'], los['second_point.z'] line = ax.plot([r1, r2], [z1, z2], color=color, label='interferometer' if i == 0 else '', **kw) color = line[0].get_color() # If this was None before, the cycler will have given us something. Lock it in. if (labelevery > 0) and ((i % labelevery) == 0): ax.text( max([r1, r2]) + label_dr[j], min([z1, z2]) + label_dz[j], ch['identifier'], color=color, va=label_va[i], ha=label_ha[i], fontsize=notesize, ) j += 1 return {'ax': ax} @add_to__ODS__ def thomson_scattering_overlay(ods, ax=None, **kw): r""" Overlays Thomson channel locations :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param \**kw: Additional keywords for Thomson plot: * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Remaining keywords are passed to plot call """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # Make sure there is something to plot or else just give up and return nc = get_channel_count( ods, 'thomson_scattering', check_loc='thomson_scattering.channel.0.position.r', test_checker='~numpy.isnan(checker)' ) if nc == 0: return {'ax': ax} labelevery = kw.pop('labelevery', 5) notesize = kw.pop('notesize', 'xx-small') mask = kw.pop('mask', numpy.ones(nc, bool)) kw.setdefault('marker', '+') kw.setdefault('label', 'Thomson scattering') kw.setdefault('linestyle', ' ') label_ha, label_va, kw = text_alignment_setup(nc, **kw) label_dr, label_dz = label_shifter(nc, kw) r = numpy.array([ods['thomson_scattering']['channel'][i]['position']['r'] for i in range(nc)])[mask] z = numpy.array([ods['thomson_scattering']['channel'][i]['position']['z'] for i in range(nc)])[mask] ts_id = numpy.array([ods['thomson_scattering']['channel'][i]['identifier'] for i in range(nc)])[mask] ts_mark = ax.plot(r, z, **kw) for i in range(sum(mask)): if (labelevery > 0) and ((i % labelevery) == 0): ax.text( r[i] + label_dr[i], z[i] + label_dz[i], ts_id[i], color=ts_mark[0].get_color(), fontsize=notesize, ha=label_ha[i], va=label_va[i], ) return {'ax': ax} @add_to__ODS__ def charge_exchange_overlay(ods, ax=None, which_pos='closest', **kw): r""" Overlays Charge Exchange Recombination (CER) spectroscopy channel locations :param ods: OMAS ODS instance :param ax: axes instance into which to plot (default: gca()) :param which_pos: string 'all': plot all valid positions this channel uses. This can vary in time depending on which beams are on. 'closest': for each channel, pick the time slice with valid data closest to the time used for the equilibrium contours and show position at this time. Falls back to all if equilibrium time cannot be read from time_slice 0 of equilibrium in the ODS. :param \**kw: Additional keywords for CER plot: color_tangential: color to use for tangentially-viewing channels color_vertical: color to use for vertically-viewing channels color_radial: color to use for radially-viewing channels marker_tangential, marker_vertical, marker_radial: plot symbols to use for T, V, R viewing channels * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Remaining keywords are passed to plot call """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # Make sure there is something to plot or else just give up and return nc = get_channel_count( ods, 'charge_exchange', check_loc='charge_exchange.channel.0.position.r.data', test_checker='any(~numpy.isnan(checker))' ) if nc == 0: return {'ax': ax} try: eq_time = ods['equilibrium.time_slice.0.time'] except ValueError: eq_time = None # Resolve keywords mask = kw.pop('mask', numpy.ones(nc, bool)) labelevery = kw.pop('labelevery', 5) if eq_time is None: which_pos = 'all' colors = {} for colorkw in ['color_tangential', 'color_vertical', 'color_radial']: ckw = kw.pop(colorkw, kw.get('color', None)) if ckw is not None: colors[colorkw.split('_')[-1][0].upper()] = ckw kw.pop('color', None) marker = kw.pop('marker', None) markers = { 'T': kw.pop('marker_tangential', 's' if marker is None else marker), 'V': kw.pop('marker_vertical', 'd' if marker is None else marker), 'R': kw.pop('marker_radial', '*' if marker is None else marker), } notesize = kw.pop('notesize', 'xx-small') ha, va, kw = text_alignment_setup(nc, **kw) label_dr, label_dz = label_shifter(nc, kw) # Get channel positions; each channel has a list of positions as it can vary with time as beams switch on/off. r = [[numpy.NaN]] * nc z = [[numpy.NaN]] * nc for i in range(nc): rs = ods['charge_exchange.channel'][i]['position.r.data'] zs = ods['charge_exchange.channel'][i]['position.z.data'] w = (rs > 0) & (~numpy.isnan(rs)) & (~numpy.isnan(zs)) # Validity mask: remove zero and NaN ts = ods['charge_exchange.channel'][i]['position.r.time'][w] rs = rs[w] zs = zs[w] if which_pos == 'all': # Show the set of all valid positions measured by this channel. rz = list(set(zip(rs, zs))) r[i] = [rz[j][0] for j in range(len(rz))] z[i] = [rz[j][1] for j in range(len(rz))] else: # 'closest': pick just the closest time. The list of positions will only have one element. w = closest_index(ts, eq_time) r[i] = [rs[w]] z[i] = [zs[w]] cer_id = numpy.array([ods['charge_exchange.channel'][i]['identifier'] for i in range(nc)]) # Plot label_bank = {'T': 'Tang. CER', 'V': 'Vert. CER', 'R': 'Rad. CER'} # These get popped so only one each in legend j = 0 for i in range(nc): if mask[i]: ch_type = cer_id[i][0].upper() color = colors.get(ch_type, None) # See if a color has been specified for this view direction cer_mark = ax.plot( r[i], z[i], marker=markers.get(ch_type, 'x'), linestyle=' ', color=color, label=label_bank.pop(ch_type, ''), **kw ) colors[ch_type] = color = cer_mark[0].get_color() # Save color for this view dir in case it was None if (labelevery > 0) and ((i % labelevery) == 0): ax.text( numpy.mean(r[i]) + label_dr[j], numpy.mean(z[i]) + label_dz[j], cer_id[i], color=color, fontsize=notesize, ha=ha[i], va=va[i], ) j += 1 return {'ax': ax} @add_to__ODS__ def bolometer_overlay(ods, ax=None, reset_fan_color=True, colors=None, **kw): r""" Overlays bolometer chords :param ods: ODS instance :param ax: axes instance into which to plot (default: gca()) :param reset_fan_color: bool At the start of each bolometer fan (group of channels), set color to None to let a new one be picked by the cycler. This will override manually specified color. :param colors: list of matplotlib color specifications. Do not use a single RGBA style spec. :param \**kw: Additional keywords for bolometer plot * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Remaining keywords are passed to plot call for drawing lines for the bolometer sightlines """ from matplotlib import pyplot if ax is None: ax = pyplot.gca() # Make sure there is something to plot or else just give up and return nc = get_channel_count( ods, 'bolometer', check_loc='bolometer.channel.0.line_of_sight.first_point.r', test_checker='~numpy.isnan(checker)' ) if nc == 0: return {'ax': ax} mask = kw.pop('mask', numpy.ones(nc, bool)) r1 = ods['bolometer.channel.:.line_of_sight.first_point.r'][mask] z1 = ods['bolometer.channel.:.line_of_sight.first_point.z'][mask] r2 = ods['bolometer.channel.:.line_of_sight.second_point.r'][mask] z2 = ods['bolometer.channel.:.line_of_sight.second_point.z'][mask] bolo_id = ods['bolometer.channel.:.identifier'][mask] ncm = len(r1) if colors is None: colors = [kw.pop('color', None)] ci = 0 colors2 = colors * nc color = colors2[ci] # Multiplying list by nc makes sure it's always long enough. kw.setdefault('alpha', 0.8) default_label = kw.pop('label', None) labelevery = kw.pop('labelevery', 2) notesize = kw.pop('notesize', 'xx-small') default_ha = [['right', 'left'][int(z1[i] > 0)] for i in range(ncm)] label_ha, label_va, kw = text_alignment_setup(ncm, default_ha=default_ha, default_va='top', **kw) label_dr, label_dz = label_shifter(ncm, kw) for i in range(ncm): if (i > 0) and (bolo_id[i][0] != bolo_id[i - 1][0]) and reset_fan_color: ci += 1 color = colors2[ci] # Allow color to reset when changing fans new_label = True else: new_label = False label = 'Bolometers {}'.format(bolo_id[i][0]) if default_label is None else default_label bolo_line = ax.plot([r1[i], r2[i]], [z1[i], z2[i]], color=color, label=label if new_label or (i == 0) else '', **kw) if color is None: color = bolo_line[0].get_color() # Make subsequent lines the same color if (labelevery > 0) and ((i % labelevery) == 0): ax.text( r2[i] + label_dr[i], z2[i] + label_dz[i], '{}{}'.format(['\n', ''][int(z1[i] > 0)], bolo_id[i]), color=color, ha=label_ha[i], va=label_va[i], fontsize=notesize, ) return {'ax': ax} @add_to__ODS__ def langmuir_probes_overlay(ods, ax=None, embedded_probes=None, colors=None, show_embedded=True, show_reciprocating=False, **kw): r""" Overlays Langmuir probe locations :param ods: ODS instance Must contain langmuir_probes with embedded position data :param ax: Axes instance :param embedded_probes: list of strings Specify probe names to use. Only the embedded probes listed will be plotted. Set to None to plot all probes. Probe names are like 'F11' or 'P-6' (the same as appear on the overlay). :param colors: list of matplotlib color specifications. Do not use a single RGBA style spec. :param show_embedded: bool Recommended: don't enable both embedded and reciprocating plots at the same time; make two calls instead. It will be easier to handle mapping of masks, colors, etc. :param show_reciprocating: bool :param \**kw: Additional keywords. * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Others will be passed to the plot() call for drawing the probes. """ from matplotlib import pyplot # Get a handle on the axes if ax is None: ax = pyplot.gca() # Make sure there is something to plot or else just give up and return if show_embedded: if embedded_probes is not None: embedded_probes = numpy.atleast_1d(embedded_probes) embedded_indices = [] for probe in ods['langmuir_probes.embedded']: if ods['langmuir_probes.embedded'][probe]['name'] in embedded_probes: embedded_indices += [probe] nce = len(embedded_indices) else: nce = get_channel_count( ods, 'langmuir_probes', check_loc='langmuir_probes.embedded.0.position.r', test_checker='~numpy.isnan(checker)', channels_name='embedded', ) embedded_indices = range(nce) else: nce = 0 embedded_indices = [] if show_reciprocating: ncr = get_channel_count( ods, 'langmuir_probes', check_loc='langmuir_probes.reciprocating.0.plunge.0.position.r', test_checker='~numpy.isnan(checker)', channels_name='reciprocating', ) else: ncr = 0 if (nce == 0) and (ncr == 0): return {'ax': ax} # Set up masks mask = kw.pop('mask', numpy.ones(nce + ncr, bool)) mask_e = mask[:nce] # For wall-embedded probes # mask_r = mask[nce:] # For reciprocating probes if ncr > 0: raise NotImplementedError('Reciprocating Langmuir probe overlay plots are not ready yet. Try embedded LPs.') # Get embedded data r_e = numpy.array([ods['langmuir_probes.embedded'][i]['position.r'] for i in embedded_indices])[mask_e] z_e = numpy.array([ods['langmuir_probes.embedded'][i]['position.z'] for i in embedded_indices])[mask_e] lp_id_e = numpy.array([ods['langmuir_probes.embedded'][i]['name'] for i in embedded_indices])[mask_e] ncem = len(r_e) # Number of Channels, Embedded, Masked # Get reciprocating data ncrm = 0 # Coming soon nc = ncem + ncem # Handle plot keywords if colors is None: colors = [kw.pop('color', None)] ci = 0 color = (colors * nc)[ci] # Multiplying list by nc makes sure it's always long enough. kw.setdefault('alpha', 0.8) kw.setdefault('marker', '*') kw.setdefault('linestyle', ' ') default_label = kw.pop('label', None) labelevery = kw.pop('labelevery', 2) notesize = kw.pop('notesize', 'xx-small') label_dr, label_dz = label_shifter(ncem, kw) # Decide which side each probe is on, for aligning annotation labels ha = ['center'] * ncem va = ['center'] * ncem try: wall_r = ods['wall.description_2d[0].limiter.unit[0].outline.r'] wall_z = ods['wall.description_2d[0].limiter.unit[0].outline.z'] except (KeyError, ValueError): va = ['bottom' if z_e[i] > 0 else 'top' for i in range(ncem)] else: wr0 = numpy.min(wall_r) wr1 = numpy.max(wall_r) dr = wr1 - wr0 wz0 = numpy.min(wall_z) wz1 = numpy.max(wall_z) dz = wz1 - wz0 lr_margin = 0.2 tb_margin = 0.1 right = wr0 + dr * (1 - lr_margin) left = wr0 + dr * lr_margin top = wz0 + dz * (1 - tb_margin) bottom = wz0 + dz * tb_margin for i in range(ncem): if z_e[i] > top: va[i] = 'bottom' elif z_e[i] < bottom: va[i] = 'top' if r_e[i] > right: ha[i] = 'left' elif r_e[i] < left: ha[i] = 'right' ha, va, kw = text_alignment_setup(ncem, default_ha=ha, default_va=va, **kw) # Plot for i in range(ncem): label = 'Embedded Langmuir probes' if default_label is None else default_label lp_mark = ax.plot(r_e[i], z_e[i], color=color, label=label if i == 0 else '', **kw) if color is None: color = lp_mark[0].get_color() # Make subsequent marks the same color if (labelevery > 0) and ((i % labelevery) == 0): ax.text( r_e[i] + label_dr[i], z_e[i] + label_dz[i], '\n {} \n'.format(lp_id_e[i]), color=color, ha=ha[i], va=va[i], fontsize=notesize, ) return {'ax': ax} @add_to__ODS__ def position_control_overlay( ods, ax=None, t=None, xpoint_marker='x', strike_marker='s', labels=None, measured_xpoint_marker='+', show_measured_xpoint=False, **kw ): r""" Overlays position_control data :param ods: ODS instance Must contain langmuir_probes with embedded position data :param ax: Axes instance :param t: float Time to display in seconds. If not specified, defaults to the average time of all boundary R coordinate samples. :param xpoint_marker: string Matplotlib marker spec for X-point target(s) :param strike_marker: string Matplotlib marker spec for strike point target(s) :param labels: list of strings [optional] Override default point labels. Length must be long enough to cover all points. :param show_measured_xpoint: bool In addition to the target X-point, mark the measured X-point coordinates. :param measured_xpoint_marker: string Matplotlib marker spec for X-point measurement(s) :param \**kw: Additional keywords. * Accepts standard omas_plot overlay keywords listed in overlay() documentation: mask, labelevery, ... * Others will be passed to the plot() call for drawing shape control targets """ import numpy as np from matplotlib import pyplot from matplotlib import rcParams from scipy.interpolate import interp1d import time timing_ref = kw.pop('timing_ref', None) if timing_ref is not None: print(time.time() - timing_ref, 'position_control_overlay start') # Unpack basics device = ods['dataset_description.data_entry'].get('machine', '') shot = ods['dataset_description.data_entry'].get('pulse', 0) if t is None: try: t = np.nanmean(ods['pulse_schedule.position_control.boundary_outline[:].r.reference.data']) except (ValueError, IndexError): t = 0 if ax is None: ax = pyplot.gca() # Handle multi-slice request if timing_ref is not None: print(time.time() - timing_ref, 'position_control_overlay setup 1') if len(np.atleast_1d(t)) > 1: for tt in t: position_control_overlay( ods, ax=ax, t=tt, xpoint_marker=xpoint_marker, strike_marker=strike_marker, show_measured_xpoint=show_measured_xpoint, **copy.deepcopy(kw), ) return {'ax': ax} else: t = np.atleast_1d(t)[0] labelevery = kw.pop('labelevery', 1) label_ha = kw.pop('label_ha', None) label_va = kw.pop('label_va', None) notesize = kw.pop('notesize', 'xx-small') if timing_ref is not None: print(time.time() - timing_ref, 'position_control_overlay setup 2') # Select data b = ods['pulse_schedule.position_control.boundary_outline'] x = ods['pulse_schedule.position_control.x_point'] s = ods['pulse_schedule.position_control.strike_point'] ikw = dict(bounds_error=False, fill_value=np.NaN) try: nbp =
np.shape(b['[:].r.reference.data'])
numpy.shape
import argparse from pathlib import Path import numpy as np import tensorflow as tf import gym from tqdm import tqdm import matplotlib matplotlib.use('agg') from matplotlib import pyplot as plt from imgcat import imgcat import rospy from openai_ros.task_envs.turtlebot2 import turtlebot2_maze # Import my own libraries import os, sys sys.path.append(os.path.dirname(os.path.abspath(__file__))+'/learner/baselines/') os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Only show ERROR log from tf_commons.ops import * class PPO2Agent(object): def __init__(self, env, env_type, path, stochastic=False, gpu=True): from baselines.common.policies import build_policy from baselines.ppo2.model import Model self.graph = tf.Graph() if gpu: config = tf.ConfigProto() config.gpu_options.allow_growth = True else: config = tf.ConfigProto(device_count = {'GPU': 0}) self.sess = tf.Session(graph=self.graph,config=config) with self.graph.as_default(): with self.sess.as_default(): ob_space = env.observation_space ac_space = env.action_space if env_type == 'atari': policy = build_policy(env,'cnn') elif env_type == 'mujoco': policy = build_policy(env,'mlp') elif env_type == 'gazebo': policy = build_policy(env, 'mlp') else: assert False,' not supported env_type' make_model = lambda : Model(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=1, nbatch_train=1, nsteps=1, ent_coef=0., vf_coef=0., max_grad_norm=0.) self.model = make_model() self.model_path = path self.model.load(path) if env_type == 'mujoco': with open(path+'.env_stat.pkl', 'rb') as f : import pickle s = pickle.load(f) self.ob_rms = s['ob_rms'] self.ret_rms = s['ret_rms'] self.clipob = 10. self.epsilon = 1e-8 elif env_type == 'gazebo': with open(path + '.env_stat.pkl', 'rb') as f: import pickle s = pickle.load(f) self.ob_rms = s['ob_rms'] self.ret_rms = s['ret_rms'] self.clipob = 10. self.epsilon = 1e-8 else: self.ob_rms = None self.stochastic = stochastic def act(self, obs, reward, done): if self.ob_rms: obs = np.clip((obs - self.ob_rms.mean) / np.sqrt(self.ob_rms.var + self.epsilon), -self.clipob, self.clipob) with self.graph.as_default(): with self.sess.as_default(): if self.stochastic: a,v,state,neglogp = self.model.step(obs) else: a = self.model.act_model.act(obs) return a class RandomAgent(object): """The world's simplest agent!""" def __init__(self, action_space): self.action_space = action_space self.model_path = 'random_agent' def act(self, observation, reward, done): return self.action_space.sample()[None] class Model(object): def __init__(self,include_action,ob_dim,ac_dim,batch_size=64,num_layers=2,embedding_dims=256,steps=None): self.include_action = include_action in_dims = ob_dim+ac_dim if include_action else ob_dim self.inp = tf.placeholder(tf.float32,[None,in_dims]) self.x = tf.placeholder(tf.float32,[None,in_dims]) #[B*steps,in_dim] self.y = tf.placeholder(tf.float32,[None,in_dims]) self.x_split = tf.placeholder(tf.int32,[batch_size]) # B-lengthed vector indicating the size of each steps self.y_split = tf.placeholder(tf.int32,[batch_size]) # B-lengthed vector indicating the size of each steps self.l = tf.placeholder(tf.int32,[batch_size]) # [0 when x is better 1 when y is better] self.l2_reg = tf.placeholder(tf.float32,[]) # [0 when x is better 1 when y is better] with tf.variable_scope('weights') as param_scope: self.fcs = [] last_dims = in_dims for l in range(num_layers): self.fcs.append(Linear('fc%d'%(l+1),last_dims,embedding_dims)) #(l+1) is gross, but for backward compatibility last_dims = embedding_dims self.fcs.append(Linear('fc%d'%(num_layers+1),last_dims,1)) self.param_scope = param_scope # build graph def _reward(x): for fc in self.fcs[:-1]: x = tf.nn.relu(fc(x)) r = tf.squeeze(self.fcs[-1](x),axis=1) return x, r self.fv, self.r = _reward(self.inp) _, rs_xs = _reward(self.x) self.v_x = tf.stack([tf.reduce_sum(rs_x) for rs_x in tf.split(rs_xs,self.x_split,axis=0)],axis=0) _, rs_ys = _reward(self.y) self.v_y = tf.stack([tf.reduce_sum(rs_y) for rs_y in tf.split(rs_ys,self.y_split,axis=0)],axis=0) logits = tf.stack([self.v_x,self.v_y],axis=1) #[None,2] loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=self.l) self.loss = tf.reduce_mean(loss,axis=0) weight_decay = 0. for fc in self.fcs: weight_decay += tf.reduce_sum(fc.w**2) self.l2_loss = self.l2_reg * weight_decay pred = tf.cast(tf.greater(self.v_y,self.v_x),tf.int32) self.acc = tf.reduce_mean(tf.cast(tf.equal(pred,self.l),tf.float32)) self.optim = tf.train.AdamOptimizer(1e-4) self.update_op = self.optim.minimize(self.loss+self.l2_loss,var_list=self.parameters(train=True)) self.saver = tf.train.Saver(var_list=self.parameters(train=False),max_to_keep=0) def parameters(self,train=False): if train: return tf.trainable_variables(self.param_scope.name) else: return tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,self.param_scope.name) def train(self,D,batch_size=64,iter=10000,l2_reg=0.01,noise_level=0.1,debug=False): """ Training will be early-terminate when validation accuracy becomes large enough..? args: D: list of triplets (\sigma^1,\sigma^2,\mu) while sigma^{1,2}: shape of [steps,in_dims] mu : 0 or 1 """ sess = tf.get_default_session() idxes = np.random.permutation(len(D)) train_idxes = idxes[:int(len(D)*0.8)] valid_idxes = idxes[int(len(D)*0.8):] def _batch(idx_list,add_noise): batch = [] if len(idx_list) > batch_size: idxes = np.random.choice(idx_list,batch_size,replace=False) else: idxes = idx_list for i in idxes: batch.append(D[i]) b_x,b_y,b_l = zip(*batch) x_split = np.array([len(x) for x in b_x]) y_split = np.array([len(y) for y in b_y]) b_x,b_y,b_l = np.concatenate(b_x,axis=0),np.concatenate(b_y,axis=0),np.array(b_l) if add_noise: b_l = (b_l + np.random.binomial(1,noise_level,batch_size)) % 2 #Flip it with probability 0.1 return b_x,b_y,x_split,y_split,b_l for it in tqdm(range(iter),dynamic_ncols=True): b_x,b_y,x_split,y_split,b_l = _batch(train_idxes,add_noise=True) loss,l2_loss,acc,_ = sess.run([self.loss,self.l2_loss,self.acc,self.update_op],feed_dict={ self.x:b_x, self.y:b_y, self.x_split:x_split, self.y_split:y_split, self.l:b_l, self.l2_reg:l2_reg, }) if debug: if it % 100 == 0 or it < 10: b_x,b_y,x_split,y_split,b_l = _batch(valid_idxes,add_noise=False) valid_acc = sess.run(self.acc,feed_dict={ self.x:b_x, self.y:b_y, self.x_split:x_split, self.y_split:y_split, self.l:b_l }) tqdm.write(('loss: %f (l2_loss: %f), acc: %f, valid_acc: %f'%(loss,l2_loss,acc,valid_acc))) #if valid_acc >= 0.95: # print('loss: %f (l2_loss: %f), acc: %f, valid_acc: %f'%(loss,l2_loss,acc,valid_acc)) # print('early termination@%08d'%it) # break def train_with_dataset(self,dataset,batch_size,include_action=False,iter=10000,l2_reg=0.01,debug=False): sess = tf.get_default_session() for it in tqdm(range(iter),dynamic_ncols=True): b_x,b_y,x_split,y_split,b_l = dataset.batch(batch_size=batch_size,include_action=include_action) loss,l2_loss,acc,_ = sess.run([self.loss,self.l2_loss,self.acc,self.update_op],feed_dict={ self.x:b_x, self.y:b_y, self.x_split:x_split, self.y_split:y_split, self.l:b_l, self.l2_reg:l2_reg, }) if debug: if it % 100 == 0 or it < 10: tqdm.write(('loss: %f (l2_loss: %f), acc: %f'%(loss,l2_loss,acc))) def eval(self,D,batch_size=64): sess = tf.get_default_session() b_x,b_y,b_l = zip(*D) b_x,b_y,b_l = np.array(b_x),np.array(b_y),np.array(b_l) b_r_x, b_acc = [], 0. for i in range(0,len(b_x),batch_size): sum_r_x, acc = sess.run([self.sum_r_x,self.acc],feed_dict={ self.x:b_x[i:i+batch_size], self.y:b_y[i:i+batch_size], self.l:b_l[i:i+batch_size] }) b_r_x.append(sum_r_x) b_acc += len(sum_r_x)*acc return np.concatenate(b_r_x,axis=0), b_acc/len(b_x) def get_reward(self,obs,acs,batch_size=1024): sess = tf.get_default_session() if self.include_action: inp = np.concatenate((obs,acs),axis=1) else: inp = obs b_r = [] for i in range(0,len(obs),batch_size): r = sess.run(self.r,feed_dict={ self.inp:inp[i:i+batch_size] }) b_r.append(r) return np.concatenate(b_r,axis=0) class GTDataset(object): def __init__(self,env): self.env = env self.unwrapped = env while hasattr(self.unwrapped,'env'): self.unwrapped = self.unwrapped.env def gen_traj(self,agent,min_length): max_x_pos = -99999 obs, actions, rewards = [self.env.reset()], [], [] while True: action = agent.act(obs[-1], None, None) ob, reward, done, _ = self.env.step(action) if self.unwrapped.sim.data.qpos[0] > max_x_pos: max_x_pos = self.unwrapped.sim.data.qpos[0] obs.append(ob) actions.append(action) rewards.append(reward) if done: if len(obs) < min_length: obs.pop() obs.append(self.env.reset()) else: obs.pop() break return (np.stack(obs,axis=0), np.concatenate(actions,axis=0), np.array(rewards)), max_x_pos def prebuilt(self,agents,min_length): assert len(agents)>0, 'no agent given' trajs = [] for agent in tqdm(agents): traj, max_x_pos = self.gen_traj(agent,min_length) trajs.append(traj) tqdm.write('model: %s avg reward: %f max_x_pos: %f'%(agent.model_path,np.sum(traj[2]),max_x_pos)) obs,actions,rewards = zip(*trajs) self.trajs = (
np.concatenate(obs,axis=0)
numpy.concatenate
import torch import torch.nn as nn import torch.optim as optim from torch.autograd import Variable import torch.nn.functional as F import numpy as np import os import sys import pdb import time import math import argparse import time from sklearn.cluster import KMeans import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import matplotlib.cm as cm from matplotlib.colors import rgb2hex from model import Split_GNN, Split_BaselineGNN from data_generator import Generator from data_generator_cifar import Generator as GeneratorCIFAR parser = argparse.ArgumentParser() parser.add_argument('--test', action='store_true') parser.add_argument('--save_file', nargs='?', const=1, type=str, default='') parser.add_argument('--load_file', nargs='?', const=1, type=str, default='') parser.add_argument('--output_file', nargs='?', const=1, type=str, default='') parser.add_argument('--dataset', nargs='?', const=1, type=str, default='GM') parser.add_argument('--dim', nargs='?', const=1, type=int, default=27) parser.add_argument('--num_examples_train', nargs='?', const=1, type=int, default=10000) parser.add_argument('--num_examples_test', nargs='?', const=1, type=int, default=1000) parser.add_argument('--N', nargs='?', const=1, type=int, default=200) parser.add_argument('--K', nargs='?', const=1, type=int, default=2) parser.add_argument('--clusters', nargs='?', const=1, type=int, default=4) parser.add_argument('--clip_grad_norm', nargs='?', const=1, type=float, default=40.0) parser.add_argument('--batch_size', nargs='?', const=1, type=int, default=32) parser.add_argument('--sigma2', nargs='?', const=1, type=float, default=1.) parser.add_argument('--reg_factor', nargs='?', const=1, type=int, default=0.0) parser.add_argument('--k_step', nargs='?', const=1, type=int, default=0) parser.add_argument('--n_samples', nargs='?', const=1, type=int, default=10) parser.add_argument('--last', action='store_false') parser.add_argument('--baseline', action='store_true') ############################################################################### # GNN Arguments # ############################################################################### parser.add_argument('--num_features', nargs='?', const=1, type=int, default=32) parser.add_argument('--num_layers', nargs='?', const=1, type=int, default=20) parser.add_argument('--normalize', action='store_true') args = parser.parse_args() # args.save_file = '/home/anowak/DCN-for-KMEANS/model/exp1' # args.load_file = '/home/anowak/DCN-for-KMEANS/model/exp1' if torch.cuda.is_available(): dtype = torch.cuda.FloatTensor dtype_l = torch.cuda.LongTensor torch.cuda.manual_seed(0) else: dtype = torch.FloatTensor dtype_l = torch.LongTensor torch.manual_seed(0) template_train1 = '{:<10} {:<10} {:<10} {:<10} {:<10} {:<10} {:<10} ' template_train2 = '{:<10} {:<10} {:<10.3f} {:<10.5f} {:<10.5f} {:<10.5f} {:<10.3f} ' template_train3 = '{:<10} {:<10} {:<10} {:<10.5f} {:<10.5f} {:<10.5f} {:<10} \n' info_train = ['TRAIN', 'iteration', 'loss', 'samples', 'best_smpl', 'trivial', 'elapsed'] if args.output_file != '': class Logger2(object): def __init__(self, path): self.terminal = sys.stdout self.log = open(path, 'a') def write(self, message): self.terminal.write(message) self.log.write(message) def flush(self): #this flush method is needed for python 3 compatibility. #this handles the flush command by doing nothing. #you might want to specify some extra behavior here. pass sys.stdout = Logger2(args.output_file) class Logger(): dicc = {} def add(self, name, val): if name in self.dicc: lis = self.dicc[name] lis.append(val) self.dicc[name] = lis else: self.dicc[name] = [val] def empty(self, name): self.dicc[name] = [] def empty_all(self): self.dicc = {} def get(self, name): return self.dicc[name] def plot_train_logs(cost_train): plt.figure(1, figsize=(8,6)) plt.clf() iters = range(len(cost_train)) plt.semilogy(iters, cost_train, 'b') plt.xlabel('iterations') plt.ylabel('Average Mean cost') plt.title('Average Mean cost Training') plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=2.0) path = os.path.join('./plots/logs', 'training.png') plt.savefig(path) def plot_clusters(num, e, centers, points, fig, model): """ :param num: 迭代次数 :param e: 点所属聚类中心编号 (bz, N) 0-indexed :param centers: 聚类中心 None or (bz, #centers, dim) :param points: 点 tensor (bz, N, dim) :param fig: 绘制batch中第fig个图像 :param model: 模型名称 :return: """ plt.figure(0) plt.clf() plt.gca().set_xlim([-0.05,1.05]) plt.gca().set_ylim([-0.05,1.05]) clusters = e[fig].max()+1 colors = cm.rainbow(np.linspace(0,1,clusters)) for i in range(clusters): c = colors[i][:-1] mask = e[fig] == i x = torch.masked_select(points[fig,:,0], mask) # 仅绘制0和1两个维度 y = torch.masked_select(points[fig,:,1], mask) plt.plot(x.cpu().numpy(), y.cpu().numpy(), 'o', c=rgb2hex(c)) if centers is not None: center = centers[i] plt.plot([center.data[0]], [center.data[1]], '*', c=rgb2hex(c)) plt.title('clustering') plt.savefig('./plots/clustering_it_{}_{}.png'.format(num, model)) def create_input(points, sigma2): bs, N, _ = points.size() #points has size bs, N, dim OP = torch.zeros(bs,N,N,4).type(dtype) E = torch.eye(N).type(dtype).unsqueeze(0).expand(bs,N,N) OP[:,:,:,0] = E W = points.unsqueeze(1).expand(bs,N,N,dim) - points.unsqueeze(2).expand(bs,N,N,dim) dists2 = (W * W).sum(3) dists = torch.sqrt(dists2) W = torch.exp(-dists2 / sigma2) # 注意这里是平方,原论文中wij = exp(-dist2/sigma2),两点之间的关系特征 OP[:,:,:,1] = W D = E * W.sum(2,True).expand(bs,N,N) # 对角线非零 OP[:,:,:,2] = D U = (torch.ones(N,N).type(dtype)/N).unsqueeze(0).expand(bs,N,N) # 每个元素均为1/N OP[:,:,:,3] = U OP = Variable(OP) x = Variable(points) Y = Variable(W.clone()) # Normalize inputs if normalize: mu = x.sum(1)/N mu_ext = mu.unsqueeze(1).expand_as(x) var = ((x - mu_ext)*(x - mu_ext)).sum(1)/N var_ext = var.unsqueeze(1).expand_as(x) x = x - mu_ext x = x/(10 * var_ext) return (OP, x, Y), dists # ([E; W; DiagW; {1/N}], points, W), points之间的距离 def sample_K(probs, K, mode='test'): probs = 1e-6 + probs*(1 - 2e-6) # to avoid log(0) probs = probs.view(-1, 2**K) # (bz, N, 2^K) if mode == 'train': bin_sample = torch.multinomial(probs, 1).detach() else: bin_sample = probs.max(1)[1].detach().unsqueeze(1) sample = bin_sample.clone().type(dtype) log_probs_samples = torch.log(probs).gather(1, bin_sample).squeeze() log_probs_samples = log_probs_samples.view(batch_size, N).sum(1) return bin_sample.data.view(batch_size, N), log_probs_samples def sample_one(probs, mode='test'): probs = 1e-6 + probs*(1 - 2e-6) # to avoid log(0) if mode == 'train': rand = torch.zeros(*probs.size()).type(dtype) nn.init.uniform(rand) else: rand = torch.ones(*probs.size()).type(dtype) / 2 # 测试时实际上是 >0.5 greedy bin_sample = probs > Variable(rand) sample = bin_sample.clone().type(dtype) log_probs_samples = (sample*torch.log(probs) + (1-sample)*torch.log(1-probs)).sum(1) return bin_sample.data, log_probs_samples def update_input(input, dists, sample, sigma2, e, k): OP, x, Y = input bs = x.size(0) N = x.size(1) sample = sample.float() mask = sample.unsqueeze(1).expand(bs,N,N)*sample.unsqueeze(2).expand(bs,N,N) mask += (1-sample).unsqueeze(1).expand(bs,N,N)*(1-sample).unsqueeze(2).expand(bs,N,N) U = (OP.data[:,:,:,3]>0).float()*mask W = dists*U Wm = W.max(2,True)[0].expand_as(W).max(1,True)[0].expand_as(W) W = W / Wm.clamp(min=1e-6) * np.sqrt(2) W = torch.exp(- W*W / sigma2) OP[:,:,:,1] = Variable(W) D = OP.data[:,:,:,0] * OP.data[:,:,:,1].sum(2,True).expand(bs,N,N) OP[:,:,:,2] = Variable(D) U = U / U.sum(2,True).expand_as(U) OP[:,:,:,3] = Variable(U) Y = Variable(OP[:,:,:,1].data.clone()) # Normalize inputs if normalize: z = Variable(torch.zeros((bs, N, 2**k))).type(dtype) e = e.unsqueeze(2) o = Variable(torch.ones((bs, N, 1))).type(dtype) z = z.scatter_(2, e, o) z = z.unsqueeze(2).expand(bs, N, 2, 2**k) z_bar = z * x.unsqueeze(3).expand_as(z) Nk = z.sum(1) mu = z_bar.sum(1)/Nk mu_ext = mu.unsqueeze(1).expand_as(z)*z var = ((z_bar - mu_ext)*(z_bar - mu_ext)).sum(1)/Nk var_ext = var.unsqueeze(1).expand_as(z)*z x = x - mu_ext.sum(3) x = x/(10 * var_ext.sum(3)) # plt.figure(1) # plt.clf() # plt.plot(x[0,:,0].data.cpu().numpy(), x[0,:,1].data.cpu().numpy(), 'o') # plt.savefig('./plots/norm.png') # pdb.set_trace() return OP, x, Y def compute_variance(e, probs): bs, N = probs.size() variance = Variable(torch.zeros(bs).type(dtype)) for i in range(e.max()+1): mask = Variable((e == i).float()) Ns = mask.sum(1).clamp(min=1) masked_probs = probs*mask probs_mean = (masked_probs).sum(1) / Ns v = (masked_probs*masked_probs).sum(1) / Ns - probs_mean*probs_mean variance += v return variance def compute_reward(e, K, points): bs, N, _ = points.size() reward2 = Variable(torch.zeros(bs).type(dtype)) reward3 = Variable(torch.zeros(bs).type(dtype)) c = [] for k in range(2**K): # 默认满二叉树 mask = Variable((e == k).float()).unsqueeze(2).expand_as(points) # (bz, N, dim) N1 = mask.sum(1) center = points*mask center = center.sum(1) / N1.clamp(min=1) # (bz, dim) c.append(center[0]) subs = ((points-center.unsqueeze(1).expand_as(points)) * mask) # (bz, N, dim) subs2 = (subs * subs).sum(2).sum(1) / N # (bz,) subs3 = torch.abs(subs * subs * subs).sum(2).sum(1) / N reward2 += subs2 reward3 += subs3 return reward2, reward3, c def execute(points, K, n_samples, sigma2, reg_factor, mode='test'): """ :param points: (bz, N, dim) :param K: 默认为2 K叉树 :param n_samples: Monte Carlo抽样次数 10 :param sigma2: 默认为1. :param reg_factor: 默认为0. :param mode: "train" or "test" :return: """ bs, N, _ = points.size() e = torch.zeros(bs, N).type(dtype_l) # 聚类结果标签 input, dists = create_input(points.data, sigma2) # ([E; W; DiagW; {1/N}], points, W), points之间的距离 loss_total = Variable(torch.zeros(1).type(dtype)) for k in range(K): # 默认满二叉树 故每轮每个点都会被继续划分 scores,_ = gnn(input) # 外部定义的模型 (bz, N) probs = F.sigmoid(scores) if mode == 'train': # 每一次划分集合都(可以)有reward指导 variance = compute_variance(e, probs) # 论文中的SPLIT REGULARIZATION variance = variance.sum() / bs Lgp = Variable(torch.zeros(n_samples, bs).type(dtype)) #FIXME Lgp would only record the last split when last == True Reward2 = Variable(torch.zeros(n_samples, bs).type(dtype)) Reward3 = Variable(torch.zeros(n_samples, bs).type(dtype)) for i in range(n_samples): Samplei, Lgp[i] = sample_one(probs, 'train') # 在probs固定的情况下抽样n_samples次 Ei = e*2 + Samplei.long() Reward2[i], _,_ = compute_reward(Ei, k+1, points) baseline = Reward2.mean(0,True).expand_as(Reward3) loss = 0.0 if (last and k == K-1) or not last: loss = ((Reward2-baseline) * Lgp).sum(1).sum(0) / n_samples / bs # baseline是n_samples抽样的平均 loss_total = loss_total + loss - reg_factor*variance show_loss = Reward2.data.mean() sample, lgp = sample_one(probs, 'test') # (bz, N) (bz, ) e = e*2 + sample.long() # 记录该轮划分结果 reward,_,c = compute_reward(e, k+1, points) if mode == 'test': show_loss = reward.data.mean() if k < K-1: input = update_input(input, dists, sample, sigma2, e, k+1) if mode == 'test': return e, None, show_loss, c else: return e, loss_total, show_loss, c def execute_baseline(points, K, n_samples, sigma2, reg_factor, mode='test'): bs, N, _ = points.size() e = torch.zeros(bs, N).type(dtype_l) input, dists = create_input(points.data, sigma2) loss_total = Variable(torch.zeros(1).type(dtype)) scores,_ = gnn(input) probs = F.softmax(scores.permute(2, 1, 0)).permute(2, 1, 0) if mode == 'train': # 一步到位 Lgp = Variable(torch.zeros(n_samples, bs).type(dtype)) Reward2 = Variable(torch.zeros(n_samples, bs).type(dtype)) Reward3 = Variable(torch.zeros(n_samples, bs).type(dtype)) for i in range(n_samples): Samplei, Lgp[i] = sample_K(probs, K, 'train') Reward2[i], _,_ = compute_reward(Samplei, K, points) baseline = Reward2.mean(0,True).expand_as(Reward3) loss = ((Reward2-baseline) * Lgp).sum(1).sum(0) / n_samples / bs loss_total = loss_total + loss show_loss = Reward2.data.mean() sample, lgp = sample_K(probs, K, 'test') reward, _, c = compute_reward(sample, K, points) if mode == 'test': show_loss = reward.data.mean() if mode == 'test': return sample, None, show_loss, c else: return sample, loss_total, show_loss, c def save_model(path, model): torch.save(model.state_dict(), path) print('Model Saved.') def load_model(path, model): if os.path.exists(path): model.load_state_dict(torch.load(path)) print('GNN successfully loaded from {}'.format(path)) return model else: raise ValueError('Parameter path {} does not exist.'.format(path)) def Lloyds(input, n_clusters=8): """常规的Kmeans 计算了与Split GNN相同的Cost :param input: 点 (bz, N, dim) tensor :param n_clusters: 聚类中心个数 :return: """ kmeans = KMeans(n_clusters=n_clusters) nb_pbs, nb_samples, d = input.shape # (bz, N, dim) Costs = [] for i in range(nb_pbs): inp = input[i] labels = kmeans.fit_predict(inp) cost = 0 for cl in range(n_clusters): ind = np.where(labels==cl)[0] if ind.shape[0] > 0: # 存在为cl的聚类中心 x = inp[ind] # (n, dim) mean = x.mean(axis=0) cost += np.mean(np.sum((x - mean)**2, axis=1), axis=0)*ind.shape[0] # 论文中的 n * delta # cost += np.var(inp[ind], axis=0)*ind.shape[0] Costs.append(cost/nb_samples) #FIXME bug fixed Cost = sum(Costs)/len(Costs) return Cost def Lloyds2(input, ind, E, k, K=2): """ :param input: (N, dim) :param ind: 用于确定点的子集 :param E: (N,) labels :param k: 递归次数,可以理解为K叉树扩展了几层 :param K: K叉树,默认为2 :return: """ # split at first place inp = input[ind] if inp.shape[0] >= 2: kmeans = KMeans(n_clusters=2, max_iter=20) labels = kmeans.fit_predict(inp) # labels由0或1组成 else: labels = np.zeros(ind.shape[0]) # array([0]) E[ind] = 2*E[ind] + labels # 类似于2进制, 00 01 10 11,第k位表示第k轮划分情,适合于满二叉树 # recursion if k == K-1: return E else: ind1 = ind[np.where(labels == 0)[0]] ind2 = ind[
np.where(labels == 1)
numpy.where
import math import os from preprocessing.utils import landmark_alignment import random import sys import traceback import cv2 import numpy as np import pandas as pd import skimage.draw from albumentations import ImageCompression, OneOf, GaussianBlur, Blur from albumentations.augmentations.functional import image_compression, rot90 from albumentations.pytorch.functional import img_to_tensor from scipy.ndimage import binary_erosion, binary_dilation from skimage import measure from torch.utils.data import Dataset import dlib from training.datasets.validation_set import PUBLIC_SET from preprocessing.retinaface.detect import FaceDetector def prepare_bit_masks(mask): h, w = mask.shape mid_w = w // 2 mid_h = w // 2 masks = [] ones = np.ones_like(mask) ones[:mid_h] = 0 masks.append(ones) ones = np.ones_like(mask) ones[mid_h:] = 0 masks.append(ones) ones = np.ones_like(mask) ones[:, :mid_w] = 0 masks.append(ones) ones = np.ones_like(mask) ones[:, mid_w:] = 0 masks.append(ones) ones = np.ones_like(mask) ones[:mid_h, :mid_w] = 0 ones[mid_h:, mid_w:] = 0 masks.append(ones) ones = np.ones_like(mask) ones[:mid_h, mid_w:] = 0 ones[mid_h:, :mid_w] = 0 masks.append(ones) return masks detector = dlib.get_frontal_face_detector() predictor = dlib.shape_predictor('libs/shape_predictor_68_face_landmarks.dat') def blackout_convex_hull(img): try: rect = detector(img)[0] sp = predictor(img, rect) landmarks = np.array([[p.x, p.y] for p in sp.parts()]) outline = landmarks[[*range(17), *range(26, 16, -1)]] Y, X = skimage.draw.polygon(outline[:, 1], outline[:, 0]) cropped_img = np.zeros(img.shape[:2], dtype=np.uint8) cropped_img[Y, X] = 1 # if random.random() > 0.5: # img[cropped_img == 0] = 0 # #leave only face # return img y, x = measure.centroid(cropped_img) y = int(y) x = int(x) first = random.random() > 0.5 if random.random() > 0.5: if first: cropped_img[:y, :] = 0 else: cropped_img[y:, :] = 0 else: if first: cropped_img[:, :x] = 0 else: cropped_img[:, x:] = 0 img[cropped_img > 0] = 0 except Exception as e: pass def dist(p1, p2): return math.sqrt((p1[0] - p2[0]) ** 2 + (p1[1] - p2[1]) ** 2) def remove_eyes(image, landmarks): image = image.copy() x1, y1, x2, y2 = landmarks[:4] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) mask = np.zeros_like(image[..., 0]) line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2) w = dist((x1, y1), (x2, y2)) dilation = int(w // 4) line = binary_dilation(line, iterations=dilation) image[line, :] = 0 return image def remove_nose(image, landmarks): image = image.copy() x1, y1, x2, y2 = landmarks[:4] x_center, y_center = (x1 + x2) / 2, (y1 + y2) / 2 x3, y3 = landmarks[4:6] x_center, y_center, x3, y3 = int(x_center), int(y_center), int(x3), int(y3) mask = np.zeros_like(image[..., 0]) line = cv2.line(mask, (x3, y3), (x_center, y_center), color=(1), thickness=2) w = dist((x1, y1), (x2, y2)) dilation = int(w // 4) line = binary_dilation(line, iterations=dilation) image[line, :] = 0 return image def remove_mouth(image, landmarks): image = image.copy() x1, y1, x2, y2 = landmarks[6:] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) mask = np.zeros_like(image[..., 0]) line = cv2.line(mask, (x1, y1), (x2, y2), color=(1), thickness=2) w = dist((x1, y1), (x2, y2)) dilation = int(w // 3) line = binary_dilation(line, iterations=dilation) image[line, :] = 0 return image def remove_landmark(image, landmarks): if random.random() > 0.5: image = remove_eyes(image, landmarks[0]) cv2.imwrite("rm_eyes.jpg", image) elif random.random() > 0.5: image = remove_mouth(image, landmarks[0]) cv2.imwrite("rm_month.jpg", image) elif random.random() > 0.5: image = remove_nose(image, landmarks[0]) cv2.imwrite("rm_nose.jpg", image) return image def change_padding(image, part=5): h, w = image.shape[:2] # original padding was done with 1/3 from each side, too much pad_h = int(((3 / 5) * h) / part) pad_w = int(((3 / 5) * w) / part) image = image[h // 5 - pad_h:-h // 5 + pad_h, w // 5 - pad_w:-w // 5 + pad_w] return image def blackout_random(image, mask, label): binary_mask = mask > 0.4 * 255 h, w = binary_mask.shape[:2] tries = 50 current_try = 1 while current_try < tries: first = random.random() < 0.5 if random.random() < 0.5: pivot = random.randint(h // 2 - h // 5, h // 2 + h // 5) bitmap_msk = np.ones_like(binary_mask) if first: bitmap_msk[:pivot, :] = 0 else: bitmap_msk[pivot:, :] = 0 else: pivot = random.randint(w // 2 - w // 5, w // 2 + w // 5) bitmap_msk = np.ones_like(binary_mask) if first: bitmap_msk[:, :pivot] = 0 else: bitmap_msk[:, pivot:] = 0 if label < 0.5 and np.count_nonzero(image * np.expand_dims(bitmap_msk, axis=-1)) / 3 > (h * w) / 5 \ or np.count_nonzero(binary_mask * bitmap_msk) > 40: mask *= bitmap_msk image *=
np.expand_dims(bitmap_msk, axis=-1)
numpy.expand_dims
from __future__ import division import os.path as op from itertools import product import numpy as np import pandas as pd import nibabel as nib from scipy.signal import periodogram import pytest from pytest import approx from .. import glm def assert_highly_correlated(a, b, thresh=.999): corr = np.corrcoef(a.flat, b.flat)[0, 1] assert corr > thresh class TestHRFs(object): @pytest.fixture def random(self): seed = sum(map(ord, "hrfs")) return np.random.RandomState(seed) @pytest.fixture def randn_input(self, random): return random.randn(100) @pytest.fixture def delta_input(self, random): return random.randn(100) > .05 def test_base(self): with pytest.raises(NotImplementedError): glm.HRFModel().transform(None) def test_identity(self, randn_input): output = glm.IdentityHRF().transform(randn_input) assert np.array_equal(output, randn_input) @pytest.mark.parametrize( "res,duration", product((10, 20), (24, 42))) def test_gamma_hrf_kernel_size(self, res, duration): hrf = glm.GammaHRF(res=res, duration=duration) assert len(hrf.kernel) == res * duration def test_kernel_normalization(self): hrf = glm.GammaHRF() assert hrf.kernel.sum() == pytest.approx(1) def test_undershoot(self, random): double = glm.GammaHRF() assert double.kernel.min() < 0 single = glm.GammaHRF(ratio=0) assert single.kernel.min() >= 0 def test_gamma_hrf_output_type(self, random, randn_input): a = np.asarray(randn_input) s = pd.Series(randn_input, name="event") hrf = glm.GammaHRF() a_out = hrf.transform(a) s_out = hrf.transform(s) assert isinstance(a_out, np.ndarray) assert isinstance(s_out, pd.Series) def test_gamma_hrf_convolution(self, random, randn_input): hrf = glm.GammaHRF() convolution = np.convolve(randn_input, hrf.kernel)[:len(randn_input)] assert hrf.transform(randn_input) == pytest.approx(convolution) @pytest.mark.parametrize("name", ["event", 180]) def test_gamma_hrf_output_name(self, random, randn_input, name): s = pd.Series(randn_input, name=name) hrf = glm.GammaHRF() y = hrf.transform(s) assert y.name == str(name) def test_gamma_hrf_output_index(self, random, randn_input): n = len(randn_input) name = "event" idx = pd.Index(random.permutation(np.arange(n))) s = pd.Series(randn_input, idx, name=name) hrf = glm.GammaHRF() y = hrf.transform(s) assert y.index.equals(idx) @pytest.mark.parametrize("name", ["event", 180]) def test_gamma_basis_output_names(self, random, randn_input, name): s = pd.Series(randn_input, name=name) hrf = glm.GammaBasis() y = hrf.transform(s) assert list(y.columns) == [f"{name}", f"{name}-dydt", f"{name}-dydw"] hrf = glm.GammaBasis(time_derivative=False) y = hrf.transform(s) assert list(y.columns) == [f"{name}", f"{name}-dydw"] hrf = glm.GammaBasis(disp_derivative=False) y = hrf.transform(s) assert list(y.columns) == [f"{name}", f"{name}-dydt"] def test_gamma_basis_output_index(self, random, randn_input): n = len(randn_input) name = "event" idx = pd.Index(random.permutation(np.arange(n))) s = pd.Series(randn_input, idx, name=name) hrf = glm.GammaBasis() y = hrf.transform(s) assert y.index.equals(idx) def test_gamma_basis_sum_squares(self): hrf = glm.GammaBasis() ss = np.sum(hrf.kernel ** 2, axis=0) assert np.allclose(np.diff(ss), 0) def test_gamma_basis_convolution_orthogonality(self, randn_input): hrf = glm.GammaBasis() y = hrf.transform(randn_input) yty = y.T @ y np.allclose(np.triu(yty, 1), 0) np.allclose(np.tril(yty, 1), 0) @pytest.mark.parametrize("n", [10, 14]) def test_fir_matrix_size(self, delta_input, n): n_tp = len(delta_input) hrf = glm.FIRBasis(n) assert hrf.transform(delta_input).shape == (n_tp, n) @pytest.mark.parametrize("offset", [0, 2]) def test_fir_matrix_values(self, delta_input, random, offset): n = 12 hrf = glm.FIRBasis(n, offset) onsets, = np.nonzero(delta_input) delta_basis = hrf.transform(delta_input) for i in onsets: for j, row in zip(np.arange(n), delta_basis[(i - offset):]): assert row[j] == 1 parametric_input = delta_input * random.randn(delta_input.size) parametric_basis = hrf.transform(parametric_input) for i in onsets: for j, row in zip(np.arange(n), parametric_basis[(i - offset):]): assert row[j] == parametric_input[i] def test_fir_matrix_output_type(self, delta_input): hrf = glm.FIRBasis(12) assert isinstance(hrf.transform(delta_input), np.ndarray) assert isinstance(hrf.transform(pd.Series(delta_input)), pd.DataFrame) def test_fir_basis_output_indices(self, random, delta_input): n = 24 name = "event" idx = pd.Index(random.permutation(np.arange(delta_input.size))) cols = pd.Index([f"{name}_{i:02d}" for i in range(n)]) s = pd.Series(delta_input, idx, name=name) hrf = glm.FIRBasis(n) basis = hrf.transform(s) assert basis.index.equals(idx) assert basis.columns.equals(cols) def test_fir_basis_suffix(self, delta_input): n = 12 name = "event" idx = np.arange(delta_input.size) suffix = ":" hrf = glm.FIRBasis(n, suffix=suffix) s = pd.Series(delta_input, idx, name=name) basis = hrf.transform(s) cols = pd.Index([f"{name}{suffix}{i:02d}" for i in range(n)]) assert basis.columns.equals(cols) class TestDesignMatrix(object): @pytest.fixture def random(self): seed = sum(map(ord, "design_matrix")) return np.random.RandomState(seed) @pytest.fixture def conditions(self): conditions = pd.DataFrame(dict( condition=["a", "b", "a", "b"], onset=[0, 12, 24, 36], duration=[2, 2, 2, 2], value=[1, 1, 1, 1], )) return conditions @pytest.fixture def regressors(self, random): data = random.normal(2, 1, (48, 3)) columns = ["x", "y", "z"] regressors = pd.DataFrame(data, columns=columns) return regressors @pytest.fixture def artifacts(self, random): return pd.Series(random.rand(48) < .1) @pytest.mark.parametrize( "n_tp,tr,time_deriv,disp_deriv", product((24, 28), (1, 2), (False, True), (False, True))) def test_design_shape_and_index(self, conditions, tr, n_tp, time_deriv, disp_deriv): X = glm.build_design_matrix(conditions, glm.GammaBasis(time_deriv, disp_deriv), n_tp=n_tp, tr=tr) n_cond = len(np.unique(conditions["condition"])) assert isinstance(X, pd.DataFrame) assert X.shape == (n_tp, n_cond * sum([1, time_deriv, disp_deriv])) tps = np.arange(0, n_tp * tr, tr) assert np.array_equal(X.index.values, tps) def test_design_contents(self, conditions): n_tp, tr = 48, 1 X = glm.build_design_matrix(conditions, glm.IdentityHRF(), n_tp=n_tp, tr=tr, demean=False) expected_a = np.zeros(n_tp) expected_a[[0, 1, 24, 25]] = 1 assert np.array_equal(X["a"].values, expected_a) n_tp, tr = 24, 2 X = glm.build_design_matrix(conditions, glm.IdentityHRF(), n_tp=n_tp, tr=tr, demean=False) expected_a = np.zeros(n_tp) expected_a[[0 // tr, 24 // tr]] = 1 assert isinstance(X, pd.DataFrame) assert np.array_equal(X["a"].values, expected_a) def test_design_regressors(self, conditions, regressors): cols = regressors.columns.tolist() X = glm.build_design_matrix(regressors=regressors) assert X.columns.tolist() == cols assert np.array_equal(X[cols], regressors - regressors.mean()) X = glm.build_design_matrix(conditions, regressors=regressors) assert X.columns.tolist() == ["a", "b"] + cols assert np.array_equal(X[cols], regressors - regressors.mean()) X = glm.build_design_matrix(regressors=regressors, demean=False) assert np.array_equal(X[cols], regressors) def test_design_artifacts(self, conditions, artifacts): cols = ["art{:02d}".format(i) for i in range(artifacts.sum())] X = glm.build_design_matrix(artifacts=artifacts) assert X.columns.tolist() == cols assert X.shape == (48, artifacts.sum()) X = glm.build_design_matrix(conditions, artifacts=artifacts) assert X.columns.tolist() == ["a", "b"] + cols def test_design_fir(self, conditions): n = 12 n_tp = 48 X = glm.build_design_matrix(conditions, glm.FIRBasis(n), n_tp=n_tp, demean=False, res=1, shift=0) n_cond = conditions["condition"].unique().size assert X.shape == (n_tp, n * n_cond) def test_n_tp_errors(self, conditions, regressors, artifacts): with pytest.raises(ValueError): glm.build_design_matrix(regressors=regressors, n_tp=20) with pytest.raises(ValueError): glm.build_design_matrix(artifacts=artifacts, n_tp=20) with pytest.raises(ValueError): glm.build_design_matrix(regressors=regressors, artifacts=artifacts.iloc[:20]) def test_hpf(self, conditions): n_tp = 48 F = glm.highpass_filter_matrix(n_tp, 20, 1) X = glm.build_design_matrix(conditions, hpf_matrix=F, n_tp=n_tp) assert len(X) == len(F) def test_condition_defaults(self, conditions): conditions.loc[:, "duration"] = 0 conditions.loc[:, "value"] = 1 min_cols = ["condition", "onset"] X1 = glm.build_design_matrix(conditions, n_tp=48) X2 = glm.build_design_matrix(conditions[min_cols].copy(), n_tp=48) assert np.array_equal(X1.values, X2.values) @pytest.mark.parametrize( "tr,res", product((.1, .5, 1, 1.5, 2), (60, 30, 1))) def test_tr_and_sampling(self, tr, res): condition = pd.DataFrame(dict( onset=[2], value=[1], duration=[0], )) hrf = glm.GammaHRF(res=res) out, *_ = glm.condition_to_regressors( "test", condition, hrf, 30 / tr, tr, res, 0 ) assert 7 <= out.idxmax() <= 8 class TestContrastMatrix(object): @pytest.fixture def random(self): seed = sum(map(ord, "contrast_matrix")) return np.random.RandomState(seed) @pytest.fixture def design(self, random): cols = list("abcd") return pd.DataFrame(random.normal(0, 1, (48, 4)), columns=cols) def test_contrast_matrix(self, design): contrast = ("a", ["a"], [1]) C = glm.contrast_matrix(contrast, design) assert np.array_equal(C, [1, 0, 0, 0]) contrast = ("c", ["c"], [1]) C = glm.contrast_matrix(contrast, design) assert np.array_equal(C, [0, 0, 1, 0]) contrast = ("a-c", ["a", "c"], [1, -1]) C = glm.contrast_matrix(contrast, design) assert np.array_equal(C, [1, 0, -1, 0]) contrast = ("a-c", ["c", "a"], [-1, 1]) C = glm.contrast_matrix(contrast, design) assert np.array_equal(C, [1, 0, -1, 0]) contrast = ("a-bd", ["a", "b", "d"], [1, -.5, -.5]) C = glm.contrast_matrix(contrast, design) assert np.array_equal(C, [1, -.5, 0, -.5]) class TestLinearModel(object): @pytest.fixture() def test_data(self): data_path = op.join(op.dirname(__file__), "data/film_data.npz") test_data_obj = np.load(data_path) test_data = dict(test_data_obj) ts_data = test_data["ts_data"] test_data["ts_img"] = nib.Nifti1Image(ts_data, np.eye(4)) nx, ny, nz, n_tp = ts_data.shape n_vox = nx * ny * nz test_data["data_matrix_shape"] = n_tp, n_vox mask = np.ones(ts_data.shape[:-1], np.int) test_data["mask_img"] = nib.Nifti1Image(mask, np.eye(4)) yield test_data test_data_obj.close() def test_image_prewhitening_outputs(self, test_data): ts_img = test_data["ts_img"] mask_img = test_data["mask_img"] X = test_data["X"] smooth_fwhm = None n_tp, n_vox = test_data["data_matrix_shape"] _, n_ev = X.shape # Test output shapes with the full data WY, WX = glm.prewhiten_image_data(ts_img, mask_img, X, smooth_fwhm) assert WY.shape == (n_tp, n_vox) assert WX.shape == (n_tp, n_ev, n_vox) # Test output shapes using a more restrictive mask n_mask = 10 mask = np.zeros(mask_img.shape, np.int) mask.flat[:n_mask] = 1 mask_img = nib.Nifti1Image(mask, np.eye(4)) WY, WX = glm.prewhiten_image_data(ts_img, mask_img, X, smooth_fwhm) assert WY.shape == (n_tp, n_mask) assert WX.shape == (n_tp, n_ev, n_mask) # Smoke test smoothing smooth_fwhm = 2 WY, WX = glm.prewhiten_image_data(ts_img, mask_img, X, smooth_fwhm) assert WY.shape == (n_tp, n_mask) assert WX.shape == (n_tp, n_ev, n_mask) def test_residual_autocorrelation_outputs(self, test_data): ts_data = test_data["ts_data"] n_tp, n_vox = test_data["data_matrix_shape"] Y = ts_data.reshape(n_vox, n_tp).T X = test_data["X"] # Test outputs with default Tukey window taper auto_tukey_m = glm.default_tukey_window(n_tp) acf = glm.estimate_residual_autocorrelation(Y, X) assert acf.shape == (auto_tukey_m, n_vox) # Test normalization of autocorrelation estimates assert np.array_equal(acf[0], np.ones(n_vox)) assert acf[1:].max() < 1 assert acf.min() > -1 # Test outputs with specifed tukey taper size tukey_m = 10 acf = glm.estimate_residual_autocorrelation(Y, X, tukey_m) assert acf.shape == (tukey_m, n_vox) def test_iterative_ols_fit(self, test_data): ts_img = test_data["ts_img"] mask_img = test_data["mask_img"] X = test_data["X"] smooth_fwhm = None n_tp, n_vox = test_data["data_matrix_shape"] _, n_ev = X.shape WY, WX = glm.prewhiten_image_data(ts_img, mask_img, X, smooth_fwhm) B, SS, XtXinv, E = glm.iterative_ols_fit(WY, WX) # Test output shapes assert B.shape == (n_vox, n_ev) assert SS.shape == (n_vox,) assert XtXinv.shape == (n_vox, n_ev, n_ev) assert E.shape == (n_tp, n_vox) # Test against numpy's basic least squares estimation for i in range(n_vox): B_i, _, _, _ = np.linalg.lstsq(WX[:, :, i], WY[:, i], rcond=None) assert B_i == approx(B[i]) # Test XtXinv symmetry for XtXinv_i in XtXinv: assert np.array_equal(XtXinv_i, XtXinv_i.T) def test_iterative_contrast_estimation(self, test_data): ts_img = test_data["ts_img"] mask_img = test_data["mask_img"] n_tp, n_vox = test_data["data_matrix_shape"] X = test_data["X"] C = test_data["C"] smooth_fwhm = None n_tp, n_vox = test_data["data_matrix_shape"] n_con, n_ev = C.shape WY, WX = glm.prewhiten_image_data(ts_img, mask_img, X, smooth_fwhm) B, SS, XtXinv, _ = glm.iterative_ols_fit(WY, WX) G, V, T = glm.iterative_contrast_estimation(B, SS, XtXinv, C) # Test output shapes assert G.shape == (n_vox, n_con) assert V.shape == (n_vox, n_con) assert T.shape == (n_vox, n_con) # Test computation of contrast parameter estimates assert np.array_equal(G, np.dot(B, C.T)) # Test that variances are all positive assert np.all(V > 0) # Test that t stats have the same sign as the effect sizes assert np.all(np.sign(T) == np.sign(G)) def test_prewhitened_glm_against_fsl(self, test_data): ts_img = test_data["ts_img"] mask_img = test_data["mask_img"] n_tp, n_vox = test_data["data_matrix_shape"] Y = test_data["ts_data"].reshape(n_vox, n_tp).T X = test_data["X"] C = test_data["C"] smooth_fwhm = None acf = glm.estimate_residual_autocorrelation(Y - Y.mean(axis=0), X) WY, WX = glm.prewhiten_image_data(ts_img, mask_img, X, smooth_fwhm) WX_mean = WX.mean(axis=-1) B, SS, XtXinv, _ = glm.iterative_ols_fit(WY, WX) G, V, T = glm.iterative_contrast_estimation(B, SS, XtXinv, C) # Note that while our code produces highly similar values to what we # get from FSL, there are enough small differences that we can't simply # test array equality (or even almost equality to n decimals). This is # somewhat disconcerting, but given the number of differences in the # two implementations it is not wholly unexpected. Further, there is # enough small weirdness in the FSL code (i.e. the autocorrelation # estimates don't appear properly normalized) that it's not certain # that small deviations are problems in our code and not FSL. In any # case, it will suffice to test that the values are highly similar. # Test residual autocorrelation estimate assert_highly_correlated(acf, test_data["acf"]) # Test prewhitened fMRI data assert_highly_correlated(WY, test_data["WY"]) # Test (average) prewhitened design assert_highly_correlated(WX_mean, test_data["WX"]) # Test model parameter estimates assert_highly_correlated(B, test_data["B"]) # Test model error summary assert_highly_correlated(SS, test_data["SS"]) # Test contrast of parameter estimates assert_highly_correlated(G, test_data["G"]) # Test variance of contrast of parameter estimates assert_highly_correlated(V, test_data["V"]) # Test contrast t statistics assert_highly_correlated(T, test_data["T"]) class TestHighpassFilter(object): @pytest.fixture def test_data(self): data_path = op.join(op.dirname(__file__), "data/hpf_data.npz") test_data_obj =
np.load(data_path)
numpy.load
import numpy as np import cv2 import tensorflow as tf class PolyLaneNetPostProcessHailo(object): def __init__(self): return def recombine_split_endnodes(self, confs, upper_lower, coeffs_1_2, coeffs_3_4): bs = confs.shape[0] output = np.zeros((bs, 5, 7)) for lane in range(5): output[:, lane, 0:1] = confs[:, 1 * lane:1 * lane + 1] output[:, lane, 1:3] = upper_lower[:, 2 * lane:2 * lane + 2] output[:, lane, 3:5] = coeffs_1_2[:, 2 * lane:2 * lane + 2] output[:, lane, 5:7] = coeffs_3_4[:, 2 * lane:2 * lane + 2] return output.astype(np.float32) def sigmoid(self, x): return (np.exp(x)) / (np.exp(x) + 1.0) def enforce_shared_y(self, pred): pred = pred.reshape(-1, 5, 7) pred_lowers = pred[:, :, 1] first_lowers = pred_lowers[:, 0] first_lowers = np.expand_dims(first_lowers, 1) first_lowers = np.repeat(first_lowers, 5, axis=1) pred[:, :, 1] = first_lowers return pred def decode(self, outputs, conf_threshold=0.5): outputs = self.enforce_shared_y(outputs) outputs[:, :, 0] = self.sigmoid(outputs[:, :, 0]) outputs[outputs[:, :, 0] < conf_threshold] = 0 return outputs def polynomize_pred(self, pred): pred = pred[0] # [0] zero is because it had to be given as a list batch_lanes = [] for image in range(pred.shape[0]): # running over images in batch: lanes = [] for lane_index in range(pred.shape[1]): confidence = pred[image, lane_index, 0] lower = pred[image, lane_index, 1] upper = pred[image, lane_index, 2] xvals = (np.polyval(pred[image, lane_index, 3:], self.h_range) * self.img_w) xvals[self.h_range < lower] = -2. xvals[self.h_range > upper] = -2. xvals =
np.append(xvals, confidence)
numpy.append
from reader import Reader from PIL import Image from mpl_toolkits.mplot3d import Axes3D import matplotlib.pyplot as plt import numpy as np import matplotlib as mpl mpl.use('Agg') def get_corners(dimensions, location, rotation_y): dimensions = np.clip(dimensions, a_min=1.5, a_max=5) R = np.array([[+np.cos(rotation_y), 0, +np.sin(rotation_y)], [0, 1, 0], [-np.sin(rotation_y), 0, +np.cos(rotation_y)]], dtype=np.float32) h, w, l = dimensions x_corners = [l / 2, l / 2, -l / 2, -l / 2, l / 2, l / 2, -l / 2, -l / 2] y_corners = [0, 0, 0, 0, -h, -h, -h, -h] z_corners = [w / 2, -w / 2, -w / 2, w / 2, w / 2, -w / 2, -w / 2, w / 2] corners_3D = np.dot(R, [x_corners, y_corners, z_corners]) corners_3D += location.reshape((3, 1)) return corners_3D def draw_projection(corners, P2, ax, color): projection = np.dot(P2, np.vstack([corners, np.ones(8, dtype=np.int32)])) projection = (projection / projection[2])[:2] orders = [[0, 1, 2, 3, 0], [4, 5, 6, 7, 4], [2, 6], [3, 7], [1, 5], [0, 4]] for order in orders: ax.plot(projection[0, order], projection[1, order], color=color, linewidth=2) return def draw_space(corners, ax, color): assert corners.shape == (3, 8) orders = [0, 1, 2, 3, 0, 4, 5, 6, 7, 4, 5, 1, 2, 6, 7, 3] lines =
np.zeros((3, 16), dtype=np.float32)
numpy.zeros
# # # Copyright (C) 2010-2021 ARM Limited or its affiliates. All rights reserved. # # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the License); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an AS IS BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from sympy.ntheory import factorint import numpy as np from sympy.combinatorics import Permutation import io import math from config.strtools import * import itertools import struct import config.formats # Conversion of double to fixed point values # # - 8000 gives 8000 in C (int16) # So when it is multiplied it will give the wrong sign for the result # of the multiplication except if DSPE instructions with saturation are used # to compute the negate (and we should get 7FFF). # # So for cortex-m without DSP extension, we should try to use 8001 # It is done but not yet tested. def to_q63(v,dspe): r = int(round(v * 2**63)) if (r > 0x07FFFFFFFFFFFFFFF): r = 0x07FFFFFFFFFFFFFFF if (r < -0x08000000000000000): if dspe: r = -0x08000000000000000 else: r = -0x07FFFFFFFFFFFFFFF return ("0x%s" % format(struct.unpack('<Q', struct.pack('<q', r))[0],'016X')) def to_q31(v,dspe): r = int(round(v * 2**31)) if (r > 0x07FFFFFFF): r = 0x07FFFFFFF if (r < -0x080000000): if dspe: r = -0x080000000 else: r = -0x07FFFFFFF return ("0x%s" % format(struct.unpack('<I', struct.pack('<i', r))[0],'08X')) def to_q15(v,dspe): r = int(round(v * 2**15)) if (r > 0x07FFF): r = 0x07FFF if (r < -0x08000): if dspe: r = -0x08000 else: r = -0x07FFF return ("0x%s" % format(struct.unpack('<H', struct.pack('<h', r))[0],'04X')) def to_q7(v,dspe): r = int(round(v * 2**7)) if (r > 0x07F): r = 0x07F if (r < -0x080):# if dspe: r = -0x080 else: r = -0x07F return ("0x%s" % format(struct.unpack('<B', struct.pack('<b', r))[0],'02X')) Q7=1 Q15=2 Q31=3 F16=4 F32=5 F64=6 # In the final C++ code, we have a loop for a given radix. # The input list here has not grouped the factors. # The list need to be transformed into a list of pair. # The pair being (radix,exponent) def groupFactors(factors): n = 0 current=-1 result=[] for f in factors: if f != current: if current != -1: result = result + [current,n] current=f n=1 else: n=n+1 result = result + [current,n] return(result) # Compute the grouped factors for the the FFT length originaln # where the only possible radix are in primitiveFactors list. def getFactors(primitiveFactors,originaln): factors=[] length=[] primitiveFactors.sort(reverse=True) n = originaln while (n > 1) and primitiveFactors: if (n % primitiveFactors[0] == 0): factors.append(primitiveFactors[0]) n = n // primitiveFactors[0] else: primitiveFactors=primitiveFactors[1:] # When lowest factors are at the beginning (like 2) # we use a special implementation of the loopcore template # and it is removing some cycles. # So, we will get (for instance) 2x8x8x8 instead of 8x8x8x2 factors.reverse() for f in factors: originaln = originaln // f length.append(originaln) groupedfactors=groupFactors(factors) return(groupedfactors,factors,length) # Apply the radix decomposition to compute the input -> output permutation # computed by the FFT. def radixReverse(f,n): a=np.array(range(0,n)).reshape(f) r = list(range(0,len(f))) r.reverse() r = tuple(r) a = np.transpose(a,r) return(a.reshape(n)) def radixPermutation(factors,n): a = radixReverse(factors,n) tps = [] vectorizable=True for c in Permutation.from_sequence(a).cyclic_form: if (len(c)>2): vectorizable = False for i in range(len(c)-1,0,-1): # 2 because those are indexes in an array of complex numbers but # with a real type. tps.append([2*c[i], 2*c[i-1]]) return(np.array(tps,dtype=int).flatten(),vectorizable) # CFFT Twiddle table def cfft_twiddle(n): a=2.0*math.pi*
np.linspace(0,n,num=n,endpoint=False)
numpy.linspace
#!/usr/bin/python """ Design the Nyquist(M) filter prototypes. Reference: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, "Filter bank design based on minimization of individual aliasing terms for minimum mutual information subband adaptive beamforming", ICASSP 2018. .. moduleauthor:: <NAME> <<EMAIL>> """ import numpy as np from numba import jit import os import pickle @jit(nopython=True) def mynull(A, num=0, datatype='d'): """ Find a null space projectoin matrix :param A: matrix :type A: np matrix :param num: number of bases for the null space :type num: integer :param datatype: 'd' or 's' for tolereance :type datatype: char :returns: null space projection matrix of A and singular weights """ [U,W,VH] = np.linalg.svd(A) V = VH.transpose() (rowN, colN) = A.shape if num > 0: sX = colN - num val = np.zeros(num, np.float_) else: if rowN > 1: s = np.diag(W) elif rowN == 1: s = np.array([[W[0]]]) if datatype == 'd': # double precision accuracy tol = max(rowN, colN) * s.max() * 2.2204e-16 else: # single precision accuracy tol = max(rowN, colN) * s.max() * 1.1921e-07 print('Threshold for nullspace: %e' %tol) sX = np.sum(s > tol) val = np.zeros(colN-sX, np.float) y = np.array(V[:, sX:colN:1]) for i in range(len(val)): val[i] = W[sX+i] return (y, val) @jit(nopython=True) def create_delA_delC_delb(L_h, M, m, md, A, C, b): delC = np.zeros((L_h - m + 1, L_h - m + 1), np.float_) delA = np.zeros((L_h - m + 1, L_h - m + 1), np.float_) delb = np.zeros((L_h - m + 1, 1), np.float_) i = 0 for k in range(L_h): if k == md or (k % M) != 0: j = 0 for l in range(L_h): if l == md or (l % M) != 0: delA[i][j] = A[k][l] delC[i][j] = C[k][l] j += 1 delb[i] = b[k] i += 1 return delA,delC,delb @jit(nopython=True) def create_h(L_h, M, md, rh): h = np.zeros((L_h, 1), np.float_) k = 0 for m in range(L_h): if m != md and (m % M) == 0: h[m] = 0 else: h[m] = rh[k] k += 1 return h def design_Nyquist_analyasis_filter_prototype(M, m, D, wpW=1): """ Design an analysis filter prototype :param M: Number of subbands :type M: integer :param m: Filter length factor :type m: integer :param D: Decimation factor :type D: integer :returns: Coefficients of analysis filter prototype and inband aliasing distortion """ L_h = M * m # length of the prototype filter md = L_h / 2 if m != 1 else 0 # group delay offset tau_h = L_h / 2 # group delay of analysis fb w_p = np.pi / (wpW * M) # passband cut-off frequency i = np.arange(0, L_h) j = np.arange(0, L_h) i = np.expand_dims(i, -1) j = np.expand_dims(j, 0) j_i = j - i factor = np.where(j_i % D == 0, D - 1, -1.0) C = np.where(j_i == 0, factor / D, factor * np.sin(np.pi * j_i / D) / (np.pi * j_i) ) A = np.where(j_i == 0, 1.0, np.sin(w_p * j_i) / (w_p * j_i) ) b = np.where((tau_h - i) == 0, 1.0, np.sin(w_p * (tau_h - i)) / (w_p * (tau_h - i)) ) # delete the rows and columns of C corresponding to the components of h = 0 delA, delC, delb = create_delA_delC_delb(L_h, M, m, md, A, C, b) rank_delC = np.linalg.matrix_rank(delC) if rank_delC == len(delC): # take an eigen vector corresponding to the smallest eigen value. eVal, eVec = np.linalg.eig(delC) # take eigen vectors as basis minX = np.argmin(eVal) print('nmin eigen val: {}'.format(eVal[minX])) rh = eVec[:,minX] # eigen values are sorted in the ascending order. # flip the sign if all the coefficients are negative all_negative = not np.any(rh > 0) if all_negative: rh = - rh else: nulldelC, _w = mynull( delC ) if len(nulldelC[0]) == 0: raise ArithmeticError('No. null space bases of is 0') print( 'No. null space bases of C is %d' %len(nulldelC[0])) # In general, null(delP) is not a square matrix. # We don't want to use a peseude inversion matrix as much as possible. T1 = np.dot(delA, nulldelC) T1_2 = np.dot(nulldelC.transpose(), T1) rank_T = np.linalg.matrix_rank(T1_2) if rank_T == len(T1_2): x = np.linalg.solve(T1_2, np.dot(nulldelC.transpose(), delb)) else: print('Use pseudo-inverse matrix because %d < %d' %(rank_T, len(T1_2))) x = np.dot(
np.linalg.pinv(T1)
numpy.linalg.pinv
from unittest import TestCase import numpy as np from giant import rotations as at class TestAttitude(TestCase): def check_attitude(self, attitude, quaternion, mupdate, vupdate): np.testing.assert_array_almost_equal(quaternion, attitude.q) np.testing.assert_array_almost_equal(quaternion[:3], attitude.q_vector) self.assertAlmostEqual(quaternion[-1], attitude.q_scalar) self.assertIs(attitude._mupdate, mupdate) self.assertIs(attitude._vupdate, vupdate) def test_init(self): att = at.Rotation() self.check_attitude(att, [0, 0, 0, 1], True, True) att = at.Rotation([0, 0, 0, 1]) self.check_attitude(att, [0, 0, 0, 1], True, True) att = at.Rotation(data=[0, 0, 0, 1]) self.check_attitude(att, [0, 0, 0, 1], True, True) att = at.Rotation(np.eye(3)) self.check_attitude(att, [0, 0, 0, 1], False, True) att = at.Rotation([0, 0, 0]) self.check_attitude(att, [0, 0, 0, 1], True, False) att = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2]) self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) att = at.Rotation([np.sqrt(2) / 2, 0, 0, -np.sqrt(2) / 2]) self.check_attitude(att, [-np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) att2 = att att = at.Rotation(att2) self.check_attitude(att, [-np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) self.assertIs(att, att2) # with self.assertWarns(UserWarning): # # at.Rotation([1, 2, 3, 4]) def test_quaternion_setter(self): att = at.Rotation() att._mupdate = False att._vupdate = False att.quaternion = [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2] self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) att.quaternion = [np.sqrt(2)/2, 0, 0, -np.sqrt(2)/2] self.check_attitude(att, [-np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) att2 = at.Rotation([1, 2, 3, 4]) att.quaternion = att2 self.check_attitude(att, np.array([1, 2, 3, 4])/np.sqrt(30), True, True) self.assertIsNot(att, att2) # with self.assertWarns(UserWarning): # att.quaternion = [1, 2, 3, 4] # # self.check_attitude(att, np.array([1, 2, 3, 4])/np.sqrt(30), True, True) with self.assertRaises(ValueError): att.quaternion = np.eye(4) def test_matrix_getter(self): att = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2]) np.testing.assert_array_almost_equal([[1, 0, 0], [0, 0, -1], [0, 1, 0]], att.matrix) np.testing.assert_array_almost_equal([[1, 0, 0], [0, 0, -1], [0, 1, 0]], att._matrix) self.assertFalse(att._mupdate) # this is bad and you should never do this but it checks that the caching is working att._matrix = np.eye(3) np.testing.assert_array_equal(att.matrix, np.eye(3)) self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], False, True) def test_matrix_setter(self): att = at.Rotation([1, 2, 3]) att.matrix = np.eye(3) self.check_attitude(att, [0, 0, 0, 1], False, True) np.testing.assert_array_equal(att._matrix, np.eye(3)) with self.assertRaises(ValueError): att.matrix = [1, 2, 3] def test_vector_getter(self): att = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2]) np.testing.assert_array_almost_equal(att.vector, [np.pi/2, 0, 0]) np.testing.assert_array_almost_equal(att._vector, [np.pi/2, 0, 0]) self.assertFalse(att._vupdate) # this is bad and you should never do this but it checks that the caching is working att._vector = [1, 2, 3] np.testing.assert_array_equal(att.vector, [1, 2, 3]) self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, False) def test_vector_setter(self): att = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2]) att.vector = [1, 2, 3] self.check_attitude(att, [-0.25532186, -0.51064372, -0.76596558, 0.29555113], True, False) np.testing.assert_array_equal(att.vector, [1, 2, 3]) with self.assertRaises(ValueError): att.vector = np.eye(3) def test_inv(self): att = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2]) attinv = att.inv() self.check_attitude(attinv, [-np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) def test_interp_attitude(self): att = at.Rotation() att.interp_attitude([1, 2, 3]) self.check_attitude(att, [-0.25532186, -0.51064372, -0.76596558, 0.29555113], True, False) np.testing.assert_array_equal(att._vector, [1, 2, 3]) att.interp_attitude(np.eye(3)) self.check_attitude(att, [0, 0, 0, 1], False, True) np.testing.assert_array_equal(att._matrix, np.eye(3)) att.interp_attitude([np.sqrt(2)/2, 0, 0, np.sqrt(2)/2]) self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) att2 = at.Rotation([np.sqrt(2) / 2, 0, 0, np.sqrt(2) / 2]) att.interp_attitude(att2) self.check_attitude(att, [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2], True, True) self.assertIsNot(att, att2) with self.assertRaises(ValueError): att.interp_attitude([1, 2]) def test_eq(self): att = at.Rotation() self.assertTrue(att == at.Rotation()) self.assertTrue(att == [0, 0, 0, 1]) self.assertTrue(att == np.eye(3)) self.assertTrue(att == [0, 0, 0]) def test_mul(self): att = at.Rotation([1, 2, 3]) att2 = att.inv() self.check_attitude(att*att2, [0, 0, 0, 1], True, True) with self.assertRaises(TypeError): _ = att*[0, 0, 0, 1] with self.assertRaises(TypeError): _ = [0, 0, 0, 1]*att # def test_imul(self): # att = at.Rotation() # with self.assertWarns(DeprecationWarning): # # att *= [1, 0, 0, 0] # # self.check_attitude(att, [1, 0, 0, 0], True, True) def test_rotate(self): att = at.Rotation() att.rotate([1, 0, 0, 0]) self.check_attitude(att, [1, 0, 0, 0], True, True) class TestQuaternionInverse(TestCase): def test_quaternion_inverse(self): qinv = at.quaternion_inverse([1, 2, 3, 4]) np.testing.assert_array_equal(qinv, [-1, -2, -3, 4]) qinv = at.quaternion_inverse(at.Rotation([1, 2, 3, 4])) np.testing.assert_array_almost_equal(qinv.q.flatten(), np.array([-1, -2, -3, 4])/np.sqrt(30)) qinv = at.quaternion_inverse([[1, 2], [2, 3], [3, 4], [4, 5]]) np.testing.assert_array_equal(qinv.T, [[-1, -2, -3, 4], [-2, -3, -4, 5]]) class TestQuaternionMultiplication(TestCase): def test_quaternion_multiplication(self): quat_1 = [1, 0, 0, 0] quat_2 = [0, 1, 0, 0] qm = at.quaternion_multiplication(quat_1, quat_2) np.testing.assert_array_equal(np.abs(qm), [0, 0, 1, 0]) quat_1 = [[1], [0], [0], [0]] quat_2 = [[0], [1], [0], [0]] qm = at.quaternion_multiplication(quat_1, quat_2) np.testing.assert_array_equal(np.abs(qm), [[0], [0], [1], [0]]) quat_1 = [[1, 0], [0, 1], [0, 0], [0, 0]] quat_2 = [[0, 0], [1, 1], [0, 0], [0, 0]] qm = at.quaternion_multiplication(quat_1, quat_2) np.testing.assert_array_equal(np.abs(qm), [[0, 0], [0, 0], [1, 0], [0, 1]]) quat_1 = at.Rotation([1, 0, 0, 0]) quat_2 = at.Rotation([0, 0, 1, 0]) qm = at.quaternion_multiplication(quat_1, quat_2) np.testing.assert_array_equal(np.abs(qm.q), [0, 1, 0, 0]) quat_1 = [np.sqrt(2)/2, 0, 0, np.sqrt(2)/2] # x=x, y=z, z=-y quat_2 = [0, np.sqrt(2)/2, 0, np.sqrt(2)/2] # x=-z, y=y, z=x qm = at.quaternion_multiplication(quat_1, quat_2) np.testing.assert_array_almost_equal(np.abs(qm), [0.5, 0.5, 0.5, 0.5]) quat_1 = [0.25532186, 0.51064372, 0.76596558, -0.29555113] quat_2 = [-0.43199286, -0.53999107, -0.64798929, -0.31922045] qm = at.quaternion_multiplication(quat_1, quat_2) # truth comes from matrix rotations np.testing.assert_array_almost_equal(qm, [0.12889493, -0.16885878, 0.02972499, 0.97672373]) class TestQuaternionToRotVec(TestCase): def test_quaternion_to_rotvec(self): rvec = at.quaternion_to_rotvec([1, 0, 0, 0]) np.testing.assert_array_almost_equal(rvec, [np.pi, 0, 0]) rvec = at.quaternion_to_rotvec(at.Rotation([-1, 0, 0, 0])) np.testing.assert_array_almost_equal(rvec, [-np.pi, 0, 0]) rvec = at.quaternion_to_rotvec([0, 1, 0, 0]) np.testing.assert_array_almost_equal(rvec, [0, np.pi, 0]) rvec = at.quaternion_to_rotvec([0, -1, 0, 0]) np.testing.assert_array_almost_equal(rvec, [0, -np.pi, 0]) rvec = at.quaternion_to_rotvec([0, 0, 1, 0]) np.testing.assert_array_almost_equal(rvec, [0, 0, np.pi]) rvec = at.quaternion_to_rotvec([0, 0, -1, 0]) np.testing.assert_array_almost_equal(rvec, [0, 0, -np.pi]) rvec = at.quaternion_to_rotvec([0, 0, 0, 1]) np.testing.assert_array_almost_equal(rvec, [0, 0, 0]) rvec = at.quaternion_to_rotvec([0, 0, 0, -1]) np.testing.assert_array_almost_equal(rvec, [0, 0, 0]) rvec = at.quaternion_to_rotvec([0.25532186, 0.51064372, 0.76596558, -0.29555113]) np.testing.assert_array_almost_equal(rvec, [1, 2, 3]) rvec = at.quaternion_to_rotvec([-0.25532186, -0.51064372, -0.76596558, 0.29555113]) # euler axis is not unique np.testing.assert_array_almost_equal(rvec, np.array([1, 2, 3])*(1-2*np.pi/np.sqrt(14))) rvec = at.quaternion_to_rotvec([[0.25532186], [0.51064372], [0.76596558], [-0.29555113]]) np.testing.assert_array_almost_equal(rvec, [[1], [2], [3]]) rvec = at.quaternion_to_rotvec([[1, 0, 0.25532186, 0], [0, 0, 0.51064372, 0], [0, 0, 0.76596558, 0], [0, 1, -0.29555113, -1]]) np.testing.assert_array_almost_equal(rvec, [[np.pi, 0, 1, 0], [0, 0, 2, 0], [0, 0, 3, 0]]) class TestQuaternionToRotMat(TestCase): def test_quaternion_to_rotmat(self): rotmat = at.quaternion_to_rotmat([0, 0, 0, 1]) np.testing.assert_array_almost_equal(rotmat, np.eye(3)) rotmat = at.quaternion_to_rotmat([[0], [0], [0], [1]]) np.testing.assert_array_almost_equal(rotmat, np.eye(3)) rotmat = at.quaternion_to_rotmat([[0, 1], [0, 0], [0, 0], [1, 0]]) np.testing.assert_array_almost_equal(rotmat, [np.eye(3), [[1, 0, 0], [0, -1, 0], [0, 0, -1]]]) rotmat = at.quaternion_to_rotmat(at.Rotation([0, 1, 0, 0])) np.testing.assert_array_almost_equal(rotmat, [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) rotmat = at.quaternion_to_rotmat([0, 0, np.sqrt(2)/2, np.sqrt(2)/2]) np.testing.assert_array_almost_equal(rotmat, [[0, -1, 0], [1, 0, 0], [0, 0, 1]]) rotmat = at.quaternion_to_rotmat([-0.25532186, -0.51064372, -0.76596558, 0.29555113]) np.testing.assert_array_almost_equal(rotmat, [[-0.69492056, 0.71352099, 0.08929286], [-0.19200697, -0.30378504, 0.93319235], [0.69297817, 0.6313497, 0.34810748]]) class TestQuaternionToEuler(TestCase): def test_quaternion_to_euler(self): orders = ['xyz', 'zxy', 'yxz', 'yzx', 'xzy', 'zyx', 'xyx', 'yxy', 'xzx', 'zxz', 'yzy', 'zyz'] angles = [[np.pi/3, np.pi/3, 0], [0, np.pi/3, np.pi/3], [np.pi/3, np.pi/3, np.pi/3], [-np.pi/3, -np.pi/3, 0], [0, -np.pi/3, -np.pi/3], [-np.pi/3, -np.pi/3, -np.pi/3], [1, 2, 3], [1, -2, 3], [[1, 2, 3, 1], [2, 3, 1, 2], [3, 1, 2, 3]]] for angle in angles: for order in orders: with self.subTest(angle=angle, order=order): rmat = at.euler_to_rotmat(angle, order=order) quat = at.rotmat_to_quaternion(rmat) euler = at.quaternion_to_euler(quat, order=order) rmat2 = at.euler_to_rotmat(euler, order=order) quat2 = at.rotmat_to_quaternion(rmat2) np.testing.assert_almost_equal(quat, quat2) class TestRotVecToRotMat(TestCase): def test_rotvec_to_rotmat(self): rotmat = at.rotvec_to_rotmat([0, 0, 0]) np.testing.assert_array_almost_equal(rotmat, [[1, 0, 0], [0, 1, 0], [0, 0, 1]]) rotmat = at.rotvec_to_rotmat([[0, 0], [0, 0], [0, 0]]) np.testing.assert_array_almost_equal(rotmat, [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]]]) rotmat = at.rotvec_to_rotmat([np.pi, 0, 0]) np.testing.assert_array_almost_equal(rotmat, [[1, 0, 0], [0, -1, 0], [0, 0, -1]]) rotmat = at.rotvec_to_rotmat([0, np.pi, 0]) np.testing.assert_array_almost_equal(rotmat, [[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) rotmat = at.rotvec_to_rotmat([0, 0, np.pi]) np.testing.assert_array_almost_equal(rotmat, [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]) rotmat = at.rotvec_to_rotmat([[np.pi, 0, 0], [0, np.pi, 0], [0, 0, -np.pi]]) np.testing.assert_array_almost_equal(rotmat, [[[1, 0, 0], [0, -1, 0], [0, 0, -1]], [[-1, 0, 0], [0, 1, 0], [0, 0, -1]], [[-1, 0, 0], [0, -1, 0], [0, 0, 1]]]) rotmat = at.rotvec_to_rotmat([[np.pi / 2, 0], [0, -np.pi / 2], [0, 0]]) np.testing.assert_array_almost_equal(rotmat, [[[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]]]) rotmat = at.rotvec_to_rotmat([[np.pi / 2, 0, 0], [0, 0, -np.pi / 2], [0, 0, 0]]) np.testing.assert_array_almost_equal(rotmat, [[[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]]]) rotmat = at.rotvec_to_rotmat([1, 2, 3]) np.testing.assert_array_almost_equal(rotmat, [[-0.69492056, 0.71352099, 0.08929286], [-0.19200697, -0.30378504, 0.93319235], [0.69297817, 0.6313497, 0.34810748]]) class TestRotVecToQuaternion(TestCase): def test_rotvec_to_quaternion(self): q = at.rotvec_to_quaternion([0, 0, 0]) np.testing.assert_array_almost_equal(q, [0, 0, 0, 1]) q = at.rotvec_to_quaternion([[0], [0], [0]]) np.testing.assert_array_almost_equal(q, [[0], [0], [0], [1]]) q = at.rotvec_to_quaternion([np.pi, 0, 0]) np.testing.assert_array_almost_equal(q, [1, 0, 0, 0]) q = at.rotvec_to_quaternion([0, np.pi, 0]) np.testing.assert_array_almost_equal(q, [0, 1, 0, 0]) q = at.rotvec_to_quaternion([0, 0, np.pi]) np.testing.assert_array_almost_equal(q, [0, 0, 1, 0]) q = at.rotvec_to_quaternion([1, 2, 3]) np.testing.assert_array_almost_equal(q, [0.25532186, 0.51064372, 0.76596558, -0.29555113]) q = at.rotvec_to_quaternion([[0], [0], [np.pi]]) np.testing.assert_array_almost_equal(q, [[0], [0], [1], [0]]) q = at.rotvec_to_quaternion([[np.pi, 0, 1, 0], [0, 0, 2, 0], [0, 0, 3, 0]]) np.testing.assert_array_almost_equal(q, [[1, 0, 0.25532186, 0], [0, 0, 0.51064372, 0], [0, 0, 0.76596558, 0], [0, 1, -0.29555113, 1]]) class TestRotMatToQuaternion(TestCase): def test_rotmat_to_quaternion(self): q = at.rotmat_to_quaternion(np.eye(3)) np.testing.assert_allclose(q, [0, 0, 0, 1], atol=1e-16) # figure out how to account for the fact that these can be positive or negative q = at.rotmat_to_quaternion(np.array([[-1., 0, 0], [0, 1, 0], [0, 0, -1]])) np.testing.assert_allclose(np.abs(q), [0, 1, 0, 0], atol=1e-16) q = at.rotmat_to_quaternion(np.array([[1., 0, 0], [0, -1, 0], [0, 0, -1]])) np.testing.assert_allclose(np.abs(q), [1, 0, 0, 0], atol=1e-16) q = at.rotmat_to_quaternion(np.array([[-1., 0, 0], [0, -1, 0], [0, 0, 1]])) np.testing.assert_allclose(np.abs(q), [0, 0, 1, 0], atol=1e-16) q = at.rotmat_to_quaternion([np.eye(3)]*2) np.testing.assert_allclose(q.T, [[0, 0, 0, 1]]*2, atol=1e-16) q = at.rotmat_to_quaternion([[0, 1, 0], [-1, 0, 0], [0, 0, 1]]) np.testing.assert_allclose(q, [0, 0, -np.sqrt(2)/2, np.sqrt(2)/2], atol=1e-16) q = at.rotmat_to_quaternion([[-0.69492056, -0.19200697, 0.69297817], [0.71352099, -0.30378504, 0.6313497], [0.08929286, 0.93319235, 0.34810748]]) np.testing.assert_allclose(q, [0.25532186, 0.51064372, 0.76596558, 0.29555113], atol=1e-16) q = at.rotmat_to_quaternion([[[-0.69492056, -0.19200697, 0.69297817], [0.71352099, -0.30378504, 0.6313497], [0.08929286, 0.93319235, 0.34810748]], np.eye(3)]) np.testing.assert_allclose(q.T, [[0.25532186, 0.51064372, 0.76596558, 0.29555113], [0, 0, 0, 1]], atol=1e-16) with self.assertRaises(ValueError): at.rotmat_to_quaternion([1, 2, 3]) with self.assertRaises(ValueError): at.rotmat_to_quaternion([[1, 2, 3]]) with self.assertRaises(ValueError): at.rotmat_to_quaternion([[1], [2], [3]]) with self.assertRaises(ValueError): at.rotmat_to_quaternion([1, 2, 3, 4]) with self.assertRaises(ValueError): at.rotmat_to_quaternion([[1, 2, 3, 4]]) with self.assertRaises(ValueError): at.rotmat_to_quaternion([[1], [2], [3], [4]]) class TestRotMatToEuler(TestCase): def test_rotmat_to_euler(self): orders = ['xyz', 'zxy', 'yxz', 'yzx', 'xzy', 'zyx', 'xyx', 'yxy', 'xzx', 'zxz', 'yzy', 'zyz'] angles = [[np.pi/3, np.pi/3, 0], [0, np.pi/3, np.pi/3], [np.pi/3, np.pi/3, np.pi/3], [-np.pi/3, -np.pi/3, 0], [0, -np.pi/3, -np.pi/3], [-np.pi/3, -np.pi/3, -np.pi/3], [1, 2, 3], [1, -2, 3], [[1, 2, 3, 1], [2, 3, 1, 2], [3, 1, 2, 3]]] for angle in angles: for order in orders: with self.subTest(angle=angle, order=order): rmat = at.euler_to_rotmat(angle, order=order) euler = at.rotmat_to_euler(rmat, order=order) rmat2 = at.euler_to_rotmat(euler, order=order) np.testing.assert_almost_equal(rmat, rmat2) class TestEulerToRotMat(TestCase): def test_euler_to_rotmat(self): orders = ['xyz', 'zxy', 'yxz', 'yzx', 'xzy', 'zyx', 'xyx', 'yxy', 'xzx', 'zxz', 'yzy', 'zyz'] angles = [[np.pi/3, 0, 0], [0, np.pi/3, 0], [0, 0, np.pi/3], [np.pi/3, np.pi/3, 0], [0, np.pi/3, np.pi/3], [np.pi/3, np.pi/3, np.pi/3], [-np.pi/3, -np.pi/3, 0], [0, -np.pi/3, -np.pi/3], [-np.pi/3, -np.pi/3, -np.pi/3], [1, 2, 3], [1, -2, 3], [[1, 2, 3, 1], [2, 3, 1, 2], [3, 1, 2, 3]]] for angle in angles: for order in orders: with self.subTest(angle=angle, order=order): rmat = at.euler_to_rotmat(angle, order=order) rmat2 = np.eye(3) for an, ax in zip(angle, order): if ax.upper().lower() == 'x': update = at.rot_x(an) elif ax.upper().lower() == 'y': update = at.rot_y(an) elif ax.upper().lower() == 'z': update = at.rot_z(an) rmat2 = update @ rmat2 np.testing.assert_almost_equal(rmat, rmat2) class TestRotX(TestCase): def test_rot_x(self): angles = [3*np.pi/2, np.pi, np.pi/2, np.pi/3, 0, -3*np.pi/2, -np.pi, -np.pi/2, -np.pi/3, [0, np.pi/2, np.pi/3], [0, -np.pi/2, -np.pi/3]] mats = [[[1, 0, 0], [0, 0, 1], [0, -1, 0]], [[1, 0, 0], [0, -1, 0], [0, 0, -1]], [[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[1, 0, 0], [0, 0.5, -np.sqrt(3)/2], [0, np.sqrt(3)/2, 0.5]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[1, 0, 0], [0, -1, 0], [0, 0, -1]], [[1, 0, 0], [0, 0, 1], [0, -1, 0]], [[1, 0, 0], [0, 0.5, np.sqrt(3)/2], [0, -np.sqrt(3)/2, 0.5]], [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 0, -1], [0, 1, 0]], [[1, 0, 0], [0, 0.5, -np.sqrt(3)/2], [0, np.sqrt(3)/2, 0.5]]], [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[1, 0, 0], [0, 0, 1], [0, -1, 0]], [[1, 0, 0], [0, 0.5, np.sqrt(3)/2], [0, -np.sqrt(3)/2, 0.5]]] ] for angle, solu in zip(angles, mats): with self.subTest(angle=angle): rmat = at.rot_x(angle) np.testing.assert_almost_equal(rmat, solu) class TestRotY(TestCase): def test_rot_y(self): angles = [3*np.pi/2, np.pi, np.pi/2, np.pi/3, 0, -3*np.pi/2, -np.pi, -np.pi/2, -np.pi/3, [0, np.pi/2, np.pi/3], [0, -np.pi/2, -np.pi/3]] srt3d2 = np.sqrt(3)/2 mats = [[[0, 0, -1], [0, 1, 0], [1, 0, 0]], [[-1, 0, 0], [0, 1, 0], [0, 0, -1]], [[0, 0, 1], [0, 1, 0], [-1, 0, 0]], [[0.5, 0, srt3d2], [0, 1, 0], [-srt3d2, 0, 0.5]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [-1, 0, 0]], [[-1, 0, 0], [0, 1, 0], [0, 0, -1]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]], [[0.5, 0, -srt3d2], [0, 1, 0], [srt3d2, 0, 0.5]], [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 0, 1], [0, 1, 0], [-1, 0, 0]], [[0.5, 0, srt3d2], [0, 1, 0], [-srt3d2, 0, 0.5]]], [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 0, -1], [0, 1, 0], [1, 0, 0]], [[0.5, 0, -srt3d2], [0, 1, 0], [srt3d2, 0, 0.5]]] ] for angle, solu in zip(angles, mats): with self.subTest(angle=angle): rmat = at.rot_y(angle) np.testing.assert_almost_equal(rmat, solu) class TestRotZ(TestCase): def test_rot_z(self): angles = [3*np.pi/2, np.pi, np.pi/2, np.pi/3, 0, -3*np.pi/2, -np.pi, -np.pi/2, -np.pi/3, [0, np.pi/2, np.pi/3], [0, -np.pi/2, -np.pi/3]] srt3d2 = np.sqrt(3)/2 mats = [[[0, 1, 0], [-1, 0, 0], [0, 0, 1]], [[-1, 0, 0], [0, -1, 0], [0, 0, 1]], [[0, -1, 0], [1, 0, 0], [0, 0, 1]], [[0.5, -srt3d2, 0], [srt3d2, 0.5, 0], [0, 0, 1]], [[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, -1, 0], [1, 0, 0], [0, 0, 1]], [[-1, 0, 0], [0, -1, 0], [0, 0, 1]], [[0, 1, 0], [-1, 0, 0], [0, 0, 1]], [[0.5, srt3d2, 0], [-srt3d2, 0.5, 0], [0, 0, 1]], [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, -1, 0], [1, 0, 0], [0, 0, 1]], [[0.5, -srt3d2, 0], [srt3d2, 0.5, 0], [0, 0, 1]]], [[[1, 0, 0], [0, 1, 0], [0, 0, 1]], [[0, 1, 0], [-1, 0, 0], [0, 0, 1]], [[0.5, srt3d2, 0], [-srt3d2, 0.5, 0], [0, 0, 1]]] ] for angle, solu in zip(angles, mats): with self.subTest(angle=angle): rmat = at.rot_z(angle) np.testing.assert_almost_equal(rmat, solu) class TestSkew(TestCase): def test_skew(self): skew_mat = at.skew([1, 2, 3]) np.testing.assert_array_equal(skew_mat, [[0, -3, 2], [3, 0, -1], [-2, 1, 0]]) skew_mat = at.skew([[1, 2], [2, 3], [3, 4]]) np.testing.assert_array_equal(skew_mat, [[[0, -3, 2], [3, 0, -1], [-2, 1, 0]], [[0, -4, 3], [4, 0, -2], [-3, 2, 0]]]) class TestNLERP(TestCase): def test_nlerp(self): with self.subTest(input_type=list): q0 = [0, 0, 0, 1] q1 = [0.5, 0.5, 0.5, 0.5] qt = at.nlerp(q0, q1, 0) np.testing.assert_allclose(qt, q0) qt = at.nlerp(q0, q1, 1) np.testing.assert_allclose(qt, q1) qt = at.nlerp(q0, q1, 0.5) qtrue = (np.array(q0)+np.array(q1))/2 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) qt = at.nlerp(q0, q1, 0.25) qtrue = np.array(q0)*(1-0.25)+np.array(q1)*0.25 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) qt = at.nlerp(q0, q1, 0.79) qtrue = np.array(q0)*(1-0.79) + np.array(q1)*0.79 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) q0 = np.array([0.23, 0.45, 0.67, 0.2]) q0 /= np.linalg.norm(q0) q1 = np.array([-0.3, 0.2, 0.6, 0.33]) q1 /= np.linalg.norm(q1) qt = at.nlerp(q0, q1, 0) np.testing.assert_allclose(qt, q0) qt = at.nlerp(q0, q1, 1) np.testing.assert_allclose(qt, q1) qt = at.nlerp(q0, q1, 0.5) qtrue = (q0+q1)/2 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) qt = at.nlerp(q0, q1, 0.25) qtrue = q0*(1-0.25)+q1*0.25 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) qt = at.nlerp(q0, q1, 0.79) # comes from ODTBX matlab function qtrue = (1-0.79)*q0+0.79*q1 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) with self.subTest(input_type=at.Rotation): q0 = at.Rotation([0, 0, 0, 1]) q1 = at.Rotation([0.5, 0.5, 0.5, 0.5]) qt = at.nlerp(q0, q1, 0) np.testing.assert_allclose(qt.q, q0.q) qt = at.nlerp(q0, q1, 1) np.testing.assert_allclose(qt.q, q1.q) qt = at.nlerp(q0, q1, 0.5) qtrue = (q0.q.flatten()+q1.q.flatten())/2 # type: np.ndarray qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt.q.flatten(), qtrue) qt = at.nlerp(q0, q1, 0.25) qtrue = (q0.q.flatten()*(1-0.25)+q1.q.flatten()*0.25) # type: np.ndarray qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt.q.flatten(), qtrue) qt = at.nlerp(q0, q1, 0.79) qtrue = q0.q.flatten()*(1-0.79)+q1.q.flatten()*0.79 # type: np.ndarray qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt.q.flatten(), qtrue) q0 = np.array([0.23, 0.45, 0.67, 0.2]) q0 /= np.linalg.norm(q0) q0 = at.Rotation(q0) q1 = np.array([-0.3, 0.2, 0.6, 0.33]) q1 /= np.linalg.norm(q1) q1 = at.Rotation(q1) qt = at.nlerp(q0, q1, 0) np.testing.assert_allclose(qt.q, q0.q) qt = at.nlerp(q0, q1, 1) np.testing.assert_allclose(qt.q, q1.q) qt = at.nlerp(q0, q1, 0.5) qtrue = (q0.q.flatten()+q1.q.flatten())/2 # type: np.ndarray qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt.q.flatten(), qtrue) qt = at.nlerp(q0, q1, 0.25) qtrue = q0.q.flatten()*(1-0.25)+q1.q.flatten()*0.25 # type: np.ndarray qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt.q.flatten(), qtrue) qt = at.nlerp(q0, q1, 0.79) qtrue = (1-0.79)*q0.q.flatten() + 0.79*q1.q.flatten() # type: np.ndarray qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt.q.flatten(), qtrue) class TestSLERP(TestCase): def test_slerp(self): with self.subTest(input_type=list): q0 = [0, 0, 0, 1] q1 = [0.5, 0.5, 0.5, 0.5] qt = at.slerp(q0, q1, 0) np.testing.assert_allclose(qt, q0) qt = at.slerp(q0, q1, 1) np.testing.assert_allclose(qt, q1) qt = at.slerp(q0, q1, 0.5) qtrue = (np.array(q0)+np.array(q1))/2 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) qt = at.slerp(q0, q1, 0.25) qtrue = (np.array(q0)+qtrue)/2 qtrue /= np.linalg.norm(qtrue) np.testing.assert_allclose(qt, qtrue) qt = at.slerp(q0, q1, 0.79) # comes from ODTBX matlab function qtrue = [0.424985851398278, 0.424985851398278, 0.424985851398278, 0.676875969682661] np.testing.assert_allclose(qt, qtrue) q0 = np.array([0.23, 0.45, 0.67, 0.2]) q0 /= np.linalg.norm(q0) q1 =
np.array([-0.3, 0.2, 0.6, 0.33])
numpy.array
import os import glob from contextlib import contextmanager import pytest from numpy.testing import assert_allclose import numpy as np from scipy import ndimage as ndi from sklearn.linear_model import LogisticRegression as LR import subprocess as sp from gala import imio, features, agglo, evaluate as ev @contextmanager def tar_extract(fn): sp.call(['tar', '-xzf', fn + '.tar.gz']) ext_fn = os.path.basename(fn) yield ext_fn os.remove(ext_fn) for sub_fn in glob.glob(ext_fn + '_*'): os.remove(sub_fn) rundir = os.path.dirname(__file__) ### fixtures @pytest.fixture def dummy_data(): frag = np.arange(1, 17, dtype=int).reshape((4, 4)) gt = np.array([[1, 1, 2, 2], [1, 1, 2, 2], [3] * 4, [3] * 4], dtype=int) fman = features.base.Mock(frag, gt) g = agglo.Rag(frag, feature_manager=fman, use_slow=True) return frag, gt, g, fman @pytest.fixture def dummy_data_fast(): frag, gt, _, fman = dummy_data() frag = ndi.zoom(frag, 2, order=0) gt = ndi.zoom(gt, 2, order=0) g = agglo.Rag(frag, feature_manager=fman) return frag, gt, g, fman ### tests def test_generate_flat_learning_edges(dummy_data): """Run a flat epoch and ensure all edges are correctly represented.""" frag, gt, g, fman = dummy_data feat, target, weights, edges = g.learn_flat(gt, fman) assert feat.shape == (24, 2) assert tuple(edges[0]) == (1, 2) assert tuple(edges[-1]) == (15, 16) assert np.sum(target[:, 0] == 1) == 6 # number of non-merge edges def test_generate_flat_learning_edges_fast(dummy_data_fast): """Run a flat epoch and ensure all edges are correctly represented.""" frag, gt, g, fman = dummy_data_fast feat, target, weights, edges = g.learn_flat(gt, fman) assert feat.shape == (24, 2) assert tuple(edges[0]) == (1, 2) assert tuple(edges[-1]) == (15, 16) assert np.sum(target[:, 0] == 1) == 6 # number of non-merge edges def test_generate_lash_examples(dummy_data): """Run a flat epoch and an active epoch of learning, compare learned sets. The mock feature manager places all merge examples at (0, 0) in feature space, and all non-merge examples at (1, 0), *in flat learning*. During agglomeration, non-merge examples go to (0, 1), which confuses the flat classifier (which has only learned the difference along the first feature dimension). This test checks for those differences in learning using a simple logistic regression. """ frag, gt, g, fman = dummy_data np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='permissive', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) == 15 # number of merges is |nodes| - 1 # approx. same learning results at (0., 0.) and (1., 0.) print([(fpred(i), pred(i)) for i in [[0, 0], [1, 0], [0, 1]]]) assert_allclose(fpred([0, 0]), 0.2, atol=0.1) assert_allclose(pred([0, 0]), 0.2, atol=0.1) assert_allclose(fpred([1, 0]), 0.65, atol=0.1) assert_allclose(pred([1, 0]), 0.65, atol=0.1) # difference between agglomerative and flat learning in point (0., 1.) assert_allclose(fpred([0, 1]), 0.2, atol=0.1) assert_allclose(pred([0, 1]), 0.6, atol=0.1) def test_generate_lash_examples_fast(dummy_data_fast): """Run a flat epoch and an active epoch of learning, compare learned sets. The mock feature manager places all merge examples at (0, 0) in feature space, and all non-merge examples at (1, 0), *in flat learning*. During agglomeration, non-merge examples go to (0, 1), which confuses the flat classifier (which has only learned the difference along the first feature dimension). This test checks for those differences in learning using a simple logistic regression. """ frag, gt, g, fman = dummy_data_fast np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='permissive', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) == 15 # number of merges is |nodes| - 1 # approx. same learning results at (0., 0.) and (1., 0.) print([(fpred(i), pred(i)) for i in [[0, 0], [1, 0], [0, 1]]]) assert_allclose(fpred([0, 0]), 0.2, atol=0.2) assert_allclose(pred([0, 0]), 0.2, atol=0.2) assert_allclose(fpred([1, 0]), 0.65, atol=0.15) assert_allclose(pred([1, 0]), 0.65, atol=0.15) # difference between agglomerative and flat learning in point (0., 1.) assert_allclose(fpred([0, 1]), 0.2, atol=0.2) # < 0.4 assert_allclose(pred([0, 1]), 0.65, atol=0.2) # > 0.45 def test_generate_gala_examples(dummy_data): """As `test_generate_lash_examples`, but using strict learning. """ frag, gt, g, fman = dummy_data np.random.seed(99) summary, allepochs = g.learn_agglomerate(gt, fman, learning_mode='strict', classifier='logistic regression', min_num_epochs=5) feat, target, weights, edges = summary ffeat, ftarget, fweights, fedges = allepochs[0] # flat lr = LR().fit(feat, target[:, 0]) flr = LR().fit(ffeat, ftarget[:, 0]) def pred(v): return lr.predict_proba([v])[0, 1] def fpred(v): return flr.predict_proba([v])[0, 1] assert len(allepochs[1][0]) > 15 # number of merges is more than LASH # approx. same learning results at (0., 0.) and (1., 0.) assert_allclose(fpred([0, 0]), 0.2, atol=0.1) assert_allclose(pred([0, 0]), 0.2, atol=0.1) assert_allclose(fpred([1, 0]), 0.64, atol=0.1) assert_allclose(pred([1, 0]), 0.64, atol=0.1) # difference between agglomerative and flat learning in point (0., 1.); # greater separation than with LASH assert_allclose(fpred([0, 1]), 0.2, atol=0.1) assert_allclose(pred([0, 1]), 0.7, atol=0.1) def test_generate_gala_examples_fast_updateedges(dummy_data_fast): """As `test_generate_lash_examples`, but using strict learning. """ frag, gt, g, fman = dummy_data_fast g = agglo.Rag(frag, feature_manager=fman, update_unchanged_edges=True)
np.random.seed(99)
numpy.random.seed
import os # If server, need to use osmesa for pyopengl/pyrender if os.cpu_count() > 20: os.environ['PYOPENGL_PLATFORM'] = 'osmesa' # https://github.com/marian42/mesh_to_sdf/issues/13 # https://pyrender.readthedocs.io/en/latest/install/index.html?highlight=ssh#getting-pyrender-working-with-osmesa else: os.environ['PYOPENGL_PLATFORM'] = 'egl' # default one was pyglet, which hangs sometime for unknown reason: https://github.com/marian42/mesh_to_sdf/issues/19; import sys import yaml import logging import logging.config import time import random import math import numpy as np from numpy import array import torch import matplotlib.pyplot as plt from src import INIT_TYPE, TEST_TYPE, GEN_TYPE from src.sample_sdf import PointSampler from src.sdf_net import SDFDecoder from src.pointnet_encoder import PointNetEncoder from src.cost_predictor import CostPredictor from train_grasp import TrainGrasp from src.dataset_grasp import TrainDataset from eval_grasp import EvaluateGrasp from util.misc import * from util.mesh import * class Runner: def __init__(self, yaml_path, result_dir, device): save__init__args(locals()) self.model_dir = result_dir + 'model/' self.latent_img_dir = result_dir + 'latent_img/' # Configure from yaml file with open(yaml_path+'.yaml', 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) self.config = config self.voxel_resolution = config['voxel_resolution'] # always be one because of dataset design self.batch_size = config['batch_size'] # NN params self.dim_latent = config['dim_latent'] self.encoder_breadth = config['encoder_breadth'] self.decoder_breadth = config['decoder_breadth'] self.predictor_breadth = config['predictor_breadth'] # Set up networks, calculate number of params self.encoder = PointNetEncoder(dim_latent=self.dim_latent, breadth=self.encoder_breadth).to(device) self.decoder = SDFDecoder(dim_latent=self.dim_latent, breadth=self.decoder_breadth, device=device).to(device) self.predictor = CostPredictor(dim_latent=self.dim_latent, dim_hidden=self.predictor_breadth).to(device) print('Num of encoder parameters: %d' % sum(p.numel() for p in self.encoder.parameters() if p.requires_grad)) print('Num of decoder parameters: %d' % sum(p.numel() for p in self.decoder.parameters() if p.requires_grad)) print('Num of cost predictor parameters: %d' % sum(p.numel() for p in self.predictor.parameters() if p.requires_grad)) # Use one GPU self.decoder_accessor = self.decoder self.predictor_accessor = self.predictor # Set up optimizer self.optimizer = torch.optim.AdamW([ {'params': self.encoder.parameters(), 'lr': config['encoder_lr'], 'weight_decay': config['encoder_weight_decay']}, {'params': self.decoder.parameters(), 'lr': config['decoder_lr'], 'weight_decay': config['decoder_weight_decay']}, {'params': self.predictor.parameters(), 'lr': config['predictor_lr'], 'weight_decay': config['predictor_weight_decay']}, ]) if config['decayLR_use']: self.scheduler = torch.optim.lr_scheduler.MultiStepLR( self.optimizer, milestones=config['decayLR_milestones'], gamma=config['decayLR_gamma']) else: self.scheduler = None def create_dataset(self, env_dir_dict, embed_id_dir_dict, num_sdf_available_per_obj, num_sdf_per_obj, num_surface_per_obj, **kwargs): ''' Create dataholder, to be updated once new distribution generated # num_sdf_available_per_obj: number of sdf points for each object available before downsampled # num_sdf_per_obj: number of sdf points for each object - target! # num_surface_per_obj: number of surface points for each object (for pointnet encoder) ''' self.train_data = TrainDataset(env_dir_dict, embed_id_dir_dict, num_sdf_available_per_obj, num_sdf_per_obj, num_surface_per_obj, device='cpu') self.train_dataloader = torch.utils.data.DataLoader( self.train_data, batch_size=self.batch_size, shuffle=True, drop_last=True, pin_memory=True, num_workers=4) def embed(self, epoch, norm_loss_ratio, latent_all, label_all, num_sdf_per_obj, clamp_lip): """ Resets latent """ epoch_loss = 0 epoch_rec_loss = 0 epoch_reg_loss = 0 epoch_lip_loss = 0 num_batch = 0 # Switch NN mode self.encoder.train() self.decoder.train() self.predictor.train() l2 = torch.nn.MSELoss(reduction='none') # Save all the predictions for debugging pred_all = np.empty((0)) # Run batches for batch_ind, data_batch in enumerate(self.train_dataloader): # Zero gradient self.optimizer.zero_grad(set_to_none=True) ###################### Extract data ###################### batch_sdf, batch_surface, batch_obj_id_chosen = data_batch batch_sdf = batch_sdf.reshape(-1,4).to(self.device) batch_sdf_values = batch_sdf[:,-1] batch_sdf_points = batch_sdf[:,:3] batch_surface = batch_surface.to(self.device) batch_obj_id_chosen = batch_obj_id_chosen.squeeze(0) ###################### Encode ###################### batch_latent = self.encoder.forward(batch_surface) # batch x latent ###################### Decode ###################### batch_latent_all = batch_latent.repeat_interleave(num_sdf_per_obj, dim=0) # Assign latent to each point of the object batch_sdf_pred = self.decoder.forward(batch_sdf_points, batch_latent_all) # Decode each latent/point to get sdf predictions ###################### Rec loss ###################### rec_loss = torch.mean((batch_sdf_pred - batch_sdf_values)**2) ###################### Reg loss ###################### batch_reward_pred = self.predictor.forward(batch_latent).flatten() batch_label = torch.from_numpy(label_all[batch_obj_id_chosen]).float().to(self.device) reg_loss = torch.mean(l2(batch_reward_pred, batch_label)) ###################### Lip loss ###################### if clamp_lip is None: lip_loss = torch.linalg.norm(self.predictor_accessor.linear_hidden[0].weight, ord=2)+torch.linalg.norm(self.predictor_accessor.linear_out[0].weight, ord=2) # spectral norm else: lip_loss = (torch.linalg.norm(self.predictor_accessor.linear_hidden[0].weight, ord=2)+torch.linalg.norm(self.predictor_accessor.linear_out[0].weight, ord=2)-clamp_lip*16)**2 # clamping # Add reconstruction and regularization losses together batch_loss = rec_loss+\ self.config['reg_loss_ratio']*reg_loss+\ self.config['lip_loss_ratio']*lip_loss+\ norm_loss_ratio*torch.mean(batch_latent**2) # Backward pass to get gradients batch_loss.backward() # Clip gradient if specified if self.config['gradientClip_use']: torch.nn.utils.clip_grad_norm_(self.encoder.parameters(), self.config['gradientClip_thres']) torch.nn.utils.clip_grad_norm_(self.decoder.parameters(), self.config['gradientClip_thres']) torch.nn.utils.clip_grad_norm_(self.predictor.parameters(), self.config['gradientClip_thres']) # Update weights using gradient self.optimizer.step() # Store loss epoch_loss += batch_loss.item() epoch_rec_loss += rec_loss.item() epoch_reg_loss += reg_loss.item() epoch_lip_loss += lip_loss.item() num_batch += 1 # Update latents for all distributions latent_all[batch_obj_id_chosen] =batch_latent.detach().cpu().numpy() pred_all = np.concatenate((pred_all, batch_reward_pred.detach().cpu().numpy())) # Decay learning rate if specified if self.scheduler is not None: self.scheduler.step() # Get batch average loss epoch_loss /= num_batch epoch_rec_loss /= num_batch epoch_reg_loss /= num_batch epoch_lip_loss /= num_batch return epoch_loss, epoch_rec_loss, epoch_reg_loss, epoch_lip_loss, latent_all, pred_all def get_predictor_lip(self): return self.predictor_accessor.get_lip() def encode_batch(self, surface_batch): """ Assume the shape as N x num_surface_per_obj x 3 """ surface_test = torch.from_numpy(surface_batch).float().to(self.device) latent_test = self.encoder.forward(surface_test) # num_test_obj x latent_dim return latent_test def predict(self, latent): """ Using the cost predictor """ if isinstance(latent, np.ndarray): latent = torch.from_numpy(latent).float().to(self.device) with torch.no_grad(): pred = self.predictor.forward(latent).detach().cpu() return pred.squeeze(1).numpy() # return torch.where(pred > 0.5, 1., 0.).numpy() def adversarial(self, latent, eta=1.0, gamma=1.0, steps=10, target_drop=0.0): """ Adversarially perturb latent using the cost predictor and evaluated label/cost. Following https://github.com/duchi-lab/certifiable-distributional-robustness/blob/master/attacks_tf.py Also see https://github.com/ricvolpi/generalize-unseen-domains/blob/master/model.py Only takes a single datapoint for now; tricky to get batch to work """ l2 = torch.nn.MSELoss() latent = torch.from_numpy(latent).float().to(self.device).requires_grad_().reshape(1,-1) latent_detach = latent.detach() # Gradient ascent max_num_itr = 10 for _ in range(max_num_itr): # make a copy eta_env = eta gamma_env = gamma latent_adv = latent.clone() ini_pred_reward = self.predictor.forward(latent_adv) latent_path_all = np.zeros((steps+1, latent.shape[1])) latent_path_all[0] = latent_adv.detach().cpu().numpy() for step in range(steps): pred_reward = self.predictor.forward(latent_adv) # reward loss = -pred_reward - gamma_env*l2(latent_adv, latent_detach) grad = torch.autograd.grad(loss, latent_adv)[0] # returns a tuple of grads latent_adv += eta_env*grad # logging.info(f'step {step}, pred {pred_reward.item()}') latent_path_all[step+1] = latent_adv.detach().cpu().numpy() if (ini_pred_reward-pred_reward) > target_drop*1.5: eta *= 0.8 # too much perturbation gamma *= 2.0 elif (ini_pred_reward-pred_reward) > target_drop: break # good else: eta *= 1.2 # too little perturbation gamma *= 0.5 return latent_adv.detach().cpu().numpy(), latent_path_all def generate(self, epoch, gen_dir, base_latent_all, eta, gamma, steps, target_drop=0.1, max_num_attempt=5): """ Generate new objects by adversarially perturbing existing latents using the cost predictor Sometimes some latent cannot generate new object, so we need to re-sample latent adversarially for the same new distribution """ num_new = len(base_latent_all) old_latent_all = base_latent_all new_latent_all = np.zeros((num_new, self.dim_latent)) # Another attempt if not all objects processed flags = np.ones((num_new)) height_all = np.zeros((num_new)) keep_concave_part = config['keep_concave_part'] for _ in range(max_num_attempt): for env_ind in range(num_new): # Skip if already generated if flags[env_ind] < 1: continue # Generate new old_latent = base_latent_all[env_ind] new_latent, latent_path_all = self.adversarial( latent=old_latent, eta=eta, gamma=gamma, steps=steps, target_drop=target_drop) # Get mesh using decoder, possibly corrupt old_mesh = self.decoder_accessor.get_mesh(torch.from_numpy(old_latent).float().to(self.device), voxel_resolution=self.voxel_resolution) new_mesh = self.decoder_accessor.get_mesh(torch.from_numpy(new_latent).float().to(self.device), voxel_resolution=self.voxel_resolution) if new_mesh is None or old_mesh is None: print('Cannot generate from latent!') continue # Try processing try: old_mesh = process_mesh(old_mesh, scale_down=True, smooth=False, #! random_scale=False) new_mesh = process_mesh(new_mesh, scale_down=True, smooth=False, #! random_scale=False) # Scale to original height new_mesh = match_mesh_height(new_mesh, old_mesh) # Export as decomposed stl and urdf - create new subdir for convex obj - for pybullet ensure_directory_hard(gen_dir + str(env_ind) + '/') convex_pieces = save_convex_urdf(new_mesh, gen_dir, env_ind, mass=0.1, keep_concave_part=keep_concave_part) except: print('Cannot process generated!') continue if len(convex_pieces) > 20: print('Too concave!') continue #? Use decompsoed parts as stl? avoid peculiarities when sampling sdf and causing reconstruction issue if keep_concave_part: # Export as (un-decomposed) stl - for sdf save_mesh = new_mesh else: save_mesh = create_mesh_from_pieces(convex_pieces) save_mesh.export(gen_dir+str(env_ind)+'.stl') # Add to all sampled dist; mark generated new_latent_all[env_ind] = new_latent flags[env_ind] = 0 height_all[env_ind]=(save_mesh.bounds[1]-save_mesh.bounds[0])[2] # Quit if all objects perturbed if np.sum(flags) < 1e-3: break # Find closer latent eta /= 2 gamma *= 2 # steps = min(int(steps/2), 1) logging.info(f'Epoch {epoch} generate, double gamma locally') return old_latent_all, new_latent_all, flags, height_all def visualize(self, old_latent_all, new_latent_all, num_random_obj=20): """ Sample latent from all existing and visualize objects """ num_obj_generated = 0 num_obj_attempt = 0 obj_ind_all = random.sample(range(new_latent_all.shape[0]), k=num_random_obj) # Use subplots for all objects fig_obj, _ = plt.subplots(5, 4) # assume 20 rn while num_obj_generated < num_random_obj: # Sample more if used up if num_obj_attempt >= num_random_obj: obj_ind_all = random.sample(range(new_latent_all.shape[0]), k=num_random_obj) num_obj_attempt = 0 # Extract sample old_obj = old_latent_all[obj_ind_all[num_obj_attempt]] new_obj = new_latent_all[obj_ind_all[num_obj_attempt]] # Try num_obj_attempt += 1 # Reconstruct mesh from latent old_mesh = self.decoder_accessor.get_mesh(torch.from_numpy(old_obj).float().to(self.device), voxel_resolution=self.voxel_resolution) new_mesh = self.decoder_accessor.get_mesh(torch.from_numpy(new_obj).float().to(self.device), voxel_resolution=self.voxel_resolution) if old_mesh is None or new_mesh is None: print('Cannot generate sample!') continue # Center, orient, scale try: old_mesh = process_mesh(old_mesh, scale_down=True, smooth=False, random_scale=False) new_mesh = process_mesh(new_mesh, scale_down=True, smooth=False, random_scale=False) except: print('Cannot process sampled!') continue # Save mesh for inspection - bot not decomposed if num_obj_generated < 5: old_mesh.export(self.latent_img_dir+str(epoch)+'_'+str(num_obj_generated)+'_old.stl') new_mesh.export(self.latent_img_dir+str(epoch)+'_'+str(num_obj_generated)+'_new.stl') # Predict old_reward =self.predict(latent=old_obj.reshape(1,-1))[0] new_reward =self.predict(latent=new_obj.reshape(1,-1))[0] # Save image of 2D cross section slice_2D_old, _ = old_mesh.section(plane_origin=old_mesh.centroid, plane_normal=[0,0,1]).to_planar() slice_2D_new, _ = new_mesh.section(plane_origin=new_mesh.centroid, plane_normal=[0,0,1]).to_planar() ax = fig_obj.axes[num_obj_generated] ax.set_aspect('equal') ax.scatter(slice_2D_old.vertices[:,0], slice_2D_old.vertices[:,1], s=1,color='lightgray') ax.scatter(slice_2D_new.vertices[:,0], slice_2D_new.vertices[:,1], s=2,color='gray') ax.text(x=0., y=0.01, s="{:.2f}".format(old_reward), fontsize=12, color='coral') ax.text(x=0., y=-0.01, s="{:.2f}".format(new_reward), fontsize=12, color='red') ax.axis('off') # Count num_obj_generated += 1 plt.savefig(self.latent_img_dir+str(epoch)+'_random_obj.png') plt.close() def save_model(self, dir): torch.save(self.encoder.state_dict(), dir+'encoder.pt') torch.save(self.decoder.state_dict(), dir+'decoder.pt') torch.save(self.predictor.state_dict(), dir+'predictor.pt') def load_model(self, dir): self.encoder.load_state_dict(torch.load(dir+'encoder.pt', map_location=self.device)) self.decoder.load_state_dict(torch.load(dir+'decoder.pt', map_location=self.device)) self.predictor.load_state_dict(torch.load(dir+'predictor.pt', map_location=self.device)) def get_non_test_num_env_list(env_dict, dir_type_all=[INIT_TYPE, GEN_TYPE]): l = [] for env_id_list, _, dir_type in env_dict.values(): if dir_type in dir_type_all: l += [len(env_id_list)] return l if __name__ == '__main__': # from IPython import embed; embed() if os.cpu_count() > 20: # somehow on server, the default fork method does not work with pytorch, but works fine on desktop import multiprocessing multiprocessing.set_start_method('forkserver') # Read config yaml_file_name = sys.argv[1] yaml_path = 'configs/'+yaml_file_name with open(yaml_path+'.yaml', 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) # Fix seeds seed = config['seed'] random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.backends.cudnn.benchmark = True # may speed up # Hardware cuda_idx = config['cuda_idx'] device = 'cuda:'+str(cuda_idx) # Misc num_eval_per_env = config['num_eval_per_env'] dim_latent = config['dim_latent'] norm_loss_ratio = config['norm_loss_ratio'] clamp_lip = config['clamp_lip'] # Data initial_env_dir_list = config['initial_env_dir_list'] num_env_per_initial_dir = config['num_env_per_initial_dir'] test_env_dir_list = config['test_env_dir_list'] num_env_per_test_dir = config['num_env_per_test_dir'] # Generation (from latent) num_epoch_per_gen = config['num_epoch_per_gen'] num_epoch_before_first_gen = config['num_epoch_before_first_gen'] num_env_per_gen = config['num_env_per_gen'] # Improving policy num_env_per_retrain = config['num_env_per_retrain'] num_epoch_per_retrain = config['num_epoch_per_retrain'] num_epoch_before_first_retrain = config['num_epoch_before_first_retrain'] mu_list = config['mu_list'] mu = config['mu'] sigma = config['sigma'] retrain_args = config['retrain_args'] eval_args = config['eval_args'] # Adversarial (gradient ascent) eta = config['eta'] gamma = config['gamma'] ga_steps = config['ga_steps'] target_drop_percentage = config['target_drop_percentage'] target_drop_percentage_rate = config['target_drop_percentage_rate'] # Env params sdf_args = config['sdf_args'] # Initialize folders data_parent_dir = config['data_parent_dir'] result_dir = 'result/'+yaml_file_name+'/' model_dir = result_dir + 'runner_model/' latent_img_dir = result_dir + 'latent_img/' data_dir = data_parent_dir+yaml_file_name+'/' ensure_directory(result_dir) ensure_directory(model_dir) ensure_directory(latent_img_dir) ensure_directory(data_dir) # Initialize dir dict: key is dir_path, value is a tuple of (1) id list and (2) type (0 for initial, 1 for test, 2 for gen) env_dir_dict = {} for env_dir in initial_env_dir_list: height_all =list(np.load(env_dir+'dim.npy')[:num_env_per_initial_dir,2]) env_dir_dict[env_dir] = ([*range(num_env_per_initial_dir)], height_all, INIT_TYPE) # Save a copy of configuration with open(result_dir+'config.yaml', 'w') as f: yaml.dump(config, f, sort_keys=False) # Initialize evaluating policy (always cpu) evaluator = EvaluateGrasp(initial_policy_path=None, mu_list=mu_list, mu=mu, sigma=sigma, **eval_args) # Initialize training policy trainer = TrainGrasp(result_dir=result_dir, device=device, mu=mu, sigma=sigma, **retrain_args) # Initialize running env runner = Runner(yaml_path=yaml_path, result_dir=result_dir, device=device) # Initialize point sampler point_sampler = PointSampler(**sdf_args) # Training details to be recorded train_loss_list = [] train_rec_loss_list = [] train_reg_loss_list = [] train_lip_loss_list = [] train_success_list = [] test_success_list = [] train_lip_list = [] # Save the latent and (groun-truth) label/reward of all images latent_all = np.zeros((num_env_per_initial_dir*len(initial_env_dir_list), dim_latent)) # Add test dir to dict for env_dir in test_env_dir_list: height_all = list(np.load(env_dir+'dim.npy')[:num_env_per_test_dir,2]) env_dir_dict[env_dir] = ([*range(num_env_per_test_dir)], height_all, TEST_TYPE) # Name of saved training details train_details_path = None # Initialize counter num_epoch_since_last_gen = 0 num_epoch_since_last_retrain = 0 num_env_gen = 0 num_dir_gen = 0 num_retrain = 0 # Logging logging.config.dictConfig({ 'version': 1, 'disable_existing_loggers': True, }) logging.basicConfig(filename=result_dir+'log.txt', level=logging.NOTSET, format='%(process)d-%(levelname)s-%(asctime)s-%(message)s', datefmt='%m/%d/%Y %I:%M:%S') logging.info('start') # Run num_epoch = (config['num_retrain']-2)*num_epoch_per_retrain+num_epoch_before_first_retrain # minus 2 to account for retrain at epoch 0 epoch = 0 while epoch <= num_epoch: # Record time for each epoch epoch_start_time = time.time() ######################### New ######################### # Generate a new distribution every some epochs if epoch >= num_epoch_before_first_gen and \ num_epoch_since_last_gen >= num_epoch_per_gen: # Declare new path new_gen_dir = data_dir + 'gen_' + str(num_dir_gen) + '/' ensure_directory(new_gen_dir) # Adversarially generate and save new envs - Note that not all latent are updated during last embedding since only a set of envs are embedded now #? Favor sampling old envs with higher reward - prevent too difficult envs generated - not all envs re-evaluated in later stage of training, so less likely to sample them, but should be ok print('Generating new...') old_env_weights_all = np.exp(label_all*0) # uniform weight old_env_weights_all /= np.sum(old_env_weights_all) adv_env_id_all, _ = weighted_sample_without_replacement([*range(len(label_all))], weights=old_env_weights_all, k=min(num_env_per_gen, len(label_all))) # Estimate the range of predictions pred_range = np.max(pred_all)-np.min(pred_all) target_drop = pred_range*target_drop_percentage # Save hist fig = plt.figure() plt.hist(pred_all, bins=np.linspace(0.0, 1.0, 20)) plt.savefig(latent_img_dir+str(epoch)+'_pred_hist.png') plt.close(fig) # Perturb sampled latent adversarially old_latent, new_latent, flags, height_all = runner.generate( epoch=epoch, gen_dir=new_gen_dir, base_latent_all=latent_all[adv_env_id_all], eta=eta, gamma=gamma, steps=ga_steps, target_drop=target_drop) # Filter ones actually generated new_env_id_list =
np.where(flags<1)
numpy.where
from __future__ import print_function import functools import numpy as np from scipy.stats import norm as ndist import regreg.api as rr from .query import gaussian_query from .randomization import randomization class screening(gaussian_query): def __init__(self, observed_data, covariance, randomizer, perturb=None): self.observed_score_state = -observed_data # -Z if Z \sim N(\mu,\Sigma), X^Ty in regression setting self.nfeature = p = self.observed_score_state.shape[0] self.covariance = covariance self.randomizer = randomizer self._initial_omega = perturb def fit(self, perturb=None): gaussian_query.fit(self, perturb=perturb) self._randomized_score = self.observed_score_state - self._initial_omega return self._randomized_score, self._randomized_score.shape[0] def multivariate_targets(self, features, dispersion=1.): """ Entries of the mean of \Sigma[E,E]^{-1}Z_E """ score_linear = self.covariance[:, features].copy() / dispersion Q = score_linear[features] cov_target = np.linalg.inv(Q) observed_target = -np.linalg.inv(Q).dot(self.observed_score_state[features]) crosscov_target_score = -score_linear.dot(cov_target) alternatives = ['twosided'] * features.sum() return observed_target, cov_target * dispersion, crosscov_target_score.T * dispersion, alternatives def full_targets(self, features, dispersion=1.): """ Entries of the mean of \Sigma[E,E]^{-1}Z_E """ score_linear = self.covariance[:, features].copy() / dispersion Q = self.covariance / dispersion cov_target = (np.linalg.inv(Q)[features])[:, features] observed_target = -np.linalg.inv(Q).dot(self.observed_score_state)[features] crosscov_target_score = -np.identity(Q.shape[0])[:, features] alternatives = ['twosided'] * features.sum() return observed_target, cov_target * dispersion, crosscov_target_score.T * dispersion, alternatives def marginal_targets(self, features): """ Entries of the mean of Z_E """ score_linear = self.covariance[:, features] Q = score_linear[features] cov_target = Q observed_target = -self.observed_score_state[features] crosscov_target_score = -score_linear alternatives = ['twosided'] * features.sum() return observed_target, cov_target, crosscov_target_score.T, alternatives class marginal_screening(screening): def __init__(self, observed_data, covariance, randomizer, threshold, perturb=None): threshold = np.asarray(threshold) if threshold.shape == (): threshold = np.ones_like(observed_data) * threshold self.threshold = threshold screening.__init__(self, observed_data, covariance, randomizer, perturb=None) def fit(self, perturb=None): _randomized_score, p = screening.fit(self, perturb=perturb) active = np.fabs(_randomized_score) >= self.threshold self._selected = active self._not_selected = ~self._selected sign = np.sign(-_randomized_score) active_signs = sign[self._selected] sign[self._not_selected] = 0 self.selection_variable = {'sign': sign, 'variables': self._selected.copy()} self.observed_opt_state = (np.fabs(_randomized_score) - self.threshold)[self._selected] self.num_opt_var = self.observed_opt_state.shape[0] opt_linear = np.zeros((p, self.num_opt_var)) opt_linear[self._selected,:] = np.diag(active_signs) opt_offset = np.zeros(p) opt_offset[self._selected] = active_signs * self.threshold[self._selected] opt_offset[self._not_selected] = _randomized_score[self._not_selected] self._setup = True A_scaling = -np.identity(len(active_signs)) b_scaling = np.zeros(self.num_opt_var) self._setup_sampler(A_scaling, b_scaling, opt_linear, opt_offset) return self._selected @staticmethod def type1(observed_data, covariance, marginal_level, randomizer_scale, perturb=None): ''' Threshold ''' randomized_stdev = np.sqrt(np.diag(covariance) + randomizer_scale**2) p = covariance.shape[0] randomizer = randomization.isotropic_gaussian((p,), randomizer_scale) threshold = randomized_stdev * ndist.ppf(1. - marginal_level / 2.) return marginal_screening(observed_data, covariance, randomizer, threshold, perturb=perturb) # Stepup procedures like Benjamini-Hochberg def stepup_selection(Z_values, stepup_Z): absZ_argsort = np.argsort(np.fabs(Z_values))[::-1] absZ_sorted = np.fabs(Z_values)[absZ_argsort] survivors = absZ_sorted - stepup_Z >= 0 if np.any(survivors): num_selected = max(np.nonzero(survivors)[0]) + 1 return (num_selected, # how many selected absZ_argsort[:num_selected], # ordered indices of those selected stepup_Z[num_selected - 1]) # the selected are greater than this number else: return 0, None, None class stepup(screening): def __init__(self, observed_data, covariance, randomizer, stepup_Z, perturb=None): screening.__init__(self, observed_data, covariance, randomizer, perturb=None) self.stepup_Z = stepup_Z if not (np.all(sorted(self.stepup_Z)[::-1] == self.stepup_Z) and np.all(np.greater_equal(self.stepup_Z, 0))): raise ValueError('stepup Z values should be non-negative and non-increasing') def fit(self, perturb=None): # condition on all those that survive, their sign, # which was the last past the threshold # and the observed (randomized) Z values of those that don't _randomized_score, p = screening.fit(self, perturb=perturb) K, selected_idx, last_cutoff = stepup_selection(_randomized_score, self.stepup_Z) if K > 0: self._selected = np.zeros(p, np.bool) self._selected[selected_idx] = 1 self._not_selected = ~self._selected sign = np.sign(-_randomized_score) active_signs = sign[selected_idx] sign[self._not_selected] = 0 self.selection_variable = {'sign': sign.copy(), 'variables': self._selected.copy(), } self.num_opt_var = self._selected.sum() self.observed_opt_state = np.zeros(self.num_opt_var) self.observed_opt_state[:] = np.fabs(_randomized_score[selected_idx]) - last_cutoff opt_linear = np.zeros((p, self.num_opt_var)) for j in range(self.num_opt_var): opt_linear[selected_idx[j], j] = active_signs[j] opt_offset = np.zeros(p) opt_offset[self._selected] = active_signs * last_cutoff opt_offset[self._not_selected] = _randomized_score[self._not_selected] self._setup = True A_scaling = -
np.identity(self.num_opt_var)
numpy.identity
import numpy as np import utils.gen_cutouts as gc from sklearn import metrics import pandas as pd import ipdb import matplotlib from matplotlib import pyplot as plt matplotlib.rcParams['mathtext.fontset'] = 'stixsans' matplotlib.rcParams['font.family'] = 'STIXGeneral' MEAN_TEMP = 2.726 * (10**6) DEFAULT_FONT = 24 import os from global_settings import DATA_PATH, FULL_DATA_PATH, FULL_DATA_LABEL_PATH, CNN_MODEL_OUTPUT_DIR, CACHE_FULLDF, CACHE_MAPPED_HALOS, CACHE_FULLDF_DIST2EDGE_CAL import os def prepare_data_class(dir_test, num_frequency=3, get_all_components=False, label_fname="1025_hashalo_freq%03i.npy" % 148, balanced=False, suffix=""): """ read data from dir_test, and prepare data with different noise level (components) """ freqs=[90,148,219] def _load_help(name_format): paths = [os.path.join(dir_test, name_format%freq) for freq in freqs] ret = [np.load(p) for p in paths] #print(paths) return ret # set file names for data #y_data = np.load(dir_test + "1025_hashalo_freq%03i.npy"%148) # y data (labels) y_data = np.load(os.path.join(dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) nsamples = len(y_data) #load data into dictionary x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 #load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) noises = [np.load(os.path.join(dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90","_150", "_220"]] noises = [noises[0]*2.8, noises[1]*2.6, noises[2]*6.6] #samples has CMB+TSZ try: com = ['samples','ksz','ir_pts','rad_pts','dust'] x_data_all['base'] = _load_help("1025_samples_freq%03i{}.npy".format(suffix)) ksz_comp = _load_help("1025_ksz_freq%03i{}.npy".format(suffix)) x_data_all['ksz'] = [x_data_all['base'][i] + ksz_comp[i] for i in range(3)] ir_comp = _load_help("1025_ir_pts_freq%03i{}.npy".format(suffix)) x_data_all['ir'] = [x_data_all['ksz'][i] + ir_comp[i] for i in range(3)] rad_comp = _load_help("1025_rad_pts_freq%03i{}.npy".format(suffix)) x_data_all['rad'] = [x_data_all['ir'][i] + rad_comp[i] for i in range(3)] dust_comp = _load_help("1025_dust_freq%03i{}.npy".format(suffix)) x_data_all['dust'] = [x_data_all['rad'][i] + dust_comp[i] for i in range(3)] except Exception as err: print("error: ", err) print("reading only the composite") x_data_all['dust'] = _load_help("1025_skymap_freq%03i{}.npy".format(suffix)) #return x_data_all['dust'], y_data x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples,num_frequency,10,10),dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:,i,:,:] = np.squeeze(x_data_all[com1][i]*k2uk*Tcmb) + noises[i] else: x_data[com1][:,0,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,0,:,:] += np.squeeze(x_data_all[com1][1]*k2uk*Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:,1,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,1,:,:] += np.squeeze(x_data_all[com1][0]*k2uk*Tcmb) + noises[0] if balanced: n_pos = int(y_data.sum()) idx = np.arange(nsamples) idx = np.concatenate([idx[y_data==0.0][:n_pos], idx[y_data==1.0]]) x_data = {k: x_data[k][idx] for k in x_data.keys()} return x_data if get_all_components else x_data['dust'], y_data[idx], idx return x_data if get_all_components else x_data['dust'], y_data def prepare_data_class2(dir_test, num_frequency=3, component="skymap", label_fname="1025_hashalo_freq%03i.npy" % 148, balanced=False, use_noise=True, get_test_idx=False, suffix=""): """ read data from dir_test, and prepare data with different noise level (components) """ freqs=[90,148,219] def _load_help(name_format): paths = [os.path.join(dir_test, name_format%freq) for freq in freqs] ret = [np.load(p) for p in paths] #print(paths) return ret # set file names for data y_data = np.load(os.path.join(dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) nsamples = len(y_data) #load data into dictionary x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 #load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) if use_noise: noises = [np.load(os.path.join(dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90","_150", "_220"]] noises = [noises[0]*2.8, noises[1]*2.6, noises[2]*6.6] else: noises = [0., 0., 0.] #samples has CMB+TSZ x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(component, suffix)) x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples,num_frequency,10,10),dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:,i,:,:] = np.squeeze(x_data_all[com1][i]*k2uk*Tcmb) + noises[i] else: x_data[com1][:,0,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,0,:,:] += np.squeeze(x_data_all[com1][1]*k2uk*Tcmb) + noises[1] if num_frequency > 1: x_data[com1][:,1,:,:] = -np.squeeze(x_data_all[com1][2]*k2uk*Tcmb) - noises[2] x_data[com1][:,1,:,:] += np.squeeze(x_data_all[com1][0]*k2uk*Tcmb) + noises[0] splits = np.asarray([0.8, 0.2]) splits = np.round(splits / splits.sum() * nsamples).astype(int).cumsum() split_idx = np.split(np.arange(nsamples),splits[:-1]) x_data, x_test = {k: x_data[k][split_idx[0]] for k in x_data.keys()}, {k: x_data[k][split_idx[-1]] for k in x_data.keys()} y_data, y_test = y_data[split_idx[0]], y_data[split_idx[-1]] nsamples = len(y_data) if balanced: n_pos = int(y_data.sum()) idx = np.arange(nsamples) idx = np.concatenate([idx[y_data==0.0][:n_pos], idx[y_data==1.0]]) x_data = {k: x_data[k][idx] for k in x_data.keys()} if get_test_idx: return x_data[component], y_data[idx], x_test[component], y_test, idx, split_idx[-1] return x_data[component], y_data[idx], x_test[component], y_test, idx if get_test_idx: return x_data[component], y_data, x_test[component], y_test, split_idx[-1] return x_data[component], y_data, x_test[component], y_test class DataHolder: def __init__(self, data, label, idx): self.data = data self.label = label self.idx = idx def get(self, which, ratio=None, incl_idx=False): curr_idx = self.idx[which] y_data = self.label[curr_idx] if ratio is not None: n_pos = int(y_data.sum()) idx = np.arange(len(y_data)) idx = np.concatenate([idx[y_data == 0.0][:int(ratio * n_pos)], idx[y_data == 1.0]]) curr_idx = curr_idx[idx] if incl_idx: return self.data[curr_idx], self.label[curr_idx], curr_idx return self.data[curr_idx], self.label[curr_idx] class DataGetter: WO_DUST_MAPPING = ("dust", ['samples', 'ksz', 'ir_pts', 'rad_pts']) def __init__(self, dir_test, overlap=False): self.dir_test = dir_test self.overlap = overlap self.halocounter = gc.HalosCounter(overlap=overlap) df = self.halocounter.get_complete_df() if overlap: df = df.reset_index().rename(columns={"index": "cutout_id"}) test_idx = df[(df['cutout_ra'] >= 0.5 * 90) & (df['cutout_dec'] > 0.5 * 90)].index train_idx = df[~df.index.isin(test_idx)].index n_samples = len(train_idx) splits = np.asarray([0.65, 0.1]) splits = np.round(splits / splits.sum() * n_samples).astype(int).cumsum() #print(splits) #print(train_idx, len(train_idx)) split_idx = np.split(train_idx, splits[:-1]) split_idx = [split_idx[0], split_idx[1], test_idx] #print(len(split_idx[0]), len(split_idx[1]), len(split_idx[2])) #print(split_idx[0], split_idx[1], split_idx[2]) else: n_samples = df.shape[0] splits = np.asarray([0.7, 0.1, 0.2]) # (train ratio, valid ratio, test ratio) splits = np.round(splits / splits.sum() * n_samples).astype(int).cumsum() split_idx = np.split(np.arange(n_samples), splits[:-1]) #print(list(map(len, split_idx)), df.shape) self.split_idx = {"train":split_idx[0], 'valid':split_idx[1], 'test':split_idx[2]} pass def get_labels(self, thres=5e13, which='full'): if isinstance(thres, float) or isinstance(thres, int): thres = ("%0.0e"%(thres)).replace("+", "") label_fname = {"5e13": "m5e13_z0.25_y.npy", "2e14":"m2e14_z0.5_y.npy"}[thres] y_data = np.load(os.path.join(self.dir_test, label_fname)) y_data[y_data > 1] = 1 y_data = y_data.astype(float) if which == 'full': return y_data return y_data[self.split_idx[which]] def get_data(self, component, thres=5e13, use_noise=False, num_frequency=3): suffix = "_overlap" if self.overlap else "" freqs = [90, 148, 219] def _load_help(name_format): paths = [os.path.join(self.dir_test, name_format % freq) for freq in freqs] return [np.load(p) for p in paths] y_data = self.get_labels(thres, which='full') nsamples = len(y_data) x_data_all = {} # load data k2uk = 1.0e6 Tcmb = 2.726 # load noise (for SPT-3G 1500 sq deg patch, it's [2.8,2.6,6.6]uK-arcmin) if use_noise: noises = [np.load(os.path.join(self.dir_test, "noise_1uK-arcmin{}{}.npy".format(s, suffix))) for s in ["_90", "_150", "_220"]] noises = [noises[0] * 2.8, noises[1] * 2.6, noises[2] * 6.6] else: noises = [0., 0., 0.] # samples has CMB+TSZ if isinstance(component, str): x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(component, suffix)) elif isinstance(component,tuple): component, lc = component x_data_all[component] = _load_help("1025_{}_freq%03i{}.npy".format(lc[0], suffix)) for cc in lc[1:]: tx = _load_help("1025_{}_freq%03i{}.npy".format(cc, suffix)) assert len(tx) == len(x_data_all[component]) x_data_all[component] = [x_data_all[component][i] + tx[i] for i in range(len(tx))] x_data = {} for com1 in x_data_all.keys(): # add noise x_data[com1] = np.empty((nsamples, num_frequency, 10, 10), dtype=np.float64) if num_frequency == 3: for i in range(3): x_data[com1][:, i, :, :] = np.squeeze(x_data_all[com1][i] * k2uk * Tcmb) + noises[i] else: x_data[com1][:, 0, :, :] = -np.squeeze(x_data_all[com1][2] * k2uk * Tcmb) - noises[2] x_data[com1][:, 0, :, :] +=
np.squeeze(x_data_all[com1][1] * k2uk * Tcmb)
numpy.squeeze
# -*- coding: utf-8 -*- """ Created on Sun Oct 15 10:03:23 2017 @author: thuzhang """ import numpy as np import pandas as pd import seaborn as sns from sklearn import svm from sklearn import metrics from sklearn.cross_validation import train_test_split from matplotlib import pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn import preprocessing from sklearn import linear_model from sklearn.preprocessing import PolynomialFeatures File='USA_ALL.csv' OriginData=pd.read_table(File,sep=",") Data=OriginData.as_matrix().astype(np.float32) Start=0 End=8000 OBSPWR=Data[Start:End,0] HR_FCSR=Data[Start:End,1] OBS_DIFF=Data[Start:End,2] HR_DIFF=Data[Start:End,3] HR_ERROR=Data[Start:End,4] DIFF_ERROR=Data[Start:End,5] def ClearData(Ori,Standard,index=0.6,lo=0.1): Max=
np.max(Standard)
numpy.max
import copy import numpy as np import torch class Memory: def __init__(self, memory_size, nb_total_classes, rehearsal, fixed=True): self.memory_size = memory_size self.nb_total_classes = nb_total_classes self.rehearsal = rehearsal self.fixed = fixed self.x = self.y = self.t = None self.nb_classes = 0 @property def memory_per_class(self): if self.fixed: return self.memory_size // self.nb_total_classes return self.memory_size // self.nb_classes if self.nb_classes > 0 else self.memory_size def get_dataset(self, base_dataset): dataset = copy.deepcopy(base_dataset) dataset._x = self.x dataset._y = self.y dataset._t = self.t return dataset def get(self): return self.x, self.y, self.t def __len__(self): return len(self.x) if self.x is not None else 0 def save(self, path): np.savez( path, x=self.x, y=self.y, t=self.t ) def load(self, path): data = np.load(path) self.x = data["x"] self.y = data["y"] self.t = data["t"] assert len(self) <= self.memory_size, len(self) self.nb_classes = len(np.unique(self.y)) def reduce(self): x, y, t = [], [], [] for class_id in
np.unique(self.y)
numpy.unique
import gm from math import sqrt from networkx.algorithms.cluster import average_clustering, triangles import numpy as np from numpy.core.fromnumeric import sort import pandas as pd import matplotlib.pyplot as plt import math import networkx as nx import matplotlib.animation as animation import networkx.algorithms.community as nx_comm import warnings from matplotlib.patches import Rectangle warnings.filterwarnings('ignore') #################################################################### #################################################################### #-----------------------PARAMETERS BEGIN---------------------------# #################################################################### #################################################################### # ------------------------ALGORITHM SETTINGS--------------------------# N = 100 # Number of sensor nodes M = 2 # Space dimensions D = 10 # Desired distance among nodes,i.e. algebraic constraints K = 1.2 # Scaling factor R = K*D # Interaction range A = 5 B = 5 C = np.abs(A-B)/np.sqrt(4*A*B) D_prime = D * 3 # desired distance between obstacles and node R_prime = K * D_prime # Interaction range with obstacles EPSILON = 0.1 H_alpha = 0.2 H_beta = 0.9 C1_ALPHA = 10 C2_ALPHA = 2 * np.sqrt(C1_ALPHA) C1_BETA = 150 C2_BETA = 2*np.sqrt(C1_BETA) C1_GAMMA = 120 C2_GAMMA = 2 * np.sqrt(C1_GAMMA) DELTA_T = 0.01 # time interval for calculating speed ITERATION = 5000 # total step number # ---------------------STATISTICAL SETTINGS---------------------------# # whole process parameters recording POSITION_X = np.zeros([N, ITERATION]) # X position of each agent POSITION_Y = np.zeros([N, ITERATION]) # Y position of each agent AVERAGE_VELOCITY = np.zeros([1,ITERATION]) # the average speed for each iter MAX_V = np.zeros([1,ITERATION])# the max speed of points for each iter AVERAGE_X_POSITION = np.zeros([1,ITERATION]) # average X MAX_VELOCITY_X = np.zeros([1,ITERATION]) # max speed X VELOCITY_MAGNITUDES = np.zeros([N, ITERATION]) # velocity of each agent # acceleration ACCELERACTION_X = np.zeros([N, ITERATION]) AVERAGE_X_ACC =
np.zeros([1, ITERATION])
numpy.zeros
import cv2, numpy as np, requests, time, parse def get_mask(frame, bodypix_url='http://localhost:9000'): _, data = cv2.imencode(".jpg", frame) r = requests.post( url=bodypix_url, data=data.tobytes(), headers={'Content-Type': 'application/octet-stream'}) mask =
np.frombuffer(r.content, dtype=np.uint8)
numpy.frombuffer
import os from unittest import main, TestCase import numpy as np from serenata_toolbox.chamber_of_deputies.speeches_dataset import SpeechesDataset class TestSpeechesDataset(TestCase): def setUp(self): self.subject = SpeechesDataset() def test_fetch(self): df = self.subject.fetch('03/02/2015', '03/02/2015') actualColumns = df.columns expectedColumns = [ 'session_code', 'session_date', 'session_num', 'phase_code', 'phase_desc', 'speech_speaker_num', 'speech_speaker_name', 'speech_speaker_party', 'speech_speaker_state', 'speech_started_at', 'speech_room_num', 'speech_insertion_num' ] self.assertTrue((
np.array(expectedColumns)
numpy.array
import os.path from pathlib import Path from ctypes import * from sys import platform from numpy.ctypeslib import ndpointer import numpy as np from PIL import Image try: import eyeRendererHelperFunctions as eyeTools except Exception as e: print("Error importing eyeTools:", e) print("This is most likely because you do not have the 'python-examples' folder set as a path in $PYTHONPATH.") exit() def getIdFromMap(mapImage, x, y): r = mapImage[y,x,0] << 24 # Red g = mapImage[y,x,1] << 16 # Green b = mapImage[y,x,2] << 8 # Blue a = mapImage[y,x,3] # Alpha idOut = r | g | b | a return(idOut) def getProjectionImageUsingMap(vector, vectorMax, idMap, pjWidth,pjHeight): np.copy(idMap) output = np.zeros((pjWidth, pjHeight), dtype=np.uint8) for x in range(pjWidth): for y in range(pjHeight): pixelId = getIdFromMap(idMap, x, y) output[x,y] = int(vector[pixelId]/vectorMax * 255) return(output) try: # Load the renderer eyeRenderer = CDLL("../../build/make/lib/libEyeRenderer3.so") print("Successfully loaded", eyeRenderer) # Configure the renderer's function outputs and inputs using the helper functions eyeTools.configureFunctions(eyeRenderer) #Load a scene print("Loading scene (please wait)...") eyeRenderer.loadGlTFscene(c_char_p(b"../../data/natural-standin-sky.gltf")) print("Scene loaded!") # Make sure there's a place to save to Path("output/generated-data/alias-demo-quantified/").mkdir(parents=True, exist_ok=True) Path("output/vector-data/").mkdir(parents=True, exist_ok=True) Path("output/view-images/").mkdir(parents=True, exist_ok=True) Path("output/generated-data/spread-analysis/").mkdir(parents=True, exist_ok=True) ###### First, generate the ommatidial id map #Resize the renderer display in order to render the spherically-projected variable sample rate renderWidth = 700 renderHeight = 300 eyeTools.setRenderSize(eyeRenderer, renderWidth, renderHeight) # Go to the 'insect-eye-spherical-projector' camera eyeRenderer.gotoCameraByName(c_char_p(b"insect-eye-spherical-projector-ids")) eyeRenderer.renderFrame() # Just straight-up render the spherical projector ids idMap = np.copy(np.flipud(eyeRenderer.getFramePointer())) # Copy (remember here the data is still owned by the render, so we need this copy) the id map (plus flip it the right way up) eyeRenderer.saveFrameAs(c_char_p(("output/generated-data/alias-demo-quantified/projection-ids.ppm").encode())) # Save the image for sanity checking # Also generate a set of weights that store how much of an influence on an # average each compound eye should have based on it's area coverage in steradians perSteradianWeights = [1.0/i.getSolidAngle() for i in eyeTools.readEyeFile("../../data/eyes/1000-horizontallyAcute-variableDegree.eye")] perSteradianWeights = np.asarray(perSteradianWeights) ###### Second, generate ommatidial sample data into a big multi-dim array to perform analysis on # Change to vector rendering eyeRenderer.gotoCameraByName(c_char_p(b"insect-eye-fast-vector")) # Prepare to generate vector data (1000 ommatidia) vectorWidth = 1000 maxOmmatidialSamples = renderWidth # The upper bound of how many samples will be taken per ommatidium in the analysis spreadSampleCount = 1000 # How many times each frame is rendered to get a sense of the spread of results from a given ommatidium at different sampling rates eyeTools.setRenderSize(eyeRenderer, vectorWidth, 1) # Create a numpy array to store the eye data # This is a set of eye matricies, each one being a 1st-order stack of samples (the width of the number of ommatidia, and 3 channels deep) eyeSampleMatrix = np.zeros((maxOmmatidialSamples,spreadSampleCount, vectorWidth, 3), dtype=np.uint8) # Iterate over eye sample counts for idx, samples in enumerate(range(1, maxOmmatidialSamples+1)): eyeRenderer.setCurrentEyeSamplesPerOmmatidium(samples) eyeRenderer.renderFrame() # First call to ensure randoms are configured # For each sample count, generate N images to compare for i in range(spreadSampleCount): renderTime = eyeRenderer.renderFrame() # Second call to actually render the image # Retrieve the data frameData = eyeRenderer.getFramePointer() frameDataRGB = frameData[:,:,:3] # Remove the alpha channel eyeSampleMatrix[idx,i,:,:] = np.copy(frameDataRGB[:, :, :]) eyeRenderer.displayFrame() ###### Now calculate the per-ommatidial sample variance and standard deviation at each sample rate print("") maxSd = 0 maxVariance = 0 variances = np.zeros((renderWidth, vectorWidth, 1)) standardDeviations = np.zeros((renderWidth, vectorWidth, 1)) avgVariancePerSteradianPerImage =
np.zeros(renderWidth)
numpy.zeros
""" <NAME>., et al. 2011, ApJ, 730, 61 http://arxiv.org/abs/1011.6370 For ssfr, values are corrected as seen in Behroozi et al. 2013 (http://arxiv.org/abs/1207.6105), Table 5. """ import numpy as np info = \ { 'reference':'<NAME>., et al. 2011, ApJ, 730, 61', 'data': 'Behroozi, Table 5', 'imf': ('chabrier, 2003', (0.1, 100.)), } redshifts = [0.28, 0.49, 0.69, 0.89, 1.1, 1.38, 1.81, 2.27, 2.73] wavelength = 1600. ULIM = -1e10 fits = {} # Table 1 tmp_data = {} tmp_data['ssfr'] = \ { 0.28: {'M': [1.0964782E+10, 2.2387211E+10, 4.2657952E+10, 8.9125094E+10, 1.5848932E+11], 'phi': [-9.95, -10.15, -10.35, -10.6, -10.8], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 0.49: {'M': [1.1220185E+10, 2.1877616E+10, 4.3651583E+10, 8.3176377E+10, 1.7782794E+11], 'phi': [-9.5, -9.7, -9.95, -10.15, -10.5], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 0.69: {'M': [2.2387211E+10, 4.2657952E+10, 8.3176377E+10, 1.5848932E+11], 'phi': [-9.6, -9.75, -9.9, -10.05], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 0.89: {'M': [2.2387211E+10, 4.3651583E+10, 8.1283052E+10, 1.5848932E+11], 'phi': [-9.3, -9.55, -9.75, -9.9], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 1.1: {'M': [2.2387211E+10, 4.3651583E+10, 8.3176377E+10, 1.5848932E+11], 'phi': [-9.1, -9.3, -9.5, -9.6], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 1.38: {'M': [4.3651583E+10, 8.1283052E+10, 1.5848932E+11], 'phi': [-9.1, -9.3, -9.4], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 1.81: {'M': [4.2657952E+10, 8.3176377E+10, 1.5848932E+11], 'phi': [-8.8, -8.95, -9.0], 'err': [(0.301029995663981, 0.301029995663981), (0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 2.27: {'M': [8.5113804E+10, 1.5848932E+11], 'phi': [-8.8, -8.8], 'err': [(0.301029995663981, 0.301029995663981), (0.3, 0.3)] }, 2.73: {'M': [1.5848932E+11], 'phi': [-8.7], 'err': [(0.3, 0.3)] }, } units = {'ssfr': '1.'} data = {} data['ssfr'] = {} for group in ['ssfr']: for key in tmp_data[group]: if key not in tmp_data[group]: continue subdata = tmp_data[group] mask = [] for element in subdata[key]['err']: if element == ULIM: mask.append(1) else: mask.append(0) mask = np.array(mask) data[group][key] = {} data[group][key]['M'] = np.ma.array(subdata[key]['M'], mask=mask) data[group][key]['phi'] =
np.ma.array(subdata[key]['phi'], mask=mask)
numpy.ma.array
''' _______ _______ _______ _______ ________ ___ _______ __ __ ___________ / __ / / ___ \ / ____/ / _____/ / ______\ / / / ____/ / \ / / /____ _____/ / /__/ / / |__| | / /___ / /____ / / / / / /___ / \ / / / / / ______/ / __ ___/ / ____/ /______ / / / / / / ____/ / /\ \/ / / / / / / / \ \ / /____ _______/ / / /_____ / / / /___ / / \ / / / /_/ /_/ \_\ /______/ /________/ /________/ /__/ /______/ /__/ \__/ /__/ Automated forecasting tool powered by Facebook Prophet. Developed by <NAME> 01.02.2018 Version 0.1.0 ''' # TODO Get streaming data from Kafka # TODO Online forecasting architecture # TODO Model serialization # TODO Time series database integration import os import subprocess import numpy as np import pandas as pd import threading import signal from colorama import Fore from concurrent.futures import ProcessPoolExecutor from ProphetExecutor import ProphetExecutor from PrescientConfig import PrescientConfig from PrescientLogger import PrescientLogger from collections import deque import sys # ------------------------ RESULT VARIABLES ----------------------- best_model = (0, 0, 0) accuracies = deque() accuracy_change_rates = deque() best_accuracies = deque() # ----------------------------------------------------------------- # ---------------------------------- CONFIGS --------------------------------------- config = PrescientConfig(sys.argv[1]) # get configuration from file dataset_filepath = config.get_str("forecastbase.dataset.filepath") tdp_min = config.get_float("forecastbase.training.data.percent.min") tdp_max = config.get_float("forecastbase.training.data.percent.max") tdp_inc_by = config.get_float("forecastbase.training.data.percent.increment.by") iw_min = config.get_float("forecastbase.interval.width.min") iw_max = config.get_float("forecastbase.interval.width.max") iw_inc_by = config.get_float("forecastbase.interval.width.increment.by") cps_min = config.get_float("forecastbase.changepoint.prior.scale.min") cps_max = config.get_float("forecastbase.changepoint.prior.scale.max") cps_inc_by = config.get_float("forecastbase.changepoint.prior.scale.increment.by") predict_next = config.get_int("forecastbase.predict.next") predict_freq = config.get_str("forecastbase.predict.freq") parallelism = config.get_int("forecastbase.paralellism") measure_number = config.get_int("forecastbase.convergence.detection.measure.number") average_acr_threshold = config.get_float("forecastbase.convergence.detection.acr.threshold") holiday_weekends_enabled = config.get_bool("forecastbase.holiday.weekends.enabled") holiday_special_days = config.get_list("forecastbase.holiday.special.days") # ----------------------------------------------------------------------------------- # ----------------------------- HOLIDAY WEEKENDS SETTINGS ----------------------------- holiday_weekends = {} if not holiday_weekends_enabled: holiday_weekends = None # ------------------------------------------------------------------------------------- semaphore = threading.BoundedSemaphore(value=1) def run(): model_index = 1 prophet_executor = ProphetExecutor() # Create training file and load weekends (if enabled) according to current percent for training_data_percent_prep in np.arange(tdp_min, tdp_max + tdp_inc_by, tdp_inc_by): prepare_training_file(training_data_percent_prep) if holiday_weekends_enabled: load_holiday_weekends(training_data_percent_prep) # Submitting jobs with ProcessPoolExecutor(max_workers=parallelism) as process_pool: for training_data_percent in np.arange(tdp_min, tdp_max + tdp_inc_by, tdp_inc_by): for interval_width in np.arange(iw_min, iw_max + iw_inc_by, iw_inc_by): for changepoint_prior_scale in np.arange(cps_min, cps_max + cps_inc_by, cps_inc_by): model_future = process_pool.submit(prophet_executor.execute, model_index, dataset_filepath, training_data_percent, interval_width, changepoint_prior_scale, predict_next, predict_freq, holiday_weekends, holiday_special_days) model_future.add_done_callback(model_training_done_callback) model_index += 1 def prepare_training_file(training_data_percent): # Get data count of file data_count = int(subprocess.Popen(["wc", "-l", dataset_filepath], stdout=subprocess.PIPE).communicate()[0].split()[0]) # Calculate training data count according to percentage training_data_count = (data_count * training_data_percent) / 100 PrescientLogger.console_log("FORECASTBASE", Fore.YELLOW, "Preparing training file for parameter training_data_percent=%" + str(training_data_percent) + " Original data count:" + str(data_count) + " Training data count: " + str(training_data_count)) # Create training data file os.system("head -" + str(int(training_data_count)) + " " + dataset_filepath + " > " + os.path.basename(dataset_filepath).split('.')[0] + "_training_%" + str(training_data_percent) + ".csv") def load_holiday_weekends(training_data_percent): global holiday_weekends PrescientLogger.console_log("FORECASTBASE", Fore.YELLOW, "Preparing weekends for parameter training_data_percent=%" + str(training_data_percent)) df_training_data = pd.read_csv(os.path.basename(dataset_filepath).split('.')[0] + "_training_%" + str(training_data_percent) + ".csv") df_training_data['ds'] = pd.to_datetime(df_training_data['ds']) # Convert string to datetime df_training_data['weekday'] = df_training_data['ds'].dt.weekday # Find number of day df_training_data['ds'] = df_training_data['ds'].dt.date # Truncate time from datetime # Selecting rows where day is Saturday or Sunday df_holiday_weekends = df_training_data[(df_training_data['weekday'] == 5) | (df_training_data['weekday'] == 6)] df_holiday_weekends = df_holiday_weekends.drop_duplicates(subset=['ds']) # Drop duplicate rows df_holiday_weekends.drop(['y', 'weekday'], axis=1, inplace=True) # Drop unnecessary columns holiday_weekends[str(training_data_percent)] = df_holiday_weekends def show_intermediate_results(average_acr, acr_frame): PrescientLogger.console_log( None, Fore.BLUE, "########################################################################", "Last " + str(measure_number) + " model's accuracies and accuracy change rates: \n", acr_frame.to_string(), "\nAverage accuracy change rate: " + str(average_acr), "Best accuracy: " + str(best_model[0]), "########################################################################\n") def model_training_done_callback(model_fn): global best_model semaphore.acquire() if model_fn.done(): error = model_fn.exception() if error: print(error) else: model = model_fn.result() if accuracy_change_rates.__len__() < measure_number: accuracy_change_rates.append(model[0] - best_model[0]) accuracies.append(model[0]) best_accuracies.append(best_model[0]) else: # Remove oldest data and add last data accuracy_change_rates.popleft() accuracies.popleft() best_accuracies.popleft() accuracy_change_rates.append(model[0] - best_model[0]); accuracies.append(model[0]); best_accuracies.append(best_model[0]) # If trained model's accuracy is better than best model assign as new best model if model[0] > best_model[0]: best_model = model if accuracy_change_rates.__len__() == measure_number: # Calculate average accuracy change rate and show results acr_frame = pd.DataFrame({'best_accuracy': best_accuracies, 'last_model_accuracy': accuracies, 'acr': accuracy_change_rates}) average_acr = acr_frame['acr'].mean() show_intermediate_results(average_acr, acr_frame) # If average accuracy change rate below threshold stop Forecastbase if average_acr < average_acr_threshold: PrescientLogger.console_log("FORECASTBASE", Fore.RED, "Convergence Detected!! Best model is accuracy=" + str(best_model[0]) + " training_data_percent=" + str(best_model[1]) + " interval_width=" + str(best_model[2]) + " changepoint_prior_scale=" + str(best_model[3])) semaphore.release() # Release acquired semaphore # Remove training files for training_data_percent in
np.arange(tdp_min, tdp_max + tdp_inc_by, tdp_inc_by)
numpy.arange
from imutils.video import VideoStream import time import imutils import cv2 import tensorflow.keras as k from tensorflow.keras.models import Model from tensorflow.keras.preprocessing.image import img_to_array from numpy import expand_dims import math import numpy as np TIME_PER_CAPTURE = 6 start = (20, 30) # start point for text used in putText font = cv2.FONT_HERSHEY_DUPLEX fontScale = 0.6 color = (0, 0, 0) thickness = 1 image_size = (224, 224) classes = 2 shift = 100 kappa, kappa_s = 7, 0 tic = time.time() vs = VideoStream(src=0).start() while True: toc = time.time() frame = vs.read() frame = imutils.resize(frame, width=650, height=650) frame = cv2.flip(frame, 1) time_elapsed = round(toc - tic) if time_elapsed == TIME_PER_CAPTURE: break else: cv2.putText(frame, 'Background picture taken in: ' + str(TIME_PER_CAPTURE - time_elapsed), start, font, fontScale, color, thickness) cv2.imshow('Take Background Picture', frame) cv2.waitKey(1) cv2.destroyAllWindows() vs.stop() background = cv2.resize(frame, image_size) while True: cv2.putText(frame, 'Press q to quit', start, font, fontScale, color, thickness) cv2.imshow('Background', frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): break cv2.destroyAllWindows() model = k.models.Sequential([ k.layers.SeparableConv2D(64, (1, 1), activation='relu', input_shape=(224, 224, 3), depth_multiplier=3), ]) output_layer = 0 outputs = [model.layers[output_layer].output] box_model = Model(inputs=model.inputs, outputs=outputs) background_img = img_to_array(background) background_img = expand_dims(background_img, axis=0) feature_maps = box_model.predict(background_img) fmap_back_avg = np.zeros(shape=(feature_maps.shape[1], feature_maps.shape[2])) span = int(math.sqrt(feature_maps.shape[-1])) for fmap in feature_maps: i = 1 for _ in range(span): for _ in range(span): fmap_back_avg += fmap[:, :, i - 1].squeeze() i += 1 fmap_back_avg /= (span ** 2) vs = VideoStream(src=0).start() sal_flag = False while True: frame = vs.read() frame = imutils.resize(frame, width=650, height=650) frame = cv2.flip(frame, 1) input_image = cv2.resize(frame, image_size) input_image = img_to_array(input_image) input_image = expand_dims(input_image, axis=0) feature_maps = box_model.predict(input_image) fmap_avg = np.zeros(shape=(feature_maps.shape[1], feature_maps.shape[2])) span = int(math.sqrt(feature_maps.shape[-1])) for fmap in feature_maps: i = 1 for _ in range(span): for _ in range(span): fmap_avg += fmap[:, :, i - 1].squeeze() i += 1 fmap_avg /= (span ** 2) diff =
np.round(fmap_back_avg - fmap_avg, 2)
numpy.round