prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
# Subset optimization functions # # <NAME>, <NAME>, <NAME>, <NAME>, # <NAME> and <NAME>. "Unconstrained Salient # Object Detection via Proposal Subset Optimization." # CVPR, 2016. # Code written by <NAME>, 2020 import numpy as np from tensorflow.keras.applications.vgg16 import preprocess_input from tensorflow.keras.preprocessing.image import load_img from functions.utils import do_nms, get_max_inc_float, get_iou_float, expand_roi from functions.get_Proposals import get_proposals def prop_opt(bboxes, bboxscore, param): """ The main function for the subset optimization. Args: bboxes: Bounding boxes. bboxscore: Scores of the bboxes. param: parameters of the model. Returns: res: Bounding boxes after the optimization. stat: _: """ # for the special case when lambda == 0 if param['lambda'] == 0: stat = {} res = bboxes.copy() stat['O'] = np.arange(bboxes.shape[1]).reshape(-1, 1) return res, stat stat = do_map_forward(bboxes, bboxscore.astype(float), param) if stat['O'].size > 1: stat = do_map_backward(bboxes, bboxscore.astype(float), param, stat) # We use the second output to intialized the optimization again if param['perturb'] and len(stat['O']) > 1: # use the second output to initialize the forward pass statTmp = do_map_eval(bboxes, bboxscore.astype(float), param, stat['O'][1], stat['W'], stat['BGp']) statTmp = do_map_forward(bboxes, bboxscore.astype(float), param, statTmp) if statTmp['f'] > stat['f']: stat = statTmp.copy() res = np.take(bboxes, stat['O'].flatten(), axis = 1).copy() return res, stat def do_map_forward(B, S, param, stat = None): if B.size == 0: print('Empty proposal set') stat = {} return stat nB = B.shape[1] if not stat: # initialization stat = {} stat['W'] = np.array([]) stat['Xp'] = np.array([]) # optimal w_{ij} given the output set stat['X'] = np.zeros((nB, 1)) # assignment # construct W stat['W'], stat['Xp'] = get_w(B, S, param) stat['BGp'] = stat['Xp'].copy() stat['nms'] = np.zeros((B.shape[1], 1)) stat['f'] = stat['Xp'].sum() stat['O'] = np.array([], dtype=int) ## loop while len(stat['O']) < min(param['maxnum'], nB): V = np.maximum(stat['W'] - stat['Xp'].reshape(-1, 1), 0) scores = V.sum(axis = 0) + stat['nms'].flatten().T vote = np.argmax(scores) score = scores[vote] if score == 0: # no supporters break tmpf = stat['f'] + score + param['phi'] if (tmpf > stat['f']): mask = V[:, vote] > 0 stat['X'][mask] = vote stat['O'] = np.append(stat['O'], vote).reshape(-1, 1) stat['Xp'][mask] = stat['W'][mask, vote] stat['f'] = tmpf stat['nms'] = stat['nms'] + param['gamma'] * get_nms_penalty(B, B[:, vote]).reshape(-1, 1) else: break return stat def do_map_backward(B, S, param, stat): while stat['O'].size != 0: flag = False bestStat = stat.copy() for i in range(len(stat['O'])): O = stat['O'].copy() O = np.delete(O, i) statTmp = do_map_eval(B, S, param, O, stat['W'], stat['BGp']) if statTmp['f'] > bestStat['f']: flag = True bestStat = statTmp.copy() stat = bestStat.copy() if not flag: break return stat def do_map_eval(B, S, param, O, W = None, BGp = None): """ This function evaluate the target function given a output window set. Args: B: . S: . param: . O: . W: . BGp: . Returns: statTmp: . """ statTmp = {} statTmp['W'] =
np.array([])
numpy.array
from __future__ import division import numpy as np from numpy import pi, sqrt, exp, power, log, log10 import os import constants as ct import particle as pt import tools as tl ############################## # Preparing SKA configurations ############################## def initialize(): """This routine is supposed to be run only once, \ i.e. when the module is loaded, therefore\ the I/O is not optimized for speed concerns. """ SKA_conf = {} # # -------------- for exper in ['low', 'mid']: # if exper == "low": # path = local_path + "/data/SKA1-low_accumu.csv" # elif exper == "mid": # path = local_path + "/data/SKA1-mid_accumu.csv" # data_raw = np.loadtxt(path, delimiter=',') # radius = data_raw[:, 0] # fraction = data_raw[:, 1] # bins_radius = np.logspace(1, 5, 20) # bin it # hist_radius = np.interp(np.log10(bins_radius), np.log10( # radius), fraction, left=0) # sample at the bin edges # if exper == "low": # # compute the x-y coordinates of all units # x_arr, y_arr = get_telescope_coordinate( # fraction*ct._SKALow_number_of_stations_, radius, SKA=exper) # # save it # SKA_conf['low radius'] = (data_raw, x_arr, y_arr, bins_radius, # hist_radius) # elif exper == "mid": # x_arr, y_arr = get_telescope_coordinate( # fraction*ct._SKA1Mid_number_of_dishes_, radius, SKA=exper) # SKA_conf['mid radius'] = (data_raw, x_arr, y_arr, bins_radius, # hist_radius) # get coordinates if exper == "low": SKA_conf['low0'] = np.loadtxt( local_path + "/data/SKA1_config_low0.csv", delimiter=',') SKA_conf['low1'] = np.loadtxt( local_path + "/data/SKA1_config_low1.csv", delimiter=',') SKA_conf['low2'] = np.loadtxt( local_path + "/data/SKA1_config_low2_6clusters.csv", delimiter=',') # update clusters, it's 6 stations per cluster new_arr = [] for xy in (SKA_conf['low2']): for j in range(2): for k in range(3): x = xy[0] + j*50 y = xy[1] + (k-1)*50 new_arr.append([x, y]) new_arr = np.array(new_arr) SKA_conf['low2'] = new_arr # combine them SKA_conf['low_coord'] = np.concatenate( (SKA_conf['low0'], SKA_conf['low1'], SKA_conf['low2'])) x_arr = SKA_conf['low_coord'][:, 0] y_arr = SKA_conf['low_coord'][:, 1] elif exper == "mid": SKA_conf['mid0_MeerKAT'] = np.loadtxt( local_path + "/data/SKA1_config_mid0_MK.csv", delimiter=',') SKA_conf['mid0_SKA'] = np.loadtxt( local_path + "/data/SKA1_config_mid0_SKA.csv", delimiter=',') SKA_conf['mid1_MeerKAT'] = np.loadtxt( local_path + "/data/SKA1_config_mid1_MK.csv", delimiter=',') SKA_conf['mid1_SKA'] = np.loadtxt( local_path + "/data/SKA1_config_mid1_SKA.csv", delimiter=',') SKA_conf['mid2_SKA'] = np.loadtxt( local_path + "/data/SKA1_config_mid2_SKA.csv", delimiter=',') # combine them SKA_conf['mid_coord'] = np.concatenate( (SKA_conf['mid0_MeerKAT'], SKA_conf['mid0_SKA'], SKA_conf['mid1_MeerKAT'], SKA_conf['mid1_SKA'], SKA_conf['mid2_SKA'])) # convert km to m SKA_conf['mid_coord'][:, 0] = SKA_conf['mid_coord'][:, 0]*1.e3 SKA_conf['mid_coord'][:, 1] = SKA_conf['mid_coord'][:, 1]*1.e3 x_arr = SKA_conf['mid_coord'][:, 0] y_arr = SKA_conf['mid_coord'][:, 1] # get baseline distribution baseline_arr = get_baseline(x_arr, y_arr) hist_baseline, bins_baseline = np.histogram( baseline_arr, bins=np.logspace(1, 5, 20000)) # correcting the over-counting of baseline pair hist_baseline = hist_baseline/2. hist_baseline_cumsum = np.cumsum(hist_baseline) # save it if exper == "low": SKA_conf['low baseline'] = ( baseline_arr, hist_baseline, bins_baseline, hist_baseline_cumsum) elif exper == "mid": SKA_conf['mid baseline'] = ( baseline_arr, hist_baseline, bins_baseline, hist_baseline_cumsum) # about effective area if exper == "low": path = local_path + "/data/SKA1-low_Aeff_over_Tsys.txt" data_raw = np.loadtxt(path) # low is given in MHz, convert to GHz data_raw[:, 0] = data_raw[:, 0] * 1.e-3 SKA_conf['low A/T'] = data_raw elif exper == "mid": path = local_path + "/data/SKA1-mid_Aeff_over_Tsys.txt" data_raw = np.loadtxt(path) SKA_conf['mid A/T'] = data_raw SKA_conf['A/T'] = np.concatenate((SKA_conf['low A/T'], SKA_conf['mid A/T'])) # computing efficiency # make a nu grid Nsteps = 2001 nulow = np.logspace(
log10(ct._nu_min_ska_low_)
numpy.log10
# LSTM for sequence classification in the IMDB dataset import numpy from keras.datasets import imdb from keras.models import Sequential from keras.layers import Dense from keras.layers import LSTM, Convolution1D, Flatten, Dropout from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras.callbacks import TensorBoard import numpy as np # Using keras to load the dataset with the top_words top_words = 10000 (X_train, y_train), (X_test, y_test) = imdb.load_data(num_words=top_words) path = '/home/santanu/Downloads/Mobile_App/' X_train = np.load(path + "aclImdb/X_train.npy") y_train =
np.load(path + "aclImdb/y_train.npy")
numpy.load
import _pickle, numpy as np, itertools as it from time import perf_counter # from cppimport import import_hook # # # import cppimport # # # cppimport.set_quiet(False) # import rpxdock as rp from rpxdock.bvh import bvh_test from rpxdock.bvh import BVH, bvh import rpxdock.homog as hm def test_bvh_isect_cpp(): assert bvh_test.TEST_bvh_test_isect() def test_bvh_isect_fixed(): # print() mindist = 0.01 totbvh, totnaive = 0, 0 for i in range(10): xyz1 = np.random.rand(1000, 3) + [0.9, 0.9, 0] xyz2 = np.random.rand(1000, 3) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre assert len(bvh1) == 1000 pos1 = hm.htrans([0.9, 0.9, 0.9]) pos2 = np.eye(4) tbvh = perf_counter() clash1 = bvh.bvh_isect_fixed(bvh1, bvh2, mindist) tbvh = perf_counter() - tbvh tn = perf_counter() clash2 = bvh.naive_isect_fixed(bvh1, bvh2, mindist) tn = perf_counter() - tn assert clash1 == clash2 # print(f"{i:3} clash {clash1:1} {tn / tbvh:8.2f}, {tn:1.6f}, {tbvh:1.6f}") totbvh += tbvh totnaive += tn print("total times", totbvh, totnaive / totbvh, totnaive) def test_bvh_isect(): t = rp.Timer().start() N1, N2 = 10, 10 N = N1 * N2 mindist = 0.04 nclash = 0 for outer in range(N1): xyz1 = np.random.rand(1250, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1250, 3) - [0.5, 0.5, 0.5] pos1 = hm.rand_xform(N2, cart_sd=0.8) pos2 = hm.rand_xform(N2, cart_sd=0.8) t.checkpoint('init') bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) t.checkpoint('BVH') clash = list() for inner in range(N2): clash1 = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[inner], pos2=pos2[inner], mindist=mindist) t.checkpoint('bvh_isect') clash2 = bvh.naive_isect(bvh1, bvh2, pos1[inner], pos2[inner], mindist) t.checkpoint('naive_isect') assert clash1 == clash2 clash.append(clash1) clashvec = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, mindist) t.checkpoint('bvh_isect_vec') assert np.all(clashvec == clash) nclash += sum(clash) assert clashvec[1] == bvh.bvh_isect_vec(bvh1, bvh2, pos1[1], pos2[1], mindist) bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2[1], mindist) # ?? make sure api works? bvh.bvh_isect_vec(bvh1, bvh2, pos1[1], pos2, mindist) print( f"Ngeom {N1:,} Npos {N2:,} isect {nclash/N:4.2f} bvh: {int(N/t.sum.bvh_isect):,}/s", f"bvh_vec {int(N/t.sum.bvh_isect_vec):,} fastnaive {int(N/t.sum.naive_isect):,}/s", f"ratio {int(t.sum.naive_isect/t.sum.bvh_isect_vec):,}x", ) def test_bvh_isect_fixed_range(): N1, N2 = 10, 10 N = N1 * N2 mindist = 0.04 nclash = 0 for outer in range(N1): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) bvh1_half = BVH(xyz1[250:750]) bvh2_half = BVH(xyz2[250:750]) pos1 = hm.rand_xform(N2, cart_sd=0.5) pos2 = hm.rand_xform(N2, cart_sd=0.5) isect1 = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, mindist) isect2, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(isect1 == isect2) bounds = [250], [749], [250], [749] isect1 = bvh.bvh_isect_vec(bvh1_half, bvh2_half, pos1, pos2, mindist) isect2, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist, *bounds) assert np.all(isect1 == isect2) def test_bvh_min_cpp(): assert bvh_test.TEST_bvh_test_min() def test_bvh_min_dist_fixed(): xyz1 = np.random.rand(5000, 3) + [0.9, 0.9, 0.0] xyz2 = np.random.rand(5000, 3) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist_fixed(bvh1, bvh2) tbvh = perf_counter() - tbvh dtest = np.linalg.norm(xyz1[i1] - xyz2[i2]) assert np.allclose(d, dtest, atol=1e-6) # tnp = perf_counter() # dnp = np.min(np.linalg.norm(xyz1[:, None] - xyz2[None], axis=2)) # tnp = perf_counter() - tnp tn = perf_counter() dn = bvh.naive_min_dist_fixed(bvh1, bvh2) tn = perf_counter() - tn print() print("from bvh: ", d) print("from naive:", dn) assert np.allclose(dn, d, atol=1e-6) print(f"tnaivecpp {tn:5f} tbvh {tbvh:5f} tbvhcreate {tcre:5f}") print("bvh acceleration vs naive", tn / tbvh) # assert tn / tbvh > 100 def test_bvh_min_dist(): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre # print() totbvh, totnaive = 0, 0 N = 10 pos1 = hm.rand_xform(N, cart_sd=1) pos2 = hm.rand_xform(N, cart_sd=1) dis = list() for i in range(N): tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tbvh = perf_counter() - tbvh dtest = np.linalg.norm(pos1[i] @ hm.hpoint(xyz1[i1]) - pos2[i] @ hm.hpoint(xyz2[i2])) assert np.allclose(d, dtest, atol=1e-6) tn = perf_counter() dn = bvh.naive_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tn = perf_counter() - tn assert np.allclose(dn, d, atol=1e-6) dis.append((d, i1, i2)) # print( # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # np.linalg.norm(pos1[:3, 3]), # dtest - d, # ) totnaive += tn totbvh += tbvh d, i1, i2 = bvh.bvh_min_dist_vec(bvh1, bvh2, pos1, pos2) for a, b, c, x in zip(d, i1, i2, dis): assert a == x[0] assert b == x[1] assert c == x[2] print( "total times", totbvh / N * 1000, "ms", totnaive / totbvh, totnaive, f"tcre {tcre:2.4f}", ) def test_bvh_min_dist_floormin(): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre # print() totbvh, totnaive = 0, 0 N = 10 for i in range(N): pos1 = hm.rand_xform(cart_sd=1) pos2 = hm.rand_xform(cart_sd=1) tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) tbvh = perf_counter() - tbvh dtest = np.linalg.norm(pos1 @ hm.hpoint(xyz1[i1]) - pos2 @ hm.hpoint(xyz2[i2])) assert np.allclose(d, dtest, atol=1e-6) tn = perf_counter() dn = bvh.naive_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn assert np.allclose(dn, d, atol=1e-6) # print( # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # np.linalg.norm(pos1[:3, 3]), # dtest - d, # ) totnaive += tn totbvh += tbvh print( "total times", totbvh / N * 1000, "ms", totnaive / totbvh, totnaive, f"tcre {tcre:2.4f}", ) def test_bvh_slide_single_inline(): bvh1 = BVH([[-10, 0, 0]]) bvh2 = BVH([[0, 0, 0]]) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=1.0, dirn=[1, 0, 0]) assert d == 8 # moves xyz1 to -2,0,0 # should always come in from "infinity" from -direction bvh1 = BVH([[10, 0, 0]]) bvh2 = BVH([[0, 0, 0]]) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=1.0, dirn=[1, 0, 0]) assert d == -12 # also moves xyz1 to -2,0,0 for i in range(100): np.random.seed(i) dirn = np.array([np.random.randn(), 0, 0]) dirn /= np.linalg.norm(dirn) rad = np.abs(np.random.randn() / 10) xyz1 = np.array([[np.random.randn(), 0, 0]]) xyz2 = np.array([[np.random.randn(), 0, 0]]) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=rad, dirn=dirn) xyz1 += d * dirn assert np.allclose(np.linalg.norm(xyz1 - xyz2), 2 * rad, atol=1e-4) def test_bvh_slide_single(): nmiss = 0 for i in range(100): # np.random.seed(i) dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) rad = np.abs(np.random.randn()) xyz1 = np.random.randn(1, 3) xyz2 = np.random.randn(1, 3) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) d = bvh.bvh_slide(bvh1, bvh2, np.eye(4), np.eye(4), rad=rad, dirn=dirn) if d < 9e8: xyz1 += d * dirn assert np.allclose(np.linalg.norm(xyz1 - xyz2), 2 * rad, atol=1e-4) else: nmiss += 1 delta = xyz2 - xyz1 d0 = delta.dot(dirn) dperp2 = np.sum(delta * delta) - d0 * d0 target_d2 = 4 * rad**2 assert target_d2 < dperp2 print("nmiss", nmiss, nmiss / 1000) def test_bvh_slide_single_xform(): nmiss = 0 for i in range(1000): dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) rad = np.abs(np.random.randn() * 2.0) xyz1 = np.random.randn(1, 3) xyz2 = np.random.randn(1, 3) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform() pos2 = hm.rand_xform() d = bvh.bvh_slide(bvh1, bvh2, pos1, pos2, rad=rad, dirn=dirn) if d < 9e8: p1 = (pos1 @ hm.hpoint(xyz1[0]))[:3] + d * dirn p2 = (pos2 @ hm.hpoint(xyz2[0]))[:3] assert np.allclose(np.linalg.norm(p1 - p2), 2 * rad, atol=1e-4) else: nmiss += 1 p2 = pos2 @ hm.hpoint(xyz2[0]) p1 = pos1 @ hm.hpoint(xyz1[0]) delta = p2 - p1 d0 = delta[:3].dot(dirn) dperp2 = np.sum(delta * delta) - d0 * d0 target_d2 = 4 * rad**2 assert target_d2 < dperp2 print("nmiss", nmiss, nmiss / 1000) def test_bvh_slide_whole(): # timings wtih -Ofast # slide test 10,000 iter bvhslide float: 16,934/s double: 16,491/s bvhmin 17,968/s fracmiss: 0.0834 # np.random.seed(0) N1, N2 = 2, 10 totbvh, totbvhf, totmin = 0, 0, 0 nmiss = 0 for j in range(N1): xyz1 = np.random.rand(5000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(5000, 3) - [0.5, 0.5, 0.5] # tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) # bvh1f = BVH_32bit(xyz1) # bvh2f = BVH_32bit(xyz2) # tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=0.5) pos2 = hm.rand_xform(N2, cart_sd=0.5) dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) radius = 0.001 + np.random.rand() / 10 slides = list() for i in range(N2): tbvh = perf_counter() dslide = bvh.bvh_slide(bvh1, bvh2, pos1[i], pos2[i], radius, dirn) tbvh = perf_counter() - tbvh tbvhf = perf_counter() # dslide = bvh.bvh_slide_32bit(bvh1f, bvh2f, pos1[i], pos2[i], radius, dirn) tbvhf = perf_counter() - tbvhf slides.append(dslide) if dslide > 9e8: tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, pos1[i], pos2[i]) tn = perf_counter() - tn assert dn > 2 * radius nmiss += 1 else: tmp = hm.htrans(dirn * dslide) @ pos1[i] tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, tmp, pos2[i]) tn = perf_counter() - tn if not np.allclose(dn, 2 * radius, atol=1e-6): print(dn, 2 * radius) assert np.allclose(dn, 2 * radius, atol=1e-6) # print( # i, # f"tnaivecpp {tn:1.6f} tbvh {tbvh:1.6f} tcpp/tbvh {tn/tbvh:8.1f}", # np.linalg.norm(pos1[:3, 3]), # dslide, # ) totmin += tn totbvh += tbvh totbvhf += tbvhf slides2 = bvh.bvh_slide_vec(bvh1, bvh2, pos1, pos2, radius, dirn) assert np.allclose(slides, slides2) N = N1 * N2 print( f"slide test {N:,} iter bvhslide double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", # f"slide test {N:,} iter bvhslide float: {int(N/totbvhf):,}/s double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", f"fracmiss: {nmiss/N}", ) def test_collect_pairs_simple(): print("test_collect_pairs_simple") bufbvh = -np.ones((100, 2), dtype="i4") bufnai = -np.ones((100, 2), dtype="i4") bvh1 = BVH([[0, 0, 0], [0, 2, 0]]) bvh2 = BVH([[0.9, 0, 0], [0.9, 2, 0]]) assert len(bvh1) == 2 mindist = 1.0 pos1 = np.eye(4) pos2 = np.eye(4) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert not o print(pbvh.shape) assert len(pbvh) == 2 and nnai == 2 assert np.all(pbvh == [[0, 0], [1, 1]]) assert np.all(bufnai[:nnai] == [[0, 0], [1, 1]]) pos1 = hm.htrans([0, 2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert not o assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[0, 1]]) assert np.all(bufnai[:nnai] == [[0, 1]]) pos1 = hm.htrans([0, -2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert not o assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[1, 0]]) assert np.all(bufnai[:nnai] == [[1, 0]]) def test_collect_pairs_simple_selection(): print("test_collect_pairs_simple_selection") bufbvh = -np.ones((100, 2), dtype="i4") bufnai = -np.ones((100, 2), dtype="i4") crd1 = [[0, 0, 0], [0, 0, 0], [0, 2, 0], [0, 0, 0]] crd2 = [[0, 0, 0], [0.9, 0, 0], [0, 0, 0], [0.9, 2, 0]] mask1 = [1, 0, 1, 0] mask2 = [0, 1, 0, 1] bvh1 = BVH(crd1, mask1) bvh2 = BVH(crd2, mask2) assert len(bvh1) == 2 assert np.allclose(bvh1.radius(), 1.0, atol=1e-6) assert np.allclose(bvh1.center(), [0, 1, 0], atol=1e-6) mindist = 1.0 pos1 = np.eye(4) pos2 = np.eye(4) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert len(pbvh) == 2 and nnai == 2 assert np.all(pbvh == [[0, 1], [2, 3]]) assert np.all(bufnai[:nnai] == [[0, 1], [2, 3]]) pos1 = hm.htrans([0, 2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[0, 3]]) assert np.all(bufnai[:nnai] == [[0, 3]]) pos1 = hm.htrans([0, -2, 0]) pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufbvh) assert not o nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1, pos2, mindist, bufnai) assert len(pbvh) == 1 and nnai == 1 assert np.all(pbvh == [[2, 1]]) assert np.all(bufnai[:nnai] == [[2, 1]]) def test_collect_pairs(): N1, N2 = 1, 50 N = N1 * N2 Npts = 500 totbvh, totbvhf, totmin = 0, 0, 0 totbvh, totnai, totct, ntot = 0, 0, 0, 0 bufbvh = -np.ones((Npts * Npts, 2), dtype="i4") bufnai = -np.ones((Npts * Npts, 2), dtype="i4") for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = np.linalg.norm(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.append(x1) pos2.append(x2) if len(pos1) == N2: break pos1 = np.stack(pos1) pos2 = np.stack(pos2) pairs = list() mindist = 0.002 + np.random.rand() / 10 for i in range(N2): tbvh = perf_counter() pbvh, o = bvh.bvh_collect_pairs(bvh1, bvh2, pos1[i], pos2[i], mindist, bufbvh) tbvh = perf_counter() - tbvh assert not o tnai = perf_counter() nnai = bvh.naive_collect_pairs(bvh1, bvh2, pos1[i], pos2[i], mindist, bufnai) tnai = perf_counter() - tnai tct = perf_counter() nct = bvh.bvh_count_pairs(bvh1, bvh2, pos1[i], pos2[i], mindist) tct = perf_counter() - tct ntot += nct assert nct == len(pbvh) totnai += 1 pairs.append(pbvh.copy()) totbvh += tbvh totnai += tnai totct += tct assert len(pbvh) == nnai if len(pbvh) == 0: continue o = np.lexsort((pbvh[:, 1], pbvh[:, 0])) pbvh[:] = pbvh[:][o] o = np.lexsort((bufnai[:nnai, 1], bufnai[:nnai, 0])) bufnai[:nnai] = bufnai[:nnai][o] assert np.all(pbvh == bufnai[:nnai]) pair1 = pos1[i] @ hm.hpoint(xyz1[pbvh[:, 0]])[..., None] pair2 = pos2[i] @ hm.hpoint(xyz2[pbvh[:, 1]])[..., None] dpair = np.linalg.norm(pair2 - pair1, axis=1) assert np.max(dpair) <= mindist pcount = bvh.bvh_count_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(pcount == [len(x) for x in pairs]) pairs2, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) for i, p in enumerate(pairs): lb, ub = lbub[i] assert np.all(pairs2[lb:ub] == pairs[i]) x, y = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1[:3], pos2[0], mindist) assert len(y) == 3 x, y = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1[0], pos2[:5], mindist) assert len(y) == 5 print( f"collect test {N:,} iter bvh {int(N/totbvh):,}/s naive {int(N/totnai):,}/s ratio {totnai/totbvh:7.2f} count-only {int(N/totct):,}/s avg cnt {ntot/N}" ) def test_collect_pairs_range(): N1, N2 = 1, 500 N = N1 * N2 Npts = 1000 for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = np.linalg.norm(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.append(x1) pos2.append(x2) if len(pos1) == N2: break pos1 = np.stack(pos1) pos2 = np.stack(pos2) pairs = list() mindist = 0.002 + np.random.rand() / 10 pairs, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(lbub == rlbub) assert np.all(pairs == rpairs) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, [250], [750]) assert len(rlbub) == len(pos1) assert np.all(rpairs[:, 0] >= 250) assert np.all(rpairs[:, 0] <= 750) filt_pairs = pairs[np.logical_and(pairs[:, 0] >= 250, pairs[:, 0] <= 750)] # assert np.all(filt_pairs == rpairs) # sketchy??? assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, [600], [1000], -1, [100], [400], -1) assert len(rlbub) == len(pos1) assert np.all(rpairs[:, 0] >= 600) assert np.all(rpairs[:, 0] <= 1000) assert np.all(rpairs[:, 1] >= 100) assert np.all(rpairs[:, 1] <= 400) filt_pairs = pairs[(pairs[:, 0] >= 600) * (pairs[:, 0] <= 1000) * (pairs[:, 1] >= 100) * (pairs[:, 1] <= 400)] assert np.all(filt_pairs == rpairs) # sketchy??? assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) def test_collect_pairs_range_sym(): # np.random.seed(132) N1, N2 = 5, 100 N = N1 * N2 Npts = 1000 for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1, pos2 = list(), list() while 1: x1 = hm.rand_xform(cart_sd=0.5) x2 = hm.rand_xform(cart_sd=0.5) d = np.linalg.norm(x1[:, 3] - x2[:, 3]) if 0.8 < d < 1.3: pos1.append(x1) pos2.append(x2) if len(pos1) == N2: break pos1 = np.stack(pos1) pos2 = np.stack(pos2) pairs = list() mindist = 0.002 + np.random.rand() / 10 pairs, lbub = bvh.bvh_collect_pairs_vec(bvh1, bvh2, pos1, pos2, mindist) rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(lbub == rlbub) assert np.all(pairs == rpairs) bounds = [100], [400], len(xyz1) // 2 rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, *bounds) assert len(rlbub) == len(pos1) assert np.all( np.logical_or(np.logical_and(100 <= rpairs[:, 0], rpairs[:, 0] <= 400), np.logical_and(600 <= rpairs[:, 0], rpairs[:, 0] <= 900))) filt_pairs = pairs[np.logical_or(np.logical_and(100 <= pairs[:, 0], pairs[:, 0] <= 400), np.logical_and(600 <= pairs[:, 0], pairs[:, 0] <= 900))] assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) bounds = [100], [400], len(xyz1) // 2, [20], [180], len(xyz1) // 5 rpairs, rlbub = bvh.bvh_collect_pairs_range_vec(bvh1, bvh2, pos1, pos2, mindist, *bounds) def awful(p): return np.logical_and( np.logical_or(np.logical_and(100 <= p[:, 0], p[:, 0] <= 400), np.logical_and(600 <= p[:, 0], p[:, 0] <= 900)), np.logical_or( np.logical_and(+20 <= p[:, 1], p[:, 1] <= 180), np.logical_or( np.logical_and(220 <= p[:, 1], p[:, 1] <= 380), np.logical_or( np.logical_and(420 <= p[:, 1], p[:, 1] <= 580), np.logical_or(np.logical_and(620 <= p[:, 1], p[:, 1] <= 780), np.logical_and(820 <= p[:, 1], p[:, 1] <= 980)))))) assert len(rlbub) == len(pos1) assert np.all(awful(rpairs)) filt_pairs = pairs[awful(pairs)] assert np.all(filt_pairs == rpairs) # sketchy??? assert np.allclose(np.unique(filt_pairs, axis=1), np.unique(rpairs, axis=1)) def test_slide_collect_pairs(): # timings wtih -Ofast # slide test 10,000 iter bvhslide float: 16,934/s double: 16,491/s bvhmin 17,968/s fracmiss: 0.0834 # np.random.seed(0) N1, N2 = 2, 50 Npts = 5000 totbvh, totbvhf, totcol, totmin = 0, 0, 0, 0 nhit = 0 buf = -np.ones((Npts * Npts, 2), dtype="i4") for j in range(N1): xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyzcol1 = xyz1[:int(Npts / 5)] xyzcol2 = xyz2[:int(Npts / 5)] # tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) bvhcol1 = BVH(xyzcol1) bvhcol2 = BVH(xyzcol2) # tcre = perf_counter() - tcre for i in range(N2): dirn = np.random.randn(3) dirn /= np.linalg.norm(dirn) radius = 0.001 + np.random.rand() / 10 pairdis = 3 * radius pos1 = hm.rand_xform(cart_sd=0.5) pos2 = hm.rand_xform(cart_sd=0.5) tbvh = perf_counter() dslide = bvh.bvh_slide(bvh1, bvh2, pos1, pos2, radius, dirn) tbvh = perf_counter() - tbvh if dslide > 9e8: tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn assert dn > 2 * radius else: nhit += 1 pos1 = hm.htrans(dirn * dslide) @ pos1 tn = perf_counter() dn, i, j = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) tn = perf_counter() - tn if not np.allclose(dn, 2 * radius, atol=1e-6): print(dn, 2 * radius) assert np.allclose(dn, 2 * radius, atol=1e-6) tcol = perf_counter() pair, o = bvh.bvh_collect_pairs(bvhcol1, bvhcol2, pos1, pos2, pairdis, buf) assert not o if len(pair) > 0: tcol = perf_counter() - tcol totcol += tcol pair1 = pos1 @ hm.hpoint(xyzcol1[pair[:, 0]])[..., None] pair2 = pos2 @ hm.hpoint(xyzcol2[pair[:, 1]])[..., None] dpair = np.linalg.norm(pair2 - pair1, axis=1) assert np.max(dpair) <= pairdis totmin += tn totbvh += tbvh N = N1 * N2 print( f"slide test {N:,} iter bvhslide double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", # f"slide test {N:,} iter bvhslide float: {int(N/totbvhf):,}/s double: {int(N/totbvh):,}/s bvhmin {int(N/totmin):,}/s", f"fracmiss: {nhit/N} collect {int(nhit/totcol):,}/s", ) def test_bvh_accessors(): xyz = np.random.rand(10, 3) - [0.5, 0.5, 0.5] b = BVH(xyz) assert np.allclose(b.com()[:3], np.mean(xyz, axis=0)) p = b.centers() dmat = np.linalg.norm(p[:, :3] - xyz[:, None], axis=2) assert np.allclose(np.min(dmat, axis=1), 0) def random_walk(N): x = np.random.randn(N, 3).astype("f").cumsum(axis=0) x -= x.mean(axis=0) return 0.5 * x / x.std() def test_bvh_isect_range(body=None, cart_sd=0.3, N2=10, mindist=0.02): N1 = 1 if body else 2 N = N1 * N2 totbvh, totnaive, totbvh0, nhit = 0, 0, 0, 0 for ibvh in range(N1): if body: bvh1, bvh2 = body.bvh_bb, body.bvh_bb else: # xyz1 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] # xyz2 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(1000) xyz2 = random_walk(1000) tcre = perf_counter() bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) ranges = list() for i in range(N2): tbvh0 = perf_counter() c = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist) tbvh0 = perf_counter() - tbvh0 # if not c: # continue if c: nhit += 1 tbvh = perf_counter() range1 = bvh.isect_range_single(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist) tbvh = perf_counter() - tbvh tn = perf_counter() range2 = bvh.naive_isect_range(bvh1, bvh2, pos1[i], pos2[i], mindist) assert range1 == range2 tn = perf_counter() - tn ranges.append(range1) # print(f"{str(range1):=^80}") # body.move_to(pos1).dump_pdb("test1.pdb") # body.move_to(pos2).dump_pdb("test2.pdb") # return # print(f"{i:3} range {range1} {tn / tbvh:8.2f}, {tn:1.6f}, {tbvh:1.6f}") totbvh += tbvh totnaive += tn totbvh0 += tbvh0 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, mindist) ranges = np.array(ranges) assert np.all(lb == ranges[:, 0]) assert np.all(ub == ranges[:, 1]) ok = np.logical_and(lb >= 0, ub >= 0) isect, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist, lb, ub) assert not np.any(isect[ok]) print( f"iscet {nhit:,} hit of {N:,} iter bvh: {int(nhit/totbvh):,}/s fastnaive {int(nhit/totnaive):,}/s", f"ratio {int(totnaive/totbvh):,}x isect-only: {totbvh/totbvh0:3.3f}x", ) def test_bvh_isect_range_ids(): N1 = 50 N2 = 100 N = N1 * N2 # Nids = 100 cart_sd = 0.3 mindist = 0.03 Npts = 1000 factors = [1000, 500, 250, 200, 125, 100, 50, 40, 25, 20, 10, 8, 5, 4, 2, 1] # Npts = 6 # factors = [3] # mindist = 0.3 # N1 = 1 assert all(Npts % f == 0 for f in factors) for ibvh in range(N1): # for ibvh in [5]: # np.random.seed(ibvh) # print(ibvh) Nids = factors[ibvh % len(factors)] # xyz1 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] # xyz2 = np.random.rand(2000, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(Npts) xyz2 = random_walk(Npts) tcre = perf_counter() bvh1 = BVH(xyz1, [], np.repeat(np.arange(Nids), Npts / Nids)) bvh2 = BVH(xyz2, [], np.repeat(np.arange(Nids), Npts / Nids)) tcre = perf_counter() - tcre pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) # pos1 = pos1[99:] # pos2 = pos2[99:] # print(bvh1.vol_lb()) # print(bvh1.vol_ub()) # print(bvh1.obj_id()) # assert 0 # assert bvh1.max_id() == Nids - 1 # assert bvh1.min_lb() == 0 # assert bvh1.max_ub() == Nids - 1 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, mindist) pos1 = pos1[lb != -1] pos2 = pos2[lb != -1] ub = ub[lb != -1] lb = lb[lb != -1] # print(lb, ub) assert np.all(0 <= lb) and np.all(lb - 1 <= ub) and np.all(ub < Nids) isectall = bvh.bvh_isect_vec(bvh1, bvh2, pos1, pos2, mindist) assert np.all(isectall == np.logical_or(lb > 0, ub < Nids - 1)) isect, clash = bvh.bvh_isect_fixed_range_vec(bvh1, bvh2, pos1, pos2, mindist, lb, ub) if np.any(isect): print(np.where(isect)[0]) print('lb', lb[isect]) print('ub', ub[isect]) print('cA', clash[isect, 0]) print('cB', clash[isect, 1]) # print('is', isect.astype('i') * 100) # print('isectlbub', np.sum(isect), np.sum(isect) / len(isect)) assert not np.any(isect[lb <= ub]) def test_bvh_isect_range_lb_ub(body=None, cart_sd=0.3, N1=3, N2=20, mindist=0.02): N1 = 1 if body else N1 N = N1 * N2 Npts = 1000 nhit, nrangefail = 0, 0 args = [ rp.Bunch(maxtrim=a, maxtrim_lb=b, maxtrim_ub=c) for a in (-1, 400) for b in (-1, 300) for c in (-1, 300) ] for ibvh, arg in it.product(range(N1), args): if body: bvh1, bvh2 = body.bvh_bb, body.bvh_bb else: # xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] # xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz1 = random_walk(Npts) xyz2 = random_walk(Npts) bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform(N2, cart_sd=cart_sd) pos2 = hm.rand_xform(N2, cart_sd=cart_sd) ranges = list() for i in range(N2): c = bvh.bvh_isect(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist) if c: nhit += 1 range1 = bvh.isect_range_single(bvh1=bvh1, bvh2=bvh2, pos1=pos1[i], pos2=pos2[i], mindist=mindist, **arg) ranges.append(range1) if range1[0] < 0: nrangefail += 1 assert c continue assert (arg.maxtrim < 0) or (np.diff(range1) + 1 >= Npts - arg.maxtrim) assert (arg.maxtrim_lb < 0) or (range1[0] <= arg.maxtrim_lb) assert (arg.maxtrim_ub < 0) or (range1[1] + 1 >= Npts - arg.maxtrim_ub) # mostly covered elsewhere, and quite slow # range2 = bvh.naive_isect_range(bvh1, bvh2, pos1[i], pos2[i], mindist) # assert range1 == range2 lb, ub = bvh.isect_range(bvh1, bvh2, pos1, pos2, mindist, **arg) ranges = np.array(ranges) assert np.all(lb == ranges[:, 0]) assert np.all(ub == ranges[:, 1]) print(f"iscet {nhit:,} hit of {N:,} iter, frangefail {nrangefail/nhit}", ) def test_bvh_pickle(tmpdir): xyz1 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(1000, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) pos1 = hm.rand_xform(cart_sd=1) pos2 = hm.rand_xform(cart_sd=1) tbvh = perf_counter() d, i1, i2 = bvh.bvh_min_dist(bvh1, bvh2, pos1, pos2) rng = bvh.isect_range_single(bvh1, bvh2, pos1, pos2, mindist=d + 0.01) with open(tmpdir + "/1", "wb") as out: _pickle.dump(bvh1, out) with open(tmpdir + "/2", "wb") as out: _pickle.dump(bvh2, out) with open(tmpdir + "/1", "rb") as out: bvh1b = _pickle.load(out) with open(tmpdir + "/2", "rb") as out: bvh2b = _pickle.load(out) assert len(bvh1) == len(bvh1b) assert len(bvh2) == len(bvh2b) assert np.allclose(bvh1.com(), bvh1b.com()) assert np.allclose(bvh1.centers(), bvh1b.centers()) assert np.allclose(bvh2.com(), bvh2b.com()) assert np.allclose(bvh2.centers(), bvh2b.centers()) db, i1b, i2b = bvh.bvh_min_dist(bvh1b, bvh2b, pos1, pos2) assert np.allclose(d, db) assert i1 == i1b assert i2 == i2b rngb = bvh.isect_range_single(bvh1b, bvh2b, pos1, pos2, mindist=d + 0.01) assert rngb == rng def test_bvh_threading_isect_may_fail(): from concurrent.futures import ThreadPoolExecutor from itertools import repeat reps = 1 npos = 1000 Npts = 1000 xyz1 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] xyz2 = np.random.rand(Npts, 3) - [0.5, 0.5, 0.5] bvh1 = BVH(xyz1) bvh2 = BVH(xyz2) mindist = 0.1 tottmain, tottthread = 0, 0 nt = 2 exe = ThreadPoolExecutor(nt) for i in range(reps): pos1 = hm.rand_xform(npos, cart_sd=0.5) pos2 = hm.rand_xform(npos, cart_sd=0.5) buf = np.empty((Npts, 2), dtype="i4") t = perf_counter() _ = [bvh.bvh_isect(bvh1, bvh2, p1, p2, mindist) for p1, p2 in zip(pos1, pos2)] isect = np.array(_) tmain = perf_counter() - t tottmain += tmain t = perf_counter() futures = exe.map( bvh.bvh_isect_vec, repeat(bvh1), repeat(bvh2),
np.split(pos1, nt)
numpy.split
# standard imports import numpy as np import matplotlib.pyplot as plt # Add parent directory to path import sys import os parent_path = '..\\nistapttools' if parent_path not in sys.path: sys.path.append(os.path.abspath(parent_path)) # custom imports import apt_fileio import m2q_calib import plotting_stuff import initElements_P3 import histogram_functions import peak_param_determination as ppd from histogram_functions import bin_dat import voltage_and_bowl from voltage_and_bowl import do_voltage_and_bowl from voltage_and_bowl import mod_full_vb_correction import colorcet as cc def create_histogram(xs, ys, x_roi=None, delta_x=0.1, y_roi=None, delta_y=0.1): """Create a 2d histogram of the data, specifying the bin intensity, region of interest (on the y-axis), and the spacing of the y bins""" # even number num_x = int(np.ceil((x_roi[1]-x_roi[0])/delta_x)) num_y = int(np.ceil((y_roi[1]-y_roi[0])/delta_y)) return np.histogram2d(xs, ys, bins=[num_x, num_y], range=[x_roi, y_roi], density=False) def _extents(f): """Helper function to determine axis extents based off of the bin edges""" delta = f[1] - f[0] return [f[0] - delta/2, f[-1] + delta/2] def plot_2d_histo(ax, N, x_edges, y_edges, scale='log'): if scale=='log': dat = np.log10(1+N) elif scale=='lin': dat = N """Helper function to plot a histogram on an axis""" ax.imshow(np.transpose(dat), aspect='auto', extent=_extents(x_edges) + _extents(y_edges), origin='lower', cmap=cc.cm.CET_L8, interpolation='antialiased') def corrhist(epos, delta=1, roi=None): dat = epos['tof'] if roi is None: roi = [0, 1000] N = int(np.ceil((roi[1]-roi[0])/delta)) corrhist = np.zeros([N,N], dtype=int) multi_idxs = np.where(epos['ipp']>1)[0] for multi_idx in multi_idxs: n_hits = epos['ipp'][multi_idx] cluster = dat[multi_idx:multi_idx+n_hits] idx1 = -1 idx2 = -1 for i in range(n_hits): for j in range(i+1,n_hits): idx1 = int(np.floor(cluster[i]/delta)) idx2 = int(np.floor(cluster[j]/delta)) if idx1 < N and idx1>=0 and idx2 < N and idx2>=0: corrhist[idx1,idx2] += 1 edges = np.arange(roi[0],roi[1]+delta,delta) assert edges.size-1 == N return (edges, corrhist+corrhist.T-np.diag(np.diag(corrhist))) def calc_t0(tof,tof_vcorr_fac,tof_bcorr_fac,sigma): BB = tof_bcorr_fac[0::2]+tof_bcorr_fac[1::2] t0 = ((tof_bcorr_fac[0::2]*tof[0::2]+tof_bcorr_fac[1::2]*tof[1::2]) - sigma/(tof_vcorr_fac[0::2]))/BB t0 = np.ravel(np.column_stack((t0,t0))) return t0 def create_sigma_delta_histogram(raw_tof, tof_vcorr_fac, tof_bcorr_fac, sigmas=None, delta_range=None, delta_step=0.5): # Must be a doubles only epos... # scan through a range of sigmas and compute the corrected data if sigmas is None: sigmas = np.linspace(0,2000,2**7) if delta_range is None: delta_range = [0,700] delta_n_bins = int((delta_range[1]-delta_range [0])/delta_step) # print('delta_n_bins = '+str(delta_n_bins)) res_dat = np.zeros((sigmas.size,delta_n_bins)) for sigma_idx in np.arange(sigmas.size): t0 = calc_t0(raw_tof, tof_vcorr_fac, tof_bcorr_fac, sigmas[sigma_idx]) tof_corr = tof_vcorr_fac*tof_bcorr_fac*(raw_tof-t0) dts = np.abs(tof_corr[:-1:2]-tof_corr[1::2]) N, delta_edges = np.histogram(dts, bins=delta_n_bins, range=delta_range) res_dat[sigma_idx,:] = N if np.mod(sigma_idx,10)==0: print("Loop index "+str(sigma_idx+1)+" of "+str(sigmas.size)) delta_centers = 0.5*(delta_edges[:-1]+delta_edges[1:]) return (res_dat, sigmas, delta_centers) def interleave(a,b): return np.ravel(np.column_stack((a,b))) def calc_slope_and_intercept(raw_tof, volt_coeff, bowl_coeff): A = volt_coeff[0::2] B_alpha = bowl_coeff[0::2] B_beta = bowl_coeff[1::2] tof_alpha = raw_tof[0::2] tof_beta = raw_tof[1::2] intercept = 2*A*B_alpha*B_beta*(tof_beta-tof_alpha)/(B_alpha+B_beta) slope = (B_beta-B_alpha)/(B_beta+B_alpha) return (slope, intercept) # Note that x is sums and y is diffs def compute_dist_to_line(slope, intercept, x, y): return np.abs(intercept+slope*x-y)/np.sqrt(1+slope**2) def calc_parametric_line(raw_tof, volt_coeff, bowl_coeff, n=2): if n>0: t = raw_tof.reshape(-1,n) v = volt_coeff.reshape(-1,n) b = bowl_coeff.reshape(-1,n) else: t = raw_tof v = volt_coeff b = bowl_coeff r0 = v*b*(t-np.sum(b*t,axis=1)[:,np.newaxis]/np.sum(b,axis=1)[:,np.newaxis]) r1 = b/
np.sum(b,axis=1)
numpy.sum
import pyNeuroChem as pyc import hdnntools as hdt import numpy as np import time import math from ase_interface import ANIENS from ase_interface import ensemblemolecule # ------------------------------------------------------------------------ # Class for ANI cross validaiton computer for multiple conformers a time # ------------------------------------------------------------------------ class anicrossvalidationconformer(object): ''' Constructor ''' def __init__(self,cnstfile,saefile,nnfprefix,Nnet,gpuid=[0], sinet=False): # Number of networks self.Nn = Nnet gpua = [gpuid[int(np.floor(i/(Nnet/len(gpuid))))] for i in range(self.Nn)] # Construct pyNeuroChem class self.ncl = [pyc.conformers(cnstfile, saefile, nnfprefix+str(i)+'/networks/', gpua[i], sinet) for i in range(self.Nn)] #self.ncl = [pync.conformers(cnstfile, saefile, nnfprefix+str(1)+'/networks/', gpuid, sinet) for i in range(self.Nn)] ''' Compute the energy and mean force of a set of conformers for the CV networks ''' def compute_energyandforce_conformations(self,X,S,ensemble=True): Na = X.shape[0] * len(S) X_split = np.array_split(X, math.ceil(Na/10000)) energies = np.zeros((self.Nn, X.shape[0]), dtype=np.float64) forces = np.zeros((self.Nn, X.shape[0], X.shape[1], X.shape[2]), dtype=np.float32) shift = 0 for j,x in enumerate(X_split): for i, nc in enumerate(self.ncl): nc.setConformers(confs=x,types=list(S)) E = nc.energy().copy() F = nc.force().copy() #print(E.shape,x.shape,energies.shape,shift) energies[i,shift:shift+E.shape[0]] = E forces[i,shift:shift+E.shape[0]] = F shift += x.shape[0] sigma = hdt.hatokcal * np.std(energies,axis=0) / np.sqrt(float(len(S))) if ensemble: return hdt.hatokcal*np.mean(energies,axis=0), hdt.hatokcal*np.mean(forces,axis=0), sigma#, charges else: return hdt.hatokcal*energies, hdt.hatokcal*forces, sigma ##-------------------------------------------------------------------------------- ## Class for ANI cross validaiton computer for a single molecule at a time ##-------------------------------------------------------------------------------- class anicrossvalidationmolecule(object): def __init__(self, cnstfile, saefile, nnfprefix, Nnet, gpuid=0, sinet=False): # Number of networks self.Nn = Nnet # Construct pyNeuroChem class self.ncl = [pyc.molecule(cnstfile, saefile, nnfprefix + str(i) + '/networks/', gpuid, sinet) for i in range(self.Nn)] def set_molecule(self,X,S): for nc in self.ncl: nc.setMolecule(coords=X, types=list(S)) def compute_energies_and_forces_molecule(self, x, S): Na = x.shape[0] energy = np.zeros((self.Nn), dtype=np.float64) forces = np.zeros((self.Nn, Na, 3), dtype=np.float32) for i,nc in enumerate(self.ncl): nc.setMolecule(coords=x, types=list(S)) energy[i] = nc.energy()[0] forces[i, :, :] = nc.force() sigmap = hdt.hatokcal * np.std(energy) / np.sqrt(Na) energy = hdt.hatokcal * energy.mean() forces = hdt.hatokcal * np.mean(forces, axis=0) return energy, forces, sigmap # ------------------------------------------------------------------------ # pyNeuroChem -- single molecule batched optimizer (one at a time) # ------------------------------------------------------------------------ class moleculeOptimizer(anicrossvalidationmolecule): def __init__(self, cns, sae, nnf, Nn, gpuid=0): anicrossvalidationmolecule.__init__(self,cns, sae, nnf, Nn, gpuid) # Gradient descent optimizer def optimizeGradientDescent (self, X, S, alpha=0.0004, convergence=0.027, maxsteps=10000, printer=True, printstep=50): Xf = np.zeros(X.shape,dtype=np.float32) for i,x in enumerate(X): print('--Optimizing conformation:',i,'--') xn = np.array(x, np.float32) for j in range(maxsteps): e, f, p = self.compute_energies_and_forces_molecule(xn, S) xn = xn + alpha*f if printer and j%printstep==0: print(' -',j,"{0:.3f}".format(e), "{0:.4f}".format(np.abs(f).sum()), "{0:.4f}".format(np.max(np.abs(f))), "{0:.4f}".format(p)) if np.max(np.abs(f)) < convergence: break print('Complete') print(' -', j, "{0:.3f}".format(e), "{0:.4f}".format(np.abs(f).sum()), "{0:.4f}".format(np.max(np.abs(f))), "{0:.4f}".format(p)) Xf[i] = xn return Xf # Conjugate gradient optimizer def optimizeConjugateGradient (self, X, S, alpha=0.0004, convergence=0.027, maxsteps=10000, printer=True, printstep=50): Xf = np.zeros(X.shape,dtype=np.float32) for i,x in enumerate(X): print('--Optimizing conformation:',i,'--') xn = np.array(x, np.float32) hn = np.zeros(xn.shape, dtype=np.float32) fn = np.zeros(xn.shape, dtype=np.float32) for j in range(maxsteps): e, f, p = self.compute_energies_and_forces_molecule(xn, S) if j != 0: gamma = np.power(np.linalg.norm(f), 2) / np.power(np.linalg.norm(fn), 2) else: gamma = 0 fn = f hn = f + gamma * hn xn = xn + alpha * hn if printer and j%printstep==0: print(' -',j,"{0:.3f}".format(e), "{0:.4f}".format(np.abs(f).sum()), "{0:.4f}".format(np.max(np.abs(f))), "{0:.4f}".format(p)) if np.max(np.abs(f)) < convergence: break print('Complete') print(' -', j, "{0:.3f}".format(e), "{0:.4f}".format(np.abs(f).sum()), "{0:.4f}".format(np.max(np.abs(f))), "{0:.4f}".format(p)) Xf[i] = xn return Xf # In the works function for optimizing one at a time with lBFGS def optimizelBFGS (self, X, S, alpha=0.0004, convergence=0.027, maxsteps=10000, printer=True, printstep=50): Xf =
np.zeros(X.shape,dtype=np.float32)
numpy.zeros
from functools import reduce from math import exp, isclose, log, pi from os import makedirs, path import matplotlib.pyplot as plt import numpy as np from scipy import special working_dir = path.dirname(path.abspath(__file__)) makedirs(path.join(working_dir, 'plots'), exist_ok=True) try: data = np.load(path.join(working_dir, 'data.npy')) except FileNotFoundError: data = np.load(path.join(working_dir, 'task4.npy')) def hist(x_array, n_bins, continuous=True, normalize=True): min_val = x_array.min() max_val = x_array.max() count = np.zeros(int(n_bins)) for x in x_array: bin_number = int((n_bins - 1) * ((x - min_val) / (max_val - min_val))) count[bin_number] += 1 # normalize the distribution if normalize: count /= x_array.shape[0] if continuous: count /= ((max_val - min_val) / n_bins) return count, np.linspace(min_val, max_val, num=n_bins) num_bins = 100 counts, bins = hist(data, num_bins, continuous=False, normalize=False) plt.bar(bins, counts, width=0.5, align='edge', color='gray') plt.xlabel('x') plt.ylabel(r'$P\left(x\right)$') plt.savefig(path.join(working_dir, 'plots/hist.eps'), bbox_inches='tight') plt.close() counts, bins = hist(data, num_bins, continuous=False, normalize=True) plt.bar(bins, counts, width=0.5, align='edge', color='gray') plt.xlabel('x') plt.ylabel(r'$P\left(x\right)$') plt.savefig( path.join(working_dir, 'plots/hist_normalized.eps'), bbox_inches='tight' ) def poisson_likelihood(x, lambda_): n = x.shape[0] lambda_x = reduce( lambda y, z: y * z, (lambda_ ** x).tolist() ) x_factorial = reduce( lambda y, z: y * z, special.factorial(x, exact=True).tolist() ) return exp(- lambda_ * n) * lambda_x / x_factorial def poisson_log_likelihood(x, lambda_): n = x.shape[0] log_lambda_x = log(lambda_) * np.sum(x) log_x_factorial = np.sum(np.log(special.factorial(x, exact=True))) return (- lambda_ * n) + log_lambda_x - log_x_factorial # Poisson MLE lambda_hat =
np.mean(data)
numpy.mean
# Copyright (c) 2017-2020 <NAME>. # Author: <NAME> # Email: <EMAIL> # Update: 2020 - 2 - 12 import numpy as np from .Utility import to_list def gaussian_kernel(kernel_size: (int, tuple, list), width: float): """generate a gaussian kernel Args: kernel_size: the size of generated gaussian kernel. If is a scalar, the kernel is a square matrix, or it's a kernel of HxW. width: the standard deviation of gaussian kernel. If width is 0, the kernel is identity, if width reaches to +inf, the kernel becomes averaging kernel. """ kernel_size = np.asarray(to_list(kernel_size, 2), np.float) half_ksize = (kernel_size - 1) / 2.0 x, y = np.mgrid[-half_ksize[0]:half_ksize[0] + 1, -half_ksize[1]:half_ksize[1] + 1] kernel = np.exp(-(x ** 2 + y ** 2) / (2 * width ** 2)) return kernel / (kernel.sum() + 1e-8) def anisotropic_gaussian_kernel(kernel_size: (int, tuple, list), theta: float, l1: float, l2: float): """generate anisotropic gaussian kernel Args: kernel_size: the size of generated gaussian kernel. If is a scalar, the kernel is a square matrix, or it's a kernel of HxW. theta: rotation angle (rad) of the kernel. [0, pi] l1: scaling of eigen values on base 0. [0.1, 10] l2: scaling of eigen values on base 1. [0.1, L1] """ def gmdistribution(mu, sigma): half_k = (kernel_size - 1) / 2.0 x, y = np.mgrid[-half_k[0]:half_k[0] + 1, -half_k[1]:half_k[1] + 1] X = np.expand_dims(
np.stack([y, x], axis=-1)
numpy.stack
import axi import random import numpy as np def horizontal_lines(): paths = [] # horizontal lines for i in range(4): y = 1 / 8 + i / 4 paths.append([(0, y), (1, y)]) # horizontal lines for i in range(4): x = 1 / 8 + i / 4 paths.append([(x, 0), (x, 1 / 8)]) paths.append([(x, 7 / 8), (x, 1)]) return axi.Drawing(paths) def diagonal_lines(): paths = [ [(0, 1 / 8), (1 / 8, 0)], [(0, 3 / 8), (3 / 8, 0)], [(0, 5 / 8), (5 / 8, 0)], [(0, 7 / 8), (7 / 8, 0)], [(1 / 8, 1), (1, 1 / 8)], [(3 / 8, 1), (1, 3 / 8)], [(5 / 8, 1), (1, 5 / 8)], [(7 / 8, 1), (1, 7 / 8)] ] return axi.Drawing(paths) def chevrons(): paths = [ [(0, 3 / 8), (1 / 8, 4 / 8), (0, 5 / 8)], [(0, 1 / 8), (3 / 8, 4 / 8), (0, 7 / 8)], [(1 / 8, 0), (5 / 8, 4 / 8), (1 / 8, 1)], [(3 / 8, 0), (7 / 8, 4 / 8), (3 / 8, 1)], [(5 / 8, 0), (1, 3 / 8)], [(1, 5 / 8), (5 / 8, 1)], [(7 / 8, 0), (1, 1 / 8)], [(1, 7 / 8), (7 / 8, 1)] ] return axi.Drawing(paths) def corner_circles(samples_per_circle=32): paths = [] # Draw the circles centered on (0, 0) for i in range(4): radius = 1 / 8 + i / 4 thetas = np.linspace(0, np.pi / 2, num=samples_per_circle) x = radius * np.cos(thetas) y = radius * np.sin(thetas) path = list(zip(x, y)) paths.append(path) # Draw the circles centered on (1, 1) for i in range(4): radius = 1 / 8 + i / 4 thetas = np.linspace(np.pi, 3 * np.pi / 2, num=samples_per_circle) x = 1 + radius * np.cos(thetas) y = 1 + radius * np.sin(thetas) points = np.stack(arrays=[x, y]) path = [] for point_idx in range(samples_per_circle): dist = np.linalg.norm(points[:, point_idx]) if dist < 7 / 8: if len(path) > 1: paths.append(path) path = [] else: path.append(tuple(points[:, point_idx])) if len(path) > 1: paths.append(path) return axi.Drawing(paths) def edge_circles(samples_per_circle=32): paths = [] # Draw the circles centered on (0, 0.5) for i in range(2): radius = 1 / 8 + i / 4 thetas = np.linspace(-np.pi / 2, np.pi / 2, num=samples_per_circle) x = radius *
np.cos(thetas)
numpy.cos
import numpy as np import h5py as h5 from converters import convgeo2ply def extract_geometry(data_file, output_dir, nth_coord): """ Extracts the geometry of the body used in Abhiram's simulations of flow around an axisymmetric ramp body. In his simulations, the geometry is located at [k,j,i]=[1,:,:] (non-cartesian coordinate system) Geometry is saved to a .ply file. :param data_file: File to extract geometry from :param output_dir: Output directory within which to save geometry file (just directory, no filename). :param nth_coord: Save geometry with every nth coordinate (i.e. skip n-1 coords before saving the nth one). This helps reduce unnecessary mesh complexity. Higher is less detailed. """ # Open file data = h5.File(data_file, "r") # Extract mesh coords xpt2f = np.ndarray.flatten(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, ::nth_coord, ::nth_coord], order="C") # k,j,i ypt2f = np.ndarray.flatten(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateY"][" data"][1, ::nth_coord, ::nth_coord], order="C") zpt2f = np.ndarray.flatten(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateZ"][" data"][1, ::nth_coord, ::nth_coord], order="C") # Get resolutions of each surface geometry dimension ires = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, 1, ::nth_coord]) jres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, ::nth_coord, 1]) # close data file data.close() # Compile list of vertices as columns verts = np.swapaxes(np.array([xpt2f,ypt2f,zpt2f]),0,1) # Compile list of triangles - each triangle consists of 3 vertex IDs, and these lines make each "upper left" and "lower right" triangle (which forms a quadrilateral) out of adjacent vertices upper_lefts = np.swapaxes(np.array([range(0, ires * (jres - 1) - 1), range(1, ires * (jres - 1)), range(ires, ires * jres - 1)]), 0, 1) lower_rights = np.swapaxes(np.array([range(ires, ires * jres - 1), range(1, ires * (jres - 1)), range(ires + 1, ires * jres)]), 0, 1) num_tris_half = np.shape(upper_lefts)[0] # Delete "wraparound" faces upper_lefts = np.delete(upper_lefts, np.arange(ires - 1, num_tris_half + 1, ires), 0) lower_rights = np.delete(lower_rights, np.arange(ires - 1, num_tris_half + 1, ires), 0) # Concatenate triangle arrays together tris = np.concatenate((upper_lefts, lower_rights), axis=0) # Convert geometry to a .ply file for Blender convgeo2ply(verts=verts, tris=tris, output_path_ply=output_dir + "/body.ply") def extract_geometry_general(data_file, output_dir, nth_coord, axis="K", level=1): """ Extracts geometry from any surface in ijk coordinates. An axis, and the level along that axis, is specified, where the surface lies along the other two axes at the specified level. :param data_file: File to extract geometry from :param output_dir: Output directory within which to save geometry file (just directory, no filename). :param nth_coord: Save geometry with every nth coordinate (i.e. skip n-1 coords before saving the nth one). This helps reduce unnecessary mesh complexity. Higher is less detailed. """ # Open file data = h5.File(data_file, "r") # Extract mesh coords if axis.upper()=="I": xpt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][::nth_coord, ::nth_coord, level], order="C") # k,j,i ypt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateY"][" data"][::nth_coord, ::nth_coord, level], order="C") zpt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateZ"][" data"][::nth_coord, ::nth_coord, level], order="C") # Get resolutions of each surface geometry dimension xres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, ::nth_coord, 1]) yres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][::nth_coord, 1, 1]) elif axis.upper()=="J": xpt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][::nth_coord, level, ::nth_coord], order="C") # k,j,i ypt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateY"][" data"][::nth_coord, level, ::nth_coord], order="C") zpt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateZ"][" data"][::nth_coord, level, ::nth_coord], order="C") xres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, 1, ::nth_coord]) yres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][::nth_coord, 1, 1]) elif axis.upper()=="K": xpt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][level, ::nth_coord, ::nth_coord], order="C") # k,j,i ypt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateY"][" data"][level, ::nth_coord, ::nth_coord], order="C") zpt2f = np.ndarray.flatten( data["Base"]["Zone1"]["GridCoordinates"]["CoordinateZ"][" data"][level, ::nth_coord, ::nth_coord], order="C") # Get resolutions of each surface geometry dimension xres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, 1, ::nth_coord]) yres = len(data["Base"]["Zone1"]["GridCoordinates"]["CoordinateX"][" data"][1, ::nth_coord, 1]) data.close() # Compile list of vertices as columns verts = np.swapaxes(np.array([xpt2f, ypt2f, zpt2f]), 0, 1) # Compile list of triangles - each triangle consists of 3 vertex IDs, and these lines make each "upper left" and "lower right" triangle (which forms a quadrilateral) out of adjacent vertices upper_lefts = np.swapaxes( np.array([range(0, xres * (yres - 1) - 1), range(1, xres * (yres - 1)), range(xres, xres * yres - 1)]), 0, 1) lower_rights = np.swapaxes( np.array([range(xres, xres * yres - 1), range(1, xres * (yres - 1)), range(xres + 1, xres * yres)]), 0, 1) num_tris_half = np.shape(upper_lefts)[0] # Delete "wraparound" faces upper_lefts = np.delete(upper_lefts, np.arange(xres - 1, num_tris_half + 1, xres), 0) lower_rights = np.delete(lower_rights,
np.arange(xres - 1, num_tris_half + 1, xres)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Tue Feb 27 13:14:39 2018 @author: ning """ from sklearn.preprocessing import StandardScaler from sklearn.svm import SVC from sklearn.linear_model import SGDClassifier from sklearn.ensemble import RandomForestClassifier,VotingClassifier,GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.neighbors import KNeighborsClassifier from sklearn.neural_network import MLPClassifier from sklearn.pipeline import Pipeline from mne.decoding import Vectorizer,LinearModel from sklearn import metrics import pandas as pd import numpy as np def make_clf(vectorized = True,hard_soft='soft',voting=True,decoding=True): """ vectorized: to wrap the 3D matrix to 2D hard_soft: decision making step for voting classifier voting: if true, classifiers are SGD, SVM, KNN, naive bayes, dense neural networkd, random forest and gradient boosting classifier to make sure the voting classifier returns probabilistic prediction, we need to carefully define each of the individual 'voters' if false, classifier are SDG, SVM, random forest and gradient boosting classifier All nested with a standardized scaler - mean centered and unit variance """ linear_ = SGDClassifier(max_iter=int(2e3),tol=1e-3,random_state=12345,loss='modified_huber') svc = SVC(max_iter=int(2e3),tol=1e-3,random_state=12345,kernel='rbf',probability=True,) rf = RandomForestClassifier(n_estimators=100,random_state=12345) knn = KNeighborsClassifier(n_neighbors=10,) bayes = GaussianNB(priors=(0.4,0.6)) gdb = GradientBoostingClassifier(random_state=12345) NN = MLPClassifier(hidden_layer_sizes=(100,50,20),learning_rate='adaptive',solver='sgd',max_iter=int(1e3), shuffle=True,random_state=12345) clf = [] if vectorized: clf.append(('vectorize',Vectorizer())) clf.append(('scaler',StandardScaler())) if voting=='vote': clf.append(('estimator',VotingClassifier([('SGD',linear_), ('SVM',svc), ('RF',rf), ('KNN',knn), ('naive_bayes',bayes), ('DNN',NN), ('GDB',gdb)],voting=hard_soft,))) elif voting == 'linear': est = SVC(max_iter=-1,tol=1e-3,random_state=12345,kernel='linear',probability=True,) if decoding: clf.append(('estimator',LinearModel(est))) else: clf.append(('estimator',est)) else: clf.append(('estimator',VotingClassifier([('SGD',linear_), ('SVM',svc), ('RF',rf), ('GDB',gdb)],voting=hard_soft,))) clf = Pipeline(clf) return clf def row_selection(row_element,idx_pos): """ small helper function for the next function """ if row_element in idx_pos: return True else: return False def prediction_pipeline(labels,images,clf,working_trial_orders,condition='load2'): """ This function is to process predicted labels, predicted prbabilities, and true labels in different experimental conditions. """ if condition == 'load2':# just in case I figure out how to do this in load 5 condition image1,image2 = images positive,negative = [],[] # preallocate for the predictions within the positive probe trials and negative probe trials idx_pos,idx_neg = [],[]# preallocate for the trial numbers for ii,(label, image1_,image2_) in enumerate(zip(labels,image1,image2)): # print(label,image1_.shape,image2_.shape) if label:# "1" in label can be used as "true" positive.append([clf.predict_proba(image1_.reshape(1,61,200))[0],# single item probabilistic prediction returns a 3D vector, thus, we take the 1st dimension out clf.predict_proba(image2_.reshape(1,61,200))[0]]) idx_pos.append(ii) else: negative.append([clf.predict_proba(image1_.reshape(1,61,200))[0], clf.predict_proba(image2_.reshape(1,61,200))[0]]) idx_neg.append(ii) positive = np.array(positive) negative = np.array(negative) positive_soft_max = np.argmax(positive,axis=1) negative_soft_max = np.argmax(negative,axis=1) positive_prob = positive[:,:,-1]# we only care about the probability of the positive probe images (old images) negative_prob = negative[:,:,-1] soft_max_ = np.concatenate((positive_soft_max,negative_soft_max))# I called this "soft max", but it is not doing such thing prob_ = np.concatenate((positive_prob,negative_prob)) soft_max_idx = np.concatenate((idx_pos,idx_neg)) # create a data frame with two columns, and each column contains the probability of weather this image will present again in the probe, regardless results = pd.DataFrame(soft_max_,columns=['image1_pred','image2_pred']) results['order'] = soft_max_idx results['image1_pred_prob'] = prob_[:,0] results['image2_pred_prob'] = prob_[:,1] results = results.sort_values('order').reset_index() results['labels'] = labels results['image1']=np.array(working_trial_orders['probe'] == working_trial_orders['image1'],dtype=int) results['image2']=np.array(working_trial_orders['probe'] == working_trial_orders['image2'],dtype=int) # pred = results[['image1_pred','image2_pred']].values pred_prob = results[['image1_pred_prob','image2_pred_prob']].values truth = results[['image1','image2']].values # print(metrics.classification_report(truth,pred)) # predictive ability of order print('predictive ability of order',metrics.roc_auc_score(truth[:,0],pred_prob[:,0]),metrics.roc_auc_score(truth[:,1],pred_prob[:,1])) # predictive ability of positive and negative stimuli results['trial']=[row_selection(row_element,idx_pos) for row_element in results['order'].values] positive_trials = results.iloc[results['trial'].values] truth_ = positive_trials[['image1','image2']].values.flatten() pred_prob_ = positive_trials[['image1_pred_prob','image2_pred_prob']].values.flatten() print('predictive ability of positive and negative stimuli',metrics.roc_auc_score(truth_,pred_prob_)) return {'predictive ability of order':[metrics.roc_auc_score(truth[:,0],pred_prob[:,0]), metrics.roc_auc_score(truth[:,1],pred_prob[:,1])], 'predictive ability of positive and negative stimuli':metrics.roc_auc_score(truth_,pred_prob_)} elif condition == 'load5':# to be continue iamge1,image2,image3,image4,image5 = images positive,negative = [],[] idx_pos,idx_neg = [],[] for ii, (label,image1_,image2_,image3_,image4_,image5_) in enumerate(zip(labels,image1,image2,image3,image4,image5)): if label: positive.append([clf.predict_proba(image1_.reshape(1,61,200))[0], clf.predict_proba(image2_.reshape(1,61,200))[0], clf.predict_proba(image3_.reshape(1,61,200))[0], clf.predict_proba(image4_.reshape(1,61,200))[0], clf.predict_proba(image5_.reshape(1,61,200))[0]]) idx_pos.append(ii) else: negative.append([clf.predict_proba(image1_.reshape(1,61,200))[0], clf.predict_proba(image2_.reshape(1,61,200))[0], clf.predict_proba(image3_.reshape(1,61,200))[0], clf.predict_proba(image4_.reshape(1,61,200))[0], clf.predict_proba(image5_.reshape(1,61,200))[0]]) idx_neg.append(ii) positive =
np.array(positive)
numpy.array
import numpy as np from gensim.models.keyedvectors import KeyedVectors import matplotlib.pyplot as plt import pandas as pd import json from numpy import loadtxt import sys, os sys.path.append(os.path.join('..')) if sys.version_info[0] < 3: import io open = io.open plt.style.use("seaborn") from sklearn.manifold import TSNE def plot_words(embedding, model_alias, professions, gender_specific, bias_type, biased): # load x-axis x = np.loadtxt(os.path.join("..", "output", f"{model_alias}_gender_subspace.csv"), delimiter=',') # load vector for y-axis y_ax = np.loadtxt(os.path.join("..", "output", f"{model_alias}_neutrality.csv"), delimiter=',') #combine wordlist = professions+gender_specific # choose only words that are in the embeddings wordlist = [w for w in wordlist if w in embedding.vocab] # retrieve vectors vectors = [embedding[k] for k in wordlist] # flipped y = np.flipud(y_ax) # normalize x/= np.linalg.norm(x) y/= np.linalg.norm(y) # Get pseudo-inverse matrix W = np.array(vectors) B =
np.array([x,y])
numpy.array
import numpy as np import random import bisect import environment import pickle from collections import deque from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import Adam from keras.regularizers import l2 from keras import backend as K from keras.models import load_model import tensorflow as tf import time def sample_from_distribution(distribution): total = np.sum(distribution) cdf = [] cumsum = 0 for w in distribution: cumsum += w result.append(cumsum / total) x = random.random() idx = bisect.bisect(cdf, x) return idx def epsilon_greedy_selection(q, actions, epsilon=0.1): if np.random.uniform(0, 1) < epsilon: # exploration return np.random.choice(actions) else: # exploitation arg = np.argsort(q[actions])[::-1] n_tied = sum(np.isclose(q[actions], q[actions][arg[0]])) return actions[np.random.choice(arg[0:n_tied])] class Dumby(): def __init__(self, env, epsilon=0.3, gamma=0.75, algorithm='dqn', schedule={}): self.state_size = env.n_states self.action_size = env.n_actions self.batch_size = 32 self.gamma = gamma # discount rate self.epsilon = epsilon # exploration rate self.epsilon_min = 0.01 self.epsilon_decay = 0.995 self.learning_rate = 0.001 self.algorithm = algorithm self.schedule = schedule self.in_between_training_steps = self.batch_size if self.algorithm=='dqn': self.memory = deque(maxlen=2000) self.target_model = self._build_model() elif self.algorithm =='sarsa': self.alpha = 0.1 self.q = np.zeros((self.state_size, self.action_size)) self.q.fill(float('-inf')) for s in range(self.state_size): actions = env.actions(s) for a in actions: self.q[s, a] = 0 def _huber_loss(self, y_true, y_pred, clip_delta=1.0): error = y_true - y_pred cond = K.abs(error) <= clip_delta squared_loss = 0.5 * K.square(error) quadratic_loss = 0.5 * K.square(clip_delta) + clip_delta * (K.abs(error) - clip_delta) return K.mean(tf.where(cond, squared_loss, quadratic_loss)) def _build_model(self): l2_reg = 0.00001 model = Sequential() # model.add(Dense(10, input_dim=self.state_size, activation='relu', kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg))) # model.add(Dropout(0.1)) # model.add(Dense(16, input_dim=self.state_size, activation='relu', kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg))) # model.add(Dropout(0.1)) model.add(Dense(24, activation='relu', input_dim=self.state_size)) #, kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg), activation_regularizer=l2(l2_reg))) model.add(Dropout(0.01)) model.add(Dense(24, activation='relu')) #, kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg), activation_regularizer=l2(l2_reg))) model.add(Dropout(0.01)) # model.add(Dropout(0.1)) # model.add(Dense(30, activation='relu', kernel_regularizer=l2(l2_reg), bias_regularizer=l2(l2_reg))) # model.add(Dropout(0.3)) model.add(Dense(self.action_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=self.learning_rate)) # model.compile(loss=self._huber_loss, # optimizer=Adam(lr=self.learning_rate)) return model def remember(self, state, action, reward, next_state, done): self.memory.append((state, action, reward, next_state, done)) if len(self.memory) >= self.batch_size and self.in_between_training_steps >= self.batch_size: # print(' replay') print('[!] Fitting model with replay') loss = self.replay() self.in_between_training_steps = 0 self.in_between_training_steps += 1 # def forget(self): # del self.memory # self.memory = deque(maxlen=2000) def update_target_model(self): # copy weights from model to target_model self.target_model.set_weights(self.model.get_weights()) def act(self, state, actions): if np.random.rand() <= self.epsilon: return np.random.choice(actions) # return random.randrange(self.action_size) if self.algorithm=='dqn': act_values = self.target_model.predict(state) # if np.argmax(act_values[0]) not in actions: # act_ = np.random.choice(actions) # print('random action', act_) # return act_ # else: # # print(['{:.3f}'.format(si) for si in state[0,:]], ['{:.3f}'.format(si) for si in act_values[0,:]]) # print('predicted action', np.argmax(act_values[0])) return np.argmax(act_values[0]) # returns action elif self.algorithm == 'sarsa': q_ = self.q[state] arg = np.argsort(q_[actions])[::-1] n_tied = sum(np.isclose(q_[actions], q_[actions][arg[0]])) return actions[np.random.choice(arg[0:n_tied])] def replay(self): # minibatch = random.sample(self.memory, batch_size) # for state, action, reward, next_state, done in minibatch: # target = reward # if not done: # target = (reward + self.gamma * np.amax(self.target_model.predict(next_state)[0])) # target_f = self.target_model.predict(state) # target_f[0][action] = target # self.target_model.fit(state, target_f, epochs=1, verbose=0) # if self.epsilon > self.epsilon_min: # self.epsilon *= self.epsilon_decay #minibatch = random.sample(self.memory, batch_size) # minibatch = self.memory losses = [] #print(len(self.memory), len(self.memory[0])) # minibatch = self.memory #random.sample(self.memory, batch_size) #print(len(self.memory), self.batch_size) minibatch = random.sample(self.memory, self.batch_size) counter_ = 1 for state, action, reward, next_state, done in minibatch: target = reward if not done: target = reward + self.gamma * np.amax(self.target_model.predict(next_state)[0]) target_f = self.target_model.predict(state) target_f[0][action] = target # print(state, target_f, reward, self.gamma * np.amax(self.target_model.predict(next_state)[0]), self.target_model.predict(state)) history = self.target_model.fit(state, target_f, epochs=1, verbose=0) # target = self.target_model.predict(state) # if done: # target[0][action] = reward # else: # # a = self.target_model.predict(next_state)[0] # t = self.target_model.predict(next_state)[0] # target[0][action] = reward + self.gamma * np.argmax(t) # # print('log:', action, reward, np.argmax(t), reward + self.gamma * np.argmax(t)) # # target[0][action] = reward + self.gamma * t[np.argmax(a)] # #print(state, target) # history = self.target_model.fit(state, target, epochs=1, verbose=0) # print('loss:', history.history['loss']) losses.append(history.history['loss']) print('[-] Fitting loss instance #{} in minibatch: {}'.format(counter_, history.history['loss'])) counter_ += 1 if self.epsilon > self.epsilon_min: self.epsilon *= self.epsilon_decay return
np.mean(losses)
numpy.mean
#This script is intended to find the top and the mid pedestal of the H mod plasma profile for the pre and post processing of the simulation #Developed by <NAME> on 01/22/2020 import numpy as np import matplotlib.pyplot as plt from efittools import read_efit_file def find_pedestal(file_name, path_name, plot): if len(path_name)==0 and ('/' not in file_name): path_name = './' eqdskdata=read_efit_file(path_name+file_name) p = eqdskdata['pressure'] #pressure read from eqdsk x = eqdskdata['rhotor'] #radial location read from eqdsk dp = eqdskdata['pprime'] #First order of pressure x=x[int(len(x)*0.6):] p=p[int(len(p)*0.6):] dp=dp[int(len(dp)*0.6):] dp0 =
np.gradient(p,x)
numpy.gradient
""" Plotting """ # from matplotlib.colors import LogNorm # from matplotlib.ticker import ScalarFormatter import matplotlib.pyplot as plt # from matplotlib.cm import ScalarMappable from mpl_toolkits.mplot3d import Axes3D import numpy as np import os from scipy import fftpack from scipy.fftpack import fft, ifft, rfft, fftfreq from xseis import xutil from matplotlib.pyplot import rcParams rcParams['figure.figsize'] = 11, 8 def sigs(d, shifts=None, labels=None, **kwargs): if shifts is None: shifts = np.arange(0, d.shape[0], 1) * 1.0 for i, sig in enumerate(d): tmp = sig / np.max(np.abs(sig)) + shifts[i] plt.plot(tmp, **kwargs) if labels is not None: for i, lbl in enumerate(labels): plt.text(0, shifts[i] + 0.1, lbl, fontsize=15) def v2color(vals): cnorm = plt.Normalize(vmin=
np.nanmin(vals)
numpy.nanmin
import numpy as np import pandas as pd from .io_base import DataTaker class CAENDT57XX(DataTaker): """ decode CAENDT5725 or CAENDT5730 digitizer data. Setting the model_name will set the appropriate sample_rate Use the input_config function to set certain variables by passing a dictionary, this will most importantly assemble the file header used by CAEN CoMPASS to label output files. """ def __init__(self, *args, **kwargs): self.id = None self.model_name = "DT5725" # hack -- can't set the model name in the init self.decoder_name = "caen" self.file_header = None self.adc_bitcount = 14 self.sample_rates = {"DT5725": 250e6, "DT5730": 500e6} self.sample_rate = None if self.model_name in self.sample_rates.keys(): self.sample_rate = self.sample_rates[self.model_name] else: raise TypeError("Unidentified digitizer type: "+str(model_name)) self.v_range = 2.0 self.e_cal = None self.e_type = None self.int_window = None self.parameters = ["TIMETAG", "ENERGY", "E_SHORT", "FLAGS"] self.decoded_values = { "board": None, "channel": None, "timestamp": None, "energy": None, "energy_short": None, "flags": None, "num_samples": None, "waveform": [] } super().__init__(*args, **kwargs) def input_config(self, config): self.id = config["id"] self.v_range = config["v_range"] self.e_cal = config["e_cal"] self.e_type = config["e_type"] self.int_window = config["int_window"] self.file_header = "CH_"+str(config["channel"])+"@"+self.model_name+"_"+str(config["id"])+"_Data_" def get_event_size(self, t0_file): with open(t0_file, "rb") as file: if self.e_type == "uncalibrated": first_event = file.read(24) [num_samples] = np.frombuffer(first_event[20:24], dtype=np.uint16) return 24 + 2*num_samples elif self.e_type == "calibrated": first_event = file.read(30) [num_samples] = np.frombuffer(first_event[26:30], dtype=np.uint32) return 30 + 2 * num_samples # number of bytes / 2 else: raise TypeError("Invalid e_type! Valid e_type's: uncalibrated, calibrated") def get_event(self, event_data_bytes): self.decoded_values["board"] = np.frombuffer(event_data_bytes[0:2], dtype=np.uint16)[0] self.decoded_values["channel"] = np.frombuffer(event_data_bytes[2:4], dtype=np.uint16)[0] self.decoded_values["timestamp"] = np.frombuffer(event_data_bytes[4:12], dtype=np.uint64)[0] if self.e_type == "uncalibrated": self.decoded_values["energy"] = np.frombuffer(event_data_bytes[12:14], dtype=np.uint16)[0] self.decoded_values["energy_short"] = np.frombuffer(event_data_bytes[14:16], dtype=np.uint16)[0] self.decoded_values["flags"] = np.frombuffer(event_data_bytes[16:20], np.uint32)[0] self.decoded_values["num_samples"] = np.frombuffer(event_data_bytes[20:24], dtype=np.uint32)[0] self.decoded_values["waveform"] = np.frombuffer(event_data_bytes[24:], dtype=np.uint16) elif self.e_type == "calibrated": self.decoded_values["energy"] = np.frombuffer(event_data_bytes[12:20], dtype=np.float64)[0] self.decoded_values["energy_short"] = np.frombuffer(event_data_bytes[20:22], dtype=np.uint16)[0] self.decoded_values["flags"] =
np.frombuffer(event_data_bytes[22:26], np.uint32)
numpy.frombuffer
#!/usr/bin/env python # coding=utf-8 """ Script to generate uncertain sets of building/building physics uncertain parameters """ import math import random as rd import numpy as np import matplotlib.pyplot as plt def calc_array_mod_years_single_build(nb_samples, year_of_constr, max_year, time_sp_force_retro=40): """ Calculate array of modification years for single building. Assumes equal distribution of mod. year probability density function. If time_sp_force_retro is set and smaller than time span between max_year (e.g. current year) and year_of_constr (year of construction), time span is only considered between max_year and (max_year - time_sp_force_retro). This should guarantee, that at least on modernization happened in the span of time_sp_force_retro. Parameters ---------- nb_samples : int Number of samples year_of_constr : int Year of construction of building max_year : int Last possible year of retrofit (e.g. current year) Should be larger than year_of_constr time_sp_force_retro : int, optional Timespan to force retrofit (default: 40). If value is set, forces retrofit within its time span. If set to None, time span is not considered. Returns ------- array_mod_years : list (of ints) List of modernization years. """ # list_mod_years = [] array_mod_years = np.zeros(nb_samples) # # Currently unused: List with TEASER years of modernization # list_teaser_mod_y = [1982, 1995, 2002, 2009] # Calc min_year if time_sp_force_retro is not None: if max_year - year_of_constr > time_sp_force_retro: min_year = int(max_year - time_sp_force_retro) else: min_year = int(year_of_constr + 1) else: min_year = int(year_of_constr + 1) # Do sampling for i in range(len(array_mod_years)): array_mod_years[i] = rd.randint(min_year, max_year) return array_mod_years def calc_inf_samples(nb_samples, mean=0, sdev=1, max_val=2): """ Performs building infiltration rate sampling based on log normal distribution. Reset values larger than max_val to 0.26 (1/h, average value) Parameters ---------- nb_samples : int Number of samples mean : float, optional Mean of log normal distribution (default: 0) sdev : float, optional Standard deviation of log normal distribution (default: 1) max_val : float, optional Maximal allowed value for natural infiltration rate (default: 2) Returns ------- array_inf : list (of floats) List of infiltration rates in 1/h References ---------- For reference values: Münzenberg, Uwe (2004): Der natürliche Luftwechsel in Gebäuden und seine Bedeutung bei der Beurteilung von Schimmelpilzschäden. In: Umwelt, Gebäude & Gesundheit: Innenraumhygiene, Raumluftqualität und Energieeinsparung. Ergebnisse des 7, S. 263–271. """ array_inf =
np.random.lognormal(mean=mean, sigma=sdev, size=nb_samples)
numpy.random.lognormal
# -*- coding: utf-8 -*- # Copyright (c) 2019 The HERA Team # Licensed under the 2-clause BSD License from __future__ import print_function, division, absolute_import from time import time import numpy as np import tensorflow as tf import h5py import random from sklearn.metrics import confusion_matrix from scipy import ndimage from copy import copy def transpose(X): """ Transpose for use in the map functions. """ return X.T def normalize(X): """ Normalization for the log amplitude required in the folding process. """ sh = np.shape(X) absX = np.abs(X) absX = np.where(absX <= 0.0, (1e-8) * np.random.randn(sh[0], sh[1]), absX) LOGabsX = np.nan_to_num(np.log10(absX)) return np.nan_to_num((LOGabsX - np.nanmean(LOGabsX)) / np.nanstd(np.abs(LOGabsX))) def normphs(X): """ Normalization for the phase in the folding proces. """ sh = np.shape(X) return np.array(np.sin(np.angle(X))) def tfnormalize(X): """ Skip connection layer normalization. """ sh = np.shape(X) X_norm = tf.contrib.layers.layer_norm(X, trainable=False) return X def foldl(data, ch_fold=16, padding=2): """ Folding function for carving up a waterfall visibility flags for prediction in the FCN. """ sh = np.shape(data) _data = data.T.reshape(ch_fold, sh[1] / ch_fold, -1) _DATA = np.array(map(transpose, _data)) _DATApad = np.array( map( np.pad, _DATA, len(_DATA) * [((padding + 2, padding + 2), (padding, padding))], len(_DATA) * ["reflect"], ) ) return _DATApad def pad(data, padding=2): """ Padding function applied to folded spectral windows. Reflection is default padding. """ sh = np.shape(data) t_pad = 16 data_pad = np.pad( data, pad_width=((t_pad + 2, t_pad + 2), (t_pad, t_pad)), mode="reflect" ) return data_pad def unpad(data, diff=4, padding=2): """ Unpadding function for recovering flag predictions. """ sh = np.shape(data) t_unpad = sh[0] return data[padding[0] : sh[0] - padding[0], padding[1] : sh[1] - padding[1]] def store_iterator(it): a = [x for x in it] return np.array(a) def fold(data, ch_fold=16, padding=2): """ Folding function for carving waterfall visibilities with additional normalized log and phase channels. Input: (Batch, Time, Frequency) Output: (Batch*FoldFactor, Time, Reduced Frequency, Channels) """ sh = np.shape(data) _data = data.T.reshape(ch_fold, int(sh[1] / ch_fold), -1) _DATA = store_iterator(map(transpose, _data)) _DATApad = store_iterator(map(pad, _DATA)) DATA = np.stack( ( store_iterator(map(normalize, _DATApad)), store_iterator(map(normphs, _DATApad)), np.mod(store_iterator(map(normphs, _DATApad)), np.pi), ), axis=-1, ) return DATA def unfoldl(data_fold, ch_fold=16, padding=2): """ Unfolding function for recombining the carved label (flag) frequency windows back into a complete waterfall visibility. Input: (Batch*FoldFactor, Time, Reduced Frequency, Channels) Output: (Batch, Time, Frequency) """ sh = np.shape(data_fold) data_unpad = data_fold[ :, (padding + 2) : (sh[1] - (padding + 2)), padding : sh[2] - padding ] ch_fold, ntimes, dfreqs = np.shape(data_unpad) data_ = np.transpose(data_unpad, (0, 2, 1)) _data = data_.reshape(ch_fold * dfreqs, ntimes).T return _data def stacked_layer( input_layer, num_filter_layers, kt, kf, activation, stride, pool, bnorm=True, name="None", dropout=None, maxpool=True, mode=True, ): """ Creates a 3x stacked layer of convolutional layers. Each layer uses the same kernel size. Batch normalized output is default and recommended for faster convergence, although not every may require it (???). Input: Tensor Variable (Batch*FoldFactor, Time, Reduced Frequency, Input Filter Layers) Output: Tensor Variable (Batch*FoldFactor, Time/2, Reduced Frequency/2, num_filter_layers) """ conva = tf.layers.conv2d( inputs=input_layer, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padding="same", activation=activation, ) if kt - 2 < 0: kt = 3 if dropout is not None: convb = tf.layers.dropout( tf.layers.conv2d( inputs=conva, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padding="same", activation=activation, ), rate=dropout, ) else: convb = tf.layers.conv2d( inputs=conva, filters=num_filter_layers, kernel_size=[kt, kt], strides=[1, 1], padding="same", activation=activation, ) shb = convb.get_shape().as_list() convc = tf.layers.conv2d( inputs=convb, filters=num_filter_layers, kernel_size=(1, 1), padding="same", activation=activation, ) if bnorm: bnorm_conv = tf.layers.batch_normalization( convc, scale=True, center=True, training=mode, fused=True ) else: bnorm_conv = convc if maxpool: pool = tf.layers.max_pooling2d( inputs=bnorm_conv, pool_size=pool, strides=stride ) elif maxpool is None: pool = bnorm_conv else: pool = tf.layers.average_pooling2d( inputs=bnorm_conv, pool_size=pool, strides=stride ) return pool def batch_accuracy(labels, predictions): """ Returns the RFI class accuracy. """ labels = tf.cast(labels, dtype=tf.int64) predictions = tf.cast(predictions, dtype=tf.int64) correct = tf.reduce_sum( tf.cast(tf.equal(tf.add(labels, predictions), 2), dtype=tf.int64) ) total = tf.reduce_sum(labels) return tf.divide(correct, total) def accuracy(labels, predictions): """ Numpy version of RFI class accuracy. """ correct = 1.0 * np.sum((labels + predictions) == 2) total = 1.0 * np.sum(labels == 1) print("correct", correct) print("total", total) try: return correct / total except BaseException: return 1.0 def MCC(tp, tn, fp, fn): """ Calculates the Mathews Correlation Coefficient. """ if tp == 0 and fn == 0: return tp * tn - fp * fn else: return (tp * tn - fp * fn) / np.sqrt( (1.0 * (tp + fp) * (tp + fn) * (tn + fp) * (tn + fn)) ) def f1(tp, tn, fp, fn): """ Calculates the F1 Score. """ precision = tp / (1.0 * (tp + fp)) recall = tp / (1.0 * (tp + fn)) return 2.0 * precision * recall / (precision + recall) def SNRvsTPR(data, true_flags, flags): """ Calculates the signal-to-noise ratio versus true positive rate (recall). """ SNR = np.linspace(0.0, 4.0, 30) snr_tprs = [] data_ = np.copy(data) flags_ = np.copy(flags) true_flags_ = np.copy(true_flags) for snr_ in SNR: snr_map = np.log10(data_ * flags_ / np.std(data_ * np.logical_not(true_flags))) snr_inds = snr_map < snr_ confuse_mat = confusion_matrix( true_flags_[snr_inds].astype(int).reshape(-1), flags_[snr_inds].astype(int).reshape(-1), ) if np.size(confuse_mat) == 1: tp = 1e-10 tn = confuse_mat[0][0] fp = 1e-10 fn = 1e-10 else: try: tn, fp, fn, tp = confuse_mat.ravel() except BaseException: tp = np.nan fn = np.nan snr_tprs.append(MCC(tp, tn, fp, fn)) data_[snr_inds] = 0.0 return snr_tprs def hard_thresh(layer, thresh=0.5): """ Thresholding function for predicting based on raw FCN output. """ layer_sigmoid = 1.0 / (1.0 + np.exp(-layer)) return np.where(layer_sigmoid > thresh, np.ones_like(layer), np.zeros_like(layer)) def softmax(X): return np.exp(X) / np.sum(np.exp(X), axis=-1) def ROC_stats(ground_truth, logits): ground_truth = np.reshape(ground_truth, [-1]) thresholds = np.linspace(-1, 4.0, 30) FPR = [] TPR = [] MCC_arr = [] F2 = [] for thresh in thresholds: pred_ = hard_thresh(logits, thresh=thresh).reshape(-1) tn, fp, fn, tp = confusion_matrix(ground_truth, pred_).ravel() recall = tp / (1.0 * (tp + fn)) precision = tp / (1.0 * (tp + fp)) TPR.append(tp / (1.0 * (tp + fn))) FPR.append(fp / (1.0 * (fp + tn))) MCC_arr.append(MCC(tp, tn, fp, fn)) F2.append(5.0 * recall * precision / (4.0 * precision + recall)) best_thresh = thresholds[np.nanargmax(F2)] return FPR, TPR, MCC_arr, F2, best_thresh def load_pipeline_dset(stage_type): """ Additional loading function for specific evaluation datasets. """ # f = h5py.File('JK_5Jan2019.h5','r') f = h5py.File("IDR21TrainingData_Raw_vX.h5", "r") # f = h5py.File('IDR21InitialFlags_v2.h5','r') # f = h5py.File('IDR21TrainingData_Raw_v2.h5') # f = h5py.File('IDR21TrainingData.h5','r') # f = h5py.File('RealVisRFI_v5.h5','r') # f = h5py.File('RawRealVis_v1.h5','r') # f = h5py.File('SimVis_Blips_100.h5','r') # f = h5py.File('SimVis_1000_v9.h5','r') try: if stage_type == "uv": return f["uv"] elif stage_type == "uvO": return f["uvO"] elif stage_type == "uvOC": return f["uvOC"] elif stage_type == "uvOCRS": return f["uvOCRS"] elif stage_type == "uvOCRSD": return f["uvOCRSD"] except BaseException: return f def stride(input_data, input_labels): """ Takes an input waterfall visibility with labels and strides across frequency, producing (Nchan - 64)/S new waterfalls to be folded. """ spw_hw = 32 # spectral window half width nchans = 1024 fold = nchans / (2 * spw_hw) sample_spws = random.sample(range(0, 60), fold) x = np.array( [ input_data[:, i - spw_hw : i + spw_hw] for i in range(spw_hw, 1024 - spw_hw, (nchans - 2 * spw_hw) / 60) ] ) x_labels = np.array( [ input_labels[:, i - spw_hw : i + spw_hw] for i in range(spw_hw, 1024 - spw_hw, (nchans - 2 * spw_hw) / 60) ] ) X = np.array([x[i].T for i in sample_spws]) X_labels = np.array([x_labels[i].T for i in sample_spws]) X_ = X.reshape(-1, 60).T X_labels = X_labels.reshape(-1, 60).T return X_, X_labels def patchwise(data, labels): """ A spectral window is strided over the visibility augmenting the existing training or evaluation datasets. """ strided_dp = np.array(map(stride, data, labels)) data_strided = np.copy(strided_dp[:, 0, :, :]) labels_strided = np.copy(strided_dp[:, 1, :, :].astype(int)) return data_strided, labels_strided def expand_dataset(data, labels): """ Comprehensive data augmentation function. Uses reflections, patchwise, gaussian noise, and gaussian blurring, to improve robustness of the DFCN model which increases performance when applied to real data. Bloat factor is how large to increase the dataset size. """ bloat = 5 sh = np.shape(data) out_data = [] out_labels = [] for i in range(bloat * sh[0]): rnd_num = np.random.rand() rnd_data_ind = np.random.randint(0, sh[0]) order = np.random.choice(np.logspace(-4, -1, 10)) noise = np.random.randn(sh[1], sh[2]) + 1j * np.random.randn(sh[1], sh[2]) noise_data = np.copy(data[rnd_data_ind]) noise_labels = np.copy(labels[rnd_data_ind]) noise_data[:, :, 0] += order *
np.abs(noise)
numpy.abs
import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim import numpy as np import matplotlib.pyplot as plt from scipy.io import loadmat from random import randint def matplotlib_imshow(img, name, one_channel=False): if one_channel: img = img.mean(dim=0) # img = img / 2 + 0.5 # unnormalize npimg = img.cpu().numpy() str_name = "./outputs/" + name plt.imsave(str_name, npimg, cmap="Greys") # plt.figure() # if one_channel: # plt.imshow(npimg, cmap="Greys") # else: # plt.imshow(np.transpose(npimg, (1, 2, 0))) # plt.show() def euler2R(abc): cosabc=torch.cos(abc) sinabc=torch.sin(abc) R=torch.zeros((abc.shape[0],3,3), device=abc.device) R[:,0,0] = cosabc[:,0]*cosabc[:,1]*cosabc[:,2] - sinabc[:,0]*sinabc[:,2] R[:,0,1] = sinabc[:,0]*cosabc[:,1]*cosabc[:,2] + cosabc[:,0]*sinabc[:,2] R[:,0,2] = -1*sinabc[:,1]*cosabc[:,2] R[:,1,0] = -1*cosabc[:,0]*cosabc[:,1]*sinabc[:,2] - sinabc[:,0]*cosabc[:,2] R[:,1,1] = -1*sinabc[:,0]*cosabc[:,1]*sinabc[:,2] + cosabc[:,0]*cosabc[:,2] R[:,1,2] = sinabc[:,1]*sinabc[:,2] R[:,2,0] = cosabc[:,0]*sinabc[:,1] R[:,2,1] = sinabc[:,0]*sinabc[:,1] R[:,2,2] = cosabc[:,1] return R def quaternion2R(qq): R=torch.zeros((qq.shape[0],3,3), device=qq.device) criterion = nn.Softmax(dim=1) qq_intermediate = criterion(qq) qqq = torch.sqrt(qq_intermediate) # norms_squ = torch.norm(qq,dim=1) # norms_squ = torch.unsqueeze(norms_squ, 1) # qqq = torch.div(qq, norms_squ) R[:,0,0] = 1 - 2*(qqq[:,2]*qqq[:,2] + qqq[:,3]*qqq[:,3]) R[:,0,1] = 2*(qqq[:,1]*qqq[:,2] - qqq[:,3]*qqq[:,0]) R[:,0,2] = 2*(qqq[:,1]*qqq[:,3] + qqq[:,2]*qqq[:,0]) R[:,1,0] = 2*(qqq[:,1]*qqq[:,2] + qqq[:,3]*qqq[:,0]) R[:,1,1] = 1 - 2*(qqq[:,1]*qqq[:,1] + qqq[:,3]*qqq[:,3]) R[:,1,2] = 2*(qqq[:,2]*qqq[:,3] - qqq[:,1]*qqq[:,0]) R[:,2,0] = 2*(qqq[:,1]*qqq[:,3] - qqq[:,2]*qqq[:,0]) R[:,2,1] = 2*(qqq[:,2]*qqq[:,3] + qqq[:,1]*qqq[:,0]) R[:,2,2] = 1 - 2*(qqq[:,1]*qqq[:,1] + qqq[:,2]*qqq[:,2]) return R def getRbeta(): #compute the 60 rotation matrices in the coordinate system of <NAME> and <NAME>, Computers in Physics, vol. 9, no. 4, July/August 1995. S=np.array([[np.cos(2*np.pi/5), -np.sin(2*np.pi/5), 0], [np.sin(2*np.pi/5), np.cos(2*np.pi/5), 0], [0, 0, 1]]) U=np.array([[1/np.sqrt(5), 0, 2/np.sqrt(5)], [0, 1, 0], [-2/np.sqrt(5), 0, 1/np.sqrt(5)]]) P=np.array([[-1, 0, 0], [0, 1, 0], [0, 0, -1]]) T=np.dot(U,np.dot(S,np.linalg.inv(U))) Rbeta=np.zeros((60,3,3)) Rbeta[0,:,:]=np.eye(3) Rbeta[1,:,:]=S Rbeta[2,:,:]=np.dot(S,S) #S^2 Rbeta[3,:,:]=np.dot(Rbeta[2,:,:],S) #S^3 Rbeta[4,:,:]=np.dot(Rbeta[3,:,:],S) #S^4 Rbeta[5,:,:]=np.dot(S,T) Rbeta[6,:,:]=
np.dot(T,Rbeta[5,:,:])
numpy.dot
import os, sys import numpy as np import torch import open3d as o3d from . import pcd_utils class Colors(): red = [0.8, 0.2, 0] green = [0, 0.7, 0.2] blue = [0, 0, 1] gold = [1, 0.706, 0] greenish = [0, 0.8, 0.506] def visualize_point_tensor( points_list, R, t, colors_list=None, compute_bbox_list=None, additional_pcds=[], exit_after=False, convert_to_opengl_coords=True ): assert len(points_list) == len(colors_list) == len(compute_bbox_list) # World frame referece_frame = create_frame(size=1.0) additional_pcds.append(referece_frame) # camera frame camera_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=[0, 0, 0] ) camera_frame.rotate(R, pcd_utils.origin) camera_frame.translate(t, relative=True) additional_pcds.append(camera_frame) # Unit bbox unit_bbox = create_unit_bbox() additional_pcds.append(unit_bbox) # Go over list of numpy arrays and convert them to o3d.geometry.PointClouds # (maybe also create bboxes around them) pcds = [] bboxes = [] for i, points in enumerate(points_list): if torch.is_tensor(points): points_np = points.cpu().numpy() elif isinstance(points, type(np.empty(0))): points_np = points if len(points_np.shape) == 3: # we then assume the first dimension is the batch_size points_np = points_np.squeeze(axis=0) if points_np.shape[1] > points_np.shape[0] and points_np.shape[0] == 3: points_np = np.moveaxis(points_np, 0, -1) # [N, 3] # transform to opengl coordinates if convert_to_opengl_coords: points_np = pcd_utils.transform_pointcloud_to_opengl_coords(points_np) pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(points_np)) if colors_list is not None: if colors_list[i] is not None: color_np = colors_list[i] * np.ones_like(points_np) pcd.colors = o3d.utility.Vector3dVector(color_np) pcds.append(pcd) if compute_bbox_list is not None: if compute_bbox_list[i]: bbox = pcd_utils.BBox(points_np) bboxes.append(bbox.get_bbox_as_line_set()) # sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) # sphere = sphere.translate(np.array([0, -1, 0]), relative=True) # sphere.paint_uniform_color([1.0, 0.0, 0.0]) # additional_pcds.append(sphere) # sphere = o3d.geometry.TriangleMesh.create_sphere(radius=0.05) # sphere = sphere.translate(np.array([0, 0, 1]), relative=True) # sphere.paint_uniform_color([1.0, 0.0, 0.0]) # additional_pcds.append(sphere) # transform also additional_pcds if necessary if convert_to_opengl_coords: for additional_pcd in additional_pcds: additional_pcd.transform(pcd_utils.T_opengl_cv_homogeneous) o3d.visualization.draw_geometries([*additional_pcds, *pcds, *bboxes]) if exit_after: exit() def create_unit_bbox(): # unit bbox unit_bbox = pcd_utils.BBox.compute_bbox_from_min_point_and_max_point( np.array([-1, -1, -1]), np.array([1, 1, 1]) ) return unit_bbox def create_frame(size=1.0, origin=[0, 0, 0]): frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=size, origin=origin ) return frame def create_lines_from_start_and_end_points(start_points, end_points, color=[201/255, 177/255, 14/255]): if start_points.shape[1] > start_points.shape[0] and start_points.shape[0] == 3: start_points = start_points.transpose() end_points = end_points.transpose() num_pairs = start_points.shape[0] all_points = np.concatenate((start_points, end_points), axis=0) lines = [[i, i + num_pairs] for i in range(0, num_pairs, 1)] line_colors = [color for i in range(num_pairs)] line_set = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(all_points), lines=o3d.utility.Vector2iVector(lines), ) line_set.colors = o3d.utility.Vector3dVector(line_colors) return line_set def create_lines_from_view_vectors( view_vectors_original, offsets_original, dist_original, R, t, return_geoms=False, convert_to_opengl_coords=False ): view_vectors = np.copy(view_vectors_original) offsets = np.copy(offsets_original) dist = np.copy(dist_original) # Move coordinates to the last axis view_vectors = np.moveaxis(view_vectors, 0, -1) # [N, 3] offsets = np.moveaxis(offsets, 0, -1) # [N, 3] len_dist_shape = len(dist.shape) if len_dist_shape == 1: dist = dist[:, np.newaxis] else: dist = np.moveaxis(dist, 0, -1) # [N, 1] N = offsets.shape[0] # number of points (and lines) # Advance along the view_vectors by a distance of "dist" end_points = offsets + view_vectors * dist # Concatenate offsets and end_points into one array points = np.concatenate((offsets, end_points), axis=0) # Compute list of edges between offsets and end_points lines = [[i, i + N] for i in range(0, N, 1)] line_colors = [[201/255, 177/255, 14/255] for i in range(N)] line_set = o3d.geometry.LineSet( points=o3d.utility.Vector3dVector(points), lines=o3d.utility.Vector2iVector(lines), ) line_set.colors = o3d.utility.Vector3dVector(line_colors) # Offsets PointCloud offsets_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(offsets)) offsets_pcd.paint_uniform_color(Colors.red) # End points PointCloud end_points_pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(end_points)) end_points_pcd.paint_uniform_color(Colors.green) # Concatenate PointClouds pcds = [offsets_pcd, end_points_pcd] # Convert to opengl coordinates if necessary if not return_geoms or convert_to_opengl_coords: offsets_pcd.transform(pcd_utils.T_opengl_cv_homogeneous) end_points_pcd.transform(pcd_utils.T_opengl_cv_homogeneous) line_set.transform(pcd_utils.T_opengl_cv_homogeneous) if return_geoms: return line_set, pcds else: # camera frame camera_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=[0, 0, 0] ) camera_frame.rotate(R, pcd_utils.origin) camera_frame.translate(t, relative=True) camera_frame.rotate(pcd_utils.T_opengl_cv, pcd_utils.origin) # convert to opengl coordinates for visualization o3d.visualization.draw_geometries([camera_frame, *pcds, line_set]) exit() def viz_and_exit(pcd_list): o3d.visualization.draw_geometries(pcd_list) exit() def visualize_mesh(mesh_path): # world frame world_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.0, origin=[0, 0, 0] ) mesh = o3d.io.read_triangle_mesh(mesh_path) o3d.visualization.draw_geometries([world_frame, mesh]) def visualize_grid(points_list, colors=None, exit_after=True): # world frame world_frame = o3d.geometry.TriangleMesh.create_coordinate_frame( size=1.5, origin=[0, 0, 0] ) world_frame = pcd_utils.rotate_around_axis(world_frame, axis_name="x", angle=-np.pi) pcds = [] for i, points in enumerate(points_list): pcd = o3d.geometry.PointCloud(o3d.utility.Vector3dVector(np.moveaxis(points, 0, -1))) pcd = pcd_utils.rotate_around_axis(pcd, "x", np.pi) if colors: pcd.paint_uniform_color(colors[i]) pcds.append(pcd) o3d.visualization.draw_geometries([world_frame, *pcds]) if exit_after: exit() def visualize_sphere(): import marching_cubes as mcubes from utils.sdf_utils import sphere_tsdf # Extract sphere with Marching cubes. dim = 20 # Extract the 0-isosurface. X, Y, Z = np.meshgrid(np.arange(-1, 1, 2.0 / dim), np.arange(-1, 1, 2.0 / dim), np.arange(-1, 1, 2.0 / dim)) sdf = sphere_tsdf(X, Y, Z) vertices, triangles = mcubes.marching_cubes(sdf, 0) # Convert extracted surface to o3d mesh. mesh_sphere = o3d.geometry.TriangleMesh(o3d.utility.Vector3dVector(vertices), o3d.utility.Vector3iVector(triangles)) mesh_sphere.compute_vertex_normals() o3d.visualization.draw_geometries([mesh_sphere]) def merge_line_sets(line_sets): # Compute total number of vertices and faces. num_points = 0 num_lines = 0 num_line_colors = 0 for i in range(len(line_sets)): num_points += np.asarray(line_sets[i].points).shape[0] num_lines += np.asarray(line_sets[i].lines).shape[0] num_line_colors += np.asarray(line_sets[i].colors).shape[0] # Merge points and faces. points = np.zeros((num_points, 3), dtype=np.float64) lines = np.zeros((num_lines, 2), dtype=np.int32) line_colors = np.zeros((num_line_colors, 3), dtype=np.float64) vertex_offset = 0 line_offset = 0 vertex_color_offset = 0 for i in range(len(line_sets)): current_points = np.asarray(line_sets[i].points) current_lines = np.asarray(line_sets[i].lines) current_line_colors = np.asarray(line_sets[i].colors) points[vertex_offset:vertex_offset + current_points.shape[0]] = current_points lines[line_offset:line_offset + current_lines.shape[0]] = current_lines + vertex_offset line_colors[vertex_color_offset:vertex_color_offset + current_line_colors.shape[0]] = current_line_colors vertex_offset += current_points.shape[0] line_offset += current_lines.shape[0] vertex_color_offset += current_line_colors.shape[0] # Create a merged line set object. line_set = o3d.geometry.LineSet(o3d.utility.Vector3dVector(points), o3d.utility.Vector2iVector(lines)) line_set.colors = o3d.utility.Vector3dVector(line_colors) return line_set def merge_meshes(meshes): # Compute total number of vertices and faces. num_vertices = 0 num_triangles = 0 num_vertex_colors = 0 for i in range(len(meshes)): num_vertices += np.asarray(meshes[i].vertices).shape[0] num_triangles +=
np.asarray(meshes[i].triangles)
numpy.asarray
import pandas as pd import numpy as np import math #朴素贝叶斯分类 class NaiveBayes: def __init__(self,dataspath): self.model = {} self.datas = self.loadDataSet(dataspath) self.categorys = set(self.datas[:,-1]) self.features = len(self.datas[0])-1 def loadDataSet(self,dataspath): ''' :param dataspath:读入数据的地址,csv格式文件 :return: n列的 np数组,前n-1列为特征,最后一列为label ''' data_set = pd.read_csv(dataspath) data_set_train = data_set.iloc[:,0:4] data_set_label = data_set.iloc[:,5:6] return np.concatenate((
np.array(data_set_train)
numpy.array
import pytest import numpy as np from ardent.utilities import _validate_scalar_to_multi from ardent.utilities import _validate_ndarray from ardent.utilities import _validate_xyz_resolution from ardent.utilities import _compute_axes from ardent.utilities import _compute_coords from ardent.utilities import _multiply_by_affine # TODO: write test for this function. """ Test _validate_scalar_to_multi. """ def test__validate_scalar_to_multi(): # Test proper use. kwargs = dict(value=1, size=1, dtype=float) correct_output = np.array([1], float) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=1, size=0, dtype=int) correct_output = np.array([], int) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=9.5, size=4, dtype=int) correct_output = np.full(4, 9, int) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=[1, 2, 3.5], size=3, dtype=float) correct_output = np.array([1, 2, 3.5], float) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=[1, 2, 3.5], size=3, dtype=int) correct_output = np.array([1, 2, 3], int) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=(1, 2, 3), size=3, dtype=int) correct_output = np.array([1, 2, 3], int) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) kwargs = dict(value=np.array([1, 2, 3], float), size=3, dtype=int) correct_output = np.array([1, 2, 3], int) assert np.array_equal(_validate_scalar_to_multi(**kwargs), correct_output) # Test improper use. kwargs = dict(value=[1, 2, 3, 4], size='size: not an int', dtype=float) expected_exception = TypeError match = "size must be interpretable as an integer." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=[], size=-1, dtype=float) expected_exception = ValueError match = "size must be non-negative." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=[1, 2, 3, 4], size=3, dtype=int) expected_exception = ValueError match = "The length of value must either be 1 or it must match size." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=np.arange(3*4, dtype=int).reshape(3,4), size=3, dtype=float) expected_exception = ValueError match = "value must not have more than 1 dimension." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value=[1, 2, 'c'], size=3, dtype=int) expected_exception = ValueError match = "value and dtype are incompatible with one another." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) kwargs = dict(value='c', size=3, dtype=int) expected_exception = ValueError match = "value and dtype are incompatible with one another." with pytest.raises(expected_exception, match=match): _validate_scalar_to_multi(**kwargs) """ Test _validate_ndarray. """ def test__validate_ndarray(): # Test proper use. kwargs = dict(array=np.arange(3, dtype=int), dtype=float) correct_output = np.arange(3, dtype=float) assert np.array_equal(_validate_ndarray(**kwargs), correct_output) kwargs = dict(array=[[0,1,2], [3,4,5]], dtype=float) correct_output = np.arange(2*3, dtype=float).reshape(2,3) assert np.array_equal(_validate_ndarray(**kwargs), correct_output) kwargs = dict(array=np.array([0,1,2]), broadcast_to_shape=(2,3)) correct_output = np.array([[0,1,2], [0,1,2]]) assert np.array_equal(_validate_ndarray(**kwargs), correct_output) kwargs = dict(array=np.array(7), required_ndim=1) correct_output = np.array([7]) assert np.array_equal(_validate_ndarray(**kwargs), correct_output) # Test improper use. # Validate arguments. kwargs = dict(array=np.arange(3), minimum_ndim=1.5) expected_exception = TypeError match = "minimum_ndim must be of type int." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.arange(3), minimum_ndim=-1) expected_exception = ValueError match = "minimum_ndim must be non-negative." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.arange(3), required_ndim=1.5) expected_exception = TypeError match = "required_ndim must be either None or of type int." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.arange(3), required_ndim=-1) expected_exception = ValueError match = "required_ndim must be non-negative." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.arange(3), dtype="not of type type") expected_exception = TypeError match = "dtype must be either None or a valid type." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) # Validate array. kwargs = dict(array=np.array(print), dtype=int) expected_exception = TypeError match = "array is of a type that is incompatible with dtype." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.array('string that is not an int'), dtype=int) expected_exception = ValueError match = "array has a value that is incompatible with dtype." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.array([[], 1]), dtype=None, forbid_object_dtype=True) expected_exception = TypeError match = "Casting array to a np.ndarray produces an array of dtype object \nwhile forbid_object_dtype == True and dtype != object." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.arange(3), required_ndim=2) expected_exception = ValueError match = "If required_ndim is not None, array.ndim must equal it unless array.ndim == 0 and required_ndin == 1." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) kwargs = dict(array=np.arange(3), minimum_ndim=2) expected_exception = ValueError match = "array.ndim must be at least equal to minimum_ndim." with pytest.raises(expected_exception, match=match): _validate_ndarray(**kwargs) """ Test _validate_xyz_resolution. """ def test__validate_xyz_resolution(): # Test proper use. kwargs = dict(ndim=1, xyz_resolution=2) correct_output = np.full(1, 2, float) assert np.array_equal(_validate_xyz_resolution(**kwargs), correct_output) kwargs = dict(ndim=4, xyz_resolution=1.5) correct_output = np.full(4, 1.5, float) assert np.array_equal(_validate_xyz_resolution(**kwargs), correct_output) kwargs = dict(ndim=3, xyz_resolution=
np.ones(3, int)
numpy.ones
# -*- coding: utf-8 -*- """ Created on Mon Mar 05 13:41:23 2018 @author: DanielM """ from neuron import h, gui # gui necessary for some parameters to h namespace import numpy as np import net_tunedrevexpdrives from input_generator import inhom_poiss import os import argparse import time from analysis_main import time_stamps_to_signal import pdb import sys import matplotlib.pyplot as plt tsts = time_stamps_to_signal # Handle command line inputs with argparse parser = argparse.ArgumentParser(description='Pattern separation paradigm') parser.add_argument('-runs', nargs=3, type=int, help='start stop range for the range of runs', default=[0, 1, 1], dest='runs') parser.add_argument('-savedir', type=str, help='complete directory where data is saved', default=os.getcwd(), dest='savedir') parser.add_argument('-seed', type=int, help='the seed making the network reproducible', default=1000, dest='seed') parser.add_argument('-pp_mod_rate', type=int, help='Frequency at which the input is modulated', default=10, dest='pp_mod_rate') parser.add_argument('-pp_max_rate', type=int, help='The maximum frequency the input reaches', default=100, dest='pp_max_rate') parser.add_argument('-n_cells_gcs_mcs_bcs_hcs_pps', nargs=5, type=int, help='the cell numbers of the network', default=[2000, 60, 24, 24, 40], dest='n_cells') parser.add_argument('-W_pp_gc', type=float, help='the weight of the pp to gc connection', default=1e-3, dest='W_pp_gc') parser.add_argument('-W_pp_bc', nargs=3, type=float, help='the weight of the pp to bc connection', default=[0.0e-3,2e-3,3e-3], dest='W_pp_bc') parser.add_argument('-n_pp_gc', type=int, help='number of pp to gc synapses ', default=20, dest='n_pp_gc') parser.add_argument('-n_pp_bc', type=int, help='number of pp to bc synapses', default=20, dest='n_pp_bc') parser.add_argument('-W_gc_bc', nargs=3, type=float, help='weight of gc to bc synapses', default=[2.5e-2,3.5e-2,1e-3], dest='W_gc_bc') parser.add_argument('-W_gc_hc', type=float, help='number of gc to hc synapses', default=2.5e-2, dest='W_gc_hc') parser.add_argument('-W_bc_gc', type=float, help='number of bc to gc synapses', default=4.8e-3, dest='W_bc_gc') parser.add_argument('-W_hc_gc', type=float, help='number of hc to gc synapses', default=6e-3, dest='W_hc_gc') parser.add_argument('-delta_t', type=float, help='number of hc to gc synapses', default=0.0, dest='delta_t') parser.add_argument('-t_pp_to_bc_offset', type=float, help="temporal offset between pp innervation of gcs and bcs", default=-4.5, dest="t_pp_to_bc_offset") parser.add_argument('-rec_cond', type=int, help='number of hc to gc synapses', default=1, dest='rec_cond') args = parser.parse_args() # Where to search for nrnmech.dll file. Must be adjusted for your machine. dll_files = [("/home/daniel/repos/pyDentate/mechs_7-6_linux/x86_64/.libs/libnrnmech.so"), ("C:\\Users\\Daniel\\repos\\pyDentate\\mechs_7-6_win\\nrnmech.dll")] for x in dll_files: if os.path.isfile(x): dll_dir = x print("DLL loaded from: " + str(dll_dir)) h.nrn_load_dll(dll_dir) # Generate temporal patterns for the 100 PP inputs np.random.seed(args.seed) """ temporal_patterns_full = inhom_poiss(mod_rate=args.pp_mod_rate, max_rate=args.pp_max_rate, n_inputs=400) """ temporal_patterns_full_list_1 = [np.array([100.0+np.random.normal(0,2)]) for x in range(args.n_cells[4]-1)] temporal_patterns_full_list_2 = [np.array([100+np.random.normal(0,2)]), 600.0] temporal_patterns_full_list_3 = [np.array([100.0+np.random.normal(0,2)+args.delta_t]) for x in range(args.n_cells[4])] temporal_patterns_full_list_4 = [np.array([]) for x in range(400-2*args.n_cells[4])] temporal_patterns_full = np.array(temporal_patterns_full_list_1+temporal_patterns_full_list_2+temporal_patterns_full_list_3+temporal_patterns_full_list_4, dtype=np.object) # Start the runs of the model runs = range(args.runs[0], args.runs[1], args.runs[2]) pp_bc_weights = np.arange(args.W_pp_bc[0], args.W_pp_bc[1], args.W_pp_bc[2]) gc_bc_weights = np.arange(args.W_gc_bc[0], args.W_gc_bc[1], args.W_gc_bc[2]) print(pp_bc_weights) print(gc_bc_weights) for ff_weight in pp_bc_weights: for fb_weight in gc_bc_weights: for run in runs: start_proc_t = time.perf_counter() print("Run: " + str(run) + ". Total time: " + str(start_proc_t)) temporal_patterns = temporal_patterns_full.copy() nw = net_tunedrevexpdrives.TunedNetwork(seed=args.seed+run, n_gcs=args.n_cells[0], n_mcs=args.n_cells[1], n_bcs=args.n_cells[2], n_hcs=args.n_cells[3], W_pp_gc=args.W_pp_gc, W_pp_bc=ff_weight, n_pp_gc=args.n_pp_gc, n_pp_bc=args.n_pp_bc, W_gc_bc=fb_weight, W_gc_hc=args.W_gc_hc, W_bc_gc=args.W_bc_gc, W_hc_gc=args.W_hc_gc, ff_t_offset=args.t_pp_to_bc_offset, temporal_patterns=temporal_patterns, rec_cond=bool(args.rec_cond)) print("Done setting up nw") nw.populations[0].voltage_recording(range(2000)) nw.populations[1].voltage_recording(range(60)) nw.populations[2].voltage_recording(range(24)) nw.populations[3].voltage_recording(range(24)) # Run the model """Initialization for -2000 to -100""" h.cvode.active(0) dt = 0.1 h.steps_per_ms = 1.0/dt h.finitialize(-60) h.t = -2000 h.secondorder = 0 h.dt = 10 while h.t < -100: h.fadvance() h.secondorder = 2 h.t = 0 h.dt = 0.1 """Setup run control for -100 to 1500""" h.frecord_init() # Necessary after changing t to restart the vectors while h.t < 300: h.fadvance() end_proc_t = time.perf_counter() print("Done Running at " + str(end_proc_t) + " after " + str((end_proc_t - start_proc_t)/60) + " minutes") save_data_name = (f"{str(nw)}_" f"{nw.seed:06d}_" f"{run:03d}_" f"{nw.populations[0].get_cell_number():05d}_" f"{nw.populations[1].get_cell_number():05d}_" f"{nw.populations[2].get_cell_number():05d}_" f"{nw.populations[3].get_cell_number():05d}_" f"{args.n_cells[4]:05d}_" f"{args.n_pp_gc:04d}_" f"{args.n_pp_bc:04d}_" f"{args.W_pp_gc:08.5f}_" f"{ff_weight:08.5f}_" f"{args.pp_mod_rate:04d}_" f"{args.pp_max_rate:04d}_" f"{fb_weight:08.5f}_" f"{fb_weight:08.5f}_" f"{args.W_bc_gc:08.5f}_" f"{args.W_hc_gc:08.5f}_" f"{args.t_pp_to_bc_offset}_" f"{args.delta_t:08.5f}") if run == 0: fig = nw.plot_aps(time=200) tuned_fig_file_name =save_data_name nw.save_ap_fig(fig, args.savedir, tuned_fig_file_name) pp_lines = np.empty(400, dtype = np.object) pp_lines[0+run:args.n_cells[4]+run] = temporal_patterns[0+run:args.n_cells[4]+run] curr_pp_ts = np.array(tsts(pp_lines, dt_signal=0.1, t_start=0, t_stop=300), dtype = np.bool) curr_gc_ts = np.array(tsts(nw.populations[0].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=300), dtype = np.bool) curr_mc_ts = np.array(tsts(nw.populations[1].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=300), dtype = np.bool) curr_hc_ts = np.array(tsts(nw.populations[2].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=300), dtype = np.bool) curr_bc_ts = np.array(tsts(nw.populations[3].get_properties()['ap_time_stamps'], dt_signal=0.1, t_start=0, t_stop=300), dtype = np.bool) np.savez(args.savedir + os.path.sep + "time-stamps_" + save_data_name, pp_ts = np.array(curr_pp_ts), gc_ts = np.array(curr_gc_ts), mc_ts = np.array(curr_mc_ts), bc_ts =
np.array(curr_bc_ts)
numpy.array
import numpy as np import pandas as pd import halfspace.projections as hsp import halfspace.stress_comps_vectorized as scv rho = 2700 g = 9.81 def cat_t_priors(num_pts, n_trials, s1_range, s3_range, theta_range, first_iter): t_priors = sample_T_priors(n_trials, s1_range, s3_range, theta_range) run_ind = np.arange(n_trials) + first_iter t_priors = np.hstack(( t_priors, run_ind.reshape([n_trials, 1]) )) t_priors = np.repeat(t_priors, num_pts, axis=0) t_prior_df = pd.DataFrame(t_priors, columns=['txx', 'tyy', 'txy', 'iter']) return t_prior_df def sample_T_priors(n_trials, s1_range, s3_range, theta_range): s1s = np.random.uniform(s1_range[0], s1_range[1], n_trials) s3s = np.random.uniform(s3_range[0], s3_range[1], n_trials) * s1s thetas = np.random.uniform(theta_range[0], theta_range[1], n_trials) xxs = scv.xx_stress_from_s1_s3_theta(s1s, s3s, thetas) yys = scv.yy_stress_from_s1_s3_theta(s1s, s3s, thetas) xys = scv.xy_stress_from_s1_s3_theta(s1s, s3s, thetas) del s1s, s3s, thetas # save some RAM (important for large n_trials) xxs = xxs.reshape([n_trials, 1]) yys = yys.reshape([n_trials, 1]) xys = xys.reshape([n_trials, 1]) t_priors = np.concatenate((xxs, yys, xys), axis=1) return t_priors def make_mc_df(in_df, n_trials=1, s1_range=(0,2), s3_range=(-1,1), theta_range=(0, np.pi), first_iter=0): num_pts = len(in_df.index) important_cols = ['strike', 'dip', 'rake', 'depth', 'slip_m', 'xx_stress', 'yy_stress', 'zz_stress', 'xy_stress', 'xz_stress', 'yz_stress'] mc_df = pd.DataFrame( np.tile(in_df[important_cols].values, [n_trials, 1]), columns=important_cols) t_prior_df = cat_t_priors(num_pts, n_trials, s1_range, s3_range, theta_range, first_iter) mc_df = pd.concat((mc_df, t_prior_df), axis=1) del t_prior_df mc_df.rename(columns={'xx_stress':'mxx', 'yy_stress':'myy', 'zz_stress':'mzz', 'xy_stress':'mxy', 'xz_stress':'mxz', 'yz_stress':'myz'}, inplace=True) return mc_df def get_total_stresses(mc_df, rho, g): mc_df['tau_s'] = scv.strike_shear(strike=mc_df.strike, dip=mc_df.dip, rho=rho, g=g, mxx=mc_df.mxx*1e6, myy=mc_df.myy*1e6, mzz=mc_df.mzz*1e6, mxy=mc_df.mxy*1e6, mxz=mc_df.mxz*1e6, myz=mc_df.myz*1e6, txx=mc_df.txx, tyy=mc_df.tyy, txy=mc_df.txy, depth=mc_df.depth*-1) mc_df['tau_d'] = scv.dip_shear(strike=mc_df.strike, dip=mc_df.dip, rho=rho, g=g, mxx=mc_df.mxx*1e6, myy=mc_df.myy*1e6, mzz=mc_df.mzz*1e6, mxy=mc_df.mxy*1e6, mxz=mc_df.mxz*1e6, myz=mc_df.myz*1e6, txx=mc_df.txx, tyy=mc_df.tyy, txy=mc_df.txy, depth=mc_df.depth*-1) mc_df['tau_rake'] = hsp.get_rake_from_shear_components( strike_shear=mc_df.tau_s, dip_shear=mc_df.tau_d) mc_df['rake_misfit_rad'] = np.radians(hsp.angle_difference(mc_df.rake, mc_df.tau_rake, return_abs=True)) return mc_df def get_litho_tect_stresses(mc_df, rho, g): mc_df['tau_s'] = scv.strike_shear(strike=mc_df.strike, dip=mc_df.dip, rho=rho, g=g, mxx=0., myy=0., mzz=0., mxy=0., mxz=0., myz=0., txx=mc_df.txx, tyy=mc_df.tyy, txy=mc_df.txy, depth=mc_df.depth*-1) mc_df['tau_d'] = scv.dip_shear(strike=mc_df.strike, dip=mc_df.dip, rho=rho, g=g, mxx=0., myy=0., mzz=0., mxy=0., mxz=0., myz=0., txx=mc_df.txx, tyy=mc_df.tyy, txy=mc_df.txy, depth=mc_df.depth*-1) mc_df['tau_rake'] = hsp.get_rake_from_shear_components( strike_shear=mc_df.tau_s, dip_shear=mc_df.tau_d) mc_df['rake_misfit_rad'] = np.radians(hsp.angle_difference(mc_df.rake, mc_df.tau_rake, return_abs=True)) return mc_df def do_stress_calcs(in_df, n_trials=1, s1_range=(0,3), s3_range=(-1,1), theta_range=(0, np.pi), topo_stress=True, first_iter=0, rho=2700, g=9.81, l_norm=1): mc_df = make_mc_df(in_df, n_trials=n_trials, s1_range=s1_range, s3_range=s3_range, theta_range=theta_range, first_iter=first_iter) if topo_stress == True: mc_df = get_total_stresses(mc_df, rho, g) else: mc_df = get_litho_tect_stresses(mc_df, rho, g) #calculate misfits max_slip = in_df.slip_m.max() sum_weights = np.sum(in_df.slip_m) mean_weights =
np.sum(max_slip / in_df.slip_m)
numpy.sum
import numpy as np from common.dataset.pre_process.norm_data import norm_to_pixel from common.transformation.cam_utils import normalize_screen_coordinates def load_mpi_test(file_path, seq, norm): """ Usage: Load a section once :param dataset_root: root path :param section: There are six sequences in this (seq=0,1,2,3,4,5). And 2935 poses in a unique set(seq==7). If you want to evaluate by scene setting, you can use the sequencewise evaluation to convert to these numbers by doing #1:Studio with Green Screen (TS1*603 + TS2 *540)/ (603+540) #2:Studio without Green Screen (TS3*505+TS4*553)/(505+553) #3:Outdoor (TS5*276+TS6*452)/(276+452) :return: Normalized 2d/3d pose, normalization params and camera intrinics. All types: List """ info =
np.load(file_path, allow_pickle=True)
numpy.load
""" Script plots trends of 2 m temperature over the WACC period. Subplot compares all six experiments with ERA-Interim. Notes ----- Author : <NAME> Date : 20 February 2019 """ ### Import modules import datetime import numpy as np import matplotlib.pyplot as plt import cmocean from mpl_toolkits.basemap import Basemap, addcyclic, shiftgrid import read_MonthlyData as MOM import read_Reanalysis as MOR import calc_Utilities as UT ### Define directories directoryfigure = '/home/zlabe/Desktop/' ### Define time now = datetime.datetime.now() currentmn = str(now.month) currentdy = str(now.day) currentyr = str(now.year) currenttime = currentmn + '_' + currentdy + '_' + currentyr titletime = currentmn + '/' + currentdy + '/' + currentyr print('\n' '----Plotting WACC T2M Trends - %s----' % titletime) #### Alott time series year1 = 1978 year2 = 2016 years = np.arange(year1,year2+1,1) ### Add parameters ensembles = 10 varnames = ['T2M'] runnames = [r'CSST',r'CSIC',r'AMIP',r'AMQ',r'AMS',r'AMQS'] ### Call function to read in ERA-Interim lat,lon,time,lev,era = MOR.readDataR('T2M','surface',False,True) ### Call functions to read in WACCM data models = np.empty((len(runnames),ensembles,era.shape[0],era.shape[1], era.shape[2],era.shape[3])) for i in range(len(runnames)): lat,lon,time,lev,models[i] = MOM.readDataM('T2M',runnames[i], 'surface',False,True) ### Retrieve time period of interest modq = np.empty((len(runnames),ensembles,era.shape[0]-1,era.shape[2], era.shape[3])) for i in range(len(runnames)): for j in range(ensembles): modq[i,j,:,:,:] = UT.calcDecJanFeb(models[i,j,:,:,:], lat,lon,'surface',1) eraq = UT.calcDecJanFeb(era,lat,lon,'surface',1) def detrendData(datavar,years,level,yearmn,yearmx): """ Function removes linear trend Parameters ---------- datavar : 4d numpy array or 5d numpy array [ensemble,year,lat,lon] or [ensemble,year,level,lat,lon] years : 1d numpy array [years] level : string Height of variable (surface or profile) yearmn : integer First year yearmx : integer Last year Returns ------- datavardt : 4d numpy array or 5d numpy array [ensemble,year,lat,lon] or [ensemble,year,level,lat,lon] Usage ----- datavardt = detrendData(datavar,years,level,yearmn,yearmx) """ print('\n>>> Using detrendData function! \n') ########################################################################### ########################################################################### ########################################################################### ### Import modules import numpy as np import scipy.stats as sts ### Slice time period sliceq = np.where((years >= yearmn) & (years <= yearmx))[0] datavar = datavar[:,sliceq,:,:] ### Detrend data array if level == 'surface': x = np.arange(datavar.shape[1]) slopes = np.empty((datavar.shape[0],datavar.shape[2],datavar.shape[3])) intercepts = np.empty((datavar.shape[0],datavar.shape[2], datavar.shape[3])) for ens in range(datavar.shape[0]): print('-- Detrended data for ensemble member -- #%s!' % (ens+1)) for i in range(datavar.shape[2]): for j in range(datavar.shape[3]): mask =
np.isfinite(datavar[ens,:,i,j])
numpy.isfinite
'''--------------------------------------- Import Statements ---------------------------------------''' import csv import cv2 import numpy as np import keras from keras.models import Sequential from keras.layers import Flatten, Dense, Lambda, Cropping2D from keras.layers.convolutional import Convolution2D import matplotlib.pyplot as plt from keras.callbacks import ModelCheckpoint import random from tempfile import TemporaryFile correction = 0.25 num_bins = 23 colorConversion = cv2.COLOR_BGR2LAB '''--------------------------------------- Read data from File ---------------------------------------''' def read_data_from_file(fileName, lineArray): with open(fileName) as csvfile: reader = csv.reader(csvfile) for line in reader: lineArray.append(line) '''--------------------------------------- Extract images and Measurements ---------------------------------------''' def get_images_and_measurements(lineArray, splitToken, imagePath, imageArray, measurementArray): for line in lineArray: for i in range(3): source_path = line[i] tokens = source_path.split(splitToken) filename = tokens[-1] local_path = imagePath + filename image = cv2.imread(local_path) imageArray.append(image) measurement = float(line[3]) measurementArray.append(measurement) measurementArray.append(measurement + correction) measurementArray.append(measurement - correction) '''--------------------------------------- Print Histogram of Data ---------------------------------------''' def print_histogram(measurement_array, show, title = ''): avg_samples_per_bin = len(measurement_array)/num_bins hist, bins = np.histogram(measurement_array, num_bins) width = 0.7 * (bins[1] - bins[0]) center = (bins[:-1] + bins[1:]) / 2 plt.bar(center, hist, align='center', width=width) plt.plot((np.min(measurement_array), np.max(measurement_array)), (avg_samples_per_bin, avg_samples_per_bin), 'k-') if show: plt.title(title) plt.show() '''--------------------------------------- Flip each image and measurement ---------------------------------------''' def flip_image_and_measurement(imageArray, measurementArray, augmented_images, augmented_measurements): for image, measurement in zip(imageArray, measurementArray): augmented_images.append(image) augmented_measurements.append(measurement) flipped_image = cv2.flip(image, 1) flipped_measurement = measurement * -1.0 augmented_images.append(flipped_image) augmented_measurements.append(flipped_measurement) '''--------------------------------------- Get Transform ---------------------------------------''' def get_transform(img, x_bottom = 1136, x_top = 267, depth = 83, hood_depth = 33, dst_offset = 271, cal1_offset = 27, cal2_offset = 30): img_size = (img.shape[1], img.shape[0]) # src = (x1, y1) , (x2, y2), (x3, y3), (x4, y4) x1 = int((img_size[0] - x_top) / 2) x2 = int((img_size[0] + x_top) / 2) y1 = y2 = int((img_size[1] - depth)) x3 = int((img_size[0] - x_bottom) / 2) x4 = int((img_size[0] + x_bottom) / 2) y3 = y4 = (img_size[1] - hood_depth) # dst = (j1, k1), (j2, k2), (j3, k3), (j4, k4) j1 = j3 = (img_size[0] / 2) - dst_offset j2 = j4 = (img_size[0] / 2) + dst_offset k1 = k2 = 0 k3 = k4 = img_size[1] src = np.float32([[x1, y1], [x2, y2], [x3, y3], [x4, y4]]) dst =
np.float32([[j1, k1], [j2, k2], [j3, k3], [j4, k4]])
numpy.float32
#!/usr/bin/env python """ MagPy-General: Standard pymag package containing the following classes: Written by <NAME>, <NAME> 2011/2012/2013/2014 Written by <NAME>, <NAME>, <NAME> 2015/2016 Version 0.3 (starting May 2016) License: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode """ from __future__ import print_function from __future__ import unicode_literals from __future__ import absolute_import from __future__ import division import logging import os import sys import tempfile # ---------------------------------------------------------------------------- # Part 1: Import routines for packages # ---------------------------------------------------------------------------- logpygen = '' # temporary logger variable badimports = [] # List of missing packages nasacdfdir = "c:\CDF Distribution\cdf33_1-dist\lib" # Logging # --------- # Select the user's home directory (platform independent) or environment path if "MAGPY_LOG_PATH" in os.environ: path_to_log = os.environ["MAGPY_LOG_PATH"] if not os.path.exists(path_to_log): os.makedirs(path_to_log) else: path_to_log = tempfile.gettempdir() def setup_logger(name, warninglevel=logging.WARNING, logfilepath=path_to_log, logformat='%(asctime)s %(levelname)s - %(name)-6s - %(message)s'): """Basic setup function to create a standard logging config. Default output is to file in /tmp/dir.""" logfile=os.path.join(logfilepath,'magpy.log') # Check file permission/existance if not os.path.isfile(logfile): pass else: if os.access(logfile, os.W_OK): pass else: for count in range (1,100): logfile=os.path.join(logfilepath,'magpy{:02}.log'.format(count)) value = os.access(logfile, os.W_OK) if value or not os.path.isfile(logfile): count = 100 break try: logging.basicConfig(filename=logfile, filemode='w', format=logformat, level=logging.INFO) except: logging.basicConfig(format=logformat, level=logging.INFO) logger = logging.getLogger(name) # Define a Handler which writes "setLevel" messages or higher to the sys.stderr console = logging.StreamHandler() console.setLevel(warninglevel) logger.addHandler(console) return logger # Package loggers to identify info/problem source logger = setup_logger(__name__) # DEPRECATED: replaced by individual module loggers, delete these when sure they're no longer needed: loggerabs = logging.getLogger('abs') loggertransfer = logging.getLogger('transf') loggerdatabase = logging.getLogger('db') loggerstream = logging.getLogger('stream') loggerlib = logging.getLogger('lib') loggerplot = logging.getLogger('plot') # Special loggers for event notification stormlogger = logging.getLogger('stream') logger.info("Initiating MagPy...") from magpy.version import __version__ logger.info("MagPy version "+str(__version__)) magpyversion = __version__ # Standard packages # ----------------- try: import csv import pickle import types import struct import re import time, string, os, shutil #import locale import copy as cp import fnmatch import dateutil.parser as dparser from tempfile import NamedTemporaryFile import warnings from glob import glob, iglob, has_magic from itertools import groupby import operator # used for stereoplot legend from operator import itemgetter # The following packages are not identically available for python3 try: # python2 import copy_reg as copyreg except ImportError: # python3 import copyreg as copyreg # Python 2 and 3: alternative 4 try: from urllib.parse import urlparse, urlencode from urllib.request import urlopen, Request, ProxyHandler, install_opener, build_opener from urllib.error import HTTPError except ImportError: from urlparse import urlparse from urllib import urlencode from urllib2 import urlopen, Request, HTTPError, ProxyHandler, install_opener, build_opener """ try: # python2 import urllib2 except ImportError: # python3 import urllib.request """ try: # python2 import thread except ImportError: # python3 import _thread try: # python2 from StringIO import StringIO pyvers = 2 except ImportError: # python 3 from io import StringIO pyvers = 3 import ssl ssl._create_default_https_context = ssl._create_unverified_context except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError: standard packages.\n" badimports.append(e) # operating system try: PLATFORM = sys.platform logger.info("Running on platform: {}".format(PLATFORM)) except: PLATFORM = 'unkown' # Matplotlib # ---------- try: import matplotlib gui_env = ['TKAgg','GTKAgg','Qt4Agg','WXAgg','Agg'] try: if not os.isatty(sys.stdout.fileno()): # checks if stdout is connected to a terminal (if not, cron is starting the job) logger.info("No terminal connected - assuming cron job and using Agg for matplotlib") gui_env = ['Agg','TKAgg','GTKAgg','Qt4Agg','WXAgg'] matplotlib.use('Agg') # For using cron except: logger.warning("Problems with identfying cron job - windows system?") pass except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError: problem with matplotlib.\n" badimports.append(e) try: version = matplotlib.__version__.replace('svn', '') try: version = map(int, version.replace("rc","").split(".")) MATPLOTLIB_VERSION = list(version) except: version = version.strip("rc") MATPLOTLIB_VERSION = version logger.info("Loaded Matplotlib - Version %s" % str(MATPLOTLIB_VERSION)) for gui in gui_env: try: logger.info("Testing backend {}".format(gui)) try: # will be important from matplotlib3.3 onwards matplotlib.use(gui, force=True) except: matplotlib.use(gui, warn=False, force=True) from matplotlib import pyplot as plt break except: continue logger.info("Using backend: {}".format(matplotlib.get_backend())) from matplotlib.colors import Normalize from matplotlib.widgets import RectangleSelector, RadioButtons #from matplotlib.colorbar import ColorbarBase from matplotlib import mlab from matplotlib.dates import date2num, num2date import matplotlib.cm as cm from pylab import * from datetime import datetime, timedelta except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError with matplotlib package. Please install to proceed.\n" logpygen += " ... if installed please check the permissions on .matplotlib in your homedirectory.\n" badimports.append(e) # Numpy & SciPy # ------------- try: logger.info("Loading Numpy and SciPy...") import numpy as np import scipy as sp from scipy import interpolate from scipy import stats from scipy import signal from scipy.interpolate import UnivariateSpline from scipy.ndimage import filters import scipy.optimize as op import math except ImportError as e: logpygen += "CRITICAL MagPy initiation ImportError: Python numpy-scipy required - please install to proceed.\n" badimports.append(e) # NetCDF # ------ try: #print("Loading Netcdf4 support ...") from netCDF4 import Dataset except ImportError as e: #logpygen += "MagPy initiation ImportError: NetCDF not available.\n" #logpygen += "... if you want to use NetCDF format support please install a current version.\n" #badimports.append(e) pass # NASACDF - SpacePy # ----------------- def findpath(name, path): for root, dirs, files in os.walk(path): if name in files: return root try: logger.info("Loading SpacePy package cdf support ...") try: # check for windows nasacdfdir = findpath('libcdf.dll','C:\CDF_Distribution') ## new path since nasaCDF3.6 if not nasacdfdir: nasacdfdir = findpath('libcdf.dll','C:\CDF Distribution') if nasacdfdir: os.environ["CDF_LIB"] =str(nasacdfdir) logger.info("Using CDF lib in %s" % nasacdfdir) try: import spacepy.pycdf as cdf logger.info("... success") except KeyError as e: # Probably running at boot time - spacepy HOMEDRIVE cannot be detected badimports.append(e) except: logger.info("... Could not import spacepy") pass else: # create exception and try linux x=1/0 except: os.putenv("CDF_LIB", "/usr/local/cdf/lib") logger.info("using CDF lib in /usr/local/cdf") ### If files (with tt_2000) have been generated with an outdated leapsecondtable ### an exception will occur - to prevent that: ### 1. make sure to use a actual leapsecond table - update cdf regularly ### 2. temporarly set cdf_validate environment variable to no # This is how option 2 is included TODO -- add this to initialization options # as an update of cdf is the way to go and not just deactivating the error message os.putenv("CDF_VALIDATE", "no") logger.info("... deactivating cdf validation") try: import spacepy.pycdf as cdf logger.info("... success") except KeyError as e: # Probably running at boot time - spacepy HOMEDRIVE cannot be detected badimports.append(e) except: logger.info("... Could not import spacepy") pass except ImportError as e: logpygen += "MagPy initiation ImportError: NASA cdf not available.\n" logpygen += "... if you want to use NASA CDF format support please install a current version.\n" badimports.append(e) if logpygen == '': logpygen = "OK" else: logger.info(logpygen) logger.info("Missing packages:") for item in badimports: logger.info(item) logger.info("Moving on anyway...") ### Some Python3/2 compatibility code ### taken from http://www.rfk.id.au/blog/entry/preparing-pyenchant-for-python-3/ try: unicode = unicode # 'unicode' exists, must be Python 2 str = str unicode = unicode bytes = str basestring = basestring except NameError: # 'unicode' is undefined, must be Python 3 str = str unicode = str bytes = bytes basestring = (str,bytes) # Storing function - http://bytes.com/topic/python/answers/552476-why-cant-you-pickle-instancemethods#edit2155350 # by <NAME> # Used here to pickle baseline functions from header and store it in a cdf key. # Not really a transparent method but working nicely. Underlying functional parameters to reconstruct the fit # are stored as well but would require a link to the absolute data. def _pickle_method(method): func_name = method.__func__.__name__ obj = method.__self__ cls = method.__self__.__class__ return _unpickle_method, (func_name, obj, cls) def _unpickle_method(func_name, obj, cls): for cls in cls.mro(): try: func = cls.__dict__[func_name] except KeyError: pass else: break return func.__get__(obj, cls) copyreg.pickle(types.MethodType, _pickle_method, _unpickle_method) # ---------------------------------------------------------------------------- # Part 2: Define Dictionaries # ---------------------------------------------------------------------------- # Keys available in DataStream Object: KEYLIST = [ 'time', # Timestamp (date2num object) 'x', # X or I component of magnetic field (float) 'y', # Y or D component of magnetic field (float) 'z', # Z component of magnetic field (float) 'f', # Magnetic field strength (float) 't1', # Temperature variable (e.g. ambient temp) (float) 't2', # Secondary temperature variable (e.g. sensor temp) (float) 'var1', # Extra variable #1 (float) 'var2', # Extra variable #2 (float) 'var3', # Extra variable #3 (float) 'var4', # Extra variable #4 (float) 'var5', # Extra variable #5 (float) 'dx', # Errors in X (float) 'dy', # Errors in Y (float) 'dz', # Errors in Z (float) 'df', # Errors in F (float) 'str1', # Extra string variable #1 (str) 'str2', # Extra string variable #2 (str) 'str3', # Extra string variable #3 (str) 'str4', # Extra string variable #4 (str) 'flag', # Variable for flags. (str='0000000000000000-') 'comment', # Space for comments on flags (str) 'typ', # Type of data (str='xyzf') 'sectime' # Secondary time variable (date2num) ] NUMKEYLIST = KEYLIST[1:16] # Empty key values at initiation of stream: KEYINITDICT = {'time':0,'x':float('nan'),'y':float('nan'),'z':float('nan'),'f':float('nan'), 't1':float('nan'),'t2':float('nan'),'var1':float('nan'),'var2':float('nan'), 'var3':float('nan'),'var4':float('nan'),'var5':float('nan'),'dx':float('nan'), 'dy':float('nan'),'dz':float('nan'),'df':float('nan'),'str1':'-','str2':'-', 'str3':'-','str4':'-','flag':'0000000000000000-','comment':'-','typ':'xyzf', 'sectime':float('nan')} FLAGKEYLIST = KEYLIST[:16] # KEYLIST[:8] # only primary values with time # KEYLIST[1:8] # only primary values without time # Formats supported by MagPy read function: PYMAG_SUPPORTED_FORMATS = { 'IAGA':['rw','IAGA 2002 text format'], 'WDC':['rw','World Data Centre format'], 'IMF':['rw', 'Intermagnet Format'], 'IAF':['rw', 'Intermagnet archive Format'], 'BLV':['rw','Baseline format Intermagnet'], 'IYFV':['rw','Yearly mean format Intermagnet'], 'DKA':['rw', 'K value format Intermagnet'], 'DIDD':['rw','Output format from MinGeo DIDD'], 'GSM19':['r', 'Output format from GSM19 magnetometer'], 'COVJSON':['rw', 'Coverage JSON'], 'JSON':['rw', 'JavaScript Object Notation'], 'LEMIHF':['r', 'LEMI text format data'], 'LEMIBIN':['r','Current LEMI binary data format'], 'LEMIBIN1':['r','Deprecated LEMI binary format at WIC'], 'OPT':['r', 'Optical hourly data from WIK'], 'PMAG1':['r','Deprecated ELSEC from WIK'], 'PMAG2':['r', 'Current ELSEC from WIK'], 'GDASA1':['r', 'GDAS binary format'], 'GDASB1':['r', 'GDAS text format'], 'RMRCS':['r', 'RCS data output from Richards perl scripts'], 'RCS':['r', 'RCS raw output'], 'METEO':['r', 'Winklbauer METEO files'], 'NEIC':['r', 'WGET data from USGS - NEIC'], 'LNM':['r', 'Thies Laser-Disdrometer'], 'IWT':['r', 'IWT Tiltmeter data'], 'LIPPGRAV':['r', 'Lippmann Tiltmeter data'], 'GRAVSG':['r', 'GWR TSF data'], 'CR800':['r', 'CR800 datalogger'], 'IONO':['r', 'IM806 Ionometer'], 'RADON':['r', 'single channel analyser gamma data'], 'USBLOG':['r', 'USB temperature logger'], #'SERSIN':['r', '?'], #'SERMUL':['r', '?'], 'PYSTR':['rw', 'MagPy full ascii'], 'AUTODIF':['r', 'Deprecated - AutoDIF ouput data'], 'AUTODIF_FREAD':['r', 'Deprecated - Special format for AutoDIF read-in'], 'PYBIN':['r', 'MagPy own binary format'], 'PYASCII':['rw', 'MagPy basic ASCII'], 'POS1TXT':['r', 'POS-1 text format output data'], 'POS1':['r', 'POS-1 binary output at WIC'], 'PMB':['r', 'POS pmb file'], 'QSPIN':['r', 'QSPIN ascii output'], #'PYNC':['r', 'MagPy NetCDF variant (too be developed)'], #'DTU1':['r', 'ASCII Data from the DTUs FGE systems'], #'BDV1':['r', 'Budkov GDAS data variant'], 'GFZTMP':['r', 'GeoForschungsZentrum ascii format'], 'GFZKP':['r', 'GeoForschungsZentrum KP-Index format'], 'PHA':['r', 'Potentially Hazardous Asteroids (PHAs) from the International Astronomical Unions Minor Planet Center, (json, incomplete)'], 'PREDSTORM':['r','PREDSTORM space weather prediction data format'], 'CSV':['rw','comma-separated CSV data'], 'IMAGCDF':['rw','Intermagnet CDF Format'], 'PYCDF':['rw', 'MagPy CDF variant'], 'NOAAACE':['r', 'NOAA ACE satellite data format'], 'NETCDF':['r', 'NetCDF4 format, NOAA DSCOVR satellite data archive format'], 'LATEX':['w','LateX data'], 'CS':['r','Cesium G823'], #'SFDMI':['r', 'San Fernando variometer'], #'SFGSM':['r', 'San Fernando GSM90'], 'UNKOWN':['-','Unknown'] } """ PYMAG_SUPPORTED_FORMATS = { 'IAGA':'rw', # IAGA 2002 text format 'WDC':'rw', # World Data Centre format 'IMF':'rw', # Intermagnet Format 'IAF':'rw', # Intermagnet archive Format 'IMAGCDF', # Intermagnet CDF Format 'BLV', # Baseline format Intermagnet 'IYFV', # Yearly mean format Intermagnet 'DKA', # K value format Intermagnet 'DIDD', # Output format from DIDD 'GSM19', # Output format from GSM19 magnetometer 'COVJSON', # Coverage JavaScript Object Notation 'JSON', # JavaScript Object Notation 'LEMIHF', # LEMI text format data 'LEMIBIN', # Current LEMI binary data format at WIC 'LEMIBIN1', # Deprecated LEMI binary format at WIC 'OPT', # Optical hourly data from WIK 'PMAG1', # Deprecated ELSEC from WIK 'PMAG2', # Current ELSEC from WIK 'GDASA1', # ? 'GDASB1', # ? 'RMRCS', # RCS data output from Richards perl scripts 'RCS', # RCS data output from Richards perl scripts 'METEO', # RCS data output in METEO files 'NEIC', # WGET data from USGS - NEIC 'LNM', # LaserNiederschlagsMonitor files 'IWT', # Tiltmeter data files at cobs 'LIPPGRAV', # Lippmann Tiltmeter data files at cobs 'CR800', # Data from the CR800 datalogger 'IONO', # Data from IM806 Ionometer 'RADON', # ? 'USBLOG', # ? 'SERSIN', # ? 'SERMUL', # ? 'PYSTR', # MagPy full ascii 'AUTODIF', # AutoDIF ouput data 'AUTODIF_FREAD',# Special format for AutoDIF read-in 'PYCDF', # MagPy CDF variant 'PYBIN', # MagPy own format 'PYASCII', # MagPy basic ASCII 'POS1TXT', # POS-1 text format output data 'POS1', # POS-1 binary output at WIC 'PMB', # POS pmb output 'QSPIN', # QSpin output 'PYNC', # MagPy NetCDF variant (too be developed) 'DTU1', # ASCII Data from the DTU's FGE systems 'SFDMI', # ? 'SFGSM', # ? 'BDV1', # ? 'GFZKP', # GeoForschungsZentrum KP-Index format 'NOAAACE', # NOAA ACE satellite data format 'PREDSTORM' # PREDSTORM space weather prediction data format 'CSV', # comma-separated CSV data with isoformat date in first column 'LATEX', # LateX data 'CS', # ? 'UNKOWN' # 'Unknown'? } """ # ---------------------------------------------------------------------------- # Part 3: Example files for easy access and tests # ---------------------------------------------------------------------------- from pkg_resources import resource_filename example1 = resource_filename('magpy', 'examples/example1.zip') #Zip compressed IAGA02 example2 = resource_filename('magpy', 'examples/example2.cdf') #MagPy CDF with F example3 = resource_filename('magpy', 'examples/example3.txt') #PyStr Baseline example4 = resource_filename('magpy', 'examples/example4.cdf') #MagPy CDF example5 = resource_filename('magpy', 'examples/example5.sec') #Imag CDF example6a = resource_filename('magpy', 'examples/example6a.txt') #DI file example6b = resource_filename('magpy', 'examples/example6b.txt') #DI file # ---------------------------------------------------------------------------- # Part 4: Main classes -- DataStream, LineStruct and # PyMagLog (To be removed) # ---------------------------------------------------------------------------- class DataStream(object): """ Creates a list object from input files /url data data is organized in columns keys are column identifier: key in keys: see KEYLIST A note on headers: ALWAYS INITIATE STREAM WITH >>> stream = DataStream([],{}). All available methods: ---------------------------- - stream.ext(self, columnstructure): # new version of extend function for column operations - stream.add(self, datlst): - stream.clear_header(self): - stream.extend(self,datlst,header): - stream.union(self,column): - stream.findtime(self,time): - stream._find_t_limits(self): - stream._print_key_headers(self): - stream._get_key_headers(self,**kwargs): - stream.sorting(self): - stream._get_line(self, key, value): - stream._remove_lines(self, key, value): - stream._remove_columns(self, keys): - stream._get_column(self, key): - stream._put_column(self, column, key, **kwargs): - stream._move_column(self, key, put2key): - stream._clear_column(self, key): - stream._reduce_stream(self, pointlimit=100000): - stream._aic(self, signal, k, debugmode=None): - stream._get_k(self, **kwargs): - stream._get_k_float(self, value, **kwargs): - stream._get_max(self, key, returntime=False): - stream._get_min(self, key, returntime=False): - stream._gf(self, t, tau): - stream._hf(self, p, x): - stream._residual_func(self, func, y): - stream._tau(self, period): - stream._convertstream(self, coordinate, **kwargs): - stream._det_trange(self, period): - stream._is_number(self, s): - stream._normalize(self, column): - stream._testtime(self, time): - stream._drop_nans(self, key): - stream.aic_calc(self, key, **kwargs): - stream.baseline(self, absolutestream, **kwargs): - stream.bindetector(self,key,text=None,**kwargs): - stream.calc_f(self, **kwargs): - stream.cut(self,length,kind=0,order=0): - stream.dailymeans(self): - stream.date_offset(self, offset): - stream.delta_f(self, **kwargs): - stream.dict2stream(self,dictkey='DataBaseValues') - stream.differentiate(self, **kwargs): - stream.eventlogger(self, key, values, compare=None, stringvalues=None, addcomment=None, debugmode=None): - stream.extract(self, key, value, compare=None, debugmode=None): - stream.extrapolate(self, start, end): - stream.filter(self, **kwargs): - stream.fit(self, keys, **kwargs): - stream.flag_outlier(self, **kwargs): - stream.flag_stream(self, key, flag, comment, startdate, enddate=None, samplingrate): - stream.func2stream(self,function,**kwargs): - stream.func_add(self,function,**kwargs): - stream.func_subtract(self,function,**kwargs): - stream.get_gaps(self, **kwargs): - stream.get_sampling_period(self): - stream.samplingrate(self, **kwargs): - stream.integrate(self, **kwargs): - stream.interpol(self, keys, **kwargs): - stream.k_fmi(self, **kwargs): - stream.mean(self, key, **kwargs): - stream.multiply(self, factors): - stream.offset(self, offsets): - stream.randomdrop(self, percentage=None, fixed_indicies=None): - stream.remove(self, starttime=starttime, endtime=endtime): - stream.remove_flagged(self, **kwargs): - stream.resample(self, keys, **kwargs): - stream.rotation(self,**kwargs): - stream.scale_correction(self, keys, scales, **kwargs): - stream.smooth(self, keys, **kwargs): - stream.steadyrise(self, key, timewindow, **kwargs): - stream.stream2dict(self,dictkey='DataBaseValues') - stream.stream2flaglist(self, userange=True, flagnumber=None, keystoflag=None, sensorid=None, comment=None) - stream.trim(self, starttime=None, endtime=None, newway=False): - stream.variometercorrection(self, variopath, thedate, **kwargs): - stream.write(self, filepath, **kwargs): Application methods: ---------------------------- - stream.aic_calc(key) -- returns stream (with !var2! filled with aic values) - stream.baseline() -- calculates baseline correction for input stream (datastream) - stream.dailymeans() -- for DI stream - obtains variometer corrected means fo basevalues - stream.date_offset() -- Corrects the time column of the selected stream by the offst - stream.delta_f() -- Calculates the difference of x+y+z to f - stream.differentiate() -- returns stream (with !dx!,!dy!,!dz!,!df! filled by derivatives) - stream.extrapolate() -- read absolute stream and extrapolate the data - stream.fit(keys) -- returns function - stream.filter() -- returns stream (changes sampling_period; in case of fmi ...) - stream.find_offset(stream_a, stream_b) -- Finds offset of two data streams. (Not optimised.) - stream.flag_stream() -- Add flags to specific times or time ranges - stream.func2stream() -- Combine stream and function (add, subtract, etc) - stream.func_add() -- Add a function to the selected values of the data stream - stream.func_subtract() -- Subtract a function from the selected values of the data stream - stream.get_gaps() -- Takes the dominant sample frequency and fills non-existing time steps - stream.get_sampling_period() -- returns the dominant sampling frequency in unit ! days ! - stream.integrate() -- returns stream (integrated vals at !dx!,!dy!,!dz!,!df!) - stream.interpol(keys) -- returns function - stream.k_fmi() -- Calculating k values following the fmi approach - stream.linestruct2ndarray() -- converts linestrcut data to ndarray. should be avoided - stream.mean() -- Calculates mean values for the specified key, Nan's are regarded for - stream.offset() -- Apply constant offsets to elements of the datastream - stream.plot() -- plot keys from stream - stream.powerspectrum() -- Calculating the power spectrum following the numpy fft example - stream.remove_flagged() -- returns stream (removes data from stream according to flags) - stream.resample(period) -- Resample stream to given sampling period. - stream.rotation() -- Rotation matrix for rotating x,y,z to new coordinate system xs,ys,zs - stream.selectkeys(keys) -- ndarray: remove all data except for provided keys (and flag/comment) - stream.smooth(key) -- smooth the data using a window with requested size - stream.spectrogram() -- Creates a spectrogram plot of selected keys - stream.stream2flaglist() -- make flaglist out of stream - stream.trim() -- returns stream within new time frame - stream.use_sectime() -- Swap between primary and secondary time (if sectime is available) - stream.variometercorrection() -- Obtain average DI values at certain timestep(s) - stream.write() -- Writing Stream to a file Supporting INTERNAL methods: ---------------------------- A. Standard functions and overrides for list like objects - self.clear_header(self) -- Clears headers - self.extend(self,datlst,header) -- Extends stream object - self.sorting(self) -- Sorts object B. Internal Methods I: Line & column functions - self._get_column(key) -- returns a numpy array of selected columns from Stream - self._put_column(key) -- adds a column to a Stream - self._move_column(key, put2key) -- moves one column to another key - self._clear_column(key) -- clears a column to a Stream - self._get_line(self, key, value) -- returns a LineStruct element corresponding to the first occurence of value within the selected key - self._reduce_stream(self) -- Reduces stream below a certain limit. - self._remove_lines(self, key, value) -- removes lines with value within the selected key - self.findtime(self,time) -- returns index and line for which time equals self.time B. Internal Methods II: Data manipulation functions - self._aic(self, signal, k, debugmode=None) -- returns float -- determines Akaki Information Criterion for a specific index k - self._get_k(self, **kwargs) -- Calculates the k value according to the Bartels scale - self._get_k_float(self, value, **kwargs) -- Like _get_k, but for testing single values and not full stream keys (used in filtered function) - self._gf(self, t, tau): -- Gauss function - self._hf(self, p, x) -- Harmonic function - self._residual_func(self, func, y) -- residual of the harmonic function - self._tau(self, period) -- low pass filter with -3db point at period in sec (e.g. 120 sec) B. Internal Methods III: General utility & NaN handlers - self._convertstream(self, coordinate, **kwargs) -- Convert coordinates of x,y,z columns in stream - self._det_trange(self, period) -- starting with coefficients above 1% - self._find_t_limits(self) -- return times of first and last stream data points - self._testtime(time) -- returns datetime object - self._get_min(key) -- returns float - self._get_max(key) -- returns float - self._normalize(column) -- returns list,float,float -- normalizes selected column to range 0,1 - nan_helper(self, y) -- Helper to handle indices and logical indices of NaNs - self._print_key_headers(self) -- Prints keys in datastream with variable and unit. - self._get_key_headers(self) -- Returns keys in datastream. - self._drop_nans(self, key) -- Helper to drop lines with NaNs in any of the selected keys. - self._is_number(self, s) -- ? Supporting EXTERNAL methods: ---------------------------- Useful functions: - array2stream -- returns a data stream -- converts a list of arrays to a datastream - linestruct2ndarray -- returns a data ndarray -- converts a old linestruct format - denormalize -- returns list -- (column,startvalue,endvalue) denormalizes selected column from range 0,1 ro sv,ev - find_nearest(array, value) -- find point in array closest to value - maskNAN(column) -- Tests for NAN values in array and usually masks them - nearestPow2(x) -- Find power of two nearest to x ********************************************************************* Standard function description format: DEFINITION: Description of function purpose and usage. PARAMETERS: Variables: - variable: (type) Description. Kwargs: - variable: (type) Description. RETURNS: - variable: (type) Description. EXAMPLE: >>> alldata = mergeStreams(pos_stream, lemi_stream, keys=['<KEY>']) APPLICATION: Code for simple application. ********************************************************************* Standard file description format: Path: *path* (magpy.acquisition.pos1protocol) Part of package: *package* (acquisition) Type: *type* (type of file/package) PURPOSE: Description... CONTAINS: *ThisClass: (Class) What is this class for? thisFunction: (Func) Description DEPENDENCIES: List all non-standard packages required for file. + paths of all MagPy package dependencies. CALLED BY: Path to magpy packages that call this part, e.g. magpy.bin.acquisition ********************************************************************* """ KEYLIST = [ 'time', # Timestamp (date2num object) 'x', # X or I component of magnetic field (float) 'y', # Y or D component of magnetic field (float) 'z', # Z component of magnetic field (float) 'f', # Magnetic field strength (float) 't1', # Temperature variable (e.g. ambient temp) (float) 't2', # Secondary temperature variable (e.g. sensor temp) (float) 'var1', # Extra variable #1 (float) 'var2', # Extra variable #2 (float) 'var3', # Extra variable #3 (float) 'var4', # Extra variable #4 (float) 'var5', # Extra variable #5 (float) 'dx', # Errors in X (float) 'dy', # Errors in Y (float) 'dz', # Errors in Z (float) 'df', # Errors in F (float) 'str1', # Extra string variable #1 (str) 'str2', # Extra string variable #2 (str) 'str3', # Extra string variable #3 (str) 'str4', # Extra string variable #4 (str) 'flag', # Variable for flags. (str='0000000000000000-') 'comment', # Space for comments on flags (str) 'typ', # Type of data (str='xyzf') 'sectime' # Secondary time variable (date2num) ] NUMKEYLIST = KEYLIST[1:16] def __init__(self, container=None, header={},ndarray=None): if container is None: container = [] self.container = container if ndarray is None: ndarray = np.array([np.asarray([]) for elem in KEYLIST]) self.ndarray = ndarray ## Test this! -> for better memory efficiency #if header is None: # header = {'Test':'Well, it works'} #header = {} self.header = header #for key in KEYLIST: # setattr(self,key,np.asarray([])) #self.header = {'Test':'Well, it works'} self.progress = 0 # ------------------------------------------------------------------------ # A. Standard functions and overrides for list like objects # ------------------------------------------------------------------------ def ext(self, columnstructure): # new version of extend function for column operations """ the extend and add functions must be replaced in case of speed optimization """ for key in KEYLIST: self.container.key = np.append(self.container.key, columnstructure.key, 1) def add(self, datlst): #try: assert isinstance(self.container, (list, tuple)) self.container.append(datlst) #except: # print list(self.container).append(datlst) def length(self): #try: if len(self.ndarray[0]) > 0: ll = [len(elem) for elem in self.ndarray] return ll else: try: ## might fail if LineStruct is empty (no time) if len(self) == 1 and np.isnan(self[0].time): return [0] else: return [len(self)] except: return [0] def replace(self, datlst): # Replace in stream # - replace value with existing data # Method was used by K calc - replaced by internal method there newself = DataStream() assert isinstance(self.container, (list, tuple)) ti = list(self._get_column('time')) try: ind = ti.index(datlst.time) except ValueError: self = self.add(datlst) return self except: return self li = [elem for elem in self] del li[ind] del ti[ind] li.append(datlst) return DataStream(li,self.header) def copy(self): """ DESCRIPTION: method for copying content of a stream to a new stream APPLICATION: for non-destructive methods """ #print self.container #assert isinstance(self.container, (list, tuple)) co = DataStream() #co.header = self.header newheader = {} for el in self.header: newheader[el] = self.header[el] array = [[] for el in KEYLIST] if len(self.ndarray[0])> 0: for ind, key in enumerate(KEYLIST): liste = [] for val in self.ndarray[ind]: ## This is necessary to really copy the content liste.append(val) array[ind] = np.asarray(liste) co.container = [LineStruct()] else: for el in self: li = LineStruct() for key in KEYLIST: if key == 'time': li.time = el.time else: #exec('li.'+key+' = el.'+key) elkey = getattr(el,key) setattr(li, key, elkey) co.add(li) return DataStream(co.container,newheader,np.asarray(array, dtype=object)) def __str__(self): return str(self.container) def __repr__(self): return str(self.container) def __getitem__(self, var): try: if var in NUMKEYLIST: return self.ndarray[self.KEYLIST.index(var)].astype(np.float64) else: return self.ndarray[self.KEYLIST.index(var)] except: return self.container.__getitem__(var) def __setitem__(self, var, value): self.ndarray[self.KEYLIST.index(var)] = value def __len__(self): return len(self.container) def clear_header(self): """ Remove header information """ self.header = {} def extend(self,datlst,header,ndarray): array = [[] for key in KEYLIST] self.container.extend(datlst) self.header = header # Some initial check if any data set except timecolumn is contained datalength = len(ndarray) #t1 = datetime.utcnow() if pyvers and pyvers == 2: ch1 = '-'.encode('utf-8') # not working with py3 ch2 = ''.encode('utf-8') else: ch1 = '-' ch2 = '' try: test = [] for col in ndarray: col = np.array(list(col)) #print (np.array(list(col)).dtype) if col.dtype in ['float64','float32','int32','int64']: try: x = np.asarray(col)[~np.isnan(col)] except: # fallback 1 -> should not needed any more #print ("Fallback1") x = np.asarray([elem for elem in col if not np.isnan(elem)]) else: #y = np.asarray(col)[col!='-'] #x = np.asarray(y)[y!=''] y = np.asarray(col)[col!=ch1] x = np.asarray(y)[y!=ch2] test.append(x) test = np.asarray(test,dtype=object) except: # print ("Fallback -- pretty slowly") #print ("Fallback2") test = [[elem for elem in col if not elem in [ch1,ch2]] for col in ndarray] #t2 = datetime.utcnow() #print (t2-t1) emptycnt = [len(el) for el in test if len(el) > 0] if self.ndarray.size == 0: self.ndarray = ndarray elif len(emptycnt) == 1: print("Tyring to extend with empty data set") #self.ndarray = np.asarray((list(self.ndarray)).extend(list(ndarray))) else: for idx,elem in enumerate(self.ndarray): if len(ndarray[idx]) > 0: if len(self.ndarray[idx]) > 0 and len(self.ndarray[0]) > 0: array[idx] = np.append(self.ndarray[idx], ndarray[idx]).astype(object) #array[idx] = np.append(self.ndarray[idx], ndarray[idx],1).astype(object) elif len(self.ndarray[0]) > 0: # only time axis present so far but no data within this elem fill = ['-'] key = KEYLIST[idx] if key in NUMKEYLIST or key=='sectime': fill = [float('nan')] nullvals = np.asarray(fill * len(self.ndarray[0])) #array[idx] = np.append(nullvals, ndarray[idx],1).astype(object) array[idx] = np.append(nullvals, ndarray[idx]).astype(object) else: array[idx] = ndarray[idx].astype(object) self.ndarray = np.asarray(array, dtype=object) def union(self,column): seen = set() seen_add = seen.add return [ x for x in column if not (x in seen or seen_add(x))] def removeduplicates(self): """ DESCRIPTION: Identify duplicate time stamps and remove all data. Lines with first occurence are kept. """ # get duplicates in time column def list_duplicates(seq): seen = set() seen_add = seen.add return [idx for idx,item in enumerate(seq) if item in seen or seen_add(item)] if not len(self.ndarray[0]) > 0: print ("removeduplicates: works only with ndarrays") return duplicateindicies = list_duplicates(self.ndarray[0]) array = [[] for key in KEYLIST] for idx, elem in enumerate(self.ndarray): if len(elem) > 0: newelem = np.delete(elem, duplicateindicies) array[idx] = newelem return DataStream(self, self.header, np.asarray(array,dtype=object)) def start(self, dateformt=None): st,et = self._find_t_limits() return st def end(self, dateformt=None): st,et = self._find_t_limits() return et def findtime(self,time,**kwargs): """ DEFINITION: Find a line within the container which contains the selected time step or the first line following this timestep (since 0.3.99 using mode 'argmax') VARIABLES: startidx (int) index to start search with (speeding up) endidx (int) index to end search with (speeding up) mode (string) define search mode (fastest would be 'argmax') RETURNS: The index position of the line and the line itself """ startidx = kwargs.get('startidx') endidx = kwargs.get('endidx') mode = kwargs.get('mode') #try: # from bisect import bisect #except ImportError: # print("Import error") st = date2num(self._testtime(time)) if len(self.ndarray[0]) > 0: if startidx and endidx: ticol = self.ndarray[0][startidx:endidx] elif startidx: ticol = self.ndarray[0][startidx:] elif endidx: ticol = self.ndarray[0][:endidx] else: ticol = self.ndarray[0] try: if mode =='argmax': ## much faster since 0.3.99 (used in flag_stream) indexes = [np.argmax(ticol>=st)] else: ## the following method is used until 0.3.98 indexes = [i for i,x in enumerate(ticol) if x == st] ### FASTER # Other methods # ############# #indexes = [i for i,x in enumerate(ticol) if np.allclose(x,st,rtol=1e-14,atol=1e-17)] # if the two time equal within about 0.7 milliseconds #indexes = [bisect(ticol, st)] ## SELECTS ONLY INDEX WHERE VALUE SHOULD BE inserted #indexes = [ticol.index(st)] #print("findtime", indexes) if not len(indexes) == 0: if startidx: retindex = indexes[0] + startidx else: retindex = indexes[0] #print("Findtime index:",retindex) return retindex, LineStruct() else: return 0, [] #return list(self.ndarray[0]).index(st), LineStruct() except: logger.warning("findtime: Didn't find selected time - returning 0") return 0, [] for index, line in enumerate(self): if line.time == st: return index, line logger.warning("findtime: Didn't find selected time - returning 0") return 0, [] def _find_t_limits(self): """ DEFINITION: Find start and end times in stream. RETURNS: Two datetime objects, start and end. """ if len(self.ndarray[0]) > 0: t_start = num2date(np.min(self.ndarray[0].astype(float))).replace(tzinfo=None) t_end = num2date(np.max(self.ndarray[0].astype(float))).replace(tzinfo=None) else: try: # old type t_start = num2date(self[0].time).replace(tzinfo=None) t_end = num2date(self[-1].time).replace(tzinfo=None) except: # empty t_start,t_end = None,None return t_start, t_end def _print_key_headers(self): print("%10s : %22s : %28s" % ("MAGPY KEY", "VARIABLE", "UNIT")) for key in FLAGKEYLIST[1:]: try: header = self.header['col-'+key] except: header = None try: unit = self.header['unit-col-'+key] except: unit = None print("%10s : %22s : %28s" % (key, header, unit)) def _get_key_headers(self,**kwargs): """ DEFINITION: get a list of existing numerical keys in stream. PARAMETERS: kwargs: - limit: (int) limit the lenght of the list - numerical: (bool) if True, select only numerical keys RETURNS: - keylist: (list) a list like ['x','y','z'] EXAMPLE: >>> data_stream._get_key_headers(limit=1) """ limit = kwargs.get('limit') numerical = kwargs.get('numerical') if numerical: TESTLIST = FLAGKEYLIST else: TESTLIST = KEYLIST keylist = [] """ for key in FLAGKEYLIST[1:]: try: header = self.header['col-'+key] try: unit = self.header['unit-col-'+key] except: unit = None keylist.append(key) except: header = None """ if not len(keylist) > 0: # e.g. Testing ndarray for ind,elem in enumerate(self.ndarray): # use the long way if len(elem) > 0 and ind < len(TESTLIST): if not TESTLIST[ind] == 'time': keylist.append(TESTLIST[ind]) if not len(keylist) > 0: # e.g. header col-? does not contain any info #for key in FLAGKEYLIST[1:]: # use the long way for key in TESTLIST[1:]: # use the long way col = self._get_column(key) if len(col) > 0: #if not len(col) == 1 and not ( # maybe add something to prevent reading empty LineStructs) if len(col) == 1: if col[0] in ['-',float(nan),'']: pass else: keylist.append(key) if limit and len(keylist) > limit: keylist = keylist[:limit] return keylist def _get_key_names(self): """ DESCRIPTION: get the variable names for each key APPLICATION: keydict = self._get_key_names() """ keydict = {} for key in KEYLIST: kname = self.header.get('col-'+key) keydict[kname] = key return keydict def dropempty(self): """ DESCRIPTION: Drop empty arrays from ndarray and store their positions """ if not len(self.ndarray[0]) > 0: return self.ndarray, np.asarray([]) newndarray = [] indexarray = [] for ind,elem in enumerate(self.ndarray): if len(elem) > 0: newndarray.append(np.asarray(elem).astype(object)) indexarray.append(ind) keylist = [el for ind,el in enumerate(KEYLIST) if ind in indexarray] return np.asarray(newndarray), keylist def fillempty(self, ndarray, keylist): """ DESCRIPTION: Fills empty arrays into ndarray at all position of KEYLIST not provided in keylist """ if not len(ndarray[0]) > 0: return self if len(self.ndarray) == KEYLIST: return self lst = list(ndarray) for i,key in enumerate(KEYLIST): if not key in keylist: lst.insert(i,[]) newndarray = np.asarray(lst,dtype=object) return newndarray def sorting(self): """ Sorting data according to time (maybe generalize that to some key) """ try: # old LineStruct part liste = sorted(self.container, key=lambda tmp: tmp.time) except: pass if len(self.ndarray[0]) > 0: self.ndarray, keylst = self.dropempty() #self.ndarray = self.ndarray[:, np.argsort(self.ndarray[0])] # does not work if some rows have a different length) ind = np.argsort(self.ndarray[0]) for i,el in enumerate(self.ndarray): if len(el) == len(ind): self.ndarray[i] = el[ind] else: #print("Sorting: key %s has the wrong length - replacing row with NaNs" % KEYLIST[i]) logger.warning("Sorting: key %s has the wrong length - replacing row with NaNs" % KEYLIST[i]) logger.warning("len(t-axis)=%d len(%s)=%d" % (len(self.ndarray[0]), KEYLIST[i], len(self.ndarray[i]))) self.ndarray[i] = np.empty(len(self.ndarray[0])) * np.nan self.ndarray = self.fillempty(self.ndarray,keylst) for idx,el in enumerate(self.ndarray): self.ndarray[idx] = np.asarray(self.ndarray[idx]).astype(object) else: self.ndarray = self.ndarray return DataStream(liste, self.header, self.ndarray) # ------------------------------------------------------------------------ # B. Internal Methods: Line & column functions # ------------------------------------------------------------------------ def _get_line(self, key, value): """ returns a LineStruct elemt corresponding to the first occurence of value within the selected key e.g. st = st._get_line('time',734555.3442) will return the line with time 7... """ if not key in KEYLIST: raise ValueError("Column key not valid") lines = [elem for elem in self if eval('elem.'+key) == value] return lines[0] def _take_columns(self, keys): """ DEFINITION: extract selected columns of the given keys (Old LineStruct format - decrapted) """ resultstream = DataStream() for elem in self: line = LineStruct() line.time = elem.time resultstream.add(line) resultstream.header = {} for key in keys: if not key in KEYLIST: pass elif not key == 'time': col = self._get_column(key) #print key, len(col) try: resultstream.header['col-'+key] = self.header['col-'+key] except: pass try: resultstream.header['unit-col-'+key] = self.header['unit-col-'+key] except: pass resultstream = resultstream._put_column(col,key) return resultstream def _remove_lines(self, key, value): """ removes lines with value within the selected key e.g. st = st._remove_lines('time',734555.3442) will return the line with time 7... """ if not key in KEYLIST: raise ValueError("Column key not valid") lst = [elem for elem in self if not eval('elem.'+key) == value] return DataStream(lst, self.header) def _get_column(self, key): """ Returns a numpy array of selected column from Stream Example: columnx = datastream._get_column('x') """ if not key in KEYLIST: raise ValueError("Column key not valid") # Speeded up this technique: ind = KEYLIST.index(key) if len(self.ndarray[0]) > 0: try: col = self[key] except: col = self.ndarray[ind] return col # Check for initialization value #testval = self[0][ind] # if testval == KEYINITDICT[key] or isnan(testval): # return np.asarray([]) try: col = np.asarray([row[ind] for row in self]) #get the first ten elements and test whether nan is there -- why ?? """ try: # in case of string.... novalfound = True for ele in col[:10]: if not isnan(ele): novalfound = False if novalfound: return np.asarray([]) except: return col """ return col except: return np.asarray([]) def _put_column(self, column, key, **kwargs): """ DEFINITION: adds a column to a Stream PARAMETERS: column: (array) single list with data with equal length as stream key: (key) key to which the data is written Kwargs: columnname: (string) define a name columnunit: (string) define a unit RETURNS: - DataStream object EXAMPLE: >>> stream = stream._put_column(res, 't2', columnname='Rain',columnunit='mm in 1h') """ #init = kwargs.get('init') #if init>0: # for i in range init: # self.add(float('NaN')) columnname = kwargs.get('columnname') columnunit = kwargs.get('columnunit') if not key in KEYLIST: raise ValueError("Column key not valid") if len(self.ndarray[0]) > 0: ind = KEYLIST.index(key) self.ndarray[ind] = np.asarray(column) else: if not len(column) == len(self): raise ValueError("Column length does not fit Datastream") for idx, elem in enumerate(self): setattr(elem, key, column[idx]) if not columnname: try: # TODO correct that if eval('self.header["col-%s"]' % key) == '': exec('self.header["col-%s"] = "%s"' % (key, key)) except: pass else: exec('self.header["col-%s"] = "%s"' % (key, columnname)) if not columnunit: try: # TODO correct that if eval('self.header["unit-col-%s"]' % key) == '': exec('self.header["unit-col-%s"] = "arb"' % (key)) except: pass else: exec('self.header["unit-col-%s"] = "%s"' % (key, columnunit)) return self def _move_column(self, key, put2key): ''' DEFINITION: Move column of key "key" to key "put2key". Simples. PARAMETERS: Variables: - key: (str) Key to be moved. - put2key: (str) Key for 'key' to be moved to. RETURNS: - stream: (DataStream) DataStream object. EXAMPLE: >>> data_stream._move_column('f', 'var1') ''' if not key in KEYLIST: logger.error("_move_column: Column key %s not valid!" % key) if key == 'time': logger.error("_move_column: Cannot move time column!") if not put2key in KEYLIST: logger.error("_move_column: Column key %s (to move %s to) is not valid!" % (put2key,key)) if len(self.ndarray[0]) > 0: col = self._get_column(key) self =self._put_column(col,put2key) return self try: for i, elem in enumerate(self): exec('elem.'+put2key+' = '+'elem.'+key) if key in NUMKEYLIST: setattr(elem, key, float("NaN")) #exec('elem.'+key+' = float("NaN")') else: setattr(elem, key, "-") #exec('elem.'+key+' = "-"') try: exec('self.header["col-%s"] = self.header["col-%s"]' % (put2key, key)) exec('self.header["unit-col-%s"] = self.header["unit-col-%s"]' % (put2key, key)) exec('self.header["col-%s"] = None' % (key)) exec('self.header["unit-col-%s"] = None' % (key)) except: logger.error("_move_column: Error updating headers.") logger.info("_move_column: Column %s moved to column %s." % (key, put2key)) except: logger.error("_move_column: It's an error.") return self def _drop_column(self,key): """ remove a column of a Stream """ ind = KEYLIST.index(key) if len(self.ndarray[0]) > 0: try: self.ndarray[ind] = np.asarray([]) except: # Some array don't allow that, shape error e.g. PYSTRING -> then use this array = [np.asarray(el) if idx is not ind else np.asarray([]) for idx,el in enumerate(self.ndarray)] self.ndarray = np.asarray(array,dtype=object) colkey = "col-%s" % key colunitkey = "unit-col-%s" % key try: self.header.pop(colkey, None) self.header.pop(colunitkey, None) except: print("_drop_column: Error while dropping header info") else: print("No data available or LineStruct type (not supported)") return self def _clear_column(self, key): """ remove a column to a Stream """ #init = kwargs.get('init') #if init>0: # for i in range init: # self.add(float('NaN')) if not key in KEYLIST: raise ValueError("Column key not valid") for idx, elem in enumerate(self): if key in NUMKEYLIST: setattr(elem, key, float("NaN")) #exec('elem.'+key+' = float("NaN")') else: setattr(elem, key, "-") #exec('elem.'+key+' = "-"') return self def _reduce_stream(self, pointlimit=100000): """ DEFINITION: Reduces size of stream by picking for plotting methods to save memory when plotting large data sets. Does NOT filter or smooth! This function purely removes data points (rows) in a periodic fashion until size is <100000 data points. (Point limit can also be defined.) PARAMETERS: Kwargs: - pointlimit: (int) Max number of points to include in stream. Default is 100000. RETURNS: - DataStream: (DataStream) New stream reduced to below pointlimit. EXAMPLE: >>> lessdata = ten_Hz_data._reduce_stream(pointlimit=500000) """ size = len(self) div = size/pointlimit divisor = math.ceil(div) count = 0. lst = [] if divisor > 1.: for elem in self: if count%divisor == 0.: lst.append(elem) count += 1. else: logger.warning("_reduce_stream: Stream size (%s) is already below pointlimit (%s)." % (size,pointlimit)) return self logger.info("_reduce_stream: Stream size reduced from %s to %s points." % (size,len(lst))) return DataStream(lst, self.header) def _remove_nancolumns(self): """ DEFINITION: Remove any columsn soley filled with nan values APPLICATION: called by plot methods in mpplot RETURNS: - DataStream: (DataStream) New stream reduced to below pointlimit. """ array = [[] for key in KEYLIST] if len(self.ndarray[0]) > 0: for idx, elem in enumerate(self.ndarray): if len(self.ndarray[idx]) > 0 and KEYLIST[idx] in NUMKEYLIST: lst = list(self.ndarray[idx]) #print KEYLIST[idx],lst[0] if lst[1:] == lst[:-1] and np.isnan(float(lst[0])): array[idx] = np.asarray([]) else: array[idx] = self.ndarray[idx] else: array[idx] = self.ndarray[idx] else: pass return DataStream(self,self.header,np.asarray(array,dtype=object)) # ------------------------------------------------------------------------ # B. Internal Methods: Data manipulation functions # ------------------------------------------------------------------------ def _aic(self, signal, k, debugmode=None): try: aicval = (k-1)* np.log(np.var(signal[:k]))+(len(signal)-k-1)*np.log(np.var(signal[k:])) except: if debugmode: logger.debug('_AIC: could not evaluate AIC at index position %i' % (k)) pass return aicval def harmfit(self,nt, val, fitdegree): # method for harminic fit according to Phil McFadden's fortran program """ DEFINITION: Method for harmonic fit according to <NAME>en's fortran program Used by k-value determination PARAMETERS: Kwargs: - nt: (list) Normalized time array. - val: (list) Value list. - fitdegree: (int) hramonic degree default is 5. RETURNS: - newval: (array) an array with fitted values of length(val). EXAMPLE: >>> f_fit = self.harmfit(nt,val, 5) """ N = len(nt) coeff = (val[-1]-val[0]) /(nt[-1]-nt[0]) newval = [elem-coeff*(nt[i]-nt[0]) for i, elem in enumerate(val)] ReVal = [] ImVal = [] for h in range(0,fitdegree): ReVal.append(newval[0]) ImVal.append(0.0) angle = -h*(2.0*np.pi/N) for i in range(1,len(newval)): si = np.sin(i*angle) co = np.cos(i*angle) ReVal[h] = ReVal[h] + newval[i]*co ImVal[h] = ImVal[h] + newval[i]*si #print "Parameter:", len(newval) #print len(ReVal), ReVal angle = 2.0*np.pi*(float(N-1)/float(N))/(nt[-1]-nt[0]) harmval = [] for i,elem in enumerate(newval): harmval.append(ReVal[0]) angle2 = (nt[i]-nt[0])*angle for h in range(1,fitdegree): si = np.sin(h*angle2) co = np.cos(h*angle2) harmval[i] = harmval[i]+(2.0*(ReVal[h]*co-ImVal[h]*si)) harmval[i] = harmval[i]/float(N)+coeff*(nt[i]-nt[0]) return np.asarray(harmval) def _get_max(self, key, returntime=False): if not key in KEYLIST[:16]: raise ValueError("Column key not valid") key_ind = KEYLIST.index(key) t_ind = KEYLIST.index('time') if len(self.ndarray[0]) > 0: result = np.nanmax(self.ndarray[key_ind].astype(float)) ind = np.nanargmax(self.ndarray[key_ind].astype(float)) tresult = self.ndarray[t_ind][ind] else: elem = max(self, key=lambda tmp: eval('tmp.'+key)) result = eval('elem.'+key) tresult = elem.time if returntime: return result, tresult else: return result def _get_min(self, key, returntime=False): if not key in KEYLIST[:16]: raise ValueError("Column key not valid") key_ind = KEYLIST.index(key) t_ind = KEYLIST.index('time') if len(self.ndarray[0]) > 0: result = np.nanmin(self.ndarray[key_ind].astype(float)) ind = np.nanargmin(self.ndarray[key_ind].astype(float)) tresult = self.ndarray[t_ind][ind] else: elem = min(self, key=lambda tmp: eval('tmp.'+key)) result = eval('elem.'+key) tresult = elem.time if returntime: return result, tresult else: return result def _get_variance(self, key): if not key in KEYLIST[:16]: raise ValueError("Column key not valid") key_ind = KEYLIST.index(key) if len(self.ndarray[0]) > 0: result = np.nanvar(self.ndarray[key_ind].astype(float)) return result def amplitude(self,key): """ DESCRIPTION: calculates maximum-minimum difference of the keys timeseries REQUIRES: _get_column() RETURNS: float: difference between maximum and minimim value in time range APPLICATION amp = stream.amplitude('x') """ ts = self._get_column(key).astype(float) ts = ts[~np.isnan(ts)] maxts = np.max(ts) mints = np.min(ts) return maxts-mints def _gf(self, t, tau): """ Gauss function """ return np.exp(-((t/tau)*(t/tau))/2) def _hf(self, p, x): """ Harmonic function """ hf = p[0]*cos(2*pi/p[1]*x+p[2]) + p[3]*x + p[4] # Target function return hf def _residual_func(self, func, y): """ residual of the harmonic function """ return y - func def _tau(self, period, fac=0.83255461): """ low pass filter with -3db point at period in sec (e.g. 120 sec) 1. convert period from seconds to days as used in daytime 2. return tau (in unit "day") - The value of 0.83255461 is obtained for -3db (see IAGA Guide) """ per = period/(3600*24) return fac*per/(2*np.pi) # ------------------------------------------------------------------------ # B. Internal Methods: General utility & NaN handlers # ------------------------------------------------------------------------ def _convertstream(self, coordinate, **kwargs): """ DESCRIPTION: Convert coordinates of x,y,z columns in other coordinate system: - xyz2hdz - xyz2idf - hdz2xyz - idf2xyz Helper method which call the tranformation routines APPLICATION: used by k_fmi, variocorrection """ ext = '' if len(self.ndarray[4]) > 0: ext = 'F' if len(self.ndarray[KEYLIST.index('df')]) > 0: ext = 'G' if len(self.ndarray[0]) > 0: if coordinate == 'xyz2hdz': self = self.xyz2hdz() self.header['DataComponents'] = 'HDZ'+ext elif coordinate == 'xyz2idf': self = self.xyz2idf() self.header['DataComponents'] = 'IDF'+ext elif coordinate == 'hdz2xyz': self = self.hdz2xyz() self.header['DataComponents'] = 'XYZ'+ext elif coordinate == 'idf2xyz': self = self.idf2xyz() self.header['DataComponents'] = 'XYZ'+ext elif coordinate == 'idf2hdz': self = self.idf2xyz() self = self.xyz2hdz() self.header['DataComponents'] = 'HDZ'+ext elif coordinate == 'hdz2idf': self = self.hdz2xyz() self = self.xyz2idf() self.header['DataComponents'] = 'IDF'+ext else: print("_convertstream: unkown coordinate transform") return self keep_header = kwargs.get('keep_header') outstream = DataStream() for elem in self: row=LineStruct() exec('row = elem.'+coordinate+'(unit="deg")') row.typ = ''.join((list(coordinate))[4:])+'f' outstream.add(row) if not keep_header: outstream.header['col-x'] = (list(coordinate))[4] outstream.header['col-y'] = (list(coordinate))[5] outstream.header['col-z'] = (list(coordinate))[6] if (list(coordinate))[4] in ['i','d']: outstream.header['unit-col-x'] = 'deg' else: outstream.header['unit-col-x'] = 'nT' if (list(coordinate))[5] in ['i','d']: outstream.header['unit-col-y'] = 'deg' else: outstream.header['unit-col-y'] = 'nT' if (list(coordinate))[6] in ['i','d']: outstream.header['unit-col-z'] = 'deg' else: outstream.header['unit-col-z'] = 'nT' return DataStream(outstream,outstream.header) def _delete(self,index): """ DESCRIPTION: Helper method to delete all values at a specific index or range of indicies from the ndarray APPLICTAION: Used by k_fmi with individual indicies """ for i,array in enumerate(self.ndarray): if isinstance( index, (int) ): # removed long (not necessary for python3, error in win) if len(array) > index: self.ndarray[i] = np.delete(self.ndarray[i],index) else: self.ndarray[i] = np.delete(self.ndarray[i],index) return self def _append(self,stream): """ DESCRIPTION: Helper method to append values from another stream to a ndarray. Append only to columns already filled in self. APPLICTAION: Used by k_fmi """ for i,array in enumerate(self): if len(array) > 0: self.ndarray[i] = np.append(self.ndarray[i],stream.ndarray[i]) return self def _det_trange(self, period): """ starting with coefficients above 1% is now returning a timedelta object """ return np.sqrt(-np.log(0.01)*2)*self._tau(period) def _is_number(self, s): """ Test whether s is a number """ if str(s) in ['','None',None]: return False try: float(s) return True except ValueError: return False def _normalize(self, column): """ normalizes the given column to range [0:1] """ normcol = [] column = column.astype(float) maxval = np.max(column) minval = np.min(column) for elem in column: normcol.append((elem-minval)/(maxval-minval)) return normcol, minval, maxval def _testtime(self, time): """ Check the date/time input and returns a datetime object if valid: ! Use UTC times ! - accepted are the following inputs: 1) absolute time: as provided by date2num 2) strings: 2011-11-22 or 2011-11-22T11:11:00 3) datetime objects by datetime.datetime e.g. (datetime(2011,11,22,11,11,00) """ if isinstance(time, float) or isinstance(time, int): try: timeobj = num2date(time).replace(tzinfo=None) except: raise TypeError elif isinstance(time, str): # test for str only in Python 3 should be basestring for 2.x try: timeobj = datetime.strptime(time,"%Y-%m-%d") except: try: timeobj = datetime.strptime(time,"%Y-%m-%dT%H:%M:%S") except: try: timeobj = datetime.strptime(time,"%Y-%m-%d %H:%M:%S.%f") except: try: timeobj = datetime.strptime(time,"%Y-%m-%dT%H:%M:%S.%f") except: try: timeobj = datetime.strptime(time,"%Y-%m-%d %H:%M:%S") except: try: # Not happy with that but necessary to deal # with old 1000000 micro second bug timearray = time.split('.') if timearray[1] == '1000000': timeobj = datetime.strptime(timearray[0],"%Y-%m-%d %H:%M:%S")+timedelta(seconds=1) else: # This would be wrong but leads always to a TypeError timeobj = datetime.strptime(timearray[0],"%Y-%m-%d %H:%M:%S") except: try: timeobj = num2date(float(time)).replace(tzinfo=None) except: raise TypeError elif not isinstance(time, datetime): raise TypeError else: timeobj = time return timeobj def _drop_nans(self, key): """ DEFINITION: Helper to drop all lines when NaNs or INFs are found within the selected key RETURNS: - DataStream: (DataStream object) a new data stream object with out identified lines. EXAMPLE: >>> newstream = stream._drop_nans('x') APPLICATION: used for plotting and fitting of data """ array = [np.asarray([]) for elem in KEYLIST] if len(self.ndarray[0]) > 0 and key in NUMKEYLIST: ind = KEYLIST.index(key) #indicieslst = [i for i,el in enumerate(self.ndarray[ind].astype(float)) if np.isnan(el) or np.isinf(el)] ar = np.asarray(self.ndarray[ind]).astype(float) indicieslst = [] for i,el in enumerate(ar): if np.isnan(el) or np.isinf(el): indicieslst.append(i) searchlist = ['time'] searchlist.extend(NUMKEYLIST) for index,tkey in enumerate(searchlist): if len(self.ndarray[index])>0: # Time column !!! -> index+1 array[index] = np.delete(self.ndarray[index], indicieslst) #elif len(self.ndarray[index+1])>0: # array[index+1] = self.ndarray[index+1] newst = [LineStruct()] else: newst = [elem for elem in self if not isnan(eval('elem.'+key)) and not isinf(eval('elem.'+key))] return DataStream(newst,self.header,np.asarray(array,dtype=object)) def _select_keys(self, keys): """ DESCRIPTION Non-destructive method to select provided keys from Data stream. APPLICATION: streamxy = streamyxzf._select_keys(['x','y']) """ result = self.copy() try: if not len(keys) > 0: return self except: return self """ print ("sel", keys) if not 'time' in keys: keys.append('time') print ("sel", keys) """ ndarray = [[] for key in KEYLIST] ndarray = np.asarray([np.asarray(elem) if KEYLIST[idx] in keys or KEYLIST[idx] == 'time' else np.asarray([]) for idx,elem in enumerate(result.ndarray)]) return DataStream([LineStruct()],result.header,ndarray) def _select_timerange(self, starttime=None, endtime=None, maxidx=-1): """ DESCRIPTION Non-destructive method to select a certain time range from a stream. Similar to trim, leaving the original stream unchanged however. APPLICATION: Used by write """ ndarray = [[] for key in KEYLIST] # Use a different technique # copy all data to array and then delete everything below and above #t1 = datetime.utcnow() #ndarray = self.ndarray startindices = [] endindices = [] if starttime: starttime = self._testtime(starttime) if self.ndarray[0].size > 0: # time column present if maxidx > 0: idx = (np.abs(self.ndarray[0][:maxidx]-date2num(starttime))).argmin() else: idx = (np.abs(self.ndarray[0]-date2num(starttime))).argmin() # Trim should start at point >= starttime, so check: if self.ndarray[0][idx] < date2num(starttime): idx += 1 startindices = list(range(0,idx)) if endtime: endtime = self._testtime(endtime) if self.ndarray[0].size > 0: # time column present #print "select timerange", maxidx if maxidx > 0: # truncate the ndarray #print maxidx #tr = self.ndarray[0][:maxidx].astype(float) idx = 1 + (np.abs(self.ndarray[0][:maxidx].astype(float)-date2num(endtime))).argmin() # get the nearest index to endtime and add 1 (to get lenghts correctly) else: idx = 1 + (np.abs(self.ndarray[0].astype(float)-date2num(endtime))).argmin() # get the nearest index to endtime and add 1 (to get lenghts correctly) if idx >= len(self.ndarray[0]): ## prevent too large idx values idx = len(self.ndarray[0]) # - 1 try: # using try so that this test is passed in case of idx == len(self.ndarray) endnum = date2num(endtime) #print ("Value now", idx, self.ndarray[0][idx], date2num(endtime)) if self.ndarray[0][idx] > endnum and self.ndarray[0][idx-1] < endnum: # case 1: value at idx is larger, value at idx-1 is smaller -> use idx pass elif self.ndarray[0][idx] == endnum: # case 2: value at idx is endnum -> use idx pass elif not self.ndarray[0][idx] <= endnum: # case 3: value at idx-1 equals endnum -> use idx-1 idx -= 1 #print ("Value now b", idx, self.ndarray[0][idx], date2num(endtime)) #if not self.ndarray[0][idx] <= date2num(endtime): # # Make sure that last value is either identical to endtime (if existing or one index larger) # # This is important as from this index on, data is removed # idx -= 1 # print ("Value now", idx, self.ndarray[0][idx], date2num(endtime)) # print ("Value now", idx, self.ndarray[0][idx+1], date2num(endtime)) except: pass endindices = list(range(idx,len(self.ndarray[0]))) indices = startindices + endindices #t2 = datetime.utcnow() #print "_select_timerange - getting t range needed:", t2-t1 if len(startindices) > 0: st = startindices[-1]+1 else: st = 0 if len(endindices) > 0: ed = endindices[0] else: ed = len(self.ndarray[0]) for i in range(len(self.ndarray)): ndarray[i] = self.ndarray[i][st:ed] ## This is the correct length #t3 = datetime.utcnow() #print "_select_timerange - deleting :", t3-t2 return np.asarray(ndarray,dtype=object) # ------------------------------------------------------------------------ # C. Application methods # (in alphabetical order) # ------------------------------------------------------------------------ def aic_calc(self, key, **kwargs): """ DEFINITION: Picking storm onsets using the Akaike Information Criterion (AIC) picker - extract one dimensional array from DataStream (e.g. H) -> signal - take the first k values of the signal and calculates variance and log - plus the rest of the signal (variance and log) NOTE: Best results come from evaluating two data series - one with original data, one of same data with AIC timerange offset by timerange/2 to cover any signals that may occur at the points between evaluations. PARAMETERS: Variables: - key: (str) Key to check. Needs to be an element of KEYLIST. Kwargs: - timerange: (timedelta object) defines the length of the time window examined by the aic iteration. (default: timedelta(hours=1).) - aic2key: (str) defines the key of the column where to save the aic values (default = var2). - aicmin2key: (str) defines the key of the column where to save the aic minimum val (default: key = var1.) - aicminstack: (bool) if true, aicmin values are added to previously present column values. RETURNS: - self: (DataStream object) Stream with results in default var1 + var2 keys. EXAMPLE: >>> stream = stream.aic_calc('x',timerange=timedelta(hours=0.5)) APPLICATION: from magpy.stream import read stream = read(datapath) stream = stream.aic_calc('x',timerange=timedelta(hours=0.5)) stream = stream.differentiate(keys=['var2'],put2keys=['var3']) stream_filt = stream.extract('var1',200,'>') stream_new = stream_file.eventlogger('var3',[30,40,60],'>',addcomment=True) stream = mergeStreams(stream,stream_new,key='comment') """ timerange = kwargs.get('timerange') aic2key = kwargs.get('aic2key') aicmin2key = kwargs.get('aicmin2key') aicminstack = kwargs.get('aicminstack') if not timerange: timerange = timedelta(hours=1) if not aic2key: aic2key = 'var2' if not aicmin2key: aicmin2key = 'var1' t = self._get_column('time') signal = self._get_column(key) #Clear the projected results column array = [] aic2ind = KEYLIST.index(aic2key) self = self._clear_column(aic2key) if len(self.ndarray[0]) > 0.: self.ndarray[aic2ind] = np.empty((len(self.ndarray[0],))) self.ndarray[aic2ind][:] = np.NAN # get sampling interval for normalization - need seconds data to test that sp = self.get_sampling_period()*24*60 # corrcet approach iprev = 0 iend = 0 while iend < len(t)-1: istart = iprev ta, iend = find_nearest(np.asarray(t), date2num(num2date(t[istart]).replace(tzinfo=None) + timerange)) if iend == istart: iend += 60 # approx for minute files and 1 hour timedelta (used when no data available in time range) should be valid for any other time range as well else: currsequence = signal[istart:iend] aicarray = [] for idx, el in enumerate(currsequence): if idx > 1 and idx < len(currsequence): # CALCULATE AIC aicval = self._aic(currsequence, idx)/timerange.seconds*3600 # *sp Normalize to sampling rate and timerange if len(self.ndarray[0]) > 0: self.ndarray[aic2ind][idx+istart] = aicval else: exec('self[idx+istart].'+ aic2key +' = aicval') if not isnan(aicval): aicarray.append(aicval) # store start value - aic: is a measure for the significance of information change #if idx == 2: # aicstart = aicval #self[idx+istart].var5 = aicstart-aicval maxaic = np.max(aicarray) # determine the relative amplitude as well cnt = 0 for idx, el in enumerate(currsequence): if idx > 1 and idx < len(currsequence): # TODO: this does not yet work with ndarrays try: if aicminstack: if not eval('isnan(self[idx+istart].'+aicmin2key+')'): exec('self[idx+istart].'+ aicmin2key +' += (-aicarray[cnt] + maxaic)') else: exec('self[idx+istart].'+ aicmin2key +' = (-aicarray[cnt] + maxaic)') else: exec('self[idx+istart].'+ aicmin2key +' = (-aicarray[cnt] + maxaic)') exec('self[idx+istart].'+ aicmin2key +' = maxaic') cnt = cnt+1 except: msg = "number of counts does not fit usually because of nans" iprev = iend self.header['col-var2'] = 'aic' return self def baseline(self, absolutedata, **kwargs): """ DESCRIPTION: calculates baseline correction for input stream (datastream) Uses available baseline values from the provided absolute file Special cases: 1) Absolute data covers the full time range of the stream: -> Absolute data is extrapolated by duplicating the last and first entry at "extradays" offset -> desired function is calculated 2) No Absolute data for the end of the stream: -> like 1: Absolute data is extrapolated by duplicating the last entry at "extradays" offset or end of stream -> and info message is created, if timedifference exceeds the "extraday" arg then a warning will be send 2) No Absolute data for the beginning of the stream: -> like 2: Absolute data is extrapolated by duplicating the first entry at "extradays" offset or beginning o stream -> and info message is created, if timedifference exceeds the "extraday" arg then a warning will be send VARIABLES: required: didata (DataStream) containing DI data- usually obtained by absolutes.absoluteAnalysis() keywords: plotbaseline (bool/string) will plot a baselineplot (if a valid path is provided to file otherwise to to screen- requires mpplot extradays (int) days to which the absolutedata is exteded prior and after start and endtime ##plotfilename (string) if plotbaseline is selected, the outputplot is send to this file fitfunc (string) see fit fitdegree (int) see fit knotstep (int) see fit keys (list) keys which contain the basevalues (default) is ['dx','dy','dz'] APPLICATION: func = data.baseline(didata,knotstep=0.1,plotbaseline=True) # fixed time range func = data.baseline(didata,startabs='2015-02-01',endabs='2015-08-24',extradays=0) OR: funclist = [] funclist.append(rawdata.baseline(basevalues, extradays=0, fitfunc='poly', fitdegree=1,startabs='2009-01-01',endabs='2009-03-22')) funclist.append(rawdata.baseline(basevalues, extradays=0, fitfunc='poly', fitdegree=1,startabs='2009-03-22',endabs='2009-06-27')) funclist.append(rawdata.baseline(basevalues, extradays=0, fitfunc='spline', knotstep=0.2,startabs='2009-06-27',endabs='2010-02-01')) stabilitytest (bool) """ keys = kwargs.get('keys') fitfunc = kwargs.get('fitfunc') fitdegree = kwargs.get('fitdegree') knotstep = kwargs.get('knotstep') extradays = kwargs.get('extradays',15) plotbaseline = kwargs.get('plotbaseline') plotfilename = kwargs.get('plotfilename') startabs = kwargs.get('startabs') endabs = kwargs.get('endabs') orgstartabs = None orgendabs = None #if not extradays: # extradays = 15 if not fitfunc: fitfunc = self.header.get('DataAbsFunc') if not fitfunc: fitfunc = 'spline' if not fitdegree: fitdegree = self.header.get('DataAbsDegree') if not fitdegree: fitdegree = 5 if not knotstep: knotstep = self.header.get('DataAbsKnots') if not knotstep: knotstep = 0.3 if not keys: keys = ['<KEY>'] if len(self.ndarray[0]) > 0: ndtype = True starttime = np.min(self.ndarray[0]) endtime = np.max(self.ndarray[0]) else: starttime = self[0].time endtime = self[-1].time fixstart,fixend = False,False if startabs: startabs = date2num(self._testtime(startabs)) orgstartabs = startabs fixstart = True if endabs: endabs = date2num(self._testtime(endabs)) orgendabs = endabs fixend = True pierlong = absolutedata.header.get('DataAcquisitionLongitude','') pierlat = absolutedata.header.get('DataAcquisitionLatitude','') pierel = absolutedata.header.get('DataElevation','') pierlocref = absolutedata.header.get('DataAcquisitionReference','') pierelref = absolutedata.header.get('DataElevationRef','') #self.header['DataAbsFunc'] = fitfunc #self.header['DataAbsDegree'] = fitdegree #self.header['DataAbsKnots'] = knotstep #self.header['DataAbsDate'] = datetime.strftime(datetime.utcnow(),'%Y-%m-%d %H:%M:%S') usestepinbetween = False # for better extrapolation logger.info(' --- Start baseline-correction at %s' % str(datetime.now())) absolutestream = absolutedata.copy() #print("Baseline", absolutestream.length()) absolutestream = absolutestream.remove_flagged() #print("Baseline", absolutestream.length()) #print("Baseline", absolutestream.ndarray[0]) absndtype = False if len(absolutestream.ndarray[0]) > 0: #print ("HERE1: adopting time range absolutes - before {} {}".format(startabs, endabs)) absolutestream.ndarray[0] = absolutestream.ndarray[0].astype(float) absndtype = True if not np.min(absolutestream.ndarray[0]) < endtime: logger.warning("Baseline: Last measurement prior to beginning of absolute measurements ") abst = absolutestream.ndarray[0] if not startabs or startabs < np.min(absolutestream.ndarray[0]): startabs = np.min(absolutestream.ndarray[0]) if not endabs or endabs > np.max(absolutestream.ndarray[0]): endabs = np.max(absolutestream.ndarray[0]) else: # 1) test whether absolutes are in the selected absolute data stream if absolutestream[0].time == 0 or absolutestream[0].time == float('nan'): raise ValueError ("Baseline: Input stream needs to contain absolute data ") # 2) check whether enddate is within abs time range or larger: if not absolutestream[0].time-1 < endtime: logger.warning("Baseline: Last measurement prior to beginning of absolute measurements ") abst = absolutestream._get_column('time') startabs = absolutestream[0].time endabs = absolutestream[-1].time # Initialze orgstartabd and orgendabs if not yet provided: orgabs values will be added to DataAbsInfo if not orgstartabs: orgstartabs = startabs if not orgendabs: orgendabs = endabs #print ("HERE2a: Time range absolutes - {} {} {} {}".format(startabs, endabs, num2date(startabs), num2date(endabs))) #print ("HERE2b: Time range datastream - {} {}".format(starttime, endtime)) # 3) check time ranges of stream and absolute values: if startabs > starttime: #print ('HERE2c: First absolute value measured after beginning of stream') #logger.warning('Baseline: First absolute value measured after beginning of stream - duplicating first abs value at beginning of time series') #if fixstart: # #absolutestream.add(absolutestream[0]) #absolutestream[-1].time = starttime #absolutestream.sorting() logger.info('Baseline: %d days without absolutes at the beginning of the stream' % int(np.floor(np.min(abst)-starttime))) if endabs < endtime: logger.info("Baseline: Last absolute measurement before end of stream - extrapolating baseline") if num2date(endabs).replace(tzinfo=None) + timedelta(days=extradays) < num2date(endtime).replace(tzinfo=None): usestepinbetween = True if not fixend: logger.warning("Baseline: Well... thats an adventurous extrapolation, but as you wish...") starttime = num2date(starttime).replace(tzinfo=None) endtime = num2date(endtime).replace(tzinfo=None) # 4) get standard time rang of one year and extradays at start and end # test whether absstream covers this time range including extradays # ########### # get boundaries # ########### extrapolate = False # upper if fixend: #absolutestream = absolutestream.trim(endtime=endabs) # should I trim here already - leon ?? # time range long enough baseendtime = endabs+extradays if baseendtime < orgendabs: baseendtime = orgendabs extrapolate = True else: baseendtime = date2num(endtime+timedelta(days=1)) extrapolate = True #if endabs >= date2num(endtime)+extradays: # # time range long enough # baseendtime = date2num(endtime)+extradays # lower if fixstart: #absolutestream = absolutestream.trim(starttime=startabs) # should I trim here already - leon ?? basestarttime = startabs-extradays if basestarttime > orgstartabs: basestarttime = orgstartabs extrapolate = True else: # not long enough #basestarttime = date2num(starttime) basestarttime = startabs-extradays extrapolate = True if baseendtime - (366.+2*extradays) > startabs: # time range long enough basestarttime = baseendtime-(366.+2*extradays) baseendtime = num2date(baseendtime).replace(tzinfo=None) basestarttime = num2date(basestarttime).replace(tzinfo=None) #print ("HERE3a: basestart and end", basestarttime, baseendtime) # Don't use trim here #bas = absolutestream.trim(starttime=basestarttime,endtime=baseendtime) basarray = absolutestream._select_timerange(starttime=basestarttime,endtime=baseendtime) bas = DataStream([LineStruct()],absolutestream.header,basarray) #print ("HERE3b: length of selected absolutes: ", bas.length()[0]) if extrapolate: # and not extradays == 0: bas = bas.extrapolate(basestarttime,baseendtime) #keys = ['<KEY>'] try: print ("Fitting Baseline between: {a} and {b}".format(a=str(num2date(np.min(bas.ndarray[0]))),b=str(num2date(np.max(bas.ndarray[0]))))) print (keys, fitfunc, fitdegree, knotstep) logger.info("Fitting Baseline between: {a} and {b}".format(a=str(num2date(np.min(bas.ndarray[0]))),b=str(num2date(np.max(bas.ndarray[0]))))) #print ("Baseline", bas.length(), keys) #for elem in bas.ndarray: # print elem func = bas.fit(keys,fitfunc=fitfunc,fitdegree=fitdegree,knotstep=knotstep) except: print ("Baseline: Error when determining fit - Enough data point to satisfy fit complexity?") logger.error("Baseline: Error when determining fit - Not enough data point to satisfy fit complexity? N = {}".format(bas.length())) return None #if len(keys) == 3: # ix = KEYLIST.index(keys[0]) # iy = KEYLIST.index(keys[1]) # iz = KEYLIST.index(keys[2]) # get the function in some readable equation #self.header['DataAbsDataT'] = bas.ndarray[0],bas.ndarray[ix],bas.ndarray[iy],bas.ndarray[iz]] if plotbaseline: #check whether plotbaseline is valid path or bool try: try: import magpy.mpplot as mp except ImportError: print ("baseline: Could not load package mpplot") if plotfilename: mp.plot(bas,variables=['dx','dy','dz'],padding = [5,0.005,5], symbollist = ['o','o','o'],function=func,plottitle='Absolute data',outfile=plotfilename) else: mp.plot(bas,variables=['dx','dy','dz'],padding = [5,0.005,5], symbollist = ['o','o','o'],function=func,plottitle='Absolute data') except: print("using the internal plotting routine requires mpplot to be imported as mp") keystr = '_'.join(keys) pierlong = absolutedata.header.get('DataAcquisitionLongitude','') pierlat = absolutedata.header.get('DataAcquisitionLatitude','') pierel = absolutedata.header.get('DataElevation','') pierlocref = absolutedata.header.get('DataLocationReference','') pierelref = absolutedata.header.get('DataElevationRef','') if not pierlong == '' and not pierlat == '' and not pierel == '': absinfostring = '_'.join(map(str,[orgstartabs,orgendabs,extradays,fitfunc,fitdegree,knotstep,keystr,pierlong,pierlat,pierlocref,pierel,pierelref])) else: absinfostring = '_'.join(map(str,[orgstartabs,orgendabs,extradays,fitfunc,fitdegree,knotstep,keystr])) existingabsinfo = self.header.get('DataAbsInfo','').replace(', EPSG',' EPSG').split(',') if not existingabsinfo[0] == '': existingabsinfo.append(absinfostring) else: existingabsinfo = [absinfostring] # Get minimum and maximum times out of existing absinfostream minstarttime=100000000.0 maxendtime=0.0 for el in existingabsinfo: ele = el.split('_') mintime = float(ele[0]) maxtime = float(ele[1]) if minstarttime > mintime: minstarttime = mintime if maxendtime < maxtime: maxendtime = maxtime exabsstring = ','.join(existingabsinfo) self.header['DataAbsInfo'] = exabsstring # 735582.0_735978.0_0_spline_5_0.3_dx_dy_dz #print ("HERE5a:", minstarttime, maxendtime, absolutestream.length()[0]) bas2save = absolutestream.trim(starttime=minstarttime,endtime=maxendtime) tmpdict = bas2save.stream2dict() #print ("HERE5b:", bas2save.length()[0]) self.header['DataBaseValues'] = tmpdict['DataBaseValues'] # Get column heads of dx,dy and dz # default is H-base[nT],D-base[deg],Z-base[nT] basecomp = "HDZ" try: basecomp = "{}{}{}".format(absolutestream.header.get('col-dx')[0],absolutestream.header.get('col-dy')[0],absolutestream.header.get('col-dz')[0]) except: pass if not basecomp == "HDZ": print (" -> basevalues correspond to components {}".format(basecomp)) self.header['DataBaseComponents'] = basecomp #self.header['DataAbsMinTime'] = func[1] #num2date(func[1]).replace(tzinfo=None) #self.header['DataAbsMaxTime'] = func[2] #num2date(func[2]).replace(tzinfo=None) #self.header['DataAbsFunctionObject'] = func logger.info(' --- Finished baseline-correction at %s' % str(datetime.now())) return func def stream2dict(self, keys=['dx','dy','dz'], dictkey='DataBaseValues'): """ DESCRIPTION: Method to convert stream contents into a list and assign this to a dictionary. You can use this method to directly store magnetic basevalues along with data time series (e.g. using NasaCDF). Multilayer storage as supported by NetCDF might provide better options to combine both data sets in one file. PARAMETERS: stream (DataStream) data containing e.g. basevalues keys (list of keys) keys which are going to be stored dictkey (string) name of the dictionaries key RETURNS: dict (dictionary) with name dictkey APPLICATION: >>> d = absdata.stream2dict(['dx','dy','dz'],'DataBaseValues') >>> d = neicdata.stream2dict(['f','str3'],'Earthquakes') """ if not self.length()[0] > 0: return {} if not len(keys) > 0: return {} d = {} keylst = ['time'] keylst.extend(keys) array,headline,addline = [],[],[] for key in keylst: try: pos = KEYLIST.index(key) except ValueError: pos = -1 if pos in range(0,len(KEYLIST)): headline.append(key) if not key == 'time': addline.append(self.header.get('col-'+key)) else: addline.append(self.header.get('DataID')) column = self.ndarray[pos] array.append(column) rowlst = np.transpose(np.asarray(array)).astype(object) fulllst = np.insert(rowlst,0,np.asarray(addline).astype(object),axis=0) ##could be used to store column names and id in time column fulllst = np.insert(fulllst,0,np.asarray(headline).astype(object),axis=0) d[dictkey] = fulllst return d def dict2stream(self,dictkey='DataBaseValues'): """ DESCRIPTION: Method to convert the list stored in stream.header['DataBaseValue'] to an absolute stream. PARAMETERS: stream (DataStream) stream with variation data dictkey (string) ususally 'DataBaseValues' RETURNS: stream (DataStream) containing values of header info APPLICATION: >>> absstream = stream.dict2stream(header['DataBaseValues']) """ lst = self.header.get(dictkey) if not type(lst) in (list,tuple,np.ndarray): print("dict2stream: no list,tuple,array found in provided header key") return DataStream() if len(lst) == 0: print("dict2stream: list is empty") return DataStream() array = [[] for el in KEYLIST] headerinfo = lst[0] addinfo = lst[1] data = lst[2:] #print(headerinfo,addinfo) collst = np.transpose(np.asarray(data)).astype(object) #print(collst) for idx,key in enumerate(headerinfo): pos = KEYLIST.index(key) array[pos] = collst[idx] return DataStream([LineStruct()], {}, np.asarray(array,dtype=object)) def baselineAdvanced(self, absdata, baselist, **kwargs): """ DESCRIPTION: reads stream, didata and baseline list -> save separate monthly cdf's for each baseline input -> Filename contains date of baseline jump RETURNS: list of header and ndarray -> this is necessary for datastreams """ sensid = kwargs.get('sensorid') plotbaseline = kwargs.get('plotbaseline') data = self.copy() # Get start and endtime of stream ts,te = data._find_t_limits() # Get start and endtime of di data tabss,tabse = absdata._find_t_limits() # Some checks if tabss > te or tabse < ts: print ("baselineAdvanced: No DI data for selected stream available -aborting") return False if tabss > ts: print ("baselineAdvanced: DI data does not cover the time range of stream - trimming stream") data = data.trim(starttime=tabss) if tabse < te: print ("baselineAdvanced: DI data does not cover the time range of stream - trimming stream") data = data.trim(endtime=tabse) # Getting relevant baseline info sensid = self.header.get('SensorID','') if sensid == '': print ("baselineAdvanced: No SensorID in header info - provide by option sensorid='XXX'") return False indlist = [ind for ind, elem in enumerate(baselist[0]) if elem == sensid] #print "writeBC", indlist senslist = [[el for idx,el in enumerate(elem) if idx in indlist] for elem in baselist] #print "writeBC", senslist #print "writeBC", senslist[1] if not len(senslist) > 0: print ("baselineAdvanced: Did not find any valid baseline parameters for selected sensor") return False # get index of starttime closest before beforeinds = [[ind,np.abs(date2num(ts)-elem)] for ind, elem in enumerate(senslist[1]) if elem < date2num(ts)] #print "writeBC", beforeinds minl = [el[1] for el in beforeinds] #print "writeBC minl", minl startind = beforeinds[minl.index(np.min(minl))][0] #print "writeBC", startind vallist = [[el for idx,el in enumerate(elem) if idx == startind] for elem in senslist] #print vallist validinds = [ind for ind, elem in enumerate(senslist[1]) if elem >= date2num(ts) and elem <= date2num(te)] #print "writeBC inds", validinds vallist2 = [[el for idx,el in enumerate(elem) if idx in validinds] for elem in senslist] #print vallist2 if len(vallist2[0]) > 0: resultlist = [] for idx, elem in enumerate(vallist): addelem = vallist2[idx] print(elem, addelem) elem.extend(addelem) resultlist.append(elem) else: resultlist = vallist print("baselineAdvanced: inds", resultlist) # Select appropriate time ranges from stream if not len(resultlist[0]) > 0: print ("baselineAdvanced: Did not find any valid baseline parameters for selected sensor") return False streamlist = [] dictlist = [] resultlist = np.asarray(resultlist) vals = resultlist.transpose() for idx, elem in enumerate(vals): #print "writeBC running", elem mintime = float(elem[1]) maxtime = float(elem[2]) array = data._select_timerange(starttime=mintime, endtime=maxtime) stream = DataStream(data,data.header,array) baselinefunc = stream.baseline(absdata,startabs=mintime,endabs=maxtime, fitfunc=elem[3],fitdegree=int(elem[4]),knotstep=float(elem[5]),plotbaseline=plotbaseline) #stream = stream.bc() #exec('stream'+str(idx)+'= DataStream(stream,stream.header,stream.ndarray)') dicthead = stream.header #dictlist.append(dicthead.copy()) # Note: append just adds a pointer to content - use copy #streamlist.append([dicthead.copy(),stream.ndarray]) streamlist.append([DataStream([LineStruct()],dicthead.copy(),stream.ndarray),baselinefunc]) #print "Streamlist", streamlist #print len(dicthead),dictlist return streamlist def bc(self, function=None, ctype=None, alpha=0.0,level='preliminary'): """ DEFINITION: Method to obtain baseline corrected data. By default flagged data is removed before baseline correction. Requires DataAbs values in the datastreams header. The function object is transferred to keys x,y,z, please note that the baseline function is stored in HDZ format (H:nT, D:0.0000 deg, Z: nT). By default the bc method requires HDZ oriented variometer data. If XYZ data is provided, or any other orientation, please provided rotation angles to transform this data into HDZ. Example: For XYZ data please add the option alpha=DeclinationAtYourSite in a float format of 0.00000 deg PARAMETERS: function (function object) provide the function directly - not from header ctype (string) one of 'fff', 'fdf', 'ddf' - denoting nT components 'f' and degree 'd' alpha/beta (floats) provide rotation angles for the variometer data to be applied before correction - data is rotated back after correction """ logger.debug("BC: Performing baseline correction: Requires HEZ data.") logger.debug(" H magnetic North, E magnetic East, Z vertical downwards, all in nT.") pierdata = False absinfostring = self.header.get('DataAbsInfo') absvalues = self.header.get('DataBaseValues') func = self.header.get('DataAbsFunctionObject') datatype = self.header.get('DataType') basecomp = self.header.get('DataBaseComponents') if datatype == 'BC': print ("BC: dataset is already baseline corrected - returning") return self bcdata = self.copy() logger.debug("BC: Components of stream: {}".format(self.header.get('DataComponents'))) logger.debug("BC: baseline adoption information: {}".format(absinfostring)) if absinfostring and type(absvalues) in [list,np.ndarray,tuple]: #print("BC: Found baseline adoption information in meta data - correcting") absinfostring = absinfostring.replace(', EPSG',' EPSG') absinfostring = absinfostring.replace(',EPSG',' EPSG') absinfostring = absinfostring.replace(', epsg',' EPSG') absinfostring = absinfostring.replace(',epsg',' EPSG') absinfolist = absinfostring.split(',') funclist = [] for absinfo in absinfolist: #print("BC: TODO repeat correction several times and check header info") # extract baseline data absstream = bcdata.dict2stream() #print("BC: abstream length", absstream.length()[0]) parameter = absinfo.split('_') #print("BC:", parameter, len(parameter)) funckeys = parameter[6:9] if len(parameter) >= 14: #extract pier information pierdata = True pierlon = float(parameter[9]) pierlat = float(parameter[10]) pierlocref = parameter[11] pierel = float(parameter[12]) pierelref = parameter[13] #print("BC", num2date(float(parameter[0]))) #print("BC", num2date(float(parameter[1]))) if not funckeys == ['df']: func = bcdata.baseline(absstream, startabs=float(parameter[0]), endabs=float(parameter[1]), extradays=int(float(parameter[2])), fitfunc=parameter[3], fitdegree=int(float(parameter[4])), knotstep=float(parameter[5]), keys=funckeys) if 'dx' in funckeys: func[0]['fx'] = func[0]['fdx'] func[0]['fy'] = func[0]['fdy'] func[0]['fz'] = func[0]['fdz'] func[0].pop('fdx', None) func[0].pop('fdy', None) func[0].pop('fdz', None) keys = ['x','y','z'] elif 'x' in funckeys: keys = ['x','y','z'] else: print("BC: could not interpret BaseLineFunctionObject - returning") return self funclist.append(func) #TODO addbaseline #if AbsData contain xyz use mode='add' datacomp = bcdata.header.get('DataComponents','') if basecomp in ['xyz','XYZ']: bcdata = bcdata.func2stream(funclist,mode='add',keys=keys) bcdata.header['col-x'] = 'X' bcdata.header['unit-col-x'] = 'nT' bcdata.header['col-y'] = 'Y' bcdata.header['unit-col-y'] = 'nT' if len(datacomp) == 4: bcdata.header['DataComponents'] = 'XYZ'+datacomp[3] else: bcdata.header['DataComponents'] = 'XYZ' else: #print ("BC: Found a list of functions:", funclist) bcdata = bcdata.func2stream(funclist,mode='addbaseline',keys=keys) bcdata.header['col-x'] = 'H' bcdata.header['unit-col-x'] = 'nT' bcdata.header['col-y'] = 'D' bcdata.header['unit-col-y'] = 'deg' datacomp = bcdata.header.get('DataComponents','') if len(datacomp) == 4: bcdata.header['DataComponents'] = 'HDZ'+datacomp[3] else: bcdata.header['DataComponents'] = 'HDZ' # Add BC mark to datatype - data is baseline corrected bcdata.header['DataType'] = 'BC' # Update location data from absinfo if pierdata: self.header['DataAcquisitionLongitude'] = pierlon self.header['DataAcquisitionLatitude'] = pierlat self.header['DataLocationReference'] = pierlocref self.header['DataElevation'] = pierel self.header['DataElevationRef'] = pierelref return bcdata elif func: # 1.) move content of basevalue function to columns 'x','y','z'? try: func[0]['fx'] = func[0]['fdx'] func[0]['fy'] = func[0]['fdy'] func[0]['fz'] = func[0]['fdz'] func[0].pop('fdx', None) func[0].pop('fdy', None) func[0].pop('fdz', None) keys = ['<KEY>'] except: print("BC: could not interpret BaseLineFunctionObject - returning") return self # 2.) eventually transform self - check header['DataComponents'] if ctype == 'fff': pass elif ctype == 'ddf': pass else: pass #eventually use other information like absolute path, and function parameter #for key in self.header: # if key.startswith('DataAbs'): # print key, self.header[key] # drop all lines with nan values in either x or y and if x=0 add some 0.00001 because of arctan(y/x) #print len(self.ndarray[0]) #for elem in self.ndarray[1]: # if np.isnan(elem) or elem == 0.0: # print "Found", elem #self = self._drop_nans('x') #self = self._drop_nans('y') #print len(self.ndarray[0]) bcdata = bcdata.func2stream(func,mode='addbaseline',keys=['x','y','z']) bcdata.header['col-x'] = 'H' bcdata.header['unit-col-x'] = 'nT' bcdata.header['col-y'] = 'D' bcdata.header['unit-col-y'] = 'deg' bcdata.header['DataComponents'] = 'HDZ' return bcdata else: print("BC: No data for correction available - header needs to contain DataAbsFunctionObject") return self def bindetector(self,key,flagnum=1,keystoflag=['x'],sensorid=None,text=None,**kwargs): """ DEFINITION: Function to detect changes between 0 and 1 and create a flaglist for zero or one states PARAMETERS: key: (key) key to investigate flagnum: (int) integer between 0 and 4, default is 0 keystoflag: (list) list of keys to be flagged sensorid: (string) sensorid for flaglist, default is sensorid of self text: (string) text to be added to comments/stdout, will be extended by on/off Kwargs: markallon: (BOOL) add comment to all ons markalloff: (BOOL) add comment to all offs onvalue: (float) critical value to determin on stage (default = 0.99) RETURNS: - flaglist EXAMPLE: >>> flaglist = stream.bindetector('z',0,'x',SensorID,'Maintanence switch for rain bucket',markallon=True) """ markallon = kwargs.get('markallon') markalloff = kwargs.get('markalloff') onvalue = kwargs.get('onvalue') if not markallon and not markalloff: markallon = True if not onvalue: onvalue = 0.99 if not sensorid: sensorid = self.header.get('SensorID') if not len(self.ndarray[0]) > 0: print ("bindetector: No ndarray data found - aborting") return self moddate = datetime.utcnow() ind = KEYLIST.index(key) startstate = self.ndarray[ind][0] flaglist=[] # Find switching states (Joe Kington: http://stackoverflow.com/questions/4494404/find-large-number-of-consecutive-values-fulfilling-condition-in-a-numpy-array) d = np.diff(self.ndarray[ind]) idx, = d.nonzero() idx += 1 if markallon: if not text: text = 'on' if self.ndarray[ind][0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if self.ndarray[ind][-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, self.ndarray[ind].size] # Edit # Reshape the result into two columns #print("Bindetector", idx, idx.size) idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(self.ndarray[0][start]).replace(tzinfo=None),num2date(self.ndarray[0][stop]).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.append(flagline) if markalloff: if not text: text = 'off' if not self.ndarray[ind][0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if not self.ndarray[ind][-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, self.ndarray[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(self.ndarray[0][start]).replace(tzinfo=None),num2date(self.ndarray[0][stop]).replace(tzinfo=None),elem,int(flagid),text,sensorid,moddate] flaglist.append(flagline) return flaglist def calc_f(self, **kwargs): """ DEFINITION: Calculates the f form x^2+y^2+z^2. If delta F is present, then by default this value is added as well PARAMETERS: Kwargs: - offset: (array) containing three elements [xoffset,yoffset,zoffset], - skipdelta (bool) id selecetd then an existing delta f is not accounted for RETURNS: - DataStream with f and, if given, offset corrected xyz values EXAMPLES: >>> fstream = stream.calc_f() >>> fstream = stream.calc_f(offset=[20000,0,43000]) """ # Take care: if there is only 0.1 nT accuracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') skipdelta = kwargs.get('skipdelta') if not offset: offset = [0,0,0] else: if not len(offset) == 3: logger.error('calc_f: offset with wrong dimension given - needs to contain a three dim array like [a,b,c] - returning stream without changes') return self ndtype = False try: if len(self.ndarray[0]) > 0: ndtype = True elif len(self) > 1: ndtype = False else: logger.error('calc_f: empty stream - aborting') return self except: logger.error('calc_f: inapropriate data provided - aborting') return self logger.info('calc_f: --- Calculating f started at %s ' % str(datetime.now())) if ndtype: inddf = KEYLIST.index('df') indf = KEYLIST.index('f') indx = KEYLIST.index('x') indy = KEYLIST.index('y') indz = KEYLIST.index('z') if len(self.ndarray[inddf]) > 0 and not skipdelta: df = self.ndarray[inddf].astype(float) else: df = np.asarray([0.0]*len(self.ndarray[indx])) x2 = ((self.ndarray[indx]+offset[0])**2).astype(float) y2 = ((self.ndarray[indy]+offset[1])**2).astype(float) z2 = ((self.ndarray[indz]+offset[2])**2).astype(float) self.ndarray[indf] = np.sqrt(x2+y2+z2) + df else: for elem in self: elem.f = np.sqrt((elem.x+offset[0])**2+(elem.y+offset[1])**2+(elem.z+offset[2])**2) self.header['col-f'] = 'f' self.header['unit-col-f'] = 'nT' logger.info('calc_f: --- Calculating f finished at %s ' % str(datetime.now())) return self def compensation(self, **kwargs): """ DEFINITION: Method for magnetic variometer data: Applies eventually present compensation field values in the header to the vector x,y,z. Compensation fields are provided in mirco Tesla (according to LEMI data). Please note that any additional provided "DataDeltaValues" are also applied by default (to avoid use option skipdelta=True). Calculation: This method uses header information data.header['']. After successfull application data.header['DeltaValuesApplied'] is set to 1. PARAMETERS: Kwargs: - skipdelta (bool) if True then DataDeltaValues are ignored RETURNS: - DataStream with compensation values appliesd to xyz values - original dataStream if no compensation values are found EXAMPLES: >>> compstream = stream.compensation() """ skipdelta = kwargs.get('skipdelta') if not self.length()[0] > 0: return self stream = self.copy() logger.info("compensation: applying compensation field values to variometer data ...") deltas = stream.header.get('DataDeltaValues','') if not skipdelta and not deltas=='': logger.info("compensation: applying delta values from header['DataDeltaValues'] first") stream = stream.offset(deltas) stream.header['DataDeltaValuesApplied'] = 1 offdict = {} xcomp = stream.header.get('DataCompensationX','0') ycomp = stream.header.get('DataCompensationY','0') zcomp = stream.header.get('DataCompensationZ','0') if not float(xcomp)==0.: offdict['x'] = -1*float(xcomp)*1000. if not float(ycomp)==0.: offdict['y'] = -1*float(ycomp)*1000. if not float(zcomp)==0.: offdict['z'] = -1*float(zcomp)*1000. logger.info(' -- applying compensation fields: x={}, y={}, z={}'.format(xcomp,ycomp,zcomp)) if len(offdict) > 0: stream = stream.offset(offdict) stream.header['DataDeltaValuesApplied'] = 1 return stream def cut(self,length,kind=0,order=0): """ DEFINITION: cut returns the selected amount of lines from datastreams PARAMETER: stream : datastream length : provide the amount of lines to be returned (default: percent of stream length) kind : define the kind of length parameter = 0 (default): length is given in percent = 1: length is given in number of lines order : define from which side = 0 (default): the last amount of lines are returned = 1: lines are counted from the beginning VERSION: added in MagPy 0.4.6 APPLICATION: # length of stream: 86400 cutstream = stream.cut(50) # length of cutstream: 43200 """ stream = self.copy() if length <= 0: print ("get_last: length needs to be > 0") return stream if kind == 0: if length > 100: length = 100 amount = int(stream.length()[0]*length/100.) else: if length > stream.length()[0]: return stream else: amount = length for idx,el in enumerate(stream.ndarray): if len(el) >= amount: if order == 0: nel = el[-amount:] else: nel = el[:amount] stream.ndarray[idx] = nel return stream def dailymeans(self, keys=['x','<KEY>'], offset = 0.5, keepposition=False, **kwargs): """ DEFINITION: Calculates daily means of xyz components and their standard deviations. By default numpy's mean and std methods are applied even if only two data sets are available. TODO --- If less then three data sets are provided, twice the difference between two values is used as an conservative proxy of uncertainty. I only on value is available, then the maximum uncertainty of the collection is assumed. This behavior can be changed by keyword arguments. TODO --- An outputstream is generated which containes basevalues in columns x,y,z and uncertainty values in dx,dy,dz if only a single values is available, dx,dy,dz contain the average uncertainties of the full data set time column contains the average time of the measurement PARAMETERS: Variables - keys: (list) provide up to four keys which are used in columns x,y,z - offset: (float) offset in timeunit days (0 to 0.999) default is 0.5, some test might use 0 Kwargs: - none RETURNS: - stream: (DataStream object) with daily means and standard deviation EXAMPLE: >>> means = didata.dailymeans(keys=['dx','dy','dz']) APPLICATION: >>> means = didata.dailymeans(keys=['dx','dy','dz']) >>> mp.plot(means,['x','y','z'],errorbars=True, symbollist=['o','o','o']) """ percentage = 90 keys = keys[:4] poslst,deltaposlst = [],[] deltakeys = ['dx','dy','dz','df'] for key in keys: poslst.append(KEYLIST.index(key)) for idx,pos in enumerate(poslst): deltaposlst.append(KEYLIST.index(deltakeys[idx])) if not len(self.ndarray[0]) > 0: return self array = [[] for el in KEYLIST] data = self.copy() data = data.removeduplicates() timecol = np.floor(data.ndarray[0]) tmpdatelst = np.asarray(list(set(list(timecol)))) for day in tmpdatelst: sel = data._select_timerange(starttime=day,endtime=day+1) """ #for idx,day in enumerate(daylst): #sel = final._select_timerange(starttime=np.round(day), endtime=np.round(day)+1) """ #print (len(sel)) sttmp = DataStream([LineStruct()],{},sel) array[0].append(day+offset) for idx, pos in enumerate(poslst): #if len(sttmp.ndarray[idx+1]) > 0: if not keepposition: array[idx+1].append(sttmp.mean(KEYLIST[pos],percentage=percentage)) else: array[pos].append(sttmp.mean(KEYLIST[pos],percentage=percentage)) #print ("Check", KEYLIST[pos], idx+1, len(sttmp._get_column(KEYLIST[pos])),sttmp._get_column(KEYLIST[pos]),sttmp.mean(KEYLIST[pos],percentage=percentage)) """ #array[0].append(day+0.5) #for idx,pos in enumerate(poslst): array[idx+1].append(np.mean(sel[pos],percentage=percentage)) """ data.header['col-'+KEYLIST[idx+1]] = '{}'.format(self.header.get('col-'+KEYLIST[pos])) data.header['unit-col-'+KEYLIST[idx+1]] = '{}'.format(self.header.get('unit-col-'+KEYLIST[pos])) diff = pos-idx if not keepposition: for idx,dpos in enumerate(deltaposlst): #if len(sttmp.ndarray[idx]) > 0: me,std = sttmp.mean(KEYLIST[idx+diff],percentage=percentage, std=True) array[dpos].append(std) #array[dpos].append(np.std(sel[idx+diff])) data.header['col-'+KEYLIST[dpos]] = 'sigma {}'.format(self.header.get('col-'+KEYLIST[idx+diff])) data.header['unit-col-'+KEYLIST[dpos]] = '{}'.format(self.header.get('unit-col-'+KEYLIST[idx+diff])) data.header['DataFormat'] = 'MagPyDailyMean' array = [np.asarray(el) for el in array] retstream = DataStream([LineStruct()],data.header,np.asarray(array)) retstream = retstream.sorting() return retstream def date_offset(self, offset): """ IMPORTANT: !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! THIS METHOD IS NOT SUPPORTED ANY MORE. PLEASE USE self.offset({'time':timedelta(seconds=1000)}) INSTEAD !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! DEFINITION: Corrects the time column of the selected stream by the offst offset is a timedelta object (e.g. timedelta(hours=1)) PARAMETERS: Variables: - offset: (timedelta object) Offset to apply to stream. Kwargs: - None RETURNS: - stream: (DataStream object) Stream with offset applied. EXAMPLE: >>> data = data.offset(timedelta(minutes=3)) APPLICATION: """ header = self.header newstream = DataStream() array = self.ndarray if len(ndarray[0]) > 0: ndtype = True secsperday = 3600*24 ndarray[0] = ndarray[0] + offset.total_seconds/secsperday for elem in self: newtime = num2date(elem.time).replace(tzinfo=None) + offset elem.sectime = elem.time elem.time = date2num(newtime) newstream.add(elem) logger.info('date_offset: Corrected time column by %s sec' % str(offset.total_seconds)) return DataStream(newstream,header,array) def delta_f(self, **kwargs): """ DESCRIPTION: Calculates the difference of x+y+z to f and puts the result to the df column PARAMETER: keywords: :type offset: float :param offset: constant offset to f values :type digits: int :param digits: number of digits to be rounded (should equal the input precision) """ # Take care: if there is only 0.1 nT accurracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') digits = kwargs.get('digits') if not offset: offset = 0 if not digits: digits = 8 logger.info('--- Calculating delta f started at %s ' % str(datetime.now())) try: syst = self.header['DataComponents'] except: syst = None ind = KEYLIST.index("df") indx = KEYLIST.index("x") indy = KEYLIST.index("y") indz = KEYLIST.index("z") indf = KEYLIST.index("f") if len(self.ndarray[0])>0 and len(self.ndarray[indx])>0 and len(self.ndarray[indy])>0 and len(self.ndarray[indz])>0 and len(self.ndarray[indf])>0: # requires x,y,z and f arx = self.ndarray[indx]**2 ary = self.ndarray[indy]**2 arz = self.ndarray[indz]**2 if syst in ['HDZ','hdz','HDZF','hdzf','HDZS','hdzs','HDZG','hdzg']: print("deltaF: found HDZ orientation") ary = np.asarray([0]*len(self.ndarray[indy])) sumar = list(arx+ary+arz) sqr = np.sqrt(np.asarray(sumar)) self.ndarray[ind] = sqr - (self.ndarray[indf] + offset) else: for elem in self: elem.df = round(np.sqrt(elem.x**2+elem.y**2+elem.z**2),digits) - (elem.f + offset) self.header['col-df'] = 'delta f' self.header['unit-col-df'] = 'nT' logger.info('--- Calculating delta f finished at %s ' % str(datetime.now())) return self def f_from_df(self, **kwargs): """ DESCRIPTION: Calculates the f from the difference of x+y+z and df PARAMETER: keywords: :type offset: float :param offset: constant offset to f values :type digits: int :param digits: number of digits to be rounded (should equal the input precision) """ # Take care: if there is only 0.1 nT accurracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') digits = kwargs.get('digits') if not offset: offset = 0. if not digits: digits = 8 logger.info('--- Calculating f started at %s ' % str(datetime.now())) try: syst = self.header['DataComponents'] except: syst = None ind = KEYLIST.index("df") indx = KEYLIST.index("x") indy = KEYLIST.index("y") indz = KEYLIST.index("z") indf = KEYLIST.index("f") if len(self.ndarray[0])>0 and len(self.ndarray[indx])>0 and len(self.ndarray[indy])>0 and len(self.ndarray[indz])>0 and len(self.ndarray[ind])>0: # requires x,y,z and f arx = self.ndarray[indx]**2 ary = self.ndarray[indy]**2 arz = self.ndarray[indz]**2 if syst in ['HDZ','hdz','HDZF','hdzf','HDZS','hdzs','HDZG','hdzg']: print("deltaF: found HDZ orientation") ary = np.asarray([0]*len(self.ndarray[indy])) sumar = list(arx+ary+arz) sqr = np.sqrt(np.asarray(sumar)) self.ndarray[indf] = sqr - (self.ndarray[ind] + offset) else: for elem in self: elem.f = round(np.sqrt(elem.x**2+elem.y**2+elem.z**2),digits) - (elem.df + offset) self.header['col-f'] = 'f' self.header['unit-col-f'] = 'nT' logger.info('--- Calculating f finished at %s ' % str(datetime.now())) return self def differentiate(self, **kwargs): """ DEFINITION: Method to differentiate all columns with respect to time. -- Using successive gradients PARAMETERS: Variables: keys: (list - default ['x','y','z','f'] provide limited key-list put2key - keys: (list) Provide limited key-list. default = ['x','y','z','f'] - put2keys: (type) Provide keys to put differentiated keys to. Default = ['dx','dy','dz','df'] Kwargs: RETURNS: - stream: (DataStream) Differentiated data stream, x values in dx, etc.. EXAMPLE: >>> stream = stream.differentiate(keys=['f'],put2keys=['df']) APPLICATION: """ logger.info('differentiate: Calculating derivative started.') keys = kwargs.get('keys') put2keys = kwargs.get('put2keys') if not keys: keys = ['<KEY>'] if not put2keys: put2keys = ['<KEY>'] if len(keys) != len(put2keys): logger.error('Amount of columns read must be equal to outputcolumns') return self stream = self.copy() ndtype = False if len(stream.ndarray[0]) > 0: t = stream.ndarray[0].astype(float) ndtype = True else: t = stream._get_column('time') for i, key in enumerate(keys): if ndtype: ind = KEYLIST.index(key) val = stream.ndarray[ind].astype(float) else: val = stream._get_column(key) dval = np.gradient(np.asarray(val)) stream._put_column(dval, put2keys[i]) stream.header['col-'+put2keys[i]] = r"d%s vs dt" % (key) logger.info('--- derivative obtained at %s ' % str(datetime.now())) return stream def DWT_calc(self,key='x',wavelet='db4',level=3,plot=False,outfile=None, window=5): """ DEFINITION: Discrete wavelet transform (DWT) method of analysing a magnetic signal to pick out SSCs. This method was taken from Hafez (2013): "Systematic examination of the geomagnetic storm sudden commencement using multi resolution analysis." (NOTE: PyWavelets package must be installed for this method. It should be applied to 1s data - otherwise the sample window should be changed.) METHOD: 1. Use the 4th-order Daubechies wavelet filter to calculate the 1st to 3rd details (D1, D2, D3) of the geomagnetic signal. This is applied to a sliding window of five samples. 2. The 3rd detail (D3) samples are squared to evaluate the magnitude. 3. The sample window (5) is averaged to avoid ripple effects. (This means the returned stream will have ~1/5 the size of the original.) PARAMETERS: Variables: - key: (str) Apply DWT to this key. Default 'x' due to SSCs dominating the horizontal component. - wavelet: (str) Type of filter to use. Default 'db4' (4th-order Daubechies wavelet filter) according to Hafez (2013). - level: (int) Decomposition level. Will calculate details down to this level. Default 3, also Hafez (2013). - plot: (bool) If True, will display a plot of A3, D1, D2 and D3. - outfile: (str) If given, will plot will be saved to 'outfile' path. - window: (int) Length of sample window. Default 5, i.e. 5s with second data. RETURNS: - DWT_stream: (DataStream object) A stream containing the following: 'x': A_n (approximation function) 'var1': D1 (first detail) 'var2': D2 (second detail) 'var3': D3 (third detail) ... will have to be changed if higher details are required. EXAMPLE: >>> DWT_stream = stream.DWT_calc(plot=True) APPLICATION: # Storm detection using detail 3 (D3 = var3): from magpy.stream import * stream = read('LEMI_1s_Data_2014-02-15.cdf') # 2014-02-15 is a good storm example DWT_stream = stream.DWT_calc(plot=True) Da_min = 0.0005 # nT^2 (minimum amplitude of D3 for storm detection) Dp_min = 40 # seconds (minimum period of Da > Da_min for storm detection) detection = False for row in DWT_stream: if row.var3 >= Da_min and detection == False: timepin = row.time detection = True elif row.var3 < Da_min and detection == True: duration = (num2date(row.time) - num2date(timepin)).seconds if duration >= Dp_min: print "Storm detected!" print duration, num2date(timepin) detection = False """ # Import required package PyWavelets: # http://www.pybytes.com/pywavelets/index.html import pywt # 1a. Grab array from stream data = self._get_column(key) t_ind = KEYLIST.index('time') #DWT_stream = DataStream([],{}) DWT_stream = DataStream() headers = DWT_stream.header array = [[] for key in KEYLIST] x_ind = KEYLIST.index('x') dx_ind = KEYLIST.index('dx') var1_ind = KEYLIST.index('var1') var2_ind = KEYLIST.index('var2') var3_ind = KEYLIST.index('var3') i = 0 logger.info("DWT_calc: Starting Discrete Wavelet Transform of key %s." % key) # 1b. Loop for sliding window while True: if i >= (len(data)-window): break #row = LineStruct() # Take the values in the middle of the window (not exact but changes are # not extreme over standard 5s window) #row.time = self[i+window/2].time array[t_ind].append(self.ndarray[t_ind][i+int(window/2)]) data_cut = data[i:i+window] #row.x = sum(data_cut)/float(window) array[x_ind].append(sum(data_cut)/float(window)) # 1c. Calculate wavelet transform coefficients # Wavedec produces results in form: [cA_n, cD_n, cD_n-1, ..., cD2, cD1] # (cA_n is a list of coefficients for an approximation for the nth order. # All cD_n are coefficients for details n --> 1.) coeffs = pywt.wavedec(data_cut, wavelet, level=level) # 1d. Calculate approximation and detail functions from coefficients take = len(data_cut) # (Length of fn from coeffs = length of original data) functions = [] approx = True for item in coeffs: if approx: part = 'a' # Calculate approximation function else: part = 'd' # Calculate detail function function = pywt.upcoef(part, item, wavelet, level=level, take=take) functions.append(function) approx = False # 2. Square the results fin_fns = [] for item in functions: item_sq = [j**2 for j in item] # 3. Average over the window val = sum(item_sq)/window fin_fns.append(val) # TODO: This is hard-wired for level=3. #row.dx, row.var1, row.var2, row.var3 = fin_fns array[dx_ind].append(fin_fns[0]) array[var1_ind].append(fin_fns[3]) array[var2_ind].append(fin_fns[2]) array[var3_ind].append(fin_fns[1]) #DWT_stream.add(row) i += window logger.info("DWT_calc: Finished DWT.") DWT_stream.header['col-x'] = 'A3' DWT_stream.header['unit-col-x'] = 'nT^2' DWT_stream.header['col-var1'] = 'D1' DWT_stream.header['unit-col-var1'] = 'nT^2' DWT_stream.header['col-var2'] = 'D2' DWT_stream.header['unit-col-var2'] = 'nT^2' DWT_stream.header['col-var3'] = 'D3' DWT_stream.header['unit-col-var3'] = 'nT^2' # Plot stream: if plot == True: date = datetime.strftime(num2date(self.ndarray[0][0]),'%Y-%m-%d') logger.info('DWT_calc: Plotting data...') if outfile: DWT_stream.plot(['x','var1','var2','var3'], plottitle="DWT Decomposition of %s (%s)" % (key,date), outfile=outfile) else: DWT_stream.plot(['x','var1','var2','var3'], plottitle="DWT Decomposition of %s (%s)" % (key,date)) #return DWT_stream return DataStream([LineStruct()], headers, np.asarray([np.asarray(a) for a in array])) def eventlogger(self, key, values, compare=None, stringvalues=None, addcomment=None, debugmode=None): """ read stream and log data of which key meets the criteria maybe combine with extract Required: :type key: string :param key: provide the key to be examined :type values: list :param values: provide a list of three values :type values: list :param values: provide a list of three values Optional: :type compare: string :param compare: ">, <, ==, !=" :type stringvalues: list :param stringvalues: provide a list of exactly the same length as values with the respective comments :type addcomment: bool :param addcomment: if true add the stringvalues to the comment line of the datastream :type debugmode: bool :param debugmode: provide more information example: compare is string like ">, <, ==, !=" st.eventlogger(['var3'],[15,20,30],'>') """ assert type(values) == list if not compare: compare = '==' if not compare in ['<','>','<=','>=','==','!=']: logger.warning('Eventlogger: wrong value for compare: needs to be among <,>,<=,>=,==,!=') return self if not stringvalues: stringvalues = ['Minor storm onset','Moderate storm onset','Major storm onset'] else: assert type(stringvalues) == list if not len(stringvalues) == len(values): logger.warning('Eventlogger: Provided comments do not match amount of values') return self for elem in self: #evaluationstring = 'elem.' + key + ' ' + compare + ' ' + str(values[0]) if eval('elem.'+key+' '+compare+' '+str(values[2])): stormlogger.warning('%s at %s' % (stringvalues[2],num2date(elem.time).replace(tzinfo=None))) if addcomment: if elem.comment == '-': elem.comment = stringvalues[2] else: elem.comment += ', ' + stringvalues[2] elif eval('elem.'+key+' '+compare+' '+str(values[1])): stormlogger.warning('%s at %s' % (stringvalues[1],num2date(elem.time).replace(tzinfo=None))) if addcomment: if elem.comment == '-': elem.comment = stringvalues[1] else: elem.comment += ', ' + stringvalues[1] elif eval('elem.'+key+' '+compare+' '+str(values[0])): stormlogger.warning('%s at %s' % (stringvalues[0],num2date(elem.time).replace(tzinfo=None))) if addcomment: if elem.comment == '-': elem.comment = stringvalues[0] else: elem.comment += ', ' + stringvalues[0] return self def extract(self, key, value, compare=None, debugmode=None): """ DEFINITION: Read stream and extract data of the selected key which meets the choosen criteria PARAMETERS: Variables: - key: (str) streams key e.g. 'x'. - value: (str/float/int) any selected input which should be tested for special note: if value is in brackets, then the term is evaluated e.g. value="('int(elem.time)')" selects all points at 0:00 Important: this only works for compare = '==' Kwargs: - compare: (str) criteria, one out of ">=", "<=",">", "<", "==", "!=", default is '==' - debugmode:(bool) if true several additional outputs will be created RETURNS: - DataStream with selected values only EXAMPLES: >>> extractedstream = stream.extract('x',20000,'>') >>> extractedstream = stream.extract('str1','Berger') """ if not compare: compare = '==' if not compare in [">=", "<=",">", "<", "==", "!=", 'like']: logger.info('--- Extract: Please provide proper compare parameter ">=", "<=",">", "<", "==", "like" or "!=" ') return self if value in ['',None]: return self ndtype = False if len(self.ndarray[0]) > 0: ndtype = True ind = KEYLIST.index(key) stream = self.copy() if not self._is_number(value): if value.startswith('(') and value.endswith(')') and compare == '==': logger.info("extract: Selected special functional type -equality defined by difference less then 10 exp-6") if ndtype: val = eval(value[1:-1]) indexar = np.where((np.abs(stream.ndarray[ind]-val)) < 0.000001)[0] else: val = value[1:-1] liste = [] for elem in self: if abs(eval('elem.'+key) - eval(val)) < 0.000001: liste.append(elem) return DataStream(liste,self.header) else: #print "Found String", ndtype too = '"' + str(value) + '"' if ndtype: if compare == 'like': indexar = np.asarray([i for i, s in enumerate(stream.ndarray[ind]) if str(value) in s]) else: #print stream.ndarray[ind] searchclause = 'stream.ndarray[ind] '+ compare + ' ' + too #print searchclause, ind, key indexar = eval('np.where('+searchclause+')[0]') #print indexar, len(indexar) else: too = str(value) if ndtype: searchclause = 'stream.ndarray[ind].astype(float) '+ compare + ' ' + too with np.errstate(invalid='ignore'): indexar = eval('np.where('+searchclause+')[0]') if ndtype: for ind,el in enumerate(stream.ndarray): if len(stream.ndarray[ind]) > 0: ar = [stream.ndarray[ind][i] for i in indexar] stream.ndarray[ind] = np.asarray(ar).astype(object) return stream else: liste = [elem for elem in self if eval('elem.'+key+' '+ compare + ' ' + too)] return DataStream(liste,self.header,self.ndarray) def extract2(self, keys, get='>', func=None, debugmode=None): """ DEFINITION: Read stream and extract data of the selected keys which meets the choosen criteria PARAMETERS: Variables: - keys: (list) keylist like ['x','f']. - func: a function object Kwargs: - get: (str) criteria, one out of ">=", "<=",">", "<", "==", "!=", default is '==' - debugmode:(bool) if true several additional outputs will be created RETURNS: - DataStream with selected values only EXAMPLES: >>> extractedstream = stream.extract('x',20000,'>') >>> extractedstream = stream.extract('str1','Berger') """ if not get: get = '==' if not get in [">=", "<=",">", "<", "==", "!=", 'like']: print ('--- Extract: Please provide proper compare parameter ">=", "<=",">", "<", "==", "like" or "!=" ') return self stream = self.copy() def func(x): y = 1/(0.2*exp(0.06/(x/10000.))) + 2.5 return y xpos = KEYLIST.index(keys[0]) ypos = KEYLIST.index(keys[1]) x = stream.ndarray[xpos].astype(float) y = stream.ndarray[ypos].astype(float) idxlist = [] for idx,val in enumerate(x): ythreshold = func(val) test = eval('y[idx] '+ get + ' ' + str(ythreshold)) #print (val, 'y[idx] '+ get + ' ' + str(ythreshold)) if test: idxlist.append(idx) array = [[] for key in KEYLIST] for i,key in enumerate(KEYLIST): for idx in idxlist: if len(stream.ndarray[i]) > 0: array[i].append(stream.ndarray[i][idx]) array[i] = np.asarray(array[i]) print ("Length of list", len(idxlist)) return DataStream([LineStruct()], stream.header,np.asarray(array)) def extrapolate(self, start, end): """ DESCRIPTION: Reads stream output of absolute analysis and extrapolate the data current method (too be improved if necessary): - repeat the last and first input with baseline values at disered start and end time Hereby and functional fit (e.g. spline or polynom is forced towards a quasi-stable baseline evolution). The principle asumption of this technique is that the base values are constant on average. APPLICATION: is used by stream.baseline """ ltime = date2num(end) # + timedelta(days=1)) ftime = date2num(start) # - timedelta(days=1)) array = [[] for key in KEYLIST] ndtype = False if len(self.ndarray[0]) > 0: ndtype = True firsttime = np.min(self.ndarray[0]) lasttime = np.max(self.ndarray[0]) # Find the last element with baseline values - assuming a sorted array inddx = KEYLIST.index('dx') lastind=len(self.ndarray[0])-1 #print("Extrapolate", self.ndarray,len(self.ndarray[inddx]), self.ndarray[inddx], self.ndarray[inddx][lastind]) while np.isnan(float(self.ndarray[inddx][lastind])): lastind = lastind-1 firstind=0 while np.isnan(float(self.ndarray[inddx][firstind])): firstind = firstind+1 #print "extrapolate", num2date(ftime), num2date(ltime), ftime, ltime for idx,elem in enumerate(self.ndarray): if len(elem) > 0: array[idx] = self.ndarray[idx] if idx == 0: array[idx] = np.append(array[idx],ftime) array[idx] = np.append(array[idx],ltime) #array[idx] = np.append(self.ndarray[idx],ftime) #array[idx] = np.append(self.ndarray[idx],ltime) else: array[idx] = np.append(array[idx],array[idx][firstind]) array[idx] = np.append(array[idx],array[idx][lastind]) #array[idx] = np.append(self.ndarray[idx],self.ndarray[idx][firstind]) #array[idx] = np.append(self.ndarray[idx],self.ndarray[idx][lastind]) indar = np.argsort(array[0]) array = [el[indar].astype(object) if len(el)>0 else np.asarray([]) for el in array] else: if self.length()[0] < 2: return self firstelem = self[0] lastelem = self[-1] # Find the last element with baseline values i = 1 while isnan(lastelem.dx): lastelem = self[-i] i = i +1 line = LineStruct() for key in KEYLIST: if key == 'time': line.time = ftime else: exec('line.'+key+' = firstelem.'+key) self.add(line) line = LineStruct() for key in KEYLIST: if key == 'time': line.time = ltime else: exec('line.'+key+' = lastelem.'+key) self.add(line) stream = DataStream(self,self.header,np.asarray(array,dtype=object)) #print "extra", stream.ndarray #print "extra", stream.length() #stream = stream.sorting() return stream #return DataStream(self,self.header,self.ndarray) def filter(self,**kwargs): """ DEFINITION: Uses a selected window to filter the datastream - similar to the smooth function. (take a look at the Scipy Cookbook/Signal Smooth) This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. This function is approximately twice as fast as the previous version. Difference: Gaps of the stream a filled by time steps with NaNs in the data columns By default missing values are interpolated if more than 90 percent of data is present within the window range. This is used to comply with INTERMAGNET rules. Set option conservative to False to avoid this. PARAMETERS: Kwargs: - keys: (list) List of keys to smooth - filter_type: (string) name of the window. One of 'flat','barthann','bartlett','blackman','blackmanharris','bohman', 'boxcar','cosine','flattop','hamming','hann','nuttall', 'parzen','triang','gaussian','wiener','spline','butterworth' See http://docs.scipy.org/doc/scipy/reference/signal.html - filter_width: (timedelta) window width of the filter - resample_period: (int) resampling interval in seconds (e.g. 1 for one second data) leave blank for standard filters as it will be automatically selected - noresample: (bool) if True the data set is resampled at filter_width positions - missingdata: (string) define how to deal with missing data 'conservative' (default): no filtering 'interpolate': interpolate if less than 10% are missing 'mean': use mean if less than 10% are missing' - conservative: (bool) if True than no interpolation is performed - autofill: (list) of keys: provide a keylist for which nan values are linearly interpolated before filtering - use with care, might be useful if you have low resolution parameters asociated with main values like (humidity etc) - resampleoffset: (timedelta) if provided the offset will be added to resamples starttime - resamplemode: (string) if 'fast' then fast resampling is used - testplot: (bool) provides a plot of unfiltered and filtered data for each key if true - dontfillgaps: (bool) if true, get_gaps will not be conducted - much faster but requires the absence of data gaps (including time step) RETURNS: - self: (DataStream) containing the filtered signal within the selected columns EXAMPLE: >>> nice_data = bad_data.filter(keys=['x','y','z']) or >>> nice_data = bad_data.filter(filter_type='gaussian',filter_width=timedelta(hours=1)) APPLICATION: TODO: !!A proper and correct treatment of gaps within the dataset to be filtered is missing!! """ # ######################## # Kwargs and definitions # ######################## filterlist = ['flat','barthann','bartlett','blackman','blackmanharris','bohman', 'boxcar','cosine','flattop','hamming','hann','nuttall','parzen','triang', 'gaussian','wiener','spline','butterworth'] # To be added #kaiser(M, beta[, sym]) Return a Kaiser window. #slepian(M, width[, sym]) Return a digital Slepian (DPSS) window. #chebwin(M, at[, sym]) Return a Dolph-Chebyshev window. # see http://docs.scipy.org/doc/scipy/reference/signal.html keys = kwargs.get('keys') filter_type = kwargs.get('filter_type') filter_width = kwargs.get('filter_width') resample_period = kwargs.get('resample_period') filter_offset = kwargs.get('filter_offset') noresample = kwargs.get('noresample') resamplemode = kwargs.get('resamplemode') resamplestart = kwargs.get('resamplestart') resampleoffset = kwargs.get('resampleoffset') testplot = kwargs.get('testplot') autofill = kwargs.get('autofill') dontfillgaps = kwargs.get('dontfillgaps') fillgaps = kwargs.get('fillgaps') debugmode = kwargs.get('debugmode') conservative = kwargs.get('conservative') missingdata = kwargs.get('missingdata') sr = self.samplingrate() if not keys: keys = self._get_key_headers(numerical=True) if not filter_width and not resample_period: if sr < 0.5: # use 1 second filter with 0.3 Hz cut off as default filter_width = timedelta(seconds=3.33333333) resample_period = 1.0 else: # use 1 minute filter with 0.008 Hz cut off as default filter_width = timedelta(minutes=2) resample_period = 60.0 if not filter_width: # resample_period obviously provided - use nyquist filter_width = timedelta(seconds=2*resample_period) if not resample_period: # filter_width obviously provided... use filter_width as period resample_period = filter_width.total_seconds() # Fall back for old data if filter_width == timedelta(seconds=1): filter_width = timedelta(seconds=3.3) resample_period = 1.0 if not noresample: resample = True else: resample = False if not autofill: autofill = [] else: if not isinstance(autofill, (list, tuple)): print("Autofill need to be a keylist") return if not resamplemode: resamplefast = False else: if resamplemode == 'fast': resamplefast = True else: resamplefast = False if not debugmode: debugmode = None if not filter_type: filter_type = 'gaussian' if resamplestart: print("############## Warning ##############") print("option RESAMPLESTART is not used any more. Switch to resampleoffset for modifying time steps") if not missingdata: missingdata = 'conservative' ndtype = False # ######################## # Basic validity checks and window size definitions # ######################## if not filter_type in filterlist: logger.error("smooth: Window is none of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman', etc") logger.debug("smooth: You entered non-existing filter type - %s - " % filter_type) return self logger.info("filter: Filtering with {} window".format(filter_type)) #print self.length()[0] if not self.length()[0] > 1: logger.error("Filter: stream needs to contain data - returning.") return self if debugmode: print("Starting length:", self.length()) #if not dontfillgaps: ### changed--- now using dont fill gaps as default if fillgaps: self = self.get_gaps() if debugmode: print("length after getting gaps:", len(self)) window_period = filter_width.total_seconds() si = timedelta(seconds=self.get_sampling_period()*24*3600) sampling_period = si.days*24*3600 + si.seconds + np.round(si.microseconds/1000000.0,2) if debugmode: print("Timedelta and sampling period:", si, sampling_period) # window_len defines the window size in data points assuming the major sampling period to be valid for the dataset if filter_type == 'gaussian': # For a gaussian fit window_len = np.round((window_period/sampling_period)) #print (window_period,sampling_period,window_len) # Window length needs to be odd number: if window_len % 2 == 0: window_len = window_len +1 std = 0.83255461*window_len/(2*np.pi) trangetmp = self._det_trange(window_period)*24*3600 if trangetmp < 1: trange = np.round(trangetmp,3) else: trange = timedelta(seconds=(self._det_trange(window_period)*24*3600)).seconds if debugmode: print("Window character: ", window_len, std, trange) else: window_len = np.round(window_period/sampling_period) if window_len % 2: window_len = window_len+1 trange = window_period/2 if sampling_period >= window_period: logger.warning("Filter: Sampling period is equal or larger then projected filter window - returning.") return self # ######################## # Reading data of each selected column in stream # ######################## if len(self.ndarray[0])>0: t = self.ndarray[0] ndtype = True else: t = self._get_column('time') if debugmode: print("Length time column:", len(t)) window_len = int(window_len) for key in keys: if debugmode: print ("Start filtering for", key) if not key in KEYLIST: logger.error("Column key %s not valid." % key) keyindex = KEYLIST.index(key) if len(self.ndarray[keyindex])>0: v = self.ndarray[keyindex] else: v = self._get_column(key) # INTERMAGNET 90 percent rule: interpolate missing values if less than 10 percent are missing #if not conservative or missingdata in ['interpolate','mean']: if missingdata in ['interpolate','mean']: fill = 'mean' try: if missingdata == 'interpolate': fill = missingdate else: fill = 'mean' except: fill = 'mean' v = self.missingvalue(v,np.round(window_period/sampling_period),fill=fill) # using ratio here and not _len if key in autofill: logger.warning("Filter: key %s has been selected for linear interpolation before filtering." % key) logger.warning("Filter: I guess you know what you are doing...") nans, x= nan_helper(v) v[nans]= interp(x(nans), x(~nans), v[~nans]) # Make sure that we are dealing with numbers v = np.array(list(map(float, v))) if v.ndim != 1: logger.error("Filter: Only accepts 1 dimensional arrays.") if window_len<3: logger.error("Filter: Window lenght defined by filter_width needs to cover at least three data points") if debugmode: print("Treating k:", key, v.size) if v.size >= window_len: #print ("Check:", v, len(v), window_len) s=np.r_[v[int(window_len)-1:0:-1],v,v[-1:-int(window_len):-1]] if filter_type == 'gaussian': w = signal.gaussian(window_len, std=std) y=np.convolve(w/w.sum(),s,mode='valid') res = y[(int(window_len/2)):(len(v)+int(window_len/2))] elif filter_type == 'wiener': res = signal.wiener(v, int(window_len), noise=0.5) elif filter_type == 'butterworth': dt = 800./float(len(v)) nyf = 0.5/dt b, a = signal.butter(4, 1.5/nyf) res = signal.filtfilt(b, a, v) elif filter_type == 'spline': res = UnivariateSpline(t, v, s=240) elif filter_type == 'flat': w=np.ones(int(window_len),'d') s = np.ma.masked_invalid(s) y=np.convolve(w/w.sum(),s,mode='valid') #'valid') res = y[(int(window_len/2)-1):(len(v)+int(window_len/2)-1)] else: w = eval('signal.'+filter_type+'(window_len)') y=np.convolve(w/w.sum(),s,mode='valid') res = y[(int(window_len/2)):(len(v)+int(window_len/2))] if testplot == True: fig, ax1 = plt.subplots(1,1, figsize=(10,4)) ax1.plot(t, v, 'b.-', linewidth=2, label = 'raw data') ax1.plot(t, res, 'r.-', linewidth=2, label = filter_type) plt.show() if ndtype: self.ndarray[keyindex] = res else: self._put_column(res,key) if resample: if debugmode: print("Resampling: ", keys) self = self.resample(keys,period=resample_period,fast=resamplefast,offset=resampleoffset) self.header['DataSamplingRate'] = str(resample_period) + ' sec' # ######################## # Update header information # ######################## passband = filter_width.total_seconds() #print ("passband", 1/passband) #self.header['DataSamplingFilter'] = filter_type + ' - ' + str(trange) + ' sec' self.header['DataSamplingFilter'] = filter_type + ' - ' + str(1.0/float(passband)) + ' Hz' return self def nfilter(self, **kwargs): """ DEFINITION: Code for simple application, filtering function. Returns stream with filtered data with sampling period of filter_width. PARAMETERS: Variables: - variable: (type) Description. Kwargs: - filter_type: (str) Options: gaussian, linear or special. Default = gaussian. - filter_width: (timedelta object) Default = timedelta(minutes=1) - filter_offset: (timedelta object) Default=0 - gauss_win: (int) Default = 1.86506 (corresponds to +/-45 sec in case of min or 45 min in case of hour). - fmi_initial_data: (DataStream containing dH values (dx)) Default=[]. RETURNS: - stream: (DataStream object) Stream containing filtered data. EXAMPLE: >>> stream_filtered = stream.filter(filter_width=timedelta(minutes=3)) APPLICATION: """ return self.filter(**kwargs) def fit(self, keys, **kwargs): """ DEFINITION: Code for fitting data. Please note: if nans are present in any of the selected keys the whole line is dropped before fitting. PARAMETERS: Variables: - keys: (list) Provide a list of keys to be fitted (e.g. ['x','y','z']. Kwargs: - fitfunc: (str) Options: 'poly', 'harmonic', 'least-squares', 'spline', 'none', default='spline' - timerange: (timedelta object) Default = timedelta(hours=1) - fitdegree: (float) Default=5 - knotstep: (float < 0.5) determines the amount of knots: amount = 1/knotstep ---> VERY smooth 0.1 | NOT VERY SMOOTH 0.001 - flag: (bool). RETURNS: - function object: (list) func = [functionkeylist, sv, ev] EXAMPLE: >>> func = stream.fit(['x']) APPLICATION: """ # Defaults: fitfunc = kwargs.get('fitfunc') fitdegree = kwargs.get('fitdegree') knotstep = kwargs.get('knotstep') starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') if not fitfunc: fitfunc = 'spline' if not fitdegree: fitdegree = 5 if not knotstep: knotstep = 0.01 defaulttime = 0 if not starttime: starttime = self._find_t_limits()[0] if not endtime: endtime = self._find_t_limits()[1] if starttime == self._find_t_limits()[0]: defaulttime += 1 if endtime == self._find_t_limits()[1]: defaulttime += 1 if knotstep >= 0.5: raise ValueError("Knotstep needs to be smaller than 0.5") functionkeylist = {} ndtype = False if len(self.ndarray[0]) > 0: ndtype=True #tok = True fitstream = self.copy() if not defaulttime == 2: # TODO if applied to full stream, one point at the end is missing fitstream = fitstream.trim(starttime=starttime, endtime=endtime) sv = 0 ev = 0 for key in keys: tmpst = fitstream._drop_nans(key) #print ("Length", tmpst.length()) if ndtype: t = tmpst.ndarray[0] else: t = tmpst._get_column('time') if len(t) < 1: #tok = False print ("Column {} does not contain valid values".format(key)) continue nt,sv,ev = fitstream._normalize(t) sp = fitstream.get_sampling_period() if sp == 0: ## if no dominant sampling period can be identified then use minutes sp = 0.0177083333256 if not key in KEYLIST[1:16]: raise ValueError("Column key not valid") if ndtype: ind = KEYLIST.index(key) val = tmpst.ndarray[ind] else: val = tmpst._get_column(key) # interplolate NaN values # normalized sampling rate sp = sp/(ev-sv) # should be the best? #sp = (ev-sv)/len(val) # does not work x = arange(np.min(nt),np.max(nt),sp) #print len(x) if len(val)<=1: logger.warning('Fit: No valid data for key {}'.format(key)) break elif fitfunc == 'spline': try: #logger.error('Interpolation: Testing knots (knotsteps = {}), (len(val) = {}'.format(knotstep, len(val))) knots = np.array(arange(np.min(nt)+knotstep,np.max(nt)-knotstep,knotstep)) if len(knots) > len(val): knotstep = knotstep*4 knots = np.array(arange(np.min(nt)+knotstep,np.max(nt)-knotstep,knotstep)) logger.warning('Too many knots in spline for available data. Please check amount of fitted data in time range. Trying to reduce resolution ...') ti = interpolate.splrep(nt, val, k=3, s=0, t=knots) except: logger.error('Value error in fit function - likely reason: no valid numbers or too few numbers for fit: len(knots)={} > len(val)={}? '.format(len(knots),len(val))) print ("Checking", key, len(val), val, sp, knotstep, len(knots)) raise ValueError("Value error in fit function - not enough data or invalid numbers") return #print nt, val, len(knots), knots #ti = interpolate.interp1d(nt, val, kind='cubic') #print "X", x, np.min(nt),np.max(nt),sp #print "TI", ti f_fit = interpolate.splev(x,ti) elif fitfunc == 'poly': logger.debug('Selected polynomial fit - amount of data: %d, time steps: %d, degree of fit: %d' % (len(nt), len(val), fitdegree)) ti = polyfit(nt, val, fitdegree) f_fit = polyval(ti,x) elif fitfunc == 'mean': logger.debug('Selected mean fit - amount of data: {}, time steps: {}'.format(len(nt), len(val))) meanvalue = np.nanmean(val) meanval = np.asarray([meanvalue for el in val]) ti = polyfit(nt, meanval, 1) f_fit = polyval(ti,x) elif fitfunc == 'harmonic': logger.debug('Selected harmonic fit - using inverse fourier transform') f_fit = self.harmfit(nt, val, fitdegree) # Don't use resampled list for harmonic time series x = nt elif fitfunc == 'least-squares': logger.debug('Selected linear least-squares fit') A = np.vstack([nt, np.ones(len(nt))]).T m, c, = np.linalg.lstsq(A, val)[0] f_fit = m * x + c elif fitfunc == 'none': logger.debug('Selected no fit') return else: logger.warning('Fit: function not valid') return exec('f'+key+' = interpolate.interp1d(x, f_fit, bounds_error=False)') exec('functionkeylist["f'+key+'"] = f'+key) #if tok: func = [functionkeylist, sv, ev] #else: # func = [functionkeylist, 0, 0] return func def extractflags(self, debug=False): """ DEFINITION: Extracts flags asociated with the provided DataStream object (as obtained by flaggedstream = stream.flag_outlier()) PARAMETERS: Variables: None RETURNS: - flaglist: (list) a flaglist of type [st,et,key,flagnumber,commentarray[idx],sensorid,now] EXAMPLE: >>> flaglist = stream.extractflags() """ sensorid = self.header.get('SensorID','') now = datetime.utcnow() flaglist = [] flpos = KEYLIST.index('flag') compos = KEYLIST.index('comment') flags = self.ndarray[flpos] comments = self.ndarray[compos] if not len(flags) > 0 or not len(comments) > 0: return flaglist uniqueflags = self.union(flags) uniquecomments = self.union(comments) # 1. Extract relevant keys from uniqueflags if debug: print ("extractflags: Unique Flags -", uniqueflags) print ("extractflags: Unique Comments -", uniquecomments) # zeroflag = '' keylist = [] for elem in uniqueflags: if not elem in ['','-']: #print (elem) for idx,el in enumerate(elem): if not el == '-' and el in ['0','1','2','3','4','5','6']: keylist.append(NUMKEYLIST[idx-1]) # 2. Cycle through keys and extract comments if not len(keylist) > 0: return flaglist keylist = self.union(np.asarray(keylist)) for key in keylist: indexflag = KEYLIST.index(key) for comment in uniquecomments: flagindicies = [] for idx, elem in enumerate(comments): if not elem == '' and elem == comment: #print ("ELEM", elem) flagindicies.append(idx) # 2. get consecutive groups for k, g in groupby(enumerate(flagindicies), lambda ix: ix[0] - ix[1]): try: consecutives = list(map(itemgetter(1), g)) st = num2date(self.ndarray[0][consecutives[0]]).replace(tzinfo=None) et = num2date(self.ndarray[0][consecutives[-1]]).replace(tzinfo=None) flagnumber = flags[consecutives[0]][indexflag] if not flagnumber in ['-',None]: flaglist.append([st,et,key,int(flagnumber),comment,sensorid,now]) except: print ("extractflags: error when extracting flaglist") return flaglist def flagfast(self,indexarray,flag, comment,keys=None): """ DEFINITION: Add a flag to specific indicies of the streams ndarray. PARAMETERS: Variables: - keys: (list) Optional: list of keys to mark ['x','y','z'] - flag: (int) 0 ok, 1 remove, 2 force ok, 3 force remove, 4 merged from other instrument - comment: (str) The reason for flag - indexarray: (array) indicies of the datapoint(s) to mark RETURNS: - DataStream: Input stream with flags and comments. EXAMPLE: >>> data = data.flagfast([155],'3','Lawnmower',['x','y','z']) APPLICATION: """ print("Adding flags .... ") # Define Defaultflag flagls = [str('-') for elem in FLAGKEYLIST] defaultflag = '' # Get new flag newflagls = [] if not keys: for idx,key in enumerate(FLAGKEYLIST): # Flag all existing data if len(self.ndarray[idx]) > 0: newflagls.append(str(flag)) else: newflagls.append('-') newflag = ''.join(newflagls) else: for idx,key in enumerate(FLAGKEYLIST): # Only key column if len(self.ndarray[idx]) > 0 and FLAGKEYLIST[idx] in keys: newflagls.append(str(flag)) else: newflagls.append('-') newflag = ''.join(newflagls) flagarray, commentarray = [],[] flagindex = KEYLIST.index('flag') commentindex = KEYLIST.index('comment') # create a predefined list # ######################## # a) get existing flags and comments or create empty lists if len(self.ndarray[flagindex]) > 0: flagarray = self.ndarray[flagindex].astype(object) else: flagarray = [''] * len(self.ndarray[0]) if len(self.ndarray[commentindex]) > 0: commentarray = self.ndarray[commentindex].astype(object) else: commentarray = [''] * len(self.ndarray[0]) # b) insert new info for i in indexarray: flagarray[i] = newflag commentarray[i] = comment commentarray = np.asarray(commentarray, dtype='object') flagarray = np.asarray(flagarray, dtype='object') flagnum = KEYLIST.index('flag') commentnum = KEYLIST.index('comment') self.ndarray[flagnum] = flagarray self.ndarray[commentnum] = commentarray #print "... finished" return self def flag_range(self, **kwargs): """ DEFINITION: Flags data within time range or data exceeding a certain threshold Coding : 0 take, 1 remove, 2 force take, 3 force remove PARAMETERS: Variables: - None. Kwargs: - keys: (list) List of keys to check for criteria. Default = all numerical please note: for using above and below criteria only one element need to be provided (e.g. ['x'] - text (string) comment - flagnum (int) Flagid - keystoflag: (list) List of keys to flag. Default = all numerical - below: (float) flag data of key below this numerical value. - above: (float) flag data of key exceeding this numerical value. - starttime: (datetime Object) - endtime: (datetime Object) RETURNS: - flaglist: (list) flagging information - use stream.flag(flaglist) to add to stream EXAMPLE: >>> fllist = stream.flag_range(keys=['x'], above=80) APPLICATION: """ keys = kwargs.get('keys') above = kwargs.get('above') below = kwargs.get('below') starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') text = kwargs.get('text') flagnum = kwargs.get('flagnum') keystoflag = kwargs.get('keystoflag') numuncert = 0.0000000001 # numerical uncertainty on different machines when using date2num() sensorid = self.header.get('SensorID') moddate = datetime.utcnow() flaglist=[] if not keystoflag: keystoflag = self._get_key_headers(numerical=True) if not flagnum: flagnum = 0 if not len(self.ndarray[0]) > 0: print ("flag_range: No data available - aborting") return flaglist if not len(keys) == 1: if above or below: print ("flag_range: for using thresholds above and below only a single key needs to be provided") print (" -- ignoring given above and below values") below = False above = False # test validity of starttime and endtime trimmedstream = self.copy() if starttime and endtime: trimmedstream = self._select_timerange(starttime=starttime,endtime=endtime) trimmedstream = DataStream([LineStruct()],self.header,trimmedstream) elif starttime: trimmedstream = self._select_timerange(starttime=starttime) trimmedstream = DataStream([LineStruct()],self.header,trimmedstream) elif endtime: trimmedstream = self._select_timerange(endtime=endtime) trimmedstream = DataStream([LineStruct()],self.header,trimmedstream) if not above and not below: # return flags for all data in trimmed stream for elem in keystoflag: flagline = [num2date(trimmedstream.ndarray[0][0]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndarray[0][-1]-numuncert).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.append(flagline) return flaglist if above and below: # TODO create True/False list and then follow the bin detector example ind = KEYLIST.index(keys[0]) trueindicies = (trimmedstream.ndarray[ind] > above) & (trimmedstream.ndarray[ind] < below) d = np.diff(trueindicies) idx, = d.nonzero() idx += 1 if not text: text = 'outside of range {} to {}'.format(below,above) if trueindicies[0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if trueindicies[-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, trimmedstream.ndarray[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: # numerical uncertainty is subtracted from both time steps, as the flagging procedure (findtime) links # flags to the exact time stamp or, if not found, due to numerical diffs, to the next timestamp flagline = [num2date(trimmedstream.ndarray[0][start]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndarray[0][stop]-numuncert).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.append(flagline) elif above: # TODO create True/False list and then follow the bin detector example ind = KEYLIST.index(keys[0]) trueindicies = trimmedstream.ndarray[ind] > above d = np.diff(trueindicies) idx, = d.nonzero() idx += 1 if not text: text = 'exceeding {}'.format(above) if trueindicies[0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if trueindicies[-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, trimmedstream.ndarray[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(trimmedstream.ndarray[0][start]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndarray[0][stop]-numuncert).replace(tzinfo=None),elem,int(flagnum),text,sensorid,moddate] flaglist.append(flagline) elif below: # TODO create True/False the other way round ind = KEYLIST.index(keys[0]) truefalse = trimmedstream.ndarray[ind] < below d = np.diff(truefalse) idx, = d.nonzero() idx += 1 if not text: text = 'below {}'.format(below) if truefalse[0]: # If the start of condition is True prepend a 0 idx = np.r_[0, idx] if truefalse[-1]: # If the end of condition is True, append the length of the array idx = np.r_[idx, trimmedstream.ndarray[ind].size] # Edit # Reshape the result into two columns idx.shape = (-1,2) for start,stop in idx: stop = stop-1 for elem in keystoflag: flagline = [num2date(trimmedstream.ndarray[0][start]-numuncert).replace(tzinfo=None),num2date(trimmedstream.ndarray[0][stop]-numuncert).replace(tzinfo=None),elem,int(flagnum),str(text),sensorid,moddate] flaglist.append(flagline) return flaglist def flag_outlier(self, **kwargs): """ DEFINITION: Flags outliers in data, using quartiles. Coding : 0 take, 1 remove, 2 force take, 3 force remove Example: 0000000, 0001000, etc 012 = take f, automatically removed v, and force use of other 300 = force remove f, take v, and take other PARAMETERS: Variables: - None. Kwargs: - keys: (list) List of keys to evaluate. Default = all numerical - threshold: (float) Determines threshold for outliers. 1.5 = standard 5 = weak condition, keeps storm onsets in (default) 4 = a useful comprimise to be used in automatic analysis. - timerange: (timedelta Object) Time range. Default = samlingrate(sec)*600 - stdout: prints removed values to stdout - returnflaglist (bool) if True, a flaglist is returned instead of stream - markall (bool) default is False. If True, all components (provided keys) are flagged even if outlier is only detected in one. Useful for vectorial data RETURNS: - stream: (DataStream Object) Stream with flagged data. EXAMPLE: >>> stream.flag_outlier(keys=['x','y','z'], threshold=2) APPLICATION: """ # Defaults: timerange = kwargs.get('timerange') threshold = kwargs.get('threshold') keys = kwargs.get('keys') markall = kwargs.get('markall') stdout = kwargs.get('stdout') returnflaglist = kwargs.get('returnflaglist') sr = self.samplingrate() flagtimeprev = 0 startflagtime = 0 numuncert = 0.0000000001 # numerical uncertainty on different machines when using date2num() if not timerange: sr = self.samplingrate() timerange = timedelta(seconds=sr*600) if not keys: keys = self._get_key_headers(numerical=True) if not threshold: threshold = 5.0 cdate = datetime.utcnow().replace(tzinfo=None) sensorid = self.header.get('SensorID','') flaglist = [] # Position of flag in flagstring # f (intensity): pos 0 # x,y,z (vector): pos 1 # other (vector): pos 2 if not len(self.ndarray[0]) > 0: logger.info('flag_outlier: No ndarray - starting old remove_outlier method.') self = self.remove_outlier(keys=keys,threshold=threshold,timerange=timerange,stdout=stdout,markall=markall) return self logger.info('flag_outlier: Starting outlier identification...') flagidx = KEYLIST.index('flag') commentidx = KEYLIST.index('comment') if not len(self.ndarray[flagidx]) > 0: self.ndarray[flagidx] = [''] * len(self.ndarray[0]) else: self.ndarray[flagidx] = self.ndarray[flagidx].astype(object) if not len(self.ndarray[commentidx]) > 0: self.ndarray[commentidx] = [''] * len(self.ndarray[0]) else: self.ndarray[commentidx] = self.ndarray[commentidx].astype(object) # get a poslist of all keys - used for markall flagposls = [FLAGKEYLIST.index(key) for key in keys] # Start here with for key in keys: for key in keys: flagpos = FLAGKEYLIST.index(key) if not len(self.ndarray[flagpos]) > 0: print("Flag_outlier: No data for key %s - skipping" % key) break print ("-------------------------") print ("Dealing with key:", key) st = 0 et = len(self.ndarray[0]) incrt = int(timerange.total_seconds()/sr) if incrt == 0: print("Flag_outlier: check timerange ... seems to be smaller as sampling rate") break at = incrt while st < et: idxst = st idxat = at st = at at += incrt if idxat > et: idxat = et #print key, idxst, idxat selcol = self.ndarray[flagpos][idxst:idxat].astype(float) selcol = selcol[~np.isnan(selcol)] if len(selcol) > 0: try: q1 = stats.scoreatpercentile(selcol,16) q3 = stats.scoreatpercentile(selcol,84) iqd = q3-q1 md = np.median(selcol) if iqd == 0: iqd = 0.000001 whisker = threshold*iqd #print key, md, iqd, whisker except: try: md = np.median(selcol) whisker = md*0.005 except: logger.warning("remove_outlier: Eliminate outliers produced a problem: please check.") pass #print md, whisker, np.asarray(selcol) for elem in range(idxst,idxat): #print flagpos, elem if not md-whisker < self.ndarray[flagpos][elem] < md+whisker and not np.isnan(self.ndarray[flagpos][elem]): #print "Found:", key, self.ndarray[flagpos][elem] #if key == 'df': # x = 1/0 try: if not self.ndarray[flagidx][elem] == '': #print "Got here", self.ndarray[flagidx][elem] newflagls = list(self.ndarray[flagidx][elem]) #print newflagls if newflagls[flagpos] == '-': newflagls[flagpos] = 0 if not int(newflagls[flagpos]) > 1: newflagls[flagpos] = '1' if markall: for p in flagposls: if not newflagls[p] > 1: newflagls[p] = '1' newflag = ''.join(newflagls) else: x=1/0 # Force except except: newflagls = [] for idx,el in enumerate(FLAGKEYLIST): # Only key column if idx == flagpos: newflagls.append('1') else: newflagls.append('-') if markall: for p in flagposls: newflagls[p] = '1' newflag = ''.join(newflagls) self.ndarray[flagidx][elem] = newflag #print self.ndarray[flagidx][elem] commline = "aof - threshold: {a}, window: {b} sec".format(a=str(threshold), b=str(timerange.total_seconds())) self.ndarray[commentidx][elem] = commline infoline = "flag_outlier: at {a} - removed {b} (= {c})".format(a=str(self.ndarray[0][elem]), b=key, c=self.ndarray[flagpos][elem]) logger.info(infoline) #[starttime,endtime,key,flagid,flagcomment] flagtime = self.ndarray[0][elem] if markall: # if not flagtime and key and commline in flaglist for fkey in keys: ls = [flagtime,flagtime,fkey,1,commline] if not ls in flaglist: flaglist.append(ls) else: flaglist.append([flagtime,flagtime,key,1,commline]) if stdout: print(infoline) else: try: if not self.ndarray[flagidx][elem] == '': pass else: x=1/0 # Not elegant but working except: self.ndarray[flagidx][elem] = '' self.ndarray[commentidx][elem] = '' self.ndarray[flagidx] = np.asarray(self.ndarray[flagidx]) self.ndarray[commentidx] = np.asarray(self.ndarray[commentidx]) logger.info('flag_outlier: Outlier flagging finished.') ## METHOD WHICH SORTS/COMBINES THE FLAGLIST #print("flag_outlier",flaglist) # Combine subsequent time steps with identical flags to one flag range newlist = [] srday = sr/(3600.*24.) # Keep it simple - no cleaning here - just produce new format if len(flaglist)>0: #flaglist = sorted(flaglist, key=lambda x: x[0]) for line in flaglist: newlist.append([num2date(line[0]-numuncert).replace(tzinfo=None),num2date(line[1]-numuncert).replace(tzinfo=None),line[2],line[3],line[4],sensorid,cdate]) else: newlist = [] #newlist = self.flaglistclean(newlist) """ # requires a sorted list if len(flaglist)>0: # Different keys are not regarded for here (until 0.4.6) # 1. Extract all flag for individual keys first for key in keys: templist = [l for l in flaglist if l[2] == key] fllist = sorted(templist, key=lambda x: x[0]) #flaglist = sorted(flaglist, key=lambda x: x[0]) # Startvalue of endtime is firsttime etprev = fllist[0][1] prevline = fllist[0] for line in fllist: st = line[0] et = line[1] diff1 = (et-etprev) # end time diff between current flag and last flag diff2 = (st-etprev) # diff between current start and last end srunc = srday+0.01*srday # sampling rate with uncertainty if diff1 < srunc or diff2 < srunc: # subsequent time step found -> changing et in line prevline[1] = et else: newlist.append([num2date(prevline[0]).replace(tzinfo=None),num2date(prevline[1]).replace(tzinfo=None),prevline[2],prevline[3],prevline[4],sensorid,cdate]) prevline = line etprev = et #save current content of prevline with new et newlist.append([num2date(prevline[0]).replace(tzinfo=None),num2date(prevline[1]).replace(tzinfo=None),prevline[2],prevline[3],prevline[4],sensorid,cdate]) else: newlist = [] """ if returnflaglist: return newlist return self def flag(self, flaglist, removeduplicates=False, debug=False): """ DEFINITION: Apply flaglist to stream. A flaglist typically looks like: [starttime,endtime,key,flagid,flagcomment] starttime and endtime are provided as datetime objects key exists in KEYLIST flagid is a integer number between 0 and 4 comment is a string of less then 100 characters PARAMETERS: - flaglist: (list) as obtained by mpplots plotFlag, database db2flaglist RETURNS: - DataStream: flagged version of stream. EXAMPLE: >>> flaglist = db.db2flaglist(db,sensorid_data) >>> data = data.flag(flaglist) """ self.progress = 0 # get time range of stream: st,et = self._find_t_limits() st = date2num(st) et = date2num(et) lenfl = len(flaglist) logger.info("Flag: Found flaglist of length {}".format(lenfl)) flaglist = [line for line in flaglist if date2num(self._testtime(line[1])) >= st] flaglist = [line for line in flaglist if date2num(self._testtime(line[0])) <= et] # Sort flaglist accoring to startdate (used to speed up flagging procedure) # BETTER: Sort with input date - otherwise later data might not overwrite earlier... flaglist = sorted(flaglist, key=lambda x: x[-1]) #flaglist.sort() ## Cleanup flaglist -- remove all inputs with duplicate start and endtime ## (use only last input) #print("1",flaglist) def flagclean(flaglist): ## Cleanup flaglist -- remove all inputs with duplicate start and endtime ## (use only last input) indicies = [] for line in flaglist: inds = [ind for ind,elem in enumerate(flaglist) if elem[0] == line[0] and elem[1] == line[1] and elem[2] == line[2]] if len(inds) > 0: index = inds[-1] indicies.append(index) uniqueidx = (list(set(indicies))) uniqueidx.sort() #print(uniqueidx) flaglist = [elem for idx, elem in enumerate(flaglist) if idx in uniqueidx] return flaglist if removeduplicates: flaglist = flagclean(flaglist) lenfl = len(flaglist) logger.info("Flag: Relevant flags: {}".format(lenfl)) ## Determinig sampling rate for nearby flagging sr = self.samplingrate() if lenfl > 0: for i in range(lenfl): self.progress = (float(i)/float(lenfl)*100.) if removeduplicates or debug or lenfl > 100: if i == int(lenfl/5.): print("Flag: 20 percent done") if i == int(lenfl/5.*2.): print("Flag: 40 percent done") if i == int(lenfl/5.*3.): print("Flag: 60 percent done") if i == int(lenfl/5.*4.): print("Flag: 80 percent done") fs = date2num(self._testtime(flaglist[i][0])) fe = date2num(self._testtime(flaglist[i][1])) if st < fs and et < fs and st < fe and et < fe: pass elif st > fs and et > fs and st > fe and et > fe: pass else: valid_chars='-_.() abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789' flaglist[i][4] = ''.join([e for e in list(flaglist[i][4]) if e in list(valid_chars)]) keys = flaglist[i][2].split('_') for key in keys: self = self.flag_stream(key,int(flaglist[i][3]),flaglist[i][4],flaglist[i][0],flaglist[i][1],samplingrate = sr,debug=debug) return self def flagliststats(self,flaglist, intensive=False, output='stdout'): """ DESCRIPTION: Provides some information on flag statistics PARAMETER: flaglist (list) flaglist to be investigated APPLICTAION: flaglist = db2flaglist(db,'all') self.flagliststats(flaglist) """ amountlist = [] outputt = '##########################################\n' outputt += ' Flaglist statistics \n' outputt += '##########################################\n' outputt += '\n' outputt += 'A) Total contents: {}\n'.format(len(flaglist)) outputt += '\n' outputt += 'B) Content for each ID:\n' #print (flaglist[0], len(flaglist[0])) if len(flaglist[0]) > 6: ids = [el[5] for el in flaglist] uniquenames = list(set(ids)) for name in uniquenames: amount = len([el[0] for el in flaglist if el[5] == name]) amountlist.append([name,amount]) if intensive: flagli = [el for el in flaglist if el[5] == name] index = [el[3] for el in flagli] uniqueindicies = list(set(index)) reasons = [el[4] for el in flagli] uniquereasons = list(set(reasons)) intensiveinfo = [] for reason in uniquereasons: num = len([el for el in flagli if reason == el[4]]) intensiveinfo.append([reason,num]) intensiveinfo = sorted(intensiveinfo,key=lambda x: x[1]) intensiveinfo = ["{} : {}\n".format(e[0],e[1]) for e in intensiveinfo] amountlist[-1].append(intensiveinfo) amountlist = sorted(amountlist,key=lambda x: x[1]) for el in amountlist: outputt += "Dataset: {} \t Amount: {}\n".format(el[0],el[1]) if intensive: for ele in el[2]: outputt += " {}".format(ele) if output=='stdout': print (outputt) return outputt def flaglistclean(self,flaglist,progress=False): """ DESCRIPTION: identify and remove duplicates from flaglist, only the latest inputs are used start, endtime and key are used to identfy duplicates PARAMETER: flaglist (list) flaglist to be investigated APPLICTAION: stream = DataStream() flaglist = db2flaglist(db,'all') flaglistwithoutduplicates = stream.flaglistclean(flaglist) """ # first step - remove all duplicates testflaglist = ['____'.join([str(date2num(elem[0])),str(date2num(elem[1])),str(elem[2]),str(elem[3]),str(elem[4]),str(elem[5]),str(date2num(elem[6]))]) for elem in flaglist] uniques,indi = np.unique(testflaglist,return_index=True) flaglist = [flaglist[idx] for idx in indi] # second step - remove all inputs without components flaglist = [elem for elem in flaglist if not elem[2] == ''] ## Cleanup flaglist -- remove all inputs with duplicate start and endtime ## (use only last input) indicies = [] for ti, line in enumerate(flaglist): if progress and ti/1000. == np.round(ti/1000.): print ("Current state: {} percent".format(ti/len(flaglist)*100)) if len(line) > 5: inds = [ind for ind,elem in enumerate(flaglist) if elem[0] == line[0] and elem[1] == line[1] and elem[2] == line[2] and elem[5] == line[5]] else: inds = [ind for ind,elem in enumerate(flaglist) if elem[0] == line[0] and elem[1] == line[1] and elem[2] == line[2]] if len(inds) > 1: # get inputs dates for all duplicates and select the latest dates = [[flaglist[dupind][-1], dupind] for dupind in inds] indicies.append(sorted(dates)[-1][1]) else: index = inds[-1] indicies.append(index) uniqueidx = (list(set(indicies))) print ("flaglistclean: found {} unique inputs".format(len(uniqueidx))) uniqueidx.sort() flaglist = [flaglist[idx] for idx in uniqueidx] return flaglist def stream2flaglist(self, userange=True, flagnumber=None, keystoflag=None, sensorid=None, comment=None): """ DESCRIPTION: Constructs a flaglist input dependent on the content of stream PARAMETER: comment (key or string) if key (or comma separted list of keys) are found, then the content of this column is used (first input flagnumber (int) integer number between 0 and 4 userange (bool) if False, each stream line results in a flag, if True the full time range is marked """ ### identify any given gaps and flag time ranges regarding gaps if not comment: print("stream2flag: you need to provide either a key or a text comment. (e.g. 'str1,str2' or 'Flagged'") return [] if not flagnumber: flagnumber = 0 if not keystoflag: print("stream2flag: you need to provide a list of keys to which you apply the flags (e.g. ['x','z']") return [] if not sensorid: print("stream2flag: you need to provide a sensorid") return [] commentarray = np.asarray([]) uselist = False if comment in KEYLIST: pos = KEYLIST.index(comment) if userange: comment = self.ndarray[pos][0] else: uselist = True commentarray = self.ndarray[pos] else: lst,poslst = [],[] commentlist = comment.split(',') try: for commkey in commentlist: if commkey in KEYLIST: #print(commkey) pos = KEYLIST.index(commkey) if userange: lst.append(str(self.ndarray[pos][0])) else: poslst.append(pos) else: # Throw exception x= 1/0 if userange: comment = ' : '.join(lst) else: uselist = True resultarray = [] for pos in poslst: resultarray.append(self.ndarray[pos]) resultarray = np.transpose(np.asarray(resultarray)) commentarray = [''.join(str(lst)) for lst in resultarray] except: #comment remains unchanged pass now = datetime.utcnow() res = [] if userange: st = np.min(self.ndarray[0]) et = np.max(self.ndarray[0]) st = num2date(float(st)).replace(tzinfo=None) et = num2date(float(et)).replace(tzinfo=None) for key in keystoflag: res.append([st,et,key,flagnumber,comment,sensorid,now]) else: for idx,st in enumerate(self.ndarray[0]): for key in keystoflag: st = num2date(float(st)).replace(tzinfo=None) if uselist: res.append([st,st,key,flagnumber,commentarray[idx],sensorid,now]) else: res.append([st,st,key,flagnumber,comment,sensorid,now]) return res def flaglistmod(self, mode='select', flaglist=[], parameter='key', value=None, newvalue=None, starttime=None, endtime=None): """ DEFINITION: Select/Replace/Delete information in flaglist parameters are key, flagnumber, comment, startdate, enddate=None mode delete: if only starttime and endtime are provided then all data inbetween is removed, if parameter and value are provided this data is removed, eventuall only between start and endtime APPLICTAION """ num = 0 # convert start and end to correct format if parameter == 'key': num = 2 elif parameter == 'flagnumber': num = 3 elif parameter == 'comment': num = 4 elif parameter == 'sensorid': num = 5 if mode in ['select','replace'] or (mode=='delete' and value): if starttime: starttime = self._testtime(starttime) flaglist = [elem for elem in flaglist if elem[1] > starttime] if endtime: endtime = self._testtime(endtime) flaglist = [elem for elem in flaglist if elem[0] < endtime] elif mode == 'delete' and not value: print ("Only deleting") flaglist1, flaglist2 = [],[] if starttime: starttime = self._testtime(starttime) flaglist1 = [elem for elem in flaglist if elem[1] < starttime] if endtime: endtime = self._testtime(endtime) flaglist2 = [elem for elem in flaglist if elem[0] > endtime] flaglist1.extend(flaglist2) flaglist = flaglist1 if mode == 'select': if num>0 and value: if num == 4: flaglist = [elem for elem in flaglist if elem[num].find(value) > 0] elif num == 3: flaglist = [elem for elem in flaglist if elem[num] == int(value)] else: flaglist = [elem for elem in flaglist if elem[num] == value] elif mode == 'replace': if num>0 and value: for idx, elem in enumerate(flaglist): if num == 4: if elem[num].find(value) >= 0: flaglist[idx][num] = newvalue elif num == 3: if elem[num] == int(value): flaglist[idx][num] = int(newvalue) else: if elem[num] == value: flaglist[idx][num] = newvalue elif mode == 'delete': if num>0 and value: if num == 4: flaglist = [elem for elem in flaglist if elem[num].find(value) < 0] elif num == 3: flaglist = [elem for elem in flaglist if not elem[num] == int(value)] else: flaglist = [elem for elem in flaglist if not elem[num] == value] return flaglist def flaglistadd(self, flaglist, sensorid, keys, flagnumber, comment, startdate, enddate=None): """ DEFINITION: Add a specific input to a flaglist Flaglist elements look like [st,et,key,flagnumber,comment,sensorid,now] APPLICATION: newflaglist = stream.flaglistadd(oldflaglist,sensorid, keys, flagnumber, comment, startdate, enddate) """ # convert start and end to correct format st = self._testtime(startdate) if enddate: et = self._testtime(enddate) else: et = st now = datetime.utcnow() if keys in ['all','All','ALL']: keys = KEYLIST for key in keys: flagelem = [st,et,key,flagnumber,comment,sensorid,now] exists = [elem for elem in flaglist if elem[:5] == flagelem[:5]] if len(exists) == 0: flaglist.append(flagelem) else: print ("flaglistadd: Flag already exists") return flaglist def flag_stream(self, key, flag, comment, startdate, enddate=None, samplingrate=0., debug=False): """ DEFINITION: Add flags to specific times or time ranges (if enddate is provided). PARAMETERS: Variables: - key: (str) Column to apply flag to, e.g. 'x' - flag: (int) 0 ok, 1 remove, 2 force ok, 3 force remove, 4 merged from other instrument - comment: (str) The reason for flag - startdate: (datetime object) the date of the (first) datapoint to remove Kwargs: - enddate: (datetime object) the enddate of a time range to be flagged - samplingrate: (float) in seconds, needs to be provided for effective nearby search RETURNS: - DataStream: Input stream with flags and comments. EXAMPLE: >>> data = data.flag_stream('x',0,'Lawnmower',flag1,flag1_end) APPLICATION: """ # TODO: # make flag_stream to accept keylists -> much faser for multiple column data sr = samplingrate if not key in KEYLIST: logger.error("flag_stream: %s is not a valid key." % key) return self if not flag in [0,1,2,3,4]: logger.error("flag_stream: %s is not a valid flag." % flag) return self ndtype = False if len(self.ndarray[0]) > 0: ndtype = True elif not len(self) > 0: return DataStream() startdate = self._testtime(startdate) if not enddate: # Set enddate to startdat # Hereby flag nearest might be used later enddate = startdate """ start = date2num(startdate) check_startdate, val = self.findtime(start) if check_startdate == 0: logger.info("flag_stream: No data at given date for flag. Finding nearest data point.") if ndtype: time = self.ndarray[0] else: time = self._get_column('time') #print start, len(time) new_endtime, index = find_nearest(time, start) if new_endtime > start: startdate = num2date(start) enddate = num2date(new_endtime) else: startdate = num2date(new_endtime) enddate = num2date(start) else: enddate = startdate """ else: enddate = self._testtime(enddate) ### ######## IF STARTDATE == ENDDATE ### MODIFYED TO STARTDATE-Samplingrate/3, ENDDATE + Samplingrate/3 ### Taking 1/3 is arbitrary. ### This helps to apply flagging info to any higher resolution record ### which does not contain the exact time stamp. ### You are likely exclude more data then necessary. ### Flag the high resolution data set to avoid that. def rangeExtend(startdate,enddate,samplingrate,divisor=3): if startdate == enddate: startdate = startdate-timedelta(seconds=samplingrate/divisor) enddate = enddate+timedelta(seconds=samplingrate/divisor) start = date2num(startdate) end = date2num(enddate) return start,end else: start = date2num(startdate) end = date2num(enddate) return start,end pos = FLAGKEYLIST.index(key) if debug: print("flag_stream: Flag",startdate, enddate) start = date2num(startdate) end = date2num(enddate) mint = np.min(self.ndarray[0]) maxt = np.max(self.ndarray[0]) if start < mint and end < mint: st = 0 ed = 0 elif start > maxt and end > maxt: st = 0 ed = 0 else: ### Modified to use nearest value to be flagged if flagtimes ### overlap with streams timerange ### find_nearest is probably very slowly... ### Using startidx values to speed up the process at least for later data # Get start and end indicies: if debug: ti1 = datetime.utcnow() st, ls = self.findtime(startdate,mode='argmax') # st is the starttime, ls ? -- modification allow to provide key list!! if debug: ti2 = datetime.utcnow() print ("flag_stream: findtime duration", ti2-ti1) #if debug: # ti1 = datetime.utcnow() # testls = nonzero(self.ndarray[0]==startdate) # ti2 = datetime.utcnow() # print ("Findtime duration -alternative", ti2-ti1) if st == 0: #print("Flag_stream: slowly start",st) if not sr == 0: # Determine sampling rate if not done yet start,end = rangeExtend(startdate,enddate,sr) ls,st = find_nearest(self.ndarray[0],start) sti = st-2 if sti < 0: sti = 0 ed, le = self.findtime(enddate,startidx=sti,mode='argmax') if ed == 0: #print("Flag_stream: slowly end",ed) if not sr == 0: # Determine sampling rate if not done yet start,end = rangeExtend(startdate,enddate,sr) le, ed = find_nearest(self.ndarray[0],end) ### TODO use startundex here as well if ed == len(self.ndarray[0]): ed = ed-1 # Create a defaultflag defaultflag = ['-' for el in FLAGKEYLIST] if debug: ti3 = datetime.utcnow() print ("Full Findtime duration", ti3-ti1) print("flagging", st, ed) if ndtype: array = [[] for el in KEYLIST] flagind = KEYLIST.index('flag') commentind = KEYLIST.index('comment') # Check whether flag and comment are exisiting - if not create empty if not len(self.ndarray[flagind]) > 0: array[flagind] = [''] * len(self.ndarray[0]) else: array[flagind] = list(self.ndarray[flagind]) if not len(self.ndarray[commentind]) > 0: array[commentind] = [''] * len(self.ndarray[0]) else: array[commentind] = list(self.ndarray[commentind]) # Now either modify existing or add new flag if st==0 and ed==0: pass else: t3a = datetime.utcnow() for i in range(st,ed+1): #if self.ndarray[flagind][i] == '' or self.ndarray[flagind][i] == '-': if array[flagind][i] == '' or array[flagind][i] == '-': flagls = defaultflag else: flagls = list(array[flagind][i]) # if existing flaglistlength is shorter, because new columns where added later to ndarray if len(flagls) < pos: flagls.extend(['-' for j in range(pos+1-flagls)]) flagls[pos] = str(flag) array[flagind][i] = ''.join(flagls) array[commentind][i] = comment self.ndarray[flagind] = np.array(array[flagind], dtype=np.object) self.ndarray[commentind] = np.array(array[commentind], dtype=np.object) # up to 0.3.98 the following code was used (~10 times slower) # further significant speed up requires some structural changes: # 1. use keylist here #self.ndarray[flagind] = np.asarray(array[flagind]).astype(object) #self.ndarray[commentind] = np.asarray(array[commentind]).astype(object) else: for elem in self: if elem.time >= start and elem.time <= end: fllist = list(elem.flag) if not len(fllist) > 1: fllist = defaultflag fllist[pos] = str(flag) elem.flag=''.join(fllist) elem.comment = comment if flag == 1 or flag == 3 and debug: if enddate: #print ("flag_stream: Flagged data from %s to %s -> (%s)" % (startdate.isoformat(),enddate.isoformat(),comment)) try: logger.info("flag_stream: Flagged data from %s to %s -> (%s)" % (startdate.isoformat().encode('ascii','ignore'),enddate.isoformat().encode('ascii','ignore'),comment.encode('ascii','ignore'))) except: pass else: try: logger.info("flag_stream: Flagged data at %s -> (%s)" % (startdate.isoformat().encode('ascii','ignore'),comment.encode('ascii','ignore'))) except: pass return self def simplebasevalue2stream(self,basevalue,**kwargs): """ DESCRIPTION: simple baselvalue correction using a simple basevalue list PARAMETERS: basevalue (list): [baseH,baseD,baseZ] keys (list): default = 'x','y','z' APPLICTAION: used by stream.baseline """ mode = kwargs.get('mode') keys = ['<KEY>'] # Changed that - 49 sec before, no less then 2 secs if not len(self.ndarray[0]) > 0: print("simplebasevalue2stream: requires ndarray") return self #1. calculate function value for each data time step array = [[] for key in KEYLIST] array[0] = self.ndarray[0] # get x array for baseline #indx = KEYLIST.index('x') for key in KEYLIST: ind = KEYLIST.index(key) if key in keys: # new #print keys.index(key) ar = self.ndarray[ind].astype(float) if key == 'y': #indx = KEYLIST.index('x') #Hv + Hb; Db + atan2(y,H_corr) Zb + Zv #print type(self.ndarray[ind]), key, self.ndarray[ind] array[ind] = np.arctan2(np.asarray(list(ar)),np.asarray(list(arrayx)))*180./np.pi + basevalue[keys.index(key)] self.header['col-y'] = 'd' self.header['unit-col-y'] = 'deg' else: array[ind] = ar + basevalue[keys.index(key)] if key == 'x': # remember this for correct y determination arrayx = array[ind] else: # new if len(self.ndarray[ind]) > 0: array[ind] = self.ndarray[ind].astype(object) self.header['DataComponents'] = 'HDZ' return DataStream(self,self.header,np.asarray(array)) def func2stream(self,funclist,**kwargs): """ DESCRIPTION: combine data stream and functions obtained by fitting and interpolation. Possible combination modes are 'add' (default), subtract 'sub', divide 'div' and 'multiply'. Furthermore, the function values can replace the original values at the given timesteps of the stream PARAMETERS: funclist (list of functions): required - each function is an output of stream.fit or stream.interpol #function (function): required - output of stream.fit or stream.interpol keys (list): default = '<KEY>' mode (string): one of 'add','sub','div','multiply','values' - default = 'add' APPLICTAION: used by stream.baseline """ keys = kwargs.get('keys') fkeys = kwargs.get('fkeys') mode = kwargs.get('mode') if not keys: keys = ['<KEY>'] if not mode: mode = 'add' if fkeys and not len(fkeys) == len(keys): fkeys=None logger.warning("func2stream: provided fkeys do not match keys") if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist # TODO: cycle through list totalarray = [[] for key in KEYLIST] posstr = KEYLIST.index('str1') testx = [] for function in funct: #print ("Testing", function) if not function: return self # Changed that - 49 sec before, no less then 2 secs if not len(self.ndarray[0]) > 0: print("func2stream: requires ndarray - trying old LineStruct functions") if mode == 'add': return self.func_add(function, keys=keys) elif mode == 'sub': return self.func_subtract(function, keys=keys) else: return self #1. calculate function value for each data time step array = [[] for key in KEYLIST] array[0] = self.ndarray[0] dis_done = False # get x array for baseline #indx = KEYLIST.index('x') #arrayx = self.ndarray[indx].astype(float) functimearray = (self.ndarray[0].astype(float)-function[1])/(function[2]-function[1]) for key in KEYLIST: validkey = False ind = KEYLIST.index(key) if key in keys: # new #print ("DEALING: ", key) keyind = keys.index(key) if fkeys: fkey = fkeys[keyind] else: fkey = key ar = np.asarray(self.ndarray[ind]).astype(float) try: test = function[0]['f'+fkey](functimearray) validkey = True except: pass if mode == 'add' and validkey: print ("here", ar, function[0]['f'+fkey](functimearray)) array[ind] = ar + function[0]['f'+fkey](functimearray) elif mode == 'addbaseline' and validkey: if key == 'y': #indx = KEYLIST.index('x') #Hv + Hb; Db + atan2(y,H_corr) Zb + Zv #print type(self.ndarray[ind]), key, self.ndarray[ind] array[ind] = np.arctan2(np.asarray(list(ar)),np.asarray(list(arrayx)))*180./np.pi + function[0]['f'+fkey](functimearray) self.header['col-y'] = 'd' self.header['unit-col-y'] = 'deg' else: #print("func2stream", function, function[0], function[0]['f'+key],functimearray) array[ind] = ar + function[0]['f'+fkey](functimearray) if len(array[posstr]) == 0: #print ("Assigned values to str1: function {}".format(function[1])) array[posstr] = ['c']*len(ar) if len(testx) > 0 and not dis_done: # identify change from number to nan # add discontinuity marker there #print ("Here", testx) prevel = np.nan for idx, el in enumerate(testx): if not np.isnan(prevel) and np.isnan(el): array[posstr][idx] = 'd' #print ("Modified str1 at {}".format(idx)) break prevel = el dis_done = True if key == 'x': # remember this for correct y determination arrayx = array[ind] testx = function[0]['f'+fkey](functimearray) if key == 'dx': # use this column to test if delta values are already provided testx = function[0]['f'+fkey](functimearray) elif mode in ['sub','subtract'] and validkey: array[ind] = ar - function[0]['f'+fkey](functimearray) elif mode == 'values' and validkey: array[ind] = function[0]['f'+fkey](functimearray) elif mode == 'div' and validkey: array[ind] = ar / function[0]['f'+fkey](functimearray) elif mode == 'multiply' and validkey: array[ind] = ar * function[0]['f'+fkey](functimearray) elif validkey: print("func2stream: mode not recognized") else: # new if len(self.ndarray[ind]) > 0: array[ind] = np.asarray(self.ndarray[ind]).astype(object) for idx, col in enumerate(array): if len(totalarray[idx]) > 0 and not idx == 0: totalcol = totalarray[idx] for j,el in enumerate(col): if idx < len(NUMKEYLIST)+1 and not np.isnan(el) and np.isnan(totalcol[j]): totalarray[idx][j] = array[idx][j] if idx > len(NUMKEYLIST) and not el == 'c' and totalcol[j] == 'c': totalarray[idx][j] = 'd' else: totalarray[idx] = array[idx] return DataStream(self,self.header,np.asarray(totalarray,dtype=object)) def func_add(self,funclist,**kwargs): """ Add a function to the selected values of the data stream -> e.g. get baseline Optional: keys (default = 'x','y','z') """ keys = kwargs.get('keys') mode = kwargs.get('mode') if not keys: keys = ['<KEY>'] if not mode: mode = 'add' if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist function = funct[0] # Direct call of old version only accepts single function # Changed that - 49 sec before, no less then 2 secs if len(self.ndarray[0]) > 0: #1. calculate function value for each data time step array = [[] for key in KEYLIST] array[0] = self.ndarray[0] functimearray = (self.ndarray[0].astype(float)-function[1])/(function[2]-function[1]) #print functimearray for key in keys: ind = KEYLIST.index(key) if mode == 'add': array[ind] = self.ndarray[ind] + function[0]['f'+key](functimearray) elif mode == 'sub': array[ind] = self.ndarray[ind] - function[0]['f'+key](functimearray) elif mode == 'values': array[ind] = function[0]['f'+key](functimearray) elif mode == 'div': array[ind] = self.ndarray[ind] / function[0]['f'+key](functimearray) elif mode == 'multiply': array[ind] = self.ndarray[ind] * function[0]['f'+key](functimearray) else: print("func2stream: mode not recognized") return DataStream(self,self.header,np.asarray(array,dtype=object)) for elem in self: # check whether time step is in function range if function[1] <= elem.time <= function[2]: functime = (elem.time-function[1])/(function[2]-function[1]) for key in keys: if not key in KEYLIST[1:16]: raise ValueError("Column key not valid") fkey = 'f'+key exec('keyval = elem.'+key) if fkey in function[0] and not isnan(keyval): try: newval = keyval + function[0][fkey](functime) except: newval = float('nan') exec('elem.'+key+' = newval') else: pass else: pass return self def func_subtract(self,funclist,**kwargs): """ Subtract a function from the selected values of the data stream -> e.g. obtain Residuals Optional: keys (default = '<KEY>') :type order int :param order : 0 -> stream - function; 1 -> function - stream """ keys = kwargs.get('keys') order = kwargs.get('order') st = DataStream() st = self.copy() if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist function = funct[0] # Direct call of old version only accepts single function """ for el in self: li = LineStruct() li.time = el.time li.x = el.x li.y = el.y li.z = el.z st.add(li) """ if not order: order = 0 if not keys: keys = ['<KEY>'] for elem in st: # check whether time step is in function range if function[1] <= elem.time <= function[2]: functime = (elem.time-function[1])/(function[2]-function[1]) for key in keys: if not key in KEYLIST[1:16]: raise ValueError("Column key not valid") fkey = 'f'+key exec('keyval = elem.'+key) if fkey in function[0] and not isnan(keyval): try: if order == 0: newval = keyval - function[0][fkey](functime) else: newval = function[0][fkey](functime) - keyval except: newval = float('nan') exec('elem.'+key+' = newval') else: pass else: pass return st def func2header(self,funclist,debug=False): """ DESCRIPTION Add a list of functions into the data header """ if isinstance(funclist[0], dict): funct = [funclist] else: funct = funclist self.header['DataFunctionObject'] = funct return self def GetKeyName(self,key): """ DESCRIPTION get the content name of a specific key will scan header information until successful: (1) col-"key" names (2) ColumnContent header info (3) SensorElements header info if no Name for the key is found, then the key itself is returned APPLICATION: element = datastream.GetKeyName('var1') """ if not key in KEYLIST: print ("key not in KEYLIST - aborting") return '' element = '' # One try: element = self.header.get("col-{}".format(key)) if not element == '': return element except: pass # Two try: element = self.header.get('ColumnContents','').split(',')[KEYLIST.index(key)] if not element == '': return element except: pass # Three try: idx = self.header.get('SensorKeys','').split(',').index(key) element = self.header.get('SensorElements','').split(',')[idx] if not element == '': return element except: pass return key def GetKeyUnit(self,key): """ DESCRIPTION get the content name of a specific key will scan header information until successful: (1) unit-col-"key" names (2) ColumnUnit header info if no unit for the key is found, then an empty string is returned APPLICATION: unit = datastream.GetKeyUnit('var1') """ if not key in KEYLIST: print ("key not in KEYLIST - aborting") return '' unit = '' # One try: unit = self.header.get("unit-col-{}".format(key)) if not unit == '': return unit except: pass # Two try: unit = self.header.get('ColumnUnits','').split(',')[KEYLIST.index(key)] if not unit == '': return unit except: pass return unit def get_gaps(self, **kwargs): """ DEFINITION: Takes the dominant sample frequency and fills nan into non-existing time steps: This function provides the basis for discontinuous plots and gap analysis and proper filtering. PARAMETERS: Variables: --- Kwargs: - accuracy: (float) time relative to a day - default 1 sec - gapvariable: (string) - refering to stream column - default='var5' - This column is overwritten with 0 (data) and 1 (no data). - key: (string) - refering to a data column e.g. key='x'. If given then all NaN values with existing time steps are also marked by '1' in the gapvariable line for this key RETURNS: - stream: (Datastream) EXAMPLE: >>> stream_with_gaps_filled = stream_with_aps.get_gaps(['f']) APPLICATION: used by nfilter() for correct filtering CHANGES: Last updated and tested with nfilter function by leon 2014-07-22 """ accuracy = kwargs.get('accuracy') key = kwargs.get('key') gapvariable = kwargs.get('gapvariable') debug = kwargs.get('debug') if key in KEYLIST: gapvariable = True if not gapvariable: gapvariable = 'var5' if not self.length()[0] > 1: print ("get_gaps: Stream does not contain data - aborting") return self # Better use get_sampling period as samplingrate is rounded #spr = self.get_sampling_period() #newsps = newsp*3600.0*24.0 newsps = self.samplingrate() newsp = newsps/3600.0/24.0 if not accuracy: accuracy = 0.9/(3600.0*24.0) # one second relative to day accuracy = 0.05*newsp # 5 percent of samplingrate if newsps < 0.9 and not accuracy: accuracy = (newsps-(newsps*0.1))/(3600.0*24.0) logger.info('--- Starting filling gaps with NANs at %s ' % (str(datetime.now()))) stream = self.copy() prevtime = 0 ndtype = False if len(stream.ndarray[0]) > 0: maxtime = stream.ndarray[0][-1] mintime = stream.ndarray[0][0] length = len(stream.ndarray[0]) sourcetime = stream.ndarray[0] ndtype = True else: mintime = self[0].time maxtime = self[-1].time if debug: print("Time range:", mintime, maxtime) print("Length, samp_per and accuracy:", self.length()[0], newsps, accuracy) shift = 0 if ndtype: # Get time diff and expected count timediff = maxtime - mintime expN = int(round(timediff/newsp))+1 if debug: print("Expected length vs actual length:", expN, length) if expN == len(sourcetime): # Found the expected amount of time steps - no gaps logger.info("get_gaps: No gaps found - Returning") return stream else: # correct way (will be used by default) - does not use any accuracy value #projtime = np.linspace(mintime, maxtime, num=expN, endpoint=True) #print("proj:", projtime, len(projtime)) # find values or projtime, which are not in sourcetime #dif = setdiff1d(projtime,sourcetime, assume_unique=True) #print (dif, len(dif)) #print (len(dif),len(sourcetime),len(projtime)) diff = sourcetime[1:] - sourcetime[:-1] num_fills = np.round(diff / newsp) - 1 getdiffids = np.where(diff > newsp+accuracy)[0] logger.info("get_gaps: Found gaps - Filling nans to them") if debug: print ("Here", diff, num_fills, newsp, getdiffids) missingt = [] # Get critical differences and number of missing steps for i in getdiffids: #print (i, sourcetime[i-1], sourcetime[i], sourcetime[i+1]) nf = num_fills[i] # if nf is larger than zero then get append the missing time steps to missingt list if nf > 0: for n in range(int(nf)): # add n+1 * samplingrate for each missing value missingt.append(sourcetime[i]+(n+1)*newsp) print ("Filling {} gaps".format(len(missingt))) # Cycle through stream and append nans to each column for missing time steps nans = [np.nan] * len(missingt) empts = [''] * len(missingt) gaps = [0.0] * len(missingt) for idx,elem in enumerate(stream.ndarray): if idx == 0: # append missingt list to array element elem = list(elem) lenelem = len(elem) elem.extend(missingt) stream.ndarray[idx] = np.asarray(elem).astype(object) elif len(elem) > 0: # append nans list to array element elem = list(elem) if KEYLIST[idx] in NUMKEYLIST or KEYLIST[idx] == 'sectime': elem.extend(nans) else: elem.extend(empts) stream.ndarray[idx] = np.asarray(elem).astype(object) elif KEYLIST[idx] == gapvariable: # append nans list to array element elem = [1.0]*lenelem elem.extend(gaps) stream.ndarray[idx] = np.asarray(elem).astype(object) return stream.sorting() else: stream = DataStream() for elem in self: if abs((prevtime+newsp) - elem.time) > accuracy and not prevtime == 0: currtime = num2date(prevtime)+timedelta(seconds=newsps) while currtime <= num2date(elem.time): newline = LineStruct() exec('newline.'+gapvariable+' = 1.0') newline.time = date2num(currtime) stream.add(newline) currtime += timedelta(seconds=newsps) else: exec('elem.'+gapvariable+' = 0.0') if key in KEYLIST: if isnan(eval('elem.'+key)): exec('elem.'+gapvariable+' = 1.0') stream.add(elem) prevtime = elem.time logger.info('--- Filling gaps finished at %s ' % (str(datetime.now()))) if debugmode: print("Ending:", stream[0].time, stream[-1].time) return stream.sorting() def get_rotationangle(self, xcompensation=0,keys=['x','y','z'],**kwargs): """ DESCRIPTION: "Estimating" the rotation angle towards a magnetic coordinate system assuming z to be vertical down. Please note: You need to provide a complete horizontal vector including either the x compensation field or if not available an annual estimate of the vector. This method can be used to determine reorientation characteristics in order to accurately apply HDZ optimzed basevalue calculations. RETURNS: rotangle (float) The estimated rotation angle in degree """ annualmeans = kwargs.get('annualmeans') #1. get vector from data # x = y*tan(dec) if not keys: keys = ['x','y','z'] if not len(keys) == 3: logger.error('get_rotation: provided keylist need to have three components.') return stream #self logger.info('get_rotation: Determining rotation angle towards a magnetic coordinate system assuming z to be vertical down.') ind1 = KEYLIST.index(keys[0]) ind2 = KEYLIST.index(keys[1]) ind3 = KEYLIST.index(keys[2]) if len(self.ndarray[0]) > 0: if len(self.ndarray[ind1]) > 0 and len(self.ndarray[ind2]) > 0 and len(self.ndarray[ind3]) > 0: # get mean disregarding nans xl = [el for el in self.ndarray[ind1] if not np.isnan(el)] yl = [el for el in self.ndarray[ind2] if not np.isnan(el)] if annualmeans: meanx = annualmeans[0] else: meanx = np.mean(xl)+xcompensation meany = np.mean(yl) # get rotation angle so that meany == 0 #print ("Rotation",meanx, meany) #zeroy = meanx*np.sin(ra)+meany*np.cos(ra) #-meany/meanx = np.tan(ra) rotangle = np.arctan2(-meany,meanx) * (180.) / np.pi logger.info('getrotation: Rotation angle determined: {} deg'.format(rotangle)) return rotangle def get_sampling_period(self): """ returns the dominant sampling frequency in unit ! days ! for time savings, this function only tests the first 1000 elements """ # For proper applictation - duplicates are removed self = self.removeduplicates() if len(self.ndarray[0]) > 0: timecol = self.ndarray[0].astype(float) else: timecol= self._get_column('time') # New way: if len(timecol) > 1: diffs = np.asarray(timecol[1:]-timecol[:-1]) diffs = diffs[~np.isnan(diffs)] me = np.median(diffs) st = np.std(diffs) diffs = [el for el in diffs if el <= me+2*st and el >= me-2*st] return np.median(diffs) else: return 0.0 """ timedifflist = [[0,0]] timediff = 0 if len(timecol) <= 1000: testrange = len(timecol) else: testrange = 1000 print "Get_sampling_rate", np.asarray(timecol[1:]-timecol[:-1]) print "Get_sampling_rate", np.median(np.asarray(timecol[1:]-timecol[:-1]))*3600.*24. for idx, val in enumerate(timecol[:testrange]): if idx > 1 and not isnan(val): timediff = np.round((val-timeprev),7) found = 0 for tel in timedifflist: if tel[1] == timediff: tel[0] = tel[0]+1 found = 1 if found == 0: timedifflist.append([1,timediff]) timeprev = val #print self if not len(timedifflist) == 0: timedifflist.sort(key=lambda x: int(x[0])) # get the most often found timediff domtd = timedifflist[-1][1] else: logger.error("get_sampling_period: unkown problem - returning 0") domtd = 0 if not domtd == 0: return domtd else: try: return timedifflist[-2][1] except: logger.error("get_sampling_period: could not identify dominant sampling rate") return 0 """ def samplingrate(self, **kwargs): """ DEFINITION: returns a rounded value of the sampling rate in seconds and updates the header information """ # XXX include that in the stream reading process.... digits = kwargs.get('digits') notrounded = kwargs.get('notrounded') if not digits: digits = 1 if not self.length()[0] > 1: return 0.0 sr = self.get_sampling_period()*24*3600 unit = ' sec' val = sr # Create a suitable rounding function: # Use simple rounds if sr > 60 secs # Check accuracy for sr < 10 secs (three digits: # if abs(sr-round(sr,0)) * 1000 e.g. (1.002 -> 2, 0.998 -> 2) if sr < 0.05: for i in range(0,5): multi = 10**i srfloor = np.floor(sr*multi) if srfloor >= 1: # found multiplicator # now determine significance taking into account three more digits digs = np.floor(np.abs(sr*multi-srfloor)*1000) if digs<5: # round to zero val = np.round(srfloor/multi,1) else: val = np.round(sr,5) break elif sr < 59: for i in range(0,3): multi = 10**i srfloor = np.floor(sr*multi) if srfloor >= 1: # found multiplicator # now determine significance taking into account three more digits digs = np.floor(np.abs(sr*multi-srfloor)*1000) if digs<5: # round to zero val = np.round(srfloor/multi,1) else: val = np.round(sr,3) break else: val = np.round(sr,1) """ if np.round(sr*10.,0) == 0: val = np.round(sr,2) #unit = ' Hz' elif np.round(sr,0) == 0: if 0.09 < sr < 0.11: val = np.round(sr,digits) else: val = np.round(sr,2) #unit = ' Hz' else: val = np.round(sr,0) """ if notrounded: val = sr self.header['DataSamplingRate'] = str(val) + unit return val def integrate(self, **kwargs): """ DESCRIPTION: Method to integrate selected columns respect to time. -- Using scipy.integrate.cumtrapz VARIABLES: optional: keys: (list - default ['x','y','z','f'] provide limited key-list """ logger.info('--- Integrating started at %s ' % str(datetime.now())) keys = kwargs.get('keys') if not keys: keys = ['x','y','z'] array = [[] for key in KEYLIST] ndtype = False if len(self.ndarray[0])>0: ndtype = True t = self.ndarray[0] array[0] = t else: t = self._get_column('time') for key in keys: if ndtype: ind = KEYLIST.index(key) val = self.ndarray[ind] array[ind] = np.asarray(val) else: val = self._get_column(key) dval = sp.integrate.cumtrapz(np.asarray(val),t) dval = np.insert(dval, 0, 0) # Prepend 0 to maintain original length if ndtype: ind = KEYLIST.index('d'+key) array[ind] = np.asarray(dval) else: self._put_column(dval, 'd'+key) self.ndarray = np.asarray(array) logger.info('--- integration finished at %s ' % str(datetime.now())) return self def interpol(self, keys, **kwargs): """ DEFINITION: Uses Numpy interpolate.interp1d to interpolate streams. PARAMETERS: Variables: - keys: (list) List of keys to interpolate. Kwargs: - kind: (str) type of interpolation. Options: linear = linear - Default slinear = spline (first order) quadratic = spline (second order) cubic = spline (third order) nearest = ? zero = ? (TODO: add these?) - timerange: (timedelta object) default=timedelta(hours=1). - fitdegree: (float) default=4. - knotstep: (float < 0.5) determines the amount of knots: amount = 1/knotstep ---> VERY smooth 0.1 | NOT VERY SMOOTH 0.001 RETURNS: - func: (list) Contains the following: list[0]: (dict) {'f+key': interpolate function} list[1]: (float) date2num value of minimum timestamp list[2]: (float) date2num value of maximum timestamp EXAMPLE: >>> int_data = pos_data.interpol(['f']) APPLICATION: """ kind = kwargs.get('kind') if not kind: kind = 'linear' if kind not in ['linear','slinear','quadratic','cubic','nearest','zero']: logger.warning("interpol: Interpolation kind %s not valid. Using linear interpolation instead." % kind) kind = 'linear' ndtype = False if len(self.ndarray[0]) > 0: t = self.ndarray[0] ndtype = True else: t = self._get_column('time') nt,sv,ev = self._normalize(t) sp = self.get_sampling_period() functionkeylist = {} logger.info("interpol: Interpolating stream with %s interpolation." % kind) for key in keys: if not key in NUMKEYLIST: logger.error("interpol: Column key not valid!") if ndtype: ind = KEYLIST.index(key) val = self.ndarray[ind].astype(float) else: val = self._get_column(key) # interplolate NaN values nans, xxx= nan_helper(val) try: # Try to interpolate nan values val[nans]= np.interp(xxx(nans), xxx(~nans), val[~nans]) except: #val[nans]=int(nan) pass if len(val)>1: exec('f'+key+' = interpolate.interp1d(nt, val, kind)') exec('functionkeylist["f'+key+'"] = f'+key) else: logger.warning("interpol: interpolation of zero length data set - wont work.") pass logger.info("interpol: Interpolation complete.") func = [functionkeylist, sv, ev] return func def interpolate_nans(self, keys): """" DEFINITION: Provides a simple linear nan interpolator that returns the interpolated data in the stream. Uses method that is already present elsewhere, e.g. in filter, for easy and quick access. PARAMETERS: - keys: List of keys to interpolate. RETURNS: - stream: Original stream with nans replaced by linear interpolation. """ for key in keys: if key not in NUMKEYLIST: logger.error("interpolate_nans: {} is an invalid key! Cannot interpolate.".format(key)) y = self._get_column(key) nans, x = nan_helper(y) y[nans] = np.interp(x(nans), x(~nans), y[~nans]) self._put_column(y, key) logger.info("interpolate_nans: Replaced nans in {} with linearly interpolated values.".format(key)) return self def k_extend(self, **kwargs): """ DESCRIPTION: Extending the k_scale from 9 to 28 values as used for the GFZ kp value """ k9_level = kwargs.get('k9_level') if not k9_level: if 'StationK9' in self.header: # 1. Check header info k9_level = self.header['StationK9'] else: # 2. Set Potsdam default k9_level = 500 fortscale = [0,7.5,15,30,60,105,180,300,495,750] k_scale = [float(k9_level)*elem/750.0 for elem in fortscale] newlst = [] klst = [0.,0.33,0.66,1.,1.33,1.66,2.,2.33,2.66,3.,3.33,3.66,4.,4.33,4.66,5.,5.33,5.66,6.,6.33,6.66,7.,7.33,7.66,8.,8.33,8.66,9.] for idx,elem in enumerate(k_scale): if idx > 0: diff = elem - k_scale[idx-1] newlst.append(elem-2*diff/3) newlst.append(elem-diff/3) newlst.append(elem) indvar1 = KEYLIST.index('var1') indvar2 = KEYLIST.index('var2') ar = [] for elem in self.ndarray[indvar2]: for count,val in enumerate(newlst): if elem > val: k = klst[count] ar.append(k) self.ndarray[indvar1] = np.asarray(ar) return self def k_fmi(self, **kwargs): """ DESCRIPTION: Calculating k values following the fmi approach. The method uses three major steps: Firstly, the record is eventually filtered to minute data, outliers are removed (using default options) and gaps are interpolated. Ideally, these steps have been contucted before, which allows for complete control of these steps. Secondly, the last 27 hours are investigated. Starting from the last record, the last three hour segment is taken and the fmi approach is applied. Finally, the provided stream is analyzed from the beginning. Definite values are thus produced for the previous day after 3:00 am (depending on n - see below). The FMI method: The provided data stream is checked and converted to xyz data. Investigated are the horizontal components. In a first run k values are calculated by simply determining the max/min difference of the minute variation data within the three hour segements. This is done for both horizontal components and the maximum difference is selected. Using the transformation table related to the Niemegk scale the k values are calculated. Based on these k values, a first estimate of the quiet daily variation (Sr) is obtained. Hourly means with extended time ranges (30min + m + n) are obtained for each x.5 hour. m refers to 120 minutes (0-3a.m., 21-24p.m.), 60 minutes (3-6, 18-21) or 0 minutes. n is determined by k**3.3. xyz within the code always refers to the coordinate system of the sensor and not to any geomagnetic reference. By default it is assumed that the provided stream comes from a hdz oriented instrument. For xyz (or any other) orientation use the option checky=True to investigate both horizontal components. If the stream contains absolute data, the option hcomp = True transforms the stream to hdz. The following steps are performed: 1. Asserts: Signal covers at least 24 hours, sampling rate minute or second 2. Produce filtered minute signal, check for gaps, eventually interpolate (done by filter/sm algorythm) - needs some improvements 3. from the last value contained get 3 hour segments and calculate max, min and max-min kwargs support the following keywords: - k9_level (float) the value for which k9 is defined, all other values a linearly approximated - magnetic latitude (float) another way to define the k scale - timerange (timedelta obsject) default=timedelta(hours=1) - fitdegree (float) default=5 - knotstep (float < 0.5) determines the amount of knots: amount = 1/knotstep ---> VERY smooth 0.1 | NOT VERY SMOOTH 0.001 - flag PARAMETER: k9_level (int) define the Observatories K9 Level. If not provided then firstly the header information is scanned for a 'StationK9' input. If not successful a K9 of 500 nT is assumend. """ plot = kwargs.get('plot') debug = kwargs.get('debug') hcomp = kwargs.get('hcomp') fitdegree = kwargs.get('fitdegree') fitfunc=kwargs.get('fitfunc') magnetic_latitude = kwargs.get('magnetic_latitude') k9_level = kwargs.get('k9_level') checky = kwargs.get('checky') # used for xyz data if True then the y component is checked as well if not fitfunc: fitfunc = 'harmonic' if not fitdegree: fitdegree = 5 if not k9_level: if 'StationK9' in self.header: # 1. Check header info k9_level = self.header['StationK9'] else: # 2. Set Potsdam default k9_level = 500 # Some basics: startinghours = [0,3,6,9,12,15,18,21] mlist = [120,60,0,0,0,0,60,120] #ngkscale = [0,5,10,20,40,70,120,200,330,500] fortscale = [0,7.5,15,30,60,105,180,300,495,750] k_scale = [float(k9_level)*elem/750.0 for elem in fortscale] # calculate local scale from magnetic latitude (inclination): # important: how to do that - what is the latitudinal relationship, how to transfer the scale, # it is frequently mentioned to be quasi-log but it is not a simple Log scale # func can be fitted reasonably well by # func[a_] := Exp[0.8308663199145958 + 0.7894060396483681 k - 0.021250627459823503 k^2] kstream = DataStream() logger.info('--- Starting k value calculation: %s ' % (str(datetime.now()))) # Non destructive - using a coyp of the supplied stream stream = self.copy() # ############################################ # ## Step 1 ############## # ## ------------------------ ############## # ## preparing data: ############## # ## - check sampling/length ############## # ## - check type (xyz etc) ############## # ## - check removing outliers ############## # ## - eventually filter ############## # ## - interpolate/fill gaps ############## # ############################################ # removing outliers if debug: print("Removing outliers") stream = stream.flag_outlier(keys=['x','y','z'],threshold=6.) # Weak conditions stream = stream.remove_flagged() sr = stream.samplingrate() if debug: print("Sampling rate", sr) if sr > 65: print("Algorythm requires minute or higher resolution - aborting") return DataStream() if sr <= 0.9: print("Data appears to be below 1 second resolution - filtering to seconds first") stream = stream.nfilter(filter_width=timedelta(seconds=1)) sr = stream.samplingrate() if 0.9 < sr < 55: print("Data appears to be below 1 minute resolution - filtering to minutes") stream = stream.nfilter(filter_width=timedelta(minutes=1)) else: pass # get_gaps - put nans to missing data # then replace nans with interpolated values #nans, x= nan_helper(v) # v[nans]= interp(x(nans), x(~nans), v[~nans]) ndtype = True if len(stream.ndarray[0]) > 0: ndtype = True timediff = np.max(stream.ndarray[0]) - np.min(stream.ndarray[0]) indtyp = KEYLIST.index('typ') try: gettyp = stream.ndarray[indtyp][0] except: gettyp = 'xyzf' print("ndtype - Timeseries ending at:", num2date(np.max(stream.ndarray[0]))) else: timediff = stream[-1].time - stream[0].time gettyp = stream[0].typ print("LineStruct - Timeseries ending at:", num2date(stream[-1].time)) print("Coverage in days:", timediff) if timediff < 1.1: # 1 corresponds to 24 hours print("not enough time covered - aborting") return if debug: print("Typ:", gettyp) # Transform the coordinate system to XYZ, asuming a hdz orientation. fmistream = stream if gettyp == 'idff': fmistream = stream._convertstream('idf2xyz',keep_header=True) elif gettyp == 'hdzf': fmistream = stream._convertstream('hdz2xyz',keep_header=True) elif not gettyp == 'xyzf': print("Unkown type of data - please provide xyzf, idff, hdzf -aborting") return # By default use H for determination if debug: print("converting data to hdz - only analyze h") print("This is applicable in case of baselinecorrected data") # TODO Important currently we are only using x (or x and y) if hcomp: print("Please note: H comp requires that columns xyz contain baseline corrected values") fmistream = fmistream._convertstream('xyz2hdz',keep_header=True) elif 'DataAbsFunctionObject' in fmistream.header: print("Found Baseline function") pass # to a bc correction and checky = True else: # If variation data use maximum from x and y checky = True # ############################################ # ## Step 2 ############## # ## ------------------------ ############## # ## some functions ############## # ############################################ def klist2stream(klist, kvalstream=DataStream() ,ndtype=True): """ Internal method to convert a k value list to a stream """ #emptystream = DataStream() if len(kvalstream.ndarray[0]) > 0: kexists = True #ti = list(li.ndarray[0]) #print "Previous k", li.ndarray elif len(kvalstream) > 0: kexists = True #li = [elem for elem in kvalstream] #ti = [elem.time for elem in kvalstream] else: kexists = False array = [[] for key in KEYLIST] #li = DataStream() indvar1 = KEYLIST.index('var1') indvar2 = KEYLIST.index('var2') indvar3 = KEYLIST.index('var3') if ndtype: #array = [[] for key in KEYLIST] for kline in klist: time = kline[0] if kexists: try: ind = list(kvalstream.ndarray[0]).index(time) #print "Found time at index", ind #if kvalstream.ndarray[indvar3][ind] < quality lower kvalstream = kvalstream._delete(ind) except: pass kvalstream.ndarray[0] = np.append(kvalstream.ndarray[0],kline[0]) kvalstream.ndarray[indvar1] = np.append(kvalstream.ndarray[indvar1],kline[1]) kvalstream.ndarray[indvar2] = np.append(kvalstream.ndarray[indvar2],kline[2]) kvalstream.ndarray[indvar3] = np.append(kvalstream.ndarray[indvar3],kline[3]) else: # put data to kvalstream array[0].append(kline[0]) array[indvar1].append(kline[1]) array[indvar2].append(kline[2]) array[indvar3].append(kline[3]) # Quality parameter - containg time coverage # High quality replaces low quality if not kexists: array[0] = np.asarray(array[0]) array[indvar1] = np.asarray(array[indvar1]) array[indvar2] = np.asarray(array[indvar2]) kvalstream.ndarray = np.asarray(array) return kvalstream def maxmink(datastream, cdlist, index, k_scale, ndtype=True, **kwargs): # function returns 3 hour k values for a 24 hour minute time series # The following function is used several times on different !!!!! 24h !!!!!!! timeseries # (with and without removal of daily-quiet signals) checky = kwargs.get('checky') xmaxval = 0 xminval = 0 ymaxval = 0 yminval = 0 deltaday = 0 klist = [] for j in range(0,8): if debug: print("Loop Test", j, index, num2date(cdlist[index])-timedelta(days=deltaday)) #t7 = datetime.utcnow() #threehours = datastream.extract("time", date2num(num2date(cdlist[index])-timedelta(days=deltaday)), "<") et = date2num(num2date(cdlist[index])-timedelta(days=deltaday)) index = index - 1 if index < 0: index = 7 deltaday += 1 if debug: print("Start", num2date(cdlist[index])-timedelta(days=deltaday)) #threehours = threehours.extract("time", date2num(num2date(cdlist[index])-timedelta(days=deltaday)), ">=") st = date2num(num2date(cdlist[index])-timedelta(days=deltaday)) ar = datastream._select_timerange(starttime=st, endtime=et) threehours = DataStream([LineStruct()],{},ar) #print("ET",st,et) #t8 = datetime.utcnow() #print("Extracting time needed:", t8-t7) if ndtype: len3hours = len(threehours.ndarray[0]) else: len3hours = len(threehours) if debug: print("Length of three hour segment", len3hours) if len3hours > 0: if ndtype: indx = KEYLIST.index('x') indy = KEYLIST.index('y') colx = threehours.ndarray[indx] else: colx = threehours._get_column('x') colx = [elem for elem in colx if not isnan(elem)] if len(colx) > 0: xmaxval = max(colx) xminval = min(colx) else: ymaxval = 0.0 yminval = 0.0 if checky: if ndtype: coly = threehours.ndarray[indy] else: coly = threehours._get_column('y') coly = [elem for elem in coly if not isnan(elem)] ymaxval = max(coly) yminval = min(coly) else: ymaxval = 0.0 yminval = 0.0 maxmindiff = max([xmaxval-xminval, ymaxval-yminval]) k = np.nan for count,val in enumerate(k_scale): if maxmindiff > val: k = count if np.isnan(k): maxmindiff = np.nan if debug: print("Extrema", k, maxmindiff, xmaxval, xminval, ymaxval, yminval) # create a k-value list else: k = np.nan maxmindiff = np.nan ti = date2num(num2date(cdlist[index])-timedelta(days=deltaday)+timedelta(minutes=90)) klist.append([ti,k,maxmindiff,1]) return klist def fmimeans(datastream, laststep, kvalstream, ndtype=True): # function returns 3 hour k values for a 24 hour minute time series deltaday = 0 hmlist = [] meanstream = DataStream() lasthour = num2date(laststep).replace(minute=0, second=0, microsecond=0) for j in range(0,24): #if debug: # print "Loop Test", j # last hour index = lasthour.hour index = index - 1 if index < 0: index = 23 #if debug: #print index meanat = lasthour - timedelta(minutes=30) #get m (using index) #if debug: #print int(np.floor(index/3.)) m = mlist[int(np.floor(index/3.))] #if debug: #print "m:", m #get n # test: find nearest kval from kvalstream idx = (np.abs(kvalstream.ndarray[0].astype(float)-date2num(meanat))).argmin() kval = kvalstream.ndarray[KEYLIST.index('var1')][idx] if not np.isnan(kval): n = kval**3.3 else: n = 0 # extract meanat +/- (30+m+n) valrange = datastream.extract("time", date2num(meanat+timedelta(minutes=30)+timedelta(minutes=m)+timedelta(minutes=n)), "<") valrange = valrange.extract("time", date2num(meanat-timedelta(minutes=30)-timedelta(minutes=m)-timedelta(minutes=n)), ">=") #if debug: #print "Length of Sequence", len(valrange), num2date(valrange[0].time), num2date(valrange[-1].time) if ndtype: firsttime = np.min(datastream.ndarray[0]) else: firsttime = datastream[0].time if not firsttime < date2num(meanat-timedelta(minutes=30)-timedelta(minutes=m)-timedelta(minutes=n)): print("##############################################") print(" careful - datastream not long enough for correct k determination") print("##############################################") print("Hourly means not correctly determinable for day", meanat) print("as the extended time range is not reached") print("----------------------------------------------") kvalstream.ndarray[KEYLIST.index('var3')][idx] = 0.5 #return meanstream # Now get the means meanx = valrange.mean('x') meany = valrange.mean('y') meanz = valrange.mean('z') hmlist.append([date2num(meanat),meanx,meany,meanz]) # Describe why we are duplicating values at the end and the beginning!! # Was that necessary for the polyfit?? if j == 0: hmlist.append([date2num(meanat+timedelta(minutes=30)+timedelta(minutes=m)+timedelta(minutes=n)),meanx,meany,meanz]) if j == 23: hmlist.append([date2num(meanat-timedelta(minutes=30)-timedelta(minutes=m)-timedelta(minutes=n)),meanx,meany,meanz]) lasthour = lasthour - timedelta(hours=1) if ndtype: array = [[] for key in KEYLIST] indx = KEYLIST.index('x') indy = KEYLIST.index('y') indz = KEYLIST.index('z') array[0] = np.asarray([elem[0] for elem in hmlist]) array[indx] = np.asarray([elem[1] for elem in hmlist]) array[indy] = np.asarray([elem[2] for elem in hmlist]) array[indz] = np.asarray([elem[3] for elem in hmlist]) meanstream.ndarray = np.asarray(array) else: for elem in sorted(hmlist): line = LineStruct() line.time = elem[0] line.x = elem[1] line.y = elem[2] line.z = elem[3] meanstream.add(line) #print klist return meanstream.sorting() # ############################################ # ## Step 2 ############## # ## ------------------------ ############## # ## analyze last 24 h: ############## # ## - get last day ############## # ## - get last 3hour segment ############## # ## - run backwards ############## # ## - calc fmi: ############## # ## - 1. get max/min deviation ########### # ## - 2. use this k to get sr ########### # ## - 3. calc k with sr reduced ########## # ## - 4. recalc sr ########## # ## - 5. final k ########## # ############################################ if ndtype: currentdate = num2date(np.max(fmistream.ndarray[0])).replace(tzinfo=None) lastdate = currentdate d = currentdate.date() currentdate = datetime.combine(d, datetime.min.time()) else: currentdate = num2date(fmistream[-1].time).replace(tzinfo=None) lastdate = currentdate d = currentdate.date() currentdate = datetime.combine(d, datetime.min.time()) print("Last effective time series ending at day", currentdate) print(" -----------------------------------------------------") print(" ------------- Starting backward analysis ------------") print(" --------------- beginning at last time --------------") # selecting reduced time range!!! t1 = datetime.utcnow() array = fmistream._select_timerange(starttime=currentdate-timedelta(days=2)) fmitstream = DataStream([LineStruct()],fmistream.header,array) cdlist = [date2num(currentdate.replace(hour=elem)) for elem in startinghours] #print("Daily list", cdlist, currentdate) t2 = datetime.utcnow() print("Step0 needed:", t2-t1) #ta, i = find_nearest(np.asarray(cdlist), date2num(lastdate-timedelta(minutes=90))) ta, i = find_nearest(np.asarray(cdlist), date2num(lastdate)) if i < 7: i=i+1 else: i=0 cdlist = [el+1 for el in cdlist] #print("Nearest three hour mark", num2date(ta), i, np.asarray(cdlist)) if plot: import magpy.mpplot as mp fmistream.plot(noshow=True, plottitle="0") # 1. get a backward 24 hour calculation from the last record klist = maxmink(fmitstream,cdlist,i,k_scale) #print(klist, i) kstream = klist2stream(klist, kstream) t3 = datetime.utcnow() print("Step1 needed:", t3-t2) # 2. a) now get the hourly means with extended time ranges (sr function) hmean = fmimeans(fmitstream,date2num(lastdate),kstream) func = hmean.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) if plot: hmean.plot(function=func,noshow=True, plottitle="1: SR function") # 2. b) subtract sr from original record #redfmi = fmistream.func_subtract(func) redfmi = fmistream.func2stream(func,mode='sub') if plot: redfmi.plot(noshow=True, plottitle="1: reduced") fmistream.plot(noshow=True, plottitle="1") t4 = datetime.utcnow() print("Step2 needed:", t4-t3) # 3. recalc k klist = maxmink(redfmi,cdlist,i,k_scale) kstream = klist2stream(klist, kstream) #print ("3.", num2date(kstream.ndarray[0])) t5 = datetime.utcnow() print("Step3 needed:", t5-t4) # 4. recalc sr and subtract finalhmean = fmimeans(fmitstream,date2num(lastdate),kstream) finalfunc = finalhmean.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) firedfmi = fmistream.func2stream(finalfunc,mode='sub') if plot: mp.plot(finalhmean,['x','y','z'],function=finalfunc,noshow=True, plottitle="2: SR function") #finalhmean.plot(['x','y','z'],function=finalfunc,noshow=True, plottitle="2: SR function") firedfmi.plot(['x','y','z'],noshow=True, plottitle="2: reduced") fmitstream.plot(['x','y','z'],plottitle="2") t6 = datetime.utcnow() print("Step4 needed:", t6-t5) # 5. final k klist = maxmink(firedfmi,cdlist,i,k_scale) kstream = klist2stream(klist, kstream) #print ("Last", num2date(kstream.ndarray[0])) t7 = datetime.utcnow() print("Step5 needed:", t7-t6) # ############################################ # ## Step 3 ############## # ## ------------------------ ############## # ## analyze from beginning: ############## # ## - get first record ############## # ## - from day to day ############## # ## - run backwards ############## # ## - calc fmi: ############## # ## - 1. get max/min deviation ########### # ## - 2. use this k to get sr ########### # ## - 3. calc k with sr reduced ########## # ## - 4. recalc sr ########## # ## - 5. final k ########## # ############################################ print(" -----------------------------------------------------") print(" ------------- Starting forward analysis -------------") print(" ----------------- from first date ------------------") if ndtype: st = np.min(fmistream.ndarray[0]) else: st = fmistream[0].time startday = int(np.floor(st)) for daynum in range(1,int(timediff)+1): currentdate = num2date(startday+daynum) print("Running daily chunks forward until ", currentdate) # selecting reduced time range!!! array = fmistream._select_timerange(starttime=currentdate-timedelta(days=3),endtime=currentdate+timedelta(days=1)) fmitstream = DataStream([LineStruct()],fmistream.header,array) cdlist = [date2num(currentdate.replace(hour=elem)) for elem in startinghours] #print "Daily list", cdlist # 1. get a backward 24 hour calculation from the last record klist = maxmink(fmitstream,cdlist,0,k_scale) #print("forward", klist) kstream = klist2stream(klist, kstream) # 2. a) now get the hourly means with extended time ranges (sr function) hmean = fmimeans(fmitstream,startday+daynum,kstream) if ndtype: lenhmean = len(hmean.ndarray[0]) else: lenhmean = len(hmean) if not lenhmean == 0: # Length 0 if not enough data for full extended mean value calc func = hmean.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) #hmean.plot(function=func,noshow=True) if not func[0] == {}: if plot: fmistream.plot(noshow=True) # 2. b) subtract sr from original record redfmi = fmitstream.func2stream(func,mode='sub') # 3. recalc k klist = maxmink(redfmi,cdlist,0,k_scale) kstream = klist2stream(klist, kstream) #print klist # 4. recalc sr and subtract finalhmean = fmimeans(fmitstream,startday+daynum,kstream) finalfunc = finalhmean.fit(['x','y','z'],fitfunc='harmonic',fitdegree=5) firedfmi = fmistream.func2stream(finalfunc,mode='sub') if plot: finalhmean.plot(['x','y','z'],noshow=True, function=finalfunc, plottitle="2") firedfmi.plot(['x','y','z'],noshow=True, plottitle="2: reduced") fmitstream.plot(['x','y','z'], plottitle="2: fmistream") # 5. final k klist = maxmink(firedfmi,cdlist,0,k_scale) kstream = klist2stream(klist, kstream) #print "Final", klist #print kstream.ndarray, klist kstream = kstream.sorting() kstream.header['col-var1'] = 'K' kstream.header['col-var2'] = 'C' kstream.header['col-var3'] = 'Quality' #print ("Test",kstream.ndarray) return DataStream([LineStruct()],kstream.header,kstream.ndarray) """ outstream = DataStream() lst = [[elem.time,elem.var1,elem.var2] for elem in kstream] for el in sorted(lst): line = LineStruct() line.time = el[0] line.var1 = el[1] line.var2 = el[2] outstream.add(line) return outstream """ def linestruct2ndarray(self): """ DEFINITION: Converts linestruct data to ndarray. RETURNS: - self with ndarray filled EXAMPLE: >>> data = data.linestruct2ndarray() APPLICATION: """ def checkEqual3(lst): return lst[1:] == lst[:-1] array = [np.asarray([]) for elem in KEYLIST] keys = self._get_key_headers() t = np.asarray(self._get_column('time')) array[0] = t for key in keys: ind = KEYLIST.index(key) col = self._get_column(key) if len(col) > 0: if not False in checkEqual3(col) and str(col[0]) == str('-'): col = np.asarray([]) array[ind] = col else: array[ind] = [] array = np.asarray(array,dtype=object) steam = DataStream() stream = [LineStruct()] return DataStream(stream,self.header,array) def mean(self, key, **kwargs): """ DEFINITION: Calculates mean values for the specified key, Nan's are regarded for. Means are only calculated if more then "amount" in percent are non-nan's Returns a float if successful or NaN. PARAMETERS: Variables: - key: (KEYLIST) element of Keylist like 'x' . Kwargs: - percentage: (int) Define required percentage of non-nan values, if not met that nan will be returned. Default is 95 (%) - meanfunction: (string) accepts 'mean' and 'median'. Default is 'mean' - std: (bool) if true, the standard deviation is returned as well RETURNS: - mean/median(, std) (float) EXAMPLE: >>> meanx = datastream.mean('x',meanfunction='median',percentage=90) APPLICATION: stream = read(datapath) mean = stream.mean('f') median = stream.mean('f',meanfunction='median') stddev = stream.mean('f',std=True) """ percentage = kwargs.get('percentage') meanfunction = kwargs.get('meanfunction') std = kwargs.get('std') if not meanfunction: meanfunction = 'mean' if not percentage: percentage = 95 if not std: std = False ndtype = False if len(self.ndarray[0])>0: ndtype = True elif len(self) > 0: pass else: logger.error('mean: empty stream - aborting') if std: return float("NaN"), float("NaN") else: return float("NaN") try: #python2 if not isinstance( percentage, (int,long)): logger.error("mean: Percentage needs to be an integer!") except: if not isinstance( percentage, (int)): logger.error("mean: Percentage needs to be an integer!") if not key in KEYLIST[:16]: logger.error("mean: Column key not valid!") if ndtype: ind = KEYLIST.index(key) length = len(self.ndarray[0]) self.ndarray[ind] = np.asarray(self.ndarray[ind]) ar = self.ndarray[ind].astype(float) ar = ar[~np.isnan(ar)] else: ar = [getattr(elem,key) for elem in self if not isnan(getattr(elem,key))] length = float(len(self)) div = float(len(ar))/length*100.0 if div >= percentage: if std: return eval('np.'+meanfunction+'(ar)'), np.std(ar) else: return eval('np.'+meanfunction+'(ar)') else: logger.info('mean: Too many nans in column {}, exceeding {} percent'.format(key,percentage)) if std: return float("NaN"), float("NaN") else: return float("NaN") def missingvalue(self,v,window_len,threshold=0.9,fill='mean'): """ DESCRIPTION fills missing values either with means or interpolated values PARAMETER: v: (np.array) single column of ndarray window_len: (int) length of window to check threshold threshold: (float) minimum percentage of available data e.g. 0.9 - 90 precent fill: (string) 'mean' or 'interpolation' RETURNS: ndarray - single column """ try: v_rest = np.array([]) v = v.astype(float) n_split = len(v)/float(window_len) if not n_split == int(n_split): el = int(int(n_split)*window_len) v_rest = v[el:] v = v[:el] spli = np.split(v,int(len(v)/window_len)) if len(v_rest) > 0: spli.append(v_rest) newar = np.array([]) for idx,ar in enumerate(spli): nans, x = nan_helper(ar) if len(ar[~nans]) >= threshold*len(ar): if fill == 'mean': ar[nans]= np.nanmean(ar) else: ar[nans]= interp(x(nans), x(~nans), ar[~nans]) newar = np.concatenate((newar,ar)) v = newar except: print ("Filter: could not split stream in equal parts for interpolation - switching to conservative mode") return v def MODWT_calc(self,key='x',wavelet='haar',level=1,plot=False,outfile=None, window=5): """ DEFINITION: Multiple Overlap Discrete wavelet transform (MODWT) method of analysing a magnetic signal to pick out SSCs. This method was taken from Hafez (2013b): "Geomagnetic Sudden Commencement Automatic Detection via MODWT" (NOTE: PyWavelets package must be installed for this method. It should be applied to 1s data - otherwise the sample window and detection levels should be changed.) METHOD: 1. Use the Haar wavelet filter to calculate the 1st and 2nd details of the geomagnetic signal. 2. The 1st detail (D1) samples are squared to evaluate the magnitude. 3. The sample window (5) is averaged to avoid ripple effects. (This means the returned stream will have ~1/5 the size of the original.) PARAMETERS: Variables: - key: (str) Apply MODWT to this key. Default 'x' due to SSCs dominating the horizontal component. - wavelet: (str) Type of filter to use. Default 'db4' (4th-order Daubechies wavelet filter) according to Hafez (2013). - level: (int) Decomposition level. Will calculate details down to this level. Default 3, also Hafez (2013). - plot: (bool) If True, will display a plot of A3, D1, D2 and D3. - outfile: (str) If given, will plot will be saved to 'outfile' path. - window: (int) Length of sample window. Default 5, i.e. 5s with second data. RETURNS: - MODWT_stream: (DataStream object) A stream containing the following: 'x': A_n (approximation function) 'var1': D1 (first detail) 'var2': D2 (second detail) ... 'var3': D3 (third detail) ... EXAMPLE: >>> DWT_stream = stream.DWT_calc(plot=True) APPLICATION: # Storm detection using detail 3 (D3 = var3): from magpy.stream import * stream = read('LEMI_1s_Data_2014-02-15.cdf') # 2014-02-15 is a good storm example MODWT_stream = stream.MODWT_calc(plot=True) Da_min = 0.0005 # nT^2 (minimum amplitude of D3 for storm detection) Dp_min = 40 # seconds (minimum period of Da > Da_min for storm detection) detection = False for row in MODWT_stream: if row.var3 >= Da_min and detection == False: timepin = row.time detection = True elif row.var3 < Da_min and detection == True: duration = (num2date(row.time) - num2date(timepin)).seconds if duration >= Dp_min: print "Storm detected!" print duration, num2date(timepin) detection = False """ # Import required package PyWavelets: # http://www.pybytes.com/pywavelets/index.html import pywt # 1a. Grab array from stream data = self._get_column(key) t_ind = KEYLIST.index('time') #MODWT_stream = DataStream([],{}) MODWT_stream = DataStream() headers = MODWT_stream.header array = [[] for key in KEYLIST] x_ind = KEYLIST.index('x') dx_ind = KEYLIST.index('dx') var1_ind = KEYLIST.index('var1') var2_ind = KEYLIST.index('var2') var3_ind = KEYLIST.index('var3') var4_ind = KEYLIST.index('var4') var5_ind = KEYLIST.index('var5') dy_ind = KEYLIST.index('dy') i = 0 logger.info("MODWT_calc: Starting Discrete Wavelet Transform of key %s." % key) if len(data) % 2 == 1: data = data[0:-1] # Results have format: # (cAn, cDn), ..., (cA2, cD2), (cA1, cD1) coeffs = pywt.swt(data, wavelet, level) acoeffs, dcoeffs = [], [] for i in xrange(level): (a, d) = coeffs[i] acoeffs.append(a) dcoeffs.append(d) for i, item in enumerate(dcoeffs): dcoeffs[i] = [j**2 for j in item] # 1b. Loop for sliding window while True: if i >= (len(data)-window): break # Take the values in the middle of the window (not exact but changes are # not extreme over standard 5s window) array[t_ind].append(self.ndarray[t_ind][i+window/2]) data_cut = data[i:i+window] array[x_ind].append(sum(data_cut)/float(window)) a_cut = acoeffs[0][i:i+window] array[dx_ind].append(sum(a_cut)/float(window)) for j in xrange(level): d_cut = dcoeffs[-(j+1)][i:i+window] if j <= 5: key = 'var'+str(j+1) array[KEYLIST.index(key)].append(sum(d_cut)/float(window)) elif 5 < j <= 7: if j == 6: key = 'dy' elif j == 7: key = 'dz' array[KEYLIST.index(key)].append(sum(d_cut)/float(window)) i += window logger.info("MODWT_calc: Finished MODWT.") MODWT_stream.header['col-x'] = 'A3' MODWT_stream.header['unit-col-x'] = 'nT^2' MODWT_stream.header['col-var1'] = 'D1' MODWT_stream.header['unit-col-var1'] = 'nT^2' MODWT_stream.header['col-var2'] = 'D2' MODWT_stream.header['unit-col-var2'] = 'nT^2' MODWT_stream.header['col-var3'] = 'D3' MODWT_stream.header['unit-col-var3'] = 'nT^2' MODWT_stream.header['col-var4'] = 'D4' MODWT_stream.header['unit-col-var4'] = 'nT^2' MODWT_stream.header['col-var5'] = 'D5' MODWT_stream.header['unit-col-var5'] = 'nT^2' MODWT_stream.header['col-dy'] = 'D6' MODWT_stream.header['unit-col-dy'] = 'nT^2' # Plot stream: if plot == True: date = datetime.strftime(num2date(self.ndarray[0][0]),'%Y-%m-%d') logger.info('MODWT_calc: Plotting data...') if outfile: MODWT_stream.plot(['x','var1','var2','var3'], plottitle="MODWT Decomposition of %s (%s)" % (key,date), outfile=outfile) else: MODWT_stream.plot(['x','var1','var2','var3'], plottitle="MODWT Decomposition of %s (%s)" % (key,date)) for key in KEYLIST: array[KEYLIST.index(key)] = np.asarray(array[KEYLIST.index(key)]) return DataStream([LineStruct()], headers, np.asarray(array,dtype=object)) def multiply(self, factors, square=False): """ DEFINITION: A function to multiply the datastream, should one ever have the need to. Scale value correction for example. PARAMETERS: Variables: - factors: (dict) Dictionary of multiplcation factors with keys to apply to e.g. {'x': -1, 'f': 2} Kwargs: - square: (bool) If True, key will be squared by the factor. RETURNS: - self: (DataStream) Multiplied datastream. EXAMPLE: >>> data.multiply({'x':-1}) APPLICATION: """ ndtype = False if len(self.ndarray[0]) > 0: ndtype = True sel = self.copy() for key in factors: if key in KEYLIST: if ndtype: ind = KEYLIST.index(key) val = sel.ndarray[ind] else: val = sel._get_column(key) if key == 'time': logger.error("factor: Multiplying time? That's just plain silly.") else: if square == False: newval = [elem * factors[key] for elem in val] logger.info('factor: Multiplied column %s by %s.' % (key, factors[key])) else: newval = [elem ** factors[key] for elem in val] logger.info('factor: Multiplied column %s by %s.' % (key, factors[key])) if ndtype: sel.ndarray[ind] = np.asarray(newval) else: sel = sel._put_column(newval, key) else: logger.warning("factor: Key '%s' not in keylist." % key) return sel def obspyspectrogram(self, data, samp_rate, per_lap=0.9, wlen=None, log=False, outfile=None, fmt=None, axes=None, dbscale=False, mult=8.0, cmap=None, zorder=None, title=None, show=True, sphinx=False, clip=[0.0, 1.0]): #TODO: Discuss with Ramon which kind of window should be used (cos^2(2*pi (t/T))) """ Function taken from ObsPy Computes and plots spectrogram of the input data. :param data: Input data :type samp_rate: float :param samp_rate: Samplerate in Hz :type per_lap: float :param per_lap: Percentage of overlap of sliding window, ranging from 0 to 1. High overlaps take a long time to compute. :type wlen: int or float :param wlen: Window length for fft in seconds. If this parameter is too small, the calculation will take forever. :type log: bool :param log: Logarithmic frequency axis if True, linear frequency axis otherwise. :type outfile: String :param outfile: String for the filename of output file, if None interactive plotting is activated. :type fmt: String :param fmt: Format of image to save :type axes: :class:`matplotlib.axes.Axes` :param axes: Plot into given axes, this deactivates the fmt and outfile option. :type dbscale: bool :param dbscale: If True 10 * log10 of color values is taken, if False the sqrt is taken. :type mult: float :param mult: Pad zeros to lengh mult * wlen. This will make the spectrogram smoother. Available for matplotlib > 0.99.0. :type cmap: :class:`matplotlib.colors.Colormap` :param cmap: Specify a custom colormap instance :type zorder: float :param zorder: Specify the zorder of the plot. Only of importance if other plots in the same axes are executed. :type title: String :param title: Set the plot title :type show: bool :param show: Do not call `plt.show()` at end of routine. That way, further modifications can be done to the figure before showing it. :type sphinx: bool :param sphinx: Internal flag used for API doc generation, default False :type clip: [float, float] :param clip: adjust colormap to clip at lower and/or upper end. The given percentages of the amplitude range (linear or logarithmic depending on option `dbscale`) are clipped. """ # enforce float for samp_rate samp_rate = float(samp_rate) # set wlen from samp_rate if not specified otherwise if not wlen: wlen = samp_rate / 100. npts = len(data) # nfft needs to be an integer, otherwise a deprecation will be raised #XXX add condition for too many windows => calculation takes for ever nfft = int(nearestPow2(wlen * samp_rate)) if nfft > npts: nfft = int(nearestPow2(npts / 8.0)) if mult != None: mult = int(nearestPow2(mult)) mult = mult * nfft nlap = int(nfft * float(per_lap)) data = data - data.mean() end = npts / samp_rate # Here we call not plt.specgram as this already produces a plot # matplotlib.mlab.specgram should be faster as it computes only the # arrays # XXX mlab.specgram uses fft, would be better and faster use rfft if MATPLOTLIB_VERSION >= [0, 99, 0]: specgram, freq, time = mlab.specgram(data, Fs=samp_rate, NFFT=nfft, pad_to=mult, noverlap=nlap) else: specgram, freq, time = mlab.specgram(data, Fs=samp_rate, NFFT=nfft, noverlap=nlap) # db scale and remove zero/offset for amplitude if dbscale: specgram = 10 * np.log10(specgram[1:, :]) else: specgram = np.sqrt(specgram[1:, :]) freq = freq[1:] vmin, vmax = clip if vmin < 0 or vmax > 1 or vmin >= vmax: msg = "Invalid parameters for clip option." raise ValueError(msg) _range = float(specgram.max() - specgram.min()) vmin = specgram.min() + vmin * _range vmax = specgram.min() + vmax * _range norm = Normalize(vmin, vmax, clip=True) if not axes: fig = plt.figure() ax = fig.add_subplot(111) else: ax = axes # calculate half bin width halfbin_time = (time[1] - time[0]) / 2.0 halfbin_freq = (freq[1] - freq[0]) / 2.0 if log: # pcolor expects one bin more at the right end freq = np.concatenate((freq, [freq[-1] + 2 * halfbin_freq])) time = np.concatenate((time, [time[-1] + 2 * halfbin_time])) # center bin time -= halfbin_time freq -= halfbin_freq # pcolormesh issue was fixed in matplotlib r5716 (2008-07-07) # inbetween tags 0.98.2 and 0.98.3 # see: # - http://matplotlib.svn.sourceforge.net/viewvc/... # matplotlib?revision=5716&view=revision # - http://matplotlib.sourceforge.net/_static/CHANGELOG if MATPLOTLIB_VERSION >= [0, 98, 3]: # Log scaling for frequency values (y-axis) ax.set_yscale('log') # Plot times ax.pcolormesh(time, freq, specgram, cmap=cmap, zorder=zorder, norm=norm) else: X, Y = np.meshgrid(time, freq) ax.pcolor(X, Y, specgram, cmap=cmap, zorder=zorder, norm=norm) ax.semilogy() else: # this method is much much faster! specgram = np.flipud(specgram) # center bin extent = (time[0] - halfbin_time, time[-1] + halfbin_time, freq[0] - halfbin_freq, freq[-1] + halfbin_freq) ax.imshow(specgram, interpolation="nearest", extent=extent, cmap=cmap, zorder=zorder) # set correct way of axis, whitespace before and after with window # length ax.axis('tight') ax.set_xlim(0, end) ax.grid(False) if axes: return ax ax.set_xlabel('Time [s]') ax.set_ylabel('Frequency [Hz]') if title: ax.set_title(title) if not sphinx: # ignoring all NumPy warnings during plot temp = np.geterr() np.seterr(all='ignore') plt.draw() np.seterr(**temp) if outfile: if fmt: fig.savefig(outfile, format=fmt) else: fig.savefig(outfile) elif show: plt.show() else: return fig def offset(self, offsets, **kwargs): """ DEFINITION: Apply constant offsets to elements of the datastream PARAMETERS: Variables: - offsets: (dict) Dictionary of offsets with keys to apply to e.g. {'time': timedelta(hours=1), 'x': 4.2, 'f': -1.34242} Important: Time offsets have to be timedelta objects Kwargs: - starttime: (Datetime object) Start time to apply offsets - endtime : (Datetime object) End time to apply offsets RETURNS: - variable: (type) Description. EXAMPLE: >>> data.offset({'x':7.5}) or >>> data.offset({'x':7.5},starttime='2015-11-21 13:33:00',starttime='2015-11-23 12:22:00') APPLICATION: """ endtime = kwargs.get('endtime') starttime = kwargs.get('starttime') comment = kwargs.get('comment') ndtype = False if len(self.ndarray[0]) > 0: ndtype =True tcol = self.ndarray[0] else: tcol = self._get_column('time') if not len(tcol) > 0: logger.error("offset: No data found - aborting") return self stidx = 0 edidx = len(tcol) if starttime: st = date2num(self._testtime(starttime)) # get index number of first element >= starttime in timecol stidxlst = np.where(tcol >= st)[0] if not len(stidxlst) > 0: return self ## stream ends before starttime stidx = stidxlst[0] if endtime: ed = date2num(self._testtime(endtime)) # get index number of last element <= endtime in timecol edidxlst = np.where(tcol <= ed)[0] if not len(edidxlst) > 0: return self ## stream begins after endtime edidx = (edidxlst[-1]) + 1 if comment and not comment == '': if len(self.ndarray[0]) > 0: commpos = KEYLIST.index('comment') flagpos = KEYLIST.index('flag') commcol = self.ndarray[commpos] else: commcol = self._get_column('comment') if not len(commcol) == len(tcol): commcol = [''] * len(tcol) if not len(self.ndarray[flagpos]) == len(tcol): fllist = ['0' for el in FLAGKEYLIST] fllist.append('-') fl = ''.join(fllist) self.ndarray[flagpos] = [fl] * len(tcol) for idx,el in enumerate(commcol): if idx >= stidx and idx <= edidx: if not el == '': commcol[idx] = comment + ', ' + el else: commcol[idx] = comment else: commcol[idx] = el print("offset", len(commcol), len(tcol)) self.ndarray[commpos] = commcol for key in offsets: if key in KEYLIST: if ndtype: ind = KEYLIST.index(key) val = self.ndarray[ind] else: val = self._get_column(key) val = val[stidx:edidx] if key == 'time': secperday = 24*3600 try: os = offsets[key].total_seconds()/secperday except: try: exec('os = '+offsets[key]+'.total_seconds()/secperday') except: print("offset: error with time offset - check provided timedelta") break val = val + os #print num2date(val[0]).replace(tzinfo=None) #print num2date(val[0]).replace(tzinfo=None) + offsets[key] #newval = [date2num(num2date(elem).replace(tzinfo=None) + offsets[key]) for elem in val] logger.info('offset: Corrected time column by %s sec' % str(offsets[key])) else: val = val + offsets[key] #newval = [elem + offsets[key] for elem in val] logger.info('offset: Corrected column %s by %.3f' % (key, offsets[key])) if ndtype: self.ndarray[ind][stidx:edidx] = val else: nval = self._get_column(key) # repeated extraction of column - could be optimzed but usage of LineStruct will not be supported in future nval[stidx:edidx] = val self = self._put_column(nval, key) else: logger.error("offset: Key '%s' not in keylist." % key) return self def plot(self, keys=None, debugmode=None, **kwargs): """ DEFINITION: Code for plotting one dataset. Consult mpplot.plot() and .plotStreams() for more details. EXAMPLE: >>> cs1_data.plot(['f'], outfile = 'frequenz.png', specialdict = {'f':[44184.8,44185.8]}, plottitle = 'Station Graz - Feldstaerke 05.08.2013', bgcolor='white') """ import magpy.mpplot as mp if keys == None: keys = [] mp.plot(self, variables=keys, **kwargs) def powerspectrum(self, key, debugmode=None, outfile=None, fmt=None, axes=None, title=None,**kwargs): """ DEFINITION: Calculating the power spectrum following the numpy fft example PARAMETERS: Variables: - key: (str) Key to analyse Kwargs: - axes: (?) ? - debugmode: (bool) Variable to show steps - fmt: (str) Format of outfile, e.g. "png" - outfile: (str) Filename to save plot to - title: (str) Title to display on plot - marks: (dict) add some text to the plot - returndata: (bool) return freq and asd - freqlevel: (float) print noise level at that frequency RETURNS: - plot: (matplotlib plot) A plot of the powerspectrum EXAMPLE: >>> data_stream.powerspectrum('x') APPLICATION: >>> from magpy.stream import read 1. Requires DataStream object: >>> data_path = '/usr/lib/python2.7/magpy/examples/*' >>> data = read(path_or_url=data_path, starttime='2013-06-10 00:00:00', endtime='2013-06-11 00:00:00') 2. Call for data stream: >>> data.powerspectrum('f', title='PSD of f', marks={'day':0.000011574}, outfile='ps.png') """ if debugmode: print("Start powerspectrum at %s" % datetime.utcnow()) noshow = kwargs.get('noshow') returndata = kwargs.get('returndata') marks = kwargs.get('marks') freqlevel = kwargs.get('freqlevel') if noshow: show = False else: show = True dt = self.get_sampling_period()*24*3600 if not len(self) > 0: logger.error("Powerspectrum: Stream of zero length -- aborting") raise Exception("Can't analyse stream of zero length!") t = np.asarray(self._get_column('time')) val = np.asarray(self._get_column(key)) mint = np.min(t) tnew, valnew = [],[] nfft = int(nearestPow2(len(t))) #print "NFFT:", nfft if nfft > len(t): nfft = int(nearestPow2(len(t) / 2.0)) #print "NFFT now:", nfft for idx, elem in enumerate(val): if not isnan(elem): tnew.append((t[idx]-mint)*24*3600) valnew.append(elem) tnew = np.asarray(tnew) valnew = np.asarray(valnew) if debugmode: print("Extracted data for powerspectrum at %s" % datetime.utcnow()) #freq = np.fft.fftfreq(tnew.shape[-1],dt) #freq = freq[range(len(tnew)/2)] # one side frequency range #freq = freq[1:] #print "Maximum frequency:", max(freq) #s = np.fft.fft(valnew) #s = s[range(len(valnew)/2)] # one side data range #s = s[1:] #ps = np.real(s*np.conjugate(s)) if not axes: fig = plt.figure() ax = fig.add_subplot(111) else: ax = axes psdm = mlab.psd(valnew, nfft, 1/dt) asdm = np.sqrt(psdm[0]) freqm = psdm[1] ax.loglog(freqm, asdm,'b-') #print "Maximum frequency:", max(freqm) if freqlevel: val, idx = find_nearest(freqm, freqlevel) print("Maximum Noise Level at %s Hz: %s" % (val,asdm[idx])) if not marks: pass else: for elem in marks: ax.annotate(elem, xy=(marks[elem],min(asdm)), xytext=(marks[elem],max(asdm)-(max(asdm)-min(asdm))*0.3), bbox=dict(boxstyle="round", fc="0.95", alpha=0.6), arrowprops=dict(arrowstyle="->", shrinkA=0, shrinkB=1, connectionstyle="angle,angleA=0,angleB=90,rad=10")) try: unit = self.header['unit-col-'+key] except: unit = 'unit' ax.set_xlabel('Frequency [Hz]') ax.set_ylabel(('Amplitude spectral density [%s/sqrt(Hz)]') % unit) if title: ax.set_title(title) if debugmode: print("Finished powerspectrum at %s" % datetime.utcnow()) if outfile: if fmt: fig.savefig(outfile, format=fmt) else: fig.savefig(outfile) elif returndata: return freqm, asdm elif show: plt.show() else: return fig def randomdrop(self,percentage=None,fixed_indicies=None): """ DESCRIPTION: Method to randomly drop one line from data. If percentage is given, then lines according to this percentage are dropped. This corresponds to a jackknife and d-jackknife respectively. PARAMETER: percentage (float) provide a percentage value to be dropped (1-99) fixed_indicies (list) e.g. [0,1] provide a list of indicies which will not be dropped RETURNS: DataStream APPLICATION: >>> newstream = stream.randomdrop(percentage=10,fixed_indicies=[0,len(means.ndarray[0])-1]) """ import random def makeDrippingBucket(lst): bucket = lst if len(bucket) == 0: return [] else: random_index = random.randrange(0,len(bucket)) del bucket[random_index] return bucket if len(self.ndarray[0]) < 1: return self if percentage: if percentage > 99: percentage = 99 if percentage < 1: percentage = 1 ns = self.copy() if fixed_indicies: # TODO assert list pass if not percentage: newlen = len(ns.ndarray[0]) -1 else: newlen = int(np.round(len(ns.ndarray[0])-len(ns.ndarray[0])*percentage/100.,0)) # Index list of stream indexlst = [idx for idx, el in enumerate(ns.ndarray[0])] #print len(indexlst), newlen while len(indexlst) > newlen: indexlst = makeDrippingBucket(indexlst) if fixed_indicies: for el in fixed_indicies: if not el in indexlst: indexlst.append(el) #print "Here", len(indexlst) for idx,ar in enumerate(ns.ndarray): if len(ar) > 0: #print ar, indexlst newar = ar[indexlst] ns.ndarray[idx] = newar return ns def remove(self, starttime=None, endtime=None): """ DEFINITION: Removing dates inside of range between start- and endtime. (Does the exact opposite of self.trim().) PARAMETERS: Variables: - starttime: (datetime/str) Start of period to trim with - endtime: (datetime/str) End of period to trim to RETURNS: - stream: (DataStream object) Stream with data between starttime and endtime removed. EXAMPLE: >>> data = data.trim(starttime, endtime) APPLICATION: """ if starttime and endtime: if self._testtime(starttime) > self._testtime(endtime): logger.error('Trim: Starttime (%s) is larger than endtime (%s).' % (starttime,endtime)) raise ValueError("Starttime is larger than endtime.") logger.info('Remove: Started from %s to %s' % (starttime,endtime)) cutstream = DataStream() cutstream.header = self.header cutstream.ndarray = self.ndarray starttime = self._testtime(starttime) endtime = self._testtime(endtime) stval = 0 if len(cutstream.ndarray[0]) > 0: timearray = self.ndarray[0] st = (np.abs(timearray.astype(float)-date2num(starttime))).argmin() - 1 ed = (np.abs(timearray.astype(float)-date2num(endtime))).argmin() + 1 if starttime < num2date(cutstream.ndarray[0][0]): st = 0 if endtime > num2date(cutstream.ndarray[0][-1]): ed = len(cutstream.ndarray[0]) dropind = [i for i in range(st,ed)] for index,key in enumerate(KEYLIST): if len(cutstream.ndarray[index])>0: cutstream.ndarray[index] = np.delete(cutstream.ndarray[index], dropind) else: for idx, elem in enumerate(self): newline = LineStruct() if not isnan(elem.time): newline.time = elem.time if elem.time <= date2num(starttime) or elem.time > date2num(endtime): for key in KEYLIST: exec('newline.'+key+' = elem.'+key) cutstream.add(newline) return cutstream def remove_flagged(self, **kwargs): """ DEFINITION: remove flagged data from stream: Flagged values are replaced by NAN values. Therefore the stream's length is not changed. Flags are defined by integers (0 normal, 1 automatically marked, 2 to be kept, 3 to be removed, 4 special) PARAMETERS: Kwargs: - keys: (list) keys (string list e.g. 'f') default=FLAGKEYLIST - flaglist: (list) default=[1,3] defines integer codes to be removed RETURNS: - stream: (DataStream Object) Stream with flagged data replaced by NAN. EXAMPLE: >>> newstream = stream.remove_flagged() APPLICATION: """ # Defaults: flaglist = kwargs.get('flaglist') keys = kwargs.get('keys') if not flaglist: flaglist = [1,3] if not keys: keys = FLAGKEYLIST # Converting elements of flaglist to strings flaglist = [str(fl) for fl in flaglist] array = self.ndarray ndtype = False if len(self.ndarray[0]) > 0: flagind = KEYLIST.index('flag') commind = KEYLIST.index('comment') ndtype = True for key in keys: pos = KEYLIST.index(key) liste = [] emptyelem = LineStruct() if ndtype: # get indicies of all non-empty flag contents indlst = [i for i,el in enumerate(self.ndarray[flagind]) if not el in ['','-']] for i in indlst: try: #if len(array[pos]) > 0: flagls = list(self.ndarray[flagind][i]) flag = flagls[pos] if flag in flaglist: array[pos][i] = float("nan") except: #print("stream remove_flagged: index error: indlst {}, pos {}, length flag colum {}".format(len(indlst), pos, len(self.ndarray[flagind]))) pass liste = [LineStruct()] else: for elem in self: fllst = list(elem.flag) try: # test whether useful flag is present: flaglst length changed during the program development flag = int(fllst[pos]) except: flag = 0 if not flag in flaglist: liste.append(elem) else: setattr(elem, key, float("nan")) #exec('elem.'+key+' = float("nan")') liste.append(elem) #liste = [elem for elem in self if not elem.flag[pos] in flaglist] if ndtype: #-> Necessary to consider shape (e.g.BLV data) newar = [np.asarray([]) for el in KEYLIST] for idx,el in enumerate(array): if idx == flagind: pass elif idx == commind: pass else: newar[idx] = array[idx] else: newar = list(self.ndarray) # Drop contents of flag and comment column -> didn't work for BLV data because of shape # changed for 0.3.99 #array[flagind] = np.asarray([]) #array[commind] = np.asarray([]) return DataStream(liste, self.header,np.asarray(newar,dtype=object)) def remove_outlier(self, **kwargs): """ DEFINITION: Flags outliers in data, uses quartiles. Notes: Position of flag in flagstring: f (intensity): pos 0 x,y,z (vector): pos 1 other (vector): pos 2 Position of flag in flagstring x : pos 0 y : pos 1 z : pos 2 f : pos 3 t1 : pos 4 t2 : pos 5 var1 : pos 6 var2: pos 7 Coding : 0 take, 1 remove, 2 force take, 3 force remove Example: 0000000, 0001000, etc 012 = take f, automatically removed v, and force use of other 300 = force remove f, take v, and take other PARAMETERS: Variables: - None. Kwargs: - keys: (list) List of keys to evaluate. Default=['f'] - threshold: (float) Determines threshold for outliers. 1.5 = standard 5 = keeps storm onsets in 4 = Default as comprimise. - timerange: (timedelta Object) Time range. Default = timedelta(hours=1) - markall : marks all data except forcing has already been applied - stdout: prints removed values to stdout RETURNS: - stream: (DataStream Object) Stream with flagged data. EXAMPLE: >>> stream.remove_outlier(keys=['x','y','z'], threshold=2) APPLICATION: """ # Defaults: timerange = kwargs.get('timerange') threshold = kwargs.get('threshold') keys = kwargs.get('keys') markall = kwargs.get('markall') stdout = kwargs.get('stdout') if not timerange: timerange = timedelta(hours=1) if not keys: keys = ['f'] if not threshold: threshold = 4.0 if not stdout: stdout = False # Position of flag in flagstring # f (intensity): pos 0 # x,y,z (vector): pos 1 # other (vector): pos 2 logger.info('remove_outlier: Starting outlier removal.') ndtype = False if len(self.ndarray[0]) > 0: ndtype = True arraytime = self.ndarray[0] flagind = KEYLIST.index('flag') commentind = KEYLIST.index('comment') print ("Found ndarray - using flag_outlier instead") return self.flag_outlier(**kwargs) elif len(self) > 1: arraytime = self._get_column('time') else: logger.warning('remove_outlier: No data - Stopping outlier removal.') return self # Working non-destructive restream = self.copy() # Start here with for key in keys: for key in keys: flagpos = FLAGKEYLIST.index(key) st,et = self._find_t_limits() st = date2num(st) et = date2num(et) at = date2num((num2date(st).replace(tzinfo=None)) + timerange) incrt = at-st newst = DataStream() while st < et: tmpar, idxst = find_nearest(arraytime,st) tmpar, idxat = find_nearest(arraytime,at) if idxat == len(arraytime)-1: idxat = len(arraytime) st = at at += incrt if ndtype: ind = KEYLIST.index(key) lstpart = self.ndarray[ind][idxst:idxat].astype(float) print(lstpart) print(np.isnan(lstpart)) selcol = lstpart[~np.isnan(lstpart)] else: lstpart = self[idxst:idxat] # changed at 28.08.2014 #selcol = [eval('row.'+key) for row in lstpart] selcol = [eval('row.'+key) for row in lstpart if not isnan(eval('row.'+key))] try: q1 = stats.scoreatpercentile(selcol,25) q3 = stats.scoreatpercentile(selcol,75) iqd = q3-q1 md = np.median(selcol) whisker = threshold*iqd except: try: md = np.median(selcol) whisker = md*0.005 except: logger.warning("remove_outlier: Eliminate outliers produced a problem: please check.") pass if ndtype: # XXX DOES NOT WORK, TODO for i in range(idxst,idxat): if row.flag == '' or row.flag == '0000000000000000-' or row.flag == '-' or row.flag == '-0000000000000000': row.flag = '-' * len(FLAGKEYLIST) if row.comment == '-': row.comment = '' else: for elem in lstpart: row = LineStruct() row = elem if row.flag == '' or row.flag == '0000000000000000-' or row.flag == '-' or row.flag == '-0000000000000000': #row.flag = '0000000000000000-' row.flag = '-----------------' if row.comment == '-': row.comment = '' if isNumber(row.flag): # if somehow the flag has been transfered to a number - create a string again num = str(int(row.flag))[:-1] row.flag = num+'-' if not md-whisker < eval('elem.'+key) < md+whisker: fllist = list(row.flag) #print "Found", key if len(fllist) >= flagpos: fllist = np.asarray(fllist, dtype=object) if not fllist[flagpos] in [1,2,3,4] : if markall: #print "mark" fl = [] for j,f in enumerate(FLAGKEYLIST): if f in keys: fl.append('1') else: fl.append('-') for idx, el in enumerate(fllist): if el in [1,2,3,4]: fl[idx] = el fllist = fl fllist[flagpos] = '1' row.flag=''.join(fllist) row.comment = "aof - threshold: %s, window: %s sec" % (str(threshold), str(timerange.total_seconds())) #print row.flag, key if not isnan(eval('elem.'+key)): infoline = "remove_outlier: at %s - removed %s (= %f)" % (str(num2date(elem.time)),key, eval('elem.'+key)) logger.info(infoline) if stdout: print(infoline) else: fllist = list(row.flag) if len(fllist) >= flagpos: if row.flag == '': pass elif fllist[flagpos] == '-': testlst = [el for el in fllist if el in ['0','1','2','3','4']] if not len(testlst) > 0: row.flag = '' else: pass newst.add(row) logger.info('remove_outlier: Outlier removal finished.') if ndtype: return restream else: return DataStream(newst, self.header, self.ndarray) def resample(self, keys, debugmode=False,**kwargs): """ DEFINITION: Uses Numpy interpolate.interp1d to resample stream to requested period. Two methods: fast: is only valid if time stamps at which resampling is conducted are part of the original time series. e.g. org = second (58,59,0,1,2) resampled at 0 slow: general method if time stamps for resampling are not contained (e.g. 58.23, 59.24, 0.23,...) resampled at 0 PARAMETERS: Variables: - keys: (list) keys to be resampled. Kwargs: - period: (float) sampling period in seconds, e.g. 5s (0.2 Hz). - fast: (bool) use fast approximation - startperiod: (integer) starttime in sec (e.g. 60 each minute, 900 each quarter hour - offset: (integer) starttime in sec (e.g. 60 each minute, 900 each quarter hour RETURNS: - stream: (DataStream object) Stream containing resampled data. EXAMPLE: >>> resampled_stream = pos_data.resample(['f'],period=1) APPLICATION: """ period = kwargs.get('period') fast = kwargs.get('fast') offset = kwargs.get('offset') if not period: period = 60. ndtype = False if len(self.ndarray[0]) > 0: ndtype = True sp = self.samplingrate() logger.info("resample: Resampling stream of sampling period %s to period %s." % (sp,period)) logger.info("resample: Resampling keys %s " % (','.join(keys))) # Determine the minimum time t_min,t_max = self._find_t_limits() t_start = t_min if offset: t_min = ceil_dt(t_min,period) if t_min - offset > t_start: t_min = t_min -offset else: t_min = t_min +offset startperiod, line = self.findtime(t_min) else: t_min = ceil_dt(t_min,period) startperiod, line = self.findtime(t_min) if fast: # To be done if timesteps are at period timesteps try: logger.info("resample: Using fast algorithm.") si = timedelta(seconds=sp) sampling_period = si.seconds if period <= sampling_period: logger.warning("resample: Resampling period must be larger or equal than original sampling period.") return self if debugmode: print ("Trying fast algorythm") print ("Projected period and Sampling period:", period, sampling_period) if not line == [] or ndtype: # or (ndtype and not line == []): xx = int(np.round(period/sampling_period)) if ndtype: newstream = DataStream([LineStruct()],{},np.asarray([])) newstream.header = self.header lst = [] for ind,elem in enumerate(self.ndarray): if debugmode: print ("dealing with column", ind, elem) if len(elem) > 0: lst.append(np.asarray(elem[startperiod::xx])) else: lst.append(np.asarray([])) newstream.ndarray = np.asarray(lst) else: newstream = DataStream([],{},np.asarray([[] for el in KEYLIST])) newstream.header = self.header for line in self[startperiod::xx]: newstream.add(line) newstream.header['DataSamplingRate'] = str(period) + ' sec' return newstream logger.warning("resample: Fast resampling failed - switching to slow mode") except: logger.warning("resample: Fast resampling failed - switching to slow mode") pass # This is done if timesteps are not at period intervals # ----------------------------------------------------- if debugmode: print ("General -slow- resampling") # Create a list containing time steps #t_max = num2date(self._get_max('time')) t_list = [] time = t_min while time <= t_max: t_list.append(date2num(time)) time = time + timedelta(seconds=period) # Compare length of new time list with old timelist # multiplicator is used to check whether nan value is at the corresponding position of the orgdata file - used for not yet completely but sufficiently correct missing value treatment if not len(t_list) > 0: return DataStream() multiplicator = float(self.length()[0])/float(len(t_list)) logger.info("resample a: {},{},{}".format(float(self.length()[0]), float(len(t_list)),startperiod)) #print ("Times:", self.ndarray[0][0],self.ndarray[0][-1],t_list[0],t_list[-1]) stwithnan = self.copy() # What is this good for (leon 17.04.2019)??? tmp = self.trim(starttime=736011.58337400458,endtime=736011.59721099539) logger.info("resample test: {}".format(tmp.ndarray)) #tcol = stwithnan.ndarray[0] res_stream = DataStream() res_stream.header = self.header array=[np.asarray([]) for elem in KEYLIST] if ndtype: array[0] = np.asarray(t_list) res_stream.add(LineStruct()) else: for item in t_list: row = LineStruct() row.time = item res_stream.add(row) for key in keys: if debugmode: print ("Resampling:", key) if key not in KEYLIST[1:16]: logger.warning("resample: Key %s not supported!" % key) index = KEYLIST.index(key) try: #print (len(self._get_column(key)), multiplicator) int_data = self.interpol([key],kind='linear')#'cubic') int_func = int_data[0]['f'+key] int_min = int_data[1] int_max = int_data[2] key_list = [] for ind, item in enumerate(t_list): # normalized time range between 0 and 1 functime = (item - int_min)/(int_max - int_min) # check whether original value is np.nan (as interpol method does not account for that) # exact but slowly: idx = np.abs(tcol-item).argmin() # orgval = stwithnan.ndarray[index][idx] # reduce the index range as below if ndtype: if int(ind*multiplicator) <= len(self.ndarray[index]): #orgval = self.ndarray[index][int(ind*multiplicator)] estimate = False # Please note: here a two techniques (exact and estimate) # Speeddiff (example data set (500000 data points) # Exact: 7.55 sec (including one minute filter) # Estimate: 7.15 sec if estimate: orgval = stwithnan.ndarray[index][int(ind*multiplicator+startperiod)] # + offset else: # Exact solution: mv = int(ind*multiplicator+startperiod) stv = mv-int(20*multiplicator) if stv < 0: stv = 0 etv = mv+int(20*multiplicator) if etv >= len(self.ndarray[index]): etv = len(self.ndarray[index]) subar = stwithnan.ndarray[0][stv:etv] idx = (np.abs(subar-item)).argmin() #subar = stwithnan.ndarray[index][stv:etv] orgval = stwithnan.ndarray[index][stv+idx] # + offset #if item > 736011.58337400458 and item < 736011.59721099539: # print ("Found", item, stv+idx, idx, orgval) #if np.isnan(orgval): # print (stv+idx, stv, etv) else: print("Check Resampling method") orgval = 1.0 else: orgval = getattr(stwithnan[int(ind*multiplicator+startperiod)],key) tempval = np.nan # Not a safe fix, but appears to cover decimal leftover problems # (e.g. functime = 1.0000000014, which raises an error) if functime > 1.0: functime = 1.0 if not isnan(orgval): tempval = int_func(functime) key_list.append(float(tempval)) if ndtype: array[index] = np.asarray(key_list) else: res_stream._put_column(key_list,key) except: logger.error("resample: Error interpolating stream. Stream either too large or no data for selected key") res_stream.ndarray = np.asarray(array,dtype=object) logger.info("resample: Data resampling complete.") #return DataStream(res_stream,self.headers) res_stream.header['DataSamplingRate'] = str(period) + ' sec' return res_stream def rotation(self,**kwargs): """ DEFINITION: Rotation matrix for rotating x,y,z to new coordinate system xs,ys,zs using angles alpha and beta PARAMETERS: Variables: Kwargs: - alpha: (float) The horizontal rotation in degrees - beta: (float) The vertical rotation in degrees - keys: (list) provide an alternative vector to rotate - default is ['x','y','z'] keys are only supported from 1.0 onwards (ndarray) RETURNS: - self: (DataStream) The rotated stream EXAMPLE: >>> data.rotation(alpha=2.74) APPLICATION: """ unit = kwargs.get('unit') alpha = kwargs.get('alpha') beta = kwargs.get('beta') keys = kwargs.get('keys') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. if not alpha: alpha = 0. if not beta: beta = 0. if not keys: keys = ['x','y','z'] if not len(keys) == 3: logger.error('rotation: provided keylist need to have three components.') return self logger.info('rotation: Applying rotation matrix.') """ a[0][0] = cos(p)*cos(b); a[0][1] = -sin(b); a[0][2] = sin(p)*cos(b); a[1][0] = cos(p)*sin(b); a[1][1] = cos(b); a[1][2] = sin(p)*sin(b); a[2][0] = -sin(p); a[2][1] = 0.0; a[2][2] = cos(p); xyz.l = ortho.l*a[0][0]+ortho.m*a[0][1]+ortho.n*a[0][2]; xyz.m = ortho.l*a[1][0]+ortho.m*a[1][1]+ortho.n*a[1][2]; xyz.n = ortho.l*a[2][0]+ortho.m*a[2][1]+ortho.n*a[2][2]; """ ind1 = KEYLIST.index(keys[0]) ind2 = KEYLIST.index(keys[1]) ind3 = KEYLIST.index(keys[2]) if len(self.ndarray[0]) > 0: if len(self.ndarray[ind1]) > 0 and len(self.ndarray[ind2]) > 0 and len(self.ndarray[ind3]) > 0: ra = np.pi*alpha/(180.*ang_fac) rb = np.pi*beta/(180.*ang_fac) xar = self.ndarray[ind1].astype(float)*np.cos(rb)*np.cos(ra)-self.ndarray[ind2].astype(float)*np.sin(ra)+self.ndarray[ind3].astype(float)*np.sin(rb)*np.cos(ra) yar = self.ndarray[ind1].astype(float)*np.cos(rb)*np.sin(ra)+self.ndarray[ind2].astype(float)*np.cos(ra)+self.ndarray[ind3].astype(float)*np.sin(rb)*np.sin(ra) zar = -self.ndarray[ind1].astype(float)*np.sin(rb)+self.ndarray[ind3].astype(float)*np.cos(rb) self.ndarray[ind1] = xar self.ndarray[ind2] = yar self.ndarray[ind3] = zar """ for elem in self: ra = np.pi*alpha/(180.*ang_fac) rb = np.pi*beta/(180.*ang_fac) # Testing the conservation of f ##### Error corrected in May 2014 by leon #fbefore = sqrt(elem.x**2+elem.y**2+elem.z**2) xs = elem.x*np.cos(rb)*np.cos(ra)-elem.y*np.sin(ra)+elem.z*np.sin(rb)*np.cos(ra) ys = elem.x*np.cos(rb)*np.sin(ra)+elem.y*np.cos(ra)+elem.z*np.sin(rb)*np.sin(ra) zs = -elem.x*np.sin(rb)+elem.z*np.cos(rb) #fafter = sqrt(xs**2+ys**2+zs**2) #print "f:", fbefore,fafter,fbefore-fafter elem.x = xs elem.y = ys elem.z = zs """ logger.info('rotation: Finished reorientation.') return self def scale_correction(self, keys, scales, **kwargs): """ DEFINITION: multiplies the selected keys by the given scale values PARAMETERS: Kwargs: - offset: (array) containing constant offsets for the given keys RETURNS: - DataStream EXAMPLES: >>> stream = stream.scale_correction(['x','y','z'],[1,0.988,1]) """ print("Function will be removed - use e.g. self.multiply({'y': 0.988}) instead") # Take care: if there is only 0.1 nT accurracy then there will be a similar noise in the deltaF signal offset = kwargs.get('offset') if not offset: offset = [0]*len(keys) else: if not len(offset) == len(keys): logger.error('scale_correction: offset with wrong dimension given - needs to have the same length as given keys - returning stream without changes') return self try: assert len(self) > 0 except: logger.error('scale_correction: empty stream - aborting') return self offsetlst = [] for key in KEYLIST: if key in keys: pos = keys.index(key) offsetlst.append(offset[pos]) else: offsetlst.append(0.0) logger.info('scale_correction: --- Scale correction started at %s ' % str(datetime.now())) for elem in self: for i,key in enumerate(keys): exec('elem.'+key+' = (elem.'+key+'+offset[i]) * scales[i]') scalelst = [] for key in KEYLIST: if key in keys: pos = keys.index(key) scalelst.append(scales[pos]) else: scalelst.append(1.) #print '_'.join(map(str,offsetlst)), scalelst self.header['DataScaleValues'] = '_'.join(map(str,scalelst)) self.header['DataOffsets'] = '_'.join(map(str,offsetlst)) logger.info('scale_correction: --- Scale correction finished at %s ' % str(datetime.now())) return self def selectkeys(self, keys, **kwargs): """ DEFINITION: Take data stream and remove all except the provided keys from ndarray RETURNS: - self: (DataStream) with ndarray limited to keys EXAMPLE: >>> keydata = fulldata.selectkeys(['x','y','z']) APPLICATION: """ noflags = kwargs.get('noflags') stream = self.copy() if not 'time' in keys: ti = ['time'] ti.extend(keys) keys = ti if len(stream.ndarray[0]) > 0: # Check for flagging and comment column if not noflags: flagidx = KEYLIST.index('flag') commentidx = KEYLIST.index('comment') if len(stream.ndarray[flagidx]) > 0: keys.append('flag') if len(stream.ndarray[commentidx]) > 0: keys.append('comment') # Remove all missing for idx, elem in enumerate(stream.ndarray): if not KEYLIST[idx] in keys: stream.ndarray[idx] = np.asarray([]) return stream else: return stream def smooth(self, keys=None, **kwargs): """ DEFINITION: Smooth the data using a window with requested size. (taken from Cookbook/Signal Smooth) This method is based on the convolution of a scaled window with the signal. The signal is prepared by introducing reflected copies of the signal (with the window size) in both ends so that transient parts are minimized in the begining and end part of the output signal. PARAMETERS: Variables: - keys: (list) List of keys to smooth Kwargs: - window_len: (int,odd) dimension of the smoothing window - window: (str) the type of window from 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'. A flat window will produce a moving average smoothing. (See also: numpy.hanning, numpy.hamming, numpy.bartlett, numpy.blackman, numpy.convolve scipy.signal.lfilter) RETURNS: - self: (DataStream) The smoothed signal EXAMPLE: >>> nice_data = bad_data.smooth(['x','y','z']) or >>> t=linspace(-2,2,0.1) >>> x=sin(t)+randn(len(t))*0.1 >>> y=smooth(x) APPLICATION: TODO: the window parameter could be the window itself if an array instead of a string """ # Defaults: window_len = kwargs.get('window_len') window = kwargs.get('window') if not window_len: window_len = 11 if not window: window='hanning' if not keys: keys=self._get_key_headers(numerical=True) window_len = int(window_len) ndtype = False if len(self.ndarray[0])>0: ndtype = True logger.info('smooth: Start smoothing (%s window, width %d) at %s' % (window, window_len, str(datetime.now()))) for key in keys: if key in NUMKEYLIST: if ndtype: ind = KEYLIST.index(key) x = self.ndarray[ind] else: x = self._get_column(key) x = maskNAN(x) if x.ndim != 1: logger.error("smooth: Only accepts 1 dimensional arrays.") if x.size < window_len: print(x.size, window_len) logger.error("smooth: Input vector needs to be bigger than window size.") if window_len<3: return x if not window in ['flat', 'hanning', 'hamming', 'bartlett', 'blackman']: logger.error("smooth: Window is none of 'flat', 'hanning', 'hamming', 'bartlett', 'blackman'") logger.debug("smooth: You entered string %s as a window." % window) s=np.r_[x[window_len-1:0:-1],x,x[-1:-window_len:-1]] #print(len(s)) if window == 'flat': #moving average w=np.ones(window_len,'d') else: w=eval('np.'+window+'(window_len)') y=np.convolve(w/w.sum(),s,mode='valid') if ndtype: self.ndarray[ind] = np.asarray(y[(int(window_len/2)):(len(x)+int(window_len/2))]) else: self._put_column(y[(int(window_len/2)):(len(x)+int(window_len/2))],key) else: logger.error("Column key %s not valid." % key) logger.info('smooth: Finished smoothing at %s' % (str(datetime.now()))) return self def spectrogram(self, keys, per_lap=0.9, wlen=None, log=False, outfile=None, fmt=None, axes=None, dbscale=False, mult=8.0, cmap=None, zorder=None, title=None, show=True, sphinx=False, clip=[0.0, 1.0], **kwargs): """ Creates a spectrogram plot of selected keys. Parameter description at function obspyspectrogram keywords: samp_rate_multiplicator: to change the frequency relative to one day (default value is Hz - 24*3600) samp_rate_multiplicator : sampling rate give as days -> multiplied by x to create Hz, etc: default 24, which means 1/3600 Hz """ samp_rate_multiplicator = kwargs.get('samp_rate_multiplicator') if not samp_rate_multiplicator: samp_rate_multiplicator = 24*3600 t = self._get_column('time') if not len(t) > 0: logger.error('Spectrogram: stream of zero length -- aborting') return for key in keys: val = self._get_column(key) val = maskNAN(val) dt = self.get_sampling_period()*(samp_rate_multiplicator) Fs = float(1.0/dt) self.obspyspectrogram(val,Fs, per_lap=per_lap, wlen=wlen, log=log, outfile=outfile, fmt=fmt, axes=axes, dbscale=dbscale, mult=mult, cmap=cmap, zorder=zorder, title=title, show=show, sphinx=sphinx, clip=clip) def steadyrise(self, key, timewindow, **kwargs): """ DEFINITION: Method determines the absolute increase within a data column and a selected time window neglecting any resets and decreasing trends - used for analyzing some rain senors PARAMETERS: key: (key) column on which the process is performed timewindow: (timedelta) define the window e.g. timedelta(minutes=15) Kwargs: sensitivitylevel: (float) define a difference which two successive points need to exceed to be used (useful if you have some numeric noise) RETURNS: - column: (array) column with length of th stream containing timewindow blocks of stacked data. EXAMPLE: >>> col = stream.steadyrise('t1', timedelta(minutes=60),sensitivitylevel=0.002) """ sensitivitylevel = kwargs.get('sensitivitylevel') prevval = 9999999999999.0 stacked = 0.0 count = 0 rescol = [] testcol = [] ndtype = False if len(self.ndarray[0]) > 0: ndtype = True ind = KEYLIST.index(key) if ndtype and len(self.ndarray[ind]) > 0: startt = num2date(np.min(self.ndarray[0])) for idx,val in enumerate(self.ndarray[ind]): if num2date(self.ndarray[0][idx]) < startt+timewindow: if prevval < val: diff = val-prevval if not sensitivitylevel: stacked += val-prevval elif diff > sensitivitylevel: stacked += val-prevval count += 1 else: for i in range(count+1): rescol.append(stacked) count = 0 # now put that results back to a column startt = startt+timewindow stacked = 0.0 prevval = val elif not ndtype: startt = num2date(self[0].time) for elem in self: testcol.append(elem) if num2date(elem.time) < startt+timewindow: val = eval('elem.'+key) if prevval < val: diff = val-prevval if not sensitivitylevel: stacked += val-prevval elif diff > sensitivitylevel: stacked += val-prevval count += 1 else: for i in range(count+1): rescol.append(stacked) count = 0 # now put that results back to a column startt = startt+timewindow val = eval('elem.'+key) stacked = 0.0 prevval = val else: print("steadyrise: no data found in selected column %s" % key) return np.asarray([]) # Finally fill the end for i in range(count): rescol.append(stacked) if not len(rescol) == len(self) and not len(rescol) == len(self.ndarray[0]) : logger.error('steadrise: An error leading to unequal lengths has been encountered') return [] return np.asarray(rescol) def stereoplot(self, **kwargs): """ DEFINITION: plots a dec and inc values in stereographic projection will abort if no idff typ is provided full circles denote positive inclinations, open negative PARAMETERS: variable: - stream (DataStream) a magpy datastream object kwargs: - focus: (string) defines the plot area - can be either: all - -90 to 90 deg inc, 360 deg dec (default) q1 - first quadrant q2 - first quadrant q3 - first quadrant q4 - first quadrant data - focus on data (if angular spread is less then 10 deg - groups (KEY) - key of keylist which defines color of points (e.g. ('str2') in absolutes to select different colors for different instruments - legend (bool) - draws legend only if groups is given - default True - legendposition (string) - draws the legend at chosen position (e.g. "upper right", "lower center") - default is "lower left" - labellimit (integer)- maximum length of label in legend - noshow: (bool) don't call show at the end, just returns figure handle - outfile: (string) to save the figure, if path is not existing it will be created - gridcolor: (string) Define grid color e.g. '0.5' greyscale, 'r' red, etc - savedpi: (integer) resolution - figure: (bool) True for GUI REQUIRES: - package operator for color selection RETURNS: - plot ToDo: - add alpha 95 calc EXAMPLE: >>> stream.stereoplot(focus='data',groups='str2') """ focus = kwargs.get('focus') groups = kwargs.get('groups') bgcolor = kwargs.get('bgcolor') colorlist = kwargs.get('colorlist') outfile = kwargs.get('outfile') savedpi = kwargs.get('savedpi') gridinccolor = kwargs.get('gridinccolor') griddeccolor = kwargs.get('griddeccolor') noshow = kwargs.get('noshow') legend = kwargs.get('legend') legendposition = kwargs.get('legendposition') labellimit = kwargs.get('labellimit') figure = kwargs.get('figure') if not colorlist: colorlist = ['b','r','g','c','m','y','k'] if not bgcolor: bgcolor = '#d5de9c' if not griddeccolor: griddeccolor = '#316931' if not gridinccolor: gridinccolor = '#316931' if not savedpi: savedpi = 80 if not focus: focus = 'all' if not legend: legend = 'True' if not labellimit: labellimit = 11 if not legendposition: legendposition = "lower left" if not self[0].typ == 'idff': logger.error('Stereoplot: you need to provide idf data') return inc = self._get_column('x') dec = self._get_column('y') col = [''] if groups: sel = self._get_column(groups) col = list(set(list(sel))) if len(col) > 7: col = col[:7] if not len(dec) == len(inc): logger.error('Stereoplot: check you data file - unequal inc and dec data?') return if not figure: fig = plt.figure() else: fig = figure ax = plt.gca() ax.cla() # clear things for fresh plot ax.set_aspect('equal') ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_xticks([]) ax.set_yticks([]) # Define koordinates: basic1=plt.Circle((0,0),90,color=bgcolor,fill=True) basic1a=plt.Circle((0,0),90,color=gridinccolor,fill=False) basic2=plt.Circle((0,0),30,color=gridinccolor,fill=False,linestyle='dotted') basic3=plt.Circle((0,0),60,color=gridinccolor,fill=False,linestyle='dotted') basic4=plt.Line2D([0,0],[-90,90],color=griddeccolor,linestyle='dashed') basic5=plt.Line2D([-90,90],[0,0],color=griddeccolor,linestyle='dashed') fig.gca().add_artist(basic1) fig.gca().add_artist(basic1a) fig.gca().add_artist(basic2) fig.gca().add_artist(basic3) fig.gca().add_artist(basic4) fig.gca().add_artist(basic5) for j in range(len(col)): color = colorlist[j] xpos,ypos,xneg,yneg,xabs,y = [],[],[],[],[],[] for i,el in enumerate(inc): if groups: if sel[i] == col[j]: coinc = 90-np.abs(el) sindec = np.sin(np.pi/180*dec[i]) cosdec = np.cos(np.pi/180*dec[i]) xabs.append(coinc*sindec) y.append(coinc*cosdec) if el < 0: xneg.append(coinc*sindec) yneg.append(coinc*cosdec) else: xpos.append(coinc*sindec) ypos.append(coinc*cosdec) else: coinc = 90-np.abs(el) sindec = np.sin(np.pi/180*dec[i]) cosdec = np.cos(np.pi/180*dec[i]) xabs.append(coinc*sindec) y.append(coinc*cosdec) if el < 0: xneg.append(coinc*sindec) yneg.append(coinc*cosdec) else: xpos.append(coinc*sindec) ypos.append(coinc*cosdec) xmax = np.ceil(max(xabs)) xmin = np.floor(min(xabs)) xdif = xmax-xmin ymax = np.ceil(max(y)) ymin = np.floor(min(y)) ydif = ymax-ymin maxdif = max([xdif,ydif]) mindec = np.floor(min(dec)) maxdec = np.ceil(max(dec)) mininc = np.floor(min(np.abs(inc))) maxinc = np.ceil(max(np.abs(inc))) if focus == 'data' and maxdif <= 10: # decs startdec = mindec decline,inclst = [],[] startinc = mininc incline = [] while startdec <= maxdec: xl = 90*np.sin(np.pi/180*startdec) yl = 90*np.cos(np.pi/180*startdec) decline.append([xl,yl,startdec]) startdec = startdec+1 while startinc <= maxinc: inclst.append(90-np.abs(startinc)) startinc = startinc+1 if focus == 'all': ax.set_xlim((-90,90)) ax.set_ylim((-90,90)) if focus == 'q1': ax.set_xlim((0,90)) ax.set_ylim((0,90)) if focus == 'q2': ax.set_xlim((-90,0)) ax.set_ylim((0,90)) if focus == 'q3': ax.set_xlim((-90,0)) ax.set_ylim((-90,0)) if focus == 'q4': ax.set_xlim((0,90)) ax.set_ylim((-90,0)) if focus == 'data': ax.set_xlim((xmin,xmax)) ax.set_ylim((ymin,ymax)) #ax.annotate('Test', xy=(1.2, 25.2)) ax.plot(xpos,ypos,'o',color=color, label=col[j][:labellimit]) ax.plot(xneg,yneg,'o',color='white') ax.annotate('60', xy=(0, 30)) ax.annotate('30', xy=(0, 60)) ax.annotate('0', xy=(0, 90)) ax.annotate('90', xy=(90, 0)) ax.annotate('180', xy=(0, -90)) ax.annotate('270', xy=(-90, 0)) if focus == 'data' and maxdif <= 10: for elem in decline: pline = plt.Line2D([0,elem[0]],[0,elem[1]],color=griddeccolor,linestyle='dotted') xa = elem[0]/elem[1]*((ymax - ymin)/2+ymin) ya = (ymax - ymin)/2 + ymin annotext = "D:%i" % int(elem[2]) ax.annotate(annotext, xy=(xa,ya)) fig.gca().add_artist(pline) for elem in inclst: pcirc = plt.Circle((0,0),elem,color=gridinccolor,fill=False,linestyle='dotted') xa = (xmax-xmin)/2 + xmin ya = sqrt((elem*elem)-(xa*xa)) annotext = "I:%i" % int(90-elem) ax.annotate(annotext, xy=(xa,ya)) fig.gca().add_artist(pcirc) if groups and legend: handles, labels = ax.get_legend_handles_labels() hl = sorted(zip(handles, labels),key=operator.itemgetter(1)) handles2, labels2 = zip(*hl) ax.legend(handles2, labels2, loc=legendposition) # 5. SAVE TO FILE (or show) if figure: return ax if outfile: path = os.path.split(outfile)[0] if not path == '': if not os.path.exists(path): os.makedirs(path) if fmt: fig.savefig(outfile, format=fmt, dpi=savedpi) else: fig.savefig(outfile, dpi=savedpi) elif noshow: return fig else: plt.show() def trim(self, starttime=None, endtime=None, newway=False): """ DEFINITION: Removing dates outside of range between start- and endtime. Returned stream has range starttime <= range < endtime. PARAMETERS: Variables: - starttime: (datetime/str) Start of period to trim with - endtime: (datetime/str) End of period to trim to Kwargs: - newway: (bool) Testing method for non-destructive trimming RETURNS: - stream: (DataStream object) Trimmed stream EXAMPLE: >>> data = data.trim(starttime, endtime) APPLICATION: """ if starttime and endtime: if self._testtime(starttime) > self._testtime(endtime): logger.error('Trim: Starttime (%s) is larger than endtime (%s).' % (starttime,endtime)) raise ValueError("Starttime is larger than endtime.") logger.info('Trim: Started from %s to %s' % (starttime,endtime)) ndtype = False if self.ndarray[0].size > 0: ndtype = True self.container = [LineStruct()] #-ndarrray--------------------------------------- if not newway: newarray = list(self.ndarray) # Converting array to list - better for append and other item function (because its not type sensitive) else: newstream = self.copy() newarray = list(newstream.ndarray) if starttime: starttime = self._testtime(starttime) if newarray[0].size > 0: # time column present idx = (np.abs(newarray[0].astype(float)-date2num(starttime))).argmin() # Trim should start at point >= starttime, so check: if newarray[0][idx] < date2num(starttime): idx += 1 for i in range(len(newarray)): if len(newarray[i]) >= idx: newarray[i] = newarray[i][idx:] if endtime: endtime = self._testtime(endtime) if newarray[0].size > 0: # time column present idx = 1 + (np.abs(newarray[0].astype(float)-date2num(endtime))).argmin() # get the nearest index to endtime and add 1 (to get lenghts correctly) #idx = 1+ (np.abs(self.ndarray[0]-date2num(endtime))).argmin() # get the nearest index to endtime if idx >= len(newarray[0]): ## prevent too large idx values idx = len(newarray[0]) - 1 while True: if not float(newarray[0][idx]) < date2num(endtime) and idx != 0: # Make sure that last value is smaller than endtime idx -= 1 else: break #self.ndarray = list(self.ndarray) for i in range(len(newarray)): length = len(newarray[i]) if length >= idx: newarray[i] = newarray[i][:idx+1] newarray = np.asarray(newarray,dtype=object) #-ndarrray--------------------------------------- #-------------------------------------------------- if newway and not ndtype: # Non-destructive trimming of stream trimmedstream = DataStream() trimmedstream.header = self.header starttime = self._testtime(starttime) endtime = self._testtime(endtime) stval = 0 for idx, elem in enumerate(self): newline = LineStruct() if not isnan(elem.time): if elem.time >= date2num(starttime) and elem.time < date2num(endtime): newline.time = elem.time for key in KEYLIST: exec('newline.'+key+' = elem.'+key) trimmedstream.add(newline) return trimmedstream #-------------------------------------------------- if not ndtype: stream = DataStream() if starttime: # check starttime input starttime = self._testtime(starttime) stval = 0 for idx, elem in enumerate(self): if not isnan(elem.time): if num2date(elem.time).replace(tzinfo=None) > starttime.replace(tzinfo=None): #stval = idx-1 # changed because of latex output stval = idx break if stval < 0: stval = 0 self.container = self.container[stval:] # remove data prior to endtime input if endtime: # check endtime input endtime = self._testtime(endtime) edval = len(self) for idx, elem in enumerate(self): if not isnan(elem.time): if num2date(elem.time).replace(tzinfo=None) > endtime.replace(tzinfo=None): edval = idx #edval = idx-1 break self.container = self.container[:edval] if ndtype: return DataStream(self.container,self.header,newarray) else: return DataStream(self.container,self.header,self.ndarray) def use_sectime(self, swap=False): """ DEFINITION: Drop primary time stamp and replace by secondary time stamp if available. If swap is True, then primary time stamp is moved to secondary column (and not dropped). """ if not 'sectime' in self._get_key_headers(): logger.warning("use_sectime: did not find secondary time column in the streams keylist - returning unmodified timeseries") return self # Non destructive stream = self.copy() pos = KEYLIST.index('sectime') tcol = stream.ndarray[0] stream = stream._move_column('sectime','time') if swap: stream = stream._put_column(tcol,'sectime') else: stream = stream._drop_column('sectime') return stream def variometercorrection(self, variopath, thedate, **kwargs): """ DEFINITION: ##### THS METHOD IS USELESS.... ##### Either select a certain time in absolute calculation (TODO) ##### or calculate daily means of basevalues which ar already corrected for ##### variotion --- leon 2016-03 Function to perform a variometercorrection of an absresult stream towards the given datetime using the given variometer stream. Returns a new absresult object with new datetime and corrected values APPLICATION: Useful to compare various absolute measurement e.g. form one day and analyse their differences after correcting them to a single spot in time. PARAMETERS: Variables: - variodata: (DataStream) data to be used for reduction - endtime: (datetime/str) End of period to trim to Kwargs: - funckeys: (list) keys of the variometerfile which are interpolated and used - nomagorient: (bool) indicates that variometerdata is NOT in magnetic coordinates (hez) - Method will then use header info in DataRotationAlpha and Beta RETURNS: - stream: (DataStream object) absolute stream - corrected EXAMPLE: >>> newabsdata = absdata.variometercorrection(starttime, endtime) APPLICATION: """ funckeys = kwargs.get('funckeys') offset = kwargs.get('offset') nomagorient = kwargs.get('nomagorient') if not offset: offset = 0.0 dateform = "%Y-%m-%d" def getfuncvals(variofunc,day): # Put the following to a function functime = (date2num(day)-variofunc[1])/(variofunc[2]-variofunc[1]) #print(functime, day, date2num(day),variofunc[1],variofunc[2]) refval = [] for key in funckeys: if key in ['x','y','z']: refval.append(variofunc[0]['f'+key](functime)) return refval # Return results within a new streamobject containing only # the average values and its uncertainties resultstream = DataStream() # Check for ndtype: ndtype = False if len(self.ndarray[0]) > 0: timecol = self.ndarray[0] ndtype = True typus = self.header.get('DataComponents') try: typus = typus.lower()[:3] except: typus = '' else: timecol = self._get_column('time') try: typus = self[0].typ[:3] except: typus = '' # 1 Convert absresult - idff to xyz ---- NOT NECESSARY # test stream type (xyz, idf or hdz?) # TODO add the end check whether streams are modified!!!!!!!!!! #print("Variometercorrection", typus) absstream = self.copy() absstream = absstream.removeduplicates() # 2 Convert datetime to number # check whether thedate is a time (then use this time every day) # or a full date datelist = [] try: # Check whether provided thedate is a date with time datelist = [self._testtime(thedate)] print("Variometercorrection: using correction to single provided datetime", datelist[0]) except: try: # Check whether provided thedate is only time tmpdatelst = [datetime.date(num2date(elem)) for elem in timecol] tmpdatelst = list(set(tmpdatelst)) dummydatedt = self._testtime('2016-11-22T'+thedate) datelist = [datetime.combine(elem, datetime.time(dummydatedt)) for elem in tmpdatelst] except: print("Variometercorrection: Could not interpret the provided date/time - aborting - used dateformat should be either 12:00:00 or 2016-11-22 12:00:00 - provided:", thedate) return self if len(datelist) == 1: print("Variometercorrection: Transforming all provided absolute data towards", datelist[0]) elif len(datelist) > 1: print("Variometercorrection: Correcting all absolute data of individual days towards time", datetime.strftime(datelist[0],"%H:%M:%S")) else: print("Variometercorrection: No correction date found - aborting") return self for day in datelist: print("Variocorrection: dealing with {}".format(day)) # 1. Select the appropriate values from self if len(datelist) == 1: usedabsdata = absstream st, et = absstream._find_t_limits() else: st = str(datetime.date(day)) et = str(datetime.date(day+timedelta(days=1))) usedndarray = absstream._select_timerange(starttime=st, endtime=et) usedabsdata = DataStream([LineStruct()],self.header,usedndarray) #print(date, num2date(usedabsdata.ndarray[0])) # 2. Read variation data for respective date vario = read(variopath, starttime=st, endtime=et) print("Variocorrection: loaded {} data points".format(vario.length()[0])) #print("Variocorrection: Please note - we are assuming that the provided variometerdata records the field in magnetic coordinates in nT (e.g. HEZ). In case of geographic xyz records one can activate a kwarg: takes provided rotation angle or (if not existing) the declination value of abs data") # 3. Check DataComponents: we need pure variation data comps = vario.header.get('DataComponents') try: comps = comps.lower()[:3] except: comps = '' if comps in ['xyz','idf','hdz']: # Data is already in geographic coordinates # Rotate back if not comps == 'xyz': vario = vario._convertstream(comps+'2xyz') nomagorient = True else: nomagorient = False # 4. TODO TEST! Eventually rotate the data to hez if nomagorient: rotaangle = vario.header.get('DataRotationAlpha') rotbangle = vario.header.get('DataRotationBeta') #print("Angles", rotaangle, rotbangle) try: rotaangle = float(rotaangle) rotbangle = float(rotbangle) except: pass if rotaangle in [None,np.nan,0.0]: print("Variocorrection: Did not find DataRotationAlpha in header assuming xyz and rotation by minus declination") rotaangle = -np.mean(usedabsdata.ndarray[2]) else: try: rotaangle = float(rotaangle) except: rotaangle = 0. if not rotbangle in [None,'Null',np.nan,0.0]: try: rotbangle = float(rotbangle) except: rotbangle = 0. print("Variocorrection: Rotating data by {a} and {b}".format(a=rotaangle,b=rotbangle)) vario = vario.rotation(alpha=rotaangle,beta=rotbangle) if vario.length()[0] > 1 and len(usedabsdata.ndarray[0]) > 0: variost, varioet = vario._find_t_limits() # 4. Interpolating variation data if not funckeys: funckeys = [] keys = vario._get_key_headers(numerical=True) for key in keys: if key in ['x','y','z','f']: funckeys.append(key) variofunc = vario.interpol(funckeys) refvals = getfuncvals(variofunc,day) for idx,abstime in enumerate(usedabsdata.ndarray[0]): variovalsatabstime = getfuncvals(variofunc,num2date(abstime)) diffs= np.asarray(refvals)-np.asarray(variovalsatabstime) """ if key == 'y': #refy = np.arctan2(np.asarray(list(ar)),np.asarray(list(arrayx)))*180./np.pi + function[0]['f'+key](functime) pass elif key in ['x','z']: pass else: pass #refvals = funcattime(variofunc,date) # 5. Get variofunc data for selected date and each usedabsdata #for abstime in usedabsdata.ndarray[0]: # if variost #absst, abset = usedabsdata._find_t_limits() """ """ if key == 'y': #indx = KEYLIST.index('x') #Hv + Hb; Db + atan2(y,H_corr) Zb + Zv #print type(self.ndarray[ind]), key, self.ndarray[ind] array[ind] = np.arctan2(np.asarray(list(ar)),np.asarray(list(arrayx)))*180./np.pi + function[0]['f'+key](functimearray) self.header['col-y'] = 'd' self.header['unit-col-y'] = 'deg' else: print("func2stream", function, function[0], function[0]['f'+key],functimearray) array[ind] = ar + function[0]['f'+key](functimearray) if key == 'x': # remember this for correct y determination arrayx = array[ind] """ """ for date in datelist: newvallists=[] for elem in absstream: # if elem.time == date: # if value existis in function: # calnewvalues and append to lists # calc means from lists # append means to new stream # 4 Test whether variostream covers the timerange between the abstream value(s) and the datetime if function[1] <= elem.time <= function[2] and function[1] <= newdate <= function[2]: valatorgtime = (elem.time-function[1])/(function[2]-function[1]) valatnewtime = (newdate-function[1])/(function[2]-function[1]) elem.time = newdate for key in funckeys: if not key in KEYLIST[1:15]: raise ValueError, "Column key not valid" fkey = 'f'+key if fkey in function[0]: try: orgval = float(function[0][fkey](valatorgtime)) newval = float(function[0][fkey](valatnewtime)) diff = orgval - newval except: logger.error("variometercorrection: error in assigning new values") return exec('elem.'+key+' = elem.'+key+' - diff') else: pass else: logger.warning("variometercorrection: Variometer stream does not cover the projected time range") pass # 5 Convert absresult - xyzf to idff absstream = absstream._convertstream('xyz2idf') return absstream """ def _write_format(self, format_type, filenamebegins, filenameends, coverage, dateformat,year): """ DEFINITION: Helper method to determine suggested write filenames. Reads format_type and header info of self -> returns specifications RETURNS: filenamebegins filenameends coverage dateformat """ # Preconfigure some fileformats - can be overwritten by keywords if format_type == 'IMF': dateformat = '%b%d%y' try: extension = (self.header.get('StationID','')).lower() except: extension = 'txt' filenameends = '.'+extension coverage = 'day' if format_type == 'IAF': try: filenamebegins = (self.header.get('StationIAGAcode','')).upper() except: filenamebegins = 'XXX' dateformat = '%y%b' extension = 'BIN' coverage = 'month' filenameends = '.'+extension if format_type == 'IYFV': if not filenameends or filenameends=='.cdf': head = self.header code = head.get('StationIAGAcode','') if not code == '': filenameends = '.'+code.upper() else: filenameends = '.XXX' if not filenamebegins: filenamebegins = 'YEARMEAN' dateformat = 'None' coverage = 'year' if format_type == 'IAGA': dateformat = '%Y%m%d' if not coverage == 'all': coverage = 'day' head = self.header if not filenamebegins: code = head.get('StationIAGAcode','') if code == '': code = head.get('StationID','') if not code == '': filenamebegins = code.lower()[:3] if not filenameends or filenameends=='.cdf': samprate = float(str(head.get('DataSamplingRate','0')).replace('sec','').strip()) plevel = head.get('DataPublicationLevel',0) if int(samprate) == 1: middle = 'sec' elif int(samprate) == 60: middle = 'min' elif int(samprate) == 3600: middle = 'hou' else: middle = 'lol' if plevel == 4: fed = 'd'+middle+'.'+middle elif plevel == 3: fed = 'q'+middle+'.'+middle elif plevel == 2: fed = 'p'+middle+'.'+middle else: fed = 'v'+middle+'.'+middle filenameends = fed if format_type == 'CSV': if not filenameends: filenameends = '.csv' if format_type == 'IMAGCDF': begin = (self.header.get('StationIAGAcode','')).lower() if begin == '': begin = (self.header.get('StationID','XYZ')).lower() publevel = str(self.header.get('DataPublicationLevel',0)) samprate = float(str(self.header.get('DataSamplingRate','0')).replace('sec','').strip()) if coverage == 'year': dfor = '%Y' elif coverage == 'month': dfor = '%Y%m' else: dfor = '%Y%m%d' if int(samprate) == 1: dateformat = dfor middle = '_000000_PT1S_' elif int(samprate) == 60: dateformat = dfor middle = '_0000_PT1M_' elif int(samprate) == 3600: dateformat = dfor middle = '_00_PT1H_' elif int(samprate) == 86400: dateformat = dfor middle = '_PT1D_' elif int(samprate) > 30000000: dateformat = '%Y' middle = '_PT1Y_' elif int(samprate) > 2400000: dateformat = '%Y%m' middle = '_PT1M_' else: dateformat = '%Y%m%d' middle = 'unknown' filenamebegins = begin+'_' filenameends = middle+publevel+'.cdf' if format_type == 'BLV': if len(self.ndarray[0]) > 0: lt = max(self.ndarray[0].astype(float)) else: lt = self[-1].time if year: blvyear = str(year) else: blvyear = datetime.strftime(num2date(lt).replace(tzinfo=None),'%Y') try: filenamebegins = (self.header['StationID']).upper()+blvyear except: filenamebegins = 'XXX'+blvyear filenameends = '.blv' coverage = 'all' if not format_type: format_type = 'PYCDF' if not dateformat: dateformat = '%Y-%m-%d' # or %Y-%m-%dT%H or %Y-%m or %Y or %Y if not coverage: coverage = 'day' #timedelta(days=1) if not filenamebegins: filenamebegins = '' if not filenameends and not filenameends == '': # Extension for cdf files is automatically attached if format_type in ['PYCDF','IMAGCDF']: filenameends = '' else: filenameends = '.txt' return format_type, filenamebegins, filenameends, coverage, dateformat def write(self, filepath, compression=5, **kwargs): """ DEFINITION: Code for simple application: write Stream to a file. PARAMETERS: Variables: - filepath: (str) Providing path/filename for saving. Kwargs: - coverage: (str/timedelta) day files or hour or month or year or all - default day. 'month','year','all',etc., otherwise timedelta object - dateformat: (str) outformat of date in filename (e.g. "%Y-%m-%d" -> "2011-11-22". - filenamebegins: (str) providing the begin of savename (e.g. "WIK_"). - filenameends: (str) providing the end of savename (e.g. ".min"). - format_type: (str) Which format - default pystr. Current supported formats: PYSTR, PYCDF, IAGA, WDC, DIDD, PMAG1, PMAG2, DTU1, GDASA1, RMRCS, AUTODIF_FREAD, USBLOG, CR800, LATEX - keys: (list) Keys to write to file. - mode: (str) Mode for handling existing files/data in files. Options: append, overwrite, replace, skip [- period: (str) Supports hour, day, month, year, all - default day.] [--> Where is this?] - wformat: (str) outputformat. SPECIFIC FORMAT INSTRUCTIONS: format_type='IAGA' ------------------ *General: The meta information provided within the header of each IAGA file is automatically generated from the header information provided along with the following keys (define by stream.header[key]): - Obligatory: StationInstitution, StationName, StationIAGAcode (or StationID), DataElevation, DataSensorOrientation, DataDigitalSampling - Optional: SensorID, DataPublicationDate, DataComments, DataConversion, StationK9, SecondarySensorID (F sensor), StationMeans (used for 'Approx H') - Header input "IntervalType": can either be provided by using key 'DataIntervalType' or is automatically created from DataSamplingRate. Filter details as contained in DataSamplingFilter are added to the commentary part - Header input "Geodetic Longitude and Latitude": - defined with keys 'DataAcquisitionLatitude','DataAcquisitionLongitude' - if an EPSG code is provided in key 'DataLocationReference' this code is used to convert Lat and Long into the WGS84 system e.g. stream.header['DataLocationReference'] = 'M34, EPSG: ' *Specific parameters: - useg (Bool) if F is available, and G not yet caluclated: calculate G (deltaF) and use it within the IAGA output file *Example: format_type='IMF' ------------------ *Specific parameters: - version (str) file version - gin (gin) information node code - datatype (str) R: reported, A: adjusted, Q: quasi-definit, D: definite - kvals (Datastream) contains K value for iaf storage - comment (string) some comment, currently used in IYFV - kind (string) one of 'A' (all), 'Q' quiet days, 'D' disturbed days, currently used in IYFV format_type='IMAGCDF' ------------------ *General: - Header input "Geodetic Longitude and Latitude": see format_type='IAGA' *Specific parameters: - addflags (BOOL) add flags to IMAGCDF output if True format_type='BLV' ------------------ *Specific parameters: - absinfo (str) parameter of DataAbsInfo - fitfunc (str) fit function for baselinefit - fitdegree - knotstep - extradays - year (int) year - meanh (float) annual mean of H component - meanf (float) annual mean of F component - deltaF (float) given deltaF value between pier and f position - diff (DataStream) diff (deltaF) between vario and scalar RETURNS: - ... (bool) True if successful. EXAMPLE: >>> stream.write('/home/user/data', format_type='IAGA') >>> stringio = stream.write('StringIO', format_type='IAGA') APPLICATION: """ format_type = kwargs.get('format_type') filenamebegins = kwargs.get('filenamebegins') filenameends = kwargs.get('filenameends') dateformat = kwargs.get('dateformat') coverage = kwargs.get('coverage') mode = kwargs.get('mode') #period = kwargs.get('period') # TODO #offsets = kwargs.get('offsets') # retired? TODO keys = kwargs.get('keys') absinfo = kwargs.get('absinfo') fitfunc = kwargs.get('fitfunc') fitdegree = kwargs.get('fitdegree') knotstep = kwargs.get('knotstep') extradays = kwargs.get('extradays') year = kwargs.get('year') meanh = kwargs.get('meanh') meanf = kwargs.get('meanf') deltaF = kwargs.get('deltaF') diff = kwargs.get('diff') baseparam = kwargs.get('baseparam') version = kwargs.get('version') gin = kwargs.get('gin') datatype = kwargs.get('datatype') kvals = kwargs.get('kvals') kind = kwargs.get('kind') comment = kwargs.get('comment') useg = kwargs.get('useg') skipcompression = kwargs.get('skipcompression') debug = kwargs.get('debug') addflags = kwargs.get('addflags') headonly = kwargs.get('headonly') success = True #compression: provide compression factor for CDF data: 0 no compression, 9 high compression t1 = datetime.utcnow() if not format_type in PYMAG_SUPPORTED_FORMATS: if not format_type: format_type = 'PYSTR' else: logger.warning('write: Output format not supported.') return False else: if not 'w' in PYMAG_SUPPORTED_FORMATS[format_type][0]: logger.warning('write: Selected format does not support write methods.') return False format_type, filenamebegins, filenameends, coverage, dateformat = self._write_format(format_type, filenamebegins, filenameends, coverage, dateformat, year) if not mode: mode= 'overwrite' if len(self) < 1 and len(self.ndarray[0]) < 1: logger.error('write: Stream is empty!') raise Exception("Can't write an empty stream to file!") ndtype = False if len(self.ndarray[0]) > 0: self.ndarray[0] = self.ndarray[0].astype(float) # remove all data from array where time is not numeric #1. get indicies of nonnumerics in ndarray[0] nonnumlist = np.asarray([idx for idx,elem in enumerate(self.ndarray[0]) if np.isnan(elem)]) #2. delete them if len(nonnumlist) > 0: print("write: Found NaNs in time column - deleting them", nonnumlist) print(self.ndarray[0]) for idx, elem in enumerate(self.ndarray): self.ndarray[idx] = np.delete(self.ndarray[idx],nonnumlist) starttime = datetime.strptime(datetime.strftime(num2date(float(self.ndarray[0][0])).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') try: lasttime = num2date(float(self.ndarray[0][-1])).replace(tzinfo=None) except: lasttime = num2date(float(self.ndarray[0][-2])).replace(tzinfo=None) ndtype = True else: starttime = datetime.strptime(datetime.strftime(num2date(self[0].time).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') lasttime = num2date(self[-1].time).replace(tzinfo=None) t2 = datetime.utcnow() # divide stream in parts according to coverage and save them newst = DataStream() if coverage == 'month': #starttime = datetime.strptime(datetime.strftime(num2date(self[0].time).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') cmonth = int(datetime.strftime(starttime,'%m')) + 1 cyear = int(datetime.strftime(starttime,'%Y')) if cmonth == 13: cmonth = 1 cyear = cyear + 1 monthstr = str(cyear) + '-' + str(cmonth) + '-' + '1T00:00:00' endtime = datetime.strptime(monthstr,'%Y-%m-%dT%H:%M:%S') while starttime < lasttime: if ndtype: lst = [] ndarray=self._select_timerange(starttime=starttime, endtime=endtime) else: lst = [elem for elem in self if starttime <= num2date(elem.time).replace(tzinfo=None) < endtime] ndarray = np.asarray([]) newst = DataStream(lst,self.header,ndarray) filename = filenamebegins + datetime.strftime(starttime,dateformat) + filenameends # remove any eventually existing null byte filename = filename.replace('\x00','') if len(lst) > 0 or len(ndarray[0]) > 0: success = writeFormat(newst, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,kvals=kvals,skipcompression=skipcompression,compression=compression, addflags=addflags) starttime = endtime # get next endtime cmonth = int(datetime.strftime(starttime,'%m')) + 1 cyear = int(datetime.strftime(starttime,'%Y')) if cmonth == 13: cmonth = 1 cyear = cyear + 1 monthstr = str(cyear) + '-' + str(cmonth) + '-' + '1T00:00:00' endtime = datetime.strptime(monthstr,'%Y-%m-%dT%H:%M:%S') elif coverage == 'year': #print ("write: Saving yearly data") cyear = int(datetime.strftime(starttime,'%Y')) cyear = cyear + 1 yearstr = str(cyear) + '-01-01T00:00:00' endtime = datetime.strptime(yearstr,'%Y-%m-%dT%H:%M:%S') while starttime < lasttime: ndarray=self._select_timerange(starttime=starttime, endtime=endtime) newst = DataStream([LineStruct()],self.header,ndarray) if not dateformat == 'None': dat = datetime.strftime(starttime,dateformat) else: dat = '' filename = filenamebegins + dat + filenameends # remove any eventually existing null byte filename = filename.replace('\x00','') if len(ndarray[0]) > 0: success = writeFormat(newst, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,kvals=kvals,kind=kind,comment=comment,skipcompression=skipcompression,compression=compression, addflags=addflags) # get next endtime starttime = endtime cyear = cyear + 1 yearstr = str(cyear) + '-01-01T00:00:00' endtime = datetime.strptime(yearstr,'%Y-%m-%dT%H:%M:%S') elif not coverage == 'all': #starttime = datetime.strptime(datetime.strftime(num2date(self[0].time).replace(tzinfo=None),'%Y-%m-%d'),'%Y-%m-%d') if coverage == 'hour': cov = timedelta(hours=1) else: cov = timedelta(days=1) dailystream = self.copy() maxidx = -1 endtime = starttime + cov while starttime < lasttime: #lst = [elem for elem in self if starttime <= num2date(elem.time).replace(tzinfo=None) < endtime] #newst = DataStream(lst,self.header) t3 = datetime.utcnow() #print "write - writing day:", t3 if ndtype: lst = [] # non-destructive #print "write: start and end", starttime, endtime #print "write", dailystream.length() #ndarray=self._select_timerange(starttime=starttime, endtime=endtime) #print starttime, endtime, coverage #print "Maxidx", maxidx ndarray=dailystream._select_timerange(starttime=starttime, endtime=endtime, maxidx=maxidx) #print "write", len(ndarray), len(ndarray[0]) if len(ndarray[0]) > 0: #maxidx = len(ndarray[0])*2 ## That does not work for few seconds of first day and full coverage of all other days dailystream.ndarray = np.asarray([array[(len(ndarray[0])-1):] for array in dailystream.ndarray]) #print dailystream.length() #print len(ndarray), len(ndarray[0]), len(ndarray[1]), len(ndarray[3]) else: lst = [elem for elem in self if starttime <= num2date(elem.time).replace(tzinfo=None) < endtime] ndarray = np.asarray([np.asarray([]) for key in KEYLIST]) t4 = datetime.utcnow() #print "write - selecting time range needs:", t4-t3 newst = DataStream(lst,self.header,ndarray) filename = str(filenamebegins) + str(datetime.strftime(starttime,dateformat)) + str(filenameends) # remove any eventually existing null byte filename = filename.replace('\x00','') if format_type == 'IMF': filename = filename.upper() if debug: print ("Writing data:", os.path.join(filepath,filename)) if len(lst) > 0 or ndtype: if len(newst.ndarray[0]) > 0 or len(newst) > 1: logger.info('write: writing %s' % filename) #print("Here", num2date(newst.ndarray[0][0]), newst.ndarray) success = writeFormat(newst, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,version=version,gin=gin,datatype=datatype, useg=useg,skipcompression=skipcompression,compression=compression, addflags=addflags,headonly=headonly,kind=kind) starttime = endtime endtime = endtime + cov t5 = datetime.utcnow() #print "write - written:", t5-t3 #print "write - End:", t5 else: filename = filenamebegins + filenameends # remove any eventually existing null byte filename = filename.replace('\x00','') if debug: print ("Writing file:", filename) success = writeFormat(self, os.path.join(filepath,filename),format_type,mode=mode,keys=keys,absinfo=absinfo,fitfunc=fitfunc,fitdegree=fitdegree, knotstep=knotstep,meanh=meanh,meanf=meanf,deltaF=deltaF,diff=diff,baseparam=baseparam, year=year,extradays=extradays,skipcompression=skipcompression,compression=compression, addflags=addflags,headonly=headonly,kind=kind) return success def idf2xyz(self,**kwargs): """ DEFINITION: Converts inclination, declination, intensity (idf) data to xyz (i,d in 0.00000 deg (or gon)), f in nT Working only for ndarrays PARAMETERS: optional keywords: unit (string) can be deg or gon """ unit = kwargs.get('unit') keys = kwargs.get('keys') if not len(self.ndarray[0]) > 0: print("idf2xyz: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("idf2xyz: invalid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. dc = self.ndarray[indy].astype(float)*np.pi/(180.*ang_fac) ic = self.ndarray[indx].astype(float)*np.pi/(180.*ang_fac) self.ndarray[indx] = self.ndarray[indz].astype(float)*np.cos(dc)*np.cos(ic) self.ndarray[indy] = self.ndarray[indz].astype(float)*np.sin(dc)*np.cos(ic) self.ndarray[indz] = self.ndarray[indz].astype(float)*np.sin(ic) self.header['col-x'] = 'X' self.header['col-y'] = 'Y' self.header['col-z'] = 'Z' self.header['unit-col-x'] = 'nT' self.header['unit-col-y'] = 'nT' self.header['unit-col-z'] = 'nT' self.header['DataComponents'] = self.header['DataComponents'].replace('IDF','XYZ') return self def xyz2idf(self,**kwargs): """ DEFINITION: Converts x,y,z (all in nT) to inclination, declination, intensity (idf) (i,d in 0.00000 deg (or gon)), f in nT Working only for ndarrays PARAMETERS: optional keywords: unit (string) can be deg or gon """ keys = kwargs.get('keys') if not len(self.ndarray[0]) > 0: print("xyz2idf: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("xyz2idf: invalid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. h = np.sqrt(self.ndarray[indx].astype(float)**2 + self.ndarray[indy].astype(float)**2) i = (180.*ang_fac)/np.pi * np.arctan2(self.ndarray[indz].astype(float), h) d = (180.*ang_fac)/np.pi * np.arctan2(self.ndarray[indy].astype(float), self.ndarray[indx].astype(float)) f = np.sqrt(self.ndarray[indx].astype(float)**2+self.ndarray[indy].astype(float)**2+self.ndarray[indz].astype(float)**2) self.ndarray[indx] = i self.ndarray[indy] = d self.ndarray[indz] = f self.header['col-x'] = 'I' self.header['col-y'] = 'D' self.header['col-z'] = 'F' self.header['unit-col-x'] = 'deg' self.header['unit-col-y'] = 'deg' self.header['unit-col-z'] = 'nT' self.header['DataComponents'] = self.header['DataComponents'].replace('XYZ','IDF') return self def xyz2hdz(self,**kwargs): """ DEFINITION: Converts x,y,z (all in nT) to horizontal, declination, z (hdz) (d in 0.00000 deg (or gon)), h,z in nT Working only for ndarrays PARAMETERS: optional keywords: unit (string) can be deg or gon """ keys = kwargs.get('keys') if not len(self.ndarray[0]) > 0: print("xyz2hdz: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("xyz2hdz: invalid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. h = np.sqrt(self.ndarray[indx].astype(float)**2 + self.ndarray[indy].astype(float)**2) d = (180.*ang_fac) / np.pi * np.arctan2(self.ndarray[indy].astype(float), self.ndarray[indx].astype(float)) self.ndarray[indx] = h self.ndarray[indy] = d #dH = dX*X/sqrt(X^2 + Y^2) + dY*Y/sqrt(X^2 + Y^2) #dD = 180/Pi*(dY*X/(X^2 + Y^2) - dX*Y/(X^2 + Y^2)) self.header['col-x'] = 'H' self.header['col-y'] = 'D' self.header['unit-col-x'] = 'nT' self.header['unit-col-y'] = 'deg' self.header['DataComponents'] = self.header['DataComponents'].replace('XYZ','HDZ') return self def hdz2xyz(self,**kwargs): """ DEFINITION: Converts h,d,z (h,z in nT, d in deg) to xyz Working only for ndarrays PARAMETERS: optional keywords: unit (string) can be deg or gon keys (list) list of three keys which hold h,d,z values """ keys = kwargs.get('keys') if not len(self.ndarray[0]) > 0: print("hdz2xyz: no data found") if not keys: keys = ['x','y','z'] if not len(keys) == 3: print("hdz2xyz: invalid keys provided") indx = KEYLIST.index(keys[0]) indy = KEYLIST.index(keys[1]) indz = KEYLIST.index(keys[2]) unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. dc = self.ndarray[indy].astype(float)*np.pi/(180.*ang_fac) prevxcol = self.ndarray[indx].astype(float) self.ndarray[indx] = prevxcol * (np.cos(dc)) self.ndarray[indy] = prevxcol * (np.sin(dc)) #self.ndarray[indx] = self.ndarray[indx].astype(float) /np.sqrt((np.tan(dc))**2 + 1) #self.ndarray[indy] = np.sqrt(self.ndarray[indx].astype(float)**2 - xtmp**2) #print self.ndarray[indy] #self.ndarray[indx] = xtmp self.header['col-x'] = 'X' self.header['col-y'] = 'Y' self.header['col-z'] = 'Z' self.header['unit-col-x'] = 'nT' self.header['unit-col-y'] = 'nT' self.header['unit-col-z'] = 'nT' self.header['DataComponents'] = self.header['DataComponents'].replace('HDZ','XYZ') return DataStream(self,self.header,self.ndarray) class PyMagLog(object): """ Looging class for warning messages and analysis steps. logger and warnings are lists of strings. They contain full text information for file and screen output """ def __init__(self, logger=[], warnings=[], process=[], proc_count=0): self.logger = logger self.warnings = warnings self.process = process self.proc_count = proc_count def __getitem__(self, key): return self.key def addwarn(self, warnmsg): self.warnings.append(warnmsg) def addlog(self, logmsg): self.logger.append(logmsg) def addpro(self, promsg): self.process.append(promsg) def clearpro(self): process = [] def clearlog(self): logger = [] def clearwarn(self): warnings = [] def addcount(self, num, maxnum): """ creates an integer number relative to maxnum ranging from 0 to 100 assuming num starting at zero """ self.proc_count = int(np.round(num*100/maxnum)) def clearcount(self): self.proc_count = 0 def _removeduplicates(self,content): return list(set(content)) """ def sendLogByMail(self,loglist,**kwargs): smtpserver = kwargs.get('smtpserver') sender = kwargs.get('sender') user = kwargs.get('user') pwd = <PASSWORD>('<PASSWORD>') destination = kwargs.get('destination') subject = kwargs.get('subject') if not smtpserver: smtpserver = 'smtp.internet.at' if not sender: sender = '<EMAIL>' if not destination: destination = ['<EMAIL>'] if not user: user = "FrauMusterfrau" if not pwd: pwd = "<PASSWORD>" if not subject: subject= 'MagPy Log from %s' % datetime.utcnow() # typical values for text_subtype are plain, html, xml text_subtype = 'plain' content = '\n'.join(''.join(line) for line in loglist) try: msg = MIMEText(content, text_subtype) msg['Subject']= subject msg['From'] = sender # some SMTP servers will do this automatically, not all smtp = SMTP() smtp.set_debuglevel(False) smtp.connect(smtpserver, 587) smtp.ehlo() smtp.starttls() smtp.ehlo() smtp.login(user, pwd) try: smtp.sendmail(sender, destination, msg.as_string()) finally: smtp.close() except Exception as exc: raise ValueError( "mail failed; %s" % str(exc) ) # give a error message """ def combineWarnLog(self,warning,log): comlst = ['Warning:'] comlst.extend(self._removeduplicates(warning)) comlst.extend(['Non-critical info:']) comlst.extend(self._removeduplicates(log)) return comlst class LineStruct(object): def __init__(self, time=float('nan'), x=float('nan'), y=float('nan'), z=float('nan'), f=float('nan'), dx=float('nan'), dy=float('nan'), dz=float('nan'), df=float('nan'), t1=float('nan'), t2=float('nan'), var1=float('nan'), var2=float('nan'), var3=float('nan'), var4=float('nan'), var5=float('nan'), str1='-', str2='-', str3='-', str4='-', flag='0000000000000000-', comment='-', typ="xyzf", sectime=float('nan')): #def __init__(self): #- at the end of flag is important to be recognized as string """ self.time=float('nan') self.x=float('nan') self.y=float('nan') self.z=float('nan') self.f=float('nan') self.dx=float('nan') self.dy=float('nan') self.dz=float('nan') self.df=float('nan') self.t1=float('nan') self.t2=float('nan') self.var1=float('nan') self.var2=float('nan') self.var3=float('nan') self.var4=float('nan') self.var5=float('nan') self.str1='' self.str2='' self.str3='' self.str4='' self.flag='0000000000000000-' self.comment='-' self.typ="xyzf" self.sectime=float('nan') """ self.time = time self.x = x self.y = y self.z = z self.f = f self.dx = dx self.dy = dy self.dz = dz self.df = df self.t1 = t1 self.t2 = t2 self.var1 = var1 self.var2 = var2 self.var3 = var3 self.var4 = var4 self.var5 = var5 self.str1 = str1 self.str2 = str2 self.str3 = str3 self.str4 = str4 self.flag = flag self.comment = comment self.typ = typ self.sectime = sectime def __repr__(self): return repr((self.time, self.x, self.y, self.z, self.f, self.dx, self.dy, self.dz, self.df, self.t1, self.t2, self.var1, self.var2, self.var3, self.var4, self.var5, self.str1, self.str2, self.str3, self.str4, self.flag, self.comment, self.typ)) def __getitem__(self, index): key = KEYLIST[index] return getattr(self, key) def __setitem__(self, index, value): key = KEYLIST[index] setattr(self, key.lower(), value) def idf2xyz(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. dc = self.y*np.pi/(180.*ang_fac) ic = self.x*np.pi/(180.*ang_fac) self.x = self.z*np.cos(dc)*np.cos(ic) self.y = self.z*np.sin(dc)*np.cos(ic) self.z = self.z*np.sin(ic) return self def xyz2idf(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. h = np.sqrt(self.x**2 + self.y**2) i = (180.*ang_fac)/np.pi * math.atan2(self.z, h) d = (180.*ang_fac)/np.pi * math.atan2(self.y, self.x) f = np.sqrt(self.x**2+self.y**2+self.z**2) self.x = i self.y = d self.z = f return self def xyz2hdz(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. h = np.sqrt(self.x**2 + self.y**2) d = (180.*ang_fac) / np.pi * math.atan2(self.y, self.x) self.x = h self.y = d #dH = dX*X/sqrt(X^2 + Y^2) + dY*Y/sqrt(X^2 + Y^2) #dD = 180/Pi*(dY*X/(X^2 + Y^2) - dX*Y/(X^2 + Y^2)) return self def hdz2xyz(self,**kwargs): """ keyword: unit: (string) can be deg or gon """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. dc = self.y*np.pi/(180.*ang_fac) xtmp = self.x /np.sqrt((np.tan(dc))**2 + 1) self.y = np.sqrt(self.x**2 - xtmp**2) self.x = xtmp return self def rotation(self,alpha=None,beta=None,**kwargs): """ Rotation matrix for ratating x,y,z to new coordinate system xs,ys,zs using angles alpha and beta alpha is the horizontal rotation in degree, beta the vertical """ unit = kwargs.get('unit') if unit == 'gon': ang_fac = 400./360. elif unit == 'rad': ang_fac = np.pi/180. else: ang_fac = 1. xval = self.x yval = self.y zval = self.z ra = ni.pi*alpha/(180.*ang_fac) rb = ni.pi*beta/(180.*ang_fac) xs = self.x*np.cos(rb)*np.cos(ra)-self.y*np.sin(ra)+self.z*np.sin(rb)*np.cos(ra) ys = self.x*np.cos(rb)*np.sin(ra)+self.y*np.cos(ra)+self.z*np.sin(rb)*np.sin(ra) zs = self.x*np.sin(rb)+self.z*np.cos(rb) xs2 = xval*np.cos(rb)*np.cos(ra)-yval*np.sin(ra)+zval*np.sin(rb)*np.cos(ra) ys2 = xval*np.cos(rb)*np.sin(ra)+yval*np.cos(ra)+zval*np.sin(rb)*np.sin(ra) zs2 = xval*np.sin(rb)+zval*np.cos(rb) self.x = xs self.y = ys self.z = zs return self # Unused classes """ class ColStruct(object): def __init__(self,length, time=float('nan'), x=float('nan'), y=float('nan'), z=float('nan'), f=float('nan'), dx=float('nan'), dy=float('nan'), dz=float('nan'), df=float('nan'), t1=float('nan'), t2=float('nan'), var1=float('nan'), var2=float('nan'), var3=float('nan'), var4=float('nan'), var5=float('nan'), str1='-', str2='-', str3='-', str4='-', flag='0000000000000000-', comment='-', typ="xyzf", sectime=float('nan')): #"" Not used so far. Maybe useful for Speed optimization: Change the whole thing to column operations - at the end of flag is important to be recognized as string for column initialization use a length parameter and "lenght*[float('nan')]" or "lenght*['-']"to initialize nan-values #"" self.length = length self.time = length*[time] self.x = length*[x] self.y = length*[y] self.z = length*[z] self.f = length*[f] self.dx = length*[dx] self.dy = length*[dy] self.dz = length*[dz] self.df = length*[df] self.t1 = length*[t1] self.t2 = length*[t2] self.var1 = length*[var1] self.var2 = length*[var2] self.var3 = length*[var3] self.var4 = length*[var4] self.var5 = length*[var5] self.str1 = length*[str1] self.str2 = length*[str2] self.str3 = length*[str3] self.str4 = length*[str4] self.flag = length*[flag] self.comment = length*[comment] self.typ = length*[typ] self.sectime = length*[sectime] def __repr__(self): return repr((self.time, self.x, self.y, self.z, self.f, self.dx, self.dy, self.dz, self.df, self.t1, self.t2, self.var1, self.var2, self.var3, self.var4, self.var5, self.str1, self.str2, self.str3, self.str4, self.flag, self.comment, self.typ, self.sectime)) """ # ------------------- # Global functions of the stream file # ------------------- def coordinatetransform(u,v,w,kind): """ DESCRIPTION: Transforms given values and returns [d,i,h,x,y,z,f] if successful, False if not. Parameter "kind" defines the type of provided values APPLICATION: list = coordinatetransform(meanx,meany,meanz,'xyz') """ if not kind in ['xyz','hdz','dhz','idf']: return [0]*7 if kind == 'xyz': h = np.sqrt(u**2 + v**2) i = (180.)/np.pi * np.arctan2(w, h) d = (180.)/np.pi * np.arctan2(v, u) f = np.sqrt(u**2+v**2+w**2) return [d,i,h,u,v,w,f] elif kind == 'hdz': dc = v*np.pi/(180.) xtmp = u /np.sqrt((np.tan(dc))**2 + 1) y = np.sqrt(u**2 - xtmp**2) x = xtmp f = np.sqrt(x**2+y**2+w**2) i = (180.)/np.pi * np.arctan2(w, u) return [v,i,u,x,y,w,f] elif kind == 'dhz': dc = u*np.pi/(180.) xtmp = v /np.sqrt((np.tan(dc))**2 + 1) y = np.sqrt(v**2 - xtmp**2) x = xtmp f = np.sqrt(h**2+w**2) i = (180.)/np.pi * np.arctan2(w, v) return [u,i,v,x,y,w,f] return [0]*7 def isNumber(s): """ Test whether s is a number """ try: float(s) return True except ValueError: return False def find_nearest(array,value): """ Find the nearest element within an array """ # Eventually faster solution (minimal) #idx = np.searchsorted(array, value, side="left") #if math.fabs(value - array[idx-1]) < math.fabs(value - array[idx]): # return array[idx-1], idx-1 #else: # return array[idx], idx idx = (np.abs(array-value)).argmin() return array[idx], idx def ceil_dt(dt,seconds): """ DESCRIPTION: Function to round time to the next time step as given by its seconds minute: 60 sec quater hour: 900 sec hour: 3600 sec PARAMETER: dt: (datetime object) seconds: (integer) USAGE: >>>print ceil_dt(datetime(2014,01,01,14,12,04),60) >>>2014-01-01 14:13:00 >>>print ceil_dt(datetime(2014,01,01,14,12,04),3600) >>>2014-01-01 15:00:00 >>>print ceil_dt(datetime(2014,01,01,14,7,0),60) >>>2014-01-01 14:07:00 """ #how many secs have passed this hour nsecs = dt.minute*60+dt.second+dt.microsecond*1e-6 if nsecs % seconds: delta = (nsecs//seconds)*seconds+seconds-nsecs return dt + timedelta(seconds=delta) else: return dt # ################## # read/write functions # ################## def read(path_or_url=None, dataformat=None, headonly=False, **kwargs): """ DEFINITION: The read functions tries to open the selected files. Calls on function _read() for help. PARAMETERS: Variables: - path_or_url: (str) Path to data files in form: a) c:\my\data\* b) c:\my\data\thefile.txt c) /home/data/* d) /home/data/thefile.txt e) ftp://server/directory/ f) ftp://server/directory/thefile.txt g) http://www.thepage.at/file.tab - headonly: (?) ??? Kwargs: - dataformat: (str) Format of data file. Works as auto-detection. - disableproxy: (bool) If True, will use urllib2.install_opener() - endtime: (str/datetime object) Description. - starttime: (str/datetime object) Description. Format specific kwargs: IAF: - resolution: (str) can be either 'day','hour','minute'(default) or 'k' RETURNS: - stream: (DataStream object) Stream containing data in file under path_or_url. EXAMPLE: >>> stream = read('/srv/archive/WIC/LEMI025/LEMI025_2014-05-05.bin') OR >>> stream = read('http://www.swpc.noaa.gov/ftpdir/lists/ace/20140507_ace_sis_5m.txt') APPLICATION: """ starttime = kwargs.get('starttime') endtime = kwargs.get('endtime') debugmode = kwargs.get('debugmode') disableproxy = kwargs.get('disableproxy') skipsorting = kwargs.get('skipsorting') keylist = kwargs.get('keylist') # for PYBIN debug = kwargs.get('debug') if disableproxy: proxy_handler = ProxyHandler( {} ) opener = build_opener(proxy_handler) # install this opener install_opener(opener) # 1. No path if not path_or_url: logger.error("read: File not specified.") raise Exception("No path given for data in read function!") # 2. Create DataStream st = DataStream([],{},np.array([[] for ke in KEYLIST])) # 3. Read data if not isinstance(path_or_url, basestring): # not a string - we assume a file-like object pass """ elif path_or_url.startswith("DB:"): # a database table if logger.error("read: File not specified.") raise Exception("No path given for data in read function!") pathname = path_or_url for file in iglob(pathname): stp = DataStream([],{},np.array([[] for ke in KEYLIST])) stp = _read(file, dataformat, headonly, **kwargs) glob """ elif "://" in path_or_url: # some URL # extract extension if any logger.info("read: Found URL to read at {}".format(path_or_url)) content = urlopen(path_or_url).read() content = content.decode('utf-8') if content.find('<pre>') > -1: """ check whether content is coming with some html tags """ def get_between(s,first,last): start = s.index(first) + len(first) end = s.index(last, start ) return s[start:end] content_t = get_between(content, '<pre>', '</pre>') cleanr = re.compile('<.*?>') content = re.sub(cleanr, '', content_t) #print ("HERE", path_or_url) if debugmode: print(urlopen(path_or_url).info()) if path_or_url[-1] == '/': # directory string = content.decode('utf-8') for line in string.split("\n"): if len(line) > 1: filename = (line.strip().split()[-1]) if debugmode: print(filename) content = urlopen(path_or_url+filename).read() suffix = '.'+os.path.basename(path_or_url).partition('.')[2] or '.tmp' #date = os.path.basename(path_or_url).partition('.')[0][-8:] #date = re.findall(r'\d+',os.path.basename(path_or_url).partition('.')[0]) date = os.path.basename(path_or_url).partition('.')[0] # append the full filename to the temporary file fname = date+suffix fname = fname.strip('?').strip(':') ## Necessary for windows #fh = NamedTemporaryFile(suffix=date+suffix,delete=False) fh = NamedTemporaryFile(suffix=fname,delete=False) print (fh.name, suffix) fh.write(content) fh.close() stp = _read(fh.name, dataformat, headonly, **kwargs) if len(stp) > 0: # important - otherwise header is going to be deleted st.extend(stp.container,stp.header,stp.ndarray) os.remove(fh.name) else: # TODO !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! # check whether content is a single file or e.g. a ftp-directory # currently only single files are supported # ToDo !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! suffix = '.'+os.path.basename(path_or_url).partition('.')[2] or '.tmp' #date = os.path.basename(path_or_url).partition('.')[0][-8:] #date = re.findall(r'\d+',os.path.basename(path_or_url).partition('.')[0])[0] date = os.path.basename(path_or_url).partition('.')[0] # append the full filename to the temporary file fname = date+suffix fname = fname.replace('?','').replace(':','') ## Necessary for windows fh = NamedTemporaryFile(suffix=fname,delete=False,mode='w+') fh.write(content) fh.close() st = _read(fh.name, dataformat, headonly, **kwargs) os.remove(fh.name) else: # some file name pathname = path_or_url for filename in iglob(pathname): getfile = True theday = extractDateFromString(filename) #print (" Extracted date:", theday) # Doesnt work for IAF files try: if starttime: if not theday[-1] >= datetime.date(st._testtime(starttime)): getfile = False if endtime: if not theday[0] <= datetime.date(st._testtime(endtime)): getfile = False except: # Date format not recognised. Read all files logger.info("read: Unable to detect date string in filename. Reading all files...") #logger.warning("read: filename: {}, theday: {}".format(filename,theday)) getfile = True if getfile: if filename.endswith('.gz') or filename.endswith('.GZ'): ## Added gz support to read IMO compressed data directly - future option might include tarfiles import gzip print ("Found zipped file (gz) ... unpacking") fname = os.path.split(filename)[1] fname = fname.strip('.gz') with NamedTemporaryFile(suffix=fname,delete=False) as fh: shutil.copyfileobj(gzip.open(filename), fh) filename = fh.name if filename.endswith('.zip') or filename.endswith('.ZIP'): ## Added gz support to read IMO compressed data directly - future option might include tarfiles from zipfile import ZipFile print ("Found zipped file (zip) ... unpacking") with ZipFile(filename) as myzip: fname = myzip.namelist()[0] with NamedTemporaryFile(suffix=fname,delete=False) as fh: shutil.copyfileobj(myzip.open(fname), fh) filename = fh.name stp = DataStream([],{},np.array([[] for ke in KEYLIST])) try: stp = _read(filename, dataformat, headonly, **kwargs) except: stp = DataStream([],{},np.array([[] for ke in KEYLIST])) logger.warning("read: File {} could not be read. Skipping ...".format(filename)) if (len(stp) > 0 and not np.isnan(stp[0].time)) or len(stp.ndarray[0]) > 0: # important - otherwise header is going to be deleted st.extend(stp.container,stp.header,stp.ndarray) #del stp if st.length()[0] == 0: # try to give more specific information why the stream is empty if has_magic(pathname) and not glob(pathname): logger.error("read: No file matching file pattern: %s" % pathname) raise Exception("Cannot read non-existent file!") elif not has_magic(pathname) and not os.path.isfile(pathname): logger.error("read: No such file or directory: %s" % pathname) raise Exception("Cannot read non-existent file!") # Only raise error if no starttime/endtime has been set. This # will return an empty stream if the user chose a time window with # no data in it. # XXX: Might cause problems if the data is faulty and the user # set starttime/endtime. Not sure what to do in this case. elif not 'starttime' in kwargs and not 'endtime' in kwargs: logger.error("read: Cannot open file/files: %s" % pathname) elif 'starttime' in kwargs or 'endtime' in kwargs: logger.error("read: Cannot read data. Probably no data available in the time range provided!") raise Exception("No data available in time range") else: logger.error("read: Unknown error occurred. No data in stream!") raise Exception("Unknown error occurred during reading. No data in stream!") if headonly and (starttime or endtime): msg = "read: Keyword headonly cannot be combined with starttime or endtime." logger.error(msg) # Sort the input data regarding time if not skipsorting: st = st.sorting() # eventually trim data if starttime: st = st.trim(starttime=starttime) if endtime: st = st.trim(endtime=endtime) ### Define some general header information TODO - This is done already in some format libs - clean up st.header['DataSamplingRate'] = float("{0:.2f}".format(st.samplingrate())) return st #@uncompressFile def _read(filename, dataformat=None, headonly=False, **kwargs): """ Reads a single file into a MagPy DataStream object. Internal function only. """ debug = kwargs.get('debug') stream = DataStream([],{}) format_type = None foundapproptiate = False if not dataformat: # auto detect format - go through all known formats in given sort order for format_type in PYMAG_SUPPORTED_FORMATS: # check format if debug: print("_read: Testing format: {} ...".format(format_type)) if debug: logger.info("_read: Testing format: {} ...".format(format_type)) #try: # readsucc = isFormat(filename, format_type) #except: # readsucc = False if isFormat(filename, format_type): if debug: logger.info(" -- found: {}".format(format_type)) print (" -- found: {}".format(format_type)) foundapproptiate = True break if not foundapproptiate: temp = open(filename, 'rt').readline() if temp.startswith('# MagPy Absolutes'): logger.warning("_read: You apparently tried to open a DI object - please use the absoluteAnalysis method") else: logger.error("_read: Could not identify a suitable data format") return DataStream([LineStruct()],{},np.asarray([[] for el in KEYLIST])) else: # format given via argument dataformat = dataformat.upper() try: formats = [el for el in PYMAG_SUPPORTED_FORMATS if el == dataformat] format_type = formats[0] except IndexError: msg = "Format \"%s\" is not supported. Supported types: %s" logger.error(msg % (dataformat, ', '.join(PYMAG_SUPPORTED_FORMATS))) raise TypeError(msg % (dataformat, ', '.join(PYMAG_SUPPORTED_FORMATS))) """ try: # search readFormat for given entry point readFormat = load_entry_point(format_ep.dist.key, 'obspy.plugin.waveform.%s' % (format_ep.name), 'readFormat') except ImportError: msg = "Format \"%s\" is not supported. Supported types: %s" raise TypeError(msg % (format_ep.name, ', '.join(WAVEFORM_ENTRY_POINTS))) """ stream = readFormat(filename, format_type, headonly=headonly, **kwargs) return stream def saveflags(mylist=None,path=None, overwrite=False): """ DEFINITION: Save list e.g. flaglist to file using pickle. PARAMETERS: Variables: - path: (str) Path to data files in form: RETURNS: - True if succesful otherwise False EXAMPLE: >>> saveflags(flaglist,'/my/path/myfile.pkl') """ print("Saving flaglist ...") if not mylist: print("error 1") return False if not path: path = 'myfile.pkl' if not overwrite: existflag = loadflags(path) existflag.extend(mylist) mylist = existflag if not os.path.exists(os.path.dirname(path)): os.makedirs(os.path.dirname(path)) if path.endswith('.json'): print(" -- using json format ") try: import json def dateconv(d): # Converter to serialize datetime objects in json if isinstance(d,datetime): return d.__str__() # Convert mylist to a dictionary mydic = {} # get a list of unique sensorid sid = [elem[5] for elem in mylist] sid = list(set(sid)) for s in sid: slist = [elem[0:5]+elem[6:] for elem in mylist if elem[5] == s] mydic[s] = slist ## Dictionary looks like {SensorID:[[t1,t2,xxx,xxx,],[x...]]} with open(path,'w',encoding='utf-8') as file: file.write(unicode(json.dumps(mydic,default=dateconv))) print("saveflags: list saved to a json file: {}".format(path)) return True except: return False else: print(" -- using pickle") try: # TODO: check whether package is already loaded from pickle import dump dump(mylist,open(path,'wb')) print("saveflags: list saved to {}".format(path)) return True except: return False def loadflags(path=None,sensorid=None,begin=None, end=None): """ DEFINITION: Load list e.g. flaglist from file using pickle. PARAMETERS: Variables: - path: (str) Path to data files in form: - begin: (datetime) - end: (datetime) RETURNS: - list (e.g. flaglist) EXAMPLE: >>> loadflags('/my/path/myfile.pkl') """ if not path: return [] if path.endswith('.json'): try: import json print ("Reading a json style flaglist...") def dateparser(dct): # Convert dates in dictionary to datetime objects for (key,value) in dct.items(): for i,line in enumerate(value): for j,elem in enumerate(line): if str(elem).count('-') + str(elem).count(':') == 4: try: try: value[i][j] = datetime.strptime(elem,"%Y-%m-%d %H:%M:%S.%f") except: value[i][j] = datetime.strptime(elem,"%Y-%m-%d %H:%M:%S") except: pass dct[key] = value return dct if os.path.isfile(path): with open(path,'r') as file: mydic = json.load(file,object_hook=dateparser) if sensorid: mylist = mydic.get(sensorid,'') do = [el.insert(5,sensorid) for el in mylist] else: mylist = [] for s in mydic: ml = mydic[s] do = [el.insert(5,s) for el in ml] mylist.extend(mydic[s]) if begin: mylist = [el for el in mylist if el[1] > begin] if end: mylist = [el for el in mylist if el[0] < end] return mylist else: print ("Flagfile not yet existing ...") return [] except: return [] else: try: from pickle import load as pklload mylist = pklload(open(path,"rb")) print("loadflags: list {a} successfully loaded, found {b} inputs".format(a=path,b=len(mylist))) if sensorid: print(" - extracting data for sensor {}".format(sensorid)) mylist = [el for el in mylist if el[5] == sensorid] if begin: mylist = [el for el in mylist if el[1] > begin] if end: mylist = [el for el in mylist if el[0] < end] #print(" -> remaining flags: {b}".format(b=len(mylist))) return mylist except: return [] def joinStreams(stream_a,stream_b, **kwargs): """ DEFINITION: Copy two streams together eventually replacing already existing time steps. Data of stream_a will replace data of stream_b APPLICATION combinedstream = joinStreams(stream_a,stream_b) """ logger.info('joinStreams: Start joining at %s.' % str(datetime.now())) # Check stream type and eventually convert them to ndarrays # -------------------------------------- ndtype = False if len(stream_a.ndarray[0]) > 0: # Using ndarray and eventually convert stream_b to ndarray as well ndtype = True if not len(stream_b.ndarray[0]) > 0: stream_b = stream_b.linestruct2ndarray() if not len(stream_b.ndarray[0]) > 0: return stream_a elif len(stream_b.ndarray[0]) > 0: ndtype = True stream_a = stream_a.linestruct2ndarray() if not len(stream_a.ndarray[0]) > 0: return stream_b else: ndtype = True stream_a = stream_a.linestruct2ndarray() stream_b = stream_b.linestruct2ndarray() if not len(stream_a.ndarray[0]) > 0 and not len(stream_b.ndarray[0]) > 0: logger.error('subtractStreams: stream(s) empty - aborting subtraction.') return stream_a # non-destructive # -------------------------------------- sa = stream_a.copy() sb = stream_b.copy() # Get indicies of timesteps of stream_b of which identical times are existing in stream_a-> delelte those lines # -------------------------------------- # IMPORTANT: If two streams with different keys should be combined then "merge" is the method of choice # NEW: shape problems when removing data -> now use removeduplicates at the end # SHOULD WORK (already tested) as remove duplicate will keep the last value and drop earlier occurences #indofb = np.nonzero(np.in1d(sb.ndarray[0], sa.ndarray[0]))[0] #for idx,elem in enumerate(sb.ndarray): # if len(sb.ndarray[idx]) > 0: # sb.ndarray[idx] = np.delete(sb.ndarray[idx],indofb) # Now add stream_a to stream_b - regard for eventually missing column data # -------------------------------------- array = [[] for key in KEYLIST] for idx,elem in enumerate(sb.ndarray): if len(sa.ndarray[idx]) > 0 and len(sb.ndarray[idx]) > 0: array[idx] = np.concatenate((sa.ndarray[idx],sb.ndarray[idx])) elif not len(sa.ndarray[idx]) > 0 and len(sb.ndarray[idx]) > 0: if idx < len(NUMKEYLIST): fill = float('nan') else: fill = '-' arraya = np.asarray([fill]*len(sa.ndarray[0])) array[idx] = np.concatenate((arraya,sb.ndarray[idx])) elif len(sa.ndarray[idx]) > 0 and not len(sb.ndarray[idx]) > 0: if idx < len(NUMKEYLIST): fill = float('nan') else: fill = '-' arrayb = np.asarray([fill]*len(sb.ndarray[0])) array[idx] = np.concatenate((sa.ndarray[idx],arrayb)) else: array[idx] = np.asarray([]) stream = DataStream([LineStruct()],sa.header,np.asarray(array,dtype=object)) stream = stream.removeduplicates() return stream.sorting() def appendStreams(streamlist): """ DESCRIPTION: Appends contents of streamlist and returns a single new stream. Duplicates are removed and the new stream is sorted. """ array = [[] for key in KEYLIST] for idx,key in enumerate(KEYLIST): # Get tuple of array arlist = [] for stream in streamlist: if len(stream.ndarray[idx]) > 0: array[idx].extend(stream.ndarray[idx]) stream = DataStream([LineStruct()],streamlist[0].header,np.asarray(array).astype(object)) if len(stream.ndarray[0]) > 0: stream = stream.removeduplicates() stream = stream.sorting() return stream else: return DataStream([LineStruct()],streamlist[0].header,np.asarray([np.asarray([]) for key in KEYLIST])) def mergeStreams(stream_a, stream_b, **kwargs): """ DEFINITION: Combine the contents of two data streams realtive to stream_a. Basically three modes are possible: 1. Insert data from stream_b into stream_a based on timesteps of stream_a - if keys are provided only these specific columns are inserted into a - default: if data is existing in stream_a only nans are replaced here flags (4) can be set and a comment "inserted from SensorID" is added - eventually use get_gaps to identfy missing timesteps in stream_a before 2. Replace - same as insert but here all existing time series data is replaced by corresponding data from stream_b 3. Drop - drops the whole column from stream_a and fills it with stream_b data The streams need to overlapp, base stream is stream_a of which the time range is not modfified. If you want to extend this stream by new data use the extend method. 1. replace data from specific columns of stream_a with data from stream_b. - requires keys 2. fill gaps in stream_a data with stream_b data without replacing any data. - extend = True PARAMETERS: Variables: - stream_a (DataStream object) main stream - stream_b (DataStream object) this stream is merged into stream_a Kwargs: - addall: (bool) Add all elements from stream_b - extend: (bool) Time range of stream b is eventually added to stream a. Default False. If extend = true => any existing date which is not present in stream_a will be filled by stream_b - mode: (string) 'insert' or 'replace' or 'drop'. drop removes stream_a column, replace will change values no matter what, insert will only replace nan's (default) - keys: (list) List of keys to add from stream_b into stream_a. - flag: (bool) if true, a flag will be added to each merged line (default: flagid = 4, comment = "keys ... added from sensorid b"). - comment: (str) Define comment to stream_b data in stream_a. - replace: (bool) Allows existing stream_a values to be replaced by stream_b ones. RETURNS: - Datastream(stream_a): (DataStream) DataStream object. EXAMPLE: >>> # Joining two datasets together: >>> alldata = mergeStreams(lemidata, gsmdata, keys=['f']) # f of gsm will be added to lemi # inserting missing values from another stream >>> new_gsm = mergeStreams(gsm1, gsm2, keys=['f'], mode='insert') # all missing values (nans) of gsm1 will be filled by gsm2 values (if existing) APPLICATION: """ # old (LineStruct) too be removed addall = kwargs.get('addall') replace = kwargs.get('replace') extend = kwargs.get('extend') # new mode = kwargs.get('mode') flag = kwargs.get('flag') keys = kwargs.get('keys') comment = kwargs.get('comment') flagid = kwargs.get('flagid') if not mode: mode = 'insert' # other possibilities: replace, ... if not keys: keys = stream_b._get_key_headers() # Defining default comment # -------------------------------------- headera = stream_a.header headerb = stream_b.header try: sensidb = headerb['SensorID'] except: sensidb = 'stream_b' # Better: create a flaglist and apply stream.flag(flaglist) with flag 4 if not comment: comment = 'keys %s added from %s' % (','.join(keys), sensidb) if not flagid: flagid = 4 fllst = [] # flaglist logger.info('mergeStreams: Start mergings at %s.' % str(datetime.now())) # Check stream type and eventually convert them to ndarrays # -------------------------------------- ndtype = False if len(stream_a.ndarray[0]) > 0: # Using ndarray and eventually convert stream_b to ndarray as well ndtype = True if not len(stream_b.ndarray[0]) > 0: stream_b = stream_b.linestruct2ndarray() elif len(stream_b.ndarray[0]) > 0: ndtype = True stream_a = stream_a.linestruct2ndarray() else: ndtype = True stream_a = stream_a.linestruct2ndarray() stream_b = stream_b.linestruct2ndarray() if not len(stream_a.ndarray[0]) > 0 and len(stream_b.ndarray[0]) > 0: logger.error('subtractStreams: stream(s) empty - aborting subtraction.') return stream_a # non-destructive # -------------------------------------- sa = stream_a.copy() sb = stream_b.copy() sa = sa.removeduplicates() sb = sb.removeduplicates() # Sampling rates # -------------------------------------- sampratea = sa.samplingrate() samprateb = sb.samplingrate() minsamprate = min(sampratea,samprateb) if ndtype: timea = sa.ndarray[0] else: timea = sa._get_column('time') # truncate b to time range of a # -------------------------------------- try: sb = sb.trim(starttime=num2date(timea[0]).replace(tzinfo=None), endtime=num2date(timea[-1]).replace(tzinfo=None)+timedelta(seconds=samprateb),newway=True) except: print("mergeStreams: stream_a and stream_b are apparently not overlapping - returning stream_a") return stream_a if ndtype: timeb = sb.ndarray[0] else: timeb = sb._get_column('time') # keeping a - changed by leon 10/2015 """ # truncate a to range of b # -------------------------------------- try: sa = sa.trim(starttime=num2date(timeb[0]).replace(tzinfo=None), endtime=num2date(timeb[-1]).replace(tzinfo=None)+timedelta(seconds=sampratea),newway=True) except: print "mergeStreams: stream_a and stream_b are apparently not overlapping - returning stream_a" return stream_a # redo timea calc after trimming # -------------------------------------- if ndtype: timea = sa.ndarray[0] else: timea = sa._get_column('time') """ # testing overlapp # -------------------------------------- if not len(sb) > 0: print("subtractStreams: stream_a and stream_b are not overlapping - returning stream_a") return stream_a timea = maskNAN(timea) timeb = maskNAN(timeb) orgkeys = stream_a._get_key_headers() # master header # -------------------------------------- header = sa.header # just add the merged sensorid header['SecondarySensorID'] = sensidb ## Speed up of unequal timesteps - limit search range # - search range small (fracratio high) if t_limits are similar and data is periodic # - search range large (fracratio small) if t_limits are similar and data is periodic # - fracratio = 1 means that the full stream_b data set is searched # - fracratio = 20 means that +-5percent of stream_b are searched arround expected index #print("mergeStream", sa.length(), sb.length(), sa._find_t_limits(), sb._find_t_limits()) fracratio = 2 # modify if start and endtime are different speedup = True if speedup and ndtype: ast, aet = sa._find_t_limits() bst, bet = sb._find_t_limits() uncert = (date2num(aet)-date2num(ast))*0.01 #print ("Merge speedup", uncert, ast, aet, bst, bet) if not bst < ast+timedelta(minutes=uncert*24*60): print ("Merge: Starttime of stream_b too large") for indx,key in enumerate(KEYLIST): if key == 'time': ### Changes from 2019-01-15: modified axis - originally working fine, however except for saggitarius #sb.ndarray[0] = np.append(np.asarray([date2num(ast)]), sb.ndarray[0],1) sb.ndarray[0] = np.append(np.asarray([date2num(ast)]), sb.ndarray[0]) elif key == 'sectime' or key in NUMKEYLIST: if not len(sb.ndarray[indx]) == 0: #sb.ndarray[indx] = np.append(np.asarray([np.nan]),sb.ndarray[indx],1) sb.ndarray[indx] = np.append(np.asarray([np.nan]),sb.ndarray[indx]) else: if not len(sb.ndarray[indx]) == 0: #sb.ndarray[indx] = np.append(np.asarray(['']),sb.ndarray[indx],1) sb.ndarray[indx] = np.append(np.asarray(['']),sb.ndarray[indx]) if not bet > aet-timedelta(minutes=uncert*24*60): print ("Merge: Endtime of stream_b too small") ### Move that to merge?? for indx,key in enumerate(KEYLIST): if key == 'time': #sb.ndarray[0] = np.append(sb.ndarray[0], np.asarray([date2num(aet)]),1) sb.ndarray[0] = np.append(sb.ndarray[0], np.asarray([date2num(aet)])) elif key == 'sectime' or key in NUMKEYLIST: if not len(sb.ndarray[indx]) == 0: #sb.ndarray[indx] = np.append(sb.ndarray[indx], np.asarray([np.nan]),1) sb.ndarray[indx] = np.append(sb.ndarray[indx], np.asarray([np.nan])) else: if not len(sb.ndarray[indx]) == 0: #sb.ndarray[indx] = np.append(sb.ndarray[indx], np.asarray(['']),1) sb.ndarray[indx] = np.append(sb.ndarray[indx], np.asarray([''])) #st,et = sb._find_t_limits() #print ("Merge", st, et, sb.length()) sb = sb.get_gaps() fracratio = 40 # modify if start and endtime are different timeb = sb.ndarray[0] timeb = maskNAN(timeb) abratio = len(timea)/float(len(timeb)) dcnt = int(len(timeb)/fracratio) #print ("Merge:", abratio, dcnt, len(timeb)) timea = np.round(timea, decimals=9) timeb = np.round(timeb, decimals=9) if ndtype: array = [[] for key in KEYLIST] # Init array with keys from stream_a for key in orgkeys: keyind = KEYLIST.index(key) array[keyind] = sa.ndarray[keyind] indtib = np.nonzero(np.in1d(timeb,timea))[0] # If equal elements occur in time columns if len(indtib) > int(0.5*len(timeb)): print("mergeStreams: Found identical timesteps - using simple merge") # get tb times for all matching indicies #print("merge", indtib, len(indtib), len(timea), len(timeb), np.argsort(timea), np.argsort(timeb)) tb = np.asarray([timeb[ind] for ind in indtib]) # Get indicies of stream_a of which times are present in matching tbs indtia = np.nonzero(np.in1d(timea,tb))[0] #print("mergeStreams", tb, indtib, indtia, timea,timeb, len(indtib), len(indtia)) if len(indtia) == len(indtib): nanind = [] for key in keys: keyind = KEYLIST.index(key) #array[keyind] = sa.ndarray[keyind] vala, valb = [], [] if len(sb.ndarray[keyind]) > 0: # stream_b values are existing #print("Found sb values", key) valb = [sb.ndarray[keyind][ind] for ind in indtib] if len(sa.ndarray[keyind]) > 0: # stream_b values are existing vala = [sa.ndarray[keyind][ind] for ind in indtia] ### Change by leon in 10/2015 if len(array[keyind]) > 0 and not mode=='drop': # values are present pass else: if key in NUMKEYLIST: array[keyind] = np.asarray([np.nan] *len(timea)) else: array[keyind] = np.asarray([''] *len(timea)) try: header['col-'+key] = sb.header['col-'+key] header['unit-col-'+key] = sb.header['unit-col-'+key] except: print ("mergeStreams: warning when assigning header values to column %s - missing head" % key) if len(sb.ndarray[keyind]) > 0: # stream_b values are existing for i,ind in enumerate(indtia): if key in NUMKEYLIST: tester = np.isnan(array[keyind][ind]) else: tester = False if array[keyind][ind] == '': tester = True #print ("Merge3", tester) if mode == 'insert': if tester: array[keyind][ind] = valb[i] else: if len(vala) > 0: array[keyind][ind] = vala[i] elif mode == 'replace': if not np.isnan(valb[i]): array[keyind][ind] = valb[i] else: if len(vala) > 0: array[keyind][ind] = vala[i] else: array[keyind][ind] = valb[i] if flag: ttt = num2date(array[0][ind]) fllst.append([ttt,ttt,key,flagid,comment]) array[0] = np.asarray(sa.ndarray[0]) array = np.asarray(array) else: print("mergeStreams: Did not find identical timesteps - linearily interpolating stream b...") print("- Please note: this method needs considerably longer.") print("- Only data within 1/2 the sampling rate distance of stream_a timesteps is used.") print("- Put in the larger (higher resolution) stream as stream_a,") print("- otherwise you might wait an endless amount of time.") # interpolate b # TODO here it is necessary to limit the stream to numerical keys #sb.ndarray = np.asarray([col for idx,col in enumerate(sb.ndarray) if KEYLIST[idx] in NUMKEYLIST]) print(" a) starting interpolation of stream_b") mst = datetime.utcnow() function = sb.interpol(keys) met = datetime.utcnow() print(" -> needed {}".format(met-mst)) # Get a list of indicies for which timeb values are # in the vicintiy of a (within half of samplingrate) dti = (minsamprate/24./3600.) print(" b) getting indicies of stream_a with stream_b values in the vicinity") mst = datetime.utcnow() #indtia = [idx for idx, el in enumerate(timea) if np.min(np.abs(timeb-el))/dti <= 1.] # This selcetion requires most of the time indtia = [] ### New and faster way by limiting the search range in stream_b by a factor of 10 check = [int(len(timea)*(100-el)/100.) for el in range(99,1,-10)] lentimeb = len(timeb) for idx, el in enumerate(timea): cst = int(idx/abratio-dcnt) if cst<=0: cst = 0 cet = int(idx/abratio+dcnt) if cet>=lentimeb: cet=lentimeb if np.min(np.abs(timeb[cst:cet]-el)/(dti)) <= 0.5: indtia.append(idx) if idx in check: print (" -> finished {} percent".format(idx/float(len(timea))*100.)) indtia = np.asarray(indtia) met = datetime.utcnow() print(" -> needed {}".format(met-mst)) # limit time range to valued covered by the interpolation function #print len(indtia), len(timeb), np.asarray(indtia) indtia = [elem for elem in indtia if function[1] < timea[elem] < function[2]] #t2temp = datetime.utcnow() #print "Timediff %s" % str(t2temp-t1temp) #print len(indtia), len(timeb), np.asarray(indtia) #print function[1], sa.ndarray[0][indtia[0]], sa.ndarray[0][indtia[-1]], function[2] print(" c) extracting interpolated values of stream_b") mst = datetime.utcnow() if len(function) > 0: for key in keys: keyind = KEYLIST.index(key) #print key, keyind #print len(sa.ndarray[keyind]),len(sb.ndarray[keyind]), np.asarray(indtia) vala, valb = [], [] if len(sb.ndarray[keyind]) > 0: # and key in function: valb = [float(function[0]['f'+key]((sa.ndarray[0][ind]-function[1])/(function[2]-function[1]))) for ind in indtia] if len(sa.ndarray[keyind]) > 0: # and key in function: vala = [sa.ndarray[keyind][ind] for ind in indtia] if len(array[keyind]) > 0 and not mode=='drop': # values are present pass else: if key in NUMKEYLIST: array[keyind] = np.asarray([np.nan] *len(timea)) else: array[keyind] = np.asarray([''] *len(timea)) try: header['col-'+key] = sb.header['col-'+key] header['unit-col-'+key] = sb.header['unit-col-'+key] except: print ("mergeStreams: warning when assigning header values to column %s- missing head" % key) for i,ind in enumerate(indtia): if key in NUMKEYLIST: tester = isnan(array[keyind][ind]) else: tester = False if array[keyind][ind] == '': tester = True if mode == 'insert': if tester: array[keyind][ind] = valb[i] else: if len(vala) > 0: array[keyind][ind] = vala[i] elif mode == 'replace': if not np.isnan(valb[i]): array[keyind][ind] = valb[i] else: if len(vala) > 0: array[keyind][ind] = vala[i] else: array[keyind][ind] = valb[i] """ if mode == 'insert' and tester: array[keyind][ind] = valb[i] elif mode == 'replace': array[keyind][ind] = valb[i] """ if flag: ttt = num2date(array[0][ind]) fllst.append([ttt,ttt,key,flagid,comment]) met = datetime.utcnow() print(" -> needed {} for {}".format(met-mst,key)) array[0] = np.asarray(sa.ndarray[0]) array = np.asarray(array) #try: # header['SensorID'] = sa.header['SensorID']+'-'+sb.header['SensorID'] #except: # pass return DataStream([LineStruct()],header,array) sta = list(stream_a) stb = list(stream_b) if addall: logger.info('mergeStreams: Adding streams together not regarding for timeconstraints of data.') if ndtype: for idx,elem in enumerate(stream_a.ndarray): ndarray = stream_a.ndarray if len(elem) == 0 and len(stream_b.ndarray[idx]) > 0: # print add nan's of len_a to stream a # then append stream b pass elif len(elem) > 0 and len(stream_b.ndarray[idx]) == 0: # print add nan's of len_b to stream a pass elif len(elem) == 0 and len(stream_b.ndarray[idx]) == 0: # do nothing pass else: #len(elem) > 0 and len(stream_b.ndarray[idx]) > 0: # append b to a pass newsta = DataStream(sta, headera, ndarray) else: for elem in stream_b: sta.append(elem) newsta = DataStream(sta, headera, stream_a.ndarray) for elem in headerb: try: headera[elem] ha = True except: ha = False if headerb[elem] and not ha: newsta.header[elem] = headerb[elem] elif headerb[elem] and ha: logger.warning("mergeStreams: headers both have keys for %s. Headers may be incorrect." % elem) newsta.sorting() return newsta elif extend: logger.info('mergeStreams: Extending stream a with data from b.') for elem in stream_b: if not elem.time in timea: sta.append(elem) newsta = DataStream(sta, headera) for elem in headerb: try: headera[elem] ha = True except: ha = False if headerb[elem] and not ha: newsta.header[elem] = headerb[elem] elif headerb[elem] and ha: logger.warning("mergeStreams: headers both have keys for %s. Headers may be incorrect." % elem) newsta.sorting() return newsta else: # interpolate stream_b # changed the following trim section to prevent removal of first input in trim method if stream_b[0].time == np.min(timea): sb = stream_b.trim(endtime=np.max(timea)) else: sb = stream_b.trim(starttime=np.min(timea), endtime=np.max(timea)) timeb = sb._get_column('time') timeb = maskNAN(timeb) function = sb.interpol(keys) taprev = 0 for elem in sb: foundina = find_nearest(timea,elem.time) pos = foundina[1] ta = foundina[0] if (ta > taprev) and (np.min(timeb) <= ta <= np.max(timeb)): taprev = ta functime = (ta-function[1])/(function[2]-function[1]) for key in keys: if not key in KEYLIST[1:16]: logger.error('mergeStreams: Column key (%s) not valid.' % key) #keyval = getattr(stream_a[pos], key)# should be much better exec('keyval = stream_a[pos].'+key) fkey = 'f'+key if fkey in function[0] and (isnan(keyval) or not stream_a._is_number(keyval)): newval = function[0][fkey](functime) exec('stream_a['+str(pos)+'].'+key+' = float(newval) + offset') exec('stream_a['+str(pos)+'].comment = comment') ## Put flag 4 into the merged data if keyposition <= 8 flagposlst = [i for i,el in enumerate(FLAGKEYLIST) if el == key] try: flagpos = flagposlst[0] fllist = list(stream_a[pos].flag) fllist[flagpos] = '4' stream_a[pos].flag=''.join(fllist) except: pass elif fkey in function[0] and not isnan(keyval) and replace == True: newval = function[0][fkey](functime) exec('stream_a['+str(pos)+'].'+key+' = float(newval) + offset') exec('stream_a['+str(pos)+'].comment = comment') ## Put flag 4 into the merged data if keyposition <= 8 flagposlst = [i for i,el in enumerate(FLAGKEYLIST) if el == key] try: flagpos = flagposlst[0] fllist = list(stream_a[pos].flag) fllist[flagpos] = '4' stream_a[pos].flag=''.join(fllist) except: pass logger.info('mergeStreams: Mergings finished at %s ' % str(datetime.now())) return DataStream(stream_a, headera) def dms2d(dms): """ DESCRIPTION: converts a string with degree:minutes:seconds to degree.decimals VARIBALES: dms (string) like -0:37:23 or 23:23 """ # 1. get sign sign = dms[0] multi = 1 if sign == '-': multi = -1 dms = dms[1:] dmsar = dms.split(':') if len(dmsar) > 3: print("Could not interpret dms") return 0.0 val=[] for i in range(0,3): try: val.append(float(dmsar[i])) except: val.append(0.0) d = multi*(val[0]+val[1]/60.+val[2]/3600.) return d def find_offset(stream1, stream2, guess_low=-60., guess_high=60., deltat_step=0.1,log_chi=False,**kwargs): ''' DEFINITION: Uses least-squares method for a rough estimate of the offset in the time axis of two different streams. Both streams must contain the same key, e.g. 'f'. GENTLE WARNING: This method is FAR FROM OPTIMISED. Interpolation brings in errors, *however* does allow for a more exact result. PARAMETERS: Variables: - stream1: (DataStream object) First stream to compare. - stream2: (DataStream object) Second stream to compare. Kwargs: - deltat_step: (float) Time value in s to iterate over. Accuracy is higher with smaller values. - guess_low: (float) Low guess for offset in s. Function will iterate from here. - guess_high: (float) High guess for offset in s. Function will iterate till here. - log_chi: (bool) If True, log chi values. - plot: (bool) Filename of plot to save chi-sq values to, e.g. "chisq.png" RETURNS: - t_offset: (float) The offset (in seconds) calculated by least-squares method of stream_b. EXAMPLE: >>> offset = find_offset(gdas_data, pos_data, guess=-30.,deltat_min = 0.1) APPLICATION: Challenge in this function: --> Needs to be able to compare two non harmonic signals with different sampling rates and a presumed time offset. The time offset may be smaller than the sampling rate itself. How to go about it: 1. Take arrays of key to compare 2. Resample arrays to same sampling period (or interpolate) 3. Determine offset between two arrays """ ''' # 1. Define starting parameters: N_iter = 0. # Interpolate the function with the smaller sample period. # Should hopefully lower error factors. sp1 = stream1.get_sampling_period() sp2 = stream2.get_sampling_period() #if sp1 > sp2: if sp1 < sp2: stream_a = stream1 stream_b = stream2 main_a = True #elif sp1 < sp2: elif sp1 > sp2: stream_a = stream2 stream_b = stream1 main_a = False else: stream_a = stream1 stream_b = stream2 main_a = True # Important for least-squares method. Streams must have same length. timeb = stream_b._get_column('time') stime = np.min(timeb) etime = np.max(timeb) timespan = guess_high-guess_low # TODO: Remove this trim function. It's destructive. stream_a = stream_a.trim(starttime=num2date(stime).replace(tzinfo=None)+timedelta(seconds=timespan*2), endtime=num2date(etime).replace(tzinfo=None)+timedelta(seconds=-timespan*2)) mean_a = stream_a.mean('f') mean_b = stream_b.mean('f') difference = mean_a - mean_b # Interpolate one stream: # Note: higher errors with lower degree of interpolation. Highest degree possible is desirable, linear terrible. try: int_data = stream_b.interpol(['f'],kind='cubic') except: try: logger.warning("find_offset: Not enough memory for cubic spline. Attempting quadratic...") int_data = stream_b.interpol(['f'],kind='quadratic') except: logger.error("find_offset: Too much data! Cannot interpolate function with high enough accuracy.") return "nan" int_func = int_data[0]['ff'] int_min = date2num(num2date(int_data[1])+timedelta(milliseconds=guess_low*1000.)) int_max = date2num(num2date(int_data[2])+timedelta(milliseconds=guess_low*1000.)) timea = stream_a._get_column('f') datarray_base = np.zeros((len(stream_a))) count = 0 # 5. Create array of delta-f with offset times: for elem in stream_a: time = stream_a[count].time if time > int_min and time < int_max: functime = (time - int_min)/(int_max - int_min) tempval = stream_a[count].f - int_func(functime) datarray_base[count] += tempval count = count+1 # 3. From data array calculate chi-squared array of null-offset as a base comparison: chisq_ = 0. for item in datarray_base: chisq_ = chisq_ + (item)**2. #chisq_ = chisq_ + (item-difference)**2. # Correction may be needed for reasonable values. deltat = guess_low # (Write data to file for logging purposes.) if log_chi: newfile = open('chisq.txt','a') writestring = str(deltat)+' '+str(chisq_)+' '+str(chisq_)+' '+str(len(datarray_base))+'\n' newfile.write(writestring) newfile.close() # 4. Start iteration to find best chi-squared minimisation: logger.info("find_offset: Starting chi-squared iterations...") chi_lst = [] time_lst = [] min_lst = [] max_lst = [] results = [] while True: deltat = deltat + deltat_step if deltat > guess_high: break N_iter = N_iter + 1. flag == 0. datarray = np.zeros((len(stream_a))) count = 0 newc = 0 int_min = float(date2num(num2date(int_data[1]) + timedelta(milliseconds=deltat*1000.))) int_max = float(date2num(num2date(int_data[2]) + timedelta(milliseconds=deltat*1000.))) for elem in stream_a: time = stream_a[count].time if time > int_min and time < int_max: functime = (time - int_min)/(int_max - int_min) tempval = stream_a[count].f - int_func(functime) datarray[count] += tempval count = count+1 chisq = 0. for item in datarray: chisq = chisq + (item-difference)**2. if log_chi: newfile = open('chisq.txt','a') writestring = str(deltat)+' '+str(chisq)+' '+str(chisq_)+' '+str(len(datarray))+'\n' newfile.write(writestring) newfile.close() # Catch minimum: if chisq < chisq_: chisq_ = chisq t_offset = deltat chi_lst.append(chisq) time_lst.append(deltat) if plot: plt.plot(time_lst,chi_lst,'-') plt.show() if not main_a: t_offset = t_offset * (-1) logger.info("find_offset: Found an offset of stream_a of %s seconds." % t_offset) # RESULTS return t_offset def diffStreams(stream_a, stream_b, **kwargs): """ DESCRIPTION: obtain and return the differences of two stream: """ ndtype_a = False if len(stream_a.ndarray[0]) > 0: ndtype_a = True if not ndtype_a or not len(stream_a) > 0: logger.error('diffStreams: stream_a empty - aborting.') return stream_a ndtype_b = False if len(stream_b.ndarray[0]) > 0: ndtype_b = True # 1. Amount of columns #if ndtype # 2. Line contents # --- amount of lines # --- differences of lines def subtractStreams(stream_a, stream_b, **kwargs): ''' DEFINITION: Default function will subtract stream_b from stream_a. If timesteps are different stream_b will be interpolated PARAMETERS: Variables: - stream_a: (DataStream) First stream - stream_b: (DataStream) Second stream, which is subtracted from a Optional: - keys: (list) key list for subtraction - default: all keys present in both streams RETURNS: - difference: (DataStream) Description. EXAMPLE: >>> diff = subtractStreams(gsm_stream, pos_stream) APPLICATION: ''' keys = kwargs.get('keys') newway = kwargs.get('newway') getmeans = kwargs.get('getmeans') debug = kwargs.get('debug') if not keys: keys = stream_a._get_key_headers(numerical=True) keysb = stream_b._get_key_headers(numerical=True) keys = list(set(keys)&set(keysb)) if not len(keys) > 0: print("subtractStreams: No common keys found - aborting") return DataStream() ndtype = False if len(stream_a.ndarray[0]) > 0: # Using ndarray and eventually convert stream_b to ndarray as well ndtype = True newway = True if not len(stream_b.ndarray[0]) > 0: stream_b = stream_b.linestruct2ndarray() elif len(stream_b.ndarray[0]) > 0: ndtype = True stream_a = stream_a.linestruct2ndarray() else: try: assert len(stream_a) > 0 except: logger.error('subtractStreams: stream_a empty - aborting subtraction.') return stream_a logger.info('subtractStreams: Start subtracting streams.') headera = stream_a.header headerb = stream_b.header # non-destructive #print ("SA:", stream_a.length()) #print ("SB:", stream_b.length()) sa = stream_a.copy() sb = stream_b.copy() # Sampling rates sampratea = sa.samplingrate() samprateb = sb.samplingrate() minsamprate = min(sampratea,samprateb) if ndtype: timea = sa.ndarray[0] timea = timea.astype(float) else: timea = sa._get_column('time') # truncate b to time range of a try: sb = sb.trim(starttime=num2date(np.min(timea)).replace(tzinfo=None), endtime=num2date(np.max(timea)).replace(tzinfo=None)+timedelta(seconds=samprateb),newway=True) #sb = sb.trim(starttime=num2date(np.min(timea)).replace(tzinfo=None), endtime=num2date(np.max(timea)).replace(tzinfo=None),newway=True) except: print("subtractStreams: stream_a and stream_b are apparently not overlapping - returning stream_a") return stream_a if ndtype: timeb = sb.ndarray[0] else: timeb = sb._get_column('time') # truncate a to range of b try: sa = sa.trim(starttime=num2date(np.min(timeb.astype(float))).replace(tzinfo=None), endtime=num2date(np.max(timeb.astype(float))).replace(tzinfo=None)+timedelta(seconds=sampratea),newway=True) #sa = sa.trim(starttime=num2date(np.min(timeb.astype(float))).replace(tzinfo=None), endtime=num2date(np.max(timeb.astype(float))).replace(tzinfo=None),newway=True) except: print("subtractStreams: stream_a and stream_b are apparently not overlapping - returning stream_a") return stream_a if ndtype: timea = sa.ndarray[0] timea = timea.astype(float) else: timea = sa._get_column('time') # testing overlapp if not len(sb) > 0: print("subtractStreams: stream_a and stream_b are not overlapping - returning stream_a") return stream_a timea = maskNAN(timea) timeb = maskNAN(timeb) #print "subtractStreams: timea", timea #print "subtractStreams: timeb", timeb # Check for the following cases: # 1- No overlap of a and b # 2- a high resolution and b low resolution (tested) # 3- a low resolution and b high resolution (tested) # 4- a shorter and fully covered by b (tested) # 5- b shorter and fully covered by a if ndtype: logger.info('subtractStreams: Running ndtype subtraction') # Assuming similar time steps #t1s = datetime.utcnow() # Get indicies of stream_b of which times are present in stream_a array = [[] for key in KEYLIST] """ try: # TODO Find a better solution here! Roman 2017 # The try clause is not correct as searchsorted just finds # positions independet of agreement (works well if data is similar) idxB = np.argsort(timeb) sortedB = timeb[idxB] idxA = np.searchsorted(sortedB, timea) #print timea, timeb,len(idxA), len(idxB) indtib = idxB[idxA] print ("solution1") except: indtib = np.nonzero(np.in1d(timeb, timea))[0] print ("solution2") """ indtib = np.nonzero(np.in1d(timeb, timea))[0] #print timeb[pos] #print ("Here", timea) # If equal elements occur in time columns if len(indtib) > int(0.5*len(timeb)): logger.info('subtractStreams: Found identical timesteps - using simple subtraction') # get tb times for all matching indicies tb = np.asarray([timeb[ind] for ind in indtib]) # Get indicies of stream_a of which times are present in matching tbs try: idxA = np.argsort(timea) sortedA = timea[idxA] idxB = np.searchsorted(sortedA, tb) # indtia = idxA[idxB] except: indtia = np.nonzero(np.in1d(tb, timea))[0] #print ("subtractStreams", len(timea),len(timeb),idxA,idxB, indtia, indtib) #print (np.nonzero(np.in1d(timea,tb))[0]) #idxB = np.argsort(tb) #sortedB = tb[idxB] #idxA = np.searchsorted(sortedB, timea) #indtia = idxB[idxA] if len(indtia) == len(indtib): nanind = [] for key in keys: foundnan = False keyind = KEYLIST.index(key) #print key, keyind, len(sa.ndarray[keyind]), len(sb.ndarray[keyind]) #print indtia, indtib,len(indtia), len(indtib) if len(sa.ndarray[keyind]) > 0 and len(sb.ndarray[keyind]) > 0: for ind in indtia: try: tmp = sa.ndarray[keyind][ind] except: print(ind, keyind, len(indtia), len(sa.ndarray[keyind])) vala = [sa.ndarray[keyind][ind] for ind in indtia] valb = [sb.ndarray[keyind][ind] for ind in indtib] diff = np.asarray(vala).astype(float) - np.asarray(valb).astype(float) if isnan(diff).any(): foundnan = True if foundnan: nankeys = [ind for ind,el in enumerate(diff) if isnan(el)] nanind.extend(nankeys) array[keyind] = diff nanind = np.unique(np.asarray(nanind)) array[0] = np.asarray([sa.ndarray[0][ind] for ind in indtia]) if foundnan: for ind,elem in enumerate(array): if len(elem) > 0: array[ind] = np.delete(np.asarray(elem), nanind) array = np.asarray(array) else: if debug: print("Did not find identical timesteps - linearily interpolating stream b") print("- please note... this needs considerably longer") print("- put in the larger (higher resolution) stream as stream_a") print("- otherwise you might wait endless") # interpolate b function = sb.interpol(keys) #print function, len(function), keys, sa.ndarray, sb.ndarray # Get a list of indicies for which timeb values are # in the vicintiy of a (within half of samplingrate) indtia = [idx for idx, el in enumerate(timea) if np.min(np.abs(timeb-el))/(minsamprate/24./3600.)*2 <= 1.] # This selcetion requires most of the time # limit time range to valued covered by the interpolation function #print len(indtia), len(timeb), np.asarray(indtia) indtia = [elem for elem in indtia if function[1] < timea[elem] < function[2]] #t2temp = datetime.utcnow() #print "Timediff %s" % str(t2temp-t1temp) #print len(indtia), len(timeb), np.asarray(indtia) #print function[1], sa.ndarray[0][indtia[0]], sa.ndarray[0][indtia[-1]], function[2] if len(function) > 0: nanind = [] sa.ndarray[0] = sa.ndarray[0].astype(float) for key in keys: foundnan = False keyind = KEYLIST.index(key) #print key, keyind #print len(sa.ndarray[keyind]),len(sb.ndarray[keyind]), np.asarray(indtia) if len(sa.ndarray[keyind]) > 0 and len(sb.ndarray[keyind]) > 0 and key in NUMKEYLIST: # and key in function: #check lengths of sa.ndarray and last value of indtia indtia = list(np.asarray(indtia)[np.asarray(indtia)<len(sa.ndarray[0])]) #print keyind, len(indtia), len(sa.ndarray[keyind]), indtia[0], indtia[-1] # Convert array to float just in case sa.ndarray[keyind] = sa.ndarray[keyind].astype(float) #print sa.ndarray[4][indtia[-2]] vala = [sa.ndarray[keyind][ind] for ind in indtia] #print "VALA", np.asarray(vala) valb = [float(function[0]['f'+key]((sa.ndarray[0][ind]-function[1])/(function[2]-function[1]))) for ind in indtia] #print "VALB", np.asarray(valb) diff = np.asarray(vala) - np.asarray(valb) if isnan(diff).any(): foundnan = True if foundnan: nankeys = [ind for ind,el in enumerate(diff) if isnan(el)] nanind.extend(nankeys) array[keyind] = diff nanind = np.unique(np.asarray(nanind)) array[0] = np.asarray([sa.ndarray[0][ind] for ind in indtia]) if foundnan: for ind,elem in enumerate(array): if len(elem) > 0: array[ind] = np.delete(np.asarray(elem), nanind) array = np.asarray(array) #t2e = datetime.utcnow() #print "Total Timediff %s" % str(t2e-t1s) #print array, len(array), len(array[0]) for key in keys: try: sa.header['col-'+key] = 'delta '+key except: pass try: sa.header['unit-col-'+key] = sa.header['unit-col-'+key] except: pass try: sa.header['SensorID'] = sa.header['SensorID']+'-'+sb.header['SensorID'] except: pass #subtractedstream = DataStream([LineStruct()],sa.header,np.asarray(array)) #for key in keys: # subtractedstream = subtractedstream._drop_nans(key) return DataStream([LineStruct()],sa.header,np.asarray(array,dtype=object)) if np.min(timeb) < np.min(timea): stime = np.min(timea) else: stime = np.min(timeb) if np.max(timeb) > np.max(timea): etime = np.max(timea) else: etime = np.max(timeb) # if stream_b is longer than stream_a use one step after and one step before e and stime if etime <
np.max(timeb)
numpy.max
# -*- coding: utf-8 -*- """ Created on Wed May 30 14:47:20 2018 @author: Greydon """ import os import re import numpy as np import pandas as pd from scipy.signal import welch, hanning, butter, lfilter, resample import matplotlib.pyplot as plt from matplotlib.ticker import FormatStrFormatter import matplotlib.ticker as mticker import pywt import tables import subprocess import scipy.io as spio import h5py import json ############################################################################## # HELPER FUNCTIONS # ############################################################################## def sorted_nicely(data, reverse = False): """ Sorts the given iterable in the way that is expected. Parameters ---------- data: array-like The iterable to be sorted. Returns ------- The sorted list. """ convert = lambda text: int(text) if text.isdigit() else text alphanum_key = lambda key: [convert(c) for c in re.split('([0-9]+)', key)] return sorted(data, key = alphanum_key, reverse=reverse) def downsample(data, oldFS, newFS): """ Resample data from oldFS to newFS using the scipy 'resample' function. Parameters ---------- data: array-like 2D matrix of shape (time, data) oldFS: int The sampling frequency of the data. newFS: int The new sampling frequency. Returns ------- newData: array-like The downsampled dataset. """ newNumSamples = int((len(data) / oldFS) * newFS) newData = np.array(resample(data, newNumSamples)) return newData ############################################################################## # FILTERS # ############################################################################## def butter_bandpass(lowcut, highcut, fs, order): nyq = 0.5 * fs low = lowcut / nyq high = highcut / nyq b, a = butter(order, [low, high], btype='band') return b, a def butterBandpass(d, lowcut, highcut, fs, order): b, a = butter_bandpass(lowcut, highcut, fs, order) y = lfilter(b, a, d) return y ############################################################################## # TIME DOMAIN FEATURES # ############################################################################## def MAV(data): """ Mean absolute value: the average of the absolute value of the signal. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- MAVData: 1D numpy array containing average absolute value Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ MAVData = sum(abs(data))/len(data) return MAVData def MAVS(data1, data2): """ Mean Absolute Value Slope: the difference between MAVs in adjacent segments. Parameters ---------- data1: array-like 2D matrix of shape (time, data) data2: array-like 2D matrix of shape (time, data) of subsequent segment to x1 Returns ------- MAVSlope: 1D numpy array containing MAV for adjacent signals Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ MAV1Data = sum(abs(data1))/len(data1) MAV2Data = sum(abs(data2))/len(data2) MAVSlope = MAV2Data - MAV1Data return MAVSlope def MMAV1(data): """ Modified Mean Absolute Value 1: an extension of MAV using a weighting window function on data below 25% and above 75%. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- MMAV1Data: 1D numpy array containing modified MAV for given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ w1 = 0.5 segment = int(len(data)*0.25) start = abs(data[0:segment,])*w1 middle = abs(data[segment:(len(data)-segment),]) end = abs(data[(len(data)-segment):,])*w1 combined = np.concatenate((start, middle, end)) MMAV1Data = sum(abs(combined))/len(combined) return MMAV1Data def MMAV2(data): """ Modified Mean Absolute Value 2: the smooth window is improved by using a continuous weighting window function on data below 25% and above 75%. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- MMAV2Data: 1D numpy array containg modified MAV for signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ segment = int(len(data)*0.25) a = [] b = [] for i in range(segment): endIdx = (len(data)-segment)+i a.append((4*i)/len(data)) b.append((4*(len(data)-endIdx))/len(data)) start = abs(data[0:segment,])*a middle = abs(data[segment:(len(data)-segment),]) end = abs(data[(len(data)-segment):,])*b combined = np.concatenate((start,middle,end)) MMAV2Data = sum(abs(combined))/len(combined) return MMAV2Data def RMS(data): """ Root mean square: the root mean square of a given recording. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- RMSData: 1D numpy array containing root mean square of the signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ RMSData = (sum(data*data)/len(data))**0.5 return RMSData def VAR(data): """ Variance: deviation of the signal from it's mean. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- varianceData: 1D numpy array containg the signal variance Reference --------- <NAME>., & <NAME>. (2000). DSP-based controller for a multi-degree prosthetic hand. Robotics and Automation, 2000. …, 2(April), 1378–1383. """ meanData = sum(data)/len(data) varianceData = sum((data-meanData)*(data-meanData))/len(data) return varianceData def curveLen(data): """ Curve length: the cumulative length of the waveform over the time segment. This feature is related to the waveform amplitude, frequency and time. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- curveLenData: 1D numpy array containing the average curve length for given signal Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ data1 = data[1:] data2 = data[:-1] curveLenData = sum(abs(data2-data1))/(len(data)-1) return curveLenData def zeroCross(data, threshold): """ Zero crossings: Calculates the number of times the signal amplitude crosses the zero y-axis. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- zeroCrossData: 1D numpy array containing total number of zero crossings in the given signal Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ sign = lambda z: (1, -1)[z < 0] i = abs(np.array([sign(x) for x in data[1:]]) - np.array([sign(x) for x in data[:-1]])) zeroCrossData = sum(i)/(len(data)) return zeroCrossData def slopeSign(data): """ Slope Sign Change: The number of changes between positive and negative slope among three consecutive segments are performed with the threshold function. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- slopeSignData: 1D numpy array containing the total slope sign changes for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (1993). A new strategy for multifunction myoelectric control. IEEE Transactions on Bio-Medical Engineering, 40(1), 82–94. """ i = (data[1:-1]-data[:-2]) j = (data[1:-1]-data[2:]) slopeSignData = len(np.where((i*j) > 10)[0]) return slopeSignData def threshold(data): """ Threshold: measure of how scattered the sign is (deviation). Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- thresholdData: 1D numpy array containing the total threshold value for a given signal Reference --------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2011). Characterization of subcortical structures during deep brain stimulation utilizing support vector machines. Conference Proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual Conference, 2011, 7949–7952. """ i = data-(sum(data)/len(data)) j = sum(i*i) thresholdData = (3*(j**(1/2)))/(len(data)-1) return thresholdData def WAMP(data, threshold): """ Willison Amplitude: the number of times that the difference between signal amplitude among two adjacent segments that exceeds a predefined threshold to reduce noise effects. Parameters ---------- data: array-like 2D matrix of shape (time, data) threshold: int threshold level in uV (generally use 10 microvolts) Returns ------- WAMPData: 1D numpy array containing total number of times derivative was above threshold in a given signal Reference --------- <NAME>., & <NAME>. (2000). DSP-based controller for a multi-degree prosthetic hand. Robotics and Automation, 2000. …, 2(April), 1378–1383. """ i = abs(data[:-1]-data[1:]) j = i[i > threshold] WAMPData = len(j) return WAMPData def SSI(data): """ Simple Square Integral: uses the energy of signal as a feature. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- SSIData: 1D numpy array containing the summed absolute square of the given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2009). A Novel Feature Extraction for Robust EMG Pattern Recognition. Journal of Medical Engineering and Technology, 40(4), 149–154. """ SSIData = sum(abs(data*data)) return SSIData def powerAVG(data): """ Average power: the amount of work done, amount energy transferred per unit time. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- powerAvgData: 1D numpy array containing average power in a given signal """ powerAvgData = sum(data*data)/len(data) return powerAvgData def peaksNegPos(data): """ Peaks: the number of positive peaks in the data window per unit time. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- peaksNegPosData: 1D numpy array containing total number of peaks in given signal """ sign = lambda z: (1, -1)[z < 0] i = [sign(z) for z in (data[2:]-data[1:-1])] j = [sign(z) for z in (data[1:-1]-data[:-2])] k = [a_i - b_i for a_i, b_i in zip(j, i)] peaksNegPosData = [max([0,z]) for z in k] peaksNegPosData = sum(peaksNegPosData)/(len(data)-2) return peaksNegPosData def peaksPos(data): """ Peak Density: calculates the density of peaks within the current locality. A peak is defined as a point higher in amplitude than the two points to its left and right side. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- peaksPosData: 1D numpy array containing the average number of peaks in a given signal """ data1 = data[1:-1] data2 = data[0:-2] data3 = data[2:] data4 = data1 - data2 data5 = data1 - data3 peakcount = 0 for i in range(len(data)-2): if data4[i] > 0 and data5[i]>0: peakcount += 1 peaksPosData = peakcount/(len(data)-2) return peaksPosData def tkeoTwo(data): """ Teager-Kaiser Energy Operator: is analogous to the total (kinetic and potential) energy of a signal. This variation uses the second derivative. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- tkeoTwoData: 1D numpy array containing total teager energy of a given signal using two samples Reference --------- 1. <NAME>. (1990). On a simple algorithm to calculate the “energy” of a signal. In International Conference on Acoustics, Speech, and Signal Processing (Vol. 2, pp. 381–384). IEEE. 2. <NAME>., <NAME>., & <NAME>. (2007). Teager-Kaiser energy operation of surface EMG improves muscle activity onset detection. Annals of Biomedical Engineering, 35(9), 1532–8. """ i = data[1:-1]*data[1:-1] j = data[2:]*data[:-2] tkeoTwoData = sum(i-j)/(len(data)-2) return tkeoTwoData def tkeoFour(data): """ Teager-Kaiser Energy Operator: is analogous to the total (kinetic and potential) energy of a signal. This variation uses the 4th order derivative. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- tkeoFourData: 1D numpy array containing total teager energy of a given signal using 4 samples Reference --------- 1. <NAME>. (1990). On a simple algorithm to calculate the “energy” of a signal. In International Conference on Acoustics, Speech, and Signal Processing (Vol. 2, pp. 381–384). IEEE. 2. <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., … <NAME>. (2008). Automated neonatal seizure detection mimicking a human observer reading EEG. Clinical Neurophysiology : Official Journal of the International Federation of Clinical Neurophysiology, 119(11), 2447–54. """ l = 1 p = 2 q = 0 s = 3 tkeoFourData = sum(data[l:-p]*data[p:-l]-data[q:-s]*data[s:])/(len(data)-3) return tkeoFourData def KUR(data): """ Kurtosis: calculates the degree to which the signal has 'tails'. Heavy-tail would mean many outliers. A normal distribution kurtosis value is 3. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- kurtosisData: 1D numpy array containing the total kurtosis for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2000). Flexible Independent Component Analysis. Journal of VLSI Signal Processing Systems for Signal, Image and Video Technology, 26(1), 25–38. """ meanX = sum(data)/len(data) diff = [z - meanX for z in data] sq_differences = [d**2 for d in diff] var = sum(sq_differences)/len(data) stdData = var**0.5 i = sum((data-meanX)**4) j = (len(data)-1)*(stdData)**4 kurtosisData = i/j return kurtosisData def SKW(data): """ Skewness: measures symmetry in the signal, the data is symmetric if it looks the same to the left and right of the center point. A skewness of 0 would indicate absolutely no skew. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- skewnessData: 1D numpy array containing the total skewness for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ meanX = sum(data)/len(data) diff = [z - meanX for z in data] sq_differences = [d**2 for d in diff] var = sum(sq_differences)/len(data) stdX = var**0.5 i = sum((data-meanX)**3) j = (len(data)-1)*(stdX)**3 skewnessData = i/j return skewnessData def crestF(data): """ Crest factor: the relation between the peak amplitude and the RMS of the signal. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- crestFactorData: 1D numpy array containing the total crest factor for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ DC_remove = data - (sum(data)/len(data)) peakAmp = max(abs(DC_remove)) RMS = (sum(DC_remove*DC_remove)/len(DC_remove))**0.5 crestFactorData = peakAmp/RMS return crestFactorData def entropy(data): """ Entropy: is an indicator of disorder or unpredictability. The entropy is smaller inside STN region because of its more rhythmic firing compared to the mostly noisy background activity in adjacent regions. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- entropyData: 1D numpy array containing the total entropy for a given signal Reference --------- <NAME>., & <NAME>. (2004). Entropy And Entropy-based Features In Signal Processing. Laboratory of Intelligent Communication Systems, Dept. of Computer Science and Engineering, University of West Bohemia, Plzen, Czech Republic, 1–2. """ ent = 0 m = np.mean(data) for i in range(len(data)): quo = abs(data[i] - m) ent = ent + (quo* np.log10(quo)) entropyData = -ent return entropyData def shapeFactor(data): """ Shape Factor: value affected by objects shape but is independent of its dimensions. Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- shapeFactorData: 1D numpy array containing shape factor value for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ RMS = (sum(data*data)/len(data))**0.5 shapeFactorData = RMS/(sum(abs(data))/len(data)) return shapeFactorData def impulseFactor(data): """ Impulse Factor: Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- impulseFactorData: 1D numpy array containing impulse factor value for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ impulseFactorData = max(abs(data))/(sum(abs(data))/len(data)) return impulseFactorData def clearanceFactor(data): """ Clearance Factor: Parameters ---------- data: array-like 2D matrix of shape (time, data) Returns ------- clearanceFactorData: 1D numpy array containing impulse factor value for a given signal Reference --------- <NAME>., <NAME>., & <NAME>. (2011). Rolling element bearing fault detection in industrial environments based on a K-means clustering approach. Expert Systems with Applications, 38(3), 2888–2911. """ clearanceFactorData = max(abs(data))/((sum(abs(data)**0.5)/len(data))**2) return clearanceFactorData ############################################################################## # FREQUENCY DOMAIN # ############################################################################## def computeFFT(data, Fs, normalize=False): """ Compute the FFT of `data` and return. Also returns the axis in Hz for further plot. Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling frequency in Hz. Returns ------- fAx: array-like Axis in Hz to plot the FFT. fftData: array-like Value of the fft. """ N = data.shape[0] fAx = np.arange(N/2) * Fs/N if normalize: Y = np.fft.fft(data)/int(len(data)) fftData = abs(Y[range(int(len(data)/2))]) else: Y = np.abs(np.fft.fft(data)) fftData = 2.0/N * np.abs(Y[0:N//2]) return fAx, fftData def wrcoef(data, coef_type, coeffs, wavename, level): N = np.array(data).size a, ds = coeffs[0], list(reversed(coeffs[1:])) if coef_type =='a': return pywt.upcoef('a', a, wavename, level=level)[:N] elif coef_type == 'd': return pywt.upcoef('d', ds[level-1], wavename, level=level)[:N] else: raise ValueError("Invalid coefficient type: {}".format(coef_type)) def wavlet(data, nLevels, waveletName, timewindow, windowSize, Fs): """ Wavelet Transform: captures both frequency and time information. Parameters ---------- data: array-like 2D matrix of shape (time, data) nLevels: int Number of levels for the wavlet convolution waveletName: str Name of the wavelet to be used timewindow: boolean Option to split the given signal into discrete time bins windowSize: int If timewindow is TRUE then provide the size of the time window Fs: int If timewindow is TRUE then provide the sampling rate of the given signal Returns ------- waveletData: 1D numpy array containing the standard deviation of the wavelet convolution for a given signal """ if timewindow == True: windowsize = windowSize*Fs n = int(len(data)) windown=int(np.floor(n/windowsize)) waveletData=[] for i in range(windown-1): xSeg = data[windowsize*i:windowsize*(i+1)] coeffs = pywt.wavedec(xSeg, waveletName, level=nLevels) waveletData.append(np.std(wrcoef(xSeg, 'd', coeffs, waveletName, nLevels))) else: coeffs = pywt.wavedec(data, waveletName, level=nLevels) waveletData = np.std(wrcoef(data, 'd', coeffs, waveletName, nLevels)) return waveletData def computeAvgDFFT(data, Fs, windowLength = 256, windowOverlapPrcnt = 50, Low=500, High=5000): """ Fast Fourier Transform: captures the frequency information within a signal. Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling rate of the given signal Low: int The highpass frequency cutoff High: int The lowpass frequency cutoff Returns ------- averagePxxWelch: average power in defined passband """ # Defining hanning window win = hanning(windowLength, True) welchNoverlap = int(windowLength*windowOverlapPrcnt/100.0) f, Pxxf = welch(data, Fs, window=win, noverlap=welchNoverlap, nfft=windowLength, return_onesided=True) indexLow = np.where(f == min(f, key=lambda x:abs(x-Low)))[0][0] indexHigh = np.where(f == min(f, key=lambda x:abs(x-High)))[0][0] averagePxxWelch = np.mean(Pxxf[indexLow:indexHigh]) return averagePxxWelch def meanFrq(data, Fs): """ Mean Frequency: calculated as the sum of the product of the spectrogram intensity (in dB) and the frequency, divided by the total sum of spectrogram intensity. Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling rate of the given signal Returns ------- meanFrqData: 1D numpy array containing the mean frequency of a given signal Reference --------- <NAME>., & <NAME>. (2006). GA-based Feature Subset Selection for Myoelectric Classification. In 2006 IEEE International Conference on Robotics and Biomimetics (pp. 1465–1470). IEEE. """ win = 4 * Fs freqs, psd = welch(data, Fs, nperseg=win, scaling='density') meanFrqData = sum(freqs*psd)/sum(psd) return meanFrqData def freqRatio(data, Fs): """ Frequency Ratio: ratio between power in lower frequencies and power in higher frequencies Parameters ---------- data: array-like 2D matrix of shape (time, data) Fs: int Sampling rate of the given signal Returns ------- freqRatioData: Reference --------- <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2000). New EMG pattern recognition based on soft computing techniques and its application to control of a rehabilitation robotic arm. Proc. of 6th International Conference on Soft Computing (IIZUKA2000), 890–897. """ win = 4 * Fs freqs, psd = welch(data, Fs, nperseg=win, scaling='density') freqRatioData = abs(psd[:int(len(freqs)/2)])/abs(psd[int(len(freqs)/2):-1]) return freqRatioData def meanAmpFreq(data, windowSize, Fs): """ Mean Frequency Amplitude: Parameters ---------- data: array-like 2D matrix of shape (time, data) windowSize: int Size of the window Fs: int Sampling rate of the given signal Returns ------- meanAmpFreqData: 1D numpy array containing """ window = windowSize*Fs n = int(len(data)) windown=int(np.floor(n/window)) meanAmpFreqData=[] for i in range(windown-1): xSeg = data[window*i:window*(i+1)] meanAmpFreqData.append(np.median(abs(np.fft.fft(xSeg)))) return meanAmpFreqData ############################################################################## # VISUALIZATION # ############################################################################## channelLabels = {1:"Center", 2:"Anterior", 3:"Posterior", 4:"Medial", 5:"Lateral"} class MathTextSciFormatter(mticker.Formatter): def __init__(self, fmt="%1.2e"): self.fmt = fmt def __call__(self, x, pos=None): s = self.fmt % x decimal_point = '.' positive_sign = '+' tup = s.split('e') significand = tup[0].rstrip(decimal_point) sign = tup[1][0].replace(positive_sign, '') exponent = tup[1][1:].lstrip('0') if exponent: exponent = '10^{%s%s}' % (sign, exponent) if significand and exponent: s = r'\bf %s{\times}%s' % (significand, exponent) else: s = r'\bf %s%s' % (significand, exponent) return "${}$".format(s) def axFormat(a): a.yaxis.set_major_formatter(MathTextSciFormatter("%1.2e")) a.xaxis.set_major_formatter(FormatStrFormatter('%.02f')) for tick in a.xaxis.get_major_ticks(): tick.label1.set_fontweight('bold') # for tick in a.yaxis.get_major_ticks(): # tick.label1.set_fontweight('bold') def axFormaty(a): a.yaxis.set_major_formatter(FormatStrFormatter('%.02f')) a.xaxis.set_major_formatter(FormatStrFormatter('%.02f')) for tick in a.yaxis.get_major_ticks(): tick.label1.set_fontweight('bold') def plotting(x, showOnly, timeWindow, processedFolder): featureLabels = pd.DataFrame([{'mav': 'Mean Absolute Value', 'mavSlope': 'Mean Absolute Value Slope', 'variance': 'Variance', 'mmav1': 'Mean Absolute Value 1', 'mmav2': 'Mean Absolute Value 2', 'rms': 'Root Mean Square', 'curveLength': 'Curve Length', 'zeroCross': 'Zero Crossings', 'slopeSign': 'Slope Sign', 'threshold': 'Threshold', 'wamp': 'Willison Amplitude', 'ssi': 'Simple Square Integral', 'power': 'Power', 'peaksNegPos': 'Peaks - Negative and Positive', 'peaksPos': 'Peaks - Positive', 'tkeoTwo': 'Teager-Kaiser Energy Operator - Two Samples', 'tkeoFour': 'Teager-Kaiser Energy Operator - Four Samples', 'kurtosis': 'Kurtosis', 'skew': 'Skewness', 'crestF': 'Crest Factor', 'meanF': 'Mean Frequency', 'binData': 'Raw Data', 'AvgPowerMU': 'Bandpass Power (500-1000Hz)', 'AvgPowerSU': 'Bandpass Power (1000-3000Hz)', 'entropy': 'Signal Entropy', 'waveletStd': 'STD of Wavlet Convolution', 'spikeISI': 'Inter-Spike Interval', 'meanISI': 'Mean of ISI', 'stdISI': 'STD of ISI', 'burstIndex': 'Burst Index', 'pauseIndex': 'Pause Index', 'pauseRatio': 'Pause Ratio', 'spikeDensity': 'Spike Density'}]) subList = np.unique(x['subject']) for isub in range(len(subList)): if timeWindow==True: outputDir = processedFolder + '/sub-' + str(subList[isub]) + '/timeWindow/' if not os.path.exists(outputDir): os.makedirs(outputDir) else: outputDir = processedFolder + '/sub-' + str(subList[isub]) + '/depthWindow/' if not os.path.exists(outputDir): os.makedirs(outputDir) numSides = np.unique(x[(x['subject']==subList[isub])]['side']) for iside in range(len(numSides)): numChans = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['channel']) numFeatures = list(x.drop(['subject','side','channel','depth','labels', 'chanChosen'], axis=1)) if np.isnan(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']).any(): chanSel = np.nan else: chanSel = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']) for ifeatures in range(len(numFeatures)): if 'binData' in numFeatures[ifeatures]: fileName = 'sub-' + str(subList[isub]) + '_side-' + numSides[iside] + '_' + featureLabels[numFeatures[ifeatures]].values[0].replace(" ", "") plotRaw(x,subList[isub],numSides[iside], numChans, chanSel, fileName, outputDir, 24000) print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'feature:', featureLabels[numFeatures[ifeatures]].values[0]) elif 'spikeISI' in numFeatures[ifeatures]: nothing = [] elif numFeatures[ifeatures] in {'PositiveSpikes','PositiveTimes','NegativeSpikes','NegativeTimes'}: nothing = [] else: fig, axs = plt.subplots(len(numChans),1, sharex=True, sharey=False) fig.subplots_adjust(hspace=0.1, wspace=0) titleLab = 'Sub-' + str(subList[isub]) + ' ' + numSides[iside] + ' Side: ' + featureLabels[numFeatures[ifeatures]].values[0] fileName = 'sub-' + str(subList[isub]) + '_side-' + numSides[iside] + '_' + featureLabels[numFeatures[ifeatures]].values[0].replace(" ", "") for ichan in range(len(numChans)): feature = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])][numFeatures[ifeatures]]) depths = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['depth']) labels = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['labels']) channel = channelLabels.get(numChans[ichan]) muA = np.mean(feature) if timeWindow==False: if len(numChans) ==1: axs.plot(depths, feature) axs.set_xlim(depths[0,],depths[-1]) else: axs[ichan].plot(depths, feature) axs[ichan].set_xlim(depths[0,],depths[-1]) else: if len(numChans) ==1: axs.plot(np.arange(0,x.shape[1],1), feature) axs.set_xlim(0,(feature.shape[1])) else: axs[ichan].plot(np.arange(0,x.shape[1],1), feature) axs[ichan].set_xlim(0,(feature.shape[1])) if len(numChans) ==1: axs.plot(axs.get_xlim(), [muA,muA], ls= 'dashed', c='black') if ~np.isnan(chanSel): if numChans[ichan] == chanSel: axs.annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold', color='red') else: axs.annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') else: axs.annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') if timeWindow==False: xticlabs = np.arange(depths[0],depths[-1],1) axs.xaxis.set_ticks(xticlabs) axs.xaxis.set_ticklabels(xticlabs, rotation = 45) else: xticlabs = np.arange(0,len(feature),5) axs.xaxis.set_ticks(xticlabs) axs.xaxis.set_ticklabels((xticlabs*2).astype(int), rotation = 45) axFormat(axs) if np.size(np.where(labels==1)) != 0: inDepth = depths[np.min(np.where(labels==1))] outDepth = depths[np.max(np.where(labels==1))] axs.axvspan(inDepth, outDepth, color='purple', alpha=0.2) for xc in depths: axs.axvline(x=xc, color='k', linestyle='--', alpha=0.2) else: axs[ichan].plot(axs[ichan].get_xlim(), [muA,muA], ls= 'dashed', c='black') if ~np.isnan(chanSel): if numChans[ichan] == chanSel: axs[ichan].annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold', color='red') else: axs[ichan].annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') else: axs[ichan].annotate(channel, xy=(1.01,0.5),xycoords='axes fraction', fontsize=12, fontweight='bold') if timeWindow==False: xticlabs = np.arange(depths[0],depths[-1],1) axs[ichan].xaxis.set_ticks(xticlabs) axs[ichan].xaxis.set_ticklabels(xticlabs, rotation = 45) else: xticlabs = np.arange(0,len(feature),5) axs[ichan].xaxis.set_ticks(xticlabs) axs[ichan].xaxis.set_ticklabels((xticlabs*2).astype(int), rotation = 45) axFormat(axs[ichan]) if np.size(np.where(labels==1)) != 0: inDepth = depths[np.min(np.where(labels==1))] outDepth = depths[np.max(np.where(labels==1))] axs[ichan].axvspan(inDepth, outDepth, color='purple', alpha=0.2) for xc in depths: axs[ichan].axvline(x=xc, color='k', linestyle='--', alpha=0.2) plt.suptitle(titleLab, y=0.96,x=0.51, size=16, fontweight='bold') fig.text(0.51, 0.03, 'Depth (mm)', ha='center', size=14, fontweight='bold') fig.text(0.035, 0.5, featureLabels[numFeatures[ifeatures]].values[0], va='center', rotation='vertical', size=14, fontweight='bold') if showOnly == True: plt.show() else: figure = plt.gcf() # get current figure figure.set_size_inches(12, 8) if timeWindow==True: filepath = outputDir + fileName + '.png' else: filepath = outputDir + fileName + '.png' plt.savefig(filepath, dpi=100) # save the figure to file plt.close('all') print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'feature:', featureLabels[numFeatures[ifeatures]].values[0]) def extract_raw_nwbFile(file_name, trimData, FilterData): patientDF = pd.DataFrame([]) subject = int("".join([x for x in h5py.File(file_name, 'r+').get('/identifier').value.split('_')[0] if x.isdigit()])) chans = list(set(h5py.File(file_name, 'r+').get('/intervals/trials/channel').value)) with open(file_name.replace('.nwb', '.json')) as side_file: sidecar = json.load(side_file) Fs = sidecar['SamplingFrequency'] for ichan in chans: channelIdx = h5py.File(file_name, 'r+').get('/intervals/trials/channel').value == ichan startTime = h5py.File(file_name, 'r+').get('/intervals/trials/start_time').value[channelIdx] endTime = h5py.File(file_name, 'r+').get('/intervals/trials/stop_time').value[channelIdx] depths = [float(x) for x in h5py.File(file_name, 'r+').get('/intervals/trials/depth').value[channelIdx]] dataset = h5py.File(file_name, 'r+').get('/acquisition/'+ ichan +'/data').value for idx, idepth in enumerate(depths): tempData = dataset[int(startTime[idx]):int(endTime[idx])] if FilterData: tempData = butterBandpass(tempData, lowcut = 400, highcut = 6000, fs = Fs, order = 4) rowDF = [{'subject': subject, 'side': h5py.File(file_name, 'r+').get('/session_description').value.split('_')[0], 'channel': ichan, 'chanChosen': np.nan, 'depth': idepth, 'rawData': tempData}] patientDF = pd.concat([patientDF, pd.DataFrame(rowDF)], axis = 0) if trimData == True: datasetLength = int(5*np.floor(float(min([len(x) for x in patientDF['rawData']])/Fs)/5))*Fs patientDF['rawData'] = [x[:int(datasetLength)] for x in patientDF['rawData']] return patientDF #x = filen #isub = 0 #iside = 0 #ichan = 0 def plotRaw(x, showOnly, processedFolder, Fs, trimData, FilterData): channelLabels = {1:"Center", 2:"Anterior", 3:"Posterior", 4:"Medial", 5:"Lateral"} if not isinstance(x, pd.DataFrame): if x.endswith('.nwb'): x = extract_raw_nwbFile(x, trimData, FilterData) subList = np.unique(x['subject']) else: subList = np.unique(x['subject']) for isub in range(len(subList)): numSides = np.unique(x[(x['subject']==subList[isub])]['side']) for iside in range(len(numSides)): outputDir = '\\'.join([processedFolder, 'sub-P' + str(subList[isub]).zfill(3), 'rawData', numSides[iside]]) if not os.path.exists(outputDir): os.makedirs(outputDir) numChans = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['channel']) colnames = x.columns.values.tolist() if np.isnan(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']).any(): chanSel = np.nan else: chanSel = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']) for ichan in range(len(numChans)): if 'labels' in colnames: labelsPresent = True labels = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['labels']) else: labelsPresent = False if labelsPresent: rawData = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['rawData']) feature = np.empty((0, len(np.frombuffer(rawData[1,])))) else: rawData = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['rawData']) feature = np.empty((0, len(rawData[1,]))) for idepth in range(len(rawData)): if labelsPresent: tempdat = np.frombuffer(rawData[idepth,]) tempdat = butterBandpass(tempdat, lowcut = 500, highcut = 5000, fs = Fs, order = 5) feature = np.append(feature, [np.transpose(tempdat)], axis=0) else: tempdat = rawData[idepth,] tempdat = butterBandpass(tempdat, lowcut = 500, highcut = 5000, fs = Fs, order = 5) feature = np.append(feature, [np.transpose(tempdat)], axis=0) nDepths = len(feature) yshift = 120 depths = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['depth']) fig, ax = plt.subplots() ax.plot(feature.T + yshift * np.arange(0,nDepths,1), color='black', linewidth=0.2) ax.yaxis.set_ticks(yshift * np.arange(0,nDepths,1)) ax.yaxis.set_ticklabels(['{:.2f}'.format(x) for x in depths]) ax.xaxis.set_ticks(np.arange(0,len(feature.T)+1,(len(feature.T)/5))) start, end = ax.get_xlim() xTickLabs = np.arange(0, len(feature.T)+1, len(feature.T)/5)/Fs ax.xaxis.set_ticklabels(['{:.2f}'.format(x) for x in xTickLabs]) ax.set_ylim(-yshift,(nDepths*yshift)) ax.set_xlim(0,len(feature.T)) if labelsPresent: if np.size(np.where(labels==1)) != 0: inDepth = np.min(np.where(labels==1))*yshift outDepth = np.max(np.where(labels==1))*yshift ax.axhline(inDepth, color='green', linewidth=2) ax.axhline(outDepth, color='red', linewidth=2) plt.gca().invert_yaxis() if isinstance(numChans[ichan], str): channel = numChans[ichan] else: channel = channelLabels.get(numChans[ichan]) if numChans[ichan] == chanSel: plt.title('Sub-' + str(subList[isub]).zfill(3) + ' ' + numSides[iside] + ' Side: ' + channel + " Trajectory", size=14, fontweight="bold", color = 'red') else: plt.title('Sub-' + str(subList[isub]).zfill(3) + ' ' + numSides[iside] + ' Side: ' + channel + " Trajectory", size=14, fontweight="bold") plt.xlabel("Time (sec)", size=14, fontweight='bold') plt.ylabel("Depth (mm)", size=14, fontweight='bold') fileName = 'sub-P' + str(subList[isub]).zfill(3) + '_side-' + numSides[iside] + '_channel-' + channel + '-rawData' figure = plt.gcf() # get current figure figure.set_size_inches(20, 12) filepath = os.path.join(outputDir, fileName + '.png') plt.savefig(filepath, dpi=100) # save the figure to file plt.close() print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'Raw Data', 'for channel', str(numChans[ichan])) def plotRawBenGun(x, showOnly, processedFolder, Fs, trimData, FilterData): channelLabels = {1:"Center", 2:"Anterior", 3:"Posterior", 4:"Medial", 5:"Lateral"} if not isinstance(x, pd.DataFrame): if x.endswith('.nwb'): x = extract_raw_nwbFile(x, trimData, FilterData) subList = np.unique(x['subject']) else: subList = np.unique(x['subject']) for isub in range(len(subList)): numSides = np.unique(x[(x['subject']==subList[isub])]['side']) for iside in range(len(numSides)): outputDir = '\\'.join([processedFolder, 'sub-P' + str(subList[isub]).zfill(3), 'rawData', numSides[iside]]) if not os.path.exists(outputDir): os.makedirs(outputDir) numChans = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['channel']) colnames = x.columns.values.tolist() if np.isnan(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']).any(): chanSel = np.nan else: chanSel = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['chanChosen']) if numSides[iside] == 'left': axPosition = {1:['5'], 2:['2'], 3:['8'], 4:['6'], 5:['4']} else: axPosition = {1:['5'], 2:['2'], 3:['8'], 4:['4'], 5:['6']} titleLab = 'Sub-' + str(subList[isub]).zfill(3) + ' ' + numSides[iside] + ' Side: <NAME>' fig = plt.figure() for ichan in range(len(numChans)): if 'labels' in colnames: labelsPresent = True labels = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['labels']) else: labelsPresent = False if labelsPresent: rawData = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['rawData']) feature = np.empty((0, len(np.frombuffer(rawData[1,])))) else: rawData = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['rawData']) feature = np.empty((0, len(rawData[1,]))) for idepth in range(len(rawData)): if labelsPresent: tempdat = np.frombuffer(rawData[idepth,]) tempdat = butterBandpass(tempdat, lowcut = 500, highcut = 5000, fs = Fs, order = 5) feature = np.append(feature, [np.transpose(tempdat)], axis=0) else: tempdat = rawData[idepth,] tempdat = butterBandpass(tempdat, lowcut = 500, highcut = 5000, fs = Fs, order = 5) feature = np.append(feature, [np.transpose(tempdat)], axis=0) if isinstance(numChans[ichan],str): chanPosition = [x[0] for x in list(channelLabels.items()) if numChans[ichan] in x[1]][0] channel = numChans[ichan] else: chanPosition = numChans[ichan] channel = channelLabels.get(numChans[ichan]) subPosi = [int(x) for x in axPosition.get(chanPosition)][0] nDepths = len(feature) yshift = 120 depths = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['depth']) ax = plt.subplot(3, 3, subPosi) ax.plot(feature.T + yshift * np.arange(0,nDepths,1), color='black', linewidth=0.2) ax.yaxis.set_ticks(yshift * np.arange(0,nDepths,1)) ax.yaxis.set_ticklabels(['{:.2f}'.format(x) for x in depths]) ax.xaxis.set_ticks(np.arange(0,len(feature.T)+1,(len(feature.T)/5))) xTickLabs = np.arange(0, len(feature.T)+1, len(feature.T)/5)/Fs ax.xaxis.set_ticklabels(['{:.2f}'.format(x) for x in xTickLabs]) ax.set_ylim(-yshift,(nDepths*yshift)) ax.set_xlim(0,len(feature.T)) for label in ax.yaxis.get_ticklabels()[::2]: label.set_visible(False) plt.gca().invert_yaxis() if numChans[ichan] == chanSel: ax.annotate(channel, xy=(0.42,1.01), xycoords='axes fraction', fontsize=10, fontweight='bold', color = 'red') else: ax.annotate(channel, xy=(0.42,1.01), xycoords='axes fraction', fontsize=10, fontweight='bold') if labelsPresent: if np.size(np.where(labels==1)) != 0: inDepth = np.min(np.where(labels==1))*yshift outDepth = np.max(np.where(labels==1))*yshift ax.axhline(inDepth, color='green', linewidth=2) ax.axhline(outDepth, color='red', linewidth=2) # Set common labels fig.text(0.51, 0.06, 'Time (sec)', ha='center', va='center', size=12, fontweight="bold") fig.text(0.08, 0.5, 'Depth (mm)', ha='center', va='center', rotation='vertical', size=12, fontweight="bold") plt.suptitle(titleLab, y=0.94,x=0.51, size=16, fontweight='bold') fileName = 'sub-P' + str(subList[isub]).zfill(3) + '_side-' + numSides[iside] + '-BensGun' figure = plt.gcf() # get current figure figure.set_size_inches(20, 12, forward=True) filepath = os.path.join(outputDir,fileName + '.png') plt.savefig(filepath, dpi=100) # save the figure to file plt.close() print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'Bens Gun.') def spikeRaster(spikeTimesFin, patient, side, depths, channel, channelChosen, labels): fig = plt.figure() ax = plt.subplot(1,1,1) spikeTimeClean = [] for trial in range(len(spikeTimesFin)): spikeTime = np.where(spikeTimesFin[trial] > 0)[1] spikeTime = spikeTime[np.where(np.diff(spikeTime)>1000)] plt.vlines(spikeTime,trial,trial+1) spikeTimeClean.append(spikeTime) ax.yaxis.set_ticks([x+0.5 for x in range(len(depths))]) ax.yaxis.set_ticklabels(depths) ax.xaxis.set_ticks(np.arange(0,spikeTimesFin[0].shape[1]+1,(spikeTimesFin[0].shape[1])/5)) start, end = ax.get_xlim() ax.xaxis.set_ticklabels(np.arange(0, spikeTimesFin[0].shape[1]+1, spikeTimesFin[0].shape[1]/5)/24000) ax.set_xlim(0,spikeTimesFin[0].shape[1]) plt.gca().invert_yaxis() plt.xlabel("Time (sec)") plt.ylabel("Depth (mm)") if channel == channelChosen: plt.title('DBS-' + str(patient) + ' ' + side + ' Side: ' + channelLabels.get(channel) + " Trajectory", fontweight='bold', color = 'red') else: plt.title('DBS-' + str(patient) + ' ' + side + ' Side: ' + channelLabels.get(channel) + " Trajectory", fontweight='bold') if any(labels==1)==True: plt.axhline(np.min(np.where(labels==1))+0.5, color='g', linestyle='-', linewidth=2) plt.axhline(np.max(np.where(labels==1))+0.5, color='r', linestyle='-', linewidth=2) return spikeTimeClean def prep_nwbFile(file_name): with h5py.File(file_name, "r") as f: data = f['/processing'] df = {} for item in list(data.items()): df[item[0]] = f['/processing/'+item[0]].value.flatten() subject = int("".join([x for x in h5py.File(file_name, 'r+').get('/identifier').value.split('_')[0] if x.isdigit()])) df['channel'] = h5py.File(file_name, 'r+').get('/intervals/trials/channel').value df['depth'] = [float(x) for x in h5py.File(file_name, 'r+').get('/intervals/trials/depth').value] df['subject'] = np.repeat(subject,len(df['channel'])) df['side'] = np.repeat(h5py.File(file_name, 'r+').get('/session_description').value.split('_')[0], len(df['channel'])) df['chanChosen'] = np.repeat(np.nan,len(df['channel'])) return pd.DataFrame(df) def plotFeatureMaps(x, showOnly, verticalPlots, reducedFeatures, processedFolder, nSubplots): channelLabels = {1:"Center", 2:"Anterior", 3:"Posterior", 4:"Medial", 5:"Lateral"} if reducedFeatures == True: timeLabels = pd.DataFrame([{'mav': 'Mean Absolute \nValue', 'variance': 'Variance', 'rms': 'Root Mean Square', 'curveLength': 'Curve Length', 'ssi': 'Simple Square \nIntegral', 'power': 'Power', 'entropy': 'Signal Entropy', 'tkeoFour': 'Teager-Kaiser \nEnergy - Four'}]) frequencyLabels = pd.DataFrame([{'meanF': 'Mean Frequency', 'freqRatio': 'Frequency Ratio', 'AvgPowerMU': 'Bandpass Power \n(500-1000Hz)', 'AvgPowerSU': 'Bandpass Power \n(1000-3000Hz)', 'waveletStd': 'STD of Wavlet \nConvolution'}]) spikeLabels = pd.DataFrame([]) else: timeLabels = pd.DataFrame([{'mav': 'Mean Absolute \nValue', 'mavSlope': 'Mean Absolute \nValue Slope', 'variance': 'Variance', 'mmav1': 'Mean Absolute \nValue 1', 'mmav2': 'Mean Absolute \nValue 2', 'rms': 'Root Mean Square', 'curveLength': 'Curve Length', 'zeroCross': 'Zero Crossings', 'threshold': 'Threshold', 'wamp': 'Willison Amplitude', 'ssi': 'Simple Square \nIntegral', 'power': 'Power', 'entropy': 'Signal Entropy', 'peaks': 'Peaks - \nNeg and Pos', 'tkeoTwo': 'Teager-Kaiser \nEnergy - Two', 'tkeoFour': 'Teager-Kaiser \nEnergy - Four', 'shapeF': 'Shape Factor', 'kurtosis': 'Kurtosis', 'skew': 'Skewness', 'crestF': 'Crest Factor'}]) frequencyLabels = pd.DataFrame([{'meanF': 'Mean Frequency', 'freqRatio': 'Frequency Ratio', 'AvgPowerMU': 'Bandpass Power \n(500-1000Hz)', 'AvgPowerSU': 'Bandpass Power \n(1000-3000Hz)', 'waveletStd': 'STD of Wavlet \nConvolution'}]) spikeLabels = pd.DataFrame([]) # spikeLabels = pd.DataFrame([{'spikeISI': 'Inter-Spike Interval', # 'meanISI': 'Mean of ISI', # 'stdISI': 'STD of ISI', # 'burstIndex': 'Burst Index', # 'pauseIndex': 'Pause Index', # 'pauseRatio': 'Pause Ratio', # 'spikeDensity': 'Spike Density'}]) if not isinstance(x, pd.DataFrame): if x.endswith('.nwb'): x = prep_nwbFile(x) subList = np.unique(x['subject']) else: subList = np.unique(x['subject']) for isub in range(len(subList)): numSides = np.unique(x[(x['subject']==subList[isub])]['side']) for iside in range(len(numSides)): if verticalPlots == True: if reducedFeatures == True: outputDir = '\\'.join([processedFolder, 'sub-P' + str(subList[isub]).zfill(3), 'activityMaps-VerticalReduced', numSides[iside]]) else: outputDir = '\\'.join([processedFolder, 'sub-P' + str(subList[isub]).zfill(3), 'activityMaps-Vertical', numSides[iside]]) else: if reducedFeatures == True: outputDir = '\\'.join([processedFolder, 'sub-P' + str(subList[isub]).zfill(3), 'activityMaps-Reduced', numSides[iside]]) else: outputDir = '\\'.join([processedFolder, 'sub-P' + str(subList[isub]).zfill(3), 'activityMaps', numSides[iside]]) if not os.path.exists(outputDir): os.makedirs(outputDir) numChans = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['channel']) colnames = x.columns.values.tolist() if 'labels' in colnames: labelsPresent = True numFeatures = list(x.drop(['subject','side','channel','depth','labels', 'chanChosen'], axis=1)) else: labelsPresent = False numFeatures = list(x.drop(['subject','side','channel','depth', 'chanChosen'], axis=1)) numTime = list(set(list(timeLabels)).intersection(numFeatures)) numFreq = list(set(list(frequencyLabels)).intersection(numFeatures)) numSpike = list(set(list(spikeLabels)).intersection(numFeatures)) featureDomains = {'Time': numTime, 'Frequency': numFreq,'Spike': numSpike} featureDomains.setdefault('Time', []).append(timeLabels) featureDomains.setdefault('Frequency', []).append(frequencyLabels) featureDomains.setdefault('Spike', []).append(spikeLabels) for ichan in range(len(numChans)): depths = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['depth']) if labelsPresent: labels = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['labels']) if isinstance(numChans[ichan],str): channel = numChans[ichan] else: channel = channelLabels.get(numChans[ichan]) for iDomain in range(3): domainName = list(featureDomains.keys())[iDomain] numDomain = list(featureDomains.values())[iDomain][:-1] featureLabel = list(featureDomains.values())[iDomain][-1] if len(numDomain)>0: numFigs = int(np.floor(len(numDomain)/nSubplots)) nSubplotsReal = [nSubplots] * numFigs if len(numDomain)%nSubplots !=0: numFigs += 1 if not nSubplotsReal: nSubplotsReal = [len(numDomain)%nSubplots] else: nSubplotsReal.append(len(numDomain)%nSubplots) nStart = 0 for iplot in range(numFigs): if verticalPlots == True: fig, axs = plt.subplots(1,nSubplotsReal[iplot], sharex=False, sharey=True) fig.subplots_adjust(hspace=0, wspace=0.1) else: fig, axs = plt.subplots(nSubplotsReal[iplot],1, sharex=True, sharey=False) fig.subplots_adjust(hspace=0.1, wspace=0) titleLab = 'Sub-' + str(subList[isub]).zfill(3) + ' ' + numSides[iside] + ' Side: ' + channel + ' Channel - ' + domainName + ' Features #' + str(iplot+1) fileName = 'sub-P' + str(subList[isub]).zfill(3) + '_side-' + numSides[iside] + '_channel-' + channel + '-' + domainName + 'Features' + str(iplot+1) axCount = 0 nEnd = nStart + nSubplotsReal[iplot] for ifeatures in range(nStart, nEnd): feature = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])][numDomain[ifeatures]]) feature = (feature - min(feature))/(max(feature)-min(feature)) muA = np.mean(feature) if verticalPlots == True: axs[axCount].plot(feature, depths) axs[axCount].set_ylim(depths[0,],depths[-1]) axs[axCount].set_xlabel(featureLabel[numDomain[ifeatures]].values[0], fontsize=10, fontweight='bold') axs[axCount].plot([muA,muA], axs[axCount].get_ylim(), ls= 'dashed', c='black') else: axs[axCount].plot(depths, feature) axs[axCount].set_xlim(depths[0,],depths[-1]) axs[axCount].annotate(featureLabel[numDomain[ifeatures]].values[0], xy=(1.01,0.5), xycoords='axes fraction', fontsize=10, fontweight='bold') axs[axCount].plot(axs[axCount].get_xlim(), [muA,muA], ls= 'dashed', c='black') if labelsPresent: if np.size(np.where(labels==1)) != 0: inDepth = depths[np.min(np.where(labels==1))] outDepth = depths[np.max(np.where(labels==1))] axs[axCount].axvspan(inDepth, outDepth, color='purple', alpha=0.2) for xc in depths: if verticalPlots == True: axs[axCount].axhline(y=xc, color='k', linestyle='--', alpha=0.2) else: axs[axCount].axvline(x=xc, color='k', linestyle='--', alpha=0.2) axs[axCount].invert_yaxis() if verticalPlots == True and axCount == 0: axs[axCount].set_ylabel('Depth (mm)', size=14, fontweight='bold') if verticalPlots == True and axCount == (int(np.ceil(nSubplotsReal[iplot]/2))-1): if nSubplotsReal[iplot]%2 !=0: axs[axCount].annotate('Normalized Units', xy=(0,-.2), xycoords='axes fraction', fontsize=14, fontweight='bold') else: axs[axCount].annotate('Normalized Units', xy=(0.5,-.2), xycoords='axes fraction', fontsize=14, fontweight='bold') if verticalPlots == False and axCount == (int(np.ceil(nSubplotsReal[iplot]/2))-1): if nSubplotsReal[iplot]%2 !=0: axs[axCount].set_ylabel('Normalized Units', size=14, fontweight='bold') else: axs[axCount].set_ylabel('Normalized Units', size=14, fontweight='bold') axs[axCount].yaxis.set_label_coords(-.05,0) axCount +=1 if verticalPlots == True: axs[(axCount-1)].yaxis.set_ticks(depths) axFormaty(axs[(axCount-1)]) plt.suptitle(titleLab, y=0.94,x=0.51, size=16, fontweight='bold') plt.subplots_adjust(bottom=0.20) if nSubplotsReal[iplot] == 2: plt.subplots_adjust(left=0.35) plt.subplots_adjust(right=0.65) elif nSubplotsReal[iplot] == 3: plt.subplots_adjust(left=0.27) plt.subplots_adjust(right=0.73) elif nSubplotsReal[iplot] == 4: plt.subplots_adjust(left=0.19) plt.subplots_adjust(right=0.81) else: start, end = axs[axCount-1].get_xlim() axs[axCount-1].xaxis.set_ticks(np.linspace(depths[0], depths[-1], len(depths))) axs[axCount-1].xaxis.set_ticklabels(['{:.2f}'.format(x) for x in depths], rotation=45) plt.subplots_adjust(right=0.80) if nSubplotsReal[iplot] == 2: plt.subplots_adjust(bottom=0.57) elif nSubplotsReal[iplot] == 3: plt.subplots_adjust(bottom=0.415) elif nSubplotsReal[iplot] == 4: plt.subplots_adjust(bottom=0.265) plt.suptitle(titleLab, y=0.96,x=0.46, size=16, fontweight='bold') plt.xlabel('Depth (mm)', size=14, fontweight='bold') nStart += nSubplotsReal[iplot] if showOnly == True: plt.show() else: figure = plt.gcf() # get current figure figure.set_size_inches(12, 8) filepath = os.path.join(outputDir , fileName + '.png') plt.savefig(filepath, dpi=100) # save the figure to file plt.close('all') print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'channel', numChans[ichan]) def plotFeatureMaps_gui(x, verticalPlots, processedFolder, nSubplots): channelLabels = {1:"Center", 2:"Anterior", 3:"Posterior", 4:"Medial", 5:"Lateral"} timeLabels = pd.DataFrame([{'mav': 'Mean Absolute \nValue', 'rms': 'Root Mean Square', 'curveLength': 'Curve Length', 'power': 'Power', 'entropy': 'Signal Entropy', 'tkeoFour': 'Teager-Kaiser \nEnergy - Four'}]) frequencyLabels = pd.DataFrame([]) spikeLabels = pd.DataFrame([]) # spikeLabels = pd.DataFrame([{'spikeISI': 'Inter-Spike Interval', # 'meanISI': 'Mean of ISI', # 'stdISI': 'STD of ISI', # 'burstIndex': 'Burst Index', # 'pauseIndex': 'Pause Index', # 'pauseRatio': 'Pause Ratio', # 'spikeDensity': 'Spike Density'}]) subList = np.unique(x['subject']) rowFinal = [] plotFinal = [] for isub in range(len(subList)): plots = {} if verticalPlots == True: plots['outputDir'] = processedFolder + '/sub-' + str(subList[isub]) + '/activityMaps-Vertical/' else: plots['outputDir'] = processedFolder + '/sub-' + str(subList[isub]) + '/activityMaps/' numSides = np.unique(x[(x['subject']==subList[isub])]['side']) plotFinal.append(plots) for iside in range(len(numSides)): numChans = np.unique(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside])]['channel']) colnames = x.columns.values.tolist() if 'labels' in colnames: labelsPresent = True numFeatures = list(x.drop(['subject','side','channel','depth','labels', 'chanChosen'], axis=1)) else: labelsPresent = False numFeatures = list(x.drop(['subject','side','channel','depth', 'chanChosen'], axis=1)) numTime = list(set(list(timeLabels)).intersection(numFeatures)) numFreq = list(set(list(frequencyLabels)).intersection(numFeatures)) numSpike = list(set(list(spikeLabels)).intersection(numFeatures)) featureDomains = {'Time': numTime, 'Frequency': numFreq,'Spike': numSpike} featureDomains.setdefault('Time', []).append(timeLabels) featureDomains.setdefault('Frequency', []).append(frequencyLabels) featureDomains.setdefault('Spike', []).append(spikeLabels) for ichan in range(len(numChans)): depths = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['depth']) if labelsPresent: labels = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])]['labels']) channel = channelLabels.get(numChans[ichan]) for iDomain in range(3): domainName = list(featureDomains.keys())[iDomain] numDomain = list(featureDomains.values())[iDomain][:-1] featureLabel = list(featureDomains.values())[iDomain][-1] if len(numDomain)>0: numFigs = int(np.floor(len(numDomain)/nSubplots)) nSubplotsReal = [nSubplots] * numFigs if len(numDomain)%nSubplots !=0: numFigs += 1 if not nSubplotsReal: nSubplotsReal = [len(numDomain)%nSubplots] else: nSubplotsReal.append(len(numDomain)%nSubplots) nStart = 0 for iplot in range(numFigs): # if verticalPlots == True: # fig, axs = plt.subplots(1,nSubplotsReal[iplot], sharex=False, sharey=True) # fig.subplots_adjust(hspace=0, wspace=0.1) # else: # fig, axs = plt.subplots(nSubplotsReal[iplot],1, sharex=True, sharey=False) # fig.subplots_adjust(hspace=0.1, wspace=0) titleLab = 'Sub-' + str(subList[isub]) + ' ' + numSides[iside] + ' Side: ' + channel + ' Channel - ' + domainName + ' Features #' + str(iplot+1) fileName = 'sub-' + str(subList[isub]) + '_side-' + numSides[iside] + '_channel-' + channel + '-' + domainName + 'Features' + str(iplot+1) axCount = 0 nEnd = nStart + nSubplotsReal[iplot] for ifeatures in range(nStart, nEnd): row = {} row['subject'] = str(subList[isub]) row['side'] = numSides[iside] row['channel'] = channel row['domain'] = domainName row['plotTitle'] = titleLab row['fileName'] = fileName feature = np.array(x[(x['subject']==subList[isub]) & (x['side'] == numSides[iside]) & (x['channel'] == numChans[ichan])][numDomain[ifeatures]]) feature = (feature - min(feature))/(max(feature)-min(feature)) featureMean = np.mean(feature) if verticalPlots == True: row['plot'] = ['plot',feature, depths] row['featureMean'] = ['plot', [featureMean,featureMean], 'get_ylim()', 'dashed', 'black'] row['depthLim'] = ['set_ylim', [depths[0,],depths[-1]]] row['featureLabel'] = ['set_xlabel', featureLabel[numDomain[ifeatures]].values[0], 10, 'bold'] else: row['plot'] = ['plot',depths, feature] row['featureMean'] = ['plot', 'get_xlim()', [featureMean,featureMean], 'dashed', 'black'] row['depthLim'] = ['set_xlim', [depths[0,],depths[-1]]] row['featureLabel'] = ['annotate', featureLabel[numDomain[ifeatures]].values[0], [1.01,0.5], 'axes fraction', 10, 'bold'] if labelsPresent: if np.size(np.where(labels==1)) != 0: inDepth = depths[np.min(np.where(labels==1))] outDepth = depths[np.max(np.where(labels==1))] row['labels'] = [inDepth, outDepth] if verticalPlots == True: row['labelsType'] = ['axhspan', [inDepth, outDepth], 'purple', 0.2] else: row['labelsType'] = ['axvspan', [inDepth, outDepth], 'purple', 0.2] for xc in depths: if verticalPlots == True: row['depthMark'] = ['axhline', 'y', 'k', 0.2, '--'] else: row['depthMark'] = ['axvline', 'x', 'k', 0.2, '--'] if verticalPlots == True and axCount == 0: row['yLabel'] = ['set_ylabel', 'Depth (mm)', 14, 'bold'] if verticalPlots == True and axCount == (int(np.ceil(nSubplotsReal[iplot]/2))-1): if nSubplotsReal[iplot]%2 !=0: row['yLabel'] = ['annotate', 'Normalized Units', [0,-.2], 'axes fraction', 14, 'bold'] else: row['yLabel'] = ['annotate', 'Normalized Units', [0.5,-.2], 'axes fraction', 14, 'bold'] if verticalPlots == False and axCount == (int(np.ceil(nSubplotsReal[iplot]/2))-1): if nSubplotsReal[iplot]%2 !=0: row['yLabel'] = ['set_ylabel', 'Normalized Units', 14, 'bold'] else: row['yLabel'] = ['set_ylabel', 'Normalized Units', [-.05,0], 'yaxis.set_label_coords', 14, 'bold'] rowFinal.append(dict(zip(row.keys(), row.values()))) axCount +=1 # if verticalPlots == True: # axs[(axCount-1)].yaxis.set_ticks(depths) # axFormaty(axs[(axCount-1)]) # plt.suptitle(titleLab, y=0.94,x=0.51, size=16, fontweight='bold') # plt.subplots_adjust(bottom=0.20) # if nSubplotsReal[iplot] == 2: # plt.subplots_adjust(left=0.35) # plt.subplots_adjust(right=0.65) # elif nSubplotsReal[iplot] == 3: # plt.subplots_adjust(left=0.27) # plt.subplots_adjust(right=0.73) # elif nSubplotsReal[iplot] == 4: # plt.subplots_adjust(left=0.19) # plt.subplots_adjust(right=0.81) # # else: # start, end = axs[axCount-1].get_xlim() # axs[axCount-1].xaxis.set_ticks(np.linspace(depths[0], depths[-1], len(depths))) # axs[axCount-1].xaxis.set_ticklabels(['{:.2f}'.format(x) for x in depths], rotation=45) # plt.subplots_adjust(right=0.80) # # if nSubplotsReal[iplot] == 2: # plt.subplots_adjust(bottom=0.57) # elif nSubplotsReal[iplot] == 3: # plt.subplots_adjust(bottom=0.415) # elif nSubplotsReal[iplot] == 4: # plt.subplots_adjust(bottom=0.265) # # plt.suptitle(titleLab, y=0.96,x=0.46, size=16, fontweight='bold') # plt.xlabel('Depth (mm)', size=14, fontweight='bold') nStart += nSubplotsReal[iplot] # print('Finished subject', str(subList[isub]), numSides[iside], 'side', 'channel', numChans[ichan]) return rowFinal def plotFFT(data, Fs, facet=False, freqMin=1, freqMax=5000, yMin=None, yMax=None): """ Create the x-axis and plot the FFT of data. Parameters ---------- data: array-like Data containing the frequency series to plot. Each column is an electrode. facet: bool, default to False If True, each electrode will be plotted on a different facet. freqMin: float, default to None Minimum frequency (x-axis) to show on the plot. freqMax: float, default to None Maximum frequency (x-axis) to show on the plot. yMin: float, default to None Minimum value (y-axis) to show on the plot. yMax: float, default to None Maximum value (y-axis) to show on the plot. fs: float Sampling frequency of data in Hz. Returns ------- fig: instance of matplotlib.figure.Figure The figure of the FFT. """ tf, fftData = computeFFT(data, Fs) yMax =
np.mean(fftData)
numpy.mean
""" BSD 3-Clause License Copyright (c) 2017, <NAME> Copyright (c) 2020, enhuiz All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import numpy as np def nms(dets, thresh): if 0 == len(dets): return [] x1, y1, x2, y2, scores = dets[:, 0], dets[:, 1], dets[:, 2], dets[:, 3], dets[:, 4] areas = (x2 - x1 + 1) * (y2 - y1 + 1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) xx1, yy1 = np.maximum(x1[i], x1[order[1:]]), np.maximum(y1[i], y1[order[1:]]) xx2, yy2 =
np.minimum(x2[i], x2[order[1:]])
numpy.minimum
# SPDX-License-Identifier: Apache-2.0 """Unit Tests for TFLite_Detection_PostProcess op""" import os import struct import numpy as np import flatbuffers from common import * # pylint: disable=wildcard-import,unused-wildcard-import from backend_test_base import Tf2OnnxBackendTestBase from tf2onnxnightly import utils from tf2onnxnightly.tfonnx import process_tf_graph from tf2onnxnightly import optimizer from tf2onnxnightly.tflite import Model, OperatorCode, SubGraph, Operator, Tensor, Buffer from tf2onnxnightly.tflite.BuiltinOperator import BuiltinOperator from tf2onnxnightly.tflite.TensorType import TensorType from tf2onnxnightly.tflite.CustomOptionsFormat import CustomOptionsFormat # pylint: disable=missing-docstring class TFLiteDetectionPostProcessTests(Tf2OnnxBackendTestBase): @requires_tflite("TFLite_Detection_PostProcess") @check_opset_min_version(11, "Pad") def test_postprocess_model1(self): self._test_postprocess(num_classes=5, num_boxes=100, detections_per_class=2, max_detections=20) @requires_tflite("TFLite_Detection_PostProcess") @check_opset_min_version(11, "Pad") def test_postprocess_model2(self): self._test_postprocess(num_classes=5, num_boxes=100, detections_per_class=7, max_detections=20) @requires_tflite("TFLite_Detection_PostProcess") @check_opset_min_version(11, "Pad") def test_postprocess_model3(self): self._test_postprocess(num_classes=5, num_boxes=3, detections_per_class=7, max_detections=20) @requires_tflite("TFLite_Detection_PostProcess") @check_opset_min_version(11, "Pad") def test_postprocess_model4(self): self._test_postprocess(num_classes=5, num_boxes=99, detections_per_class=2, max_detections=20, extra_class=True) @requires_tflite("TFLite_Detection_PostProcess") @check_opset_min_version(11, "Pad") def test_postprocess_model5(self): self._test_postprocess(num_classes=1, num_boxes=100, detections_per_class=0, max_detections=50, use_regular_nms=False) def _test_postprocess(self, num_classes, num_boxes, detections_per_class, max_detections, extra_class=False, use_regular_nms=True): model = self.make_postprocess_model(num_classes=num_classes, detections_per_class=detections_per_class, max_detections=max_detections, x_scale=11.0, w_scale=6.0, use_regular_nms=use_regular_nms) np.random.seed(42) box_encodings_val = np.random.random_sample([1, num_boxes, 4]).astype(np.float32) if extra_class: num_classes += 1 class_predictions_val =
np.random.random_sample([1, num_boxes, num_classes])
numpy.random.random_sample
# _*_ coding:utf-8 _*_ # -------------------------------------------------------- # Faster R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> and <NAME> # -------------------------------------------------------- import caffe import yaml import numpy as np import numpy.random as npr from fast_rcnn.config import cfg from fast_rcnn.bbox_transform import bbox_transform from utils.cython_bbox import bbox_overlaps from fast_rcnn.bbox_transform import clip_boxes, bbox_transform_inv #import matplotlib #matplotlib.use('Agg') DEBUG = False ''' layer { name: 'roi-data' type: 'Python' bottom: 'rpn_rois' bottom: 'gt_boxes' bottom: 'data' top: 'rois_p2' top: 'rois_p3' top: 'labels_p2' top: 'labels_p3' top: 'bbox_targets_p2' top: 'bbox_targets_p3' top: 'bbox_inside_weights_p2' top: 'bbox_inside_weights_p3' top: 'bbox_outside_weights_p2' top: 'bbox_outside_weights_p3' python_param { module: 'rpn.proposal_target_layer' layer: 'ProposalTargetLayer' param_str: "'num_classes': 2" } } target: layer { name: 'roi-data' type: 'Python' bottom: 'rpn_rois_p2' bottom: 'rpn_rois_p3' bottom: 'gt_boxes' bottom: 'data' top: 'rois_p2' top: 'rois_p3' top: 'labels_p2' top: 'labels_p3' top: 'bbox_targets_p2' top: 'bbox_targets_p3' top: 'bbox_inside_weights_p2' top: 'bbox_inside_weights_p3' top: 'bbox_outside_weights_p2' top: 'bbox_outside_weights_p3' python_param { module: 'rpn.proposal_target_layer' layer: 'ProposalTargetLayer' param_str: "'num_classes': 2" } } ''' class ProposalTargetLayer(caffe.Layer): """ Assign object detection proposals to ground-truth targets. Produces proposal classification labels and bounding-box regression targets. """ def setup(self, bottom, top): layer_params = yaml.load(self.param_str) self._num_classes = layer_params['num_classes'] self._batch_rois = 256 #cfg.TRAIN.BATCH_SIZE # sampled rois (0, x1, y1, x2, y2) top[0].reshape(1, 5, 1, 1) top[1].reshape(1, 5, 1, 1) # labels_1 top[2].reshape(1, 1, 1, 1) # labels_2 top[3].reshape(1, 1, 1, 1) # bbox_targets_1 top[4].reshape(1, self._num_classes * 4, 1, 1) # bbox_targets_2 top[5].reshape(1, self._num_classes * 4, 1, 1) # bbox_inside_weights_1 top[6].reshape(1, self._num_classes * 4, 1, 1) # bbox_inside_weights_2 top[7].reshape(1, self._num_classes * 4, 1, 1) # bbox_outside_weights_1 top[8].reshape(1, self._num_classes * 4, 1, 1) # bbox_outside_weights_2 top[9].reshape(1, self._num_classes * 4, 1, 1) def forward(self, bottom, top): # Proposal ROIs (0, x1, y1, x2, y2) coming from RPN # (i.e., rpn.proposal_layer.ProposalLayer), or any other source #branch 1 2 rois_list = [] branch_num = 2 for i in xrange(branch_num): rois_list.append(bottom[i].data) # 300 [ 0. 70.29284668 0. 105.74542236 49.81745911] #--debug # for i in rois_list: # print(i[0:2]) # input() gt_boxes = bottom[2].data gt_boxes = gt_boxes.reshape(gt_boxes.shape[0], gt_boxes.shape[1]) w = (gt_boxes[:, 2] - gt_boxes[:, 0]) h = (gt_boxes[:, 3] - gt_boxes[:, 1]) g_s = w * h g_s[g_s <= 0] = 1e-6 gt_index = g_s.copy() #### alter #### gt_index_list = [] gt_index[g_s >= 2000] = 1 gt_index_list.append(gt_index.copy()) gt_index[g_s >= 3000] = 2 gt_index_list.append(gt_index.copy()) rois_list_res = [] labels_list = [] bbox_targets_list = [] bbox_inside_weights_list = [] branch_num = 2 for i in xrange(branch_num): gt_index = gt_index_list[i] g_index = (gt_index == (i+1)) num_g = sum(g_index) # get gt_bbox start = 0 end_g = num_g index_range = range(start, end_g) if num_g == 0: num_g = 1 each_gt_box = np.zeros((num_g, 5), dtype=np.float32) else: each_gt_box = np.zeros((num_g, 5), dtype=np.float32) each_gt_box[index_range, :] = gt_boxes[g_index, :] zeros = np.zeros((each_gt_box.shape[0], 1), dtype=each_gt_box.dtype) rois_per_image = np.inf if cfg.TRAIN.BATCH_SIZE == -1 else cfg.TRAIN.BATCH_SIZE fg_rois_per_image = np.round(cfg.TRAIN.FG_FRACTION * rois_per_image) rois_list[i] = np.vstack( (rois_list[i], np.hstack((zeros, each_gt_box[:, :-1]))) ) labels, rois, bbox_targets, bbox_inside_weights = _sample_rois( rois_list[i], each_gt_box, fg_rois_per_image, rois_per_image, self._num_classes) rois_list_res.append(rois) labels_list.append(labels) bbox_targets_list.append(bbox_targets) bbox_inside_weights_list.append(bbox_inside_weights) #--debug #print(each_gt_box) im = bottom[3].data rois_part1 = rois_list_res[0] rois_part2 = rois_list_res[1] rois_part1 = rois_part1.reshape((rois_part1.shape[0], rois_part1.shape[1], 1, 1)) top[0].reshape(*rois_part1.shape) top[0].data[...] = rois_part1 rois_part2 = rois_part2.reshape((rois_part2.shape[0], rois_part2.shape[1], 1, 1)) top[1].reshape(*rois_part2.shape) top[1].data[...] = rois_part2 # classification labels # modified by ywxiong labels_1 = labels_list[0] labels_2 = labels_list[1] labels_1 = labels_1.reshape((labels_1.shape[0], 1, 1, 1)) top[2].reshape(*labels_1.shape) top[2].data[...] = labels_1 labels_2 = labels_2.reshape((labels_2.shape[0], 1, 1, 1)) top[3].reshape(*labels_2.shape) top[3].data[...] = labels_2 # bbox_targets # modified by ywxiong bbox_targets_1 = bbox_targets_list[0] bbox_targets_2 = bbox_targets_list[1] bbox_targets_1 = bbox_targets_1.reshape((bbox_targets_1.shape[0], bbox_targets_1.shape[1], 1, 1)) top[4].reshape(*bbox_targets_1.shape) top[4].data[...] = bbox_targets_1 bbox_targets_2 = bbox_targets_2.reshape((bbox_targets_2.shape[0], bbox_targets_2.shape[1], 1, 1)) top[5].reshape(*bbox_targets_2.shape) top[5].data[...] = bbox_targets_2 # bbox_inside_weights # modified by ywxiong bbox_inside_weights_1 = bbox_inside_weights_list[0] bbox_inside_weights_2 = bbox_inside_weights_list[1] bbox_inside_weights_1 = bbox_inside_weights_1.reshape( (bbox_inside_weights_1.shape[0], bbox_inside_weights_1.shape[1], 1, 1)) top[6].reshape(*bbox_inside_weights_1.shape) top[6].data[...] = bbox_inside_weights_1 bbox_inside_weights_2 = bbox_inside_weights_2.reshape( (bbox_inside_weights_2.shape[0], bbox_inside_weights_2.shape[1], 1, 1)) top[7].reshape(*bbox_inside_weights_2.shape) top[7].data[...] = bbox_inside_weights_2 # bbox_outside_weights # modified by ywxiong bbox_inside_weights_1 = bbox_inside_weights_list[0] bbox_inside_weights_2 = bbox_inside_weights_list[1] bbox_inside_weights_1 = bbox_inside_weights_1.reshape( (bbox_inside_weights_1.shape[0], bbox_inside_weights_1.shape[1], 1, 1)) top[8].reshape(*bbox_inside_weights_1.shape) top[8].data[...] = np.array(bbox_inside_weights_1 > 0).astype(np.float32) bbox_inside_weights_2 = bbox_inside_weights_2.reshape( (bbox_inside_weights_2.shape[0], bbox_inside_weights_2.shape[1], 1, 1)) top[9].reshape(*bbox_inside_weights_2.shape) top[9].data[...] = np.array(bbox_inside_weights_2 > 0).astype(np.float32) def backward(self, top, propagate_down, bottom): """This layer does not propagate gradients.""" pass def reshape(self, bottom, top): """Reshaping happens during the call to forward.""" pass ###### **************** ####### def _get_bbox_regression_labels(bbox_target_data, num_classes): """Bounding-box regression targets (bbox_target_data) are stored in a compact form N x (class, tx, ty, tw, th) This function expands those targets into the 4-of-4*K representation used by the network (i.e. only one class has non-zero targets). Returns: bbox_target (ndarray): N x 4K blob of regression targets bbox_inside_weights (ndarray): N x 4K blob of loss weights """ clss = bbox_target_data[:, 0] bbox_targets = np.zeros((clss.size, 4 * num_classes), dtype=np.float32) bbox_inside_weights = np.zeros(bbox_targets.shape, dtype=np.float32) inds = np.where(clss > 0)[0] # for ind in inds: # cls = clss[ind] # start = 4 * cls # end = start + 4 # bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] # bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS #return bbox_targets, bbox_inside_weights if cfg.TRAIN.AGNOSTIC: for ind in inds: cls = clss[ind] start = 4 * (1 if cls > 0 else 0) end = start + 4 bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS else: for ind in inds: cls = clss[ind] start = 4 * cls end = start + 4 bbox_targets[ind, start:end] = bbox_target_data[ind, 1:] bbox_inside_weights[ind, start:end] = cfg.TRAIN.BBOX_INSIDE_WEIGHTS return bbox_targets, bbox_inside_weights def _compute_targets(ex_rois, gt_rois, labels): """Compute bounding-box regression targets for an image.""" assert ex_rois.shape[0] == gt_rois.shape[0] assert ex_rois.shape[1] == 4 assert gt_rois.shape[1] == 4 targets = bbox_transform(ex_rois, gt_rois) if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED: # Optionally normalize targets by a precomputed mean and stdev targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) / np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS)) return np.hstack( (labels[:, np.newaxis], targets)).astype(np.float32, copy=False) def _sample_rois(all_rois, gt_boxes, fg_rois_per_image, rois_per_image, num_classes): """Generate a random sample of RoIs comprising foreground and background examples. """ # overlaps: (rois x gt_boxes) overlaps = bbox_overlaps( np.ascontiguousarray(all_rois[:, 1:5], dtype=np.float), np.ascontiguousarray(gt_boxes[:, :4], dtype=np.float)) gt_assignment = overlaps.argmax(axis=1) max_overlaps = overlaps.max(axis=1) labels = gt_boxes[gt_assignment, 4] # Select foreground RoIs as those with >= FG_THRESH overlap fg_inds = np.where(max_overlaps >= cfg.TRAIN.FG_THRESH)[0] # Guard against the case when an image has fewer than fg_rois_per_image # foreground RoIs fg_rois_per_this_image = min(fg_rois_per_image, fg_inds.size) # Sample foreground regions without replacement if fg_inds.size > 0: fg_inds =
npr.choice(fg_inds, size=fg_rois_per_this_image, replace=False)
numpy.random.choice
import sys, os sys.path.append(os.path.abspath(__file__).split('test')[0]) import pandas as pd import numpy as np import matplotlib.pyplot as plt import scipy.io as io from pyml.supervised.NeuralNetwork import NeuralNetwork as NN """ ------------------------------------------------------------------------------------------------------------------------ PLOT DATOS ------------------------------------------------------------------------------------------------------------------------ """ def displayData(X): m, n = X.shape example_width = int(np.round(np.sqrt(n))) fig, ax_array = plt.subplots(10, 10, figsize=(10, 10)) fig.subplots_adjust(wspace=0.025, hspace=0.025) ax_array = ax_array.ravel() for i, ax in enumerate(ax_array): ax.imshow(X[i].reshape(example_width, example_width, order='F'), cmap='Greys', extent=[0, 1, 0, 1]) ax.axis('off') plt.show() """ ------------------------------------------------------------------------------------------------------------------------ DE LISTA A ARRAY ------------------------------------------------------------------------------------------------------------------------ """ def unroll_input(input): theta_ravel = [] # Creamos la lista que almacenará las matrices tras flatten for theta_element in input: theta_ravel.append(np.ravel(theta_element)) # Hacer que la matriz sea un vector y almacenarlo en lista temporal return np.concatenate(theta_ravel) # Hacer que la lista temporal sea un solo vector """ ------------------------------------------------------------------------------------------------------------------------ EJEMPLO NUMEROS ------------------------------------------------------------------------------------------------------------------------ """ data = io.loadmat('../../../data/ex3weights.mat') theta1 = data['Theta1'] theta2 = data['Theta2'] print("Dimensiones theta 1:", theta1.shape) print("Dimensiones theta 2:", theta2.shape) data = io.loadmat('../../../data/ex3data1.mat') data = pd.DataFrame(np.hstack((data['X'], data['y']))) print(data.info()) print(data.head()) print(data.describe()) #----------------------------------------------------------------------------------------------------------------------- #---------------------------------------------- OBTENCION DATOS -------------------------------------------------------- #----------------------------------------------------------------------------------------------------------------------- m, n = data.shape X = np.array(data.iloc[:, 0:n-1]).T y = np.array(data.iloc[:, -1], ndmin=2) rand_indices =
np.random.choice(m, 100, replace=False)
numpy.random.choice
# Connectome-based CNN-RNN # 2021.03.16 <NAME> ###### import ###################### import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.keras.models import load_model import scipy.stats as measures from pymatreader import read_mat #################################### ### Functions and Initializations ## tf.config.experimental.list_physical_devices('GPU') def getLayerIndexByName(model, layername): for idx, layer in enumerate(model.layers): if layer.name == layername: return idx #################################### ###### Dataset preparation ######### # Load DAVIS test data test_set = ['rollerblade', 'scooter-black','scooter-gray', 'soapbox', 'soccerball', 'stroller', 'surf', 'swing', 'tennis', 'train'] data = read_mat('.\\data\\DAVIS_CNNRNN_data.mat') print(data.keys()) pos_x = np.array([]); pos_y = np.array([]); pos_z = np.array([]) delta_x = np.array([]); delta_y = np.array([]); delta_z = np.array([]); fr_timed = [] check = 0 for i in range(len(data['training_data'])): if any(ele in data['training_data'][i]['label'] for ele in test_set)==True: if check==0: input_frames = data['training_data'][i]['images'] check += 1 else: input_frames = np.concatenate((input_frames,data['training_data'][i]['images']), axis=0) for j in range(data['training_data'][i]['images'].shape[0]-10): fr_timed.append(data['training_data'][i]['images'][j:j+10,:,:]) pos_x = np.append(pos_x,[data['training_data'][i]['x'][0:-1-9]]) pos_y = np.append(pos_y,[data['training_data'][i]['y'][0:-1-9]]) pos_z = np.append(pos_z, [data['training_data'][i]['z'][0:-1-9]]) delta_x = np.append(delta_x, [data['training_data'][i]['delta_x'][0:-1-9]]) delta_y = np.append(delta_y, [data['training_data'][i]['delta_y'][0:-1-9]]) delta_z = np.append(delta_z, [data['training_data'][i]['delta_z'][0:-1-9]]) timed_fr = np.array(fr_timed) print('Frames with time dimension', timed_fr.shape) print('size of frames', input_frames.shape, 'size of x', pos_x.shape, 'size of y', pos_y.shape, 'size of delta_x', delta_x.shape, 'size of delta_y', delta_y.shape) y_true = np.stack((pos_x, pos_y, pos_z), axis=1); print('Array of true outputs', y_true.shape) #################################### ###### Load model ################## connectome_cnn = load_model('connectome_model_CNNRNN_v3') print(connectome_cnn.summary()) #################################### ###### Predict DAVIS test data ##### pred_davis = connectome_cnn.predict(timed_fr); print('Shape of prediction', pred_davis.shape) # PERFORMANCE RMSE and Pearson's r RMSE_x = np.sqrt(np.mean((pos_x[300:-1] - pred_davis[300:-1,0])**2)); print('RMSE_x', RMSE_x) RMSE_y = np.sqrt(np.mean((pos_y[300:-1] - pred_davis[300:-1,1])**2)); print('RMSE_y', RMSE_y) RMSE_z = np.sqrt(np.mean((pos_z[300:-1] - pred_davis[300:-1,2])**2)); print('RMSE_z', RMSE_z) x_pearson_corr = measures.pearsonr(pred_davis[300:-1,0], pos_x[300:-1])[0]; print('x_Pearson', x_pearson_corr) y_pearson_corr = measures.pearsonr(pred_davis[300:-1,1], pos_y[300:-1])[0]; print('y_Pearson', y_pearson_corr) z_pearson_corr = measures.pearsonr(pred_davis[300:-1,2], pos_z[300:-1])[0]; print('z_Pearson', z_pearson_corr) # Plot prediction against ground truth fig2, ax2 = plt.subplots(3); idd_l = np.array([0,0,0,1,1,1]); idd_r = np.array([0,1,2,0,1,2]) labels = ['x','y','z','delta_x','delta_y','delta_z'] labels2 = ['x','y','z'] fig2.suptitle('Test data prediction') for i in range(pred_davis.shape[1]): ax2[i].plot(np.arange(0,293), y_true[300:-1,i], linewidth=1, color='black', alpha=0.7) ax2[i].plot(np.arange(0,293), pred_davis[300:-1,i], linewidth=1, color='blue') ax2[i].legend(['ground truth', 'prediction'], loc='upper right', frameon=False) ax2[i].set_title('{bar_dir}'.format(bar_dir=labels[i])) ax2[i].set_ylabel('Distance (a.u.)'); ax2[i].set_xlabel('Time (a.u.)') ax2[i].set_xlim(0, 300+1); ax2[i].set_xticks(np.arange(0,300+1,150)) ax2[0].set_ylim(0, 30+1); ax2[0].set_yticks(np.arange(0,30+1,10)) ax2[1].set_ylim(0, 15+1); ax2[1].set_yticks(np.arange(0,15+1,5)) ax2[2].set_ylim(0, 15+1); ax2[2].set_yticks(np.arange(0,15+1,5)) fig_b, ax_b = plt.subplots(); x_l = np.arange(len(labels2)); vec = [RMSE_x,RMSE_y,RMSE_z] bb = ax_b.bar(x_l, vec); colo = ['y', 'g', 'b'] ax_b.set_xticks(x_l); ax_b.set_xticklabels(labels2); ax_b.set_ylabel('RMSE'); ax_b.set_ylim(0,5) for index, value in enumerate(vec): ax_b.text(x=index, y=value, s = str("{:.2f}".format(value))); bb[index].set_color(colo[index]) fig_c, ax_c = plt.subplots(); vec2 = [x_pearson_corr,y_pearson_corr,z_pearson_corr] bb2 = ax_c.bar(x_l, vec2) ax_c.set_xticks(x_l); ax_c.set_xticklabels(labels2); ax_c.set_ylabel('Pearson r'); ax_c.set_ylim(0,1) for index, value in enumerate(vec2): ax_c.text(x=index, y=value, s = str("{:.2f}".format(value))); bb2[index].set_color(colo[index]) plt.show() #################################### ###### Plot learned filters ######## show_filt = []; show_special = []; all_filters = [] layer_names = ['L1R', 'L2R', 'L3R', 'L5L1', 'L5L2', 'Mi1L1', 'Mi1L5', 'Tm3L1', 'Tm3L5', 'Mi9L3', 'Mi4L5', 'C3L1', 'Tm1L2', 'Tm2L2', 'Tm4L2', 'Tm9L3', 'Tm9Mi4', 'T4aMi1', 'T4aTm3', 'T4aMi9', 'T4aMi4', 'T4aC3', 'T4bMi1', 'T4bTm3', 'T4bMi9', 'T4bMi4', 'T4bC3', 'T4cMi1', 'T4cTm3', 'T4cMi9', 'T4cMi4', 'T4cC3', 'T4dMi1', 'T4dTm3', 'T4dMi9', 'T4dMi4', 'T4dC3', 'T5aTm1', 'T5aTm2', 'T5aTm4', 'T5aTm9', 'T5bTm1', 'T5bTm2', 'T5bTm4', 'T5bTm9', 'T5cTm1', 'T5cTm2', 'T5cTm4', 'T5cTm9', 'T5dTm1', 'T5dTm2', 'T5dTm4', 'T5dTm9', 'LPLC2T4a', 'LPLC2T4b', 'LPLC2T4c', 'LPLC2T4d', 'LPLC2T5a', 'LPLC2T5b', 'LPLC2T5c', 'LPLC2T5d'] for ele in layer_names: ind_layer = getLayerIndexByName(connectome_cnn, ele) filters = connectome_cnn.layers[ind_layer].get_weights()[0] all_filters.append(np.squeeze(filters, axis=(2,3))) if ele == 'T4aMi9' or ele == 'T4bMi9' or ele == 'T5aTm4' or ele == 'T5bTm4': show_special.append(filters) print(ele, filters.shape) else: show_filt.append(filters) print(ele, filters.shape) show_kernel = np.array(show_filt); show_kernel = np.squeeze(show_kernel, axis=(3,4)) show_kernel_sp = np.array(show_special); show_kernel_sp = np.squeeze(show_kernel_sp, axis=(3,4)) print('All filters', len(all_filters)) print('3x3 filters', show_kernel.shape); print('5x5 filters', show_kernel_sp.shape) #### Lamina fig_lam, ax_lam = plt.subplots(2,3) im_lam = [] im_lam.append(ax_lam[0,0].imshow(all_filters[0], cmap='RdYlBu', vmin=-1, vmax=2)); ax_lam[0,0].set_title('L1') im_lam.append(ax_lam[0,1].imshow(all_filters[1], cmap='RdYlBu', vmin=-1, vmax=2)); ax_lam[0,1].set_title('L2') im_lam.append(ax_lam[0,2].imshow(all_filters[2], cmap='RdYlBu', vmin=-1, vmax=2)); ax_lam[0,2].set_title('L3') im_lam.append(ax_lam[1,0].imshow(all_filters[3], cmap='RdYlBu', vmin=-1, vmax=2)); ax_lam[1,0].set_title('L5L1') im_lam.append(ax_lam[1,1].imshow(all_filters[4], cmap='RdYlBu', vmin=-1, vmax=2)); ax_lam[1,1].set_title('L5L2') fig_lam.suptitle('LAMINA trained'); fig_lam.colorbar(im_lam[0], ax=ax_lam, label='a.u.') fig_lam.delaxes(ax = ax_lam[1,2]) for i in range(ax_lam.shape[0]): for j in range(ax_lam.shape[1]): ax_lam[i,j].set_axis_off() #### Outer medulla fig_med, ax_med = plt.subplots(4,4) im_med = [] # ON PATHWAY im_med.append(ax_med[0,0].imshow(all_filters[5], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[0,0].set_title('Mi1L1') im_med.append(ax_med[0,1].imshow(all_filters[6], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[0,1].set_title('Mi1L5') im_med.append(ax_med[0,2].imshow(all_filters[7], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[0,2].set_title('Tm3L1') im_med.append(ax_med[0,3].imshow(all_filters[8], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[0,3].set_title('Tm3L5') im_med.append(ax_med[1,0].imshow(all_filters[9], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[1,0].set_title('Mi9L3') im_med.append(ax_med[1,1].imshow(all_filters[10], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[1,1].set_title('Mi4L5') im_med.append(ax_med[1,2].imshow(all_filters[11], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[1,2].set_title('C3L1') # OFF PATHWAY im_med.append(ax_med[2,0].imshow(all_filters[12], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[2,0].set_title('Tm1L2') im_med.append(ax_med[2,1].imshow(all_filters[13], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[2,1].set_title('Tm2L2') im_med.append(ax_med[2,2].imshow(all_filters[14], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[2,2].set_title('Tm4L2') im_med.append(ax_med[3,0].imshow(all_filters[15], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[3,0].set_title('Tm9L3') im_med.append(ax_med[3,1].imshow(all_filters[16], cmap='YlGnBu', vmin=-1, vmax=2)); ax_med[3,1].set_title('Tm9Mi4') ### fig_med.suptitle('Outer MEDULLA trained'); fig_med.colorbar(im_med[0], ax=ax_med, label='a.u.') #fig_med.delaxes(ax = ax_med[0,2]) for i in range(ax_med.shape[0]): for j in range(ax_med.shape[1]): ax_med[i,j].set_axis_off() ### Inner medulla (T4) fig_lp, ax_lp = plt.subplots(4,5) im_lp = [] im_lp.append(ax_lp[0,0].imshow(all_filters[17], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[0,0].set_title('T4aMi1') im_lp.append(ax_lp[0,1].imshow(all_filters[18], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[0,1].set_title('T4aTm3') im_lp.append(ax_lp[0,2].imshow(all_filters[19], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[0,2].set_title('T4aMi9 (5x5)') im_lp.append(ax_lp[0,3].imshow(all_filters[20], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[0,3].set_title('T4aMi4') im_lp.append(ax_lp[0,4].imshow(all_filters[21], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[0,4].set_title('T4aC3') ### im_lp.append(ax_lp[1,0].imshow(all_filters[22], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[1,0].set_title('T4bMi1') im_lp.append(ax_lp[1,1].imshow(all_filters[23], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[1,1].set_title('T4bTm3') im_lp.append(ax_lp[1,2].imshow(all_filters[24], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[1,2].set_title('T4bMi9 (5x5)') im_lp.append(ax_lp[1,3].imshow(all_filters[25], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[1,3].set_title('T4bMi4') im_lp.append(ax_lp[1,4].imshow(all_filters[26], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[1,4].set_title('T4bC3') ### im_lp.append(ax_lp[2,0].imshow(all_filters[27], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[2,0].set_title('T4cMi1') im_lp.append(ax_lp[2,1].imshow(all_filters[28], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[2,1].set_title('T4cTm3') im_lp.append(ax_lp[2,2].imshow(all_filters[29], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[2,2].set_title('T4cMi9') im_lp.append(ax_lp[2,3].imshow(all_filters[30], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[2,3].set_title('T4cMi4') im_lp.append(ax_lp[2,4].imshow(all_filters[31], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[2,4].set_title('T4cC3') ### im_lp.append(ax_lp[3,0].imshow(all_filters[32], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[3,0].set_title('T4dMi1') im_lp.append(ax_lp[3,1].imshow(all_filters[33], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[3,1].set_title('T4dTm3') im_lp.append(ax_lp[3,2].imshow(all_filters[34], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[3,2].set_title('T4dMi9') im_lp.append(ax_lp[3,3].imshow(all_filters[35], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[3,3].set_title('T4dMi4') im_lp.append(ax_lp[3,4].imshow(all_filters[36], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lp[3,4].set_title('T4dC3') ### for i in range(ax_lp.shape[0]): for j in range(ax_lp.shape[1]): ax_lp[i,j].set_axis_off() fig_lp.suptitle('Inner MEDULLA trained'); fig_lp.colorbar(im_lp[1], ax=ax_lp, label='a.u.') ### LOBULA fig_lo, ax_lo = plt.subplots(4,4) im_lo = [] im_lo.append(ax_lo[0,0].imshow(all_filters[37], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[0,0].set_title('T5aTm1') im_lo.append(ax_lo[0,1].imshow(all_filters[38], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[0,1].set_title('T5aTm2') im_lo.append(ax_lo[0,2].imshow(all_filters[39], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[0,2].set_title('T5aTm4 (5x5)') im_lo.append(ax_lo[0,3].imshow(all_filters[40], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[0,3].set_title('T5aTm9') ### im_lo.append(ax_lo[1,0].imshow(all_filters[41], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[1,0].set_title('T5bTm1') im_lo.append(ax_lo[1,1].imshow(all_filters[42], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[1,1].set_title('T5bTm2') im_lo.append(ax_lo[1,2].imshow(all_filters[43], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[1,2].set_title('T5bTm4 (5x5)') im_lo.append(ax_lo[1,3].imshow(all_filters[44], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[1,3].set_title('T5bTm9') ### im_lo.append(ax_lo[2,0].imshow(all_filters[45], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[2,0].set_title('T5cTm1') im_lo.append(ax_lo[2,1].imshow(all_filters[46], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[2,1].set_title('T5cTm2') im_lo.append(ax_lo[2,2].imshow(all_filters[47], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[2,2].set_title('T5cTm4') im_lo.append(ax_lo[2,3].imshow(all_filters[48], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[2,3].set_title('T5cTm9') ### im_lo.append(ax_lo[3,0].imshow(all_filters[49], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[3,0].set_title('T5dTm1') im_lo.append(ax_lo[3,1].imshow(all_filters[50], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[3,1].set_title('T5dTm2') im_lo.append(ax_lo[3,2].imshow(all_filters[51], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[3,2].set_title('T5dTm4') im_lo.append(ax_lo[3,3].imshow(all_filters[52], cmap='jet', vmin=-0.5, vmax=0.5)); ax_lo[3,3].set_title('T5dTm9') ### for i in range(ax_lo.shape[0]): for j in range(ax_lo.shape[1]): ax_lo[i,j].set_axis_off() fig_lo.suptitle('LOBULA trained'); fig_lo.colorbar(im_lo[1], ax=ax_lo, label='a.u.') ### OPTIC GLOMERULI fig_op, ax_op = plt.subplots(2,4) im_op = [] im_op.append(ax_op[0,0].imshow(all_filters[53], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[0,0].set_title('LPLC2T4a') im_op.append(ax_op[0,1].imshow(all_filters[54], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[0,1].set_title('LPLC2T4b') im_op.append(ax_op[0,2].imshow(all_filters[55], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[0,2].set_title('LPLC2T4c') im_op.append(ax_op[0,3].imshow(all_filters[56], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[0,3].set_title('LPLC2T4d') ### im_op.append(ax_op[1,0].imshow(all_filters[57], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[1,0].set_title('LPLC2T5a') im_op.append(ax_op[1,1].imshow(all_filters[58], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[1,1].set_title('LPLC2T5b') im_op.append(ax_op[1,2].imshow(all_filters[59], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[1,2].set_title('LPLC2T5c') im_op.append(ax_op[1,3].imshow(all_filters[60], cmap='RdYlBu', vmin=-0.5, vmax=0.5)); ax_op[1,3].set_title('LPLC2T5d') ### for i in range(ax_op.shape[0]): for j in range(ax_op.shape[1]): ax_op[i,j].set_axis_off() fig_op.suptitle('OPTIC GLOMERULI trained'); fig_op.colorbar(im_op[1], ax=ax_op, label='a.u.') #################################### ########INITIAL WEIGHTS############# scale = 1/75 # LAMINA # L1R = scale*np.array([[0,0, 0],[0, -35, 0],[0, 0, 0]]) L2R = scale*np.array([[0,0, 0],[0, -45, 0],[0, 0, 0]]) L3R = scale*np.array([[0,0, 0],[0, -10, 0],[0, 0, 0]]) L5L1 = scale*np.array([[0,0, 0],[0, 120, 0],[0, 0, 0]]) L5L2 = scale*np.array([[0,0, 0],[0, 60, 0],[0, 0, 0]]) # Outer MEDULLA # Mi1L1 = scale*np.array([[0,0, 0],[0, 140, 0],[0, 0, 0]]) # excit Mi1L5 = scale*np.array([[0,0, 0],[0, 50, 0],[0, 0, 0]]) Tm1L2 = scale*np.array([[0,0, 0],[0, 180, 0],[0, 0, 0]]) Tm2L2 = scale*np.array([[0,0, 0],[0, 160, 0],[0, 0, 0]]) Tm3L1 = scale*
np.array([[50,50, 50],[50, 110, 50],[50, 50, 50]])
numpy.array
import numpy as np import cv2 import math ############################## # # # ### RBox gt ### # # # ############################## def rbox2poly(rboxes): ctr_x = rboxes[:, 0:1] ctr_y = rboxes[:, 1:2] width = rboxes[:, 2:3] height = rboxes[:, 3:4] angle = rboxes[:, 4:] # struct = np.zeros_like(rboxes[:, 0]) l = (- width / 2.0) r = (width / 2.0) t = (- height / 2.0) b = (height / 2.0) # anti-clockwise [n, 1, 1] cosA = np.cos(-angle / 180 * np.pi)[..., np.newaxis] sinA = np.sin(-angle / 180 * np.pi)[..., np.newaxis] polys = np.concatenate([l, t, r, t, r, b, l, b], axis=1).reshape(-1, 4, 2) # [n, 4, 1] x_poly, y_poly = polys[..., 0:1], polys[..., 1:2] x_poly_new = x_poly * cosA - y_poly * sinA + ctr_x[..., np.newaxis] y_poly_new = x_poly * sinA + y_poly * cosA + ctr_y[..., np.newaxis] return np.concatenate([x_poly_new, y_poly_new], axis=-1).reshape(-1, 8) def pyramid_targets_rbox(imshape, scale_stack, area_thres, rboxes, dense_ratio=0.7, areas=None): p_heatmap_stack = [] p_angle_stack = [] p_target_stack = [] # area_thres = [32 ** 2, 64 ** 2] scaled_qboxes = [] scaled_rboxes = [] box_in_4pts = rbox2poly(rboxes) if not areas is None: # small = areas < area_thres[0] medium = (areas >= area_thres[0]) & (areas < area_thres[1]) # large = areas >= area_thres[1] # print('pyshape:', small.shape, box_in_4pts.shape) # scaled_qboxes.append(box_in_4pts) scaled_qboxes.append(box_in_4pts[medium]) # scaled_qboxes.append(box_in_4pts) # scaled_rboxes.append(rboxes) # [small] scaled_rboxes.append(rboxes[medium]) # [medium] # scaled_rboxes.append(rboxes) # [large] for i in range(len(scale_stack)): scale = scale_stack[i] # if not areas is None: box_in_4pts = scaled_qboxes[i] rbox = scaled_rboxes[i] # print("scaled_qboxes:", scaled_qboxes[i], rbox) heatmap, target = make_target_rbox(imshape, scale, box_in_4pts, rbox, dense_ratio=dense_ratio) p_heatmap_stack.append(heatmap) p_angle_stack.append([]) p_target_stack.append(target) p_heatmap = np.concatenate(p_heatmap_stack, axis=0) p_target = np.concatenate(p_target_stack, axis=0) return p_heatmap, p_target def make_target_rbox(imshape, scale, box_in_4pts, rboxes, dense_ratio=0.7): # heatmap_stack: [nbox, H, W] # target_stack: [nbox, 8, H, W] # print("box_in_4pts make:", box_in_4pts, rboxes) heatmap_stack, angle_cls, target_stack, angle_reg = compute_target_rbox(box_in_4pts, scale, get_heatmap_rbox( box_in_4pts, imshape, float(1 / scale) ), rboxes[:, -1]) # print("angle_cls:", angle_cls.shape) # print("angle_reg:", angle_reg.shape) # heatmap: [H*W] # target: [H*W, 4+6] target_stack = np.transpose(target_stack, (0, 2, 3, 1)) # angle_cls = np.sum(angle_cls, axis=1)[:, np.newaxis, :, :] # print("angle_cls:", angle_cls.shape) # angle_cls = np.transpose(angle_cls, (0, 2, 3, 1)) angle_reg = np.transpose(angle_reg, (0, 2, 3, 1)) # print("heatmap_stack:", heatmap_stack.shape) heatmap = np.sum(heatmap_stack, axis=0).reshape(-1) # print("heatmap:", heatmap.shape, np.unique(heatmap)) heatmap[heatmap > 1] = 0 # 4 edges target = np.sum(target_stack, axis=0).reshape(-1, 4) # print("make_target:", np.where(target[:, 0] != 0), target[target[:, 0] != 0]) angle_cls_map = angle_cls # np.sum(angle_cls, axis=0).reshape(-1) # remove overlapping labels # angle_cls_map[angle_cls_map > 6] = 0 # print("angle_reg_map:", angle_reg.shape) angle_reg_map = np.sum(angle_reg, axis=0).reshape(-1, 1) # print("[heatmap, angle_cls_map]", heatmap.shape, angle_cls_map.shape) # 1 channel for textness, 6 for angle cls, [b, 1, h, w] # heatmap = np.concatenate([heatmap, angle_cls_map], axis=0) # 4 channels for coods reg, 6 for angle reg, [b, 4, h, w] # print("[target, angle_reg_map]", target.shape, angle_reg_map.shape) target = np.concatenate([target, angle_reg_map], axis=1) # print("make_target:", heatmap.shape, target.shape) target = target * heatmap[..., np.newaxis] return heatmap, target def make_target_rbox_mc(imshape, scale, box_in_4pts, rboxes, seq_labels, dense_ratio=0.7): # heatmap_stack: [nbox, H, W] # target_stack: [nbox, 8, H, W] # print("box_in_4pts make:", box_in_4pts, rboxes) # gt_boxes, imshape, stride, gt_rboxes, seq_labels heatmap, classmap = get_heatmap_rbox_multiclass( box_in_4pts, imshape, float(1 / scale), rboxes, seq_labels ) heatmap_stack, angle_cls, target_stack, angle_reg = compute_target_rbox(box_in_4pts, scale, heatmap, rboxes[:, -1]) # print("angle_cls:", angle_cls.shape) # print("angle_reg:", angle_reg.shape) # heatmap: [H*W] # classmap: [H*W] # target: [H*W, 4+6] target_stack = np.transpose(target_stack, (0, 2, 3, 1)) # angle_cls = np.sum(angle_cls, axis=1)[:, np.newaxis, :, :] # print("angle_cls:", angle_cls.shape) # angle_cls = np.transpose(angle_cls, (0, 2, 3, 1)) angle_reg = np.transpose(angle_reg, (0, 2, 3, 1)) # print("heatmap_stack:", heatmap_stack.shape) heatmap = np.sum(heatmap_stack, axis=0).reshape(-1) biclsmap = np.sum((classmap > 0).astype(np.float32), axis=0).reshape(-1) classmap = np.sum(classmap, axis=0).reshape(-1) # print("heatmap:", heatmap.shape, np.unique(heatmap)) heatmap[heatmap > 1] = 0 classmap[biclsmap > 1] = 0 # 4 edges target = np.sum(target_stack, axis=0).reshape(-1, 4) # print("make_target:", np.where(target[:, 0] != 0), target[target[:, 0] != 0]) angle_cls_map = angle_cls # np.sum(angle_cls, axis=0).reshape(-1) # remove overlapping labels # angle_cls_map[angle_cls_map > 6] = 0 # print("angle_reg_map:", angle_reg.shape) angle_reg_map = np.sum(angle_reg, axis=0).reshape(-1, 1) # print("[heatmap, angle_cls_map]", heatmap.shape, angle_cls_map.shape) # 1 channel for textness, 6 for angle cls, [b, 1, h, w] # heatmap = np.concatenate([heatmap, angle_cls_map], axis=0) # 4 channels for coods reg, 6 for angle reg, [b, 4, h, w] # print("[target, angle_reg_map]", target.shape, angle_reg_map.shape) target = np.concatenate([target, angle_reg_map], axis=1) # print("make_target:", heatmap.shape, target.shape) target = target * heatmap[..., np.newaxis] return heatmap, target, classmap def get_heatmap_rbox(gt_boxes, imshape, stride, proportion=0.7): # gt_boxes_4pts:[n, (lt, rt, rb, lb) * (x, y)] gt box pts in anti-clock order within 8 channels cls_num = 1 fill_mask_ori = np.zeros((int(math.ceil(imshape[0])), int(math.ceil(imshape[1])))) # print("fill_mask_ori:", fill_mask_ori.shape) mask_stack = [] if len(gt_boxes) < 1: mask_stack.append(fill_mask_ori[np.newaxis, ...]) for i in range(len(gt_boxes)): fill_mask = fill_mask_ori.copy() coods = np.array(gt_boxes[i], np.int32).reshape(4, 2) pt1 = coods[0] pt2 = coods[1] pt3 = coods[2] pt4 = coods[3] ctr = (((pt1 + pt3) / 2 + (pt2 + pt4) / 2) / 2).reshape(-1, 2) rescale_coods = np.array((coods - ctr) * proportion + ctr, np.int32) fill_mask = cv2.fillPoly(fill_mask, np.array(np.array([rescale_coods]) / stride, np.int32), cls_num) # print("rescale_coods:", np.array(np.array([rescale_coods]) / stride, np.int32), fill_mask.shape) mask_stack.append(fill_mask[np.newaxis, ...]) return np.concatenate(mask_stack, axis=0) def get_heatmap_rbox_multiclass(gt_boxes, imshape, stride, gt_rboxes, seq_labels, proportion=0.7): # gt_boxes_4pts:[n, (lt, rt, rb, lb) * (x, y)] gt box pts in anti-clock order within 8 channels cls_num = 1 fill_mask_ori = np.zeros((math.ceil(imshape[0]), math.ceil(imshape[1]))) char_mask_ori = np.zeros((math.ceil(imshape[0]), math.ceil(imshape[1]))) # print("fill_mask_ori:", fill_mask_ori.shape) mask_stack = [] char_map_stack = [] if len(gt_boxes) < 1: mask_stack.append(fill_mask_ori[np.newaxis, ...]) char_map_stack.append(char_mask_ori[np.newaxis, ...]) label_len = np.array([len(seq) for seq in seq_labels]) char_poses = [] for i in range(len(label_len)): l = label_len[i] rbox = gt_rboxes[i] x, y, w, h, a = rbox arc = -a * np.pi / 180.0 w *= proportion h *= proportion # radius in [1, w / 2] char_r = min(max(rbox[2] / float(2 * l + 1e-10), 1), w / 3.) / stride xs = [x - (w / 2 - w / (2 * l) - nth * (w / l)) * np.abs(np.cos(arc)) for nth in range(l)] ys = [y - (w / 2 - w / (2 * l) - nth * (w / l)) * np.abs(np.sin(arc)) for nth in range(l)] # [x, y, r, label] char_poses.append([[xs[n] / stride, ys[n] / stride, char_r, seq_labels[i][n]] for n in range(l)]) for i in range(len(gt_boxes)): fill_mask = fill_mask_ori.copy() char_mask = char_mask_ori.copy() coods = np.array(gt_boxes[i], np.int32).reshape(4, 2) pt1 = coods[0] pt2 = coods[1] pt3 = coods[2] pt4 = coods[3] ctr = (((pt1 + pt3) / 2 + (pt2 + pt4) / 2) / 2).reshape(-1, 2) rescale_coods = np.array((coods - ctr) * proportion + ctr, np.int32) fill_mask = cv2.fillPoly(fill_mask, np.array(np.array([rescale_coods]) / stride, np.int32), cls_num) char_pos = char_poses[i] for n in range(label_len[i]): char_mask = cv2.circle( char_mask, (int(char_pos[n][0]), int(char_pos[n][1])), int(char_pos[n][2]), int(char_pos[n][3]), -1 ) # print("char_mask:", np.unique(char_mask)) mask_stack.append(fill_mask[np.newaxis, ...]) char_map_stack.append(char_mask[np.newaxis, ...]) return np.concatenate(mask_stack, axis=0), np.concatenate(char_map_stack, axis=0) def compute_target_rbox(gt_boxes_4pts, scale, heatmap, angles, base_angle=30.): # gt_boxes_4pts: qbox in clock-wise h, w = heatmap.shape[1:] if gt_boxes_4pts.shape[0] < 1: return heatmap[np.newaxis, ...], [], np.zeros((1, 4, h, w)), np.zeros((1, 1, h, w)) # p_grid in [x, y] shape p_grid = (np.mgrid[:h, :w][np.newaxis, ...].reshape(2, -1).T + 0.5) * float(1. / scale) p_grid = np.concatenate([p_grid[:, 1:2], p_grid[:, 0:1]], axis=-1) gt_boxes_4pts = np.array(gt_boxes_4pts).reshape(-1, 4, 2).astype(np.float32) pj_dis_coll = [] for i in range(gt_boxes_4pts.shape[0]): A = gt_boxes_4pts[i] B = np.concatenate([gt_boxes_4pts[i][1:], gt_boxes_4pts[i][0:1]], axis=0) # AB: [4, 2] AB = B - A # AP: [line, grid, cood] -> [4, h * w, 2] AP = p_grid[np.newaxis, :, :] - gt_boxes_4pts[i][:, np.newaxis, :] AB_norm = np.sqrt(np.sum(AB ** 2, axis=-1))[..., np.newaxis] # AP_norm = np.sqrt(np.sum(AP ** 2, axis=-1))[..., np.newaxis] ''' # print("AP_norm * sin_BAP:", AB.shape, AP.shape, AB_norm.shape, AP_norm.shape, np.tile(AB, (AP.shape[0], 1)).shape) cos_BAP = np.abs(np.sum(AB[:, np.newaxis, :] * AP, axis=-1)) BAP_fraction = (AB_norm[:, np.newaxis, :] * AP_norm) # print("BAP_fraction:", cos_BAP.shape, BAP_fraction.shape) cos_BAP = cos_BAP[:, :, np.newaxis] / (BAP_fraction + 1e-10) sin_BAP = np.sqrt(1 - cos_BAP ** 2) # print("AP_norm * sin_BAP:", AP_norm.shape, sin_BAP.shape) # norm for each level by scale pj_dis = AP_norm * sin_BAP # * scale * (0.5 ** 3) ''' # [4, 1] X1, Y1 = AB[..., 0:1], AB[..., 1:2] # [4, h * w, 1] X2, Y2 = AP[..., 0:1], AP[..., 1:2] dis_numerator = np.abs(X1[:, np.newaxis, :] * Y2 - X2 * Y1[:, np.newaxis, :]) pj_dis = dis_numerator / (AB_norm[:, np.newaxis, :] + 1e-10) pj_dis_coll.append(pj_dis.reshape(AB.shape[0], h, w)[np.newaxis, ...]) for i in range(heatmap.shape[0]): pj_dis_coll[i] *= heatmap[i] # Angle Map angles =
np.array(angles)
numpy.array
""" Copyright 2021 Biomedical Computer Vision Group, Heidelberg University. Author: <NAME> (<EMAIL>) Distributed under the MIT license. See file LICENSE for detail or copy at https://opensource.org/licenses/MIT """ import argparse import numpy as np import pandas as pd import skimage.util def disk_mask(imsz, ir, ic, nbpx): ys, xs = np.ogrid[-nbpx:nbpx + 1, -nbpx:nbpx + 1] se = xs ** 2 + ys ** 2 <= nbpx ** 2 mask = np.zeros(imsz, dtype=int) if ir - nbpx < 0 or ic - nbpx < 0 or ir + nbpx + 1 > imsz[0] or ic + nbpx + 1 > imsz[1]: mask = skimage.util.pad(mask, nbpx) mask[ir:ir + 2 * nbpx + 1, ic:ic + 2 * nbpx + 1] = se mask = skimage.util.crop(mask, nbpx) else: mask[ir - nbpx:ir + nbpx + 1, ic - nbpx:ic + nbpx + 1] = se return mask def find_nn(cim, icy, icx, nim, nbpx): mask = disk_mask(cim.shape, icy, icx, nbpx) iys_nim, ixs_nim = np.where(nim * mask) if iys_nim.size == 0: return np.NaN, np.NaN d2 = (icy - iys_nim) ** 2 + (icx - ixs_nim) ** 2 I1 = np.argsort(d2) iy_nim = iys_nim[I1[0]] ix_nim = ixs_nim[I1[0]] mask = disk_mask(cim.shape, iy_nim, ix_nim, nbpx) iys_cim, ixs_cim = np.where(cim * mask) d2 = (iy_nim - iys_cim) ** 2 + (ix_nim - ixs_cim) ** 2 I2 = np.argsort(d2) if not iys_cim[I2[0]] == icy or not ixs_cim[I2[0]] == icx: return np.NaN, np.NaN return iy_nim, ix_nim def points_linking(fn_in, fn_out, nbpx=6, th=25, minlen=50): data = pd.read_csv(fn_in, delimiter="\t") all_data = np.array(data) assert all_data.shape[1] in [3, 4], 'unknow collum(s) in input data!' coords = all_data[:, :3].astype('int64') frame_1st = np.min(coords[:, 0]) frame_end = np.max(coords[:, 0]) assert set([i for i in range(frame_1st, frame_end + 1)]).issubset(set(coords[:, 0].tolist())), "spots missing at some time point!" nSlices = frame_end stack_h = np.max(coords[:, 2]) + nbpx stack_w = np.max(coords[:, 1]) + nbpx stack = np.zeros((stack_h, stack_w, nSlices), dtype='int8') stack_r = np.zeros((stack_h, stack_w, nSlices), dtype='float64') for i in range(all_data.shape[0]): iyxz = tuple(coords[i, ::-1] - 1) stack[iyxz] = 1 if all_data.shape[1] == 4: stack_r[iyxz] = all_data[i, -1] else: stack_r[iyxz] = 1 tracks_all = np.array([], dtype=float).reshape(0, nSlices, 4) maxv = np.max(stack_r) br_max = maxv idx_max = np.argmax(stack_r) while 1: iyxz = np.unravel_index(idx_max, stack.shape) spot_br = np.empty((nSlices, 1)) track = np.empty((nSlices, 3)) for i in range(nSlices): spot_br[i] = np.NaN track[i, :] = np.array((np.NaN, np.NaN, np.NaN)) spot_br[iyxz[2]] = maxv track[iyxz[2], :] = np.array(iyxz[::-1]) + 1 # forward icy = iyxz[0] icx = iyxz[1] for inz in range(iyxz[2] + 1, nSlices): iny, inx = find_nn(stack[:, :, inz - 1], icy, icx, stack[:, :, inz], nbpx) if np.isnan(iny) and not inz == nSlices - 1: iny, inx = find_nn(stack[:, :, inz - 1], icy, icx, stack[:, :, inz + 1], nbpx) if np.isnan(iny): break else: iny = icy inx = icx stack[iny, inx, inz] = 1 stack_r[iny, inx, inz] = stack_r[iny, inx, inz - 1] elif np.isnan(iny) and inz == nSlices - 1: break track[inz, :] = np.array((inz, inx, iny)) + 1 spot_br[inz] = stack_r[iny, inx, inz] icy = iny icx = inx # backward icy = iyxz[0] icx = iyxz[1] for inz in range(iyxz[2] - 1, -1, -1): iny, inx = find_nn(stack[:, :, inz + 1], icy, icx, stack[:, :, inz], nbpx) if np.isnan(iny) and not inz == 0: iny, inx = find_nn(stack[:, :, inz + 1], icy, icx, stack[:, :, inz - 1], nbpx) if np.isnan(iny): break else: iny = icy inx = icx stack[iny, inx, inz] = 1 stack_r[iny, inx, inz] = stack_r[iny, inx, inz + 1] elif np.isnan(iny) and inz == 0: break track[inz, :] = np.array((inz, inx, iny)) + 1 spot_br[inz] = stack_r[iny, inx, inz] icy = iny icx = inx for iz in range(nSlices): if not np.isnan(track[iz, 0]): stack[track[iz, 2].astype(int) - 1, track[iz, 1].astype(int) - 1, iz] = 0 stack_r[track[iz, 2].astype(int) - 1, track[iz, 1].astype(int) - 1, iz] = 0 # discard short trajectories if np.count_nonzero(~np.isnan(spot_br)) >
np.max((1, minlen * (frame_end - frame_1st) / 100))
numpy.max
import numpy as np import scipy as scp from scipy import special import pandas as pd import os import shutil class ddm_data_simulator(): def __init__(self): self.model_params = dict({'mu': 0, 'sigma_2': 1, 'theta': 1}) self.bernoulli_p = 'will be initiated upon a call to the make_data() function' self.sample_params = dict({'n_samples': 10000}) self.mu = (self.model_params['mu'] * self.model_params['theta']) / self.model_params['sigma_2'] self.mu_tilde = 1 self.t_tilde_large_mu = 2.5 self.t_tilde_small_mu = self.compute_t_tilde_small_mu() self.a = self.compute_a() self.C_f_1_s = self.compute_C_f_1_s() self.C_f_1_l = self.compute_C_f_1_l() self.F_1_inf = self.compute_F_1_inf() self.F_1_l_tilde_small_mu = self.compute_F_1_l_t(self.t_tilde_small_mu) self.F_1_s_tilde_small_mu = self.compute_F_1_s_t(self.t_tilde_small_mu) def acceptt(self, t_star = [], f_t_star = [], c_2 = []): #print('f_t_star: ', f_t_star) z = np.random.uniform(low = 0, high = f_t_star, size = 1) b = np.exp(- c_2) k_tilde = 3 #print('z: ', z) #print('b: ', b) while True: if z > b: return 0 b = b - (k_tilde * np.exp(- c_2 * np.power(k_tilde, 2))) #print('b: ', b) if z <= b: return 1 k_tilde = k_tilde + 2 b = b + (k_tilde * np.exp(- c_2 * np.power(k_tilde, 2))) #print('b: ', b) k_tilde = k_tilde + 2 if k_tilde > 10: return 1 def sample_small_mu(self): # supply a, C_f_1_s, C_f_2_s, F_1_s(t_tilde), F_1(inf) while True: P = np.random.uniform(low = 0, high = self.F_1_inf) #print('in small sample mu, P: ', P) if P <= (self.C_f_1_s * self.F_1_s_tilde_small_mu): t_star = self.compute_F_1_s_t_inv(P / self.C_f_1_s) #print('in sample small mu, t_star: ', t_star) if self.acceptt(t_star = t_star, f_t_star = np.exp( - ( 1 / (2 * self.a * t_star)) - np.sqrt(((self.a - 1) * np.power(self.mu, 2)) / self.a) + (np.power(self.mu, 2) * t_star) / 2), c_2 = (1 / (2 * t_star)) ): return t_star else: t_star = self.compute_F_1_l_t_inv(((P - self.C_f_1_s * self.compute_F_1_s_t(self.t_tilde_small_mu)) / self.C_f_1_l) + self.compute_F_1_l_t(self.t_tilde_small_mu)) #print('in sample small mu, t_star: ', t_star) if self.acceptt(t_star = t_star, f_t_star = np.exp((- np.power(np.pi, 2) * t_star) / 8), c_2 = (np.power(np.pi, 2) * t_star) / 8 ): return t_star def sample_large_mu(self): if t_star >= 0.63662: C_s = 0 C_l = - np.log(np.pi / 4) - (0.5 * np.log(2 * np.pi)) else: C_l = - ((np.power(np.pi, 2) * t_tilde) / 8) + (1.5 * np.log(t_tilde) + (1 / (2 * t_tilde))) C_2 = C_l + (0.5 * np.log(2 * np.pi)) + np.log(np.pi / 4) while true: t_star = np.random.wald(mean = (1/np.abs(self.mu)), scale = 1) if t_star <= t_tilde: if self.acceptt(t_star = t_star, f_t_star = np.exp(C_s - (1/(2 * t_star))), c_2 = (1 / (2 * t_star)) ): return t_star else: if self.acceptt(t_star = t_star, f_t_star = np.exp(C_l - (1 / (2 * t_star)) - (1.5 * np.log(t_star))), c_2 = (np.power(np.pi, 2) * t_star) / 8 ): return t_star def sample_wfpt(self): if self.mu <= self.mu_tilde: t_star = self.sample_small_mu() else: t_star = self.sample_large_mu() return ((t_star * np.power(self.model_params['theta'], 2)) / self.model_params['sigma_2']), np.random.choice([1, -1], p = [self.bernoulli_p, 1 - self.bernoulli_p]) def make_data(self): self.bernoulli_p = 1 / (1 + np.exp(-2 * self.mu)) data = np.zeros((self.sample_params['n_samples'],2)) for i in range(0, self.sample_params['n_samples'], 1): data[i, 0], data[i, 1] = self.sample_wfpt() if i % 1000 == 0: print(i, ' data points sampled') return data def compute_t_tilde_small_mu(self): return 0.12 + 0.5 *
np.exp(- self.mu/3)
numpy.exp
# -*- coding: utf-8 -*- """ Copyright (c) 2020, University of Southampton All rights reserved. Licensed under the BSD 3-Clause License. See LICENSE.md file in the project root for full license information. """ import math import unittest from unittest.mock import patch import numpy as np from auv_cal.cone_fitting import CircularCone, build_matrix, rotation_matrix cone_points = np.array( [ [-1.33048143698340549, -10.9167707649920445, 16.0510645154023663], [-1.35444014094203435, -9.85047375230570488, 14.4832746889369801], [-1.37413509610432372, -8.97394348476293047, 13.1945012799404964], [-1.39061151089872914, -8.24066080532580258, 12.1163465903305951], [-1.40459877249746512, -7.61816283388455684, 11.2010800416958851], [-1.41662135489108421, -7.08310677445542147, 10.4143804293164877], [-1.4270660565611577, -6.6182773637618908, 9.73093593640615495], [-1.43622439354878639, -6.21070008021096864, 9.13166996168519063], [-1.4443202368208774, -5.85041108585671843, 8.60193254967370535], [-1.45152835738756214, -5.52963183766690403, 8.13028681131961761], [-1.45798718750993861, -5.24220112363124002, 7.70767383958905761], [-1.46380779856235255, -4.98317548446758263, 7.32682520450624164], [-1.4690803425334733, -4.74854252132031807, 6.98184142587877954], [-1.47387875555397518, -4.53501155555069246, 6.66788417777062747], [-1.47826424698250891, -4.33985833976516311, 6.38094796518596752], [-1.48599279676010076, -3.99594701649774953, 5.87529084769434728], [-1.48941531414188821, -3.8436524235919709, 5.65137020406256863], [-1.48228792478428839, -4.16080820992080991, 6.11768832114919014], [-1.49258657516399906, -3.70254034149209099, 5.44389134585008971], [-1.49553327289983051, -3.57142274125332682, 5.25110749924903253], [-1.49827844859047166, -3.44927412625144614, 5.07151086375407889], [-1.50084209549335168, -3.33520465665189247, 4.90379309673348551], [-1.5032416467473424, -3.22843843596744717, 4.74681338788338714], [-1.50549237243837286, -3.12829583883298223, 4.59957247553411985], [-1.5076077049881853, -3.03417902890704028, 4.46119135343988127], [-1.50959950752068495, -2.9455600146745069, 4.33089370907611126], [-1.5114782965332878, -2.86197073899794185, 4.20799135218291109], [-1.51325342770012639, -2.78299480956345135, 4.09187205593626135], [-1.51493325173750759, -2.70826056176537699, 3.98198935722065528], [-1.51652524581227666, -2.63743521010830717, 3.87785395736237071], [-1.51803612485603789, -2.57021989393614847, 3.77902643780299297], [-1.51947193628102517, -2.50634546190684571, 3.68511106195990923], [-1.52083814091515213, -2.44556886981331001, 3.59575047889738286], [-1.52213968243994757, -2.38767009010187881, 3.51062117935291829], [-1.52338104719290901, -2.33244945024751615, 3.42942958231705086], [-1.5245663158588143, -2.27972533212532991, 3.35190865239052416], [-1.52569920830506844, -2.22933217651882165, 3.27781496578782994], [-1.52678312259916749, -2.18111874657023952, 3.20692615706655504], [-1.52782116907020771, -2.13494661180116374, 3.13903869016389825], [-1.52881620013376307, -2.09068882069574435, 3.07396590667921155], [-1.52977083648234569, -2.04822873503912373, 3.01153631198721161], [-1.53068749014795524, -2.00745900347272821, 2.95159206604349533], [-1.53156838486393321, -1.96828065524682172, 2.89398765091759236], [-1.53241557408812668, -1.93060229806378203, 2.83858869137190428], [-1.32745348765844562, -10.5515533634389271, 16.0145350241871434], [-1.35166099288881081, -9.52306608626207485, 14.4535567535042144], [-1.37156859611230608, -8.6772707100982629, 13.1698576422620413], [-1.388228538826356, -7.969460130299451, 12.0955838429222311], [-1.40237562640273339, -7.36841430821775134, 11.1833513936014572], [-1.41453853690862541, -6.85167103815115563, 10.3990684627423171], [-1.42510736284869588, -6.40265626787095243, 9.71757991623639761], [-1.43437622860982006, -6.00887339012222021, 9.11991912920162839], [-1.4425710923938222, -5.66072200812765747, 8.59151517685181432], [-1.44986841242063047, -5.35070485536185014, 8.12098914337984112], [-1.45640799788928721, -5.0728817904008876, 7.69932542704392819], [-1.46230205398588131, -4.82248549718748087, 7.3192884723442253], [-1.46764167411843482, -4.59564564622944172, 6.97500411790629915], [-1.4725015821645091, -4.38918740837497801, 6.6616537923884751], [-1.47694365139982819, -4.2004819443481356, 6.37524759617999237], [-1.48101955309625644, -4.02733387245473207, 6.11245350641919938], [-1.48477277598046942, -3.86789546683987773, 5.87046715209084713], [-1.48824018426474902, -3.72060046066187322, 5.64691134432713326], [-1.49145323274157793, -3.58411241976658212, 5.43975772096831367], [-1.49443892388951505, -3.45728407765484835, 5.24726502753743862], [-1.49722056871179965, -3.33912500935725065, 5.06793005452447254], [-1.49981839671090289, -3.2287757151415275, 4.90044830314222146], [-1.5022500487826842, -3.12548667867538388, 4.74368220102183269], [-1.50453097843558403, -3.02860132022747441, 4.59663522957105375], [-1.50667478062952731, -2.93754202512675144, 4.45843071878108521], [-1.5086934630235378, -2.8517986191298581, 4.32829435580838151], [-1.51059767106570364, -2.7709188049134208, 4.20553967003794948], [-1.5123968758363231, -2.69450018108770228, 4.08955592000569013], [-1.51409953164203581, -2.62218354641916784, 3.97979793093618905], [-1.51571320889519412, -2.55364725411690285, 3.87577752600646086], [-1.5172447066853012, -2.48860242895472661, 3.77705626717160925], [-1.51870014857347702, -2.42678889720504065, 3.68323927785474758], [-1.52008506445628644, -2.36797170844949179, 3.59396996395317991], [-1.52140446080649072, -2.31193815122554991, 3.50892548436006813], [-1.52266288117148241, -2.25849518259884929, 3.42781284971857625], [-1.52386445847031893, -2.207467206195322, 3.35036555004806136], [-1.52501296035767653, -2.15869414479853772, 3.2763406294442321], [-1.52611182870398387, -2.11202976293854894, 3.20551614020189435], [-1.52716421406319269, -2.06734020244362338, 3.13768892016040235], [-1.52817300585515659, -2.02450270006452415, 3.07267264638825299], [-1.52914085887177409, -1.98340446129811698, 3.01029612593794882], [-1.53007021661865283, -1.94394166865484541, 2.95040179065195129], [-1.5309633319247562, -1.90601860601074069, 2.89284436815501111], [-1.53182228518563335, -1.86954688349427678, 2.83748970543244283], [-1.32451545348815269, -10.1885804114473277, 15.9790902786198927], [-1.34896310068767478, -9.19747568650687342, 14.4247077016716148], [-1.36907615603067323, -8.38209891447350941, 13.1459251308659528], [-1.38591355909381164, -7.69951977274339772, 12.075413510252563], [-1.40021529147628576, -7.11973877021840096, 11.1661236379591937], [-1.41251405685573106, -6.62115964151123837, 10.3841853711034613], [-1.42320310758531021, -6.18783959819700158, 9.70459510317229679], [-1.43257907375540361, -5.80775300171109521, 9.10849262435023554], [-1.44086992104320366, -5.47165792801216533, 8.58138351709908065], [-1.44825373201933338, -5.17233475721190405, 8.11194501089400255], [-1.45487164264596602, -4.90406171678415514, 7.69120345915648329], [-1.46083695140638192, -4.66224558959483648, 7.3119551663479001], [-1.46624166006955803, -4.44315654566532725, 6.96835051578512132], [-1.4711612530270497, -4.24373438373187462, 6.65559009181948902], [-1.47565824484143082, -4.06144471057274536, 6.36969912108158987], [-1.47978485113488145, -3.89417066088126695, 6.10735765314878698], [-1.48358502556404703, -3.74013031654801686, 5.86577104645280656], [-1.48709603173194416, -3.59781297999663918, 5.64257002362806226], [-1.49034966937129143, -3.46592946365416621, 5.43573270883095105], [-1.49337324037567987, -3.34337292621420845, 5.24352320594595067], [-1.49619031687346515, -3.22918773425927741, 5.06444276322996689], [-1.49882135710728481, -3.12254449397350964, 4.89719061471512163], [-1.50128420317809863, -3.02271987217066851, 4.74063233285433139], [-1.50359448627170611, -2.92908016806176486, 4.59377406357686802], [-1.50576595882755115, -2.8410678468444357, 4.45574140646769035], [-1.50781076856832441, -2.75819043030791056, 4.32576199153290641], [-1.50973968592583652, -2.68001127679142614, 4.20315101910121935], [-1.5115622938551192, -2.60614188595710239, 4.08729919114272189], [-1.51328714709902634, -2.53623544206540696, 3.97766258497257974], [-1.51492190648974168, -2.46998136927675294, 3.87375411414904081], [-1.51647345273578726, -2.40710071862823316, 3.77513629371527903], [-1.51794798325962299, -2.34734224215405618, 3.6814150831116117], [-1.519351094959976, -2.29047903762810412, 3.59223462401341065], [-1.5206878552293559, -2.23630566945493481, 3.50727272492849007], [-1.52196286312617457, -2.1846356886978584, 3.4262369717744745], [-1.52318030225799261, -2.13529948914671852, 3.34886136547843716], [-1.52434398665727322, -2.08814244747571687, 3.27490340512441591], [-1.52545740070954761, -2.04302330452171521, 3.2041415492582237], [-1.52652373401452657, -1.9998127519840958, 3.13637299936172376], [-1.52754591191485734, -1.95839219476263748, 3.07141175878606987], [-1.52852662230792369, -1.91865266398484113, 3.00908692801622601], [-1.5294683392581172, -1.88049385974358629, 2.949241203364525], [-1.53037334384639601, -1.8438233058390312, 2.89172955132421405], [-1.53124374262694096, -1.80855560152788319, 2.83641803506289669], [-1.321668371452974, -9.82779045439390941, 15.9447427889390827], [-1.34634751549444576, -8.87365407939521234, 14.3967387736394699], [-1.36665881953194268, -8.08838893192374364, 13.1227137671383485], [-1.38366759548346718, -7.4308074572260292, 12.0558445124994709], [-1.39811876466511831, -6.87210918225227729, 11.1494047249989503], [-1.41054888119169086, -6.39154961789985165, 10.369738259385791], [-1.42135422510302023, -5.97380761275182426, 9.69198786827494096], [-1.43083383078813764, -5.60732176930486492, 9.09739618088944546], [-1.43921759239807101, -5.28320382019545143, 8.57154274966192986], [-1.44668515445181955, -4.99450827132175856, 8.10315910916167859], [-1.45337892976499905, -4.73572909698707623, 7.68331220735316922], [-1.45941326974596208, -4.50244519389711773, 7.30482918527101255], [-1.46488105152979653, -4.29106570650142505, 6.96188418934110409], [-1.46985849280231418, -4.09864387416029974, 6.64969635445662277], [-1.47440872676395429, -3.92273881432611748, 6.36430555910495865], [-1.47858449439247952, -3.76131143310367655, 6.10240354922510253], [-1.48243019822857547, -3.6126450208931673, 5.86120511148356904], [-1.48598348762010191, -3.47528396298249742, 5.6383486364940163], [-1.48927649556311748, -3.34798592025817143, 5.43181853614299825], [-1.49233681331665768, -3.22968414822261751, 5.23988410944393568], [-1.49518826543879846, -3.11945753221044297, 5.06105092725866701], [-1.49785153135107318, -3.01650655619313346, 4.8940218437547216], [-1.5003446477537794, -2.9201338781784969, 4.73766548166545753], [-1.50268341771383884, -2.82972851387670987, 4.59099057165169544], [-1.50488174604351532, -2.74475287014226144, 4.45312491517908171], [-1.50695191601253953, -2.66473204660753948, 4.32329802734085256], [-1.50890481902729401, -2.58924495572730917, 4.20082672989551398], [-1.51075014634660376, -2.51791691057767286, 4.0851031256096384], [-1.51249654995869975, -2.45041340496102178, 3.97558450701434785], [-1.51415177825564773, -2.38643486790292325, 3.87178484602870787], [-1.51572279099413754, -2.32571221898571379, 3.77326758287164932], [-1.51721585714069218, -2.26800308541649898, 3.67963948858090539], [-1.51863663850207109, -2.21308856867135972, 3.59054541917198167], [-1.51999026149322858, -2.16077046976978604, 3.50566381388511816], [-1.52128137896063942, -2.11086889903629427, 3.42470281722957326], [-1.5225142236322351, -2.06322020959508512, 3.3473969262568537], [-1.52369265448789903, -2.01767520457301686, 3.2735040819020842], [-1.52482019712087991, -1.97409757662971086, 3.2028031372561343], [-1.52590007897937352, -1.9323625454323945, 3.13509164698600484], [-1.52693526023024972, -1.89235566438791647, 3.07018393136039558], [-1.52792846086664036, -1.85397177259968915, 3.00790937589018537], [-1.52888218458190606, -1.81711407183915075, 2.94811093379420797], [-1.52979873985145254, -1.78169331147357957, 2.89064380361489315], [-1.5306802585959256, -1.74762706690086023, 2.83537425854087788], [-1.31891331193991546, -9.46912121392759865, 15.9115054684033392], [-1.34381531730794457, -8.55155201923237662, 14.3696615180315437], [-1.36431765567960817, -7.79610088959776171, 13.1002338162705225], [-1.38149169446193576, -7.16329026758040843, 12.0368859674877928], [-1.39608706341569322, -6.62549792807447702, 11.1332027684251464], [-1.40864399506977045, -6.16281747843024608, 10.3557343700051092], [-1.41956166690667884, -5.76054009759232066, 9.67976469970423814], [-1.42914141738132638, -5.40756211982123514, 9.08663563348532399], [-1.4376149908286735, -5.09534427129150114, 8.56199814158089723], [-1.44516353173664092, -4.81721177245546883, 8.09463621050106497], [-1.45193068010447646, -4.56787180257588155, 7.675656011114115], [-1.45803180001655774, -4.34307344685783203, 7.29791448838074874], [-1.46356061102782298, -4.13936334432111508, 6.95560876251101767], [-1.46859403689989421, -3.95390702242279213, 6.64397590732115617], [-1.47319580679384399, -3.7843562009383156, 6.35906997336241897], [-1.47741916800214623, -3.62874883368948264, 6.09759402232464787], [-1.48130895584721989, -3.48543283728757602, 5.85677196408501555], [-1.48490319171431695, -3.3530072070968453, 5.63424961049666262], [-1.4882343301225105, -3.23027606538219336, 5.42801745986543516], [-1.49133024158350969, -3.11621244509987116, 5.23634984078389021], [-1.49421499432813443, -3.00992948497753687, 5.05775650957832479], [-1.4969094813363939, -2.91065732482076589, 4.8909438261720366], [-1.4994319272458998, -2.81772442703927517, 4.73478336757849672], [-1.50179830115538548, -2.73054236573706444, 4.58828636814031654], [-1.5040226550932716, -2.64859335488123326, 4.45058276239864359], [-1.50611740331303223, -2.57141995687590841, 4.32090389182183898], [-1.50809355414279045, -2.49861653940817385, 4.19856814925552069], [-1.50996090353358192, -2.42982214361725868, 4.08296899489971477], [-1.51172819749026788, -2.36471449886745777, 3.97356489898978182], [-1.51340326906952893, -2.30300497467102216, 3.86987085922398588], [-1.51499315447260785, -2.24443430292238189, 3.77145121258921678], [-1.51650419186229812, -2.18876893670847217, 3.67791351686191392], [-1.51794210583076405, -2.13579793785233152, 3.58890332056972072], [-1.51931207989173345, -2.08533030573375155, 3.50409967445617943], [-1.5206188189321681, -2.03719267608137367, 3.42321126462959358], [-1.52186660320923384, -1.99122733130180163, 3.34597306920534843], [-1.52305933519848646, -1.94729047422637547, 3.27214345758396297], [-1.52420058037357831, -1.90525072546697305, 3.20150166547218085], [-1.52529360281526083, -1.86498781130250224, 3.13384559006366858], [-1.52634139639868716, -1.82639141449415532, 3.06898985899821453], [-1.52734671218664264, -1.78936016490485317, 3.00676413424190514], [-1.52831208255648776, -1.753800750474658, 2.94701161820830926], [-1.52923984250626299, -1.71962713213555718, 2.88958773453492723], [-1.53013214851748947, -1.6867598487594373, 2.83435896014755473], [-1.31625137675109638, -9.11250953135374431, 15.8793916092664311], [-1.34136761307980446, -8.23111944389879824, 14.3434877716829075], [-1.36205375712847943, -7.50519417193243843, 13.0784957699785629], [-1.37938692346396774, -6.8969346173198387, 12.0185471757369786], [-1.39412122403593552, -6.37987678796106117, 11.1175260323543679], [-1.40680040077256607, -5.93493919075926346, 10.3421810713045677], [-1.41782640017839068, -5.54801634852413805, 9.66793219252076597], [-1.42750276564840806, -5.20845603682527258, 9.07621690861589236], [-1.43606301407702053, -4.90806346583285436, 8.55275503953465943], [-1.44368972833088627, -4.6404312696349912, 8.08638115690097692], [-1.45052772613783287, -4.400477371429381, 7.66823927132416294], [-1.45669334411323104, -4.18411917989970572, 7.29121508941782093], [-1.46228111131939498, -3.98803939450744105, 6.94952790783611452], [-1.46736863036493093, -3.80951471344741632, 6.6384321210259607], [-1.47202020365674069, -3.64628857786532068, 6.35399546624308709], [-1.47628956570745351, -3.49647528720186296, 6.09293193566102431], [-1.48022196845635801, -3.35848681918669456, 5.85247425343459149], [-1.48385579155198677, -3.2309763203148103, 5.63027540262266069], [-1.4872237992283559, -3.11279399838493109, 5.42433176385225924], [-1.49035413107028836, -3.00295235364908875, 5.23292252737739361], [-1.49327109015971571, -2.90059852045412381, 5.05456149582838954], [-1.4959957753528963, -2.80499207878668022, 4.88795841877456638], [-1.49854659250425271, -2.71548711393388098, 4.73198773002181916], [-1.50093967083989899, -2.63151760471930318, 4.58566308526085997], [-1.50318920439616344, -2.55258544142744714, 4.44811648219116318], [-1.50530773379868377, -2.47825053735149137, 4.31858102897732099], [-1.50730638019958674, -2.40812261925377813, 4.19637663836630548], [-1.50919504058862586, -2.34185437332717816, 4.08089808389050823], [-1.51098255171961404, -2.27913569253796533, 3.97160497533004664], [-1.51267682838240503, -2.21968882425679004, 3.86801330301044333], [-1.51428498058551941, -2.16326425797931288, 3.76968827177506238], [-1.51581341330890607, -2.10963722470827131, 3.67623820083422848], [-1.5172679117784853, -2.05860470442307042, 3.58730930900390677], [-1.51865371465596932, -2.00998285763290063, 3.50258123894918416], [-1.51997557709605435, -1.9636048125164336, 3.42176320107030385], [-1.5212378252706058, -1.91931875150964282, 3.34459063920476707], [-1.52244440367721978, -1.87698625110890105, 3.27082233758051144], [-1.52359891632225741, -1.83648083663843531, 3.2002379023643841], [-1.52470466268408855, -1.79768672019521336, 3.13263556241425123], [-1.52576466921243359, -1.76049769524511568, 3.0678302430104698], [-1.52678171699710252, -1.72481616564526208, 3.00565187383739207], [-1.52775836613889382, -1.69055229039959554, 2.94594389864077622], [-1.52869697727215326, -1.65762322836739528, 2.88856195906244251], [-1.52959973062012544, -1.62595246955682637, 2.83337272935735873], [-1.31368369685936415, -8.75789131239576157, 15.8484148557007902], [-1.33900553458329141, -7.91230543162854083, 14.3182296368508784], [-1.35986823809643531, -7.21562738581781993, 13.057510327028016], [-1.3773543689598815, -6.63170622091794826, 12.0008376036226707], [-1.39222229985238899, -6.13521691460374807, 11.1023829166194741], [-1.4050191159534966, -5.70789015856108062, 10.3290858446268796], [-1.41614940609831197, -5.33621515341392882, 9.6564970372355905], [-1.42591882053829977, -5.00998504513456755, 9.06614601436851508], [-1.43456257172236046, -4.72134517275713517, 8.54381886070089358], [-1.4422646196615394, -4.46415239419047882, 8.07839885179469341], [-1.44917091054716352, -4.23353299710407338, 7.66106644283641014], [-1.45539871346574401, -4.02557090958609987, 7.28473504984715348], [-1.4610433340937119, -3.83708350368045492, 6.94364534031405434], [-1.46618302663605449, -3.66545756659013655, 6.63306840415638188], [-1.4708826439840359, -3.50852740766834259, 6.34908517426136587], [-1.47519638871486669, -3.36448299180583632, 6.08842018324863865], [-1.47916991315129631, -3.23179981024652951, 5.84831465661920102], [-1.48284194135938718, -3.10918471575355415, 5.62642849523864363], [-1.48624553540821203, -2.99553363725686195, 5.42076375511289843], [-1.48940909370586594, -2.88989824151884411, 5.22960431782544699], [-1.49235714529617969, -2.7914594084676736, 5.05146789109246352], [-1.49511098716516422, -2.69950594904821273, 4.88506749625840087], [-1.49768919960285052, -2.61341739528014205, 4.72928032492041073], [-1.50010806600138547, -2.53264998156078081, 4.5831223704782591], [-1.50238191714349956, -2.45672514753025073, 4.44572762274224242], [-1.50452341536579803, -2.38522004875065496, 4.31633089591224373], [-1.50654379050041465, -2.31775967769294544, 4.19425357059435022], [-1.50845303687942578, -2.25401028499224543, 4.07889168880327446], [-1.51026007869797207, -2.19367385732666298, 3.9697059610469041], [-1.51197290951058938, -2.13648345909104975, 3.86621333654745802], [-1.51359871046133532, -2.08219928423252476, 3.76797985858231899], [-1.51514395093629184, -2.03060529506925702, 3.67461458203879054], [-1.51661447461372911, -1.98150634874155562, 3.58576437339577669], [-1.5180155733249634, -1.93472573070828657, 3.50110944730095719], [-1.51935205069400392, -1.89010302957148801, 3.42035952082071182], [-1.52062827716890792, -1.84749229936409365, 3.34325048788771584], [-1.52184823777345435, -1.8067604649365212, 3.26954153366397371], [-1.52301557367826423, -1.76778593373369963, 3.19901262239117568], [-1.52413361850502227, -1.7304573834554835, 3.13146230352232724], [-1.52520543012621057, -1.69467270014023352, 3.06670579006146138], [-1.5262338185991644, -1.66033804533800278, 3.00457327050588585], [-1.52722137077175502, -1.62736703442891906, 2.94490842191848623], [-1.52817047201352829, -1.59568001093782086, 2.88756709671632628], [-1.5290833254564391, -1.56520340401052827, 2.83241615994982165], [-1.31121142990154915, -8.40520147372787996, 15.8185891735558695], [-1.33673023603250174, -7.59505815927557748, 14.2938994557566375], [-1.35776223209953573, -6.92735832703844689, 13.0372883714863583], [-1.37539513429908977, -6.36757006619948829, 11.9837668645874409], [-1.39039135915559697, -5.89148880998134228, 11.0877819403848878], [-1.40330117167799417, -5.48164520186716508, 10.3164562699140046], [-1.41453167797587964, -5.12511477527492509, 9.64546600706741053], [-1.42439053805124582, -4.81213019611907367, 9.05642902909609759], [-1.43311458347641651, -4.53517273252030506, 8.53519508260321302], [-1.44088909049529557, -4.28836038837885525, 8.07069425092900694], [-1.44786108466304331, -4.06702551871641305, 7.65414202622429052], [-1.4541487275441225, -3.86741682857479319, 7.27847847137776149], [-1.45984806854080484, -3.68648502156768876, 6.93796481059039127], [-1.46503798617092107, -3.52172592829548314, 6.62788819705209953], [-1.46978386099315861, -3.37106390136045553, 6.34434226236037802], [-1.47414034442558295, -3.23276391321399759, 6.08406168466874497], [-1.4781534728667165, -3.10536443879562229, 5.84429587381336191], [-1.48186230087805337, -2.98762560660897858, 5.62271139163809774], [-1.485300176408064, -2.87848871396911621, 5.41731575968987666], [-1.48849574636473969, -2.77704430291929016, 5.22639737809410487], [-1.49147375679423355, -2.68250675682416118, 5.04847771634307119], [-1.49425569499919164, -2.5941939149291513, 4.88227294789666377], [-1.49686030886136279, -2.51151058533785676, 4.726662921605846], [-1.49930402991890177, -2.43393511350471003, 4.58066588361586469], [-1.5016013203847125, -2.36100836538476777, 4.44341774365413222], [-1.50376495959419465, -2.29232463352773541, 4.31415496029919865], [-1.50580628186819654, -2.22752408560384119, 4.19220032910642892], [-1.5077353751406859, -2.1662864585354682, 4.07695111496375162], [-1.50956124769976463, -2.10832576494380453, 3.96786908962424079], [-1.5112919688582882, -2.0533858272531087, 3.86447212689035036], [-1.5129347881890145, -2.00123649231351086, 3.76632707853402771], [-1.51449623704050618, -1.95167040855735308, 3.67304370890493903], [-1.51598221533172994, -1.90450027051724846, 3.58426950911346198], [-1.51739806605708649, -1.85955645350133114, 3.49968524548950599], [-1.51874863948531802, -1.81668497546090668, 3.41900112381742671], [-1.52003834867790455, -1.77574573443680417, 3.34195347221006589], [-1.52127121766626971, -1.73661097907108397, 3.26830186261177991], [-1.52245092339574972, -1.69916397700418487, 3.19782660472187619], [-1.52358083235738384, -1.66329785191854107, 3.13032655731069465], [-1.5246640326762837, -1.62891456482508912, 3.06561721100081819], [-1.52570336230057202, -1.59592401914285764, 3.0035290040268583], [-1.52670143383290147, -1.56424327236977589, 2.94390583859991839], [-1.52766065646187998, -1.53379583982116463, 2.8866037705434322], [-1.52858325538109141, -1.50451107813099538, 2.83148984904253354], [-1.27700213098832904, -9.01413268932937939, 17.6714559597061402], [-1.30883575740194535, -8.05437389170427842, 15.7899288168619307], [-1.33454289144508631, -7.27932486242774335, 14.2705097823843889], [-1.35573688944428139, -6.64034394829852204, 13.0178409486435598], [-1.37351033732399341, -6.10449038810663769, 11.9673446983507219], [-1.38862948292846911, -5.64866230343784004, 11.0737317240312638], [-1.40164761025950657, -5.25617853847314986, 10.3043000097984052], [-1.41297421918694233, -4.91469293630240855, 9.63484594387617932], [-1.42291888327084659, -4.61487205385139454, 9.04707208890450509], [-1.43171997730447753, -4.3495290449756272, 8.52688923192096837], [-1.43956403314314541, -4.11304009469470166, 8.06327235230773631], [-1.44659910674746328, -3.90094141145383411, 7.6474705587042866], [-1.45294421221512327, -3.70964479714499484, 7.27244948773633304], [-1.45869610977703368, -3.53623299339886987, 6.9324900974757], [-1.46393427493658979, -3.37830986523828392, 6.6228949649775517], [-1.46872459303892522, -3.23388901219579861, 6.33976991765884623], [-1.47312214504435524, -3.101309779040748, 6.0798593793277993], [-1.47717333503964876, -2.97917311268500606, 5.84042062299289633], [-1.48091753407881432, -2.86629200144286722, 5.61912661116195356], [-1.48438836395458718, -2.76165277014806954, 5.41399011814444453], [-1.4876147096748793, -2.66438455464157498, 5.22330388732858708], [-1.49062152525564962, -2.57373500763565355, 5.04559300455239512], [-1.4934304804342422, -2.48905080072373641, 4.87957667391882488], [-1.49606048377571788, -2.40976185306155921, 4.72413729943943128], [-1.49852810888395349, -2.33536848137759012, 4.57829529370065025], [-1.50084794402966781, -2.26543085891270612, 4.44118841299345046], [-1.50303288078279951, -2.19956031334068225, 4.31205469761162874], [-1.50509435371316869, -2.13741209994769576, 4.19021830427246122], [-1.50704254057142739, -2.07867936630541683, 4.07507767436124446], [-1.50888653034862785, -2.02308808538363527, 3.966095600720835], [-1.51063446507104571, -1.97039278052745104, 3.86279084682568996], [-1.51229365999756049, -1.92037290158420371, 3.76473104248069879], [-1.51387070596240747, -1.87282973933493735, 3.67152663482119967], [-1.51537155688284786, -1.8275837871953946, 3.58282571614763823], [-1.51680160488130578, -1.78447247633094808, 3.49830958380712875], [-1.5181657450201187, -1.74334822394654787, 3.41768891402854491], [-1.51946843128673548, -1.70407674536830189, 3.34070045289910844], [-1.5207137251787668, -1.66653558923700484, 3.26710414473337796], [-1.52190533800529271, -1.63061286214852807, 3.19668063183700957], [-1.52304666783283693, -1.59620611475930518, 3.12922907080938772], [-1.52414083185036842, -1.56322136600037798, 3.0645652195965738], [-1.52519069480278979, -1.53157224582706908, 3.00251975692348294], [-1.52619889403891773, -1.50117924003827974, 2.94293680182504414], [-1.52716786163513518, -1.47196902326278134, 2.8856726060214104], [-1.52809984398539567, -1.44387386833265752, 2.8305943960438138], [-1.27451383183629097, -8.62171121536314544, 17.6370222905580825], [-1.30655788172086385, -7.70534135373842854, 15.7624482910170887], [-1.3324446917439301, -6.96505179775236183, 14.2480733514890687], [-1.35379337447281856, -6.3545403291581275, 12.9991792385604317], [-1.37170110775044241, -5.84243064412225532, 11.9515809480848745], [-1.38693776235414457, -5.40670653121107225, 11.0602409692817787], [-1.40005948288717041, -5.03146376662576866, 10.2926247921627141], [-1.41147804091394846, -4.70492680304649458, 9.62464374275380763], [-1.42150482820972912, -4.41819068227348222, 9.03808137395510336], [-1.43037968736993726, -4.16439655816563992, 8.51890687224753762], [-1.43829034549756796, -3.93817594600524545, 8.05613818519768721], [-1.44538584011783389, -3.73526677783260519, 7.64105660421843691], [-1.45178599794765839, -3.55224233540384438, 7.26665225568482143], [-1.45758825712690321, -3.38631615292108812, 6.92722499977987827], [-1.46287266276305816, -3.2351991580336863, 6.61809219067325749], [-1.46770558203455947, -3.09699342998118032, 6.33537134263541457], [-1.47214250606392016, -2.97011207363773355, 6.07581622020240708], [-1.4762301901536552, -2.85321801458269464, 5.83669163417894676], [-1.48000830776230541, -2.74517669988169555, 5.61567668388842467], [-1.48351074240884162, -2.6450191531320435, 5.41078918064620229], [-1.48676660672164096, -2.55191283243266742, 5.22032603330247813], [-1.48980105357868231, -2.46513843397911403, 5.04281579646597056], [-1.49263592719925375, -2.38407127260991869, 4.87698058157811598], [-1.49529028985712831, -2.30816621924254717, 4.72170524414616644], [-1.49778085107991976, -2.23694542693754261, 4.57601227553962531], [-1.50012231976652277, -2.1699882612974859, 4.43904120408898706], [-1.50232769490392948, -2.1069229867555106, 4.31003158812377229], [-1.50440850702196993, -2.04741986162753342, 4.18830889085110591], [-1.50637501985706135, -1.99118537107542615, 4.07327268300429601], [-1.50823639967096113, -1.93795738505207304, 3.96438673768260985], [-1.51000085811930762, -1.88750107264913436, 3.86117067252790314], [-1.51167577336826819, -1.83960543849048497, 3.76319286439031808], [-1.51326779322732641, -1.79408037341384063, 3.67006441604874789], [-1.51478292333844222, -1.7507541325017173, 3.58143399713938271], [-1.51622660288808153, -1.7094711699228371, 3.49698341499432486], [-1.51760376985418888, -1.67009027304527935, 3.41642379768610382], [-1.51891891743776686, -1.6324829486480672, 3.33949229277789428], [-1.52017614303786619, -1.59653202236853531, 3.26594920227998209], [-1.52137919089481732, -1.56213041922235729, 3.19557548801790858], [-1.52253148933653115, -1.52918009846027148, 3.12817059271981623], [-1.5236361834083274, -1.4975911204440826, 3.06355053116930787], [-1.52469616354029025, -1.46728082683793626, 3.00154621316195191], [-1.52571409080242892, -1.43817311837933848, 2.94200196607599462], [-1.52669241921227195, -1.41019781694306245, 2.88477422987700383], [-1.52763341548853537, -1.38329010063922508, 2.82973040152502353], [-1.27213489944898095, -8.23146111408164138, 17.6041020644336932], [-1.30437902272597639, -7.35803551281320001, 15.7361623126300483], [-1.33043684159576836, -6.65218420797884136, 14.226603044791112], [-1.35193286255940559, -6.06990264822590309, 12.9813145272285784], [-1.36996858431331447, -5.58135349164683614, 11.9364855355447119], [-1.38531729610211496, -5.16558991766890241, 11.0473184375600848], [-1.39853784704409678, -4.80747384921408294, 10.2814383911601173], [-1.41004415968819008, -4.49579297291886615, 9.61486633526512158], [-1.42014934946801441, -4.22206563355355691, 9.02946309357703747], [-1.42909465180157769, -3.97975725818160875, 8.51125359079293986], [-1.43706892890169424, -3.76375195664729345, 8.04929679819341715], [-1.4442221511115958, -3.56998733982641658, 7.63490474267422314], [-1.45067491786679104, -3.39519661628397884, 7.2610909452800545], [-1.45652531226088566, -3.23672291613530172, 6.92217332746208758], [-1.46185392155978233, -3.09238329560723191, 6.6134833662872845], [-1.46672757174205448, -2.96036757599313738, 6.33114974774896044], [-1.47120214462486798, -2.83916203348658724, 6.07193516707017888], [-1.47532473016408905, -2.72749109778234899, 5.83311164321179643], [-1.47913529004584743, -2.62427228879101948, 5.61236414489170343], [-1.48266795731126644, -2.52858101246882638, 5.40771530166628622], [-1.48595206164768401, -2.43962278777978003, 5.21746600750175649], [-1.48901294560986019, -2.35671113693646905, 5.04014813603913137], [-1.49187261987374375, -2.27924983591821917, 4.87448658090691911], [-1.4945502933795034, -2.2067185539831593, 4.71936854385943771], [-1.49706280537361547, -2.13866115053373607, 4.57381850602783135], [-1.49942497989510026, -2.07467607281083044, 4.43697769207952675], [-1.50164991847650486, -2.01440842722457925, 4.30808711367802122], [-1.50374924326860326, -1.9575433936040989, 4.18647348495785643], [-1.50573330011639195, -1.90380072428509317, 4.07153745807334744], [-1.50761132907723594, -1.85293012512286004, 3.96274374486502534], [-1.50939160831245034, -1.80470735776488622, 3.85961278103808603], [-1.51108157607991811, -1.75893093511948129, 3.76171365897143639], [-1.51268793461999618, -1.71541930730102643, 3.66865810947787674], [-1.51421673899426201, -1.674008455169536, 3.58009535526030298], [-1.51567347335998215, -1.63454982421174511, 3.4957076922346646], [-1.51706311670563898, -1.59690854390067249, 3.41520668138757433], [-1.51839019970813593, -1.56096188755042009, 3.33832985496578516], [-1.51965885407985768, -1.52659793560533652, 3.26483785773777635], [-1.52087285553800688, -1.4937144116891139, 3.19451195772603658], [-1.52203566133754231, -1.46221766591379598, 3.12715187187473154], [-1.52315044315365289, -1.43202178416155412, 3.06257386112732366], [-1.52422011597233964, -1.40304780549755126, 3.00060905675726319], [-1.52524736354334922, -1.37522303270301949, 2.94110198584895821], [-1.52623466086329551, -1.348480423252711, 2.88390926882000231], [-1.52718429408560086, -1.32275804999540236, 2.82889846601289463], [-1.26986656208462168, -7.84329347169913405, 17.572712278259246], [-1.30230041418723919, -7.01238684562359627, 15.7110857660281056], [-1.32852055598775176, -6.34066628994154335, 14.206111854369027], [-1.35015653685924009, -5.78638515796817199, 12.9642581753524979], [-1.36831391167836314, -5.32122076763807961, 11.9220684341605541], [-1.38376918739381716, -4.9252801585203656, 11.0349729265896759], [-1.39708376371746046, -4.58418109969791754, 10.270748606704144], [-1.40867359473545539, -4.28726746223834176, 9.60552067134828391], [-1.41885342570588402, -4.02647593781399582, 9.02122347019754756], [-1.42786581028488757, -3.79559266025096731, 8.50393498403847659], [-1.43590068585176578, -3.589751714629414, 8.04275324634828159], [-1.44310890689263394, -3.40508843199385502, 7.62901955834813705], [-1.44961180565754044, -3.23849445944769698, 7.25576972938162612], [-1.45550807719047182, -3.08744137585857681, 6.91733889210219122], [-1.46087882339626129, -2.94985147031937389, 6.60907198469173895], [-1.46579130593313622, -2.82400159858677613, 6.32710834350037299], [-1.47030177775206972, -2.70845064322749662, 6.06821917923112952], [-1.47445764680554769, -2.60198408259802516, 5.82968338505890848], [-1.47829914873782342, -2.50357113899147565, 5.60919152807375809], [-1.48186065381913168, -2.41233129691486559, 5.40477083427830607], [-1.48517169814993411, -2.32750788516034479, 5.2147259998473432], [-1.48825780469723679, -2.24844704306776766, 5.03759206553992644], [-1.49114114249425, -2.17458083280411474, 4.87209658016350389], [-1.49384106003630945, -2.10541357454781908, 4.71712898487975618], [-1.49637452001988769, -2.04051070911802857, 4.57171566019063036], [-1.49875645607686625, -1.97948965896944618, 4.43499945021487818], [-1.5010000673590056, -1.92201228137433611, 4.30622275422202438], [-1.5031170632483386, -1.86777859930266965, 4.1847134808186004], [-1.50511786777441947, -1.81652156455533387, 4.06987331487278414], [-1.50701179127186591, -1.76800266015135121, 3.96116786476767002], [-1.50880717524392738, -1.72200818913709131, 3.85811834756667338], [-1.5105115151876809, -1.67834612798631189, 3.76029453913123657], [-1.51213156519565906, -1.63684344686128047, 3.66730877022967849], [-1.51367342741224631, -1.59734381787221968, 3.57881079194704466], [-1.51514262884287643, -1.55970564733825534, 3.49448336701261475], [-1.51654418755417231, -1.52380037983912064, 3.41403847006812455], [-1.51788266993597665, -1.48951103124558482, 3.33721400095736964], [-1.51916224040230508, -1.45673091545426558, 3.26377093200586588], [-1.52038670467094961, -1.42536253562901538, 3.19349082387357974], [-1.52155954756916634, -1.39531661567478116, 3.12617365559516491], [-1.52268396615651391, -1.36651125167892284, 3.0616359234044439], [-1.52376289882792393, -1.33887116633415904, 2.99970897028677053], [-1.52479905095480328, -1.3123270520512651, 2.94023751423866786], [-1.52579491753530672, -1.28681499069242733, 2.88307834819422437], [-1.52675280325302443, -1.26227593969738261, 2.82809918870294474], [-1.2677100630409246, -7.45711801788779294, 17.5428701370810316], [-1.3003232998998322, -6.66832461487093475, 15.6872336564838726], [-1.32669705654630632, -6.03044116611957381, 14.186612843296297], [-1.34846558481389311, -5.50394116250568644, 12.9480215847946276], [-1.36673823712450959, -5.06199347083151796, 11.9083396401311443], [-1.38229454085172887, -4.68574420627704669, 11.0232132452667528], [-1.39569829440434523, -4.36155717001357868, 10.2605632424569446], [-1.40736736512875615, -4.07932569602538031, 9.59661369989970581], [-1.41761803493378191, -3.83140009441562679, 9.0133687221127623], [-1.42669410148087539, -3.61188380121740593, 8.49695664236394776], [-1.43478651753614161, -3.41615837508605136, 8.03651257738993507], [-1.4420469731027532, -3.24055499573652428, 7.6234056274701727], [-1.4485974933215604, -3.08212232621608573, 7.25069277242334209], [-1.45453735212338531, -2.93845929721896049, 6.91272549670760394], [-1.45994813844965932, -2.80759257394165251, 6.60486153019773692], [-1.46489752642351534, -2.68788536958443203, 6.32325033194737696], [-1.46944212047039136, -2.57796863240419549, 6.06467120773086954], [-1.47362962978415313, -2.47668845341874455, 5.82640958666759712], [-1.47750054960199617, -2.38306540258386468, 5.60616135957854222], [-1.48108947503880217, -2.29626275199814289, 5.40195812407563025], [-1.48442613787594291, -2.21556139981484046, 5.2121081930644122], [-1.48753623214728004, -2.14033990237018701, 5.03514962032586499], [-1.49044207706849874, -2.07005844037291498, 4.86981248097728248], [-1.49316315350890472, -2.00424584363611391, 4.71498834715395798], [-1.49571654128131093, -1.94248901465105295, 4.56970540696660255], [-1.49811727800328121, -1.88442424906073125, 4.43310804591537], [-1.50037865546410543, -1.8297300676391528, 4.30443998412110673], [-1.50251246583629428, -1.77812126134472703, 4.1830302673134705], [-1.5045292073627512, -1.72934391650890928, 4.06828156358720872], [-1.50643825709337653, -1.68317123697583937, 3.95966033498566317], [-1.50824801666940811, -1.63940001811892211, 3.8566885426247639], [-1.50996603593732526, -1.59784765707653453, 3.75893661327254724], [-1.51159911822875581, -1.55834960642139797, 3.66601744910633887], [-1.51315341040218398, -1.52075719638410445, 3.57758130449360578], [-1.51463448015907387, -1.48493576486183709, 3.49331138683747211], [-1.516047382684375, -1.4507630456309808, 3.41292006484688271], [-1.51739671829246925, -1.41812777410511148, 3.33614558858227461], [-1.51868668246372729, -1.3869284771358239, 3.26274924246202591], [-1.51992110941828384, -1.35707241912346777, 3.19251286598795758], [-1.52110351018045686, -1.32847468138031144, 3.12523668794718246], [-1.52223710592964512, -1.30105735549542323, 3.06073742880298294], [-1.52332485730492473, -1.27474883456479038, 2.99884663331366985], [-1.52436949022473023, -1.24948318870879516, 2.93940920143744044], [-1.52537351869569715, -1.22519961341019878, 2.88228209054749218], [-1.52633926501255002, -1.20184194095476382, 2.82733316609608165], [-1.26566665629569663, -7.07284307929948142, 17.5145929937389759], [-1.29844892954344648, -6.32577683623730369, 15.6646210602613216], [-1.32496756760636214, -5.72145086011838266, 14.1681191036089409], [-1.34686119442111951, -5.22252299877577109, 12.9326161627578937], [-1.36524270700396211, -4.80363174686579253, 11.8953091415808174], [-1.38089445913901976, -4.44694825824430051, 11.0120481868628595], [-1.39438249792004298, -4.1395730407001281, 10.2508900823653164], [-1.40612648675465368, -3.87194249975919158, 9.58815234808789185], [-1.41644415162652382, -3.6368160649870207, 9.00590504513891155], [-1.42558046027823959, -3.42861123358057629, 8.49032413368242622], [-1.4337273212165571, -3.2429546551326891, 8.03057981705226354], [-1.4410372113635519, -3.07637157482106627, 7.61806750501742957], [-1.44763280879186507, -2.92606631564313213, 7.24586421847417572], [-1.4536139331839204, -2.78976411419136294, 6.90833692487913709], [-1.45906263282406012, -2.66559519458241745, 6.60085546868961792], [-1.4640469709849937, -2.55200848153347559, 6.31957889769210635], [-1.46862388380388942, -2.44770647300648259, 6.06129418710289425], [-1.47284136485866601, -2.35159545649703006, 5.82329295937817015], [-1.47674015451575324, -2.2627470109515575, 5.60327615080372521], [-1.48035506025658825, -2.18036791820737852, 5.3992795027187972], [-1.48371599872328619, -2.10377641610018218, 5.20961475671124052], [-1.48684882558894405, -2.03238328677625457, 5.03282282330646069], [-1.48977600200062188, -1.96567666930637608, 4.86763617320342057], [-1.49251713394963792, -1.90320976812369991, 4.71294839948526612], [-1.49508941196610046, -1.844590832945189, 4.56778940474058626], [-1.49750797198571695, -1.78947493507727207, 4.43130503659924457], [-1.49978619339790953, -1.73755717527806564, 4.30274026825436806], [-1.50193594667352803, -1.68856704063887775, 4.18142522431890562], [-1.50396780025020216, -1.64226368992838201, 4.06676350584896706], [-1.50589119428747109, -1.59843199393642199, 3.95822238498466605], [-1.50771458732019359, -1.55687919342846071, 3.85532452898995093], [-1.5094455806172169, -1.51743206517074691, 3.75764098243598177], [-1.51109102410167107, -1.47993450814081218, 3.6647851898960635], [-1.51265710694555078, -1.44424547899323952, 3.57640788350694283], [-1.5141494353646352, -1.41023721921216016, 3.4921926928385334], [-1.51557309967505738, -1.37779372697732483, 3.4118523607517437], [-1.51693273230194081, -1.34680943522134955, 3.33512546985076241], [-1.51823255813306734, -1.31718806413371126, 3.2617736009205851], [-1.51947643837074797, -1.28884162183233086, 3.1915788582742719], [-1.52066790884074976, -1.26168953135258732, 3.12434170790206434], [-1.52181021355873058, -1.23565786571008052, 3.0598790832452254], [-1.52290633422539501, -1.21067867574403776, 2.99802272072405174], [-1.52395901621500962, -1.18668939787234362, 2.93861769315230292], [-1.52497079153420723, -1.16363233088955598, 2.88152111412387368], [-1.52594399915528056, -1.14145417259646997, 2.82660099056125791], [-1.26373760188410533, -6.69037553938643992, 17.4878982848962217], [-1.29667855429063428, -5.98467025057215807, 15.6432630716344434], [-1.32333331204305882, -5.41363627653978607, 14.1506437117331654], [-1.34534455028057232, -4.94208202143883746, 12.9180532838165139], [-1.36382846299116833, -4.54609487663722778, 11.8829868858767522], [-1.37957003940021927, -4.20885774732270246, 11.0014865006407323], [-1.39313742701876597, -3.91819901349027955, 10.2417368658176482], [-1.40495196910250963, -3.66509209331089458, 9.5801434994598651], [-1.41533274367012551, -3.44270126838679191, 8.99883859319992041], [-1.42452581488744356, -3.2457550212625299, 8.48404298613344565], [-1.4327239874596458, -3.07012283027066912, 8.02495995356860981], [-1.44008047663640282, -2.91252231229834235, 7.6130097107576109], [-1.44671857341285914, -2.77031216185441087, 7.24128817862500185], [-1.45273861000531923, -2.64134292728239872, 6.90417692936871408], [-1.45822306624809439, -2.52384761466016316, 6.59705723720892667], [-1.46324037114170635, -2.41636024592208409, 6.31609719836855898], [-1.4678477726646888, -2.31765437789161366, 6.05809102665557919], [-1.47209353181637237, -2.22669609854577333, 5.8203361909210356], [-1.47601861952780178, -2.14260767350809944, 5.60053839103089324], [-1.47965804307357462, -2.06463912987010412, 5.39673728113268858], [-1.48304189304702372, -1.9921458264810763, 5.20724784088525716], [-1.48619617724979625, -1.9245705892443401, 5.0306136791081224], [-1.48914349043212346, -1.86142936304015394, 4.86556952950217969], [-1.49190355638415562, -1.80229959831642961, 4.71101089448822208], [-1.49449366988853316, -1.74681078298659731, 4.56596929663996676], [-1.49692905947092636, -1.69463667109916205, 4.4295919652897533], [-1.49922318702772661, -1.6454888638109193, 4.3011250579057636], [-1.50138799678443302, -1.59911147586507685, 4.17989971885843659], [-1.50343412330745441, -1.55527667928357349, 4.06532043112734076], [-1.50537106621654382, -1.51378096044121713, 3.95685523270884865], [-1.50720733765554082, -1.47444196074998568, 3.85402745851593398], [-1.50895058735134047, -1.43709579747746696, 3.75640873729526747], [-1.51060770913663456, -1.4015947816731662, 3.66361302654013743], [-1.51218493206451643, -1.36780546618901, 3.5752915102329399], [-1.51368789865392039, -1.33560696940051793, 3.4911282172385758], [-1.51512173233771019, -1.30488953024300391, 3.41083624432962962], [-1.51649109581264652, -1.27555325816017007, 3.33415448869088893], [-1.5178002416915175, -1.24750704796563094, 3.26084481148794048], [-1.51905305661681256, -1.22066763478136719, 3.19068956758129563], [-1.52025309979976964, -1.19495876840156567, 3.12348944740520329], [-1.52140363678984492, -1.17031048983834207, 3.05906158593855526], [-1.52250766914922564, -1.14665849559355904, 2.99723790098205312], [-1.52356796060034538, -1.12394357749205787, 2.93786362894451836], [-1.52458706012594547, -1.10211112780188847, 2.88079603128215833], [-1.52556732242803039, -1.08111070093325012, 2.82590324882830091], [-1.26192416103064686, -6.30962080515323276, 17.4628034636740956], [-1.29501342218144333, -5.6449303018165482, 15.6231747470863898], [-1.32179550688237435, -5.10693718568190125, 14.1341996815490294], [-1.3439168294310011, -4.66256859190347228, 12.9043442499446126], [-1.3624966381353294, -4.28934126820381501, 11.8713827452346763], [-1.3783223695168525, -3.97143733589601533, 10.991536861994561], [-1.39196412483993015, -3.69740470660606491, 10.23311126151855], [-1.40384481188925503, -3.45874808726338179, 9.5725939709260075], [-1.41428476915332335, -3.24903257778466203, 8.99217545792755146], [-1.4235310837878723, -3.06329473726504098, 8.47811866990118723], [-1.43177739722945141, -2.89764473248817467, 8.01965792138639166], [-1.43917761445066339, -2.74899094895070517, 7.60823671459592266], [-1.44585559929538698, -2.61484523276825254, 7.23696871774978145], [-1.45191216320344041, -2.49318250247055451, 6.90024922007291686], [-1.457430189659632, -2.38233781002055212, 6.59347023302747015], [-1.46247844985890652, -2.28092969244049604, 6.31280835466619727], [-1.46711448363939412, -2.18780230016400834, 6.05506460133627122], [-1.47138680235120534, -2.10198114621600762, 5.81754193702724454], [-1.47533659282261231, -2.02263887725680735, 5.59795053970192935], [-1.47899904945125438, -1.94906851478072274, 5.39433374237841257], [-1.4824044257819784, -1.88066233121594251, 5.20500956963000583], [-1.48557887215051609, -1.81689502349343668, 5.02852416796271839], [-1.48854510850467459, -1.75731019754024054, 4.86361439966284248], [-1.49132296903881567, -1.70150942776240721, 4.70917756330713289], [-1.49392984625748038, -1.64914333677773817, 4.56424670561132828], [-1.49638105548759381, -1.59990427316283612, 4.42797035601832079], [-1.49869013598350564, -1.55352026290973133, 4.29959578646487461], [-1.50086910113046135, -1.50974998338567112, 4.1784551010762252], [-1.50292864751033672, -1.46837856365952435, 4.06395361295180102], [-1.50487833051022246, -1.4292140569091496, 3.9555600810338527], [-1.50672671255812429, -1.3920844626895712, 3.85279846879672494], [-1.5084814888376652, -1.35683520160001603, 3.75524095501651534], [-1.51014959437493657, -1.32332696414298545, 3.66250198017220452], [-1.51173729564013626, -1.29143387064735271, 3.57423315376223183], [-1.51325026921496164, -1.26104189101246789, 3.49011888071391851], [-1.51469366960746976, -1.23204748245583673, 3.40987259114983043], [-1.51607218792184839, -1.20435641096595414, 3.33323347858518559], [-1.51739010279019881, -1.17788272819330486, 3.25996366832323492], [-1.51865132473150566, -1.15254788037658895, 3.18984575127755976], [-1.51985943490642228, -1.12827992984319558, 3.12268062936013813], [-1.52101771907693917, -1.10501287283367366, 3.0582856274602559], [-1.522129197449132, -1.08268604002657898, 2.99649283430885571], [-1.52319665096966861, -1.06124356829853927, 2.93714764049684041], [-1.52422264455825651, -1.04063393403575732, 2.88010744684602304], [-1.52520954768452821, -1.02080953978885747, 2.8252405204156319], [-1.26022759105903748, -5.93048278145429464, 17.4393259292140321], [-1.29345477328647251, -5.30648112117527226, 15.6043710469560359], [-1.32035535871161436, -4.80129221349678037, 14.1187999153139678], [-1.34257919699879058, -4.38393207183278566, 12.8915002487332853], [-1.3612483527352488, -4.03332845254888639, 11.8605064807765679], [-1.37715252419575518, -3.7346509130732346, 10.9822078412559794], [-1.39086362119682816, -3.47715905299207062, 10.2250208402048077], [-1.40280600153546042, -3.25288348182135767, 9.56551048873092924], [-1.41330117301867664, -3.05578632004038164, 8.98592164736874821], [-1.42259717254231277, -2.8812094633768357, 8.47255657824250896], [-1.43088841885431761, -2.72550175019869956, 8.01467858417805168], [-1.43832945801288647, -2.58576082339395352, 7.60375292129284475], [-1.44504468655884977, -2.45965053031293568, 7.23290984070147669], [-1.45113536174313928, -2.34526927150406372, 6.89655745151663702], [-1.45668474268846926, -2.2410534502899524, 6.59009780225889141], [-1.46176191913461251, -2.14570556937190871, 6.30971543993426831], [-1.46642470268296599, -2.05813993359012759, 6.05221774221346909], [-1.47072183785365196, -1.97744112652591864, 5.81491281269027915], [-1.47469471260055474, -1.90283188722652219, 5.59551501837549203], [-1.47837869567667579, -1.83364799463773753, 5.39207113423159701], [-1.48180419248791839, -1.76931843879154438, 5.20290203407138474], [-1.48499748622569827, -1.70934962443245841, 5.02655623934669737], [-1.48798141355227931, -1.65331268172475432, 4.86177260469685546], [-1.49077591160028744, -1.60083319366473842, 4.70745011012037118], [-1.49339846399996423, -1.55158281974022261, 4.56262322929859199], [-1.49586446703037823, -1.50527241965321079, 4.42644170904272372], [-1.49818753209942335, -1.46164637277992515, 4.29815386495596741], [-1.50037973710615069, -1.42047785761529077, 4.17709270004996469], [-1.50245183648776548, -1.38156490711518676, 4.06266430498559572], [-1.50441343766255797, -1.34472709511737043, 3.9543381140795173], [-1.5062731499781532, -1.30980273911143774, 3.85163867969957119], [-1.50803871103693798, -1.27664652786195809, 3.75413869599407057], [-1.50971709430837642, -1.24512750046051668, 3.66145305604170668], [-1.51131460118451022, -1.21512731753528458, 3.57323376812719617], [-1.51283694004050551, -1.1865387765023574, 3.48916558965224466], [-1.51428929439131665, -1.15926453159143872, 3.4089622632110741], [-1.51567638185951892, -1.13321598643702348, 3.33236326011637241], [-1.5170025053678311, -1.10831233268882645, 3.25913095331308034], [-1.51827159772668341, -1.08447971266191678, 3.18904815504644867], [-1.51948726059019168, -1.06165048774860549, 3.12191596553574335], [-1.52065279859316815, -1.03976259732866194, 3.05755188776959663], [-1.52177124935071184, -1.01875899538122949, 2.99578817079292836], [-1.52284540989370121, -0.998587154028656276, 2.9364703498155178], [-1.52387786002470249, -0.979198624915471494, 2.87945595639205809], [-1.52487098300483614, -0.96054865071170803, 2.8246133759991161], [-1.25864914010852136, -5.55286385341994571, 17.4174829535605653], [-1.29200383468543212, -4.96924551802089187, 15.5868667748588656], [-1.31901405891540935, -4.49663883721162261, 14.104457152720455], [-1.34133280168199942, -4.10612082147550783, 12.8795323100281784], [-1.36008471005932963, -3.77801308349813825, 11.8503677052391598], [-1.37606156091161003, -3.49846159553799119, 10.9735078713374996], [-1.38983692872794862, -3.25743030170612924, 10.2174730463515591], [-1.40183650751192146, -3.04747066850417658, 9.55889966354143361], [-1.41238288359142805, -2.86293827755019192, 8.98008306391576916], [-1.42172497049584812, -2.69947779208072403, 8.46736200782653725], [-1.4300579048844364, -2.55367483015077923, 8.01002671723960979], [-1.43753682521235082, -2.42281487395340012, 7.59956265463383218], [-1.44428662047496803, -2.30471269224728914, 7.22911547801566456], [-1.45040896021122756, -2.19758933365337539, 6.8931052098927541], [-1.45598745105018668, -2.09998190055315392, 6.58694322806839239], [-1.46109147750669943, -2.01067634519270522, 6.30682146942111999], [-1.46577910273199219, -1.928656714121042, 6.04955322662633588], [-1.47009928712369908, -1.85306632830718354, 5.81245138312353227], [-1.47409360488458985, -1.78317774784426186, 5.59323420240483493], [-1.47779758625732582, -1.71836928634572761, 5.3899516615044325], [-1.48124177732759921, -1.65810646715776011, 5.20092728531817361], [-1.4844525843802594, -1.60192724933121511, 5.02471180540224438], [-1.48745295223178498, -1.54943015857477562, 4.86004593072954716], [-1.49026291341617023, -1.50026467793574181, 4.70583020645844385], [-1.49290003602799048, -1.45412341171557502, 4.56110043474785432], [-1.49537979138959432, -1.41073565225433417, 4.42500749590442766], [-1.49771585780306182, -1.36986206506377606, 4.29680067741671134], [-1.4999203729849202, -1.33129027188010673, 4.17581381946393471], [-1.50200414502115387, -1.2948311595009947, 4.06145373696812051], [-1.50397682958257106, -1.26031577897980807, 3.95319049339999884], [-1.5058470795326091, -1.22759272787984419, 3.85054918978311189], [-1.50762267181824083, -1.19652593001447682, 3.75310300047874223], [-1.50931061556899238, -1.16699274399664388, 3.66046724033613913], [-1.51091724457267307, -1.13888234515528142, 3.57229428930373194], [-1.51244829670014291, -1.1120943358089288, 3.48826923332067285], [-1.51390898237862781, -1.08653754716169426, 3.40810610626384802], [-1.51530404383569528, -1.06212900268857124, 3.33154463843315263], [-1.51663780653329661, -1.03879301817349079, 3.25834743367084956], [-1.51791422396729248, -1.01646041783524033, 3.18829751060987077], [-1.51913691680974861, -0.995067849438699747, 3.1211961544060558], [-1.52030920721042628, -0.974557184109247632, 3.05686103415600652], [-1.52143414894165763, -0.954874988875517361, 2.99512454843953924], [-1.52251455396271917, -0.935972061862327287, 2.93583236737483322], [-1.52355301589021574, -0.917803021620612003, 2.87884214448331965], [-1.52455193078684004, -0.90032594337805516, 2.82402237572916626], [-1.25719004169050197, -5.17666487754912463, 17.3972916063347398], [-1.2906618152933258, -4.63314497797604208, 15.5706765152694828], [-1.31777277876756105, -4.19291338698769511, 14.0911839184122147], [-1.34017877109853822, -3.82908220313868064, 12.8684512612624928], [-1.35900679193765295, -3.52335094206058264, 11.8409758445678843], [-1.37505051572908399, -3.2628317322385052, 10.9654452144158299], [-1.38888503893487525, -3.03818602267004012, 10.2104751690446687], [-1.40093727857930239, -2.84248143479858406, 9.55276796480524304], [-1.41153080900743411, -2.67046369271676776, 8.97466548159456501], [-1.42091534737937164, -2.51807783079888647, 8.46254013850625775], [-1.42928668885904742, -2.38214448143174584, 8.00570698938311587], [-1.43680051554102528, -2.2601356424240846, 7.5956701411466554], [-1.44358216853034271, -2.15001599568348922, 7.22558947120772466], [-1.4497336960122631, -2.05012845900724061, 6.88989599973504774], [-1.45533902386655312, -1.95911022443574501, 6.58400971855012695], [-1.46046780749002836, -1.87583021145508222, 6.30412938921154442], [-1.46517834125126534, -1.79934182258927344, 6.04707376805894992], [-1.46951978402016481, -1.7288468047296055, 5.81016015446628131], [-1.47353388126615048, -1.66366728530049279, 5.59111041238486983], [-1.47725631175789673, -1.60322390423337646, 5.38797747815574102], [-1.48071775098912828, -1.5470185458095369, 5.19908732716705124], [-1.48394471849260912, -1.49462057977672869, 5.02299273417822079], [-1.48696025860227721, -1.44565580697443585, 4.8584361227248003], [-1.48978449164641913, -1.39979750892952159, 4.70431948536671296], [-1.49243506345824484, -1.35675914859840474, 4.55967985296820988], [-1.49492751443550365, -1.31628837749038086, 4.42366915435160113], [-1.49727558446105413, -1.27816208429602196, 4.29553757615198784], [-1.49949146632284624, -1.24218227979407403, 4.17461973316508406], [-1.50158601750358245, -1.20817265776150307, 4.06032311054848005], [-1.50356893810598002, -1.17597570578121347, 3.9521183540718634], [-1.50544892106693529, -1.14545026602919009, 3.84953107261952754], [-1.5072337795684021, -1.11646946634696453, 3.75213488511604876], [-1.50893055558390898, -1.08891895763787261, 3.65954549691870668], [-1.51054561274077526, -1.06269540594828427, 3.57141563213334035], [-1.51208471607992845, -1.03770519730975486, 3.48743068095885445], [-1.51355310082042882, -1.01386332112373223, 3.40730494706225695], [-1.51495553185751453, -0.991092404018934725, 3.33077840064934838], [-1.5162963554188984, -0.969321871044044769, 3.25761385947302129], [-1.51757954405924744, -0.948487215037029707, 3.18759453339230348], [-1.51880873597402544, -0.928529358237395464, 3.12052187893353228], [-1.51998726945227491, -0.909394092834694523, 3.05621371913374107], [-1.52111821315522922, -0.891031589295950166, 2.99450259116960371], [-1.52220439279935937, -0.873395963081599613, 2.93523429021351845], [-1.52324841473204242, -0.856444891817212617, 2.87826658285713233], [-1.52425268681420678, -0.840139276196806839, 2.82346806750426893], [-1.25585150912462629, -4.8017851819470998, 17.3787686777393127], [-1.28942990057131635, -4.29809966857105419, 15.5558145697129309], [-1.31663266441368876, -3.89005105394953477, 14.0789924683327392], [-1.3391182070314116, -3.55276259008333684, 12.8582676818016175], [-1.35801565425719395, -3.26929694543398552, 11.8323400986668474], [-1.3741203990337838, -3.02772291312528585, 10.9580279278880557], [-1.38800891813433425, -2.81939311496036682, 10.2040343122219443], [-1.40010923894679351, -2.637886971928741, 9.54712169455748239], [-1.41074583356460104, -2.47833727518105551, 8.96967452286682132], [-1.42016914984075115, -2.33698720859870424, 8.45809601265915667], [-1.4285755820051862, -2.210890781674693, 8.00172394444571466], [-1.43612130694859341, -2.09770527981255217, 7.59207949347542943], [-1.44293207742731555, -1.99554436239947885, 7.22233555776119118], [-1.44911028650570017, -1.90287209339132346, 6.88693323031244464], [-1.4547401509301281, -1.8184251886626599, 6.58130039435216574], [-1.45989157296036698, -1.74115508701695143, 6.3016420649344278], [-1.46462305772957047, -1.67018418863898388, 6.04478200580493752], [-1.46898394506149943, -1.60477237695794006, 5.80804156429777674], [-1.47301613660464259, -1.54429111095648031, 5.58914590542326195], [-1.47675544659262359, -1.48820316323287671, 5.38615067923898749], [-1.48023266856577829, -1.43604661875784445, 5.19738410865819844], [-1.48347442537694163, -1.38742212445325475, 5.02140084273274123], [-1.48650385216529002, -1.34198264431588665, 4.85694487808172859], [-1.48934114937723905, -1.29942516388618179, 4.70291953544960428], [-1.49200403379566948, -1.25948392463270786, 4.55836297338222352], [-1.49450810886796037, -1.22192486888575358, 4.42242808315959302], [-1.49686717069123842, -1.18654104993817655, 4.29436587689163218], [-1.49909346233029828, -1.15314881717715245, 4.17351168062961797], [-1.50119788636783058, -1.12158462774608036, 4.05927359503485263], [-1.50319018347690059, -1.09170236788825203, 3.95112280070324973], [-1.50507908318789685, -1.06337109138275299, 3.848585373042964], [-1.50687243177348584, -1.03647310121985781, 3.75123533941494713], [-1.50857730120321976, -1.01090231523927088, 3.65868876400059229], [-1.51020008235828307, -0.986562867872245119, 3.5705986871837796], [-1.51174656509680072, -0.963367909130314226, 3.48665077881394492], [-1.51322200728413203, -0.941238569124101088, 3.40655959056068935], [-1.51463119452261408, -0.920103062093176716, 3.33006531319107468], [-1.5159784920106758, -0.899895908499487973, 3.2569309611462236], [-1.51726788971519455, -0.88055725742399682, 3.18693992013838878], [-1.5185030418418739, -0.862032294495386875, 3.11989380430830421], [-1.51968730142606834, -0.84427072301448236, 3.05561057829472293], [-1.52082375073355869, -0.827226307930387428, 2.99392290677882578], [-1.52191522805175894, -0.810856473962002555, 2.93467669999324787], [-1.52296435136162334, -0.795121950510084385, 2.87772982857688264], [-1.52397353930590063, -0.779986457125067312, 2.82295098521034005], [-1.2546347298986078, -4.42812257611273363, 17.3619306005086749], [-1.2883092471641453, -3.96402845281275473, 15.5422948920700073], [-1.31559483178413639, -3.58798590486582647, 14.0678947353280943], [-1.33815218060813867, -3.27710738108115596, 12.8489918566556973], [-1.35711232239503965, -3.01580516087786643, 11.8244694016086331], [-1.37327219120485622, -2.79309598211157217, 10.9512638298624552], [-1.38720950335524629, -2.60101781879108707, 10.1981573645100543], [-1.39935328437891693, -2.43365788587637732, 9.54196696087362817], [-1.41002881402533742, -2.28653321193297998, 8.96511563512055787], [-1.41948719792964684, -2.15618308546275506, 8.45403451425188557], [-1.42792536989247032, -2.03989338556067157, 7.99808198255246605], [-1.43549995265571528, -1.93550555414253789, 7.58879469353386682], [-1.44233707004516321, -1.84128136601510195, 7.21935735591754479], [-1.44853942610522268, -1.75580536497602746, 6.88422020184350725], [-1.45419149993278807, -1.67791326915321726, 6.57881827613823855], [-1.45936341650389734, -1.60663862367401555, 6.29936227032186835], [-1.46411387114256075, -1.54117249593953765, 6.04268049449627043], [-1.46849236699504382, -1.48083263898659867, 5.80609797202662126], [-1.47254094669668101, -1.42503962583549804, 5.58734286629668198], [-1.4762955467886214, -1.37329818305918283, 5.38447329274454489], [-1.47978706740796362, -1.32518244842504229, 5.19581951653318619], [-1.48304222471879554, -1.2803242227788163, 5.01993789014527447], [-1.48608423587928007, -1.23840352989940028, 4.85557384014723148], [-1.48893337371013512, -1.19914097211554527, 4.70163189483636668], [-1.49160741909310191, -1.16229149539722232, 4.55715123820327594], [-1.49412203244287101, -1.12763926976820472, 4.42128563688283549], [-1.49649106065263093, -1.09499345901412015, 4.29328685388452946], [-1.49872679222200222, -1.06418470453633285, 4.17249086236953826], [-1.50084017049361629, -1.03506218654732174, 4.05830632308762418], [-1.50284097280947981, -1.00749115495607588, 3.95020490339028063], [-1.50473796177692165, -0.981350844637122743, 3.84771310334805161], [-1.50653901358142894, -0.956532707035827934, 3.75040532216964184], [-1.50825122730965466, -0.93293890349050812, 3.65789795076903346], [-1.50988101848240763, -0.910481016170296087, 3.5698443175677026], [-1.51143419939586332, -0.889078940821096064, 3.48593034713604721], [-1.51291604839175697, -0.86865993209096104, 3.40587081707330919], [-1.51433136979643646, -0.849157777455945895, 3.32940611910852047], [-1.5156845459631425, -0.830512079979804252, 3.25629944692081574], [-1.5169795826050132, -0.812667633538400103, 3.18633434649847658], [-1.51822014840685515, -0.795573876894421939, 3.11931257565687936], [-1.51940960974072059, -0.779184415251651608, 3.05505222813251676], [-1.52055106117695749, -0.763456599754120946, 2.99338608486928237], [-1.52164735237323945, -0.74835115690487175, 2.93416016103118471], [-1.52270111183335222, -0.733831861124507268, 2.87723242215900488], [-1.52371476795285954, -0.719865244702138529, 2.82247164693630159], [-1.25354086000071385, -4.0555733705905439, 17.3467933714804623], [-1.28730097751032257, -3.63084891092655093, 15.53013102355402], [-1.31466036148068577, -3.28665090370171464, 14.0579022744696083], [-1.33728172745531926, -3.00206102081806359, 12.8406337299536268], [-1.35629778662817047, -2.76282882461293999, 11.8173723816398937], [-1.37250683826548525, -2.55891105439327715, 10.945160464473064], [-1.38648769821491058, -2.38302573130687767, 10.1928509689080542], [-1.39867027828258483, -2.22976421175484507, 9.53730965118776908], [-1.4093805759002751, -2.09502518039230123, 8.96099406704161616], [-1.41887028156450556, -1.97564216420374184, 8.45036034779873191], [-1.42733680907089466, -1.86913153568807622, 7.99478534128399954], [-1.43493717795109221, -1.77351786038899029, 7.58581957557290831], [-1.44179784238573716, -1.68721024108969231, 7.21665834938818396], [-1.44802178336316878, -1.60891309262574289, 6.8817600916401096], [-1.45369371367992151, -1.53756065869991687, 6.57656627198464427], [-1.45888395675284466, -1.47226821323681567, 6.29729267570838047], [-1.46365137740227058, -1.41229518872148896, 6.04077169357691446], [-1.4680456243534159, -1.35701696368803137, 5.80433164922926181], [-1.47210886593289225, -1.30590302623079157, 5.58570339855988607], [-1.4758771477371424, -1.2584998934192686, 5.38294727139787099], [-1.47938146496345535, -1.21441762049238844, 5.19439536765153509], [-1.48264861699918593, -1.17331904942381593, 5.01860557049004985], [-1.4857018941629998, -1.13491116915229129, 4.85432459169230057], [-1.48856163384018858, -1.09893811894242122, 4.70045804511281062], [-1.49124567410042674, -1.06517548150030472, 4.55604603678084885], [-1.49376972618849457, -1.03342559673417833, 4.42024312057664481], [-1.49614768232530571, -1.00351368936453422, 4.29230173496375755], [-1.49839187155746667, -0.975284650126161723, 4.17155843531235515], [-1.50051327360542586, -0.948600345382740517, 4.05742238638708574], [-1.50252169854030337, -0.923337356644879148, 3.9493656936492334], [-1.50442593849447825, -0.899385071926046664, 3.84691523946549996], [-1.50623389635592608, -0.8766440666621792, 3.74964575785959342], [-1.50795269541959609, -0.855024724206987385, 3.65717393399443269], [-1.50958877320420837, -0.834446055540014719, 3.56915335574160775], [-1.51114796203942303, -0.814834685413414417, 3.48527017715464948], [-1.5126355585500153, -0.796123978184218539, 3.40523937941522625], [-1.51405638378162966, -0.778253281383080697, 3.32880153537035905], [-1.51541483540627775, -0.761167268925527662, 3.25572000026782504], [-1.51671493319881545, -0.744815368981561199, 3.18577846459840464], [-1.51796035877477609, -0.729151264040285407, 3.1187788157359484], [-1.51915449041719963, -0.714132452760222081, 3.05453926385167662], [-1.52030043368614343, -0.699719864876467756, 2.99289269476707309], [-1.5214010483949203, -0.68587752181738193, 2.93368521831889328], [-1.52245897244644257, -0.672572236823729686, 2.87677488568695283], [-1.52347664294797314, -0.659773349308177437, 2.8220305531772496], [-1.2525710182781149, -3.6840324067003376, 17.3333724735250883], [-1.28640617447530992, -3.29847737044951206, 15.5193360279649575], [-1.31383029368433291, -2.98597794019166596, 14.0490262086017861], [-1.3365078428727819, -2.72756702627098369, 12.8332028586049773], [-1.35557299756153049, -2.51032036585468621, 11.8110573213462988], [-1.37182524755051549, -2.32512753822121221, 10.9397250673308051], [-1.38584436881124917, -2.16538182626757658, 10.1881214925889481], [-1.39806104780918883, -2.02617543160751978, 9.53315540571338005], [-1.40880190974604935, -1.90378636452168815, 8.9573148450745439], [-1.41831915701271094, -1.79534070507938104, 8.4470780173984874], [-1.42681062372090173, -1.69858407585821625, 7.9918380769129076], [-1.43443367699993241, -1.6117232325841937, 7.58315780930863159], [-1.44131506052972314, -1.53331389418055641, 7.2142418721195174], [-1.44755799806482921, -1.46217979602507997, 6.8795559402980011], [-1.45324740731376756, -1.39735327626323791, 6.57454716481853474], [-1.4584537857296731, -1.33803099608226894, 6.2954358365670755], [-1.46323614681451497, -1.28354047966185525, 6.03905795680902813], [-1.46764426701818107, -1.2333145100993117, 5.80274477001726119], [-1.47172042496143463, -1.18687131045277017, 5.58422951568028303], [-1.47550076195103474, -1.14379904027212009, 5.38157448448032483], [-1.47901635662336051, -1.10374354971892563, 5.19311340142754485], [-1.48229408142406038, -1.06639861972953987, 5.0174055058274849], [-1.48535729090375379, -1.03149811868316221, 4.85319864840427773], [-1.4882263791388084, -0.9988096504287306, 4.6993994052671777], [-1.49091923441781504, -0.96812937299858115, 4.5550486999583244], [-1.49345161262550508, -0.939277743789625807, 4.41930178453018918], [-1.49583744579381905, -0.91209600353281628, 4.2914116966219007], [-1.49808909858439021, -0.886443253600231018, 4.17071550818908676], [-1.50021758267307614, -0.862194013030503581, 4.05662283130851886], [-1.50223273688327197, -0.839236165856576566, 3.94860616035519296], [-1.50414337928666852, -0.817469227873189319, 3.84619271714335564], [-1.50595743623225187, -0.796802876313360775, 3.7489575330543623], [-1.50768205228590091, -0.777155697054588201, 3.65651755464183692], [-1.50932368429618102, -0.758454112711648643, 3.56852660030830693], [-1.51088818219741361, -0.740631461861477325, 3.48467102805825091], [-1.51238085868169359, -0.723627205110858207, 3.40466600004658781], [-1.51380654948842563, -0.7073862380787036, 3.32825225016030046], [-1.51516966575331469, -0.691858294864527323, 3.25519327733760067], [-1.51647423961059014, -0.676997428397584811, 3.18527290061063661], [-1.5177239640416289, -0.66276155635005618, 3.11829312262701475], [-1.51892222779947916, -0.649112063162170516, 3.05407225717801234], [-1.52007214610475616, -0.636013450253036017, 2.99244328344053434], [-1.52117658769855835, -0.623433027745310731, 2.93325239554168737], [-1.52223819874688049, -0.611340642067020323, 2.8763577209253306], [-1.52325942401601133, -0.599708434651972988, 2.82162818503753288], [-1.25172628087776361, -3.31339309644113911, 17.3216827986172888], [-1.28562587606116763, -2.96682894475654058, 15.5099224278661367], [-1.31310562313446111, -2.68589786550230691, 14.0412771746537253], [-1.33583147707461758, -2.4535680191166449, 12.8267083666042367], [-1.35493886161885801, -2.25823143603143039, 11.8055321183643098], [-1.37122828343303249, -2.09170416116903235, 10.9349645314447752], [-1.38528033967041253, -1.94805047766151773, 10.1839749971082671], [-1.3975263800087292, -1.82286049566355968, 9.52950959121894137], [-1.40829356751202384, -1.71278947400111003, 8.9540827501946918], [-1.41783454341673631, -1.61525454313299055, 8.44419180604524477], [-1.42634750234676377, -1.52822946680010396, 7.98924404588276627], [-1.43399010969321217, -1.45010235811673116, 7.58081288326579994], [-1.44088935763135129, -1.37957491688108091, 7.21211109325053901], [-1.44714867835896843, -1.31558970759906213, 6.87761063805954098], [-1.45285316557095046, -1.2572767778979379, 6.57276360001088555], [-1.45807346622345979, -1.20391387119368254, 6.29379418218475095], [-1.46286872156672798, -1.15489635913162747, 6.03754152190478521], [-1.4672888178122474, -1.10971423195884245, 5.80133940151817118], [-1.47137612837868104, -1.06793428672646207, 5.58292313227556036], [-1.47516687684790671, -1.02918619314970239, 5.38035670974372238], [-1.47869221359237879, -0.993151486741149836, 5.19197527235234446], [-1.48197907387669958, -0.959554796035272939, 5.01633923927328773], [-1.48505086748739745, -0.928156792179623324, 4.85219745245014167], [-1.4879280372570638, -0.898748478880105672, 4.69845732570099628], [-1.49062851466849144, -0.871146534546521023, 4.55416049449042415], [-1.49316809400544637, -0.845189487172894216, 4.41846281905385307], [-1.49556074154804008, -0.820734553288558488, 4.29061785913629734], [-1.49781885259882985, -0.797655010259731956, 4.16996313696893228], [-1.49995346632810533, -0.775837999824882107, 4.05590865464007777], [-1.50197444629951549, -0.755182682496963076, 3.94792724572023479], [-1.50389063290604619, -0.735598679138827038, 3.8455464281646452], [-1.5057099726866463, -0.717004748898402933, 3.74834149285220652], [-1.50743962851355628, -0.699327662712474596, 3.65592961451354803], [-1.50908607387208726, -0.682501239439637364, 3.56796481284832678], [-1.51065517384939829, -0.666465517874734625, 3.48413362400069593], [-1.51215225496786254, -0.651166042809127377, 3.40415136824104936], [-1.5135821656155668, -0.636553247221500085, 3.32775892019684205], [-1.51494932851856867, -0.622581915829548804, 3.25471990442003012], [-1.51625778645134335, -0.609210717770629073, 3.1848182523453441], [-1.51751124218062872, -0.596401798236928404, 3.11785606744972021], [-1.51871309347396832, -0.584120420566910936, 3.05365175418590651], [-1.5198664638699908, -0.572334651666523753, 2.99203837343443801], [-1.5209742297971327, -0.561015084761237404, 2.93286219311291374], [-1.52203904453673622, -0.550134594410868538, 2.87598140744792952], [-1.52306335945054649, -0.539668119490351095, 2.82126500244678002], [-1.20807844068863446, -3.33263018121002608, 19.6000312532414647], [-1.25100767582920858, -2.94354747253931448, 17.3117385728718389], [-1.2849610702487082, -2.63581757999735045, 15.5019021423594161], [-1.31248729423210198, -2.38634053496745846, 14.0346652712773636], [-1.33525353054661, -2.18000576415773084, 12.8211589004526534], [-1.35439623664280595, -2.00651294317452766, 11.8008042470451908], [-1.37071676315359503, -1.85859900088623053, 10.930885373962143], [-1.38479638979094122, -1.7309954872386768, 10.1804172093224672], [-1.39706701807475908, -1.619787847043199, 9.52637727542281354], [-1.40785625897247635, -1.52200676645673094, 8.95130229522365006], [-1.41741711940084425, -1.43535910825401936, 8.44170575541895118], [-1.42594809454583915, -1.35804580432937061, 7.98700688671211001], [-1.43360709856855029, -1.2886355942189216, 7.57878808850003338], [-1.44052133098067769, -1.22597560083461921, 7.21026900240860424], [-1.44679439795220621, -1.1691267862240049, 6.87592691147992952], [-1.45251154010035766, -1.11731656930796741, 6.57121807324248408], [-1.45774352922344796, -1.06990350768693432, 6.29237000458378226], [-1.46254961326986743, -1.02635060580341575, 6.03622450038133884], [-1.4669797701435523, -0.986204887491463733, 5.80011749455917069], [-1.47107645246849117, -0.949081582237736421, 5.58178605553568641], [-1.47487595257936932, -0.914651753537593426, 5.37929562549297113], [-1.47840948080282053, -0.882632525852430128, 5.19098254266960435], [-1.48170402491171904, -0.852779294913219577, 5.01540822820837207], [-1.48478304086782775, -0.824879467148793122, 4.85132236616883983], [-1.48766701226664155, -0.798747389136451935, 4.69763308235875776], [-1.49037390670723813, -0.774220211276487436, 4.55338261756984064], [-1.49291955058336279, -0.75115449085955377, 4.41772734936775002], [-1.49531793881654695, -0.729423384788559392, 4.28992128178771459], [-1.497581492336167, -0.708914315898777292, 4.16930232037968374], [-1.49972127330958016, -0.689527022211301244, 4.05528079938021513], [-1.50174716599536451, -0.671171917763291437, 3.94732984134535725], [-1.5036680294592859, -0.653768708460559012, 3.84497721663366265], [-1.50549182713130358, -0.63724521783335597, 3.74779843738242446], [-1.50722573719977082, -0.621536386474132341, 3.65541087295099087], [-1.50887624707017176, -0.606583415907606782, 3.56746871480661243], [-1.51044923450890156, -0.592333033140745813, 3.48365865115901086], [-1.51195003761163327, -0.578736856502060526, 3.4036961373027439], [-1.51338351535158044, -0.565750846860403889, 3.32732216809775005], [-1.51475410015475598, -0.553334831106760183, 3.25430047544663337], [-1.51606584370093489, -0.541452087036048191, 3.18441508688075858], [-1.51732245694710621, -0.530068980592875549, 3.11746819211184878], [-1.51852734520622579, -0.519154647933752433, 3.05327827316038114], [-1.5196836389796804, -0.508680715976462028, 2.99167846083656741], [-1.5207942211311376, -0.49862105610856966, 2.93251508623852519], [-1.52186175089856346, -0.488951566553755435, 2.87564640079427392], [-1.52288868516539977, -0.479649979579653496, 2.82094144240283695], [-1.20743694534676327, -2.91450297152666993, 19.5896235443328273], [-1.25041617783044168, -2.57438624847443887, 17.3035532843889044], [-1.28441269002976677, -2.30535611030983834, 15.4952864271539816], [-1.31197619632152152, -2.08723485778423878, 14.0292000083926336], [-1.33477484957103099, -1.90682121367290125, 12.8165625861871426], [-1.35394592765223543, -1.75511509140104627, 11.7968807214884581], [-1.37029145279717324, -1.62576952026783284, 10.927493704085931], [-1.38439324882673231, -1.51418011590423873, 10.1774534933277749], [-1.39668365771997038, -1.41692544986083946, 9.5237632022789267], [-1.40749064828182746, -1.33141007269902589, 8.9489777029270261], [-1.41706751979372436, -1.25562944791848996, 8.4396236463664227], [-1.42561300788727618, -1.18801083990606338, 7.98513000251146909], [-1.43328522583432649, -1.12730298661126804, 7.57708650286573704], [-1.44021153916347688, -1.07249795469620635, 7.20871839549378635], [-1.4464956933956985, -1.02277473270402908, 6.87450731053208219], [-1.45222304686840742, -0.977457820007581968, 6.56991291876524652], [-1.45746447143531155, -0.935986357802493729, 6.29116544780104636], [-1.46227930057882416, -0.897890798601032492, 6.03510886773979571], [-1.46671758572313538, -0.862775050425373835, 5.79908087464483391], [-1.47082184301217489, -0.830302653313324646, 5.58081997691313259], [-1.47462841992744398, -0.800185964301713848, 5.37839280291366251], [-1.47816857489248732, -0.772177613749806757, 5.19013667527548606], [-1.48146933780980361, -0.74606369529990102, 5.01461383769433411], [-1.48455420169438179, -0.721658292490324538, 4.85057466595282438], [-1.48744368285580375, -0.69879904563695483, 4.69692787103124676], [-1.49015577788144959, -0.677343535400658947, 4.55271619151442852], [-1.49270633894042803, -0.657166312741068959, 4.41709643063818458], [-1.49510938394766746, -0.638156444367906861, 4.28932295821571685], [-1.49737735440777353, -0.620215472239906251, 4.16873399555537016], [-1.49952133095357087, -0.603255707854884804, 4.05474015065319016], [-1.50155121446200179, -0.587198798951620859, 3.94681478438196587], [-1.50347587899464852, -0.571974519182746666, 3.84448587536403252], [-1.50530330154738445, -0.557519741313846184, 3.74732911840235117], [-1.50704067261056984, -0.543777562282164451, 3.65496204362511934], [-1.50869449077120454, -0.530696554542634868, 3.56703898446156664], [-1.51027064398117061, -0.518230122934715376, 3.48324675486833701], [-1.5117744796338437, -0.506335950116598377, 3.40330092185513555], [-1.51321086520678216, -0.494975516656424197, 3.3269425798121075], [-1.51458424091973831, -0.484113684312245163, 3.25393554955587572], [-1.51589866560814746, -0.473718333002546066, 3.18406393825282752], [-1.51715785681050552, -0.463760043566530111, 3.11713000711503385], [-1.51836522590350853, -0.454211819714724796, 3.05295230251111427], [-1.51952390898436263, -0.445048843635587388, 2.99136401329348312], [-1.52063679408889008, -0.436248260599271742, 2.93221152302796195], [-1.52170654524284132, -0.4277889886224856, 2.87535313066970666], [-1.52273562376814153, -0.419651549857361805, 2.82065791725555348], [-1.20693597054516544, -2.49710890457620449, 19.5814956600517363], [-1.24995270329853758, -2.20579888817389014, 17.2971396147635872], [-1.28398160868782707, -1.97535632105819547, 15.4900858176313481], [-1.31157315920488271, -1.78850885346120414, 14.0248902592249394], [-1.33439622197028629, -1.63395455751463659, 12.8129269885106076], [-1.35358868280505895, -1.50398742533895491, 11.7937680603663022], [-1.36995306346325085, -1.39317260691178046, 10.9247951925332121], [-1.38407159345175246, -1.29756711886101805, 10.1750888237351482], [-1.39637694372278753, -1.21424082062851091, 9.52167176842857188], [-1.40719735069096985, -1.14097082488457047, 8.94711288513650516], [-1.41678633250303276, -1.07604025253394919, 8.4379489802870502], [-1.42534280493399335, -1.01810200352428093, 7.98361654430290191], [-1.43302503052922825, -0.96608429024442366, 7.57571097600002208], [-1.43996049934911441, -0.91912372298879641, 7.20746186110381082], [-1.44625306149295918, -0.87651700696542989, 6.87335419628724509], [-1.45198816367902994, -0.837685479045594206, 6.56885029818253408], [-1.45723675290620291, -0.802148671324515394, 6.29018249763640735], [-1.46205822691595877, -0.769504329955767896, 6.03419645406981253], [-1.46650269238122322, -0.739413122209020113, 5.7982312333223982], [-1.47061271319153097, -0.711586796705579672, 5.58002646416625314], [-1.47442467828948898, -0.685778920134646142, 5.3776496987225153], [-1.4779698822667855, -0.661777559223933776, 5.18943902691434733], [-1.48127538671266623, -0.639399447501870277, 5.01395733416049882], [-1.48436471251558766, -0.618485296881494784, 4.84995553637905452], [-1.48725840059837067, -0.598896000240954796, 4.69634280188948683], [-1.48997446936169231, -0.580509533517542531, 4.55216225866672897], [-1.49252879037299113, -0.563218411461506085, 4.41657104321064331], [-1.49493539885409299, -0.546927584946619305, 4.28882381195640594], [-1.49720675179825968, -0.531552692946127836, 4.16825903385255181], [-1.49935394374046949, -0.517018601289817026, 4.05428753178098233], [-1.50138688807057163, -0.503258174772258648, 3.94638285383912768], [-1.50331447014255692, -0.490211240263877301, 3.84407314240257092], [-1.50514467716900402, -0.477823707037779044, 3.74693423602125053], [-1.50688470890602533, -0.466046817187430573, 3.65458379144476764], [-1.50854107236328217, -0.454836504230135275, 3.56667625400464416], [-1.51011966316573387, -0.444152842107568779, 3.48289853686018525], [-1.51162583571169717, -0.433959570060774347, 3.40296629522657179], [-1.51306446388653582, -0.424223681463514746, 3.3266207021430616], [-1.51443999378288985, -0.414915066789832865, 3.25362564874360549], [-1.51575648962875986, -0.406006202579132114, 3.18376530522469414], [-1.51701767392293974, -0.397471879630464542, 3.11684198943555923], [-1.51822696261260193, -0.389288964772462054, 3.05267429875738916], [-1.51938749601307377, -0.381436191467717234, 2.99109546809268245], [-1.52050216605929767, -0.373893975260483014, 2.93195192266762072], [-1.5215736403866893, -0.366644250695587814, 2.87510199920456788], [-1.52260438366374795, -0.359670326849704347, 2.82041481304643105], [-1.20657641266197602, -2.08030415976202754, 19.575662143360681], [-1.24961810574623566, -1.83767368492093497, 17.2925093751059968], [-1.28366863538470599, -1.64572901972398222, 15.4863100756026721], [-1.31127894894430552, -1.49008971470943807, 14.0217442154158114], [-1.33411837312044268, -1.3613452786943292, 12.810259072513638], [-1.35332518961463455, -1.25307887927280981, 11.7914722539571404], [-1.36970224767426307, -1.16076461667310427, 10.9227950428939113], [-1.38383204394887604, -1.08111878433505937, 10.1733277605929082], [-1.3961474666850282, -1.01170106281523764, 9.52010700109138597], [-1.40697692946244035, -0.950660087474621829, 8.94571142313619205], [-1.41657409557746994, -0.896565883276879583, 8.43668496163543757], [-1.42513800044175643, -0.848296428834378835, 7.98246939533150446], [-1.43282700584911149, -0.804958992050062605, 7.57466411519108895], [-1.43976868473672481, -0.765834406774853593, 7.20650176775137208], [-1.44606695685748443, -0.730336846897719494, 6.8724697293075403], [-1.4518073278356427, -0.697984292228674308, 6.56803218987182547], [-1.45706079478447492, -0.668376511369025206, 6.28942297198252742], [-1.46188679832248969, -0.641178420316881437, 6.03348893518185392], [-1.46633548200473762, -0.616107345380141891, 5.79757012002713523], [-1.47044944160737212, -0.592923161938456511, 5.57940695384087704], [-1.47426509377301795, -0.571420578981789995, 5.37706764821864436], [-1.47781375726547437, -0.551423043755774001, 5.18889084174183335], [-1.48112251485772894, -0.532777883042348521, 5.01343987942849978], [-1.48421490607805184, -0.51535239794376797, 4.84946606465085672], [-1.48711148831330076, -0.499030700776275482, 4.69587889430475247], [-1.48983029455893545, -0.483711134597057002, 4.55172177655830623], [-1.4923872093643944, -0.469304153888174314, 4.41615208808772053], [-1.49479627953645244, -0.455730573029406172, 4.28842469220671241], [-1.49706997243838846, -0.44292011018887234, 4.16787823687728842], [-1.49921939191483489, -0.430810170090469791, 4.05392370055132112], [-1.50125445973660399, -0.419344821155476111, 3.94603476707302958], [-1.50318406882255595, -0.4084739317452597, 3.84373969772289392], [-1.50501621323073098, -0.398152437362627176, 3.74661443558232188], [-1.50675809892660051, -0.388339716218196018, 3.65427672961322481], [-1.5084162385651434, -0.378999054915865163, 3.5663811067582909], [-1.50999653291510794, -0.370097189439977492, 3.48261455263018771], [-1.51150434107137377, -0.361603909347218588, 3.40269278695732691], [-1.51294454121625188, -0.35349171523744205, 3.32635704038432989], [-1.51432158338120804, -0.345735521319910533, 3.25337125562035823], [-1.51563953541149798, -0.338312396297209383, 3.18351964915673991], [-1.51690212313371897, -0.331201336928759638, 3.11660458049962807], [-1.51811276556176833, -0.324383069564480431, 3.05244468460176055], [-1.51927460584174145, -0.317839875699109098, 2.99087323032861674], [-1.52039053852562223, -0.31155543822246351, 2.93173667367338142], [-1.52146323367199554, -0.305514705556625632, 2.87489337928784705], [-1.52249515819623116, -0.299703771298470756, 2.82021248791860968], [-1.20635910478467956, -1.66394359280645432, 19.5721365103859206], [-1.24941317154386211, -1.46989784887513175, 17.2896734473937386], [-1.283474511109296, -1.31638411395825239, 15.4839681404339444], [-1.31109426400402862, -1.19190387636729889, 14.0197693457703529], [-1.33394196228424256, -1.08893221410958585, 12.8085651684640016], [-1.35315607146636663, -1.00233783071582705, 11.789998733794917], [-1.3695395960662875, -0.928501421061889931, 10.9214979652404782], [-1.3836751610643101, -0.864796975665193868, 10.1721744262618419], [-1.39599576003957626, -0.809272904370768931, 9.51907253766117023], [-1.4068298930212968, -0.760448590822322745, 8.94477654954756929], [-1.41643129449123917, -0.717180402274045115, 8.43583448174845607], [-1.42499905876824173, -0.678570980365829302, 7.98169115655306616], [-1.43269159667234147, -0.643906335583074863, 7.57394827229591705], [-1.43963652218918803, -0.612611286037952341, 7.20584025202141376], [-1.44593778964834874, -0.584217288746807561, 6.87185585888432282], [-1.45168093397179776, -0.558338820758383703, 6.56746037917048842], [-1.45693697723942495, -0.534655771464009222, 6.28888851184540787], [-1.46176538146192714, -0.512900133846290296, 6.03298782436698922], [-1.4662163086193063, -0.492845818023296189, 5.79709893449902136], [-1.47033237043548093, -0.47430076465660681, 5.57896274427333783], [-1.47414999742133768, -0.457100774394213205, 5.37664785881193286], [-1.47770052045406164, -0.441104632971361654, 5.18849324532564093], [-1.48101103293160996, -0.426190225304060422, 5.01306252513901107], [-1.48410508373871042, -0.412251412149641727, 4.84910723541016075], [-1.48700323853258021, -0.399195500277202742, 4.69553707201059733], [-1.48972353764509058, -0.386941178609114367, 4.55139561338970822], [-1.49228187215557973, -0.375416823183793658, 4.41584038269937285], [-1.49469229470153087, -0.364559096268666116, 4.28812636986018525], [-1.49696727786844952, -0.354311781744011789, 4.16759233276393815], [-1.49911793019178474, -0.344624811538341347, 4.05364934571974], [-1.50115417766742665, -0.335453447523447301, 3.94577117649454889], [-1.50308491702981906, -0.326757590658656338, 3.84348616012244459], [-1.50491814579140559, -0.318501194876487981, 3.74637030473468968], [-1.50666107305258534, -0.310651767639708365, 3.65404141686206918], [-1.50832021431975405, -0.303179942576835004, 3.56615407456002176], [-1.50990147296094346, -0.296059112345283093, 3.48239530896139193], [-1.51141021044540858, -0.289265112046968143, 3.40248088045246222], [-1.51285130712870552, -0.282775945257701999, 3.32615205609371944], [-1.51422921503531072, -0.276571546125170931, 3.25317281129732283], [-1.51554800384155453, -0.270633572114563348, 3.18332739199755155], [-1.51681140105928525, -0.264945222892451537, 3.11641818427246164], [-1.51802282725611293, -0.25949108158224149, 3.05226384711111587], [-1.51918542701290371, -0.254256975232285132, 2.99069767116975349], [-1.52030209620866574, -0.249229851837486166, 2.93156613223843099], [-1.52137550613118666, -0.244397671667660576, 2.87472761299085722], [-1.52240812483613741, -0.239749310997816961, 2.8200512706118217], [-1.20628481277833521, -1.24788084080517447, 19.5709311866278171], [-1.24933861612278863, -1.102357602461284, 17.2886417319344723], [-1.28339990504144752, -0.987230696185729006, 15.4830680851795126], [-1.31101973178267484, -0.893877089851823681, 14.018972359176102], [-1.33386757931065403, -0.816653619986114854, 12.807850940115566], [-1.35308188447878264, -0.751712158043768341, 11.7893523453197631], [-1.36946563440365354, -0.696338458171349317, 10.9209081523206617], [-1.38360144316685685, -0.648563176484464154, 10.1716324845313473], [-1.3959222973452543, -0.606922737976197446, 9.5185716072600286], [-1.40675669237670298, -0.5703067671797446, 8.94431113193565963], [-1.41635835968400103, -0.53785760494329149, 8.43540010419395436], [-1.42492639152348843, -0.508902282686960139, 7.98128413347382359], [-1.43261919731345633, -0.48290534740903035, 7.57356553186495685], [-1.43956439008321246, -0.459435443643578412, 7.20547920781012063], [-1.44586592351048449, -0.438141188942571091, 6.87151431324932283], [-1.45160933207598708, -0.418733461175765487, 6.56713644943992225], [-1.45686563756538856, -0.400972193825336332, 6.28858057316069097], [-1.46169430179855753, -0.384656395210146773, 6.03269446487913541], [-1.466145486637777, -0.36961650923641437, 5.79681891985776421], [-1.47026180374106286, -0.35570850090509587, 5.57869498919491935], [-1.47407968359015684, -0.34280922874189701, 5.37639140410208416], [-1.47763045705908436, -0.330812788893824872, 5.18824723915148667], [-1.4809412175608927, -0.319627600912422871, 5.01282620764316533], [-1.48403551400807254, -0.309174065418348465, 4.84887992597776485], [-1.48693391209422376, -0.299382666864608904, 4.69531815865994862], [-1.48965445219326131, -0.290192425751933991, 4.55118454387616467], [-1.49221302543011958, -0.281549627439645178, 4.41563665701176777], [-1.49462368448985994, -0.27340677155302312, 4.28792953385657949], [-1.49689890200642672, -0.265721698581022514, 4.16740197274570257], [-1.49904978656377375, -0.258456859752374812, 4.05346508378307835], [-1.50108626420576341, -0.251578703498172629, 3.94559266652967366], [-1.50301723171390722, -0.245057157344658799, 3.84331308435539842], [-1.5048506866465361, -0.238865188356593039, 3.74620237072590045], [-1.50659383814855508, -0.232978428579673463, 3.65387835489121215], [-1.50825320176940991, -0.227374854538102023, 3.56599563533923325], [-1.50983468091863049, -0.222034511899798614, 3.48224126162850789], [-1.51134363710544006, -0.216939278053412454, 3.4023310108043523], [-1.51278495072382357, -0.212072656643526702, 3.3260061650259769], [-1.51416307383514592, -0.207419599155499484, 3.2530307134220835], [-1.51548207615115782, -0.202966349484530073, 3.18318891441571283], [-1.5167456852177259, -0.198700308107125689, 3.11628316548008755], [-1.51795732163507302, -0.194609913030137582, 3.05213213602265743], [-1.51912013001539248, -0.190684535148375606, 2.99056912624369042], [-1.52023700626773839, -0.186914386016525186, 2.93144062069250344], [-1.52131062170874776, -0.183290436350451585, 2.87460501009624858], [-1.52234344442183445, -0.179804343829350538, 2.81993145905698084], [-1.2063542318777789, -0.83196843577777857, 19.5720574516722401], [-1.24939508067232485, -0.73493828274842643, 17.2894231016567304], [-1.28344541137999091, -0.65817713404102085, 15.4836170783150155], [-1.31105590558181251, -0.595934502537187494, 14.0193591721873361], [-1.33389574174449765, -0.544447241528366543, 12.8081213569548193], [-1.35310311475015066, -0.501149301759315158, 11.7895373238878864], [-1.36948082095623769, -0.46423078676482632, 10.9210292586425393], [-1.38361132374858298, -0.432378538671432222, 10.1717051222454415], [-1.39592748990334425, -0.404616663740099802, 9.51860701448584834], [-1.40675771884694645, -0.380204788877553157, 8.94431765834443837], [-1.41635566438725324, -0.358571054275253986, 8.43538405182534845], [-1.4249203554910308, -0.339266751307388259, 7.98125032450630734], [-1.43261014953285848, -0.321934865063563724, 7.57351770062033669], [-1.43955261640191501, -0.306287790723811737, 7.20542027677767027], [-1.44585167374486656, -0.29209124722118518, 6.87144659087838061], [-1.45159282573458626, -0.279152466487420425, 6.56706177411656533], [-1.45684706849295176, -0.2673113887143031, 6.28850041950397998], [-1.46167384197288275, -0.256434007363663619, 6.03261002323018669], [-1.46612328929605784, -0.246407275511942525, 5.79673115641844738], [-1.47023800597152898, -0.23713516225347242, 5.57860469201293885], [-1.47405440849412539, -0.228535567208391549, 5.37629921857741166], [-1.47760381556545006, -0.220537882920216421, 5.18815369569809093], [-1.48091330995752024, -0.213081051792448933, 5.01273174341736105], [-1.48400643124116383, -0.206112004339050525, 4.84878490207616419], [-1.48690373687638488, -0.199584394211595267, 4.69522287382777925], [-1.48962325995284695, -0.193457566227642458, 4.55108924550528826], [-1.49218088512834024, -0.187695708821174867, 4.41554155001813875], [-1.49459065932697022, -0.182267153576459756, 4.28783478788621597], [-1.49686505003459325, -0.177143792903502184, 4.16730772805488847], [-1.49901516122089173, -0.172300593243780664, 4.05337145605994031], [-1.50105091478222019, -0.167715186009186612, 3.94549975086611449], [-1.50298120376199629, -0.163367522148043093, 3.84322095853271328], [-1.5048140223408335, -0.159239579083686078, 3.74611109794371533], [-1.50655657660409004, -0.155315110990112415, 3.6537879860423943], [-1.50821537932341543, -0.151579435107880939, 3.56590621091289917], [-1.50979633138073122, -0.14801924817458148, 3.48215281330702942], [-1.51130479198045831, -0.144622468132101278, 3.40224356280768214], [-1.51274563941065332, -0.141378097141182574, 3.32591973524631968], [-1.51412332380479109, -0.138276102630574549, 3.25294531438426615], [-1.51544191310639809, -0.135307313670214119, 3.18310455409178727], [-1.51670513323670675, -0.132463330413686187, 3.11619984798196725], [-1.51791640330068911, -0.129736444726554601, 3.05204986219219743], [-1.51907886653210022, -0.127119570421096229, 2.99048789415628891], [-1.52019541756727827, -0.124606181767809687, 2.93136042608772263], [-1.52126872654601408, -0.122190259160322418, 2.87452584674658507], [-1.52230126046186731, -0.119866240981249414, 2.81985331908389192], [-1.20656798385249209, -0.416057925466376544, 19.5755253931930149], [-1.2495831293762798, -0.367524449816552912, 17.2920253638688166], [-1.28361154667862531, -0.329131165815032101, 15.4856213515972616], [-1.31120326205210835, -0.298000741375479161, 14.0209348817162951], [-1.33402689238508509, -0.272250386201037808, 12.8093806707588289], [-1.35322017602735301, -0.250596328893954279, 11.7905572744605482], [-1.36958554427405366, -0.23213314309729724, 10.9218643827278346], [-1.38370516929966247, -0.216203932703072255, 10.1723950336795497], [-1.39601168472679116, -0.202320534018375547, 9.51918112556456997], [-1.40683330211714908, -0.190112608394209348, 8.94479822494755084], [-1.41642352276499373, -0.179294116805695403, 8.43578819570796945], [-1.42498125084617167, -0.169640625100734715, 7.98159141098956759], [-1.43266474082776707, -0.160973566385142375, 7.57380629842094777], [-1.43960147709381703, -0.15314909330785284, 7.20566484013447717], [-1.44589530573135039, -0.14605003088195459, 6.87165395299596238], [-1.45163167061460174, -0.139579968328327086, 6.56723750984778931], [-1.45688151672805666, -0.133658854745693279, 6.28864911578486829], [-1.46170424039373503, -0.128219670209976738, 6.03273548337940646], [-1.46614994729522174, -0.123205877923968213, 5.79683655632270423], [-1.47026120064576782, -0.118569451664981285, 5.57869270083736968], [-1.47407438894068221, -0.11426933247602189, 5.37637209299682883], [-1.47762080649246363, -0.110270209439736103, 5.18821335413958362], [-1.48092751473478224, -0.106541547822646188, 5.01277982505550401], [-1.48401803449145109, -0.103056807950795207, 4.84882281408491433], [-1.48691290668731146, -0.099792812529349767, 4.69525182950590647], [-1.48963014977375163, -0.096729230504789071, 4.55111029525032595], [-1.49218563540411808, -0.0938481531700703225, 4.41555560665180824], [-1.49459339891126697, -0.091133743836052869, 4.28784264748628718], [-1.49686589741702392, -0.0885719465927233135, 4.16731008718763185], [-1.49901422559675646, -0.0861502428503883033, 4.05336892611076927], [-1.50104829698823705, -0.0838574467591193945, 3.94549287001656701], [-1.50297699709771604, -0.0816835324509628397, 3.84321020181780115], [-1.50480831329191345, -0.0796194874757626125, 3.74609688573463062], [-1.50654944548121228, -0.0776571879114027058, 3.65377069123149667], [-1.50820690082833009, -0.07578929149891106, 3.56588616502376476], [-1.50978657510912795, -0.0740091458386827467, 3.48213031171002285], [-1.51129382286992953, -0.0723107092282262998, 3.40221886918804683], [-1.51273351814077284, -0.070688482156110885, 3.32589308544501705], [-1.51411010715533001, -0.0691374478153118782, 3.25291691971042374], [-1.51542765427875437, -0.0676530202803015263, 3.183074604188187], [-1.51668988214301748, -0.0662309992202191056, 3.11616851331130906], [-1.51790020682447002, -0.0648675302061739317, 3.05201729620048345], [-1.5190617687636514, -0.0635590698227469081, 2.99045423516024211], [-1.52017746001676168, -0.0623023549187197295, 2.9313257989257635], [-1.52124994833664262, -0.0610943754352065369, 2.87449036422646698], [-1.52228169850544326, -0.0599323503348599754, 2.81981708325516189], [-1.20692661478575758, 0, 19.5813438709206515], [-1.24990324722871771, 0, 17.296455230032695], [-1.28389874772712798, 0, 15.4890861745029174], [-1.31146219915246642, 0, 14.0237037432098983], [-1.33426139732734894, 0, 12.8116323967860737], [-1.35343340782868604, 0, 11.79241515524809], [-1.36978012138920557, 0, 10.9234160527732413], [-1.38388327758577723, 0, 10.1737044078766914], [-1.39617516288904131, 0, 9.52029585709121662], [-1.40698370865536981, 0, 8.94575452597772447], [-1.41656218839297354, 0, 8.43661404606194942], [-1.42510931969452947, 0, 7.9823087490032858], [-1.4327832030263874, 0, 7.57443255083050904], [-1.43971119471929376, 0, 7.2062140118662521], [-1.44599703362420517, 0, 6.87213741737564199], [-1.45172607320542579, 0, 6.56766459079954501], [-1.45696918173726231, 0, 6.28902752300350443], [-1.46178569006459225, 0, 6.03307164188939193], [-1.46622564766661645, 0, 5.79713585905162176], [-1.47033156925594688, 0, 5.57895970431389632], [-1.47413980126660937, 0, 5.37661067051115982], [-1.47768160136334625, 0, 5.18842681672727224], [-1.48098399890817767, 0, 5.0129710178870317], [-1.48407048654141493, 0, 4.84899419387316399], [-1.48696158032429349, 0, 4.69540552713141057], [-1.4896752766923651, 0, 4.55124816677764876], [-1.49222742773665651, 0, 4.4156792751578422], [-1.49463205135041344, 0, 4.2879535375632285], [-1.49690158905955384, 0, 4.16740945356520776], [-1.49904712155090936, 0, 4.0534578775270278], [-1.50107854978010247, 0, 3.94557238922647091], [-1.50300474790587524, 0, 3.84328116244409967], [-1.50483369303485737, 0, 3.74616006652328215], [-1.5065725757780446, 0, 3.65382678816273199], [-1.50822789484998787, 0, 3.56593580164281088], [-1.509805538334692, 0, 3.48217404797290442], [-1.51131085376049112, 0, 3.40225720906368956], [-1.51274870874131984, 0, 3.32592648347098585], [-1.51412354363363066, 0, 3.25294578666494649], [-1.51543941740909949, 0, 3.18309931201330976], [-1.51670004774130263, 0, 3.11618939939861495], [-1.51790884614041288, 0, 3.0520346671327534], [-1.5190689488351492, 0, 2.99046836998718657], [-1.52018324399059557, 0, 2.93133695203924249], [-1.5212543957593716, 0, 2.87449876789070036], [-1.52228486558768372, 0, 2.8198229498386036], [-1.20743059350146775, 0.416355377069471622, 19.5895204911186376], [-1.25035583846072496, 0.367751717194330863, 17.3027182939932693], [-1.28430737000810002, 0.329309582053358973, 15.49401583561054], [-1.31183303465082934, 0.298143871511552139, 14.027669154618529], [-1.33459954451265195, 0.272367253982173874, 12.8148792998612802], [-1.35374307404638183, 0.250693161860441105, 11.7951132655337538], [-1.37006479646957002, 0.232214372282978004, 10.9256862159141139], [-1.38414587635137809, 0.216272793179902834, 10.1756349191144277], [-1.39641813827459282, 0.202379440329651134, 9.52195266751008518], [-1.40720914050804935, 0.190163397365952641, 8.94718784606807027], [-1.4167718530965967, 0.179338209252733749, 8.43786274534112302], [-1.42530474494998538, 0.169679136303569705, 7.98340336308295306], [-1.43296571120366001, 0.161007383281310118, 7.57539738338564028], [-1.4398819374019336, 0.15317892951084397, 7.20706863348520876], [-1.44615701933713425, 0.146076466599710547, 6.87289775351638088], [-1.45187618983563338, 0.139603479791887836, 6.56834372420832224], [-1.45711021479462222, 0.133679836219690124, 6.289636294136419], [-1.46191833765896906, 0.128238450671839394, 6.0336191041100431], [-1.4663505328742561, 0.123222733854979477, 5.79762962787678493], [-1.47044925039558105, 0.118584616967385564, 5.5794062283154906], [-1.47425078049049718, 0.114283006239573437, 5.37701544357192951], [-1.4777863318809763, 0.110282562080669888, 5.18879454589551781], [-1.4810828910932865, 0.106552725977934276, 5.01330575726180783], [-1.48416391312167373, 0.103066938411227341, 4.84929945224824621], [-1.48704988081297906, 0.099802005423689874, 4.6956843551846088], [-1.48975876119019857, 0.0967375818954674394, 4.55150322818174313], [-1.49230638020768458, 0.0938557471828732476, 4.41591290495418676], [-1.49470673245636809, 0.0911406544180712319, 4.28816779037025064], [-1.49697223862187756, 0.0885782389717087448, 4.16760614361889559], [-1.49911396069742442, 0.0861559747527255448, 4.05363861211573617], [-1.50114178282330046, 0.0838626694314693055, 3.94573859675063021], [-1.5030645639920035, 0.0816882915213045513, 3.84343411607737817], [-1.50489026759644684, 0.0796238236823516715, 3.74630090425464646], [-1.50662607181718244, 0.0776611377225351757, 3.65395652984527963], [-1.50827846407545429, 0.0757928876419826369, 3.5660553635552823], [-1.50985332217242463, 0.0740124177535502331, 3.48228425530453833], [-1.51135598425381734, 0.0723136834571204562, 3.40235880665751722], [-1.51279130935511441, 0.0706911826801455284, 3.32602014510084754], [-1.51416372997443305, 0.0691398963458645238, 3.25303212307292577], [-1.51547729787136309, 0.0676552365121144139, 3.18317887789498322], [-1.51673572408884394, 0.0662330010519145834, 3.11626269949258106], [-1.51794241403052732, 0.0648693339329285135, 3.05210216154428648], [-1.51910049829212901, 0.0635606903051099958, 2.99053047885542522], [-1.52021285983433918, 0.0623038057309155333, 2.931394059639576], [-1.52128215799413824, 0.061095668995748538, 2.87455122624996839], [-1.52231084975530973, 0.0599334980218625968, 2.81987108192863545], [-1.20808031066302268, 0.833158834940015636, 19.6000615919638683], [-1.25094122560153886, 0.735847779765611221, 17.3108190189860025], [-1.28483768675147547, 0.658891121411013025, 15.5004136311940801], [-1.3123160051878322, 0.596507275085378263, 14.0328336463835246], [-1.33504154280948617, 0.544914915432443414, 12.8191233855482309], [-1.35414936204812353, 0.501536800758564327, 11.7986532378452242], [-1.37043973994270707, 0.464555844048375299, 10.9286762312380272], [-1.38449312246630107, 0.432654100770719141, 10.1781877206311666], [-1.39674075674810938, 0.404852393260321575, 9.52415255144906503], [-1.40750973449097461, 0.380408036348912071, 8.94909905510815662], [-1.41705264616293869, 0.358747505357705998, 8.43953506354003125], [-1.42556764956689852, 0.339420868944499576, 7.98487594191935202], [-1.43321238293276876, 0.322070198411858133, 7.57670141763896332], [-1.44011381809852046, 0.306407195340110738, 7.20822927037610484], [-1.44637537183090648, 0.292197044814324569, 6.87393547925698467], [-1.45208212597748609, 0.279246562687978095, 6.56927538723468363], [-1.4573047183023482, 0.267395361156394173, 6.29047587120417262], [-1.46210228285653554, 0.2565091724309711, 6.03437828143859623], [-1.46652470016579506, 0.246474739523663056, 5.79831824729417278], [-1.47061433912473394, 0.237195861149150672, 5.58003263353376955], [-1.47440741969169276, 0.22859029762661906, 5.37758675166621369], [-1.47793508931996831, 0.220587326764174391, 5.18931686212720233], [-1.48122428091057157, 0.213125795814470692, 5.01378434653542371], [-1.48429840232798305, 0.206152555878886534, 4.84973887705080564], [-1.48717789483622664, 0.199621193937748548, 4.69608858738553447], [-1.48988068863424128, 0.193490998523927427, 4.55187574027539288], [-1.49242257695286096, 0.187726110308535948, 4.41625674500830812], [-1.49481752520743072, 0.182294820147247627, 4.28848564396400089], [-1.49707792799000217, 0.17716898556094704, 4.16790038532127838], [-1.49921482388737815, 0.172323542975560712, 4.05391134850006551], [-1.50123807598480852, 0.167736097875397588, 3.94599170251872788], [-1.50315652428416913, 0.163386578726540138, 3.8436692645418562], [-1.50497811500614742, 0.15925694338689389, 3.74651959317667904], [-1.50671001076561373, 0.155330928944908658, 3.65416010342897613], [-1.50835868484174407, 0.151593837672537091, 3.5662450312464351], [-1.50993000215863193, 0.14803235315280705, 3.4824611079197858], [-1.51142928911202912, 0.144634381733208528, 3.40252383027373062], [-1.51286139399422681, 0.14138891532656328, 3.32617423305740045], [-1.51423073946167741, 0.138285912279605266, 3.25317608637771372], [-1.51554136824149621, 0.135316193592990741, 3.18331345427510692], [-1.51679698307203426, 0.132471352233365453, 3.11638856128992225], [-1.5180009817086304, 0.129743673650310282, 3.05221992262354958], [-1.51915648769151912, 0.127126065915608294, 2.9906407006646849], [-1.52026637746259508, 0.124611998152671724, 2.93149725654160198], [-1.52133330432673386, 0.122195446130661356, 2.87464787022380852], [-1.5223597196778853, 0.119870844069124849, 2.81996160672616192], [-1.20887607855908685, 1.25056146057836592, 19.6129722400707038], [-1.25165964918824102, 1.10440557281315388, 17.320760733619629], [-1.28548988860055591, 0.988838375846581741, 15.5082818611938862], [-1.31291126591656115, 0.895166772215837181, 14.0391988775850471], [-1.33558752163680561, 0.817706645900085238, 12.824365896533001], [-1.35465238228985485, 0.752584656827697374, 11.8030360345810497], [-1.37090504810182989, 0.697070363441608443, 10.9323868666425579], [-1.38492510152734138, 0.649183641340941309, 10.181363441697096], [-1.39714309575322093, 0.607453519892704685, 9.52689603698391707], [-1.40788556178648849, 0.570764416940468422, 8.95148860568301252], [-1.41740463393726213, 0.538254924279973013, 8.44163139579091037], [-1.42589809613662744, 0.509249320048795528, 7.98672683609860901], [-1.43352327788224021, 0.48321009366817097, 7.57834496902914534], [-1.44040689419714818, 0.459704327935260004, 7.20969620978466086], [-1.44665214671282549, 0.438379438397826005, 6.87525085887256981], [-1.45234393584812138, 0.418945366110035022, 6.57045982515904914], [-1.45755274539396051, 0.401161306071732282, 6.29154648355833412], [-1.46233757794847574, 0.384825678407493654, 6.03534938969085921], [-1.46674820118033011, 0.369768454079074826, 5.79920192147348956], [-1.47082688658044747, 0.355845214495269568, 5.58083911400081067], [-1.47460976962344081, 0.342932504563590979, 5.37832477990565128], [-1.47812792414278538, 0.33092416212151915, 5.18999394260582481], [-1.48140821860453387, 0.319728392504575631, 5.01440695578009432], [-1.48447400424355713, 0.309265417550741051, 4.85031263192078921], [-1.48734567235963455, 0.299465571616033821, 4.69661838151146327], [-1.49004110890576591, 0.29026774848813619, 4.55236585545560235], [-1.4925760677939619, 0.281618125998860713, 4.41671094274879827], [-1.49496447938397869, 0.273469112082435128, 4.28890724115952438], [-1.49721870691544967, 0.265778468683215974, 4.16829231718176985], [-1.4993497608516182, 0.258508579457175591, 4.05427622115337005], [-1.50136747897942469, 0.251625834465825371, 3.94633183720569436], [-1.50328067848289848, 0.245100110622211736, 3.84398673492502008], [-1.5050972849497013, 0.238904330944397031, 3.74681625697795972], [-1.50682444229199541, 0.2330140890142261, 3.65443762937311245], [-1.50846860679668682, 0.227407327657792008, 3.56650492209970427], [-1.51003562791550383, 0.222064062928750555, 3.48270472026590427], [-1.51153081792599164, 0.216966146113778707, 3.40275239155109599], [-1.51295901221187346, 0.212097057786711257, 3.32638885628825465], [-1.51432462160416814, 0.207441728986872381, 3.25337778294411484], [-1.51563167797676135, 0.202986385443316264, 3.18350314503600984], [-1.51688387408931358, 0.198718411452748517, 3.11656708628393897], [-1.5180845985069249, 0.194626230577810894, 3.05238804956200083], [-1.51923696629186922, 0.19069920078977437, 2.99079913238629436], [-1.52034384605282025, 0.186927522055674589, 2.93164663757316335], [-1.52140788384621795, 0.183302154680267254, 2.87478879256885778], [-1.52243152434889129, 0.179814746970341527, 2.82009461498485603], [-1.20981813158097906, 1.66871466424962622, 19.6282562382362293], [-1.25251126812880664, 1.47354266838683112, 17.3325456369001003], [-1.28626408389436331, 1.31924521425062924, 15.5176218326230266], [-1.3136188907232822, 1.19419899156662024, 14.0467656383023698], [-1.33623753113498611, 1.09080614786529484, 12.8306073142655297], [-1.35525216844492702, 1.00389049514439055, 11.8082619491358933], [-1.37146074319891431, 0.929803893694179262, 10.9368182995777818], [-1.38544182791978532, 0.865901142449865824, 10.1851621880665473], [-1.39762516434606665, 0.810217486577429979, 9.53018318586702051], [-1.4083366279520757, 0.761263042136257284, 8.95435653312772395], [-1.41782781980918982, 0.717887503700855634, 8.44415176228131337], [-1.42629608685351328, 0.679188612787387291, 7.98895605791164165], [-1.43389839776367856, 0.644448718096035322, 7.58032804660461501], [-1.44076116744845728, 0.61308985848870523, 7.21146946047339465], [-1.44698734615310043, 0.584641351981050716, 6.87684390267710821], [-1.45266162231239093, 0.558716008581688683, 6.5718970509421144], [-1.45785429982491999, 0.534992403605475286, 6.29284814740940313], [-1.4626242277170598, 0.513201483409494674, 6.03653244860418159], [-1.46702104181788684, 0.493116316577440927, 5.80028067374214906], [-1.47108689983715757, 0.47454416123779275, 5.58182569655953831], [-1.47485783856512054, 0.457320260020192437, 5.37922955848751272], [-1.47836484584450711, 0.441302939058061727, 5.19082582067045095], [-1.48163471488177434, 0.426369702124251571, 5.01517362123650923], [-1.48469073077107683, 0.412414091880854594, 4.85102075574855185], [-1.48755322645821142, 0.39934314804247284, 4.69727377884958752], [-1.49024003622212753, 0.387075334083669453, 4.55297361715916171], [-1.49276686805638303, 0.375538834731165561, 4.41727554352533502], [-1.49514761138200125, 0.364670149117561349, 4.28943262899531508], [-1.49739459282540088, 0.354412921378793155, 4.16878198771805408], [-1.49951879000788724, 0.344716963220204009, 4.05473327987764964], [-1.50153001117422469, 0.335537432664631263, 3.9467590517177249], [-1.50343704686330804, 0.326834140622458302, 3.84438657907166537], [-1.50524779856927005, 0.318570962660162993, 3.74719094829016708], [-1.50696938836508121, 0.310715337807233261, 3.65478916095758111], [-1.5086082526959752, 0.303237839737884485, 3.56683508991686615], [-1.51017022294694248, 0.296111808420969125, 3.48301514655164901], [-1.5116605949101658, 0.289313032518692059, 3.40304454500111486], [-1.51308418889654095, 0.282819474560101147, 3.32666406951318949], [-1.51444540192909227, 0.276611032315815963, 3.25363726761478489], [-1.51574825320892903, 0.270669330930165875, 3.18374800506607691], [-1.51699642384416178, 0.264977541282823026, 3.11679832933920586], [-1.51819329166895645, 0.259520220798112156, 3.0526065971377947], [-1.51934196184633619, 0.25428317353076757, 2.9910058286556529], [-1.52044529383858973, 0.249253326858785207, 2.93184225717646063], [-1.52150592523852102, 0.244418622528276508, 2.87497404748885188], [-1.52252629287972563, 0.239767920138539509, 2.82027016062957081], [-1.21090662738643973, 2.08777004721799964, 19.6459161443213794], [-1.25349616071380909, 1.84337670693207234, 17.3461748122307995], [-1.28716029956222022, 1.65020551225925671, 15.5284338703596045], [-1.31443887302566531, 1.49368053752916508, 14.0555338581494436], [-1.33699154288145006, 1.36427708457290819, 12.8378473658310668], [-1.355948678047175, 1.25550803522886589, 11.8143306115036282], [-1.37210677402309678, 1.1628023508670311, 10.9419701216587626], [-1.38604324533753953, 1.08284628541995276, 10.1895835458017547], [-1.39818690366266996, 1.01317891569758678, 9.53401359671429205], [-1.40886287333970861, 0.951934373878181361, 8.95770245819368682], [-1.41832214458823747, 0.897672243410276738, 8.44709581049070479], [-1.42676156385033326, 0.849262835625198442, 7.99156328323311715], [-1.43433768663050576, 0.805807689118261727, 7.58265035460284231], [-1.44117658423069428, 0.76658328948441179, 7.21354875404831564], [-1.44738091911886335, 0.731000464201446154, 6.87871436813560777], [-1.45303513708840493, 0.698574585138656112, 6.57358684615475397], [-1.4582093361518671, 0.668903365207278555, 6.29438066660049067], [-1.46296218959064683, 0.641650083153792461, 6.03792728247718635], [-1.46734318237212746, 0.61653074889585191, 5.80155434710996598], [-1.47139434201870678, 0.593304170168833411, 5.58299224128872318], [-1.47515159241516702, 0.571764183106654, 5.38030096303361383], [-1.47864582302813674, 0.551733516055274986, 5.19181238608013729], [-1.48190374096996447, 0.533058899629483607, 5.0160842455134409], [-1.48494855567657535, 0.515607137387699699, 4.85186316281825469], [-1.48780053334617213, 0.499261923941668573, 4.69805470429110095], [-1.49047744915365477, 0.48392124972521261, 4.553698959914251], [-1.49299495857394304, 0.469495269991805964, 4.41795049062289458], [-1.49536690420683982, 0.455904543965499898, 4.29006175871535422], [-1.49760557080609202, 0.443078571244405972, 4.16936935540986031], [-1.49972189843462012, 0.430954568515695413, 4.05528248973269356], [-1.50172566155351839, 0.419476441774725928, 3.94727331710017015], [-1.50362562023184365, 0.408593918541261814, 3.84486877347327383], [-1.50542964841250781, 0.398261811749340611, 3.74764364856129539], [-1.50714484319571973, 0.388439392576216458, 3.65521468414219708], [-1.50877761833858659, 0.379089853853916192, 3.56723552476535133], [-1.51033378456794765, 0.370179849158810748, 3.4833923805844087], [-1.51181861882638047, 0.361679095413009632, 3.4034002878364209], [-1.51323692419059674, 0.353560029016494581, 3.32699987304521416], [-1.51459308189584907, 0.345797507282157357, 3.25395454352510027], [-1.51589109665368604, 0.338368548360197752, 3.18404804006946085], [-1.51713463625040745, 0.331252103984805091, 3.1170822984970159], [-1.51832706625113145, 0.324428860310070843, 3.05287557551776656], [-1.5194714805008116, 0.317881062866278596, 2.9912608015716815], [-1.52057072800449355, 0.311592362296002678, 2.93208412920538564], [-1.52162743667844302, 0.305547678047880189, 2.87520365043055204], [-1.52264403438904972, 0.299733077635639722, 2.82048826055136992], [-1.21214164873453023, 2.50787927324385596, 19.6659533010205685], [-1.25461432626255687, 2.2140252816398065, 17.3616482501921467], [-1.28817848261752155, 1.98181305018080267, 15.540717335167793], [-1.31537112713663107, 1.79368790064086103, 14.0655026208587479], [-1.33784945114025589, 1.63818300139623196, 12.8460850359487839], [-1.35674179363825509, 1.5074908818202839, 11.8212409982740567], [-1.37284301695555744, 1.39611154266666837, 10.9478413470777927], [-1.38672922775398444, 1.30005865101936058, 10.1946265884101503], [-1.39882818781301399, 1.21637233722870786, 9.53838641110178287], [-1.40946417391963164, 1.14280878966456623, 8.96152559228630707], [-1.41888748726307679, 1.0776360662757547, 8.45046281971237612], [-1.42729440989820833, 1.01949600707014865, 7.9945478554417484], [-1.43484103152321674, 0.967308560577449628, 7.58531129586150055], [-1.44165303614448548, 0.9202040656241397, 7.2159335479359612], [-1.44783276192240695, 0.877474401165095119, 6.88086176246962022], [-1.45346438125262201, 0.838537143030358978, 6.57552876326306457], [-1.45861776019783163, 0.802908858824494476, 6.29614363461540982], [-1.46335137407188376, 0.770184933722044107, 6.03953352193702919], [-1.4677145379241443, 0.740024136768476115, 5.80302260582613272], [-1.47174913266028584, 0.712136677093686887, 5.58433844287632652], [-1.47549095502332905, 0.68627486280154848, 5.38153871580214194], [-1.47897078370920654, 0.662225724048898456, 5.19295338608344537], [-1.48221522889673341, 0.639805134775568329, 5.01713859853174782], [-1.48524741484431, 0.618853089518462407, 4.85283964364060871], [-1.48808753260945137, 0.599229878903134838, 4.69896096706541577], [-1.49075329083515906, 0.580812970455256705, 4.55454170998663788], [-1.49326028588092941, 0.563494447502237539, 4.41873562583004631], [-1.49562230764692283, 0.547178893041557091, 4.29079448626754267], [-1.49785159375944832, 0.531781630920514337, 4.17005428913503273], [-1.49995904201159624, 0.517227255866067659, 4.05592373141641449], [-1.5019543888444804, 0.503448398495356608, 3.94787452486775425], [-1.50384636003788841, 0.490384682621050616, 3.84543321955340511], [-1.5056427985310501, 0.477981840803507974, 3.74817426830084166], [-1.50735077332303002, 0.4661909608215557, 3.6557141177756991], [-1.50897667264139201, 0.454967840997404616, 3.56770615315464745], [-1.51052628396834132, 0.444272436461276843, 3.48383635591717944], [-1.51200486303738257, 0.434068381733219877, 3.4038195600913328], [-1.51341719353424153, 0.424322577626422892, 3.32739621288719922], [-1.51476763893102961, 0.415004832583843797, 3.25432956217830771], [-1.51606018763713601, 0.406087550259947139, 3.1844032066217518], [-1.51729849245085924, 0.397545456537343023, 3.11741895501366484], [-1.51848590513394033, 0.38935536029075396, 3.0531949502799951], [-1.51962550679811392, 0.381495943129233628, 2.9915640207050731], [-1.52072013468381284, 0.373947574102576952, 2.9323722269210406], [-1.52177240582116302, 0.366692145981003192, 2.87547757806769999], [-1.52278473798851954, 0.359712930233508588, 2.8207488945810959], [-1.21352320596701979, 2.92919394543763412, 19.6883678761200933], [-1.25586568738059823, 2.58560582696005525, 17.3789648797815133], [-1.28931850222926703, 2.3141614142576592, 15.5544706486889783], [-1.31641549017401527, 2.09429737073138789, 14.0766701847016851], [-1.33881107462737403, 1.912587249467677, 12.8553185839220276], [-1.35763132440244494, 1.75989245755872514, 11.8289914468768576], [-1.3736692774855781, 1.62977710888119454, 10.9544304246943138], [-1.38749958082941682, 1.51757766653217496, 10.2002898871912624], [-1.39954882518891899, 1.41983214149600467, 9.54330032248385862], [-1.41014034249671205, 1.33391654019959249, 8.96582474519868988], [-1.41952366613359127, 1.25780578011837196, 8.4542517077956294], [-1.42789444946097333, 1.18991204121747751, 7.99790879132604537], [-1.43540826345192274, 1.12897279147904039, 7.58830997701269183], [-1.44219036092903985, 1.07397154537268924, 7.21862302996928928], [-1.44834271907583023, 1.02408071045765769, 6.88328534671897074], [-1.45394920603749345, 0.978619657909851393, 6.57772212923692923], [-1.45907942979687522, 0.937023487025516189, 6.29813643779293386], [-1.46379164543312124, 0.898819431406302605, 6.04135060680950442], [-1.46813497899208034, 0.863608811171812096, 5.80468493794767948], [-1.47215114831528426, 0.831053067597337991, 5.58586383292210709], [-1.47587580875766866, 0.800862841961525684, 5.38294238775568346], [-1.47933961584557871, 0.772789351561123161, 5.19424842727869152], [-1.48256907198465981, 0.746617518265656033, 5.01833631919987333], [-1.48558720673920397, 0.722160447720446408, 4.85394986646385718], [-1.488414127637669, 0.699254959292864742, 4.69999226210418364], [-1.49106746936944212, 0.677757940622473742, 4.55550158661248439], [-1.49356276258873399, 0.657543354598813745, 4.41963069055345503], [-1.49591373862526411, 0.638499766486393283, 4.29163057331211473], [-1.49813258273095751, 0.620528288705130437, 4.17083656908234079], [-1.50023014572561642, 0.603540863222949198, 4.05665680209139445], [-1.50221612180196318, 0.58745881858177329, 3.94856248775320529], [-1.5040991986388943, 0.572211651656101106, 3.84607974434565048], [-1.50588718472711669, 0.557735994343376618, 3.7487826476936954], [-1.50758711784351052, 0.543974733242503894, 3.65628731415140074], [-1.50920535785183718, 0.530876256530797064, 3.56824683853914282], [-1.51074766640998126, 0.518393807101464099, 3.48434694630341202], [-1.51221927568940639, 0.506484924872049991, 3.40430224503284951], [-1.51362494783426826, 0.495110964244854179, 3.32785298110291228], [-1.51496902658413091, 0.484236675163877528, 3.25476222378006197], [-1.51625548223924733, 0.473829838199764763, 3.18481341247127592], [-1.51748795094904754, 0.463860945704949068, 3.11780821363112137], [-1.51866976914268759, 0.454302922393111708, 3.05356464265655791], [-1.51980400378831448, 0.44513087977063609, 2.99191541331548905], [-1.52089347905898298, 0.436321899730036045, 2.93270648318545657], [-1.52194079989336517, 0.427854843343516367, 2.8757957684732065], [-1.52294837286508211, 0.419710181498251012, 2.8210520056418158], [-1.25725009279698985, 2.95823551246350558, 17.3981226076759903], [-1.29058015234189893, 2.64734390223979243, 15.5696913250477795], [-1.31757172448871951, 2.39558495361585422, 14.0890340084532415], [-1.33987615876637456, 2.18755291227163218, 12.8655455652975359], [-1.35861700826552423, 2.01276593817114735, 11.8375796738690582], [-1.37458529216604775, 1.86384446395396308, 10.9617352536292447], [-1.38835404373506988, 1.73544255466883746, 10.2065715246460993], [-1.40034856016715259, 1.62359253352713351, 9.54875358780645378], [-1.41089113030220203, 1.52528770843481287, 8.97059833523224448], [-1.42023044029993795, 1.4382080408100637, 8.4584610400141873], [-1.42856145008927404, 1.36053471437073714, 8.00164478889289654], [-1.43603915870266241, 1.29082171568778659, 7.59164521538879455], [-1.44278834368703524, 1.22790497335066817, 7.22161612451861679], [-1.44891058444048348, 1.17083683591150178, 6.88598414120451974], [-1.45448941391075226, 1.11883801070057864, 6.58016605043277814], [-1.45959415580817153, 1.07126176573076815, 6.3003582597040797], [-1.46428282266969934, 1.02756689310154337, 6.04337779005345155], [-1.4686043324277267, 0.987297030203513781, 5.80654065888441551], [-1.47260022339900831, 0.950064660257424864, 5.58756778313897939], [-1.47630599529884576, 0.915538601735718438, 5.38451140145819362], [-1.47975216808545351, 0.88343413020027084, 5.19569697824034282], [-1.48296512555596594, 0.853505108233649445, 5.01967691779915004], [-1.48596779307092208, 0.825537662817178886, 4.85519337944353335], [-1.48878018625007602, 0.799345066442993968, 4.70114817201785762], [-1.4914198584173215, 0.774763562814193008, 4.55657820380097256], [-1.49390226794228442, 0.751648939845174668, 4.42063532746443322], [-1.49624108172421577, 0.729873698402056403, 4.29256968872709344], [-1.49844842740461859, 0.709324699363133138, 4.17171588812942673], [-1.50053510413729918, 0.689901197304505387, 4.05748141664712225], [-1.50251075964877634, 0.671513188669844108, 3.9493369408645207], [-1.50438403971565093, 0.654080017267674285, 3.84680810155550956], [-1.50616271494515774, 0.637529191511177817, 3.74946855757511388], [-1.50785378878042975, 0.621795376816672074, 3.65693405990305287], [-1.50946358989620277, 0.606819533626614116, 3.56885738214152459], [-1.51099785155500577, 0.592548177080394423, 3.48492396645406943], [-1.5124617800215101, 0.578932738764214472, 3.40484816985703631], [-1.51386011375555141, 0.565929014488056659, 3.32837001645788266], [-1.5151971748020745, 0.553496684859205335, 3.2552523778282012], [-1.51647691355225644, 0.54159889769723446, 3.18527851708186027], [-1.51770294785243309, 0.530201903179889245, 3.11824994307672387], [-1.51887859727621577, 0.519274734111526803, 3.05398452999341696], [-1.52000691324376325, 0.508788924935150821, 2.99231486477485564], [-1.52109070556356252, 0.498718264119200727, 2.9330867908510494], [-1.52213256588288148, 0.489038575384058427, 2.87615812147749317], [-1.52313488845890177, 0.479727523924063648, 2.82139750007839929], [-1.25876732074232711, 3.33203114314145443, 17.419118364978381], [-1.29196315480691193, 2.98145343416979669, 15.5863760086321044], [-1.3188395205773078, 2.69762629208994786, 14.1025907825368932], [-1.34104437840282387, 2.46314273584192156, 12.8767628579291564], [-1.35969851442829293, 2.26616419071382191, 11.8470027970094787], [-1.37559073098113949, 2.09835874217461926, 10.9697532021462045], [-1.38929229136832366, 1.95369228473670553, 10.2134691107624427], [-1.40122707518421552, 1.82768748937071579, 9.55474404165468627], [-1.41171622893896687, 1.71695217033117586, 8.9758444015646468], [-1.42100751148806648, 1.61886931688513891, 8.46308903993842065], [-1.42929512413541704, 1.53138763300223246, 8.00575423697278232], [-1.43673344044966766, 1.45287651281427066, 7.59531554754571481], [-1.44344671840178163, 1.38202345378893976, 7.22491150008551219], [-1.44953610265570076, 1.31776009332336419, 6.88895693231825401], [-1.45508475992194519, 1.25920796531706802, 6.58285941868533797], [-1.46016170338594553, 1.20563810371316604, 6.30280808663382874], [-1.46482468069850258, 1.15644053739355468, 6.04561414270741704], [-1.46912238254839833, 1.11110096159122573, 5.80858891587412973], [-1.47309615125822901, 1.06918269042935976, 5.58944950941126439], [-1.4767813166513033, 1.03031254650090931, 5.38624503476308636], [-1.4802082507239096, 0.994169720635461607, 5.19729837287760699], [-1.48340320783776791, 0.960476897161144483, 5.02115977904798338], [-1.48638899965096871, 0.928993124781855473, 4.85656961344292171], [-1.48918554150740179, 0.899508045205813289, 4.7024281696592789], [-1.49181029796698317, 0.87183718712356173, 4.55777107268484194], [-1.49427864854925208, 0.845818102952406781, 4.42174908265674915], [-1.49660418987688937, 0.821307177371463526, 4.29361141059192963], [-1.49879898675869483, 0.798176975196938088, 4.17269185366843764], [-1.50087378200325339, 0.776314025174096645, 4.05839720938236059], [-1.50283817266607667, 0.755616958323725663, 3.95019754323680994], [-1.50470075883264687, 0.735994936385533816, 3.84761797299326247], [-1.50646926980377982, 0.717366318954180793, 3.75023170075491175], [-1.50815067158881044, 0.69965752805666459, 3.65765407722956359], [-1.50975125885911532, 0.682802076870956509, 3.56953752408650082], [-1.51127673392122097, 0.666739735553479873, 3.48556717308791431], [-1.51273227479809003, 0.651415812114010007, 3.40545710666268597], [-1.51412259413174688, 0.636780530242323506, 3.32894710532236848], [-1.51545199031928113, 0.622788489172307336, 3.25579982395078416], [-1.51672439205116238, 0.609398193234842123, 3.18579833241103572], [-1.5179433972242331, 0.59657164083048464, 3.11874396678603372], [-1.51911230704103462, 0.584273964246551758, 3.05445444642225139], [-1.52023415597635259, 0.572473113129170375, 2.99276221919194052], [-1.52131173818352328, 0.561139575559496229, 2.93351300334158882], [-1.52234763082466307, 0.550246131623372214, 2.87656449920885127], [-1.52334421473470383, 0.539767635142217928, 2.82178524816015042], [-1.26041708282185505, 3.70710906712310262, 17.4419481608141993], [-1.29346716298340403, 3.31658246918821531, 15.6045205175305544], [-1.32021850043901279, 3.00049659190684714, 14.1173364649217152], [-1.34231534094011673, 2.73941906314309547, 12.8889666920882622], [-1.36087544629997148, 2.52013971537031756, 11.8572573608173464], [-1.37668520009376283, 2.33336474592163157, 10.9784811295612776], [-1.39031393692891148, 2.17236552645142389, 10.2209798019539484], [-1.40218399315462539, 2.03215071471684805, 9.56126911274277091], [-1.4126152726539174, 1.90893955764042866, 8.98156061869821798], [-1.42185452618729702, 1.79981585593328752, 8.46813360216611777], [-1.43009513076599926, 1.70249420329285606, 8.01023522649288822], [-1.43749078065218128, 1.61515818050806881, 7.59931923929046338], [-1.44416516972643816, 1.53634592524089153, 7.22850757825839452], [-1.45021897082805196, 1.46486764730106267, 6.89220228055149953], [-1.45573495329855729, 1.39974514740245892, 6.58580091852856953], [-1.46078179348880433, 1.34016678301725167, 6.30548471409616962], [-1.46541695178624343, 1.28545346647916081, 6.04805855978445095], [-1.46968887248948499, 1.23503266595755035, 5.81082869333027485], [-1.47363868545282717, 1.18841829472002192, 5.59150807665770344], [-1.4773015363585198, 1.14519498942520936, 5.3881424252456096], [-1.4807076368558294, 1.10500569914614144, 5.19905181448259501], [-1.48388310105650967, 1.06754179932122995, 5.02278416580638609], [-1.48685061743212765, 1.03253515099453308, 4.85807788542927721], [-1.48962999269955088, 0.999751672952718828, 4.70383162124254195], [-1.49223859527291114, 0.968986100826565777, 4.55907960438899185], [-1.49469171927305489, 0.940057685077392957, 4.4229714082891336], [-1.4970028852168018, 0.912806637327318038, 4.29475522862503123], [-1.49918408987443685, 0.887091177440495149, 4.17376398985752939], [-1.50124601504603605, 0.862785066118411548, 4.05940373608712601], [-1.50319820292671658, 0.839775532361294097, 3.95114387975988945], [-1.50504920413671761, 0.817961523987346451, 3.84850897036046513], [-1.50680670326157595, 0.797252223947923611, 3.75107171367498093], [-1.50847762579010536, 0.777565786489745059, 3.65844702543425049], [-1.51006822958871267, 0.758828256074729923, 3.5702869448316048], [-1.51158418345922452, 0.740972638950600282, 3.48627626626257436], [-1.51303063485932232, 0.723938102803503458, 3.40612877369048395], [-1.51441226849048016, 0.707669284341346017, 3.32958398282603296], [-1.5157333571588012, 0.692115688200365731, 3.25640431298272093], [-1.51699780607194001, 0.677231163424973248, 3.18637262391449916], [-1.5182091915398741, 0.66297344608728126, 3.11929006384065843], [-1.51937079488705873, 0.649303758498743, 3.05497418373658558], [-1.52048563225345035, 0.636186457009811801, 2.99325728023116433], [-1.52155648085424877, 0.623588721661577305, 2.93398493541772165], [-1.52258590217983336, 0.611480281999933095, 2.87701472680968529], [-1.52357626254379319, 0.599833174229839949, 2.82221508475139693], [-1.26219902833263098, 4.08358509166439365, 17.4666071420736131], [-1.29509176575962193, 3.65282292906560002, 15.6241198920487729], [-1.32170822133227239, 3.30427055333068109, 14.1332663212916856], [-1.3436885898547517, 3.01644377314332024, 12.9021526842175636], [-1.36214734479229249, 2.7747445912435591, 11.868339365273588], [-1.37786824493612614, 2.56890689733854005, 10.9879154108889381], [-1.39141853482192523, 2.39150060672518405, 10.2291003224018109], [-1.40321888020073682, 2.23701560611711647, 9.56832584252821228], [-1.41358784090774248, 2.1012792229709687, 8.98774431279855257], [-1.42277107807182879, 1.98107365301140725, 8.47359230674424602], [-1.43096107824609753, 1.87387760246512758, 8.0150855632712954], [-1.43831080221115037, 1.77768750835085987, 7.60365429708254137], [-1.4449433350223051, 1.69089113672822933, 7.23240254391483539], [-1.45095884045936718, 1.6121764893992967, 6.89571852965790111], [-1.45643965927133356, 1.54046502422929499, 6.58898903545348436], [-1.46145410460918557, 1.47486194043128815, 6.3083867542992822], [-1.46605932718935161, 1.41461864904235668, 6.05070976704026187], [-1.47030350576056201, 1.35910408095514135, 5.81325881899449115], [-1.47422754123345912, 1.30778249625548804, 5.59374240443824711], [-1.47786638090706779, 1.26019613875796477, 5.39020257532383962], [-1.48125006371088608, 1.2159515448372944, 5.20095638041770059], [-1.48440455270801031, 1.17470863883367693, 5.02454922337495535], [-1.48735240371741284, 1.13617197506191236, 4.85971740242390737], [-1.49011330649697915, 1.10008364909172962, 4.70535778997871645], [-1.49270452595298586, 1.06621751853784685, 4.56050311338233705], [-1.49514126427874383, 1.03437445956391061, 4.42430166568018191], [-1.4974369600753854, 1.00437844883105099, 4.29600054704554069], [-1.49960353688781467, 0.976073308033488907, 4.17493174027051328], [-1.50165161086264831, 0.949319983878685658, 4.06050047649928736], [-1.50359066516273288, 0.923994263507824654, 3.95217546345846849], [-1.50542919718575008, 0.899984846143654815, 3.84948063736899648], [-1.50717484340897934, 0.877191707804167775, 3.75198816838055382], [-1.50883448572914602, 0.855524708403124001, 3.6593125027606348], [-1.51041434242033068, 0.834902400332846129, 3.57110526687821883], [-1.51192004624453213, 0.815251005327933931, 3.48705089097084464], [-1.51335671178332865, 0.796503532517541357, 3.40686283681366575], [-1.51472899368695524, 0.778599015446565845, 3.33028033425099279], [-1.51604113723870504, 0.761481849754600648, 3.257065548268542], [-1.51729702239205788, 0.745101216353242779, 3.18700111176546086], [-1.51850020224281224, 0.729410577496547363, 3.11988797011023244], [-1.51965393673978766, 0.71436723521955825, 3.05554349246183765], [-1.52076122230768851, 0.699931943321530303, 2.99379981211618151], [-1.52182481794898616, 0.686068565468805125, 2.93450236411884413], [-1.52284726830364336, 0.67274377314618794, 2.87750859332074027], [-1.52383092407237219, 0.659926778141578518, 2.82268681014193357], [-1.26411274896949033, 4.46157440812761319, 17.4930896585336804], [-1.2968364919434312, 3.99026612905671163, 15.6451684476765216], [-1.32330817988196947, 3.60902230876900765, 14.150374968965151], [-1.34516360854534311, 3.29427822500900369, 12.9163158738894683], [-1.36351369193148786, 3.03003042651441801, 11.8802442972919469], [-1.37913935360349238, 2.80502919376981508, 10.9980519639058141], [-1.39260558385012856, 2.61113546971899169, 10.2378269875232117], [-1.40433124865895897, 2.44231521505905924, 9.57591090571072634], [-1.41463346120895483, 2.29400020736587296, 8.99439247971369227], [-1.42375671067535947, 2.16266842127902725, 8.47946243509818665], [-1.4318925264659621, 2.04556075209423138, 8.02030278216946435], [-1.43919308135859247, 1.94048505351720357, 7.60831848066536853], [-1.44578080662039099, 1.84567762547283953, 7.23659435654142413], [-1.45175531958935777, 1.75970341768407024, 6.89950381683629121], [-1.45719850110594784, 1.68138288589147855, 6.59242206509950446], [-1.46217827470147732, 1.60973755013006681, 6.31151264446830318], [-1.46675145898523462, 1.54394890419498387, 6.05356632853116583], [-1.47096594798596225, 1.48332700637239889, 5.81587797081844649], [-1.47486239719709777, 1.42728619083590136, 5.59615127323576278], [-1.47847554130238401, 1.37532608493245023, 5.39242435800598141], [-1.48183523415435081, 1.32701662760091144, 5.20301102738523991], [-1.48496727698773312, 1.28198613840667619, 5.0264539843361753], [-1.48789408352391672, 1.23991173626993079, 4.86148726595835345], [-1.49063521825195799, 1.20051158516936241, 4.70700584018487422], [-1.49320783523067568, 1.16353857290702023, 4.56204082127294086], [-1.49562703821939325, 1.12877512318444806, 4.42573912881902309], [-1.49790617811560911, 1.09602891081629927, 4.2973466878255735], [-1.5000571000732581, 1.06512930182716548, 4.17619447091401064], [-1.5020903499609719, 1.03592437928342895, 4.06168683710711154], [-1.50401534775700285, 1.00827844542368927, 3.95329173809871426], [-1.50584053389776051, 0.982069913411582895, 3.85053245216791407], [-1.50757349337699287, 0.957189519604439987, 3.75298057478240832], [-1.50922106144447676, 0.933538800893490839, 3.66025004850322855], [-1.51078941401045008, 0.91102879236811074, 3.57199205674330056], [-1.51228414527685295, 0.889578908986384032, 3.48789063898411378], [-1.51371033465243898, 0.869115981618625466, 3.40765891126302689], [-1.5150726046387315, 0.849573423161905761, 3.33103579664730454], [-1.51637517107695419, 0.83089050469970116, 3.25778318717674464], [-1.51762188690675637, 0.813011725128619633, 3.18768347227512905], [-1.51881628039354988, 0.79588626046823574, 3.1205373795858744], [-1.51996158862341479, 0.77946748134534094, 3.05616208310819015], [-1.52106078693516178, 0.763712529005102225, 2.99438954080750452], [-1.52211661485322036, 0.748581941731091938, 2.93506502987065598], [-1.52313159899721318, 0.734039324817934213, 2.8780458527236501], [-1.52410807337157417, 0.720051058285783196, 2.82320019102884157], [-1.26615778386160738, 4.84119152652967433, 17.5213893325554793], [-1.29870081496685397, 4.32900271655617974, 15.6676598318437108], [-1.32501781648578132, 3.91482536688980787, 14.1686564240127275], [-1.34673982446698948, 3.57298320776956357, 12.9314507635044613], [-1.3649739147428388, 3.28604831326979685, 11.8929671645649186], [-1.38049796050845286, 3.04177516722201435, 11.0088862782919836], [-1.39387453065569056, 2.83130764039437155, 10.2471557292734765], [-1.40552056032495365, 2.64808221510498454, 9.58402063236073332], [-1.41575161217716139, 2.48713121058149955, 9.00150180445073644], [-1.42481092028566225, 2.34462556502703912, 8.48574098727093862], [-1.43288898967910061, 2.217566293550989, 8.02588416242877045], [-1.44013715025019495, 2.10357111834298172, 7.61330931677209843], [-1.4466771342786946, 2.00072369634287517, 7.24108076253325272], [-1.45260797512676443, 1.90746501784322575, 6.90355608380952201], [-1.45801106231645483, 1.82251382789556837, 6.59609812326819167], [-1.46295390328542463, 1.74480740758812103, 6.31486065592469981], [-1.46749296207281166, 1.67345688657425895, 6.05662665487068264], [-1.47167582880889158, 1.60771309029542753, 5.8186846844922977], [-1.47554289710072162, 1.5469401340572082, 5.59873333133781959], [-1.47912867479751009, 1.49059478855563055, 5.39480652319557041], [-1.48246281833594185, 1.43821019689307783, 5.20521459721687041], [-1.4855709563644699, 1.38938290883007975, 5.0284973738811729], [-1.48847535108562323, 1.34376246973007629, 4.86338647698462267], [-1.49119543343453098, 1.30104299561402037, 4.70877484181843542], [-1.4937482393078636, 1.26095630590923546, 4.56369186100227164], [-1.49614876754921222, 1.22326628793331782, 4.42728298825096989], [-1.49841027558863771, 1.18776424284465154, 4.29879289429545075], [-1.50054452504680302, 1.15426501926677139, 4.17755147357704626], [-1.50256198691220244, 1.12260378332520894, 4.0629621542654677], [-1.50447201384756868, 1.09263330614627896, 3.9544920810909554], [-1.50628298560960849, 1.06422167461548423, 3.85166383005065605], [-1.50800243235251252, 1.03725035029537893, 3.75404838318442913], [-1.50963713964244728, 1.01161251625524828, 3.66125914536995634], [-1.51119323827149499, 0.987211663192433697, 3.57294682716953904], [-1.51267628137751986, 0.963960375387635238, 3.48879505092217235], [-1.51409131091499494, 0.941779284301192954, 3.40851656356701005], [-1.51544291515366081, 0.920596163411102397, 3.33184996065325967], [-1.51673527858691526, 0.900345142540178056, 3.25855684280887514], [-1.5179722253936867, 0.88096602366597887, 3.18841933949879275], [-1.51915725740478602, 0.862403683242891517, 3.12123794589061898], [-1.52029358736771325, 0.844607548537618436, 3.05682962759191934], [-1.52138416817539279, 0.827531137501259506, 2.99502615534109751], [-1.52243171861888982, 0.811131653362523131, 2.93567263774667042], [-1.52343874613698982, 0.795369626497223536, 2.87862622513033628], [-1.52440756696336743, 0.780208597264715698, 2.82375496163883621], [-1.26833362487980628, 5.22255022009331871, 17.5514991325279048], [-1.30068415784809166, 4.66912261791622729, 15.691587083782748], [-1.32683651996643381, 4.22175256352956296, 14.1881041510047083], [-1.34841661350097275, 3.85261889571706551, 12.9475513602491361], [-1.36652738936077256, 3.54284878723163299, 11.906502531374878], [-1.38194345025172516, 3.27918784805494123, 11.0204134464989263], [-1.3952247733698786, 3.05205419174660975, 10.257082122976998], [-1.40678622989880298, 2.85434887225844047, 9.59265103141140152], [-1.41694172679877428, 2.68070056421389769, 9.00906868187598953], [-1.42593315902464846, 2.52697015523355439, 8.49242470026705121], [-1.43394993941915616, 2.38991656569859368, 8.0318267440084874], [-1.44114249973050468, 2.26696572991315337, 7.61862411374384685], [-1.44763182780610022, 2.15604740311546905, 7.24585930832734171], [-1.45351633534150948, 2.05547764593748816, 6.90787308866848715], [-1.45887688903445034, 1.96387273523868355, 6.60001515664143135], [-1.46378055370034921, 1.88008511484448526, 6.31842890381664546], [-1.46828341631900772, 1.80315507267246589, 6.05988901208853559], [-1.47243274393700041, 1.73227381639647127, 5.82167736153242643], [-1.47626865181213862, 1.66675492946531811, 5.6014871022388002], [-1.47982540675486729, 1.60601206934636775, 5.39734770448190115], [-1.48313245546781936, 1.54954137138428871, 5.20756582311648408], [-1.48621524327936028, 1.49690743927417569, 5.03067821556071237], [-1.48909587147801026, 1.44773209727028762, 4.86541394118335901], [-1.49179362918678393, 1.40168528916879054, 4.71066377538511283], [-1.49432542685269865, 1.35847766077518095, 4.56545528139087597], [-1.49670615194857604, 1.31785447341384065, 4.42893235529437135], [-1.49894896269932998, 1.27959057791406239, 4.30033833506118768], [-1.50106553207521176, 1.24348623958893323, 4.17900196947566371], [-1.50306625160651586, 1.20936365071788643, 4.06432569759118234], [-1.50496040253249852, 1.17706400198072525, 3.95577580665665129], [-1.50675630023357887, 1.14644501104728835, 3.85287412641249372], [-1.50846141668902378, 1.11737882717705461, 3.75519098704860133], [-1.51008248476426465, 1.08975024673709853, 3.66233922207003326], [-1.51162558739734143, 1.06345518711370768, 3.57396903954999523], [-1.51309623417539152, 1.03839937639487645, 3.48976361852706685], [-1.51449942733349419, 1.01449722405114451, 3.40943531368616748], [-1.51583971884192925, 0.991670844102196636, 3.33272237250059655], [-1.51712125995501856, 0.969849207277180936, 3.25938608588509693], [-1.51834784435768766, 0.948967402723554843, 3.18920830701023217], [-1.51952294585474057, 0.92896599309896799, 3.12198928395046016], [-1.52064975139133729, 0.909790449550372804, 3.05754576081035978], [-1.52173119006587765, 0.891390655268714971, 2.99570930931378809], [-1.52276995869143628, 0.873720468101643721, 2.93632485887016648], [-1.52376854437548692, 0.856737334187020805, 2.87924939810709501], [-1.52472924451600522, 0.840401945796223404, 2.82435082497945089], [-1.27063972215429954, 5.60576348009249692, 17.583411449223469], [-1.30278589835398351, 5.01071499366916662, 15.7169426968089549], [-1.3287636324160097, 4.5298760196000325, 14.2087111148121021], [-1.35019330450912678, 4.13324480972181618, 12.9646112198274324], [-1.36817344531688012, 3.80048179254688989, 11.9208445559554104], [-1.38347516166454843, 3.51730973304546168, 11.0326281959859323], [-1.3966556654284934, 3.27341171584803137, 10.2676014153766584], [-1.40812762859039697, 3.06114701867477557, 9.60179781524321285], [-1.4182031958377419, 2.87473620777920624, 9.01708923840077858], [-1.42712283807844886, 2.70972690774388969, 8.49951006729000014], [-1.43507480756219952, 2.56263358493249882, 8.03812734473827106], [-1.44220858223905157, 2.43068862175121048, 7.6242599768929642], [-1.4486443598230383, 2.31166653163250801, 7.25092735422063317], [-1.45447989248965737, 2.20375741286311744, 6.91245241834731061], [-1.45979549250720275, 2.10547426803923488, 6.60417095408306576], [-1.46465775548461941, 2.01558406718066863, 6.32221535739003215], [-1.46912236882711333, 1.93305574845672767, 6.06335153099260271], [-1.47323625730645946, 1.85702049240310019, 5.82485427783772369], [-1.47703924137611975, 1.7867410177936931, 5.60441099247955066], [-1.480565332620283, 1.72158759607009637, 5.40004642633986887], [-1.48384375571187554, 1.66101912952821884, 5.21006333628684626], [-1.48689976195147544, 1.60456808843684384, 5.03299523739690002], [-1.4897552823464395, 1.55182841911087421, 4.86756847461110898], [-1.49242945597841192, 1.50244576105209249, 4.71267153716673004], [-1.49493906058619253, 1.45610947459694073, 4.5673300519857376], [-1.49729886584539007, 1.41254609985414126, 4.43068626654248998], [-1.49952192506578319, 1.37151395585285063, 4.3019821081917744], [-1.50161981747684581, 1.33279865456524771, 4.18054511315299315], [-1.50360285059825571, 1.29620935396401338, 4.06577667360045591], [-1.50548023016222188, 1.26157561186778366, 3.95714216922528239], [-1.50726020349942935, 1.228744731113665, 3.85416263992653008], [-1.5089501811008057, 1.19757950881016306, 3.75640772596787853], [-1.51055684013463298, 1.16795631969172664, 3.66348965609971611], [-1.51208621296851131, 1.13976347711194337, 3.57505810654112821], [-1.51354376317062167, 1.1128998258607512, 3.49079578711655625], [-1.51493445100884472, 1.08727352943218492, 3.41041463731895389], [-1.5162627901026311, 1.06280102109997499, 3.33365253618358848], [-1.51753289659125734, 1.03940609355565572, 3.26027044678624023], [-1.51874853194682946, 1.01701910621439451, 3.19004992982581781], [-1.51991314037027814, 0.995576292818959319, 3.12279097180880294], [-1.52102988155343044, 0.97501915484194257, 3.05831008235422619], [-1.52210165946349618, 0.955293928533574865, 2.99643862250031345], [-1.52313114770222602, 0.936351115390712585, 2.93702133194220183], [-1.52412081190601945, 0.918145067413264737, 2.87991502811960709], [-1.52507292958212726, 0.900633619831964882, 2.8249874542062634], [-1.27307548974330986, 5.99094348114498843, 17.6171181742419805], [-1.30500537430637342, 5.35386820228255811, 15.743718682337148], [-1.33079845417897946, 4.83926710610538002, 14.2304698338911315], [-1.35206918402256471, 4.41491978456347756, 12.9826234914819754], [-1.36991136995843488, 4.05899665172869728, 11.9359870289896985], [-1.38509239197803602, 3.75618275790653877, 11.0455249224689123], [-1.3981665195109334, 3.49541629877733406, 10.2787085535920983], [-1.40954408784528007, 3.26850802978615684, 9.61145642508991571], [-1.41953537136374508, 3.06926566781350285, 9.02555935441408153], [-1.42837933104212089, 2.89292016413594055, 8.5069933576622514], [-1.43626298950082765, 2.73573902762062326, 8.04478257809689623], [-1.44333481482568105, 2.59475921766414608, 7.63021382444362928], [-1.44971416862878688, 2.46759858490006234, 7.25628208872174607], [-1.45549810554249781, 2.35232017057373399, 6.91729150159338602], [-1.4607663516975975, 2.24733284876553485, 6.60856315840115016], [-1.46558500685465365, 2.1513174412545375, 6.32621785068912423], [-1.4700093363024187, 2.06317099831918416, 6.06701221693235127], [-1.47408590334121992, 1.98196423978651426, 5.82821359262221783], [-1.47785421717364751, 1.90690866732083575, 5.60750329984033247], [-1.4813480199881548, 1.83733087750468838, 5.40290111166222431], [-1.48459630215625338, 1.77265230108209382, 5.21270567286953135], [-1.48762411027065045, 1.71237307657053295, 5.03544707829022364], [-1.49045319572004775, 1.65605910635560827, 4.86984880962696032], [-1.49310253934589832, 1.60333158587479052, 4.7147969447130551], [-1.49558877895079245, 1.55385847163718704, 4.56931506815810273], [-1.49792656001669489, 1.50734748177780631, 4.43254368860286174], [-1.50012882525750335, 1.46354031732439349, 4.30372324563204423], [-1.50220705509963914, 1.42220786281622646, 4.18217999659396611], [-1.50417146852667472, 1.38314617795556316, 4.06731422955057731], [-1.5060311917058371, 1.34617313225102753, 3.95859036702567835], [-1.50779440026897027, 1.31112556545127856, 3.85552861590516605], [-1.50946843992823143, 1.27785688036252387, 3.75769788881604683], [-1.5110599291800515, 1.24623499313818686, 3.66470977669698073], [-1.512574847125711, 1.21614058060358654, 3.57621339483742195], [-1.51401860886546791, 1.18746557558075905, 3.49189095819216977], [-1.51539613047037047, 1.1601118702165516, 3.41145396835554715], [-1.5167118851747432, 1.13399019452317229, 3.33463991576970376], [-1.51796995214293484, 1.10901914311812599, 3.261209417731739], [-1.51917405893049096, 1.08512432780749357, 3.19094372645891067], [-1.52032761857082033, 1.06223763742939425, 3.12364255256581247], [-1.52143376206479064, 1.04029658944601056, 3.05912215833967505], [-1.52249536692434928, 1.01924376028408314, 2.9972136825853819], [-1.52351508231842558, 0.999026283487492006, 2.93776166488040635], [-1.52449535128367786, 0.97959540644734322, 2.88062274208421831], [-1.5254384303921622, 0.960906097884826726, 2.82566449409256837], [-1.27564031139474521, 6.37820155697372471, 17.6526107797419876], [-1.30734188897751502, 5.69866977246609174, 15.7719066349723303], [-1.33294024892197616, 5.14999641628945337, 14.2533724344952244], [-1.35404350101569371, 4.69770194229934468, 13.0015809638343658], [-1.37174041295106819, 4.3184420407718811, 11.9519234128421772], [-1.3867944010757367, 3.99584827428602107, 11.0590977238327817], [-1.39975661156155629, 3.71810349946038432, 10.2903982146830053], [-1.41103490315193403, 3.47646280486708337, 9.62162205699978124], [-1.42093757036091217, 3.26431604001831221, 9.03447468722715286], [-1.42970197734395743, 3.07657387529712345, 8.5148706372193903], [-1.43751384739696997, 2.90925421497005798, 8.05178887143183708], [-1.44452058224359914, 2.75919661776867242, 7.63648240388329658], [-1.45084066114553356, 2.62386077015681574, 7.26192054328695225], [-1.45657040299149232, 2.50118150008640105, 6.92238762229795057], [-1.46178891595889171, 2.38946265108664946, 6.61318927844863946], [-1.46656177725777814, 2.28729818471396573, 6.33043409357600595], [-1.4709438074907355, 2.19351269538092097, 6.07086895986307873], [-1.47498118928412514, 2.10711598469160721, 5.83175335763177216], [-1.47871310415206647, 2.02726796536976872, 5.61076222180280215], [-1.48217301073646701, 1.95325125445890979, 5.40591008954657148], [-1.48538965286070335, 1.88444955959939975, 5.21549128112657367], [-1.48838786175827664, 1.82033047840940299, 5.03803229465661317], [-1.49118919989254306, 1.76043169431758528, 4.87225360103778726], [-1.49381248169772118, 1.70434981133297025, 4.71703874254213318], [-1.49627419784391802, 1.65173125736016924, 4.57140915639976253], [-1.49858886325432339, 1.60226482234738965, 4.43450352302615869], [-1.50076930439658351, 1.55567549845987285, 4.30556071779629601], [-1.50282689786109525, 1.51171936471234458, 4.18390565351269483], [-1.50477176959780512, 1.47017931512429234, 4.06893745744693813], [-1.5066129621776978, 1.43086147245926587, 3.96011954583579184], [-1.50835857590996403, 1.3935921625255101, 3.85697124981325024], [-1.51001588846147183, 1.35821534940978927, 3.75906071704297595], [-1.51159145670470041, 1.32459045175154144, 3.66599886793588459], [-1.51309120380002837, 1.29259047560806439, 3.57743422807996625], [-1.51452049395088428, 1.26210041162573705, 3.49304849217593638], [-1.5158841968207315, 1.23301585387332224, 3.412552701455283], [-1.51718674324221481, 1.20524180537932946, 3.3356839378292622], [-1.51843217356159199, 1.17869164157749129, 3.26220245507182183], [-1.51962417972978026, 1.15328620783063673, 3.19188918108420383], [-1.5207661420638412, 1.1289530312264322, 3.12454353642374327], [-1.52186116144989003, 1.10562563011316795, 3.05998152334262086], [-1.52291208763363217, 1.08324290752183039, 2.99803404699424192], [-1.52392154414198622, 1.06174861682023614, 2.93854543655247769], [-1.52489195029477242, 1.04109088975948305, 2.88137213901080536], [-1.52582554069532406, 1.02122181857561056, 2.82638156258720485], [-1.27833354634586249, 6.76764818653691869, 17.6898803986978876], [-1.30979471652204116, 6.04520638394788179, 15.8014977980415452], [-1.3351882487406086, 5.46213374484794389, 14.2774107052830992], [-1.35611547171843894, 4.98164867161875513, 13.0214761110923565], [-1.37365979082111167, 4.57886596940370527, 11.9686468811357951], [-1.38858041578731251, 4.23634703121552914, 11.073340434371703], [-1.40142518485352263, 3.94150833240053267, 10.3026648355247268], [-1.41259933789274661, 3.68504175102455678, 9.63228968809474217], [-1.42240907838132058, 3.45991397444104987, 9.04383069430285502], [-1.43109008571549801, 3.26071158770619807, 8.523137788976479], [-1.43882671348119895, 3.08320010031685454, 8.05914248443933268], [-1.4457652400896297, 2.92401958669812689, 7.64306230856371549], [-1.45202321591018624, 2.7804699879131225, 7.26783960729513367], [-1.4576961857013353, 2.65035670127515521, 6.9277379330553357], [-1.46286260775795629, 2.53187759035030879, 6.61804670144344609], [-1.46758750997381071, 2.42353900729620175, 6.33486168296034879], [-1.4719252456657983, 2.32409249315652344, 6.0749195446119133], [-1.4759215975769997, 2.23248645011647007, 5.83547152655444012], [-1.47961540310416884, 2.14782881095766465, 5.6141858641976734], [-1.48303982321077998, 2.06935789285225091, 5.40907160326102332], [-1.48622334295083092, 1.99641941590410088, 5.21841852879377388], [-1.48919056757675494, 1.92844821700586966, 5.04074936722923095], [-1.49196286135157141, 1.86495357668946404, 4.87478143240218209], [-1.49455886416781758, 1.80550735268595419, 4.7193956079930075], [-1.49699491239958871, 1.7497343131943246, 4.5736110797662759], [-1.49928538407837442, 1.69730420839061269, 4.4365646113765731], [-1.50144298380650509, 1.64792522612909065, 4.3074934382985397], [-1.50347897933555918, 1.60133855787219326, 4.18572106377148323], [-1.50540339911323628, 1.55731386115162374, 4.07064539817688331], [-1.5072251981104936, 1.51564545061390432, 3.96172880285467777], [-1.50895239771612255, 1.476149084722294, 3.85848969089910643], [-1.51059220430990826, 1.43865924219991248, 3.76049540808366034], [-1.51215111021157833, 1.40302680328909357, 3.66735617193065844], [-1.51363497998798135, 1.3691170673258124, 3.57871988987108169], [-1.51504912453752816, 1.33680805106252487, 3.4942677112495435], [-1.51639836492479319, 1.30598902242326664, 3.41371019472303905], [-1.51768708758254856, 1.27655923254606884, 3.33678399396069691], [-1.51891929221298727, 1.24842681551752377, 3.26324898167219413], [-1.52009863349058971, 1.22150783048350964, 3.19288574579161777], [-1.52122845748241975, 1.19572542509535173, 3.12549340281868337], [-1.52231183355045374, 1.17100910273111825, 3.06088768241661757], [-1.52335158237663393, 1.14729407877738132, 2.99889924480421044], [-1.52435030064935106, 1.12452071359378336, 2.93937219858819487], [-1.52531038286650222, 1.10263401171072473, 2.88216279172164436], [-1.52623404064034252, 1.08158317840654217, 2.82713825244598915], [-1.28115453510933186, 7.15939299031685472, 17.7289179049688386], [-1.31236310739630269, 6.3935638565460895, 15.8324831289733421], [-1.33754165925653457, 5.77574807406230839, 14.3025761518227164], [-1.3582842844223797, 5.26681661306637139, 13.0423011391985657], [-1.37566869149558935, 4.84031576637337047, 11.9861503583087927], [-1.39044963418350553, 4.47771916092993294, 11.0882466590396493], [-1.40317145405736965, 4.16566525423281586, 10.3155026427186307], [-1.414236627202893, 3.89427477055869131, 9.64345410288349569], [-1.42394915320928095, 3.65608566364545151, 9.05362265655360332], [-1.43254293767497831, 3.4453564323828596, 8.53179053387439623], [-1.44020089336780877, 3.257597258808139, 8.06683952773278534], [-1.44706811796233437, 3.08924654396453402, 7.64994999439638512], [-1.45326118608597765, 2.93744282293974246, 7.27403604312183472], [-1.45887482978456684, 2.79986078443502739, 6.93333946882463348], [-1.46398682542163838, 2.67459131567414721, 6.6231327053930853], [-1.46866162474110817, 2.56005237340193181, 6.33949811413478415], [-1.47295309114234785, 2.45492181857057989, 6.07916166124977764], [-1.47690658826755339, 2.35808614933474914, 5.83936596453683876], [-1.48056059297513243, 2.26860090859092889, 5.61777224995806357], [-1.48394795443690386, 2.18565977785280463, 5.41238381831444393], [-1.48709688674179241, 2.10857021254433263, 5.22148571053741328], [-1.49003175856912073, 2.03673405847577671, 5.04359670796238291], [-1.49277372673876396, 1.96963200055809118, 4.87743082243464166], [-1.49534124850031569, 1.90681098802053706, 4.72186615717717117], [-1.49775049880169853, 1.84787399202806979, 4.57591954341687845], [-1.50001571248266719, 1.79247160611136347, 4.43872574039682366], [-1.5021494666931936, 1.7402951138518703, 4.30952026877528915], [-1.50416291537405322, 1.69107073326077018, 4.18762515789048617], [-1.50606598503162248, 1.64455481124142722, 4.07243704573205978], [-1.50786753906120663, 1.60052979006496798, 3.96341719066088105], [-1.50957551636018739, 1.55880080493714979, 3.86008304591015206], [-1.51119704880470773, 1.51919280038568494, 3.76200111884981458], [-1.51273856125682737, 1.48154807545771772, 3.66878089212029579], [-1.5142058570597654, 1.44572418513243961, 3.58006962686743568], [-1.51560419141991143, 1.41159213906756453, 3.4955479022699425], [-1.51693833463165384, 1.37903484966513989, 3.41492577246025375], [-1.51821262674841839, 1.34794579010373616, 3.33793944338846149], [-1.5194310250200862, 1.3182278299261021, 3.264348389369637], [-1.52059714518947486, 1.28979222136607263, 3.1939328429091427], [-1.52171429755562992, 1.26255771412912554, 3.12649160261975512], [-1.52278551856170274, 1.23644978002873307, 3.06184011317641458], [-1.52381359854216925, 1.21139993189544826, 2.9998087787200447], [-1.52480110616344655, 1.18734512365186418, 2.94024147725369467], [-1.52575041000859302, 1.1642272204884847, 2.88299424863069476], [-1.52666369768809207, 1.14199252976668331, 2.82793413292223361], [-1.28410260519826802, 7.55354473646040159, 17.7697139925230942], [-1.31504629371967252, 6.74382714728037147, 15.8648533639770726], [-1.33999966466157816, 6.09090756664353705, 14.3288600505289203], [-1.36054910423965203, 5.55326164995776406, 13.0640480315256386], [-1.37776627880083291, 5.10283806963271491, 12.0044265588109607], [-1.39240122983536563, 4.72000416893344266, 11.1038098074159244], [-1.40499460927911657, 4.39060815399723925, 10.3289056822785064], [-1.41594598180364417, 4.10419125160476561, 9.65510991940021235], [-1.42555702850459243, 3.85285683379619615, 9.06384570150555113], [-1.4340597909938706, 3.63053111644017878, 8.5408244514255216], [-1.44163566935682841, 3.43246587942102011, 8.07487598133794826], [-1.44842852261057309, 3.25489555642825446, 7.65714179649746729], [-1.45455390246766969, 3.09479553716525491, 7.28050650118126175], [-1.46010568947268071, 2.94970846358117367, 6.93918916057471069], [-1.46516094588218881, 2.81761720361959389, 6.62844447151509453], [-1.46978352038416338, 2.69685049611773087, 6.34434079211696211], [-1.47402676379299979, 2.58601186630350854, 6.08359291547900316], [-1.47793560142204439, 2.48392538054125112, 5.84343445772329328], [-1.48154813317701906, 2.38959376318874028, 5.62151932790151232], [-1.48489688234278061, 2.30216570905857498, 5.41584483056029686], [-1.48800977987275385, 2.22091011921306558, 5.22469105544873624], [-1.49091094731085394, 2.1451956076415164, 5.04657266697666707], [-1.49362132482325793, 2.07447406225452458, 4.88020023145376936], [-1.49615917894888506, 2.00826735429380587, 4.72444895097617845], [-1.49854051611302275, 1.94615651443249704, 4.57833320020244905], [-1.50077942169692835, 1.88777285748041312, 4.44098564722267142], [-1.50288833984360992, 1.83279065834586596, 4.31164002375864897], [-1.50487830574241932, 1.78092107188452009, 4.18961682160833337], [-1.50675913954930207, 1.73190705695322089, 4.07431135148245183], [-1.508539609136893, 1.68551911635407037, 3.96518372122295082], [-1.5102275673673049, 1.64155170366011416, 3.86175038286041827], [-1.51183006842221457, 1.59982017822456557, 3.76357696927329055], [-1.51335346682539873, 1.56015821322206061, 3.6702721966048979], [-1.51480350208926695, 1.52241557998921295, 3.58148265192462345], [-1.51618537136276288, 1.48645624643408114, 3.49688831973617598], [-1.5175037920191321, 1.45215673877428908, 3.41619872796651514], [-1.51876305577213189, 1.41940472502068404, 3.33914961561115931], [-1.51996707562907285, 1.38809778596262356, 3.26550004147707185], [-1.52111942676279988, 1.35814234532392852, 3.19502986737454142], [-1.52222338220228637, 1.32945273554784826, 3.12753756037631314], [-1.52328194409211526, 1.30195037956591042, 3.0628382679288042], [-1.52429787114973991, 1.27556307209183251, 3.00076212709603585], [-1.52527370284938057, 1.25022434659785264, 2.94115277537144815], [-1.52621178077892994, 1.22587291628829731, 2.8838660355682193], [-1.52711426754807089, 1.20245217917170932, 2.82876875150144658], [-1.28717707674740889, 7.95021135638105481, 17.8122592532251716], [-1.31784349453674232, 7.0960803551978433, 15.8985990815265961], [-1.34256143266967132, 6.40767956501434099, 14.3562535016154627], [-1.36290907777730874, 5.84103890475989473, 13.0867085937596688], [-1.37995169688416675, 5.36647882121620512, 12.02346802562964], [-1.39443435600386367, 4.96324092814934481, 11.1200231271155552], [-1.40689382003566377, 4.61637034699202253, 10.3428678488559349], [-1.41772659177941174, 4.31482006193733891, 9.66725161495960883], [-1.42723191739545929, 4.05025273855468271, 9.07449482614275205], [-1.43563988311859747, 3.81625791715070228, 8.55023500009240678], [-1.44313030369623108, 3.60782575924057713, 8.08324771296519629], [-1.44984574104689523, 3.42098433280728065, 7.66463394564678868], [-1.45590067645588839, 3.25254406442272925, 7.28724753481378151], [-1.46138809996029528, 3.09991415143092963, 6.94528384880120164], [-1.4663843273994861, 2.96096835340280862, 6.63397909655248252], [-1.47095257742126106, 2.83394533264646675, 6.34938704290553613], [-1.47514566554824444, 2.7173735944309767, 6.08821083895130677], [-1.47900805952395187, 2.61001422268932703, 5.84767472273965794], [-1.4825774658919193, 2.51081667610728321, 5.6254249814689361], [-1.48588606797149803, 2.41888429669778748, 5.41945267426813881], [-1.48896150143468353, 2.33344712911405638, 5.22803273451506456], [-1.49182763015700393, 2.25384030455374695, 5.04967553948827508], [-1.49450516847250858, 2.17948670402240818, 4.88308806782163352], [-1.49701218417512272, 2.10988294413943489, 4.72714250103620959], [-1.49936450810482058, 2.04458796559748279, 4.58085065625531218], [-1.5015760699510794, 1.98321367729387865, 4.44334302460366537], [-1.50365917532797666, 1.92541723670045783, 4.31385147555983473], [-1.5056247357643644, 1.87089464207406264, 4.19169490045641169], [-1.50748246068693703, 1.81937538358768247, 4.07626722846668876], [-1.50924101852753489, 1.77061795469710792, 3.96702736992852056], [-1.5109081725965916, 1.72440606655045814, 3.86349073481900263], [-1.51249089621648714, 1.68054544024054109, 3.76522204587225939], [-1.51399547071668095, 1.63886107654898461, 3.67182922150617763], [-1.51542756919480071, 1.59919492226587012, 3.58295814726710438], [-1.51679232839882761, 1.56140386746938153, 3.49828818878258962], [-1.51809441065043571, 1.52535802027077261, 3.41752832636856407], [-1.51933805738284544, 1.49093921518877393, 3.34041381307770502], [-1.52052713558869823, 1.45803971905765617, 3.26670327531727223], [-1.52166517824978897, 1.42656110460917729, 3.19617618913627588], [-1.52275541963909777, 1.39641326691794987, 3.12863067659474003], [-1.52380082623809554, 1.36751356200854746, 3.0638815758334359], [-1.52480412389193476, 1.33978605028161635, 3.00175874598809722], [-1.52576782172590542, 1.31316083017393503, 2.94210557427064989], [-1.52669423326505171, 1.28757344974160981, 2.88477765763536897], [-1.52758549513122666, 1.26296438573841585, 2.82964163566630766], [-1.29037726799257535, 8.34949996936372152, 17.8565442526619584], [-1.32075392094395871, 7.45040673353002258, 15.9337107642085254], [-1.34522611934168435, 6.72613059670842084, 14.384747480687782], [-1.3653633376937524, 6.13020274066582704, 13.1102744976512344], [-1.38222407452680573, 5.63128326659068978, 12.0432671678678176], [-1.39654814972951224, 5.2074676769575019, 11.1368797364022942], [-1.40886823913849968, 4.84298457203859289, 10.3573829142916267], [-1.41957763027080452, 4.5261895457909711, 9.67987355133932681], [-1.4289730159946572, 4.24829815565979274, 9.08556491926332832], [-1.43728243452211024, 4.00255867841600299, 8.56001753724877013], [-1.44468404178017806, 3.78369629990046574, 8.09195049592349669], [-1.45131904360265884, 3.58753022014140388, 7.67242258443877567], [-1.45730080297839804, 3.41070400697071863, 7.29425561490783192], [-1.46272138020112497, 3.25049195600250007, 6.95162029681443716], [-1.46765631223943482, 3.10465758358341981, 6.63973360489090503], [-1.47216816063253986, 2.97134858109319966, 6.35463412456523002], [-1.4763091828606647, 2.84901772131005426, 6.09301289943809365], [-1.48012336984038995, 2.73636253247803118, 5.85208441604960772], [-1.48364801834613314, 2.63227874222701042, 5.62948703735367495], [-1.48691495766837578, 2.53582395881428413, 5.42320533010054984], [-1.48995151607509402, 2.44618905624269178, 5.23150886800993842], [-1.492781289269004, 2.36267542186461066, 5.0529035726695426], [-1.49542475660517238, 2.2846767114801243, 4.88609269432453885], [-1.49789977913131955, 2.21166410341537079, 4.72994527571332668], [-1.50022200507303594, 2.14317429296147965, 4.58347047653807405], [-1.50240520222808205, 2.07879965088162288, 4.44579652609001652], [-1.5044615321923076, 2.01818010416041238, 4.31615335912488174], [-1.50640177795656149, 1.9609963973399025, 4.19385820431101841], [-1.50823553386987985, 1.90696446811134224, 4.07830355566539371], [-1.50997136503414242, 1.85583072797492377, 3.96894707960091608], [-1.51161694171927286, 1.80736808249043501, 3.86530310368977092], [-1.51317915324971497, 1.76137255933829251, 3.76693540531212134], [-1.51466420492930354, 1.71766043857962258, 3.6734510743259654], [-1.51607770088024618, 1.67606579996811123, 3.58449526765907445], [-1.51742471512805466, 1.63643841827535286, 3.4997467081752438], [-1.51870985283322568, 1.59864195035076362, 3.41891380745470164], [-1.5199373032270338, 1.56255236780349271, 3.34173131387065192], [-1.52111088553384133, 1.52805659733993182, 3.26795740476562679], [-1.52223408894057299, 1.49505133735234863, 3.19737115556490892], [-1.5233101074945592, 1.46344202466726214, 3.1297703300270312], [-1.52434187066498894, 1.43314192968503229, 3.0649694450763989], [-1.52533207018386263, 1.40407136167552204, 3.00279807121969622], [-1.52628318368440064, 1.37615696889577066, 2.94309933575209159], [-1.5271974955739156, 1.34933112058739546, 2.88572860107440698], [-1.5280771155114985, 1.323531359891849, 2.83055229467779546], [-1.29370250057574321, 8.75151691565943857, 17.9025596035555026], [-1.32377678104906815, 7.80688870875091556, 15.9701788585535027], [-1.34799287375276866, 7.04632638552583579, 14.4143328886517637], [-1.36791100710807445, 6.4208067680583083, 13.1347373233540612], [-1.38458252932006798, 5.89729595821510522, 12.0638162971313356], [-1.39874173579528982, 5.45272202089689273, 11.154372655791251], [-1.41091700646011242, 5.07048299196602859, 10.3724445553044191], [-1.42149825705926491, 4.7383275235308826, 9.69296999922295832], [-1.43077950681537702, 4.44701738604779351, 9.09705078319776916], [-1.43898665196281317, 4.18945480951198679, 8.57016733858865187], [-1.44629611526163449, 3.9600965060735227, 8.10098002655474936], [-1.45284768690400323, 3.75455020211146939, 7.68050378301498426], [-1.45875356333833062, 3.56929063370017063, 7.30152714415621862], [-1.46410483563650096, 3.40145567875146737, 6.958195203706806], [-1.468976229290194, 3.24869743016100632, 6.64570496039457925], [-1.47342962157062418, 3.10907167854351929, 6.3600792380640252], [-1.47751668911629386, 2.98095472365568082, 6.09799651078259863], [-1.4812809267398539, 2.86297994243837328, 5.85666114311849739], [-1.48475920503959791, 2.75398884805731869, 5.63370327396073201], [-1.48798298522687467, 2.65299291939675408, 5.4271007329398806], [-1.49097927606495761, 2.55914353354433022, 5.23511753275046665], [-1.49377139460675279, 2.47170806301836787, 5.05625497239192168], [-1.49637957611223449, 2.39005071184592977, 4.88921243445004272], [-1.4988214669142188, 2.31361702946490189, 4.73285570592711391], [-1.50111252562799469, 2.24192130450934268, 4.5861911903115038], [-1.50326635199272896, 2.17453623244231231, 4.44834477114829507], [-1.50529495812916991, 2.11108439249822588, 4.31854437682789172], [-1.50720899364415239, 2.05123117478198269, 4.19610551189096892], [-1.50901793349084135, 1.99467887760283658, 4.08041918222667199], [-1.5107302355810095, 1.94116175521582246, 3.97094176447410607], [-1.5123534736828006, 1.89044184210350075, 3.86718646395520471], [-1.51389445001023071, 1.84230541535636538, 3.7687160779355211], [-1.51535929103496181, 1.79655998421670748, 3.6751368372780906], [-1.51675352936657415, 1.75303171735835228, 3.58609314355262931], [-1.51808217400869117, 1.71156323540195565, 3.50126305328965248], [-1.51934977087178891, 1.67201170957182499, 3.42035438849366757], [-1.52056045508343596, 1.63424721808032869, 3.34310137437736765], [-1.52171799636453642, 1.59815132038284635, 3.26926172278317084], [-1.52282583852070674, 1.56361581633822566, 3.19861409385710926], [-1.52388713392036856, 1.53054166288945304, 3.13095587995429447], [-1.52490477368661881, 1.49883802541847144, 3.06610126504082992], [-1.5258814142119923, 1.46842144463915569, 3.00387952044662088], [-1.52681950050814641, 1.4392151029380067, 2.94413350405361784], [-1.52772128682266151, 1.41114817658318148, 2.88671833514081255], [-1.52858885488900942, 1.38415526230107178, 2.83150022135936608], [-1.32691128473661424, 8.16560790607147169, 16.0079938325276139], [-1.35086084247634863, 7.36833186805281048, 14.4450005996618636], [-1.37055120383748363, 6.71290385553053248, 13.1600886001129815], [-1.38702617168100883, 6.16456076302670564, 12.085107662516938], [-1.40101423053991359, 5.69904093778947907, 11.1724948384581229], [-1.41303925256109664, 5.29889719710411278, 10.3880463801561866], [-1.42348762202199564, 4.95126129398954973, 9.70653516175867992], [-1.43265056206648733, 4.64643425535077004, 9.10894715476057115], [-1.4407517316312024, 4.37696728596820961, 8.580679616866842], [-1.44796574506049947, 4.1370449858871412, 8.11033194108291688], [-1.45443091675065106, 3.92206089910287981, 7.68887355428293695], [-1.46025822797189031, 3.72831887992823008, 7.30905847085930116], [-1.46553776083958676, 3.55281881415657397, 6.96500521691944918], [-1.47034339659985491, 3.39310014599966525, 6.65189007788684261], [-1.47473630099819197, 3.24712580036299148, 6.36571953779494848], [-1.47876754697777724, 3.11319483574268929, 6.10315904257056285], [-1.48248011394645474, 2.98987586006007655, 5.86140246732610848], [-1.48591042991611988, 2.87595567080539416, 5.63807142964140695], [-1.48908957397947384, 2.77039920740367274, 5.43113677951428286], [-1.49204422331442665, 2.67231801190643603, 5.23885676917490883], [-1.49479740587307774, 2.5809451612197023, 5.05972790980779052], [-1.49736910373385901, 2.49561517288976464, 4.89244557851930928], [-1.49977674057762522, 2.41574777005791974, 4.73587219088438083], [-1.50203557844593782, 2.34083466770795523, 4.58901129648580319], [-1.50415904288501645, 2.27042874397738315, 4.45098635017232791], [-1.50615899111562368, 2.20413510894969322, 4.32102320317012722], [-1.50804593454570757, 2.14160369402940765, 4.19843557517015054], [-1.50982922444443068, 2.0825230681992144, 4.08261293161554306], [-1.5115172077019976, 2.02661525055016467, 3.9730103140993851], [-1.51311735815096271, 1.97363133671864732, 3.8691397663588476], [-1.51463638780845256, 1.92334779404247946, 3.77056307123744361], [-1.51608034153210869, 1.87556330911188729, 3.67688557057142873], [-1.51745467790498467, 1.83009609395576045, 3.58775088419243859], [-1.51876433863141758, 1.78678157486049138, 3.50283637904942147], [-1.52001380830383948, 1.74547040188000713, 3.42184926701893044], [-1.52120716606390771, 1.70602672829597157, 3.3445232319302276], [-1.52234813041233918, 1.66832671826009782, 3.27061550392240008], [-1.52344009820440318, 1.63225724807614658, 3.19990431341594483], [-1.52448617869268088, 1.59771477242901061, 3.13218666844937266], [-1.52548922333581549, 1.56460433162647772, 3.06727640845940686], [-1.52645185197504363, 1.53283867980757504, 3.00500249520609986], [-1.52737647588464975, 1.50233751726358999, 2.94520750780216245], [-1.52826531812335609, 1.47302681264901847, 2.88774631396401293], [-1.52912043154834354, 1.44483820303780508, 2.83248489387203017], [-1.3301566482175935, 8.52664518088201007, 16.0471462304199441], [-1.35382917386352064, 7.69221121513363926, 14.4767415068815097], [-1.37328304444219973, 7.0065461451132629, 13.1863198451031618], [-1.38955410868759666, 6.43312087355368689, 12.1071334840280418], [-1.40336474550224177, 5.94646078602644756, 11.1912391993017764], [-1.41523410215939793, 5.52825821156014818, 10.4041819541562006], [-1.4255448684394223, 5.16501763927326785, 9.720563197112293], [-1.43458534680988725, 4.84657211760097084, 9.12124872532502806], [-1.44257686216766112, 4.56511665242930675, 8.59154953987195569], [-1.44969214425121651, 4.31455995312862051, 8.12000183178806445], [-1.4560679708818427, 4.09007856989281571, 7.69752786853828042], [-1.46181405910045026, 3.88780334867140942, 7.31684590219959308], [-1.46701944206072321, 3.70459455065839149, 6.97204694433909378], [-1.47175712382151369, 3.53787770149402325, 6.65828583421175146], [-1.47608753123864878, 3.38552186063910243, 6.37155214172279116], [-1.48006111064624779, 3.24574804966282393, 6.10849782946543574], [-1.48372030671793809, 3.11705946789482757, 5.86630591857806571], [-1.48710108846216382, 2.99818767835113675, 5.6425892106568396], [-1.4902341388214686, 2.88805065663075267, 5.43531133577907699], [-1.4931457913256041, 2.78571975993582877, 5.24272458819922971], [-1.49585877439917381, 2.69039347913520466, 5.06332052773245511], [-1.49839280788088236, 2.6013764025709758, 4.89579038963857727], [-1.50076508489311311, 2.51806222297502158, 4.73899310363899051], [-1.50299066397184844, 2.43991990904520772, 4.5919292688230815], [-1.50508279036780945, 2.36648237479215284, 4.45371982935883182], [-1.50705316100834508, 2.29733713568345266, 4.32358848935625861], [-1.50891214431825604, 2.23211855668381087, 4.20084712367893243], [-1.51066896362418057, 2.17050138451750074, 4.08488360566193709], [-1.5123318509917576, 2.11219532261418586, 3.9751515971598983], [-1.51390817691123281, 2.05694045775982692, 3.87116194150399462], [-1.5154045601422117, 2.00450338643149673, 3.77247537326407745], [-1.5168269611709353, 1.95467391903471022, 3.67869631562332522], [-1.51818076206322883, 1.9072622638985286, 3.58946758065703087], [-1.51947083496862301, 1.86209661148115546, 3.50446582280753471], [-1.52070160111411035, 1.81902105396424663, 3.42339762356071287], [-1.52187708179276315, 1.77789378714107826, 3.3459961073995097], [-1.52300094258673946, 1.73858555089810407, 3.27201800679023203], [-1.52407653184917846, 1.70097827215310082, 3.2012411081921357], [-1.52510691429624656, 1.66496388023607667, 3.1334620226042964], [-1.52609490041908336, 1.63044326967850739, 3.06849423353495165], [-1.52704307231026903, 1.59732538944588787, 3.00616638293716099], [-1.52795380640453793, 1.56552644098825589, 2.94632076193989745], [-1.52882929355550323, 1.53496917023644897, 2.88881197838499748], [-1.52967155680547107, 1.5055822409502666, 2.83350577746840226], [-1.33351209834603002, 8.890080655640201, 16.0876267249181346], [-1.35689702210094665, 8.01802785786922989, 14.5095465658748957], [-1.37610564806138402, 7.30178507134611898, 13.2134226002628807], [-1.39216544771742901, 6.70301882234317681, 12.1298859842787099], [-1.40579239088137053, 6.1950173157484123, 11.2105986425370308], [-1.41750067742669383, 5.7585965020459442, 10.4208448238946811], [-1.42766913614052338, 5.37962283183385637, 9.7350482399147289], [-1.43658302196584353, 5.04745386096107218, 9.1339501599314783], [-1.44446122753753237, 4.75392302733871386, 8.60277224754948122], [-1.45147452081644457, 4.49265923109851872, 8.12998526243020336], [-1.45775808161653453, 4.25861911483482025, 7.70646266742224206], [-1.46342031326447164, 4.04775831328470836, 7.32488571692482715], [-1.46854915966163868, 3.85679577284874764, 6.97931696586667627], [-1.47321671455377046, 3.68304178638442625, 6.6648890788225863], [-1.47748263842850602, 3.52427051368267508, 6.37757414110653276], [-1.48139672803052558, 3.37862411656084793, 6.11401018016107312], [-1.48500087393639801, 3.24453972456691986, 5.87136900157206121], [-1.4883305697233884, 3.12069313006516946, 5.64725429882947072], [-1.49141608815728932, 3.00595490636352913, 5.43962224401554018], [-1.494283407072313, 2.89935586446866678, 5.24671897781733687], [-1.49695494496117032, 2.80005960927988573, 5.06703094679302524], [-1.49945015039133667, 2.70734054931769075, 4.89924510943836022], [-1.50178597804941405, 2.62056613619360856, 4.74221679645804883], [-1.50397727606447273, 2.53918241413482404, 4.59494356096321077], [-1.50603710332006191, 2.46270218152966081, 4.45654375542194359], [-1.50797699108733152, 2.39069522977259874, 4.32623886772310673], [-1.50980716005370996, 2.32278024623647639, 4.2033388686702402], [-1.51153670137381746, 2.25861805952409478, 4.08722998848494878], [-1.5131737285136988, 2.19790597437743962, 3.97736446517148234], [-1.51472550524133198, 2.14037299653666402, 3.87325190334807923], [-1.51619855402361781, 2.08577578860391855, 3.77445195591593796], [-1.51759874824221819, 2.03389522960297287, 3.68056809818537989], [-1.51893139097788099, 1.98453347564949278, 3.59124230881956308], [-1.5202012825915352, 1.93751143859705466, 3.50615050715351595], [-1.52141277891779381, 1.89266661492165711, 3.42499862431015245], [-1.52256984155774933, 1.84985120936922809, 3.34751920772393019], [-1.52367608149482225, 1.80893050771074781, 3.27346847645348804], [-1.52473479704545611, 1.76978146085633314, 3.20262375897271045], [-1.52574900698494309, 1.73229144897853793, 3.13478125670923902], [-1.52672147954915216, 1.69635719949905761, 3.06975408601656419], [-1.5276547578990185, 1.66188383704495712, 3.00737055896020111], [-1.52855118254110556, 1.62878404697003032, 2.94747266961307419], [-1.52941291112038624, 1.59697733691285348, 2.88991475775960627], [-1.53024193593780522, 1.56638938324342281, 2.83456232621550175], [-1.33697687668974696, 9.25599376169824772, 16.1294261662186145], [-1.36006355103466148, 8.34584451771269542, 14.5434068354956416], [-1.37901814002770151, 7.59867138382611174, 13.2413884670006876], [-1.39485929987784685, 6.97429649938923468, 12.1533574183801303], [-1.40829627880040098, 6.44474568264590264, 11.2305660877218401], [-1.41983810110020858, 5.9899419890165051, 10.4380285401195021], [-1.42985956447462392, 5.59510264359635379, 9.74998442152623923], [-1.43864274715511131, 5.24910191529567705, 9.14704611535783663], [-1.44640400975271288, 4.94340610928142343, 8.61434286821077677], [-1.45331208025618408, 4.67136025796630605, 8.14027778286350845], [-1.45950047835744257, 4.42769808041021928, 7.71567387715929076], [-1.46507624372908229, 4.20819772134949144, 7.33317417738865185], [-1.47012619042863912, 4.00943506480537959, 6.98681184441085623], [-1.47472146856706732, 3.82860381262603999, 6.67169664385389627], [-1.47892094466184787, 3.66338215650182475, 6.38378260975595779], [-1.48277374281445318, 3.51183254877107309, 6.11969338591403655], [-1.48632118010271008, 3.37232536661959426, 5.87658920368340354], [-1.48959825823011505, 3.24348007840428298, 5.65206435884894542], [-1.49263482576064543, 3.12411940275483957, 5.44406732961537809], [-1.49545649279826431, 3.01323323175769708, 5.25083790941480189], [-1.49808535751949146, 2.90994997503786124, 5.07085727131597697], [-1.50054058821386249, 2.81351360290099217, 4.9028079635737658], [-1.50283889328260223, 2.72326510863290316, 4.74554160596955921], [-1.50499490357574794, 2.6386274283470903, 4.59805261124928144], [-1.50702148556780791, 2.55909308870005114, 4.45945666012360764], [-1.50892999954068796, 2.4842140236340593, 4.32897295599935195], [-1.51073051371943579, 2.41359312842750118, 4.20590950713014511], [-1.51243198288556524, 2.34687721482242884, 4.08965085027389907], [-1.51404239815786013, 2.2837511033666047, 3.9796477560518051], [-1.51556891322828302, 2.22393264441106764, 3.87540855257558237], [-1.51701795126090078, 2.16716850180128651, 3.77649177813890846], [-1.51839529582337551, 2.11323056635212048, 3.6824999313654545], [-1.51970616856614971, 2.06191289202442452, 3.59307413221293226], [-1.52095529584904043, 2.01302906803549453, 3.50788954263222319], [-1.52214696610756506, 1.9664099562155144, 3.42665142370147979], [-1.52328507942647517, 1.92190173572499212, 3.34909172836521796], [-1.52437319052831111, 1.87936420750065758, 3.27496614677429454], [-1.5254145461751929, 1.83866931905045572, 3.20405153560459022], [-1.52641211781310315, 1.79969987689754496, 3.1361436743714628], [-1.52736863014992563, 1.76234841940376041, 3.07105530122025616], [-1.52828658624620473, 1.72651622714006381, 3.00861438840518547], [-1.52916828960507956, 1.69211245161217816, 2.94866262401307289], [-1.53001586367207931, 1.65905334615044753, 2.89105407171772466], [-1.53083126909218281, 1.62726158525547016, 2.83565398467666174], [-1.3405502433467531, 9.62446328556643316, 16.1725356280678803], [-1.36332793775107808, 8.67572324023413444, 14.5783135161791417], [-1.3820196552517483, 7.89725517286713341, 13.2702091386928078], [-1.39763478321871726, 7.24699517224520129, 12.1775401019334542], [-1.41087552636532854, 6.69568046410664408, 11.2511344941506284], [-1.42224549940143197, 6.22232405988126569, 10.4557266791933401], [-1.43211529510127344, 5.81148235693270454, 9.76536588906013314], [-1.44076368336955474, 5.45153826139831565, 9.16053125709966842], [-1.44840439143143596, 5.13358518482027915, 8.62625653377836166], [-1.4552040280442633, 4.85068009348087692, 8.1508749427955447], [-1.46129438995089944, 4.59733066501406551, 7.72515742103256287], [-1.46678110275344542, 4.3691351996911143, 7.34170754090953182], [-1.47174980975698433, 4.16252471446419836, 6.99452813626930503], [-1.47627068390810412, 3.97457491821412656, 6.67870535364195206], [-1.4804017700194616, 3.80286693216008542, 6.39017461279042909], [-1.4841914964149121, 3.64538262277346892, 6.12554472862470334], [-1.48768058722737484, 3.50042491112323484, 5.88196400244100648], [-1.49090353582456858, 3.36655637121676854, 5.65701704520532012], [-1.49388975254147671, 3.24255140086522076, 5.44864440752530843], [-1.49666446772680573, 3.12735858927989252, 5.25507934377210528], [-1.49924944887418921, 3.02007083226455419, 5.07479759493025906], [-1.5016635750113303, 2.9199013958553639, 4.90647716696410274], [-1.50392330043043421, 2.82616459141289722, 4.74896585807060045], [-1.50604303185813726, 2.7382600579238856, 4.60125484733281453], [-1.50803543734664514, 2.65565988966704802, 4.46245706460123603], [-1.50991170088423621, 2.5778980258999149, 4.33178936137824966], [-1.51168173353686308, 2.50456145201373825, 4.20855772561594144], [-1.51335434953948034, 2.43528286132789962, 4.09214495090991637], [-1.5149374139425873, 2.36973450225656102, 3.98200029754182827], [-1.51643796703404443, 2.3076229933126764, 3.87763077983433657], [-1.51786232968939805, 2.24868493287318216, 3.7785937889886867], [-1.51921619297622001, 2.19268316512031802, 3.68449081853253402], [-1.52050469469155236, 2.13940359052077733, 3.59496210478580602], [-1.52173248500259151, 2.08865243039571391, 3.50968203036136916], [-1.52290378295886009, 2.04025387190660679, 3.42835516690020903], [-1.5240224253232284, 1.99404803313319623, 3.35071285567560295], [-1.52509190891285917, 1.94988919861004839, 3.27651024266438506], [-1.52611542743464379, 1.90764428429330479, 3.2055236991428564], [-1.5270959036326055, 1.86719149789139527, 3.13754857056393366], [-1.52803601742882833, 1.82841916615415334, 3.07239720598403254], [-1.52893823062871248, 1.79122470533907729, 3.00989722807869953], [-1.52980480867000868, 1.75551371486722285, 2.94989001016081565], [-1.530637839820437, 1.72119917730812233, 2.89222933186954112], [-1.53143925216621679, 1.68820075041945183, 2.83678018954411471], [-1.34423148050254282, 9.99556741912147295, 16.2169464506781118], [-1.36668937591015194, 9.00772543213509458, 14.6142579855846932], [-1.38510934137117347, 8.19758589791102743, 13.2998764309211666], [-1.40049102572252804, 7.52115550850987358, 12.2024264370823978], [-1.41352925851353195, 6.94785567743939581, 11.2722968835697763], [-1.42472200475619437, 6.45577158405150886, 10.4739328630904609], [-1.43443547459250498, 6.02878677727284717, 9.78118682312715215], [-1.44294499546560595, 5.65478444168953764, 9.17440027522388846], [-1.4504615581906628, 5.32447913766192737, 8.63850839403426285], [-1.45714957192648797, 5.03063542688906651, 8.16177230465967263], [-1.4631390468969474, 4.76753172584398666, 7.73490923106757045], [-1.46853414371825974, 4.53058406040739747, 7.35048207041958701], [-1.47341929370082525, 4.31607671892161004, 7.00246240087109406], [-1.47786365887681725, 4.12096597186804825, 6.6859120336686777], [-1.48192443447700173, 3.94273473392963814, 6.39674721487549824], [-1.48564932982501108, 3.77928338288818644, 6.13156148844445426], [-1.48907845661224725, 3.62884665897102288, 5.88749087257195125], [-1.49224578338441005, 3.48992965468934679, 5.66211000872874948], [-1.49518026821429029, 3.36125796730344373, 5.45335128833196592], [-1.4979067496768248, 3.24173848810656162, 5.2594412367384038], [-1.50044665423101864, 3.13042827141723334, 5.07885000586830415], [-1.50281856267940683, 3.02650960539602742, 4.91025092875458924], [-1.50503866740563086, 2.92926988958142953, 4.75248787257952543], [-1.50712114419475141, 2.83808527153557089, 4.60454869054305505], [-1.50907845669057772, 2.75240724805199788, 4.46554348347746455], [-1.51092160731089797, 2.67175162268390487, 4.33468668438888738], [-1.51266034529312621, 2.59568934991128186, 4.2112822039077864], [-1.51430334017888679, 2.52383890029814495, 4.09471104341474845], [-1.51585832725529523, 2.4558598597990815, 3.98442091046713065], [-1.51733223010290708, 2.39144753657523434, 3.87991746882292299], [-1.51873126434694505, 2.33032839502970379, 3.78075693055681272], [-1.52006102589159875, 2.27225617272455471, 3.68653975609276863], [-1.52132656627900187, 2.21700856392417345, 3.59690527353904654], [-1.5225324573127772, 2.16438437559169294, 3.51152706453755714], [-1.52368284668904019, 2.11420107913790245, 3.43010899218752785], [-1.52478150606156415, 2.06629269513015723, 3.35238176916806552], [-1.52583187271507215, 2.02050795930306393, 3.27809998224859145], [-1.52683708581676458, 1.97670872717349022, 3.2070395039142312], [-1.52780001805150634, 1.93476858181195133, 3.13899523359490695], [-1.52872330331240369, 1.89457161521622686, 3.07377912054908542], [-1.52960936100878087, 1.85601135854621946, 3.01121842826205599], [-1.53046041746406836, 1.81898984042860579, 2.95115420662641004], [-1.53127852480210547, 1.78341675579361736, 2.89343994345136801], [-1.5320655776591614, 1.74920873039825553, 2.83794037121510057], [-1.34801989572704151, 10.3693838132849319, 16.2626502805018696], [-1.37014707882903863, 9.34191190110708014, 14.6512318315696053], [-1.38828636166236885, 8.49971241834103175, 13.3303823094315206], [-1.40342716806939216, 7.79681760038551275, 12.2280089366046116], [-1.41625661064923736, 7.20130479991137573, 11.2940463611943418], [-1.42726675831322658, 6.69031292959324908, 10.4926407779120812], [-1.43681925684452416, 6.24704024715010497, 9.79744145428041513], [-1.44518585447732573, 5.85886157220537385, 9.18864789907542878], [-1.45257470086767171, 5.5161064589911577, 8.6510936298511325], [-1.45914792405702398, 5.21124258591794209, 8.1729654555813056], [-1.46503368340600071, 4.93831578676180083, 7.74492525890475658], [-1.47033462310774365, 4.69255730779067104, 7.35949404438503496], [-1.47513392088501227, 4.47010279056064341, 7.01061120986260899], [-1.47949969387207658, 4.26778757847714463, 6.69331351891165394], [-1.48348825968834541, 4.08299521015140954, 6.40349748792079509], [-1.48714658533856658, 3.91354364562780699, 6.13774095089294391], [-1.49051415051927205, 3.75759869878808006, 5.89316729259930661], [-1.49362438243863216, 3.61360737686765843, 5.6673409027207784], [-1.49650577286390463, 3.48024598340442903, 5.45818578397261422], [-1.49918275658080513, 3.35637930577792165, 5.26392154456170758], [-1.50167640867413144, 3.24102822015999603, 5.08301259195092747], [-1.50400500277605076, 3.13334375578343849, 4.91412745698702658], [-1.50618446158417463, 3.03258616426343908, 4.75610596761982674], [-1.5082287231482423, 2.93810790223683505, 4.60793256000810292], [-1.51015004074328019, 2.84933969951562238, 4.46871442874033509], [-1.51195922996591858, 2.76577907920594868, 4.3376635225546627], [-1.5136658735817512, 2.68698084067766496, 4.21408161846280471], [-1.51527849231800027, 2.61254912468620715, 4.09734787721620197], [-1.51680468802829216, 2.54213076205858979, 3.98690841182855493], [-1.51825126430683066, 2.47540967006548485, 3.88226749921936864], [-1.51962432858992225, 2.412102108872892, 3.78298014074898514], [-1.52092937897714831, 2.35195264790280678, 3.68864573612756841], [-1.52217137837538674, 2.29473072116892451, 3.59890268103326427], [-1.52335481807375328, 2.24022767363787212, 3.5134237348220636], [-1.52448377246649436, 2.18825421885142735, 3.43191203323198835], [-1.52556194632912634, 2.13863824251746681, 3.35409764368156083], [-1.52659271580386857, 2.09122289836146402, 3.27973457893022902], [-1.52757916404977423, 2.04586495185237593, 3.20859819948847669], [-1.52852411235061814, 2.00243333495714149, 3.14048294699111752], [-1.52943014734166649, 1.96080788120726446, 3.07520036036005973], [-1.5302996449088031, 1.92087821536669812, 3.01257733443343856], [-1.53113479122494267, 1.88254277609624077, 2.95245458717760467], [-1.53193760131607082, 1.84570795339285643, 2.89468530690446357], [-1.53270993548877188, 1.81028732538043946, 2.83913395530498924], [-1.35191482501309013, 10.7459896347194341, 16.3096391068886888], [-1.37370028231739427, 9.67834289814527793, 14.689226882507592], [-1.39154989771543169, 8.8036830263629362, 13.3617189158185852], [-1.4064423661772778, 8.07402099101770609, 12.2542802460446154], [-1.41905673106583996, 7.45606079034593794, 11.3163761350250436], [-1.42987891226078956, 6.92597598126320069, 10.5118441909172127], [-1.43926580529804338, 6.46626666148396279, 9.81412407815549948], [-1.4474854397481498, 6.06379035570170988, 9.2032689108311434], [-1.45474301756970514, 5.70848525881783075, 8.66400746539932065], [-1.46119830297155495, 5.39251754668073779, 8.18445001842995978], [-1.46697753930056418, 5.10969704700196559, 7.75520148585298319], [-1.47218180234433516, 4.85506764602919105, 7.36873976598946534], [-1.47689297427682842, 4.62461436389713931, 7.01897115552775563], [-1.48117809310411341, 4.41505008521418407, 6.70090666159120474], [-1.48509257064203748, 4.2236577697158868, 6.41042251823007891], [-1.48868260815360132, 4.04817200462821436, 6.14408041347604783], [-1.49198703372385877, 3.88668891138148043, 5.89899075098382752], [-1.4950387166733996, 3.73759679168349956, 5.67270738866802127], [-1.49786566840610824, 3.59952214888289568, 5.46314571306258934], [-1.50049190790257869, 3.47128724962536905, 5.26851822886689014], [-1.50293814854290031, 3.35187644639064075, 5.08728344524773046], [-1.50522234785931697, 3.24040922108602958, 4.91810496297089284], [-1.50736015110585053, 3.13611843518666955, 4.75981846372686412], [-1.50936525182574455, 3.03833264977909634, 4.61140487651956388], [-1.51124968698897089, 2.94646165387786807, 4.47196841338560347], [-1.51302408014513445, 2.85998454173775407, 4.34071847383101073], [-1.51469784296963916, 2.77843983029933828, 4.21695464566399547], [-1.51627934327884595, 2.70141722078415114, 4.10005420122239705], [-1.51777604584687742, 2.62855069392475915, 3.98946161771483698], [-1.51919463102584151, 2.55951269357614564, 3.88467974944379524], [-1.52054109514689051, 2.49400920368008494, 3.78526235590799986], [-1.52182083588531136, 2.4317755624971471, 3.69080774888679963], [-1.52303872515282568, 2.37257288842902536, 3.60095336776082675], [-1.52419917159258622, 2.31618501565540047, 3.51537112859956746], [-1.5253061743670342, 2.26241585671665302, 3.43376342124253364], [-1.52636336962174379, 2.21108712421841425, 3.35585965143472231], [-1.52737407076297504, 2.16203635587453125, 3.28141324335150575], [-1.52834130348895436, 2.11511519679274906, 3.21019903255157546], [-1.52926783635520391, 2.07018790074285253, 3.14201099128874839], [-1.53015620752432158, 2.02713001851512731, 3.07666023777860387], [-1.53100874824461908, 1.98582724667712074, 3.01397328890833993], [-1.53182760351487035, 1.94617441430167948, 2.95379052235142003], [-1.53261475032106098, 1.9080745887531283, 2.89596481938176442], [-1.53337201377142529, 1.87143828452418037, 2.84036036409234471], ] ) class TestConeFitting(unittest.TestCase): def test_rotation_matrix(self): v = [3, 5, 0] axis = [4, 4, 1] theta = 1.2 res = np.dot(rotation_matrix(axis, theta), v) self.assertAlmostEqual(res[0], 2.74911638) self.assertAlmostEqual(res[1], 4.77180932) self.assertAlmostEqual(res[2], 1.91629719) def test_point_cone_distance(self): c = CircularCone() c.apex = np.array([0, 0, 0]) c.axis = np.array([1, 0, 0]) c.theta = math.radians(45.0) point = np.array([0, 0, 0]) d = c.distance(point) self.assertAlmostEqual(d, 0) point = np.array([0, 1, 0]) d = c.distance(point) self.assertAlmostEqual(d, math.sqrt(2.0) / 2.0) c.axis = np.array([0, 0, 1]) d = c.distance(point) self.assertAlmostEqual(d, math.sqrt(2.0) / 2.0) c.axis = np.array([0, 1, 0]) d = c.distance(point) self.assertAlmostEqual(d, math.sqrt(2.0) / 2.0) def test_build_matrix(self): a = [1, 0, 0] b = [0, 1, 0] c = [0, 0, 1] m = build_matrix(a, b, c) n = np.eye(3) for i, j in zip(m.flatten(), n.flatten()): self.assertAlmostEqual(i, j) def test_from_coeffs(self): k = [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, np.pi / 3.0] c = CircularCone() c.from_coeffs(k) vec =
np.asarray(k[3:6])
numpy.asarray
import os import numpy as np from PIL import Image from torch.utils import data from mypath import Path from torchvision import transforms from dataloaders import custom_transforms as tr from dataloaders.mapping import KITTI2CS class Merge3(data.Dataset): """return dict with img, event, label of Cityscapes""" NUM_CLASSES = 19 def __init__(self, args, root=Path.db_root_dir('merge3'), split="train"): self.root = root self.split = split self.args = args self.images = {} self.event = {} self.labels = {} self.images_base = os.path.join(self.root[0], 'leftImg8bit', self.split) self.images[split] = self.recursive_glob(rootdir=self.images_base, suffix='.png') self.images[split].sort() self.event_base = os.path.join(self.root[0], 'event', self.split) self.event[split] = self.recursive_glob(rootdir=self.event_base, suffix='.npz') self.event[split].sort() self.annotations_base = os.path.join(self.root[0], 'gtFine', self.split) self.labels[split] = self.recursive_glob(rootdir=self.annotations_base, suffix='labelTrainIds.png') self.labels[split].sort() # --- load KITTI-360 dataset with open('dataloaders/kitti_txt/colors_{}.txt'.format(split), 'r') as colors_f, \ open('dataloaders/kitti_txt/events_{}.txt'.format(split), 'r') as events_f, \ open('dataloaders/kitti_txt/labels_{}.txt'.format(split), 'r') as labels_f: self.images[split] += [self.root[1] + i for i in colors_f.read().splitlines()] self.event[split] += [self.root[1] + i for i in events_f.read().splitlines()] self.labels[split] += [self.root[1] + i for i in labels_f.read().splitlines()] # --- load BDD3K dataset with open('dataloaders/bdd_txt/images_{}.txt'.format(split), 'r') as colors_f, \ open('dataloaders/bdd_txt/events_{}.txt'.format(split), 'r') as events_f, \ open('dataloaders/bdd_txt/labels_{}.txt'.format(split), 'r') as labels_f: self.images[split] += [self.root[2] + i for i in colors_f.read().splitlines()] self.event[split] += [self.root[2] + i for i in events_f.read().splitlines()] self.labels[split] += [self.root[2] + i for i in labels_f.read().splitlines()] if not self.images[split]: raise Exception("No RGB images for split=[%s] found in %s" % (split, self.images_base)) else: print("Found %d %s RGB images" % (len(self.images[split]), split)) print("Found %d %s RGB events" % (len(self.event[split]), split)) print("Found %d %s labels" % (len(self.labels[split]), split)) self.ignore_index = 255 def __len__(self): return len(self.labels[self.split]) def __getitem__(self, index): sample = dict() lbl_path = self.labels[self.split][index].rstrip() if 'KITTI-360_mini' in lbl_path: sample['label'] = self.relabel(lbl_path) else: sample['label'] = Image.open(lbl_path) img_path = self.images[self.split][index].rstrip() sample['image'] = Image.open(img_path).convert('RGB') if self.args.event_dim: event_path = self.event[self.split][index].rstrip() sample['event'] = self.get_event(event_path) # data augment if self.split == 'train': return self.transform_tr(sample) elif self.split == 'val': return self.transform_val(sample), lbl_path elif self.split == 'test': raise NotImplementedError def relabel(self, label_path): """from apollo to the 18 class (Cityscapes without 'train', cls=16)""" _temp = np.array(Image.open(label_path)) for k, v in KITTI2CS.items(): _temp[_temp == k] = v return Image.fromarray(_temp.astype(np.uint8)) def get_event(self, event_path): event_volume = np.load(event_path)['data'] neg_volume = event_volume[:9, ...] pos_volume = event_volume[9:, ...] if self.args.event_dim == 18: event_volume = np.concatenate((neg_volume, pos_volume), axis=0) elif self.args.event_dim == 2: neg_img = np.sum(neg_volume, axis=0, keepdims=True) pos_img = np.sum(pos_volume, axis=0, keepdims=True) event_volume = np.concatenate((neg_img, pos_img), axis=0) elif self.args.event_dim == 1: neg_img = np.sum(neg_volume, axis=0, keepdims=True) pos_img = np.sum(pos_volume, axis=0, keepdims=True) event_volume = neg_img + pos_img return event_volume def recursive_glob(self, rootdir='.', suffix=None): if isinstance(suffix, str): return [os.path.join(looproot, filename) for looproot, _, filenames in os.walk(rootdir) for filename in filenames if filename.endswith(suffix)] elif isinstance(suffix, list): return [os.path.join(looproot, filename) for looproot, _, filenames in os.walk(rootdir) for x in suffix for filename in filenames if filename.startswith(x)] def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=(1024, 2048)), tr.ColorJitter(), tr.RandomGaussianBlur(), tr.RandomMotionBlur(), tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=255), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample) if __name__ == '__main__': from dataloaders.utils import decode_segmap from torch.utils.data import DataLoader import matplotlib.pyplot as plt import argparse parser = argparse.ArgumentParser() args = parser.parse_args() args.base_size = 513 args.crop_size = 513 args.event_dim = 2 cityscapes_train = Merge3(args, split='train') dataloader = DataLoader(cityscapes_train, batch_size=2, shuffle=True, num_workers=0) for ii, sample in enumerate(dataloader): for jj in range(sample["image"].size()[0]): img = sample['image'].numpy() gt = sample['label'].numpy() event = sample['event'].numpy() tmp = np.array(gt[jj]).astype(np.uint8) segmap = decode_segmap(tmp, dataset='cityscapes') img_tmp =
np.transpose(img[jj], axes=[1, 2, 0])
numpy.transpose
# -*-coding:utf-8-*- from __future__ import print_function import numpy as np import pickle import os from .rbm import RBM INT = 0.1 EXT = 3.0 MAX = 20 RATIO = 10 SIG = 0.1 RHO = SIG / 2.0 # Restricted Boltzmann Machine Network class RbmNet: def __init__(self, num_layers=3, dim=None, output_dim=10, learning_rate=0.1, path=None, mode=0): """ 初始化函数 Initial Function :param num_layers: RBM的层数(个数),RBM级联,即上一个RBM的 hidden units 为下个RBM的 visible units the num_layers or numbers of RBM the hidden units of the former RBMis the visible units of the latter RBM :param dim: 每个RBM的可见层和隐含层单元数,类型为list 第i个元素为第i个RBM可见单元个数,第i+1个元素为第i个RBM隐含单元个数 the visible units number and hidden units number of each RBM, type: list the i-th elements of list is the the visible units number of the i-th RBM the i+1-th elements of list is the the hidden units number of the i-th RBM :param output_dim: mode 0下RMB Net输出的维度,即通过num_layers层RBM后,通过转移矩阵后输出的维度 mode 1下RMB Net标签的维度,即最后一层RBM输入增加的维度数 RBM Net ouput dim under mode = 0 (after num_layers RBM and transfer matrix) Extended visible units number of last layer RBM for labeling under mode = 1 :param learning_rate: RBM的学习率, learning rate of RBM :param path: 该RBM网络的参数存储路径 the path where we store the parameters of RBM net :param mode: 该RBM net的模式,0 代表标签不作为可见单元 1 代表 标签作为可见单元 label is used as visible units under mode 1; otherwise, mode 0 RbmNet 类成员 w_class: mode 0 下,从最后一层隐单元转移至标签输出的权重矩阵 (1 + num_visible of the top RBM) * the dimension of label(softmax) the weight matrix between the hidden units of the top RBM and the label(softmax) """ self.num_layers = num_layers if dim is None: self.dim = [788, 500, 500, 2000] elif isinstance(dim, list): self.dim = dim else: self.dim = [dim, 500, 500, 2000] self.output_dim = output_dim self.learning_rate = learning_rate self.path = path self.rbms = [] self.mode = mode for i in range(0, num_layers): num_visible = self.dim[i] num_hidden = self.dim[i + 1] if i == num_layers - 1 and mode == 1: num_visible += self.output_dim path = os.path.join(self.path, 'rbm' + ('-%d' % i) + ('-%dh' % num_hidden) + ('-%dv' % num_visible)) if not os.path.exists(path): os.mkdir(path) r = RBM(num_visible=num_visible, num_hidden=num_hidden, learning_rate=0.1, path=path) self.rbms.append(r) datafile = os.path.join(self.path, 'w_class') if os.path.isfile(datafile): with open(datafile, 'rb') as fp: self.w_class = pickle.load(fp) print("Load w_class Successfully!") else: # 初始化分类权重,高斯分布,均值为1,标准差为0.1 # Initialize the w_class, using a Gaussian distribution with mean 0 and standard deviation 0.1. self.w_class = 0.1 * np.random.randn(self.dim[num_layers] + 1, self.output_dim) with open(datafile, 'wb') as fp: pickle.dump(self.w_class, fp) print("Create W_class Successfully!") print("Create RBM_net Successfully") def train_rbms(self, batch_data, batch_label=None, max_epochs_rbm=50, max_epochs_joint=200, test_set=None, test_label_set=None, test_name_set=None): """ Train Function Under mode 0, also Prediction Function :param batch_data: 训练集,类型为list,每个list元素为np.array,np.array是矩阵,每一行为每一个训练样本 training data, type: list of np.array, every np.array is a matrix where each row is a training example consisting of the states of visible units. i.e. every np.array is a batch of training set :param batch_label: 训练集标签,类型为list,每个list元素为list,该list为一个训练样本标签,与batch_data数据对应 training data label, type: list of list, every list is a label of training example corresponding to batch_data. :param max_epochs_rbm: RBM 训练的最大迭代次数,the max epochs of the RBMs training operation :param max_epochs_joint: w_class 训练的最大迭代次数(此时RBM的weights也被迭代更新),mode 0下使用 the max epochs of the w_class training operation ( weights of each RBM is updated either) used under mode 0 :param test_set: 测试集的集合, 类型为list, 每个list元素为list, 对该list, 其元素为np.array,np.array是矩阵,每一行为一个样本 the set of test data set, type: list of list of np.array, every list is a test data set every np.array is a matrix where each row is a example consisting of the states of visible units. i.e. every np.array is a batch of visible units data set used under mode 0 :param test_label_set: 测试标签集的集合, 类型为list, 每个list元素为list, 对该list, 其元素为list, 该list的元素为标签,与test_set中np.array每一行对应 the set of the test data label set, type: list of list of list, ( we call list 1 of list 2 of list 3) every list2 is a test data label set every list3 is the label corresponding to the row of np.array in test_set used under mode 0 :param test_name_set: 测试集名字的集合,类型为list, 每个list元素为字符串,是测试集名字,与test_set中各测试集的顺序对应 the set of the test data name, type: list of string every string is name of the test data set corresponding to those in test_set used under mode 0 """ train_data = batch_data.copy() for i in range(0, self.num_layers): # mode 1 下,最后一层(最高层)RBM的输入 visible units 为 # 前一层RBM输出 的 hidden units 和 标签 label 共同组成 # In mode 1, the visible units of the top RBM consists of # the hidden units of the former RBM and the label of the test data if i == self.num_layers - 1 and self.mode == 1: train_data = list(map(lambda y: np.array(list(map(lambda x: x[0].tolist() + x[1], zip(y[0], y[1])))), zip(train_data, batch_label))) self.rbms[i].train(train_data, max_epochs=max_epochs_rbm) train_data = self.rbms[i].run_visible_for_hidden(train_data) print("Train RbmNet Successfully (Initial for Mode 0)") if self.mode == 0: for epoch in range(0, max_epochs_joint): num_batches = len(batch_data) counter = 0 err_cr = 0 for batch in range(0, num_batches): data = batch_data[batch] label = np.array(batch_label[batch]) hidden_probs = np.insert(data, 0, 1, axis=1) for i in range(0, self.num_layers): hidden_activations = np.dot(hidden_probs, self.rbms[i].weights) hidden_probs = self._logistic(hidden_activations) hidden_probs[:, 0] = 1 label_out = np.exp(np.dot(hidden_probs, self.w_class)) # label_out = np.array(list(map(lambda x: list(map(lambda y: y/np.sum(x), x)), label_out))) label_out = np.divide(label_out, np.array([np.sum(label_out, axis=1).tolist()]).T) counter += np.count_nonzero(np.argmax(label_out, axis=1) - np.argmax(label, axis=1)) # err_cr -= np.sum(np.array(list(map(lambda x: list(map(lambda y: y[0]*y[1], zip(x[0], x[1]))), # zip(label, np.log(label_out)))))) err_cr -= np.sum(np.multiply(label, np.log(label_out))) if self.path: datafile = os.path.join(self.path, 'train_epoch.txt') with open(datafile, 'at') as fp: fp.write('epoch: %s, wrong num: %s, error: %s\n' % (epoch, counter, err_cr / num_batches)) print('epoch: %s \n train: wrong: %s, error: %s' % (epoch, counter, err_cr / num_batches)) if test_set is not None: len_test_set = len(test_set) test_result = [0] * len_test_set test_result_err = [0] * len_test_set for i in range(0, len_test_set): tmp_result = self.predict(batch_test=test_set[i], batch_test_label=test_label_set[i], test_name=test_name_set[i]) if epoch == 0 or tmp_result[1] < test_result[i] or ( tmp_result[1] == test_result[i] and tmp_result[2] < test_result_err[i]): test_result[i] = tmp_result[1] test_result_err[i] = tmp_result[2] datafile = os.path.join(self.path, os.path.join(test_name_set[i], 'w_class')) with open(datafile, 'wb') as fp: pickle.dump(self.w_class, fp) for j in range(0, self.num_layers): datafile = os.path.join(self.path, os.path.join(test_name_set[i], 'weights-' + ('%d' % j))) with open(datafile, 'wb') as fp: pickle.dump(self.rbms[j].weights, fp) ans = tmp_result[0] for j in range(0, ans.__len__()): ans[j] = str(ans[j]) str_convert = ''.join(ans) datafile = os.path.join(self.path, os.path.join(test_name_set[i], 'best_result.txt')) with open(datafile, 'wt') as fp: fp.write( 'epoch: %d, wrong number: %d,error: %d\n' % (epoch, tmp_result[1], tmp_result[2])) fp.write('%s\n' % str_convert) print("Save Successfully!") # combine 10 batches into 1 batch for training tt = 0 for batch in range(0, int(num_batches / 10)): tt += 1 data = [] label = [] for kk in range(0, 10): data += batch_data[(tt - 1) * 10 + kk].tolist() label += batch_label[(tt - 1) * 10 + kk] data = np.array(data) # max_iter is the time of linear searches we perform conjugate gradient with max_iter = 3 # first update top-level weights (w_class) holding other weights fixed. if epoch < 6: hidden_probs = np.insert(data, 0, 1, axis=1) for i in range(0, self.num_layers): hidden_activations = np.dot(hidden_probs, self.rbms[i].weights) hidden_probs = self._logistic(hidden_activations) hidden_probs[:, 0] = 1 vv = [self.w_class.copy()] tmp = self._minimize(func=0, x=vv, parameters=[hidden_probs, label], length=max_iter) self.w_class = tmp[0] datafile = os.path.join(self.path, 'w_class') if os.path.isfile(datafile): with open(datafile, 'wb') as fp: pickle.dump(self.w_class, fp) else: # the update all weights (w_class and weights of each RBMs) vv = [0] * (self.num_layers + 1) vv[0] = self.w_class.copy() for i in range(0, self.num_layers): vv[i + 1] = self.rbms[i].weights tmp = self._minimize(func=1, x=vv, parameters=[data, label], length=max_iter) self.w_class = tmp[0] for i in range(0, self.num_layers): self.rbms[i].weights = tmp[i + 1] datafile = os.path.join(self.path, 'w_class') if os.path.isfile(datafile): with open(datafile, 'wb') as fp: pickle.dump(self.w_class, fp) for i in range(0, self.num_layers): datafile = os.path.join(self.rbms[i].path, 'weights') if os.path.isfile(datafile): with open(datafile, 'wb') as fp: pickle.dump(self.rbms[i].weights, fp) def predict(self, batch_test, batch_test_label, test_name): """ Prediction Function in mode 1 :param batch_test: 可见层数据,类型为list,每个list元素为np.array,np.array是矩阵,每一行为一个样本 visible units data, type: list of np.array, every np.array is a matrix where each row is a example consisting of the states of visible units. i.e. every np.array is a batch of visible units data set :param batch_test_label: 测试集标签,类型为list,每个list元素为list, 该list为一个样本标签,与batch_test数据对应 label, type: list of list, every list is a label of example corresponding to batch_test. :param test_name: 测试集名字,字符串格式 the name of the test set, type: string :return: 一个list,第一个元素为识别类别的list,与batch_test对应 第二个元素为识别中错误的个数,int型 a list, the first element is also a list, consisting of the prediction answer, corresponding to the batch_test the second element is number of the wrong prediction """ if self.mode == 1: test_data = batch_test.copy() for i in range(0, self.num_layers-1): test_data = self.rbms[i].run_visible_for_hidden(test_data) test_data = list( map(lambda y: np.array(list(map(lambda x: x + [0] * self.output_dim, y))), test_data)) ans = self.rbms[-1].predict(test_data, soft_max=self.output_dim) test_num_batches = len(batch_test) counter = 0 err = 0 for batch in range(0, test_num_batches): counter += np.count_nonzero(np.array(ans[batch]) - np.argmax(np.array(batch_test_label[batch]), axis=1)) if self.path: datafile = os.path.join(self.path, test_name) if not os.path.exists(datafile): os.mkdir(datafile) datafile = os.path.join(datafile, 'test_result.txt') for i in range(0, ans.__len__()): ans[i] = str(ans[i]) str_convert = ''.join(ans) with open(datafile, 'at') as fp: fp.write('%s\n' % str_convert) print(' %s, wrong: %s' % (test_name, counter)) print(ans) else: test_num_batches = len(batch_test) counter = 0 err_cr = 0 ans = [] for batch in range(0, test_num_batches): data = batch_test[batch] label = np.array(batch_test_label[batch]) hidden_probs = np.insert(data, 0, 1, axis=1) for i in range(0, self.num_layers): hidden_activations = np.dot(hidden_probs, self.rbms[i].weights) hidden_probs = self._logistic(hidden_activations) hidden_probs[:, 0] = 1 label_out = np.exp(np.dot(hidden_probs, self.w_class)) label_out = np.divide(label_out, np.array([np.sum(label_out, axis=1).tolist()]).T) predicted_ans = np.argmax(label_out, axis=1) counter += np.count_nonzero(predicted_ans - np.argmax(label, axis=1)) err_cr -= np.sum(np.multiply(label, np.log(label_out))) ans.append(predicted_ans.tolist()) err = err_cr / test_num_batches if self.path: datafile = os.path.join(self.path, test_name) if not os.path.exists(datafile): os.mkdir(datafile) datafile = os.path.join(datafile, 'test_result.txt') with open(datafile, 'at') as fp: fp.write('%s,%s\n' % (counter, err)) print(' %s, wrong: %s, error: %s' % (test_name, counter, err)) print(ans) return [ans, counter, err] @staticmethod def _logistic(x): # return 1.0 / (1 + np.exp(-x)) return .5 * (1 + np.tanh(.5 * x)) @staticmethod def _classify_init(w_class, hidden_probs, label): """ the loss function of the RBM net with each RBM weights hold :param w_class: w_class :param hidden_probs: the output (hidden units) of the top RBM, suppose the input (visible units) of RBM net is data :param label: the label of data :return: a list, the first elements is value of the loss function with each RBM weights hold the second elements is a list, consisting the partial derivative of the function """ label_out = np.exp(np.dot(hidden_probs, w_class)) # label_out = np.array(list(map(lambda x: list(map(lambda y: y/np.sum(x), x)), label_out))) label_out = np.divide(label_out, np.array([np.sum(label_out, axis=1).tolist()]).T) # f = - np.sum(np.array(list(map(lambda x: list(map(lambda y: y[0]*y[1], zip(x[0], x[1]))), # zip(label, np.log(label_out)))))) f = - np.sum(np.multiply(label, np.log(label_out))) df = np.dot(hidden_probs.T, label_out - label) return [f, [df]] def _classify(self, w_class, weights, data, label): """ the loss function of the RBM net :param w_class: w_class :param weights: a list, consisting of weights of each RBM :param data: the input (visible units) of the first RBM :param label: the label of the data :return: a list, the first elements is value of the loss function the second elements is a list, consisting the partial derivative of the function corresponding to w_class and weights[i] """ # hidden_probs is a list, the i-th elements is the input of the i-th RBM or the output of the i-1th RBM hidden_probs = [np.insert(data, 0, 1, axis=1)] * (self.num_layers + 1) # 0 data 1 for i in range(0, self.num_layers): hidden_activations = np.dot(hidden_probs[i], weights[i]) hidden_probs[i + 1] = self._logistic(hidden_activations) hidden_probs[i + 1][:, 0] = 1 label_out = np.exp(np.dot(hidden_probs[self.num_layers], w_class)) # label_out = np.array(list(map(lambda x: list(map(lambda y: y/np.sum(x), x)), label_out))) # f = - np.sum(np.array(list(map(lambda x: list(map(lambda y: y[0]*y[1], zip(x[0], x[1]))), # zip(label, np.log(label_out)))))) label_out = np.divide(label_out, np.array([np.sum(label_out, axis=1).tolist()]).T) f = - np.sum(np.multiply(label, np.log(label_out))) io = label_out - label dw_class = np.dot(hidden_probs[self.num_layers].T, io) tmp1 = np.dot(io, w_class.T) # tmp2 = np.array(list(map(lambda x: list(map(lambda y: 1-y, x)), hidden_probs[self.num_layers]))) tmp2 = np.subtract(1, hidden_probs[self.num_layers]) # Ix = np.array(list(map(lambda x: list(map(lambda y: y[0]*y[1]*y[2], zip(x[0], x[1], x[2]))), # zip(tmp1, hidden_probs[self.num_layers], tmp2)))) ix = np.multiply(
np.multiply(tmp1, hidden_probs[self.num_layers])
numpy.multiply
import numpy as np import gmpy2 from gmpy2 import mpfr, mpc import flamp def to_fp(A): return np.array(A, float) def to_cpx(A): return np.array(A, complex) ### linalg def test_qr_real(): n = 5 A = np.random.rand(n, n) AA = mpfr(1) * A Q, R = flamp.qr(AA) assert Q.shape == (n, n) and R.shape == (n, n) assert np.allclose(to_fp(Q.T @ Q), np.eye(n)) assert np.allclose(to_fp(Q @ R), A) assert np.all(np.tril(R, -1) == 0) ## special case: size 0 matrix AA = flamp.zeros((4, 0)) Q, R = flamp.qr(AA) assert np.allclose(to_fp(Q), np.eye(4)) assert R.shape == (4, 0) def test_qr_complex(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A Q, R = flamp.qr(AA) assert Q.shape == (n, n) and R.shape == (n, n) assert np.allclose(to_cpx(Q.T.conj() @ Q), np.eye(n)) assert np.allclose(to_cpx(Q @ R), A) assert np.all(np.tril(R, -1) == 0) def test_inverse_real(): n = 5 A = np.random.rand(n, n) AA = mpfr(1) * A Ainv = flamp.inverse(AA) assert A.shape == (n, n) assert np.allclose(to_fp(Ainv @ A), np.eye(n)) def test_inverse_complex(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A Ainv = flamp.inverse(AA) assert A.shape == (n, n) assert np.allclose(to_cpx(Ainv @ A), np.eye(n)) def test_lu_solve_real(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n) AA = mpfr(1) * A x = flamp.lu_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_fp(A @ x), b) def test_lu_solve_real_block(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n, 3) AA = mpfr(1) * A x = flamp.lu_solve(AA, b) assert x.shape == (n, 3) assert np.allclose(to_fp(A @ x), b) def test_lu_solve_complex(): n = 5 A, b = np.random.rand(n, n) + 1j * np.random.rand(n, n), np.random.rand(n) AA = mpfr(1) * A x = flamp.lu_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_cpx(A @ x), b) def test_lu(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A P, L, U = flamp.lu(AA) assert np.allclose(to_cpx(P @ AA), to_cpx(L @ U)) def test_cholesky_solve_real(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n) A = A.T @ A AA = mpfr(1) * A x = flamp.cholesky_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_fp(A @ x), b) def test_cholesky_solve_real_block(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n, 3) A = A.T @ A AA = mpfr(1) * A x = flamp.cholesky_solve(AA, b) assert x.shape == (n, 3) assert np.allclose(to_fp(A @ x), b) def test_qr_solve_real(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n) AA = mpfr(1) * A x = flamp.qr_solve(AA, b) assert x.shape == (n,) assert np.allclose(to_fp(A @ x), b) def test_qr_solve_real_block(): n = 5 A, b = np.random.rand(n, n), np.random.rand(n, 3) AA = mpfr(1) * A x = flamp.qr_solve(AA, b) assert x.shape == (n, 3) assert np.allclose(to_fp(A @ x), b) def test_solve_real_overdet(): n = 5 A, b = np.random.rand(n + 2, n), np.random.rand(n + 2, 3) AA = mpfr(1) * A x = flamp.qr_solve(AA, b) x2 = flamp.lu_solve(AA, b) assert x.shape == (n, 3) assert x2.shape == (n, 3) assert np.allclose(to_fp(x), to_fp(x2)) def test_det(): n = 5 E = np.random.rand(n) # random eigenvalues U = mpfr(1) * np.random.rand(n, n) Uinv = flamp.inverse(U) A = U @ np.diag(E) @ Uinv det = flamp.det(A) assert np.allclose(to_fp(det), np.prod(E)) ### eigen def test_eig_real(): A = mpfr(1) * np.arange(9).reshape((3, 3)) E, UL, UR = flamp.eig(A, left=True, right=True) assert np.allclose(to_cpx(A @ UR), to_cpx(E[None, :] * UR)) assert np.allclose(to_cpx(UL @ A), to_cpx(E[:, None] * UL)) # compute only eigenvalues E2 = flamp.eig(A, left=False, right=False) assert np.all(E == E2) def test_eig_complex(): A = mpfr(1) * (np.random.rand(5, 5) + 1j * np.random.rand(5, 5)) E, UL, UR = flamp.eig(A, left=True, right=True) assert np.allclose(to_cpx(A @ UR), to_cpx(E[None, :] * UR)) assert np.allclose(to_cpx(UL @ A), to_cpx(E[:, None] * UL)) # compute only eigenvalues E2 = flamp.eig(A, left=False, right=False) assert np.all(E == E2) def test_hessenberg_real(): n = 5 A = np.random.rand(n, n) AA = mpfr(1) * A Q, H = flamp.hessenberg(AA) assert Q.shape == (n, n) and H.shape == (n, n) assert np.allclose(to_fp(Q.T @ Q), np.eye(n)) assert np.allclose(to_fp(Q @ H @ Q.T), A) assert np.all(np.tril(H, -2) == 0) def test_hessenberg_complex(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A Q, H = flamp.hessenberg(AA) assert Q.shape == (n, n) and H.shape == (n, n) assert np.allclose(to_cpx(Q.T.conj() @ Q), np.eye(n)) assert np.allclose(to_cpx(Q @ H @ Q.T.conj()), A) assert np.all(np.tril(H, -2) == 0) def test_schur(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) AA = mpfr(1) * A Q, R = flamp.schur(AA) assert Q.shape == (n, n) and R.shape == (n, n) assert np.allclose(to_cpx(Q.T.conj() @ Q), np.eye(n)) assert np.allclose(to_cpx(Q @ R @ Q.T.conj()), A) assert np.all(np.tril(R, -1) == 0) ### eigen_symmetric def test_eigh_real(): n = 5 A = np.random.rand(n, n) A = A + A.T AA = mpfr(1) * A E, Q = flamp.eigh(AA) assert np.allclose(to_fp(Q.T @ Q), np.eye(n)) assert E.shape == (n,) assert np.allclose(to_fp(Q @ np.diag(E) @ Q.T), A) # compute only eigenvalues E2 = flamp.eigh(AA, eigvals_only=True) assert np.all(E == E2) def test_eigh_complex(): n = 5 A = np.random.rand(n, n) + 1j * np.random.rand(n, n) A = A + A.T.conj() AA = mpfr(1) * A E, Q = flamp.eigh(AA) assert np.allclose(to_cpx(Q.T.conj() @ Q),
np.eye(n)
numpy.eye
import qinfer import random import numpy as np import matplotlib.pyplot as plt from scipy.stats import norm import qmla.model_building_utilities as model_building_utilities import qmla.logging __all__ = ["gaussian_prior", "prelearned_true_parameters_prior"] def log_print(to_print_list, log_file, log_identifier="Distributions"): r"""Writng to unique QMLA instance log.""" qmla.logging.print_to_log( to_print_list=to_print_list, log_file=log_file, log_identifier=log_identifier ) def gaussian_prior( model_name, param_minimum=0, param_maximum=1, default_sigma=None, random_mean=False, # if set to true, chooses a random mean between given uniform min/max prior_specific_terms={}, log_file="qmd.log", log_identifier=None, **kwargs ): """ Genearates a QInfer Gaussian distribution . Given a model_name, deteremines the number of terms in the model, N. Generates a multivariate distribution with N dimensions. This is then used as the initial prior, which QHL uses to learn the model parameters. By default, each parameter's mean is the average of param_min and param_max, with sigma = mean/4. This can be changed by specifying prior_specific_terms: individual parameter's means/sigmas can be given. :param str model_name: Unique string representing a model. :param float param_minimum: Lower bound for distribution. :param float param_maximum: Upper bound for distribution. :param float default_sigma: Width of distribution desired. If None, defaults to 0.25 * (param_max - param_min). :param dict prior_specific_terms: Individual parameter mean and sigma to enforce in the distribution. :param str log_file: Path of the log file for logging errors. :param str log_identifier: Unique identifying sting for logging. :return QInfer.Distribution dist: distribution to be used as prior for parameter learning of the named model. """ log_print( [ "Getting prior for model:", model_name, "Specific terms:", prior_specific_terms, ], log_file, log_identifier, ) individual_terms = model_building_utilities.get_constituent_names_from_name( model_name ) num_terms = len(individual_terms) available_specific_terms = list(prior_specific_terms.keys()) means = [] sigmas = [] default_mean = np.mean([param_minimum, param_maximum]) # TODO reconsider how default sigma is generated # default_sigma = default_mean/2 # TODO is this safe? if default_sigma is None: default_sigma = (param_maximum - param_minimum) / 4 for term in individual_terms: if term in available_specific_terms: means.append(prior_specific_terms[term][0]) sigmas.append(prior_specific_terms[term][1]) else: if random_mean: rand_mean = random.uniform(param_minimum, param_maximum) means.append(rand_mean) else: means.append(default_mean) sigmas.append(default_sigma) means =
np.array(means)
numpy.array
import numpy as np def nichols_grid(gmin,pmin,pmax,cm=None,cp=None): # Round Gmin from below to nearest multiple of -20dB, # and Pmin,Pmax to nearest multiple of 360 gmin = min(-20,20*np.floor(gmin/20)) pmax = 360*np.ceil(pmax/360); pmin = min(pmax-360,360*np.floor(pmin/360)); if cp is None: p1 = np.array([1,5,10,20,30,50,90,120,150,180]) else: p1 = cp g1_part1 = np.array([6,3,2,1,.75,.5,.4,.3,.25,.2,.15,.1,.05,0,-.05,-.1,-.15,-.2,-.25,-.3,-.4,-.5,-.75,-1,-2,-3,-4,-5,-6,-9,-12,-16]) g1_part2 =np.arange(-20,max(-40,gmin)-1,-10) if gmin >-40: g1 = np.hstack([g1_part1,g1_part2]) else: g1 = np.hstack([g1_part1,g1_part2,gmin]) # Compute gains GH and phases PH in H plane [p,g] = np.meshgrid((np.pi/180)*p1,10**(g1/20)) z = g* np.exp(1j*p) H = z/(1-z) gH = 20*np.log10(np.abs(H)) pH = np.remainder((180/np.pi)*np.angle(H)+360,360) # Add phase lines for angle between 180 and 360 (using symmetry) p_name = ["%.2f deg" % p1_temp for p1_temp in np.hstack([-360+p1,-p1])] gH = np.hstack([gH,gH]) pH = np.hstack([pH,360-pH]) phase_lines = [] for indice in range(gH.shape[1]): phase_lines.append({"y": gH[:,indice],"x": pH[:,indice]-360,"name":p_name[indice]}) # (2) Generate isogain lines for following gain values: if cm is None: g2_part1 = np.array([6,3,1,.5,.25,0,-1,-3,-6,-12,-20]) g2_part2 = np.arange(-40,-20,gmin-1) g2 = np.hstack([g2_part1,g2_part2]) else: g2 = cm #% Phase points p2 = np.array([1,2,3,4,5,7.5,10,15,20,25,30,45,60,75,90,105,120,135,150,175,180]); p2 = np.hstack([p2,np.flip(360-p2[:-1])]) [g,p] = np.meshgrid(10**(g2/20),(np.pi/180)*p2) # mesh in H/(1+H) plane z = g*
np.exp(1j*p)
numpy.exp
import collections import numpy as np import uncertainties import pint from uncertainties import ufloat from uncertainties import ufloat_fromstr from pint import UnitRegistry import string #import latex from uncertainties.unumpy import (nominal_values as noms, std_devs as stds) import uncertainties.unumpy as unp import scipy.constants as const u = UnitRegistry() Q_ = u.Quantity class Latexdocument(object): def __init__(self, filename): self.name = filename def tabular(self, spalten, header, places, caption, label): with open(self.name, 'w') as f: f.write('\\begin{table} \n\\centering \n\\caption{' + caption + '} \n\\label{tab: ' + label + '} \n\\begin{tabular}{') f.write(len(spalten) * 'S ') f.write('} \n\\toprule \n') f.write(header + ' \\\ \n') f.write('\\midrule \n ') for i in range(0, len(spalten[0])): for j in range(0, len(spalten)): if j == len(spalten) - 1: f.write(('{:.' + str(places[j]) + 'f}' + '\\\ \n').format(spalten[j][i])) else: f.write(('{:.' + str(places[j]) + 'f} ' + ' & ').format(spalten[j][i])) f.write('\\bottomrule \n\\end{tabular} \n\\end{table}') I_pol = Q_(np.array([0.116, 0.067, 0.034, 0.011, 0.001, 0.004, 0.020, 0.049, 0.086, 0.137, 0.187, 0.238, 0.281, 0.307, 0.308, 0.288, 0.251, 0.198, 0.137, 0.083, 0.040, 0.013, 0.001, 0.005, 0.024, 0.053, 0.094, 0.146, 0.208, 0.264, 0.295, 0.296, 0.279, 0.252, 0.214, 0.167, 0.111]), 'mA') #in mA winkel = Q_(
np.linspace(0, 360, 37)
numpy.linspace
#!/usr/bin/env python import pytest import os import shutil import numpy as np import cv2 import plantcv as pcv import plantcv.learn # Import matplotlib and use a null Template to block plotting to screen # This will let us test debug = "plot" import matplotlib matplotlib.use('Template') TEST_DATA = os.path.join(os.path.dirname(os.path.abspath(__file__)), "data") TEST_TMPDIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), "..", ".cache") TEST_COLOR_DIM = (2056, 2454, 3) TEST_GRAY_DIM = (2056, 2454) TEST_BINARY_DIM = TEST_GRAY_DIM TEST_INPUT_COLOR = "input_color_img.jpg" TEST_INPUT_GRAY = "input_gray_img.jpg" TEST_INPUT_BINARY = "input_binary_img.png" TEST_INPUT_ROI = "input_roi.npz" TEST_INPUT_CONTOURS = "input_contours.npz" TEST_VIS = "VIS_SV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR = "NIR_SV_0_z300_h1_g0_e15000_v500_93059.png" TEST_VIS_TV = "VIS_TV_0_z300_h1_g0_e85_v500_93054.png" TEST_NIR_TV = "NIR_TV_0_z300_h1_g0_e15000_v500_93059.png" TEST_INPUT_MASK = "input_mask.png" TEST_INPUT_NIR_MASK = "input_nir.png" TEST_INPUT_FDARK = "FLUO_TV_dark.png" TEST_INPUT_FMIN = "FLUO_TV_min.png" TEST_INPUT_FMAX = "FLUO_TV_max.png" TEST_INPUT_FMASK = "FLUO_TV_MASK.png" TEST_INTPUT_GREENMAG = "input_green-magenta.jpg" TEST_INTPUT_MULTI = "multi_ori_image.jpg" TEST_INPUT_MULTI_CONTOUR = "roi_objects.npz" TEST_INPUT_ClUSTER_CONTOUR = "clusters_i.npz" TEST_INPUT_GENOTXT = "cluster_names.txt" TEST_INPUT_CROPPED = 'cropped_img.jpg' TEST_INPUT_CROPPED_MASK = 'cropped-mask.png' TEST_INPUT_MARKER = 'seed-image.jpg' TEST_FOREGROUND = "TEST_FOREGROUND.jpg" TEST_BACKGROUND = "TEST_BACKGROUND.jpg" TEST_PDFS = "naive_bayes_pdfs.txt" TEST_VIS_SMALL = "setaria_small_vis.png" TEST_MASK_SMALL = "setaria_small_mask.png" TEST_VIS_COMP_CONTOUR = "setaria_composed_contours.npz" TEST_ACUTE_RESULT = np.asarray([[[119, 285]], [[151, 280]], [[168, 267]], [[168, 262]], [[171, 261]], [[224, 269]], [[246, 271]], [[260, 277]], [[141, 248]], [[183, 194]], [[188, 237]], [[173, 240]], [[186, 260]], [[147, 244]], [[163, 246]], [[173, 268]], [[170, 272]], [[151, 320]], [[195, 289]], [[228, 272]], [[210, 272]], [[209, 247]], [[210, 232]]]) TEST_VIS_SMALL_PLANT = "setaria_small_plant_vis.png" TEST_MASK_SMALL_PLANT = "setaria_small_plant_mask.png" TEST_VIS_COMP_CONTOUR_SMALL_PLANT = "setaria_small_plant_composed_contours.npz" TEST_SAMPLED_RGB_POINTS = "sampled_rgb_points.txt" # ########################## # Tests setup function # ########################## def setup_function(): if not os.path.exists(TEST_TMPDIR): os.mkdir(TEST_TMPDIR) # ########################## # Tests for the main package # ########################## def test_plantcv_acute(): # Read in test data mask = cv2.imread(os.path.join(TEST_DATA, TEST_MASK_SMALL), -1) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR)) obj_contour = contours_npz['arr_0'] # Test with debug = "print" _ = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask, device=0, debug="print") # Test with debug = None device, homology_pts = pcv.acute(obj=obj_contour, win=5, thresh=15, mask=mask, device=0, debug=None) assert all([i == j] for i, j in zip(np.shape(homology_pts), (29, 1, 2))) def test_plantcv_acute_vertex(): # Test cache directory cache_dir = os.path.join(TEST_TMPDIR, "test_plantcv_acute_vertex") os.mkdir(cache_dir) # Read in test data img = cv2.imread(os.path.join(TEST_DATA, TEST_VIS_SMALL)) contours_npz = np.load(os.path.join(TEST_DATA, TEST_VIS_COMP_CONTOUR)) obj_contour = contours_npz['arr_0'] # Test with debug = "print" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, device=0, debug="print") os.rename("1_acute_vertices.png", os.path.join(cache_dir, "1_acute_vertices.png")) # Test with debug = "plot" _ = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, device=0, debug="plot") # Test with debug = None device, acute = pcv.acute_vertex(obj=obj_contour, win=5, thresh=15, sep=5, img=img, device=0, debug=None) assert all([i == j] for i, j in zip(np.shape(acute),
np.shape(TEST_ACUTE_RESULT)
numpy.shape
from __future__ import division, print_function import numpy as np from numpy import dot, newaxis from numpy.linalg import norm, solve import os import sys import lib from training import print_dict, training_data def col_square_norm(A): return np.einsum('ij, ij->j', A, A) def row_square_norm(A): return np.einsum('ij, ij->i', A, A) # Optimize B in-place, using Lagrange dual method of: # Lee et al., Efficient Sparse Coding Algorithms. # with c=1. @lib.timeit def optimize_dictionary(X_T, S_T, B_T, Lam_0=None): SST = dot(S_T.T, S_T) XST = dot(X_T.T, S_T) XST_T = XST.T.copy() XTX = dot(X_T, X_T.T) XSTTXST = dot(XST_T, XST) def B(Lam_vec): Lam = np.diag(Lam_vec) return solve(SST + Lam, XST_T) def D(Lam_vec): Lam = np.diag(Lam_vec) return np.trace(XTX) - np.trace(Lam) \ - np.trace(XST.dot(solve(SST + Lam, XST_T))) def grad(Lam_vec): Lam = np.diag(Lam_vec) return row_square_norm(solve(SST + Lam, XST_T)) - 1 def hessian(Lam, inv_SST_Lam): return -2 * inv_SST_Lam \ * (inv_SST_Lam.dot(XSTTXST).dot(inv_SST_Lam)) # last_B_T = None Lam_vec = np.ones(S_T.shape[1]) if Lam_0 is None else Lam_0.copy() print('current D:', D(Lam_vec)) Lam_vec, _, _ = scipy.optimize.fmin_l_bfgs_b( func=lambda x: -D(x), bounds=[(0, np.inf) for l in Lam_vec], fprime=lambda x: -grad(x), x0=Lam_vec ) print('final D:', D(Lam_vec)) B_T[...] = B(Lam_vec) print(B_T) return Lam_vec def solve_cholesky(L, b): # solve L L* x = b y = solve_triangular(L, b, lower=True) return solve_triangular(L.T, y) @lib.timeit # @profile def feature_sign_search_vec(Y_T, X_T, A_T, gamma): Y = Y_T.T.copy() A = A_T.T.copy() X = X_T.T.copy() ATA = dot(A_T, A) X_T[abs(X_T) < 1e-7] = 0 active_set = X != 0 theta =
np.sign(X)
numpy.sign
import math import os import time import numpy as np from paddle import fluid from paddle.fluid import layers from pytracking.features import augmentation from pytracking.libs import dcf, operation, fourier from pytracking.libs.optimization import ConjugateGradient, GaussNewtonCG, GradientDescentL2 from pytracking.libs.paddle_utils import mod, n2p, \ leaky_relu, dropout2d from pytracking.libs.tensorlist import TensorList from pytracking.tracker.atom.optim import FactorizedConvProblem, ConvProblem from pytracking.tracker.base.basetracker import BaseTracker class ATOM(BaseTracker): def initialize_features(self): if not getattr(self, 'features_initialized', False): self.params.features.initialize() self.features_initialized = True def initialize(self, image, state, *args, **kwargs): # Initialize some stuff self.frame_num = 1 # TODO: for now, we don't support explictly setting up device # if not hasattr(self.params, 'device'): # self.params.device = 'cuda' if self.params.use_gpu else 'cpu' # Initialize features self.initialize_features() # Check if image is color self.params.features.set_is_color(image.shape[2] == 3) # Get feature specific params self.fparams = self.params.features.get_fparams('feature_params') self.time = 0 tic = time.time() # Get position and size self.pos = np.array( [state[1] + (state[3] - 1) / 2, state[0] + (state[2] - 1) / 2], 'float32') self.target_sz = np.array([state[3], state[2]], 'float32') # Set search area self.target_scale = 1.0 search_area = np.prod(self.target_sz * self.params.search_area_scale) if search_area > self.params.max_image_sample_size: self.target_scale = math.sqrt(search_area / self.params.max_image_sample_size) elif search_area < self.params.min_image_sample_size: self.target_scale = math.sqrt(search_area / self.params.min_image_sample_size) # Check if IoUNet is used self.use_iou_net = getattr(self.params, 'use_iou_net', True) # Target size in base scale self.base_target_sz = self.target_sz / self.target_scale # Use odd square search area and set sizes feat_max_stride = max(self.params.features.stride()) if getattr(self.params, 'search_area_shape', 'square') == 'square': self.img_sample_sz = np.ones((2, ), 'float32') * np.round( np.sqrt( np.prod(self.base_target_sz * self.params.search_area_scale))) elif self.params.search_area_shape == 'initrect': self.img_sample_sz = np.round(self.base_target_sz * self.params.search_area_scale) else: raise ValueError('Unknown search area shape') if self.params.feature_size_odd: self.img_sample_sz += feat_max_stride - mod(self.img_sample_sz, (2 * feat_max_stride)) else: self.img_sample_sz += feat_max_stride - mod( (self.img_sample_sz + feat_max_stride), (2 * feat_max_stride)) # Set sizes self.img_support_sz = self.img_sample_sz self.feature_sz = self.params.features.size(self.img_sample_sz) self.output_sz = self.params.score_upsample_factor * self.img_support_sz # Interpolated size of the output self.kernel_size = self.fparams.attribute('kernel_size') self.iou_img_sample_sz = self.img_sample_sz # Optimization options self.params.precond_learning_rate = self.fparams.attribute( 'learning_rate') if self.params.CG_forgetting_rate is None or max( self.params.precond_learning_rate) >= 1: self.params.direction_forget_factor = 0 else: self.params.direction_forget_factor = ( 1 - max(self.params.precond_learning_rate) )**self.params.CG_forgetting_rate self.output_window = None if getattr(self.params, 'window_output', False): if getattr(self.params, 'use_clipped_window', False): self.output_window = dcf.hann2d_clipped( self.output_sz.astype('long'), self.output_sz.astype('long') * self.params.effective_search_area / self.params.search_area_scale, centered=False) else: self.output_window = dcf.hann2d( self.output_sz.astype('long'), centered=False) # Initialize some learning things self.init_learning() # Convert image im = image.astype('float32') self.im = im # For debugging only # Setup scale bounds self.image_sz = np.array([im.shape[0], im.shape[1]], 'float32') self.min_scale_factor = np.max(10 / self.base_target_sz) self.max_scale_factor = np.min(self.image_sz / self.base_target_sz) # Extract and transform sample x = self.generate_init_samples(im) # Initialize iounet if self.use_iou_net: self.init_iou_net() # Initialize projection matrix self.init_projection_matrix(x) # Transform to get the training sample train_x = self.preprocess_sample(x) # Generate label function init_y = self.init_label_function(train_x) # Init memory self.init_memory(train_x) # Init optimizer and do initial optimization self.init_optimization(train_x, init_y) self.pos_iounet = self.pos.copy() self.time += time.time() - tic def track(self, image): self.frame_num += 1 # Convert image # im = numpy_to_paddle(image) im = image.astype('float32') self.im = im # For debugging only # ------- LOCALIZATION ------- # # Get sample sample_pos = self.pos.round() sample_scales = self.target_scale * self.params.scale_factors test_x = self.extract_processed_sample(im, self.pos, sample_scales, self.img_sample_sz) # Compute scores scores_raw = self.apply_filter(test_x) translation_vec, scale_ind, s, flag = self.localize_target(scores_raw) # Update position and scale if flag != 'not_found': if self.use_iou_net: update_scale_flag = getattr(self.params, 'update_scale_when_uncertain', True) or flag != 'uncertain' if getattr(self.params, 'use_classifier', True): self.update_state(sample_pos + translation_vec) self.refine_target_box(sample_pos, sample_scales[scale_ind], scale_ind, update_scale_flag) elif getattr(self.params, 'use_classifier', True): self.update_state(sample_pos + translation_vec, sample_scales[scale_ind]) # ------- UPDATE ------- # # Check flags and set learning rate if hard negative update_flag = flag not in ['not_found', 'uncertain'] hard_negative = (flag == 'hard_negative') learning_rate = self.params.hard_negative_learning_rate if hard_negative else None if update_flag: # Get train sample train_x = TensorList([x[scale_ind:scale_ind + 1] for x in test_x]) # Create label for sample train_y = self.get_label_function(sample_pos, sample_scales[scale_ind]) # Update memory self.update_memory(train_x, train_y, learning_rate) # Train filter if hard_negative: self.filter_optimizer.run(self.params.hard_negative_CG_iter) elif (self.frame_num - 1) % self.params.train_skipping == 0: self.filter_optimizer.run(self.params.CG_iter) self.filter = self.filter_optimizer.x # Set the pos of the tracker to iounet pos if self.use_iou_net and flag != 'not_found': self.pos = self.pos_iounet.copy() # Return new state yx = self.pos - (self.target_sz - 1) / 2 new_state = np.array( [yx[1], yx[0], self.target_sz[1], self.target_sz[0]], 'float32') return new_state.tolist() def update_memory(self, sample_x: TensorList, sample_y: TensorList, learning_rate=None): replace_ind = self.update_sample_weights( self.sample_weights, self.previous_replace_ind, self.num_stored_samples, self.num_init_samples, self.fparams, learning_rate) self.previous_replace_ind = replace_ind for train_samp, x, ind in zip(self.training_samples, sample_x, replace_ind): train_samp[ind] = x[0] for y_memory, y, ind in zip(self.y, sample_y, replace_ind): y_memory[ind] = y[0] if self.hinge_mask is not None: for m, y, ind in zip(self.hinge_mask, sample_y, replace_ind): m[ind] = layers.cast(y >= self.params.hinge_threshold, 'float32')[0] self.num_stored_samples += 1 def update_sample_weights(self, sample_weights, previous_replace_ind, num_stored_samples, num_init_samples, fparams, learning_rate=None): # Update weights and get index to replace in memory replace_ind = [] for sw, prev_ind, num_samp, num_init, fpar in zip( sample_weights, previous_replace_ind, num_stored_samples, num_init_samples, fparams): lr = learning_rate if lr is None: lr = fpar.learning_rate init_samp_weight = getattr(fpar, 'init_samples_minimum_weight', None) if init_samp_weight == 0: init_samp_weight = None s_ind = 0 if init_samp_weight is None else num_init if num_samp == 0 or lr == 1: sw[:] = 0 sw[0] = 1 r_ind = 0 else: # Get index to replace r_ind = np.argmin(sw[s_ind:], 0) r_ind = int(r_ind + s_ind) # Update weights if prev_ind is None: sw /= 1 - lr sw[r_ind] = lr else: sw[r_ind] = sw[prev_ind] / (1 - lr) sw /= sw.sum() if init_samp_weight is not None and sw[:num_init].sum( ) < init_samp_weight: sw /= init_samp_weight + sw[num_init:].sum() sw[:num_init] = init_samp_weight / num_init replace_ind.append(r_ind) return replace_ind def localize_target(self, scores_raw): # Weighted sum (if multiple features) with interpolation in fourier domain weight = self.fparams.attribute('translation_weight', 1.0) scores_raw = weight * scores_raw sf_weighted = fourier.cfft2(scores_raw) / (scores_raw.size(2) * scores_raw.size(3)) for i, (sz, ksz) in enumerate(zip(self.feature_sz, self.kernel_size)): sf_weighted[i] = fourier.shift_fs(sf_weighted[i], math.pi * ( 1 - np.array([ksz[0] % 2, ksz[1] % 2]) / sz)) scores_fs = fourier.sum_fs(sf_weighted) scores = fourier.sample_fs(scores_fs, self.output_sz) if self.output_window is not None and not getattr( self.params, 'perform_hn_without_windowing', False): scores *= self.output_window if getattr(self.params, 'advanced_localization', False): return self.localize_advanced(scores) # Get maximum max_score, max_disp = dcf.max2d(scores) scale_ind = np.argmax(max_score, axis=0)[0] max_disp = max_disp.astype('float32') # Convert to displacements in the base scale output_sz = self.output_sz.copy() disp = mod((max_disp + output_sz / 2), output_sz) - output_sz / 2 # Compute translation vector and scale change factor translation_vec = np.reshape( disp[scale_ind].astype('float32'), [-1]) * ( self.img_support_sz / self.output_sz) * self.target_scale translation_vec *= self.params.scale_factors[scale_ind] # Shift the score output for visualization purposes if self.params.debug >= 2: sz = scores.shape[-2:] scores = np.concatenate( [scores[..., sz[0] // 2:, :], scores[..., :sz[0] // 2, :]], -2) scores = np.concatenate( [scores[..., sz[1] // 2:], scores[..., :sz[1] // 2]], -1) return translation_vec, scale_ind, scores, None def update_state(self, new_pos, new_scale=None): # Update scale if new_scale is not None: self.target_scale = np.clip(new_scale, self.min_scale_factor, self.max_scale_factor) self.target_sz = self.base_target_sz * self.target_scale # Update pos inside_ratio = 0.2 inside_offset = (inside_ratio - 0.5) * self.target_sz self.pos = np.maximum( np.minimum(new_pos, self.image_sz.astype('float32') - inside_offset), inside_offset) def get_label_function(self, sample_pos, sample_scale): # Generate label function train_y = TensorList() target_center_norm = (self.pos - sample_pos) / (self.img_support_sz * sample_scale) for sig, sz, ksz in zip(self.sigma, self.feature_sz, self.kernel_size): center = sz * target_center_norm + 0.5 * np.array( [(ksz[0] + 1) % 2, (ksz[1] + 1) % 2], 'float32') train_y.append(dcf.label_function_spatial(sz, sig, center)) return train_y def extract_sample(self, im: np.ndarray, pos: np.ndarray, scales, sz: np.ndarray, debug_save_name): return self.params.features.extract(im, pos, scales, sz, debug_save_name) def extract_processed_sample(self, im: np.ndarray, pos: np.ndarray, scales, sz: np.ndarray, debug_save_name=None) -> (TensorList, TensorList): x = self.extract_sample(im, pos, scales, sz, debug_save_name) return self.preprocess_sample(self.project_sample(x)) def apply_filter(self, sample_x: TensorList): with fluid.dygraph.guard(): sample_x = sample_x.apply(n2p) filter = self.filter.apply(n2p) return operation.conv2d(sample_x, filter, mode='same').numpy() def init_projection_matrix(self, x): # Set if using projection matrix self.params.use_projection_matrix = getattr( self.params, 'use_projection_matrix', True) if self.params.use_projection_matrix: self.compressed_dim = self.fparams.attribute('compressed_dim', None) proj_init_method = getattr(self.params, 'proj_init_method', 'pca') if proj_init_method == 'pca': raise NotImplementedError elif proj_init_method == 'randn': with fluid.dygraph.guard(): self.projection_matrix = TensorList([ None if cdim is None else layers.gaussian_random( (cdim, ex.shape[1], 1, 1), 0.0, 1 / math.sqrt(ex.shape[1])).numpy() for ex, cdim in zip(x, self.compressed_dim) ]) elif proj_init_method == 'np_randn': rng = np.random.RandomState(0) self.projection_matrix = TensorList([ None if cdim is None else rng.normal( size=(cdim, ex.shape[1], 1, 1), loc=0.0, scale=1 / math.sqrt(ex.shape[1])).astype('float32') for ex, cdim in zip(x, self.compressed_dim) ]) elif proj_init_method == 'ones': self.projection_matrix = TensorList([ None if cdim is None else np.ones((cdim, ex.shape[1], 1, 1), 'float32') / math.sqrt(ex.shape[1]) for ex, cdim in zip(x, self.compressed_dim) ]) else: self.compressed_dim = x.size(1) self.projection_matrix = TensorList([None] * len(x)) def preprocess_sample(self, x: TensorList) -> (TensorList, TensorList): if getattr(self.params, '_feature_window', False): x = x * self.feature_window return x def init_label_function(self, train_x): # Allocate label function self.y = TensorList([ np.zeros( [self.params.sample_memory_size, 1, x.shape[2], x.shape[3]], 'float32') for x in train_x ]) # Output sigma factor output_sigma_factor = self.fparams.attribute('output_sigma_factor') self.sigma = output_sigma_factor * np.ones((2, ), 'float32') * ( self.feature_sz / self.img_support_sz * self.base_target_sz).apply(np.prod).apply(np.sqrt) # Center pos in normalized coords target_center_norm = (self.pos - np.round(self.pos)) / ( self.target_scale * self.img_support_sz) # Generate label functions for y, sig, sz, ksz, x in zip(self.y, self.sigma, self.feature_sz, self.kernel_size, train_x): center_pos = sz * target_center_norm + 0.5 * np.array( [(ksz[0] + 1) % 2, (ksz[1] + 1) % 2], 'float32') for i, T in enumerate(self.transforms[:x.shape[0]]): sample_center = center_pos + np.array( T.shift, 'float32') / self.img_support_sz * sz y[i] = dcf.label_function_spatial(sz, sig, sample_center) # Return only the ones to use for initial training return TensorList([y[:x.shape[0]] for y, x in zip(self.y, train_x)]) def init_memory(self, train_x): # Initialize first-frame training samples self.num_init_samples = train_x.size(0) self.init_sample_weights = TensorList( [np.ones(x.shape[0], 'float32') / x.shape[0] for x in train_x]) self.init_training_samples = train_x # Sample counters and weights self.num_stored_samples = self.num_init_samples.copy() self.previous_replace_ind = [None] * len(self.num_stored_samples) self.sample_weights = TensorList([ np.zeros(self.params.sample_memory_size, 'float32') for x in train_x ]) for sw, init_sw, num in zip(self.sample_weights, self.init_sample_weights, self.num_init_samples): sw[:num] = init_sw # Initialize memory self.training_samples = TensorList( [[np.zeros([cdim, x.shape[2], x.shape[3]], 'float32')] * self.params.sample_memory_size for x, cdim in zip(train_x, self.compressed_dim)]) def init_learning(self): # Get window function self.feature_window = TensorList( [dcf.hann2d(sz) for sz in self.feature_sz]) # Filter regularization self.filter_reg = self.fparams.attribute('filter_reg') # Activation function after the projection matrix (phi_1 in the paper) projection_activation = getattr(self.params, 'projection_activation', 'none') if isinstance(projection_activation, tuple): projection_activation, act_param = projection_activation if projection_activation == 'none': self.projection_activation = lambda x: x elif projection_activation == 'relu': self.projection_activation = layers.relu elif projection_activation == 'elu': self.projection_activation = layers.elu elif projection_activation == 'mlu': self.projection_activation = lambda x: layers.elu(leaky_relu(x, 1 / act_param), act_param) else: raise ValueError('Unknown activation') # Activation function after the output scores (phi_2 in the paper) response_activation = getattr(self.params, 'response_activation', 'none') if isinstance(response_activation, tuple): response_activation, act_param = response_activation if response_activation == 'none': self.response_activation = lambda x: x elif response_activation == 'relu': self.response_activation = layers.relu elif response_activation == 'elu': self.response_activation = layers.elu elif response_activation == 'mlu': self.response_activation = lambda x: layers.elu(leaky_relu(x, 1 / act_param), act_param) else: raise ValueError('Unknown activation') def generate_init_samples(self, im: np.ndarray) -> TensorList: """Generate augmented initial samples.""" # Compute augmentation size aug_expansion_factor = getattr(self.params, 'augmentation_expansion_factor', None) aug_expansion_sz = self.img_sample_sz.copy() aug_output_sz = None if aug_expansion_factor is not None and aug_expansion_factor != 1: aug_expansion_sz = (self.img_sample_sz * aug_expansion_factor).astype('long') aug_expansion_sz += ( aug_expansion_sz - self.img_sample_sz.astype('long')) % 2 aug_expansion_sz = aug_expansion_sz.astype('float32') aug_output_sz = self.img_sample_sz.astype('long').tolist() # Random shift operator get_rand_shift = lambda: None random_shift_factor = getattr(self.params, 'random_shift_factor', 0) if random_shift_factor > 0: get_rand_shift = lambda: ((np.random.uniform(size=[2]) - 0.5) * self.img_sample_sz * random_shift_factor).astype('long').tolist() # Create transofmations self.transforms = [augmentation.Identity(aug_output_sz)] if 'shift' in self.params.augmentation: self.transforms.extend([ augmentation.Translation(shift, aug_output_sz) for shift in self.params.augmentation['shift'] ]) if 'relativeshift' in self.params.augmentation: get_absolute = lambda shift: (np.array(shift, 'float32') * self.img_sample_sz / 2).astype('long').tolist() self.transforms.extend([ augmentation.Translation(get_absolute(shift), aug_output_sz) for shift in self.params.augmentation['relativeshift'] ]) if 'fliplr' in self.params.augmentation and self.params.augmentation[ 'fliplr']: self.transforms.append( augmentation.FlipHorizontal(aug_output_sz, get_rand_shift())) if 'blur' in self.params.augmentation: self.transforms.extend([ augmentation.Blur(sigma, aug_output_sz, get_rand_shift()) for sigma in self.params.augmentation['blur'] ]) if 'scale' in self.params.augmentation: self.transforms.extend([ augmentation.Scale(scale_factor, aug_output_sz, get_rand_shift()) for scale_factor in self.params.augmentation['scale'] ]) if 'rotate' in self.params.augmentation: self.transforms.extend([ augmentation.Rotate(angle, aug_output_sz, get_rand_shift()) for angle in self.params.augmentation['rotate'] ]) # Generate initial samples init_samples = self.params.features.extract_transformed( im, self.pos, self.target_scale, aug_expansion_sz, self.transforms) # Remove augmented samples for those that shall not have for i, use_aug in enumerate(self.fparams.attribute('use_augmentation')): if not use_aug: init_samples[i] = init_samples[i][0:1] # Add dropout samples if 'dropout' in self.params.augmentation: num, prob = self.params.augmentation['dropout'] self.transforms.extend(self.transforms[:1] * num) with fluid.dygraph.guard(): for i, use_aug in enumerate( self.fparams.attribute('use_augmentation')): if use_aug: init_samples[i] = np.concatenate([ init_samples[i], dropout2d( layers.expand( n2p(init_samples[i][0:1]), (num, 1, 1, 1)), prob, is_train=True).numpy() ]) return init_samples def init_optimization(self, train_x, init_y): # Initialize filter filter_init_method = getattr(self.params, 'filter_init_method', 'zeros') self.filter = TensorList([ np.zeros([1, cdim, sz[0], sz[1]], 'float32') for x, cdim, sz in zip(train_x, self.compressed_dim, self.kernel_size) ]) if filter_init_method == 'zeros': pass elif filter_init_method == 'ones': for idx, f in enumerate(self.filter): self.filter[idx] = np.ones(f.shape, 'float32') / np.prod(f.shape) elif filter_init_method == 'np_randn': rng = np.random.RandomState(0) for idx, f in enumerate(self.filter): self.filter[idx] = rng.normal( size=f.shape, loc=0, scale=1 / np.prod(f.shape)).astype('float32') elif filter_init_method == 'randn': for idx, f in enumerate(self.filter): with fluid.dygraph.guard(): self.filter[idx] = layers.gaussian_random( f.shape, std=1 / np.prod(f.shape)).numpy() else: raise ValueError('Unknown "filter_init_method"') # Get parameters self.params.update_projection_matrix = getattr( self.params, 'update_projection_matrix', True) and self.params.use_projection_matrix optimizer = getattr(self.params, 'optimizer', 'GaussNewtonCG') # Setup factorized joint optimization if self.params.update_projection_matrix: self.joint_problem = FactorizedConvProblem( self.init_training_samples, init_y, self.filter_reg, self.fparams.attribute('projection_reg'), self.params, self.init_sample_weights, self.projection_activation, self.response_activation) # Variable containing both filter and projection matrix joint_var = self.filter.concat(self.projection_matrix) # Initialize optimizer analyze_convergence = getattr(self.params, 'analyze_convergence', False) if optimizer == 'GaussNewtonCG': self.joint_optimizer = GaussNewtonCG( self.joint_problem, joint_var, plotting=(self.params.debug >= 3), analyze=True, fig_num=(12, 13, 14)) elif optimizer == 'GradientDescentL2': self.joint_optimizer = GradientDescentL2( self.joint_problem, joint_var, self.params.optimizer_step_length, self.params.optimizer_momentum, plotting=(self.params.debug >= 3), debug=analyze_convergence, fig_num=(12, 13)) # Do joint optimization if isinstance(self.params.init_CG_iter, (list, tuple)): self.joint_optimizer.run(self.params.init_CG_iter) else: self.joint_optimizer.run(self.params.init_CG_iter // self.params.init_GN_iter, self.params.init_GN_iter) # Get back filter and optimizer len_x = len(self.joint_optimizer.x) self.filter = self.joint_optimizer.x[:len_x // 2] # w2 in paper self.projection_matrix = self.joint_optimizer.x[len_x // 2:] # w1 in paper if analyze_convergence: opt_name = 'CG' if getattr(self.params, 'CG_optimizer', True) else 'GD' for val_name, values in zip(['loss', 'gradient'], [ self.joint_optimizer.losses, self.joint_optimizer.gradient_mags ]): val_str = ' '.join( ['{:.8e}'.format(v.item()) for v in values]) file_name = '{}_{}.txt'.format(opt_name, val_name) with open(file_name, 'a') as f: f.write(val_str + '\n') raise RuntimeError('Exiting') # Re-project samples with the new projection matrix compressed_samples = self.project_sample(self.init_training_samples, self.projection_matrix) for train_samp, init_samp in zip(self.training_samples, compressed_samples): for idx in range(init_samp.shape[0]): train_samp[idx] = init_samp[idx] self.hinge_mask = None # Initialize optimizer self.conv_problem = ConvProblem(self.training_samples, self.y, self.filter_reg, self.sample_weights, self.response_activation) if optimizer == 'GaussNewtonCG': self.filter_optimizer = ConjugateGradient( self.conv_problem, self.filter, fletcher_reeves=self.params.fletcher_reeves, direction_forget_factor=self.params.direction_forget_factor, debug=(self.params.debug >= 3), fig_num=(12, 13)) elif optimizer == 'GradientDescentL2': self.filter_optimizer = GradientDescentL2( self.conv_problem, self.filter, self.params.optimizer_step_length, self.params.optimizer_momentum, debug=(self.params.debug >= 3), fig_num=12) # Transfer losses from previous optimization if self.params.update_projection_matrix: self.filter_optimizer.residuals = self.joint_optimizer.residuals self.filter_optimizer.losses = self.joint_optimizer.losses if not self.params.update_projection_matrix: self.filter_optimizer.run(self.params.init_CG_iter) # Post optimization self.filter_optimizer.run(self.params.post_init_CG_iter) self.filter = self.filter_optimizer.x # Free memory del self.init_training_samples if self.params.use_projection_matrix: del self.joint_problem, self.joint_optimizer def project_sample(self, x: TensorList, proj_matrix=None): # Apply projection matrix if proj_matrix is None: proj_matrix = self.projection_matrix with fluid.dygraph.guard(): return operation.conv2d(x.apply(n2p), proj_matrix.apply(n2p)).apply( self.projection_activation).numpy() def get_iounet_box(self, pos, sz, sample_pos, sample_scale): """All inputs in original image coordinates""" box_center = (pos - sample_pos) / sample_scale + (self.iou_img_sample_sz - 1) / 2 box_sz = sz / sample_scale target_ul = box_center - (box_sz - 1) / 2 return np.concatenate([np.flip(target_ul, 0), np.flip(box_sz, 0)]) def get_iou_features(self): return self.params.features.get_unique_attribute('iounet_features') def get_iou_backbone_features(self): return self.params.features.get_unique_attribute( 'iounet_backbone_features') def init_iou_net(self): # Setup IoU net self.iou_predictor = self.params.features.get_unique_attribute( 'iou_predictor') # Get target boxes for the different augmentations self.iou_target_box = self.get_iounet_box(self.pos, self.target_sz, self.pos.round(), self.target_scale) target_boxes = TensorList() if self.params.iounet_augmentation: for T in self.transforms: if not isinstance( T, (augmentation.Identity, augmentation.Translation, augmentation.FlipHorizontal, augmentation.FlipVertical, augmentation.Blur)): break target_boxes.append(self.iou_target_box + np.array( [T.shift[1], T.shift[0], 0, 0])) else: target_boxes.append(self.iou_target_box.copy()) target_boxes = np.concatenate(target_boxes.view(1, 4), 0) # Get iou features iou_backbone_features = self.get_iou_backbone_features() # Remove other augmentations such as rotation iou_backbone_features = TensorList( [x[:target_boxes.shape[0], ...] for x in iou_backbone_features]) # Extract target feat with fluid.dygraph.guard(): iou_backbone_features = iou_backbone_features.apply(n2p) target_boxes = n2p(target_boxes) target_feat = self.iou_predictor.get_filter(iou_backbone_features, target_boxes) self.target_feat = TensorList( [layers.reduce_mean(x, 0).numpy() for x in target_feat]) if getattr(self.params, 'iounet_not_use_reference', False): self.target_feat = TensorList([ np.full_like(tf, tf.norm() / tf.numel()) for tf in self.target_feat ]) def optimize_boxes(self, iou_features, init_boxes): with fluid.dygraph.guard(): # Optimize iounet boxes init_boxes = np.reshape(init_boxes, (1, -1, 4)) step_length = self.params.box_refinement_step_length target_feat = self.target_feat.apply(n2p) iou_features = iou_features.apply(n2p) output_boxes = n2p(init_boxes) for f in iou_features: f.stop_gradient = False for i_ in range(self.params.box_refinement_iter): # forward pass bb_init = output_boxes bb_init.stop_gradient = False outputs = self.iou_predictor.predict_iou(target_feat, iou_features, bb_init) if isinstance(outputs, (list, tuple)): outputs = outputs[0] outputs.backward() # Update proposal bb_init_np = bb_init.numpy() bb_init_gd = bb_init.gradient() output_boxes = bb_init_np + step_length * bb_init_gd * np.tile( bb_init_np[:, :, 2:], (1, 1, 2)) output_boxes = n2p(output_boxes) step_length *= self.params.box_refinement_step_decay return layers.reshape(output_boxes, ( -1, 4)).numpy(), layers.reshape(outputs, (-1, )).numpy() def refine_target_box(self, sample_pos, sample_scale, scale_ind, update_scale=True): # Initial box for refinement init_box = self.get_iounet_box(self.pos, self.target_sz, sample_pos, sample_scale) # Extract features from the relevant scale iou_features = self.get_iou_features() iou_features = TensorList( [x[scale_ind:scale_ind + 1, ...] for x in iou_features]) init_boxes = np.reshape(init_box, (1, 4)).copy() rand_fn = lambda a, b: np.random.rand(a, b).astype('float32') if self.params.num_init_random_boxes > 0: # Get random initial boxes square_box_sz = np.sqrt(init_box[2:].prod()) rand_factor = square_box_sz * np.concatenate([ self.params.box_jitter_pos * np.ones(2), self.params.box_jitter_sz * np.ones(2) ]) minimal_edge_size = init_box[2:].min() / 3 rand_bb = (rand_fn(self.params.num_init_random_boxes, 4) - 0.5 ) * rand_factor new_sz = np.clip(init_box[2:] + rand_bb[:, 2:], minimal_edge_size, 1e10) new_center = (init_box[:2] + init_box[2:] / 2) + rand_bb[:, :2] init_boxes = np.concatenate([new_center - new_sz / 2, new_sz], 1) init_boxes = np.concatenate( [np.reshape(init_box, (1, 4)), init_boxes]) # Refine boxes by maximizing iou output_boxes, output_iou = self.optimize_boxes(iou_features, init_boxes) # Remove weird boxes with extreme aspect ratios output_boxes[:, 2:] = np.clip(output_boxes[:, 2:], 1, 1e10) aspect_ratio = output_boxes[:, 2] / output_boxes[:, 3] keep_ind = (aspect_ratio < self.params.maximal_aspect_ratio) * \ (aspect_ratio > 1 / self.params.maximal_aspect_ratio) output_boxes = output_boxes[keep_ind, :] output_iou = output_iou[keep_ind] # If no box found if output_boxes.shape[0] == 0: return # Take average of top k boxes k = getattr(self.params, 'iounet_k', 5) topk = min(k, output_boxes.shape[0]) inds = np.argsort(-output_iou)[:topk] predicted_box = np.mean(output_boxes[inds, :], axis=0) predicted_iou = np.mean(
np.reshape(output_iou, (-1, 1))
numpy.reshape
""" CS6476: Problem Set 4 Tests """ import numpy as np import cv2 import unittest import ps4 INPUT_DIR = "input_images/test_images/" class Part1(unittest.TestCase): @classmethod def setUpClass(self): self.input_imgs_1 = ['test_lk1.png', 'test_lk3.png', 'test_lk5.png'] self.input_imgs_2 = ['test_lk2.png', 'test_lk4.png', 'test_lk6.png'] self.delta_c = [0, 0, -1] self.delta_r = [0, -1, -1] self.r_val = [14, 12, 14] self.c_val = [15, 16, 15] self.cb = [(28, 30), (24, 32), (28, 30)] self.k_size = 15 self.k_type = 'uniform' def test_optic_flow_LK(self): for i in range(3): f1 = self.input_imgs_1[i] f2 = self.input_imgs_2[i] img1 = cv2.imread(INPUT_DIR + f1, 0) / 255. img2 = cv2.imread(INPUT_DIR + f2, 0) / 255. u, v = ps4.optic_flow_lk(img1.copy(), img2.copy(), self.k_size, self.k_type, 1.) r = self.r_val[i] c = self.c_val[i] d_c = self.delta_c[i] d_r = self.delta_r[i] center_box = self.cb[i] u_mean = np.mean(u[r:r + center_box[0], c:c + center_box[1]]) check_u = abs(u_mean - d_c) <= 0.5 error_msg = "Average of U values in the area where there is " \ "movement is greater than the allowed amount." self.assertTrue(check_u, error_msg) v_mean = np.mean(v[r:r + center_box[0], c:c + center_box[1]]) check_v = abs(v_mean - d_r) <= 0.5 error_msg = "Average of V values in the area where there is " \ "movement is greater than the allowed amount." self.assertTrue(check_v, error_msg) class Part2(unittest.TestCase): def test_reduce(self): input_imgs = ['test_reduce1_img.npy', 'test_reduce2_img.npy', 'test_reduce3_img.npy'] ref_imgs = ['test_reduce1_ref.npy', 'test_reduce2_ref.npy', 'test_reduce3_ref.npy'] for i in range(3): f1 = input_imgs[i] f2 = ref_imgs[i] test_array = np.load(INPUT_DIR + f1) reduced = ps4.reduce_image(test_array.copy()) ref_reduced = np.load(INPUT_DIR + f2) correct = np.allclose(reduced, ref_reduced, atol=0.05) self.assertTrue(correct, "Output does not match the reference " "solution.") def test_expand(self): input_imgs = ['test_expand1_img.npy', 'test_expand2_img.npy', 'test_expand3_img.npy'] ref_imgs = ['test_expand1_ref.npy', 'test_expand2_ref.npy', 'test_expand3_ref.npy'] for i in range(3): f1 = input_imgs[i] f2 = ref_imgs[i] test_array = np.load(INPUT_DIR + f1) expanded = ps4.expand_image(test_array.copy()) ref_expanded = np.load(INPUT_DIR + f2) correct =
np.allclose(expanded, ref_expanded, atol=0.05)
numpy.allclose
import glob import numpy as np import pandas as pd from shapely.geometry import LineString,MultiLineString,Point,MultiPoint from shapely.ops import linemerge import pyproj from sklearn.ensemble import RandomForestClassifier,ExtraTreesClassifier from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import VotingClassifier from sklearn.svm import SVC import xgboost from tqdm import tqdm from sklearn.model_selection import cross_val_score from sklearn.model_selection import cross_val_predict from sklearn.metrics import confusion_matrix,accuracy_score import pickle import os import argparse np.random.seed(10) from param import * #get an ensemble of 5 classifiers from scikit-learn i.e randome_forest, extra_tree,svc,KNeighbours #and xgboost classifier #the parameters are tuned for this dataset, set class_weights to balanced as the start to end #goals have different distribution def get_ensemble_of_classifiers(vote=True): clfs={} clf1=ExtraTreesClassifier(100,class_weight='balanced',n_jobs=-1) clfs['extra_tree']=clf1 clf2=RandomForestClassifier(50,class_weight='balanced',n_jobs=-1) clfs['random_forest']=clf2 clf3=KNeighborsClassifier(20,weights='distance',n_jobs=-1) clfs['knn']=clf3 clf4=xgboost.XGBClassifier(n_estimators=100,subsample=.7) clfs['xgb']=clf4 if vote: clf5=SVC(0.1) cvote=VotingClassifier(estimators=[('et', clf1), ('rf', clf2), ('kn', clf3),('xgb',clf4),('svc',clf5)], voting='hard') return {'cvote':cvote} else: clf5=SVC(0.1,class_weight='balanced',probability=True) clfs['svc']=clf5 return clfs # get the closest and farthest distance for a track to all the goals def closest_farthest(track): closest_to_track=[] farthest_to_track=[] for i in range(0,goal.shape[0]): point2=Point(goal[['lon','lat']].values[i]) cd=[] for item in track: point1=Point(item) _,_,distance = geod.inv(point1.x, point1.y, point2.x, point2.y) cd.append(distance) closest_to_track.append(np.min(cd)) farthest_to_track.append(np.max(cd)) return closest_to_track,farthest_to_track # get distance to a goal given a point on the track def goal_dist(point1): d={} for i in range(0,goal.shape[0]): point2=Point(goal[['lon','lat']].values[i]) angle1,angle2,distance = geod.inv(point1.x, point1.y, point2.x, point2.y) d[i]=distance return d.values() # gets distance features for training and testing # the feature vector includes closest and nearest distances # and distance to goal from the start or end points of track def get_distances(df,goal,trim=None): start,end=Point(df[['lon','lat']].values[0]),Point(df[['lon','lat']].values[-1]) duration=df.elapsedTime_sec.values[-1] _,_,total_distance_covered = geod.inv(start.x, start.y, end.x, end.y) distance_to_goal_from_start=goal_dist(start) distance_to_goal_from_end=goal_dist(end) closest,farthest=closest_farthest(df[['lon','lat']].values) return duration,total_distance_covered,distance_to_goal_from_start,distance_to_goal_from_end,closest,farthest # similar to get_distance function above but additionally trims the start and end point randomly def get_distances_multi(df,goal): # how much to trim from start trim_start=np.random.randint(TRIM_START,TRIM_END) idx_s=np.where(df.elapsedTime_sec>trim_start)[0][0] start=Point(df[['lon','lat']].values[idx_s]) # how much to trim from end trim_end=np.random.randint(TRIM_START,TRIM_END) idx_e=np.where(df.elapsedTime_sec>df.elapsedTime_sec.values[-1]-trim_end)[0][0] end=Point(df[['lon','lat']].values[idx_e]) _,_,total_distance_covered = geod.inv(start.x, start.y, end.x, end.y) distance_to_goal_from_start=goal_dist(start) distance_to_goal_from_end=goal_dist(end) duration=df.elapsedTime_sec.values[idx_e] closest,farthest=closest_farthest(df[['lon','lat']].values[idx_s:idx_e]) return duration,total_distance_covered,distance_to_goal_from_start,distance_to_goal_from_end,closest,farthest # get the train feature vector. The feature vector are aggressively augmented # i.e for each feature vector 20 tracks with random trims are created from start and end # also include other feature such as age, gender,duration,velocity and total distance covered def get_train_feat(datafiles): print ('Multi trim featurees 20 samp in each') xfeat={} for f in tqdm(datafiles): for i in range(0,20): df = pd.read_csv(f) if i==0: duration,total_distance_covered,distance_to_goal_from_start,distance_to_goal_from_end,cd,fd=get_distances(df,goal,trim=None) else: duration,total_distance_covered,distance_to_goal_from_start,distance_to_goal_from_end,cd,fd=get_distances_multi(df,goal) feat=[duration,total_distance_covered] feat.extend(distance_to_goal_from_start) feat.extend(distance_to_goal_from_end) feat.extend(cd) feat.extend(fd) if df.tripID.values[0] not in xfeat.keys(): xfeat[df.tripID.values[0]]=[feat] else: xfeat[df.tripID.values[0]].append(feat) train_info['gender']=pd.factorize(train_info['gender'])[0] train_info['age']=train_info['age'].fillna(train_info['age'].mean()) features=[] labels_start=[] labels_end=[] for i,k in enumerate(train_info.tripID.values): for item in xfeat[k]: feat=train_info.loc[k][['age','gender']].values.tolist() duration=item[0] velocity=item[1]/duration feat.extend([duration,velocity]) feat.extend(item) features.append(feat) labels_start.append(train_info.iloc[i]['startLocID']) labels_end.append(train_info.iloc[i]['destLocID']) features=np.asarray(features).astype('float32') labels_start=np.asarray(labels_start).astype('int') labels_end=np.asarray(labels_end).astype('int') if SHUFFLE: idx=range(0,len(features)) np.random.shuffle(idx) features,labels_start,labels_end=features[idx],labels_start[idx],labels_end[idx] return features,labels_start,labels_end # get the test features...no augmentation as in the compition the features are already trimed def get_test_feat(datafiles): xfeat={} for f in tqdm(datafiles): df = pd.read_csv(f) duration,total_distance_covered,distance_to_goal_from_start,distance_to_goal_from_end,cd,fd=get_distances(df,goal,trim=None) feat=[duration,total_distance_covered] feat.extend(distance_to_goal_from_start) feat.extend(distance_to_goal_from_end) feat.extend(cd) feat.extend(fd) xfeat[df.tripID.values[0]]=feat test_info['gender']=pd.factorize(test_info['gender'])[0] test_info['age']=test_info['age'].fillna(test_info['age'].mean()) features_test=[] for k in test_info.tripID.values: feat=test_info.loc[k][['age','gender']].values.tolist() duration=xfeat[k][0] velocity=xfeat[k][1]/duration feat.extend([duration,velocity]) feat.extend(xfeat[k]) features_test.append(feat) features_test=np.asarray(features_test).astype('float32') return features_test # train the ensemble of classifiers def train_ens(features,slabels): sc=StandardScaler() sc.fit(features) clfs=get_ensemble_of_classifiers(vote=False) ft=sc.transform(features) for k in clfs: clfs[k].fit(ft,slabels) print ('train full data...done..with ',k) return sc,clfs # predict from the ensemble and create submission def submit_ens(clfs,features_test,ks,subname): y_pred=[] for key in clfs.keys(): y_pred_i = clfs[key].predict_proba(features_test) y_pred.append(y_pred_i) y_pred = np.asarray(y_pred) y=np.mean(y_pred,axis=0) y_pred = np.argmax(y,axis=-1) preds = [list(ks[item]) for item in y_pred] np.savetxt(subname,preds, fmt='%d',delimiter=',') print ('done...') # do cross val ensemble so we know what kind of score we will get # note there is no weighting the tracks as in compition metric. simply get accuracy score and confusion matrix def cross_val_ens(features,slabels,dirname): result={} clfs = get_ensemble_of_classifiers(vote=False) sc=StandardScaler() ft=sc.fit_transform(features) y_pred=[] for key in clfs.keys(): y_pred_i = cross_val_predict(clfs[key], ft,slabels, cv=5,method='predict_proba') y_pred.append(y_pred_i) print ('cross val ...done...for ', key) y_pred=np.argmax(
np.mean(y_pred,axis=0)
numpy.mean
from gensim.models.keyedvectors import KeyedVectors import json from tensorflow.keras.callbacks import ReduceLROnPlateau, TensorBoard, ModelCheckpoint, EarlyStopping from tensorflow.keras.layers import * from tensorflow.keras.metrics import * from tensorflow.keras.models import Sequential, Model from tensorflow.keras.optimizers import * from tensorflow.keras import backend as K import os from random import shuffle import re import time from tqdm import tqdm import traceback import numpy as np import pandas as pd from argparse import ArgumentParser import random class RewardLearning(): def __init__(self, fold, seed, action_space, metric): self.reward_report_template = 'reward_report_{}_{}_.*.csv' word_embed_file_path='./damd_multiwoz/data/embeddings/glove.6B.100d.w2v.txt' self.train_val_fraction=0.8 self.EMBED_DIM=100 self.HIDDEN_DIM=100 self.MAX_POP=10 self.MAX_TIME_STEP=30 self.MAX_GOAL_LEN=50 self.MAX_STATE_LEN=50 self.MAX_ACT_LEN=50 self.reduce_lr_patience = 10 self.es_patience = 25 self.train_reward_split=[0.8,0.9][1] self.batch_size = 50 self.num_epoch = 100 self.fold = fold self.metric = metric self.TRAIN_ON=action_space self.root_path = './damd_multiwoz' self.dataset=json.loads(open(os.path.join(self.root_path,'data/multi-woz-processed/data_for_damd_reward_{}.json'.format(self.fold)),'r').read()) self.glove_kv = KeyedVectors.load_word2vec_format(word_embed_file_path, binary=False, unicode_errors='ignore') self.reward_folder_path= os.path.join(self.root_path,'data/multi-woz-oppe/reward') self.data_for_damd = json.loads(open(os.path.join(self.root_path,'data/multi-woz-processed/data_for_damd.json'), 'r').read()) self.processed_reward_rollouts = None self.embed_cache = {} def metric_score(self, sucess,match,bleu): return sucess+match+2*bleu/100 def load_reward_rollouts(self): reward_record_file_prefix = self.reward_report_template.format(self.fold, self.metric) print('reward_record_file_prefix:',reward_record_file_prefix) rollouts_processed = {} for file in os.listdir(self.reward_folder_path): if re.search(reward_record_file_prefix,file): print('file:',file) reward_record_path = os.path.join(self.reward_folder_path,file) df = pd.read_csv(reward_record_path) for _,row in df.iterrows(): dial_id = row['dial_id'] rollout = json.loads(row['rollout']) turn_nums = [int(z) for z in rollout.keys()] turn_nums = sorted(turn_nums) if dial_id not in rollouts_processed: rollouts_processed[dial_id]={} rollouts_processed[dial_id]['gen']=[] dia_rollout={} rollouts_processed[dial_id]['gen'].append(dia_rollout) dia_rollout['score'] = self.metric_score(row['success'],row['match'],row['bleu']) dia_rollout['rollout']=[] for turn_num in turn_nums: true_act_prob = [1.] if 'aspn_prob' in rollout[str(turn_num)]: true_act_prob = np.exp(rollout[str(turn_num)]['aspn_prob']).tolist() dia_rollout['rollout'].append({ 'tn':turn_num, 'act':rollout[str(turn_num)]['aspn_gen'], 'true_act':rollout[str(turn_num)]['aspn'], 'resp':rollout[str(turn_num)]['resp_gen'], 'true_act_prob':true_act_prob }) if 'gt' not in rollouts_processed[dial_id]: rollouts_processed[dial_id]['gt']={} rollouts_processed[dial_id]['gt']['score']=4 rollouts_processed[dial_id]['gt']['rollout']=[] for turn_num in turn_nums: rollouts_processed[dial_id]['gt']['rollout'].append({ 'tn':turn_num, 'act':rollout[str(turn_num)]['aspn'], 'resp':rollout[str(turn_num)]['resp'], 'true_act':rollout[str(turn_num)]['aspn'], 'true_act_prob':[1] }) self.processed_reward_rollouts = rollouts_processed self.dial_ids = list(self.processed_reward_rollouts.keys()) self.load_gt_dia_logs(self.dial_ids) return rollouts_processed def load_gt_dia_logs(self, dial_ids): gt_dia_logs={} for dial_id in dial_ids: goal = self.goal_as_st(self.dataset[dial_id]['goal']) gt_dia_log={ 'goal':goal } gt_dia_logs[dial_id]=gt_dia_log for turn in self.dataset[dial_id]['log']: gt_dia_log[turn['turn_num']]={} gt_dia_log[turn['turn_num']]['state']='begin '+turn['cons_delex']+' end' self.gt_dia_logs = gt_dia_logs def pad_sentence(self, token_embeds,max_seq_len): token_embeds = token_embeds.copy() token_embeds = token_embeds[:max_seq_len].tolist() for i in range(max_seq_len-len(token_embeds)): token_embeds.append(np.zeros(self.EMBED_DIM)) token_embeds = np.array(token_embeds) return token_embeds def pad_time_step(self, sentence_embeds,max_seq_len): sentence_embeds = sentence_embeds[:self.MAX_TIME_STEP] time_padded_sentences = np.array(sentence_embeds) if self.MAX_TIME_STEP>len(sentence_embeds): pad = np.zeros((self.MAX_TIME_STEP-len(sentence_embeds),max_seq_len,self.EMBED_DIM)) time_padded_sentences = np.concatenate([sentence_embeds,pad]) return time_padded_sentences def get_embedding(self, token): token = token.lower() token = token.replace('reqt','request')\ .replace('arriveby','arrive_by')\ .replace('towninfo','town_info')\ .replace('pricerange','price_range')\ .replace('leaveat','leave_at')\ .replace('mutliple','multiple')\ .replace('dontcare','dont_care')\ .replace('-','')\ .replace('addres','address')\ .replace('addressss','address')\ .replace('addresss','address') token = token.strip() if token in self.embed_cache: return self.embed_cache[token] if token in self.glove_kv: embedding = self.glove_kv[token] else: if '_' in token: embeds = [] for sub_token in token.split('_'): embeds.append(self.get_embedding(sub_token)) embedding = np.mean(embeds,axis=0) else: #print('token not in embed:',token) embedding = self.glove_kv['unk'] self.embed_cache[token]=embedding return embedding def tokens_to_embeddings(self, tokens): embeddings = [] for token in tokens: embeddings.append(self.get_embedding(token)) return np.array(embeddings) def tokenize(self, sentence): sentence=sentence.lower() sentence = sentence.replace('[',' ').replace(']',' ').replace(':','').replace(' ',' ') return sentence.split() def goal_as_st(self, goal): return str(goal).replace("'",' ')\ .replace(',',' , ').replace('{',' ')\ .replace('}',' ').replace(' ',' ') def sample_roll_out(self, dial_id): start = time.time() gen_rollouts_info = self.processed_reward_rollouts[dial_id]['gen'] gt_rollout_info = self.processed_reward_rollouts[dial_id]['gt'] rollout_infos = np.random.choice(gen_rollouts_info+[gt_rollout_info], size=2, replace=False) #print(rollout_infos) dia_log= self.gt_dia_logs[dial_id] goal = dia_log['goal'] goal = self.tokenize(goal) goal = self.tokens_to_embeddings(goal) goal = self.pad_sentence(goal, self.MAX_GOAL_LEN) rollout_pairs = [] for rollout_info in rollout_infos: acts = [] states = [] for turn in rollout_info['rollout']: tn = turn['tn'] act = turn[self.TRAIN_ON]#turn['act'] if tn not in self.gt_dia_logs[dial_id]: break state = self.gt_dia_logs[dial_id][tn]['state'] # if random.uniform(0,1)>0.95: # print('act:',act) # print('state:',state) act = self.tokenize(act) state = self.tokenize(state) act = self.tokens_to_embeddings(act) state = self.tokens_to_embeddings(state) act = self.pad_sentence(act,self.MAX_ACT_LEN) state = self.pad_sentence(state,self.MAX_STATE_LEN) acts.append(act) states.append(state) acts=self.pad_time_step(acts,self.MAX_ACT_LEN) states=self.pad_time_step(states,self.MAX_STATE_LEN) score=rollout_info['score'] rollout_pairs.append([goal,states,acts,score]) prob = rollout_pairs[0][-1]/(rollout_pairs[0][-1]+rollout_pairs[1][-1]+1e-20) rollout_pairs[0][-1]=prob rollout_pairs[1][-1]=1-prob return rollout_pairs def get_data_gen(self, sample_roll_out): def data_gen(dial_ids,batch_size): try: s1s = [] a1s = [] g1s = [] s2s = [] a2s = [] g2s = [] probs = [] while True: shuffle(dial_ids) for dial_id in dial_ids: rollout_pair = sample_roll_out(dial_id) g1,s1,a1,p1=rollout_pair[0] g2,s2,a2,p2=rollout_pair[1] s1s.append(s1) a1s.append(a1) g1s.append(g1) s2s.append(s2) a2s.append(a2) g2s.append(g2) probs.append([p1,p2]) if len(s1s)>=batch_size: s1s = np.array(s1s) a1s = np.array(a1s) g1s = np.array(g1s) s2s = np.array(s2s) a2s = np.array(a2s) g2s = np.array(g2s) #print('as:',np.sum(a1s-a2s)) probs =
np.array(probs)
numpy.array
''' Main Author: <NAME> Corresponding Email: <EMAIL> ''' import numpy as np from .base import ClassificationDecider from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import Ridge from sklearn.utils.validation import ( check_X_y, check_array, NotFittedError, ) from sklearn.utils.multiclass import type_of_target class SimpleArgmaxAverage(ClassificationDecider): """ Doc string here. """ def __init__(self, classes=[]): self.classes = classes self._is_fitted = False def fit( self, X, y, transformer_id_to_transformers, transformer_id_to_voters, classes=None, ): if not isinstance(self.classes, (list, np.ndarray)): if len(y) == 0: raise ValueError("Classification Decider classes undefined with no class labels fed to fit") else: self.classes =
np.unique(y)
numpy.unique
from __future__ import print_function import sys import numpy as np import numba.unittest_support as unittest from numba.compiler import compile_isolated from numba.numpy_support import from_dtype from numba import types, njit, typeof from .support import TestCase, CompilationCache, MemoryLeakMixin def array_dtype(a): return a.dtype def use_dtype(a, b): return a.view(b.dtype) def array_itemsize(a): return a.itemsize def array_shape(a, i): return a.shape[i] def array_strides(a, i): return a.strides[i] def array_ndim(a): return a.ndim def array_size(a): return a.size def array_flags_contiguous(a): return a.flags.contiguous def array_flags_c_contiguous(a): return a.flags.c_contiguous def array_flags_f_contiguous(a): return a.flags.f_contiguous def nested_array_itemsize(a): return a.f.itemsize def nested_array_shape(a): return a.f.shape def nested_array_strides(a): return a.f.strides def nested_array_ndim(a): return a.f.ndim def nested_array_size(a): return a.f.size def size_after_slicing_usecase(buf, i): sliced = buf[i] # Make sure size attribute is not lost return sliced.size def array_ctypes_data(arr): return arr.ctypes.data class TestArrayAttr(MemoryLeakMixin, TestCase): def setUp(self): super(TestArrayAttr, self).setUp() self.ccache = CompilationCache() self.a =
np.arange(10, dtype=np.int32)
numpy.arange
# Copyright (c) 2018-2022, NVIDIA CORPORATION. import numpy as np import pandas as pd import pytest from pandas.api import types as ptypes import cudf from cudf.api import types as types @pytest.mark.parametrize( "obj, expect", ( # Base Python objects. (bool(), False), (int(), False), (float(), False), (complex(), False), (str(), False), ("", False), (r"", False), (object(), False), # Base Python types. (bool, False), (int, False), (float, False), (complex, False), (str, False), (object, False), # NumPy types. (np.bool_, False), (np.int_, False), (np.float64, False), (np.complex128, False), (np.str_, False), (np.unicode_, False), (np.datetime64, False), (np.timedelta64, False), # NumPy scalars. (np.bool_(), False), (np.int_(), False), (np.float64(), False), (np.complex128(), False), (np.str_(), False), (np.unicode_(), False), (np.datetime64(), False), (np.timedelta64(), False), # NumPy dtype objects. (np.dtype("bool"), False), (np.dtype("int"), False), (np.dtype("float"), False), (np.dtype("complex"), False), (np.dtype("str"), False), (np.dtype("unicode"), False), (np.dtype("datetime64"), False), (np.dtype("timedelta64"), False), (np.dtype("object"), False), # NumPy arrays. (
np.array([], dtype=np.bool_)
numpy.array
from operator import ge import numpy as np from numpy.core.numeric import zeros_like import pandas as pd from matplotlib import pyplot as plt import sys data = pd.read_csv("geom.csv", header=None) N = 100 theta = np.radians(12) print(np.degrees(theta)) c, s = np.cos(theta), np.sin(theta) R = np.array(((c, -s), (s, c))) x_range = data.iloc[:, 0].to_numpy() num = x_range.size y_top = data.iloc[:, 1].to_numpy() top = np.vstack((x_range, y_top)) x_range_flip = np.flip(x_range, axis=0) y_bot = data.iloc[:, 3].to_numpy() bot = np.vstack((x_range_flip, y_bot)) # combine bot and top then rotate all = np.hstack((top, bot)) mean = np.mean(all, axis=1) mean = np.expand_dims(mean, axis=1) all = np.matmul(R, all - mean) + mean # get the value back y_top = all[1, :num] y_top = np.flip(y_top, axis=0) x_range = all[0, num:] y_bot = all[1, num:] geo = np.zeros((N + 1, N + 1)) dx = 100 / N dy = 100 / N def checkPoint(x, y): result = 0 left = np.where(x_range >= x)[0] if(left.size == 0): return 0 left = left[0] - 1 interval = x_range[left+1] - x_range[left] interp1 = y_top[left] * (x_range[left+1] - x) / interval \ + y_top[left+1] * (x - x_range[left]) / interval interp2 = y_bot[left] * (x_range[left+1] - x) / interval \ + y_bot[left+1] * (x - x_range[left]) / interval if interp1 >= y and interp2 <= y: result = 9 return result for i in range(N): for j in range(N): x = i * dx y = j * dy - 50 geo[i, j] = checkPoint(x, y) # check invalid and modifiy the cell number def check_validity(geo): offset = [1, 0, -1, 0, 1] valid = 1 for i in range(N): for j in range(N): if(geo[i][j] == 9): zeros = [] for k in range(4): x = i + offset[k] y = j + offset[k+1] if(x < N+1 and x > 0 and y < N+1 and y > 0): if(geo[x][y] == 0): zeros.append(k) if(len(zeros)>2): print("invalid", i, j) geo[i][j] = 5 valid = 0 for k in range(len(zeros)): x = i + offset[zeros[k]] y = j + offset[zeros[k]] count = 0 for kk in range(4): xx = x + offset[k] yy = y + offset[k+1] if(xx < N+1 and xx > 0 and yy < N+1 and yy > 0): if(geo[xx][yy] == 0): count = count + 1 if(count <= 2): geo[x][y] = 9 if(valid): print("valid") return True return False geo = np.swapaxes(geo, 0, 1) max_iter = 5 iter = 0 while(iter < max_iter and not check_validity(geo)): iter = iter + 1 print(iter) geo_padded =
np.zeros((N+1, 2*N + N+1))
numpy.zeros
""" .. module:: dst_povm_sampling.py :synopsis: Sample projective measurements in the way that DST does .. moduleauthor:: <NAME> <<EMAIL>> """ from __future__ import division, absolute_import, print_function, unicode_literals import numpy as np from itertools import product def reseed_choice(a, size=None, replace=True, p=None): """Wrapper for the numpy choice function that reseeds before sampling to ensure that it doesn't make identical choices accross different parallel runs. """ np.random.seed() return np.random.choice(a=a, size=size, replace=replace, p=p) def x_state(anc_outcome, sys_outcome, phi): r"""Return the state corresponding to the projective measurement implied by a particular outcome (:math:`\pm1`) of the x-measurement on the ancilla and a particular outcome (:math:`\widetilde{\pm}1`) of the x-measurement on the system: .. math:: \begin{align} \vert\psi\rangle&=\cos\frac{\theta}{2}\vert0\rangle+ \sin\frac{\theta}{2}\vert1\rangle \\ \theta&=\begin{cases}\operatorname{arctan2}\left(\pm2\cos\varphi, \,-\sin^2\varphi\right) & \widetilde{+} \\ 0 & \widetilde{-}\end{cases} \end{align} :param anc_outcome: :math:`\pm1`, indicates eigenvalue observed on ancilla x-measurement :param sys_outcome: :math:`\widetilde{\pm}1`, indicates eigenvalue observed on system x-measurement :param phi: The strength of the interaction :returns: The state represented in the standard computational (z) basis """ theta = np.where(anc_outcome > 0, np.arctan2(2*sys_outcome*np.cos(phi), -np.sin(phi)**2), 0) return np.array([np.cos(theta/2), np.sin(theta/2)]) def y_state(anc_outcome, sys_outcome, phi): r"""Return the state corresponding to the projective measurement implied by a particular outcome (:math:`\pm1`) of the y-measurement on the ancilla and a particular outcome on the system (:math:`\widetilde{\pm}1`): .. math:: \begin{align} \vert\psi\rangle&=\cos\frac{\theta}{2}\vert0\rangle+ \sin\frac{\theta}{2}\vert1\rangle \\ \theta&=\operatorname{arccos}\left(\widetilde{\pm} \frac{2\left\{\begin{array}{l r}\sin(\varphi+\pi/4) & + \\ \cos(\varphi+\pi/4) & -\end{array}\right\}^2-1}{2\left\{\begin{array} {l r}\sin(\varphi+\pi/4) & + \\ \cos(\varphi+\pi/4) & -\end{array} \right\}^2+1}\right) \end{align} :param anc_outcome: :math:`\pm1`, indicates eigenvalue observed on ancilla z-measurement :param sys_outcome: :math:`\widetilde{\pm}1`, indicates eigenvalue observed on system x-measurement :param phi: The strength of the interaction :returns: The state represented in the standard computational (z) basis """ sc = np.where(anc_outcome > 0, np.sin(phi + np.pi/4), np.cos(phi + np.pi/4)) theta = np.arccos(sys_outcome*(2*sc**2 - 1)/(2*sc**2 + 1)) return np.array([np.cos(theta/2), np.sin(theta/2)]) def z_state(anc_outcome, phi): r"""Return the state corresponding to the projective measurement implied by a particular outcome (:math:`\pm1`) of the z-measurement on the ancilla: .. math:: \vert\psi\rangle=\frac{\vert0\rangle+e^{\mp i\varphi}\vert1\rangle} {\sqrt{2}} :param anc_outcome: :math:`\pm1`, indicates eigenvalue observed on ancilla z-measurement :param phi: The strength of the interaction :returns: The state represented in the standard computational (z) basis """ return np.array([(1. + 0.j)*
np.abs(anc_outcome)
numpy.abs
import numpy as np import matplotlib.pyplot as plt from numpy import atleast_2d as twod ################################################################################ ## PLOTTING FUNCTIONS ######################################################### ################################################################################ def plotClassify2D(learner, X, Y, pre=lambda x: x, axis=None, nGrid=128, **kwargs): """ Plot data and classifier outputs on two-dimensional data. This function plot data (X,Y) and learner.predict(X, Y) together. The learner is is predicted on a dense grid covering data X, to show its decision boundary. Parameters ---------- learner : learner object A trained learner object that inherits from one of the 'Classify' or 'Regressor' base classes. X : numpy array N x M array of data; N = number of data, M = dimension (number of features) of data. Y : numpy array 1 x N arra containing labels corresponding to data points in X. pre : function object (optional) Function that is applied to X before prediction. axis : a matplotlib axis / plottable object (optional) nGrid : density of 2D grid points (default 128) """ if twod(X).shape[1] != 2: raise ValueError('plotClassify2D: function can only be called using two-dimensional data (features)') # TODO: Clean up code if axis == None: axis = plt axis.plot( X[:,0],X[:,1], 'k.', visible=False ) # TODO: can probably replace with final dot plot and use transparency for image (?) ax = axis.axis() xticks = np.linspace(ax[0],ax[1],nGrid) yticks = np.linspace(ax[2],ax[3],nGrid) grid = np.meshgrid( xticks, yticks ) XGrid = np.column_stack( (grid[0].flatten(), grid[1].flatten()) ) if learner is not None: YGrid = learner.predict( pre(XGrid) ) #axis.contourf( xticks,yticks,YGrid.reshape( (len(xticks),len(yticks)) ), nClasses ) axis.imshow( YGrid.reshape( (len(xticks),len(yticks)) ), extent=ax, interpolation='nearest',origin='lower',alpha=0.5, aspect='auto' ) cmap = plt.cm.get_cmap() # TODO: if Soft: predictSoft; get colors for each class from cmap; blend pred with colors & show # try: classes = np.array(learner.classes); except Exception: classes = np.unique(Y) cvals = (classes - min(classes))/(max(classes)-min(classes)+1e-100) for i,c in enumerate(classes): axis.plot( X[Y==c,0],X[Y==c,1], 'ko', color=cmap(cvals[i]), **kwargs ) axis.axis(ax); def histy(X,Y,axis=None,**kwargs): """ Plot a histogram (using matplotlib.hist) with multiple classes of data Any additional arguments are passed directly into hist() Each class of data are plotted as a different color To specify specific histogram colors, use e.g. facecolor={0:'blue',1:'green',...} so that facecolor[c] is the color for class c Related but slightly different appearance to e.g. matplotlib.hist( [X[Y==c] for c in np.unique(Y)] , histtype='barstacked' ) """ if axis == None: axis = plt yvals = np.unique(Y) nil, bin_edges = np.histogram(X, **kwargs) C,H = len(yvals),len(nil) hist = np.zeros( shape=(C,H) ) cmap = plt.cm.get_cmap() cvals = (yvals - min(yvals))/(max(yvals)-min(yvals)+1e-100) widthFrac = .25+.75/(1.2+2*np.log10(len(yvals))) for i,c in enumerate(yvals): histc,nil =
np.histogram(X[Y==c],bins=bin_edges)
numpy.histogram
from abc import ABC from abc import abstractmethod from copy import deepcopy import itertools import numpy as np from autode.bond_lengths import get_avg_bond_length from autode.calculation import Calculation from autode.exceptions import AtomsNotFound, NoClosestSpecies, FitFailed from autode.log import logger from autode.ts_guess import get_ts_guess from autode.config import Config from autode.mol_graphs import is_isomorphic, make_graph from numpy.polynomial import polynomial from autode.utils import work_in, NoDaemonPool from autode.units import KcalMol from autode.calculation import Calculation from autode.methods import high_level_method_names import networkx as nx from scipy.optimize import minimize, Bounds def get_closest_species(point, pes): """ Given a point on an n-dimensional potential energy surface defined by indices where the length is the dimension of the surface Arguments: pes (autode.pes.PES): Potential energy surface point (tuple): Index of the current point Returns: (autode.complex.ReactantComplex): """ if all(index == 0 for index in point): logger.info('PES is at the first point') return deepcopy(pes.species[point]) # The indcies of the nearest and second nearest points to e.g. n,m in a 2 # dimensional PES neareast_neighbours = [-1, 0, 1] next_nearest_neighbours = [-2, -1, 0, 1, 2] # First attempt to find a species that has been calculated in the nearest # neighbours for index_array in [neareast_neighbours, next_nearest_neighbours]: # Each index array has elements from the most negative to most # positive. e.g. (-1, -1), (-1, 0) ... (1, 1) for d_indexes in itertools.product(index_array, repeat=len(point)): # For e.g. a 2D PES the new index is (n+i, m+j) where # i, j = d_indexes new_point = tuple(np.array(point) +
np.array(d_indexes)
numpy.array
import numpy as np import matplotlib.pyplot as plt import seaborn as sns sns.set() import time from profit.sur.backend.gp_functions import predict_f from profit.sur.backend.python_kernels import RBF # Fixing the dimensions of the figure plt.rcParams['figure.figsize'] = [12, 7] # Definition of the dimension d = 1 # Number of samples (training set) n = 50 # Training input (x) # should be defined as a matrix with 1 columns x = np.linspace(start=0, stop=1, num=n).reshape((n, 1)) # Definition of the function def f(x): return np.sin(2 * np.pi * x) + np.sin(4 * np.pi * x) # Plot of the function f plt.plot(x, f(x)) plt.title('Plot of f(x) = $\sin(2 \pi x) + \sin(4 \pi x)$') plt.xlabel('x') plt.ylabel('f(x)') # Definition of the training data (f_x = observations f(x)) f_x = f(x) # the noise sigma_n sigma_n = 1e-2 # Definition of the errors -> we assume that the noise on observations # follows an independent , identically distributed Gaussian distribution with zero mean and variance sigma_n ^2 epsilon = sigma_n * np.random.randn(n).reshape((-1, 1)) # Observed target variable (f(x) + epsilon) y = f_x + epsilon # Plot of the error distribution #sns.distplot(epsilon) plt.title('Distribution of $\epsilon$ and the interpolated density') plt.xlabel('$\epsilon$') plt.ylabel('Number of values') # define number of test data points n_star = 30 # define input test data x_star x_star = np.linspace(0, 1, n_star).reshape((n_star, 1)) # set the hyper - parameters l and sigma_f l = 0.2 sigma_f = 1 # Definition of the squared exponential kernel t = time.time() kernel = RBF(x, y, l) elapsed = time.time() - t print(elapsed) # Definition of the covariance matrices t = time.time() a = np.array([l, sigma_f, sigma_n]) K = RBF(x, x, *a) K_star2 = RBF(x_star, x_star, *a) K_star = RBF(x_star, x, *a) elapsed = time.time() - t print(elapsed) # Plot of K plt.imshow(K) plt.colorbar() # Plot K_star2 plt.imshow(K_star2) plt.colorbar() # Plot Kstar plt.imshow(K_star) plt.colorbar() # Compute C C = np.block([[K + (sigma_n / sigma_f) ** 2 * np.eye(n), np.transpose(K_star)], [K_star, K_star2]]) # Plot C plt.imshow(C) plt.colorbar() # Plot function f(x) plt.figure() plt.plot(x, f_x, 'r') # plot of n_prior samples from prior distribution (100 samples). The mean is zero and the covariance is given by K_star2 n_prior = 100 for i in range(0, n_prior): f_star = np.random.multivariate_normal(
np.zeros(n_star)
numpy.zeros
from pathlib import Path from collections import OrderedDict from collections import defaultdict import random import multiprocessing import threading import pickle import numpy as np import torch import torch.nn.functional as F from torch.utils.data import Dataset, IterableDataset, DataLoader, WeightedRandomSampler from Bio import SeqIO from bioservices import UniProt import pandas as pd import re IUPAC_IDX_AMINO_PAIRS_decoding = list(enumerate([ "A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "X", "Y", "Z", "-", 'B' ])) IUPAC_IDX_AMINO_PAIRS = list(enumerate([ "A", "C", "D", "E", "F", "G", "H", "I", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "V", "W", "X", "Y", "Z", "<mask>", 'B' ])) IUPAC_AMINO_IDX_PAIRS = [(a, i) for (i, a) in IUPAC_IDX_AMINO_PAIRS] alphabet_size = len(IUPAC_AMINO_IDX_PAIRS) IUPAC_SEQ2IDX = OrderedDict(IUPAC_AMINO_IDX_PAIRS) IUPAC_IDX2SEQ = OrderedDict(IUPAC_IDX_AMINO_PAIRS) # Add gap tokens as the same as mask IUPAC_SEQ2IDX["-"] = IUPAC_SEQ2IDX["<mask>"] IUPAC_SEQ2IDX["."] = IUPAC_SEQ2IDX["<mask>"] IUPAC_IDX2SEQ_decoding = OrderedDict(IUPAC_IDX_AMINO_PAIRS_decoding) def seq2idx(seq, device = None): return torch.tensor([IUPAC_SEQ2IDX[s.upper() if len(s) < 2 else s] for s in seq], device = device) # return torch.tensor([IUPAC_SEQ2IDX[s] for s in seq if len(s) > 1 or (s == s.upper() and s != ".")], device = device) def seq2idx_removegaps(seq, device=None): seq = np.array([IUPAC_SEQ2IDX[aa] for aa in np.array(seq)]) keep_cols = [] for i, aa in enumerate(seq): if IUPAC_IDX2SEQ[aa] != '<mask>': keep_cols.append(i) seq = seq[keep_cols] return torch.tensor(seq, device=device) def idx2seq(idxs): return "".join([IUPAC_IDX2SEQ[i] for i in idxs]) def idx2seq_decoding(idxs): return "".join([IUPAC_IDX2SEQ_decoding[i] for i in idxs]) def save_weights_file(datafile, save_file): seqs = list(SeqIO.parse(datafile, "fasta")) dataset = ProteinDataset(seqs) dataset.write_to_file(save_file) class LipaseDataset(Dataset): def __init__(self, seqs, backbone=0, gappy_colx_threshold=1, device = None, SSVAE=False, SSCVAE=False, CVAE=False, ssl_deg=False, ssl_iniact=False, ssl_pnp=False, ssl_glad=False, tom_odor=False, tom_perf=False, ogt=False, topt=False, add_ssl_seqs=False, add_tom_seqs=False, only_tom_seqs=False, tom_val_index=None, over_sample=0): super().__init__() self.device = device self.seqs = seqs if isinstance(seqs, list) else list(SeqIO.parse(seqs, "fasta")) if len(self.seqs) == 0: self.encoded_seqs = torch.Tensor() self.weights = torch.Tensor() self.neff = 0 return prepro_seqs, kept_seqs = prepro_alignment(self.seqs, backbone, gappy_colx_threshold) self.encoded_seqs = torch.stack([torch.tensor(seq, device=device) for seq in prepro_seqs]) self.encoded_seqs = postprocess_aln_coverage(self.encoded_seqs, threshold=0.5) discretize = True if SSCVAE or CVAE else False if ssl_deg or ssl_iniact or ssl_pnp or ssl_glad or add_ssl_seqs: ssl_seqs_and_labels = prep_ssl_data(ssl_deg=ssl_deg, ssl_iniact=ssl_iniact, ssl_pnp=ssl_pnp, ssl_glad=ssl_glad, discretize=discretize, ast_threshold=30, quantiles=[0, 0.25 ,0.75, 1]) for col in ssl_seqs_and_labels.columns: if 'UNKNOWN' in col and SSCVAE: ssl_seqs_and_labels = ssl_seqs_and_labels.drop(col, axis=1) if ssl_deg or ssl_iniact or ssl_pnp or ssl_glad: ssl_labels, ssl_filler_labels, _ = prep_assay_labels(ssl_seqs_and_labels, device, self.encoded_seqs.size(0), cvae=CVAE) ssl_labels = torch.cat((ssl_filler_labels, ssl_labels)) else: ssl_labels = None ssl_seqs = torch.tensor(ssl_seqs_and_labels['Sequence'], device=device) self.encoded_seqs = torch.cat((self.encoded_seqs, ssl_seqs)) else: ssl_labels = None if tom_odor or tom_perf or add_tom_seqs: tom_seqs_and_labels = prep_tom_labels(val_index=tom_val_index, tom_odor=tom_odor, tom_perf=tom_perf, discretize=discretize, quantiles=[0, 0.25 ,0.75, 1]) for col in tom_seqs_and_labels.columns: if 'UNKNOWN' in col and SSCVAE: tom_seqs_and_labels = tom_seqs_and_labels.drop(col, axis=1) if tom_odor or tom_perf: tom_labels, tom_filler_labels, _ = prep_assay_labels(tom_seqs_and_labels, device, self.encoded_seqs.size(0), cvae=CVAE) tom_labels = torch.cat((tom_filler_labels, tom_labels)) else: tom_labels = None tom_seqs = torch.tensor(tom_seqs_and_labels['Sequence'], device=device) if not only_tom_seqs: self.encoded_seqs = torch.cat((self.encoded_seqs, tom_seqs)) else: self.encoded_seqs = tom_seqs else: tom_labels = None if ssl_labels != None and tom_labels == None: self.labels = ssl_labels if ssl_labels == None and tom_labels != None: self.labels = tom_labels if ssl_labels != None and tom_labels != None: extra_filler_labels = fill_missing(tom_seqs.size(0), ssl_seqs_and_labels, discretize, device) ssl_labels = torch.cat((ssl_labels, extra_filler_labels)) self.labels = torch.cat((ssl_labels, tom_labels), dim=1) if ssl_labels == None and tom_labels == None: self.labels = None if only_tom_seqs and tom_odor or tom_perf: self.labels = tom_labels if ogt or topt: if self.labels != None: ogt_topt_labels = match_ogt_n_topt(kept_seqs, ogt, topt, device) for col in ogt_topt_labels: if 'UNKNOWN' in col: if SSCVAE: ogt_topt_labels = ogt_topt_labels.drop(col, axis=1) num_extra_seqs = self.labels.size(0)-len(ogt_topt_labels) filler_labels = fill_missing(num_extra_seqs, ogt_topt_labels, discretize, device) ogt_topt_labels = torch.cat((torch.tensor(ogt_topt_labels.values, device=device).float(), filler_labels)) self.labels = torch.cat((self.labels, ogt_topt_labels), dim=1) if self.labels == None: ogt_topt_labels = match_ogt_n_topt(kept_seqs, ogt, topt, device) for col in ogt_topt_labels: if 'UNKNOWN' in col: if SSCVAE: ogt_topt_labels = ogt_topt_labels.drop(col, axis=1) self.labels = torch.tensor(ogt_topt_labels.values, device=device).float() if not SSVAE and not CVAE and not SSCVAE: self.labels = None # Calculate weights weights = [] flat_one_hot = F.one_hot(self.encoded_seqs, num_classes=max(IUPAC_SEQ2IDX.values())+1).float().flatten(1) weight_batch_size = 1000 for i in range(self.encoded_seqs.size(0) // weight_batch_size + 1): x = flat_one_hot[i * weight_batch_size : (i + 1) * weight_batch_size] similarities = torch.mm(x, flat_one_hot.T) lengths = (self.encoded_seqs[i * weight_batch_size : (i + 1) * weight_batch_size] != IUPAC_SEQ2IDX["<mask>"]).sum(1).unsqueeze(-1) w = 1.0 / (similarities / lengths).gt(0.8).sum(1).float() weights.append(w) self.weights = torch.cat(weights) # TODO fix oversampling to be indifferent of label index self.neff = self.weights.sum() print(self.neff) if over_sample>0 and tom_odor: self.weights[-(self.labels.size(0)-tom_filler_labels.size(0)):] = self.weights[-(self.labels.size(0)-tom_filler_labels.size(0)):] + over_sample if over_sample>0 and not tom_odor: print('######################################### USED OVER_SAMPLE FOR LABEL THAT ISNT TOM #######################################') def write_to_file(self, filepath): for s, w in zip(self.seqs, self.weights): s.id = s.id + ':' + str(float(w)) SeqIO.write(self.seqs, filepath, 'fasta') def __len__(self): return len(self.encoded_seqs) def __getitem__(self, i): if type(self.labels) == type(None): labels = self.labels else: labels = self.labels[i] return self.encoded_seqs[i], self.weights[i], self.neff, labels class BLATDataset(Dataset): def __init__(self, seqs, device = None, SSVAE=False, SSCVAE=False, CVAE=False, assay=False, add_assay_seqs=False, val_index=None): super().__init__() self.device = device self.seqs = seqs if isinstance(seqs, list) else list(SeqIO.parse(seqs, "fasta")) if len(self.seqs) == 0: self.encoded_seqs = torch.Tensor() self.weights = torch.Tensor() self.neff = 0 return self.encoded_seqs = torch.stack([seq2idx(seq, device) for seq in self.seqs]) num_sequences = self.encoded_seqs.size(0) if SSCVAE or CVAE or SSVAE: discretize = True if SSCVAE or CVAE else False if assay or add_assay_seqs: assay_seqs_and_labels = prep_any_labels('data_handler/files/assay_data/Blat_assay_data.pkl', ['assay'], val_index=val_index, discretize=discretize) for col in assay_seqs_and_labels.columns: if 'UNKNOWN' in col and SSCVAE: assay_seqs_and_labels = assay_seqs_and_labels.drop(col, axis=1) if assay: assay_labels, assay_filler_labels, _ = prep_assay_labels(assay_seqs_and_labels, device, self.encoded_seqs.size(0), cvae=CVAE) assay_labels = torch.cat((assay_filler_labels, assay_labels)) else: assay_labels = None assay_seqs = torch.tensor(assay_seqs_and_labels['Sequence'], device=device) self.encoded_seqs = torch.cat((self.encoded_seqs, assay_seqs)) else: assay_labels = None if assay_labels != None: self.labels = assay_labels if assay_labels == None: self.labels = None if not SSVAE and not CVAE and not SSCVAE: self.labels = None # Calculate weights weights = [] flat_one_hot = F.one_hot(self.encoded_seqs, num_classes=max(IUPAC_SEQ2IDX.values())+1).float().flatten(1) weight_batch_size = 1000 for i in range(self.encoded_seqs.size(0) // weight_batch_size + 1): x = flat_one_hot[i * weight_batch_size : (i + 1) * weight_batch_size] similarities = torch.mm(x, flat_one_hot.T) lengths = (self.encoded_seqs[i * weight_batch_size : (i + 1) * weight_batch_size] != IUPAC_SEQ2IDX["<mask>"]).sum(1).unsqueeze(-1) w = 1.0 / (similarities / lengths).gt(0.8).sum(1).float() weights.append(w) self.weights = torch.cat(weights) self.neff = self.weights.sum() def write_to_file(self, filepath): for s, w in zip(self.seqs, self.weights): s.id = s.id + ':' + str(float(w)) SeqIO.write(self.seqs, filepath, 'fasta') def __len__(self): return len(self.encoded_seqs) def __getitem__(self, i): if self.labels == None: labels = self.labels else: labels = self.labels[i] return self.encoded_seqs[i], self.weights[i], self.neff, labels class PDEDataset(Dataset): def __init__(self, seqs, backbone=0, gappy_colx_threshold=1, device = None, SSVAE=False, SSCVAE=False, CVAE=False, logHIF=False, ogt=False, topt=False, add_logHIF_seqs=False, val_index=None): super().__init__() self.device = device self.seqs = seqs if isinstance(seqs, list) else list(SeqIO.parse(seqs, "fasta")) if len(self.seqs) == 0: self.encoded_seqs = torch.Tensor() self.weights = torch.Tensor() self.neff = 0 return prepro_seqs, _ = prepro_alignment(self.seqs, backbone, gappy_colx_threshold) self.encoded_seqs = torch.stack([torch.tensor(seq, device=device) for seq in prepro_seqs]) self.encoded_seqs = torch.stack([seq[25:] for seq in self.encoded_seqs]) self.encoded_seqs = postprocess_aln_coverage(self.encoded_seqs, threshold=0.5) num_sequences = self.encoded_seqs.size(0) if SSCVAE or CVAE or SSVAE: discretize = True if SSCVAE or CVAE else False if logHIF or add_assay_seqs: assay_seqs_and_labels = prep_any_labels('data_handler/files/assay_data/PDE_logHIF_data.pkl', ['logHIF'], val_index=val_index, discretize=discretize) for col in assay_seqs_and_labels.columns: if 'UNKNOWN' in col and SSCVAE: assay_seqs_and_labels = assay_seqs_and_labels.drop(col, axis=1) if assay: assay_labels, assay_filler_labels, _ = prep_assay_labels(assay_seqs_and_labels, device, self.encoded_seqs.size(0), cvae=CVAE) assay_labels = torch.cat((assay_filler_labels, assay_labels)) else: assay_labels = None assay_seqs = torch.tensor(assay_seqs_and_labels['Sequence'], device=device) self.encoded_seqs = torch.cat((self.encoded_seqs, assay_seqs)) else: assay_labels = None if assay_labels != None: self.labels = assay_labels if assay_labels == None: self.labels = None if ogt or topt: if self.labels != None: ogt_topt_labels = match_ogt_n_topt(kept_seqs, ogt, topt, device) for col in ogt_topt_labels: if 'UNKNOWN' in col: if SSCVAE: ogt_topt_labels = ogt_topt_labels.drop(col, axis=1) num_extra_seqs = self.labels.size(0)-len(ogt_topt_labels) filler_labels = fill_missing(num_extra_seqs, ogt_topt_labels, discretize, device) ogt_topt_labels = torch.cat((torch.tensor(ogt_topt_labels.values, device=device).float(), filler_labels)) self.labels = torch.cat((self.labels, ogt_topt_labels), dim=1) if self.labels == None: ogt_topt_labels = match_ogt_n_topt(kept_seqs, ogt, topt, device) for col in ogt_topt_labels: if 'UNKNOWN' in col: if SSCVAE: ogt_topt_labels = ogt_topt_labels.drop(col, axis=1) self.labels = torch.tensor(ogt_topt_labels.values, device=device).float() if not SSVAE and not CVAE and not SSCVAE: self.labels = None # Calculate weights weights = [] flat_one_hot = F.one_hot(self.encoded_seqs, num_classes=max(IUPAC_SEQ2IDX.values())+1).float().flatten(1) weight_batch_size = 1000 for i in range(self.encoded_seqs.size(0) // weight_batch_size + 1): x = flat_one_hot[i * weight_batch_size : (i + 1) * weight_batch_size] similarities = torch.mm(x, flat_one_hot.T) lengths = (self.encoded_seqs[i * weight_batch_size : (i + 1) * weight_batch_size] != IUPAC_SEQ2IDX["<mask>"]).sum(1).unsqueeze(-1) w = 1.0 / (similarities / lengths).gt(0.8).sum(1).float() weights.append(w) self.weights = torch.cat(weights) self.neff = self.weights.sum() def write_to_file(self, filepath): for s, w in zip(self.seqs, self.weights): s.id = s.id + ':' + str(float(w)) SeqIO.write(self.seqs, filepath, 'fasta') def __len__(self): return len(self.encoded_seqs) def __getitem__(self, i): if self.labels == None: labels = self.labels else: labels = self.labels[i] return self.encoded_seqs[i], self.weights[i], self.neff, labels def get_datasets_from_Lipase(file=None, backbone_idx=0, train_ratio=1, gappy_colx_threshold=1, device = None, SSVAE=False, SSCVAE=False, CVAE=False, ssl_deg=False, ssl_iniact=False, ssl_pnp=False, ssl_glad=False, tom_odor=False, tom_perf=False, ogt=False, topt=False, add_ssl_seqs=False, add_tom_seqs=False, only_tom_seqs=False, tom_val_index=None, over_sample=False): seqs = list(SeqIO.parse(file, "fasta")) backbone = seqs[backbone_idx] data_len = len(seqs) seq_len = len(seqs[0]) # Split into train/validation train_length = int(train_ratio * data_len) val_length = data_len - train_length indices = list(range(data_len)) random.shuffle(indices) train_indices = indices[:train_length] val_indices = indices[train_length:] train_seqs = [seqs[i] for i in train_indices] val_seqs = [seqs[i] for i in val_indices] all_data = LipaseDataset(seqs, backbone=backbone, gappy_colx_threshold=gappy_colx_threshold, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, ssl_deg=ssl_deg, ssl_iniact=ssl_iniact, ssl_pnp=ssl_pnp, ssl_glad=ssl_glad, tom_odor=tom_odor, tom_perf=tom_perf, ogt=ogt, topt=topt, add_ssl_seqs=add_ssl_seqs, add_tom_seqs=add_tom_seqs, only_tom_seqs=only_tom_seqs, tom_val_index=tom_val_index, over_sample=over_sample) train_data = LipaseDataset(train_seqs, backbone=backbone, gappy_colx_threshold=gappy_colx_threshold, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, ssl_deg=ssl_deg, ssl_iniact=ssl_iniact, ssl_pnp=ssl_pnp, ssl_glad=ssl_glad, tom_odor=tom_odor, tom_perf=tom_perf, ogt=ogt, topt=topt, add_ssl_seqs=add_ssl_seqs, add_tom_seqs=add_tom_seqs, only_tom_seqs=only_tom_seqs, tom_val_index=tom_val_index, over_sample=over_sample) val_data = LipaseDataset(val_seqs, backbone=backbone, gappy_colx_threshold=gappy_colx_threshold, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, ssl_deg=ssl_deg, ssl_iniact=ssl_iniact, ssl_pnp=ssl_pnp, ssl_glad=ssl_glad, tom_odor=tom_odor, tom_perf=tom_perf, ogt=ogt, topt=topt, add_ssl_seqs=add_ssl_seqs, add_tom_seqs=add_tom_seqs, only_tom_seqs=only_tom_seqs, tom_val_index=tom_val_index, over_sample=over_sample) return all_data, train_data, val_data def get_datasets_from_BLAT(file=None, train_ratio=1, device = None, SSVAE=False, SSCVAE=False, CVAE=False, assay=False, add_assay_seqs=False, val_index=None): seqs = list(SeqIO.parse(file, "fasta")) data_len = len(seqs) seq_len = len(seqs[0]) # Split into train/validation train_length = int(train_ratio * data_len) val_length = data_len - train_length indices = list(range(data_len)) random.shuffle(indices) train_indices = indices[:train_length] val_indices = indices[train_length:] train_seqs = [seqs[i] for i in train_indices] val_seqs = [seqs[i] for i in val_indices] all_data = BLATDataset(seqs, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, assay=assay, add_assay_seqs=add_assay_seqs, val_index=val_index) train_data = BLATDataset(train_seqs, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, assay=assay, add_assay_seqs=add_assay_seqs, val_index=val_index) val_data = BLATDataset(val_seqs, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, assay=assay, add_assay_seqs=add_assay_seqs, val_index=val_index) return all_data, train_data, val_data def get_datasets_from_PDE(file=None, train_ratio=1, backbone_idx=25295, gappy_colx_threshold=1, device='cuda', SSVAE=False, SSCVAE=False, CVAE=False, logHIF=False, ogt=False, topt=False, add_logHIF_seqs=False, val_index=None): seqs = list(SeqIO.parse(file, "fasta")) backbone = seqs[backbone_idx] data_len = len(seqs) seq_len = len(seqs[0]) # Split into train/validation train_length = int(train_ratio * data_len) val_length = data_len - train_length indices = list(range(data_len)) random.shuffle(indices) train_indices = indices[:train_length] val_indices = indices[train_length:] train_seqs = [seqs[i] for i in train_indices] val_seqs = [seqs[i] for i in val_indices] all_data = PDEDataset(seqs, backbone=backbone, gappy_colx_threshold=gappy_colx_threshold, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, logHIF=logHIF, ogt=ogt, topt=topt, add_logHIF_seqs=add_logHIF_seqs, val_index=val_index) train_data = PDEDataset(train_seqs, backbone=backbone, gappy_colx_threshold=gappy_colx_threshold, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, logHIF=logHIF, ogt=ogt, topt=topt, add_logHIF_seqs=add_logHIF_seqs, val_index=val_index) val_data = PDEDataset(val_seqs, backbone=backbone, gappy_colx_threshold=gappy_colx_threshold, device = device, SSVAE=SSVAE, SSCVAE=SSCVAE, CVAE=CVAE, logHIF=logHIF, ogt=ogt, topt=topt, add_logHIF_seqs=add_logHIF_seqs, val_index=val_index) return all_data, train_data, val_data def seqs_collate(tensors): encoded_seq, weights, neffs, labels = zip(*tensors) labels = labels if type(labels[0]) == type(None) else torch.stack(labels) return torch.stack(encoded_seq), neffs[0], labels, torch.stack(weights) def get_protein_dataloader(dataset, batch_size = 128, shuffle = False, get_seqs = False, random_weighted_sampling = False): #sampler = WeightedRandomSampler(weights = dataset.weights, num_samples = len(dataset.weights), replacement = True) if random_weighted_sampling else None #return DataLoader(dataset, batch_size = batch_size, shuffle = shuffle if not random_weighted_sampling else not random_weighted_sampling, collate_fn = seqs_collate, sampler = sampler) return DataLoader(dataset, batch_size = batch_size, shuffle = shuffle, collate_fn = seqs_collate) # ensure that alignments used have an amino acid more than a threshold percentage to ensure we dont have too gappy alignments included def postprocess_aln_coverage(alignment, threshold=0.5): keep_colx = [] for i, x in enumerate(alignment): coverage = len(x[x!=IUPAC_SEQ2IDX['<mask>']])/alignment.size(1) if coverage > threshold: keep_colx.append(i) seqs = alignment[keep_colx] return seqs def prepro_alignment(alignment, backbone, threshold): seqs_in_int = [] seqs_aa = [] is_aa = ['A', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'K', 'L', 'M', 'N', 'P', 'Q', 'R', 'S', 'T', 'V', 'W', 'Y'] gap = ['-','.'] for i, record in enumerate(alignment): skip = False for aa in record.seq.upper(): try: assert aa in is_aa or aa in gap, f"{aa}" except AssertionError: skip = True break if not skip: seqs_in_int.append([IUPAC_SEQ2IDX[aa] for aa in str(record.seq).upper()]) seqs_aa.append(str(record.seq).upper()) seqs_in_int = np.array(seqs_in_int) keep_cols = [] for i, aa in enumerate([IUPAC_SEQ2IDX[aa] for aa in
np.array(backbone)
numpy.array
import tensorflow as tf import numpy as np import cv2 from PIL import Image import os import traceback import glob from scipy.io import loadmat, savemat import imageio as iio import matplotlib.pyplot as plt from preprocess_img import Preprocess from load_data import * from reconstruct_mesh import Reconstruction from rendering import Renderer def load_graph(graph_filename): with tf.gfile.GFile(graph_filename, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) return graph_def import dlib det = dlib.get_frontal_face_detector() pred = dlib.shape_predictor('shape_predictor_68_face_landmarks.dat') renderer = Renderer() def get_landmarks(image): detection = det(image, 1)[0] face_shape = pred(image, detection) l_eye_x = np.mean([face_shape.part(i).x for i in range(42, 48)]) l_eye_y = np.mean([face_shape.part(i).y for i in range(42, 48)]) r_eye_x = np.mean([face_shape.part(i).x for i in range(36, 42)]) r_eye_y = np.mean([face_shape.part(i).y for i in range(36, 42)]) l_eye = (l_eye_x, l_eye_y) r_eye = (r_eye_x, r_eye_y) eyes = np.vstack((l_eye, r_eye)) nose = face_shape.part(30) l_mouth = face_shape.part(48) r_mouth = face_shape.part(54) pp = [(p.x, p.y) for p in [nose, r_mouth, l_mouth]] return np.vstack((eyes, pp)) def demo(): # input and output folder in_dir = 'input_vids' out_dir = 'output2' # img_list = glob.glob(image_path + '/' + '*.jpg') vid_list = [os.path.join(in_dir, f) for f in os.listdir(in_dir) if not f.startswith('.')] # read BFM face model # transfer original BFM model to our model if not os.path.isfile('./BFM/BFM_model_front.mat'): transferBFM09() # read face model facemodel = BFM() # read standard landmarks for preprocessing images lm3D = load_lm3d() n = 0 # build reconstruction model with tf.Graph().as_default() as graph, tf.device('/cpu:0'): images = tf.placeholder(name='input_imgs', shape=[None, 224, 224, 3], dtype=tf.float32) graph_def = load_graph('network/FaceReconModel.pb') tf.import_graph_def(graph_def, name='resnet', input_map={'input_imgs:0': images}) # output coefficients of R-Net (dim = 257) coeff = graph.get_tensor_by_name('resnet/coeff:0') with tf.Session() as sess: print('reconstructing...') for file in vid_list: print(file) with iio.get_reader(file) as reader: fps = reader.get_meta_data()['fps'] name, ext = os.path.splitext(file) file_name = os.path.basename(name) l_writer = iio.get_writer(os.path.join(out_dir, file_name + ext), fps=fps) # r_writer = iio.get_writer(os.path.join(out_dir, file_name + '_render' + ext), fps=fps) for i, im in enumerate(reader): print(i) try: # load images and corresponding 5 facial landmarks # img,lm = load_img(file,file.replace('png','txt')) img = Image.fromarray(im) np_img = np.array(img) lm = get_landmarks(np_img) h, w = np_img.shape[:2] # preprocess input image input_img, lm_new, transform_params = Preprocess(img, lm, lm3D) s = transform_params[2] out_sh = int(np.round(224 / s)) out_sh = min(out_sh, min(w, h)) coef = sess.run(coeff, feed_dict={images: input_img}) # reconstruct 3D face with output coefficients and face model face_shape, face_texture, face_color, tri, face_projection, z_buffer, landmarks_2d, translation, rotation, projection = Reconstruction( coef, facemodel) # reshape outputs input_img = np.squeeze(input_img) shape = np.squeeze(face_shape, (0)) color = np.squeeze(face_color, (0)) landmarks_2d = np.squeeze(landmarks_2d, (0)) cx, cy = transform_params[3][0], transform_params[4][0] tx, ty = -(w / 2 - cx), -(cy - h / 2) land_im = np_img.copy() for x, y in landmarks_2d: x = int(np.round((x + (w * s - 224) // 2) / s + tx)) y = int(
np.round((y + (h * s - 224) // 2) / s + ty)
numpy.round
#============================================================================== # WELCOME #============================================================================== # Welcome to RainyDay, a framework for coupling remote sensing precipitation # fields with Stochastic Storm Transposition for assessment of rainfall-driven hazards. # Copyright (C) 2017 <NAME> (<EMAIL>) # #Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.# #============================================================================== # THIS DOCUMENT CONTAINS VARIOUS FUNCTIONS NEEDED TO RUN RainyDay #============================================================================== import os import sys import numpy as np import scipy as sp import glob import math from datetime import datetime, date, time, timedelta import time from copy import deepcopy from mpl_toolkits.basemap import Basemap, addcyclic from matplotlib.patches import Polygon from scipy import stats from netCDF4 import Dataset, num2date, date2num #import gdal import rasterio import pandas as pd from numba import prange,jit import shapely import geopandas as gp from scipy.stats import norm from scipy.stats import lognorm # plotting stuff, really only needed for diagnostic plots import matplotlib.pyplot as plt import matplotlib from matplotlib.colors import LogNorm import subprocess try: os.environ.pop('PYTHONIOENCODING') except KeyError: pass import warnings warnings.filterwarnings("ignore") from numba.types import int32,int64,float32,uint32 import linecache GEOG="+proj=longlat +ellps=WGS84 +datum=WGS84 +no_defs" # ============================================================================= # Smoother that is compatible with nan values. Adapted from https://stackoverflow.com/questions/18697532/gaussian-filtering-a-image-with-nan-in-python # ============================================================================= def mysmoother(inarray,sigma=[3,3]): if len(sigma)!=len(inarray.shape): sys.exit("there seems to be a mismatch between the sigma dimension and the dimension of the array you are trying to smooth") V=inarray.copy() V[np.isnan(inarray)]=0. VV=sp.ndimage.gaussian_filter(V,sigma=sigma) W=0.*inarray.copy()+1. W[np.isnan(inarray)]=0. WW=sp.ndimage.gaussian_filter(W,sigma=sigma) outarray=VV/WW outarray[np.isnan(inarray)]=np.nan return outarray def my_kde_bandwidth(obj, fac=1): # this 1.5 choice is completely subjective :( #We use Scott's Rule, multiplied by a constant factor return np.power(obj.n, -1./(obj.d+4)) * fac def convert_3D_2D(geometry): ''' Takes a GeoSeries of 3D Multi/Polygons (has_z) and returns a list of 2D Multi/Polygons ''' new_geo = [] for p in geometry: if p.has_z: if p.geom_type == 'Polygon': lines = [xy[:2] for xy in list(p.exterior.coords)] new_p = shapely.geometry.Polygon(lines) new_geo.append(new_p) elif p.geom_type == 'MultiPolygon': new_multi_p = [] for ap in p: lines = [xy[:2] for xy in list(ap.exterior.coords)] new_p = shapely.geometry.Polygon(lines) new_multi_p.append(new_p) new_geo.append(shapely.geometry.MultiPolygon(new_multi_p)) return new_geo #============================================================================== # LOOP TO DO SPATIAL SEARCHING FOR MAXIMUM RAINFALL LOCATION AT EACH TIME STEP # THIS IS THE CORE OF THE STORM CATALOG CREATION TECHNIQUE #============================================================================== #def catalogweave(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum): # rainsum[:]=0. # code= """ # #include <stdio.h> # int i,j,x,y; # for (x=0;x<xlen;x++) { # for (y=0;y<ylen;y++) { # for (j=0;j<maskheight;j++) { # for (i=0;i<maskwidth;i++) { # rainsum(y,x)=rainsum(y,x)+temparray(y+j,x+i)*trimmask(j,i); # } # } # } # } # """ # vars=['temparray','trimmask','xlen','ylen','maskheight','maskwidth','rainsum'] # sp.weave.inline(code,vars,type_converters=converters.blitz,compiler='gcc') # rmax=np.nanmax(rainsum) # wheremax=np.where(rainsum==rmax) # return rmax, wheremax[0][0], wheremax[1][0] # def catalogAlt(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum,domainmask): rainsum[:]=0. for i in range(0,(ylen)*(xlen)): y=i//xlen x=i-y*xlen #print x, rainsum[y,x]=np.nansum(np.multiply(temparray[(y):(y+maskheight),(x):(x+maskwidth)],trimmask)) #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(rainsum==rmax) return rmax, wheremax[0][0], wheremax[1][0] def catalogAlt_irregular(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum,domainmask): rainsum[:]=0. for i in range(0,(ylen)*(xlen)): y=i//xlen x=i-y*xlen #print x,y if np.any(np.equal(domainmask[y+maskheight/2,x:x+maskwidth],1.)) and np.any(np.equal(domainmask[y:y+maskheight,x+maskwidth/2],1.)): rainsum[y,x]=np.nansum(np.multiply(temparray[(y):(y+maskheight),(x):(x+maskwidth)],trimmask)) else: rainsum[y,x]=0. #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(rainsum==rmax) return rmax, wheremax[0][0], wheremax[1][0] @jit(nopython=True,fastmath=True) def catalogNumba_irregular(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum,domainmask): rainsum[:]=0. halfheight=int32(np.ceil(maskheight/2)) halfwidth=int32(np.ceil(maskwidth/2)) for i in range(0,ylen*xlen): y=i//xlen x=i-y*xlen #print x,y if np.any(np.equal(domainmask[y+halfheight,x:x+maskwidth],1.)) and np.any(np.equal(domainmask[y:y+maskheight,x+halfwidth],1.)): rainsum[y,x]=np.nansum(np.multiply(temparray[y:(y+maskheight),x:(x+maskwidth)],trimmask)) else: rainsum[y,x]=0. #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(np.equal(rainsum,rmax)) return rmax, wheremax[0][0], wheremax[1][0] @jit(nopython=True) def catalogNumba(temparray,trimmask,xlen,ylen,maskheight,maskwidth,rainsum): rainsum[:]=0. for i in range(0,(ylen)*(xlen)): y=i//xlen x=i-y*xlen #print x,y rainsum[y,x]=np.nansum(np.multiply(temparray[(y):(y+maskheight),(x):(x+maskwidth)],trimmask)) #wheremax=np.argmax(rainsum) rmax=np.nanmax(rainsum) wheremax=np.where(np.equal(rainsum,rmax)) return rmax, wheremax[0][0], wheremax[1][0] @jit(nopython=True) def DistributionBuilder(intenserain,tempmax,xlen,ylen,checksep): for y in np.arange(0,ylen): for x in np.arange(0,xlen): if np.any(checksep[:,y,x]): #fixind=np.where(checksep[:,y,x]==True) for i in np.arange(0,checksep.shape[0]): if checksep[i,y,x]==True: fixind=i break if tempmax[y,x]>intenserain[fixind,y,x]: intenserain[fixind,y,x]=tempmax[y,x] checksep[:,y,x]=False checksep[fixind,y,x]=True else: checksep[fixind,y,x]=False elif tempmax[y,x]>np.min(intenserain[:,y,x]): fixind=np.argmin(intenserain[:,y,x]) intenserain[fixind,y,x]=tempmax[y,x] checksep[fixind,y,x]=True return intenserain,checksep # slightly faster numpy-based version of above def DistributionBuilderFast(intenserain,tempmax,xlen,ylen,checksep): minrain=np.min(intenserain,axis=0) if np.any(checksep): flatsep=np.any(checksep,axis=0) minsep=np.argmax(checksep[:,flatsep],axis=0) islarger=np.greater(tempmax[flatsep],intenserain[minsep,flatsep]) if np.any(islarger): intenserain[minsep,flatsep][islarger]=tempmax[flatsep][islarger] checksep[:]=False checksep[minsep,flatsep]=True else: checksep[minsep,flatsep]=False elif np.any(np.greater(tempmax,minrain)): #else: fixind=np.greater(tempmax,minrain) minrainind=np.argmin(intenserain,axis=0) intenserain[minrainind[fixind],fixind]=tempmax[fixind] checksep[minrainind[fixind],fixind]=True return intenserain,checksep #def SSTalt(passrain,sstx,ssty,trimmask,maskheight,maskwidth,intense_data=False): # rainsum=np.zeros((len(sstx)),dtype='float32') # nreals=len(rainsum) # # for i in range(0,nreals): # rainsum[i]=np.nansum(np.multiply(passrain[(ssty[i]) : (ssty[i]+maskheight) , (sstx[i]) : (sstx[i]+maskwidth)],trimmask)) # return rainsum @jit(fastmath=True) def SSTalt(passrain,sstx,ssty,trimmask,maskheight,maskwidth,intensemean=None,intensestd=None,intensecorr=None,homemean=None,homestd=None,durcheck=False): maxmultiplier=1.5 rainsum=np.zeros((len(sstx)),dtype='float32') whichstep=np.zeros((len(sstx)),dtype='int32') nreals=len(rainsum) nsteps=passrain.shape[0] multiout=np.empty_like(rainsum) if (intensemean is not None) and (homemean is not None): domean=True else: domean=False if (intensestd is not None) and (intensecorr is not None) and (homestd is not None): #rquant=np.random.random_integers(5,high=95,size=nreals)/100. rquant=np.random.random_sample(size=nreals) doall=True else: doall=False rquant=np.nan if durcheck==False: exprain=np.expand_dims(passrain,0) else: exprain=passrain for k in range(0,nreals): y=int(ssty[k]) x=int(sstx[k]) if np.all(np.less(exprain[:,y:y+maskheight,x:x+maskwidth],0.5)): rainsum[k]=0. multiout[k]=-999. else: if domean: #sys.exit('need to fix short duration part') muR=homemean-intensemean[y,x] if doall: stdR=np.sqrt(np.power(homestd,2)+np.power(intensestd[y,x],2)-2.*intensecorr[y,x]*homestd*intensestd[y,x]) # multiplier=sp.stats.lognorm.ppf(rquant[k],stdR,loc=0,scale=np.exp(muR)) #multiplier=10. #while multiplier>maxmultiplier: # who knows what the right number is to use here... inverrf=sp.special.erfinv(2.*rquant-1.) multiplier=np.exp(muR+np.sqrt(2.*np.power(stdR,2))*inverrf[k]) #multiplier=np.random.lognormal(muR,stdR) if multiplier>maxmultiplier: multiplier=1. else: multiplier=np.exp(muR) if multiplier>maxmultiplier: multiplier=1. else: multiplier=1. # print("still going!") if multiplier>maxmultiplier: sys.exit("Something seems to be going horribly wrong in the multiplier scheme!") else: multiout[k]=multiplier if durcheck==True: storesum=0. storestep=0 for kk in range(0,nsteps): #tempsum=numba_multimask_calc(passrain[kk,:],rsum,train,trimmask,ssty[k],maskheight,sstx[k],maskwidth)*multiplier tempsum=numba_multimask_calc(passrain[kk,:],trimmask,y,x,maskheight,maskwidth)*multiplier if tempsum>storesum: storesum=tempsum storestep=kk rainsum[k]=storesum whichstep[k]=storestep else: rainsum[k]=numba_multimask_calc(passrain,trimmask,y,x,maskheight,maskwidth)*multiplier if domean: return rainsum,multiout,whichstep else: return rainsum,whichstep #@jit(nopython=True,fastmath=True,parallel=True) @jit(nopython=True,fastmath=True) def numba_multimask_calc(passrain,trimmask,ssty,sstx,maskheight,maskwidth): train=np.multiply(passrain[ssty : ssty+maskheight , sstx : sstx+maskwidth],trimmask) rainsum=np.sum(train) return rainsum @jit(fastmath=True) def SSTalt_singlecell(passrain,sstx,ssty,trimmask,maskheight,maskwidth,intensemean=None,intensestd=None,intensecorr=None,homemean=None,homestd=None,durcheck=False): rainsum=np.zeros((len(sstx)),dtype='float32') whichstep=np.zeros((len(sstx)),dtype='int32') nreals=len(rainsum) nsteps=passrain.shape[0] multiout=np.empty_like(rainsum) # do we do deterministic or dimensionless rescaling? if (intensemean is not None) and (homemean is not None): domean=True else: domean=False # do we do stochastic rescaling? if (intensestd is not None) and (intensecorr is not None) and (homestd is not None): rquant=np.random.random_sample(size=nreals) inverrf=sp.special.erfinv(2.*rquant-1.) doall=True else: doall=False #rquant=np.nan if durcheck==False: passrain=np.expand_dims(passrain,0) # deterministic or dimensionless: if domean and doall==False: rain,multi,step=killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=durcheck,intensemean=intensemean,homemean=homemean,multiout=multiout) return rain,multi,step # stochastic: elif doall: rain,multi,step=killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=durcheck,intensemean=intensemean,intensestd=intensestd,intensecorr=intensecorr,homemean=homemean,homestd=homestd,multiout=multiout,inverrf=inverrf) return rain,multi,step # no rescaling: else: rain,_,step=killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=durcheck,multiout=multiout) return rain,step #@jit(nopython=True,fastmath=True,parallel=True) @jit(nopython=True,fastmath=True) def killerloop_singlecell(passrain,rainsum,whichstep,nreals,ssty,sstx,nsteps,durcheck=False,intensemean=None,homemean=None,homestd=None,multiout=None,rquant=None,intensestd=None,intensecorr=None,inverrf=None): maxmultiplier=1.5 # who knows what the right number is to use here... for k in prange(nreals): y=int(ssty[k]) x=int(sstx[k]) # deterministic or dimensionless: if (intensemean is not None) and (homemean is not None) and (homestd is None): if np.less(homemean,0.001) or np.less(intensemean[y,x],0.001): multiplier=1. # or maybe this should be zero else: multiplier=np.exp(homemean-intensemean[y,x]) if multiplier>maxmultiplier: multiplier=1. # or maybe this should be zero # stochastic: elif (intensemean is not None) and (homemean is not None) and (homestd is not None): if np.less(homemean,0.001) or np.less(intensemean[y,x],0.001): multiplier=1. # or maybe this should be zero else: muR=homemean-intensemean[y,x] stdR=np.sqrt(np.power(homestd,2)+np.power(intensestd[y,x],2)-2*intensecorr[y,x]*homestd*intensestd[y,x]) multiplier=np.exp(muR+np.sqrt(2.*np.power(stdR,2))*inverrf[k]) if multiplier>maxmultiplier: multiplier=1. # or maybe this should be zero # no rescaling: else: multiplier=1. if durcheck==False: rainsum[k]=np.nansum(passrain[:,y, x]) else: storesum=0. storestep=0 for kk in range(nsteps): tempsum=passrain[kk,y,x] if tempsum>storesum: storesum=tempsum storestep=kk rainsum[k]=storesum*multiplier multiout[k]=multiplier whichstep[k]=storestep return rainsum,multiout,whichstep #@jit(nopython=True,fastmath=True,parallel=True) #def killerloop(passrain,rainsum,nreals,ssty,sstx,maskheight,maskwidth,trimmask,nsteps,durcheck): # for k in prange(nreals): # spanx=int64(sstx[k]+maskwidth) # spany=int64(ssty[k]+maskheight) # if np.all(np.less(passrain[:,ssty[k]:spany,sstx[k]:spanx],0.5)): # rainsum[k]=0. # else: # if durcheck==False: # rainsum[k]=np.nansum(np.multiply(passrain[ssty[k] : spany , sstx[k] : spanx],trimmask)) # else: # storesum=float32(0.) # for kk in range(nsteps): # tempsum=np.nansum(np.multiply(passrain[kk,ssty[k]:spany,sstx[k]:spanx],trimmask)) # if tempsum>storesum: # storesum=tempsum # rainsum[k]=storesum # return rainsum #whichstep[k]=storestep #return rainsum,whichstep # this function below never worked for some unknown Numba problem-error messages indicated that it wasn't my fault!!! Some problem in tempsum #@jit(nopython=True,fastmath=True,parallel=True) #def killerloop(passrain,rainsum,nreals,ssty,sstx,maskheight,maskwidth,masktile,nsteps,durcheck): # for k in prange(nreals): # spanx=sstx[k]+maskwidth # spany=ssty[k]+maskheight # if np.all(np.less(passrain[:,ssty[k]:spany,sstx[k]:spanx],0.5)): # rainsum[k]=0. # else: # if durcheck==False: # #tempstep=np.multiply(passrain[:,ssty[k] : spany , sstx[k] : spanx],trimmask) # #xnum=int64(sstx[k]) # #ynum=int64(ssty[k]) # #rainsum[k]=np.nansum(passrain[:,ssty[k], sstx[k]]) # rainsum[k]=np.nansum(np.multiply(passrain[:,ssty[k] : spany , sstx[k] : spanx],masktile)) # else: # storesum=float32(0.) # for kk in range(nsteps): # #tempsum=0. # #tempsum=np.multiply(passrain[kk,ssty[k]:spany,sstx[k]:spanx],masktile[0,:,:]) # tempsum=np.nansum(np.multiply(passrain[kk,ssty[k]:spany,sstx[k]:spanx],masktile[0,:,:])) # return rainsum #============================================================================== # THIS VARIANT IS SIMPLER AND UNLIKE SSTWRITE, IT ACTUALLY WORKS RELIABLY! #============================================================================== #def SSTwriteAlt(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth): # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # #ctr=0 # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # for j in unqwhere: # #ctr=ctr+1 # #print ctr # outrain[j,:]=np.multiply(catrain[unqstm[i],:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],trimmask) # return outrain #============================================================================== # THIS VARIANT IS SAME AS ABOVE, BUT HAS A MORE INTERESTING RAINFALL PREPENDING PROCEDURE #============================================================================== #def SSTwriteAltPreCat(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime): # catyears=ptime.astype('datetime64[Y]').astype(int)+1970 # ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]+precat.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # unqmonth=ptime[unqstm[i]] # pretimeind=np.where(np.logical_and(ptime>unqmonth-2,ptime<unqmonth+2))[0] # for j in unqwhere: # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),catrain[unqstm[i],:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # outrain[j,:]=np.multiply(temprain,trimmask) # return outrain # #============================================================================== # SAME AS ABOVE, BUT HANDLES STORM ROTATION #============================================================================== #def SSTwriteAltPreCatRotation(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime,delarray,rlzanglebin,rainprop): ##def SSTwriteAltPreCatRotation(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime,delarray,rlzanglebin): # catyears=ptime.astype('datetime64[Y]').astype(int)+1970 # ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]+precat.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # unqstm is the storm number # # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # unqmonth=ptime[unqstm[i]] # pretimeind=np.where(np.logical_and(ptime>unqmonth-2,ptime<unqmonth+2))[0] # for j in unqwhere: # inrain=catrain[unqstm[i],:].copy() # # xctr=rlzx[j]+maskwidth/2. # yctr=rlzy[j]+maskheight/2. # xlinsp=np.linspace(-xctr,rainprop.subdimensions[1]-xctr,rainprop.subdimensions[1]) # ylinsp=np.linspace(-yctr,rainprop.subdimensions[0]-yctr,rainprop.subdimensions[0]) # # ingridx,ingridy=np.meshgrid(xlinsp,ylinsp) # ingridx=ingridx.flatten() # ingridy=ingridy.flatten() # outgrid=np.column_stack((ingridx,ingridy)) # # for k in range(0,inrain.shape[0]): # interp=sp.interpolate.LinearNDInterpolator(delarray[unqstm[i]][rlzanglebin[j]-1],inrain[k,:].flatten(),fill_value=0.) # inrain[k,:]=np.reshape(interp(outgrid),rainprop.subdimensions) # #inrain[k,:]=temprain # # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # # outrain[j,:]=np.multiply(temprain,trimmask) # return outrain @jit(fastmath=True) def SSTspin_write_v2(catrain,rlzx,rlzy,rlzstm,trimmask,maskheight,maskwidth,precat,ptime,rainprop,rlzanglebin=None,delarray=None,spin=False,flexspin=True,samptype='uniform',cumkernel=None,rotation=False,domaintype='rectangular'): catyears=ptime.astype('datetime64[Y]').astype(int)+1970 ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 nyrs=np.int(rlzx.shape[0]) raindur=np.int(catrain.shape[1]+precat.shape[1]) outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # unqstm is the storm number for i in range(0,len(unqstm)): unqwhere=np.where(unqstm[i]==rlzstm)[0] unqmonth=ptime[unqstm[i]] pretimeind=np.where(np.logical_and(ptime>unqmonth-1,ptime<unqmonth+1))[0] # flexspin allows you to use spinup rainfall from anywhere in transposition domain, rather than just storm locations, but it doesn't seem to be very useful based on initial testing if spin==True and flexspin==True: if samptype=='kernel' or domaintype=='irregular': rndloc=np.random.random_sample(len(unqwhere)) shiftprex,shiftprey=numbakernel(rndloc,cumkernel) else: shiftprex=np.random.random_integers(0,np.int(rainprop.subdimensions[1])-maskwidth-1,len(unqwhere)) shiftprey=np.random.random_integers(0,np.int(rainprop.subdimensions[0])-maskheight-1,len(unqwhere)) ctr=0 for j in unqwhere: inrain=catrain[unqstm[i],:].copy() # this doesn't rotate the prepended rainfall if rotation==True: xctr=rlzx[j]+maskwidth/2. yctr=rlzy[j]+maskheight/2. xlinsp=np.linspace(-xctr,rainprop.subdimensions[1]-xctr,rainprop.subdimensions[1]) ylinsp=np.linspace(-yctr,rainprop.subdimensions[0]-yctr,rainprop.subdimensions[0]) ingridx,ingridy=np.meshgrid(xlinsp,ylinsp) ingridx=ingridx.flatten() ingridy=ingridy.flatten() outgrid=np.column_stack((ingridx,ingridy)) for k in range(0,inrain.shape[0]): interp=sp.interpolate.LinearNDInterpolator(delarray[unqstm[i]][rlzanglebin[j]-1],inrain[k,:].flatten(),fill_value=0.) inrain[k,:]=np.reshape(interp(outgrid),rainprop.subdimensions) if spin==True and flexspin==True: temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(shiftprey[ctr]) : (shiftprey[ctr]+maskheight) , (shiftprex[ctr]) : (shiftprex[ctr]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) elif spin==True and flexspin==False: temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) elif spin==False: temprain=inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)] else: sys.exit("what else is there?") ctr=ctr+1 outrain[j,:]=np.multiply(temprain,trimmask) return outrain ##============================================================================== ## SAME AS ABOVE, BUT A BIT MORE DYNAMIC IN TERMS OF SPINUP ##============================================================================== #def SSTspin_write_v2(catrain,rlzx,rlzy,rlzstm,trimmask,xmin,xmax,ymin,ymax,maskheight,maskwidth,precat,ptime,rainprop,rlzanglebin=None,delarray=None,spin=False,flexspin=True,samptype='uniform',cumkernel=None,rotation=False,domaintype='rectangular',intense_data=False): # catyears=ptime.astype('datetime64[Y]').astype(int)+1970 # ptime=ptime.astype('datetime64[M]').astype(int)-(catyears-1970)*12+1 # nyrs=np.int(rlzx.shape[0]) # raindur=np.int(catrain.shape[1]+precat.shape[1]) # outrain=np.zeros((nyrs,raindur,maskheight,maskwidth),dtype='float32') # unqstm,unqind,unqcnts=np.unique(rlzstm,return_inverse=True,return_counts=True) # unqstm is the storm number # # if intense_data!=False: # sys.exit("Scenario writing for intensity-based resampling not tested!") # intquant=intense_data[0] # fullmu=intense_data[1] # fullstd=intense_data[2] # muorig=intense_data[3] # stdorig=intense_data[4] # # for i in range(0,len(unqstm)): # unqwhere=np.where(unqstm[i]==rlzstm)[0] # unqmonth=ptime[unqstm[i]] # pretimeind=np.where(np.logical_and(ptime>unqmonth-1,ptime<unqmonth+1))[0] # # if transpotype=='intensity': # origmu=np.multiply(murain[caty[i]:caty[i]+maskheight,catx[i]:catx[i]+maskwidth],trimmask) # origstd=np.multiply(stdrain[caty[i]:caty[i]+maskheight,catx[i]:catx[i]+maskwidth],trimmask) # #intense_dat=[intquant[],murain,stdrain,origmu,origstd] # # # flexspin allows you to use spinup rainfall from anywhere in transposition domain, rather than just storm locations, but it doesn't seem to be very useful based on initial testing # if spin==True and flexspin==True: # if samptype=='kernel' or domaintype=='irregular': # rndloc=np.random.random_sample(len(unqwhere)) # shiftprex,shiftprey=numbakernel(rndloc,cumkernel) # else: # shiftprex=np.random.random_integers(0,np.int(rainprop.subdimensions[1])-maskwidth-1,len(unqwhere)) # shiftprey=np.random.random_integers(0,np.int(rainprop.subdimensions[0])-maskheight-1,len(unqwhere)) # # ctr=0 # for j in unqwhere: # inrain=catrain[unqstm[i],:].copy() # # if intense_data!=False: # transmu=np.multiply(fullmu[(rlzy[i]) : (rlzy[i]+maskheight) , (rlzx[i]) : (rlzx[i]+maskwidth)],trimmask) # transtd=np.multiply(fullstd[(rlzy[i]) : (rlzy[i]+maskheight) , (rlzx[i]) : (rlzx[i]+maskwidth)],trimmask) # mu_multi=transmu/muorig # std_multi=np.abs(transtd-stdorig)/stdorig # multipliermask=norm.ppf(intquant[i],loc=mu_multi,scale=std_multi) # multipliermask[multipliermask<0.]=0. # multipliermask[np.isnan(multipliermask)]=0. # # # this doesn't rotate the prepended rainfall # if rotation==True: # xctr=rlzx[j]+maskwidth/2. # yctr=rlzy[j]+maskheight/2. # xlinsp=np.linspace(-xctr,rainprop.subdimensions[1]-xctr,rainprop.subdimensions[1]) # ylinsp=np.linspace(-yctr,rainprop.subdimensions[0]-yctr,rainprop.subdimensions[0]) # # ingridx,ingridy=np.meshgrid(xlinsp,ylinsp) # ingridx=ingridx.flatten() # ingridy=ingridy.flatten() # outgrid=np.column_stack((ingridx,ingridy)) # # for k in range(0,inrain.shape[0]): # interp=sp.interpolate.LinearNDInterpolator(delarray[unqstm[i]][rlzanglebin[j]-1],inrain[k,:].flatten(),fill_value=0.) # inrain[k,:]=np.reshape(interp(outgrid),rainprop.subdimensions) # # if spin==True and flexspin==True: # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(shiftprey[ctr]) : (shiftprey[ctr]+maskheight) , (shiftprex[ctr]) : (shiftprex[ctr]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # elif spin==True and flexspin==False: # temprain=np.concatenate((np.squeeze(precat[np.random.choice(pretimeind, 1),:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)],axis=0),inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)]),axis=0) # elif spin==False: # temprain=inrain[:,(rlzy[j]) : (rlzy[j]+maskheight) , (rlzx[j]) : (rlzx[j]+maskwidth)] # else: # sys.exit("what else is there?") # ctr=ctr+1 # if intense_data!=False: # outrain[j,:]=np.multiply(temprain,multipliermask) # else: # outrain[j,:]=np.multiply(temprain,trimmask) # return outrain #============================================================================== # LOOP FOR KERNEL BASED STORM TRANSPOSITION # THIS FINDS THE TRANSPOSITION LOCATION FOR EACH REALIZATION IF YOU ARE USING THE KERNEL-BASED RESAMPLER # IF I CONFIGURE THE SCRIPT SO THE USER CAN PROVIDE A CUSTOM RESAMPLING SCHEME, THIS WOULD PROBABLY WORK FOR THAT AS WELL #============================================================================== #def weavekernel(rndloc,cumkernel): # nlocs=len(rndloc) # nrows=cumkernel.shape[0] # ncols=cumkernel.shape[1] # tempx=np.empty((len(rndloc)),dtype="int32") # tempy=np.empty((len(rndloc)),dtype="int32") # code= """ # #include <stdio.h> # int i,x,y,brklp; # double prevprob; # for (i=0;i<nlocs;i++) { # prevprob=0.0; # brklp=0; # for (y=0; y<nrows; y++) { # for (x=0; x<ncols; x++) { # if ( (rndloc(i)<=cumkernel(y,x)) && (rndloc(i)>prevprob) ) { # tempx(i)=x; # tempy(i)=y; # prevprob=cumkernel(y,x); # brklp=1; # break; # } # } # if (brklp==1) { # break; # } # } # } # """ # vars=['rndloc','cumkernel','nlocs','nrows','ncols','tempx','tempy'] # sp.weave.inline(code,vars,type_converters=converters.blitz,compiler='gcc') # return tempx,tempy def pykernel(rndloc,cumkernel): nlocs=len(rndloc) ncols=cumkernel.shape[1] tempx=np.empty((len(rndloc)),dtype="int32") tempy=np.empty((len(rndloc)),dtype="int32") flatkern=np.append(0.,cumkernel.flatten()) for i in range(0,nlocs): x=rndloc[i]-flatkern x[np.less(x,0.)]=1000. whereind = np.argmin(x) y=whereind//ncols x=whereind-y*ncols tempx[i]=x tempy[i]=y return tempx,tempy @jit def numbakernel(rndloc,cumkernel,tempx,tempy,ncols): nlocs=len(rndloc) #ncols=xdim flatkern=np.append(0.,cumkernel.flatten()) #x=np.zeros_like(rndloc,dtype='float64') for i in np.arange(0,nlocs): x=rndloc[i]-flatkern x[np.less(x,0.)]=10. whereind=np.argmin(x) y=whereind//ncols x=whereind-y*ncols tempx[i]=x tempy[i]=y return tempx,tempy @jit def numbakernel_fast(rndloc,cumkernel,tempx,tempy,ncols): nlocs=int32(len(rndloc)) ncols=int32(cumkernel.shape[1]) flatkern=np.append(0.,cumkernel.flatten()) return kernelloop(nlocs,rndloc,flatkern,ncols,tempx,tempy) #@jit(nopython=True,fastmath=True,parallel=True) @jit(nopython=True,fastmath=True) def kernelloop(nlocs,rndloc,flatkern,ncols,tempx,tempy): for i in prange(nlocs): diff=rndloc[i]-flatkern diff[np.less(diff,0.)]=10. whereind=np.argmin(diff) y=whereind//ncols x=whereind-y*ncols tempx[i]=x tempy[i]=y return tempx,tempy #============================================================================== # FIND THE BOUNDARY INDICIES AND COORDINATES FOR THE USER-DEFINED SUBAREA # NOTE THAT subind ARE THE MATRIX INDICIES OF THE SUBBOX, STARTING FROM UPPER LEFT CORNER OF DOMAIN AS (0,0) # NOTE THAT subcoord ARE THE COORDINATES OF THE OUTSIDE BORDER OF THE SUBBOX # THEREFORE THE DISTANCE FROM THE WESTERN (SOUTHERN) BOUNDARY TO THE EASTERN (NORTHERN) BOUNDARY IS NCOLS (NROWS) +1 TIMES THE EAST-WEST (NORTH-SOUTH) RESOLUTION #============================================================================== def findsubbox(inarea,rainprop): outind=np.empty([4],dtype='int') outextent=np.empty([4]) outdim=np.empty([2]) inbox=deepcopy(inarea) rangex=np.arange(rainprop.bndbox[0],rainprop.bndbox[1]-rainprop.spatialres[0]/1000,rainprop.spatialres[0]) rangey=np.arange(rainprop.bndbox[3],rainprop.bndbox[2]+rainprop.spatialres[1]/1000,-rainprop.spatialres[1]) if rangex.shape[0]<rainprop.dimensions[1]: rangex=np.append(rangex,rangex[-1]) if rangey.shape[0]<rainprop.dimensions[0]: rangey=np.append(rangey,rangey[-1]) if rangex.shape[0]>rainprop.dimensions[1]: rangex=rangex[0:-1] if rangey.shape[0]>rainprop.dimensions[0]: rangey=rangey[0:-1] outextent=inbox # "SNAP" output extent to grid outind[0]=np.abs(rangex-outextent[0]).argmin() outind[1]=np.abs(rangex-outextent[1]).argmin()-1 outind[2]=np.abs(rangey-outextent[2]).argmin()-1 outind[3]=np.abs(rangey-outextent[3]).argmin() outextent[0]=rangex[outind[0]] outextent[1]=rangex[outind[1]+1] outextent[2]=rangey[outind[2]+1] outextent[3]=rangey[outind[3]] outdim[1]=np.shape(np.arange(outind[0],outind[1]+1))[0] outdim[0]=np.shape(np.arange(outind[3],outind[2]+1))[0] outdim=np.array(outdim,dtype='int32') return outextent,outind,outdim #============================================================================== # THIS RETURNS A LOGICAL GRID THAT CAN THEN BE APPLIED TO THE GLOBAL GRID TO EXTRACT # A USEER-DEFINED SUBGRID # THIS HELPS TO KEEP ARRAY SIZES SMALL #============================================================================== def creategrids(rainprop): globrangex=np.arange(0,rainprop.dimensions[1],1) globrangey=np.arange(0,rainprop.dimensions[0],1) subrangex=np.arange(rainprop.subind[0],rainprop.subind[1]+1,1) subrangey=np.arange(rainprop.subind[3],rainprop.subind[2]+1,1) subindx=np.logical_and(globrangex>=subrangex[0],globrangex<=subrangex[-1]) subindy=np.logical_and(globrangey>=subrangey[0],globrangey<=subrangey[-1]) gx,gy=np.meshgrid(subindx,subindy) outgrid=np.logical_and(gx==True,gy==True) return outgrid,subindx,subindy #============================================================================== # FUNCTION TO CREATE A MASK ACCORDING TO A USER-DEFINED POLYGON SHAPEFILE AND PROJECTION # THIS USES GDAL COMMANDS FROM THE OS TO RASTERIZE #============================================================================== def rastermaskGDAL(shpname,shpproj,rainprop,masktype,fullpath,gdalpath=False): bndbox=np.array(rainprop.subind) bndcoords=np.array(rainprop.subextent) if rainprop.projection==GEOG: xdim=np.shape(np.linspace(bndcoords[0],bndcoords[1],rainprop.subind[1]-rainprop.subind[0]+1))[0] ydim=np.shape(np.linspace(bndcoords[2],bndcoords[3],rainprop.subind[2]-rainprop.subind[3]+1))[0] else: sys.exit("unrecognized projection!") rastertemplate=np.zeros((ydim,xdim),dtype='float32') if masktype=='simple': print('creating simple mask (0s and 1s)') #os.system('gdal_rasterize -at -burn 1.0 -te '+str(rainprop.subextent[0])+' '+str(rainprop.subextent[2])+' '+str(rainprop.subextent[1])+' '+str(rainprop.subextent[3])+' -tr '+str(rainprop.spatialres[0])+' '+str(rainprop.spatialres[1])+' -ts '+str(np.int(rainprop.subdimensions[1]))+' '+str(np.int(rainprop.subdimensions[0]))+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff'); if gdalpath!=False: rasterizecmd=gdalpath+'/gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0])+' '+"%.9f"%(rainprop.spatialres[1])+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1]))+' '+"%.9f"%(np.int(rainprop.subdimensions[0]))+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' else: rasterizecmd='gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0])+' '+"%.9f"%(rainprop.spatialres[1])+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1]))+' '+"%.9f"%(np.int(rainprop.subdimensions[0]))+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' os.system(rasterizecmd) ds=rasterio.open(fullpath+'/temp.tiff') rastertemplate=ds.read(1) os.system('rm '+fullpath+'/temp.tiff') elif masktype=="fraction": print('creating fractional mask (range from 0.0-1.0)') #os.system('gdal_rasterize -at -burn 1.0 -te '+str(rainprop.subextent[0])+' '+str(rainprop.subextent[2])+' '+str(rainprop.subextent[1])+' '+str(rainprop.subextent[3])+' -tr '+str(rainprop.spatialres[0]/10.)+' '+str(rainprop.spatialres[1]/10.)+' -ts '+str(np.int(rainprop.subdimensions[1])*10)+' '+str(np.int(rainprop.subdimensions[0])*10)+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff'); #os.system('gdalwarp -r average -te '+str(rainprop.subextent[0])+' '+str(rainprop.subextent[2])+' '+str(rainprop.subextent[1])+' '+str(rainprop.subextent[3])+' -ts '+str(np.int(rainprop.subdimensions[1]))+' '+str(np.int(rainprop.subdimensions[0]))+' -overwrite '+fullpath+'/temp.tiff '+fullpath+'/tempAGG.tiff'); if gdalpath!=False: rasterizecmd=gdalpath+'/gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0]/10.)+' '+"%.9f"%(rainprop.spatialres[1]/10.)+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1])*10)+' '+"%.9f"%(np.int(rainprop.subdimensions[0])*10)+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' else: rasterizecmd='gdal_rasterize -at -burn 1.0 -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -tr '+"%.9f"%(rainprop.spatialres[0]/10.)+' '+"%.9f"%(rainprop.spatialres[1]/10.)+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1])*10)+' '+"%.9f"%(np.int(rainprop.subdimensions[0])*10)+' -ot Float32 '+shpname+' '+fullpath+'/temp.tiff' os.system(rasterizecmd) if gdalpath!=False: warpcmd=gdalpath+'/gdalwarp -r average -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1]))+' '+"%.9f"%(np.int(rainprop.subdimensions[0]))+' -overwrite '+fullpath+'/temp.tiff '+fullpath+'/tempAGG.tiff' else: warpcmd='gdalwarp -r average -te '+"%.9f"%(rainprop.subextent[0])+' '+"%.9f"%(rainprop.subextent[2])+' '+"%.9f"%(rainprop.subextent[1])+' '+"%.9f"%(rainprop.subextent[3])+' -ts '+"%.9f"%(np.int(rainprop.subdimensions[1]))+' '+"%.9f"%(np.int(rainprop.subdimensions[0]))+' -overwrite '+fullpath+'/temp.tiff '+fullpath+'/tempAGG.tiff' os.system(warpcmd) ds=rasterio.open(fullpath+'/tempAGG.tiff') rastertemplate=ds.read(1) os.system('rm '+fullpath+'/temp.tiff') os.system('rm '+fullpath+'/tempAGG.tiff') else: sys.exit("You entered an incorrect mask type, options are 'simple' or 'fraction'") rastertemplate=np.array(rastertemplate[:]) return rastertemplate #============================================================================== # WRITE SCENARIOS TO NETCDF ONE REALIZATION AT A TIME #============================================================================== def writerealization(rlz,nrealizations,writename,outrain,writemax,writestorm,writeperiod,writex,writey,writetimes,latrange,lonrange,whichorigstorm): # SAVE outrain AS NETCDF FILE dataset=Dataset(writename, 'w', format='NETCDF4') # create dimensions outlats=dataset.createDimension('outlat',len(latrange)) outlons=dataset.createDimension('outlon',len(lonrange)) time=dataset.createDimension('time',writetimes.shape[1]) nyears=dataset.createDimension('nyears',len(writeperiod)) # create variables times=dataset.createVariable('time',np.float64, ('nyears','time')) latitudes=dataset.createVariable('latitude',np.float32, ('outlat')) longitudes=dataset.createVariable('longitude',np.float32, ('outlon')) rainrate=dataset.createVariable('rainrate',np.float32,('nyears','time','outlat','outlon'),zlib=True,complevel=4,least_significant_digit=2) basinrainfall=dataset.createVariable('basinrainfall',np.float32,('nyears')) xlocation=dataset.createVariable('xlocation',np.int32,('nyears')) ylocation=dataset.createVariable('ylocation',np.int32,('nyears')) returnperiod=dataset.createVariable('returnperiod',np.float32,('nyears')) stormnumber=dataset.createVariable('stormnumber',np.int32,('nyears')) original_stormnumber=dataset.createVariable('original_stormnumber',np.int32,('nyears')) #stormtimes=dataset.createVariable('stormtimes',np.float64,('nyears')) # Global Attributes dataset.description = 'SST Rainfall Scenarios Realization: '+str(rlz+1)+' of '+str(nrealizations) dataset.history = 'Created ' + str(datetime.now()) dataset.source = 'Storm Catalog for (FILL IN THE BLANK)' # Variable Attributes (time since 1970-01-01 00:00:00.0 in numpys) latitudes.units = 'degrees north' longitudes.units = 'degrees east' rainrate.units = 'mm/h' times.units = 'minutes since 1970-01-01 00:00.0' times.calendar = 'gregorian' #print dataset.description #print dataset.history # fill the netcdf file latitudes[:]=latrange longitudes[:]=lonrange rainrate[:]=outrain basinrainfall[:]=writemax times[:]=writetimes xlocation[:]=writex ylocation[:]=writey stormnumber[:]=writestorm returnperiod[:]=writeperiod original_stormnumber[:]=whichorigstorm #stormtimes[:]=writetimes dataset.close() #============================================================================== # WRITE The maximized storm #============================================================================== def writemaximized(writename,outrain,writemax,write_ts,writex,writey,writetimes,latrange,lonrange): # SAVE outrain AS NETCDF FILE dataset=Dataset(writename, 'w', format='NETCDF4') # create dimensions outlats=dataset.createDimension('outlat',len(latrange)) outlons=dataset.createDimension('outlon',len(lonrange)) time=dataset.createDimension('time',len(writetimes)) # create variables times=dataset.createVariable('time',np.float64, ('time')) latitudes=dataset.createVariable('latitude',np.float32, ('outlat')) longitudes=dataset.createVariable('longitude',np.float32, ('outlon')) rainrate=dataset.createVariable('rainrate',np.float32,('time','outlat','outlon'),zlib=True,complevel=4,least_significant_digit=2) basinrainfall=dataset.createVariable('basinrainfall',np.float32) xlocation=dataset.createVariable('xlocation',np.int32) ylocation=dataset.createVariable('ylocation',np.int32) #stormtimes=dataset.createVariable('stormtimes',np.float64,('nyears')) # Global Attributes dataset.description = 'SST Rainfall Maximum Storm' dataset.history = 'Created ' + str(datetime.now()) dataset.source = 'Storm Catalog for (FILL IN THE BLANK)' # Variable Attributes (time since 1970-01-01 00:00:00.0 in numpys) latitudes.units = 'degrees north' longitudes.units = 'degrees east' rainrate.units = 'mm/h' times.units = 'minutes since 1970-01-01 00:00.0' times.calendar = 'gregorian' #print dataset.description #print dataset.history # fill the netcdf file latitudes[:]=latrange longitudes[:]=lonrange rainrate[:]=outrain basinrainfall[:]=writemax times[:]=writetimes xlocation[:]=writex ylocation[:]=writey dataset.close() #============================================================================== # READ RAINFALL FILE FROM NETCDF #============================================================================== def readnetcdf(rfile,inbounds=False): infile=Dataset(rfile,'r') if np.any(inbounds!=False): outrain=np.array(infile.variables['rainrate'][:,inbounds[3]:inbounds[2]+1,inbounds[0]:inbounds[1]+1]) outlatitude=np.array(infile.variables['latitude'][inbounds[3]:inbounds[2]+1]) outlongitude=np.array(infile.variables['longitude'][inbounds[0]:inbounds[1]+1]) else: outrain=np.array(infile.variables['rainrate'][:]) outlatitude=np.array(infile.variables['latitude'][:]) outlongitude=np.array(infile.variables['longitude'][:]) outtime=np.array(infile.variables['time'][:],dtype='datetime64[m]') infile.close() return outrain,outtime,outlatitude,outlongitude #============================================================================== # READ RAINFALL FILE FROM NETCDF #============================================================================== def readcatalog(rfile): infile=Dataset(rfile,'r') outrain=np.array(infile.variables['rainrate'][:]) outtime=np.array(infile.variables['time'][:],dtype='datetime64[m]') outlatitude=np.array(infile.variables['latitude'][:]) outlongitude=np.array(infile.variables['longitude'][:]) outlocx=np.array(infile.variables['xlocation'][:]) outlocy=np.array(infile.variables['ylocation'][:]) outmax=np.array(infile.variables['basinrainfall'][:]) outmask=np.array(infile.variables['gridmask'][:]) domainmask=
np.array(infile.variables['domainmask'][:])
numpy.array
# -*- coding: utf-8 -*- import numpy as np from scipy import stats, interpolate import matplotlib.pyplot as plt from ReflectivitySolver import ReflectivitySolver from sourcefunction import SourceFunctionGenerator from utils import create_timevector, create_frequencyvector def plot_PT_summary(samplers, burn_in=0): n_temps = len(samplers) burn_in = round(burn_in * samplers[0].masteriter) plt.figure(num=2), plt.clf() for t in range(n_temps): plt.semilogy(samplers[t].betas) if burn_in > 0: min_temp = np.min(samplers[-1].betas) plt.plot(np.array([burn_in, burn_in]), np.array([min_temp, 1]), 'k-', linewidth=2) plt.xlabel('Iteration') plt.ylabel('Beta') plt.title('Inverse temperatures (betas) of the samplers') def plot_chains(sampler, burn_in=0): bounds = sampler.posterior_cls.priormodel.layer_bounds burn_in = round(burn_in * sampler.masteriter) par_names = sampler.posterior_cls.priormodel.par_names par_units = sampler.posterior_cls.priormodel.par_units k = stats.mode(sampler.master_model_iter[burn_in:, 0])[0][0] maxk = np.max(sampler.master_model_iter[:, 0]) n_iter = sampler.masteriter # Find the first sample of model k after the burn-in period first_k_after_burn_in = np.argmax(sampler.master_model_iter[burn_in:, 0] == k) k_start_iter = sampler.master_model_iter[burn_in + first_k_after_burn_in, 1] minPost = np.min(sampler.log_posts[int(0.01 * n_iter):]) maxPost = np.max(sampler.log_posts[int(0.01 * n_iter):]) minsigma = np.min(sampler.noise_samples[int(0.01 * n_iter):]) maxsigma = np.max(sampler.noise_samples[int(0.01 * n_iter):]) min_src = np.min(sampler.source_samples[int(0.01 * n_iter):]) max_src = np.max(sampler.source_samples[int(0.01 * n_iter):]) mrkrsize = 0.5 plt.figure(num=1); plt.clf() plt.subplot(3,4,1) plt.plot(sampler.log_posts[int(0.01 * n_iter):],'.', markersize=mrkrsize) plt.plot(np.array([burn_in, burn_in]), np.array([minPost, maxPost]), 'k-', linewidth=2) plt.title("Log posterior") plt.subplot(3,4,2) plt.plot(sampler.master_model_iter[:, 0], '.', markersize=mrkrsize) plt.plot(np.array([burn_in, burn_in]), np.array([0, maxk]), 'k-', linewidth=2) plt.title("Model index (vert. line = burn in)") plt.subplot(3,4,3) plt.plot(sampler.layer_samples[k][0::6, :].T, '.', markersize=mrkrsize) plt.plot(np.array([k_start_iter, k_start_iter]), np.array([bounds[0, 0], bounds[0, 1]]), 'k-', linewidth=2) plt.title(par_names[0]) plt.ylabel(par_units[0]) plt.subplot(3,4,4) plt.plot(sampler.layer_samples[k][1::6, :].T, '.', markersize=mrkrsize) plt.plot(np.array([k_start_iter, k_start_iter]), np.array([bounds[1, 0], bounds[1, 1]]), 'k-', linewidth=2) plt.title(par_names[1]) plt.ylabel(par_units[1]) plt.subplot(3,4,5) plt.semilogy(sampler.noise_proposal.AM_factors, 'k--') plt.semilogy(sampler.src_proposal.AM_factors, 'g--') nmodels = len(sampler.iter) for ii in range(nmodels): if sampler.iter[ii] > -1: plt.semilogy(sampler.layer_proposal[ii].AM_factors) plt.title("Proposal scale factors") plt.subplot(3,4,6) n_min = sampler.posterior_cls.priormodel.n_layers_min plt.hist( n_min + sampler.master_model_iter[burn_in:, 0], bins=np.arange( n_min, sampler.posterior_cls.priormodel.n_layers_max + 1 ) + 0.5, edgecolor='white', linewidth=2, density=True )[0] plt.title("Layer number probabilities (after burn-in)") plt.subplot(3,4,7) plt.plot(sampler.layer_samples[k][2::6, :].T, '.', markersize=mrkrsize) plt.plot(np.array([k_start_iter, k_start_iter]), np.array([bounds[2, 0], bounds[2, 1]]), 'k-', linewidth=2) plt.title(par_names[2]) plt.ylabel(par_units[2]) plt.subplot(3,4,8) plt.plot(sampler.layer_samples[k][3::6, :].T, '.', markersize=mrkrsize) plt.plot(np.array([k_start_iter, k_start_iter]), np.array([bounds[3, 0], bounds[3, 1]]), 'k-', linewidth=2) plt.title(par_names[3]) plt.ylabel(par_units[3]) plt.subplot(3,4,9) plt.plot(sampler.noise_samples[int(0.01 * n_iter):], '.', markersize=mrkrsize) plt.plot(np.array([burn_in, burn_in]), np.array([minsigma, maxsigma]), 'k-', linewidth=2) plt.title(par_names[6]) plt.ylabel(par_units[6]) plt.subplot(3,4,10) plt.plot(sampler.source_samples[int(0.01 * n_iter):], '.', markersize=mrkrsize) plt.plot(np.array([burn_in, burn_in]), np.array([min_src, max_src]), 'k-', linewidth=2) plt.title(par_names[7]) plt.ylabel(par_units[7]) plt.subplot(3,4,11) plt.plot(sampler.layer_samples[k][4::6, :].T, '.', markersize=mrkrsize) plt.plot(np.array([k_start_iter, k_start_iter]), np.array([bounds[4, 0], bounds[4, 1]]), 'k-', linewidth=2) plt.title(par_names[4]) plt.ylabel(par_units[4]) plt.subplot(3,4,12) depths = thickness_to_depth(sampler.layer_samples[k][5::6, :].T) if depths.shape[1] > 1: plt.plot(depths[:, :-1], '.', markersize=mrkrsize) # Don't plot the last layer 'depth' plt.plot(np.array([k_start_iter, k_start_iter]), np.array([bounds[5, 0], bounds[5, 1]]), 'k-', linewidth=2) plt.title('Layer depth') plt.ylabel(par_units[5]) plt.show(block=False) def thickness_to_depth(thicknesses): n_layers = thicknesses.shape[1] depths = np.zeros_like(thicknesses) depths[:, 0] = thicknesses[:, 0] for i in range(1, n_layers): depths[:, i] = depths[:, i - 1] + thicknesses[:, i] # cumulative sum return depths def plot_shotgather(datamatrix, timevec, receivers, **kwargs): """ Plot a common shot gather. Parameters ---------- datamatrix : (n_timesamples x n_receivers)-sized np.ndarray timevec : timevector of the measurements receivers : receiver locations corresponding to the datamatrix **kwargs : fignum = Number of the figure you want to plot in. plstyle = Style of the lines in the plot. normcoeff = Coefficient with which you normalise the seismograms (so that you can plot several seismograms with comparable amplitudes). The default is that the largest amplitude in the shotgather is normalised to one. Returns ------- None. """ options = { 'fignum' : None, 'pltstyle' : 'k-', 'normcoeff' : None, 'clf' : False, 'title' : None, 'alpha' : 1, 'linewidth' : 1} options.update(kwargs) if options['fignum'] is not None: plt.figure(num=options['fignum']) else: plt.figure() if options['normcoeff'] is not None: norm_coeff = options['normcoeff'] else: norm_coeff = np.max(abs(datamatrix[:])) if options['clf']: plt.clf() n_rec = datamatrix.shape[1] assert(len(receivers) == n_rec) if len(receivers) > 1: rec_dist = np.mean(np.diff(receivers)) * 1 else: rec_dist = 1 for rec in range(n_rec): seismogram_normalised = datamatrix[:, rec] / norm_coeff * rec_dist plt.plot(receivers[rec] + seismogram_normalised, timevec, options['pltstyle'], alpha=options['alpha']) plt.grid('on') plt.axis('tight') plt.ylim(timevec[0], timevec[-1]) plt.gca().invert_yaxis() plt.title(options['title']) plt.ylabel('Time (s)') plt.xlabel('Receiver location and measurement (m)') plt.show() def posterior_predictive_distribution(sampler, burn_in=0): receivers = sampler.posterior_cls.measurement.receivers n_rec = len(receivers) burn_in = round(burn_in * sampler.masteriter) normarg = np.max(np.abs(sampler.posterior_cls.measurement.u_z)) plot_shotgather( sampler.posterior_cls.measurement.u_z, sampler.posterior_cls.measurement.time, receivers, fignum=101, normcoeff=normarg, clf=True, title='Measured seismogram and 95 % credible intervals' ) T_max_plot = sampler.posterior_cls.measurement.T_max # Increase this for a smaller dt in the plot f_max_plot = 1 * sampler.posterior_cls.measurement.f_max freq_plot, dt_plot = create_frequencyvector(T_max_plot, f_max_plot) n_f_plot = len(freq_plot) plot_timevec = create_timevector(T_max_plot, dt_plot) ReflectivitySolver.terminate() ReflectivitySolver.initialize( freq_plot, receivers, sampler.posterior_cls.priormodel.cP_max, sampler.posterior_cls.priormodel.cS_min ) source_generator = SourceFunctionGenerator(freq_plot) n_realizations = 400 u_z_samples = np.zeros((n_realizations, 2 * (n_f_plot - 1), n_rec)) for i in range(n_realizations): idx = np.random.randint(burn_in, sampler.masteriter) k, k_iter = sampler.master_model_iter[idx] randsample = sampler.layer_samples[k][:, k_iter] randsample = np.asfortranarray(randsample.reshape(-1,6)) srcsample = sampler.source_samples[idx] # source = source_generator.Ricker(srcsample[0], srcsample[1]) source = source_generator.Ricker(sampler.posterior_cls.priormodel.src_ampl, srcsample[0]) u_z_samples[i] = ReflectivitySolver.compute_timedomain_src(randsample, source) u_z_samples[i] += sampler.noise_samples[idx] \ * np.random.randn(2 * (n_f_plot - 1), n_rec) # # Uncomment this to plot some model realisations # if( i < 2 ): # plot_shotgather( # u_z_samples[i], plot_timevec, receivers, fignum=101, normcoeff=normarg, # pltstyle='b-', alpha=0.1 # ) ReflectivitySolver.terminate() if len(receivers) > 1: rec_dist = np.mean(np.diff(receivers)) * 1 else: rec_dist = 1 # Percentiles (c.f. standard deviations when the distribution is normal) pr1 = 50 + 68.27/2 pr2 = 50 + 95.45/2 pr3 = 50 + 99.73/2 for i in range(n_rec): percentiles = np.percentile( u_z_samples[:, :, i], (100-pr3, 100-pr2, 100-pr1, pr1, pr2, pr3), axis=0 ) plt.fill_betweenx( plot_timevec, receivers[i] + percentiles[1, :] / normarg * rec_dist, receivers[i] + percentiles[4, :] / normarg * rec_dist, color='C0', alpha=0.3 ) plt.show(block=False) def marginal_posterior_densities(sampler, normalize=False, burn_in=0): n_z = 300 # number of pixels in the depth direction n_samples_plot = int(2e4) # number of samples used to create the plots burn_in = round(burn_in * sampler.masteriter) bounds = sampler.posterior_cls.priormodel.layer_bounds maxdepth = bounds[5, 1] z_vector = np.linspace(0, maxdepth, n_z) n_params = 5 oneD_CDF_plot = np.zeros(sampler.posterior_cls.priormodel.n_layers_max * n_samples_plot) twoD_CDF_plot = np.zeros((n_params, 2, n_z * n_samples_plot)) counter = 0 for ii in range(n_samples_plot): idx = np.random.randint(burn_in, sampler.masteriter) k, k_iter = sampler.master_model_iter[idx] thicknesses = sampler.layer_samples[k][5::6, k_iter] depths = np.cumsum(thicknesses[:-1]) params = sampler.layer_samples[k][:, k_iter].reshape(-1, 6)[:, :-1] if len(thicknesses) > 1: n_new_vals = len(depths) oneD_CDF_plot[counter : counter + n_new_vals] = depths counter += n_new_vals pltdepths = np.concatenate([[0],
np.repeat(depths, 2)
numpy.repeat
"""Unit-test for stmetrics.""" def test_getmetrics(): import numpy import stmetrics series = numpy.array([0.157327502966,0.168894290924,0.141409546137, 0.113800831139,0.0922891944647,0.0747280195355, 0.0537555813789,0.0660935789347,0.0770644843578, 0.0739007592201,0.0983928665519,0.192401319742, 0.286366194487,0.367539167404,0.420437157154, 0.418041080236,0.413386583328,0.375436246395, 0.335108757019,0.307270467281,0.250428706408, 0,1,0, 0.103006377816,0.115561470389,0.114221975207, 0.172464296222,0.284338653088,0.386188000441, 0.45704460144,0.571164608002,0.707974851131, 0.648853778839,0.580699682236,0.566288888454, 0.547502994537,0.500209212303,0.447707682848, 0.39193546772,0.357513874769,0.290982276201, 0.217830166221,0.148564651608,0.101060912013, 0.111838668585,0.121473513544,0.113883294165, 0.114351868629,0.116994164884,0.0982540994883, 0.0843055993319,0.0827744230628,0.0758764594793, 0.0936531722546,0.0942907482386,0.172556817532]) metrics = {'basics': {'max_ts': 0.707974, 'min_ts': 0.0, 'mean_ts': 0.237823, 'std_ts': 0.183005, 'sum_ts': 13.318112, 'amplitude_ts': 0.707974, 'mse_ts': 5.042865, 'fslope_ts': 0.250428, 'skew_ts': 0.795801, 'amd_ts': 0.043546, 'abs_sum_ts': 13.318112, 'iqr_ts': 0.28086, 'fqr_ts': 0.096272, 'tqr_ts': 0.380812, 'sqr_ts': 0.158729}, 'polar': {'ecc_metric': 0.987689, 'gyration_radius': 0.378319, 'area_ts': 0.276252, 'polar_balance': 0.069048, 'angle': 3.541431, 'area_q1': 0.046879, 'area_q2': 0.033173, 'area_q3': 0.186429, 'area_q4': 0.00977, 'csi': 2.658336}, 'fractal': {'dfa_fd': 2.053765, 'hurst_exp': 0.87168, 'katz_fd': 1.437053}} out = stmetrics.metrics.get_metrics(series,nodata=0.157327502966) assert metrics == out def test_basics(): import stmetrics import numpy basicas = {'max_ts': 1.0, 'min_ts': 1.0, 'mean_ts': 1.0, 'std_ts': 0.0, 'sum_ts': 360.0, 'amplitude_ts': 0.0, 'mse_ts': 360.0, 'fslope_ts': 0.0, 'skew_ts': 0.0, 'amd_ts': 0.0, 'abs_sum_ts': 360.0, 'iqr_ts': 0.0, 'fqr_ts': 1.0, 'tqr_ts': 1.0, 'sqr_ts': 1.0} bmetrics = stmetrics.basics.ts_basics(numpy.ones((1,360)).T) assert basicas == bmetrics def test_fractal(): import stmetrics import numpy fractais = {'dfa_fd': nan, 'hurst_exp': nan, 'katz_fd': nan} bmetrics = stmetrics.fractal.ts_fractal(
numpy.ones((1,360))
numpy.ones
import tempfile, os, glob from scipy.stats import norm as ndist from traitlets import (HasTraits, Integer, Unicode, Float, Integer, Instance, Dict, Bool, default) import numpy as np import regreg.api as rr from selection.algorithms.lasso import lasso, lasso_full, lasso_full_modelQ from selection.algorithms.sqrt_lasso import choose_lambda from selection.truncated.gaussian import truncated_gaussian_old as TG from selection.randomized.lasso import lasso as random_lasso_method, form_targets from selection.randomized.modelQ import modelQ as randomized_modelQ from utils import BHfilter from selection.randomized.base import restricted_estimator # Rpy import rpy2.robjects as rpy from rpy2.robjects import numpy2ri methods = {} class generic_method(HasTraits): need_CV = False selectiveR_method = False wide_ok = True # ok for p>= n? # Traits q = Float(0.2) method_name = Unicode('Generic method') model_target = Unicode() @classmethod def setup(cls, feature_cov): cls.feature_cov = feature_cov def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): (self.X, self.Y, self.l_theory, self.l_min, self.l_1se, self.sigma_reid) = (X, Y, l_theory, l_min, l_1se, sigma_reid) def select(self): raise NotImplementedError('abstract method') @classmethod def register(cls): methods[cls.__name__] = cls def selected_target(self, active, beta): C = self.feature_cov[active] Q = C[:,active] return np.linalg.inv(Q).dot(C.dot(beta)) def full_target(self, active, beta): return beta[active] def get_target(self, active, beta): if self.model_target not in ['selected', 'full']: raise ValueError('Gaussian methods only have selected or full targets') if self.model_target == 'full': return self.full_target(active, beta) else: return self.selected_target(active, beta) # Knockoff selection class knockoffs_mf(generic_method): method_name = Unicode('Knockoffs') knockoff_method = Unicode('Second order') model_target = Unicode("full") def select(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, fdr=q)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() return np.asarray(V, np.int), np.asarray(V, np.int) except: return [], [] knockoffs_mf.register() class knockoffs_sigma(generic_method): factor_method = 'asdp' method_name = Unicode('Knockoffs') knockoff_method = Unicode("ModelX (asdp)") model_target = Unicode("full") @classmethod def setup(cls, feature_cov): cls.feature_cov = feature_cov numpy2ri.activate() # see if we've factored this before have_factorization = False if not os.path.exists('.knockoff_factorizations'): os.mkdir('.knockoff_factorizations') factors = glob.glob('.knockoff_factorizations/*npz') for factor_file in factors: factor = np.load(factor_file) feature_cov_f = factor['feature_cov'] if ((feature_cov_f.shape == feature_cov.shape) and (factor['method'] == cls.factor_method) and np.allclose(feature_cov_f, feature_cov)): have_factorization = True print('found factorization: %s' % factor_file) cls.knockoff_chol = factor['knockoff_chol'] if not have_factorization: print('doing factorization') cls.knockoff_chol = factor_knockoffs(feature_cov, cls.factor_method) numpy2ri.deactivate() def select(self): numpy2ri.activate() rpy.r.assign('chol_k', self.knockoff_chol) rpy.r(''' knockoffs = function(X) { mu = rep(0, ncol(X)) mu_k = X # sweep(X, 2, mu, "-") %*% SigmaInv_s X_k = mu_k + matrix(rnorm(ncol(X) * nrow(X)), nrow(X)) %*% chol_k return(X_k) } ''') numpy2ri.deactivate() try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, fdr=q, knockoffs=knockoffs)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() return np.asarray(V, np.int), np.asarray(V, np.int) except: return [], [] knockoffs_sigma.register() def factor_knockoffs(feature_cov, method='asdp'): numpy2ri.activate() rpy.r.assign('Sigma', feature_cov) rpy.r.assign('method', method) rpy.r(''' # Compute the Cholesky -- from create.gaussian diag_s = diag(switch(method, equi = create.solve_equi(Sigma), sdp = create.solve_sdp(Sigma), asdp = create.solve_asdp(Sigma))) if (is.null(dim(diag_s))) { diag_s = diag(diag_s, length(diag_s)) } SigmaInv_s = solve(Sigma, diag_s) Sigma_k = 2 * diag_s - diag_s %*% SigmaInv_s chol_k = chol(Sigma_k) ''') knockoff_chol = np.asarray(rpy.r('chol_k')) SigmaInv_s = np.asarray(rpy.r('SigmaInv_s')) diag_s = np.asarray(rpy.r('diag_s')) np.savez('.knockoff_factorizations/%s.npz' % (os.path.split(tempfile.mkstemp()[1])[1],), method=method, feature_cov=feature_cov, knockoff_chol=knockoff_chol) return knockoff_chol class knockoffs_sigma_equi(knockoffs_sigma): knockoff_method = Unicode('ModelX (equi)') factor_method = 'equi' knockoffs_sigma_equi.register() class knockoffs_orig(generic_method): wide_OK = False # requires at least n>p method_name = Unicode("Knockoffs") knockoff_method = Unicode('Candes & Barber') model_target = Unicode('full') def select(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, statistic=stat.glmnet_lambdadiff, fdr=q, knockoffs=create.fixed)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() V = np.asarray(V, np.int) return V, V except: return [], [] knockoffs_orig.register() class knockoffs_fixed(generic_method): wide_OK = False # requires at least n>p method_name = Unicode("Knockoffs") knockoff_method = Unicode('Fixed') model_target = Unicode('full') def select(self): try: numpy2ri.activate() rpy.r.assign('X', self.X) rpy.r.assign('Y', self.Y) rpy.r.assign('q', self.q) rpy.r('V=knockoff.filter(X, Y, fdr=q, knockoffs=create.fixed)$selected') rpy.r('if (length(V) > 0) {V = V-1}') V = rpy.r('V') numpy2ri.deactivate() return np.asarray(V, np.int), np.asarray(V, np.int) except: return [], [] knockoffs_fixed.register() # Liu, Markovic, Tibs selection class parametric_method(generic_method): confidence = Float(0.95) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): generic_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self._fit = False def select(self): if not self._fit: self.method_instance.fit() self._fit = True active_set, pvalues = self.generate_pvalues() if len(pvalues) > 0: selected = [active_set[i] for i in BHfilter(pvalues, q=self.q)] return selected, active_set else: return [], active_set class liu_theory(parametric_method): sigma_estimator = Unicode('relaxed') method_name = Unicode("Liu") lambda_choice = Unicode("theory") model_target = Unicode("full") dispersion = Float(0.) def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): parametric_method.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) n, p = X.shape if n < p: self.method_name = 'ROSI' self.lagrange = l_theory * np.ones(X.shape[1]) @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full.gaussian(self.X, self.Y, self.lagrange * np.sqrt(n)) return self._method_instance def generate_summary(self, compute_intervals=False): if not self._fit: self.method_instance.fit() self._fit = True X, Y, lagrange, L = self.X, self.Y, self.lagrange, self.method_instance n, p = X.shape if len(L.active) > 0: if self.sigma_estimator == 'reid' and n < p: dispersion = self.sigma_reid**2 elif self.dispersion != 0: dispersion = self.dispersion else: dispersion = None S = L.summary(compute_intervals=compute_intervals, dispersion=dispersion) return S def generate_pvalues(self): S = self.generate_summary(compute_intervals=False) if S is not None: active_set = np.array(S['variable']) pvalues = np.asarray(S['pval']) return active_set, pvalues else: return [], [] def generate_intervals(self): S = self.generate_summary(compute_intervals=True) if S is not None: active_set = np.array(S['variable']) lower, upper = np.asarray(S['lower_confidence']), np.asarray(S['upper_confidence']) return active_set, lower, upper else: return [], [], [] liu_theory.register() class liu_aggressive(liu_theory): lambda_choice = Unicode("aggressive") def __init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid): liu_theory.__init__(self, X, Y, l_theory, l_min, l_1se, sigma_reid) self.lagrange = l_theory * np.ones(X.shape[1]) * 0.8 liu_aggressive.register() class liu_modelQ_pop_aggressive(liu_aggressive): method_name = Unicode("Liu (ModelQ population)") @property def method_instance(self): if not hasattr(self, "_method_instance"): n, p = self.X.shape self._method_instance = lasso_full_modelQ(self.feature_cov * n, self.X, self.Y, self.lagrange *
np.sqrt(n)
numpy.sqrt
import env_utils as envu import numpy as np from time import time class Dynamics_model(object): """ The dynamics model take a lander model object (and later an obstacle object) and modifies the state of the lander. The lander object instantiates an engine model, that maps body frame thrust and torque to the inertial frame. Note that each lander can have its own intertial frame which can be centered on the lander's target. Currentlly this model does not model environmental dynamics, will be added later The lander model maintains a state vector: position [0:3] velocity [3:6] mass [7] """ def __init__(self, h=0.5, w_o=2*np.pi/2000, M=5e10, noise_u=np.zeros(3),noise_sd=
np.zeros(3)
numpy.zeros
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Class of variatonal Gaussian Mixture Image models. It serves as a baseline for a hidden Potts-MRF for Bayesian unsupervised image segmentation. Author: <NAME> Date: 29-11-2018 """ import numpy as np import numpy.random as rnd from numpy.linalg import inv, cholesky from scipy.misc import logsumexp from scipy.special import betaln, digamma, gammaln from scipy.spatial.distance import cdist from sklearn.cluster import KMeans from sklearn.mixture import GaussianMixture from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt from vis import plot_posteriors class VariationalMixture(object): """ Superclass of variational mixture models. Methods are functions common to all submixture models. """ def log_multivariate_gamma(self, n, p): """ Logarithmic multivariate gamma function. This function is necessary for expectations and partition functions of Wishart distributions. See also: https://en.wikipedia.org/wiki/Multivariate_gamma_function Parameters ---------- nu : float Degrees of freedom. p : int Dimensionality. Returns ------- Gp : float p-th order multivariate gamma function. """ # Check for appropriate degree of freedom if not n > (p-1): raise ValueError('Degrees of freedom too low for dimensionality.') # Preallocate Gp = 0 # Product from d=1 to p for d in range(1, p+1): # Gamma function of degrees of freedom and dimension Gp += gammaln((n + 1 - d)/2) return (p * (p-1) / 4)*np.log(np.pi) + Gp def multivariate_digamma(self, n, p): """ Multivariate digamma function. This function is necessary for expectations and partition functions of Wishart distributions. See also: https://en.wikipedia.org/wiki/Multivariate_gamma_function Parameters ---------- nu : float Degrees of freedom. p : int Dimensionality. Returns ------- Pp : float p-th order multivariate digamma function. """ # Check for appropriate degree of freedom if not n > (p-1): raise ValueError('Degrees of freedom too low for dimensionality.') # Preallocate Pp = 0 # Sum from d=1 to D for d in range(1, p+1): # Digamma function of degrees of freedom and dimension Pp += digamma((n + 1 - d)/2) return Pp def log_partition_Wishart(self, W, n): """ Logarithmic partition function of the Wishart distribution. To compute variational expectations, the partition of the Wishart distribution is sometimes needed. The current computation follows Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition & Machine Learning." Parameters ---------- W : array Positive definite, symmetric precision matrix. nu : int Degrees of freedom. Returns ------- B : float Partition of Wishart distribution. """ # Extract dimensionality D, D_ = W.shape # Check for symmetric matrix if not D == D_: raise ValueError('Matrix is not symmetric.') # Check for appropriate degree of freedom if not n > D-1: raise ValueError('Degrees of freedom too low for dimensionality.') # Compute log-multivariate gamma lmG = self.log_multivariate_gamma(n, D) # Compute partition function B = (-n/2)*self.log_det(W) - (n*D/2)*np.log(2) - lmG return B def entropy_Wishart(self, W, n): """ Entropy of the Wishart distribution. To compute variational expectations, the entropy of the Wishart distribution is sometimes needed. The current computation follows Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition & Machine Learning." Parameters ---------- W : array Positive definite, symmetric precision matrix. nu : int Degrees of freedom. Returns ------- H : float Entropy of Wishart distribution. """ # Extract dimensionality D, D_ = W.shape # Check for symmetric matrix if not D == D_: raise ValueError('Matrix is not symmetric.') # Check for appropriate degree of freedom if not n > D-1: raise ValueError('Degrees of freedom too low for dimensionality.') # Expected log-determinant of precision matrix E = self.multivariate_digamma(n, D) + D*np.log(2) + self.log_det(W) # Entropy H = -self.log_partition_Wishart(W, n) - (n - D - 1)/2 * E + n*D/2 return H def log_det(self, A): """ Numerically stable computation of log determinant of a matrix. Parameters ---------- A : array Expecting a positive definite, symmetric matrix. Returns ------- float Log-determinant of given matrix. """ # Perform cholesky decomposition L = cholesky(A) # Stable log-determinant return np.sum(2*np.log(np.diag(L))) def distW(self, X, S): """ Compute weighted distance. Parameters ---------- X : array Vectors (N by D) or (H by W by D). W : array Weights (D by D). Returns ------- array Weighted distance for each vector. """ if not S.shape[0] == S.shape[1]: raise ValueError('Weight matrix not symmetric.') if not X.shape[-1] == S.shape[0]: raise ValueError('Dimensionality of data and weights mismatch.') if len(X.shape) == 2: # Shapes N, D = X.shape # Preallocate A = np.zeros((N,)) # Loop over samples for n in range(N): # Compute weighted inner product between vectors A[n] = X[n, :] @ S @ X[n, :].T elif len(X.shape) == 3: # Shape H, W, D = X.shape # Preallocate A = np.zeros((H, W)) # Loop over samples for h in range(H): for w in range(W): # Compute weighted inner product between vectors A[h, w] = X[h, w, :] @ S @ X[h, w, :].T return A def one_hot(self, A): """ Map array to pages with binary encodings. Parameters ---------- A : array 2-dimensional array of integers Returns ------- B : array (height by width by number of unique integers in A) 3-dimensional array with each page as an indicator of value in A. """ # Unique values labels = np.unique(A) # Preallocate new array B = np.zeros((*A.shape, len(labels))) # Loop over unique values for i, label in enumerate(labels): B[:, :, i] = (A == label) return B class UnsupervisedGaussianMixture(VariationalMixture): """ Variational Gaussian Mixture Image model. This implementation multivariate images (height by width by channel). It is based on the RPubs note by <NAME>: https://rpubs.com/cakapourani/variational-bayes-gmm """ def __init__(self, num_channels=1, num_components=2, init_params='nn', max_iter=10, tol=1e-5): """ Model-specific constructors. Parameters ---------- num_channels : int Number of channels of image (def: 1). num_components : int Number of components (def: 2). theta0 : tuple Prior hyperparameters. max_iter : int Maximum number of iterations to run for (def: 10). tol : float Tolerance on change in x-value (def: 1e-5). Returns ------- None """ # Store data dimensionality if num_channels >= 1: self.D = num_channels else: raise ValueError('Number of channels must be larger than 0.') # Store model parameters if num_components >= 2: self.K = num_components else: raise ValueError('Too few components specified') # Optimization parameters self.init_params = init_params self.max_iter = max_iter self.tol = tol # Set prior hyperparameters self.set_prior_hyperparameters(D=num_channels, K=num_components) def set_prior_hyperparameters(self, D, K, a0=np.array([0.1]), b0=np.array([0.1]), n0=np.array([2.0]), m0=np.array([0.0]), W0=np.array([1.0])): """ Set hyperparameters of prior distributions. Default prior hyperparameters are minimally informative symmetric parameters. Parameters ---------- D : int Dimensionality of data. K : int Number of components. a0 : float / array (components by None) Hyperparameters of Dirichlet distribution on component weights. b0 : float / array (components by None) Scale parameters for hypermean normal distribution. n0 : array (components by None) Degrees of freedom for Wishart precision prior. m0 : array (components by dimensions) Hypermeans. W0 : array (dimensions by dimensions by components) Wishart precision parameters. Returns ------- theta : tuple """ # Expand alpha's if necessary if not a0.shape[0] == K: a0 = np.tile(a0[0], (K,)) # Expand beta's if necessary if not b0.shape[0] == K: b0 = np.tile(b0[0], (K,)) # Expand nu's if necessary if not n0.shape[0] == K: # Check for sufficient degrees of freedom if n0[0] < D: print('Cannot set Wishart degrees of freedom lower than data \ dimensionality.\n Setting it to data dim.') n0 = np.tile(D, (K,)) else: n0 = np.tile(n0[0], (K,)) # Expand hypermeans if necessary if not np.all(m0.shape == (K, D)): # If mean vector given, replicate to each component if len(m0.shape) == 2: if m0.shape[1] == D: m0 = np.tile(m0, (K, 1)) else: m0 = np.tile(m0[0], (K, D)) # Expand hypermeans if necessary if not np.all(W0.shape == (D, D, K)): # If single covariance matrix given, replicate to each component if len(W0.shape) == 2: if np.all(m0.shape[:2] == (D, D)): W0 = np.tile(W0, (1, 1, K)) else: W0_ = np.zeros((D, D, K)) for k in range(K): W0_[:, :, k] = W0[0]*np.eye(D) # Store tupled parameters as model attribute self.theta0 = (a0, b0, n0, m0, W0_) def initialize_posteriors(self, X): """ Initialize posterior hyperparameters Parameters ---------- X : array Observed image (height by width by channels) Returns ------- theta : tuple Set of parameters. """ # Current shape H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) if self.init_params == 'random': # Dirichlet concentration hyperparameters at = np.ones((self.K,))*(H*W)/2 # Normal precision-scale hyperparameters bt = np.ones((self.K,))*(H*W)/2 # Wishart degrees of freedom nt = np.ones((self.K,))*(H*W)/2 mt = np.zeros((self.K, D)) Wt = np.zeros((D, D, self.K)) for k in range(self.K): # Hypermeans mt[k, :] = np.mean(X, axis=0) + rnd.randn(1, D)*.1 # Hyperprecisions Wt[:, :, k] = np.eye(D) # Initialize variational posterior responsibilities rho = np.ones((H, W, self.K)) / self.K elif self.init_params in ('kmeans', 'k-means'): # Fit k-means to data and obtain cluster assignment label = KMeans(n_clusters=self.K, n_init=1).fit(X).labels_ # Set rho based on cluster labels rho = np.zeros((H*W, self.K)) rho[np.arange(H*W), label] = 1 # Dirichlet concentration hyperparameters at = np.sum(rho, axis=0) # Normal precision-scale hyperparameters bt = np.sum(rho, axis=0) # Wishart degrees of freedom nt = np.sum(rho, axis=0) mt = np.zeros((self.K, D)) Wt = np.zeros((D, D, self.K)) for k in range(self.K): # Hypermeans mt[k, :] = np.sum(rho[:, [k]] * X, axis=0) / np.sum(rho[:, k]) # Hyperprecisions Wt[:, :, k] = np.eye(D) else: raise ValueError('Provided method not recognized.') return (at, bt, nt, mt, Wt), rho def free_energy(self, X, rho, thetat, report=True): """ Compute free energy term to monitor progress. Parameters ---------- X : array Observed image (height by width by channels). rho : array Array of variational parameters (height by width by channels). thetat : array Parameters of variational posteriors. theta0 : array Parameters of variational priors. report : bool Print value of free energy function. Returns ------- rho : array Updated array of variational parameters. """ # Shapes H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) rho = rho.reshape((H*W, self.K)) # Unpack parameter sets a0, b0, n0, m0, W0 = self.theta0 at, bt, nt, mt, Wt = thetat # Preallocate terms for energy function E1 = 0 E2 = 0 E3 = 0 E4 = 0 E5 = 0 E6 = 0 E7 = 0 # Loop over classes for k in range(self.K): ''' Convenience variables ''' # Proportion assigned to each component Nk = np.sum(rho[:, k], axis=0) # Responsibility-weighted mean xk = np.sum(rho[:, [k]] * X, axis=0) / Nk # Reponsibility-weighted variance Sk = ((X - xk) * rho[:, [k]]).T @ (X - xk) / Nk # Mahalanobis distance from hypermean mWm = (mt[k, :] - m0[k, :]).T @ Wt[:, :, k] @ (mt[k, :] - m0[k, :]) # Mahalanobis distance from responsibility-weighted mean xWx = (xk - mt[k, :]) @ Wt[:, :, k] @ (xk - mt[k, :]).T # Entropy-based terms Elog_pik = digamma(at[k]) - digamma(np.sum(at)) Elog_Lak = (D*np.log(2) + self.log_det(Wt[:, :, k]) + self.multivariate_digamma(nt[k], D)) ''' Energy function ''' # First term E1 += Nk/2*(Elog_Lak - D / bt[k] - nt[k]*(np.trace(Sk @ Wt[:, :, k]) + xWx) - D*np.log(2*np.pi)) # Second term E2 += np.sum(rho[:, k] * Elog_pik, axis=0) # Third term E3 += (a0[k] - 1)*Elog_pik + (gammaln(np.sum(a0)) - np.sum(gammaln(a0))) / self.K # Fourth term E4 += 1/2*(D*np.log(b0[k] / (2*np.pi)) + Elog_Lak - D*b0[k]/bt[k] - b0[k]*nt[k]*mWm + (n0[k] - D - 1)*Elog_Lak - 2*self.log_partition_Wishart(Wt[:, :, k], nt[k]) + nt[k]*np.trace(inv(W0[:, :, k])*Wt[:, :, k])) # Ignore underflow error from log rho with np.errstate(under='ignore') and np.errstate(divide='ignore'): # Set -inf to most negative number lrho = np.maximum(np.log(rho[:, k]), np.finfo(rho.dtype).min) # Fifth term E5 += np.sum(rho[:, k] * lrho, axis=0) # Sixth term E6 += (at[k] - 1)*Elog_pik + (gammaln(np.sum(at)) - np.sum(gammaln(at))) / self.K # Seventh term E7 += (Elog_Lak/2 + D/2*np.log(bt[k] / (2*np.pi)) - D/2 - self.entropy_Wishart(Wt[:, :, k], nt[k])) # Compute free energy term F = E1 + E2 + E3 + E4 - E5 - E6 - E7 # Print free energy if report: print('Free energy = ' + str(F)) return F def expectation_step(self, X, thetat, savefn=''): """ Perform expectation step. Parameters ---------- X : array Observed image (height by width by channels). thetat : array Current iteration of parameters of variational posteriors. Returns ------- rho : array Updated array of variational parameters / responsibilities. """ # Shape of variational parameter array H, W, D = X.shape # Reshape arrays X = X.reshape((H*W, D)) # Unpack tuple of hyperparameters at, bt, nt, mt, Wt = thetat # Initialize logarithmic rho log_rho = np.zeros((H*W, self.K)) for k in range(self.K): # Compute expected log mixing coefficient E1 = digamma(at[k]) - digamma(
np.sum(at)
numpy.sum
ENABLE_MULTIPROCESSING = True from dsl import cpp_trace_param_automata def generate_public_submission(): import numpy as np import pandas as pd import os import json from pathlib import Path import matplotlib.pyplot as plt from matplotlib import colors import numpy as np from xgboost import XGBClassifier import pdb # data_path = Path('.') data_path = Path('.') if not (data_path / 'test').exists(): data_path = Path('../input/abstraction-and-reasoning-challenge') training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' def plot_result(test_input, test_prediction, input_shape): """ Plots the first train and test pairs of a specified task, using same color scheme as the ARC app """ cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) fig, axs = plt.subplots(1, 2, figsize=(15, 15)) test_input = test_input.reshape(input_shape[0], input_shape[1]) axs[0].imshow(test_input, cmap=cmap, norm=norm) axs[0].axis('off') axs[0].set_title('Actual Target') test_prediction = test_prediction.reshape(input_shape[0], input_shape[1]) axs[1].imshow(test_prediction, cmap=cmap, norm=norm) axs[1].axis('off') axs[1].set_title('Model Prediction') plt.tight_layout() plt.show() def plot_test(test_prediction, task_name): """ Plots the first train and test pairs of a specified task, using same color scheme as the ARC app """ cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) fig, axs = plt.subplots(1, 1, figsize=(15, 15)) axs.imshow(test_prediction, cmap=cmap, norm=norm) axs.axis('off') axs.set_title(f'Test Prediction {task_name}') plt.tight_layout() plt.show() # https://www.kaggle.com/inversion/abstraction-and-reasoning-starter-notebook def flattener(pred): str_pred = str([row for row in pred]) str_pred = str_pred.replace(', ', '') str_pred = str_pred.replace('[[', '|') str_pred = str_pred.replace('][', '|') str_pred = str_pred.replace(']]', '|') return str_pred sample_sub1 = pd.read_csv(data_path / 'sample_submission.csv') sample_sub1 = sample_sub1.set_index('output_id') sample_sub1.head() def get_moore_neighbours(color, cur_row, cur_col, nrows, ncols): if cur_row <= 0: top = -1 else: top = color[cur_row - 1][cur_col] if cur_row >= nrows - 1: bottom = -1 else: bottom = color[cur_row + 1][cur_col] if cur_col <= 0: left = -1 else: left = color[cur_row][cur_col - 1] if cur_col >= ncols - 1: right = -1 else: right = color[cur_row][cur_col + 1] return top, bottom, left, right def get_tl_tr(color, cur_row, cur_col, nrows, ncols): if cur_row == 0: top_left = -1 top_right = -1 else: if cur_col == 0: top_left = -1 else: top_left = color[cur_row - 1][cur_col - 1] if cur_col == ncols - 1: top_right = -1 else: top_right = color[cur_row - 1][cur_col + 1] return top_left, top_right def make_features(input_color, nfeat): nrows, ncols = input_color.shape feat = np.zeros((nrows * ncols, nfeat)) cur_idx = 0 for i in range(nrows): for j in range(ncols): feat[cur_idx, 0] = i feat[cur_idx, 1] = j feat[cur_idx, 2] = input_color[i][j] feat[cur_idx, 3:7] = get_moore_neighbours(input_color, i, j, nrows, ncols) feat[cur_idx, 7:9] = get_tl_tr(input_color, i, j, nrows, ncols) feat[cur_idx, 9] = len(np.unique(input_color[i, :])) feat[cur_idx, 10] = len(np.unique(input_color[:, j])) feat[cur_idx, 11] = (i + j) feat[cur_idx, 12] = len(np.unique(input_color[i - local_neighb:i + local_neighb, j - local_neighb:j + local_neighb])) cur_idx += 1 return feat def features(task, mode='train'): num_train_pairs = len(task[mode]) feat, target = [], [] global local_neighb for task_num in range(num_train_pairs): input_color = np.array(task[mode][task_num]['input']) target_color = task[mode][task_num]['output'] nrows, ncols = len(task[mode][task_num]['input']), len(task[mode][task_num]['input'][0]) target_rows, target_cols = len(task[mode][task_num]['output']), len(task[mode][task_num]['output'][0]) if (target_rows != nrows) or (target_cols != ncols): print('Number of input rows:', nrows, 'cols:', ncols) print('Number of target rows:', target_rows, 'cols:', target_cols) not_valid = 1 return None, None, 1 imsize = nrows * ncols # offset = imsize*task_num*3 #since we are using three types of aug feat.extend(make_features(input_color, nfeat)) target.extend(np.array(target_color).reshape(-1, )) return np.array(feat), np.array(target), 0 # mode = 'eval' mode = 'test' if mode == 'eval': task_path = evaluation_path elif mode == 'train': task_path = training_path elif mode == 'test': task_path = test_path all_task_ids = sorted(os.listdir(task_path)) nfeat = 13 local_neighb = 5 valid_scores = {} model_accuracies = {'ens': []} pred_taskids = [] for task_id in all_task_ids: task_file = str(task_path / task_id) with open(task_file, 'r') as f: task = json.load(f) feat, target, not_valid = features(task) if not_valid: print('ignoring task', task_file) print() not_valid = 0 continue xgb = XGBClassifier(n_estimators=10, n_jobs=-1) xgb.fit(feat, target, verbose=-1) # training on input pairs is done. # test predictions begins here num_test_pairs = len(task['test']) for task_num in range(num_test_pairs): cur_idx = 0 input_color = np.array(task['test'][task_num]['input']) nrows, ncols = len(task['test'][task_num]['input']), len( task['test'][task_num]['input'][0]) feat = make_features(input_color, nfeat) print('Made predictions for ', task_id[:-5]) preds = xgb.predict(feat).reshape(nrows, ncols) if (mode == 'train') or (mode == 'eval'): ens_acc = (np.array(task['test'][task_num]['output']) == preds).sum() / (nrows * ncols) model_accuracies['ens'].append(ens_acc) pred_taskids.append(f'{task_id[:-5]}_{task_num}') # print('ensemble accuracy',(np.array(task['test'][task_num]['output'])==preds).sum()/(nrows*ncols)) # print() preds = preds.astype(int).tolist() # plot_test(preds, task_id) sample_sub1.loc[f'{task_id[:-5]}_{task_num}', 'output'] = flattener(preds) if (mode == 'train') or (mode == 'eval'): df = pd.DataFrame(model_accuracies, index=pred_taskids) print(df.head(10)) print(df.describe()) for c in df.columns: print(f'for {c} no. of complete tasks is', (df.loc[:, c] == 1).sum()) df.to_csv('ens_acc.csv') sample_sub1.head() training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' training_tasks = sorted(os.listdir(training_path)) eval_tasks = sorted(os.listdir(evaluation_path)) T = training_tasks Trains = [] for i in range(400): task_file = str(training_path / T[i]) task = json.load(open(task_file, 'r')) Trains.append(task) E = eval_tasks Evals = [] for i in range(400): task_file = str(evaluation_path / E[i]) task = json.load(open(task_file, 'r')) Evals.append(task) cmap = colors.ListedColormap( ['#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25']) norm = colors.Normalize(vmin=0, vmax=9) # 0:black, 1:blue, 2:red, 3:greed, 4:yellow, # 5:gray, 6:magenta, 7:orange, 8:sky, 9:brown plt.figure(figsize=(5, 2), dpi=200) plt.imshow([list(range(10))], cmap=cmap, norm=norm) plt.xticks(list(range(10))) plt.yticks([]) # plt.show() def plot_task(task): n = len(task["train"]) + len(task["test"]) fig, axs = plt.subplots(2, n, figsize=(4 * n, 8), dpi=50) plt.subplots_adjust(wspace=0, hspace=0) fig_num = 0 for i, t in enumerate(task["train"]): t_in, t_out = np.array(t["input"]), np.array(t["output"]) axs[0][fig_num].imshow(t_in, cmap=cmap, norm=norm) axs[0][fig_num].set_title(f'Train-{i} in') axs[0][fig_num].set_yticks(list(range(t_in.shape[0]))) axs[0][fig_num].set_xticks(list(range(t_in.shape[1]))) axs[1][fig_num].imshow(t_out, cmap=cmap, norm=norm) axs[1][fig_num].set_title(f'Train-{i} out') axs[1][fig_num].set_yticks(list(range(t_out.shape[0]))) axs[1][fig_num].set_xticks(list(range(t_out.shape[1]))) fig_num += 1 for i, t in enumerate(task["test"]): t_in, t_out = np.array(t["input"]), np.array(t["output"]) axs[0][fig_num].imshow(t_in, cmap=cmap, norm=norm) axs[0][fig_num].set_title(f'Test-{i} in') axs[0][fig_num].set_yticks(list(range(t_in.shape[0]))) axs[0][fig_num].set_xticks(list(range(t_in.shape[1]))) axs[1][fig_num].imshow(t_out, cmap=cmap, norm=norm) axs[1][fig_num].set_title(f'Test-{i} out') axs[1][fig_num].set_yticks(list(range(t_out.shape[0]))) axs[1][fig_num].set_xticks(list(range(t_out.shape[1]))) fig_num += 1 plt.tight_layout() plt.show() def plot_picture(x): plt.imshow(np.array(x), cmap=cmap, norm=norm) plt.show() def Defensive_Copy(A): n = len(A) k = len(A[0]) L = np.zeros((n, k), dtype=int) for i in range(n): for j in range(k): L[i, j] = 0 + A[i][j] return L.tolist() def Create(task, task_id=0): n = len(task['train']) Input = [Defensive_Copy(task['train'][i]['input']) for i in range(n)] Output = [Defensive_Copy(task['train'][i]['output']) for i in range(n)] Input.append(Defensive_Copy(task['test'][task_id]['input'])) return Input, Output def Recolor(task): Input = task[0] Output = task[1] Test_Picture = Input[-1] Input = Input[:-1] N = len(Input) for x, y in zip(Input, Output): if len(x) != len(y) or len(x[0]) != len(y[0]): return -1 Best_Dict = -1 Best_Q1 = -1 Best_Q2 = -1 Best_v = -1 # v ranges from 0 to 3. This gives an extra flexibility of measuring distance from any of the 4 corners Pairs = [] for t in range(15): for Q1 in range(1, 8): for Q2 in range(1, 8): if Q1 + Q2 == t: Pairs.append((Q1, Q2)) for Q1, Q2 in Pairs: for v in range(4): if Best_Dict != -1: continue possible = True Dict = {} for x, y in zip(Input, Output): n = len(x) k = len(x[0]) for i in range(n): for j in range(k): if v == 0 or v == 2: p1 = i % Q1 else: p1 = (n - 1 - i) % Q1 if v == 0 or v == 3: p2 = j % Q2 else: p2 = (k - 1 - j) % Q2 color1 = x[i][j] color2 = y[i][j] if color1 != color2: rule = (p1, p2, color1) if rule not in Dict: Dict[rule] = color2 elif Dict[rule] != color2: possible = False if possible: # Let's see if we actually solve the problem for x, y in zip(Input, Output): n = len(x) k = len(x[0]) for i in range(n): for j in range(k): if v == 0 or v == 2: p1 = i % Q1 else: p1 = (n - 1 - i) % Q1 if v == 0 or v == 3: p2 = j % Q2 else: p2 = (k - 1 - j) % Q2 color1 = x[i][j] rule = (p1, p2, color1) if rule in Dict: color2 = 0 + Dict[rule] else: color2 = 0 + y[i][j] if color2 != y[i][j]: possible = False if possible: Best_Dict = Dict Best_Q1 = Q1 Best_Q2 = Q2 Best_v = v if Best_Dict == -1: return -1 # meaning that we didn't find a rule that works for the traning cases # Otherwise there is a rule: so let's use it: n = len(Test_Picture) k = len(Test_Picture[0]) answer = np.zeros((n, k), dtype=int) for i in range(n): for j in range(k): if Best_v == 0 or Best_v == 2: p1 = i % Best_Q1 else: p1 = (n - 1 - i) % Best_Q1 if Best_v == 0 or Best_v == 3: p2 = j % Best_Q2 else: p2 = (k - 1 - j) % Best_Q2 color1 = Test_Picture[i][j] rule = (p1, p2, color1) if (p1, p2, color1) in Best_Dict: answer[i][j] = 0 + Best_Dict[rule] else: answer[i][j] = 0 + color1 return answer.tolist() sample_sub2 = pd.read_csv(data_path / 'sample_submission.csv') sample_sub2.head() def flattener(pred): str_pred = str([row for row in pred]) str_pred = str_pred.replace(', ', '') str_pred = str_pred.replace('[[', '|') str_pred = str_pred.replace('][', '|') str_pred = str_pred.replace(']]', '|') return str_pred example_grid = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] # display(example_grid) print(flattener(example_grid)) Solved = [] Problems = sample_sub2['output_id'].values Proposed_Answers = [] test_paths_my = {task.stem: json.load(task.open()) for task in test_path.iterdir()} test_task_ids = np.sort(list(test_paths_my.keys())) print(Problems, len(Problems)) task_number_my = dict(zip(test_task_ids, np.arange(100))) for i in range(len(Problems)): output_id = Problems[i] task_id = output_id.split('_')[0] pair_id = int(output_id.split('_')[1]) f = str(test_path / str(task_id + '.json')) with open(f, 'r') as read_file: task = json.load(read_file) n = len(task['train']) Input = [Defensive_Copy(task['train'][j]['input']) for j in range(n)] Output = [Defensive_Copy(task['train'][j]['output']) for j in range(n)] Input.append(Defensive_Copy(task['test'][pair_id]['input'])) solution = Recolor([Input, Output]) pred = '' if solution != -1: Solved.append(i) pred1 = flattener(solution) pred = pred + pred1 + ' ' if pred == '': pred = flattener(example_grid) Proposed_Answers.append(pred) sample_sub2['output'] = Proposed_Answers sample_sub1 = sample_sub1.reset_index() sample_sub1 = sample_sub1.sort_values(by="output_id") sample_sub2 = sample_sub2.sort_values(by="output_id") out1 = sample_sub1["output"].astype(str).values out2 = sample_sub2["output"].astype(str).values merge_output = [] for o1, o2 in zip(out1, out2): o = o1.strip().split(" ")[:1] + o2.strip().split(" ")[:2] o = " ".join(o[:3]) merge_output.append(o) sample_sub1["output"] = merge_output sample_sub1["output"] = sample_sub1["output"].astype(str) # test_paths_my = { task.stem: json.load(task.open()) for task in test_path.iterdir() } # test_task_ids = np.sort(list(test_paths_my.keys())) # task_number_my = dict(zip(test_task_ids, np.arange(100))) submission = sample_sub1.copy() submission.to_csv("public_submission.csv", index=False) #generate_public_submission() import numpy as np from tqdm.notebook import tqdm from PIL import Image, ImageDraw import time from collections import defaultdict import os import json import random import copy import networkx as nx from pathlib import Path import matplotlib.colors as colors import matplotlib.pyplot as plt from itertools import product import pandas as pd import multiprocessing import subprocess # from moviepy.editor import ImageSequenceClip # from moviepy.editor import clips_array, CompositeVideoClip # from moviepy.video.io.html_tools import html_embed, HTML2 # def display_vid(vid, verbose=False, **html_kw): # """ # Display a moviepy video clip, useful for removing loadbars # """ # rd_kwargs = { # 'fps': 10, 'verbose': verbose # } # if not verbose: # rd_kwargs['logger'] = None # return HTML2(html_embed(vid, filetype=None, maxduration=60, # center=True, rd_kwargs=rd_kwargs, **html_kw)) data_path = Path('../input/abstraction-and-reasoning-challenge/') # data_path = Path('.') # Artyom: it's better use symlinks locally cmap_lookup = [ '#000000', '#0074D9', '#FF4136', '#2ECC40', '#FFDC00', '#AAAAAA', '#F012BE', '#FF851B', '#7FDBFF', '#870C25' ] cmap_lookup = [np.array([int(x[1:3], 16), int(x[3:5], 16), int(x[5:], 16)]) for x in cmap_lookup] def cmap(x): """ Translate a task matrix to a color coded version arguments x : a h x w task matrix returns a h x w x 3 matrix with colors instead of numbers """ y = np.zeros((*x.shape, 3)) y[x < 0, :] = np.array([112, 128, 144]) y[x > 9, :] = np.array([255, 248, 220]) for i, c in enumerate(cmap_lookup): y[x == i, :] = c return y def draw_one(x, k=20): """ Create a PIL image from a task matrix, the task will be drawn using the default color coding with grid lines arguments x : a task matrix k = 20 : an up scaling factor returns a PIL image """ img = Image.fromarray(cmap(x).astype(np.uint8)).resize((x.shape[1] * k, x.shape[0] * k), Image.NEAREST) draw = ImageDraw.Draw(img) for i in range(x.shape[0]): draw.line((0, i * k, img.width, i * k), fill=(80, 80, 80), width=1) for j in range(x.shape[1]): draw.line((j * k, 0, j * k, img.height), fill=(80, 80, 80), width=1) return img def vcat_imgs(imgs, border=10): """ Concatenate images vertically arguments: imgs : an array of PIL images border = 10 : the size of space between images returns: a PIL image """ h = max(img.height for img in imgs) w = sum(img.width for img in imgs) res_img = Image.new('RGB', (w + border * (len(imgs) - 1), h), color=(255, 255, 255)) offset = 0 for img in imgs: res_img.paste(img, (offset, 0)) offset += img.width + border return res_img def plot_task(task): n = len(task["train"]) + len(task["test"]) fig, axs = plt.subplots(2, n, figsize=(n * 4, 8)) plt.subplots_adjust(wspace=0, hspace=0) fig_num = 0 def go(ax, title, x): ax.imshow(draw_one(x), interpolation='nearest') ax.set_title(title) ax.set_yticks([]) ax.set_xticks([]) for i, t in enumerate(task["train"]): go(axs[0][fig_num], f'Train-{i} in', t["input"]) go(axs[1][fig_num], f'Train-{i} out', t["output"]) fig_num += 1 for i, t in enumerate(task["test"]): go(axs[0][fig_num], f'Test-{i} in', t["input"]) try: go(axs[1][fig_num], f'Test-{i} out', t["output"]) except: go(axs[1][fig_num], f'Test-{i} out', np.zeros_like(t["input"])) fig_num += 1 plt.tight_layout() plt.show() def real_trace_param_automata(input, params, n_iter, n_hidden): """ Execute an automata and return all the intermediate states arguments: step_fn : transition rule function, should take two arguments `input` and `hidden_i`, should return an output grid an a new hidden hidden grid n_iter : num of iteration to perform n_hidden: number of hidden grids, if set to 0 `hidden_i` will be set to None laodbar = True: weather display loadbars returns: an array of tuples if output and hidden grids """ # hidden = np.zeros((n_hidden, *input.shape)) if n_hidden > 0 else None # # global_rules, ca_rules = params # # trace = [(input, hidden)] # # for rule in global_rules: # # output, hidden = apply_rule(input, hidden, rule) # trace.append((output, hidden)) # input = output # # its = range(n_iter) # # for i_it in its: # output, hidden = compute_parametrized_automata(input, hidden, ca_rules) # trace.append((output, hidden)) # # if (input.shape == output.shape) and (output == input).all(): # break # input = output hidden = np.zeros((n_hidden, *input.shape)) if n_hidden > 0 else None global_rules, ca_rules, split_rule, merge_rule = params grids = apply_split_rule(input, hidden, split_rule) #print(grids[0][0]) for rule in global_rules: for i, (inp, hid) in enumerate(grids): if rule['macro_type'] == 'global_rule': if rule['apply_to'] == 'all' or \ (rule['apply_to'] == 'index' and i == rule['apply_to_index']%len(grids) or (rule['apply_to'] == 'last' and i == len(grids) - 1)): grids[i] = apply_rule(inp, hid, rule) elif rule['macro_type'] == 'global_interaction_rule': grids = apply_interaction_rule(grids, rule) #print(grids[0][0]) #1/0 for i, (input, hidden) in enumerate(grids): for _ in range(n_iter): output, hidden = compute_parametrized_automata(input, hidden, ca_rules) if np.array_equal(input, output): break input = output grids[i] = (output, hidden) output = apply_merge_rule(grids, merge_rule, split_rule) return output def apply_interaction_rule(grids, rule): if rule['type'] == 'align_pattern': # index_from = rule['index_from'] % len(grids) # index_to = rule['index_to'] % len(grids) # allow_rotation = rule['allow_rotation'] if len(grids) > 5: return grids for index_from in range(len(grids)): for index_to in range(index_from+1, len(grids)): input_i = grids[index_from][0] input_j = grids[index_to][0] # print(np.max(input_i>0, axis=1)) # print(np.max(input_i>0, axis=1).shape) # print(np.arange(input_i.shape[0]).shape) #1/0 i_nonzero_rows = np.arange(input_i.shape[0])[np.max(input_i>0, axis=1)] i_nonzero_columns = np.arange(input_i.shape[1])[np.max(input_i>0, axis=0)] j_nonzero_rows = np.arange(input_j.shape[0])[np.max(input_j>0, axis=1)] j_nonzero_columns = np.arange(input_j.shape[1])[np.max(input_j>0, axis=0)] if i_nonzero_rows.shape[0] == 0 or i_nonzero_columns.shape[0] == 0 or \ j_nonzero_rows.shape[0] == 0 or j_nonzero_columns.shape[0] == 0: continue i_minrow = np.min(i_nonzero_rows) i_mincol = np.min(i_nonzero_columns) i_maxrow = np.max(i_nonzero_rows) + 1 i_maxcol = np.max(i_nonzero_columns) + 1 j_minrow = np.min(j_nonzero_rows) j_mincol = np.min(j_nonzero_columns) j_maxrow = np.max(j_nonzero_rows) + 1 j_maxcol = np.max(j_nonzero_columns) + 1 figure_to_align = input_i[i_minrow:i_maxrow, i_mincol:i_maxcol] figure_target = input_j[j_minrow:j_maxrow, j_mincol:j_maxcol] best_fit = 0 best_i_fit, best_j_fit = -1, -1 #print(figure_to_align) #print(figure_target) if figure_to_align.shape[0] < figure_target.shape[0] or figure_to_align.shape[1] < figure_target.shape[1]: continue #1/0 else: for i_start in range((figure_to_align.shape[0] - figure_target.shape[0])+1): for j_start in range((figure_to_align.shape[1] - figure_target.shape[1])+1): fig_1 = figure_to_align[i_start:(i_start + figure_target.shape[0]), j_start:(j_start + figure_target.shape[1])] if np.logical_and(np.logical_and(figure_target > 0, figure_target!=rule['allow_color']), figure_target != fig_1).any(): continue fit = np.sum(figure_target==fig_1) if fit > best_fit: best_i_fit, best_j_fit = i_start, j_start best_fit = fit if best_fit == 0: continue imin = j_minrow-best_i_fit imax = j_minrow-best_i_fit + figure_to_align.shape[0] jmin = j_mincol - best_j_fit jmax = j_mincol - best_j_fit + figure_to_align.shape[1] begin_i = max(imin, 0) begin_j = max(jmin, 0) end_i = min(imax, input_j.shape[0]) end_j = min(jmax, input_j.shape[1]) i_fig_begin = (begin_i-imin) i_fig_end = figure_to_align.shape[0]-(imax-end_i) j_fig_begin = (begin_j-jmin) j_fig_end = figure_to_align.shape[1]-(jmax-end_j) if rule['fill_with_color'] == 0: input_j[begin_i:end_i, begin_j:end_j] = figure_to_align[i_fig_begin:i_fig_end, j_fig_begin:j_fig_end] else: for i, j in product(range(end_i-begin_i + 1), range(end_j-begin_j + 1)): if input_j[begin_i + i, begin_j + j] == 0: input_j[begin_i + i, begin_j + j] = rule['fill_with_color'] * (figure_to_align[i_fig_begin + i, j_fig_begin + j]) return grids def trace_param_automata(input, params, n_iter, n_hidden): # expected = real_trace_param_automata(input, params, n_iter, n_hidden) # # testcase = {'input': input, 'params': params} # print(str(testcase).replace('\'', '"').replace('array(', '').replace(')', '')) output = cpp_trace_param_automata(input, params, n_iter) # if not np.array_equal(expected, output): # print('cpp result is wrong') # print('input:') # print(input) # print('expected:') # print(expected) # print('got:') # print(output) # # diff = [[str(g) if e != g else '-' for e, g in zip(exp_row, got_row)] # for exp_row, got_row in zip(expected, output)] # diff_lines = [' '.join(line) for line in diff] # diff_str = '[[' + ']\n ['.join(diff_lines) # # print('diff:') # print(diff_str) # print('rules') # print(params) # # assert False return [[output]] # def vis_automata_trace(states, loadbar=False, prefix_image=None): # """ # Create a video from an array of automata states # # arguments: # states : array of automata steps, returned by `trace_automata()` # loadbar = True: weather display loadbars # prefix_image = None: image to add to the beginning of each frame # returns # a moviepy ImageSequenceClip # """ # frames = [] # if loadbar: # states = tqdm(states, desc='Frame') # for i, (canvas, hidden) in enumerate(states): # # frame = [] # if prefix_image is not None: # frame.append(prefix_image) # frame.append(draw_one(canvas)) # frames.append(vcat_imgs(frame)) # # return ImageSequenceClip(list(map(np.array, frames)), fps=10) # def vis_automata_paramed_task(tasks, parameters, n_iter, n_hidden, vis_only_ix=None): # """ # Visualize the automata steps during the task solution # arguments: # tasks : the task to be solved by the automata # step_fn : automata transition function as passed to `trace_automata()` # n_iter : number of iterations to perform # n_hidden : number of hidden girds # """ # # n_vis = 0 # # def go(task, n_vis, test=False): # # if vis_only_ix is not None and vis_only_ix != n_vis: # return # trace = trace_param_automata(task['input'], parameters, n_iter, n_hidden) # if not test: # vid = vis_automata_trace(trace, prefix_image=draw_one(task['output'])) # else: # vid = vis_automata_trace(trace, prefix_image=draw_one(np.zeros_like(task['input']))) # # # display(display_vid(vid)) # # for task in (tasks['train']): # n_vis += 1 # go(task, n_vis) # # for task in (tasks['test']): # n_vis += 1 # go(task, n_vis, True) training_path = data_path / 'training' evaluation_path = data_path / 'evaluation' test_path = data_path / 'test' training_tasks = sorted(os.listdir(training_path)) evaluation_tasks = sorted(os.listdir(evaluation_path)) test_tasks = sorted(os.listdir(test_path)) def load_data(p, phase=None): """ Load task data """ if phase in {'training', 'test', 'evaluation'}: p = data_path / phase / p task = json.loads(Path(p).read_text()) dict_vals_to_np = lambda x: {k: np.array(v) for k, v in x.items()} assert set(task) == {'test', 'train'} res = dict(test=[], train=[]) for t in task['train']: assert set(t) == {'input', 'output'} res['train'].append(dict_vals_to_np(t)) for t in task['test']: if phase == 'test': assert set(t) == {'input'} else: assert set(t) == {'input', 'output'} res['test'].append(dict_vals_to_np(t)) return res nbh = lambda x, i, j: { (ip, jp) : x[i+ip, j+jp] for ip, jp in product([1, -1, 0], repeat=2) if 0 <= i+ip < x.shape[0] and 0 <= j+jp < x.shape[1] and (not (ip==0 and jp==0)) } def get_random_split_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): rule = {} rule['type'] = random.choice(['nothing', 'color_figures', 'figures', 'macro_multiply']) if rule['type'] in ['color_figures', 'figures']: rule['sort'] = random.choice(['biggest', 'smallest']) if rule['type'] == 'macro_multiply': rule['k1'] = np.random.randint(config['mink1'], config['maxk1']+1) rule['k2'] = np.random.randint(config['mink2'], config['maxk2']+1) return rule def get_random_merge_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): rule = {} rule['type'] = random.choice(['cellwise_or', 'output_first', 'output_last']) return rule def apply_split_rule(input, hidden, split_rule): if split_rule['type'] == 'nothing': return [(input, hidden)] if split_rule['type'] == 'macro_multiply': ks = split_rule['k1'] * split_rule['k2'] grids = [(np.copy(input), np.copy(hidden)) for _ in range(ks)] return grids #split_rule['type'] = 'figures' dif_c_edge = split_rule['type'] == 'figures' communities = get_connectivity_info(input, ignore_black=True, edge_for_difcolors=dif_c_edge) if len(communities) > 0: if split_rule['sort'] == 'biggest': communities = communities[::-1] grids = [(np.zeros_like(input), np.zeros_like(hidden)) for _ in range(len(communities))] for i in range(len(communities)): for point in communities[i]: grids[i][0][point] = input[point] else: grids = [(input, hidden)] return grids def apply_merge_rule(grids, merge_rule, split_rule): if split_rule['type'] == 'macro_multiply': shape_base = grids[0][0].shape shapes = [arr[0].shape for arr in grids] if not np.array([shape_base == sh for sh in shapes]).all(): return np.zeros((1, 1), dtype=np.int) ks_1 = split_rule['k1'] ks_2 = split_rule['k2'] output = np.zeros((shape_base[0] * ks_1, shape_base[1] * ks_2), dtype=np.int8) for k1 in range(ks_1): for k2 in range(ks_2): output[(k1*shape_base[0]):((k1+1) * shape_base[0]), (k2*shape_base[1]):((k2+1) * shape_base[1])] = grids[k1*ks_2 + k2][0] return output if merge_rule['type'] == 'cellwise_or': output = np.zeros_like(grids[0][0]) for i in np.arange(len(grids))[::-1]: if grids[i][0].shape == output.shape: output[grids[i][0]>0] = grids[i][0][grids[i][0]>0] return output elif merge_rule['type'] == 'output_first': output = grids[0][0] elif merge_rule['type'] == 'output_last': output = grids[-1][0] return output def get_random_ca_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): types_possible = \ [ 'copy_color_by_direction', 'direct_check', 'indirect_check', 'nbh_check', 'corner_check', 'color_distribution', ] ca_rules = [] best_candidates_items = list(best_candidates.items()) if len(best_candidates_items) > 0: for best_score, best_candidates_score in best_candidates_items: for best_c in best_candidates_score: gl, ca, _, _ = best_c ca_rules += [c['type'] for c in ca] type_counts = dict(zip(types_possible, np.zeros(len(types_possible)))) rules, counts = np.unique(ca_rules, return_counts=True) for i in range(rules.shape[0]): type_counts[rules[i]] += counts[i] counts = np.array(list(type_counts.values())) if np.sum(counts) > 0: counts /= np.sum(counts) else: counts = np.ones(counts.shape[0]) / counts.shape[0] uniform = np.ones(counts.shape[0]) / counts.shape[0] probs = temp * counts + (1 - temp) * uniform else: probs = np.ones(len(types_possible)) / len(types_possible) colors = all_colors[1:] type_probs = np.ones(len(types_possible)) / len(types_possible) if r_type is None: random_type = types_possible[np.random.choice(len(types_possible), p=probs)] else: random_type = r_type def get_random_out_color(): possible_colors = config['possible_colors_out'] return np.random.choice(possible_colors) def get_random_ignore_colors(): if config['possible_ignore_colors'].shape[0] > 0: possible_colors = config['possible_ignore_colors'] return possible_colors[np.random.randint(2, size=possible_colors.shape[0]) == 1] else: return [] def get_random_all_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_colors(): return get_random_all_colors() def get_random_all_color(): return np.random.choice(all_colors) def get_random_color(): return get_random_all_color() rule = {} rule['type'] = random_type rule['macro_type'] = 'ca_rule' rule['ignore_colors'] = list(config['ignore_colors']) if np.random.rand() < 0.5 and config['possible_ignore_colors'].shape[0]: rule['ignore_colors'] += [random.choice(config['possible_ignore_colors'])] if random_type == 'copy_color_by_direction': rule['direction'] = random.choice(['everywhere']) rule['copy_color'] = [get_random_out_color()] rule['look_back_color'] = rule['copy_color'][0] elif random_type == 'corner_check': if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'direct_check': rule['nbh_check_sum'] = np.random.randint(4) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'indirect_check': rule['nbh_check_sum'] = np.random.randint(4) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'nbh_check': rule['nbh_check_sum'] = np.random.randint(8) if np.random.rand() < 0.5: rule['nbh_check_colors'] = [get_random_all_color()] else: rule['nbh_check_colors'] = list(np.unique([get_random_all_color(), get_random_all_color()])) rule['nbh_check_out'] = get_random_out_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['nbh_check_out']])) elif random_type == 'color_distribution': rule['direction'] = random.choice( ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right']) rule['check_in_empty'] = np.random.randint(2) rule['color_out'] = get_random_out_color() if rule['check_in_empty'] == 0: rule['color_in'] = rule['color_out'] else: rule['color_in'] = get_random_all_color() rule['ignore_colors'] = list(np.unique(rule['ignore_colors'] + [rule['color_out']])) return rule def get_random_global_rule(all_colors, best_candidates={}, temp=0, config={}, r_type=None): types_possible = \ [ 'distribute_colors', 'unity', 'color_for_inners', 'map_color', 'draw_lines', 'draw_line_to', 'gravity', 'make_holes', 'distribute_from_border', 'align_pattern', 'rotate', 'flip' ] if config['allow_make_smaller']: types_possible += \ [ 'crop_empty', 'crop_figure', 'split_by_H', 'split_by_W', 'reduce' ] # if config['allow_make_bigger']: # types_possible += \ # [ # 'macro_multiply_by', # 'micro_multiply_by', # 'macro_multiply_k', # ] gl_rules = [] best_candidates_items = list(best_candidates.items()) if len(best_candidates_items) > 0: for best_score, best_candidates_score in best_candidates_items: for best_c in best_candidates_score: gl, ca, _, _ = best_c gl_rules += [c['type'] for c in gl] type_counts = dict(zip(types_possible, np.zeros(len(types_possible)))) rules, counts = np.unique(gl_rules, return_counts=True) for i in range(rules.shape[0]): type_counts[rules[i]] += counts[i] counts = np.array(list(type_counts.values())) if np.sum(counts) > 0: counts /= np.sum(counts) else: counts = np.ones(counts.shape[0]) / counts.shape[0] uniform = np.ones(counts.shape[0]) / counts.shape[0] probs = temp * counts + (1 - temp) * uniform else: probs = np.ones(len(types_possible)) / len(types_possible) colors = all_colors[1:] type_probs = np.ones(len(types_possible)) / len(types_possible) if r_type is None: random_type = types_possible[np.random.choice(len(types_possible), p=probs)] else: random_type = r_type def get_random_all_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_colors(): return all_colors[np.random.randint(2, size=all_colors.shape[0]) == 1] def get_random_all_color(): return np.random.choice(all_colors) def get_random_color(): return get_random_all_color() def get_random_out_color(): possible_colors = config['possible_colors_out'] return np.random.choice(possible_colors) rule = {} rule['type'] = random_type rule['macro_type'] = 'global_rule' rule['apply_to'] = random.choice(['all', 'index']) if np.random.rand()<0.2: rule['apply_to'] = 'last' if rule['apply_to'] == 'index': rule['apply_to_index'] = np.random.choice(10) if random_type == 'macro_multiply_k': rule['k'] = (np.random.randint(1, 4), np.random.randint(1, 4)) elif random_type == 'flip': rule['how'] = random.choice(['ver', 'hor']) elif random_type == 'rotate': rule['rotations_count'] = np.random.randint(1, 4) elif random_type == 'micro_multiply_by': rule['how_many'] = random.choice([2, 3, 4, 5, 'size']) elif random_type == 'macro_multiply_by': rule['how_many'] = random.choice(['both', 'hor', 'ver']) rule['rotates'] = [np.random.randint(1) for _ in range(4)] rule['flips'] = [random.choice(['hor', 'ver', 'horver', 'no']) for _ in range(4)] elif random_type == 'distribute_from_border': rule['colors'] = list(np.unique([get_random_out_color(), get_random_all_color()])) elif random_type == 'draw_lines': rule['direction'] = random.choice(['everywhere', 'horizontal', 'vertical', 'horver', 'diagonal']) # 'top', 'bottom', 'left', 'right', # 'top_left', 'bottom_left', 'top_right', 'bottom_right']) rule['not_stop_by_color'] = 0 # get_random_all_color() rule['start_by_color'] = get_random_all_color() rule['with_color'] = get_random_out_color() elif random_type == 'reduce': rule['skip_color'] = get_random_all_color() elif random_type == 'draw_line_to': #rule['direction_type'] = random.choice(['border']) rule['direction_color'] = get_random_all_color() rule['not_stop_by_color'] = 0 if np.random.rand() < 0.5: rule['not_stop_by_color_and_skip'] = get_random_all_color() else: rule['not_stop_by_color_and_skip'] = 0 rule['start_by_color'] = get_random_all_color() rule['with_color'] = get_random_out_color() elif random_type == 'distribute_colors': rule['colors'] = list(np.unique([get_random_out_color(), get_random_all_color()])) rule['horizontally'] = np.random.randint(2) rule['vertically'] = np.random.randint(2) rule['intersect'] = get_random_out_color() elif random_type == 'color_for_inners': rule['color_out'] = get_random_out_color() elif random_type == 'crop_figure': rule['mode'] = random.choice(['smallest', 'biggest']) rule['dif_c_edge'] = random.choice([True, False]) elif random_type == 'unity': rule['mode'] = random.choice(['diagonal', 'horizontal', 'vertical', 'horver']) # rule['inner'] = np.random.choice(2) rule['ignore_colors'] = [0] if np.random.rand() < 0.5: rule['ignore_colors'] += [get_random_all_color()] rule['with_color'] = random.choice([get_random_out_color(), 0]) elif random_type == 'map_color': rule['color_in'] = get_random_all_color() rule['color_out'] = get_random_out_color() elif random_type == 'gravity': rule['gravity_type'] = random.choice(['figures', 'cells']) rule['steps_limit'] = np.random.choice(2) rule['look_at_what_to_move'] = np.random.choice(2) if rule['look_at_what_to_move'] == 1: rule['color_what'] = get_random_out_color() rule['direction_type'] = random.choice(['border', 'color']) if rule['direction_type'] == 'border': rule['direction_border'] = random.choice(['top', 'bottom', 'left', 'right']) else: rule['direction_color'] = get_random_color() elif random_type == 'split_by_H' or random_type == 'split_by_W': rule['merge_rule'] = random.choice(['and', 'equal', 'or', 'xor']) elif random_type == 'align_pattern': rule['macro_type'] = 'global_interaction_rule' # rule['allow_rotation'] = False rule['allow_color'] = get_random_all_color() rule['fill_with_color'] = 0 #random.choice([0, get_random_all_color()]) return rule def get_task_metadata(task): colors = [] shapes_input = [[], []] shapes_output = [[], []] for part in ['train']: for uni_task in task[part]: inp = uni_task['input'] colors += list(np.unique(inp)) out = uni_task['output'] colors += list(np.unique(out)) shapes_input[0].append(inp.shape[0]) shapes_input[1].append(inp.shape[1]) shapes_output[0].append(out.shape[0]) shapes_output[1].append(out.shape[1]) all_colors = np.unique(colors) min_k1 = int(np.floor(np.min(np.array(shapes_output[0])/np.array(shapes_input[0])))) min_k2 = int(np.floor(np.min(np.array(shapes_output[1])/np.array(shapes_input[1])))) max_k1 = int(np.ceil(np.max(np.array(shapes_output[0])/np.array(shapes_input[0])))) max_k2 = int(np.ceil(np.max(np.array(shapes_output[1])/np.array(shapes_input[1])))) max_shape = np.max([shapes_input]) config = {} config['mink1'] = max(1, min(min(min_k1, 30//max_shape), 3)) config['mink2'] = max(1, min(min(min_k2, 30//max_shape), 3)) config['maxk1'] = max(1, min(min(max_k1, 30//max_shape), 3)) config['maxk2'] = max(1, min(min(max_k2, 30//max_shape), 3)) config['allow_make_smaller'] = False config['allow_make_bigger'] = False for uni_task in task['train']: if uni_task['input'].shape[0] > uni_task['output'].shape[0] or \ uni_task['input'].shape[1] > uni_task['output'].shape[1]: config['allow_make_smaller'] = True if uni_task['input'].shape[0] < uni_task['output'].shape[0] or \ uni_task['input'].shape[1] < uni_task['output'].shape[1]: config['allow_make_bigger'] = True colors_out = [] changed_colors = [] inp_colors = [] for uni_task in task['train']: inp = uni_task['input'] out = uni_task['output'] for i in range(min(inp.shape[0], out.shape[0])): for j in range(min(inp.shape[1], out.shape[1])): inp_colors.append(inp[i, j]) if out[i, j] != inp[i, j]: colors_out.append(out[i, j]) changed_colors.append(inp[i, j]) inp_colors = np.unique(inp_colors) changed_colors = np.unique(changed_colors) config['ignore_colors'] = [c for c in inp_colors if not c in changed_colors] config['possible_ignore_colors'] = np.array([c for c in all_colors if not c in config['ignore_colors']]) if len(colors_out) == 0: colors_out = [0] config['possible_colors_out'] = np.unique(colors_out) return all_colors, config def compute_parametrized_automata(input, hidden_i, rules): output = np.zeros_like(input, dtype=int) hidden_o = np.copy(hidden_i) for i, j in product(range(input.shape[0]), range(input.shape[1])): i_c = input[i, j] i_nbh = nbh(input, i, j) # cells adagent to the current one i_direct_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 0), (-1, 0), (0, 1), (0, -1)}} i_indirect_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 1), (-1, -1), (-1, 1), (1, -1)}} is_top_b, is_bottom_b = i == 0, i == input.shape[0] - 1 is_left_b, is_right_b = j == 0, j == input.shape[1] - 1 is_b = is_top_b or is_bottom_b or is_left_b or is_right_b if i_c > 0: output[i, j] = i_c for rule in rules: if i_c in rule['ignore_colors']: continue if rule['type'] == 'copy_color_by_direction': if rule['direction'] == 'bottom' or rule['direction'] == 'everywhere': if not is_top_b and input[i - 1, j] in rule['copy_color'] and \ (i == 1 or input[i - 2, j] == rule['look_back_color']): output[i, j] = input[i - 1, j] break if rule['direction'] == 'top' or rule['direction'] == 'everywhere': if not is_bottom_b and input[i + 1, j] in rule['copy_color'] and \ (i == input.shape[0] - 2 or input[i + 2, j] == rule['look_back_color']): output[i, j] = input[i + 1, j] break if rule['direction'] == 'right' or rule['direction'] == 'everywhere': if not is_left_b and input[i, j - 1] in rule['copy_color'] and \ (j == 1 or input[i, j - 2] == rule['look_back_color']): output[i, j] = input[i, j - 1] break if rule['direction'] == 'left' or rule['direction'] == 'everywhere': if not is_right_b and input[i, j + 1] in rule['copy_color'] and \ (j == input.shape[1] - 2 or input[i, j + 2] == rule['look_back_color']): output[i, j] = input[i, j + 1] break elif rule['type'] == 'corner_check': color_nbh = rule['nbh_check_colors'] sum_nbh = 3 out_nbh = rule['nbh_check_out'] i_uplecorner_nbh = {k: v for k, v in i_nbh.items() if k in {(-1, -1), (-1, 0), (0, -1)}} i_upricorner_nbh = {k: v for k, v in i_nbh.items() if k in {(-1, 1), (-1, 0), (0, 1)}} i_dolecorner_nbh = {k: v for k, v in i_nbh.items() if k in {(1, -1), (1, 0), (0, -1)}} i_doricorner_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 1), (1, 0), (0, 1)}} if sum(1 for v in i_nbh.values() if v in color_nbh) < 3: continue did_something = False for corner_idx in [i_uplecorner_nbh, i_upricorner_nbh, i_dolecorner_nbh, i_doricorner_nbh]: for color in color_nbh: if sum(1 for v in corner_idx.values() if v == color) == sum_nbh: output[i, j] = out_nbh did_something = True break if did_something: break if did_something: break elif rule['type'] == 'nbh_check': color_nbh = rule['nbh_check_colors'] sum_nbh = rule['nbh_check_sum'] out_nbh = rule['nbh_check_out'] proper_nbhs = i_nbh.values() if sum(1 for v in proper_nbhs if v in color_nbh) > sum_nbh: output[i, j] = out_nbh break elif rule['type'] == 'direct_check': color_nbh = rule['nbh_check_colors'] sum_nbh = rule['nbh_check_sum'] out_nbh = rule['nbh_check_out'] proper_nbhs = i_direct_nbh.values() if sum(1 for v in proper_nbhs if v in color_nbh) > sum_nbh: output[i, j] = out_nbh break elif rule['type'] == 'indirect_check': color_nbh = rule['nbh_check_colors'] sum_nbh = rule['nbh_check_sum'] out_nbh = rule['nbh_check_out'] proper_nbhs = i_indirect_nbh.values() if sum(1 for v in proper_nbhs if v in color_nbh) > sum_nbh: output[i, j] = out_nbh break elif rule['type'] == 'color_distribution': directions = ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right'] not_border_conditions = \ [ not is_top_b, not is_bottom_b, not is_left_b, not is_right_b, not is_top_b and not is_left_b, not is_bottom_b and not is_left_b, not is_top_b and not is_right_b, not is_bottom_b and not is_right_b ] index_from = \ [ (i - 1, j), (i + 1, j), (i, j - 1), (i, j + 1), (i - 1, j - 1), (i + 1, j - 1), (i - 1, j + 1), (i + 1, j + 1) ] did_something = False for i_dir, direction in enumerate(directions): if rule['direction'] == direction: if not_border_conditions[i_dir]: if (rule['check_in_empty'] == 1 and input[index_from[i_dir]] > 0) or \ (rule['check_in_empty'] == 0 and input[index_from[i_dir]] == rule['color_in']): output[i, j] = rule['color_out'] did_something = True break if did_something: break return output, hidden_o def get_connectivity_info(color: np.array, ignore_black = False, von_neumann_only = False, edge_for_difcolors = False): # UnionFind structure allows us to detect all connected areas in a linear time. class UnionFind: def __init__(self) -> None: self.area = np.ones(color.size) self.parent = np.arange(color.size) def find(self, x: int) -> int: if self.parent[x] != x: self.parent[x] = self.find(self.parent[x]) return self.parent[x] def union(self, u: int, v: int) -> None: root_u, root_v = self.find(u), self.find(v) if root_u != root_v: area_u, area_v = self.area[root_u], self.area[root_v] if area_u < area_v: root_u, root_v = root_v, root_u self.parent[root_v] = root_u self.area[root_u] = area_u + area_v union_find = UnionFind() neighbours = [[-1, 0], [0, -1], [1, 0], [0, 1]] if not von_neumann_only: neighbours.extend([[-1, -1], [1, -1], [1, 1], [-1, 1]]) nrows, ncols = color.shape for i in range(nrows): for j in range(ncols): for s, t in neighbours: u, v = i + s, j + t if u >= 0 and u < nrows and v >= 0 and v < ncols and \ (color[u, v] == color[i, j] or (edge_for_difcolors and (color[u, v]>0) == (color[i, j]>0))): union_find.union(u * ncols + v, i * ncols + j) # for every cell: write down the area of its corresponding area communities = defaultdict(list) for i, j in product(range(nrows), range(ncols)): if not ignore_black or color[i, j] > 0: communities[union_find.find(i * ncols + j)].append((i, j)) # the result is always sorted for consistency communities = sorted(communities.values(), key = lambda area: (len(area), area)) return communities def get_graph_communities(im, ignore_black=False): G = nx.Graph() I, J = im.shape for i in range(I): for j in range(J): if ignore_black and im[i, j] == 0: continue G.add_node((i, j)) edges = [] if j >= 1: if im[i, j] == im[i, j - 1]: edges.append(((i, j), (i, j - 1))) if j < J - 1: if im[i, j] == im[i, j + 1]: edges.append(((i, j), (i, j + 1))) if i >= 1: if im[i, j] == im[i - 1, j]: edges.append(((i, j), (i - 1, j))) if j >= 1: if im[i, j] == im[i - 1, j - 1]: edges.append(((i, j), (i - 1, j - 1))) if j < J - 1: if im[i, j] == im[i - 1, j + 1]: edges.append(((i, j), (i - 1, j + 1))) if i < I - 1: if im[i, j] == im[i + 1, j]: edges.append(((i, j), (i + 1, j))) if j >= 1: if im[i, j] == im[i + 1, j - 1]: edges.append(((i, j), (i + 1, j - 1))) if j < J - 1: if im[i, j] == im[i + 1, j + 1]: edges.append(((i, j), (i + 1, j + 1))) G.add_edges_from(edges) communities = list(nx.community.k_clique_communities(G, 2)) communities = [list(com) for com in communities] for i in range(I): for j in range(J): i_nbh = nbh(im, i, j) if sum(1 for v in i_nbh.values() if v == im[i, j]) == 0: communities.append([(i, j)]) return communities def apply_rule(input, hidden_i, rule): output = np.zeros_like(input, dtype=int) # print(type(input)) # print(input.shape) hidden = np.zeros_like(input) output[:, :] = input[:, :] if rule['type'] == 'macro_multiply_k': output = np.tile(output, rule['k']) elif rule['type'] == 'flip': if rule['how'] == 'ver': output = output[::-1, :] elif rule['how'] == 'hor': output = output[:, ::-1] elif rule['type'] == 'reduce': skip_row = np.zeros(input.shape[0]) for i in range(1, input.shape[0]): skip_row[i] = (input[i] == input[i-1]).all() or (input[i] == rule['skip_color']).all() if (input[0] == rule['skip_color']).all(): skip_row[0] = 1 if np.sum(skip_row==0)>0: output = input[skip_row == 0] skip_column = np.zeros(input.shape[1]) for i in range(1, input.shape[1]): skip_column[i] = (input[:, i] == input[:, i-1]).all() or (input[:, i] == rule['skip_color']).all() if (input[:, 0] == rule['skip_color']).all(): skip_column[0] = 1 if np.sum(skip_column==0)>0: output = output[:, skip_column == 0] elif rule['type'] == 'rotate': output = np.rot90(output, rule['rotations_count']) elif rule['type'] == 'micro_multiply_by': if rule['how_many'] == 'size': k = output.shape[0] else: k = rule['how_many'] output = np.repeat(output, k, axis=0) output = np.repeat(output, k, axis=1) elif rule['type'] == 'macro_multiply_by': if rule['how_many'] == 'both': k = (2, 2) elif rule['how_many'] == 'hor': k = (1, 2) elif rule['how_many'] == 'ver': k = (2, 1) output = np.tile(output, k) if input.shape[0] == input.shape[1]: for i in range(k[0]): for j in range(k[1]): sub = output[i * input.shape[0]: (i + 1) * input.shape[0], j * input.shape[1]: (j + 1) * input.shape[1]] sub_rotated = np.rot90(sub, rule['rotates'][i * 2 + j]) output[i * input.shape[0]: (i + 1) * input.shape[0], j * input.shape[1]: (j + 1) * input.shape[1]] = sub_rotated for i in range(k[0]): for j in range(k[1]): sub = output[i * input.shape[0]: (i + 1) * input.shape[0], j * input.shape[1]: (j + 1) * input.shape[1]] if 'ver' in rule['flips'][i * 2 + j]: sub = sub[::-1, :] if 'hor' in rule['flips'][i * 2 + j]: sub = sub[:, ::-1] output[i * input.shape[0]: (i + 1) * input.shape[0], j * input.shape[1]: (j + 1) * input.shape[1]] = sub elif rule['type'] == 'distribute_from_border': hidden = np.zeros_like(input) for i in range(1, input.shape[0] - 1): if output[i, 0] in rule['colors']: if not output[i, input.shape[1] - 1] in rule['colors'] or output[i, input.shape[1] - 1] == output[i, 0]: output[i] = output[i, 0] for j in range(1, input.shape[1] - 1): if output[0, j] in rule['colors']: if not output[input.shape[0] - 1, j] in rule['colors'] or output[input.shape[0] - 1, j] == output[0, j]: output[:, j] = output[0, j] elif rule['type'] == 'color_for_inners': hidden = np.zeros_like(input) changed = 1 while changed == 1: changed = 0 for i, j in product(range(input.shape[0]), range(input.shape[1])): i_c = input[i, j] if i_c > 0 or hidden[i, j] == 1: continue if i == 0 or i == input.shape[0] - 1 or j == 0 or j == input.shape[1] - 1: hidden[i, j] = 1 changed = 1 continue i_nbh = nbh(hidden, i, j) # cells adagent to the current one i_direct_nbh = {k: v for k, v in i_nbh.items() if k in {(1, 0), (-1, 0), (0, 1), (0, -1)}} if sum(1 for v in i_direct_nbh.values() if v == 1) > 0: hidden[i, j] = 1 changed = 1 output[((hidden == 0).astype(np.int) * (input == 0).astype(np.int)) == 1] = rule['color_out'] hidden = np.copy(hidden) elif rule['type'] == 'draw_lines': hidden = np.zeros_like(input) if rule['direction'] == 'everywhere': directions = ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right'] elif rule['direction'] == 'horizontal': directions = ['left', 'right'] elif rule['direction'] == 'vertical': directions = ['top', 'bottom'] elif rule['direction'] == 'horver': directions = ['top', 'bottom', 'left', 'right'] elif rule['direction'] == 'diagonal': directions = ['top_left', 'bottom_left', 'top_right', 'bottom_right'] else: directions = [rule['direction']] possible_directions = ['top', 'bottom', 'left', 'right', 'top_left', 'bottom_left', 'top_right', 'bottom_right'] index_change = \ [ [-1, 0], [1, 0], (0, -1), (0, 1), (-1, -1), (+1, -1), (-1, +1), (+1, +1) ] for i_dir, direction in enumerate(possible_directions): if direction in directions: idx_ch = index_change[i_dir] for i in range(input.shape[0]): for j in range(input.shape[1]): if input[i, j] == rule['start_by_color']: tmp_i = i + idx_ch[0] tmp_j = j + idx_ch[1] while 0 <= tmp_i < input.shape[0] and \ 0 <= tmp_j < input.shape[1] and \ input[tmp_i, tmp_j] == rule['not_stop_by_color']: output[tmp_i, tmp_j] = rule['with_color'] tmp_i += idx_ch[0] tmp_j += idx_ch[1] elif rule['type'] == 'draw_line_to': hidden = np.zeros_like(input) index_change = \ [ [-1, 0], [1, 0], (0, -1), (0, 1), ] for i, j in product(range(input.shape[0]), range(input.shape[1])): if input[i, j] != rule['start_by_color']: continue number_0 = np.sum(output[:i] == rule['direction_color']) number_1 = np.sum(output[(i + 1):] == rule['direction_color']) number_2 = np.sum(output[:, :j] == rule['direction_color']) number_3 = np.sum(output[:, (j + 1):] == rule['direction_color']) i_dir = np.argmax([number_0, number_1, number_2, number_3]) # print([number_0, number_1, number_2, number_3]) # 1/0 idx_ch = index_change[i_dir] tmp_i = i + idx_ch[0] tmp_j = j + idx_ch[1] while 0 <= tmp_i < input.shape[0] and \ 0 <= tmp_j < input.shape[1] and \ (input[tmp_i, tmp_j] in [rule['not_stop_by_color'], rule['not_stop_by_color_and_skip']]): skip_color = rule['not_stop_by_color_and_skip'] if skip_color == 0 or input[tmp_i, tmp_j] != skip_color: output[tmp_i, tmp_j] = rule['with_color'] tmp_i += idx_ch[0] tmp_j += idx_ch[1] elif rule['type'] == 'distribute_colors': non_zero_rows = [] non_zero_columns = [] color_for_row = np.zeros(input.shape[0]) color_for_column = np.zeros(input.shape[1]) for i in range(input.shape[0]): row = input[i] colors, counts = np.unique(row, return_counts=True) good_colors = np.array([c in rule['colors'] for c in colors]) if not good_colors.any(): continue colors = colors[good_colors] counts = counts[good_colors] best_color = colors[np.argmax(counts)] color_for_row[i] = best_color non_zero_rows.append(i) for j in range(input.shape[1]): row = input[:, j] colors, counts = np.unique(row, return_counts=True) good_colors = np.array([c in rule['colors'] for c in colors]) if not good_colors.any(): continue colors = colors[good_colors] counts = counts[good_colors] best_color = colors[np.argmax(counts)] color_for_column[j] = best_color non_zero_columns.append(j) if rule['horizontally'] == 1: for i in non_zero_rows: output[i] = color_for_row[i] if rule['vertically'] == 1: for j in non_zero_columns: output[:, j] = color_for_column[j] for i in non_zero_rows: for j in non_zero_columns: if input[i, j] == 0: output[i, j] = rule['intersect'] hidden = np.copy(hidden_i) elif rule['type'] == 'unity': hidden = np.copy(hidden_i) if rule['mode'] == 'vertical': for j in range(input.shape[1]): last_color_now = np.zeros(10, dtype=np.int) - 1 for i in range(input.shape[0]): if not input[i, j] in rule['ignore_colors'] and last_color_now[input[i, j]] >= 0: if rule['with_color'] == 0: output[(last_color_now[input[i, j]] + 1):i, j] = input[i, j] else: output[(last_color_now[input[i, j]] + 1):i, j] = rule['with_color'] last_color_now[input[i, j]] = i elif not input[i, j] in rule['ignore_colors']: last_color_now[input[i, j]] = i elif rule['mode'] == 'horizontal': for i in range(input.shape[0]): last_color_now = np.zeros(10, dtype=np.int) - 1 for j in range(input.shape[1]): if not input[i, j] in rule['ignore_colors'] and last_color_now[input[i, j]] >= 0: if rule['with_color'] == 0: output[i, (last_color_now[input[i, j]] + 1):j] = input[i, j] else: output[i, (last_color_now[input[i, j]] + 1):j] = rule['with_color'] last_color_now[input[i, j]] = j elif not input[i, j] in rule['ignore_colors']: last_color_now[input[i, j]] = j elif rule['mode'] == 'horver': for j in range(input.shape[1]): last_color_now = np.zeros(10, dtype=np.int) - 1 for i in range(input.shape[0]): if not input[i, j] in rule['ignore_colors'] and last_color_now[input[i, j]] >= 0: if rule['with_color'] == 0: output[(last_color_now[input[i, j]] + 1):i, j] = input[i, j] else: output[(last_color_now[input[i, j]] + 1):i, j] = rule['with_color'] last_color_now[input[i, j]] = i elif not input[i, j] in rule['ignore_colors']: last_color_now[input[i, j]] = i for i in range(input.shape[0]): last_color_now = np.zeros(10, dtype=np.int) - 1 for j in range(input.shape[1]): if not input[i, j] in rule['ignore_colors'] and last_color_now[input[i, j]] >= 0: if rule['with_color'] == 0: output[i, (last_color_now[input[i, j]] + 1):j] = input[i, j] else: output[i, (last_color_now[input[i, j]] + 1):j] = rule['with_color'] last_color_now[input[i, j]] = j elif not input[i, j] in rule['ignore_colors']: last_color_now[input[i, j]] = j elif rule['mode'] == 'diagonal': for diag_id in range(-input.shape[0] - 1, input.shape[1] + 1): last_color_now_x = np.zeros(10, dtype=np.int) - 1 last_color_now_y = np.zeros(10, dtype=np.int) - 1 for i, j in zip(np.arange(input.shape[0]), diag_id + np.arange(input.shape[0])): if 0 <= i < input.shape[0] and 0 <= j < input.shape[1]: if not input[i, j] in rule['ignore_colors'] and last_color_now_x[input[i, j]] >= 0: if rule['with_color'] == 0: output[np.arange(last_color_now_x[input[i, j]] + 1, i), np.arange( last_color_now_y[input[i, j]] + 1, j)] = input[i, j] else: output[np.arange(last_color_now_x[input[i, j]] + 1, i), np.arange( last_color_now_y[input[i, j]] + 1, j)] = rule[ 'with_color'] last_color_now_x[input[i, j]] = i last_color_now_y[input[i, j]] = j elif not input[i, j] in rule['ignore_colors']: last_color_now_x[input[i, j]] = i last_color_now_y[input[i, j]] = j reflected_input = input[:, ::-1] output = output[:, ::-1] for diag_id in range(-reflected_input.shape[0] - 1, reflected_input.shape[1] + 1): last_color_now_x = np.zeros(10, dtype=np.int) - 1 last_color_now_y = np.zeros(10, dtype=np.int) - 1 for i, j in zip(np.arange(reflected_input.shape[0]), diag_id + np.arange(reflected_input.shape[0])): if 0 <= i < reflected_input.shape[0] and 0 <= j < reflected_input.shape[1]: if not reflected_input[i, j] in rule['ignore_colors'] and last_color_now_x[ reflected_input[i, j]] >= 0: if rule['with_color'] == 0: output[np.arange(last_color_now_x[reflected_input[i, j]] + 1, i), np.arange( last_color_now_y[reflected_input[i, j]] + 1, j)] = reflected_input[i, j] else: output[np.arange(last_color_now_x[reflected_input[i, j]] + 1, i), np.arange( last_color_now_y[reflected_input[i, j]] + 1, j)] = rule[ 'with_color'] last_color_now_x[reflected_input[i, j]] = i last_color_now_y[reflected_input[i, j]] = j elif not reflected_input[i, j] in rule['ignore_colors']: last_color_now_x[reflected_input[i, j]] = i last_color_now_y[reflected_input[i, j]] = j output = output[:, ::-1] elif rule['type'] == 'split_by_H': hidden = np.copy(hidden_i) if output.shape[0] >= 2: part1 = output[:int(np.floor(output.shape[0] / 2))] part2 = output[int(np.ceil(output.shape[0] / 2)):] output = np.zeros_like(part1) if rule['merge_rule'] == 'or': output[part1 > 0] = part1[part1 > 0] output[part2 > 0] = part2[part2 > 0] elif rule['merge_rule'] == 'equal': idx = np.logical_and(np.logical_and(part1 > 0, part2 > 0), part1 == part2) output[idx] = part1[idx] elif rule['merge_rule'] == 'and': idx = np.logical_and(part1 > 0, part2 > 0) output[idx] = part1[idx] elif rule['merge_rule'] == 'xor': idx = np.logical_xor(part1 > 0, part2 > 0) output[idx] = part1[idx] elif rule['type'] == 'split_by_W': hidden = np.copy(hidden_i) if output.shape[1] >= 2: part1 = output[:, :int(np.floor(output.shape[1] / 2))] part2 = output[:, int(np.ceil(output.shape[1] / 2)):] output = np.zeros_like(part1) if rule['merge_rule'] == 'or': output[part1 > 0] = part1[part1 > 0] output[part2 > 0] = part2[part2 > 0] elif rule['merge_rule'] == 'equal': idx = np.logical_and(np.logical_and(part1 > 0, part2 > 0), part1 == part2) output[idx] = part1[idx] elif rule['merge_rule'] == 'and': idx = np.logical_and(part1 > 0, part2 > 0) output[idx] = part1[idx] elif rule['merge_rule'] == 'xor': idx = np.logical_xor(part1 > 0, part2 > 0) output[idx] = part1[idx] elif rule['type'] == 'map_color': hidden = np.copy(hidden_i) output[output == rule['color_in']] = rule['color_out'] elif rule['type'] == 'crop_empty': hidden = np.copy(hidden_i) nonzerosi = np.max((output != 0).astype(np.int), axis=1) nonzerosj = np.max((output != 0).astype(np.int), axis=0) # print(nonzerosi) # print(nonzerosj) if np.max(nonzerosi) == 0 or np.max(nonzerosj) == 0: output = output * 0 else: mini = np.min(np.arange(output.shape[0])[nonzerosi == 1]) maxi = np.max(np.arange(output.shape[0])[nonzerosi == 1]) minj = np.min(np.arange(output.shape[1])[nonzerosj == 1]) maxj = np.max(np.arange(output.shape[1])[nonzerosj == 1]) output = output[mini:(maxi + 1), minj:(maxj + 1)] elif rule['type'] == 'crop_figure': hidden = np.copy(hidden_i) communities = get_connectivity_info(output, ignore_black=True, edge_for_difcolors=rule['dif_c_edge']) if len(communities) == 0: output = np.zeros_like(output) else: if rule['mode'] == 'biggest': biggest = list(communities[np.argmax([len(list(com)) for com in communities])]) else: biggest = list(communities[np.argmin([len(list(com)) for com in communities])]) biggest = np.array(biggest) min_bx = np.min(biggest[:, 0]) min_by = np.min(biggest[:, 1]) biggest[:, 0] -= min_bx biggest[:, 1] -= min_by output = np.zeros((np.max(biggest[:, 0]) + 1, np.max(biggest[:, 1]) + 1), dtype=np.int) for i in range(biggest.shape[0]): output[tuple(biggest[i])] = input[(min_bx + biggest[i][0], min_by + biggest[i][1])] elif rule['type'] == 'make_holes': hidden = np.copy(hidden_i) for i in range(output.shape[0]): for j in range(output.shape[1]): i_nbh = nbh(output, i, j) proper_nbhs = i_nbh.values() for color in range(1, 10): if sum(1 for v in proper_nbhs if v == color) == 8: output[i, j] = 0 break elif rule['type'] == 'gravity': changed_smth = 1 hidden = np.copy(hidden_i) im = output if rule['gravity_type'] == 'figures': communities = get_connectivity_info(im, ignore_black=True) else: communities = [] for i in range(output.shape[0]): for j in range(output.shape[1]): if output[i, j] > 0: communities.append([[i, j]]) directions = [] for com in communities: community = list(com) color_fig = output[community[0][0], community[0][1]] if rule['look_at_what_to_move'] == 1 and color_fig != rule['color_what']: directions.append('None') continue xs = [p[0] for p in community] ys = [p[1] for p in community] if rule['direction_type'] == 'border': direction = rule['direction_border'] elif rule['direction_type'] == 'color': color = rule['direction_color'] xmin, xmax = np.min(xs), np.max(xs) ymin, ymax = np.min(ys), np.max(ys) number_0 = np.sum(output[:xmin] == color) number_1 = np.sum(output[(xmax + 1):] == color) number_2 = np.sum(output[:, :ymin] == color) number_3 = np.sum(output[:, (ymax + 1):] == color) direction = ['top', 'bottom', 'left', 'right'][np.argmax([number_0, number_1, number_2, number_3])] directions.append(direction) already_moved = np.zeros(len(communities)) while changed_smth > 0: changed_smth = 0 for i, com in enumerate(communities): community = list(com) color_fig = output[community[0][0], community[0][1]] xs = [p[0] for p in community] ys = [p[1] for p in community] direction = directions[i] if direction == 'top': toper = np.array([[p[0] - 1, p[1]] for p in community if (p[0] - 1, p[1]) not in community]) xs = np.array([p[0] for p in toper]) ys = np.array([p[1] for p in toper]) if np.min(xs) < 0: continue if (output[xs, ys] == 0).all() and (rule['steps_limit']==1 or already_moved[i]==0): changed_smth = 1 already_moved[i]=1 com_xs = np.array([p[0] for p in community]) com_ys = np.array([p[1] for p in community]) output[com_xs, com_ys] = 0 output[com_xs - 1, com_ys] = color_fig communities[i] = [(p[0] - 1, p[1]) for p in community] if direction == 'bottom': toper = np.array([[p[0] + 1, p[1]] for p in community if (p[0] + 1, p[1]) not in community]) xs = np.array([p[0] for p in toper]) ys = np.array([p[1] for p in toper]) if np.max(xs) == input.shape[0]: continue if (output[xs, ys] == 0).all() and (rule['steps_limit']==1 or already_moved[i]==0): changed_smth = 1 already_moved[i]=1 com_xs = np.array([p[0] for p in community]) com_ys = np.array([p[1] for p in community]) output[com_xs, com_ys] = 0 output[com_xs + 1, com_ys] = color_fig communities[i] = [(p[0] + 1, p[1]) for p in community] if direction == 'left': toper = np.array([[p[0], p[1] - 1] for p in community if (p[0], p[1] - 1) not in community]) xs = np.array([p[0] for p in toper]) ys = np.array([p[1] for p in toper]) if np.min(ys) < 0: continue if (output[xs, ys] == 0).all() and (rule['steps_limit']==1 or already_moved[i]==0): changed_smth = 1 already_moved[i]=1 com_xs = np.array([p[0] for p in community]) com_ys = np.array([p[1] for p in community]) output[com_xs, com_ys] = 0 output[com_xs, com_ys - 1] = color_fig communities[i] = [(p[0], p[1] - 1) for p in community] if direction == 'right': toper = np.array([[p[0], p[1] + 1] for p in community if (p[0], p[1] + 1) not in community]) xs = np.array([p[0] for p in toper]) ys = np.array([p[1] for p in toper]) if np.max(ys) == input.shape[1]: continue if (output[xs, ys] == 0).all() and (rule['steps_limit']==1 or already_moved[i]==0): changed_smth = 1 already_moved[i]=1 com_xs = np.array([p[0] for p in community]) com_ys = np.array([p[1] for p in community]) output[com_xs, com_ys] = 0 output[com_xs, com_ys + 1] = color_fig communities[i] = [(p[0], p[1] + 1) for p in community] return output, hidden def compute_metrics(prediction_grid, answer_grid): n_metrics = 11 def get_metrics(prediction, answer): prediction_empty = (prediction == 0).astype(np.int) answer_empty = (answer == 0).astype(np.int) right = (prediction == answer).astype(np.int) # empty_right = (prediction_empty == answer_empty).astype(np.int) # accuracy = np.mean(right) # accuracy_empty = np.mean(empty_right) # precision = 1 - np.mean((1 - prediction_empty) * (1 - right)) # recall = 1 - np.mean((1 - answer_empty) * (1 - right)) # precision_empty = 1 - np.mean((1 - prediction_empty) * (1 - empty_right)) # recall_empty = 1 - np.mean((1 - answer_empty) * (1 - empty_right)) # return [accuracy, # accuracy_empty, # precision, recall, # precision_empty, recall_empty # ][:n_metrics] color_rights = [] for color in range(10): idx = answer != color # print(idx.astype(np.int)) color_right = float((np.logical_or(idx, right).all() and not (prediction[idx]==color).any())) color_rights.append(color_right) #print(color_rights) #print(color_rights) #1/0 # right = (prediction == answer).astype(np.int) # empty_right = (prediction_empty == answer_empty).astype(np.int) # # accuracy = np.mean(right) # accuracy_empty = np.mean(empty_right) # precision = 1 - np.mean((1 - prediction_empty) * (1 - right)) # recall = 1 - np.mean((1 - answer_empty) * (1 - right)) # precision_empty = 1 - np.mean((1 - prediction_empty) * (1 - empty_right)) # recall_empty = 1 - np.mean((1 - answer_empty) * (1 - empty_right)) return [accuracy] + color_rights #print(prediction_grid.shape, answer_grid.shape) if prediction_grid.shape == answer_grid.shape: # print(prediction_grid) # print(answer_grid) mets = get_metrics(prediction_grid, answer_grid) + [1] #print(mets) return mets # elif prediction_grid.shape[0] >= answer_grid.shape[0] and prediction_grid.shape[1] >= answer_grid.shape[1]: # metrics = np.zeros((prediction_grid.shape[0] - answer_grid.shape[0] + 1, # prediction_grid.shape[1] - answer_grid.shape[1] + 1, n_metrics)) # for i in range(prediction_grid.shape[0] - answer_grid.shape[0] + 1): # for j in range(prediction_grid.shape[1] - answer_grid.shape[1] + 1): # prediction = prediction_grid[i:(i + answer_grid.shape[0]), j:(j + answer_grid.shape[1])] # metrics[i, j] = get_metrics(prediction, answer_grid) # # maxi, maxj = np.unravel_index(metrics[:, :, 0].argmax(), metrics[:, :, 0].shape) # # mean_metrics = list(np.mean(np.mean(metrics, axis=0), axis=0)/2 + np.array(metrics[maxi, maxj])/2) # size_proportion = answer_grid.shape[0] * answer_grid.shape[1] / prediction_grid.shape[0] / \ # prediction_grid.shape[1] # metrics = metrics[maxi, maxj] # return list(metrics) + [size_proportion] # # elif prediction_grid.shape[0] <= answer_grid.shape[0] and prediction_grid.shape[1] <= answer_grid.shape[1]: # metrics = np.zeros((answer_grid.shape[0] - prediction_grid.shape[0] + 1, # answer_grid.shape[1] - prediction_grid.shape[1] + 1, n_metrics)) # for i in range(answer_grid.shape[0] - prediction_grid.shape[0] + 1): # for j in range(answer_grid.shape[1] - prediction_grid.shape[1] + 1): # answer = answer_grid[i:(i + prediction_grid.shape[0]), j:(j + prediction_grid.shape[1])] # metrics[i, j] = get_metrics(prediction_grid, answer) # # maxi, maxj = np.unravel_index(metrics[:, :, 0].argmax(), metrics[:, :, 0].shape) # # mean_metrics = list(np.mean(np.mean(metrics, axis=0), axis=0)/2 + np.array(metrics[maxi, maxj])/2) # size_proportion = answer_grid.shape[0] * answer_grid.shape[1] / prediction_grid.shape[0] / \ # prediction_grid.shape[1] # metrics = metrics[maxi, maxj] # return list(metrics) + [1/size_proportion] # elif prediction_grid.shape[0] >= answer_grid.shape[0] and prediction_grid.shape[1] >= answer_grid.shape[1]: # maxi, maxj = 0, 0 # maxcommon = 0 # # for i in range(prediction_grid.shape[0] - answer_grid.shape[0] + 1): # for j in range(prediction_grid.shape[1] - answer_grid.shape[1] + 1): # for i_check, j_check in product(range(answer_grid.shape[0]), range(answer_grid.shape[1])): # if prediction_grid[i + i_check, j + j_check] != answer_grid[i_check, j_check]: # common = i_check * j_check # break # if i_check == answer_grid.shape[0] - 1 and j_check == answer_grid.shape[1] - 1: # common = i_check * j_check # # if common > maxcommon: # maxi = i # maxj = j # maxcommon = common # if common == answer_grid.shape[0] * answer_grid.shape[1]: # break # # metrics = get_metrics(prediction_grid[maxi:(maxi + answer_grid.shape[0]), # maxj:(maxj + answer_grid.shape[1])], answer_grid) # # modified_pred = np.zeros_like(prediction_grid) # modified_pred[:] = prediction_grid[:] # modified_pred[maxi:(maxi + answer_grid.shape[0]), maxj:(maxj + answer_grid.shape[1])] = 0 # size_proportion = answer_grid.shape[0] * answer_grid.shape[1] / prediction_grid.shape[0] / prediction_grid.shape[1] # #print(np.mean(modified_pred==0)) # return list(size_proportion*np.array(metrics)) + [1.0] # # elif prediction_grid.shape[0] <= answer_grid.shape[0] and prediction_grid.shape[1] <= answer_grid.shape[1]: # maxi, maxj = 0, 0 # maxcommon = 0 # # for i in range(answer_grid.shape[0] - prediction_grid.shape[0] + 1): # for j in range(answer_grid.shape[1] - prediction_grid.shape[1] + 1): # for i_check, j_check in product(range(prediction_grid.shape[0]), range(prediction_grid.shape[1])): # #print(i_check, j_check) # if answer_grid[i + i_check, j + j_check] != prediction_grid[i_check, j_check]: # common = i_check * j_check # break # if i_check == prediction_grid.shape[0] - 1 and j_check == prediction_grid.shape[1] - 1: # common = i_check * j_check # # if common > maxcommon: # maxi = i # maxj = j # maxcommon = common # if common == prediction_grid.shape[0] * prediction_grid.shape[1]: # break # # metrics = get_metrics(answer_grid[maxi:(maxi + prediction_grid.shape[0]), # maxj:(maxj + prediction_grid.shape[1])], prediction_grid) # # modified_pred = np.zeros_like(answer_grid) # modified_pred[:] = answer_grid[:] # modified_pred[maxi:(maxi + prediction_grid.shape[0]), maxj:(maxj + prediction_grid.shape[1])] = 0 # size_proportion = prediction_grid.shape[0] * prediction_grid.shape[1] / answer_grid.shape[0] / answer_grid.shape[1] # return list(size_proportion*np.array(metrics)) + [1.0] return list(np.array(get_metrics(answer_grid, answer_grid)) * 0) + [0] def validate_automata(task_global, params, n_iter_max, n_hidden): def validate(task): inp = task['input'] out = trace_param_automata(inp, params, n_iter_max, n_hidden)[-1][0] metrics = compute_metrics(out, task['output']) return metrics metrics = [] for task in task_global['train']: metrics.append(validate(task)) mean_metrics = list(np.round(np.mean(metrics, axis=0), 3)) min_metrics = list(np.round(np.min(metrics, axis=0), 3)) return tuple(mean_metrics + list(np.array(metrics)[:, 0].reshape(-1)))#tuple(mean_metrics + min_metrics) def product_better(a, b): """ Return True iff the two tuples a and b respect a<b for the partial order. """ a = np.array(a) b = np.array(b) return (np.array(a) >= np.array(b)).all() and (np.array(a) > np.array(b)).any() def generate_random_ca(all_colors, best_candidates, temp, config, length=1): rules = [] for _ in range(length): rules.append(get_random_ca_rule(all_colors, best_candidates, temp, config)) return rules def generate_random_global(all_colors, best_candidates, temp, config, length=1): rules = [] for _ in range(length): rules.append(get_random_global_rule(all_colors, best_candidates, temp, config)) return rules def generate_population(all_colors, config, size=64, length=1): population = [] for i in range(size): split_rule = get_random_split_rule(all_colors, {}, 0, config) merge_rule = get_random_merge_rule(all_colors, {}, 0, config) global_rules = generate_random_global(all_colors, {}, 0, config, np.random.choice(2, p=[0.2, 0.8])) ca_rules = generate_random_ca(all_colors, {}, 0, config, np.random.choice(2, p=[0.2, 0.8])) population.append([global_rules, ca_rules, split_rule, merge_rule]) return population from pathlib import Path import json train_path = data_path / 'training' valid_path = data_path / 'evaluation' test_path = data_path / 'test' submission_path = data_path / 'public_submission.csv' train_tasks = { task.stem: json.load(task.open()) for task in train_path.iterdir() } valid_tasks = { task.stem: json.load(task.open()) for task in valid_path.iterdir() } test_path = { task.stem: json.load(task.open()) for task in test_path.iterdir() } train_task_ids = np.sort(list(train_tasks.keys())) valid_task_ids = np.sort(list(valid_tasks.keys())) test_task_ids = np.sort(list(test_path.keys())) from functools import partial from itertools import product from sklearn.preprocessing import MinMaxScaler def change_color(colors_in, colors_out, grid): out_grid = np.zeros_like(grid) out_grid[:] = grid[:] for i in range(grid.shape[0]): for j in range(grid.shape[1]): for color_in, color_out in zip(colors_in, colors_out): if grid[i, j] == color_in: out_grid[i, j] = color_out break return out_grid def reduce_grid(grid_rows, grid_columns, color, grid): out_grid = np.zeros((len(grid_rows), len(grid_columns)), dtype=np.int) for i, j in product(range(len(grid_rows)), range(len(grid_columns))): out_grid[i, j] = grid[grid_rows[i][0], grid_columns[j][0]] return out_grid def unreduce_grid(line_rows, line_columns, n, m, grid_rows, grid_columns, color, grid): out_grid = np.zeros((n, m), dtype=np.int) for i in range(len(line_rows)): out_grid[line_rows[i]] = color for j in range(len(line_columns)): out_grid[:, line_columns[j]] = color for i, j in product(range(len(grid_rows)), range(len(grid_columns))): if grid[i, j] != 0: for i_gr_row in list(grid_rows[i]): for j_gr_col in list(grid_columns[j]): out_grid[i_gr_row, j_gr_col] = grid[i, j] return out_grid def get_color_features(input_grid): colors = np.unique(input_grid) colors_numbers = np.array([np.mean(input_grid == color) for color in colors]).reshape((-1, 1)) # communities_1 = get_graph_communities(input_grid) # # communities_2 = get_connectivity_info(input_grid) # # communities_1 = sorted([sorted(com) for com in communities_1]) # communities_2 = sorted([sorted(com) for com in communities_2]) # # assert all((a == b) for a, b in zip(communities_1, communities_2)) # colors_communities = [np.sum([input_grid[list(com)[0]] == color for com in communities]) / len(communities) for # color in colors] #colors_communities = np.array(colors_communities).reshape((-1, 1)) colors_borders = np.array([np.mean(input_grid[0] == color) for color in colors]).reshape((-1, 1)) colors_borders += np.array([np.mean(input_grid[-1] == color) for color in colors]).reshape((-1, 1)) colors_borders += np.array([np.mean(input_grid[:, 0] == color) for color in colors]).reshape((-1, 1)) colors_borders += np.array([np.mean(input_grid[:, -1] == color) for color in colors]).reshape((-1, 1)) colors_borders /= np.sum(colors_borders) colors_features = np.concatenate([colors_numbers, colors_borders], axis=1) return colors_features, colors def get_train_color_features(task): colors_in_train = [] colors_in_each_train = [] for uni_task in task['train']: inp = uni_task['input'] colors_unique, color_numbers = np.unique(inp, return_counts=True) colors_in_train += list(colors_unique) colors_in_each_train.append(colors_unique) max_color_task = np.argmax([clrs.shape[0] for clrs in colors_in_each_train]) colors = colors_in_each_train[max_color_task] input_grid = task['train'][max_color_task]['input'] train_colors_features, _ = get_color_features(input_grid) scaler = MinMaxScaler() train_colors_features = scaler.fit_transform(train_colors_features) sums = np.sum(train_colors_features, axis=1) train_colors_features = train_colors_features[np.argsort(sums)[::-1]] return train_colors_features, scaler, np.unique(colors_in_train) def build_mapping(task, config): reverse_functions = [] for part in ['train', 'test']: for uni_task in task[part]: if part == 'test': reverse_functions.append({}) if config['reduce_grid']: can_reduce_grid = True for uni_task in task['train']: if uni_task['input'].shape != uni_task['output'].shape: can_reduce_grid = False break inp = uni_task['input'] colors_rows = [] line_rows = [] for i in range(inp.shape[0]): if (inp[i] == inp[i][0]).all(): colors_rows.append(inp[i][0]) line_rows.append(i) row_colors, row_counts = np.unique(colors_rows, return_counts=True) colors_columns = [] line_columns = [] for i in range(inp.shape[1]): if (inp[:, i] == inp[0, i]).all(): colors_columns.append(inp[0, i]) line_columns.append(i) column_colors, column_counts = np.unique(colors_columns, return_counts=True) if row_colors.shape[0] != 1 or column_colors.shape[0] != 1 or \ row_counts[0] < 2 or column_counts[0] < 2: can_reduce_grid = False break line_rows.append(inp.shape[0]) line_rows = [-1] + line_rows line_columns.append(inp.shape[1]) line_columns = [-1] + line_columns for i in range(len(line_rows) - 1): if (line_rows[i] + 1) < line_rows[i + 1]: for j in range(len(line_columns) - 1): if (line_columns[j] + 1) < line_columns[j + 1]: color = inp[line_rows[i] + 1][line_columns[j] + 1] if not (inp[(line_rows[i] + 1):(line_rows[i + 1]), (line_columns[j] + 1):(line_columns[j + 1])] == color).all(): can_reduce_grid = False break for i in range(1, len(line_rows) - 1): if not (uni_task['input'][line_rows[i]] == uni_task['output'][line_rows[i]]).all(): can_reduce_grid = False break for j in range(1, len(line_columns) - 1): if not (uni_task['input'][:, line_columns[j]] == uni_task['output'][:, line_columns[j]]).all(): can_reduce_grid = False break if not can_reduce_grid: break if can_reduce_grid: for part in ['train', 'test']: for i_task, uni_task in enumerate(task[part]): inp = uni_task['input'] colors_rows = [] line_rows = [] for i in range(inp.shape[0]): if (inp[i] == inp[i][0]).all(): colors_rows.append(inp[i][0]) line_rows.append(i) row_colors, row_counts = np.unique(colors_rows, return_counts=True) colors_columns = [] line_columns = [] for i in range(inp.shape[1]): if (inp[:, i] == inp[0, i]).all(): colors_columns.append(inp[0, i]) line_columns.append(i) column_colors, column_counts = np.unique(colors_columns, return_counts=True) line_rows.append(inp.shape[0]) line_rows = [-1] + line_rows line_columns.append(inp.shape[1]) line_columns = [-1] + line_columns grid_rows = [] grid_columns = [] for i in range(len(line_rows) - 1): if (line_rows[i] + 1) < line_rows[i + 1]: grid_rows.append(np.arange(line_rows[i] + 1, line_rows[i + 1])) for j in range(len(line_columns) - 1): if (line_columns[j] + 1) < line_columns[j + 1]: grid_columns.append(np.arange(line_columns[j] + 1, line_columns[j + 1])) uni_task['input'] = reduce_grid(grid_rows, grid_columns, row_colors[0], inp) if part == 'train': uni_task['output'] = reduce_grid(grid_rows, grid_columns, row_colors[0], uni_task['output']) if part == 'test': reverse_functions[i_task]['unreduce_grid'] = partial(unreduce_grid, line_rows[1:-1], line_columns[1:-1], inp.shape[0], inp.shape[1], grid_rows, grid_columns, row_colors[0]) if config['map_color']: go_map_color = True train_colors_features, scaler, unique_train_colors = get_train_color_features(task) for uni_task in task['test']: inp = uni_task['input'] colors_test = list(np.unique(inp)) for color in colors_test: if not color in unique_train_colors: go_map_color = True if go_map_color: colors_in_all = [[], []] colors_out_all = [[], []] for i_part, part in enumerate(['train', 'test']): for i_task, uni_task in enumerate(task[part]): input_grid = uni_task['input'] colors_features, colors = get_color_features(input_grid) proper_colors = list(np.arange(train_colors_features.shape[0])) colors_features = scaler.transform(colors_features) colors_in = [] colors_out = [] for i, color in enumerate(colors): color_features = colors_features[i].reshape((1, -1)) distances = np.sum(np.power(train_colors_features - color_features, 2), axis=1) closests = list(np.argsort(distances)) for closest in closests: if closest in proper_colors: proper_colors.remove(closest) colors_in.append(color) colors_out.append(closest) break if part == 'train': colors_in_all[i_part].append(colors_in) colors_out_all[i_part].append(colors_out) if part == 'test': colors_in_all[i_part].append(colors_out) colors_out_all[i_part].append(colors_in) reverse_functions[i_task]['train_colors_in'] = colors_out reverse_functions[i_task]['train_colors_out'] = colors_in unique_test_colors = [] for i_task, uni_task in enumerate(task['train']): output_grid = uni_task['output'] colors = np.unique(output_grid) for color in colors: if not color in unique_train_colors: unique_test_colors.append(color) unique_test_colors = np.unique(unique_test_colors) colors_out = 9 - np.arange(unique_test_colors.shape[0]) for part in ['train', 'test']: for i_task, uni_task in enumerate(task[part]): if part == 'train': uni_task['input'] = change_color(colors_in_all[0][i_task], colors_out_all[0][i_task], uni_task['input']) colors_in_all[0][i_task] += list(unique_test_colors) colors_out_all[0][i_task] += list(colors_out) uni_task['output'] = change_color(colors_in_all[0][i_task], colors_out_all[0][i_task], uni_task['output']) if part == 'test': reverse_functions[i_task]['test_colors_in'] = list(colors_out) reverse_functions[i_task]['test_colors_out'] = list(unique_test_colors) if config['find_wall']: for i_part, part in enumerate(['train', 'test']): for i_task, uni_task in enumerate(task[part]): input_grid = uni_task['input'] colors_features, colors = get_color_features(input_grid) sums = np.sum(colors_features, axis=1) color_wall = colors[np.argsort(sums)[::-1][0]] #print(color_wall) if color_wall == 0: continue colors_in = [0, color_wall] colors_out = [color_wall, 0] uni_task['input'] = change_color(colors_in, colors_out, input_grid) if part == 'train': uni_task['output'] = change_color(colors_in, colors_out, uni_task['output']) if part == 'test': reverse_functions[i_task]['return_wall'] = partial(change_color, colors_out, colors_in) return task, reverse_functions def update_pool(task, best_candidates, candidate, num_params): start = time.time() score = validate_automata(task, candidate, 25, 1) is_uncomp = True updated_keys = False best_candidates_items = list(best_candidates.items()) for best_score, best_candidates_score in best_candidates_items: if product_better(score, best_score): # Remove previous best candidate and add the new one del best_candidates[best_score] best_candidates[score] = [candidate] is_uncomp = False # The candidates are comparable updated_keys = True if product_better(best_score, score): is_uncomp = False # The candidates are comparable if is_uncomp: # The two candidates are uncomparable best_candidates[score].append(candidate) best_candidates[score] = sorted(best_candidates[score], key=lambda x: len(x[0]) + len(x[1])) if len(best_candidates[score]) > num_params: best_candidates[score] = [cand for cand in best_candidates[score] if (len(cand[0]) + len(cand[1])) <= len(best_candidates[score][0][0]) + len(best_candidates[score][0][1]) + 2] # best_candidates[score] = best_candidates[score][:num_params] return updated_keys def generate_asexual_part(best_candidates, temp, part, generate_func, all_colors, config, alpha_mutate_rule_same_type): if type(part) == list: if np.random.rand() < (1 / (len(part) + 1))**0.75: part.append(generate_func(all_colors, best_candidates, temp, config)) else: index = np.random.randint(len(part)) if np.random.rand() < 0.3: part = part[:index] + part[(index + 1):] else: r_type = None if np.random.rand() < alpha_mutate_rule_same_type: r_type = part[index]['type'] if np.random.rand() < 0.5: part[index] = generate_func(all_colors, best_candidates, temp, config, r_type) else: part = part[:index] + [generate_func(all_colors, best_candidates, temp, config, r_type)] + part[index:] else: part = generate_func(all_colors, best_candidates, temp, config) return part def generate_sexual_part(best_candidates, temp, first, second, generate_func, all_colors, config, alpha_sexual_mutate, alpha_mutate_rule_same_type, alpha_mutate_rule_same_type_one_parameter): if type(first) == list: if len(first) == 0 and len(second) == 0: child = [] elif len(first) == 0: split2 = np.random.randint(len(second)) if np.random.rand() <= 0.5: child = second[split2:] else: child = second[:split2] elif len(second) == 0: split1 = np.random.randint(len(first)) if np.random.rand() <= 0.5: child = first[split1:] else: child = first[:split1] else: split1 = np.random.randint(len(first)) split2 = np.random.randint(len(second)) if np.random.rand() <= 0.5: child = first[:split1] + second[split2:] else: child = second[:split2] + first[split1:] if np.random.rand() < alpha_sexual_mutate: index = np.random.randint(len(child) + 1) if index == len(child): child.append(generate_func(all_colors, best_candidates, temp, config)) else: r_type = None same_type = np.random.rand() < alpha_mutate_rule_same_type one_param_modification = np.random.rand() < alpha_mutate_rule_same_type_one_parameter if same_type: r_type = child[index]['type'] same_type_rule = generate_func(all_colors, best_candidates, temp, config, r_type) if not one_param_modification: child[index] = same_type_rule else: key = random.choice(list(child[index].keys())) child[index][key] = same_type_rule[key] else: if np.random.rand() < 0.5: child[index] = generate_func(all_colors, best_candidates, temp, config) else: child = child[:index] + [generate_func(all_colors, best_candidates, temp, config, r_type)] + child[ index:] else: if np.random.rand() < 0.5: child = copy.deepcopy(first) else: child = copy.deepcopy(second) return child def generate_asexual_child(best_candidates, temp, parent, all_colors, config, alpha_mutate_rule_same_type): child = copy.deepcopy(parent) gen_functions = [get_random_global_rule, get_random_ca_rule, get_random_split_rule, get_random_merge_rule] idx_to_mutate = np.random.choice(len(child), p =[0.4, 0.4, 0.1, 0.1]) child[idx_to_mutate] = generate_asexual_part(best_candidates, temp, child[idx_to_mutate], gen_functions[idx_to_mutate], all_colors, config, alpha_mutate_rule_same_type) return child def generate_sexual_child(best_candidates, temp, first, second, all_colors, config, alpha_sexual_mutate, alpha_mutate_rule_same_type, alpha_mutate_rule_same_type_one_parameter): gen_functions = [get_random_global_rule, get_random_ca_rule, get_random_split_rule, get_random_merge_rule] what_to_mutate = np.random.choice(len(gen_functions), p=[0.5, 0.5, 0.0, 0.0]) child = [] for idx_to_mutate, gen_func in enumerate(gen_functions): child.append(generate_sexual_part(best_candidates, temp, first[idx_to_mutate], second[idx_to_mutate], gen_func, all_colors, config, (what_to_mutate==idx_to_mutate) * alpha_sexual_mutate, alpha_mutate_rule_same_type, alpha_mutate_rule_same_type_one_parameter)) return child def post_solved_process(task, solved, all_colors, config, reverse_functions, config_mapping): test_preds = [] best_candidates = defaultdict(list) update_pool(task, best_candidates, solved, 1) start_time = time.time() while time.time() - start_time < 30: best_scores = list(best_candidates.keys()) first_score = random.choice(best_scores) idx = np.random.choice(len(list(best_candidates[first_score]))) first = list(best_candidates[first_score])[idx] child = generate_asexual_child(best_candidates, 0.5, first, all_colors, config, 0.) update_pool(task, best_candidates, child, 1) train_colors_features, scaler, _ = get_train_color_features(task) print(list(best_candidates.values())[0][0]) for i_task, uni_task in enumerate(task['test']): predictions = [] for solved in list(best_candidates.values())[0]: if reverse_functions[i_task].get('train_colors_in', None): inp = uni_task['input'] colors_unique, color_numbers = np.unique(inp, return_counts=True) input_grid = uni_task['input'] colors_features, colors = get_color_features(input_grid) colors_features = scaler.transform(colors_features) colors_in = [] colors_out = [] if colors_unique.shape[0] <= train_colors_features.shape[0]: proper_colors = list(np.arange(train_colors_features.shape[0])) for i, color in enumerate(colors): color_features = colors_features[i].reshape((1, -1)) distances = np.sum(np.power(train_colors_features - color_features, 2), axis=1) closests = list(np.argsort(distances)) for closest in closests: if closest in proper_colors: proper_colors.remove(closest) colors_in.append(color) colors_out.append(closest) break colors_in += list(reverse_functions[i_task]['train_colors_out']) colors_out += list(reverse_functions[i_task]['train_colors_in']) input_task = change_color(colors_in, colors_out, uni_task['input']) trace = trace_param_automata(input_task, solved, 25, 0) t_pred = trace[-1][0] if not reverse_functions[i_task].get('unreduce_grid', None) is None: t_pred = reverse_functions[i_task]['unreduce_grid'](t_pred) if not reverse_functions[i_task].get('train_colors_in', None) is None: colors_in = reverse_functions[i_task]['train_colors_in'] + reverse_functions[i_task][ 'test_colors_in'] colors_out = reverse_functions[i_task]['train_colors_out'] + reverse_functions[i_task][ 'test_colors_out'] t_pred = change_color(colors_in, colors_out, t_pred) predictions.append(t_pred) else: closests_to = [[] for _ in range(train_colors_features.shape[0])] for i, color in enumerate(colors): color_features = colors_features[i].reshape((1, -1)) distances = np.sum(np.power(train_colors_features - color_features, 2), axis=1) closest = np.argsort(distances)[0] closests_to[closest].append(color) for i in range(len(closests_to)): if len(closests_to[i]) == 0: closests_to[i] = [-1] answers = [] for color_map in product(*closests_to): input_task = np.zeros_like(uni_task['input']) for i, color in enumerate(list(color_map)): input_task[uni_task['input'] == color] = i colors_in = np.array(list(color_map) + reverse_functions[i_task]['test_colors_out']) colors_out = list(np.arange(colors_in.shape[0])) + reverse_functions[i_task]['test_colors_in'] trace = trace_param_automata(input_task, solved, 25, 0) t_pred = trace[-1][0] t_pred = change_color(colors_out, colors_in, t_pred) if not reverse_functions[i_task].get('unreduce_grid', None) is None: t_pred = reverse_functions[i_task]['unreduce_grid'](t_pred) answers.append(t_pred) shapes = [ans.shape for ans in answers] diff_shapes, counts = np.unique(shapes, return_counts=True, axis=0) best_shape = diff_shapes[np.argmax(counts)] answers = [ans for ans in answers if ans.shape == tuple(best_shape)] final_answer = np.zeros((10, best_shape[0], best_shape[1])) for i in range(10): for ans in answers: final_answer[i][ans == i] += 1 final_answer = np.argmax(final_answer, axis=0) predictions.append(final_answer) else: inp = uni_task['input'] trace = trace_param_automata(inp, solved, 25, 0) t_pred = trace[-1][0] if not reverse_functions[i_task].get('unreduce_grid', None) is None: t_pred = reverse_functions[i_task]['unreduce_grid'](t_pred) if not reverse_functions[i_task].get('return_wall', None) is None: t_pred = reverse_functions[i_task]['return_wall'](t_pred) predictions.append(t_pred) shapes = [ans.shape for ans in predictions] diff_shapes, counts = np.unique(shapes, return_counts=True, axis=0) best_shape = diff_shapes[np.argmax(counts)] predictions = [ans for ans in predictions if ans.shape == tuple(best_shape)] unique_preds, nums = np.unique(np.array(predictions), return_counts=True, axis=0) indexes = np.argsort(nums)[::-1] preds = unique_preds[indexes[:3]] preds = [pr for pr in preds] test_preds.append(preds) return test_preds def train_model(name, task, params, time_for_task, config_mapping): alpha_asexual_mutation = params['alpha_asexual_mutation'] alpha_sexual_mutate = params['alpha_sexual_mutate'] alpha_mutate_rule_same_type = params['alpha_mutate_rule_same_type'] alpha_mutate_rule_same_type_one_parameter = params['alpha_mutate_rule_same_type_one_parameter'] add_random = params['add_random'] num_params = params['num_params'] start_time = time.time() param_name = str([alpha_asexual_mutation, alpha_sexual_mutate, alpha_mutate_rule_same_type, alpha_mutate_rule_same_type_one_parameter, add_random]) task, reverse_functions = build_mapping(task, config_mapping) all_colors, config = get_task_metadata(task) print(f'Trying to solve {name}... {param_name}') best_candidates = defaultdict(list) test_preds = [] population = generate_population(all_colors, config, size=2500) mode = 'test' # # # cand = [[{'type': 'flip', 'macro_type': 'global_rule', 'apply_to': 'index', 'apply_to_index': 5, 'how': 'hor'}], # [], {'type': 'macro_multiply', 'k': (3, 3)}, {'type': 'cellwise_or'}] # # #update_pool(task, best_candidates, cand, num_params) # 1/0 for cand in population: update_pool(task, best_candidates, cand, num_params) # print('Population generated') i_iteration = 0 updated = 0 num_successful_asexuals = 0 num_asexuals = 0 num_successful_sexuals = 0 num_sexuals = 0 while True: was_asexual = False was_sexual = False temp = min(0.9, (time.time() - start_time) / 500) if np.random.rand() < add_random: split_rule = get_random_split_rule(all_colors, {}, 0, config) merge_rule = get_random_merge_rule(all_colors, {}, 0, config) child = [generate_random_global(all_colors, best_candidates, temp, config), generate_random_ca(all_colors, best_candidates, temp, config), split_rule, merge_rule] else: best_scores = list(best_candidates.keys()) first_score = random.choice(best_scores) first = random.choice(list(best_candidates[first_score])) if np.random.rand() < alpha_asexual_mutation: child = generate_asexual_child(best_candidates, temp, first, all_colors, config, alpha_mutate_rule_same_type) was_asexual = True else: second_score = random.choice(best_scores) second = random.choice(list(best_candidates[second_score])) child = generate_sexual_child(best_candidates, temp, first, second, all_colors, config, alpha_sexual_mutate, alpha_mutate_rule_same_type, alpha_mutate_rule_same_type_one_parameter) was_sexual = True #print(was_asexual, was_sexual) #print(child) updated_keys = update_pool(task, best_candidates, child, num_params) if was_asexual: num_asexuals += 1 if updated_keys: num_successful_asexuals += 1 elif was_sexual: num_sexuals += 1 if updated_keys: num_successful_sexuals += 1 if i_iteration % 100 == 0: solved = None max_scores = np.zeros(len(list(best_candidates.keys())[0])) for score, params in best_candidates.items(): max_scores =
np.maximum(max_scores, score)
numpy.maximum
""" Gradient estimators to numerically approximate gradients. """ import logging import warnings import numpy as np from .utils import batch_crossentropy from . import nprng from abc import abstractmethod, ABCMeta class GradientEstimatorBase: __metaclass__ = ABCMeta @abstractmethod def estimate_one(self, pred_fn, x, label, bounds): raise NotImplementedError() def estimate(self, pred_fn, xs, labels, bounds): assert len(xs) == len(labels) gradients = [] for x, label in zip(xs, labels): gradients.append(self.estimate_one(pred_fn, x, label, bounds)) gradients = np.array(gradients) return gradients class CoordinateWiseGradientEstimator(GradientEstimatorBase): """Implements a simple gradient-estimator using the coordinate-wise finite-difference method. """ def __init__(self, epsilon, clip=True): self._epsilon = epsilon self.clip = clip def _get_noise(self, shape, dtype): N = np.prod(shape) noise = np.eye(N, N, dtype=dtype) noise = noise.reshape((N,) + shape) noise = np.concatenate([noise, -noise]) return noise def estimate_one(self, pred_fn, x, label, bounds): noise = self._get_noise(x.shape, x.dtype) N = len(noise) min_, max_ = bounds scaled_epsilon = self._epsilon * (max_ - min_) theta = x + scaled_epsilon * noise if self.clip: theta =
np.clip(theta, min_, max_)
numpy.clip
""" DESCRIPTION Preprocesses audio data before sending to Neural Network See demo in in main() MIT License Copyright (c) 2018 The-Instrumental-Specialists Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import neuralnet_02 as NN import numpy as np import os import glob import json import time import scipy import matplotlib.pylab as plt import scipy.io.wavfile as wavfile import scipy.fftpack from scipy.fftpack import dct def getMax(array_list): """Returns a tuple (index,value) of the maximum in an 1D array or list""" m = array_list[0] m_index = 0 for i,value in enumerate(array_list): if value > m: m = value m_index = i return (m_index,m) def processFile(filename,length = 256,q=1,fs_in=8000,divide=4,plot=False): """returns one sided FFT amplitudes of filename filename (string): ex) 'sax.wav' length (int): Number of datapoints of one-sided fft (must be even,preferably a power of 2) q (int): (optional argument) Downsampling Rate fs_in (int): (optional argument) throw ValueError if fs of filename != fs_in divide (int): (optional argument) 1/divide*Nsamples is taken from FFT (preferably even) plot (bool): (optional argument) plots the one sided FFT if True, otherwise does not plot Note: length < total_time*fs//(2*q*divide) Ex) length = 256 < (0.25sec)*(44100Hz)//(2*4*2) = 689 """ length = length*divide #fs = sample rate, sound = multichannel sound signal try: fs1, sound = wavfile.read(filename) except ValueError: print(str(filename) + ' failed to process') return 'failed' if fs1 != fs_in: raise ValueError('Sampling rate should be ' + str(fs_in) + ' for: ' + filename) sig1 = sound[:,0] #left channel pre_emphasis = 0.97 sig1 = np.append(sig1[0], sig1[1:] - pre_emphasis * sig1[:-1]) fs2, sig2 = downsample(sig1,fs1,q) N2 = len(sig2) sig3 = sig2[N2//2-length:N2//2+length] #print(len(sig3)) FFT = abs(scipy.fft(sig3)) FFT_side = FFT[range(len(FFT)//2)] #freqs = scipy.fftpack.fftfreq(sig3.size, 1/fs2) #plt.plot(freqs,FFT) if len(FFT_side) != length: print('ERROR MESSAGE DETAILS') print('filename: ' + filename) print('length = ' + str(length)) print('fs_in = ' + str(fs_in)) print('q = ' + str(q)) print('divide = ' + str(divide)) total_time = len(sig1)/fs1 print('total_time = ' + str(total_time)) print('Please check: length < total_time*fs//(2*q)') print('Check: ' + str(length) + ' < ' + str(total_time*fs1//(2*q))) raise ValueError('Length FFT_side != length: ' + str(len(FFT_side)) + ' != ' + str(length)) FFT_log = [] # normalize FFT for value in FFT_side: value = np.log(value) FFT_log.append(value) max_val = getMax(FFT_log)[1] FFT_norm = [] for value in FFT_log: FFT_norm.append(value/max_val) FFT_side =
np.array(FFT_norm)
numpy.array
import datetime as dt from unittest import SkipTest import numpy as np from holoviews.core import NdOverlay from holoviews.core.options import Cycle from holoviews.core.util import pd from holoviews.element import Points from holoviews.streams import Stream from .testplot import TestBokehPlot, bokeh_renderer from ..utils import ParamLogStream try: from bokeh.models import FactorRange, LinearColorMapper, CategoricalColorMapper from bokeh.models import Scatter except: pass class TestPointPlot(TestBokehPlot): def test_points_colormapping(self): points = Points(np.random.rand(10, 4), vdims=['a', 'b']).opts(plot=dict(color_index=3)) self._test_colormapping(points, 3) def test_points_colormapping_with_nonselection(self): opts = dict(plot=dict(color_index=3), style=dict(nonselection_color='red')) points = Points(np.random.rand(10, 4), vdims=['a', 'b']).opts(**opts) self._test_colormapping(points, 3) def test_points_colormapping_categorical(self): points = Points([(i, i*2, i*3, chr(65+i)) for i in range(10)], vdims=['a', 'b']).opts(plot=dict(color_index='b')) plot = bokeh_renderer.get_plot(points) plot.initialize_plot() cmapper = plot.handles['color_mapper'] self.assertIsInstance(cmapper, CategoricalColorMapper) self.assertEqual(cmapper.factors, list(points['b'])) def test_points_color_selection_nonselection(self): opts = dict(color='green', selection_color='red', nonselection_color='blue') points = Points([(i, i*2, i*3, chr(65+i)) for i in range(10)], vdims=['a', 'b']).opts(style=opts) plot = bokeh_renderer.get_plot(points) glyph_renderer = plot.handles['glyph_renderer'] self.assertEqual(glyph_renderer.glyph.fill_color, 'green') self.assertEqual(glyph_renderer.glyph.line_color, 'green') self.assertEqual(glyph_renderer.selection_glyph.fill_color, 'red') self.assertEqual(glyph_renderer.selection_glyph.line_color, 'red') self.assertEqual(glyph_renderer.nonselection_glyph.fill_color, 'blue') self.assertEqual(glyph_renderer.nonselection_glyph.line_color, 'blue') def test_points_alpha_selection_nonselection(self): opts = dict(alpha=0.8, selection_alpha=1.0, nonselection_alpha=0.2) points = Points([(i, i*2, i*3, chr(65+i)) for i in range(10)], vdims=['a', 'b']).opts(style=opts) plot = bokeh_renderer.get_plot(points) glyph_renderer = plot.handles['glyph_renderer'] self.assertEqual(glyph_renderer.glyph.fill_alpha, 0.8) self.assertEqual(glyph_renderer.glyph.line_alpha, 0.8) self.assertEqual(glyph_renderer.selection_glyph.fill_alpha, 1) self.assertEqual(glyph_renderer.selection_glyph.line_alpha, 1) self.assertEqual(glyph_renderer.nonselection_glyph.fill_alpha, 0.2) self.assertEqual(glyph_renderer.nonselection_glyph.line_alpha, 0.2) def test_points_alpha_selection_partial(self): opts = dict(selection_alpha=1.0, selection_fill_alpha=0.2) points = Points([(i, i*2, i*3, chr(65+i)) for i in range(10)], vdims=['a', 'b']).opts(style=opts) plot = bokeh_renderer.get_plot(points) glyph_renderer = plot.handles['glyph_renderer'] self.assertEqual(glyph_renderer.glyph.fill_alpha, 1.0) self.assertEqual(glyph_renderer.glyph.line_alpha, 1.0) self.assertEqual(glyph_renderer.selection_glyph.fill_alpha, 0.2) self.assertEqual(glyph_renderer.selection_glyph.line_alpha, 1) def test_batched_points(self): overlay = NdOverlay({i: Points(
np.arange(i)
numpy.arange
import logging from abc import ABC, abstractmethod import numpy as np import pandas as pd from hdrbp._util import ( basic_repr, basic_str, compute_correlation, compute_diversification_ratio, compute_drawdowns, compute_gini, compute_prices, compute_risk_contributions, compute_turnover, compute_variance, count_dates_per_year, count_years, ) logger = logging.getLogger(__name__) @basic_str @basic_repr class MetricCalculator(ABC): @property def name(self): return repr(self) @abstractmethod def calculate(self, result: pd.DataFrame) -> float: pass class GeometricMeanReturn(MetricCalculator): def __init__(self, annualized: bool = False) -> None: self._annualized = annualized def calculate(self, result: pd.DataFrame) -> float: logger.debug(f"{self}: Calculating metric") result = _filter_valid_returns(result) returns = result["return"].values log_returns =
np.log1p(returns)
numpy.log1p
import os import numpy as np from sklearn.cluster import KMeans from scipy.stats import norm from matplotlib import pyplot as plt import pickle as pkl class NDB: def __init__(self, training_data=None, number_of_bins=100, significance_level=0.05, z_threshold=None, whitening=False, max_dims=None, cache_folder=None): """ NDB Evaluation Class :param training_data: Optional - the training samples - array of m x d floats (m samples of dimension d) :param number_of_bins: Number of bins (clusters) default=100 :param significance_level: The statistical significance level for the two-sample test :param z_threshold: Allow defining a threshold in terms of difference/SE for defining a bin as statistically different :param whitening: Perform data whitening - subtract mean and divide by per-dimension std :param max_dims: Max dimensions to use in K-means. By default derived automatically from d :param bins_file: Optional - file to write / read-from the clusters (to avoid re-calculation) """ self.number_of_bins = number_of_bins self.significance_level = significance_level self.z_threshold = z_threshold self.whitening = whitening self.ndb_eps = 1e-6 self.training_mean = 0.0 self.training_std = 1.0 self.max_dims = max_dims self.cache_folder = cache_folder self.bin_centers = None self.bin_proportions = None self.ref_sample_size = None self.used_d_indices = None self.results_file = None self.test_name = 'ndb_{}_bins_{}'.format(self.number_of_bins, 'whiten' if self.whitening else 'orig') self.cached_results = {} if self.cache_folder: self.results_file = os.path.join(cache_folder, self.test_name+'_results.pkl') if os.path.isfile(self.results_file): # print('Loading previous results from', self.results_file, ':') self.cached_results = pkl.load(open(self.results_file, 'rb')) # print(self.cached_results.keys()) if training_data is not None or cache_folder is not None: bins_file = None if cache_folder: os.makedirs(cache_folder, exist_ok=True) bins_file = os.path.join(cache_folder, self.test_name+'.pkl') self.construct_bins(training_data, bins_file) def construct_bins(self, training_samples, bins_file): """ Performs K-means clustering of the training samples :param training_samples: An array of m x d floats (m samples of dimension d) """ if self.__read_from_bins_file(bins_file): return n, d = training_samples.shape k = self.number_of_bins if self.whitening: self.training_mean = np.mean(training_samples, axis=0) self.training_std = np.std(training_samples, axis=0) + self.ndb_eps if self.max_dims is None and d > 1000: # To ran faster, perform binning on sampled data dimension (i.e. don't use all channels of all pixels) self.max_dims = d//6 whitened_samples = (training_samples-self.training_mean)/self.training_std d_used = d if self.max_dims is None else min(d, self.max_dims) self.used_d_indices = np.random.choice(d, d_used, replace=False) print('Performing K-Means clustering of {} samples in dimension {} / {} to {} clusters ...'.format(n, d_used, d, k)) print('Can take a couple of minutes...') if n//k > 1000: print('Training data size should be ~500 times the number of bins (for reasonable speed and accuracy)') clusters = KMeans(n_clusters=k, max_iter=100, n_jobs=-1).fit(whitened_samples[:, self.used_d_indices]) bin_centers = np.zeros([k, d]) for i in range(k): bin_centers[i, :] = np.mean(whitened_samples[clusters.labels_ == i, :], axis=0) # Organize bins by size label_vals, label_counts = np.unique(clusters.labels_, return_counts=True) bin_order = np.argsort(-label_counts) self.bin_proportions = label_counts[bin_order] / np.sum(label_counts) self.bin_centers = bin_centers[bin_order, :] self.ref_sample_size = n self.__write_to_bins_file(bins_file) print('Done.') def evaluate(self, query_samples, model_label=None): """ Assign each sample to the nearest bin center (in L2). Pre-whiten if required. and calculate the NDB (Number of statistically Different Bins) and JS divergence scores. :param query_samples: An array of m x d floats (m samples of dimension d) :param model_label: optional label string for the evaluated model, allows plotting results of multiple models :return: results dictionary containing NDB and JS scores and array of labels (assigned bin for each query sample) """ n = query_samples.shape[0] query_bin_proportions, query_bin_assignments = self.__calculate_bin_proportions(query_samples) # print(query_bin_proportions) different_bins = NDB.two_proportions_z_test(self.bin_proportions, self.ref_sample_size, query_bin_proportions, n, significance_level=self.significance_level, z_threshold=self.z_threshold) ndb = np.count_nonzero(different_bins) js = NDB.jensen_shannon_divergence(self.bin_proportions, query_bin_proportions) results = {'NDB': ndb, 'JS': js, 'Proportions': query_bin_proportions, 'N': n, 'Bin-Assignment': query_bin_assignments, 'Different-Bins': different_bins} if model_label: print('Results for {} samples from {}: '.format(n, model_label), end='') self.cached_results[model_label] = results if self.results_file: # print('Storing result to', self.results_file) pkl.dump(self.cached_results, open(self.results_file, 'wb')) print('NDB =', ndb, 'NDB/K =', ndb/self.number_of_bins, ', JS =', js) return results def print_results(self): print('NSB results (K={}{}):'.format(self.number_of_bins, ', data whitening' if self.whitening else '')) for model in sorted(list(self.cached_results.keys())): res = self.cached_results[model] print('%s: NDB = %d, NDB/K = %.3f, JS = %.4f' % (model, res['NDB'], res['NDB']/self.number_of_bins, res['JS'])) def plot_results(self, models_to_plot=None): """ Plot the binning proportions of different methods :param models_to_plot: optional list of model labels to plot """ K = self.number_of_bins w = 1.0 / (len(self.cached_results)+1) assert K == self.bin_proportions.size assert self.cached_results # Used for plotting only def calc_se(p1, n1, p2, n2): p = (p1 * n1 + p2 * n2) / (n1 + n2) return np.sqrt(p * (1 - p) * (1/n1 + 1/n2)) if not models_to_plot: models_to_plot = sorted(list(self.cached_results.keys())) # Visualize the standard errors using the train proportions and size and query sample size train_se = calc_se(self.bin_proportions, self.ref_sample_size, self.bin_proportions, self.cached_results[models_to_plot[0]]['N']) plt.bar(np.arange(0, K)+0.5, height=train_se*2.0, bottom=self.bin_proportions-train_se, width=1.0, label='Train$\pm$SE', color='gray') ymax = 0.0 for i, model in enumerate(models_to_plot): results = self.cached_results[model] label = '%s (%i : %.4f)' % (model, results['NDB'], results['JS']) ymax = max(ymax, np.max(results['Proportions'])) if K <= 70: plt.bar(np.arange(0, K)+(i+1.0)*w, results['Proportions'], width=w, label=label) else: plt.plot(np.arange(0, K)+0.5, results['Proportions'], '--*', label=label) plt.legend(loc='best') plt.ylim((0.0, min(ymax, np.max(self.bin_proportions)*4.0))) plt.grid(True) plt.title('Binning Proportions Evaluation Results for {} bins (NDB : JS)'.format(K)) plt.show() def __calculate_bin_proportions(self, samples): if self.bin_centers is None: print('First run construct_bins on samples from the reference training data') assert samples.shape[1] == self.bin_centers.shape[1] n, d = samples.shape k = self.bin_centers.shape[0] D =
np.zeros([n, k], dtype=samples.dtype)
numpy.zeros
# This file is part of GridCal. # # GridCal is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # GridCal is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with GridCal. If not, see <http://www.gnu.org/licenses/>. import numpy as np import pandas as pd import scipy.sparse as sp from typing import List, Dict from GridCal.Engine.basic_structures import Logger import GridCal.Engine.Core.topology as tp from GridCal.Engine.Core.multi_circuit import MultiCircuit from GridCal.Engine.basic_structures import BranchImpedanceMode from GridCal.Engine.basic_structures import BusMode from GridCal.Engine.Simulations.PowerFlow.jacobian_based_power_flow import Jacobian from GridCal.Engine.Core.common_functions import compile_types, find_different_states class OpfTimeCircuit: def __init__(self, nbus, nline, ntr, nvsc, nhvdc, nload, ngen, nbatt, nshunt, nstagen, ntime, sbase, time_array, apply_temperature=False, branch_tolerance_mode: BranchImpedanceMode = BranchImpedanceMode.Specified): """ :param nbus: number of buses :param nline: number of lines :param ntr: number of transformers :param nvsc: :param nhvdc: :param nload: :param ngen: :param nbatt: :param nshunt: """ self.nbus = nbus self.nline = nline self.ntr = ntr self.nvsc = nvsc self.nhvdc = nhvdc self.nload = nload self.ngen = ngen self.nbatt = nbatt self.nshunt = nshunt self.nstagen = nstagen self.ntime = ntime self.Sbase = sbase self.apply_temperature = apply_temperature self.branch_tolerance_mode = branch_tolerance_mode self.time_array = time_array # bus ---------------------------------------------------------------------------------------------------------- self.bus_names = np.empty(nbus, dtype=object) self.bus_types = np.empty(nbus, dtype=int) self.bus_installed_power = np.zeros(nbus, dtype=float) self.bus_active = np.ones((ntime, nbus), dtype=int) self.Vbus = np.ones((ntime, nbus), dtype=complex) # branch common ------------------------------------------------------------------------------------------------ self.nbr = nline + ntr + nvsc # exclude the HVDC model since it is not a real branch self.branch_names = np.empty(self.nbr, dtype=object) self.branch_active = np.zeros((ntime, self.nbr), dtype=int) self.F = np.zeros(self.nbr, dtype=int) # indices of the "from" buses self.T = np.zeros(self.nbr, dtype=int) # indices of the "to" buses self.branch_rates = np.zeros((ntime, self.nbr), dtype=float) self.branch_cost = np.zeros((ntime, self.nbr), dtype=float) self.branch_R = np.zeros(self.nbr, dtype=float) self.branch_X = np.zeros(self.nbr, dtype=float) self.C_branch_bus_f = sp.lil_matrix((self.nbr, nbus), dtype=int) # connectivity branch with their "from" bus self.C_branch_bus_t = sp.lil_matrix((self.nbr, nbus), dtype=int) # connectivity branch with their "to" bus # lines -------------------------------------------------------------------------------------------------------- self.line_names = np.zeros(nline, dtype=object) self.line_R = np.zeros(nline, dtype=float) self.line_X = np.zeros(nline, dtype=float) self.line_B = np.zeros(nline, dtype=float) self.line_temp_base = np.zeros(nline, dtype=float) self.line_temp_oper = np.zeros(nline, dtype=float) self.line_alpha = np.zeros(nline, dtype=float) self.line_impedance_tolerance = np.zeros(nline, dtype=float) self.C_line_bus = sp.lil_matrix((nline, nbus), dtype=int) # this ons is just for splitting islands # transformer 2W + 3W ------------------------------------------------------------------------------------------ self.tr_names = np.zeros(ntr, dtype=object) self.tr_R = np.zeros(ntr, dtype=float) self.tr_X = np.zeros(ntr, dtype=float) self.tr_G = np.zeros(ntr, dtype=float) self.tr_B = np.zeros(ntr) self.tr_tap_f = np.ones(ntr) # tap generated by the difference in nominal voltage at the form side self.tr_tap_t = np.ones(ntr) # tap generated by the difference in nominal voltage at the to side self.tr_tap_mod = np.ones(ntr) # normal tap module self.tr_tap_ang = np.zeros(ntr) # normal tap angle self.C_tr_bus = sp.lil_matrix((ntr, nbus), dtype=int) # this ons is just for splitting islands # hvdc line ---------------------------------------------------------------------------------------------------- self.hvdc_names = np.zeros(nhvdc, dtype=object) self.hvdc_active = np.zeros((ntime, nhvdc), dtype=bool) self.hvdc_rate = np.zeros((ntime, nhvdc), dtype=float) self.hvdc_Pf = np.zeros((ntime, nhvdc)) self.hvdc_Pt = np.zeros((ntime, nhvdc)) self.C_hvdc_bus_f = sp.lil_matrix((nhvdc, nbus), dtype=int) # this ons is just for splitting islands self.C_hvdc_bus_t = sp.lil_matrix((nhvdc, nbus), dtype=int) # this ons is just for splitting islands # vsc converter ------------------------------------------------------------------------------------------------ self.vsc_names = np.zeros(nvsc, dtype=object) self.vsc_R1 = np.zeros(nvsc) self.vsc_X1 = np.zeros(nvsc) self.vsc_Gsw = np.zeros(nvsc) self.vsc_Beq = np.zeros(nvsc) self.vsc_m = np.zeros(nvsc) self.vsc_theta = np.zeros(nvsc) self.C_vsc_bus = sp.lil_matrix((nvsc, nbus), dtype=int) # this ons is just for splitting islands # load --------------------------------------------------------------------------------------------------------- self.load_names = np.empty(nload, dtype=object) self.load_active = np.zeros((ntime, nload), dtype=bool) self.load_s = np.zeros((ntime, nload), dtype=complex) self.load_cost = np.zeros((ntime, nload)) self.C_bus_load = sp.lil_matrix((nbus, nload), dtype=int) # static generators -------------------------------------------------------------------------------------------- self.static_generator_names = np.empty(nstagen, dtype=object) self.static_generator_active = np.zeros((ntime, nstagen), dtype=bool) self.static_generator_s = np.zeros((ntime, nstagen), dtype=complex) self.C_bus_static_generator = sp.lil_matrix((nbus, nstagen), dtype=int) # battery ------------------------------------------------------------------------------------------------------ self.battery_names = np.empty(nbatt, dtype=object) self.battery_controllable = np.zeros(nbatt, dtype=bool) self.battery_dispatchable = np.zeros(nbatt, dtype=bool) self.battery_pmin = np.zeros(nbatt) self.battery_pmax = np.zeros(nbatt) self.battery_enom = np.zeros(nbatt) self.battery_min_soc = np.zeros(nbatt) self.battery_max_soc = np.zeros(nbatt) self.battery_soc_0 = np.zeros(nbatt) self.battery_charge_efficiency = np.zeros(nbatt) self.battery_discharge_efficiency = np.zeros(nbatt) self.battery_installed_p = np.zeros(nbatt) self.battery_active = np.zeros((ntime, nbatt), dtype=bool) self.battery_p = np.zeros((ntime, nbatt)) self.battery_pf = np.zeros((ntime, nbatt)) self.battery_v = np.zeros((ntime, nbatt)) self.battery_cost = np.zeros((ntime, nbatt)) self.C_bus_batt = sp.lil_matrix((nbus, nbatt), dtype=int) # generator ---------------------------------------------------------------------------------------------------- self.generator_names = np.empty(ngen, dtype=object) self.generator_controllable = np.zeros(ngen, dtype=bool) self.generator_dispatchable = np.zeros(ngen, dtype=bool) self.generator_installed_p = np.zeros(ngen) self.generator_pmin = np.zeros(ngen) self.generator_pmax = np.zeros(ngen) self.generator_active = np.zeros((ntime, ngen), dtype=bool) self.generator_p = np.zeros((ntime, ngen)) self.generator_pf = np.zeros((ntime, ngen)) self.generator_v = np.zeros((ntime, ngen)) self.generator_cost = np.zeros((ntime, ngen)) self.C_bus_gen = sp.lil_matrix((nbus, ngen), dtype=int) # shunt -------------------------------------------------------------------------------------------------------- self.shunt_names = np.empty(nshunt, dtype=object) self.shunt_active = np.zeros((ntime, nshunt), dtype=bool) self.shunt_admittance = np.zeros((ntime, nshunt), dtype=complex) self.C_bus_shunt = sp.lil_matrix((nbus, nshunt), dtype=int) # -------------------------------------------------------------------------------------------------------------- # Arrays for the simulation # -------------------------------------------------------------------------------------------------------------- self.Sbus = np.zeros((self.nbus, ntime), dtype=complex) self.Ibus = np.zeros((self.nbus, ntime), dtype=complex) self.Yshunt_from_devices = np.zeros((self.nbus, ntime), dtype=complex) self.Qmax_bus = np.zeros((self.nbus, ntime)) self.Qmin_bus = np.zeros((self.nbus, ntime)) # only one Y matrix per time island, that is the guarantee we get by splitting the TimeCircuit in TimeIslands self.Ybus = None self.Yf = None self.Yt = None self.Yseries = None self.Yshunt = None # self.Ysh_helm = None self.B1 = None self.B2 = None self.Bpqpv = None self.Bref = None self.original_time_idx = np.arange(self.ntime) self.original_bus_idx = np.arange(self.nbus) self.original_branch_idx = np.arange(self.nbr) self.original_tr_idx = np.arange(self.ntr) self.original_gen_idx = np.arange(self.ngen) self.original_bat_idx = np.arange(self.nbatt) self.pq = list() self.pv = list() self.vd = list() self.pqpv = list() self.available_structures = ['Vbus', 'Sbus', 'Ibus', 'Ybus', 'Yshunt', 'Yseries', "B'", "B''", 'Types', 'Jacobian', 'Qmin', 'Qmax'] def consolidate(self): """ Consolidates the information of this object :return: """ self.C_branch_bus_f = self.C_branch_bus_f.tocsc() self.C_branch_bus_t = self.C_branch_bus_t.tocsc() self.C_line_bus = self.C_line_bus.tocsc() self.C_tr_bus = self.C_tr_bus.tocsc() self.C_hvdc_bus_f = self.C_hvdc_bus_f.tocsc() self.C_hvdc_bus_t = self.C_hvdc_bus_t.tocsc() self.C_vsc_bus = self.C_vsc_bus.tocsc() self.C_bus_load = self.C_bus_load.tocsr() self.C_bus_batt = self.C_bus_batt.tocsr() self.C_bus_gen = self.C_bus_gen.tocsr() self.C_bus_shunt = self.C_bus_shunt.tocsr() self.C_bus_static_generator = self.C_bus_static_generator.tocsr() self.bus_installed_power = self.C_bus_gen * self.generator_installed_p self.bus_installed_power += self.C_bus_batt * self.battery_installed_p def get_power_injections(self): """ Compute the power :return: Array of power injections """ # load Sbus = - self.C_bus_load * (self.load_s * self.load_active).T # MW # static generators Sbus += self.C_bus_static_generator * (self.static_generator_s * self.static_generator_active).T # MW # generators Sbus += self.C_bus_gen * (self.generator_p * self.generator_active).T # battery Sbus += self.C_bus_batt * (self.battery_p * self.battery_active).T # HVDC forced power if self.nhvdc: Sbus += ((self.hvdc_active * self.hvdc_Pf) * self.C_hvdc_bus_f).T Sbus += ((self.hvdc_active * self.hvdc_Pt) * self.C_hvdc_bus_t).T Sbus /= self.Sbase return Sbus def R_corrected(self): """ Returns temperature corrected resistances (numpy array) based on a formula provided by: NFPA 70-2005, National Electrical Code, Table 8, footnote #2; and https://en.wikipedia.org/wiki/Electrical_resistivity_and_conductivity#Linear_approximation (version of 2019-01-03 at 15:20 EST). """ return self.line_R * (1.0 + self.line_alpha * (self.line_temp_oper - self.line_temp_base)) def compute_admittance_matrices(self): """ Compute the admittance matrices :return: Ybus, Yseries, Yshunt """ t = self.original_time_idx[0] # form the connectivity matrices with the states applied ------------------------------------------------------- br_states_diag = sp.diags(self.branch_active[t, :]) Cf = br_states_diag * self.C_branch_bus_f Ct = br_states_diag * self.C_branch_bus_t # Declare the empty primitives --------------------------------------------------------------------------------- # The composition order is and will be: Pi model, HVDC, VSC Ytt = np.empty(self.nbr, dtype=complex) Yff = np.empty(self.nbr, dtype=complex) Yft = np.empty(self.nbr, dtype=complex) Ytf = np.empty(self.nbr, dtype=complex) # Branch primitives in vector form, for Yseries Ytts = np.empty(self.nbr, dtype=complex) Yffs = np.empty(self.nbr, dtype=complex) Yfts = np.empty(self.nbr, dtype=complex) Ytfs = np.empty(self.nbr, dtype=complex) ysh_br = np.empty(self.nbr, dtype=complex) # line --------------------------------------------------------------------------------------------------------- a = 0 b = self.nline # use the specified of the temperature-corrected resistance if self.apply_temperature: line_R = self.R_corrected() else: line_R = self.line_R # modify the branches impedance with the lower, upper tolerance values if self.branch_tolerance_mode == BranchImpedanceMode.Lower: line_R *= (1 - self.line_impedance_tolerance / 100.0) elif self.branch_tolerance_mode == BranchImpedanceMode.Upper: line_R *= (1 + self.line_impedance_tolerance / 100.0) Ys_line = 1.0 / (line_R + 1.0j * self.line_X) Ysh_line = 1.0j * self.line_B Ys_line2 = Ys_line + Ysh_line / 2.0 # branch primitives in vector form for Ybus Ytt[a:b] = Ys_line2 Yff[a:b] = Ys_line2 Yft[a:b] = - Ys_line Ytf[a:b] = - Ys_line # branch primitives in vector form, for Yseries Ytts[a:b] = Ys_line Yffs[a:b] = Ys_line Yfts[a:b] = - Ys_line Ytfs[a:b] = - Ys_line ysh_br[a:b] = Ysh_line / 2.0 # transformer models ------------------------------------------------------------------------------------------- a = self.nline b = a + self.ntr Ys_tr = 1.0 / (self.tr_R + 1.0j * self.tr_X) Ysh_tr = 1.0j * self.tr_B Ys_tr2 = Ys_tr + Ysh_tr / 2.0 tap = self.tr_tap_mod * np.exp(1.0j * self.tr_tap_ang) # branch primitives in vector form for Ybus Ytt[a:b] = Ys_tr2 / (self.tr_tap_t * self.tr_tap_t) Yff[a:b] = Ys_tr2 / (self.tr_tap_f * self.tr_tap_f * tap * np.conj(tap)) Yft[a:b] = - Ys_tr / (self.tr_tap_f * self.tr_tap_t * np.conj(tap)) Ytf[a:b] = - Ys_tr / (self.tr_tap_t * self.tr_tap_f * tap) # branch primitives in vector form, for Yseries Ytts[a:b] = Ys_tr Yffs[a:b] = Ys_tr / (tap * np.conj(tap)) Yfts[a:b] = - Ys_tr / np.conj(tap) Ytfs[a:b] = - Ys_tr / tap ysh_br[a:b] = Ysh_tr / 2.0 # VSC MODEL ---------------------------------------------------------------------------------------------------- a = self.nline + self.ntr b = a + self.nvsc Y_vsc = 1.0 / (self.vsc_R1 + 1.0j * self.vsc_X1) # Y1 Yff[a:b] = Y_vsc Yft[a:b] = -self.vsc_m * np.exp(1.0j * self.vsc_theta) * Y_vsc Ytf[a:b] = -self.vsc_m * np.exp(-1.0j * self.vsc_theta) * Y_vsc Ytt[a:b] = self.vsc_Gsw + self.vsc_m * self.vsc_m * (Y_vsc + 1.0j * self.vsc_Beq) Yffs[a:b] = Y_vsc Yfts[a:b] = -self.vsc_m * np.exp(1.0j * self.vsc_theta) * Y_vsc Ytfs[a:b] = -self.vsc_m * np.exp(-1.0j * self.vsc_theta) * Y_vsc Ytts[a:b] = self.vsc_m * self.vsc_m * (Y_vsc + 1.0j) # HVDC LINE MODEL ---------------------------------------------------------------------------------------------- # does not apply since the HVDC-line model is the simplistic 2-generator model # SHUNT -------------------------------------------------------------------------------------------------------- self.Yshunt_from_devices = self.C_bus_shunt * (self.shunt_admittance * self.shunt_active / self.Sbase).T # form the admittance matrices --------------------------------------------------------------------------------- self.Yf = sp.diags(Yff) * Cf + sp.diags(Yft) * Ct self.Yt = sp.diags(Ytf) * Cf + sp.diags(Ytt) * Ct self.Ybus = sp.csc_matrix(Cf.T * self.Yf + Ct.T * self.Yt) # form the admittance matrices of the series and shunt elements ------------------------------------------------ Yfs = sp.diags(Yffs) * Cf + sp.diags(Yfts) * Ct Yts = sp.diags(Ytfs) * Cf + sp.diags(Ytts) * Ct self.Yseries = sp.csc_matrix(Cf.T * Yfs + Ct.T * Yts) self.Yshunt = Cf.T * ysh_br + Ct.T * ysh_br def get_generator_injections(self): """ Compute the active and reactive power of non-controlled generators (assuming all) :return: """ pf2 = np.power(self.generator_pf, 2.0) pf_sign = (self.generator_pf + 1e-20) / np.abs(self.generator_pf + 1e-20) Q = pf_sign * self.generator_p * np.sqrt((1.0 - pf2) / (pf2 + 1e-20)) return self.generator_p + 1.0j * Q def get_battery_injections(self): """ Compute the active and reactive power of non-controlled batteries (assuming all) :return: """ pf2 = np.power(self.battery_pf, 2.0) pf_sign = (self.battery_pf + 1e-20) / np.abs(self.battery_pf + 1e-20) Q = pf_sign * self.battery_p * np.sqrt((1.0 - pf2) / (pf2 + 1e-20)) return self.battery_p + 1.0j * Q def compute_injections(self): """ Compute the power :return: nothing, the results are stored in the class """ # load self.Sbus = - self.C_bus_load * (self.load_s * self.load_active).T # MW # static generators self.Sbus += self.C_bus_static_generator * (self.static_generator_s * self.static_generator_active).T # MW # generators self.Sbus += self.C_bus_gen * (self.get_generator_injections() * self.generator_active).T # battery self.Sbus += self.C_bus_batt * (self.get_battery_injections() * self.battery_active).T # HVDC forced power if self.nhvdc: self.Sbus += ((self.hvdc_active * self.hvdc_Pf) * self.C_hvdc_bus_f).T self.Sbus += ((self.hvdc_active * self.hvdc_Pt) * self.C_hvdc_bus_t).T self.Sbus /= self.Sbase def consolidate(self): """ Computes the parameters given the filled-in information :return: """ self.compute_injections() self.vd, self.pq, self.pv, self.pqpv = compile_types(Sbus=self.Sbus[:, 0], types=self.bus_types) self.compute_admittance_matrices() def get_structure(self, structure_type) -> pd.DataFrame: """ Get a DataFrame with the input. Arguments: **structure_type** (str): 'Vbus', 'Sbus', 'Ibus', 'Ybus', 'Yshunt', 'Yseries' or 'Types' Returns: pandas DataFrame """ if structure_type == 'Vbus': df = pd.DataFrame(data=self.Vbus, columns=['Voltage (p.u.)'], index=self.bus_names) elif structure_type == 'Sbus': df = pd.DataFrame(data=self.Sbus, columns=['Power (p.u.)'], index=self.bus_names) elif structure_type == 'Ibus': df = pd.DataFrame(data=self.Ibus, columns=['Current (p.u.)'], index=self.bus_names) elif structure_type == 'Ybus': df = pd.DataFrame(data=self.Ybus.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == 'Yshunt': df = pd.DataFrame(data=self.Yshunt, columns=['Shunt admittance (p.u.)'], index=self.bus_names) elif structure_type == 'Yseries': df = pd.DataFrame(data=self.Yseries.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == "B'": df = pd.DataFrame(data=self.B1.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == "B''": df = pd.DataFrame(data=self.B2.toarray(), columns=self.bus_names, index=self.bus_names) elif structure_type == 'Types': df = pd.DataFrame(data=self.bus_types, columns=['Bus types'], index=self.bus_names) elif structure_type == 'Qmin': df = pd.DataFrame(data=self.Qmin_bus, columns=['Qmin'], index=self.bus_names) elif structure_type == 'Qmax': df = pd.DataFrame(data=self.Qmax_bus, columns=['Qmax'], index=self.bus_names) elif structure_type == 'Jacobian': J = Jacobian(self.Ybus, self.Vbus, self.Ibus, self.pq, self.pqpv) """ J11 = dS_dVa[array([pvpq]).T, pvpq].real J12 = dS_dVm[array([pvpq]).T, pq].real J21 = dS_dVa[array([pq]).T, pvpq].imag J22 = dS_dVm[array([pq]).T, pq].imag """ npq = len(self.pq) npv = len(self.pv) npqpv = npq + npv cols = ['dS/dVa'] * npqpv + ['dS/dVm'] * npq rows = cols df = pd.DataFrame(data=J.toarray(), columns=cols, index=rows) else: raise Exception('PF input: structure type not found') return df def get_opf_time_island(self, bus_idx, time_idx) -> "OpfTimeCircuit": """ Get the island corresponding to the given buses :param bus_idx: array of bus indices :param time_idx: array of time indices :return: TiTimeCircuitmeIsland """ # find the indices of the devices of the island line_idx = tp.get_elements_of_the_island(self.C_line_bus, bus_idx) tr_idx = tp.get_elements_of_the_island(self.C_tr_bus, bus_idx) vsc_idx = tp.get_elements_of_the_island(self.C_vsc_bus, bus_idx) hvdc_idx = tp.get_elements_of_the_island(self.C_hvdc_bus_f + self.C_hvdc_bus_t, bus_idx) br_idx = tp.get_elements_of_the_island(self.C_branch_bus_f + self.C_branch_bus_t, bus_idx) load_idx = tp.get_elements_of_the_island(self.C_bus_load.T, bus_idx) stagen_idx = tp.get_elements_of_the_island(self.C_bus_static_generator.T, bus_idx) gen_idx = tp.get_elements_of_the_island(self.C_bus_gen.T, bus_idx) batt_idx = tp.get_elements_of_the_island(self.C_bus_batt.T, bus_idx) shunt_idx = tp.get_elements_of_the_island(self.C_bus_shunt.T, bus_idx) nc = OpfTimeCircuit(nbus=len(bus_idx), nline=len(line_idx), ntr=len(tr_idx), nvsc=len(vsc_idx), nhvdc=len(hvdc_idx), nload=len(load_idx), ngen=len(gen_idx), nbatt=len(batt_idx), nshunt=len(shunt_idx), nstagen=len(stagen_idx), ntime=len(time_idx), sbase=self.Sbase, time_array=self.time_array[time_idx], apply_temperature=self.apply_temperature, branch_tolerance_mode=self.branch_tolerance_mode) nc.original_time_idx = time_idx nc.original_bus_idx = bus_idx nc.original_branch_idx = br_idx nc.original_tr_idx = tr_idx nc.original_gen_idx = gen_idx nc.original_bat_idx = batt_idx # bus ---------------------------------------------------------------------------------------------------------- nc.bus_names = self.bus_names[bus_idx] nc.bus_types = self.bus_types[bus_idx] nc.bus_installed_power = self.bus_installed_power[bus_idx] nc.bus_active = self.bus_active[np.ix_(time_idx, bus_idx)] nc.Vbus = self.Vbus[np.ix_(time_idx, bus_idx)] # branch common ------------------------------------------------------------------------------------------------ nc.branch_names = self.branch_names[br_idx] nc.branch_active = self.branch_active[np.ix_(time_idx, br_idx)] nc.branch_rates = self.branch_rates[np.ix_(time_idx, br_idx)] nc.branch_cost = self.branch_cost[np.ix_(time_idx, br_idx)] nc.branch_R = self.branch_R[br_idx] nc.branch_X = self.branch_X[br_idx] nc.F = self.F[br_idx] nc.T = self.T[br_idx] nc.C_branch_bus_f = self.C_branch_bus_f[np.ix_(br_idx, bus_idx)] nc.C_branch_bus_t = self.C_branch_bus_t[np.ix_(br_idx, bus_idx)] # lines -------------------------------------------------------------------------------------------------------- nc.line_names = self.line_names[line_idx] nc.line_R = self.line_R[line_idx] nc.line_X = self.line_X[line_idx] nc.line_B = self.line_B[line_idx] nc.line_temp_base = self.line_temp_base[line_idx] nc.line_temp_oper = self.line_temp_oper[line_idx] nc.line_alpha = self.line_alpha[line_idx] nc.line_impedance_tolerance = self.line_impedance_tolerance[line_idx] nc.C_line_bus = self.C_line_bus[np.ix_(line_idx, bus_idx)] # transformer 2W + 3W ------------------------------------------------------------------------------------------ nc.tr_names = self.tr_names[tr_idx] nc.tr_R = self.tr_R[tr_idx] nc.tr_X = self.tr_X[tr_idx] nc.tr_G = self.tr_G[tr_idx] nc.tr_B = self.tr_B[tr_idx] nc.tr_tap_f = self.tr_tap_f[tr_idx] nc.tr_tap_t = self.tr_tap_t[tr_idx] nc.tr_tap_mod = self.tr_tap_mod[tr_idx] nc.tr_tap_ang = self.tr_tap_ang[tr_idx] nc.C_tr_bus = self.C_tr_bus[np.ix_(tr_idx, bus_idx)] # hvdc line ---------------------------------------------------------------------------------------------------- nc.hvdc_names = self.hvdc_names[hvdc_idx] nc.hvdc_active = self.hvdc_active[np.ix_(time_idx, hvdc_idx)] nc.hvdc_rate = self.hvdc_rate[np.ix_(time_idx, hvdc_idx)] nc.hvdc_Pf = self.hvdc_Pf[np.ix_(time_idx, hvdc_idx)] nc.hvdc_Pt = self.hvdc_Pt[np.ix_(time_idx, hvdc_idx)] nc.C_hvdc_bus_f = self.C_hvdc_bus_f[np.ix_(hvdc_idx, bus_idx)] nc.C_hvdc_bus_t = self.C_hvdc_bus_t[np.ix_(hvdc_idx, bus_idx)] # vsc converter ------------------------------------------------------------------------------------------------ nc.vsc_names = self.vsc_names[vsc_idx] nc.vsc_R1 = self.vsc_R1[vsc_idx] nc.vsc_X1 = self.vsc_X1[vsc_idx] nc.vsc_Gsw = self.vsc_Gsw[vsc_idx] nc.vsc_Beq = self.vsc_Beq[vsc_idx] nc.vsc_m = self.vsc_m[vsc_idx] nc.vsc_theta = self.vsc_theta[vsc_idx] nc.C_vsc_bus = self.C_vsc_bus[np.ix_(vsc_idx, bus_idx)] # load --------------------------------------------------------------------------------------------------------- nc.load_names = self.load_names[load_idx] nc.load_active = self.load_active[np.ix_(time_idx, load_idx)] nc.load_s = self.load_s[np.ix_(time_idx, load_idx)] nc.load_cost = self.load_cost[np.ix_(time_idx, load_idx)] nc.C_bus_load = self.C_bus_load[np.ix_(bus_idx, load_idx)] # static generators -------------------------------------------------------------------------------------------- nc.static_generator_names = self.static_generator_names[stagen_idx] nc.static_generator_active = self.static_generator_active[np.ix_(time_idx, stagen_idx)] nc.static_generator_s = self.static_generator_s[np.ix_(time_idx, stagen_idx)] nc.C_bus_static_generator = self.C_bus_static_generator[np.ix_(bus_idx, stagen_idx)] # battery ------------------------------------------------------------------------------------------------------ nc.battery_names = self.battery_names[batt_idx] nc.battery_controllable = self.battery_controllable[batt_idx] nc.battery_dispatchable = self.battery_dispatchable[batt_idx] nc.battery_installed_p = self.battery_installed_p[batt_idx] nc.battery_enom = self.battery_enom[batt_idx] nc.battery_min_soc = self.battery_min_soc[batt_idx] nc.battery_max_soc = self.battery_max_soc[batt_idx] nc.battery_soc_0 = self.battery_soc_0[batt_idx] nc.battery_charge_efficiency = self.battery_charge_efficiency[batt_idx] nc.battery_discharge_efficiency = self.battery_discharge_efficiency[batt_idx] nc.battery_active = self.battery_active[np.ix_(time_idx, batt_idx)] nc.battery_p = self.battery_p[np.ix_(time_idx, batt_idx)] nc.battery_pf = self.battery_pf[np.ix_(time_idx, batt_idx)] nc.battery_v = self.battery_v[np.ix_(time_idx, batt_idx)] nc.battery_cost = self.battery_cost[np.ix_(time_idx, batt_idx)] nc.battery_pmin = self.battery_pmin[batt_idx] nc.battery_pmax = self.battery_pmax[batt_idx] nc.C_bus_batt = self.C_bus_batt[np.ix_(bus_idx, batt_idx)] # generator ---------------------------------------------------------------------------------------------------- nc.generator_names = self.generator_names[gen_idx] nc.generator_controllable = self.generator_controllable[gen_idx] nc.generator_dispatchable = self.generator_dispatchable[gen_idx] nc.battery_installed_p = self.battery_installed_p[gen_idx] nc.generator_active = self.generator_active[np.ix_(time_idx, gen_idx)] nc.generator_p = self.generator_p[np.ix_(time_idx, gen_idx)] nc.generator_pf = self.generator_pf[np.ix_(time_idx, gen_idx)] nc.generator_v = self.generator_v[np.ix_(time_idx, gen_idx)] nc.generator_cost = self.generator_cost[np.ix_(time_idx, gen_idx)] nc.generator_pmin = self.generator_pmin[gen_idx] nc.generator_pmax = self.generator_pmax[gen_idx] nc.C_bus_gen = self.C_bus_gen[np.ix_(bus_idx, gen_idx)] # shunt -------------------------------------------------------------------------------------------------------- nc.shunt_names = self.shunt_names[shunt_idx] nc.shunt_active = self.shunt_active[
np.ix_(time_idx, shunt_idx)
numpy.ix_
#!/usr/bin/env python3 """Specificity""" import numpy as np def specificity(confusion): """specificity: calculates the specificity for each class in a confusion matrix Args: confusion is a confusion numpy.ndarray of shape (classes, classes) where row indices represent the correct labels and column indices represent the predicted labels classes is the number of classes Returns: a numpy.ndarray of shape (classes,) containing the specificity of each class """ classes, classes = confusion.shape specificity = np.zeros(shape=(classes,)) for i in range(classes): specificity[i] = ( np.sum(confusion) - np.sum(confusion, axis=1)[i] -
np.sum(confusion, axis=0)
numpy.sum
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose import astropy.units as u from astropy.coordinates import SkyCoord from astropy.table import Table from regions import CircleSkyRegion from gammapy.catalog import SourceCatalog3FHL from gammapy.data import GTI from gammapy.datasets import Datasets, MapDataset, MapDatasetOnOff from gammapy.datasets.map import MapEvaluator, RAD_AXIS_DEFAULT from gammapy.irf import ( EDispKernelMap, EDispMap, EnergyDispersion2D, EffectiveAreaTable2D, EnergyDependentMultiGaussPSF, PSFMap, PSFKernel, ) from gammapy.makers.utils import make_map_exposure_true_energy, make_psf_map from gammapy.maps import ( Map, MapAxis, WcsGeom, WcsNDMap, RegionGeom, RegionNDMap, HpxGeom, ) from gammapy.modeling import Fit from gammapy.modeling.models import ( FoVBackgroundModel, GaussianSpatialModel, Models, PointSpatialModel, PowerLawSpectralModel, SkyModel, ConstantSpectralModel, DiskSpatialModel, ) from gammapy.utils.testing import mpl_plot_check, requires_data, requires_dependency from gammapy.utils.gauss import Gauss2DPDF @pytest.fixture def geom_hpx(): axis = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=3) energy_axis_true = MapAxis.from_energy_bounds( "1 TeV", "10 TeV", nbin=4, name="energy_true" ) geom = HpxGeom.create(nside=32, axes=[axis], frame="galactic") return {"geom": geom, "energy_axis_true": energy_axis_true} @pytest.fixture def geom_hpx_partial(): axis = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=3) energy_axis_true = MapAxis.from_energy_bounds( "1 TeV", "10 TeV", nbin=4, name="energy_true" ) geom = HpxGeom.create( nside=32, axes=[axis], frame="galactic", region="DISK(110.,75.,10.)" ) return {"geom": geom, "energy_axis_true": energy_axis_true} @pytest.fixture def geom(): axis = MapAxis.from_energy_bounds("0.1 TeV", "10 TeV", nbin=2) return WcsGeom.create( skydir=(266.40498829, -28.93617776), binsz=0.02, width=(2, 2), frame="icrs", axes=[axis], ) @pytest.fixture def geom_etrue(): axis = MapAxis.from_energy_bounds("0.1 TeV", "10 TeV", nbin=3, name="energy_true") return WcsGeom.create( skydir=(266.40498829, -28.93617776), binsz=0.02, width=(2, 2), frame="icrs", axes=[axis], ) @pytest.fixture def geom_image(): energy = np.logspace(-1.0, 1.0, 2) axis = MapAxis.from_edges(energy, name="energy", unit=u.TeV, interp="log") return WcsGeom.create( skydir=(0, 0), binsz=0.02, width=(2, 2), frame="galactic", axes=[axis] ) def get_exposure(geom_etrue): filename = ( "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits" ) aeff = EffectiveAreaTable2D.read(filename, hdu="EFFECTIVE AREA") exposure_map = make_map_exposure_true_energy( pointing=SkyCoord(1, 0.5, unit="deg", frame="galactic"), livetime=1 * u.hr, aeff=aeff, geom=geom_etrue, ) return exposure_map def get_psf(): filename = ( "$GAMMAPY_DATA/cta-1dc/caldb/data/cta/1dc/bcf/South_z20_50h/irf_file.fits" ) psf = EnergyDependentMultiGaussPSF.read(filename, hdu="POINT SPREAD FUNCTION") geom = WcsGeom.create( skydir=(0, 0), frame="galactic", binsz=2, width=(2, 2), axes=[RAD_AXIS_DEFAULT, psf.axes["energy_true"]], ) return make_psf_map( psf=psf, pointing=SkyCoord(0, 0.5, unit="deg", frame="galactic"), geom=geom, exposure_map=Map.from_geom(geom.squash("rad"), unit="cm2 s"), ) @requires_data() def get_edisp(geom, geom_etrue): filename = "$GAMMAPY_DATA/hess-dl3-dr1/data/hess_dl3_dr1_obs_id_020136.fits.gz" edisp2d = EnergyDispersion2D.read(filename, hdu="EDISP") energy = geom.axes["energy"].edges energy_true = geom_etrue.axes["energy_true"].edges edisp_kernel = edisp2d.to_edisp_kernel( offset="1.2 deg", energy=energy, energy_true=energy_true ) edisp = EDispKernelMap.from_edisp_kernel(edisp_kernel) return edisp @pytest.fixture def sky_model(): spatial_model = GaussianSpatialModel( lon_0="0.2 deg", lat_0="0.1 deg", sigma="0.2 deg", frame="galactic" ) spectral_model = PowerLawSpectralModel( index=3, amplitude="1e-11 cm-2 s-1 TeV-1", reference="1 TeV" ) return SkyModel( spatial_model=spatial_model, spectral_model=spectral_model, name="test-model" ) def get_map_dataset(geom, geom_etrue, edisp="edispmap", name="test", **kwargs): """Returns a MapDatasets""" # define background model background = Map.from_geom(geom) background.data += 0.2 psf = get_psf() exposure = get_exposure(geom_etrue) e_reco = geom.axes["energy"] e_true = geom_etrue.axes["energy_true"] if edisp == "edispmap": edisp = EDispMap.from_diagonal_response(energy_axis_true=e_true) data = exposure.get_spectrum(geom.center_skydir).data edisp.exposure_map.data = np.repeat(data, 2, axis=-1) elif edisp == "edispkernelmap": edisp = EDispKernelMap.from_diagonal_response( energy_axis=e_reco, energy_axis_true=e_true ) data = exposure.get_spectrum(geom.center_skydir).data edisp.exposure_map.data = np.repeat(data, 2, axis=-1) else: edisp = None # define fit mask center = SkyCoord("0.2 deg", "0.1 deg", frame="galactic") circle = CircleSkyRegion(center=center, radius=1 * u.deg) mask_fit = geom.region_mask([circle]) models = FoVBackgroundModel(dataset_name=name) return MapDataset( models=models, exposure=exposure, background=background, psf=psf, edisp=edisp, mask_fit=mask_fit, name=name, **kwargs, ) @requires_data() def test_map_dataset_str(sky_model, geom, geom_etrue): dataset = get_map_dataset(geom, geom_etrue) bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [sky_model, bkg_model] dataset.counts = dataset.npred() dataset.mask_safe = dataset.mask_fit assert "MapDataset" in str(dataset) assert "(frozen)" in str(dataset) assert "background" in str(dataset) dataset.mask_safe = None assert "MapDataset" in str(dataset) def test_map_dataset_str_empty(): dataset = MapDataset() assert "MapDataset" in str(dataset) @requires_data() def test_fake(sky_model, geom, geom_etrue): """Test the fake dataset""" dataset = get_map_dataset(geom, geom_etrue) bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [sky_model, bkg_model] npred = dataset.npred() assert np.all(npred.data >= 0) # npred must be positive dataset.counts = npred real_dataset = dataset.copy() dataset.fake(314) assert real_dataset.counts.data.shape == dataset.counts.data.shape assert_allclose(real_dataset.counts.data.sum(), 9525.299054, rtol=1e-5) assert_allclose(dataset.counts.data.sum(), 9711) @requires_data() def test_different_exposure_unit(sky_model, geom): energy_range_true = np.logspace(2, 4, 3) axis = MapAxis.from_edges( energy_range_true, name="energy_true", unit="GeV", interp="log" ) geom_gev = geom.to_image().to_cube([axis]) dataset = get_map_dataset(geom, geom_gev, edisp="None") bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [sky_model, bkg_model] npred = dataset.npred() assert_allclose(npred.data[0, 50, 50], 6.086019, rtol=1e-2) @pytest.mark.parametrize(("edisp_mode"), ["edispmap", "edispkernelmap"]) @requires_data() def test_to_spectrum_dataset(sky_model, geom, geom_etrue, edisp_mode): dataset_ref = get_map_dataset(geom, geom_etrue, edisp=edisp_mode) bkg_model = FoVBackgroundModel(dataset_name=dataset_ref.name) dataset_ref.models = [sky_model, bkg_model] dataset_ref.counts = dataset_ref.npred_background() * 0.0 dataset_ref.counts.data[1, 50, 50] = 1 dataset_ref.counts.data[1, 60, 50] = 1 gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset_ref.gti = gti on_region = CircleSkyRegion(center=geom.center_skydir, radius=0.05 * u.deg) spectrum_dataset = dataset_ref.to_spectrum_dataset(on_region) spectrum_dataset_corrected = dataset_ref.to_spectrum_dataset( on_region, containment_correction=True ) mask = np.ones_like(dataset_ref.counts, dtype="bool") mask[1, 40:60, 40:60] = 0 dataset_ref.mask_safe = Map.from_geom(dataset_ref.counts.geom, data=mask) spectrum_dataset_mask = dataset_ref.to_spectrum_dataset(on_region) assert np.sum(spectrum_dataset.counts.data) == 1 assert spectrum_dataset.data_shape == (2, 1, 1) assert spectrum_dataset.background.geom.axes[0].nbin == 2 assert spectrum_dataset.exposure.geom.axes[0].nbin == 3 assert spectrum_dataset.exposure.unit == "m2s" energy_axis = geom.axes["energy"] assert ( spectrum_dataset.edisp.get_edisp_kernel(energy_axis=energy_axis) .axes["energy"] .nbin == 2 ) assert ( spectrum_dataset.edisp.get_edisp_kernel(energy_axis=energy_axis) .axes["energy_true"] .nbin == 3 ) assert_allclose(spectrum_dataset.edisp.exposure_map.data[1], 3.070917e09, rtol=1e-5) assert np.sum(spectrum_dataset_mask.counts.data) == 0 assert spectrum_dataset_mask.data_shape == (2, 1, 1) assert spectrum_dataset_corrected.exposure.unit == "m2s" assert_allclose(spectrum_dataset.exposure.data[1], 3.070884e09, rtol=1e-5) assert_allclose(spectrum_dataset_corrected.exposure.data[1], 2.05201e09, rtol=1e-5) @requires_data() def test_info_dict(sky_model, geom, geom_etrue): dataset = get_map_dataset(geom, geom_etrue) bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [sky_model, bkg_model] dataset.counts = dataset.npred() info_dict = dataset.info_dict() assert_allclose(info_dict["counts"], 9526, rtol=1e-3) assert_allclose(info_dict["background"], 4000.0005, rtol=1e-3) assert_allclose(info_dict["npred_background"], 4000.0, rtol=1e-3) assert_allclose(info_dict["excess"], 5525.756, rtol=1e-3) assert_allclose(info_dict["exposure_min"].value, 8.32e8, rtol=1e-3) assert_allclose(info_dict["exposure_max"].value, 1.105e10, rtol=1e-3) assert info_dict["exposure_max"].unit == "m2 s" assert info_dict["name"] == "test" gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset.gti = gti info_dict = dataset.info_dict() assert_allclose(info_dict["counts"], 9526, rtol=1e-3) assert_allclose(info_dict["background"], 4000.0005, rtol=1e-3) assert_allclose(info_dict["npred_background"], 4000.0, rtol=1e-3) assert_allclose(info_dict["sqrt_ts"], 74.024180, rtol=1e-3) assert_allclose(info_dict["excess"], 5525.756, rtol=1e-3) assert_allclose(info_dict["ontime"].value, 3600) assert info_dict["name"] == "test" def get_fermi_3fhl_gc_dataset(): counts = Map.read("$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-counts-cube.fits.gz") background = Map.read( "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-background-cube.fits.gz" ) bkg_model = FoVBackgroundModel(dataset_name="fermi-3fhl-gc") exposure = Map.read( "$GAMMAPY_DATA/fermi-3fhl-gc/fermi-3fhl-gc-exposure-cube.fits.gz" ) return MapDataset( counts=counts, background=background, models=[bkg_model], exposure=exposure, name="fermi-3fhl-gc", ) @requires_data() def test_resample_energy_3fhl(): dataset = get_fermi_3fhl_gc_dataset() new_axis = MapAxis.from_edges([10, 35, 100] * u.GeV, interp="log", name="energy") grouped = dataset.resample_energy_axis(energy_axis=new_axis) assert grouped.counts.data.shape == (2, 200, 400) assert grouped.counts.data[0].sum() == 28581 assert_allclose( grouped.npred_background().data.sum(axis=(1, 2)), [25074.366386, 2194.298612], rtol=1e-5, ) assert_allclose(grouped.exposure.data, dataset.exposure.data, rtol=1e-5) axis = grouped.counts.geom.axes[0] npred = dataset.npred() npred_grouped = grouped.npred() assert_allclose(npred.resample_axis(axis=axis).data.sum(), npred_grouped.data.sum()) @requires_data() def test_to_image_3fhl(): dataset = get_fermi_3fhl_gc_dataset() dataset_im = dataset.to_image() assert dataset_im.counts.data.sum() == dataset.counts.data.sum() assert_allclose(dataset_im.npred_background().data.sum(), 28548.625, rtol=1e-5) assert_allclose(dataset_im.exposure.data, dataset.exposure.data, rtol=1e-5) npred = dataset.npred() npred_im = dataset_im.npred() assert_allclose(npred.data.sum(), npred_im.data.sum()) def test_to_image_mask_safe(): axis = MapAxis.from_energy_bounds("0.1 TeV", "10 TeV", nbin=2) geom = WcsGeom.create( skydir=(0, 0), binsz=0.5, width=(1, 1), frame="icrs", axes=[axis] ) dataset = MapDataset.create(geom) # Check map_safe handling data = np.array([[[False, True], [True, True]], [[False, False], [True, True]]]) dataset.mask_safe = WcsNDMap.from_geom(geom=geom, data=data) dataset_im = dataset.to_image() assert dataset_im.mask_safe.data.dtype == bool desired = np.array([[False, True], [True, True]]) assert (dataset_im.mask_safe.data == desired).all() # Check that missing entries in the dataset do not break dataset_copy = dataset.copy() dataset_copy.exposure = None dataset_im = dataset_copy.to_image() assert dataset_im.exposure is None dataset_copy = dataset.copy() dataset_copy.counts = None dataset_im = dataset_copy.to_image() assert dataset_im.counts is None @requires_data() def test_downsample(): dataset = get_fermi_3fhl_gc_dataset() downsampled = dataset.downsample(2) assert downsampled.counts.data.shape == (11, 100, 200) assert downsampled.counts.data.sum() == dataset.counts.data.sum() assert_allclose( downsampled.npred_background().data.sum(axis=(1, 2)), dataset.npred_background().data.sum(axis=(1, 2)), rtol=1e-5, ) assert_allclose(downsampled.exposure.data[5, 50, 100], 3.318082e11, rtol=1e-5) with pytest.raises(ValueError): dataset.downsample(2, axis_name="energy") @requires_data() def test_map_dataset_fits_io(tmp_path, sky_model, geom, geom_etrue): dataset = get_map_dataset(geom, geom_etrue) bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [sky_model, bkg_model] dataset.counts = dataset.npred() dataset.mask_safe = dataset.mask_fit gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset.gti = gti hdulist = dataset.to_hdulist() actual = [hdu.name for hdu in hdulist] desired = [ "PRIMARY", "COUNTS", "COUNTS_BANDS", "EXPOSURE", "EXPOSURE_BANDS", "BACKGROUND", "BACKGROUND_BANDS", "EDISP", "EDISP_BANDS", "EDISP_EXPOSURE", "EDISP_EXPOSURE_BANDS", "PSF", "PSF_BANDS", "PSF_EXPOSURE", "PSF_EXPOSURE_BANDS", "MASK_SAFE", "MASK_SAFE_BANDS", "MASK_FIT", "MASK_FIT_BANDS", "GTI", ] assert actual == desired dataset.write(tmp_path / "test.fits") dataset_new = MapDataset.read(tmp_path / "test.fits") assert dataset_new.mask.data.dtype == bool assert_allclose(dataset.counts.data, dataset_new.counts.data) assert_allclose( dataset.npred_background().data, dataset_new.npred_background().data ) assert_allclose(dataset.edisp.edisp_map.data, dataset_new.edisp.edisp_map.data) assert_allclose(dataset.psf.psf_map.data, dataset_new.psf.psf_map.data) assert_allclose(dataset.exposure.data, dataset_new.exposure.data) assert_allclose(dataset.mask_fit.data, dataset_new.mask_fit.data) assert_allclose(dataset.mask_safe.data, dataset_new.mask_safe.data) assert dataset.counts.geom == dataset_new.counts.geom assert dataset.exposure.geom == dataset_new.exposure.geom assert_allclose(dataset.exposure.meta["livetime"], 1 * u.h) assert dataset.npred_background().geom == dataset_new.npred_background().geom assert dataset.edisp.edisp_map.geom == dataset_new.edisp.edisp_map.geom assert_allclose( dataset.gti.time_sum.to_value("s"), dataset_new.gti.time_sum.to_value("s") ) # To test io of psf and edisp map stacked = MapDataset.create(geom) stacked.write(tmp_path / "test-2.fits", overwrite=True) stacked1 = MapDataset.read(tmp_path / "test-2.fits") assert stacked1.psf.psf_map is not None assert stacked1.psf.exposure_map is not None assert stacked1.edisp.edisp_map is not None assert stacked1.edisp.exposure_map is not None assert stacked.mask.data.dtype == bool assert_allclose(stacked1.psf.psf_map, stacked.psf.psf_map) assert_allclose(stacked1.edisp.edisp_map, stacked.edisp.edisp_map) @requires_dependency("iminuit") @requires_dependency("matplotlib") @requires_data() def test_map_fit(sky_model, geom, geom_etrue): dataset_1 = get_map_dataset(geom, geom_etrue, name="test-1") dataset_2 = get_map_dataset(geom, geom_etrue, name="test-2") datasets = Datasets([dataset_1, dataset_2]) models = Models(datasets.models) models.insert(0, sky_model) models["test-1-bkg"].spectral_model.norm.value = 0.5 models["test-model"].spatial_model.sigma.frozen = True datasets.models = models dataset_2.counts = dataset_2.npred() dataset_1.counts = dataset_1.npred() models["test-1-bkg"].spectral_model.norm.value = 0.49 models["test-2-bkg"].spectral_model.norm.value = 0.99 fit = Fit() result = fit.run(datasets=datasets) result = result["optimize_result"] assert result.success assert "minuit" in repr(result) npred = dataset_1.npred().data.sum() assert_allclose(npred, 7525.790688, rtol=1e-3) assert_allclose(result.total_stat, 21625.845714, rtol=1e-3) pars = result.parameters assert_allclose(pars["lon_0"].value, 0.2, rtol=1e-2) assert_allclose(pars["lon_0"].error, 0.002244, rtol=1e-2) assert_allclose(pars["index"].value, 3, rtol=1e-2) assert_allclose(pars["index"].error, 0.024277, rtol=1e-2) assert_allclose(pars["amplitude"].value, 1e-11, rtol=1e-2) assert_allclose(pars["amplitude"].error, 4.216154e-13, rtol=1e-2) # background norm 1 assert_allclose(pars[8].value, 0.5, rtol=1e-2) assert_allclose(pars[8].error, 0.015811, rtol=1e-2) # background norm 2 assert_allclose(pars[11].value, 1, rtol=1e-2) assert_allclose(pars[11].error, 0.02147, rtol=1e-2) # test mask_safe evaluation dataset_1.mask_safe = geom.energy_mask(energy_min=1 * u.TeV) dataset_2.mask_safe = geom.energy_mask(energy_min=1 * u.TeV) stat = datasets.stat_sum() assert_allclose(stat, 14823.772744, rtol=1e-5) region = sky_model.spatial_model.to_region() initial_counts = dataset_1.counts.copy() with mpl_plot_check(): dataset_1.plot_residuals(kwargs_spectral=dict(region=region)) # check dataset has not changed assert initial_counts == dataset_1.counts # test model evaluation outside image dataset_1.models[0].spatial_model.lon_0.value = 150 dataset_1.npred() assert not dataset_1.evaluators["test-model"].contributes @requires_dependency("iminuit") @requires_data() def test_map_fit_one_energy_bin(sky_model, geom_image): energy_axis = geom_image.axes["energy"] geom_etrue = geom_image.to_image().to_cube([energy_axis.copy(name="energy_true")]) dataset = get_map_dataset(geom_image, geom_etrue) bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [sky_model, bkg_model] sky_model.spectral_model.index.value = 3.0 sky_model.spectral_model.index.frozen = True dataset.models[f"{dataset.name}-bkg"].spectral_model.norm.value = 0.5 dataset.counts = dataset.npred() # Move a bit away from the best-fit point, to make sure the optimiser runs sky_model.parameters["sigma"].value = 0.21 dataset.models[f"{dataset.name}-bkg"].parameters["norm"].frozen = True fit = Fit() result = fit.run(datasets=[dataset]) result = result["optimize_result"] assert result.success npred = dataset.npred().data.sum() assert_allclose(npred, 16538.124036, rtol=1e-3) assert_allclose(result.total_stat, -34844.125047, rtol=1e-3) pars = result.parameters assert_allclose(pars["lon_0"].value, 0.2, rtol=1e-2) assert_allclose(pars["lon_0"].error, 0.001689, rtol=1e-2) assert_allclose(pars["sigma"].value, 0.2, rtol=1e-2) assert_allclose(pars["sigma"].error, 0.00092, rtol=1e-2) assert_allclose(pars["amplitude"].value, 1e-11, rtol=1e-2) assert_allclose(pars["amplitude"].error, 8.127593e-14, rtol=1e-2) def test_create(): # tests empty datasets created rad_axis = MapAxis(nodes=np.linspace(0.0, 1.0, 51), unit="deg", name="rad") e_reco = MapAxis.from_edges( np.logspace(-1.0, 1.0, 3), name="energy", unit=u.TeV, interp="log" ) e_true = MapAxis.from_edges( np.logspace(-1.0, 1.0, 4), name="energy_true", unit=u.TeV, interp="log" ) geom = WcsGeom.create(binsz=0.02, width=(2, 2), axes=[e_reco]) empty_dataset = MapDataset.create( geom=geom, energy_axis_true=e_true, rad_axis=rad_axis ) assert empty_dataset.counts.data.shape == (2, 100, 100) assert empty_dataset.exposure.data.shape == (3, 100, 100) assert empty_dataset.psf.psf_map.data.shape == (3, 50, 10, 10) assert empty_dataset.psf.exposure_map.data.shape == (3, 1, 10, 10) assert isinstance(empty_dataset.edisp, EDispKernelMap) assert empty_dataset.edisp.edisp_map.data.shape == (3, 2, 10, 10) assert empty_dataset.edisp.exposure_map.data.shape == (3, 1, 10, 10) assert_allclose(empty_dataset.edisp.edisp_map.data.sum(), 300) assert_allclose(empty_dataset.gti.time_delta, 0.0 * u.s) def test_create_with_migra(tmp_path): # tests empty datasets created migra_axis = MapAxis(nodes=np.linspace(0.0, 3.0, 51), unit="", name="migra") rad_axis = MapAxis(nodes=np.linspace(0.0, 1.0, 51), unit="deg", name="rad") e_reco = MapAxis.from_edges( np.logspace(-1.0, 1.0, 3), name="energy", unit=u.TeV, interp="log" ) e_true = MapAxis.from_edges( np.logspace(-1.0, 1.0, 4), name="energy_true", unit=u.TeV, interp="log" ) geom = WcsGeom.create(binsz=0.02, width=(2, 2), axes=[e_reco]) empty_dataset = MapDataset.create( geom=geom, energy_axis_true=e_true, migra_axis=migra_axis, rad_axis=rad_axis ) empty_dataset.write(tmp_path / "test.fits") dataset_new = MapDataset.read(tmp_path / "test.fits") assert isinstance(empty_dataset.edisp, EDispMap) assert empty_dataset.edisp.edisp_map.data.shape == (3, 50, 10, 10) assert empty_dataset.edisp.exposure_map.data.shape == (3, 1, 10, 10) assert_allclose(empty_dataset.edisp.edisp_map.data.sum(), 5000) assert_allclose(empty_dataset.gti.time_delta, 0.0 * u.s) assert isinstance(dataset_new.edisp, EDispMap) assert dataset_new.edisp.edisp_map.data.shape == (3, 50, 10, 10) def test_stack(sky_model): axis = MapAxis.from_energy_bounds("0.1 TeV", "10 TeV", nbin=3) geom = WcsGeom.create( skydir=(266.40498829, -28.93617776), binsz=0.05, width=(2, 2), frame="icrs", axes=[axis], ) axis_etrue = MapAxis.from_energy_bounds( "0.1 TeV", "10 TeV", nbin=5, name="energy_true" ) geom_etrue = WcsGeom.create( skydir=(266.40498829, -28.93617776), binsz=0.05, width=(2, 2), frame="icrs", axes=[axis_etrue], ) edisp = EDispKernelMap.from_diagonal_response( energy_axis=axis, energy_axis_true=axis_etrue, geom=geom ) edisp.exposure_map.quantity = ( 1e0 * u.m ** 2 * u.s * np.ones(edisp.exposure_map.data.shape) ) bkg1 = Map.from_geom(geom) bkg1.data += 0.2 cnt1 = Map.from_geom(geom) cnt1.data = 1.0 * np.ones(cnt1.data.shape) exp1 = Map.from_geom(geom_etrue) exp1.quantity = 1e7 * u.m ** 2 * u.s * np.ones(exp1.data.shape) mask1 = Map.from_geom(geom) mask1.data = np.ones(mask1.data.shape, dtype=bool) mask1.data[0][:][5:10] = False dataset1 = MapDataset( counts=cnt1, background=bkg1, exposure=exp1, mask_safe=mask1, name="dataset-1", edisp=edisp, meta_table=Table({"OBS_ID": [0]}), ) bkg2 = Map.from_geom(geom) bkg2.data = 0.1 * np.ones(bkg2.data.shape) cnt2 = Map.from_geom(geom) cnt2.data = 1.0 * np.ones(cnt2.data.shape) exp2 = Map.from_geom(geom_etrue) exp2.quantity = 1e7 * u.m ** 2 * u.s * np.ones(exp2.data.shape) mask2 = Map.from_geom(geom) mask2.data = np.ones(mask2.data.shape, dtype=bool) mask2.data[0][:][5:10] = False mask2.data[1][:][10:15] = False dataset2 = MapDataset( counts=cnt2, background=bkg2, exposure=exp2, mask_safe=mask2, name="dataset-2", edisp=edisp, meta_table=Table({"OBS_ID": [1]}), ) background_model2 = FoVBackgroundModel(dataset_name="dataset-2") background_model1 = FoVBackgroundModel(dataset_name="dataset-1") dataset1.models = [background_model1, sky_model] dataset2.models = [background_model2, sky_model] stacked = MapDataset.from_geoms(**dataset1.geoms) stacked.stack(dataset1) stacked.stack(dataset2) stacked.models = [sky_model] npred_b = stacked.npred() assert_allclose(npred_b.data.sum(), 1459.985035, 1e-5) assert_allclose(stacked.npred_background().data.sum(), 1360.00, 1e-5) assert_allclose(stacked.counts.data.sum(), 9000, 1e-5) assert_allclose(stacked.mask_safe.data.sum(), 4600) assert_allclose(stacked.exposure.data.sum(), 1.6e11) assert_allclose(stacked.meta_table["OBS_ID"][0], [0, 1]) @requires_data() def test_npred_sig(sky_model, geom, geom_etrue): dataset = get_map_dataset(geom, geom_etrue) pwl = PowerLawSpectralModel() gauss = GaussianSpatialModel( lon_0="0.0 deg", lat_0="0.0 deg", sigma="0.5 deg", frame="galactic" ) model1 = SkyModel(pwl, gauss, name="m1") bkg = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [bkg, sky_model, model1] assert_allclose(dataset.npred().data.sum(), 9676.047906, rtol=1e-3) assert_allclose(dataset.npred_signal().data.sum(), 5676.04790, rtol=1e-3) assert_allclose( dataset.npred_signal(model_name=model1.name).data.sum(), 150.7487, rtol=1e-3 ) with pytest.raises( KeyError, match="m2", ): dataset.npred_signal(model_name="m2") def test_stack_npred(): pwl = PowerLawSpectralModel() gauss = GaussianSpatialModel(sigma="0.2 deg") model = SkyModel(pwl, gauss) axis = MapAxis.from_energy_bounds("0.1 TeV", "10 TeV", nbin=5) axis_etrue = MapAxis.from_energy_bounds( "0.1 TeV", "10 TeV", nbin=11, name="energy_true" ) geom = WcsGeom.create( skydir=(0, 0), binsz=0.05, width=(2, 2), frame="icrs", axes=[axis], ) dataset_1 = MapDataset.create( geom, energy_axis_true=axis_etrue, name="dataset-1", gti=GTI.create("0 min", "30 min"), ) dataset_1.psf = None dataset_1.exposure.data += 1 dataset_1.mask_safe = geom.energy_mask(energy_min=1 * u.TeV) dataset_1.background.data += 1 bkg_model_1 = FoVBackgroundModel(dataset_name=dataset_1.name) dataset_1.models = [model, bkg_model_1] dataset_2 = MapDataset.create( geom, energy_axis_true=axis_etrue, name="dataset-2", gti=GTI.create("30 min", "60 min"), ) dataset_2.psf = None dataset_2.exposure.data += 1 dataset_2.mask_safe = geom.energy_mask(energy_min=0.2 * u.TeV) dataset_2.background.data += 1 bkg_model_2 = FoVBackgroundModel(dataset_name=dataset_2.name) dataset_2.models = [model, bkg_model_2] npred_1 = dataset_1.npred() npred_1.data[~dataset_1.mask_safe.data] = 0 npred_2 = dataset_2.npred() npred_2.data[~dataset_2.mask_safe.data] = 0 stacked_npred = Map.from_geom(geom) stacked_npred.stack(npred_1) stacked_npred.stack(npred_2) stacked = MapDataset.create(geom, energy_axis_true=axis_etrue, name="stacked") stacked.stack(dataset_1) stacked.stack(dataset_2) npred_stacked = stacked.npred() assert_allclose(npred_stacked.data, stacked_npred.data) def to_cube(image): # introduce a fake enery axis for now axis = MapAxis.from_edges([1, 10] * u.TeV, name="energy") geom = image.geom.to_cube([axis]) return WcsNDMap.from_geom(geom=geom, data=image.data) @pytest.fixture def images(): """Load some `counts`, `counts_off`, `acceptance_on`, `acceptance_off" images""" filename = "$GAMMAPY_DATA/tests/unbundled/hess/survey/hess_survey_snippet.fits.gz" return { "counts": to_cube(WcsNDMap.read(filename, hdu="ON")), "counts_off": to_cube(WcsNDMap.read(filename, hdu="OFF")), "acceptance": to_cube(WcsNDMap.read(filename, hdu="ONEXPOSURE")), "acceptance_off": to_cube(WcsNDMap.read(filename, hdu="OFFEXPOSURE")), "exposure": to_cube(WcsNDMap.read(filename, hdu="EXPGAMMAMAP")), "background": to_cube(WcsNDMap.read(filename, hdu="BACKGROUND")), } def test_npred_psf_after_edisp(): energy_axis = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=3) energy_axis_true = MapAxis.from_energy_bounds( "0.8 TeV", "15 TeV", nbin=6, name="energy_true" ) geom = WcsGeom.create(width=4 * u.deg, binsz=0.02, axes=[energy_axis]) dataset = MapDataset.create(geom=geom, energy_axis_true=energy_axis_true) dataset.background.data += 1 dataset.exposure.data += 1e12 dataset.mask_safe.data += True dataset.psf = PSFMap.from_gauss( energy_axis_true=energy_axis_true, sigma=0.2 * u.deg ) model = SkyModel( spectral_model=PowerLawSpectralModel(), spatial_model=PointSpatialModel(), name="test-model", ) model.apply_irf["psf_after_edisp"] = True bkg_model = FoVBackgroundModel(dataset_name=dataset.name) dataset.models = [bkg_model, model] npred = dataset.npred() assert_allclose(npred.data.sum(), 129553.858658) def get_map_dataset_onoff(images, **kwargs): """Returns a MapDatasetOnOff""" mask_geom = images["counts"].geom mask_data = np.ones(images["counts"].data.shape, dtype=bool) mask_safe = Map.from_geom(mask_geom, data=mask_data) gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") energy_axis = mask_geom.axes["energy"] energy_axis_true = energy_axis.copy(name="energy_true") psf = PSFMap.from_gauss( energy_axis_true=energy_axis_true, sigma=0.2 * u.deg, geom=mask_geom.to_image() ) edisp = EDispKernelMap.from_diagonal_response( energy_axis=energy_axis, energy_axis_true=energy_axis_true, geom=mask_geom ) return MapDatasetOnOff( counts=images["counts"], counts_off=images["counts_off"], acceptance=images["acceptance"], acceptance_off=images["acceptance_off"], exposure=images["exposure"], mask_safe=mask_safe, psf=psf, edisp=edisp, gti=gti, **kwargs, ) @requires_data() def test_map_dataset_on_off_fits_io(images, tmp_path): dataset = get_map_dataset_onoff(images) gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset.gti = gti hdulist = dataset.to_hdulist() actual = [hdu.name for hdu in hdulist] desired = [ "PRIMARY", "COUNTS", "COUNTS_BANDS", "EXPOSURE", "EXPOSURE_BANDS", "EDISP", "EDISP_BANDS", "EDISP_EXPOSURE", "EDISP_EXPOSURE_BANDS", "PSF", "PSF_BANDS", "PSF_EXPOSURE", "PSF_EXPOSURE_BANDS", "MASK_SAFE", "MASK_SAFE_BANDS", "GTI", "COUNTS_OFF", "COUNTS_OFF_BANDS", "ACCEPTANCE", "ACCEPTANCE_BANDS", "ACCEPTANCE_OFF", "ACCEPTANCE_OFF_BANDS", ] assert actual == desired dataset.write(tmp_path / "test.fits") dataset_new = MapDatasetOnOff.read(tmp_path / "test.fits") assert dataset_new.mask.data.dtype == bool assert_allclose(dataset.counts.data, dataset_new.counts.data) assert_allclose(dataset.counts_off.data, dataset_new.counts_off.data) assert_allclose(dataset.acceptance.data, dataset_new.acceptance.data) assert_allclose(dataset.acceptance_off.data, dataset_new.acceptance_off.data) assert_allclose(dataset.exposure.data, dataset_new.exposure.data) assert_allclose(dataset.mask_safe, dataset_new.mask_safe) assert np.all(dataset.mask_safe.data == dataset_new.mask_safe.data) == True assert dataset.mask_safe.geom == dataset_new.mask_safe.geom assert dataset.counts.geom == dataset_new.counts.geom assert dataset.exposure.geom == dataset_new.exposure.geom assert_allclose( dataset.gti.time_sum.to_value("s"), dataset_new.gti.time_sum.to_value("s") ) assert dataset.psf.psf_map == dataset_new.psf.psf_map assert dataset.psf.exposure_map == dataset_new.psf.exposure_map assert dataset.edisp.edisp_map == dataset_new.edisp.edisp_map assert dataset.edisp.exposure_map == dataset_new.edisp.exposure_map def test_create_onoff(geom): # tests empty datasets created migra_axis = MapAxis(nodes=np.linspace(0.0, 3.0, 51), unit="", name="migra") rad_axis = MapAxis(nodes=np.linspace(0.0, 1.0, 51), unit="deg", name="rad") energy_axis = geom.axes["energy"].copy(name="energy_true") empty_dataset = MapDatasetOnOff.create(geom, energy_axis, migra_axis, rad_axis) assert_allclose(empty_dataset.counts.data.sum(), 0.0) assert_allclose(empty_dataset.counts_off.data.sum(), 0.0) assert_allclose(empty_dataset.acceptance.data.sum(), 0.0) assert_allclose(empty_dataset.acceptance_off.data.sum(), 0.0) assert empty_dataset.psf.psf_map.data.shape == (2, 50, 10, 10) assert empty_dataset.psf.exposure_map.data.shape == (2, 1, 10, 10) assert empty_dataset.edisp.edisp_map.data.shape == (2, 50, 10, 10) assert empty_dataset.edisp.exposure_map.data.shape == (2, 1, 10, 10) assert_allclose(empty_dataset.edisp.edisp_map.data.sum(), 3333.333333) assert_allclose(empty_dataset.gti.time_delta, 0.0 * u.s) @requires_data() def test_map_dataset_onoff_str(images): dataset = get_map_dataset_onoff(images) assert "MapDatasetOnOff" in str(dataset) @requires_data() def test_stack_onoff(images): dataset = get_map_dataset_onoff(images) stacked = dataset.copy() stacked.stack(dataset) assert_allclose(stacked.counts.data.sum(), 2 * dataset.counts.data.sum()) assert_allclose(stacked.counts_off.data.sum(), 2 * dataset.counts_off.data.sum()) assert_allclose( stacked.acceptance.data.sum(), dataset.data_shape[1] * dataset.data_shape[2] ) assert_allclose(np.nansum(stacked.acceptance_off.data), 2.925793e08, rtol=1e-5) assert_allclose(stacked.exposure.data, 2.0 * dataset.exposure.data) def test_dataset_cutout_aligned(geom): dataset = MapDataset.create(geom) kwargs = {"position": geom.center_skydir, "width": 1 * u.deg} geoms = {name: geom.cutout(**kwargs) for name, geom in dataset.geoms.items()} cutout = MapDataset.from_geoms(**geoms, name="cutout") assert dataset.counts.geom.is_aligned(cutout.counts.geom) assert dataset.exposure.geom.is_aligned(cutout.exposure.geom) assert dataset.edisp.edisp_map.geom.is_aligned(cutout.edisp.edisp_map.geom) assert dataset.psf.psf_map.geom.is_aligned(cutout.psf.psf_map.geom) def test_stack_onoff_cutout(geom_image): # Test stacking of cutouts energy_axis_true = MapAxis.from_energy_bounds( "1 TeV", "10 TeV", nbin=3, name="energy_true" ) dataset = MapDatasetOnOff.create(geom_image, energy_axis_true=energy_axis_true) dataset.gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") kwargs = {"position": geom_image.center_skydir, "width": 1 * u.deg} geoms = {name: geom.cutout(**kwargs) for name, geom in dataset.geoms.items()} dataset_cutout = MapDatasetOnOff.from_geoms(**geoms, name="cutout-dataset") dataset_cutout.gti = GTI.create( [0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00" ) dataset_cutout.mask_safe.data += True dataset_cutout.counts.data += 1 dataset_cutout.counts_off.data += 1 dataset_cutout.exposure.data += 1 dataset.stack(dataset_cutout) assert_allclose(dataset.counts.data.sum(), 2500) assert_allclose(dataset.counts_off.data.sum(), 2500) assert_allclose(dataset.alpha.data.sum(), 0) assert_allclose(dataset.exposure.data.sum(), 7500) assert dataset_cutout.name == "cutout-dataset" def test_datasets_io_no_model(tmpdir): axis = MapAxis.from_energy_bounds("1 TeV", "10 TeV", nbin=2) geom = WcsGeom.create(npix=(5, 5), axes=[axis]) dataset_1 = MapDataset.create(geom, name="dataset_1") dataset_2 = MapDataset.create(geom, name="dataset_2") datasets = Datasets([dataset_1, dataset_2]) datasets.write(filename=tmpdir / "datasets.yaml") filename_1 = tmpdir / "dataset_1.fits" assert filename_1.exists() filename_2 = tmpdir / "dataset_2.fits" assert filename_2.exists() @requires_data() def test_map_dataset_on_off_to_spectrum_dataset(images): dataset = get_map_dataset_onoff(images) gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset.gti = gti on_region = CircleSkyRegion( center=dataset.counts.geom.center_skydir, radius=0.1 * u.deg ) spectrum_dataset = dataset.to_spectrum_dataset(on_region) assert spectrum_dataset.counts.data[0] == 8 assert spectrum_dataset.data_shape == (1, 1, 1) assert spectrum_dataset.counts_off.data[0] == 33914 assert_allclose(spectrum_dataset.alpha.data[0], 0.0002143, atol=1e-7) excess_map = images["counts"] - images["background"] excess_true = excess_map.get_spectrum(on_region, np.sum).data[0] excess = spectrum_dataset.excess.data[0] assert_allclose(excess, excess_true, rtol=1e-3) assert spectrum_dataset.name != dataset.name @requires_data() def test_map_dataset_on_off_to_spectrum_dataset_weights(): e_reco = MapAxis.from_bounds(1, 10, nbin=3, unit="TeV", name="energy") geom = WcsGeom.create( skydir=(0, 0), width=(2.5, 2.5), binsz=0.5, axes=[e_reco], frame="galactic" ) counts = Map.from_geom(geom) counts.data += 1 counts_off = Map.from_geom(geom) counts_off.data += 2 acceptance = Map.from_geom(geom) acceptance.data += 1 acceptance_off = Map.from_geom(geom) acceptance_off.data += 4 weights = Map.from_geom(geom, dtype="bool") weights.data[1:, 2:4, 2] = True gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset = MapDatasetOnOff( counts=counts, counts_off=counts_off, acceptance=acceptance, acceptance_off=acceptance_off, mask_safe=weights, gti=gti, ) on_region = CircleSkyRegion( center=dataset.counts.geom.center_skydir, radius=1.5 * u.deg ) spectrum_dataset = dataset.to_spectrum_dataset(on_region) assert_allclose(spectrum_dataset.counts.data[:, 0, 0], [0, 2, 2]) assert_allclose(spectrum_dataset.counts_off.data[:, 0, 0], [0, 4, 4]) assert_allclose(spectrum_dataset.acceptance.data[:, 0, 0], [0, 0.08, 0.08]) assert_allclose(spectrum_dataset.acceptance_off.data[:, 0, 0], [0, 0.32, 0.32]) assert_allclose(spectrum_dataset.alpha.data[:, 0, 0], [0, 0.25, 0.25]) @requires_data() def test_map_dataset_on_off_cutout(images): dataset = get_map_dataset_onoff(images) gti = GTI.create([0 * u.s], [1 * u.h], reference_time="2010-01-01T00:00:00") dataset.gti = gti cutout_dataset = dataset.cutout( images["counts"].geom.center_skydir, ["1 deg", "1 deg"] ) assert cutout_dataset.counts.data.shape == (1, 50, 50) assert cutout_dataset.counts_off.data.shape == (1, 50, 50) assert cutout_dataset.acceptance.data.shape == (1, 50, 50) assert cutout_dataset.acceptance_off.data.shape == (1, 50, 50) assert cutout_dataset.name != dataset.name def test_map_dataset_on_off_fake(geom): rad_axis = MapAxis(nodes=np.linspace(0.0, 1.0, 51), unit="deg", name="rad") energy_true_axis = geom.axes["energy"].copy(name="energy_true") empty_dataset = MapDatasetOnOff.create(geom, energy_true_axis, rad_axis=rad_axis) empty_dataset.acceptance.data = 1.0 empty_dataset.acceptance_off.data = 10.0 empty_dataset.acceptance_off.data[0, 50, 50] = 0 background_map = Map.from_geom(geom, data=1) empty_dataset.fake(background_map, random_state=42) assert_allclose(empty_dataset.counts.data[0, 50, 50], 0) assert_allclose(empty_dataset.counts.data.mean(), 0.99445, rtol=1e-3) assert_allclose(empty_dataset.counts_off.data.mean(), 10.00055, rtol=1e-3) @requires_data() def test_map_dataset_on_off_to_image(): axis = MapAxis.from_energy_bounds(1, 10, 2, unit="TeV") geom = WcsGeom.create(npix=(10, 10), binsz=0.05, axes=[axis]) counts = Map.from_geom(geom, data=np.ones((2, 10, 10))) counts_off = Map.from_geom(geom, data=
np.ones((2, 10, 10))
numpy.ones
# Classify images, based on training data # # Usage: # 1. create folder with: # - folder with training data (one folder for each type) # - folder with images to be classified # - this script # 3. set required parameters: # - data_dir = (relative) folder with traing/validation images ('document_images') # - epoch = number of passes of the entire training dataset in the machine learning algorithm ('10') # - path = (relative) folder with images that need to be predicted ('test') # 3. in terminal: '$ python document_classifier_keras.py -d data_dir -p path [-e 10] ' # 4. results are written to csv file 'predicted_image_types.csv' # see https://www.tensorflow.org/tutorials/images/classification import matplotlib.pyplot as plt import numpy as np import os import PIL import tensorflow as tf import pathlib import argparse from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential # construct the argument parse and parse the arguments ap = argparse.ArgumentParser() ap.add_argument("-d", "--data_dir", default="document_images", help="path to traing images") ap.add_argument("-p", "--path", default="path", help="path to input images") ap.add_argument("-e", "--epoch", default="10", type=int, help="number of epochs") args = vars(ap.parse_args()) path = args["path"] data_dir = args["data_dir"] epoch = args["epoch"] data_dir = pathlib.Path(data_dir) subfolders = os.listdir(data_dir) num_classes = len(subfolders) # Check if files are valif jpg print("Reading and checking files from subfolders: ", subfolders, " in ", data_dir) print("no. of subfolders: ",num_classes) # Filter out corrupted images # Change folder names accordingly num_skipped = 0 for folder_name in subfolders: folder_path = os.path.join(data_dir, folder_name) for fname in os.listdir(folder_path): fpath = os.path.join(folder_path, fname) try: fobj = open(fpath, "rb") is_jfif = tf.compat.as_bytes("JFIF") in fobj.peek(10) finally: fobj.close() if not is_jfif: num_skipped += 1 # Delete corrupted image os.remove(fpath) print("- Deleted file ", fpath) print("Deleted %d images" % num_skipped) # list no. of files image_count = len(list(data_dir.glob('*/*.jpg'))) print("Total no of images: ", image_count) # Create a dataset # Define some parameters for the loader batch_size = 32 img_height = 180 img_width = 180 # Create a validation split: 80% of the images for training, and 20% for validation. train_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.utils.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print("class_names: ", class_names) # Configure the dataset for performance AUTOTUNE = tf.data.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) # Standardize the data # Create the model model = Sequential([ layers.Rescaling(1./255, input_shape=(img_height, img_width, 3)), layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes) ]) # Compile the model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy']) model.summary() # Train the model epochs=15 history = model.fit( train_ds, validation_data=val_ds, epochs=epochs ) # Visualize training results acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() # No optimization necessary; check tutorial if it is (eg. solve overfitting) # Predict on new data path = "test" files = os.listdir(path) # Create csv with predictions csv = open('predicted_image_types.csv','w') for f in files: f = path+'/'+f img = keras.preprocessing.image.load_img( f, target_size=(img_height, img_width) ) img_array = tf.keras.utils.img_to_array(img) img_array = tf.expand_dims(img_array, 0) # Create a batch predictions = model.predict(img_array) score = tf.nn.softmax(predictions[0]) print( "Image {} most likely belongs to {} with a {:.2f} percent confidence." .format(f, class_names[np.argmax(score)], 100 * np.max(score)) ) # write result per image csv.write(str(f)) csv.write(";") csv.write(class_names[
np.argmax(score)
numpy.argmax
# -*- coding: utf-8 -*- """ Created on Thu Mar 7 10:34:49 2019 @author: Zoletnik Spectral analysis tools fro FLAP """ import math import numpy as np import flap.config import flap.coordinate #from .coordinate import * from scipy import signal import copy #import matplotlib.pyplot as plt def _spectral_calc_interval_selection(d, ref, coordinate,intervals,interval_n): """ Helper function for spectral and correlation calculation. Determines the processing intervals and returns in a flap.Intervals object. The intervals will have identical length. INPUT: d, ref: flap.DataObjects If ref is set it is assumed that the selection coordinate step size is identical in d and ref. coordinate: Coordinate name (string) intervals: Information of processing intervals. If dictionary with a single key: {selection coordinate: description}) Key is a coordinate name which can be different from the calculation coordinate. Description can be flap.Intervals, flap.DataObject or a list of two numbers. If it is a data object with data name identical to the coordinate the error ranges of the data object will be used for interval. If the data name is not the same as coordinate a coordinate with the same name will be searched for in the data object and the value_ranges will be used fromm it to set the intervals. If not a dictionary and not None is is interpreted as the interval description, the selection coordinate is taken the same as coordinate. If None, the whole data interval will be used as a single interval. interval_n: Minimum number of intervals to use for the processing. These are identical length intervals inserted into the input interval list. Returns: intervals, index_intervals intervals: The intervals in the coordinate unit (Intervals object) index_intervals: The index intervals in the data array (Intervals object) """ if (type(intervals) is dict): sel_coordinate = list(intervals.keys())[0] else: sel_coordinate = coordinate if (sel_coordinate != coordinate): raise ("At present for spectral calculation the interval selection coordinate should be the same as the calculation coordinate.") try: coord = d.get_coordinate_object(coordinate) except Exception as e: raise e try: calc_int, calc_int_ind, sel_int, sel_int_ind = d.proc_interval_limits(coordinate, intervals=intervals) except Exception as e: raise e intervals_low = sel_int[0] intervals_high = sel_int[1] # This part is commented out as we assume identiacl coordinate for d and ref # d_intervals_low = sel_int[0] # d_intervals_high = sel_int[1] # # if (ref is not None): # try: # calc_int, calc_int_ind, sel_int, sel_int_ind = ref.proc_interval_limits(coordinate, intervals=intervals) # except Exception as e: # raise e # ref_intervals_low = sel_int[0] # ref_intervals_high = sel_int[1] # intervals_low = [] # intervals_high = [] # d_int_low_min = np.amin(d_intervals_low) # d_int_low_max = np.amax(d_intervals_low) # for i in range(len(ref_intervals_low)): # if ((ref_intervals_low[i] >= d_int_low_min) and # (ref_intervals_low <= d_int_low_max)): # intervals_low.append(ref_intervals_low[i]) # intervals_high.append(ref_intervals_high[i]) # ref_coord = ref.get_coordinate_object(coordinate) # if ((math.fabs(ref_coord.start - coord.start) > math.fabs(ref_coord.step[0] ) / 10) # or (math.fabs(ref_coord.step[0] - coord.step[0]) / math.fabs(ref_coord.step[0]) > 1e-4) # ): # raise ValueError("The start and step of the calculating coordinates in the two data objects should be identical.") # else: # intervals_low = d_intervals_low # intervals_high = d_intervals_high if (len(intervals_low) > 1): # Ensuring that the intervals are in asceding order sort_ind = np.argsort(intervals_low) intervals_low = intervals_low[sort_ind] intervals_high = intervals_high[sort_ind] ind_overlap = np.nonzero(intervals_high[0:-2] > intervals_low[1:-1])[0] if (len(ind_overlap) != 0): raise ValueError("Intervals overlap, not suitable for calculation.") intervals_length = intervals_high - intervals_low # Determining how many different intervals are available int_lens = np.ndarray(0,dtype=intervals_low.dtype) int_num = np.ndarray(0,dtype=np.int32) margin = abs(coord.step[0]) i = 0 while (True): ind_new = np.nonzero(intervals_length > 0)[0] if (len(ind_new) == 0): break ind = np.nonzero(np.abs(intervals_length - intervals_length[ind_new[0]]) < margin)[0] int_lens = np.append(int_lens, intervals_length[ind_new[0]]) int_num = np.append(int_num, len(ind)) intervals_length[ind] = -1 # Sorting in reverse order according to interval length sort_ind = np.argsort(int_lens) int_num = np.flip(int_num[sort_ind]) int_lens = np.flip(int_lens[sort_ind]) # Dropping too small intervals ind_small = np.nonzero(int_lens < int_lens[0] / 2)[0] if (len(ind_small) != 0): int_lens = int_lens[0:ind_small[0]] int_num = int_num[0:ind_small[0]] # Trying to use the shortest interval as processing length proc_len = int_lens[-1] ind = np.nonzero(int_lens >= proc_len)[0] proc_n = np.sum(int_num[ind]) if (proc_n < interval_n): # If this is not successful splitting the intervals smaller and smaller proc_len_start = proc_len for n_split in range(2,interval_n): proc_len = proc_len_start / n_split proc_n = 0 for j in range(len(int_lens)): proc_n += (int_lens[j] // proc_len) * int_num[j] if (proc_n >= interval_n): break else: raise ValueError("Could not find "+str(interval_n)+" processing intervals.") proc_interval_start = np.ndarray(0,dtype=intervals_low.dtype) proc_interval_end = np.ndarray(0,dtype=intervals_high.dtype) for i in range(len(intervals_low)): st = intervals_low[i] while (st + proc_len <= intervals_high[i] + margin): proc_interval_start = np.append(proc_interval_start, st) proc_interval_end = np.append(proc_interval_end, st + proc_len) st += proc_len if (proc_interval_start.size < interval_n): raise RuntimeError("Internal error in finding processing intervals.") proc_interval_len = proc_len else: proc_interval_len = (intervals_high[0] - intervals_low[0]) / interval_n proc_interval_start = np.arange(interval_n) * proc_interval_len + intervals_low[0] proc_interval_end = proc_interval_start + proc_interval_len if (coord.step[0] > 0): proc_interval_index_start = np.round((proc_interval_start - coord.start) / coord.step[0]).astype(np.int32) + 1 proc_interval_index_len = int(np.round(proc_interval_len / coord.step[0])) - 2 proc_interval_index_end = proc_interval_index_start + proc_interval_index_len else: step = -coord.step[0] #npoint = d.shape[coord.dimension_list[0]] #UNUSED VARIABLE proc_interval_index_len = int(round(proc_interval_len / step)) - 2 proc_interval_index_start = np.round((proc_interval_end - coord.start) / coord.step[0]).astype(np.int32) + 1 proc_interval_index_end = proc_interval_index_start + proc_interval_index_len return flap.coordinate.Intervals(proc_interval_start, proc_interval_end), \ flap.coordinate.Intervals(proc_interval_index_start, proc_interval_index_end), def trend_removal_func(d,ax, trend, x=None, return_trend=False, return_poly=False): """ This function makes the _trend_removal internal function public """ return _trend_removal(d, ax, trend, x=x, return_trend=return_trend, return_poly=return_poly) def _trend_removal(d, ax, trend, x=None, return_trend=False, return_poly=False): """ Removes the trend from the data. Operates on one axis between two indices of the data array. INPUT: d: Data array (Numpy array) ax: The axis along which to operate (0...) trend: Trend removal description. A list, string or None. None: Don't remove trend. Strings: 'Mean': subtract mean Lists: ['Poly', n]: Fit an n order polynomial to the data and subtract. x: X axis. If not used equidistant will be assumed. return_trend: If True the trend data is returned return_poly: Return polynomial coefficients for poly trend removal. The coefficients will be in axis ax. RETURN value: If return_trend == True the trend data is returned If (return_poly == True) and polyfit then return polynomial parameters Otherwise return None The input array is modified. """ if (trend is None): return if ((type(trend) is list) and (trend[0] == 'Poly')): pass else: if (return_poly): raise ValueError("Polynomial trend fit parameters can be returned only for polynomial trend removal.") if (type(trend) is str): if (trend == 'Mean'): d[:] = signal.detrend(d, axis=ax, type='constant') return else: raise ValueError("Unknown trend removal method: "+trend) elif (type(trend) is list): if ((len(trend) == 2) and (trend[0] == 'Poly')): try: order = int(trend[1]) except ValueError: raise ValueError("Bad order in polynomial trend removal.") # This is a simple solution but not very effective. # Flattens all dimensions except x and handles all functions one-by-one # Finally rearranges the data back to the original shape if (x is None): _x = np.arange(d.shape[ax],dtype=float) else: _x = copy.deepcopy(x) if ((_x.dtype.kind == 'i') or (_x.dtype.kind == 'u')): _x = np.asarray(_x,'float') if (d.ndim > 1): if (ax != 0): d = np.swapaxes(d,ax,0) orig_shape = d.shape if (d.ndim > 2): new_shape = tuple([d.shape[0], d.size // d.shape[0]]) d = d.reshape(new_shape,order='F') if (return_trend): trend_data = np.ndarray(new_shape,dtype=d.dtype) else: new_shape = d.shape xx = np.zeros((new_shape[0],order), dtype=float) for i in range(order): xx[:,i] = _x ** (i + 1) p = np.polynomial.polynomial.polyfit(_x,d,order) for i in range(new_shape[1]): tr = p[0,i] for j in range(order): tr = tr + p[j + 1, i] * xx[:,j] d[:,i] = d[:,i] - tr.astype(d.dtype) if (return_trend): trend_data[:,i] = tr.astype(d.dtype) if (len(orig_shape) > 2): d = d.reshape(orig_shape,order='F') if (return_trend): trend_data = trend_data.reshape(orig_shape,order='F') if (return_poly): p_shape = list(orig_shape) p_shape[0] = p.shape[0] p = p.reshape(p_shape,order='F') if (ax != 0): d = np.swapaxes(d,ax,0) if (return_trend): trend_data = np.swapaxes(trend_data,ax,0) if (return_poly): p = np.swapaxes(p,ax,0) if (return_trend): return trend_data elif(return_poly): return p else: return else: p = np.polynomial.polynomial.polyfit(_x,d,order) d = d - p[0] for i in range(order): d = d - p[i + 1] * _x ** (i + 1) return raise ValueError("Unknown trend removal method.") def _apsd(d, coordinate=None, intervals=None, options=None): """ Auto power Spectral Density caclculation for the data object d. Returns a data object with the coordinate replaced by frequency or wavenumber. The power spectrum is calculated in multiple intervals (described by slicing) and the mean and variance will be returned. INPUT: d: A flap.DataObject. coordinate: The name of the coordinate (string) along which to calculate APSD. This coordinate should change only along one data dimension and should be equidistant. This and all other cordinates changing along the data dimension of this coordinate will be removed. A new coordinate with name Frequency/Wavenumber will be added. The unit will be derived from the unit of the coordinate (e.g., Hz cm-1, m-1) intervals: Information of processing intervals. If dictionary with a single key: {selection coordinate: description}) Key is a coordinate name which can be different from the calculation coordinate. Description can be flap.Intervals, flap.DataObject or a list of two numbers. If it is a data object with data name identical to the coordinate the error ranges of the data object will be used for interval. If the data name is not the same as coordinate a coordinate with the same name will be searched for in the data object and the value_ranges will be used fromm it to set the intervals. If not a dictionary and not None it is interpreted as the interval description, the selection coordinate is taken the same as coordinate. If None, the whole data interval will be used as a single interval. options: Dictionary. (Keys can be abbreviated) 'Wavenumber' : True/False. Will use 2*Pi*f for the output coordinate scale, this is useful for wavenumber calculation. 'Resolution': Output resolution in the unit of the output coordinate. 'Range': Output range in the unit of the output coordinate. 'Logarithmic': True/False. If True will create logarithmic frequency binning. 'Interval_n': Minimum number of intervals to use for the processing. These are identical length intervals inserted into the input interval list. Default is 8. 'Error calculation' : True/False. Calculate or not error. Omitting error calculation increases speed. If Interval_n is 1 no error calculation is done. 'Trend removal': Trend removal description (see also _trend_removal()). A list, string or None. None: Don't remove trend. Strings: 'Mean': subtract mean Lists: ['Poly', n]: Fit an n order polynomial to the data and subtract. Trend removal will be applied to each interval separately. 'Hanning': True/False Use a Hanning window. """ if (d.data is None): raise ValueError("Cannot do spectral analysis without data.") default_options = {'Wavenumber': False, 'Resolution': None, 'Range': None, 'Logarithmic': False, 'Interval_n': 8, 'Trend removal': ['Poly', 2], 'Error calculation': True, 'Hanning' : True } _options = flap.config.merge_options(default_options, options, data_source=d.data_source, section='PS') if (coordinate is None): c_names = d.coordinate_names() try: c_names.index('Time') _coordinate = 'Time' except ValueError: raise ValueError("No coordinate is given for spectrum calculation and no Time coordinate found.") else: _coordinate = coordinate trend = _options['Trend removal'] wavenumber = _options['Wavenumber'] interval_n = _options['Interval_n'] log_scale = _options['Logarithmic'] hanning = _options['Hanning'] try: coord_obj = d.get_coordinate_object(_coordinate) except Exception as e: raise e if (len(coord_obj.dimension_list) != 1): raise ValueError("Spectrum calculation is possible only along coordinates changing along one dimension.") if (not coord_obj.mode.equidistant): raise ValueError("Spectrum calculation is possible only along equidistant coordinates.") try: intervals, index_intervals = _spectral_calc_interval_selection(d,None,_coordinate,intervals,interval_n) except Exception as e: raise e interval_n, start_ind = intervals.interval_number() calc_error = _options['Error calculation'] if (interval_n < 2): calc_error = False int_low, int_high = intervals.interval_limits() res_nat = 1./(int_high[0] - int_low[0]) range_nat = [0., 1./float(coord_obj.step[0])/2] index_int_low, index_int_high = index_intervals.interval_limits() interval_sample_n = (index_int_high[0] - index_int_low[0]) + 1 # Determining the output array shape. out_shape = list(d.shape) # Determining two pairs of index tuples for copying the data after PS calculation # of one time interval. For complex data we need to copy in two steps proc_dim = coord_obj.dimension_list[0] if (d.data.dtype.kind == 'c' ): # For complex data negative frequencies are also valuable # n_apsd is the number of valuable points in the spectrum after rearrangement but before # and range and resolution transformation n_apsd = index_int_high[0] - index_int_low[0] + 1 # These will be tuples used in reorganizing the raw FFT spectra into continuous # frequency scale. We need this as for complex data the negative frequencies are # in the second half of the array ind_in1 = [slice(0,d) for d in d.shape] ind_in2 = copy.deepcopy(ind_in1) ind_out1 = copy.deepcopy(ind_in1) ind_out2 = copy.deepcopy(ind_in1) ind_in1[proc_dim] = slice(0,int(n_apsd/2)) ind_out1[proc_dim] = slice(n_apsd-int(n_apsd/2), n_apsd) # zero_ind is the index where the 0 frequency will be after rearranging the spectrum zero_ind = n_apsd - int(n_apsd/2) ind_in2[proc_dim] = slice(int(n_apsd/2),n_apsd) ind_out2[proc_dim] = slice(0, n_apsd-int(n_apsd/2)) else: n_apsd = int((index_int_high[0] - index_int_low[0] + 1) / 2) ind_in1 = [slice(0,d) for d in d.shape] ind_in1[proc_dim] = slice(0,n_apsd) zero_ind = 0 ind_out1 = None ind_in2 = None ind_out2 = None # Calculating the binning boxes from the resolution and range and related indices ind_bin, ind_slice, out_data_num, ind_nonzero, index_nonzero, ind_zero, nf_out, f_cent, \ fcent_index_range, res = _spectrum_binning_indices(wavenumber, n_apsd, _options, zero_ind, res_nat, range_nat, log_scale, out_shape, proc_dim) out_shape[proc_dim] = nf_out # These arrays will collect the data and the square of the data to enable error calculation out_data = np.zeros(tuple(out_shape), dtype=float) if (calc_error): out_data_square = np.zeros(tuple(out_shape), dtype=float) # This is a tuple to index into the original data array to get data for processing ind_proc = [slice(0,d) for d in d.shape] # Number of processing intervals n_proc_int = len(int_low) if (hanning): hanning_window = np.hanning(index_int_high[0] - index_int_low[0] + 1) hanning_window /= math.sqrt(3./8) if (len(d.shape) > 1): han_sh = [1] * len(d.shape) han_sh[proc_dim] = hanning_window.size hanning_window = hanning_window.reshape(han_sh) # We need to determine a shape to which the out_data_num array will be broadcasted to # allow dividing all spectra. bs is this shape if (ind_nonzero is not None): bs = [1]*out_data.ndim bs[proc_dim] = len(index_nonzero) bs= tuple(bs) else: bs = [1]*out_data.ndim bs[proc_dim] = out_data.shape[proc_dim] bs = tuple(bs) for i_int in range(n_proc_int): # Setting the index range of the actual interval ind_proc[proc_dim] = slice(index_int_low[i_int], index_int_high[i_int] + 1) # Getting the data for processing, this might be multi-dim data_proc = copy.deepcopy(d.data[tuple(ind_proc)]) if (trend is not None): try: _trend_removal(data_proc,proc_dim,trend) except Exception as e: raise e if (hanning): data_proc *= hanning_window # Calculating APS on natural resolution, full frequency scale dfft = np.fft.fft(data_proc,axis=proc_dim) dps = (dfft.conjugate() * dfft).real # Rearranging the negative frequencies if (ind_in2 is not None): dps1 = np.empty(dps.shape,dtype=dps.dtype) dps1[tuple(ind_out1)] = dps[tuple(ind_in1)] dps1[tuple(ind_out2)] = dps[tuple(ind_in2)] dps = dps1 else: dps = dps[tuple(ind_in1)] # Cutting the range if ((ind_slice) is not None): dps = dps[tuple(ind_slice)] # Binning the spectrum and summing up the time intervals if (ind_bin is not None): out_data_interval = np.zeros(tuple(out_shape), dtype=float) np.add.at(out_data_interval, tuple(ind_bin), dps) else: out_data_interval = dps # Dividing by the number of points in each bin if (ind_nonzero is not None): out_data_interval[tuple(ind_nonzero)] /= out_data_num[index_nonzero].reshape(bs) else: out_data_interval /= out_data_num.reshape(bs) out_data_interval /= interval_sample_n out_data += out_data_interval if (calc_error): out_data_square += out_data_interval ** 2 out_data /= n_proc_int if (calc_error): out_err = np.sqrt(np.clip(out_data_square / n_proc_int - out_data ** 2, 0,None)) / math.sqrt(n_proc_int) else: out_err = None # If there are frequency bins without data setting them to np.NaN if (ind_nonzero is not None): out_data[tuple(ind_zero)] = np.NaN # We create the new data object with this trick as data_object.py cannot be imported d_out = type(d)(data_array=out_data, error=out_err, coordinates=d.coordinates, exp_id=d.exp_id, data_unit=flap.coordinate.Unit("Spectral density")) if (wavenumber): out_name = 'Wavenumber' out_unit = '1/'+coord_obj.unit.unit res *= 2 * math.pi #fcent *= 2* math.pi #UNUSED VARIABLE else: out_name = 'Frequency' out_unit = 'Hz' # Finding all coordinates which have common dimension with the converted one. # These will be deleted. del_coord_list = [] for c in d_out.coordinates: try: c.dimension_list.index(proc_dim) del_coord_list.append(c.unit.name) except ValueError: pass for c in del_coord_list: d_out.del_coordinate(c) if (log_scale): c = flap.coordinate.Coordinate(name = out_name, unit = out_unit, mode = flap.coordinate.CoordinateMode(equidistant=False), shape = [f_cent.size], values = f_cent, dimension_list=[proc_dim]) else: c = flap.coordinate.Coordinate(name = out_name, unit = out_unit, mode = flap.coordinate.CoordinateMode(equidistant=True), shape = [], start = (fcent_index_range[0] - zero_ind) * res, step = res, dimension_list=[proc_dim]) d_out.add_coordinate_object(c,index=0) return d_out def _spectrum_binning_indices(wavenumber, n_apsd, _options, zero_ind, res_nat, range_nat, log_scale, out_shape, proc_dim): """ Helper routine for apsd and cpsd for calculating numbers and indices for processing the spectra. Returns: ind_bin, ind_slice, out_data_num, ind_nonzero, index_nonzero, ind_zero, nf_out, f_cent, fcent_index_range, res """ # Calculating the binning boxes from the resolution and range fscale_nat = (np.arange(n_apsd,dtype=float) - zero_ind) * res_nat if (log_scale): if (_options['Range'] is not None): rang = _options['Range'] if ((type(rang) is not list) or (len(rang) != 2)): raise ValueError("Invalid spectrum range setting.") if (_options['Resolution'] is not None): res = _options['Resolution'] else: res = rang[0] / 10 else: if (_options['Resolution'] is not None): res = _options['Resolution'] rang = [res, range_nat[1]] else: res = res_nat rang = [res_nat * 10, range_nat[1]] if (rang[0] >= rang[1]): raise ValueError("Illegal frequency range.") if (rang[0] <= 0): raise ValueError("Illegal frequency range for logarithmic frequency resolution.") # Setting the lower and upper limit of the first box so as f_high-f_low=res and # (log10(f_low)+log10(f_high))/2 = log10(range[0]) f_low = (-res + math.sqrt(res ** 2 + 4 * rang[0] ** 2))/ 2 f_high = rang[0] ** 2 / f_low # Setting up a box list which is linear on the log scale delta = math.log10(f_high/f_low) nf_out = (math.log10(rang[1]) - math.log10(f_low)) // delta + 2 f_box = 10 ** (math.log10(f_low) + np.arange(nf_out) * delta) # if (f_box[-1] > range_nat[1]): # f_box[-1] = range_nat[1] # Box index for the original spectrum points apsd_index = np.digitize(fscale_nat, f_box) - 1 ind_out_low = np.nonzero(apsd_index < 0)[0] ind_out_high = np.nonzero(apsd_index >= f_box.size - 1)[0] if ((ind_out_low.size != 0) or (ind_out_high.size != 0)): if (ind_out_low.size == 0): slice_start = 0 else: slice_start = ind_out_low[-1]+1 if (ind_out_high.size == 0): slice_end = fscale_nat.size else: slice_end = ind_out_high[0] apsd_slice = slice(slice_start, slice_end) ind_slice = [slice(0,d) for d in out_shape] ind_slice[proc_dim] = apsd_slice apsd_index = apsd_index[apsd_slice] else: apsd_slice = None ind_slice = None f_cent = np.sqrt(f_box[0:-1] * f_box[1:]) nf_out = f_cent.size out_data_num = np.zeros(nf_out,dtype=np.int32) np.add.at(out_data_num, apsd_index, np.int32(1)) index_nonzero = np.nonzero(out_data_num != 0)[0] if (index_nonzero.size == out_data_num.size): ind_nonzero = None ind_zero = None else: ind_nonzero = [slice(0,d) for d in out_shape] ind_nonzero[proc_dim] = index_nonzero index_zero = np.nonzero(out_data_num == 0)[0] ind_zero = [slice(0,d) for d in out_shape] ind_zero[proc_dim] = index_zero ind_bin = [slice(0,d) for d in out_shape] ind_bin[proc_dim] = apsd_index fcent_index_range = None else: # Linear scale if (_options['Resolution'] is not None): if (wavenumber): res = _options['Resolution']/2/math.pi else: res = _options['Resolution'] if (res > range_nat[1] / 2): raise ValueError("Requested resolution is too coarse.") else: res = res_nat res_bin = int(round(res / res_nat)) if (res_bin < 1): res_bin = 1 res = res_nat * res_bin # Determining the number of bins nf_out = int(n_apsd / res_bin) # The index range in the apsd array where the central frequencies are available if (res_bin == 1): fcent_index_range = [0, n_apsd - 1] nf_out = n_apsd else: fcent_index_range = [zero_ind % res_bin, (n_apsd - 1 - (zero_ind % res_bin)) // res_bin * res_bin + zero_ind % res_bin] nf_out = (fcent_index_range[1] - fcent_index_range[0]) // res_bin + 1 if (_options['Range'] is not None): rang = _options['Range'] if ((type(rang) is not list) or (len(rang) != 2)): raise ValueError("Invalid spectrum range setting.") if (rang[0] >= rang[1]): raise ValueError("Illegal frequency range.") if (fcent_index_range[0] < rang[0] / res_nat + zero_ind): fcent_index_range[0] = int(round(rang[0] / res)) * res_bin + zero_ind if (fcent_index_range[1] > rang[1] / res_nat + zero_ind): fcent_index_range[1] = int(round(rang[1] / res)) * res_bin + zero_ind nf_out = (fcent_index_range[1] - fcent_index_range[0]) // res_bin + 1 if (nf_out < 3): raise ValueError("Too coarse spectrum resolution.") if ((fcent_index_range[0] < 0) or (fcent_index_range[0] > n_apsd - 1) \ or (fcent_index_range[1] < 0) or (fcent_index_range[1] > n_apsd - 1)): raise ValueError("Spectrum axis range is outside of natural ranges.") # This slice will cut the necessary part from the raw APSD sepctrum apsd_slice = slice(fcent_index_range[0] - res_bin // 2, fcent_index_range[1] + (res_bin - res_bin // 2)) # A full box start is this number of apsd spectrum pints before apsd_slice.start start_shift = 0 if (apsd_slice.start < 0): start_shift = - apsd_slice.start apsd_slice = slice(0, apsd_slice.stop) if (apsd_slice.stop > n_apsd): apsd_slice = slice(apsd_slice.start, n_apsd) # This index array will contain the box index for each APSD spectral point remaining after # the above slice if (res_bin != 1): apsd_index = (np.arange(apsd_slice.stop - apsd_slice.start,dtype=np.int32) + start_shift) // res_bin else: apsd_index = None if (apsd_slice is not None): ind_slice = [slice(0,d) for d in out_shape] ind_slice[proc_dim] = apsd_slice else: ind_slice = None if (apsd_index is not None): ind_bin = [slice(0,d) for d in out_shape] ind_bin[proc_dim] = apsd_index out_data_num = np.zeros(nf_out,dtype=np.int32) np.add.at(out_data_num, apsd_index, np.int32(1)) else: ind_bin = None out_data_num = np.zeros(nf_out,dtype=np.int32) + 1 ind_nonzero = None index_nonzero = None ind_zero = None f_cent = None return ind_bin, ind_slice, out_data_num, ind_nonzero, index_nonzero, ind_zero, nf_out, \ f_cent,fcent_index_range, res def _cpsd(d, ref=None, coordinate=None, intervals=None, options=None): """ Complex Cross Power Spectrum calculation for the data object d taking d_ref as reference. If ref is not set d is used as reference, that is all spectra are calculated within d. Calculates all spectra between all signals in ref and d, but not inside d and ref. d and ref both should have the same equidistant coordinate with equal sampling points. Returns a data object with dimension number d.dim+ref.dim-1. The coordinate is replaced by frequency or wavenumber. The spectrum is calculated in multiple intervals (described by slicing) and the mean and variance will be returned. INPUT: d: A flap.DataObject. ref: Another flap.DataObject coordinate: The name of the coordinate (string) along which to calculate CPSD. This coordinate should change only along one data dimension and should be equidistant. This and all other cordinates changing along the data dimension of this coordinate will be removed. A new coordinate with name Frequency/Wavenumber will be added. The unit will be derived from the unit of the coordinate (e.g., Hz cm-1, m-1) intervals: Information of processing intervals. If dictionary with a single key: {selection coordinate: description}) Key is a coordinate name which can be different from the calculation coordinate. Description can be flap.Intervals, flap.DataObject or a list of two numbers. If it is a data object with data name identical to the coordinate the error ranges of the data object will be used for interval. If the data name is not the same as coordinate a coordinate with the same name will be searched for in the data object and the value_ranges will be used fromm it to set the intervals. If not a dictionary and not None it is interpreted as the interval description, the selection coordinate is taken the same as coordinate. If None, the whole data interval will be used as a single interval. options: Dictionary. (Keys can be abbreviated) 'Wavenumber' : True/False. Will use 2*Pi*f for the output coordinate scale, this is useful for wavenumber calculation. 'Resolution': Output resolution in the unit of the output coordinate. 'Range': Output range in the unit of the output coordinate. 'Logarithmic': True/False. If True will create logarithmic frequency binning. 'Interval_n': Minimum number of intervals to use for the processing. These are identical length intervals inserted into the input interval list. Default is 8. 'Error calculation' : True/False. Calculate or not error. Omitting error calculation increases speed. If Interval_n is 1 no error calculation is done. 'Trend removal': Trend removal description (see also _trend_removal()). A list, string or None. None: Don't remove trend. Strings: 'mean': subtract mean Lists: ['Poly', n]: Fit an n order polynomial to the data and subtract. Trend removal will be applied to each interval separately. 'Hanning': True/False Use a Hanning window. 'Error calculation' : True/False. Calculate or not error. Omitting error calculation increases speed. If Interval_n is 1 no error calculation is done. 'Normalize': Normalize crosspower spectrum, that is return Return value: Three data objects: spectrum, phase, confidence spectrum: The complex power spectrum or coherency if options['Normalize'] is True The error will contain the condifence level. """ if (d.data is None): raise ValueError("Cannot do spectral analysis without data.") default_options = {'Wavenumber': False, 'Resolution': None, 'Range': None, 'Logarithmic': False, 'Interval_n': 8, 'Trend removal': ['Poly', 2], 'Hanning' : True, 'Error calculation': True, 'Normalize': False } _options = flap.config.merge_options(default_options, options, data_source=d.data_source, section='PS') if (coordinate is None): c_names = d.coordinate_names() try: c_names.index('Time') _coordinate = 'Time' except ValueError: raise ValueError("No coordinate is given for spectrum calculation and no Time coordinate found.") else: _coordinate = coordinate trend = _options['Trend removal'] wavenumber = _options['Wavenumber'] interval_n = _options['Interval_n'] log_scale = _options['Logarithmic'] hanning = _options['Hanning'] norm = _options['Normalize'] error_calc = _options['Error calculation'] try: coord_obj = d.get_coordinate_object(_coordinate) except Exception as e: raise e if (len(coord_obj.dimension_list) != 1): raise ValueError("Spectrum calculation is possible only along coordinates changing in one dimension.") if (not coord_obj.mode.equidistant): raise ValueError("Spectrum calculation is possible only along equidistant coordinates.") if (ref is None): _ref = d ref_coord_obj = coord_obj try: intervals, index_intervals = _spectral_calc_interval_selection(d, None, _coordinate, intervals, interval_n) except Exception as e: raise e else: _ref = ref try: ref_coord_obj = _ref.get_coordinate_object(_coordinate) except Exception as e: raise e if (len(ref_coord_obj.dimension_list) != 1): raise ValueError("Spectrum calculation is possible only along coordinates changing in one dimension (ref).") if (not ref_coord_obj.mode.equidistant): raise ValueError("Spectrum calculation is possible only along equidistant coordinates (ref).") if (math.fabs(ref_coord_obj.step[0] - coord_obj.step[0]) * d.shape[coord_obj.dimension_list[0]] \ > math.fabs(ref_coord_obj.step[0])): raise ValueError("Incompatible coordinate step sizes." ) if (math.fabs(ref_coord_obj.start - coord_obj.start) > math.fabs(coord_obj.step[0])): raise ValueError("Incompatible coordinate start values." ) try: intervals, index_intervals = _spectral_calc_interval_selection(d, _ref, _coordinate, intervals, interval_n) except Exception as e: raise e interval_n, start_ind = intervals.interval_number() int_low, int_high = intervals.interval_limits() res_nat = 1./(int_high[0] - int_low[0]) range_nat = [0., 1./float(coord_obj.step[0])/2] index_int_low, index_int_high = index_intervals.interval_limits() interval_sample_n = (index_int_high[0] - index_int_low[0]) + 1 # The processing dimensions in the two objects proc_dim = coord_obj.dimension_list[0] proc_dim_ref = ref_coord_obj.dimension_list[0] # Determining the output array shape. First the d object dimensions will come, the # spectrum scale will be proc_dim. Then the ref dimensions will come with proc_dim_ref removed. # The size of the output array in the processig dimension will be entered later out_shape = list(d.shape) out_shape_add = list(_ref.shape) del out_shape_add[proc_dim_ref] out_shape += out_shape_add proc_dim_out = proc_dim # Flag to show whether the APSDs should be calculated aps_calc = error_calc or norm # Determining two pairs of index tuples for copying the data after PS calculation # of one time interval. For complex data we need to copy in two steps if ((d.data.dtype.kind == 'c' ) or (_ref.data.dtype.kind == 'c')): # For complex data negative frequencies are also valuable # n_apsd is the number of valuable points in the spectrum after rearrangement but before # and range and resolution transformation n_apsd = index_int_high[0] - index_int_low[0] + 1 #THIS WAS n_cpsd BEFORE, WOULD HAVE CAUSED AN ERROR # These will be tuples used in reorganizing the raw FFT spectra into continuous # frequency scale. We need this as for complex data the negative frequencies are # in the second half of the array ind_in1 = [slice(0,d) for d in out_shape] ind_in2 = copy.deepcopy(ind_in1) ind_out1 = copy.deepcopy(ind_in1) ind_out2 = copy.deepcopy(ind_in1) ind_in1[proc_dim_out] = slice(0,int(n_apsd/2)) ind_out1[proc_dim_out] = slice(n_apsd-int(n_apsd/2), n_apsd) # zero_ind is the index where the 0 frequency will be after rearranging the spectrum zero_ind = n_apsd - int(n_apsd/2) ind_in2[proc_dim_out] = slice(int(n_apsd/2),n_apsd) ind_out2[proc_dim_out] = slice(0, n_apsd-int(n_apsd/2)) if (aps_calc): ind_in1_apsd = [slice(0,ds) for ds in d.shape] ind_in2_apsd = copy.deepcopy(ind_in1_apsd) ind_out1_apsd = copy.deepcopy(ind_in1_apsd) ind_out2_apsd = copy.deepcopy(ind_in1_apsd) ind_in1_apsd[proc_dim] = slice(0,int(n_apsd/2)) ind_in2_apsd[proc_dim] = slice(int(n_apsd/2),n_apsd) ind_out1_apsd[proc_dim] = slice(n_apsd-int(n_apsd/2), n_apsd) ind_out2_apsd[proc_dim] = slice(0, n_apsd-int(n_apsd/2)) ind_in1_apsd_ref = [slice(0,ds) for ds in _ref.shape] ind_in2_apsd_ref = copy.deepcopy(ind_in1_apsd_ref) ind_out1_apsd_ref = copy.deepcopy(ind_in1_apsd_ref) ind_out2_apsd_ref = copy.deepcopy(ind_in1_apsd_ref) ind_in1_apsd_ref[proc_dim_ref] = slice(0,int(n_apsd/2)) ind_in2_apsd_ref[proc_dim_ref] = slice(int(n_apsd/2),n_apsd) ind_out1_apsd_ref[proc_dim_ref] = slice(n_apsd-int(n_apsd/2), n_apsd) ind_out2_apsd_ref[proc_dim_ref] = slice(0, n_apsd-int(n_apsd/2)) else: n_apsd = int((index_int_high[0] - index_int_low[0] + 1) / 2) ind_in1 = [slice(0,ds) for ds in out_shape] ind_in1[proc_dim_out] = slice(0,n_apsd) zero_ind = 0 ind_out1 = None ind_in2 = None ind_out2 = None if (aps_calc): ind_in1_apsd = [slice(0,ds) for ds in d.shape] ind_in1_apsd[proc_dim] = slice(0,n_apsd) ind_in1_apsd_ref = [slice(0,ds) for ds in _ref.shape] ind_in1_apsd_ref[proc_dim_ref] = slice(0,n_apsd) ind_bin, ind_slice, out_data_num, ind_nonzero, index_nonzero, ind_zero, nf_out, f_cent, \ fcent_index_range, res = _spectrum_binning_indices(wavenumber, n_apsd, _options, zero_ind, res_nat, range_nat, log_scale, out_shape, proc_dim_out) if (aps_calc): if (ind_slice is not None): ind_slice_apsd = [slice(0,ds) for ds in d.shape] ind_slice_apsd[proc_dim] = ind_slice[proc_dim_out] ind_slice_apsd_ref = [slice(0,ds) for ds in _ref.shape] ind_slice_apsd_ref[proc_dim_ref] = ind_slice[proc_dim_out] else: ind_slice_apsd = None ind_slice_apsd_ref = None if (ind_bin is not None): ind_bin_apsd = [slice(0,ds) for ds in d.shape] ind_bin_apsd[proc_dim] = ind_bin[proc_dim_out] ind_bin_apsd_ref = [slice(0,ds) for ds in _ref.shape] ind_bin_apsd_ref[proc_dim_ref] = ind_bin[proc_dim_out] else: ind_bin_apsd = None ind_bin_apsd_ref = None if (ind_nonzero is not None): ind_nonzero_apsd = [slice(0,ds) for ds in d.shape] ind_nonzero_apsd[proc_dim] = index_nonzero ind_nonzero_apsd_ref = [slice(0,ds) for ds in _ref.shape] ind_nonzero_apsd_ref[proc_dim_ref] = index_nonzero else: ind_nonzero_apsd = None ind_nonzero_apsd_ref = None out_shape[proc_dim_out] = nf_out # This will collect the output data out_data = np.zeros(tuple(out_shape), dtype=complex) # These will collect the autospectra if (aps_calc): apsd_shape = list(d.shape) apsd_shape[proc_dim] = nf_out apsd_ref_shape = list(_ref.shape) apsd_ref_shape[proc_dim_ref] = nf_out apsd = np.zeros(apsd_shape, dtype=float) apsd_ref = np.zeros(apsd_ref_shape, dtype=float) # This is a tuple to index into the original data arrays to get data for processing ind_proc = [slice(0,ds) for ds in d.shape] ind_proc_ref = [slice(0,ds) for ds in _ref.shape] # Number of processing intervals n_proc_int = len(int_low) if (hanning): hanning_window = np.hanning(index_int_high[0] - index_int_low[0] + 1) hanning_window /= math.sqrt(3./8) if (len(d.shape) > 1): han_sh = [1] * len(d.shape) han_sh[proc_dim] = hanning_window.size hanning_window = hanning_window.reshape(han_sh) if (len(_ref.shape) > 1): han_sh = [1] * len(_ref.shape) han_sh[proc_dim_ref] = hanning_window.size hanning_window_ref = hanning_window.reshape(han_sh) # We need to determine a shape to which the out_data_num array will be broadcasted to # allow dividing all spectra. bs is this shape if (ind_nonzero is not None): bs = [1]*out_data.ndim bs[proc_dim_out] = len(index_nonzero) bs= tuple(bs) if (aps_calc): bs_apsd = [1]*d.data.ndim bs_apsd[proc_dim] = len(index_nonzero) bs_apsd_ref = [1]*_ref.data.ndim bs_apsd_ref[proc_dim_ref] = len(index_nonzero) else: bs = [1]*out_data.ndim bs[proc_dim_out] = out_data.shape[proc_dim_out] bs = tuple(bs) if (aps_calc): bs_apsd = [1]*d.data.ndim bs_apsd[proc_dim] = out_data.shape[proc_dim_out] bs_apsd_ref = [1]*_ref.data.ndim bs_apsd_ref[proc_dim_ref] = out_data.shape[proc_dim_out] for i_int in range(n_proc_int): # Setting the index range of the actual interval ind_proc[proc_dim] = slice(index_int_low[i_int], index_int_high[i_int] + 1) ind_proc_ref[proc_dim_ref] = slice(index_int_low[i_int], index_int_high[i_int] + 1) # Getting the data for processing, this might be multi-dim data_proc = copy.deepcopy(d.data[tuple(ind_proc)]) data_proc_ref = copy.deepcopy(_ref.data[tuple(ind_proc_ref)]) if (trend is not None): try: _trend_removal(data_proc,proc_dim,trend) _trend_removal(data_proc_ref,proc_dim_ref,trend) except Exception as e: raise e if (hanning): data_proc *= hanning_window.astype(data_proc.dtype) data_proc_ref *= hanning_window_ref.astype(data_proc_ref.dtype) # Calculating FFT dfft = np.fft.fft(data_proc,axis=proc_dim) dfft_ref = np.fft.fft(data_proc_ref,axis=proc_dim_ref) dps, axis_source, axis_number = flap.tools.multiply_along_axes(dfft, dfft_ref.conjugate(), [proc_dim, proc_dim_ref]) if (aps_calc): dfft_aps = (dfft * dfft.conjugate()).real dfft_aps_ref = (dfft_ref * dfft_ref.conjugate()).real # Rearranging the negative frequencies if (ind_in2 is not None): dps1 = np.empty(dps.shape,dtype=dps.dtype) dps1[tuple(ind_out1)] = dps[tuple(ind_in1)] dps1[tuple(ind_out2)] = dps[tuple(ind_in2)] dps = dps1 if (aps_calc): dfft_aps1 = np.empty(dfft_aps.shape,dtype=dfft_aps.dtype) #THIS USED TO BE dfft_aps1 WHICH IS UNDEFINED dfft_aps1[tuple(ind_out1_apsd)] = dfft_aps[tuple(ind_in1_apsd)] dfft_aps1[tuple(ind_out2_apsd)] = dfft_aps[tuple(ind_in2_apsd)] dfft_aps = dfft_aps1 dfft_aps1 = np.empty(dfft_aps_ref.shape,dtype=dfft_aps_ref.dtype) dfft_aps1[tuple(ind_out1_apsd_ref)] = dfft_aps_ref[tuple(ind_in1_apsd_ref)] dfft_aps1[tuple(ind_out2_apsd_ref)] = dfft_aps_ref[tuple(ind_in2_apsd_ref)] dfft_aps_ref = dfft_aps1 else: dps = dps[tuple(ind_in1)] if (aps_calc): dfft_aps = dfft_aps[tuple(ind_in1_apsd)] dfft_aps_ref = dfft_aps_ref[tuple(ind_in1_apsd_ref)] # Cutting the range if ((ind_slice) is not None): dps = dps[tuple(ind_slice)] if (aps_calc): dfft_aps = dfft_aps[tuple(ind_slice_apsd)] dfft_aps_ref = dfft_aps_ref[tuple(ind_slice_apsd_ref)] # Binning the spectrum and summing up the time intervals if (ind_bin is not None): out_data_interval = np.zeros(tuple(out_shape), dtype=complex) np.add.at(out_data_interval, tuple(ind_bin), dps) if (aps_calc): apsd_interval = np.zeros(tuple(apsd_shape), dtype=float) np.add.at(apsd_interval, tuple(ind_bin_apsd), dfft_aps) apsd_ref_interval = np.zeros(tuple(apsd_ref_shape), dtype=float) np.add.at(apsd_ref_interval, tuple(ind_bin_apsd_ref), dfft_aps_ref) else: out_data_interval = dps if (aps_calc): apsd_interval = dfft_aps apsd_ref_interval = dfft_aps_ref # Dividing by the number of points in each bin if (ind_nonzero is not None): out_data_interval[tuple(ind_nonzero)] /= out_data_num[index_nonzero].reshape(bs) if (aps_calc): apsd_interval[tuple(ind_nonzero_apsd)] /= out_data_num[index_nonzero].reshape(bs_apsd) apsd_ref_interval[tuple(ind_nonzero_apsd_ref)] /= out_data_num[index_nonzero].reshape(bs_apsd_ref) else: out_data_interval /= out_data_num.reshape(bs) if (aps_calc): apsd_interval /= out_data_num.reshape(bs_apsd) apsd_ref_interval /= out_data_num.reshape(bs_apsd_ref) out_data_interval /= interval_sample_n out_data += out_data_interval if (aps_calc): apsd_interval /= interval_sample_n apsd_ref_interval /= interval_sample_n apsd += apsd_interval apsd_ref += apsd_ref_interval out_data /= n_proc_int if (aps_calc): apsd_norm, axis_source, axis_number = flap.tools.multiply_along_axes(apsd, apsd_ref, [proc_dim, proc_dim_ref]) apsd_norm /= n_proc_int ** 2 if (norm): if (ind_nonzero is not None): out_data[tuple(ind_nonzero)] /= np.sqrt(apsd_norm[tuple(ind_nonzero)]) else: out_data /= np.sqrt(apsd_norm) # If there are frequency bins without data setting them to np.NaN if (ind_nonzero is not None): out_data[tuple(ind_zero)] = np.NaN # Putting significance into error error = np.full(tuple(out_shape), np.NaN, dtype = float) error_arr = np.full(out_data_num.shape, np.NaN, dtype=float) if (ind_nonzero is not None): error_arr[index_nonzero] = 1./
np.sqrt(out_data_num[index_nonzero] * n_proc_int)
numpy.sqrt
import numpy as np import numpy.testing as npt import pytest from quara.objects import matrix_basis from quara.objects.composite_system import CompositeSystem from quara.objects.elemental_system import ElementalSystem from quara.objects.mprocess import ( MProcess, convert_var_index_to_mprocess_index, convert_mprocess_index_to_var_index, convert_hss_to_var, convert_var_to_hss, ) from quara.objects.mprocess_typical import generate_mprocess_from_name from quara.settings import Settings from quara.objects.povm_typical import generate_povm_from_name class TestMProcess: def test_init_error(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) # Test that HS must be square matrix hs = np.array( [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.float64, ) with pytest.raises(ValueError): MProcess(c_sys, [hs]) # Test that dim of HS must be square number hs = np.array([[1, 0, 0], [0, 0, 0], [0, 0, 0]], dtype=np.float64) with pytest.raises(ValueError): MProcess(c_sys, [hs]) # Test that HS must be real matrix hs = np.array( [[1j, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.complex128, ) with pytest.raises(ValueError): MProcess(c_sys, [hs]) # Test that dim of HS equals dim of CompositeSystem hs = np.array( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], ], dtype=np.float64, ) with pytest.raises(ValueError): MProcess(c_sys, [hs]) # Test shape hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] with pytest.raises(ValueError): MProcess(c_sys, hss, shape=(1,)) # Test e_sys = ElementalSystem(0, matrix_basis.get_comp_basis()) c_sys = CompositeSystem([e_sys]) # Test that c_sys.is_orthonormal_hermitian_0thprop_identity == False hs = np.array( [[1, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.float64, ) with pytest.raises(ValueError): MProcess(c_sys, [hs]) def test_init_is_physicality_required(self): e_sys = ElementalSystem(1, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) # gate is not TP hs_0 = np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]], dtype=np.float64 ) hs_1 = np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]], dtype=np.float64 ) hs_not_tp = [hs_0, hs_1] with pytest.raises(ValueError): MProcess(c_sys, hs_not_tp) with pytest.raises(ValueError): MProcess(c_sys, hs_not_tp, is_physicality_required=True) # gate is not CP hs_0 = (1 / 2) * np.array( [[2, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]], dtype=np.float64 ) hs_1 = (1 / 2) * np.array( [[-1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]], dtype=np.float64, ) hs_not_cp = [hs_0, hs_1] with pytest.raises(ValueError): MProcess(c_sys, hs_not_cp) with pytest.raises(ValueError): MProcess(c_sys, hs_not_cp, is_physicality_required=True) # case: when is_physicality_required is False, it is not happened ValueError MProcess(c_sys, hs_not_tp, is_physicality_required=False) MProcess(c_sys, hs_not_cp, is_physicality_required=False) def test_access_dim(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # Act actual = mprocess.dim # Assert expected = 2 assert actual == expected # Test that "dim" cannot be updated with pytest.raises(AttributeError): mprocess.dim = 100 def test_access_num_outcomes(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # Act actual = mprocess.num_outcomes # Assert expected = 2 assert actual == expected # Test that "num_outcomes" cannot be updated with pytest.raises(AttributeError): mprocess.num_outcomes = 100 def test_access_hss(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # Act actual = mprocess.hss # Assert hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) expected = [hs_0, hs_1] for a, e in zip(actual, expected): npt.assert_almost_equal(a, e, decimal=15) # Test that "num_outcomes" cannot be updated with pytest.raises(AttributeError): mprocess.num_outcomes = 100 def test_hs(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) # case 1: one-dimensional mprocess = generate_mprocess_from_name(c_sys, "z-type1") actual = mprocess.hs(0) expected = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) npt.assert_almost_equal(actual, expected, decimal=15) actual = mprocess.hs(1) expected = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) npt.assert_almost_equal(actual, expected, decimal=15) # case 2: multi-dimensional hs = np.zeros((4, 4), dtype=np.float64) hss = [] for index in range(6): tmp_hs = hs.copy() tmp_hs[0][0] = index hss.append(tmp_hs) mprocess = MProcess(c_sys, hss, shape=(2, 3), is_physicality_required=False) assert mprocess.hs((0, 0))[0][0] == 0 assert mprocess.hs((0, 1))[0][0] == 1 assert mprocess.hs((0, 2))[0][0] == 2 assert mprocess.hs((1, 0))[0][0] == 3 assert mprocess.hs((1, 1))[0][0] == 4 assert mprocess.hs((1, 2))[0][0] == 5 def test_access_shape(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) # case 1: one-dimensional mprocess = generate_mprocess_from_name(c_sys, "z-type1") actual = mprocess.shape expected = (2,) assert actual == expected # case 2: multi-dimensional hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, shape=(1, 2)) actual = mprocess.shape expected = (1, 2) assert actual == expected # Test that "shape" cannot be updated mprocess = generate_mprocess_from_name(c_sys, "z-type1") with pytest.raises(AttributeError): mprocess.shape = (2,) def test_access_mode_sampling(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] # case 1: default(False) mprocess = MProcess(c_sys, hss) assert mprocess.mode_sampling == False # case 2: mode_sampling=False mprocess = MProcess(c_sys, hss, mode_sampling=False) assert mprocess.mode_sampling == False # case 3: mode_sampling=True mprocess = MProcess(c_sys, hss, mode_sampling=True) assert mprocess.mode_sampling == True # Test that "mode_sampling" cannot be updated with pytest.raises(AttributeError): mprocess.mode_sampling = False def test_access_random_seed_or_generator(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] # case 1: default(None) mprocess = MProcess(c_sys, hss) assert mprocess.random_seed_or_generator == None # case 2: random_seed_or_generator=1 mprocess = MProcess(c_sys, hss, mode_sampling=True, random_seed_or_generator=1) assert mprocess.random_seed_or_generator == 1 # Test that "random_seed_or_generator" cannot be updated with pytest.raises(AttributeError): mprocess.random_seed_or_generator = 1 def test_set_mode_sampling(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # case 1: mode_sampling=True, random_seed_or_generator=None mprocess.set_mode_sampling(True) assert mprocess.mode_sampling == True assert mprocess.random_seed_or_generator == None # case 2: mode_sampling=True, random_seed_or_generator=1 mprocess.set_mode_sampling(True, random_seed_or_generator=1) assert mprocess.mode_sampling == True assert mprocess.random_seed_or_generator == 1 # case 3: mode_sampling=True -> mode_sampling=False mprocess.set_mode_sampling(True, random_seed_or_generator=1) mprocess.set_mode_sampling(False) assert mprocess.mode_sampling == False assert mprocess.random_seed_or_generator == None # case 4: mode_sampling=False, mode_sampling is not None with pytest.raises(ValueError): mprocess.set_mode_sampling(False, random_seed_or_generator=1) def test_access_eps_zero(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] # case 1: default(10 ** -8) mprocess = MProcess(c_sys, hss) assert mprocess.eps_zero == 10 ** -8 # case 2: eps_zero=1 mprocess = MProcess(c_sys, hss, eps_zero=10 ** -5) assert mprocess.eps_zero == 10 ** -5 # Test that "eps_zero" cannot be updated with pytest.raises(AttributeError): mprocess.eps_zero = 1 def test_is_eq_constraint_satisfied(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) # case 1: is_eq_constraint_satisfied=True hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, is_physicality_required=False) assert mprocess.is_eq_constraint_satisfied() == True # case 2: is_eq_constraint_satisfied=False hs_0 = np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]], dtype=np.float64 ) hs_1 = np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]], dtype=np.float64 ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, is_physicality_required=False) assert mprocess.is_eq_constraint_satisfied() == False # case 3: atol=1e-1 hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1.1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, is_physicality_required=False) assert mprocess.is_eq_constraint_satisfied(atol=1e-1) == True def test_is_ineq_constraint_satisfied(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) # case 1: is_eq_constraint_satisfied=True hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, is_physicality_required=False) assert mprocess.is_ineq_constraint_satisfied() == True # case 2: is_eq_constraint_satisfied=False hs_0 = (1 / 2) * np.array( [[2, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]], dtype=np.float64 ) hs_1 = (1 / 2) * np.array( [[-1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]], dtype=np.float64, ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, is_physicality_required=False) assert mprocess.is_ineq_constraint_satisfied() == False # case 3: atol=1e-1 hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1.1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] mprocess = MProcess(c_sys, hss, is_physicality_required=False) assert mprocess.is_ineq_constraint_satisfied(atol=1e-1) == True def test_set_zero(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # Act mprocess.set_zero() actual = mprocess.hss # Assert expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] for a, e in zip(actual, expected): npt.assert_almost_equal(a, e, decimal=15) assert mprocess.dim == 2 assert mprocess.shape == (2,) assert mprocess.mode_sampling == False assert mprocess.is_physicality_required == False assert mprocess.is_estimation_object == True assert mprocess.on_para_eq_constraint == True assert mprocess.on_algo_eq_constraint == True assert mprocess.on_algo_ineq_constraint == True assert mprocess.eps_proj_physical == Settings.get_atol() / 10.0 def test_generate_zero_obj(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) z = generate_mprocess_from_name(c_sys, "z-type1") # Act mprocess = z.generate_zero_obj() actual = mprocess.hss # Assert expected = [ np.array( [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.float64, ), np.array( [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.float64, ), ] for a, e in zip(actual, expected): npt.assert_almost_equal(a, e, decimal=15) assert mprocess.dim == 2 assert mprocess.shape == (2,) assert mprocess.mode_sampling == False assert mprocess.is_physicality_required == False assert mprocess.is_estimation_object == False assert mprocess.on_para_eq_constraint == True assert mprocess.on_algo_eq_constraint == True assert mprocess.on_algo_ineq_constraint == True assert mprocess.eps_proj_physical == Settings.get_atol() / 10.0 def test_generate_origin_obj(self): # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) z = generate_mprocess_from_name(c_sys, "z-type1") # Act mprocess = z.generate_origin_obj() actual = mprocess.hss # Assert expected = [ np.array( [[1 / 2, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.float64, ), np.array( [[1 / 2, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]], dtype=np.float64, ), ] for a, e in zip(actual, expected): npt.assert_almost_equal(a, e, decimal=15) assert mprocess.dim == 2 assert mprocess.shape == (2,) assert mprocess.mode_sampling == False assert mprocess.is_physicality_required == False assert mprocess.is_estimation_object == False assert mprocess.on_para_eq_constraint == True assert mprocess.on_algo_eq_constraint == True assert mprocess.on_algo_ineq_constraint == True assert mprocess.eps_proj_physical == Settings.get_atol() / 10.0 def test_to_var(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] # case 1: on_para_eq_constraint=default(True) mprocess = MProcess(c_sys, hss) actual = mprocess.to_var() expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() npt.assert_almost_equal(actual, expected, decimal=15) # case 2: on_para_eq_constraint=True mprocess = MProcess(c_sys, hss, on_para_eq_constraint=True) actual = mprocess.to_var() expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() npt.assert_almost_equal(actual, expected, decimal=15) # case 3: on_para_eq_constraint=False mprocess = MProcess(c_sys, hss, on_para_eq_constraint=False) actual = mprocess.to_var() expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() npt.assert_almost_equal(actual, expected, decimal=15) def test_to_stacked_vector(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() # case 1: on_para_eq_constraint=default(True) mprocess = MProcess(c_sys, hss) actual = mprocess.to_stacked_vector() npt.assert_almost_equal(actual, expected, decimal=15) # case 2: on_para_eq_constraint=True mprocess = MProcess(c_sys, hss, on_para_eq_constraint=True) actual = mprocess.to_stacked_vector() npt.assert_almost_equal(actual, expected, decimal=15) # case 3: on_para_eq_constraint=False mprocess = MProcess(c_sys, hss, on_para_eq_constraint=False) actual = mprocess.to_stacked_vector() npt.assert_almost_equal(actual, expected, decimal=15) def test_calc_gradient(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hs_0 = (1 / 2) * np.array( [[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]] ) hs_1 = (1 / 2) * np.array( [[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]] ) hss = [hs_0, hs_1] expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() # case 1: on_para_eq_constraint=default(True) mprocess = MProcess(c_sys, hss) # var_index = 0 actual = mprocess.calc_gradient(0) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][0][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 1 actual = mprocess.calc_gradient(1) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][0][1] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 4 actual = mprocess.calc_gradient(4) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][1][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 16 actual = mprocess.calc_gradient(16) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[1][1][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 27 actual = mprocess.calc_gradient(27) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[1][3][3] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) ## case 2: on_para_eq_constraint=True mprocess = MProcess(c_sys, hss, on_para_eq_constraint=True) # var_index = 0 actual = mprocess.calc_gradient(0) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][0][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 1 actual = mprocess.calc_gradient(1) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][0][1] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 4 actual = mprocess.calc_gradient(4) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][1][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 16 actual = mprocess.calc_gradient(16) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[1][1][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 27 actual = mprocess.calc_gradient(27) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[1][3][3] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) ## case 3: on_para_eq_constraint=False mprocess = MProcess(c_sys, hss, on_para_eq_constraint=False) # var_index = 0 actual = mprocess.calc_gradient(0) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][0][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 1 actual = mprocess.calc_gradient(1) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][0][1] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 4 actual = mprocess.calc_gradient(4) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[0][1][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 16 actual = mprocess.calc_gradient(16) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[1][0][0] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) # var_index = 31 actual = mprocess.calc_gradient(31) expected = [ np.zeros((4, 4), dtype=np.float64), np.zeros((4, 4), dtype=np.float64), ] expected[1][3][3] = 1 for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) def test_calc_proj_eq_constraint(self): ## case 1: z # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # Act actual = mprocess.calc_proj_eq_constraint() # Assert expected = [ (1 / 2) * np.array([[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]]), (1 / 2) * np.array([[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]]), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) assert mprocess.dim == 2 assert mprocess.shape == (2,) assert mprocess.mode_sampling == False assert mprocess.is_physicality_required == True assert mprocess.is_estimation_object == True assert mprocess.on_para_eq_constraint == True assert mprocess.on_algo_eq_constraint == True assert mprocess.on_algo_ineq_constraint == True assert mprocess.eps_proj_physical == Settings.get_atol() / 10.0 ## case 2: # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hss = [ (1 / 2) * np.array([[1, 1, 1, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]]), (1 / 2) * np.array([[1, 1, 1, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]]), ] mprocess = MProcess(c_sys, hss, is_physicality_required=False) # Act actual = mprocess.calc_proj_eq_constraint() # Assert expected = [ (1 / 2) * np.array([[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]]), (1 / 2) * np.array([[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]]), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) def test_calc_proj_eq_constraint_with_var(self): e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # case 1: on_para_eq_constraint=default(True) actual = mprocess.calc_proj_eq_constraint_with_var(c_sys, mprocess.to_var()) expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() npt.assert_almost_equal(actual, expected, decimal=15) # case 2: on_para_eq_constraint=True actual = mprocess.calc_proj_eq_constraint_with_var( c_sys, mprocess.to_var(), on_para_eq_constraint=True ) expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() npt.assert_almost_equal(actual, expected, decimal=15) # case 3: on_para_eq_constraint=False actual = mprocess.calc_proj_eq_constraint_with_var( c_sys, mprocess.to_stacked_vector(), on_para_eq_constraint=False ) expected = (1 / 2) * np.array( [ [1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1], [1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1], ] ).flatten() npt.assert_almost_equal(actual, expected, decimal=15) def test_calc_proj_ineq_constraint(self): ## case 1: z # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) mprocess = generate_mprocess_from_name(c_sys, "z-type1") # Act actual = mprocess.calc_proj_ineq_constraint() # Assert expected = [ (1 / 2) * np.array([[1, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [1, 0, 0, 1]]), (1 / 2) * np.array([[1, 0, 0, -1], [0, 0, 0, 0], [0, 0, 0, 0], [-1, 0, 0, 1]]), ] for a, e in zip(actual.hss, expected): npt.assert_almost_equal(a, e, decimal=15) assert mprocess.dim == 2 assert mprocess.shape == (2,) assert mprocess.mode_sampling == False assert mprocess.is_physicality_required == True assert mprocess.is_estimation_object == True assert mprocess.on_para_eq_constraint == True assert mprocess.on_algo_eq_constraint == True assert mprocess.on_algo_ineq_constraint == True assert mprocess.eps_proj_physical == Settings.get_atol() / 10.0 ## case 2: # Arrange e_sys = ElementalSystem(0, matrix_basis.get_normalized_pauli_basis()) c_sys = CompositeSystem([e_sys]) hss = [ (1 / 2) *
np.array([[0, 0, 0, 1], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 1]])
numpy.array
""" For a session where there is DLC already computed, load DLC traces to cut video ROIs and then compute motion energy for these ROIS. bodyCamera: cut ROI such that mouse body but not wheel motion is in ROI left(right)Camera: cut whisker pad region """ import time import numpy as np import pandas as pd import cv2 import logging from ibllib.io.video import get_video_frames_preload, label_from_path from ibllib.io.extractors.camera import get_video_length _log = logging.getLogger('ibllib') def grayscale(x): return cv2.cvtColor(x, cv2.COLOR_BGR2GRAY) def get_dlc_midpoints(dlc_pqt, target): # Load dataframe dlc_df = pd.read_parquet(dlc_pqt) # Set values to nan if likelihood is too low and calcualte midpoints idx = dlc_df.loc[dlc_df[f'{target}_likelihood'] < 0.9].index dlc_df.loc[idx, [f'{target}_x', f'{target}_y']] = np.nan if all(np.isnan(dlc_df[f'{target}_x'])) or all(np.isnan(dlc_df[f'{target}_y'])): raise ValueError(f'Failed to calculate midpoint, {target} all NaN in {dlc_pqt}') else: mloc = [int(np.nanmean(dlc_df[f'{target}_x'])), int(np.nanmean(dlc_df[f'{target}_y']))] return mloc def motion_energy(file_mp4, dlc_pqt, frames=10000): """ Compute motion energy on cropped frames of a single video :param file_mp4: Video file to run motion energy for :param dlc_pqt: Path to dlc result in pqt file format. :param frames: Number of frames to load into memory at once. If None all frames are loaded. :return me_file: Path to numpy file contaiing motion energy. :return me_roi: Path to numpy file containing ROI coordinates. The frames parameter determines how many cropped frames per camera are loaded into memory at once and should be set depending on availble RAM. Some approximate numbers for orientation, assuming 90 min video and frames set to: 1 : 152 KB (body), 54 KB (left), 15 KB (right) 50000 : 7.6 GB (body), 2.7 GB (left), 0.75 GB (right) None : 25 GB (body), 17.5 GB (left), 12.5 GB (right) """ start_T = time.time() label = label_from_path(dlc_pqt) # Crop ROI if label == 'body': tail_mid = get_dlc_midpoints(dlc_pqt, 'tail_start') anchor = np.array(tail_mid) w, h = int(anchor[0] * 3 / 5), 210 x, y = int(anchor[0] - anchor[0] * 3 / 5), int(anchor[1] - 120) else: nose_mid = get_dlc_midpoints(dlc_pqt, 'nose_tip') # Go through the different pupil points to see if any has not all NaNs try: pupil_mid = get_dlc_midpoints(dlc_pqt, 'pupil_top_r') except ValueError: try: pupil_mid = get_dlc_midpoints(dlc_pqt, 'pupil_left_r') except ValueError: try: pupil_mid = get_dlc_midpoints(dlc_pqt, 'pupil_right_r') except ValueError: pupil_mid = get_dlc_midpoints(dlc_pqt, 'pupil_bottom_r') anchor = np.mean([nose_mid, pupil_mid], axis=0) dist = np.sqrt(np.sum((np.array(nose_mid) - np.array(pupil_mid))**2, axis=0)) w, h = int(dist / 2), int(dist / 3) x, y = int(anchor[0] - dist / 4), int(anchor[1]) # Check if the mask has negative values (sign that the midpoint location is off) if any(i < 0 for i in [x, y, w, h]) is True: raise ValueError(f"ROI for motion energy on {label}Camera could not be computed. " f"Check for issues with the raw video or dlc output.") # Note that x and y are flipped when loading with cv2, therefore: mask = np.s_[y:y + h, x:x + w] # save ROI coordinates roi = np.asarray([w, h, x, y]) alf_path = file_mp4.parent.parent.joinpath('alf') alf_path.mkdir(exist_ok=True) roi_file = alf_path.joinpath(f'{label}ROIMotionEnergy.position.npy') np.save(roi_file, roi) frame_count = get_video_length(file_mp4) me = np.zeros(frame_count,) cap = cv2.VideoCapture(str(file_mp4)) if frames: n, keep_reading = 0, True while keep_reading: # Set the frame numbers to the next #frames, with 1 frame overlap frame_numbers = range(n * (frames - 1), n * (frames - 1) + frames) # Make sure not to load empty frames if np.max(frame_numbers) >= frame_count: frame_numbers = range(frame_numbers.start, frame_count) keep_reading = False # Load, crop and grayscale frames. cropped_frames = get_video_frames_preload(cap, frame_numbers=frame_numbers, mask=mask, func=grayscale, quiet=True).astype(np.float32) # Calculate motion energy for those frames and append to big array me[frame_numbers[:-1]] = np.mean(np.abs(
np.diff(cropped_frames, axis=0)
numpy.diff
from __future__ import absolute_import, division, print_function from abc import ABCMeta, abstractmethod from collections import defaultdict from numbers import Number from typing import List, Union import numpy as np import tensorflow as tf from six import add_metaclass from tensorflow.python.keras.callbacks import Callback from tensorflow_probability.python import distributions as tfd from tensorflow_probability.python.distributions import Distribution from odin.bay.distributions import ZeroInflated from odin.utils import catch_warnings_ignore from sisua.analysis.imputation_benchmarks import (correlation_scores, imputation_mean_score, imputation_score, imputation_std_score) from sisua.analysis.latent_benchmarks import clustering_scores from sisua.data import SingleCellOMIC from sisua.models import SingleCellModel from sisua.models.base import _to_sco __all__ = [ 'SingleCellMetric', 'NegativeLogLikelihood', 'ImputationError', 'CorrelationScores', 'ClusteringScores' ] def _preprocess_output_distribution(y_pred): r""" In case of zero inflated distribution, extract the underlying count distribution """ if isinstance(y_pred, tfd.Independent) and \ isinstance(y_pred.distribution, ZeroInflated): y_pred = tfd.Independent( y_pred.distribution.count_distribution, reinterpreted_batch_ndims=y_pred.reinterpreted_batch_ndims) return y_pred def _to_binary(protein): labels = protein.X if 'X_prob' in protein.obsm: labels = protein.obsm['X_prob'] elif 'X_bin' in protein.obsm: labels = protein.obsm['X_bin'] if labels.ndim == 2: labels = np.argmax(labels, axis=1) elif labels.ndim > 2: raise RuntimeError("protein labels has %d dimensions, no support" % labels.ndim) return labels _CORRUPTED_INPUTS = {} # =========================================================================== # Base class # =========================================================================== @add_metaclass(ABCMeta) class SingleCellMetric(Callback): r""" Single cell metrics for evaluating the imputation and latent space during training Parameters ---------- inputs : {`SingleCellOMIC`, `numpy.ndarray`} extras : None extras object (e.g. protein) used for calculating the metric sample_shape : `int` (default=`1`) number of MCMC samples for prediction batch_size : `int` (default=`64`) freq : `int` (default=`3`) frequency of evaluating the metric, some metrics are very computational intensive and could slow down the training progress significantly """ def __init__(self, inputs: Union[SingleCellOMIC, List[SingleCellOMIC], np. ndarray, List[np.ndarray], None] = None, extras=None, sample_shape=1, batch_size=64, freq=3, name=None, **kwargs): super(SingleCellMetric, self).__init__(**kwargs) self.sample_shape = sample_shape self.batch_size = batch_size self.inputs = inputs self.extras = extras self.freq = int(freq) self._name = name # store the last epoch that the metric was calculated self._last_epoch = 0 assert self.freq > 0 @property def name(self): return self.__class__.__name__.lower() if self._name is None else self._name def set_model(self, model: SingleCellModel): assert isinstance( model, SingleCellModel), "This callback only support SingleCellModel" self.model = model return self @abstractmethod def call(self, y_true: List[SingleCellOMIC], y_crpt: List[SingleCellOMIC], y_pred: List[Distribution], latents: List[Distribution], extras): raise NotImplementedError def __call__(self, inputs=None, sample_shape=None): if inputs is None: inputs = self.inputs if sample_shape is None: sample_shape = self.sample_shape model = self.model if not isinstance(inputs, (tuple, list)): inputs = [inputs] inputs = _to_sco(inputs, model.omic_outputs) if model.corruption_rate is not None: corruption_text = str(model.corruption_dist) + str(model.corruption_rate) inputs_corrupt = [ (data.corrupt(corruption_rate=model.corruption_rate, corruption_dist=model.corruption_dist, inplace=False) \ if str(id(data)) + corruption_text not in _CORRUPTED_INPUTS else _CORRUPTED_INPUTS[str(id(data)) + corruption_text]) \ if idx == 0 else data for idx, data in enumerate(inputs) ] _CORRUPTED_INPUTS[str(id(inputs[0])) + corruption_text] = inputs_corrupt[0] else: inputs_corrupt = inputs outputs, latents = model.predict(inputs_corrupt, sample_shape=self.sample_shape, batch_size=self.batch_size, verbose=0, apply_corruption=False) if not isinstance(outputs, (tuple, list)): outputs = [outputs] if not isinstance(latents, (tuple, list)): latents = [latents] metrics = self.call(y_true=inputs, y_pred=outputs, y_crpt=inputs_corrupt, latents=latents, extras=self.extras) if metrics is None: metrics = {} elif tf.is_tensor(metrics) or \ isinstance(metrics, np.ndarray) or \ isinstance(metrics, Number): metrics = {self.name: metrics} assert isinstance(metrics, dict), \ "Return metrics must be a dictionary mapping metric name to scalar value" metrics = { i: j.numpy() if tf.is_tensor(j) else j for i, j in metrics.items() } return metrics def on_epoch_end(self, epoch, logs=None): """Called at the end of an epoch. Subclasses should override for any actions to run. This function should only be called during TRAIN mode. Arguments: epoch: integer, index of epoch. logs: dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with `val_`. """ if epoch % self.freq == 0 and logs is not None: self._last_epoch = epoch # calculating the metric try: metrics = self() except Exception as e: print("Error:", e) metrics = {} # update the log for key, val in metrics.items(): logs[key] = val logs[key + '_epoch'] = epoch def on_train_end(self, logs=None): if self.model.epochs != self._last_epoch: self._last_epoch = self.model.epochs # calculating the metric try: metrics = self() except Exception as e: print("Error:", e) metrics = {} # update the log history = self.model.history.history for key, val in metrics.items(): if key in history: history[key].append(val) history[key + '_epoch'].append(self._last_epoch) # =========================================================================== # Losses # =========================================================================== class NegativeLogLikelihood(SingleCellMetric): """ Log likelihood metric Parameters ---------- inputs : {`SingleCellOMIC`, `numpy.ndarray`} extras : None extras object (e.g. protein) used for calculating the metric sample_shape : `int` (default=`1`) number of MCMC samples for prediction batch_size : `int` (default=`64`) freq : `int` (default=`3`) frequency of evaluating the metric, some metrics are very computational intensive and could slow down the training progress significantly Returns ------- dict: 'nllk%d' for each tuple of input and output """ def call(self, y_true: List[SingleCellOMIC], y_crpt: List[SingleCellOMIC], y_pred: List[Distribution], latents: List[Distribution], extras): nllk = {} for idx, (t, p) in enumerate(zip(y_true, y_pred)): nllk['nllk%d' % idx] = -tf.reduce_mean(p.log_prob(t.X)) return nllk class ImputationError(SingleCellMetric): """ Imputation error Parameters ---------- inputs : {`SingleCellOMIC`, `numpy.ndarray`} extras : None extras object (e.g. protein) used for calculating the metric sample_shape : `int` (default=`1`) number of MCMC samples for prediction batch_size : `int` (default=`64`) freq : `int` (default=`3`) frequency of evaluating the metric, some metrics are very computational intensive and could slow down the training progress significantly Return ------ dict : 'imp_med' 'imp_mean' """ def call(self, y_true: List[SingleCellOMIC], y_crpt: List[SingleCellOMIC], y_pred: List[Distribution], latents: List[Distribution], extras): # only care about the first data input y_true = y_true[0] y_crpt = y_crpt[0] y_pred = y_pred[0] y_pred = _preprocess_output_distribution(y_pred) y_pred = y_pred.mean() if y_pred.shape.ndims == 3: y_pred = tf.reduce_mean(y_pred, axis=0) return { 'imp_med': imputation_score(original=y_true.X, imputed=y_pred), 'imp_mean': imputation_mean_score(original=y_true.X, corrupted=y_crpt.X, imputed=y_pred) } class CorrelationScores(SingleCellMetric): """ (1 - correlation_coefficients) to represent the loss Parameters ---------- inputs : {`SingleCellOMIC`, `numpy.ndarray`} extras : {`SingleCellOMIC`, `numpy.ndarray`} the protein array sample_shape : `int` (default=`1`) number of MCMC samples for prediction batch_size : `int` (default=`64`) freq : `int` (default=`3`) frequency of evaluating the metric, some metrics are very computational intensive and could slow down the training progress significantly Returns ------- dict : 'pearson_mean': np.mean(pearson), 'spearman_mean': np.mean(spearman), 'pearson_med': np.median(pearson), 'spearman_med': np.median(spearman), Example ------- >>> CorrelationScores(extras=y_train, freq=1) """ def call(self, y_true: List[SingleCellOMIC], y_crpt: List[SingleCellOMIC], y_pred: List[Distribution], latents: List[Distribution], extras): y_true = y_true[0] y_crpt = y_crpt[0] y_pred = y_pred[0] assert isinstance(extras, SingleCellOMIC), \ "protein data must be provided as extras in form of SingleCellOMIC" protein = extras[y_true.indices] y_true.assert_matching_cells(protein) y_pred = _preprocess_output_distribution(y_pred) y_pred = y_pred.mean() if y_pred.shape.ndims == 3: y_pred = tf.reduce_mean(y_pred, axis=0) scores = correlation_scores(X=y_pred, y=protein.X, gene_name=y_true.var['geneid'], protein_name=protein.var['protid'], return_series=False) if len(scores) == 0: return {} spearman = [] pearson = [] for _, (s, p) in scores.items(): spearman.append(-s) pearson.append(-p) return { 'pearson_mean': np.mean(pearson), 'spearman_mean': np.mean(spearman), 'pearson_med': np.median(pearson), 'spearman_med': np.median(spearman), } class ClusteringScores(SingleCellMetric): """ Parameters ---------- inputs : {`SingleCellOMIC`, `numpy.ndarray`} extras : {`SingleCellOMIC`, `numpy.ndarray`} the protein array sample_shape : `int` (default=`1`) number of MCMC samples for prediction batch_size : `int` (default=`64`) freq : `int` (default=`3`) frequency of evaluating the metric, some metrics are very computational intensive and could slow down the training progress significantly Returns ------- dict : silhouette_score (higher is better, best is 1, worst is -1) adjusted_rand_score (higher is better) normalized_mutual_info_score (higher is better) unsupervised_clustering_accuracy (higher is better) Example ------- >>> ClusteringScores(extras=y_train, freq=1) """ def call(self, y_true: List[SingleCellOMIC], y_crpt: List[SingleCellOMIC], y_pred: List[Distribution], latents: List[Distribution], extras): y_true = y_true[0] y_crpt = y_crpt[0] y_pred = y_pred[0] assert isinstance(extras, SingleCellOMIC), \ "protein data must be provided as extras in form of SingleCellOMIC" protein = extras[y_true.indices] y_true.assert_matching_cells(protein) labels = _to_binary(protein) scores = {} scores_avg = defaultdict(list) # support multiple latents also for idx, z in enumerate(latents): for key, val in clustering_scores(latent=z.mean().numpy(), labels=labels, n_labels=protein.var.shape[0]).items(): # since all score higher is better, we want them as loss value val = -val scores['%s_%d' % (key, idx)] = val scores_avg[key].append(val) # average scores scores.update({i:
np.mean(j)
numpy.mean
import numpy as np from datetime import datetime cnn_layer_types = ["CONV", "MAXPOOL"] # ( layer type , x_length , y_length , zero_padding, no of mask ) zero_padding and no of mask not applicable for MAXPOOL cnn_layer_info = [] ndelst = inpt_dim = [] # contains the node numbers in FC layer mask_depth = [] # contains the mask depths of each layer epoch_itr = optLyr = hydLyr = 0 lrn_rate = nrm_fac = 0.0 read_wt = 0 instructions_file = "instructions.txt" data_input_file = "data_input_train.txt" data_output_file = "data_output_train.txt" weight_file = "" f_ins = open(instructions_file, "r") lns = f_ins.readlines() # reading the instructions from the instruction files try: lrn_rate = float(lns[0].strip(' \n')) # first line should be learning rate epoch_itr = int(lns[1].strip(' \n')) # second line should contain no of iterations inpt_dim = lns[2].strip(' \n').split(' ') # third line should contain the input matrix dimensions inpt_dim = [int(inpt_dim[i]) for i in range(len(inpt_dim))] if (len(inpt_dim) == 3): mask_depth.append(inpt_dim[2]) else: mask_depth.append(1) optLyr = int(lns[3].strip(' \n')) # fourth line should contain no of nodes in output layer nrm_fac = float(lns[4].strip(' \n')) # fifth line should contain normalization factor hydLyr = int(lns[5].strip(' \n')) # sixth line should contain no of hidden layer ndelst.extend( [int(x) for x in lns[6].strip(' \n').split(' ')]) # seventh line should contain no of nodes in hidden layer ndelst.append(optLyr) read_wt_ln = lns[7].strip(' \n') if (int(read_wt_ln[0]) == 1): weight_file = (read_wt_ln.split(' '))[1] read_wt = 1 for i in range(8, len(lns)): # From eighth line the convolutions and pooling instructions are given intgs = lns[i].strip(' \n').split(' ') operate = cnn_layer_types.index(intgs[0]) if (operate == 0): # check for convolution or pooling cnn_layer_info.append((operate, int(intgs[1]), int(intgs[2]), int(intgs[3]), int(intgs[4]))) mask_depth.append(int(intgs[4])) else: cnn_layer_info.append((operate, int(intgs[1]), int(intgs[2]))) mask_depth.append(mask_depth[-1]) except: print("Wrong Instruction list .. Exitting code") exit(1) f_ins.close() # checking whether convolution operations are correct or not def check_input(): row, col = inpt_dim[0], inpt_dim[1] for i in range(len(cnn_layer_info)): pad = 0 # the pad applied if (cnn_layer_info[i][0] == 0): pad = cnn_layer_info[i][3] row = row - cnn_layer_info[i][1] + 2 * pad + 1 col = col - cnn_layer_info[i][2] + 2 * pad + 1 return row, col row, col = check_input() if (row <= 0 or col <= 0): # row and column should be positive to be valid print("Invalid Convolution and pooling layers .. Exitting code") exit(1) inpLyr = row * col * mask_depth[-1] # no of input nodes for the fully connected layer ndelst.insert(0, inpLyr) # printing the layer informations print(" Learn Rate = " + str(lrn_rate)) print(" No of epoch iterations = " + str(epoch_itr)) print(" No of input layer node = " + str(inpLyr)) print(" No of output layer node = " + str(optLyr)) print(" No of normalization = " + str(nrm_fac)) for i in range(len(cnn_layer_info)): pad = 0 no_mask = None if (cnn_layer_info[i][0] == 0): pad = cnn_layer_info[i][3] no_mask = cnn_layer_info[i][4] print(" " + cnn_layer_types[cnn_layer_info[i][0]] + " " + str(cnn_layer_info[i][1]) + "X" + str( cnn_layer_info[i][2]) + " pad " + str(pad) + " no of masks " + str(no_mask)) print(" No of Hidden layers = " + str(hydLyr)) print(" No of nodes in the hidden layers = ", end="") for i in range(1, len(ndelst) - 1): print(str(ndelst[i]), end=" ") print("") train_input = [] train_input_data = [] train_output = [] no_of_input_data = 0 # accepting input in the specified format and also the output f_in = open(data_input_file, "r") f_out = open(data_output_file, "r") for lns in f_in: intgs = [(float(x)) for x in lns.strip(' \n').split()] if (len(intgs) == 0): train_input.append(np.array(train_input_data)) train_input_data = [] no_of_input_data += 1 continue train_input_data.append(np.multiply(1.0 / nrm_fac, intgs)) f_in.close() for lns in f_out: intgs = [float(x) for x in lns.split()] train_output.append(intgs) f_out.close() def make_conv_mask(dep, row, col): # creating the mask for the convolution return np.random.rand(dep, row, col) - .5 * np.ones(shape=(dep, row, col), dtype=float) def make_max_pool(dep, row, col): # creating a dummy mask of same shape -- no use return np.zeros(shape=(dep, row, col), dtype=float) # for max pool, the positions of the maximum wrt to the weight mask is stored def create_masks(): # returning the masks for the convolution cnn_masks = [] # contains all the corelation masks for each layer func_dict = {0: make_conv_mask, 1: make_max_pool} # the functions acc to masks for i in range(len(cnn_layer_info)): lyr_cnn_msk = [] # contains the mask for each layers if (cnn_layer_info[i][0] != 1): # create masks for CONV Pool for k in range(mask_depth[i + 1]): # creating specified no of masks in each layer lyr_cnn_msk.append( func_dict[cnn_layer_info[i][0]](mask_depth[i], cnn_layer_info[i][1], cnn_layer_info[i][2])) else: lyr_cnn_msk.append( func_dict[cnn_layer_info[i][0]](mask_depth[i], cnn_layer_info[i][1], cnn_layer_info[i][2])) cnn_masks.append(lyr_cnn_msk) return cnn_masks #read weights and masks from a file def read_masks_wts(): f_wt = open(weight_file, "r") lns = f_wt.readlines() c = 0 wtmtx = [] # the array of the corresponding weight matrices masks_list = [] # the convolution masks for i in range(len(cnn_layer_info)): if( cnn_layer_info[i][0] == 0 ): masks_list_lyr = [] for j in range(cnn_layer_info[i][-1]): masks = np.zeros(shape=(mask_depth[i],cnn_layer_info[i][1],cnn_layer_info[i][2]), dtype=float) for row in range(len(masks[0])): row_ln = [x for x in lns[c].strip(' \n').split('\t')] c+=1 for dep in range(len(masks)): mtx_row = [(float(x)) for x in row_ln[dep].strip(' \n').split(' ')] for col in range(len(masks[0][0])): masks[dep][row][col] = mtx_row[col] masks_list_lyr.append(masks) c+=1 c+=1 else: masks_list_lyr = [] masks = np.zeros(shape=(mask_depth[i], cnn_layer_info[i][1], cnn_layer_info[i][2]), dtype=float) c = c + 3 + len(masks) masks_list_lyr.append(masks) masks_list.append(masks_list_lyr) c+=1 for i in range(hydLyr + 1): wt = [] # the weights for j in range(0, ndelst[i + 1]): intgs = [(float(x)) for x in lns[c].split()] wt.append(np.array(intgs)) c += 1 wtmtx.append(np.array(wt)) c += 2 f_wt.close() return wtmtx, masks_list # creates the initial weights for the FC layer def create_initial_wts(): wtmtx = [] # initial weight matrix list for i in range(1, len(ndelst), 1): # creating zero-centered weights wtmtx.append( np.random.rand(ndelst[i], ndelst[i - 1]) - .5 * np.ones(shape=(ndelst[i], ndelst[i - 1]), dtype=float)) return wtmtx # used for adding zero pad as necessary def add_padding(inpt, p): opt_arr = np.zeros((len(inpt), len(inpt[0]) + 2 * p, len(inpt[0][0]) + 2 * p), dtype=float) opt_arr[:, p:len(inpt[0]) + p, p:len(inpt[0][0]) + p] = inpt return opt_arr # used for removing the pad def remove_pad(inpt, p): return inpt[:, p:len(inpt[0]) - p, p:len(inpt[0][0]) - p] def sigmoid(z): # sigmoid function return 1 / (1 + np.exp(-z)) def sigmoidPrime(z): # gradient of sigmoid function return np.exp(-z) / ((1 + np.exp(-z)) ** 2) # used for applying convolution for CONV layers def convolute(mask, inpt, opt_dep): row = len(inpt[0]) - len(mask[0][0]) + 1 col = len(inpt[0][0]) - len(mask[0][0][0]) + 1 result = np.zeros(shape=(opt_dep, row, col), dtype=float) for k in range(opt_dep): for i in range(row): for j in range(col): result[k][i][j] = np.sum( np.multiply(mask[k], inpt[:, i:(i + len(mask[0][0])), j:j + len(mask[0][0][0])])) return result # used for applying MAX Pool layers def convolute_max_pool(mask, inpt, dep): row = len(inpt[0]) - len(mask[0]) + 1 col = len(inpt[0][0]) - len(mask[0][0]) + 1 # print("row "+str(row)) # print("col " + str(col)) max_pos = np.zeros(shape=(dep, row, col), dtype=float) result = np.zeros(shape=(dep, row, col), dtype=float) for k in range(dep): for i in range(row): for j in range(col): a = inpt[k, i:i + len(mask[0]), j:j + len(mask[0][0])] pos = np.unravel_index(np.argmax(a, axis=None), a.shape) max_pos[k][i][j] = 2 * pos[0] + pos[1] # stores the 2D position where maximum occurs result[k][i][j] = np.amax(a) return max_pos, result # performs the forward pass of the CONV and MAXPOOL layers def forword_cnn(inpt, cnn_masks): inpt_list = [] for i in range(len(cnn_layer_info)): if (cnn_layer_info[i][0] == 1): # special treatment for MAXPOOL layers # print(str(len(inpt[0])) + " in forward_cnn1") inpt_list.append(inpt) cnn_masks[i][0] = make_max_pool(mask_depth[i], cnn_layer_info[i][1], cnn_layer_info[i][2]) cnn_masks[i][0], inpt = convolute_max_pool(cnn_masks[i][0], inpt, mask_depth[i]) # print(str(len(inpt[0])) + " in forward_cnn2") else: if (cnn_layer_info[i][0] == 0): # adding padding for CONV layers inpt = add_padding(inpt, cnn_layer_info[i][-2]) inpt_list.append(inpt) inpt = convolute(cnn_masks[i], inpt, mask_depth[i + 1]) inpt_list.append(inpt) return inpt_list, cnn_masks # performs the forward pass of the FC layer def forward_pass(wtmtx, lyrs): lyrs_list = [] # the layers contained in a list lyrs_list_no_sgm = [] # the layers before the sigmoid is applied lyrs_list.append(lyrs) lyrs_list_no_sgm.append(lyrs) for i in range(0, len(ndelst) - 1): lyrs_list_no_sgm.append(np.matmul(wtmtx[i], lyrs)) lyrs = sigmoid(lyrs_list_no_sgm[-1]) lyrs_list.append(lyrs) return lyrs_list, lyrs_list_no_sgm # calculating mask gradient for CONV def calc_mask_grad(mask, opt_lyr_grad, inpt_lyr): mask_grad = np.zeros(shape=(len(mask), len(mask[0]), len(mask[0][0])), dtype=float) for k in range(len(inpt_lyr)): # calculating mask gradient layer-wise grad_2d = np.zeros(shape=(len(mask[0]), len(mask[0][0])), dtype=float) for i in range(len(mask[0])): for j in range(len(mask[0][0])): grad_2d[i][j] = np.sum( np.multiply(opt_lyr_grad, inpt_lyr[k, i:i + len(opt_lyr_grad), j:j + len(opt_lyr_grad[0])])) mask_grad[k, :, :] = grad_2d return mask_grad # calculating layer gradients at each position for CONV def jugar_grad(mask, opt_grad, i1, j1): res = 0.0 for i in range(i1, i1 - len(mask), -1): for j in range(j1, j1 - len(mask[0]), -1): try: # for exitting index greater than highest length if (i < 0 or j < 0): # for exitting negative indices continue res += opt_grad[i][j] * mask[i1 - i][j1 - j] except: pass return res # calculating layer gradients for CONV def cnn_lyr_grad(mask_list, opt_lyr_grad, inpt_lyr): inpt_lyr_grad = np.zeros(shape=(len(inpt_lyr), len(inpt_lyr[0]), len(inpt_lyr[0][0])), dtype=float) for k in range(len(mask_list)): mask = mask_list[k] opt_grad = opt_lyr_grad[k] for k1 in range(len(inpt_lyr)): for i1 in range(len(inpt_lyr[0])): for j1 in range(len(inpt_lyr[0][0])): inpt_lyr_grad[k1][i1][j1] += jugar_grad(mask[k1], opt_grad, i1, j1) return inpt_lyr_grad # calculating layer gradients for MAX_POOL def jugar_grad_max_pool(pos_mask, opt_grad, i1, j1, row_mask, col_mask): res = 0.0 for i in range(i1, i1 - row_mask, -1): for j in range(j1, j1 - col_mask, -1): try: # for exitting index greater than highest length if (i < 0 or j < 0): # for exitting negative indices continue mask = np.zeros(shape=(row_mask, col_mask), dtype=float) rw = int(pos_mask[i1 - i][j1 - j] / col_mask) cl = int(pos_mask[i1 - i][j1 - j]) - int(pos_mask[i1 - i][j1 - j] / col_mask) mask[rw][cl] = 1.0 res += opt_grad[i][j] * mask[i1 - i][j1 - j] except: pass return res # calculating layer gradients for MAX_POOL def cnn_lyr_grad_max_pool(pos_mask_list, opt_lyr_grad, inpt_lyr): inpt_lyr_grad = np.zeros(shape=(len(inpt_lyr), len(inpt_lyr[0]), len(inpt_lyr[0][0])), dtype=float) row_mask = len(inpt_lyr[0]) - len(opt_lyr_grad[0]) + 1 col_mask = len(inpt_lyr[0][0]) - len(opt_lyr_grad[0][0]) + 1 for k1 in range(len(inpt_lyr)): pos_mask = pos_mask_list[k1] opt_grad = opt_lyr_grad[k1] for i1 in range(len(inpt_lyr[0])): for j1 in range(len(inpt_lyr[0][0])): inpt_lyr_grad[k1][i1][j1] = jugar_grad_max_pool(pos_mask, opt_grad, i1, j1, row_mask, col_mask) return inpt_lyr_grad # calculates the backward pass of the CONV and MAXPOOL layers def backward_cnn(inpt_list, cnn_masks, last_lyr_grad): mask_grad_list = [] layer_grad_list = [] layer_grad_list.append(last_lyr_grad) for i in range(1, len(cnn_masks) + 1): if (cnn_layer_info[-1 * i][0] == 0): mask_grad_lyr = [] for j in range(len(cnn_masks[-1 * i])): mask_grad_lyr.append( calc_mask_grad(cnn_masks[-1 * i][j], layer_grad_list[-1][j], inpt_list[-1 * i - 1])) mask_grad_list.append(mask_grad_lyr) lyr_grad = cnn_lyr_grad(cnn_masks[-1 * i], layer_grad_list[-1], inpt_list[-1 * i - 1]) layer_grad_list.append(remove_pad(lyr_grad, cnn_layer_info[-1 * i][-2])) inpt_list[-1 * i - 1] = remove_pad(inpt_list[-1 * i - 1], cnn_layer_info[-1 * i][-2]) elif (cnn_layer_info[-1 * i][0] == 1): layer_grad_list.append( cnn_lyr_grad_max_pool(cnn_masks[-1 * i][0], layer_grad_list[-1], inpt_list[-1 * i - 1])) mask_grad_list.append(cnn_masks[-1 * i]) # adding dummy gradients to maintain indices mask_grad_list = mask_grad_list[::-1] layer_grad_list = layer_grad_list[::-1] return mask_grad_list, layer_grad_list # performs the cost function of the entire network def cost_func(final_lyr, label): for i in range(len(final_lyr)): final_lyr[i] = final_lyr[i] - label[i] # difference between the required labels err = np.linalg.norm(final_lyr) ** 2 # taking the squares return final_lyr, err # performs the backpropagation of the FC layer def backprop(wtmtx, lyrs, lyrs_list_no_sgm): lyr_grad = [] # gradient for the corresponding layers wt_grad = [] # gradient for the weight matrices opt_lyr = np.multiply(2, lyrs[-1]) # gradient from the error function x = sigmoidPrime(np.array(lyrs_list_no_sgm[-1])) # gradient while passing the sigmoid layer opt_lyr = np.multiply(opt_lyr, x) # final output layer gradient with weights multiplied lyr_grad.append(opt_lyr) for i in range(2, len(lyrs) + 1): x = np.matmul(lyr_grad[-1], np.transpose(lyrs[-1 * i])) wt_grad.append(x) opt_lyr = np.matmul(np.transpose(wtmtx[1 - i]), lyr_grad[-1]) opt_lyr = np.multiply(opt_lyr, sigmoidPrime(np.array(lyrs_list_no_sgm[-1 * i]))) lyr_grad.append(opt_lyr) wt_grad = wt_grad[::-1] # reversing the array lyr_grad = lyr_grad[::-1] # reversing the array return wt_grad, lyr_grad # update the CONV and the MAXPOOL layers masks def cnn_update_masks(masks, masks_grad): global lrn_rate new_masks = [] for i in range(len(masks)): if (cnn_layer_info[i][0] == 1): new_masks.append(masks[i]) else: new_masks_lyr = [] for j in range(len(masks[i])): new_masks_lyr.append(masks[i][j] + np.multiply(lrn_rate * (-1), masks_grad[i][j])) new_masks.append(new_masks_lyr) return new_masks # updating the new weight matrix as per gradient of the FC layer def wt_update(wtx_grad_dt_pts, wtx): global lrn_rate return np.add(wtx, np.multiply(lrn_rate * (-1), wtx_grad_dt_pts[0])) #used for calculating gradients over all the data points def run(cnn_masks, wtmx, k): mask_grad_dt_pts = [] wt_grad_dt_pts = [] err_total = 0.0 for i in range(no_of_input_data): inptt = np.array(train_input[i]).reshape(mask_depth[0], len(train_input[i]), len(train_input[i][0])) inp, msk = forword_cnn(inptt, cnn_masks) inp_last = np.array(inp[-1]) sgm, no_sgm = forward_pass(wtmx, inp_last.reshape(inpLyr, 1)) sgm[-1], err = cost_func(sgm[-1], train_output[i]) err_total += err # taking up for the total error wt_grad, lyrs_grad = backprop(wtmx, sgm, no_sgm) fst_lyr_grad = np.array(lyrs_grad[0]).reshape(inp_last.shape) msk_grad, inp_grad = backward_cnn(inp, msk, fst_lyr_grad) wt_grad_dt_pts.append(wt_grad) mask_grad_dt_pts.append(msk_grad) if (i != 0): wt_grad_dt_pts[0] = np.add(wt_grad_dt_pts[0], wt_grad_dt_pts[1]) # the zeroth element is the sum wt_grad_dt_pts = wt_grad_dt_pts[:1] # discarding the next element, the grad weight for that data point for i in range(len(mask_grad_dt_pts[0])): for j in range(len(mask_grad_dt_pts[0][i])): mask_grad_dt_pts[0][i][j] = np.add(mask_grad_dt_pts[0][i][j], mask_grad_dt_pts[1][i][j]) mask_grad_dt_pts = mask_grad_dt_pts[:1] # discarding the next element, the grad mask for that data point wtmx = wt_update(wt_grad_dt_pts, wtmx) cnn_masks = cnn_update_masks(cnn_masks, mask_grad_dt_pts[0]) print("The error for the epoch " + str(k) + " " + str(err_total), end="") return wtmx, cnn_masks, err_total # used for copying CNN masks def copy_cnn_mask(cnn_masks): mask_new = [] for i in range(len(cnn_masks)): mask_lyr_new = [] for j in range(len(cnn_masks[i])): mask_lyr_new.append(
np.copy(cnn_masks[i][j])
numpy.copy
from __future__ import division import numpy as np import matplotlib.pyplot as plt import json import os, sys mod_path = os.path.abspath(os.path.join('..','Model')) sys.path.append(mod_path) from oo_Parameters import * from MorphologyData import * #start_scope() ###################################################### ## Load Morpho ###################################################### #morph = '../Model/Branco2010_Morpho.swc' #morph_data = BrancoData morph = '../Model/Acker2008.swc' morph_data = AckerData loc1 = 'basal' #'tuft','apical','basal' print('loc1: ',loc1) if loc1 == 'tuft': distComps = distal_Acker_tuft proxComps = proximal_Acker_tuft elif loc1 == 'apical': distComps = distal_Acker_apical proxComps = proximal_Acker_apical elif loc1 == 'basal': distComps = distal_Acker_basal proxComps = proximal_Acker_basal else: print('Error!') sys.exit(1) branchNr = len(proxComps) print('branchNr: ',branchNr) d_compartm = proxComps+distComps nrIn = len(d_compartm) hz_array = np.array([1.,3.,5.,10.,20.,30.,40.,50.]) nrHz = hz_array.size synmodel = 'Chen' # synmodel = 'Chen' , synmodel = 'Clopath', synmodel = 'nonPlast' print('synmodel: ',synmodel) ME_Ascale = 4.0 nr_clst = 1 init_weight = 0.5 ME_A = 0.02 ME_Vrhigh = -60*mV ME_Ar = 0.2 MEmaxRatio = 175.0 MEtau = 2.0*second ChenW = np.zeros((nrIn,nrHz)) ChenEr = np.zeros((nrIn,nrHz)) ChenEf = np.zeros((nrIn,nrHz)) ChenMEdamp = np.zeros((nrIn,nrHz)) ChenMEmax = np.zeros((nrIn,nrHz)) ChenPE = np.zeros((nrIn,nrHz)) for zzz in range(nrIn): titlestr = 'DataPoissonInput/'+synmodel+'_'+loc1+'_'+str(ME_Ascale)+'_'+str(nr_clst)+'_'+str(init_weight)+'_'+str(ME_A)+'_'+str(ME_Vrhigh/mV)+'_'+str(ME_Ar)+'_'+str(MEmaxRatio)+'_'+str(MEtau/second)+'_'+str(d_compartm[zzz]) data1 = open(titlestr+'_w1.txt','r') ChenW[zzz,:] = json.load(data1) data1.close() data1 = open(titlestr+'_Er1.txt','r') ChenEr[zzz,:] = json.load(data1) data1.close() data1 = open(titlestr+'_Ef1.txt','r') ChenEf[zzz,:] = json.load(data1) data1.close() data1 = open(titlestr+'_MEdamp1.txt','r') ChenMEdamp[zzz,:] = json.load(data1) data1.close() data1 = open(titlestr+'_MEmax1.txt','r') ChenMEmax[zzz,:] = json.load(data1) data1.close() data1 = open(titlestr+'_PE1.txt','r') ChenPE[zzz,:] = json.load(data1) data1.close() ChenWmean = 100.0*np.mean(ChenW,axis=0)/init_weight ChenWstd = 100.0*np.std(ChenW,axis=0) #/np.sqrt(ChenW.shape[0]) ChenErmean = np.mean(ChenEr,axis=0) ChenErstd = np.std(ChenEr,axis=0) #/np.sqrt(ChenEr.shape[0]) ChenEfmean = np.mean(ChenEf,axis=0) ChenEfstd = np.std(ChenEf,axis=0) #/np.sqrt(ChenEf.shape[0]) ChenMEdampmean = np.mean(ChenMEdamp,axis=0) ChenMEdampstd =
np.std(ChenMEdamp,axis=0)
numpy.std
# -*- coding: utf-8 -*- #Created on Sun Dec 12 03:35:29 2021 #@author: maout ### calculate score function from empirical distribution ### uses RBF kernel import math import numpy as np from functools import reduce from scipy.spatial.distance import cdist import numba __all__ = ["my_cdist", "score_function_multid_seperate", "score_function_multid_seperate_all_dims", "score_function_multid_seperate_old" ] #%% @numba.njit(parallel=True,fastmath=True) def my_cdist(r,y, output,dist='euclidean'): """ Fast computation of pairwise distances between data points in r and y matrices. Stores the distances in the output array. Available distances: 'euclidean' and 'seucledian' Parameters ---------- r : NxM array First set of N points of dimension M. y : N2xM array Second set of N2 points of dimension M. output : NxN2 array Placeholder for storing the output of the computed distances. dist : type of distance, optional Select 'euclidian' or 'sqeuclidian' for Euclidian or squared Euclidian distances. The default is 'euclidean'. Returns ------- None. (The result is stored in place in the provided array "output"). """ N, M = r.shape N2, M2 = y.shape #assert( M == M2, 'The two inpus have different second dimention! Input should be N1xM and N2xM') if dist == 'euclidean': for i in numba.prange(N): for j in numba.prange(N2): tmp = 0.0 for k in range(M): tmp += (r[i, k] - y[j, k])**2 output[i,j] = math.sqrt(tmp) elif dist == 'sqeuclidean': for i in numba.prange(N): for j in numba.prange(N2): tmp = 0.0 for k in range(M): tmp += (r[i, k] - y[j, k])**2 output[i,j] = tmp elif dist == 'l1': for i in numba.prange(N): for j in numba.prange(N2): tmp = 0.0 for k in range(M): tmp += (r[i, k] - y[j, k])**2 output[i,j] = math.sqrt(tmp) return 0 def score_function_multid_seperate(X,Z,func_out=False, C=0.001,kern ='RBF',l=1,which=1,which_dim=1): """ Sparse kernel based estimation of multidimensional logarithmic gradient of empirical density represented by samples X across dimension "which_dim" only. - When `funct_out == False`: computes grad-log at the sample points. - When `funct_out == True`: return a function for the grad log to be employed for interpolation/estimation of the logarithmic gradient in the vicinity of the samples. For estimation across all dimensions simultaneously see also See also ---------- score_function_multid_seperate_all_dims Parameters ---------- X: N x dim array , N samples from the density (N x dim), where dim>=2 the dimensionality of the system. Z: M x dim array, inducing points points (M x dim). func_out : Boolean, True returns function, if False return grad-log-p on data points. l: float or array-like, lengthscale of rbf kernel (scalar or vector of size dim). C: float, weighting constant (leave it at default value to avoid unreasonable contraction of deterministic trajectories). which: (depracated) , do not use. which_dim: int, which gradient of log density we want to compute (starts from 1 for the 0-th dimension). Returns ------- res1: array with logarithmic gadient of the density along the given dimension N_s x 1 or function that accepts as inputs 2dimensional arrays of dimension (K x dim), where K>=1. """ if kern=='RBF': """ <EMAIL>(parallel=True,fastmath=True) def Knumba(x,y,l,res,multil=False): #version of kernel in the numba form when the call already includes the output matrix if multil: for ii in range(len(l)): tempi = np.zeros((x[:,ii].size, y[:,ii].size ), dtype=np.float64) ##puts into tempi the cdist result my_cdist(x[:,ii:ii+1], y[:,ii:ii+1],tempi,'sqeuclidean') res = np.multiply(res,np.exp(-tempi/(2*l[ii]*l[ii]))) else: tempi = np.zeros((x.shape[0], y.shape[0] ), dtype=np.float64) my_cdist(x, y,tempi,'sqeuclidean') #this sets into the array tempi the cdist result res = np.exp(-tempi/(2*l*l)) #return 0 """ def K(x,y,l,multil=False): if multil: res = np.ones((x.shape[0],y.shape[0])) for ii in range(len(l)): #tempi = np.zeros((x[:,ii].size, y[:,ii].size )) ##puts into tempi the cdist result #my_cdist(x[:,ii:ii+1], y[:,ii:ii+1],tempi,'sqeuclidean') tempi = cdist(x[:,ii:ii+1], y[:,ii:ii+1],'sqeuclidean') res = np.multiply(res, np.exp(-tempi/(2*l[ii]*l[ii]))) return res else: tempi = np.zeros((x.shape[0], y.shape[0] )) my_cdist(x, y,tempi,'sqeuclidean') #this sets into the array tempi the cdist result return
np.exp(-tempi/(2*l*l))
numpy.exp
import sys import os sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) from collections import OrderedDict from tqdm import tqdm from config import get_config from agent import get_agent import numpy as np import random from joblib import Parallel, delayed import pymesh import torch import struct RESOLUTION = 33 TOTAL_POINTS = RESOLUTION * RESOLUTION * RESOLUTION SPLIT_SIZE = int(np.ceil(TOTAL_POINTS / 50000.0 )) NUM_SAMPLE_POINTS = int(np.ceil(TOTAL_POINTS / SPLIT_SIZE)) def main(): config = get_config('test') print(config.exp_dir) # create network and training agent tr_agent = get_agent(config) if config.ckpt: tr_agent.load_ckpt(config.ckpt) extra_pts = np.zeros((1, SPLIT_SIZE * NUM_SAMPLE_POINTS - TOTAL_POINTS, 3), dtype=np.float32) batch_points = np.zeros((SPLIT_SIZE, 0, NUM_SAMPLE_POINTS, 3), dtype=np.float32) num_sp_point = 6 for b in range(config.batch_size): sdf_params = [-1.0,-1.0,-1.0,1.0,1.0,1.0] x_ = np.linspace(sdf_params[0], sdf_params[3], num=RESOLUTION) y_ = np.linspace(sdf_params[1], sdf_params[4], num=RESOLUTION) z_ = np.linspace(sdf_params[2], sdf_params[5], num=RESOLUTION) z, y, x = np.meshgrid(z_, y_, x_, indexing='ij') x = np.expand_dims(x, 3) y = np.expand_dims(y, 3) z = np.expand_dims(z, 3) all_pts = np.concatenate((x, y, z), axis=3).astype(np.float32) all_pts = all_pts.reshape(1, -1, 3) all_pts = np.concatenate((all_pts, extra_pts), axis=1).reshape(SPLIT_SIZE, 1, -1, 3) batch_points = np.concatenate((batch_points, all_pts), axis=1) pred_affs_all = np.zeros((SPLIT_SIZE, config.batch_size, NUM_SAMPLE_POINTS, 3*num_sp_point)) for sp in range(SPLIT_SIZE): tr_agent.net.eval() with torch.no_grad(): pred_affs = tr_agent.net.module.get_aff(torch.tensor(batch_points[sp]).cuda()) pred_affs_all[sp, :, :, :] = pred_affs.detach().cpu().numpy() pred_affs_all = np.swapaxes(pred_affs_all, 0, 1) # B, S, NUM SAMPLE, 1 or 2 pred_affs_all = pred_affs_all.reshape((config.batch_size, -1, 3*num_sp_point))[:, :TOTAL_POINTS, :] batch_points = np.swapaxes(batch_points, 0, 1) # B, S, NUM SAMPLE, 3 batch_points = batch_points.reshape((config.batch_size, -1, 3))[:, :TOTAL_POINTS, :] fixed_affs_global = np.concatenate(( np.concatenate((batch_points[:, :, 0:2], -batch_points[:, :, 2:3]), axis=2), np.concatenate((-batch_points[:, :, 0:1], batch_points[:, :, 1:3]), axis=2), np.concatenate((batch_points[:, :, 0:1], -batch_points[:, :, 1:2], batch_points[:, :, 2:3]), axis=2),
np.concatenate((-batch_points[:, :, 0:2], batch_points[:, :, 2:3]), axis=2)
numpy.concatenate
import sys import numpy as np import scipy.integrate import scipy.special from ._dblquad import dblquad HAVE_PYGSL = False try: import pygsl.integrate import pygsl.sf HAVE_PYGSL = True except ImportError: pass class BinEB(object): def __init__( self, tmin, tmax, Nb, windows=None, linear=False, useArcmin=True, fname=None ): if fname is not None: self.read_data(fname) else: # set basic params if useArcmin: am2r = np.pi / 180.0 / 60.0 else: am2r = 1.0 self.Nb = Nb self.L = tmin * am2r self.H = tmax * am2r if linear: self.Lb = (self.H - self.L) / Nb * np.arange(Nb) + self.L self.Hb = (self.H - self.L) / Nb * (np.arange(Nb) + 1.0) + self.L else: self.Lb = np.exp(np.log(self.H / self.L) / Nb * np.arange(Nb)) * self.L self.Hb = ( np.exp(np.log(self.H / self.L) / Nb * (
np.arange(Nb)
numpy.arange
# Copyright 2020 The PyMC Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from collections import OrderedDict import numpy as np import theano.tensor as tt from scipy.special import logsumexp from scipy.stats import multivariate_normal from scipy.optimize import approx_fprime from theano import function as theano_function import arviz as az from pymc3.backends.ndarray import NDArray from pymc3.model import Point, modelcontext from pymc3.sampling import sample_prior_predictive from pymc3.theanof import ( floatX, inputvars, join_nonshared_inputs, make_shared_replacements, gradient, ) from pymc3.sinf.GIS import GIS import torch class NF_SMC: """Sequential Monte Carlo with normalizing flow based sampling.""" def __init__( self, draws=2000, start=None, threshold=0.5, model=None, random_seed=-1, chain=0, frac_validate=0.1, iteration=None, alpha=(0,0), k_trunc=0.5, pareto=False, epsilon=1e-3, local_thresh=3, local_step_size=0.1, local_grad=True, nf_local_iter=0, max_line_search=2, verbose=False, n_component=None, interp_nbin=None, KDE=True, bw_factor=0.5, edge_bins=None, ndata_wT=None, MSWD_max_iter=None, NBfirstlayer=True, logit=False, Whiten=False, batchsize=None, nocuda=False, patch=False, shape=[28,28,1], ): self.draws = draws self.start = start self.threshold = threshold self.model = model self.random_seed = random_seed self.chain = chain self.frac_validate = frac_validate self.iteration = iteration self.alpha = alpha self.k_trunc = k_trunc self.pareto = pareto self.epsilon = epsilon self.local_thresh = local_thresh self.local_step_size = local_step_size self.local_grad = local_grad self.nf_local_iter = nf_local_iter self.max_line_search = max_line_search self.verbose = verbose self.n_component = n_component self.interp_nbin = interp_nbin self.KDE = KDE self.bw_factor = bw_factor self.edge_bins = edge_bins self.ndata_wT = ndata_wT self.MSWD_max_iter = MSWD_max_iter self.NBfirstlayer = NBfirstlayer self.logit = logit self.Whiten = Whiten self.batchsize = batchsize self.nocuda = nocuda self.patch = patch self.shape = shape self.model = modelcontext(model) if self.random_seed != -1: np.random.seed(self.random_seed) self.beta = 0 self.variables = inputvars(self.model.vars) self.weights = np.ones(self.draws) / self.draws #self.sinf_logq = np.array([]) self.log_marginal_likelihood = 0 def initialize_population(self): """Create an initial population from the prior distribution.""" population = [] var_info = OrderedDict() if self.start is None: init_rnd = sample_prior_predictive( self.draws, var_names=[v.name for v in self.model.unobserved_RVs], model=self.model, ) else: init_rnd = self.start init = self.model.test_point for v in self.variables: var_info[v.name] = (init[v.name].shape, init[v.name].size) for i in range(self.draws): point = Point({v.name: init_rnd[v.name][i] for v in self.variables}, model=self.model) population.append(self.model.dict_to_array(point)) self.nf_samples = np.array(floatX(population)) #self.posterior = np.copy(self.nf_samples) self.var_info = var_info def setup_logp(self): """Set up the likelihood logp function based on the chosen kernel.""" shared = make_shared_replacements(self.variables, self.model) self.prior_logp_func = logp_forw([self.model.varlogpt], self.variables, shared) self.likelihood_logp_func = logp_forw([self.model.datalogpt], self.variables, shared) self.posterior_logp_func = logp_forw([self.model.logpt], self.variables, shared) self.posterior_dlogp_func = logp_forw([gradient(self.model.logpt, self.variables)], self.variables, shared) self.prior_dlogp_func = logp_forw([gradient(self.model.varlogpt, self.variables)], self.variables, shared) self.likelihood_dlogp_func = logp_forw([gradient(self.model.datalogpt, self.variables)], self.variables, shared) def get_nf_logp(self): """Get the prior, likelihood and tempered posterior log probabilities, for the current NF samples.""" priors = [self.prior_logp_func(sample) for sample in self.nf_samples] likelihoods = [self.likelihood_logp_func(sample) for sample in self.nf_samples] self.nf_prior_logp = np.array(priors).squeeze() self.nf_likelihood_logp = np.array(likelihoods).squeeze() self.nf_posterior_logp = self.nf_prior_logp + self.nf_likelihood_logp * self.beta def get_full_logp(self): """Get the prior, likelihood and tempered posterior log probabilities, for the full sample set.""" priors = [self.prior_logp_func(sample) for sample in self.posterior] likelihoods = [self.likelihood_logp_func(sample) for sample in self.posterior] self.prior_logp = np.array(priors).squeeze() self.likelihood_logp = np.array(likelihoods).squeeze() self.posterior_logp = self.prior_logp + self.likelihood_logp * self.beta def eval_prior_logp(self, param_vals): """Evaluates the prior logp for given parameter values.""" prior_logps = [self.prior_logp_func(val) for val in param_vals] return np.array(prior_logps).squeeze() def eval_prior_dlogp(self, param_vals): """Evaluates the gradient of the prior logp for given parameter values.""" prior_dlogps = [self.prior_dlogp_func(val) for val in param_vals] return np.array(prior_dlogps).squeeze() def sinf_logq(self, param_vals): """Function for evaluating the SINF gradient.""" sinf_logq = self.nf_model.evaluate_density(torch.from_numpy(param_vals.astype(np.float32))).numpy().astype(np.float64) return sinf_logq.item() def target_logp(self, param_vals): """Evaluates logp of the target distribution for given parameter values.""" logps = [self.posterior_logp_func(val) for val in param_vals] return np.array(logps).squeeze() def tempered_logp(self, param_vals): """Evaluates the tempered logp of the target distribution for given parameter values.""" logps = [self.prior_logp_func(val) + self.beta * self.likelihood_logp_func(val) for val in param_vals] return np.array(logps).squeeze() def target_dlogp(self, param_vals): """Evaluates the gradient of the target distribution logp for given parameter values.""" dlogps = [self.posterior_dlogp_func(val) for val in param_vals] return np.array(dlogps).squeeze() def tempered_dlogp(self, param_vals): """Evaluates the gradient of the temepered target distribution for given parameter values.""" dlogps = [self.prior_dlogp_func(val) + self.beta * self.likelihood_dlogp_func(val) for val in param_vals] return np.array(dlogps).squeeze() def regularize_weights(self): """Either performs Pareto-smoothing of the IW, or applies clipping.""" if self.pareto: psiw = az.psislw(self.log_sinf_weights) self.log_sinf_weights = psiw[0] self.sinf_weights = np.exp(self.log_sinf_weights) elif not self.pareto: self.log_sinf_weights = np.clip(self.log_sinf_weights, a_min=None, a_max=logsumexp(self.log_sinf_weights) + (self.k_trunc - 1) * np.log(len(self.log_sinf_weights))) self.log_sinf_weights = self.log_sinf_weights - logsumexp(self.log_sinf_weights) self.sinf_weights = np.exp(self.log_sinf_weights) def local_exploration(self, logq_func=None, dlogq_func=None): """Perform local exploration.""" self.high_iw_idx = np.where(self.log_sinf_weights >=
np.log(self.local_thresh)
numpy.log
import numpy as np import sys,os import torch from torchvision import transforms from PIL import Image import cv2 TAG_CHAR = np.array([202021.25], np.float32) def make_color_wheel(): """ Generate color wheel according Middlebury color code :return: Color wheel """ RY = 15 YG = 6 GC = 4 CB = 11 BM = 13 MR = 6 ncols = RY + YG + GC + CB + BM + MR colorwheel = np.zeros([ncols, 3]) col = 0 # RY colorwheel[0:RY, 0] = 255 colorwheel[0:RY, 1] = np.transpose(np.floor(255 * np.arange(0, RY) / RY)) col += RY # YG colorwheel[col:col + YG, 0] = 255 - np.transpose(np.floor(255 * np.arange(0, YG) / YG)) colorwheel[col:col + YG, 1] = 255 col += YG # GC colorwheel[col:col + GC, 1] = 255 colorwheel[col:col + GC, 2] = np.transpose(np.floor(255 * np.arange(0, GC) / GC)) col += GC # CB colorwheel[col:col + CB, 1] = 255 - np.transpose(np.floor(255 * np.arange(0, CB) / CB)) colorwheel[col:col + CB, 2] = 255 col += CB # BM colorwheel[col:col + BM, 2] = 255 colorwheel[col:col + BM, 0] = np.transpose(np.floor(255 * np.arange(0, BM) / BM)) col += + BM # MR colorwheel[col:col + MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR)) colorwheel[col:col + MR, 0] = 255 return colorwheel def compute_color(u, v): """ compute optical flow color map :param u: horizontal optical flow :param v: vertical optical flow :return: """ height, width = u.shape img = np.zeros((height, width, 3)) NAN_idx = np.isnan(u) | np.isnan(v) u[NAN_idx] = v[NAN_idx] = 0 colorwheel = make_color_wheel() ncols = np.size(colorwheel, 0) rad = np.sqrt(u ** 2 + v ** 2) a = np.arctan2(-v, -u) / np.pi fk = (a + 1) / 2 * (ncols - 1) + 1 k0 = np.floor(fk).astype(int) k1 = k0 + 1 k1[k1 == ncols + 1] = 1 f = fk - k0 for i in range(0, np.size(colorwheel, 1)): tmp = colorwheel[:, i] col0 = tmp[k0 - 1] / 255 col1 = tmp[k1 - 1] / 255 col = (1 - f) * col0 + f * col1 idx = rad <= 1 col[idx] = 1 - rad[idx] * (1 - col[idx]) notidx = np.logical_not(idx) col[notidx] *= 0.75 img[:, :, i] = np.uint8(np.floor(255 * col * (1 - NAN_idx))) return img def getPerspectiveTransformMatrix(p1, p2): matrixIndex = 0 A=[] for i in range(0, len(p1)): x, y = p1[i][0], p1[i][1] u, v = p2[i][0], p2[i][1] A.append( [-x, -y, -1, 0, 0, 0, u * x, u * y, u]) for i in range(0, len(p1)): x, y = p1[i][0], p1[i][1] u, v = p2[i][0], p2[i][1] A.append([0, 0, 0, -x, -y, -1, v*x, v*y, v]) A = np.asarray(A) U, S, Vh = np.linalg.svd(A) np.set_printoptions(suppress=True) #print(Vh) L = Vh[-1,:] H = np.reshape(L,(3, 3)) H=H/H[0,0] return H def readFlow(fn): """ Read .flo file in Middlebury format""" with open(fn, 'rb') as f: magic = np.fromfile(f, np.float32, count=1) if 202021.25 != magic: print('Magic number incorrect. Invalid .flo file') return None else: w = np.fromfile(f, np.int32, count=1) h = np.fromfile(f, np.int32, count=1) #print('Reading %d x %d flo file\n' % (w, h)) data = np.fromfile(f, np.float32, count=2*int(w)*int(h)) # Reshape data into 3D array (columns, rows, bands) # The reshape here is for visualization, the original code is (w,h,2) x=np.resize(data, (int(h), int(w), 2)) return x def homography(flow_filename): flow_data = readFlow(flow_filename) u = flow_data[:, :,0] v = flow_data[:, :,1] # u = cv2.normalize(flow_data[..., 0], None, -10, 10, cv2.NORM_MINMAX) # v = cv2.normalize(flow_data[..., 1], None, -10, 10, cv2.NORM_MINMAX) print(np.mean(u)) print(np.mean(v)) print(np.std(u)) print(np.std(v)) print(np.max(u)) print(np.min(u)) print(np.max(v)) print(np.min(v)) rad = np.sqrt(u ** 2 + v ** 2) maxrad = max(-1, np.max(rad)) u = u / maxrad + np.finfo(float).eps v = v / maxrad + np.finfo(float).eps img = compute_color(u, v) out = "KTrial.png" print("Saving aligned image : ", out) cv2.imwrite(out, img) dx=np.zeros((37,37)) dy = np.zeros((37, 37)) a=0 for i in range(9,190,5): b=0 for j in range(9,190,5): dx[a,b]=u[i,j] dy[a,b]=v[i,j] b=b+1 a=a+1 #print(dx) sy, sx = np.mgrid[10:191:5, 10:191:5] tx=sx+dx; ty=sy+dy; aa = sx.flatten('F') bb = sy.flatten('F') cc = tx.flatten('F') dd = ty.flatten('F') p1=np.column_stack((aa, bb)) p2=np.column_stack((cc, dd)) p1 = np.round_(p1, 4) p2=np.round_(p2,4) np.set_printoptions(suppress=True) np.set_printoptions(suppress=True) H=getPerspectiveTransformMatrix(p1,p2) return H if __name__ == '__main__': H = homography("/home/nudlesoup/Research/flownet2-pytorch/rangetest/kdata/k.flo") np.set_printoptions(suppress=True)
np.round_(H, 4)
numpy.round_
from __future__ import division import glob import cv2 import numpy as np from tqdm import tqdm def safe_ln(x, minval=0.0000000001): return np.log(x.clip(min=minval)) def __normalize_staining(I=None): I = I.astype(np.float64) Io = 240 beta = 0.15 alpha = 1 HERef = np.array([[0.5626, 0.2159], [0.7201, 0.8012], [0.4062, 0.5581]]) maxCRef = np.array([1.9705, 1.0308]) (h, w, c) = np.shape(I) I = np.reshape(I, (h * w, c), order='F') # Step 1. Convert RGB to OD. OD = - np.log((I + 1) / Io) # optical density where each channel in the image is normalized to values between # [0, 1] # Step 2. Remove data with OD intensity less than beta ODhat = (OD[(np.logical_not((OD < beta).any(axis=1))), :]) # Step 3. Calculate SVD on the OD tuples cov = np.cov(ODhat, rowvar=False) (W, V) = np.linalg.eig(cov) # Step 4. create plane from the SVD directions # corresponding to the two largest singular values Vec = - np.transpose(np.array([V[:, 1], V[:, 0]])) # Step 5. Project data onto the plane and normalize to unit Length That = np.dot(ODhat, Vec) # Step 6. Calculate angle of each point w.r.t the first SVD direction phi = np.arctan2(That[:, 1], That[:, 0]) # Step 7. Find robust extremes (some alpha th and (100 - alpha th) percentiles of the angle minPhi = np.percentile(phi, alpha) maxPhi = np.percentile(phi, 100 - alpha) vMin = np.dot(Vec, np.array([np.cos(minPhi), np.sin(minPhi)])) vMax = np.dot(Vec, np.array([np.cos(maxPhi), np.sin(maxPhi)])) if vMin[0] > vMax[0]: HE = np.array([vMin, vMax]) else: HE = np.array([vMax, vMin]) HE = np.transpose(HE) # Step 8. Convert extreme values back to OD space Y = np.transpose(np.reshape(OD, (h * w, c))) C = np.linalg.lstsq(HE, Y) maxC =
np.percentile(C[0], 99, axis=1)
numpy.percentile
''' Methods which sonify annotations for "evaluation by ear". All functions return a raw signal at the specified sampling rate. ''' import numpy as np from numpy.lib.stride_tricks import as_strided from scipy.interpolate import interp1d from . import util from . import chord def clicks(times, fs, click=None, length=None): """Returns a signal with the signal 'click' placed at each specified time Parameters ---------- times : np.ndarray times to place clicks, in seconds fs : int desired sampling rate of the output signal click : np.ndarray click signal, defaults to a 1 kHz blip length : int desired number of samples in the output signal, defaults to ``times.max()*fs + click.shape[0] + 1`` Returns ------- click_signal : np.ndarray Synthesized click signal """ # Create default click signal if click is None: # 1 kHz tone, 100ms click = np.sin(2*np.pi*np.arange(fs*.1)*1000/(1.*fs)) # Exponential decay click *= np.exp(-np.arange(fs*.1)/(fs*.01)) # Set default length if length is None: length = int(times.max()*fs + click.shape[0] + 1) # Pre-allocate click signal click_signal = np.zeros(length) # Place clicks for time in times: # Compute the boundaries of the click start = int(time*fs) end = start + click.shape[0] # Make sure we don't try to output past the end of the signal if start >= length: break if end >= length: click_signal[start:] = click[:length - start] break # Normally, just add a click here click_signal[start:end] = click return click_signal def time_frequency(gram, frequencies, times, fs, function=np.sin, length=None, n_dec=1): """Reverse synthesis of a time-frequency representation of a signal Parameters ---------- gram : np.ndarray ``gram[n, m]`` is the magnitude of ``frequencies[n]`` from ``times[m]`` to ``times[m + 1]`` Non-positive magnitudes are interpreted as silence. frequencies : np.ndarray array of size ``gram.shape[0]`` denoting the frequency of each row of gram times : np.ndarray, shape= ``(gram.shape[1],)`` or ``(gram.shape[1], 2)`` Either the start time of each column in the gram, or the time interval corresponding to each column. fs : int desired sampling rate of the output signal function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``times[-1]*fs`` n_dec : int the number of decimals used to approximate each sonfied frequency. Defaults to 1 decimal place. Higher precision will be slower. Returns ------- output : np.ndarray synthesized version of the piano roll """ # Default value for length if times.ndim == 1: # Convert to intervals times = util.boundaries_to_intervals(times) if length is None: length = int(times[-1, 1] * fs) times, _ = util.adjust_intervals(times, t_max=length) # Truncate times so that the shape matches gram n_times = gram.shape[1] times = times[:n_times] def _fast_synthesize(frequency): """A faster way to synthesize a signal. Generate one cycle, and simulate arbitrary repetitions using array indexing tricks. """ # hack so that we can ensure an integer number of periods and samples # rounds frequency to 1st decimal, s.t. 10 * frequency will be an int frequency = np.round(frequency, n_dec) # Generate 10*frequency periods at this frequency # Equivalent to n_samples = int(n_periods * fs / frequency) # n_periods = 10*frequency is the smallest integer that guarantees # that n_samples will be an integer, since assuming 10*frequency # is an integer n_samples = int(10.0**n_dec * fs) short_signal = function(2.0 * np.pi * np.arange(n_samples) * frequency / fs) # Calculate the number of loops we need to fill the duration n_repeats = int(np.ceil(length/float(short_signal.shape[0]))) # Simulate tiling the short buffer by using stride tricks long_signal = as_strided(short_signal, shape=(n_repeats, len(short_signal)), strides=(0, short_signal.itemsize)) # Use a flatiter to simulate a long 1D buffer return long_signal.flat def _const_interpolator(value): """Return a function that returns `value` no matter the input. """ def __interpolator(x): return value return __interpolator # Threshold the tfgram to remove non-positive values gram = np.maximum(gram, 0) # Pre-allocate output signal output = np.zeros(length) time_centers = np.mean(times, axis=1) * float(fs) for n, frequency in enumerate(frequencies): # Get a waveform of length samples at this frequency wave = _fast_synthesize(frequency) # Interpolate the values in gram over the time grid if len(time_centers) > 1: gram_interpolator = interp1d( time_centers, gram[n, :], kind='linear', bounds_error=False, fill_value=0.0) # If only one time point, create constant interpolator else: gram_interpolator = _const_interpolator(gram[n, 0]) # Scale each time interval by the piano roll magnitude for m, (start, end) in enumerate((times * fs).astype(int)): # Clip the timings to make sure the indices are valid start, end = max(start, 0), min(end, length) # add to waveform output[start:end] += ( wave[start:end] * gram_interpolator(np.arange(start, end))) # Normalize, but only if there's non-zero values norm = np.abs(output).max() if norm >= np.finfo(output.dtype).tiny: output /= norm return output def pitch_contour(times, frequencies, fs, amplitudes=None, function=np.sin, length=None, kind='linear'): '''Sonify a pitch contour. Parameters ---------- times : np.ndarray time indices for each frequency measurement, in seconds frequencies : np.ndarray frequency measurements, in Hz. Non-positive measurements will be interpreted as un-voiced samples. fs : int desired sampling rate of the output signal amplitudes : np.ndarray amplitude measurments, nonnegative defaults to ``np.ones((length,))`` function : function function to use to synthesize notes, should be :math:`2\pi`-periodic length : int desired number of samples in the output signal, defaults to ``max(times)*fs`` kind : str Interpolation mode for the frequency and amplitude values. See: ``scipy.interpolate.interp1d`` for valid settings. Returns ------- output : np.ndarray synthesized version of the pitch contour ''' fs = float(fs) if length is None: length = int(times.max() * fs) # Squash the negative frequencies. # wave(0) = 0, so clipping here will un-voice the corresponding instants frequencies = np.maximum(frequencies, 0.0) # Build a frequency interpolator f_interp = interp1d(times * fs, 2 * np.pi * frequencies / fs, kind=kind, fill_value=0.0, bounds_error=False, copy=False) # Estimate frequency at sample points f_est = f_interp(
np.arange(length)
numpy.arange
from mahotas import interpolate import numpy as np from nose.tools import raises def test_spline_filter1d_smoke(): f = (np.arange(64*64, dtype=np.intc) % 64).reshape((64,64)).astype(np.float64) f2 =interpolate.spline_filter1d(f,2,0) assert f.shape == f2.shape def test_spline_filter_smoke(): f = (np.arange(64*64, dtype=np.intc) % 64).reshape((64,64)).astype(np.float64) f2 = interpolate.spline_filter(f,3) assert f.shape == f2.shape def test_zoom_ratio(): f = np.zeros((128,128)) f[32:64,32:64] = 128 for z in [.7,.5,.2,.1]: output = interpolate.zoom(f,z) ratio = output.sum()/f.sum() assert np.abs(ratio - z*z) < .1 def test_zoom_ratio_2(): f =
np.zeros((128,128))
numpy.zeros
#Approximate_Randomization code by <NAME> import numpy as np def meandiff(sample1,sample2): mean1 = np.mean(sample1) mean2 = np.mean(sample2) diff = abs(mean1-mean2) return diff def meangt(sample1,sample2): mean1 = np.mean(sample1) mean2 = np.mean(sample2) diff = mean1-mean2 return diff def meanlt(sample1,sample2): mean1 = np.mean(sample1) mean2 = np.mean(sample2) diff = mean2-mean1 return diff #Return the likelihood that sample1's mean is greater than sample2's merely by chance def chanceByChance(sample1,sample2,comparer=None,pairwise=True,repetitions=10000): if not comparer: comparer = meangt true_diff = comparer(sample1,sample2) n = len(sample1) m = len(sample2) if pairwise and n != m: raise Exception("samples must be same size for pairwise. Got sample sizes {} and {}".format(n,m)) combined = np.concatenate([sample1,sample2]) def run_test(_): np.random.shuffle(combined) diff = comparer(combined[:n],combined[n:]) return diff > true_diff def run_pairwise_test(_): swapper =
np.random.rand(n)
numpy.random.rand
# -*- coding: utf-8 -*- """ Created on Wed May 08 10:39:48 2019 @author: Darin """ import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import PolyCollection from mpl_toolkits.mplot3d.art3d import Poly3DCollection import Shape_Functions import scipy.sparse as sparse import scipy.sparse.linalg as spla import Material import pyamg from time import time import cvxopt; import cvxopt.cholmod class it_counter(object): def __init__(self, disp=False): self._disp = disp self.it = 0 def __call__(self, rk=None): self.it += 1 if self._disp: print('iter %3i\trk = %s' % (self.it, str(rk))) class FEM: """Provides functionality to solve the beam QC problem """ def __init__(self): """Create a 1-element rectangular mesh by default Parameters ---------- None Notes ----- The proper calling order of functions is 1 - CreateRecMesh 2 - AddBc, AddLoad, and AddSpring; in any order 3 - SetMaterial 4 - Initialize 5 - ConstructSystem 6 - SolveSystem An example of this process is at the end of the file """ self.elements = np.array([[0, 1, 3, 2]]) self.nElem = 1 self.nodes = np.array([[0, 0], [1, 0], [0, 1], [1, 1]]) self.nNode, self.nDof = self.nodes.shape self.edgeElems = np.array([[0, 1], [0, 1], [0, 1], [0, 1]]) self.edgeLengths =
np.ones(4)
numpy.ones
"""Utility functions for ICA-AROMA.""" import os import os.path as op import shutil import nibabel as nib import numpy as np from nilearn import image, masking def runICA(fsl_dir, in_file, out_dir, mel_dir_in, mask, dim, TR): """Run MELODIC and merge the thresholded ICs into a single 4D nifti file. Parameters ---------- fsl_dir : str Full path of the bin-directory of FSL in_file : str Full path to the fMRI data file (nii.gz) on which MELODIC should be run out_dir : str Full path of the output directory mel_dir_in : str or None Full path of the MELODIC directory in case it has been run before, otherwise None. mask : str Full path of the mask to be applied during MELODIC dim : int Dimensionality of ICA TR : float TR (in seconds) of the fMRI data Output ------ melodic.ica/: MELODIC directory melodic_IC_thr.nii.gz: Merged file containing the mixture modeling thresholded Z-statistical maps located in melodic.ica/stats/ """ # Define the 'new' MELODIC directory and predefine some associated files mel_dir = op.join(out_dir, 'melodic.ica') mel_IC = op.join(mel_dir, 'melodic_IC.nii.gz') mel_IC_mix = op.join(mel_dir, 'melodic_mix') mel_IC_thr = op.join(out_dir, 'melodic_IC_thr.nii.gz') # When a MELODIC directory is specified, # check whether all needed files are present. # Otherwise... run MELODIC again if (mel_dir_in and op.isfile(op.join(mel_dir_in, 'melodic_IC.nii.gz')) and op.isfile(op.join(mel_dir_in, 'melodic_FTmix')) and op.isfile(op.join(mel_dir_in, 'melodic_mix'))): print(' - The existing/specified MELODIC directory will be used.') # If a 'stats' directory is present (contains thresholded spatial maps) # create a symbolic link to the MELODIC directory. # Otherwise create specific links and # run mixture modeling to obtain thresholded maps. if op.isdir(op.join(mel_dir_in, 'stats')): os.symlink(mel_dir_in, mel_dir) else: print(" - The MELODIC directory does not contain the required " "'stats' folder. Mixture modeling on the Z-statistical " "maps will be run.") # Create symbolic links to the items in the specified melodic # directory os.makedirs(mel_dir) for item in os.listdir(mel_dir_in): os.symlink(op.join(mel_dir_in, item), op.join(mel_dir, item)) # Run mixture modeling melodic_command = ("{0} --in={1} --ICs={1} --mix={2} --out_dir={3} " "--0stats --mmthresh=0.5").format( op.join(fsl_dir, 'melodic'), mel_IC, mel_IC_mix, mel_dir, ) os.system(melodic_command) else: # If a melodic directory was specified, display that it did not # contain all files needed for ICA-AROMA (or that the directory # does not exist at all) if mel_dir_in: if not op.isdir(mel_dir_in): print(' - The specified MELODIC directory does not exist. ' 'MELODIC will be run separately.') else: print(' - The specified MELODIC directory does not contain ' 'the required files to run ICA-AROMA. MELODIC will be ' 'run separately.') # Run MELODIC melodic_command = ("{0} --in={1} --outdir={2} --mask={3} --dim={4} " "--Ostats --nobet --mmthresh=0.5 --report " "--tr={5}").format( op.join(fsl_dir, 'melodic'), in_file, mel_dir, mask, dim, TR ) os.system(melodic_command) # Get number of components mel_IC_img = nib.load(mel_IC) nr_ICs = mel_IC_img.shape[3] # Merge mixture modeled thresholded spatial maps. Note! In case that # mixture modeling did not converge, the file will contain two spatial # maps. The latter being the results from a simple null hypothesis test. # In that case, this map will have to be used (first one will be empty). zstat_imgs = [] for i in range(1, nr_ICs + 1): # Define thresholded zstat-map file z_temp = op.join(mel_dir, "stats", "thresh_zstat{0}.nii.gz".format(i)) # Get number of volumes in component's thresholded image z_temp_img = nib.load(z_temp) if z_temp_img.ndim == 4: len_IC = z_temp_img.shape[3] # Extract last spatial map within the thresh_zstat file zstat_img = image.index_img(z_temp_img, len_IC - 1) else: zstat_img = z_temp_img zstat_imgs.append(zstat_img) # Merge to 4D zstat_4d_img = image.concat_imgs(zstat_imgs) # Apply the mask to the merged image (in case a melodic-directory was # predefined and run with a different mask) zstat_4d_img = image.math_img( "stat * mask[:, :, :, None]", stat=zstat_4d_img, mask=mask ) zstat_4d_img.to_filename(mel_IC_thr) def register2MNI(fsl_dir, in_file, out_file, affmat, warp): """Register an image (or time-series of images) to MNI152 T1 2mm. If no affmat is defined, it only warps (i.e. it assumes that the data has been registered to the structural scan associated with the warp-file already). If no warp is defined either, it only resamples the data to 2mm isotropic if needed (i.e. it assumes that the data has been registered to a MNI152 template). In case only an affmat file is defined, it assumes that the data has to be linearly registered to MNI152 (i.e. the user has a reason not to use non-linear registration on the data). Parameters ---------- fsl_dir : str Full path of the bin-directory of FSL in_file : str Full path to the data file (nii.gz) which has to be registerd to MNI152 T1 2mm out_file : str Full path of the output file affmat : str Full path of the mat file describing the linear registration (if data is still in native space) warp : str Full path of the warp file describing the non-linear registration (if data has not been registered to MNI152 space yet) Output ------ melodic_IC_mm_MNI2mm.nii.gz : merged file containing the mixture modeling thresholded Z-statistical maps registered to MNI152 2mm """ # Define the MNI152 T1 2mm template fslnobin = fsl_dir.rsplit('/', 2)[0] ref = op.join(fslnobin, 'data', 'standard', 'MNI152_T1_2mm_brain.nii.gz') # If the no affmat- or warp-file has been specified, assume that the data # is already in MNI152 space. In that case only check if resampling to # 2mm is needed if not affmat and not warp: in_img = nib.load(in_file) # Get 3D voxel size pixdim1, pixdim2, pixdim3 = in_img.header.get_zooms()[:3] # If voxel size is not 2mm isotropic, resample the data, otherwise # copy the file if (pixdim1 != 2) or (pixdim2 != 2) or (pixdim3 != 2): os.system(' '.join([op.join(fsl_dir, 'flirt'), ' -ref ' + ref, ' -in ' + in_file, ' -out ' + out_file, ' -applyisoxfm 2 -interp trilinear'])) else: os.copyfile(in_file, out_file) # If only a warp-file has been specified, assume that the data has already # been registered to the structural scan. In that case apply the warping # without a affmat elif not affmat and warp: # Apply warp os.system(' '.join([op.join(fsl_dir, 'applywarp'), '--ref=' + ref, '--in=' + in_file, '--out=' + out_file, '--warp=' + warp, '--interp=trilinear'])) # If only a affmat-file has been specified perform affine registration to # MNI elif affmat and not warp: os.system(' '.join([op.join(fsl_dir, 'flirt'), '-ref ' + ref, '-in ' + in_file, '-out ' + out_file, '-applyxfm -init ' + affmat, '-interp trilinear'])) # If both a affmat- and warp-file have been defined, apply the warping # accordingly else: os.system(' '.join([op.join(fsl_dir, 'applywarp'), '--ref=' + ref, '--in=' + in_file, '--out=' + out_file, '--warp=' + warp, '--premat=' + affmat, '--interp=trilinear'])) def cross_correlation(a, b): """Perform cross-correlations between columns of two matrices. Parameters ---------- a : (M x X) array_like First array to cross-correlate b : (N x X) array_like Second array to cross-correlate Returns ------- correlations : (M x N) array_like Cross-correlations of columns of a against columns of b. """ assert a.ndim == b.ndim == 2 _, ncols_a = a.shape # nb variables in columns rather than rows hence transpose # extract just the cross terms between cols in a and cols in b return np.corrcoef(a.T, b.T)[:ncols_a, ncols_a:] def classification(out_dir, max_RP_corr, edge_fract, HFC, csf_fract): """Classify components as motion or non-motion based on four features. The four features used for classification are: maximum RP correlation, high-frequency content, edge-fraction, and CSF-fraction. Parameters ---------- out_dir : str Full path of the output directory max_RP_corr : (C,) array_like Array of the 'maximum RP correlation' feature scores of the components edge_fract : (C,) array_like Array of the 'edge fraction' feature scores of the components HFC : (C,) array_like Array of the 'high-frequency content' feature scores of the components csf_fract : (C,) array_like Array of the 'CSF fraction' feature scores of the components Returns ------- motion_ICs : array_like Array containing the indices of the components identified as motion components Output ------ classified_motion_ICs.txt : A text file containing the indices of the components identified as motion components """ # Classify the ICs as motion or non-motion # Define criteria needed for classification (thresholds and # hyperplane-parameters) thr_csf = 0.10 thr_HFC = 0.35 hyp = np.array([-19.9751070082159, 9.95127547670627, 24.8333160239175]) # Project edge & max_RP_corr feature scores to new 1D space x = np.array([max_RP_corr, edge_fract]) proj = hyp[0] + np.dot(x.T, hyp[1:]) # Classify the ICs motion_ICs = np.squeeze( np.array( np.where( (proj > 0) + (csf_fract > thr_csf) + (HFC > thr_HFC) ) ) ) # Put the feature scores in a text file np.savetxt(op.join(out_dir, 'feature_scores.txt'), np.vstack((max_RP_corr, edge_fract, HFC, csf_fract)).T) # Put the indices of motion-classified ICs in a text file with open(op.join(out_dir, 'classified_motion_ICs.txt'), 'w') as fo: if motion_ICs.size > 1: fo.write(','.join(['{:.0f}'.format(num) for num in (motion_ICs + 1)])) elif motion_ICs.size == 1: fo.write('{:.0f}'.format(motion_ICs + 1)) # Create a summary overview of the classification with open(op.join(out_dir, 'classification_overview.txt'), 'w') as fo: fo.write('\t'.join(['IC', 'Motion/noise', 'maximum RP correlation', 'Edge-fraction', 'High-frequency content', 'CSF-fraction'])) fo.write('\n') for i in range(0, len(csf_fract)): if (proj[i] > 0) or (csf_fract[i] > thr_csf) or (HFC[i] > thr_HFC): classif = "True" else: classif = "False" fo.write('\t'.join(['{:d}'.format(i + 1), classif, '{:.2f}'.format(max_RP_corr[i]), '{:.2f}'.format(edge_fract[i]), '{:.2f}'.format(HFC[i]), '{:.2f}'.format(csf_fract[i])])) fo.write('\n') return motion_ICs def denoising(fsl_dir, in_file, out_dir, mixing, den_type, den_idx): """Remove noise components from fMRI data. Parameters ---------- fsl_dir : str Full path of the bin-directory of FSL in_file : str Full path to the data file (nii.gz) which has to be denoised out_dir : str Full path of the output directory mixing : str Full path of the melodic_mix text file den_type : {"aggr", "nonaggr", "both"} Type of requested denoising ('aggr': aggressive, 'nonaggr': non-aggressive, 'both': both aggressive and non-aggressive den_idx : array_like Index of the components that should be regressed out Output ------ denoised_func_data_<den_type>.nii.gz : The denoised fMRI data """ # Check if denoising is needed (i.e. are there motion components?) motion_components_found = den_idx.size > 0 nonaggr_denoised_file = op.join(out_dir, "denoised_func_data_nonaggr.nii.gz") aggr_denoised_file = op.join(out_dir, "denoised_func_data_aggr.nii.gz") if motion_components_found: mixing =
np.loadtxt(mixing)
numpy.loadtxt
# Copyright (c) Facebook, Inc. and its affiliates. # All rights reserved. # This source code is licensed under the BSD-style license found in the # LICENSE file in the root directory of this source tree. All rights reserved. from math import sqrt import numpy as np def get_deltas(mat1, mat2): mat1 = np.vstack((mat1, np.array([0, 0, 0, 1]))) mat2 = np.vstack((mat2, np.array([0, 0, 0, 1]))) dMat = np.matmul(np.linalg.inv(mat1), mat2) dtrans = dMat[0:3, 3] ** 2 dtrans = sqrt(dtrans.sum()) origVec = np.array([[0], [0], [1]]) rotVec = np.matmul(dMat[0:3, 0:3], origVec) arccos = (rotVec * origVec).sum() / sqrt((rotVec ** 2).sum()) dAngle =
np.arccos(arccos)
numpy.arccos
import numpy import six.moves import cellprofiler_core.image import cellprofiler_core.measurement import cellprofiler_core.measurement from cellprofiler_core.constants.measurement import ( M_LOCATION_CENTER_X, M_LOCATION_CENTER_Y, FF_COUNT, FF_PARENT, COLTYPE_FLOAT, M_NUMBER_OBJECT_NUMBER, COLTYPE_INTEGER, FF_CHILDREN_COUNT, ) import cellprofiler.modules.splitormergeobjects import cellprofiler_core.object import cellprofiler_core.pipeline import cellprofiler_core.workspace import tests.modules INPUT_OBJECTS_NAME = "inputobjects" OUTPUT_OBJECTS_NAME = "outputobjects" IMAGE_NAME = "image" OUTLINE_NAME = "outlines" def test_load_v5(): file = tests.modules.get_test_resources_directory("splitormergeobjects/v5.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.loadtxt(six.moves.StringIO(data)) module = pipeline.modules()[0] assert module.objects_name.value == "IdentifyPrimaryObjects" assert module.output_objects_name.value == "SplitOrMergeObjects" assert module.relabel_option.value == "Merge" assert module.distance_threshold.value == 0 assert not module.wants_image.value assert module.image_name.value == "None" assert module.minimum_intensity_fraction.value == 0.9 assert module.where_algorithm.value == "Closest point" assert module.merge_option.value == "Distance" assert module.parent_object.value == "None" assert module.merging_method.value == "Disconnected" def test_load_v4(): file = tests.modules.get_test_resources_directory("splitormergeobjects/v4.pipeline") with open(file, "r") as fd: data = fd.read() pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.LoadException) pipeline.add_listener(callback) pipeline.loadtxt(six.moves.StringIO(data)) assert len(pipeline.modules()) == 2 module = pipeline.modules()[0] assert isinstance( module, cellprofiler.modules.splitormergeobjects.SplitOrMergeObjects ) assert module.objects_name == "blobs" assert module.output_objects_name == "RelabeledBlobs" assert ( module.relabel_option == cellprofiler.modules.splitormergeobjects.OPTION_MERGE ) assert module.distance_threshold == 2 assert not module.wants_image assert module.image_name == "Guide" assert module.minimum_intensity_fraction == 0.8 assert ( module.where_algorithm == cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT ) assert module.merge_option == cellprofiler.modules.splitormergeobjects.UNIFY_PARENT assert module.parent_object == "Nuclei" assert ( module.merging_method == cellprofiler.modules.splitormergeobjects.UM_CONVEX_HULL ) module = pipeline.modules()[1] assert ( module.relabel_option == cellprofiler.modules.splitormergeobjects.OPTION_SPLIT ) assert module.wants_image assert ( module.where_algorithm == cellprofiler.modules.splitormergeobjects.CA_CENTROIDS ) assert ( module.merge_option == cellprofiler.modules.splitormergeobjects.UNIFY_DISTANCE ) assert ( module.merging_method == cellprofiler.modules.splitormergeobjects.UM_DISCONNECTED ) def rruunn( input_labels, relabel_option, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_DISTANCE, unify_method=cellprofiler.modules.splitormergeobjects.UM_DISCONNECTED, distance_threshold=5, minimum_intensity_fraction=0.9, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT, image=None, parent_object="Parent_object", parents_of=None, ): """Run the SplitOrMergeObjects module returns the labels matrix and the workspace. """ module = cellprofiler.modules.splitormergeobjects.SplitOrMergeObjects() module.set_module_num(1) module.objects_name.value = INPUT_OBJECTS_NAME module.output_objects_name.value = OUTPUT_OBJECTS_NAME module.relabel_option.value = relabel_option module.merge_option.value = merge_option module.merging_method.value = unify_method module.parent_object.value = parent_object module.distance_threshold.value = distance_threshold module.minimum_intensity_fraction.value = minimum_intensity_fraction module.wants_image.value = image is not None module.where_algorithm.value = where_algorithm pipeline = cellprofiler_core.pipeline.Pipeline() def callback(caller, event): assert not isinstance(event, cellprofiler_core.pipeline.event.RunException) pipeline.add_listener(callback) pipeline.add_module(module) image_set_list = cellprofiler_core.image.ImageSetList() image_set = image_set_list.get_image_set(0) if image is not None: img = cellprofiler_core.image.Image(image) image_set.add(IMAGE_NAME, img) module.image_name.value = IMAGE_NAME object_set = cellprofiler_core.object.ObjectSet() o = cellprofiler_core.object.Objects() o.segmented = input_labels object_set.add_objects(o, INPUT_OBJECTS_NAME) workspace = cellprofiler_core.workspace.Workspace( pipeline, module, image_set, object_set, cellprofiler_core.measurement.Measurements(), image_set_list, ) if parents_of is not None: m = workspace.measurements ftr = FF_PARENT % parent_object m[INPUT_OBJECTS_NAME, ftr] = parents_of module.run(workspace) output_objects = workspace.object_set.get_objects(OUTPUT_OBJECTS_NAME) return output_objects.segmented, workspace def test_split_zero(): labels, workspace = rruunn( numpy.zeros((10, 20), int), cellprofiler.modules.splitormergeobjects.OPTION_SPLIT, ) assert numpy.all(labels == 0) assert labels.shape[0] == 10 assert labels.shape[1] == 20 assert isinstance(workspace, cellprofiler_core.workspace.Workspace) m = workspace.measurements assert isinstance(m,cellprofiler_core.measurement.Measurements) count = m.get_current_image_measurement(FF_COUNT % OUTPUT_OBJECTS_NAME) assert count == 0 for feature_name in ( M_LOCATION_CENTER_X, M_LOCATION_CENTER_Y, ): values = m.get_current_measurement(OUTPUT_OBJECTS_NAME, feature_name) assert len(values) == 0 module = workspace.module assert isinstance( module, cellprofiler.modules.splitormergeobjects.SplitOrMergeObjects ) columns = module.get_measurement_columns(workspace.pipeline) assert len(columns) == 6 for object_name, feature_name, coltype in ( (OUTPUT_OBJECTS_NAME, M_LOCATION_CENTER_X, COLTYPE_FLOAT,), (OUTPUT_OBJECTS_NAME, M_LOCATION_CENTER_Y, COLTYPE_FLOAT,), (OUTPUT_OBJECTS_NAME, M_NUMBER_OBJECT_NUMBER, COLTYPE_INTEGER,), (INPUT_OBJECTS_NAME, FF_CHILDREN_COUNT % OUTPUT_OBJECTS_NAME, COLTYPE_INTEGER,), (OUTPUT_OBJECTS_NAME, FF_PARENT % INPUT_OBJECTS_NAME, COLTYPE_INTEGER,), ("Image", FF_COUNT % OUTPUT_OBJECTS_NAME, COLTYPE_INTEGER,), ): assert any( [ object_name == c[0] and feature_name == c[1] and coltype == c[2] for c in columns ] ) categories = module.get_categories(workspace.pipeline, "Image") assert len(categories) == 1 assert categories[0] == "Count" categories = module.get_categories(workspace.pipeline, OUTPUT_OBJECTS_NAME) assert len(categories) == 3 assert any(["Location" in categories]) assert any(["Parent" in categories]) assert any(["Number" in categories]) categories = module.get_categories(workspace.pipeline, INPUT_OBJECTS_NAME) assert len(categories) == 1 assert categories[0] == "Children" f = module.get_measurements(workspace.pipeline, "Image", "Count") assert len(f) == 1 assert f[0] == OUTPUT_OBJECTS_NAME f = module.get_measurements(workspace.pipeline, OUTPUT_OBJECTS_NAME, "Location") assert len(f) == 2 assert all([any([x == y for y in f]) for x in ("Center_X", "Center_Y")]) f = module.get_measurements(workspace.pipeline, OUTPUT_OBJECTS_NAME, "Parent") assert len(f) == 1 assert f[0] == INPUT_OBJECTS_NAME f = module.get_measurements(workspace.pipeline, OUTPUT_OBJECTS_NAME, "Number") assert len(f) == 1 assert f[0] == "Object_Number" f = module.get_measurements(workspace.pipeline, INPUT_OBJECTS_NAME, "Children") assert len(f) == 1 assert f[0] == "%s_Count" % OUTPUT_OBJECTS_NAME def test_split_one(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_SPLIT ) assert numpy.all(labels == labels_out) assert isinstance(workspace, cellprofiler_core.workspace.Workspace) m = workspace.measurements assert isinstance(m,cellprofiler_core.measurement.Measurements) count = m.get_current_image_measurement(FF_COUNT % OUTPUT_OBJECTS_NAME) assert count == 1 for feature_name, value in ( (M_LOCATION_CENTER_X, 5), (M_LOCATION_CENTER_Y, 3), (FF_PARENT % INPUT_OBJECTS_NAME, 1), ): values = m.get_current_measurement(OUTPUT_OBJECTS_NAME, feature_name) assert len(values) == 1 assert round(abs(values[0] - value), 7) == 0 values = m.get_current_measurement( INPUT_OBJECTS_NAME, FF_CHILDREN_COUNT % OUTPUT_OBJECTS_NAME, ) assert len(values) == 1 assert values[0] == 1 def test_split_one_into_two(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_SPLIT ) index = numpy.array([labels_out[3, 5], labels_out[3, 15]]) assert index[0] != index[1] assert all([x in index for x in (1, 2)]) expected = numpy.zeros((10, 20), int) expected[2:5, 3:8] = index[0] expected[2:5, 13:18] = index[1] assert numpy.all(labels_out == expected) m = workspace.measurements values = m.get_current_measurement( OUTPUT_OBJECTS_NAME, FF_PARENT % INPUT_OBJECTS_NAME, ) assert len(values) == 2 assert numpy.all(values == 1) values = m.get_current_measurement( INPUT_OBJECTS_NAME, FF_CHILDREN_COUNT % OUTPUT_OBJECTS_NAME, ) assert len(values) == 1 assert values[0] == 2 def test_unify_zero(): labels, workspace = rruunn( numpy.zeros((10, 20), int), cellprofiler.modules.splitormergeobjects.OPTION_MERGE, ) assert numpy.all(labels == 0) assert labels.shape[0] == 10 assert labels.shape[1] == 20 def test_unify_one(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE ) assert numpy.all(labels == labels_out) def test_unify_two_to_one(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, ) assert numpy.all(labels_out[labels != 0] == 1) assert numpy.all(labels_out[labels == 0] == 0) def test_unify_two_stays_two(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=4, ) assert numpy.all(labels_out == labels) def test_unify_image_centroids(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * (labels > 0) * 0.5 image[3, 8:13] = 0.41 image[3, 5] = 0.6 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CENTROIDS, ) assert numpy.all(labels_out[labels != 0] == 1) assert numpy.all(labels_out[labels == 0] == 0) def test_dont_unify_image_centroids(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * labels * 0.5 image[3, 8:12] = 0.41 image[3, 5] = 0.6 image[3, 15] = 0.6 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CENTROIDS, ) assert numpy.all(labels_out == labels) def test_unify_image_closest_point(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * (labels > 0) * 0.6 image[2, 8:13] = 0.41 image[2, 7] = 0.5 image[2, 13] = 0.5 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT, ) assert numpy.all(labels_out[labels != 0] == 1) assert numpy.all(labels_out[labels == 0] == 0) def test_dont_unify_image_closest_point(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 image = numpy.ones((10, 20)) * labels * 0.6 image[3, 8:12] = 0.41 image[2, 7] = 0.5 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, distance_threshold=6, image=image, minimum_intensity_fraction=0.8, where_algorithm=cellprofiler.modules.splitormergeobjects.CA_CLOSEST_POINT, ) assert numpy.all(labels_out == labels) def test_unify_per_parent(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_PARENT, parent_object="Parent_object", parents_of=numpy.array([1, 1]), ) assert numpy.all(labels_out[labels != 0] == 1) def test_unify_convex_hull(): labels = numpy.zeros((10, 20), int) labels[2:5, 3:8] = 1 labels[2:5, 13:18] = 2 expected = numpy.zeros(labels.shape, int) expected[2:5, 3:18] = 1 labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_PARENT, unify_method=cellprofiler.modules.splitormergeobjects.UM_CONVEX_HULL, parent_object="Parent_object", parents_of=numpy.array([1, 1]), ) assert numpy.all(labels_out == expected) def test_unify_nothing(): labels = numpy.zeros((10, 20), int) for um in ( cellprofiler.modules.splitormergeobjects.UM_DISCONNECTED, cellprofiler.modules.splitormergeobjects.UM_CONVEX_HULL, ): labels_out, workspace = rruunn( labels, cellprofiler.modules.splitormergeobjects.OPTION_MERGE, merge_option=cellprofiler.modules.splitormergeobjects.UNIFY_PARENT, unify_method=cellprofiler.modules.splitormergeobjects.UM_CONVEX_HULL, parent_object="Parent_object", parents_of=
numpy.zeros(0, int)
numpy.zeros
# Copyright 2019-2020 Toyota Research Institute. All rights reserved. """ Defines a new XAS Spectrum object built on top of Pymatgen's Spectrum object. """ import os import numpy as np from pymatgen.core.structure import Structure from trixs.spectra.core import XAS_Spectrum, XAS_Collation from trixs.spectra.spectrum_io import parse_spectrum from copy import deepcopy from numpy import eye from pytest import fixture, raises from json import loads, dumps TEST_DIR = os.path.dirname(__file__) TEST_FILE_DIR = os.path.join(TEST_DIR, 'test_files') @fixture def fake_structure(): lattice = eye(3) species = ['H'] coords = np.array([[0, 0, 0]]) yield Structure(lattice, species, coords) @fixture def fake_spectrum(fake_structure): x = np.random.uniform(size=100) y = np.random.uniform(size=100) return XAS_Spectrum(x, y, structure=fake_structure, absorbing_site=0) def test_instantiate_XAS_spectra(fake_structure): x = np.random.uniform(size=100) y = np.random.uniform(size=100) absorbing_site = 0 spec = XAS_Spectrum(x, y, fake_structure, absorbing_site) assert isinstance(spec, XAS_Spectrum) def test_XAS_full_spec_attributes(): x = np.random.uniform(size=100) y = np.random.uniform(size=100) structure = Structure.from_file(os.path.join(TEST_FILE_DIR, 'Cu_structure.cif')) absorbing_site = 0 full_spectrum = np.random.uniform(size=(100, 6)) spec = XAS_Spectrum(x, y, structure, absorbing_site, full_spectrum=full_spectrum) assert isinstance(spec, XAS_Spectrum) assert np.array_equal(spec.E, full_spectrum[:, 0]) assert np.array_equal(spec.Enorm, full_spectrum[:, 1]) assert np.array_equal(spec.k, full_spectrum[:, 2]) assert np.array_equal(spec.mu, full_spectrum[:, 3]) assert np.array_equal(spec.mu0, full_spectrum[:, 4]) assert np.array_equal(spec.chi, full_spectrum[:, 5]) assert spec.abs_idx == 0 assert isinstance(spec.as_dict(), dict) def test_exceptions(fake_spectrum): with raises(ValueError): fake_spectrum.E() with raises(ValueError): fake_spectrum.mu() with raises(ValueError): fake_spectrum.Enorm() with raises(ValueError): fake_spectrum.mu0() with raises(ValueError): fake_spectrum.k() with raises(ValueError): fake_spectrum.chi() with raises(ValueError): fake_spectrum.shifted_Enorm(shift=0) with raises(NotImplementedError): fake_spectrum.normalize('zappa') def test_load_from_doc_and_object(): with open(os.path.join(TEST_FILE_DIR, 'sample_spectrum_e.txt'), 'r') as f: data = loads(f.readline()) spec1 = XAS_Spectrum.from_atomate_document(data) spec2 = XAS_Spectrum.load_from_object(data) line = dumps(data) spec3 = XAS_Spectrum.load_from_object(line) for spec in [spec1, spec2, spec3]: assert isinstance(spec,XAS_Spectrum) assert spec.has_full_spectrum() assert spec.E[0] == 8334.08 assert spec.Enorm[0] == -9.293 assert spec.k[0] == -0.8 assert spec.mu[0] == 0.0519168 assert spec.mu0[0] == 0.0795718 assert spec.chi[0] == -0.027655 assert len(spec.E) == 100 assert len(spec.Enorm) == 100 assert len(spec.mu) == 100 assert len(spec.mu0) == 100 assert len(spec.k) == 100 assert len(spec.chi) == 100 enorm = spec1.Enorm sub_enorm =
np.add(enorm,1)
numpy.add
from flask import Flask from flask import render_template from flask import Flask, flash, request, redirect, url_for from werkzeug.utils import secure_filename import os import numpy as np import tensorflow as tf import PIL from tensorflow import keras #backend instantiation app = Flask(__name__) app.config['UPLOAD_FOLDER'] = "static/upload_folder" #loading ai model model = tf.keras.models.load_model('ai/fingernail_model') class_names = ['long', 'short'] @app.route('/') def home(name=None): return render_template("index.html") @app.route("/upload", methods = ['POST']) def upload(): if 'file' not in request.files: flash('No file part') return redirect(request.url) file = request.files['file'] if file.filename == '': flash('No selected file') return redirect(request.url) if file: filename = secure_filename(file.filename) file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename) file.save(file_path) img_array = tf.keras.preprocessing.image.load_img(file_path, target_size = (64, 64)) img_array = tf.expand_dims(img_array, 0) predictions = model.predict(img_array) score = tf.nn.softmax(predictions) statement = "I am {:.2f} percent confident that your fingernails are {}".format(100 * np.max(score), class_names[
np.argmax(score)
numpy.argmax
# -*- coding: utf-8 -*- """ Support functions for reading or calculating DISPATCH2 grid and geometry information. """ import numpy as np class GeometricFactors(dict): """Calculate and store the geometric factors used by curvilinear grids.""" def __init__(self, patch): """Constructor.""" # Define geometric factors with the same notation as in `mesh_mod` ("c" # for zone-centred and "f" for face-centred). self['h2c'] = None self['h2f'] = None self['h31c'] = None self['h31f'] = None self['h32c'] = None self['h32f'] = None self['dx1c'] = None self['dx1f'] = None self['dx2c'] = None self['dx2f'] = None self['dx3c'] = None self['dx3f'] = None self['dvol1c'] = None self['dvol1f'] = None self['dvol2c'] = None self['dvol2f'] = None self['dvol3c'] = None self['dvol3f'] = None self['dar1c'] = None self['dar1f'] = None self['dar2c'] = None self['dar2f'] = None self['dar31c'] = None self['dar31f'] = None self['dar32c'] = None self['dar32f'] = None # initialize the grid self.init_grid(patch) def init_grid(self, p): """Initialise geometric factors based on coord. type.""" if p.mesh_type == 'Cartesian': self.init_Cartesian(p) elif p.mesh_type == 'cylindrical': self.init_cylindrical(p) elif p.mesh_type == 'spherical': self.init_spherical(p) def init_Cartesian(self, p): """Initialise geometric factors for a Cartesian coord. system.""" n1, n2, n3 = p.ncell # 1-direction self['h2c'] = np.ones(n1) self['h2f'] = np.ones(n1) self['h31c'] = self['h2c'].view() self['h31f'] = self['h2f'].view() # 2-direction self['h32c'] = np.ones(n2) self['h32f'] = self['h32c'].view() # linear size elements self['dx1c'] = np.ones(n1) * p.ds[0] self['dx1f'] = np.ones(n1) * p.ds[0] self['dx2c'] = np.ones(n2) * p.ds[1] self['dx2f'] = np.ones(n2) * p.ds[1] self['dx3c'] = np.ones(n3) * p.ds[2] self['dx3f'] = np.ones(n3) * p.ds[2] # volume elements self['dvol1c'] = np.ones(n1) * p.ds[0] self['dvol1f'] = np.ones(n1) * p.ds[0] self['dvol2c'] = np.ones(n2) * p.ds[1] self['dvol2f'] = np.ones(n2) * p.ds[1] self['dvol3c'] = np.ones(n3) * p.ds[2] self['dvol3f'] = np.ones(n3) * p.ds[2] # area elements self['dar1c'] = self['h31c'] * self['h2c'] self['dar1f'] = self['h31f'] * self['h2f'] self['dar2c'] = self['h31f'] * p.ds[0] / self['dvol1c'] self['dar2f'] = self['h31c'] * p.ds[0] / self['dvol1f'] self['dar31c'] = self['h2f'] * p.ds[0] / self['dvol1c'] self['dar31f'] = self['h2c'] * p.ds[0] / self['dvol1f'] self['dar32c'] = p.ds[1] / self['dvol2c'] self['dar32f'] = p.ds[1] / self['dvol2f'] def init_cylindrical(self, p): """Initialise geometric factors for a cylindrical coord. system.""" n1, n2, n3 = p.ncell # 1-direction self['h2c'] = np.ones(n1) self['h2f'] = np.ones(n1) self['h31c'] = self['h2c'].view() self['h31f'] = self['h2f'].view() # 2-direction pos_c = np.array(p.y ) pos_f = np.array(p.ys) self['h32c'] = abs(pos_c) self['h32f'] = abs(pos_f) # linear size elements self['dx1c'] = np.ones(n1) * p.ds[0] self['dx1f'] = np.ones(n1) * p.ds[0] self['dx2c'] = np.ones(n2) * p.ds[1] self['dx2f'] = np.ones(n2) * p.ds[1] self['dx3c'] = np.ones(n3) * p.ds[2] self['dx3f'] =
np.ones(n3)
numpy.ones
#!/usr/bin/env python # Copyright (c) 2020 IBM Corp. - <NAME> <<EMAIL>> # Based on: masked_language_modeling.py # https://keras.io/examples/nlp/masked_language_modeling/ # Fixed spelling errors in messages and comments. # Preparation on dyce2: # virtualenv --system-site-packages tf-nightly # source tf-nightly/bin/activate # pip install tf-nightly # pip install dataclasses # pip install pandas # pip install pydot # Results in TF 2.5.0 using the available CUDA 11 import os #0 = all messages are logged (default behavior) #1 = INFO messages are not printed #2 = INFO and WARNING messages are not printed #3 = INFO, WARNING, and ERROR messages are not printed os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' import tensorflow as tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.layers.experimental.preprocessing import TextVectorization from dataclasses import dataclass import pandas as pd import numpy as np import glob import re from pprint import pprint @dataclass class Config: MAX_LEN = 256 # length of each input sample in tokens BATCH_SIZE = 32 # batch size LR = 0.001 # learning rate VOCAB_SIZE = 512 # max number of words in vocabulary EMBED_DIM = 128 # word embedding vector size NUM_HEAD = 8 # used in bert model FF_DIM = 128 # feedforward; used in bert model NUM_LAYERS = 1 # number of BERT module layers config = Config() # Every sample file contains a single line of text. # Returns these lines as a list of strings. def get_text_list_from_files(files): text_list = [] for name in files: with open(name) as f: for line in f: text_list.append(line) return text_list # Compose the full path names to the token files. # Creates and returns a dataframe. # Frame has single key "tokens". def get_data_from_text_files(folder_name): files = glob.glob(folder_name + "/*.toks") texts = get_text_list_from_files(files) df = pd.DataFrame({"tokens": texts}) df = df.sample(len(df)).reset_index(drop=True) return df all_data = get_data_from_text_files("train") #print("all_data:", all_data) # Part of TF dataflow graph. def custom_standardization(input_data): # No special prep. return input_data def get_vectorize_layer(texts, vocab_size, max_seq): """Build Text vectorization layer Args: texts (list): List of string, i.e., input texts vocab_size (int): vocab size max_seq (int): Maximum sequence length. Returns: layers.Layer: Return TextVectorization Keras Layer """ vectorize_layer = TextVectorization( max_tokens=vocab_size, output_mode="int", standardize=custom_standardization, output_sequence_length=max_seq, ) vectorize_layer.adapt(texts) # Insert mask token in vocabulary vocab = vectorize_layer.get_vocabulary() #print("len(vocab):", len(vocab)) #177 #vocab: ['', '[UNK]', 'the', 'and', 'a', 'of', ...] all lower-case #GJ20: where do the empty string and [UNK] come from? # they are created by adapt() as words 0 and 1 # '' is padding token; [UNK] is OOV token vocab = vocab[2:len(vocab)-1] + ["[mask]"] #print("len(vocab):", len(vocab)) #175 #GJ20: anyway first 2 words removed and '[mask]' added at the end vectorize_layer.set_vocabulary(vocab) # '' and [UNK] are back in #vocab = vectorize_layer.get_vocabulary() #print("len(vocab):", len(vocab)) #177 # '[mask]' has been added as last (least frequent) word in the vocab return vectorize_layer vectorize_layer = get_vectorize_layer( all_data.tokens.values.tolist(), config.VOCAB_SIZE, config.MAX_LEN, ) # Serialize vocabulary and dump to file: import pickle with open("vocabulary.pkl", "wb") as out: pickle.dump(vectorize_layer.get_vocabulary(), out) # Get mask token id for masked language model mask_token_id = vectorize_layer(["[mask]"]).numpy()[0][0] #print("mask_token_id:", mask_token_id) #176 (always last index in vocab) # Encodes the token strings by int vocab indices. def encode(texts): encoded_texts = vectorize_layer(texts) return encoded_texts.numpy() # Randomly replace tokens by the [mask] and keep replaced token as label. def get_masked_input_and_labels(encoded_texts): # These numbers come from something called "BERT recipe": # 15% used for prediction. 80% of that is masked. 10% is random token, # 10% is just left as is. # 15% BERT masking #print("encoded_texts.shape:", encoded_texts.shape) #(50000, 256) inp_mask = np.random.rand(*encoded_texts.shape) < 0.15 #print("inp_mask:", inp_mask) #[[False False True ...] ...] # Do not mask special tokens # GJ20: what are these special tokens? 0 and 1! But why <= 2? Mistake? inp_mask[encoded_texts < 2] = False # Set targets to -1 by default, it means ignore labels = -1 * np.ones(encoded_texts.shape, dtype=int) # Set labels for masked tokens labels[inp_mask] = encoded_texts[inp_mask] # False positions -> -1, True -> encoded word (vocab index) #print("labels:", labels) #[[10 -1 -1 ...] [-1 -1 -1 994 ...] ... ] # Prepare input encoded_texts_masked = np.copy(encoded_texts) # Set input to [MASK] which is the last token for the 90% of tokens # This means leaving 10% unchanged inp_mask_2mask = inp_mask & (np.random.rand(*encoded_texts.shape) < 0.90) # mask token is the last in the dict encoded_texts_masked[inp_mask_2mask] = mask_token_id # Set 10% to a random token inp_mask_2random = inp_mask_2mask & (np.random.rand(*encoded_texts.shape) < 1 / 9) #GJ20: why 3 and not 2? encoded_texts_masked[inp_mask_2random] = np.random.randint( 2, mask_token_id, inp_mask_2random.sum() ) # Prepare sample_weights to pass to .fit() method sample_weights = np.ones(labels.shape) sample_weights[labels == -1] = 0 # y_labels would be same as encoded_texts, i.e., input tokens y_labels = np.copy(encoded_texts) return encoded_texts_masked, y_labels, sample_weights # Prepare data for masked language model x_all_tokens = encode(all_data.tokens.values) #print("x_all_tokens.shape:", x_all_tokens.shape) #(50000, 256) # Encoding and masking step: x_masked_train, y_masked_labels, sample_weights = get_masked_input_and_labels( x_all_tokens ) mlm_ds = ( tf.data.Dataset.from_tensor_slices( (x_masked_train, y_masked_labels, sample_weights)) .shuffle(1000) .batch(config.BATCH_SIZE) ) # i is layer number 0,1,2... def bert_module(query, key, value, i): # Multi headed self-attention attention_output = layers.MultiHeadAttention( num_heads=config.NUM_HEAD, key_dim=config.EMBED_DIM // config.NUM_HEAD, name="encoder_{}/multiheadattention".format(i), )(query, key, value) attention_output = layers.Dropout(0.1, name="encoder_{}/att_dropout".format(i))(attention_output) attention_output = layers.LayerNormalization( epsilon=1e-6, name="encoder_{}/att_layernormalization".format(i) )(query + attention_output) # Feed-forward layer ffn = keras.Sequential( [ layers.Dense(config.FF_DIM, activation="relu"), layers.Dense(config.EMBED_DIM), ], name="encoder_{}/ffn".format(i), ) ffn_output = ffn(attention_output) ffn_output = layers.Dropout(0.1, name="encoder_{}/ffn_dropout".format(i))( ffn_output ) sequence_output = layers.LayerNormalization( epsilon=1e-6, name="encoder_{}/ffn_layernormalization".format(i) )(attention_output + ffn_output) return sequence_output def get_pos_encoding_matrix(max_len, d_emb): pos_enc = np.array( [ [pos / np.power(10000, 2 * (j // 2) / d_emb) for j in range(d_emb)] if pos != 0 else np.zeros(d_emb) for pos in range(max_len) ] ) #pos_enc.shape = (512, 128) # fdf8:f53e:61e4::18 means start at 0 and step 2 (all even) pos_enc[1:, 0::2] = np.sin(pos_enc[1:, 0::2]) # dim 2i pos_enc[1:, 1::2] = np.cos(pos_enc[1:, 1::2]) # dim 2i+1 return pos_enc loss_fn = keras.losses.SparseCategoricalCrossentropy( reduction=tf.keras.losses.Reduction.NONE ) loss_tracker = tf.keras.metrics.Mean(name="loss") class MaskedLanguageModel(tf.keras.Model): def train_step(self, inputs): if len(inputs) == 3: features, labels, sample_weight = inputs else: features, labels = inputs sample_weight = None with tf.GradientTape() as tape: predictions = self(features, training=True) loss = loss_fn(labels, predictions, sample_weight=sample_weight) # Compute gradients trainable_vars = self.trainable_variables gradients = tape.gradient(loss, trainable_vars) # Update weights self.optimizer.apply_gradients(zip(gradients, trainable_vars)) # Compute our own metrics loss_tracker.update_state(loss, sample_weight=sample_weight) # Return a dict mapping metric names to current value return {"loss": loss_tracker.result()} @property def metrics(self): # We list our `Metric` objects here so that `reset_states()` can be # called automatically at the start of each epoch # or at the start of `evaluate()`. # If you don't implement this property, you have to call # `reset_states()` yourself at the time of your choosing. return [loss_tracker] def create_masked_language_bert_model(): inputs = layers.Input((config.MAX_LEN,), dtype=tf.int64) word_embeddings = layers.Embedding( input_dim=config.VOCAB_SIZE, output_dim=config.EMBED_DIM, name="word_embedding" )(inputs) # GJ20: what does this do? Positional embedding part of transformer. position_embeddings = layers.Embedding( input_dim=config.MAX_LEN, output_dim=config.EMBED_DIM, weights=[get_pos_encoding_matrix(config.MAX_LEN, config.EMBED_DIM)], name="position_embedding", )(tf.range(start=0, limit=config.MAX_LEN, delta=1)) embeddings = word_embeddings + position_embeddings encoder_output = embeddings for i in range(config.NUM_LAYERS): encoder_output = bert_module(encoder_output, encoder_output, encoder_output, i) mlm_output = layers.Dense(config.VOCAB_SIZE, name="mlm_cls", activation="softmax")(encoder_output) mlm_model = MaskedLanguageModel(inputs, mlm_output, name="masked_bert_model") optimizer = keras.optimizers.Adam(learning_rate=config.LR) mlm_model.compile(optimizer=optimizer) return mlm_model # token<->id mappings as dicts: id2token = dict(enumerate(vectorize_layer.get_vocabulary())) token2id = {y: x for x, y in id2token.items()} class MaskedTextGenerator(keras.callbacks.Callback): def __init__(self, sample_tokens, top_k=5): # encoded review self.sample_tokens = sample_tokens self.k = top_k def decode(self, tokens): return " ".join([id2token[t] for t in tokens if t != 0]) def convert_ids_to_tokens(self, id): return id2token[id] def on_epoch_end(self, epoch, logs=None): prediction = self.model.predict(self.sample_tokens) # index of token2id['[mask]'] in list: masked_index =
np.where(self.sample_tokens == mask_token_id)
numpy.where
# Licensed under a 3-clause BSD style license - see LICENSE.rst """Tests for polynomial models.""" # pylint: disable=invalid-name import os import unittest.mock as mk import warnings from itertools import product import numpy as np import pytest from numpy.testing import assert_allclose from astropy import wcs from astropy.io import fits from astropy.modeling import fitting from astropy.modeling.functional_models import Linear1D from astropy.modeling.mappings import Identity from astropy.modeling.polynomial import (SIP, Chebyshev1D, Chebyshev2D, Hermite1D, Hermite2D, Legendre1D, Legendre2D, OrthoPolynomialBase, Polynomial1D, Polynomial2D, PolynomialBase) from astropy.utils.compat.optional_deps import HAS_SCIPY # noqa from astropy.utils.data import get_pkg_data_filename from astropy.utils.exceptions import AstropyUserWarning linear1d = { Chebyshev1D: { 'args': (3,), 'kwargs': {'domain': [1, 10]}, 'parameters': {'c0': 1.2, 'c1': 2, 'c2': 2.3, 'c3': 0.2}, 'constraints': {'fixed': {'c0': True}} }, Hermite1D: { 'args': (3,), 'kwargs': {'domain': [1, 10]}, 'parameters': {'c0': 1.2, 'c1': 2, 'c2': 2.3, 'c3': 0.2}, 'constraints': {'fixed': {'c0': True}} }, Legendre1D: { 'args': (3,), 'kwargs': {'domain': [1, 10]}, 'parameters': {'c0': 1.2, 'c1': 2, 'c2': 2.3, 'c3': 0.2}, 'constraints': {'fixed': {'c0': True}} }, Polynomial1D: { 'args': (3,), 'kwargs': {'domain': [1, 10]}, 'parameters': {'c0': 1.2, 'c1': 2, 'c2': 2.3, 'c3': 0.2}, 'constraints': {'fixed': {'c0': True}} }, Linear1D: { 'args': (), 'kwargs': {}, 'parameters': {'intercept': 1.2, 'slope': 23.1}, 'constraints': {'fixed': {'intercept': True}} } } linear2d = { Chebyshev2D: { 'args': (1, 1), 'kwargs': {'x_domain': [0, 99], 'y_domain': [0, 82]}, 'parameters': {'c0_0': 1.2, 'c1_0': 2, 'c0_1': 2.3, 'c1_1': 0.2}, 'constraints': {'fixed': {'c0_0': True}} }, Hermite2D: { 'args': (1, 1), 'kwargs': {'x_domain': [0, 99], 'y_domain': [0, 82]}, 'parameters': {'c0_0': 1.2, 'c1_0': 2, 'c0_1': 2.3, 'c1_1': 0.2}, 'constraints': {'fixed': {'c0_0': True}} }, Legendre2D: { 'args': (1, 1), 'kwargs': {'x_domain': [0, 99], 'y_domain': [0, 82]}, 'parameters': {'c0_0': 1.2, 'c1_0': 2, 'c0_1': 2.3, 'c1_1': 0.2}, 'constraints': {'fixed': {'c0_0': True}} }, Polynomial2D: { 'args': (1,), 'kwargs': {}, 'parameters': {'c0_0': 1.2, 'c1_0': 2, 'c0_1': 2.3}, 'constraints': {'fixed': {'c0_0': True}} } } @pytest.mark.skipif('not HAS_SCIPY') class TestFitting: """Test linear fitter with polynomial models.""" def setup_class(self): self.N = 100 self.M = 100 self.x1 = np.linspace(1, 10, 100) self.y2, self.x2 = np.mgrid[:100, :83] rsn = np.random.default_rng(0) self.n1 = rsn.standard_normal(self.x1.size) * .1 self.n2 = rsn.standard_normal(self.x2.size) self.n2.shape = self.x2.shape self.linear_fitter = fitting.LinearLSQFitter() self.non_linear_fitter = fitting.LevMarLSQFitter() # TODO: Most of these test cases have some pretty repetitive setup that we # could probably factor out @pytest.mark.parametrize(('model_class', 'constraints'), list(product(sorted(linear1d, key=str), (False, True)))) def test_linear_fitter_1D(self, model_class, constraints): """Test fitting with LinearLSQFitter""" model_args = linear1d[model_class] kwargs = {} kwargs.update(model_args['kwargs']) kwargs.update(model_args['parameters']) if constraints: kwargs.update(model_args['constraints']) model = model_class(*model_args['args'], **kwargs) y1 = model(self.x1) with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', message=r'The fit may be poorly conditioned', category=AstropyUserWarning) model_lin = self.linear_fitter(model, self.x1, y1 + self.n1) if constraints: # For the constraints tests we're not checking the overall fit, # just that the constraint was maintained fixed = model_args['constraints'].get('fixed', None) if fixed: for param, value in fixed.items(): expected = model_args['parameters'][param] assert getattr(model_lin, param).value == expected else: assert_allclose(model_lin.parameters, model.parameters, atol=0.2) @pytest.mark.parametrize(('model_class', 'constraints'), list(product(sorted(linear1d, key=str), (False, True)))) def test_non_linear_fitter_1D(self, model_class, constraints): """Test fitting with non-linear LevMarLSQFitter""" model_args = linear1d[model_class] kwargs = {} kwargs.update(model_args['kwargs']) kwargs.update(model_args['parameters']) if constraints: kwargs.update(model_args['constraints']) model = model_class(*model_args['args'], **kwargs) y1 = model(self.x1) with pytest.warns(AstropyUserWarning, match='Model is linear in parameters'): model_nlin = self.non_linear_fitter(model, self.x1, y1 + self.n1) if constraints: fixed = model_args['constraints'].get('fixed', None) if fixed: for param, value in fixed.items(): expected = model_args['parameters'][param] assert getattr(model_nlin, param).value == expected else: assert_allclose(model_nlin.parameters, model.parameters, atol=0.2) @pytest.mark.parametrize(('model_class', 'constraints'), list(product(sorted(linear2d, key=str), (False, True)))) def test_linear_fitter_2D(self, model_class, constraints): """Test fitting with LinearLSQFitter""" model_args = linear2d[model_class] kwargs = {} kwargs.update(model_args['kwargs']) kwargs.update(model_args['parameters']) if constraints: kwargs.update(model_args['constraints']) model = model_class(*model_args['args'], **kwargs) z = model(self.x2, self.y2) with warnings.catch_warnings(): warnings.filterwarnings( 'ignore', message=r'The fit may be poorly conditioned', category=AstropyUserWarning) model_lin = self.linear_fitter(model, self.x2, self.y2, z + self.n2) if constraints: fixed = model_args['constraints'].get('fixed', None) if fixed: for param, value in fixed.items(): expected = model_args['parameters'][param] assert getattr(model_lin, param).value == expected else: assert_allclose(model_lin.parameters, model.parameters, atol=0.2) @pytest.mark.parametrize(('model_class', 'constraints'), list(product(sorted(linear2d, key=str), (False, True)))) def test_non_linear_fitter_2D(self, model_class, constraints): """Test fitting with non-linear LevMarLSQFitter""" model_args = linear2d[model_class] kwargs = {} kwargs.update(model_args['kwargs']) kwargs.update(model_args['parameters']) if constraints: kwargs.update(model_args['constraints']) model = model_class(*model_args['args'], **kwargs) z = model(self.x2, self.y2) with pytest.warns(AstropyUserWarning, match='Model is linear in parameters'): model_nlin = self.non_linear_fitter(model, self.x2, self.y2, z + self.n2) if constraints: fixed = model_args['constraints'].get('fixed', None) if fixed: for param, value in fixed.items(): expected = model_args['parameters'][param] assert getattr(model_nlin, param).value == expected else: assert_allclose(model_nlin.parameters, model.parameters, atol=0.2) @pytest.mark.parametrize('model_class', [cls for cls in list(linear1d) + list(linear2d)]) def test_polynomial_init_with_constraints(model_class): """ Test that polynomial models can be instantiated with constraints, but no parameters specified. Regression test for https://github.com/astropy/astropy/issues/3606 """ # Just determine which parameter to place a constraint on; it doesn't # matter which parameter it is to exhibit the problem so long as it's a # valid parameter for the model if '1D' in model_class.__name__: param = 'c0' else: param = 'c0_0' if issubclass(model_class, Linear1D): param = 'intercept' if issubclass(model_class, OrthoPolynomialBase): degree = (2, 2) else: degree = (2,) m = model_class(*degree, fixed={param: True}) assert m.fixed[param] is True assert getattr(m, param).fixed is True if issubclass(model_class, OrthoPolynomialBase): assert repr(m) ==\ f"<{model_class.__name__}(2, 2, c0_0=0., c1_0=0., c2_0=0., c0_1=0., c1_1=0., c2_1=0., c0_2=0., c1_2=0., c2_2=0.)>" assert str(m) ==\ f"Model: {model_class.__name__}\n" +\ "Inputs: ('x', 'y')\n" +\ "Outputs: ('z',)\n" +\ "Model set size: 1\n" +\ "X_Degree: 2\n" +\ "Y_Degree: 2\n" +\ "Parameters:\n" +\ " c0_0 c1_0 c2_0 c0_1 c1_1 c2_1 c0_2 c1_2 c2_2\n" +\ " ---- ---- ---- ---- ---- ---- ---- ---- ----\n" +\ " 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0" else: if model_class.__name__ == 'Polynomial2D': assert repr(m) ==\ "<Polynomial2D(2, c0_0=0., c1_0=0., c2_0=0., c0_1=0., c0_2=0., c1_1=0.)>" assert str(m) ==\ "Model: Polynomial2D\n" +\ "Inputs: ('x', 'y')\n" +\ "Outputs: ('z',)\n" +\ "Model set size: 1\n" +\ "Degree: 2\n" +\ "Parameters:\n" +\ " c0_0 c1_0 c2_0 c0_1 c0_2 c1_1\n" +\ " ---- ---- ---- ---- ---- ----\n" +\ " 0.0 0.0 0.0 0.0 0.0 0.0" elif model_class.__name__ == 'Linear1D': assert repr(m) ==\ "<Linear1D(slope=2., intercept=0.)>" assert str(m) ==\ "Model: Linear1D\n" +\ "Inputs: ('x',)\n" +\ "Outputs: ('y',)\n" +\ "Model set size: 1\n" +\ "Parameters:\n" +\ " slope intercept\n" +\ " ----- ---------\n" +\ " 2.0 0.0" else: assert repr(m) ==\ f"<{model_class.__name__}(2, c0=0., c1=0., c2=0.)>" assert str(m) ==\ f"Model: {model_class.__name__}\n" +\ "Inputs: ('x',)\n" +\ "Outputs: ('y',)\n" +\ "Model set size: 1\n" +\ "Degree: 2\n" +\ "Parameters:\n" +\ " c0 c1 c2\n" +\ " --- --- ---\n" +\ " 0.0 0.0 0.0" def test_sip_hst(): """Test SIP against astropy.wcs""" test_file = get_pkg_data_filename(os.path.join('data', 'hst_sip.hdr')) hdr = fits.Header.fromtextfile(test_file) crpix1 = hdr['CRPIX1'] crpix2 = hdr['CRPIX2'] wobj = wcs.WCS(hdr) a_pars = dict(**hdr['A_*']) b_pars = dict(**hdr['B_*']) a_order = a_pars.pop('A_ORDER') b_order = b_pars.pop('B_ORDER') sip = SIP([crpix1, crpix2], a_order, b_order, a_pars, b_pars) coords = [1, 1] rel_coords = [1 - crpix1, 1 - crpix2] astwcs_result = wobj.sip_pix2foc([coords], 1)[0] - rel_coords assert_allclose(sip(1, 1), astwcs_result) # Test changing of inputs and calling it with keyword argumenrts. sip.inputs = ("r", "t") assert_allclose(sip(r=1, t=1), astwcs_result) assert_allclose(sip(1, t=1), astwcs_result) # Test representations assert repr(sip) ==\ "<SIP([<Shift(offset=-2048.)>, <Shift(offset=-1024.)>, " +\ "<_SIP1D(4, 'A', A_2_0=0.00000855, A_3_0=-0., A_4_0=0., A_0_2=0.00000217, " +\ "A_0_3=0., A_0_4=0., A_1_1=-0.0000052, A_1_2=-0., A_1_3=-0., " +\ "A_2_1=-0., A_2_2=0., A_3_1=0.)>, " +\ "<_SIP1D(4, 'B', B_2_0=-0.00000175, B_3_0=0., B_4_0=-0., B_0_2=-0.00000722, " +\ "B_0_3=-0., B_0_4=-0., B_1_1=0.00000618, B_1_2=-0., B_1_3=0., " +\ "B_2_1=-0., B_2_2=-0., B_3_1=-0.)>])>" assert str(sip) ==\ "Model: SIP\n" +\ " Model: Shift\n" +\ " Inputs: ('x',)\n" +\ " Outputs: ('y',)\n" +\ " Model set size: 1\n" +\ " Parameters:\n" +\ " offset\n" +\ " -------\n" +\ " -2048.0\n" +\ "\n" +\ " Model: Shift\n" +\ " Inputs: ('x',)\n" +\ " Outputs: ('y',)\n" +\ " Model set size: 1\n" +\ " Parameters:\n" +\ " offset\n" +\ " -------\n" +\ " -1024.0\n" +\ "\n" +\ " Model: _SIP1D\n" +\ " Inputs: ('x', 'y')\n" +\ " Outputs: ('z',)\n" +\ " Model set size: 1\n" +\ " Order: 4\n" +\ " Coeff. Prefix: A\n" +\ " Parameters:\n" +\ " A_2_0 A_3_0 ... A_3_1 \n" +\ " --------------------- ---------------------- ... ---------------------\n" +\ " 8.551277582556502e-06 -4.730444829222791e-10 ... 1.971022971660309e-15\n" +\ "\n" +\ " Model: _SIP1D\n" +\ " Inputs: ('x', 'y')\n" +\ " Outputs: ('z',)\n" +\ " Model set size: 1\n" +\ " Order: 4\n" +\ " Coeff. Prefix: B\n" +\ " Parameters:\n" +\ " B_2_0 B_3_0 ... B_3_1 \n" +\ " ---------------------- --------------------- ... ----------------------\n" +\ " -1.746491877058669e-06 8.567635427816317e-11 ... -3.779506805487476e-15\n" # Test get num of coeffs assert sip.sip1d_a.get_num_coeff(1) == 6 # Test error message = "Degree of polynomial must be 2< deg < 9" sip.sip1d_a.order = 1 with pytest.raises(ValueError) as err: sip.sip1d_a.get_num_coeff(1) assert str(err.value) == message sip.sip1d_a.order = 10 with pytest.raises(ValueError) as err: sip.sip1d_a.get_num_coeff(1) assert str(err.value) == message def test_sip_irac(): """Test forward and inverse SIP against astropy.wcs""" test_file = get_pkg_data_filename(os.path.join('data', 'irac_sip.hdr')) hdr = fits.Header.fromtextfile(test_file) crpix1 = hdr['CRPIX1'] crpix2 = hdr['CRPIX2'] wobj = wcs.WCS(hdr) a_pars = dict(**hdr['A_*']) b_pars = dict(**hdr['B_*']) ap_pars = dict(**hdr['AP_*']) bp_pars = dict(**hdr['BP_*']) a_order = a_pars.pop('A_ORDER') b_order = b_pars.pop('B_ORDER') ap_order = ap_pars.pop('AP_ORDER') bp_order = bp_pars.pop('BP_ORDER') del a_pars['A_DMAX'] del b_pars['B_DMAX'] pix = [200, 200] rel_pix = [200 - crpix1, 200 - crpix2] sip = SIP([crpix1, crpix2], a_order, b_order, a_pars, b_pars, ap_order=ap_order, ap_coeff=ap_pars, bp_order=bp_order, bp_coeff=bp_pars) foc = wobj.sip_pix2foc([pix], 1) newpix = wobj.sip_foc2pix(foc, 1)[0] assert_allclose(sip(*pix), foc[0] - rel_pix) assert_allclose(sip.inverse(*foc[0]) + foc[0] - rel_pix, newpix - pix) # Test inverse representations assert repr(sip.inverse) ==\ "<InverseSIP([<Polynomial2D(2, c0_0=0., c1_0=0.0000114, c2_0=0.00002353, " +\ "c0_1=-0.00000546, c0_2=-0.00000667, c1_1=-0.00001801)>, " +\ "<Polynomial2D(2, c0_0=0., c1_0=-0.00001495, c2_0=0.00000122, c0_1=0.00001975, " +\ "c0_2=-0.00002601, c1_1=0.00002944)>])>" assert str(sip.inverse) ==\ "Model: InverseSIP\n" +\ " Model: Polynomial2D\n" +\ " Inputs: ('x', 'y')\n" +\ " Outputs: ('z',)\n" +\ " Model set size: 1\n" +\ " Degree: 2\n" +\ " Parameters:\n" +\ " c0_0 c1_0 c2_0 c0_1 c0_2 c1_1 \n" +\ " ---- -------- --------- ---------- ---------- ----------\n" +\ " 0.0 1.14e-05 2.353e-05 -5.463e-06 -6.666e-06 -1.801e-05\n" +\ "\n" +\ " Model: Polynomial2D\n" +\ " Inputs: ('x', 'y')\n" +\ " Outputs: ('z',)\n" +\ " Model set size: 1\n" +\ " Degree: 2\n" +\ " Parameters:\n" +\ " c0_0 c1_0 c2_0 c0_1 c0_2 c1_1 \n" +\ " ---- ---------- --------- --------- ---------- ---------\n" +\ " 0.0 -1.495e-05 1.225e-06 1.975e-05 -2.601e-05 2.944e-05\n" def test_sip_no_coeff(): sip = SIP([10, 12], 2, 2) assert_allclose(sip.sip1d_a.parameters, [0., 0., 0]) assert_allclose(sip.sip1d_b.parameters, [0., 0., 0]) with pytest.raises(NotImplementedError): sip.inverse # Test model set sip = SIP([10, 12], 2, 2, n_models=2) assert sip.sip1d_a.model_set_axis == 0 assert sip.sip1d_b.model_set_axis == 0 @pytest.mark.parametrize('cls', (Polynomial1D, Chebyshev1D, Legendre1D, Polynomial2D, Chebyshev2D, Legendre2D)) def test_zero_degree_polynomial(cls): """ A few tests that degree=0 polynomials are correctly evaluated and fitted. Regression test for https://github.com/astropy/astropy/pull/3589 """ message = "Degree of polynomial must be positive or null" if cls.n_inputs == 1: # Test 1D polynomials p1 = cls(degree=0, c0=1) assert p1(0) == 1 assert np.all(p1(np.zeros(5)) == np.ones(5)) x = np.linspace(0, 1, 100) # Add a little noise along a straight line y = 1 + np.random.uniform(0, 0.1, len(x)) p1_init = cls(degree=0) fitter = fitting.LinearLSQFitter() p1_fit = fitter(p1_init, x, y) # The fit won't be exact of course, but it should get close to within # 1% assert_allclose(p1_fit.c0, 1, atol=0.10) # Error from negative degree with pytest.raises(ValueError) as err: cls(degree=-1) assert str(err.value) == message elif cls.n_inputs == 2: # Test 2D polynomials if issubclass(cls, OrthoPolynomialBase): p2 = cls(x_degree=0, y_degree=0, c0_0=1) # different shaped x and y inputs a = np.array([1, 2, 3]) b = np.array([1, 2]) with mk.patch.object(PolynomialBase, 'prepare_inputs', autospec=True, return_value=((a, b), mk.MagicMock())): with pytest.raises(ValueError) as err: p2.prepare_inputs(mk.MagicMock(), mk.MagicMock()) assert str(err.value) ==\ "Expected input arrays to have the same shape" # Error from negative degree with pytest.raises(ValueError) as err: cls(x_degree=-1, y_degree=0) assert str(err.value) == message with pytest.raises(ValueError) as err: cls(x_degree=0, y_degree=-1) assert str(err.value) == message else: p2 = cls(degree=0, c0_0=1) # Error from negative degree with pytest.raises(ValueError) as err: cls(degree=-1) assert str(err.value) == message assert p2(0, 0) == 1 assert np.all(p2(np.zeros(5), np.zeros(5)) == np.ones(5)) y, x = np.mgrid[0:1:100j, 0:1:100j] z = (1 + np.random.uniform(0, 0.1, x.size)).reshape(100, 100) if issubclass(cls, OrthoPolynomialBase): p2_init = cls(x_degree=0, y_degree=0) else: p2_init = cls(degree=0) fitter = fitting.LinearLSQFitter() p2_fit = fitter(p2_init, x, y, z) assert_allclose(p2_fit.c0_0, 1, atol=0.10) @pytest.mark.skipif('not HAS_SCIPY') def test_2d_orthopolynomial_in_compound_model(): """ Ensure that OrthoPolynomialBase (ie. Chebyshev2D & Legendre2D) models get evaluated & fitted correctly when part of a compound model. Regression test for https://github.com/astropy/astropy/pull/6085. """ y, x = np.mgrid[0:5, 0:5] z = x + y fitter = fitting.LevMarLSQFitter() simple_model = Chebyshev2D(2, 2) with pytest.warns(AstropyUserWarning, match='Model is linear in parameters'): simple_fit = fitter(simple_model, x, y, z) fitter = fitting.LevMarLSQFitter() # re-init to compare like with like compound_model = Identity(2) | Chebyshev2D(2, 2) compound_model.fittable = True compound_model.linear = True with pytest.warns(AstropyUserWarning, match='Model is linear in parameters'): compound_fit = fitter(compound_model, x, y, z) assert_allclose(simple_fit(x, y), compound_fit(x, y), atol=1e-15) def test_Hermite1D_clenshaw(): model = Hermite1D(degree=2) assert model.clenshaw(1, [3]) == 3 assert model.clenshaw(1, [3, 4]) == 11 assert model.clenshaw(1, [3, 4, 5]) == 21 assert model.clenshaw(1, [3, 4, 5, 6]) == -3 def test__fcache(): model = OrthoPolynomialBase(x_degree=2, y_degree=2) with pytest.raises(NotImplementedError) as err: model._fcache(np.asanyarray(1), np.asanyarray(1)) assert str(err.value) == "Subclasses should implement this" model = Hermite2D(x_degree=2, y_degree=2) assert model._fcache(np.asanyarray(1), np.asanyarray(1)) ==\ { 0: np.asanyarray(1), 1: 2, 3: np.asanyarray(1), 4: 2, 2: 2.0, 5: -4.0 } model = Legendre2D(x_degree=2, y_degree=2) assert model._fcache(np.asanyarray(1), np.asanyarray(1)) ==\ { 0: np.asanyarray(1), 1: np.asanyarray(1), 2: 1.0, 3: np.asanyarray(1), 4: np.asanyarray(1), 5: 1.0 } model = Chebyshev2D(x_degree=2, y_degree=2) assert model._fcache(np.asanyarray(1), np.asanyarray(1)) ==\ { 0: np.asanyarray(1), 1: np.asanyarray(1), 2: 1.0, 3: np.asanyarray(1), 4: np.asanyarray(1), 5: 1.0 } def test_fit_deriv_shape_error(): model = Hermite2D(x_degree=2, y_degree=2) with pytest.raises(ValueError) as err: model.fit_deriv(
np.array([1, 2])
numpy.array