prompt
stringlengths
19
879k
completion
stringlengths
3
53.8k
api
stringlengths
8
59
''' CONFIDENTIAL Copyright (c) 2021 <NAME>, Department of Remote Sensing and Photogrammetry, Finnish Geospatial Research Institute (FGI), National Land Survey of Finland (NLS) PERMISSION IS HEREBY LIMITED TO FGI'S INTERNAL USE ONLY. THE CODE MAY BE RE-LICENSED, SHARED, OR TAKEN INTO OTHER USE ONLY WITH A WRITTEN CONSENT FROM THE HEAD OF THE DEPARTMENT. The software is provided "as is", without warranty of any kind, express or implied, including but not limited to the warranties of merchantability, fitness for a particular purpose and noninfringement. In no event shall the authors or copyright holders be liable for any claim, damages or other liability, whether in an action of contract, tort or otherwise, arising from, out of or in connection with the software or the use or other dealings in the software. ''' import numpy as np import math import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.widgets import Slider, Button, RadioButtons, CheckButtons try: import pcl from pyquaternion import Quaternion except: print('cannot import pcl -> change python version') import matplotlib.cm as cmx from scipy.spatial import distance_matrix from scipy.optimize import leastsq import matplotlib import matplotlib.animation as animation import open3d as o3d import glob import cv2 import cv2.aruco as aruco import os from mpl_toolkits.mplot3d.proj3d import proj_transform from matplotlib.text import Annotation import pickle from matplotlib.lines import Line2D import pandas as pd import random from scipy.spatial import ConvexHull from math import sqrt from math import atan2, cos, sin, pi from collections import namedtuple from matplotlib.patches import Circle import mpl_toolkits.mplot3d.art3d as art3d from pyquaternion import Quaternion np.set_printoptions(suppress=True) def eulerAnglesToRotationMatrix2(theta): R_x = np.array([[1, 0, 0], [0, math.cos(theta[0]), -math.sin(theta[0])], [0, math.sin(theta[0]), math.cos(theta[0])] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1])], [0, 1, 0], [-math.sin(theta[1]), 0, math.cos(theta[1])] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot(R_y, R_x)) return R Rot_matrix = eulerAnglesToRotationMatrix2([0, 0, np.deg2rad(-90)]) InitLidar = True InitLidar = False global globalTrigger globalTrigger = True stereoRectify = False# True #stereoRectify = True class Annotation3D(Annotation): def __init__(self, s, xyz, *args, **kwargs): Annotation.__init__(self, s, xy=(0, 0), *args, **kwargs) self._verts3d = xyz def draw(self, renderer): xs3d, ys3d, zs3d = self._verts3d xs, ys, zs = proj_transform(xs3d, ys3d, zs3d, renderer.M) self.xy = (xs, ys) Annotation.draw(self, renderer) def save_obj(obj, name): with open('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/' + name + '.pkl', 'wb') as f: pickle.dump(obj, f, protocol=2) print('{}.pkl Object saved'.format(name)) def load_obj(name): with open('/home/eugeniu/Desktop/my_data/CameraCalibration/data/saved_files/' + name + '.pkl', 'rb') as f: return pickle.load(f) def showErros(_3DErros, IMageNames): print('len(_3DErros)->{}'.format(np.shape(_3DErros))) if len(_3DErros)>1: _3DErros = np.array(_3DErros).squeeze() # norm_total = np.array(_3DErros[:,0]).squeeze() norm_axis = np.array(_3DErros).squeeze() * 1000 index, bar_width = np.arange(len(IMageNames)), 0.24 fig, ax = plt.subplots() X = ax.bar(index, norm_axis[:, 0], bar_width, label="X") Y = ax.bar(index + bar_width, norm_axis[:, 1], bar_width, label="Y") Z = ax.bar(index + bar_width + bar_width, norm_axis[:, 2], bar_width, label="Z") ax.set_xlabel('images') ax.set_ylabel('errors in mm') ax.set_title('3D error') ax.set_xticks(index + bar_width / 3) ax.set_xticklabels(IMageNames) ax.legend() plt.show() def triangulation(kp1, kp2, T_1w, T_2w): """Triangulation to get 3D points Args: kp1 (Nx2): keypoint in view 1 (normalized) kp2 (Nx2): keypoints in view 2 (normalized) T_1w (4x4): pose of view 1 w.r.t i.e. T_1w (from w to 1) T_2w (4x4): pose of view 2 w.r.t world, i.e. T_2w (from w to 2) Returns: X (3xN): 3D coordinates of the keypoints w.r.t world coordinate X1 (3xN): 3D coordinates of the keypoints w.r.t view1 coordinate X2 (3xN): 3D coordinates of the keypoints w.r.t view2 coordinate """ kp1_3D = np.ones((3, kp1.shape[0])) kp2_3D = np.ones((3, kp2.shape[0])) kp1_3D[0], kp1_3D[1] = kp1[:, 0].copy(), kp1[:, 1].copy() kp2_3D[0], kp2_3D[1] = kp2[:, 0].copy(), kp2[:, 1].copy() X = cv2.triangulatePoints(T_1w[:3], T_2w[:3], kp1_3D[:2], kp2_3D[:2]) X /= X[3] X1 = T_1w[:3].dot(X) X2 = T_2w[:3].dot(X) return X[:3].T, X1.T, X2.T def triangulate(R1,R2,t1,t2,K1,K2,D1,D2, pts1, pts2): P1 = np.hstack([R1.T, -R1.T.dot(t1)]) P2 = np.hstack([R2.T, -R2.T.dot(t2)]) P1 = K1.dot(P1) P2 = K2.dot(P2) # Triangulate _3d_points = [] for i,point in enumerate(pts1): point3D = cv2.triangulatePoints(P1, P2, pts1[i], pts2[i]).T point3D = point3D[:, :3] / point3D[:, 3:4] _3d_points.append(point3D) print('Triangulate _3d_points -> {}'.format(np.shape(_3d_points))) return np.array(_3d_points).squeeze() def mai(R1,R2,t1,t2,imagePoint1,imagePoint2, K2=None,K1=None, D2=None,D1=None): # Set up two cameras near each other if K1 is None: K = np.array([ [718.856, 0., 607.1928], [0., 718.856, 185.2157], [0., 0., 1.], ]) R1 = np.array([ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.] ]) R2 = np.array([ [0.99999183, -0.00280829, -0.00290702], [0.0028008, 0.99999276, -0.00257697], [0.00291424, 0.00256881, 0.99999245] ]) t1 = np.array([[0.], [0.], [0.]]) t2 = np.array([[-0.02182627], [0.00733316], [0.99973488]]) # Corresponding image points imagePoint1 = np.array([371.91915894, 221.53485107]) imagePoint2 = np.array([368.26071167, 224.86262512]) P1 = np.hstack([R1.T, -R1.T.dot(t1)]) P2 = np.hstack([R2.T, -R2.T.dot(t2)]) P1 = K1.dot(P1) P2 = K2.dot(P2) # Triangulate point3D = cv2.triangulatePoints(P1, P2, imagePoint1, imagePoint2).T point3D = point3D[:, :3] / point3D[:, 3:4] print('Triangulate point3D -> {}'.format(point3D)) # Reproject back into the two cameras rvec1, _ = cv2.Rodrigues(R1.T) # Change rvec2, _ = cv2.Rodrigues(R2.T) # Change p1, _ = cv2.projectPoints(point3D, rvec1, -t1, K1, distCoeffs=D1) # Change p2, _ = cv2.projectPoints(point3D, rvec2, -t2, K2, distCoeffs=D2) # Change # measure difference between original image point and reporjected image point reprojection_error1 = np.linalg.norm(imagePoint1 - p1[0, :]) reprojection_error2 = np.linalg.norm(imagePoint2 - p2[0, :]) print('difference between original image point and reporjected image point') print(reprojection_error1, reprojection_error2) return p1,p2 class PointCloud_filter(object): def __init__(self, file, img_file=None, img_file2=None, debug=True): self.debug = debug self.img_file = img_file self.img_file2 = img_file2 self.name = os.path.basename(file).split('.')[0] self.file = file self.useVoxel, self.voxel_size = False, 0.15 self.lowerTemplate, self.showImage = False, True self.showError = False self.points_correspondences = None self.OK = False self.useInitialPointCloud = False #user all point to fit or only margins self.chessBoard = False self.applyICP_directly = False self.s = .1 # scale self.plotInit, self.axis_on, self.colour, self.Annotate = False, True, False, False self.chess, self.corn, self.p1, self.p2, self.p3, self.ICP_finetune_plot = None, None, None, None, None, None if self.showImage: b = 1 self.pts = np.float32([[0, b, 0], [b, b, 0], [b, 0, 0], [-0.03, -0.03, 0]]) self.ImageNames = [] self._3DErros = [] self.criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.0001) self.axis = np.float32([[1, 0, 0], [0, 1, 0], [0, 0, -1]]).reshape(-1, 3) self.objp = np.zeros((7 * 10, 3), np.float32) self.objp[:, :2] = np.mgrid[0:10, 0:7].T.reshape(-1, 2) * self.s self.fig = plt.figure(figsize=plt.figaspect(0.5)) self.fig.suptitle('Data collection', fontsize=16) self.ax = self.fig.add_subplot(1, 2, 1, projection='3d') #self.ax = self.fig.add_subplot(1, 2, 2, projection='3d') self.readCameraIntrin() self.QueryImg = cv2.imread(img_file) self.ImageNames.append(os.path.basename(img_file)) if self.img_file2: # use stereo case self.QueryImg2 = cv2.imread(img_file2) if stereoRectify: self.QueryImg = cv2.remap(src=self.QueryImg, map1=self.leftMapX, map2=self.leftMapY, interpolation=cv2.INTER_LINEAR, dst=None, borderMode=cv2.BORDER_CONSTANT) self.QueryImg2 = cv2.remap(src=self.QueryImg2, map1=self.rightMapX, map2=self.rightMapY, interpolation=cv2.INTER_LINEAR, dst=None, borderMode=cv2.BORDER_CONSTANT) gray_left = cv2.cvtColor(self.QueryImg, cv2.COLOR_BGR2GRAY) ret_left, corners_left = cv2.findChessboardCorners(gray_left, (10, 7), None) gray_right = cv2.cvtColor(self.QueryImg2, cv2.COLOR_BGR2GRAY) ret_right, corners_right = cv2.findChessboardCorners(gray_right, (10, 7), None) if ret_right and ret_left: print('Found chessboard in both images') self.chessBoard = True corners2_left = cv2.cornerSubPix(gray_left, corners_left, (11, 11), (-1, -1), self.criteria) self.corners2 = corners2_left cv2.drawChessboardCorners(self.QueryImg, (10, 7), self.corners2, ret_left) ret, self.rvecs, self.tvecs = cv2.solvePnP(self.objp, self.corners2, self.K_left, self.D_left) imgpts, jac = cv2.projectPoints(self.axis, self.rvecs, self.tvecs, self.K_left, self.D_left) self.QueryImg = self.draw(self.QueryImg, corners=corners2_left, imgpts=imgpts) self.pixelsPoints = np.asarray(corners2_left).squeeze() self.pixels_left = np.asarray(corners2_left).squeeze() corners2_right = cv2.cornerSubPix(gray_right, corners_right, (11, 11), (-1, -1), self.criteria) cv2.drawChessboardCorners(self.QueryImg2, (10, 7), corners2_right, ret_right) self.pixels_right = np.asarray(corners2_right).squeeze() self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) #self.baseline = self.T = np.array([-1.07, 0.004, 0.215])[:, np.newaxis] self.baseline = abs(self.T[0]) print('baseline:{} m'.format(self.baseline)) self.focal_length, self.cx, self.cy = self.K[0, 0], self.K[0, 2], self.K[1, 2] self.x_left, self.x_right = self.pixels_left, self.pixels_right disparity = np.sum(np.sqrt((self.x_left - self.x_right) ** 2), axis=1) # depth = baseline (meter) * focal length (pixel) / disparity-value (pixel) -> meter self.depth = (self.baseline * self.focal_length / disparity) print('depth:{}'.format(np.shape(self.depth))) self.fxypxy = [self.K[0, 0], self.K[1, 1], self.cx, self.cy] '''print('TRIANGULATE HERE==========================================') P_1 = np.vstack((np.hstack((np.eye(3), np.zeros(3)[:, np.newaxis])), [0, 0, 0, 1])) # left camera P_2 = np.vstack((np.hstack((self.R, self.T)), [0, 0, 0, 1])) # right camera print('P1_{}, P_2{}, x_left:{}, x_right:{}'.format(np.shape(P_1), np.shape(P_2), np.shape(self.x_left), np.shape(self.x_right))) X_w, X1, X2 = triangulation(self.x_left,self.x_right,P_1,P_2) print('X_w:{}, X1:{}, X2:{}, '.format(np.shape(X_w), np.shape(X1), np.shape(X2))) print(X_w[0]) print(X1[0]) print(X2[0])''' '''R1 = np.eye(3) R2 = self.R t1 = np.array([[0.], [0.], [0.]]) t2 = self.T # Corresponding image points imagePoint1 = np.array([371.91915894, 221.53485107]) imagePoint2 = np.array([368.26071167, 224.86262512]) imagePoint1 = self.x_left[0] imagePoint2 = self.x_right[0] print('imagePoint1:{}, imagePoint2:{}'.format(np.shape(imagePoint1), np.shape(imagePoint2))) print('self.K_left ') print(self.K_left) print('self.K_right ') print(self.K_right) p1,p2 = test(R1,R2,t1,t2,imagePoint1,imagePoint2,K1=self.K_left,K2=self.K_right, D1=self.D_left,D2=self.D_right) p1 = np.array(p1).squeeze().astype(int) p2 = np.array(p2).squeeze().astype(int) print('p1:{}, p2:{}'.format(np.shape(p1), np.shape(p2))) #d2 = distance_matrix(X_w, X_w) #print('d2:{}'.format(d2)) cv2.circle(self.QueryImg, (p1[0],p1[1]), 7, (255, 0, 0), 7) cv2.circle(self.QueryImg2, (p2[0], p2[1]), 7, (255, 0, 0), 7) cv2.imshow('QueryImg', cv2.resize(self.QueryImg,None,fx=.5,fy=.5)) cv2.imshow('QueryImg2', cv2.resize(self.QueryImg2, None, fx=.5, fy=.5)) cv2.waitKey(0) cv2.destroyAllWindows()''' else: self.chessBoard = False self.useVoxel = False print('No chessboard ') corners2_left, ids_left, rejectedImgPoints = aruco.detectMarkers(gray_left, self.ARUCO_DICT) corners2_left, ids_left, _, _ = aruco.refineDetectedMarkers(image=gray_left, board=self.calibation_board, detectedCorners=corners2_left, detectedIds=ids_left, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K_left, distCoeffs=self.D_left) corners2_right, ids_right, rejectedImgPoints = aruco.detectMarkers(gray_right, self.ARUCO_DICT) corners2_right, ids_right, _, _ = aruco.refineDetectedMarkers(image=gray_right, board=self.calibation_board, detectedCorners=corners2_right, detectedIds=ids_right, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K_right, distCoeffs=self.D_right) if np.all(ids_left != None) and np.all(ids_right != None): print('found charuco board, in both images') retval_left, self.rvecs, self.tvecs = aruco.estimatePoseBoard(corners2_left, ids_left, self.calibation_board, self.K_left, self.D_left, None, None) retval_right, self.rvecs_right, self.tvecs_right = aruco.estimatePoseBoard(corners2_right, ids_right, self.calibation_board, self.K_right, self.D_right, None, None) if retval_left and retval_right: self.QueryImg = aruco.drawAxis(self.QueryImg, self.K_left, self.D_left, self.rvecs, self.tvecs, 0.3) self.QueryImg = aruco.drawDetectedMarkers(self.QueryImg, corners2_left, ids_left, borderColor=(0, 0, 255)) b = 1 imgpts, _ = cv2.projectPoints(self.pts, self.rvecs_right, self.tvecs_right, self.K_right, self.D_right) self.corners2_right = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) self.dst, jacobian = cv2.Rodrigues(self.rvecs) a, circle_tvec, b = .49, [], 1 circle_tvec.append( np.asarray(self.tvecs).squeeze() + np.dot(self.dst, np.asarray([a, a, 0]))) circle_tvec = np.mean(circle_tvec, axis=0) self.QueryImg = aruco.drawAxis(self.QueryImg, self.K_left, self.D_left, self.rvecs, circle_tvec, 0.2) imgpts, _ = cv2.projectPoints(self.pts, self.rvecs, self.tvecs, self.K_left, self.D_left) self.corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] cv2.circle(self.QueryImg, top_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_left, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, top_left, 4, (0, 0, 255), 5) self.QueryImg = cv2.line(self.QueryImg, top_right, bot_right, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_right, bot_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_left, top_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, top_left, top_right, (0, 255, 0), 4) else: print('Cannot estimate board position for both charuco') self.pixelsPoints = self.corners2.squeeze() self.pixels_left = self.pixelsPoints self.pixels_right = self.corners2_right.squeeze() self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) # self.baseline = self.T = np.array([-1.07, 0.004, 0.215])[:, np.newaxis] self.baseline = abs(self.T[0]) print('baseline:{} m'.format(self.baseline)) self.focal_length, self.cx, self.cy = self.K[0, 0], self.K[0, 2], self.K[1, 2] self.x_left, self.x_right = self.pixels_left, self.pixels_right disparity = np.sum(np.sqrt((self.x_left - self.x_right) ** 2), axis=1) print('disparity:{}'.format(np.shape(disparity))) # depth = baseline (meter) * focal length (pixel) / disparity-value (pixel) -> meter self.depth = (self.baseline * self.focal_length / disparity) print('depth:{}'.format(np.shape(self.depth))) self.fxypxy = [self.K[0, 0], self.K[1, 1], self.cx, self.cy] else: print('No any board found!!!') else: # Undistortion h, w = self.QueryImg.shape[:2] newcameramtx, roi = cv2.getOptimalNewCameraMatrix(self.K, self.D, (w, h), 1, (w, h)) dst = cv2.undistort(self.QueryImg, self.K, self.D, None, newcameramtx) x, y, w, h = roi self.QueryImg = dst[y:y + h, x:x + w] gray = cv2.cvtColor(self.QueryImg, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (10, 7), None) if ret: # found chessboard print('Found chessboard') self.chessBoard = True self.corners2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), self.criteria) cv2.drawChessboardCorners(self.QueryImg, (10, 7), corners, ret) ret, self.rvecs, self.tvecs = cv2.solvePnP(self.objp, self.corners2, self.K, self.D) # ret, self.rvecs, self.tvecs, inliers = cv2.solvePnPRansac(self.objp, self.corners2, self.K, self.D) self.imgpts, jac = cv2.projectPoints(self.axis, self.rvecs, self.tvecs, self.K, self.D) self.QueryImg = self.draw(self.QueryImg, self.corners2, self.imgpts) self.pixelsPoints = np.asarray(self.corners2).squeeze() else: # check for charuco self.chessBoard = False self.useVoxel = False corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, self.ARUCO_DICT) corners, ids, rejectedImgPoints, recoveredIds = aruco.refineDetectedMarkers( image=gray, board=self.calibation_board, detectedCorners=corners, detectedIds=ids, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K, distCoeffs=self.D) if np.all(ids != None): print('found charuco board, ids:{}'.format(np.shape(ids))) self.chessBoard = False if len(ids) > 0: retval, self.rvecs, self.tvecs = aruco.estimatePoseBoard(corners, ids, self.calibation_board, self.K, self.D, None, None) if retval: self.QueryImg = aruco.drawAxis(self.QueryImg, self.K, self.D, self.rvecs, self.tvecs, 0.3) self.QueryImg = aruco.drawDetectedMarkers(self.QueryImg, corners, ids, borderColor=(0, 0, 255)) self.dst, jacobian = cv2.Rodrigues(self.rvecs) a, circle_tvec, b = .49, [], 1 circle_tvec.append( np.asarray(self.tvecs).squeeze() + np.dot(self.dst, np.asarray([a, a, 0]))) circle_tvec = np.mean(circle_tvec, axis=0) self.QueryImg = aruco.drawAxis(self.QueryImg, self.K, self.D, self.rvecs, circle_tvec, 0.2) imgpts, _ = cv2.projectPoints(self.pts, self.rvecs, self.tvecs, self.K, self.D) self.corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] cv2.circle(self.QueryImg, top_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_right, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, bot_left, 4, (0, 0, 255), 5) cv2.circle(self.QueryImg, top_left, 4, (0, 0, 255), 5) self.QueryImg = cv2.line(self.QueryImg, top_right, bot_right, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_right, bot_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, bot_left, top_left, (0, 255, 0), 4) self.QueryImg = cv2.line(self.QueryImg, top_left, top_right, (0, 255, 0), 4) else: print('No board Found') self.image_ax = self.fig.add_subplot(1, 2, 2) #self.image_ax = self.fig.add_subplot(1, 2, 1) self.image_ax.imshow(self.QueryImg) self.image_ax.set_axis_off() self.image_ax.set_xlabel('Y') self.image_ax.set_ylabel('Z') else: self.fig = plt.figure() self.ax = self.fig.add_subplot(111, projection="3d") self.ax.set_xlabel('X', fontsize=10) self.ax.set_ylabel('Y', fontsize=10) self.ax.set_zlabel('Z', fontsize=10) self.fig.tight_layout() plt.subplots_adjust(left=.15, bottom=0.2) #plt.subplots_adjust( bottom=0.2) self.Rx, self.Ry, self.Rz = [np.deg2rad(-90), 0, np.deg2rad(-40)] if self.chessBoard else [0, 0, 0] self.Tx, self.Ty, self.Tz = 0, 0, 0 self.board_origin = [self.Tx, self.Ty, self.Tz] self.savePoints = Button(plt.axes([0.03, 0.45, 0.15, 0.04], ), 'filter points', color='white') self.savePoints.on_clicked(self.getClosestPoints) self.resetBtn = Button(plt.axes([0.03, 0.25, 0.15, 0.04], ), 'reset', color='white') self.resetBtn.on_clicked(self.reset) self.X_btn = Button(plt.axes([0.03, 0.9, 0.024, 0.04], ), 'X', color='red') self.X_btn.on_clicked(self.Close) self.OK_btn = Button(plt.axes([0.03, 0.83, 0.074, 0.04], ), 'OK', color='green') self.OK_btn.on_clicked(self.OK_btnClick) self.not_OK_btn = Button(plt.axes([0.105, 0.83, 0.074, 0.04], ), 'not OK', color='red') self.not_OK_btn.on_clicked(self.not_OK_btnClick) self.saveCorrespondences = Button(plt.axes([0.03, 0.76, 0.15, 0.04], ), 'Save points', color='white') self.saveCorrespondences.on_clicked(self.savePointsCorrespondences) self.fitChessboard = Button(plt.axes([0.03, 0.66, 0.15, 0.04], ), 'auto fit', color='white') self.fitChessboard.on_clicked(self.auto_fitBoard) # set up sliders self.Rx_Slider = Slider(plt.axes([0.25, 0.15, 0.65, 0.03]), 'Rx', -180, 180.0, valinit=np.degrees(self.Rx)) self.Ry_Slider = Slider(plt.axes([0.25, 0.1, 0.65, 0.03]), 'Ry', -180, 180.0, valinit=np.degrees(self.Ry)) self.Rz_Slider = Slider(plt.axes([0.25, 0.05, 0.65, 0.03]), 'Rz', -180, 180.0, valinit=np.degrees(self.Rz)) self.Rx_Slider.on_changed(self.update_R) self.Ry_Slider.on_changed(self.update_R) self.Rz_Slider.on_changed(self.update_R) self.check = CheckButtons(plt.axes([0.03, 0.3, 0.15, 0.12]), ('Axes', 'Black', 'Annotate'), (self.axis_on, self.colour, self.Annotate)) self.check.on_clicked(self.func_CheckButtons) # set up translation buttons self.step = .1 # m self.trigger = True self.Tx_btn_plus = Button(plt.axes([0.05, 0.15, 0.04, 0.045]), '+Tx', color='white') self.Tx_btn_plus.on_clicked(self.Tx_plus) self.Tx_btn_minus = Button(plt.axes([0.12, 0.15, 0.04, 0.045]), '-Tx', color='white') self.Tx_btn_minus.on_clicked(self.Tx_minus) self.Ty_btn_plus = Button(plt.axes([0.05, 0.1, 0.04, 0.045]), '+Ty', color='white') self.Ty_btn_plus.on_clicked(self.Ty_plus) self.Ty_btn_minus = Button(plt.axes([0.12, 0.1, 0.04, 0.045]), '-Ty', color='white') self.Ty_btn_minus.on_clicked(self.Ty_minus) self.Tz_btn_plus = Button(plt.axes([0.05, 0.05, 0.04, 0.045]), '+Tz', color='white') self.Tz_btn_plus.on_clicked(self.Tz_plus) self.Tz_btn_minus = Button(plt.axes([0.12, 0.05, 0.04, 0.045]), '-Tz', color='white') self.Tz_btn_minus.on_clicked(self.Tz_minus) self.Tx_flip = Button(plt.axes([0.17, 0.15, 0.04, 0.045]), 'FlipX', color='white') self.Tx_flip.on_clicked(self.flipX) self.Ty_flip = Button(plt.axes([0.17, 0.1, 0.04, 0.045]), 'FlipY', color='white') self.Ty_flip.on_clicked(self.flipY) self.Tz_flip = Button(plt.axes([0.17, 0.05, 0.04, 0.045]), 'FlipZ', color='white') self.Tz_flip.on_clicked(self.flipZ) self.radio = RadioButtons(plt.axes([0.03, 0.5, 0.15, 0.15], ), ('Final', 'Init'), active=0) self.radio.on_clicked(self.colorfunc) self.tag = None self.circle_center = None self.errors = {0: "Improper input parameters were entered.", 1: "The solution converged.", 2: "The number of calls to function has " "reached maxfev = %d.", 3: "xtol=%f is too small, no further improvement " "in the approximate\n solution " "is possible.", 4: "The iteration is not making good progress, as measured " "by the \n improvement from the last five " "Jacobian evaluations.", 5: "The iteration is not making good progress, " "as measured by the \n improvement from the last " "ten iterations.", 'unknown': "An error occurred."} self.legend_elements = [ Line2D([0], [0], marker='o', color='w', label='Original pointcloud', markerfacecolor='g', markersize=4), Line2D([0], [0], marker='o', color='w', label='Corners', markerfacecolor='k', markersize=4), Line2D([0], [0], marker='o', color='w', label='Margins', markerfacecolor='r', markersize=4), ] def setUp(self): self.getPointCoud() self.axisEqual3D(centers=np.mean(self.point_cloud, axis=0)) self.board() self.ax.legend(handles=self.legend_elements, loc='best') if self.showImage: self.getDepth_Inside_Outside() self.fitNewPlan() def auto_fitBoard(self, args): # estimate 3D-R and 3D-t between chess and PointCloud # Inital guess of the transformation x0 = np.array([np.degrees(self.Rx), np.degrees(self.Ry), np.degrees(self.Rz), self.Tx, self.Ty, self.Tz]) report = {"error": [], "template": []} def f_min(x): self.Rx, self.Ry, self.Rz = np.deg2rad(x[0]), np.deg2rad(x[1]), np.deg2rad(x[2]) self.Tx, self.Ty, self.Tz = x[3], x[4], x[5] template = self.board(plot=False) if self.useInitialPointCloud: dist_mat = distance_matrix(template, self.point_cloud) else: dist_mat = distance_matrix(template, self.corners_) err_func = dist_mat.sum(axis=1) # N x 1 # err_func = dist_mat.sum(axis=0) # N x 1 if self.debug: print('errors = {}, dist_mat:{}, err_func:{}'.format(round(np.sum(err_func), 2), np.shape(dist_mat), np.shape(err_func))) report["error"].append(np.sum(err_func)) report["template"].append(template) return err_func maxIters = 700 sol, status = leastsq(f_min, x0, ftol=1.49012e-07, xtol=1.49012e-07, maxfev=maxIters) print('sol:{}, status:{}'.format(sol, status)) print(self.errors[status]) if self.chess: self.chess.remove() if self.corn: self.corn.remove() if self.ICP_finetune_plot: self.ICP_finetune_plot.remove() self.lowerTemplate = False self.board() point_cloud = np.asarray(self.point_cloud, dtype=np.float32) template = np.asarray(report["template"][0], dtype=np.float32) if self.applyICP_directly else np.asarray( self.template_cloud, dtype=np.float32) converged, self.transf, estimate, fitness = self.ICP_finetune(template, point_cloud) # converged, self.transf, estimate, fitness = self.ICP_finetune(point_cloud,template) self.estimate = np.array(estimate) if self.chessBoard: self.ICP_finetune_plot = self.ax.scatter(self.estimate[:, 0], self.estimate[:, 1], self.estimate[:, 2], c='k', marker='o', alpha=0.8, s=4) else: idx = np.arange(start=0, stop=100, step=1) idx = np.delete(idx, [44, 45, 54, 55]) cornersToPLot = self.estimate[idx, :] self.ICP_finetune_plot = self.ax.scatter(cornersToPLot[:, 0], cornersToPLot[:, 1], cornersToPLot[:, 2], c='k', marker='o', alpha=0.8, s=4) self.trigger = False # set values of sol to Sliders self.Rx_Slider.set_val(np.rad2deg(self.Rx)) self.Ry_Slider.set_val(np.rad2deg(self.Ry)) self.Rz_Slider.set_val(np.rad2deg(self.Rz)) if self.chess: self.chess.remove() if self.corn: self.corn.remove() self.trigger = True self.board() self.AnnotateEdges() self.fig.canvas.draw_idle() if self.showError: print('min error:{} , at index:{}'.format(np.min(report["error"]), np.argmin(report["error"]))) rep = plt.figure(figsize=(15, 8)) plt.xlim(0, len(report["error"]) + 1) plt.xlabel('Iteration') plt.ylabel('RMSE') plt.yticks(color='w') plt.plot(np.arange(len(report["error"])) + 1, report["error"]) print('Start animation gif') def update_graph(num): data = np.asarray(report["template"][num]) graph._offsets3d = (data[:, 0], data[:, 1], data[:, 2]) title.set_text('Iteration {}'.format(num)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') title = ax.set_title('3D Test') data = report["template"][0] graph = ax.scatter(data[:, 0], data[:, 1], data[:, 2]) ax.scatter(self.point_cloud[:, 0], self.point_cloud[:, 1], self.point_cloud[:, 2]) ani = animation.FuncAnimation(fig, update_graph, 101, interval=2, blit=False, repeat=False) ani.save('myAnimation.gif', writer='imagemagick', fps=30) print('Animation done') plt.show() def flipX(self, event): self.Rx_Slider.set_val(np.rad2deg(self.Rx + np.pi)) self.update_R(0) def flipY(self, event): self.Ry_Slider.set_val(np.rad2deg(self.Ry + np.pi)) self.update_R(0) def flipZ(self, event): self.Rz_Slider.set_val(np.rad2deg(self.Rz + np.pi)) self.update_R(0) def update_R(self, val): if self.trigger: if self.chess: self.chess.remove() if self.corn: self.corn.remove() self.Rx = np.deg2rad(self.Rx_Slider.val) self.Ry = np.deg2rad(self.Ry_Slider.val) self.Rz = np.deg2rad(self.Rz_Slider.val) self.board() self.fig.canvas.draw_idle() def board(self, plot=True, given_origin=None, angle=None): self.board_origin = [self.Tx, self.Ty, self.Tz] if given_origin is None else given_origin if self.chessBoard: self.nCols, self.nRows, org = 7 + 2, 10 + 2, np.asarray(self.board_origin) #org[0] -= self.nCols / 2 #org[1] -= self.nRows / 2 org[0] -= 4 org[1] -= 6 #org = np.zeros(3) if self.lowerTemplate: nrCols, nrRows = 2, 3 else: nrCols, nrRows = self.nCols, self.nRows #nrCols, nrRows = self.nCols+1, self.nRows+1 #remove later print('org:{}, self.nCols - >{}, nrCols:{}'.format(org,self.nCols,nrCols)) X, Y = np.linspace(org[0], org[0] + self.nCols, num=nrCols), np.linspace(org[1], org[1] + self.nRows,num=nrRows) X, Y = np.linspace(org[0], org[0] + self.nCols-1, num=nrCols), np.linspace(org[1], org[1] + self.nRows-1, num=nrRows) print('X:{}'.format(X)) X, Y = np.meshgrid(X, Y) Z = np.full(np.shape(X), org[2]) colors, colortuple = np.empty(X.shape, dtype=str), ('k', 'w') for y in range(nrCols): for x in range(nrRows): colors[x, y] = colortuple[(x + y) % len(colortuple)] colors[0, 0] = 'r' alpha = 0.65 else: self.nCols, self.nRows, org = 10, 10, np.asarray(self.board_origin) org[0] -= self.nCols / 2 org[1] -= self.nRows / 2 # nrCols, nrRows = 4,4z nrCols, nrRows = self.nCols, self.nRows # nrCols, nrRows = 20, 20 X, Y = np.linspace(org[0], org[0] + self.nCols, num=nrCols), np.linspace(org[1], org[1] + self.nRows, num=nrRows) X, Y = np.meshgrid(X, Y) Z = np.full(np.shape(X), org[2]) alpha = 0.25 angles = np.array([self.Rx, self.Ry, self.Rz]) if angle is None else np.array(angle) Rot_matrix = self.eulerAnglesToRotationMatrix(angles) X, Y, Z = X * self.s, Y * self.s, Z * self.s corners = np.transpose(np.array([X, Y, Z]), (1, 2, 0)) init = corners.reshape(-1, 3) print('corners-----------------------------------------------------') #print(init) print('corners -> {}'.format(np.shape(init))) dist_Lidar = distance_matrix(init, init) print('dist_Lidar corners---------------------------------------------------------') print(dist_Lidar[0, :11]) translation = np.mean(init, axis=0) # get the mean point corners = np.subtract(corners, translation) # substract it from all the other points X, Y, Z = np.transpose(np.add(np.dot(corners, Rot_matrix), translation), (2, 0, 1)) # corners = np.transpose(np.array([X, Y, Z]), (1, 2, 0)).reshape(-1, 3) corners = np.transpose(np.array([X, Y, Z]), (2, 1, 0)).reshape(-1, 3) if plot: if self.chessBoard: self.chess = self.ax.plot_surface(X, Y, Z, facecolors=colors, linewidth=0.2, cmap='gray', alpha=alpha) else: self.chess = self.ax.plot_surface(X, Y, Z, linewidth=0.2, cmap='gray', alpha=alpha) idx = np.arange(start=0, stop=100, step=1) idx = np.delete(idx, [44, 45, 54, 55]) cornersToPLot = corners[idx, :] self.corn = self.ax.scatter(cornersToPLot[:, 0], cornersToPLot[:, 1], cornersToPLot[:, 2], c='tab:blue', marker='o', s=5) self.template_cloud = corners return np.array(corners) def getPointCoud(self, colorsMap='jet', skip=1, useRing = True): # X, Y, Z, intensity, ring if useRing: originalCloud = np.array(np.load(self.file, mmap_mode='r'))[:,:5] if InitLidar: xyz = originalCloud[:, 0:3] new_xyz = np.dot(xyz, Rot_matrix) originalCloud[:, 0:3] = new_xyz #mean_x = np.mean(originalCloud[:, 0]) #originalCloud[:, 0] = mean_x df = pd.DataFrame(data=originalCloud, columns=["X", "Y", "Z","intens","ring"]) gp = df.groupby('ring') keys = gp.groups.keys() #groups = gp.groups coolPoints, circlePoints = [],[] for i in keys: line = np.array(gp.get_group(i), dtype=np.float) first,last = np.array(line[0], dtype=np.float)[:3],np.array(line[-1], dtype=np.float)[:3] coolPoints.append(first) coolPoints.append(last) if self.chessBoard == False: if len(line) > 50: l = line[:,:3] for i in range(2,len(l)-2,1): d = np.linalg.norm(l[i]-l[i+1]) if d > 0.08: #half of the circle circlePoints.append(l[i]) circlePoints.append(l[i+1]) self.coolPoints = np.array(coolPoints).squeeze() self.ax.scatter(*self.coolPoints.T, color='r', marker='o', alpha=1, s=2) print('coolPoints:{}, circlePoints:{}'.format(np.shape(self.coolPoints), np.shape(circlePoints))) circlePoints = np.array(circlePoints) if len(circlePoints)>0: self.ax.scatter(*circlePoints.T, color='r', marker='o', alpha=1, s=5) self.fitCircle(circlePoints) #self.point_cloud = np.array(self.coolPoints, dtype=np.float32) self.point_cloud = np.array(np.load(self.file, mmap_mode='r')[::skip, :3], dtype=np.float32) if InitLidar: xyz = self.point_cloud[:, 0:3] new_xyz = np.dot(xyz, Rot_matrix) self.point_cloud[:, 0:3] = new_xyz # center the point_cloud #mean_x = np.mean(self.point_cloud[:, 0]) #self.point_cloud[:, 0] = mean_x self.point_cloud_mean = np.mean(self.point_cloud, axis=0) self.Tx, self.Ty, self.Tz = self.point_cloud_mean # self.point_cloud = self.point_cloud - self.point_cloud_mean self.point_cloud_colors = np.array(np.load(self.file, mmap_mode='r'))[::skip, 3] if self.plotInit: cm = plt.get_cmap(colorsMap) cNorm = matplotlib.colors.Normalize(vmin=min(self.point_cloud_colors), vmax=max(self.point_cloud_colors)) scalarMap = cmx.ScalarMappable(norm=cNorm, cmap=cm) self.p1 = self.ax.scatter(self.point_cloud[:, 0], self.point_cloud[:, 1], self.point_cloud[:, 2], color=scalarMap.to_rgba(self.point_cloud_colors), s=0.2) else: self.p = pcl.PointCloud(self.point_cloud) inlier, outliner, coefficients = self.do_ransac_plane_segmentation(self.p, pcl.SACMODEL_PLANE, pcl.SAC_RANSAC, 0.01) #self.planeEquation(coef=np.array(coefficients).squeeze()) self.point_cloud_init = self.point_cloud.copy() if self.useVoxel: pcd = o3d.geometry.PointCloud() pcd.points = o3d.utility.Vector3dVector(self.point_cloud) self.point_cloud = np.array(pcd.voxel_down_sample(voxel_size=self.voxel_size).points) # self.p1 = self.ax.scatter(outliner[:, 0], outliner[:, 1], outliner[:, 2], c='y', s=0.2) self.p2 = self.ax.scatter(inlier[:, 0], inlier[:, 1], inlier[:, 2], c='g', s=0.2) w, v = self.PCA(inlier) point = np.mean(inlier, axis=0) if self.chessBoard == False and self.circle_center: #point[1:] = self.circle_center point[[0,2]]= self.circle_center w *= 2 if self.chessBoard==False and self.circle_center: p = Circle(self.circle_center, self.circle_radius, alpha = .3, color='tab:blue') self.ax.add_patch(p) art3d.pathpatch_2d_to_3d(p, z=point[1], zdir="y") self.p3 = self.ax.quiver([point[0]], [point[1]], [point[2]], [v[0, :] * np.sqrt(w[0])], [v[1, :] * np.sqrt(w[0])], [v[2, :] * np.sqrt(w[0])], linewidths=(1.8,)) def axisEqual3D(self, centers=None): extents = np.array([getattr(self.ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] # centers = np.mean(extents, axis=1) if centers is None maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(self.ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) def planeEquation(self, coef): a, b, c, d = coef mean = np.mean(self.point_cloud, axis=0) normal = [a, b, c] d2 = -mean.dot(normal) # print('d2:{}'.format(d2)) # print('mean:{}'.format(mean)) # print('The equation is {0}x + {1}y + {2}z = {3}'.format(a, b, c, d)) # plot the normal vector startX, startY, startZ = mean[0], mean[1], mean[2] startZ = (-normal[0] * startX - normal[1] * startY - d) * 1. / normal[2] self.ax.quiver([startX], [startY], [startZ], [normal[0]], [normal[1]], [normal[2]], linewidths=(3,),edgecolor="red") def PCA(self, data, correlation=False, sort=True): # data = nx3 mean = np.mean(data, axis=0) data_adjust = data - mean #: the data is transposed due to np.cov/corrcoef syntax if correlation: matrix = np.corrcoef(data_adjust.T) else: matrix = np.cov(data_adjust.T) eigenvalues, eigenvectors = np.linalg.eig(matrix) if sort: #: sort eigenvalues and eigenvectors sort = eigenvalues.argsort()[::-1] eigenvalues = eigenvalues[sort] eigenvectors = eigenvectors[:, sort] return eigenvalues, eigenvectors def eulerAnglesToRotationMatrix(self, theta): R_x = np.array([[1, 0, 0], [0, math.cos(theta[0]), -math.sin(theta[0])], [0, math.sin(theta[0]), math.cos(theta[0])] ]) R_y = np.array([[math.cos(theta[1]), 0, math.sin(theta[1])], [0, 1, 0], [-math.sin(theta[1]), 0, math.cos(theta[1])] ]) R_z = np.array([[math.cos(theta[2]), -math.sin(theta[2]), 0], [math.sin(theta[2]), math.cos(theta[2]), 0], [0, 0, 1] ]) R = np.dot(R_z, np.dot(R_y, R_x)) return R def do_ransac_plane_segmentation(self, pcl_data, pcl_sac_model_plane, pcl_sac_ransac, max_distance): """ Create the segmentation object :param pcl_data: point could data subscriber :param pcl_sac_model_plane: use to determine plane models :param pcl_sac_ransac: RANdom SAmple Consensus :param max_distance: Max distance for apoint to be considered fitting the model :return: segmentation object """ seg = pcl_data.make_segmenter() seg.set_model_type(pcl_sac_model_plane) seg.set_method_type(pcl_sac_ransac) seg.set_distance_threshold(max_distance) inliers, coefficients = seg.segment() inlier_object = pcl_data.extract(inliers, negative=False) outlier_object = pcl_data.extract(inliers, negative=True) if len(inliers) <= 1: outlier_object = [0, 0, 0] inlier_object, outlier_object = np.array(inlier_object), np.array(outlier_object) return inlier_object, outlier_object, coefficients def func_CheckButtons(self, label): if label == 'Axes': if self.axis_on: self.ax.set_axis_off() self.axis_on = False else: self.ax.set_axis_on() self.axis_on = True elif label == 'Black': if self.colour: self.colour = False self.ax.set_facecolor((1, 1, 1)) else: self.colour = True self.ax.set_facecolor((0, 0, 0)) elif label == 'Annotate': self.Annotate = not self.Annotate self.AnnotateEdges() self.fig.canvas.draw_idle() def ICP_finetune(self, points_in, points_out): cloud_in = pcl.PointCloud() cloud_out = pcl.PointCloud() cloud_in.from_array(points_in) cloud_out.from_array(points_out) # icp = cloud_in.make_IterativeClosestPoint() icp = cloud_out.make_IterativeClosestPoint() converged, transf, estimate, fitness = icp.icp(cloud_in, cloud_out) print('fitness:{}, converged:{}, transf:{}, estimate:{}'.format(fitness, converged, np.shape(transf), np.shape(estimate))) return converged, transf, estimate, fitness def colorfunc(self, label): if label == 'Init': self.plotInit = True else: self.plotInit = False self.reset(0) def OK_btnClick(self, args): self.OK = True plt.close() def not_OK_btnClick(self, args): self.OK = False plt.close() def Close(self, args): global globalTrigger globalTrigger = False plt.close() def reset(self, args): self.ax.cla() self.getPointCoud() self.axisEqual3D(centers=np.mean(self.point_cloud, axis=0)) self.Rx, self.Ry, self.Rz = 0, 0, 0 self.Tx, self.Ty, self.Tz = 0, 0, 0 self.board_origin = [self.Tx, self.Ty, self.Tz] self.board() self.fig.canvas.draw_idle() def getClosestPoints(self, arg): dist_mat = distance_matrix(self.template_cloud, self.point_cloud_init) self.neighbours = np.argsort(dist_mat, axis=1)[:, 0] self.finaPoints = np.asarray(self.point_cloud_init[self.neighbours, :]).squeeze() if self.chess: self.chess.remove() if self.corn: self.corn.remove() if self.p3: self.p3.remove() if self.p2: self.p2.remove() if self.p1: self.p1.remove() self.scatter_finalPoints = self.ax.scatter(self.finaPoints[:, 0], self.finaPoints[:, 1], self.finaPoints[:, 2], c='k', marker='x', s=1) self.corn = self.ax.scatter(self.template_cloud[:, 0], self.template_cloud[:, 1], self.template_cloud[:, 2], c='blue', marker='o', s=5) self.fig.canvas.draw_idle() def Tz_plus(self, event): self.Tz += self.step self.update_R(0) def Tz_minus(self, event): self.Tz -= self.step self.update_R(0) def Ty_plus(self, event): self.Ty += self.step self.update_R(0) def Ty_minus(self, event): self.Ty -= self.step self.update_R(0) def Tx_plus(self, event): self.Tx += self.step self.update_R(0) def Tx_minus(self, event): self.Tx -= self.step self.update_R(0) def readCameraIntrin(self): name = 'inside' name = 'outside' self.camera_model = load_obj('{}_combined_camera_model'.format(name)) self.camera_model_rectify = load_obj('{}_combined_camera_model_rectify'.format(name)) self.K_left = self.camera_model['K_left'] self.K_right = self.camera_model['K_right'] self.D_left = self.camera_model['D_left'] self.D_right = self.camera_model['D_right'] # self.K_left = self.camera_model['K_right'] # self.K_right = self.camera_model['K_left'] # self.D_left = self.camera_model['D_right'] # self.D_right = self.camera_model['D_left'] # print('K_left') # print(self.K_left) # print('K_right') # print(self.K_right) self.R = self.camera_model['R'] self.T = self.camera_model['T'] self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) #self.T = np.array([-0.98, 0., 0.12])[:, np.newaxis] #self.T = np.array([-.75, 0., 0.])[:, np.newaxis] #print('self T after {}'.format(np.shape(self.T))) #angles = np.array([np.deg2rad(0.68), np.deg2rad(22.66), np.deg2rad(-1.05)]) #self.R = euler_matrix(angles) #Q = self.camera_model_rectify['Q'] #roi_left, roi_right = self.camera_model_rectify['roi_left'], self.camera_model_rectify['roi_right'] self.leftMapX, self.leftMapY = self.camera_model_rectify['leftMapX'], self.camera_model_rectify['leftMapY'] self.rightMapX, self.rightMapY = self.camera_model_rectify['rightMapX'], self.camera_model_rectify['rightMapY'] img_shape = (1936, 1216) print('img_shape:{}'.format(img_shape)) R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(self.K_left, self.D_left, self.K_right, self.D_right, imageSize=img_shape, R=self.camera_model['R'], T=self.camera_model['T'], flags=cv2.CALIB_ZERO_DISPARITY, alpha=-1 #alpha=0 ) self.leftMapX, self.leftMapY = cv2.initUndistortRectifyMap( self.K_left, self.D_left, R1, P1, img_shape, cv2.CV_32FC1) self.rightMapX, self.rightMapY = cv2.initUndistortRectifyMap( self.K_right, self.D_right, R2, P2, img_shape, cv2.CV_32FC1) self.K = self.K_right self.D = self.D_right try: N = 5 aruco_dict = aruco.custom_dictionary(0, N, 1) aruco_dict.bytesList = np.empty(shape=(4, N - 1, N - 1), dtype=np.uint8) A = np.array([[0, 0, 1, 0, 0], [0, 1, 0, 1, 0], [0, 1, 0, 1, 0], [0, 1, 1, 1, 0], [0, 1, 0, 1, 0]], dtype=np.uint8) aruco_dict.bytesList[0] = aruco.Dictionary_getByteListFromBits(A) R = np.array([[1, 1, 1, 1, 0], [1, 0, 0, 1, 0], [1, 1, 1, 0, 0], [1, 0, 0, 1, 0], [1, 0, 0, 0, 1]], dtype=np.uint8) aruco_dict.bytesList[1] = aruco.Dictionary_getByteListFromBits(R) V = np.array([[1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 0, 1, 0], [0, 0, 1, 0, 0]], dtype=np.uint8) O = np.array([[0, 1, 1, 1, 0], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [1, 0, 0, 0, 1], [0, 1, 1, 1, 0]], dtype=np.uint8) aruco_dict.bytesList[2] = aruco.Dictionary_getByteListFromBits(O) aruco_dict.bytesList[3] = aruco.Dictionary_getByteListFromBits(V) self.ARUCO_DICT = aruco_dict self.calibation_board = aruco.GridBoard_create( markersX=2, markersY=2, markerLength=0.126, markerSeparation=0.74, dictionary=self.ARUCO_DICT) except: print('Install Aruco') def draw(self, img, corners, imgpts): corner = tuple(corners[0].ravel()) cv2.line(img, corner, tuple(imgpts[0].ravel()), (255, 0, 0), 5) cv2.line(img, corner, tuple(imgpts[1].ravel()), (0, 255, 0), 5) cv2.line(img, corner, tuple(imgpts[2].ravel()), (0, 0, 255), 5) return img def annotate3D(self, ax, s, *args, **kwargs): self.tag = Annotation3D(s, *args, **kwargs) ax.add_artist(self.tag) def AnnotateEdges(self, giveAX=None, givenPoints=None): if self.Annotate: # add vertices annotation. if giveAX is None: if self.lowerTemplate or self.chessBoard == False: if self.chessBoard == False: pts = np.asarray(self.template_cloud.copy()).reshape(self.nCols, self.nRows, 3) idx = np.array([44, 45, 54, 55]) center = np.mean(self.template_cloud[idx], axis=0) self.templatePoints = [pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center] self.templatePoints = np.array(self.templatePoints).reshape(-1, 3) cornersToPLot = self.estimate[idx, :] for j, xyz_ in enumerate(self.templatePoints): self.annotate3D(self.ax, s=str(j), xyz=xyz_, fontsize=12, xytext=(-1, 1), textcoords='offset points', ha='right', va='bottom') else: for j, xyz_ in enumerate(self.template_cloud): self.annotate3D(self.ax, s=str(j), xyz=xyz_, fontsize=8, xytext=(-1, 1), textcoords='offset points', ha='right', va='bottom') else: try: templatePoints = np.asarray(self.template_cloud.copy()).reshape(self.nCols, self.nRows, 3)[ 1:self.nCols - 1, 1:self.nRows - 1, :] except: templatePoints = np.asarray(self.template_cloud.copy()).reshape(self.nCols+1, self.nRows+1, 3)[ 1:self.nCols - 1, 1:self.nRows - 1, :] # templatePoints = np.asarray(self.template_cloud.copy()).reshape(self.nRows,self.nCols, 3)[1:self.nRows-1,1:self.nCols-1,:] self.templatePoints = np.array(templatePoints).reshape(-1, 3) for j, xyz_ in enumerate(self.templatePoints): self.annotate3D(self.ax, s=str(j), xyz=xyz_, fontsize=8, xytext=(-3, 3), textcoords='offset points', ha='right', va='bottom') else: for j, xyz_ in enumerate(givenPoints): self.annotate3D(giveAX, s=str(j), xyz=xyz_, fontsize=10, xytext=(-3, 3), textcoords='offset points', ha='right', va='bottom') if self.showImage: # annotate image points = np.asarray(self.corners2).squeeze() font, lineType = cv2.FONT_HERSHEY_SIMPLEX, 2 if self.chessBoard else 10 for i, point in enumerate(points): point = tuple(point.ravel()) cv2.putText(self.QueryImg, '{}'.format(i), point, font, 1 if self.chessBoard else 3, (0, 0, 0) if self.chessBoard else (255, 0, 0), lineType) self.image_ax.imshow(self.QueryImg) def getCamera_XYZ_Stereo(self): #cam_rot, jac = cv2.Rodrigues(self.rvecs) #mR = np.matrix(cam_rot) #mT = np.matrix(self.tvecs) #cam_trans = -mR * mT _3DPoints = [] for i, pixel in enumerate(self.x_left): u, v = pixel.ravel() u, v = int(u), int(v) distance = self.depth[i] pt = np.array([u, v, distance]) pt[0] = pt[2] * (pt[0] - self.fxypxy[2]) / self.fxypxy[0] pt[1] = pt[2] * (pt[1] - self.fxypxy[3]) / self.fxypxy[1] # pt = pt.dot(cam_rot.T) + self.tvecs _3DPoints.append(pt) print('_3DPoints {}'.format(np.shape(_3DPoints))) print('tvec : {}'.format(np.asarray(self.tvecs).squeeze())) print('Camera_XYZ_Stereo mean {}'.format(np.mean(_3DPoints, axis=0))) _3DPoints = np.array(_3DPoints).squeeze() print('from disparity getCamera_XYZ_Stereo ') d = distance_matrix(_3DPoints,_3DPoints) print(d) return _3DPoints def getCamera_XYZ(self): R_mtx, jac = cv2.Rodrigues(self.rvecs) inv_R_mtx = np.linalg.inv(R_mtx) inv_K = np.linalg.inv(self.K) def compute_XYZ(u, v): # from 2D pixels to 3D world uv_ = np.array([[u, v, 1]], dtype=np.float32).T suv_ = uv_ xyz_ = inv_K.dot(suv_) - self.tvecs XYZ = inv_R_mtx.dot(xyz_) pred = XYZ.T[0] return pred Camera_XYZ = [] for i, point in enumerate(self.pixelsPoints): xyz = compute_XYZ(u=point[0], v=point[1]) # print 'xyz:{}'.format(xyz) Camera_XYZ.append(xyz) Camera_XYZ = np.array(Camera_XYZ) print('init tvec : {}'.format(np.asarray(self.tvecs).squeeze())) print('Camera_XYZ mean {}'.format(np.mean(Camera_XYZ, axis=0))) if self.img_file2 is None: for i, point in enumerate(Camera_XYZ): imgpts, jac = cv2.projectPoints(point, self.rvecs, self.tvecs, self.K, self.D) imgpts = np.asarray(imgpts).squeeze() cv2.circle(self.QueryImg, (int(imgpts[0]), int(imgpts[1])), 7, (255, 0, 0), 7) self.image_ax.imshow(self.QueryImg) return Camera_XYZ def getImagePixels(self): img = cv2.imread(self.img_file) #left image img2 = cv2.imread(self.img_file2) # left image gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY) pixelsPoints,pixelsPoints2, _3DreconstructedBoard = [],[],[] if self.chessBoard: ret, corners = cv2.findChessboardCorners(gray, (10, 7), None) ret2, corners2 = cv2.findChessboardCorners(gray2, (10, 7), None) if ret and ret2: # found chessboard print('Found chessboard') corners_2 = cv2.cornerSubPix(gray, corners, (11, 11), (-1, -1), self.criteria) corners2_2 = cv2.cornerSubPix(gray2, corners2, (11, 11), (-1, -1), self.criteria) pixelsPoints = np.asarray(corners_2).squeeze() pixelsPoints2 = np.asarray(corners2_2).squeeze() cv2.drawChessboardCorners(img, (10, 7), corners_2, ret) cv2.drawChessboardCorners(img2, (10, 7), corners2_2, ret) # Find the rotation and translation vectors. success, rvecs, tvecs, inliers = cv2.solvePnPRansac(self.objp, corners_2, self.K, self.D) rvecs, _ = cv2.Rodrigues(rvecs) _3Dpoints = self.objp # project 3D points to image plane _2Dpoints, jac = cv2.projectPoints(_3Dpoints, rvecs, tvecs, self.K, self.D) _2Dpoints = np.array(_2Dpoints, dtype=np.float32).squeeze() print('_2Dpoints -> {}'.format(np.shape(_2Dpoints))) for i in range(len(_2Dpoints)): cv2.circle(img, tuple(_2Dpoints[i]), 5, (0, 255, 0), 3) _3Dpoints = rvecs.dot(_3Dpoints.T) + tvecs _3Dpoints = _3Dpoints.T print('_3Dpoints->{}'.format(np.shape(_3Dpoints))) dist_mat = distance_matrix(_3Dpoints, _3Dpoints) print('dist_mat for OpencvReconstructed') print(dist_mat[0, :11]) _3DreconstructedBoard = _3Dpoints else: return None,None else: corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, self.ARUCO_DICT) corners, ids, rejectedImgPoints, recoveredIds = aruco.refineDetectedMarkers( image=gray, board=self.calibation_board, detectedCorners=corners, detectedIds=ids, rejectedCorners=rejectedImgPoints, cameraMatrix=self.K, distCoeffs=self.D) corners2, ids2, rejectedImgPoints2 = aruco.detectMarkers(gray2, self.ARUCO_DICT) corners2, ids2, rejectedImgPoints2, recoveredIds2 = aruco.refineDetectedMarkers( image=gray2, board=self.calibation_board, detectedCorners=corners2, detectedIds=ids2, rejectedCorners=rejectedImgPoints2, cameraMatrix=self.K, distCoeffs=self.D) if np.all(ids != None) and np.all(ids2 != None): print('found charuco board, ids:{}'.format(np.shape(ids))) if len(ids) and len(ids2) > 0: retval, self.rvecs, self.tvecs = aruco.estimatePoseBoard(corners, ids, self.calibation_board, self.K, self.D, None, None) retval2, self.rvecs2, self.tvecs2 = aruco.estimatePoseBoard(corners2, ids2, self.calibation_board, self.K, self.D, None, None) img = aruco.drawDetectedMarkers(img, corners, ids,borderColor=(0, 0, 255)) img2 = aruco.drawDetectedMarkers(img2, corners2, ids2, borderColor=(0, 0, 255)) if retval and retval2: self.dst, jacobian = cv2.Rodrigues(self.rvecs) self.dst2, jacobian = cv2.Rodrigues(self.rvecs2) #self.pts = np.float32([[0, b, 0], [b, b, 0], [b, 0, 0], [-0.03, -0.03, 0]]) b = 1 self.pts = np.float32([[0, b, 0], [b, b, 0], [b, 0, 0], [-0.03, -0.03, 0],[.5,.5,0]]) _3Dpoints = self.dst.T.dot(np.array(self.pts).squeeze().T) + self.tvecs _3Dpoints = _3Dpoints.T print('_3Dpoints->{}'.format(np.shape(_3Dpoints))) dist_mat = distance_matrix(_3Dpoints, _3Dpoints) print('dist_mat for OpencvReconstructed') print(dist_mat) _3DreconstructedBoard = _3Dpoints imgpts, _ = cv2.projectPoints(self.pts, self.rvecs, self.tvecs, self.K, self.D) #corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) corners2 = np.array(imgpts).squeeze() self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] img = cv2.line(img, top_right, bot_right, (0, 255, 0), 4) img = cv2.line(img, bot_right, bot_left, (0, 255, 0), 4) img = cv2.line(img, bot_left, top_left, (0, 255, 0), 4) img = cv2.line(img, top_left, top_right, (0, 255, 0), 4) cv2.circle(img, tuple(corners2[-1]), 5, (0, 255, 0), 3) cv2.circle(img, tuple(corners2[-2]), 5, (0, 0, 255), 3) pixelsPoints = np.asarray(corners2).squeeze() imgpts, _ = cv2.projectPoints(self.pts, self.rvecs2, self.tvecs2, self.K, self.D) #corners2 = np.append(imgpts, np.mean(imgpts, axis=0)).reshape(-1, 2) corners2 = np.array(imgpts).squeeze() self.pt_dict = {} for i in range(len(self.pts)): self.pt_dict[tuple(self.pts[i])] = tuple(imgpts[i].ravel()) top_right = self.pt_dict[tuple(self.pts[0])] bot_right = self.pt_dict[tuple(self.pts[1])] bot_left = self.pt_dict[tuple(self.pts[2])] top_left = self.pt_dict[tuple(self.pts[3])] img2 = cv2.line(img2, top_right, bot_right, (0, 255, 0), 4) img2 = cv2.line(img2, bot_right, bot_left, (0, 255, 0), 4) img2 = cv2.line(img2, bot_left, top_left, (0, 255, 0), 4) img2 = cv2.line(img2, top_left, top_right, (0, 255, 0), 4) cv2.circle(img2, tuple(corners2[-1]), 5, (0, 255, 0), 3) #cv2.circle(img2, tuple(corners2[-2]), 5, (0, 0, 255), 3) pixelsPoints2 = np.asarray(corners2).squeeze() else: return None,None else: return None,None else: return None,None scale = .4 _horizontal = np.hstack( (cv2.resize(img, None, fx=scale, fy=scale), cv2.resize(img2, None, fx=scale, fy=scale))) cv2.imshow('_horizontal', _horizontal) cv2.waitKey(0) cv2.destroyAllWindows() return pixelsPoints,pixelsPoints2, _3DreconstructedBoard def savePointsCorrespondences(self, args): display = True fig = plt.figure(figsize=plt.figaspect(1)) ax = plt.axes(projection='3d') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') if self.chessBoard: legend_elements = [ Line2D([0], [0], marker='o', label='board template', markerfacecolor='tab:blue', markersize=6), Line2D([0], [0], marker='o', label='ICP finetuned', markerfacecolor='green', markersize=6), Line2D([0], [0], marker='o', label='closest lidar points', markerfacecolor='k', markersize=6), Line2D([0], [0], marker='o', label='Camera_XYZ', markerfacecolor='red', markersize=6), ] board_template = self.template_cloud board_template_ICP_finetuned = self.estimate closest_lidar_points = self.finaPoints try: icp_finetuned_inside = np.asarray(self.estimate).reshape(self.nCols, self.nRows, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] board_template_inside = board_template.reshape(self.nCols, self.nRows, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] closest_lidar_points_inside = closest_lidar_points.reshape(self.nCols, self.nRows, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] except: print('Second-----------------------------') icp_finetuned_inside = np.asarray(self.estimate).reshape(self.nCols+1, self.nRows+1, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] board_template_inside = board_template.reshape(self.nCols+1, self.nRows+1, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] closest_lidar_points_inside = closest_lidar_points.reshape(self.nCols+1, self.nRows+1, 3)[1:self.nCols - 1, 1:self.nRows - 1, :] icp_finetuned_inside = np.array(icp_finetuned_inside).reshape(-1, 3) board_template_inside = np.array(board_template_inside).reshape(-1, 3) print('board_template_inside-----------------------------------------------------') print(board_template_inside) print('board_template_inside -> {}'.format(np.shape(board_template_inside))) dist_Lidar = distance_matrix(board_template_inside, board_template_inside) print('dist_Lidar---------------------------------------------------------') print(dist_Lidar[0, :11]) closest_lidar_points_inside = np.array(closest_lidar_points_inside).reshape(-1, 3) Camera_XYZ = self.getCamera_XYZ() if self.img_file2: Camera_XYZ_Stereo = self.getCamera_XYZ_Stereo() else: Camera_XYZ_Stereo = np.array([[0, 0, 0]]) display = True if display: print('board_template:{}'.format(np.shape(board_template))) print('board_template_ICP_finetuned:{}'.format(np.shape(board_template_ICP_finetuned))) print('icp_finetuned_inside:{}'.format(np.shape(icp_finetuned_inside))) print('board_template_inside:{}'.format(np.shape(board_template_inside))) print('closest_lidar_points:{}'.format(np.shape(closest_lidar_points))) print('closest_lidar_points_inside:{}'.format(np.shape(closest_lidar_points_inside))) print('Camera_XYZ:{}'.format(np.shape(Camera_XYZ))) print('Camera_XYZ_Stereo:{}'.format(np.shape(Camera_XYZ_Stereo))) #dist = distance_matrix(Camera_XYZ_Stereo, Camera_XYZ_Stereo) #print('distance matrix Camera_XYZ_Stereo:{}'.format(dist)) ax.scatter(*board_template.T, color='b', marker='o', alpha=.5, s=8) ax.scatter(*board_template_ICP_finetuned.T, color='r', marker='o', alpha=.5, s=8) ax.scatter(*board_template_inside.T, color='tab:blue', marker='x', alpha=1, s=10) ax.scatter(*icp_finetuned_inside.T, color='g', marker='x', alpha=1, s=10) ax.scatter(*closest_lidar_points.T, color='r', marker='x', alpha=.8, s=10) ax.scatter(*closest_lidar_points_inside.T, color='k', marker='x', alpha=1, s=20) ax.scatter(*Camera_XYZ.T, color='k', marker='x', alpha=1, s=30) ax.scatter(*Camera_XYZ_Stereo.T, color='r', marker='o', alpha=1, s=3) self.AnnotateEdges(giveAX=ax, givenPoints=board_template_inside) extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] centers = np.mean(board_template, axis=0) # centers = np.mean(Camera_XYZ_Stereo, axis=0) if self.img_file2 is not None else np.mean(board_template,axis=0) maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) self.pixelsPointsLeft, self.pixelsPointsRight, _3DreconstructedBoard = self.getImagePixels() print('_3DreconstructedBoard -> {}'.format(np.shape(_3DreconstructedBoard))) if len(self.pixelsPointsLeft)<=0: print('Cannot get pixels points !!! ') self.points_correspondences = dict([ ('board_template', board_template), ('board_template_ICP_finetuned', board_template_ICP_finetuned), ('board_template_inside', board_template_inside), ('icp_finetuned_inside', icp_finetuned_inside), ('closest_lidar_points', closest_lidar_points), ('closest_lidar_points_inside', closest_lidar_points_inside), ('pixelsPointsLeft', self.pixelsPointsLeft), ('pixelsPointsRight', self.pixelsPointsRight), ('Camera_XYZ_Stereo', Camera_XYZ_Stereo), ('_3DreconstructedBoard',_3DreconstructedBoard), ('Camera_XYZ', Camera_XYZ)]) # save_obj(self.points_correspondences, self.name) else: legend_elements = [ Line2D([0], [0], marker='o', label='board template all', markerfacecolor='b', markersize=6), Line2D([0], [0], marker='o', label='ICP finetuned', markerfacecolor='red', markersize=6), Line2D([0], [0], marker='o', label='board template inside', markerfacecolor='tab:blue', markersize=6), Line2D([0], [0], marker='o', label='closest lidar points', markerfacecolor='red', markersize=6), ] pts = np.asarray(self.template_cloud.copy()).reshape(self.nCols, self.nRows, 3) idx = np.array([44, 45, 54, 55]) center = np.mean(self.template_cloud[idx], axis=0) board_template = np.array([pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center]).reshape(-1, 3) board_template = board_template pts = np.asarray(self.estimate.copy()).reshape(self.nCols, self.nRows, 3) center = np.mean(self.estimate[idx], axis=0) board_template_ICP_finetuned = np.array( [pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center]).reshape(-1, 3) board_template_inside = self.templatePoints pts = np.asarray(self.finaPoints.copy()).reshape(self.nCols, self.nRows, 3) center = np.mean(self.finaPoints[idx], axis=0) closest_lidar_points = np.array( [pts[0, -1, :], pts[-1, -1, :], pts[-1, 0, :], pts[0, 0, :], center]).reshape(-1, 3) if self.img_file2: Camera_XYZ_Stereo = self.getCamera_XYZ_Stereo() else: Camera_XYZ_Stereo = np.array([[0, 0, 0]]) if display: print('board_template:{}'.format(np.shape(board_template))) print('board_template_ICP_finetuned:{}'.format(np.shape(board_template_ICP_finetuned))) print('board_template_inside:{}'.format(np.shape(board_template_inside))) print('closest_lidar_points:{}'.format(np.shape(closest_lidar_points))) print('Camera_XYZ_Stereo:{}'.format(np.shape(Camera_XYZ_Stereo))) ax.scatter(*board_template.T, color='b', marker='o', alpha=.5, s=8) ax.scatter(*board_template_ICP_finetuned.T, color='r', marker='o', alpha=.5, s=8) ax.scatter(*board_template_inside.T, color='tab:blue', marker='x', alpha=1, s=10) ax.scatter(*closest_lidar_points.T, color='r', marker='x', alpha=.8, s=10) ax.scatter(*Camera_XYZ_Stereo.T, color='r', marker='o', alpha=.8, s=20) self.AnnotateEdges(giveAX=ax, givenPoints=board_template_inside) extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] centers = np.mean(board_template, axis=0) # centers = np.mean(Camera_XYZ, axis=0) if self.img_file2 is not None else np.mean(board_template, axis=0) maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) self.pixelsPointsLeft, self.pixelsPointsRight, _3DreconstructedBoard = self.getImagePixels() _3DreconstructedBoard = np.array(_3DreconstructedBoard).squeeze() print('_3DreconstructedBoard -> {}'.format(np.shape(_3DreconstructedBoard))) if len(self.pixelsPointsLeft) <= 0: print('Cannot get pixels points !!! ') ax.scatter(*_3DreconstructedBoard.T, color='b', marker='x', alpha=1, s=20) print('pixelsPointsLeft:{}'.format(np.shape(self.pixelsPointsLeft))) print('pixelsPointsRight:{}'.format(np.shape(self.pixelsPointsRight))) print('_3DreconstructedBoard:{}'.format(np.shape(_3DreconstructedBoard))) self.points_correspondences = dict([ ('board_template', board_template), ('board_template_ICP_finetuned', board_template_ICP_finetuned), ('board_template_inside', board_template_inside), ('pixelsPointsLeft', self.pixelsPointsLeft), ('pixelsPointsRight', self.pixelsPointsRight), ('_3DreconstructedBoard',_3DreconstructedBoard), ('Camera_XYZ_Stereo', Camera_XYZ_Stereo), ('closest_lidar_points', closest_lidar_points)]) # save_obj(self.points_correspondences, self.name) ax.legend(handles=legend_elements, loc='best') plt.show() def getDepth_Inside_Outside(self): calibrations = ['inside', 'outside'] output = [] for calib in calibrations: camera_model = load_obj('{}_combined_camera_model'.format(calib)) camera_model_rectify = load_obj('{}_combined_camera_model_rectify'.format(calib)) K_left = camera_model['K_right'] D_left = camera_model['D_right'] T = camera_model['T'] leftMapX, leftMapY = camera_model_rectify['leftMapX'], camera_model_rectify['leftMapY'] rightMapX, rightMapY = camera_model_rectify['rightMapX'], camera_model_rectify['rightMapY'] imgleft = cv2.imread(self.img_file) imgright = cv2.imread(self.img_file2) if stereoRectify: imgleft = cv2.remap(src=imgleft, map1=leftMapX, map2=leftMapY, interpolation=cv2.INTER_LINEAR, dst=None,borderMode=cv2.BORDER_CONSTANT) imgright = cv2.remap(src=imgright, map1=rightMapX, map2=rightMapY, interpolation=cv2.INTER_LINEAR, dst=None,borderMode=cv2.BORDER_CONSTANT) gray_left = cv2.cvtColor(imgleft, cv2.COLOR_BGR2GRAY) ret_left, corners_left = cv2.findChessboardCorners(gray_left, (10, 7), None) gray_right = cv2.cvtColor(imgright, cv2.COLOR_BGR2GRAY) ret_right, corners_right = cv2.findChessboardCorners(gray_right, (10, 7), None) if ret_left and ret_right: # found chessboard corners2_left = cv2.cornerSubPix(gray_left, corners_left, (11, 11), (-1, -1), self.criteria) x_left = np.asarray(corners2_left).squeeze() corners2_right = cv2.cornerSubPix(gray_right, corners_right, (11, 11), (-1, -1), self.criteria) x_right = np.asarray(corners2_right).squeeze() baseline = abs(T[0]) focal_length, cx, cy = K_left[0, 0], K_left[0, 2], K_left[1, 2] disparity = np.sum(np.sqrt((x_left - x_right) ** 2), axis=1) # depth = baseline (meter) * focal length (pixel) / disparity-value (pixel) -> meter depth = (baseline * focal_length / disparity) # .reshape(10,7) fxypxy = [K_left[0, 0], K_left[1, 1], cx, cy] print('{} fx:{}, fy:{}'.format(calib, round(K_left[0, 0],2), round(K_left[1, 1],2))) _3DPoints = [] for i, pixel in enumerate(x_left): u, v = pixel.ravel() u, v = int(u), int(v) distance = depth[i] # print('u:{},v:{},distance:{}'.format(u,v, distance)) pt = np.array([u, v, distance]) pt[0] = pt[2] * (pt[0] - fxypxy[2]) / fxypxy[0] pt[1] = pt[2] * (pt[1] - fxypxy[3]) / fxypxy[1] _3DPoints.append(pt) _3DPoints = np.array(_3DPoints) output.append(_3DPoints) else: print('cannot detect board in both images') if len(output)>1: inside_3D = np.array(output[0]).squeeze() outisde_3D = np.array(output[1]).squeeze() #get the error for each point a_min_b = inside_3D - outisde_3D norm_total = np.linalg.norm(a_min_b)/70 norm_axis = np.linalg.norm(a_min_b, axis=0)/70 print('norm_total:{}, norm_axis:{}'.format(norm_total,norm_axis)) self._3DErros.append(norm_axis) def fitNewPlan(self): coolPoints = self.coolPoints def minimum_bounding_rectangle(points): pi2 = np.pi / 2. # get the convex hull for the points hull = ConvexHull(points) hull_points = points[hull.vertices] y_saved = [] for simplex in hull.simplices: y = coolPoints[simplex,1] x = points[simplex, 0] z = points[simplex, 1] self.ax.plot(x, y, z, 'k-', alpha = .5) y_saved.append(y) y_saved = np.array(y_saved) # calculate edge angles edges = hull_points[1:] - hull_points[:-1] angles = np.arctan2(edges[:, 1], edges[:, 0]) angles = np.abs(np.mod(angles, pi2)) angles = np.unique(angles) rotations = np.vstack([ np.cos(angles),np.cos(angles - pi2), np.cos(angles + pi2),np.cos(angles)]).T rotations = rotations.reshape((-1, 2, 2)) # apply rotations to the hull rot_points = np.dot(rotations, hull_points.T) # find the bounding points min_x = np.nanmin(rot_points[:, 0], axis=1) max_x = np.nanmax(rot_points[:, 0], axis=1) min_y = np.nanmin(rot_points[:, 1], axis=1) max_y = np.nanmax(rot_points[:, 1], axis=1) # find the box with the best area areas = (max_x - min_x) * (max_y - min_y) best_idx = np.argmin(areas) # return the best box x1 = max_x[best_idx] x2 = min_x[best_idx] y1 = max_y[best_idx] y2 = min_y[best_idx] r = rotations[best_idx] rval = np.zeros((4, 2)) rval[0] = np.dot([x1, y2], r) rval[1] = np.dot([x2, y2], r) rval[2] = np.dot([x2, y1], r) rval[3] = np.dot([x1, y1], r) rval = np.array(rval) d_matrix = distance_matrix(rval, points) neighbours = np.argsort(d_matrix, axis=1)[:, 0] rval2 = np.asarray(coolPoints[neighbours, 1]).squeeze() return rval, rval2 points = list(self.coolPoints[:, [0, -1]]) y = np.mean(self.coolPoints[:, 1]) c, c2 = minimum_bounding_rectangle(np.array(points)) self.corners_ = [] for i,point in enumerate(c): #self.corners_.append([point[0],y, point[1]]) self.corners_.append([point[0],c2[i], point[1]]) if self.chessBoard==False and self.circle_center: self.corners_.append([self.circle_center[0],y,self.circle_center[1]]) self.corners_ = np.array(self.corners_) self.ax.scatter(*self.corners_.T, color='k', marker='x', alpha=1, s=50) def fitCircle(self, points): if len(points)>0: def calc_R(x, y, xc, yc): """calculate the distance of each 2D points from the center (xc, yc)""" return np.sqrt((x - xc) ** 2 + (y - yc) ** 2) def f(c, x, y): """calculate the algebraic distance between the data points and the mean circle centered at c=(xc, yc)""" Ri = calc_R(x, y, *c) return Ri - Ri.mean() def sigma(coords, x, y, r): """Computes Sigma for circle fit.""" dx, dy, sum_ = 0., 0., 0. for i in range(len(coords)): dx = coords[i][1] - x dy = coords[i][0] - y sum_ += (sqrt(dx * dx + dy * dy) - r) ** 2 return sqrt(sum_ / len(coords)) def hyper_fit(coords, IterMax=99, verbose=False): """ Fits coords to circle using hyperfit algorithm. Inputs: - coords, list or numpy array with len>2 of the form: [ [x_coord, y_coord], ..., [x_coord, y_coord] ] or numpy array of shape (n, 2) Outputs: - xc : x-coordinate of solution center (float) - yc : y-coordinate of solution center (float) - R : Radius of solution (float) - residu : s, sigma - variance of data wrt solution (float) """ X, Y = None, None if isinstance(coords, np.ndarray): X = coords[:, 0] Y = coords[:, 1] elif isinstance(coords, list): X = np.array([x[0] for x in coords]) Y = np.array([x[1] for x in coords]) else: raise Exception("Parameter 'coords' is an unsupported type: " + str(type(coords))) n = X.shape[0] Xi = X - X.mean() Yi = Y - Y.mean() Zi = Xi * Xi + Yi * Yi # compute moments Mxy = (Xi * Yi).sum() / n Mxx = (Xi * Xi).sum() / n Myy = (Yi * Yi).sum() / n Mxz = (Xi * Zi).sum() / n Myz = (Yi * Zi).sum() / n Mzz = (Zi * Zi).sum() / n # computing the coefficients of characteristic polynomial Mz = Mxx + Myy Cov_xy = Mxx * Myy - Mxy * Mxy Var_z = Mzz - Mz * Mz A2 = 4 * Cov_xy - 3 * Mz * Mz - Mzz A1 = Var_z * Mz + 4. * Cov_xy * Mz - Mxz * Mxz - Myz * Myz A0 = Mxz * (Mxz * Myy - Myz * Mxy) + Myz * (Myz * Mxx - Mxz * Mxy) - Var_z * Cov_xy A22 = A2 + A2 # finding the root of the characteristic polynomial y = A0 x = 0. for i in range(IterMax): Dy = A1 + x * (A22 + 16. * x * x) xnew = x - y / Dy if xnew == x or not np.isfinite(xnew): break ynew = A0 + xnew * (A1 + xnew * (A2 + 4. * xnew * xnew)) if abs(ynew) >= abs(y): break x, y = xnew, ynew det = x * x - x * Mz + Cov_xy Xcenter = (Mxz * (Myy - x) - Myz * Mxy) / det / 2. Ycenter = (Myz * (Mxx - x) - Mxz * Mxy) / det / 2. x = Xcenter + X.mean() y = Ycenter + Y.mean() r = sqrt(abs(Xcenter ** 2 + Ycenter ** 2 + Mz)) s = sigma(coords, x, y, r) iter_ = i if verbose: print('Regression complete in {} iterations.'.format(iter_)) print('Sigma computed: ', s) return x, y, r, s def least_squares_circle(coords): """Circle fit using least-squares solver. Inputs: - coords, list or numpy array with len>2 of the form: [ [x_coord, y_coord], ..., [x_coord, y_coord] ] or numpy array of shape (n, 2) Outputs: - xc : x-coordinate of solution center (float) - yc : y-coordinate of solution center (float) - R : Radius of solution (float) - residu : MSE of solution against training data (float) """ x, y = None, None if isinstance(coords, np.ndarray): x = coords[:, 0] y = coords[:, 1] elif isinstance(coords, list): x = np.array([point[0] for point in coords]) y = np.array([point[1] for point in coords]) else: raise Exception("Parameter 'coords' is an unsupported type: " + str(type(coords))) # coordinates of the barycenter x_m = np.mean(x) y_m = np.mean(y) center_estimate = x_m, y_m center, _ = leastsq(f, center_estimate, args=(x, y)) xc, yc = center Ri = calc_R(x, y, *center) R = Ri.mean() residu = np.sum((Ri - R) ** 2) return xc, yc, R, residu def plot_data_circle(x, y, xc, yc, R): """ Plot data and a fitted circle. Inputs: x : data, x values (array) y : data, y values (array) xc : fit circle center (x-value) (float) yc : fit circle center (y-value) (float) R : fir circle radius (float) Output: None (generates matplotlib plot). """ f = plt.figure(facecolor='white') plt.axis('equal') theta_fit = np.linspace(-pi, pi, 180) x_fit = xc + R * np.cos(theta_fit) y_fit = yc + R * np.sin(theta_fit) plt.plot(x_fit, y_fit, 'b-', label="fitted circle", lw=2) plt.plot([xc], [yc], 'bD', mec='y', mew=1) plt.xlabel('x') plt.ylabel('y') # plot data plt.scatter(x, y, c='red', label='data') plt.legend(loc='best', labelspacing=0.1) plt.grid() plt.title('Fit Circle') x1, y1, r1, resid1 = hyper_fit(points[:,[0,2]]) x2, y2, r2, resid2 = least_squares_circle(points[:,[0,2]]) #plot_data_circle(points[:,1], points[:,2],x,y,r) if resid1>resid2: x, y, r = x2, y2, r2 else: x, y, r = x1, y1, r1 self.circle_center = (x, y) self.circle_radius = r def getData(chess=True): pcl_files = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/{}/*.npy'.format('chess' if chess else 'charuco')) imgleft_files = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/{}/left/*.png'.format('chess' if chess else 'charuco')) imgright_files = glob.glob('/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/{}/right/*.png'.format('chess' if chess else 'charuco')) pcl_files.sort() imgleft_files.sort() imgright_files.sort() GoodPoints,_3DErros, IMageNames = [],[],[] for i, file in enumerate(pcl_files): if globalTrigger: print('work with {}'.format(file)) image_left = imgleft_files[i] image_right = imgright_files[i] filt = PointCloud_filter(file=file, img_file=image_left, img_file2=image_right, debug=False) filt.setUp() plt.show() plt.close() print('\n OK:{}, Save points_correspondences : {}'.format(filt.OK, np.shape(filt.points_correspondences))) if filt.OK: GoodPoints.append(filt.points_correspondences) print('save data {} '.format(np.shape(GoodPoints))) _3DErros.append(filt._3DErros) IMageNames.append(os.path.basename(image_left)) else: print('Close') break #save_obj(GoodPoints, 'GoodPoints2_{}'.format('chess' if chess else 'charuco')) print('Data saved in GoodPoints') showErros(_3DErros, IMageNames) def euler_from_matrix(R): beta = -np.arcsin(R[2, 0]) alpha = np.arctan2(R[2, 1] / np.cos(beta), R[2, 2] / np.cos(beta)) gamma = np.arctan2(R[1, 0] / np.cos(beta), R[0, 0] / np.cos(beta)) return np.array((alpha, beta, gamma)) def euler_matrix(theta): R = np.array([[np.cos(theta[1]) * np.cos(theta[2]), np.sin(theta[0]) * np.sin(theta[1]) * np.cos(theta[2]) - np.sin(theta[2]) * np.cos(theta[0]), np.sin(theta[1]) * np.cos(theta[0]) * np.cos(theta[2]) + np.sin(theta[0]) * np.sin( theta[2])], [np.sin(theta[2]) * np.cos(theta[1]), np.sin(theta[0]) * np.sin(theta[1]) * np.sin(theta[2]) + np.cos(theta[0]) * np.cos(theta[2]), np.sin(theta[1]) * np.sin(theta[2]) * np.cos(theta[0]) - np.sin(theta[0]) * np.cos( theta[2])], [-np.sin(theta[1]), np.sin(theta[0]) * np.cos(theta[1]), np.cos(theta[0]) * np.cos(theta[1])]]) return R class LiDAR_Camera_Calibration(object): def __init__(self, file, chess = True, debug=True): self.criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.0001) self.objp = np.zeros((7 * 10, 3), np.float32) self.objp[:, :2] = np.mgrid[0:10, 0:7].T.reshape(-1, 2) * .1 self.debug = debug self.file = file self.chess = chess if chess: self.data_key = ['board_template','board_template_ICP_finetuned','board_template_inside', 'icp_finetuned_inside','closest_lidar_points','closest_lidar_points_inside', 'pixelsPoints','Camera_XYZ_Stereo','Camera_XYZ'] else: self.data_key = ['board_template','board_template_ICP_finetuned','board_template_inside','pixelsPoints', 'Camera_XYZ_Stereo','closest_lidar_points'] self.readIntrinsics() try: self.load_points() except: print('cannot load data points') '''self.Rotation = np.array([[ 0.94901505, 0.01681284, 0.3147821 ], [-0.01003801, 0.99968204, -0.02313113], [-0.31507091, 0.018792, 0.94888207]]).squeeze() self.Translation = np.array([[-0.98078971], [ 0.00600202], [ 0.19497569]]).squeeze() #self.Translation[0] = -.64 euler = euler_from_matrix(self.Rotation) # print('euler1->{}'.format(euler)) angles = euler_from_matrix(self.Rotation) print('rotation1: ', [(180.0 / math.pi) * i for i in angles]) euler[1] = np.deg2rad(22.598) self.Rotation = euler_matrix(euler)''' def rmse(self, objp, imgp, K, D, rvec, tvec): print('objp:{}, imgp:{}'.format(np.shape(objp), np.shape(imgp))) predicted, _ = cv2.projectPoints(objp, rvec, tvec, K, D) print('rmse=====================================================') print('predicted -> {}, type - >{}'.format(np.shape(predicted), type(predicted))) predicted = cv2.undistortPoints(predicted, K, D, P=K) predicted = predicted.squeeze() pix_serr = [] for i in range(len(predicted)): xp = predicted[i, 0] yp = predicted[i, 1] xo = imgp[i, 0] yo = imgp[i, 1] pix_serr.append((xp - xo) ** 2 + (yp - yo) ** 2) ssum = sum(pix_serr) return math.sqrt(ssum / len(pix_serr)) def readIntrinsics(self): name = 'inside' name = 'outside' self.camera_model = load_obj('{}_combined_camera_model'.format(name)) self.camera_model_rectify = load_obj('{}_combined_camera_model_rectify'.format(name)) self.K_right = self.camera_model['K_left'] self.K_left = self.camera_model['K_right'] self.D_right = self.camera_model['D_left'] self.D_left = self.camera_model['D_right'] print(' self.K_right') print( self.K_right) print(' self.K_left') print(self.K_left) self.R = self.camera_model['R'] self.T = self.camera_model['T'] self.K = self.K_right self.D = self.D_right print('self T before {}'.format(np.shape(self.T))) self.T = np.array([-0.96, 0., 0.12])[:, np.newaxis] print('self T after {}'.format(np.shape(self.T))) angles = np.array([np.deg2rad(0.68), np.deg2rad(22.66), np.deg2rad(-1.05)]) self.R = euler_matrix(angles) #----------------------------------------------------- self.T = np.array([-0.977, 0.004, 0.215])[:, np.newaxis] angles = np.array([np.deg2rad(1.044), np.deg2rad(22.632), np.deg2rad(-.95)]) self.R = euler_matrix(angles) #print(self.R) print('translation is {}-----------------------------'.format(self.T)) img_shape = (1936, 1216) print('img_shape:{}'.format(img_shape)) R1, R2, P1, P2, Q, roi_left, roi_right = cv2.stereoRectify(self.K_left, self.D_left, self.K_right, self.D_right, imageSize=img_shape, R=self.camera_model['R'], T=self.camera_model['T'], flags=cv2.CALIB_ZERO_DISPARITY, alpha=-1 #alpha=0 ) #print('R1:{}'.format(R1)) #print('R2:{}'.format(R2)) # print('euler1->{}'.format(euler)) angles = euler_from_matrix(self.R) print('self.R: ', [(180.0 / math.pi) * i for i in angles]) euler = euler_from_matrix(R1) #print('euler1->{}'.format(euler)) angles = euler_from_matrix(R1) #print('rotation1: ', [(180.0 / math.pi) * i for i in angles]) euler = euler_from_matrix(R2) #print('euler2->{}'.format(euler)) angles = euler_from_matrix(R2) #print('rotation2: ', [(180.0 / math.pi) * i for i in angles]) self.R1 = R1 self.R2 = R2 self.P1 = P1 self.leftMapX, self.leftMapY = cv2.initUndistortRectifyMap( self.K_left, self.D_left, R1, P1, img_shape, cv2.CV_32FC1) self.rightMapX, self.rightMapY = cv2.initUndistortRectifyMap( self.K_right, self.D_right, R2, P2, img_shape, cv2.CV_32FC1) print('Got camera intrinsic') print('Got camera-lidar extrinsics') def load_points(self): self.Lidar_3D, self.Image_2D,self.Image_2D2, self.Image_3D,self.Camera_XYZ = [],[],[],[],[] with open(self.file, 'rb') as f: self.dataPoinst = pickle.load(f, encoding='latin1') #with open(self.file,'rb') as f: #self.dataPoinst = pickle.load(f) self.N = len(self.dataPoinst) print('Got {} data views'.format(self.N)) #self.N = 1 for i in range(self.N): try: dictionary_data = self.dataPoinst[i] LiDAR_3D_points = dictionary_data['board_template_inside'] #N x 3 #pixelsPoints = dictionary_data['pixelsPoints'] #N x 2 #StereoCam_3D_points = dictionary_data['Camera_XYZ_Stereo'] #N x 3 pixelsPointsLeft = dictionary_data['pixelsPointsLeft'] pixelsPointsRight = dictionary_data['pixelsPointsRight'] StereoCam_3D_points = dictionary_data['_3DreconstructedBoard'] #N x 3 self.Lidar_3D.append(LiDAR_3D_points) self.Image_2D.append(pixelsPointsLeft) self.Image_2D2.append(pixelsPointsRight) self.Image_3D.append(StereoCam_3D_points) if self.chess: self.Camera_XYZ.append(dictionary_data['Camera_XYZ']) except: #print('Cannot read data') pass #self.Lidar_3D = np.array(self.Lidar_3D).reshape(-1,3) #self.Image_2D = np.array(self.Image_2D).reshape(-1,2) #self.Image_3D = np.array( self.Image_3D).reshape(-1,3) print('Lidar_3D:{}, Image_2D:{}, Image_2D2:{}, Image_3D:{}'.format(np.shape(self.Lidar_3D), np.shape(self.Image_2D),np.shape(self.Image_2D2), np.shape(self.Image_3D))) def plotData(self): self.fig = plt.figure(figsize=plt.figaspect(0.33)) self.fig.tight_layout() for i in range(self.N): print('{}/{}'.format(i+1,self.N)) ax1 = self.fig.add_subplot(1, 3, 1, projection='3d') #ax1.set_title('3D LiDAR') ax1.set_xlabel('X', fontsize=8) ax1.set_ylabel('Y', fontsize=8) ax1.set_zlabel('Z', fontsize=8) ax2 = self.fig.add_subplot(1, 3, 2, projection='3d') ax2.set_title('3D Stereo cameras') ax2.set_xlabel('X', fontsize=8) ax2.set_ylabel('Y', fontsize=8) ax2.set_zlabel('Z', fontsize=8) ax3 = self.fig.add_subplot(1, 3, 3, projection='3d') ax3.set_title('2D pixels') ax3.set_xlabel('X', fontsize=8) ax3.set_ylabel('Y', fontsize=8) ax3.set_zlabel('Z', fontsize=8) _3d_LIDAR = np.array(self.Lidar_3D[i]) ax1.scatter(*_3d_LIDAR.T) self.axisEqual3D(ax1, _3d_LIDAR) _3d_cam = np.array(self.Image_3D[i]) ax2.scatter(*_3d_cam.T, c='r') self.axisEqual3D(ax2,_3d_cam) _2d_cam = np.array(self.Image_2D[i]) ax3.scatter(*_2d_cam.T, c='g') self.axisEqual3D(ax3, _2d_cam) plt.show() def axisEqual3D(self,ax,data): extents = np.array([getattr(ax, 'get_{}lim'.format(dim))() for dim in 'xyz']) sz = extents[:, 1] - extents[:, 0] centers = np.mean(data, axis=0) maxsize = max(abs(sz)) r = maxsize / 2 for ctr, dim in zip(centers, 'xyz'): getattr(ax, 'set_{}lim'.format(dim))(ctr - r, ctr + r) def get3D_3D_homography(self, src, dst): #both or Nx3 matrices src_mean = np.mean(src, axis=0) dst_mean = np.mean(dst, axis=0) # Compute covariance """try: H = reduce(lambda s, (a, b): s + np.outer(a, b), zip(src - src_mean, dst - dst_mean), np.zeros((3, 3))) u, s, v = np.linalg.svd(H) R = v.T.dot(u.T) # Rotation T = - R.dot(src_mean) + dst_mean # Translation H = np.hstack((R, T[:, np.newaxis])) return H,R.T,T except: print('switch to python 2')""" def calibrate_3D_3D_old(self): print('3D-3D ========================================================================================') file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/GoodPoints_3D3D_{}.pkl'.format('chess') file = '/home/eugeniu/catkin_ws/src/testNode/CAMERA_CALIBRATION/data/GoodPoints_{}.pkl'.format('chess') self.Lidar_3D, self.Image_2D, self.Image_3D, self.Camera_XYZ = [], [], [], [] with open(file, 'rb') as f: self.dataPoinst = pickle.load(f) self.N = len(self.dataPoinst) print('Got {} data views'.format(self.N)) for i in range(self.N): try: dictionary_data = self.dataPoinst[i] LiDAR_3D_points = dictionary_data['board_template_inside'] # N x 3 pixelsPoints = dictionary_data['pixelsPoints'] # N x 2 StereoCam_3D_points = dictionary_data['Camera_XYZ_Stereo'] # N x 3 #StereoCam_3D_points = dictionary_data['point3D_trianguate'] self.Lidar_3D.append(LiDAR_3D_points) self.Image_2D.append(pixelsPoints) self.Image_3D.append(StereoCam_3D_points) if self.chess: self.Camera_XYZ.append(dictionary_data['Camera_XYZ']) except: print('Cannot read data===================================================') break print('Lidar_3D:{}, Image_2D:{}, Image_3D:{}'.format(np.shape(self.Lidar_3D), np.shape(self.Image_2D), np.shape(self.Image_3D))) Lidar_3D = np.array(self.Lidar_3D).reshape(-1, 3) Image_3D = np.array( self.Image_3D).reshape(-1,3) print('Lidar_3D:{}, Image_3D:{}'.format(np.shape(Lidar_3D),np.shape(Image_3D))) #-------------------------------------#------------------------------------- c_, R_, t_ = self.estimate(Lidar_3D,Image_3D) #import superpose3d as super #(RMSD, R_, t_, c_) = super.Superpose3D(Lidar_3D, Image_3D) #print('RMSD -> {}, t_{}, c_->{}'.format(RMSD, t_, c_)) # -------------------------------------#------------------------------------- def similarity_transform(from_points, to_points): assert len(from_points.shape) == 2, \ "from_points must be a m x n array" assert from_points.shape == to_points.shape, \ "from_points and to_points must have the same shape" N, m = from_points.shape mean_from = from_points.mean(axis=0) mean_to = to_points.mean(axis=0) delta_from = from_points - mean_from # N x m delta_to = to_points - mean_to # N x m sigma_from = (delta_from * delta_from).sum(axis=1).mean() sigma_to = (delta_to * delta_to).sum(axis=1).mean() cov_matrix = delta_to.T.dot(delta_from) / N U, d, V_t = np.linalg.svd(cov_matrix, full_matrices=True) cov_rank = np.linalg.matrix_rank(cov_matrix) S = np.eye(m) if cov_rank >= m - 1 and np.linalg.det(cov_matrix) < 0: S[m - 1, m - 1] = -1 elif cov_rank < m - 1: raise ValueError("colinearility detected in covariance matrix:\n{}".format(cov_matrix)) R = U.dot(S).dot(V_t) c = (d * S.diagonal()).sum() / sigma_from t = mean_to - c * R.dot(mean_from) print('R:{},t:{},c:{}'.format(R,t,c)) return c * R, t print('similarity_transform===============================') from_points = Lidar_3D to_points = Image_3D M_ans, t_ans = similarity_transform(from_points, to_points) H, R, T = self.get3D_3D_homography(src = Lidar_3D, dst=Image_3D) print('H:{}, R:{}, T:{}'.format(np.shape(H), np.shape(R), np.shape(T))) print(H) self.fig = plt.figure(figsize=plt.figaspect(1.)) ax1 = self.fig.add_subplot(1, 1, 1, projection='3d') #ax1.set_title('3D LiDAR') ax1.set_xlabel('X', fontsize=8) ax1.set_ylabel('Y', fontsize=8) ax1.set_zlabel('Z', fontsize=8) ax1.set_axis_off() _3d_LIDAR = self.Lidar_3D[0] ax1.scatter(*_3d_LIDAR.T, label = 'LiDAR') _3d_Image = self.Image_3D[0] ax1.scatter(*_3d_Image.T, s=25, label = 'Stereo Cam') T = _3d_LIDAR.dot(c_ * R_) + t_ print('T -> {}'.format(np.shape(T))) ax1.scatter(*T.T, marker='x', label='T') d2 = distance_matrix(_3d_Image,_3d_Image) print('d2:{}'.format(d2)) print('d2 shape :{}'.format(np.shape(d2))) ones = np.ones(len(_3d_LIDAR))[:, np.newaxis] transformed_ = np.hstack((_3d_LIDAR,ones)) transformed = np.dot(H, transformed_.T).T #transformation estimated with SVD print(np.shape(transformed)) ax1.scatter(*transformed.T, s=25, label = 'ICP sol') #ax1.set_axis_off() primary = Lidar_3D# _3d_LIDAR secondary = Image_3D# _3d_Image pad = lambda x: np.hstack([x, np.ones((x.shape[0], 1))]) unpad = lambda x: x[:, :-1] X = pad(primary) Y = pad(secondary) # Solve the least squares problem X * A = Y # to find our transformation matrix A A, res, rank, s = np.linalg.lstsq(X, Y) transform = lambda x: unpad(np.dot(pad(x), A)) #print transform(primary) print("Max error:", np.abs(secondary - transform(primary)).max()) trns2 = transform(_3d_LIDAR) #transformation estimated with LS ax1.scatter(*trns2.T, label = 'least square sol') to_points = M_ans.dot(_3d_LIDAR.T).T + t_ans print('to_points ->{}'.format(
np.shape(to_points)
numpy.shape
"""Filter design. """ from __future__ import division, print_function, absolute_import import warnings import numpy from numpy import (atleast_1d, poly, polyval, roots, real, asarray, allclose, resize, pi, absolute, logspace, r_, sqrt, tan, log10, arctan, arcsinh, sin, exp, cosh, arccosh, ceil, conjugate, zeros, sinh, append, concatenate, prod, ones, array) from numpy import mintypecode import numpy as np from scipy import special, optimize from scipy.special import comb from scipy.misc import factorial from numpy.polynomial.polynomial import polyval as npp_polyval import math __all__ = ['findfreqs', 'freqs', 'freqz', 'tf2zpk', 'zpk2tf', 'normalize', 'lp2lp', 'lp2hp', 'lp2bp', 'lp2bs', 'bilinear', 'iirdesign', 'iirfilter', 'butter', 'cheby1', 'cheby2', 'ellip', 'bessel', 'band_stop_obj', 'buttord', 'cheb1ord', 'cheb2ord', 'ellipord', 'buttap', 'cheb1ap', 'cheb2ap', 'ellipap', 'besselap', 'BadCoefficients', 'tf2sos', 'sos2tf', 'zpk2sos', 'sos2zpk', 'group_delay'] class BadCoefficients(UserWarning): """Warning about badly conditioned filter coefficients""" pass abs = absolute def findfreqs(num, den, N): """ Find array of frequencies for computing the response of an analog filter. Parameters ---------- num, den : array_like, 1-D The polynomial coefficients of the numerator and denominator of the transfer function of the filter or LTI system. The coefficients are ordered from highest to lowest degree. N : int The length of the array to be computed. Returns ------- w : (N,) ndarray A 1-D array of frequencies, logarithmically spaced. Examples -------- Find a set of nine frequencies that span the "interesting part" of the frequency response for the filter with the transfer function H(s) = s / (s^2 + 8s + 25) >>> from scipy import signal >>> signal.findfreqs([1, 0], [1, 8, 25], N=9) array([ 1.00000000e-02, 3.16227766e-02, 1.00000000e-01, 3.16227766e-01, 1.00000000e+00, 3.16227766e+00, 1.00000000e+01, 3.16227766e+01, 1.00000000e+02]) """ ep = atleast_1d(roots(den)) + 0j tz = atleast_1d(roots(num)) + 0j if len(ep) == 0: ep = atleast_1d(-1000) + 0j ez = r_['-1', numpy.compress(ep.imag >= 0, ep, axis=-1), numpy.compress((abs(tz) < 1e5) & (tz.imag >= 0), tz, axis=-1)] integ = abs(ez) < 1e-10 hfreq = numpy.around(numpy.log10(numpy.max(3 * abs(ez.real + integ) + 1.5 * ez.imag)) + 0.5) lfreq = numpy.around(numpy.log10(0.1 * numpy.min(abs(real(ez + integ)) + 2 * ez.imag)) - 0.5) w = logspace(lfreq, hfreq, N) return w def freqs(b, a, worN=None, plot=None): """ Compute frequency response of analog filter. Given the M-order numerator `b` and N-order denominator `a` of an analog filter, compute its frequency response:: b[0]*(jw)**M + b[1]*(jw)**(M-1) + ... + b[M] H(w) = ---------------------------------------------- a[0]*(jw)**N + a[1]*(jw)**(N-1) + ... + a[N] Parameters ---------- b : array_like Numerator of a linear filter. a : array_like Denominator of a linear filter. worN : {None, int, array_like}, optional If None, then compute at 200 frequencies around the interesting parts of the response curve (determined by pole-zero locations). If a single integer, then compute at that many frequencies. Otherwise, compute the response at the angular frequencies (e.g. rad/s) given in `worN`. plot : callable, optional A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqs`. Returns ------- w : ndarray The angular frequencies at which `h` was computed. h : ndarray The frequency response. See Also -------- freqz : Compute the frequency response of a digital filter. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. Examples -------- >>> from scipy.signal import freqs, iirfilter >>> b, a = iirfilter(4, [1, 10], 1, 60, analog=True, ftype='cheby1') >>> w, h = freqs(b, a, worN=np.logspace(-1, 2, 1000)) >>> import matplotlib.pyplot as plt >>> plt.semilogx(w, 20 * np.log10(abs(h))) >>> plt.xlabel('Frequency') >>> plt.ylabel('Amplitude response [dB]') >>> plt.grid() >>> plt.show() """ if worN is None: w = findfreqs(b, a, 200) elif isinstance(worN, int): N = worN w = findfreqs(b, a, N) else: w = worN w = atleast_1d(w) s = 1j * w h = polyval(b, s) / polyval(a, s) if plot is not None: plot(w, h) return w, h def freqz(b, a=1, worN=None, whole=False, plot=None): """ Compute the frequency response of a digital filter. Given the M-order numerator `b` and N-order denominator `a` of a digital filter, compute its frequency response:: jw -jw -jwM jw B(e ) b[0] + b[1]e + .... + b[M]e H(e ) = ---- = ----------------------------------- jw -jw -jwN A(e ) a[0] + a[1]e + .... + a[N]e Parameters ---------- b : array_like numerator of a linear filter a : array_like denominator of a linear filter worN : {None, int, array_like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If an array_like, compute the response at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to 2*pi radians/sample. plot : callable A callable that takes two arguments. If given, the return parameters `w` and `h` are passed to plot. Useful for plotting the frequency response inside `freqz`. Returns ------- w : ndarray The normalized frequencies at which `h` was computed, in radians/sample. h : ndarray The frequency response. Notes ----- Using Matplotlib's "plot" function as the callable for `plot` produces unexpected results, this plots the real part of the complex transfer function, not the magnitude. Try ``lambda w, h: plot(w, abs(h))``. Examples -------- >>> from scipy import signal >>> b = signal.firwin(80, 0.5, window=('kaiser', 8)) >>> w, h = signal.freqz(b) >>> import matplotlib.pyplot as plt >>> fig = plt.figure() >>> plt.title('Digital filter frequency response') >>> ax1 = fig.add_subplot(111) >>> plt.plot(w, 20 * np.log10(abs(h)), 'b') >>> plt.ylabel('Amplitude [dB]', color='b') >>> plt.xlabel('Frequency [rad/sample]') >>> ax2 = ax1.twinx() >>> angles = np.unwrap(np.angle(h)) >>> plt.plot(w, angles, 'g') >>> plt.ylabel('Angle (radians)', color='g') >>> plt.grid() >>> plt.axis('tight') >>> plt.show() """ b, a = map(atleast_1d, (b, a)) if whole: lastpoint = 2 * pi else: lastpoint = pi if worN is None: N = 512 w = numpy.linspace(0, lastpoint, N, endpoint=False) elif isinstance(worN, int): N = worN w = numpy.linspace(0, lastpoint, N, endpoint=False) else: w = worN w = atleast_1d(w) zm1 = exp(-1j * w) h = polyval(b[::-1], zm1) / polyval(a[::-1], zm1) if plot is not None: plot(w, h) return w, h def group_delay(system, w=None, whole=False): r"""Compute the group delay of a digital filter. The group delay measures by how many samples amplitude envelopes of various spectral components of a signal are delayed by a filter. It is formally defined as the derivative of continuous (unwrapped) phase:: d jw D(w) = - -- arg H(e) dw Parameters ---------- system : tuple of array_like (b, a) Numerator and denominator coefficients of a filter transfer function. w : {None, int, array-like}, optional If None (default), then compute at 512 frequencies equally spaced around the unit circle. If a single integer, then compute at that many frequencies. If array, compute the delay at the frequencies given (in radians/sample). whole : bool, optional Normally, frequencies are computed from 0 to the Nyquist frequency, pi radians/sample (upper-half of unit-circle). If `whole` is True, compute frequencies from 0 to ``2*pi`` radians/sample. Returns ------- w : ndarray The normalized frequencies at which the group delay was computed, in radians/sample. gd : ndarray The group delay. Notes ----- The similar function in MATLAB is called `grpdelay`. If the transfer function :math:`H(z)` has zeros or poles on the unit circle, the group delay at corresponding frequencies is undefined. When such a case arises the warning is raised and the group delay is set to 0 at those frequencies. For the details of numerical computation of the group delay refer to [1]_. .. versionadded: 0.16.0 See Also -------- freqz : Frequency response of a digital filter References ---------- .. [1] <NAME>, "Understanding Digital Signal Processing, 3rd edition", p. 830. Examples -------- >>> from scipy import signal >>> b, a = signal.iirdesign(0.1, 0.3, 5, 50, ftype='cheby1') >>> w, gd = signal.group_delay((b, a)) >>> import matplotlib.pyplot as plt >>> plt.title('Digital filter group delay') >>> plt.plot(w, gd) >>> plt.ylabel('Group delay [samples]') >>> plt.xlabel('Frequency [rad/sample]') >>> plt.show() """ if w is None: w = 512 if isinstance(w, int): if whole: w = np.linspace(0, 2 * pi, w, endpoint=False) else: w = np.linspace(0, pi, w, endpoint=False) w = np.atleast_1d(w) b, a = map(np.atleast_1d, system) c = np.convolve(b, a[::-1]) cr = c * np.arange(c.size) z = np.exp(-1j * w) num = np.polyval(cr[::-1], z) den = np.polyval(c[::-1], z) singular = np.absolute(den) < 10 * EPSILON if np.any(singular): warnings.warn( "The group delay is singular at frequencies [{0}], setting to 0". format(", ".join("{0:.3f}".format(ws) for ws in w[singular])) ) gd = np.zeros_like(w) gd[~singular] = np.real(num[~singular] / den[~singular]) - a.size + 1 return w, gd def _cplxreal(z, tol=None): """ Split into complex and real parts, combining conjugate pairs. The 1D input vector `z` is split up into its complex (`zc`) and real (`zr`) elements. Every complex element must be part of a complex-conjugate pair, which are combined into a single number (with positive imaginary part) in the output. Two complex numbers are considered a conjugate pair if their real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. Parameters ---------- z : array_like Vector of complex numbers to be sorted and split tol : float, optional Relative tolerance for testing realness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- zc : ndarray Complex elements of `z`, with each pair represented by a single value having positive imaginary part, sorted first by real part, and then by magnitude of imaginary part. The pairs are averaged when combined to reduce error. zr : ndarray Real elements of `z` (those having imaginary part less than `tol` times their magnitude), sorted by value. Raises ------ ValueError If there are any complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxpair Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> zc, zr = _cplxreal(a) >>> print zc [ 1.+1.j 2.+1.j 2.+1.j 2.+2.j] >>> print zr [ 1. 3. 4.] """ z = atleast_1d(z) if z.size == 0: return z, z elif z.ndim != 1: raise ValueError('_cplxreal only accepts 1D input') if tol is None: # Get tolerance from dtype of input tol = 100 * np.finfo((1.0 * z).dtype).eps # Sort by real part, magnitude of imaginary part (speed up further sorting) z = z[np.lexsort((abs(z.imag), z.real))] # Split reals from conjugate pairs real_indices = abs(z.imag) <= tol * abs(z) zr = z[real_indices].real if len(zr) == len(z): # Input is entirely real return array([]), zr # Split positive and negative halves of conjugates z = z[~real_indices] zp = z[z.imag > 0] zn = z[z.imag < 0] if len(zp) != len(zn): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Find runs of (approximately) the same real part same_real = np.diff(zp.real) <= tol * abs(zp[:-1]) diffs = numpy.diff(concatenate(([0], same_real, [0]))) run_starts = numpy.where(diffs > 0)[0] run_stops = numpy.where(diffs < 0)[0] # Sort each run by their imaginary parts for i in range(len(run_starts)): start = run_starts[i] stop = run_stops[i] + 1 for chunk in (zp[start:stop], zn[start:stop]): chunk[...] = chunk[np.lexsort([abs(chunk.imag)])] # Check that negatives match positives if any(abs(zp - zn.conj()) > tol * abs(zn)): raise ValueError('Array contains complex value with no matching ' 'conjugate.') # Average out numerical inaccuracy in real vs imag parts of pairs zc = (zp + zn.conj()) / 2 return zc, zr def _cplxpair(z, tol=None): """ Sort into pairs of complex conjugates. Complex conjugates in `z` are sorted by increasing real part. In each pair, the number with negative imaginary part appears first. If pairs have identical real parts, they are sorted by increasing imaginary magnitude. Two complex numbers are considered a conjugate pair if their real and imaginary parts differ in magnitude by less than ``tol * abs(z)``. The pairs are forced to be exact complex conjugates by averaging the positive and negative values. Purely real numbers are also sorted, but placed after the complex conjugate pairs. A number is considered real if its imaginary part is smaller than `tol` times the magnitude of the number. Parameters ---------- z : array_like 1-dimensional input array to be sorted. tol : float, optional Relative tolerance for testing realness and conjugate equality. Default is ``100 * spacing(1)`` of `z`'s data type (i.e. 2e-14 for float64) Returns ------- y : ndarray Complex conjugate pairs followed by real numbers. Raises ------ ValueError If there are any complex numbers in `z` for which a conjugate cannot be found. See Also -------- _cplxreal Examples -------- >>> a = [4, 3, 1, 2-2j, 2+2j, 2-1j, 2+1j, 2-1j, 2+1j, 1+1j, 1-1j] >>> z = _cplxpair(a) >>> print(z) [ 1.-1.j 1.+1.j 2.-1.j 2.+1.j 2.-1.j 2.+1.j 2.-2.j 2.+2.j 1.+0.j 3.+0.j 4.+0.j] """ z = atleast_1d(z) if z.size == 0 or np.isrealobj(z): return np.sort(z) if z.ndim != 1: raise ValueError('z must be 1-dimensional') zc, zr = _cplxreal(z, tol) # Interleave complex values and their conjugates, with negative imaginary # parts first in each pair zc = np.dstack((zc.conj(), zc)).flatten() z = np.append(zc, zr) return z def tf2zpk(b, a): r"""Return zero, pole, gain (z, p, k) representation from a numerator, denominator representation of a linear filter. Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Notes ----- If some values of `b` are too close to 0, they are removed. In that case, a BadCoefficients warning is emitted. The `b` and `a` arrays are interpreted as coefficients for positive, descending powers of the transfer function variable. So the inputs :math:`b = [b_0, b_1, ..., b_M]` and :math:`a =[a_0, a_1, ..., a_N]` can represent an analog filter of the form: .. math:: H(s) = \frac {b_0 s^M + b_1 s^{(M-1)} + \cdots + b_M} {a_0 s^N + a_1 s^{(N-1)} + \cdots + a_N} or a discrete-time filter of the form: .. math:: H(z) = \frac {b_0 z^M + b_1 z^{(M-1)} + \cdots + b_M} {a_0 z^N + a_1 z^{(N-1)} + \cdots + a_N} This "positive powers" form is found more commonly in controls engineering. If `M` and `N` are equal (which is true for all filters generated by the bilinear transform), then this happens to be equivalent to the "negative powers" discrete-time form preferred in DSP: .. math:: H(z) = \frac {b_0 + b_1 z^{-1} + \cdots + b_M z^{-M}} {a_0 + a_1 z^{-1} + \cdots + a_N z^{-N}} Although this is true for common filters, remember that this is not true in the general case. If `M` and `N` are not equal, the discrete-time transfer function coefficients must first be converted to the "positive powers" form before finding the poles and zeros. """ b, a = normalize(b, a) b = (b + 0.0) / a[0] a = (a + 0.0) / a[0] k = b[0] b /= b[0] z = roots(b) p = roots(a) return z, p, k def zpk2tf(z, p, k): """ Return polynomial transfer function representation from zeros and poles Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. """ z = atleast_1d(z) k = atleast_1d(k) if len(z.shape) > 1: temp = poly(z[0]) b = zeros((z.shape[0], z.shape[1] + 1), temp.dtype.char) if len(k) == 1: k = [k[0]] * z.shape[0] for i in range(z.shape[0]): b[i] = k[i] * poly(z[i]) else: b = k * poly(z) a = atleast_1d(poly(p)) # Use real output if possible. Copied from numpy.poly, since # we can't depend on a specific version of numpy. if issubclass(b.dtype.type, numpy.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = numpy.asarray(z, complex) pos_roots = numpy.compress(roots.imag > 0, roots) neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) if len(pos_roots) == len(neg_roots): if numpy.all(numpy.sort_complex(neg_roots) == numpy.sort_complex(pos_roots)): b = b.real.copy() if issubclass(a.dtype.type, numpy.complexfloating): # if complex roots are all complex conjugates, the roots are real. roots = numpy.asarray(p, complex) pos_roots = numpy.compress(roots.imag > 0, roots) neg_roots = numpy.conjugate(numpy.compress(roots.imag < 0, roots)) if len(pos_roots) == len(neg_roots): if numpy.all(numpy.sort_complex(neg_roots) == numpy.sort_complex(pos_roots)): a = a.real.copy() return b, a def tf2sos(b, a, pairing='nearest'): """ Return second-order sections from transfer function representation Parameters ---------- b : array_like Numerator polynomial coefficients. a : array_like Denominator polynomial coefficients. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See `zpk2sos`. Returns ------- sos : ndarray Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- zpk2sos, sosfilt Notes ----- It is generally discouraged to convert from TF to SOS format, since doing so usually will not improve numerical precision errors. Instead, consider designing filters in ZPK format and converting directly to SOS. TF is converted to SOS by first converting to ZPK format, then converting ZPK to SOS. .. versionadded:: 0.16.0 """ return zpk2sos(*tf2zpk(b, a), pairing=pairing) def sos2tf(sos): """ Return a single transfer function from a series of second-order sections Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- b : ndarray Numerator polynomial coefficients. a : ndarray Denominator polynomial coefficients. Notes ----- .. versionadded:: 0.16.0 """ sos = np.asarray(sos) b = [1.] a = [1.] n_sections = sos.shape[0] for section in range(n_sections): b = np.polymul(b, sos[section, :3]) a = np.polymul(a, sos[section, 3:]) return b, a def sos2zpk(sos): """ Return zeros, poles, and gain of a series of second-order sections Parameters ---------- sos : array_like Array of second-order filter coefficients, must have shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. Returns ------- z : ndarray Zeros of the transfer function. p : ndarray Poles of the transfer function. k : float System gain. Notes ----- .. versionadded:: 0.16.0 """ sos = np.asarray(sos) n_sections = sos.shape[0] z = np.empty(n_sections*2, np.complex128) p = np.empty(n_sections*2, np.complex128) k = 1. for section in range(n_sections): zpk = tf2zpk(sos[section, :3], sos[section, 3:]) z[2*section:2*(section+1)] = zpk[0] p[2*section:2*(section+1)] = zpk[1] k *= zpk[2] return z, p, k def _nearest_real_complex_idx(fro, to, which): """Get the next closest real or complex element based on distance""" assert which in ('real', 'complex') order = np.argsort(np.abs(fro - to)) mask = np.isreal(fro[order]) if which == 'complex': mask = ~mask return order[np.where(mask)[0][0]] def zpk2sos(z, p, k, pairing='nearest'): """ Return second-order sections from zeros, poles, and gain of a system Parameters ---------- z : array_like Zeros of the transfer function. p : array_like Poles of the transfer function. k : float System gain. pairing : {'nearest', 'keep_odd'}, optional The method to use to combine pairs of poles and zeros into sections. See Notes below. Returns ------- sos : ndarray Array of second-order filter coefficients, with shape ``(n_sections, 6)``. See `sosfilt` for the SOS filter format specification. See Also -------- sosfilt Notes ----- The algorithm used to convert ZPK to SOS format is designed to minimize errors due to numerical precision issues. The pairing algorithm attempts to minimize the peak gain of each biquadratic section. This is done by pairing poles with the nearest zeros, starting with the poles closest to the unit circle. *Algorithms* The current algorithms are designed specifically for use with digital filters. (The output coefficents are not correct for analog filters.) The steps in the ``pairing='nearest'`` and ``pairing='keep_odd'`` algorithms are mostly shared. The ``nearest`` algorithm attempts to minimize the peak gain, while ``'keep_odd'`` minimizes peak gain under the constraint that odd-order systems should retain one section as first order. The algorithm steps and are as follows: As a pre-processing step, add poles or zeros to the origin as necessary to obtain the same number of poles and zeros for pairing. If ``pairing == 'nearest'`` and there are an odd number of poles, add an additional pole and a zero at the origin. The following steps are then iterated over until no more poles or zeros remain: 1. Take the (next remaining) pole (complex or real) closest to the unit circle to begin a new filter section. 2. If the pole is real and there are no other remaining real poles [#]_, add the closest real zero to the section and leave it as a first order section. Note that after this step we are guaranteed to be left with an even number of real poles, complex poles, real zeros, and complex zeros for subsequent pairing iterations. 3. Else: 1. If the pole is complex and the zero is the only remaining real zero*, then pair the pole with the *next* closest zero (guaranteed to be complex). This is necessary to ensure that there will be a real zero remaining to eventually create a first-order section (thus keeping the odd order). 2. Else pair the pole with the closest remaining zero (complex or real). 3. Proceed to complete the second-order section by adding another pole and zero to the current pole and zero in the section: 1. If the current pole and zero are both complex, add their conjugates. 2. Else if the pole is complex and the zero is real, add the conjugate pole and the next closest real zero. 3. Else if the pole is real and the zero is complex, add the conjugate zero and the real pole closest to those zeros. 4. Else (we must have a real pole and real zero) add the next real pole closest to the unit circle, and then add the real zero closest to that pole. .. [#] This conditional can only be met for specific odd-order inputs with the ``pairing == 'keep_odd'`` method. .. versionadded:: 0.16.0 Examples -------- Design a 6th order low-pass elliptic digital filter for a system with a sampling rate of 8000 Hz that has a pass-band corner frequency of 1000 Hz. The ripple in the pass-band should not exceed 0.087 dB, and the attenuation in the stop-band should be at least 90 dB. In the following call to `signal.ellip`, we could use ``output='sos'``, but for this example, we'll use ``output='zpk'``, and then convert to SOS format with `zpk2sos`: >>> from scipy import signal >>> z, p, k = signal.ellip(6, 0.087, 90, 1000/(0.5*8000), output='zpk') Now convert to SOS format. >>> sos = signal.zpk2sos(z, p, k) The coefficients of the numerators of the sections: >>> sos[:, :3] array([[ 0.0014154 , 0.00248707, 0.0014154 ], [ 1. , 0.72965193, 1. ], [ 1. , 0.17594966, 1. ]]) The symmetry in the coefficients occurs because all the zeros are on the unit circle. The coefficients of the denominators of the sections: >>> sos[:, 3:] array([[ 1. , -1.32543251, 0.46989499], [ 1. , -1.26117915, 0.6262586 ], [ 1. , -1.25707217, 0.86199667]]) The next example shows the effect of the `pairing` option. We have a system with three poles and three zeros, so the SOS array will have shape (2, 6). The means there is, in effect, an extra pole and an extra zero at the origin in the SOS representation. >>> z1 = np.array([-1, -0.5-0.5j, -0.5+0.5j]) >>> p1 = np.array([0.75, 0.8+0.1j, 0.8-0.1j]) With ``pairing='nearest'`` (the default), we obtain >>> signal.zpk2sos(z1, p1, 1) array([[ 1. , 1. , 0.5 , 1. , -0.75, 0. ], [ 1. , 1. , 0. , 1. , -1.6 , 0.65]]) The first section has the zeros {-0.5-0.05j, -0.5+0.5j} and the poles {0, 0.75}, and the second section has the zeros {-1, 0} and poles {0.8+0.1j, 0.8-0.1j}. Note that the extra pole and zero at the origin have been assigned to different sections. With ``pairing='keep_odd'``, we obtain: >>> signal.zpk2sos(z1, p1, 1, pairing='keep_odd') array([[ 1. , 1. , 0. , 1. , -0.75, 0. ], [ 1. , 1. , 0.5 , 1. , -1.6 , 0.65]]) The extra pole and zero at the origin are in the same section. The first section is, in effect, a first-order section. """ # TODO in the near future: # 1. Add SOS capability to `filtfilt`, `freqz`, etc. somehow (#3259). # 2. Make `decimate` use `sosfilt` instead of `lfilter`. # 3. Make sosfilt automatically simplify sections to first order # when possible. Note this might make `sosfiltfilt` a bit harder (ICs). # 4. Further optimizations of the section ordering / pole-zero pairing. # See the wiki for other potential issues. valid_pairings = ['nearest', 'keep_odd'] if pairing not in valid_pairings: raise ValueError('pairing must be one of %s, not %s' % (valid_pairings, pairing)) if len(z) == len(p) == 0: return array([[k, 0., 0., 1., 0., 0.]]) # ensure we have the same number of poles and zeros, and make copies p = np.concatenate((p, np.zeros(max(len(z) - len(p), 0)))) z = np.concatenate((z, np.zeros(max(len(p) - len(z), 0)))) n_sections = (max(len(p), len(z)) + 1) // 2 sos = zeros((n_sections, 6)) if len(p) % 2 == 1 and pairing == 'nearest': p = np.concatenate((p, [0.])) z = np.concatenate((z, [0.])) assert len(p) == len(z) # Ensure we have complex conjugate pairs # (note that _cplxreal only gives us one element of each complex pair): z = np.concatenate(_cplxreal(z)) p = np.concatenate(_cplxreal(p)) p_sos = np.zeros((n_sections, 2), np.complex128) z_sos = np.zeros_like(p_sos) for si in range(n_sections): # Select the next "worst" pole p1_idx = np.argmin(np.abs(1 - np.abs(p))) p1 = p[p1_idx] p = np.delete(p, p1_idx) # Pair that pole with a zero if np.isreal(p1) and np.isreal(p).sum() == 0: # Special case to set a first-order section z1_idx = _nearest_real_complex_idx(z, p1, 'real') z1 = z[z1_idx] z = np.delete(z, z1_idx) p2 = z2 = 0 else: if not np.isreal(p1) and np.isreal(z).sum() == 1: # Special case to ensure we choose a complex zero to pair # with so later (setting up a first-order section) z1_idx = _nearest_real_complex_idx(z, p1, 'complex') assert not np.isreal(z[z1_idx]) else: # Pair the pole with the closest zero (real or complex) z1_idx = np.argmin(np.abs(p1 - z)) z1 = z[z1_idx] z = np.delete(z, z1_idx) # Now that we have p1 and z1, figure out what p2 and z2 need to be if not np.isreal(p1): if not np.isreal(z1): # complex pole, complex zero p2 = p1.conj() z2 = z1.conj() else: # complex pole, real zero p2 = p1.conj() z2_idx = _nearest_real_complex_idx(z, p1, 'real') z2 = z[z2_idx] assert np.isreal(z2) z = np.delete(z, z2_idx) else: if not np.isreal(z1): # real pole, complex zero z2 = z1.conj() p2_idx = _nearest_real_complex_idx(p, z1, 'real') p2 = p[p2_idx] assert np.isreal(p2) else: # real pole, real zero # pick the next "worst" pole to use idx = np.where(np.isreal(p))[0] assert len(idx) > 0 p2_idx = idx[np.argmin(np.abs(np.abs(p[idx]) - 1))] p2 = p[p2_idx] # find a real zero to match the added pole assert np.isreal(p2) z2_idx = _nearest_real_complex_idx(z, p2, 'real') z2 = z[z2_idx] assert np.isreal(z2) z =
np.delete(z, z2_idx)
numpy.delete
import warnings import numpy as np from numba import njit from joblib import Memory from .utils import loss, compute_covariances location = './cachedir' memory = Memory(location, verbose=0) EPS = 1e-12 def one_update(C_hat, C, a): ''' exact update for the noise/powers ''' Rna = np.linalg.solve(C, a) diff = C_hat - C return np.dot(np.dot(diff, Rna), Rna) / (np.dot(a, Rna)) ** 2 def invert(weighted_cys, sigmas, c_ss, n_jobs=1): ''' Used to compute A in the m step ''' M = np.einsum('it, ijk->tkj', sigmas, c_ss) inv = np.linalg.solve(M, weighted_cys) return inv @njit def compute_w_cys(sigmas, cov_signal_source): n, p, q = cov_signal_source.shape w_s = np.zeros((q, p)) for j in range(n): w_s += cov_signal_source[j].T / sigmas[j, :] return w_s.T @njit def compute_sigmas(A, cov_signal_source, cov_signal_signal, cov_source_source_s): n_epochs, p, q = cov_signal_source.shape sigmas_square = np.zeros((n_epochs, p)) AR_d = np.zeros(p) AcA_d = np.zeros(p) # update sigma for j in range(n_epochs): c_si_so = cov_signal_source[j] Acss = A.dot(cov_source_source_s[j].T) for i in range(p): AR_d[i] = np.dot(A[i], c_si_so[i]) AcA_d[i] = np.dot(A[i], Acss[i]) sigmas_square[j] = np.diag(cov_signal_signal[j]) - 2 * AR_d sigmas_square[j] += AcA_d return sigmas_square def m_step(cov_source_source_s, cov_signal_source, cov_signal_signal, corr, avg_noise, A=None): if avg_noise: cov_source_source = np.mean(cov_source_source_s, axis=0) cov_source_source_inv = np.linalg.inv(cov_source_source) A = cov_signal_source.dot(cov_source_source_inv) sigmas_square = np.diag(cov_signal_signal - A.dot(cov_signal_source.T)) else: sigmas_square = compute_sigmas(A, cov_signal_source, cov_signal_signal, cov_source_source_s) # update A weighted_cys = compute_w_cys(sigmas_square, cov_signal_source) A = invert(weighted_cys, 1. / (sigmas_square + EPS), cov_source_source_s) if corr: source_powers = cov_source_source_s else: source_powers = np.diagonal(cov_source_source_s, axis1=1, axis2=2) return A, sigmas_square, source_powers @njit def pairwise_dots1(A, B, op): n, a, _ = A.shape _, b, _ = B.shape for i in range(n): op[i] = np.dot(A[i], B[i].T) return op @njit def pairwise_dots2(A, B, op): n, a, _ = A.shape _, _, b = B.shape for i in range(n): op[i] = np.dot(A[i], B[i]) return op @njit def one_dots(A, B, op): n, a, _ = A.shape _, b = B.shape for i in range(n): op[i] = np.dot(A[i], B) return op @njit def compute_matrices_uncorr(A, sigmas, source_powers): p, q = A.shape n, _ = sigmas.shape op = np.zeros((n, q, q)) for i in range(n): op[i] = np.dot(A.T / sigmas[i, :], A) for j in range(q): op[i, j, j] += 1 / source_powers[i, j] return op @njit def compute_matrices_corr(A, sigmas, source_powers): p, q = A.shape n, _ = sigmas.shape op = np.zeros((n, q, q)) for i in range(n): op[i] = np.dot(A.T / sigmas[i, :], A) op[i] += np.linalg.pinv(source_powers[i]) return op def compute_matrices(A, sigmas, source_powers, corr): if corr: return compute_matrices_corr(A, sigmas, source_powers) else: return compute_matrices_uncorr(A, sigmas, source_powers) # @profile def e_step(covs, covs_inv, A, sigmas_square, source_powers, corr, avg_noise): n_epochs, p, _ = covs.shape p, q = A.shape cov_source_source_s = np.zeros((n_epochs, q, q)) cov_signal_source = np.zeros((n_epochs, p, q)) wiener = np.zeros((n_epochs, q, p)) if avg_noise: cov_signal_signal = np.mean(covs, axis=0) else: cov_signal_signal = covs if avg_noise: At_sig_A = np.zeros((n_epochs, q, q)) At_sig_A_ = A.T.dot(A / (sigmas_square[:, None] + EPS)) proj = A.T / (sigmas_square[None, :] + EPS) if not avg_noise: At_sig_A = compute_matrices(A, sigmas_square, source_powers, corr) proj = A.T / sigmas_square[:, None, :] else: for epoch, source_power in enumerate(source_powers): if avg_noise: if corr: At_sig_A[epoch] = At_sig_A_ + np.linalg.pinv(source_power) else: At_sig_A[epoch] = At_sig_A_ + np.diag(1. / source_power) expected_cov = np.linalg.inv(At_sig_A) if avg_noise: wiener = one_dots(expected_cov, proj, wiener) else: pairwise_dots2(expected_cov, proj, wiener) pairwise_dots1(covs, wiener, cov_signal_source) pairwise_dots2(wiener, cov_signal_source, cov_source_source_s) cov_source_source_s += expected_cov if avg_noise: cov_signal_source = np.mean(cov_signal_source, axis=0) return cov_source_source_s, cov_signal_source, cov_signal_signal # @profile @memory.cache(ignore=['verbose']) def em_algo(covs, A, sigmas_square, source_powers, corr, avg_noise, max_iter=10000, verbose=False, tol=1e-7, n_it_min=10, cd_every=0, n_jobs=1): ''' EM algorithm to fit the SMICA model on the covariances matrices covs ''' n_sensors, n_sources = A.shape n_mat, _, _ = covs.shape covs_inv = np.array([np.linalg.inv(cov) for cov in covs]) loss_init = loss(covs, A, sigmas_square, source_powers, avg_noise, corr) loss_old = loss_init criterion = 0 do_cd = cd_every != 0 for it in range(max_iter): cov_source_source_s, cov_signal_source, cov_signal_signal =\ e_step(covs, covs_inv, A, sigmas_square, source_powers, corr, avg_noise) A, sigmas_square, source_powers =\ m_step(cov_source_source_s, cov_signal_source, cov_signal_signal, corr, avg_noise, A) # CD updates if do_cd: if it % cd_every == 0 and not avg_noise: covs_estimates = compute_covariances(A, source_powers, sigmas_square) # Noise updates for mat in range(n_mat): for sensor in range(n_sensors): e_i = np.zeros(n_sensors) e_i[sensor] = 1. update = one_update(covs[mat], covs_estimates[mat], e_i) new_coef = np.maximum(update + sigmas_square[mat, sensor], EPS) diff = new_coef - sigmas_square[mat, sensor] sigmas_square[mat, sensor] = new_coef covs_estimates[mat, sensor, sensor] += diff # Powers updates source_powers.setflags(write=1) for source in range(n_sources): a = A[:, source] aaT =
np.outer(a, a)
numpy.outer
import dataclasses from collections import defaultdict from itertools import combinations from typing import List, Tuple import cv2 import numpy as np import tensorflow as tf from distinctipy import distinctipy from matplotlib import pyplot as plt from scipy.optimize import minimize from scipy.signal import find_peaks, peak_widths from skimage.draw import circle_perimeter, disk, line from skimage.filters import gaussian from sklearn.metrics import euclidean_distances from sklearn.neighbors import KernelDensity from tensorflow.python.keras.utils.np_utils import to_categorical from watch_recognition.data_preprocessing import binarize, keypoints_to_angle from watch_recognition.utilities import Line, Point def set_shapes(img, target, img_shape=(224, 224, 3), target_shape=(28, 28, 4)): img.set_shape(img_shape) target.set_shape(target_shape) return img, target def set_shapes_with_sample_weight( img, target, weights, img_shape=(224, 224, 3), target_shape=(28, 28, 4) ): img.set_shape(img_shape) target.set_shape(target_shape) weights.set_shape((*target_shape[:-1], 1)) return img, target, weights def encode_keypoints_to_mask_np( keypoints, image_size, mask_size, radius=1, include_background=False, separate_hour_and_minute_hands: bool = False, add_perimeter: bool = False, sparse: bool = False, with_perimeter_for_hands: bool = False, blur: bool = False, hands_as_lines: bool = False, ): downsample_factor = image_size[0] / mask_size[0] all_masks = [] points = keypoints[:, :2] fm_point = points / downsample_factor int_points = np.floor(fm_point).astype(int) # center and top for int_point in int_points[:2]: mask = _encode_point_to_mask(radius, int_point, mask_size, add_perimeter) if blur: mask = _blur_mask(mask) all_masks.append(mask) # hour and minute hands if separate_hour_and_minute_hands: for int_point in int_points[2:]: mask = _encode_point_to_mask( radius, int_point, mask_size, with_perimeter_for_hands ) if blur: mask = _blur_mask(mask) all_masks.append(mask) else: if hands_as_lines: mask = _encode_multiple_points_to_lines( int_points[2:], int_points[0], mask_size, blur ) else: mask = _encode_multiple_points_to_mask( radius, int_points[2:], mask_size, with_perimeter_for_hands ) if blur: mask = _blur_mask(mask) all_masks.append(mask) masks = np.array(all_masks).transpose((1, 2, 0)) if include_background: background_mask = ((np.ones(mask_size) - masks.sum(axis=-1)) > 0).astype( "float32" ) background_mask = np.expand_dims(background_mask, axis=-1) masks = np.concatenate((masks, background_mask), axis=-1) if sparse: masks = np.expand_dims(np.argmax(masks, axis=-1), axis=-1) return masks.astype("float32") def _blur_mask(mask, sigma=3): mask = gaussian( mask, sigma=sigma, ) mask = mask / (np.max(mask) + 1e-8) mask = (mask > 0.3).astype(float) return mask def _encode_multiple_points_to_lines(int_points, center, mask_size, blur): masks = [] for int_point in int_points: mask = np.zeros(mask_size, dtype=np.float32) # TODO make lines thicker, maybe stronger blur? maybe line_aa? rr, cc = line(*int_point, *center) cc, rr = select_rows_and_columns_inside_mask(cc, mask_size, rr) mask[cc, rr] = 1 if blur: mask = _blur_mask(mask) masks.append(mask) masks = np.stack(masks, axis=-1) mask = np.max(masks, axis=-1) return mask def _encode_multiple_points_to_mask(extent, int_points, mask_size, with_perimeter): mask = np.zeros(mask_size, dtype=np.float32) for int_point in int_points: mask += _encode_point_to_mask(extent, int_point, mask_size, with_perimeter) masks_clipped = np.clip(mask, 0, 1) return masks_clipped def _encode_point_to_mask(radius, int_point, mask_size, with_perimeter: bool = False): mask = np.zeros(mask_size, dtype=np.float32) coords = tuple(int_point) rr, cc = disk(coords, radius) cc, rr = select_rows_and_columns_inside_mask(cc, mask_size, rr) mask[cc, rr] = 1 if with_perimeter: rr, cc = circle_perimeter(*coords, radius) cc, rr = select_rows_and_columns_inside_mask(cc, mask_size, rr) mask[cc, rr] = 1 return mask def encode_keypoints_to_mask( image, keypoints, image_size, mask_size, radius, include_background=True, separate_hour_and_minute_hands=False, add_perimeter=False, sparse=False, with_perimeter_for_hands: bool = False, blur: bool = False, hands_as_lines: bool = False, ): mask = tf.numpy_function( func=encode_keypoints_to_mask_np, inp=[ keypoints, image_size, mask_size, radius, include_background, separate_hour_and_minute_hands, add_perimeter, sparse, with_perimeter_for_hands, blur, hands_as_lines, ], Tout=tf.float32, ) return image, mask def add_sample_weights(image, label, class_weights: List[float]): # The weights for each class, with the constraint that: # sum(class_weights) == 1.0 class_weights_tf = tf.constant(class_weights) class_weights_tf = class_weights_tf / tf.reduce_sum(class_weights_tf) # Create an image of `sample_weights` by using the label at each pixel as an # index into the `class weights` . sample_weights = tf.gather(class_weights_tf, indices=tf.cast(label, tf.int32)) return image, label, sample_weights def encode_keypoints_to_angle(image, keypoints, bin_size=90): angle = tf.numpy_function( func=encode_keypoints_to_angle_np, inp=[ keypoints, bin_size, ], Tout=tf.float32, ) return image, angle def encode_keypoints_to_angle_np(keypoints, bin_size=90): center = keypoints[0, :2] top = keypoints[1, :2] angle = keypoints_to_angle(center, top) angle = binarize(angle, bin_size) return to_categorical(angle, num_classes=360 // bin_size) def decode_single_point(mask, threshold=0.1) -> Point: # this might be faster implementation, and for batch of outputs # https://github.com/OlgaChernytska/2D-Hand-Pose-Estimation-RGB/blob/c9f201ca114129fa750f4bac2adf0f87c08533eb/utils/prep_utils.py#L114 mask = np.where(mask < threshold, np.zeros_like(mask), mask) if mask.sum() == 0: mask = np.ones_like(mask) y_idx, x_idx = np.indices(mask.shape) x_mask = np.average(x_idx.flatten(), weights=mask.flatten()) y_mask = np.average(y_idx.flatten(), weights=mask.flatten()) return Point(x_mask, y_mask, score=float(mask.flatten().mean())) def extract_points_from_map( predicted_map, detection_threshold=0.5, text_threshold=0.5, size_threshold=2, ) -> List[Point]: """ Inspired by keras-ocr segmentation to bboxes code https://github.com/faustomorales/keras-ocr/blob/6473e146dc3fc2c386c595efccb55abe558b2529/keras_ocr/detection.py#L207 Args: predicted_map: detection_threshold: text_threshold: size_threshold: Returns: """ _, text_score = cv2.threshold( predicted_map, thresh=text_threshold, maxval=1, type=cv2.THRESH_BINARY ) n_components, labels, stats, _ = cv2.connectedComponentsWithStats( np.clip(text_score, 0, 1).astype("uint8"), connectivity=4 ) points = [] for component_id in range(1, n_components): # Filter by size size = stats[component_id, cv2.CC_STAT_AREA] if size < size_threshold: continue score = np.max(predicted_map[labels == component_id]) if score < detection_threshold: continue segmap = np.where( labels == component_id, predicted_map, np.zeros_like(predicted_map) ) box_center = np.array(decode_single_point(segmap).as_coordinates_tuple) points.append(Point(*box_center, score=float(score))) return points def convert_mask_outputs_to_keypoints( predicted: np.ndarray, return_all_hand_points: bool = False, experimental_hands_decoding: bool = False, decode_hands_from_lines: bool = False, ) -> Tuple[Point, ...]: masks = predicted.transpose((2, 0, 1)) center = decode_single_point(masks[0]) center = dataclasses.replace(center, name="Center") # Top top_points = extract_points_from_map( masks[1], ) if not top_points: top_points = [decode_single_point(masks[1])] top = sorted(top_points, key=lambda x: x.score)[-1] top = dataclasses.replace(top, name="Top") # Hands hands_map = masks[2] hands_points = extract_points_from_map( predicted_map=hands_map, size_threshold=4, detection_threshold=0.15, text_threshold=0.15, ) if return_all_hand_points: points = (center, top, *hands_points) return points if experimental_hands_decoding: hands = select_hand_points_with_line_fits(center, hands_points) hour, minute = get_minute_and_hour_points(center, tuple(hands)) points = (center, top, hour, minute) return points if decode_hands_from_lines: hands_points = decode_keypoints_via_line_fits(hands_map, center) if not hands_points: hands_points = [Point.none(), Point.none()] if len(hands_points) == 1: hands_points = (hands_points[0], hands_points[0]) hands_points = sorted(hands_points, key=lambda x: x.score)[-2:] hour, minute = get_minute_and_hour_points(center, tuple(hands_points)) hour = dataclasses.replace(hour, name="Hour") minute = dataclasses.replace(minute, name="Minute") return center, top, hour, minute def select_hand_points_with_line_fits(center, hands_points, max_distance=1): """ Finds points that are collinear with the center point to get hand lines lengths. Then selects 2 shortest hand lines (to get rid of seconds hand) Args: center: hands_points: max_distance: Returns: """ lines = [] used_points = set() for a, b in combinations(hands_points, 2): if a.distance(b) < a.distance(center): continue line = Line(a, b) proj_point = line.projection_point(center) d = proj_point.distance(center) if d < max_distance: lines.append(line) used_points.add(a) used_points.add(b) unused_points = [p for p in hands_points if p not in used_points] for point in unused_points: lines.append(Line(point, center)) best_lines = sorted(lines, key=lambda l: l.length)[:2] hands = [] for line in best_lines: if line.start.distance(center) > line.end.distance(center): hands.append(line.start) else: hands.append(line.end) return hands def poly_area(x, y): """https://stackoverflow.com/a/30408825/8814045""" return 0.5 * np.abs(np.dot(x, np.roll(y, 1)) - np.dot(y, np.roll(x, 1))) def select_minute_and_hour_points( center: Point, hand_points: List[Point] ) -> Tuple[Point, Point]: point_combinations = list(combinations(hand_points, 2)) areas = [ poly_area(np.array([center.x, a.x, b.x]), np.array([center.y, a.y, b.y])) for a, b in point_combinations ] sort = np.argsort(areas) idx = sort[-1] return point_combinations[idx] def get_minute_and_hour_points( center: Point, hand_points: Tuple[Point, Point] ) -> Tuple[Point, Point]: assert len(hand_points) < 3, "expected max 2 points for hands" hand_points_np = np.array([p.as_coordinates_tuple for p in hand_points]).reshape( -1, 2 ) center = np.array(center.as_coordinates_tuple).reshape(1, -1) distances = euclidean_distances(hand_points_np, center) hour = hand_points[int(np.argmin(distances))] minute = hand_points[int(np.argmax(distances))] return hour, minute def select_rows_and_columns_inside_mask(cc, mask_size, rr): row_filter = np.where( (0 <= rr) & (rr < mask_size[0]),
np.ones_like(rr)
numpy.ones_like
import solvers as sol from AS1_class import Asym_slab import numpy as np import matplotlib.pyplot as plt import matplotlib import pickle def save(): with open('pickles/wavenumber_c0={}_R1={}_R2={}_K={}_M_A={}.p'.format( slab.c0, slab.R1, slab.R2, slab.K, slab.M_A), 'wb') as f: pickle.dump(root_array, f) slab = Asym_slab(c0=0.6, R1=1.4, R2=1.6, K=None, M_A=1) x_range =
np.linspace(0, 2, 101)
numpy.linspace
from __future__ import division import warnings import numpy as np from numpy.testing import (assert_allclose, assert_equal, assert_warns, assert_no_warnings) from ..lomb_scargle_fast import (extirpolate, bitceil, trig_sum, lomb_scargle_fast) from .. import LombScargle, LombScargleFast def _generate_data(N=100, period=1, theta=[10, 2, 3], dy=1, rseed=0): """Generate some data for testing""" rng = np.random.RandomState(rseed) t = 20 * period * rng.rand(N) omega = 2 * np.pi / period y = theta[0] + theta[1] * np.sin(omega * t) + theta[2] * np.cos(omega * t) dy = dy * (0.5 + rng.rand(N)) y += dy * rng.randn(N) return t, y, dy def test_extirpolate(): rng = np.random.RandomState(0) x = 100 * rng.rand(50) y = np.sin(x) f = lambda x: np.sin(x / 10) def check_result(N, M=5): y_hat = extirpolate(x, y, N, M) x_hat = np.arange(len(y_hat)) assert_allclose(np.dot(f(x), y), np.dot(f(x_hat), y_hat)) for N in [100, None]: yield check_result, N def test_extirpolate_with_integers(): rng = np.random.RandomState(0) x = 100 * rng.rand(50) x[:25] = x[:25].astype(int) y = np.sin(x) f = lambda x:
np.sin(x / 10)
numpy.sin
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ---------------------------------------------------------------------# """ - Module that should take care of collocation of points or swaths - Needs input from modules that retrieve from observational platforms and models """ # --- import libraries ------------------------------------------------# # standard library imports import numpy as np import netCDF4 from datetime import datetime, timedelta import os import time from dateutil.relativedelta import relativedelta import pyresample from tqdm import tqdm from copy import deepcopy # own imports from wavy.utils import collocate_times from wavy.utils import make_fc_dates from wavy.utils import make_pathtofile from wavy.utils import hour_rounder from wavy.utils import NoStdStreams from wavy.utils import make_subdict from wavy.wconfig import load_or_default from wavy.modelmod import model_class, make_model_filename_wrapper from wavy.modelmod import get_model_filedate from wavy.modelmod import model_class,get_model from wavy.ncmod import dumptonc_ts_collocation from wavy.satmod import satellite_class from wavy.insitumod import insitu_class # ---------------------------------------------------------------------# # read yaml config files: model_dict = load_or_default('model_specs.yaml') insitu_dict = load_or_default('insitu_specs.yaml') collocation_dict = load_or_default('collocation_specs.yaml') variable_info = load_or_default('variable_info.yaml') flatten = lambda l: [item for sublist in l for item in sublist] def collocation_fct(obs_lons,obs_lats,model_lons,model_lats): grid = pyresample.geometry.GridDefinition(\ lats=model_lats, \ lons=model_lons) # Define some sample points swath = pyresample.geometry.SwathDefinition(lons=obs_lons, lats=obs_lats) # Determine nearest (great circle distance) neighbour in the grid. valid_input_index, valid_output_index, index_array, distance_array = \ pyresample.kd_tree.get_neighbour_info( source_geo_def=grid, target_geo_def=swath, radius_of_influence=1000000000, neighbours=1) # get_neighbour_info() returns indices in the # flattened lat/lon grid. Compute the 2D grid indices: index_array_2d = np.unravel_index(index_array, grid.shape) return index_array_2d, distance_array, valid_output_index def find_valid_fc_dates_for_model_and_leadtime(fc_dates,model,leadtime): ''' Finds valid dates that are close to desired dates at a precision of complete hours ''' if (leadtime is None or leadtime == 'best'): fc_dates_new = [hour_rounder(d) for d in fc_dates] else: fc_dates_new = [hour_rounder(d) for d in fc_dates \ if get_model_filedate(model,d,leadtime) != False] return fc_dates_new def check_if_file_is_valid(fc_date,model,leadtime): fname = make_model_filename_wrapper(model,fc_date,leadtime) print('Check if requested file:\n',fname,'\nis available and valid') try: nc = netCDF4.Dataset(fname,mode='r') time = nc.variables['time'] dt = netCDF4.num2date(time[:],time.units) if fc_date in list(dt): print('File is available') return True else: print('Desired date ' + str(fc_date) + ' is not in', fname) return False except (FileNotFoundError, OSError) as e: print('File is not available') print(e) return False def get_closest_date(overdetermined_lst,target_lst): idx = [] for i in range(len(target_lst)): diffs=np.abs( [ ( target_lst[i] - overdetermined_lst[j] ).total_seconds() for j in range(len(overdetermined_lst)) ] ) mindiff= np.min(diffs) idx.append(list(diffs).index(mindiff)) return idx def collocate_station_ts(obs_obj=None,model=None,distlim=None,\ leadtime=None,date_incr=None): """ Some info """ fc_date = make_fc_dates(obs_obj.sdate,obs_obj.edate,date_incr) # get coinciding date between fc_date and dates in obs_obj idx1 = collocate_times( unfiltered_t = obs_obj.vars['datetime'], target_t = fc_date, twin = obs_obj.twin ) # find valid/coinciding fc_dates if len(idx1) > len(fc_date): print('Muliple assignments within given time window') print('--> only closest to time stamp is chosen') idx_closest = get_closest_date(\ list(np.array(obs_obj.vars['datetime'])[idx1]),\ fc_date) idx1 = list(np.array(idx1)[idx_closest]) # adjust obs_obj according to valid dates for key in obs_obj.vars.keys(): if (key != 'time_unit' and key !='meta'): obs_obj.vars[key] = list(np.array(obs_obj.vars[key])[idx1]) # adjust again assumed fc_dates by filtered obs dates fc_date = obs_obj.vars['datetime'] # find valid dates for given leadtime and model fc_date = find_valid_fc_dates_for_model_and_leadtime(\ fc_date,model,leadtime) # check if file exists and if it includes desired time # if not check next possible file check = False for d in range(len(fc_date)): check = check_if_file_is_valid(fc_date[d],model,leadtime) if check == True: break if check == True: mc_obj = model_class( model=model, fc_date=fc_date[d], leadtime=leadtime, varalias=obs_obj.varalias) col_obj = collocation_class( mc_obj_in=mc_obj, obs_obj_in=obs_obj, distlim=distlim ) model_vals = [col_obj.vars['model_values'][0]] tmpdate = hour_rounder(col_obj.vars['datetime'][0]) model_datetime = [ datetime(tmpdate.year, tmpdate.month, tmpdate.day, tmpdate.hour) ] model_time = [netCDF4.date2num(model_datetime[0], units=col_obj.vars['time_unit'])] if check == False: print('No valid model file available!') else: print('Collocating and appending values ...') for i in tqdm(range(d+1,len(fc_date))): with NoStdStreams(): try: check = check_if_file_is_valid(fc_date[i],model,leadtime) if check == False: raise FileNotFoundError mc_obj = model_class( model=model, fc_date=fc_date[i], leadtime=leadtime, varalias=obs_obj.varalias ) model_vals.append( mc_obj.vars[\ mc_obj.stdvarname][ \ col_obj.vars['collocation_idx_x'],\ col_obj.vars['collocation_idx_y']\ ][0] ) model_time.append(mc_obj.vars['time'][0]) model_datetime.append( datetime(\ mc_obj.vars['datetime'][0].year, mc_obj.vars['datetime'][0].month, mc_obj.vars['datetime'][0].day, mc_obj.vars['datetime'][0].hour ) ) except FileNotFoundError as e: print(e) # potentially there are different number of values # for obs and model # double check and use only coherent datetimes idx2 = collocate_times( model_datetime, target_t = obs_obj.vars['datetime'], twin = obs_obj.twin) col_obj.vars['model_values'] = list(np.array(\ model_vals)[idx2]) col_obj.vars['time'] = list(np.array(model_time)\ [idx2]) col_obj.vars['datetime'] = list(np.array(\ model_datetime)[idx2]) idx3 = collocate_times( \ unfiltered_t = obs_obj.vars['datetime'], target_t = col_obj.vars['datetime'], twin = obs_obj.twin) col_obj.vars['obs_values'] = list(np.array( obs_obj.vars[ obs_obj.stdvarname ])[idx3]) # valid_date is meaningless for ts application and set to None col_obj.vars['valid_date'] = None # inflate length of constant sized variables col_obj.vars['distance'] = col_obj.vars['distance']*\ len(col_obj.vars['datetime']) col_obj.vars['obs_lats'] = col_obj.vars['obs_lats']*\ len(col_obj.vars['datetime']) col_obj.vars['obs_lons'] = col_obj.vars['obs_lons']*\ len(col_obj.vars['datetime']) col_obj.vars['collocation_idx_x'] = col_obj.vars['collocation_idx_x']*\ len(col_obj.vars['datetime']) col_obj.vars['collocation_idx_y'] = col_obj.vars['collocation_idx_y']*\ len(col_obj.vars['datetime']) col_obj.vars['model_lats'] = col_obj.vars['model_lats']*\ len(col_obj.vars['datetime']) col_obj.vars['model_lons'] = col_obj.vars['model_lons']*\ len(col_obj.vars['datetime']) results_dict = col_obj.vars return results_dict def collocate_satellite_ts(obs_obj=None,model=None,distlim=None,\ leadtime=None,date_incr=None): """ Some info """ fc_date = make_fc_dates(obs_obj.sdate,obs_obj.edate,date_incr) fc_date = find_valid_fc_dates_for_model_and_leadtime(\ fc_date,model,leadtime) results_dict = { 'valid_date':[], 'time':[], 'time_unit':obs_obj.vars['time_unit'], 'datetime':[], 'distance':[], 'model_values':[], 'model_lons':[], 'model_lats':[], 'obs_values':[], 'obs_lons':[], 'obs_lats':[], 'collocation_idx_x':[], 'collocation_idx_y':[], } for i in tqdm(range(len(fc_date))): # for i in range(len(fc_date)): # for f in range(1): with NoStdStreams(): # for t in range(1): try: # filter needed obs within time period idx = collocate_times( obs_obj.vars['datetime'], target_t = [fc_date[i]], twin = obs_obj.twin ) # make tmp obs_obj with filtered data obs_obj_tmp = deepcopy(obs_obj) obs_obj_tmp.vars['time'] = list(\ np.array(obs_obj.vars['time'])[idx] ) obs_obj_tmp.vars['latitude'] = list(\ np.array(obs_obj.vars['latitude'])[idx] ) obs_obj_tmp.vars['longitude'] = list(\ np.array(obs_obj.vars['longitude'])[idx] ) obs_obj_tmp.vars[obs_obj.stdvarname] = \ list(np.array(\ obs_obj.vars[obs_obj.stdvarname])[idx] ) vardict,_,_,_,_ = get_model(model=model, fc_date=fc_date[i], varalias=obs_obj.varalias, leadtime=leadtime) results_dict_tmp = collocate_field(\ datein=fc_date[i],\ model_lats=vardict['latitude'],\ model_lons=vardict['longitude'],\ model_vals=vardict[obs_obj.stdvarname],\ obs_obj=obs_obj_tmp,\ distlim=distlim ) # append to dict results_dict['valid_date'].append(fc_date[i]) results_dict['time'].append(results_dict_tmp['time']) results_dict['datetime'].append(results_dict_tmp['datetime']) results_dict['distance'].append(results_dict_tmp['distance']) results_dict['model_values'].append(results_dict_tmp['model_values']) results_dict['model_lons'].append(results_dict_tmp['model_lons']) results_dict['model_lats'].append(results_dict_tmp['model_lats']) results_dict['obs_values'].append(results_dict_tmp['obs_values']) results_dict['obs_lats'].append(results_dict_tmp['obs_lats']) results_dict['obs_lons'].append(results_dict_tmp['obs_lons']) results_dict['collocation_idx_x'].append(\ results_dict_tmp['collocation_idx_x']) results_dict['collocation_idx_y'].append(\ results_dict_tmp['collocation_idx_y']) if 'results_dict_tmp' in locals(): del results_dict_tmp except (ValueError,FileNotFoundError,OSError) as e: # ValueError, pass if no collocation # FileNotFoundError, pass if file not accessible # OSError, pass if file not accessible from thredds print(e) # flatten all aggregated entries results_dict['time'] = flatten(results_dict['time']) results_dict['datetime'] = flatten(results_dict['datetime']) results_dict['distance'] = flatten(results_dict['distance']) results_dict['model_values'] = flatten(results_dict['model_values']) results_dict['model_lons'] = flatten(results_dict['model_lons']) results_dict['model_lats'] = flatten(results_dict['model_lats']) results_dict['obs_values'] = flatten(results_dict['obs_values']) results_dict['obs_lats'] = flatten(results_dict['obs_lats']) results_dict['obs_lons'] = flatten(results_dict['obs_lons']) results_dict['collocation_idx_x'] = flatten(\ results_dict['collocation_idx_x']) results_dict['collocation_idx_y'] = flatten(\ results_dict['collocation_idx_y']) return results_dict def collocate_field(mc_obj=None,obs_obj=None,col_obj=None,distlim=None, datein=None,model_lats=None,model_lons=None, model_vals=None): """ Some info """ if mc_obj is not None: datein = netCDF4.num2date(mc_obj.vars['time'],mc_obj.vars['time_unit']) model_lats = mc_obj.vars['latitude'] model_lons = mc_obj.vars['longitude'] model_vals = mc_obj.vars[mc_obj.stdvarname] dtime = netCDF4.num2date(obs_obj.vars['time'], obs_obj.vars['time_unit']) if isinstance(dtime,np.ndarray): dtime = list(dtime) if isinstance(datein,np.ndarray): datein = list(datein) if isinstance(datein,datetime): datein = [datein] cidx = collocate_times(dtime,target_t=datein,twin=obs_obj.twin) obs_time_dt = np.array(dtime)[cidx] obs_time_dt = [datetime(t.year,t.month,t.day, t.hour,t.minute,t.second) for t in obs_time_dt] datein = [datetime(t.year,t.month,t.day, t.hour,t.minute,t.second) for t in datein] obs_time = np.array(obs_obj.vars['time'])[cidx] obs_time_unit = obs_obj.vars['time_unit'] # Compare wave heights of satellite with model with # constraint on distance and time frame # 1. time constraint obs_lats = np.array(obs_obj.vars['latitude'])[cidx] obs_lons = np.array(obs_obj.vars['longitude'])[cidx] obs_vals = np.array(obs_obj.vars[obs_obj.stdvarname])[cidx] if distlim == None: distlim = 6 if (col_obj is None): print ("No collocation idx available") print (len(obs_time_dt),"footprints to be collocated") print ("Perform collocation with distance limit\n",\ "distlim:",distlim) index_array_2d, distance_array, _ =\ collocation_fct( obs_lons, obs_lats, model_lons, model_lats) # caution: index_array_2d is tuple # impose distlim dist_idx = np.where( (distance_array<distlim*1000)&\ (~np.isnan(\ model_vals[index_array_2d[0],\ index_array_2d[1]])) )[0] idx_x = index_array_2d[0][dist_idx] idx_y = index_array_2d[1][dist_idx] results_dict = { 'valid_date':datein, 'time':list(obs_time[dist_idx]), 'time_unit':obs_time_unit, 'datetime':list(np.array(obs_time_dt)[dist_idx]), 'distance':list(distance_array[dist_idx]), 'model_values':list(model_vals[idx_x,\ idx_y]), 'model_lons':list(model_lons[idx_x,\ idx_y]), 'model_lats':list(model_lats[idx_x,\ idx_y]), 'obs_values':list(obs_vals[dist_idx]), 'obs_lons':list(obs_lons[dist_idx]), 'obs_lats':list(obs_lats[dist_idx]), 'collocation_idx_x':list(idx_x), 'collocation_idx_y':list(idx_y), } elif (col_obj is not None and \ len(col_obj.vars['collocation_idx'][0]) > 0): print("Collocation idx given through collocation_class object") results_dict = col_obj.vars results_dict['model_values'] = list(\ model_vals[\ col_obj.vars['collocation_idx_x'], col_obj.vars['collocation_idx_y'] ]) return results_dict def collocate(mc_obj=None,obs_obj=None,col_obj=None, model=None,distlim=None,leadtime=None,date_incr=None): """ get obs value for model value for given temporal and spatial constraints """ if (len(obs_obj.vars[obs_obj.stdvarname]) < 1): raise Exception ( '\n###\n' + 'Collocation not possible, ' + 'no observation values for collocation!' + '\n###' ) if ((mc_obj is None or len(mc_obj.vars[mc_obj.stdvarname]) < 1) and model is None): raise Exception ( '\n###\n' + 'Collocation not possible, ' + 'no model values available for collocation!' + '\n###' ) if (mc_obj is None and model is not None and obs_obj is not None\ and isinstance(obs_obj,insitu_class)): results_dict = collocate_station_ts(obs_obj=obs_obj, model=model,\ distlim=distlim,\ leadtime=leadtime,\ date_incr=date_incr) elif (mc_obj is None and model is not None and obs_obj is not None\ and isinstance(obs_obj,satellite_class)): results_dict = collocate_satellite_ts(obs_obj=obs_obj, model=model,\ distlim=distlim,\ leadtime=leadtime,\ date_incr=date_incr) else: results_dict = collocate_field( mc_obj=mc_obj,\ obs_obj=obs_obj,\ col_obj=col_obj,\ distlim=distlim ) return results_dict class collocation_class(): ''' draft of envisioned collocation class object ''' def __init__(self,mc_obj_in=None,obs_obj_in=None, col_obj_in=None,model=None,distlim=None,leadtime=None, date_incr=1): print('# ----- ') print(" ### Initializing collocation_class object ###") print(" ") # make clones to prevent overwriting mc_obj = deepcopy(mc_obj_in) obs_obj = deepcopy(obs_obj_in) col_obj = deepcopy(col_obj_in) if isinstance(obs_obj,satellite_class): self.obsname = obs_obj.mission self.mission = obs_obj.mission self.obstype = "satellite_altimeter" self.region = obs_obj.region if isinstance(obs_obj,insitu_class): obs_obj.twin = insitu_dict[obs_obj.nID].get('twin',None) self.obsname = obs_obj.nID + '_' + obs_obj.sensor self.obstype = 'insitu' self.nID = obs_obj.nID self.sensor = obs_obj.sensor if mc_obj is not None: model = mc_obj.model # define class variables self.sdate = obs_obj.sdate self.edate = obs_obj.edate self.model = model self.varalias = obs_obj.varalias self.stdvarname = obs_obj.stdvarname self.units = variable_info[self.varalias].get('units') self.leadtime = leadtime if leadtime is None: self.leadtime = 'best' self.leadtimestr = 'best' elif isinstance(self.leadtime,str): self.leadtime = leadtime leadtimestr = leadtime self.leadtimestr = leadtime else: leadtimestr="{:0>3d}".format(self.leadtime) self.leadtime = leadtime self.leadtimestr = leadtimestr # get vars dictionary print(" ") print(" ## Collocate ... ") # for t in range(1): try: t0=time.time() results_dict = collocate(mc_obj=mc_obj, obs_obj=obs_obj, col_obj=col_obj, model=model, distlim=distlim, leadtime=self.leadtime, date_incr=date_incr) self.vars = results_dict self.fc_date = results_dict['datetime'] t1=time.time() print(" ") print(" ## Summary:") print(len(self.vars['time'])," values collocated.") print("Time used for collocation:",round(t1-t0,2),"seconds") print(" ") print (" ### Collocation_class object initialized ###") except Exception as e: print(e) self.error = e print ("! No collocation_class object initialized !") # add class variables print ('# ----- ') def quicklook(self,m=True,ts=True,projection=None): if m: import cartopy.crs as ccrs import cmocean import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1.inset_locator import inset_axes lons = self.vars['obs_lons'] lats = self.vars['obs_lats'] var = self.vars['obs_values'] if projection is None: projection = ccrs.PlateCarree() lonmax,lonmin = np.max(lons),np.min(lons) latmax,latmin = np.max(lats),np.min(lats) fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection=projection) ax.set_extent( [lonmin, lonmax,latmin, latmax], crs = projection ) sc = ax.scatter(lons,lats,s=10, c = var, marker='o', edgecolor = 'face', cmap=cmocean.cm.amp, transform=ccrs.PlateCarree()) axins = inset_axes(ax, width="5%", # width = 5% of parent_bbox width height="100%", # height : 50% loc='lower left', bbox_to_anchor=(1.01, 0., 1, 1), bbox_transform=ax.transAxes, borderpad=0, ) fig.colorbar(sc, cax=axins, label=self.varalias + ' [' + self.units + ']') ax.coastlines() gl = ax.gridlines(draw_labels=True,crs=projection, linewidth=1, color='grey', alpha=0.4, linestyle='-') gl.top_labels = False gl.right_labels = False plt.subplots_adjust(bottom=0.1, right=0.8, top=0.9) ax.set_title(self.obsname + ' (' + self.obstype + ')\n' + 'from ' + str(self.vars['datetime'][0]) + ' to ' + str(self.vars['datetime'][-1])) #fig.suptitle('', fontsize=16) # unused plt.show() if ts: import matplotlib.pyplot as plt import matplotlib.dates as mdates fig = plt.figure(figsize=(9,3.5)) ax = fig.add_subplot(111) colors = ['k','orange'] if self.obstype == 'insitu': ax.plot(self.vars['datetime'],self.vars['obs_values'], linestyle='None',color=colors[0], label='obs ( ' + self.nID + ' - ' + self.sensor + ' )', marker='o',alpha=.5,ms=2) elif self.obstype == 'satellite_altimeter': ax.plot(self.vars['datetime'],self.vars['obs_values'], linestyle='None',color=colors[0], label='obs (' + self.mission + ')', marker='o',alpha=.5,ms=2) ax.plot(self.vars['datetime'],self.vars['model_values'], linestyle='None',color=colors[1], label='model (' + self.model + ')', marker='o',alpha=.8,ms=2) plt.ylabel(self.varalias + '[' + self.units + ']') plt.legend(loc='best') plt.tight_layout() #ax.set_title() plt.show() def write_to_nc(self,pathtofile=None,file_date_incr=None): if 'error' in vars(self): print('Erroneous collocation_class file detected') print('--> dump to netCDF not possible !') else: tmpdate = self.sdate edate = self.edate while tmpdate <= edate: if pathtofile is None: path_template = collocation_dict[self.obstype]\ ['dst']\ ['path_template'][0] file_template = collocation_dict[self.obstype]\ ['dst']\ ['file_template'] strsublst = collocation_dict[self.obstype]\ ['dst']['strsub'] subdict = make_subdict(strsublst, class_object_dict=vars(self)) if 'filterData' in vars(self).keys(): file_template = 'filtered_' + file_template tmppath = os.path.join(path_template,file_template) if isinstance(self.leadtime,str): leadtimestr=self.leadtime else: leadtimestr="{:0>3d}h".format(self.leadtime) if self.obstype=='insitu': pathtofile = make_pathtofile(tmppath,strsublst, subdict,date=tmpdate) elif self.obstype=='satellite_altimeter': pathtofile = make_pathtofile(tmppath,strsublst, subdict,date=tmpdate) if self.obstype=='insitu': title = ( 'Collocation of ' + self.stdvarname + ' observations from ' + self.nID + ' ' + self.sensor + ' vs ' + self.model) elif self.obstype=='satellite_altimeter': title = ( 'Collocation of ' + self.stdvarname + ' observations from ' + self.mission + ' vs ' + self.model) dumptonc_ts_collocation(self,pathtofile,title) # determine date increment if file_date_incr is None: file_date_incr = collocation_dict[self.obstype]\ ['dst'].get('file_date_incr','m') if file_date_incr == 'm': tmpdate += relativedelta(months = +1) elif file_date_incr == 'Y': tmpdate += relativedelta(years = +1) elif file_date_incr == 'd': tmpdate += timedelta(days = +1) return def validate_collocated_values(self,**kwargs): dtime = self.vars['datetime'] mods = self.vars['model_values'] obs = self.vars['obs_values'] sdate = self.vars['datetime'][0] edate = self.vars['datetime'][-1] validation_dict = validate_collocated_values( dtime,obs,mods,\ sdate=sdate,edate=edate,\ **kwargs) return validation_dict def validate_collocated_values(dtime,obs,mods,**kwargs): target_t, sdate, edate, twin = None, None, None, None if ('col_obj' in kwargs.keys() and kwargs['col_obj'] is not None): mods = col_obj.vars['model_values'] obs = col_obj.vars['obs_values'] dtime = col_obj.vars['datetime'] # get idx for date and twin if 'target_t' in kwargs.keys(): target_t = kwargs['target_t'] if 'sdate' in kwargs.keys(): sdate = kwargs['sdate'] if 'edate' in kwargs.keys(): edate = kwargs['edate'] if 'twin' in kwargs.keys(): twin = kwargs['twin'] idx = collocate_times(dtime, target_t=target_t, sdate=sdate, edate=edate, twin=twin) mods = np.array(mods)[idx] obs =
np.array(obs)
numpy.array
# -*- coding: utf-8 -*- def get_colors(f, do_shuffle=True): from numpy import array try: import Image except Exception: from PIL import Image im = Image.open(f) data = array(list(im.convert('RGB').getdata()),'float')/255.0 res = [] for rgb in data: res.append(list(rgb)) if do_shuffle: from numpy.random import shuffle shuffle(res) return res def get_img_as_rgb_array(f): from PIL import Image from numpy import array from numpy import reshape im = Image.open(f) w,h = im.size data = array(list(im.convert('RGB').getdata()), 'float')/255.0 return
reshape(data,(w,h,3))
numpy.reshape
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. """Orthogonal IV for Heterogeneous Treatment Effects. A Double/Orthogonal machine learning approach to estimation of heterogeneous treatment effect with an endogenous treatment and an instrument. It implements the DMLIV and related algorithms from the paper: Machine Learning Estimation of Heterogeneous Treatment Effects with Instruments <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> https://arxiv.org/abs/1905.10176 """ import numpy as np from sklearn.base import clone from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.preprocessing import FunctionTransformer from ..._ortho_learner import _OrthoLearner from ..._cate_estimator import LinearModelFinalCateEstimatorMixin, StatsModelsCateEstimatorMixin from ...inference import StatsModelsInference from ...sklearn_extensions.linear_model import StatsModelsLinearRegression from ...utilities import (_deprecate_positional, add_intercept, filter_none_kwargs, inverse_onehot, get_feature_names_or_default) from .._nuisance_wrappers import _FirstStageWrapper, _FinalWrapper class _BaseDRIVModelFinal: """ Final model at fit time, fits a residual on residual regression with a heterogeneous coefficient that depends on X, i.e. .. math :: Y - \\E[Y | X] = \\theta(X) \\cdot (\\E[T | X, Z] - \\E[T | X]) + \\epsilon and at predict time returns :math:`\\theta(X)`. The score method returns the MSE of this final residual on residual regression. """ def __init__(self, model_final, featurizer, discrete_treatment, discrete_instrument, fit_cate_intercept, cov_clip, opt_reweighted): self._model_final = clone(model_final, safe=False) self._fit_cate_intercept = fit_cate_intercept self._original_featurizer = clone(featurizer, safe=False) self._discrete_treatment = discrete_treatment self._discrete_instrument = discrete_instrument if self._fit_cate_intercept: add_intercept_trans = FunctionTransformer(add_intercept, validate=True) if featurizer: self._featurizer = Pipeline([('featurize', self._original_featurizer), ('add_intercept', add_intercept_trans)]) else: self._featurizer = add_intercept_trans else: self._featurizer = self._original_featurizer self._cov_clip = cov_clip self._opt_reweighted = opt_reweighted def _effect_estimate(self, nuisances): prel_theta, res_t, res_y, res_z, cov = [nuisance.reshape(nuisances[0].shape) for nuisance in nuisances] # Estimate final model of theta(X) by minimizing the square loss: # (prel_theta(X) + (Y_res - prel_theta(X) * T_res) * Z_res / cov[T,Z | X] - theta(X))^2 # We clip the covariance so that it is bounded away from zero, so as to reduce variance # at the expense of some small bias. For points with very small covariance we revert # to the model-based preliminary estimate and do not add the correction term. cov_sign = np.sign(cov) cov_sign[cov_sign == 0] = 1 clipped_cov = cov_sign * np.clip(
np.abs(cov)
numpy.abs
import matplotlib matplotlib.use('Agg') import pickle import os #import ipdb import statsmodels.stats.power as smp from rectify_vars_and_wald_functions import * import pandas as pd import matplotlib.pyplot as plt import sys sys.path.insert(1, '../../../le_experiments/') # print(data) import numpy as np import os from scipy import stats from matplotlib.pyplot import figure import glob import numpy as np import read_config from output_format import H_ALGO_ACTION_FAILURE, H_ALGO_ACTION_SUCCESS, H_ALGO_ACTION, H_ALGO_OBSERVED_REWARD from output_format import H_ALGO_ESTIMATED_MU, H_ALGO_ESTIMATED_V, H_ALGO_ESTIMATED_ALPHA, H_ALGO_ESTIMATED_BETA from output_format import H_ALGO_PROB_BEST_ACTION, H_ALGO_NUM_TRIALS import beta_bernoulli #import thompson_policy from pathlib import Path EPSILON_PROB = .000001 DESIRED_POWER = 0.8 DESIRED_ALPHA = 0.05 SMALL_SIZE = 10 MEDIUM_SIZE = 10 BIGGER_SIZE = 14 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=8.5) # fontsize of the tick labels plt.rc('ytick', labelsize=10) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # fontsize of the figure title def hist_pval(df = None, to_check = None, to_check_unif = None, to_check_ts = None, n = None, num_sims = None, load_df = True, \ title = None, plot = True): ''' TODO rename to_check_ipw to to_check_ipw_wald_stat ''' if load_df == True: with open(to_check, 'rb') as f: df = pickle.load(f) with open(to_check_unif, 'rb') as f: df_unif = pickle.load(f) with open(to_check_ts, 'rb') as f: df_ts = pickle.load(f) #print(data) step_sizes = df['num_steps'].unique() size_vars = ["n/2", "n", "2*n", "4*n"] if plot == True: fig, ax = plt.subplots(2,2) fig.set_size_inches(14.5, 10.5) ax = ax.ravel() i = 0 percenticle_dict_left = {} percentile_dict_right = {} for num_steps in step_sizes: df_unif_for_num_steps = df_unif[df_unif['num_steps'] == num_steps] df_for_num_steps = df[df['num_steps'] == num_steps] df_ts_for_num_steps = df_ts[df_ts['num_steps'] == num_steps] mle_mean1 = np.mean(df_for_num_steps['mean_1']) mle_mean2 = np.mean(df_for_num_steps['mean_2']) unif_mean1 = np.mean(df_unif_for_num_steps['mean_1']) unif_mean2 = np.mean(df_unif_for_num_steps['mean_2']) df_for_num_steps_pval = df_for_num_steps['pvalue'] df_unif_for_num_steps_pval = df_unif_for_num_steps['pvalue'] df_ts_for_num_steps_pval = df_ts_for_num_steps['pvalue'] # df_unif_for_num_steps = np.ma.masked_invalid(df_unif_for_num_steps) #print(np.mean(df_unif_for_num_steps)) if plot == True: #ax[i].hist(df_unif_for_num_steps, density = True) ax[i].hist(df_unif_for_num_steps_pval, normed = False, alpha = 0.5, \ label = "Uniform") ax[i].hist(df_for_num_steps_pval, \ normed = False, alpha = 0.5, \ label = "Epsilon Greedy") ax[i].hist(df_ts_for_num_steps_pval, \ normed = False, alpha = 0.5, \ label = "Thompson Sampling") ax[i].set_xlabel("Pvalue for number of participants = {} = {}".format(size_vars[i], num_steps)) # mu = 0 # variance = 1 # sigma = np.sqrt(variance) # x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100) # ax[i].plot(x, stats.norm.pdf(x, mu, sigma)) ax[i].legend() i+=1 if plot == True: fig.suptitle(title) fig.tight_layout(rect=[0, 0.03, 1, 0.90]) # if not os.path.isdir("plots"): # os.path.mkdir("plots") print("saving to ", "pval_hist/{}.png".format(title)) fig.savefig("pval_hist/{}.png".format(title)) #plt.show() plt.clf() plt.close() def create_models_binary(actions_df, prior, num_actions): assert num_actions == 2 all_models = [] cache_keys = [[] for _ in range(actions_df.shape[0])] action = 0 # print(actions_df.loc[:,H_ALGO_ACTION_SUCCESS.format(action + 1)]) # print('Failures------------') #print(actions_df.loc[:,H_ALGO_ACTION_FAILURE.format(action + 1)]) for action in range(num_actions): [cache_keys[i].extend((successes,failures)) for (i,successes,failures) in zip(range(actions_df.shape[0]),actions_df.loc[:,H_ALGO_ACTION_SUCCESS.format(action + 1)],actions_df.loc[:,H_ALGO_ACTION_FAILURE.format(action + 1)])] # print((successes, failures)\ # for (successes,failures) in\ # zip(actions_df.loc[:,H_ALGO_ACTION_SUCCESS.format(action + 1)],\ # actions_df.loc[:,H_ALGO_ACTION_FAILURE.format(action + 1)])) cur_models = [beta_bernoulli.BetaBern(successes, failures)\ for (successes,failures) in\ zip(actions_df.loc[:,H_ALGO_ACTION_SUCCESS.format(action + 1)],\ actions_df.loc[:,H_ALGO_ACTION_FAILURE.format(action + 1)])] # add in the one for the prior cur_models.insert(0, beta_bernoulli.BetaBern(prior[0], prior[1])) all_models.append(cur_models) # Add in a cache key for the prior cache_keys.insert(0, prior*num_actions) return all_models,cache_keys def plot_hist_and_table(df_for_num_steps_eg0pt1, df_for_num_steps_eg0pt3, df_for_num_steps_ts, df_for_num_steps_unif, num_steps, epsilon, n): fig_h, ax_h = plt.subplots() proportions_unif = df_for_num_steps_unif['sample_size_1'] / num_steps proportions_eg0pt1 = df_for_num_steps_eg0pt1['sample_size_1'] / num_steps proportions_eg0pt3 = df_for_num_steps_eg0pt3['sample_size_1'] / num_steps proportions_ts = df_for_num_steps_ts['sample_size_1'] / num_steps ax_h.hist(proportions_eg0pt1, alpha = 0.5, label = "Epsilon Greedy 0.1") ax_h.hist(proportions_eg0pt3, alpha = 0.5, label = "Epsilon Greedy 0.3") ax_h.hist(proportions_unif, alpha = 0.5, label = "Uniform Random") ax_h.hist(proportions_ts, alpha = 0.5, label = "Thompson Sampling") ax_h.legend() fig_h.suptitle("Histogram of Proportion of {} Participants Assigned to Condition 1 Across 500 Simulations".format(num_steps)) # rows = ["Areferg"] # columns = ["Berger"] # cell_text = ["ergerg"] # the_table = ax_h.table(cellText=cell_text, # rowLabels=rows, # colLabels=columns, # loc='right') # fig_h.subplots_adjust(left=0.2, wspace=0.4) data = np.random.uniform(0, 1, 80).reshape(20, 4) mean_ts = np.mean(proportions_ts) var_ts = np.var(proportions_ts) mean_eg0pt1 = np.mean(proportions_eg0pt1) mean_eg0pt3 = np.mean(proportions_eg0pt3) var_eg0pt1 = np.var(proportions_eg0pt1) var_eg0pt3 = np.var(proportions_eg0pt3) prop_lt_25_eg0pt1 = np.sum(proportions_eg0pt1 < 0.25) / len(proportions_eg0pt1) prop_lt_25_eg0pt3 = np.sum(proportions_eg0pt3 < 0.25) / len(proportions_eg0pt3) prop_lt_25_ts = np.sum(proportions_ts < 0.25) / len(proportions_ts) # prop_gt_25_lt_5_eg = np.sum(> proportions > 0.25) / len(proportions) # prop_gt_25_lt_5_ts = np.sum(> proportions_ts > 0.25) / len(proportions_ts) data = [[mean_ts, var_ts, prop_lt_25_ts],\ [mean_eg0pt1, var_eg0pt1, prop_lt_25_eg0pt1],\ [mean_eg0pt3, var_eg0pt3, prop_lt_25_eg0pt3]] final_data = [['%.3f' % j for j in i] for i in data] #<0.25, 0.25< & <0.5, <0.5 & <0.75, <0.75 & <1.0 #table.auto_set_font_size(False) # table.set_fontsize(7) # table.auto_set_column_width((-1, 0, 1, 2, 3)) table = ax_h.table(cellText=final_data, colLabels=['Mean', 'Variance', 'prop < 0.25'], rowLabels = ["Thompson Sampling", "Epsilon Greedy 0.1", "Epsilon Greedy 0.3"], loc='bottom', cellLoc='center', bbox=[0.25, -0.5, 0.5, 0.3]) table.auto_set_font_size(False) table.set_fontsize(7) table.auto_set_column_width((-1, 0, 1, 2, 3)) # Adjust layout to make room for the table: #ax_h.tick_params(axis='x', pad=20) #fig_h.subplots_adjust(left=0.2, bottom=0.5) #fig_h.tight_layout() # save_dir = "../simulation_analysis_saves/Tables/{}/{}/{}/num_sims={}/".format(outcome, iseffect, include_stderr, num_sims) save_dir = "../simulation_analysis_saves/histograms/ExploreAndExploit/N={}".format(n) Path(save_dir).mkdir(parents=True, exist_ok=True) fig_h.savefig(save_dir + "/condition_prop_n={}.png".format(num_steps), bbox_inches = 'tight') fig_h.clf() def hist_means_bias(df = None, to_check_eg0pt1 = None, to_check_eg0pt3 = None, to_check_unif = None, to_check_ipw = None, n = None, num_sims = None, load_df = True, \ title = None,\ to_check_ts = None, mean_key = "mean_1"): ''' Not using bias ''' if load_df == True: with open(to_check_eg0pt1, 'rb') as f: df_eg0pt1 = pickle.load(f) with open(to_check_eg0pt3, 'rb') as f: df_eg0pt3 = pickle.load(f) with open(to_check_unif, 'rb') as f: df_unif = pickle.load(f) if to_check_ipw != None: ipw_t1_list = np.load(to_check_ipw) if to_check_ts != None: with open(to_check_ts, 'rb') as t: df_ts = pickle.load(t) #print(data) fig, ax = plt.subplots(2,2) fig.set_size_inches(14.5, 10.5) ax = ax.ravel() i = 0 step_sizes = df_unif['num_steps'].unique() size_vars = ["n/2", "n", "2*n", "4*n"] for num_steps in step_sizes: df_for_num_steps_eg0pt1 = df_eg0pt1[df_eg0pt1['num_steps'] == num_steps] df_for_num_steps_eg0pt3 = df_eg0pt3[df_eg0pt3['num_steps'] == num_steps] df_for_num_steps_unif = df_unif[df_unif['num_steps'] == num_steps] df_for_num_steps_ts = df_ts[df_ts['num_steps'] == num_steps] # bins = np.arange(0, 1.01, .025) num_replications = len(df_for_num_steps_eg0pt1) df_for_num_steps_mean1_eg0pt1 = df_for_num_steps_eg0pt1[mean_key] df_for_num_steps_mean1_eg0pt3 = df_for_num_steps_eg0pt3[mean_key] df_for_num_steps_mean1_unif = df_for_num_steps_unif[mean_key] df_for_num_steps_mean1_ts = df_for_num_steps_ts[mean_key] ax[i].hist(df_for_num_steps_mean1_eg0pt1, normed = False, alpha = 0.5, label = "Epsilon Greedy 0.1: mean = {} var = {}".format(round(np.mean(df_for_num_steps_mean1_eg0pt1),2), round(np.var(df_for_num_steps_mean1_eg0pt1), 3))) ax[i].hist(df_for_num_steps_mean1_eg0pt3, normed = False, alpha = 0.5, label = "Epsilon Greedy 0.3: mean = {} var = {}".format(round(np.mean(df_for_num_steps_mean1_eg0pt3),2), round(np.var(df_for_num_steps_mean1_eg0pt3), 3))) ax[i].hist(df_for_num_steps_mean1_unif, normed = False, alpha = 0.5, label = "Uniform: mean = {} var = {}".format(round(np.mean(df_for_num_steps_mean1_unif),2), round(np.var(df_for_num_steps_mean1_unif), 3))) ax[i].hist(df_for_num_steps_mean1_ts, normed = False, alpha = 0.5, label = "Thompson Sampling: mean = {} var = {}".format(round(np.mean(df_for_num_steps_mean1_ts),2), round(np.var(df_for_num_steps_mean1_ts), 3))) # ax[i].hist(df_for_num_steps_mean1_eg0pt3, normed = False, alpha = 0.5, label = "Epsilon Greedy 0.3") # ax[i].hist(df_for_num_steps_mean1_unif, normed = False, alpha = 0.5, label = "Uniform") # ax[i].hist(df_for_num_steps_mean1_ts, normed = False, alpha = 0.5, label = "Thompson Sampling") mean_num = int(mean_key.split("_")[-1]) ax[i].set_xlabel("Mean {} ($\hatp_{}$ with MLE) for number of participants = {} = {}".format(mean_num, mean_num, size_vars[i], num_steps)) ax[i].legend() ax[i].set_ylim(0,num_sims) i +=1 fig.suptitle(title) #fig.tight_layout(rect=[0, 0.03, 1, 0.90]) # if not os.path.isdir("plots"): # os.path.mkdir("plots") # save_dir = "../simulation_analysis_saves/Tables/{}/{}/{}/num_sims={}/".format(outcome, iseffect, include_stderr, num_sims) save_dir_ne = "../simulation_analysis_saves/{}_hist/NoEffect/".format(mean_key) save_dir_e = "../simulation_analysis_saves/{}_hist/Effect/".format(mean_key) Path(save_dir_ne).mkdir(parents=True, exist_ok=True) Path(save_dir_e).mkdir(parents=True, exist_ok=True) save_str_ne = save_dir_ne + "/{}.png".format(title) save_str_e = save_dir_e + "/{}.png".format(title) # save_str_e = "../simulation_analysis_saves/{}_hist/Effect/{}.png".format(mean_key, title) if "No Effect" in title: print("saving to ", save_str_ne) fig.savefig(save_str_ne) elif "With Effect" in title: print("saving to ", save_str_e) fig.savefig(save_str_e) #plt.show() plt.clf() plt.close() def hist_means_diff(df_eg0pt1 = None, df_eg0pt3 = None, df_unif = None, n = None, num_sims = None, \ title = None,\ df_ts = None): ''' Not using bias ''' #print(data) fig, ax = plt.subplots(2,2) fig.set_size_inches(14.5, 10.5) ax = ax.ravel() i = 0 step_sizes = df_unif['num_steps'].unique() size_vars = ["n/2", "n", "2*n", "4*n"] for num_steps in step_sizes: df_for_num_steps_eg0pt1 = df_eg0pt1[df_eg0pt1['num_steps'] == num_steps] df_for_num_steps_eg0pt3 = df_eg0pt3[df_eg0pt3['num_steps'] == num_steps] df_for_num_steps_unif = df_unif[df_unif['num_steps'] == num_steps] df_for_num_steps_ts = df_ts[df_ts['num_steps'] == num_steps] # bins = np.arange(0, 1.01, .025) num_replications = len(df_for_num_steps_eg0pt1) df_for_num_steps_diff_eg0pt1 = np.abs(df_for_num_steps_eg0pt1["mean_1"] - df_for_num_steps_eg0pt1["mean_2"]) df_for_num_steps_diff_eg0pt3 = np.abs(df_for_num_steps_eg0pt3["mean_1"] - df_for_num_steps_eg0pt3["mean_2"]) df_for_num_steps_diff_unif = np.abs(df_for_num_steps_unif["mean_1"] - df_for_num_steps_unif["mean_2"]) df_for_num_steps_diff_ts = np.abs(df_for_num_steps_ts["mean_1"] - df_for_num_steps_ts["mean_2"]) ax[i].hist(df_for_num_steps_diff_eg0pt1, normed = False, alpha = 0.5, label = "Epsilon Greedy 0.1: mean = {} var = {}".format(round(np.mean(df_for_num_steps_diff_eg0pt1),2), round(np.var(df_for_num_steps_diff_eg0pt1), 3)), color = "yellow") ax[i].hist(df_for_num_steps_diff_eg0pt3, normed = False, alpha = 0.5, label = "Epsilon Greedy 0.3: mean = {} var = {}".format(round(np.mean(df_for_num_steps_diff_eg0pt3),2), round(
np.var(df_for_num_steps_diff_eg0pt3)
numpy.var
# -*- coding: utf-8 -*- """ Copyright 2018 NAVER Corp. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import tensorflow as tf import numpy as np import time import math from kin_kor_char_parser import decompose_str_as_one_hot LOCAL_DATASET_PATH = '../sample_data/kin/' from soy.soy.nlp.tokenizer import CohesionTokenizer, RegexTokenizer from gensim.models import Word2Vec class KinQueryDataset: """ 지식인 데이터를 읽어서, tuple (데이터, 레이블)의 형태로 리턴하는 파이썬 오브젝트 입니다. """ def __init__(self, dataset_path: str, max_length: int): """ :param dataset_path: 데이터셋 root path :param max_length: 문자열의 최대 길이 400 """ # 데이터, 레이블 각각의 경로 queries_path = os.path.join(dataset_path, 'train', 'train_data') labels_path = os.path.join(dataset_path, 'train', 'train_label') # 지식인 데이터를 읽고 preprocess까지 진행합니다 self.test_idx = -1 with open(queries_path, 'rt', encoding='utf8') as f: #self.queries1, self.queries2,self.queries1_test,self.queries2_test,self.test_idx = preprocess2(f.readlines(), max_length,test_data=True) self.queries1, self.queries2= preprocess2(f.readlines(), max_length,test_data=False) #self.queries,self.queries_test,self.test_idx = preprocess_origin(f.readlines(),max_length,test_data=True) # 지식인 레이블을 읽고 preprocess까지 진행합니다. with open(labels_path) as f: self.labels = np.array([[np.float32(x)] for x in f.readlines()]) if self.test_idx != -1: self.labels_test = self.labels[self.test_idx:] self.labels = self.labels[:self.test_idx] print("test data splited size %d" % self.test_idx) def __len__(self): """ :return: 전체 데이터의 수를 리턴합니다 """ return len(self.labels) def __getitem__(self, idx): """ :param idx: 필요한 데이터의 인덱스 :return: 인덱스에 맞는 데이터, 레이블 pair를 리턴합니다 """ return self.queries1[idx], self.queries2[idx] ,self.labels[idx] def add_noise(query): query = query + (query * (0.001) * ((np.random.rand(1) - 0.5))) query = np.rint(query) query = query.astype(np.int32) return query def data_augmentation(queries1,queries2,labels): # Add noise in query data def get_noised_queries(queries): # Expand query numpy array size q_expand = np.zeros((len(queries) * 2, len(queries[0])), dtype=np.int32) np.random.seed(int(time.time())) for i in range(len(q_expand)): if i < len(queries): q_expand[i] = queries[i] else: noised_val = add_noise(queries[i - len(queries)]) q_expand[i] = noised_val return q_expand def get_double_labels(labels): l_expand = np.zeros((len(labels) * 2,1), dtype=np.int32) for i in range(len(l_expand)): if i < len(labels): l_expand[i] = labels[i] else: l_expand[i] = labels[i - len(labels)] return l_expand q1_expand = get_noised_queries(queries1) q2_expand = get_noised_queries(queries2) l_expand = get_double_labels(labels) return q1_expand, q2_expand, l_expand def preprocess2(data: list, max_length: int, test_data: bool): """ 입력을 받아서 딥러닝 모델이 학습 가능한 포맷으로 변경하는 함수입니다. 기본 제공 알고리즘은 char2vec이며, 기본 모델이 MLP이기 때문에, 입력 값의 크기를 모두 고정한 벡터를 리턴합니다. 문자열의 길이가 고정값보다 길면 긴 부분을 제거하고, 짧으면 0으로 채웁니다. :param data: 문자열 리스트 ([문자열1, 문자열2, ...]) :param max_length: 문자열의 최대 길이 :return: 벡터 리스트 ([[0, 1, 5, 6], [5, 4, 10, 200], ...]) max_length가 4일 때 """ query1 =[] query2 =[] for d in data: q1,q2 = d.split('\t') query1.append(q1) query2.append(q2.replace('\n','')) vectorized_data1 = [decompose_str_as_one_hot(datum, warning=False) for datum in query1] vectorized_data2 = [decompose_str_as_one_hot(datum, warning=False) for datum in query2] if test_data : data_size = (len(data)) test_size = (int)(data_size * 0.03) train_size = data_size - test_size zero_padding1 = np.zeros((train_size, max_length), dtype=np.int32) zero_padding2 =
np.zeros((train_size, max_length), dtype=np.int32)
numpy.zeros
#MIT License # #Copyright (c) 2020 standupmaths # #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: # #The above copyright notice and this permission notice shall be included in all #copies or substantial portions of the Software. # #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE #SOFTWARE. def xmaslight(): # This is the code from my #NOTE THE LEDS ARE GRB COLOUR (NOT RGB) # Here are the libraries I am currently using: import time import board import neopixel import re import math # FOR DEBUGGING PURPOSE #import matplotlib.pyplot as plt #import matplotlib.animation as animation # You are welcome to add any of these: # import random import numpy # import scipy import sys # If you want to have user changable values, they need to be entered from the command line # so import sys sys and use sys.argv[0] etc # some_value = int(sys.argv[0]) # IMPORT THE COORDINATES (please don't break this bit) coordfilename = "Python/coords.txt" # FOR DEBUGGING PURPOSE #coordfilename = "xmastree2020/coords.txt" fin = open(coordfilename,'r') coords_raw = fin.readlines() coords_bits = [i.split(",") for i in coords_raw] coords = [] for slab in coords_bits: new_coord = [] for i in slab: new_coord.append(int(re.sub(r'[^-\d]','', i))) coords.append(new_coord) #set up the pixels (AKA 'LEDs') PIXEL_COUNT = len(coords) # this should be 500 pixels = neopixel.NeoPixel(board.D18, PIXEL_COUNT, auto_write=False) # FOR DEBUGGING PURPOSE #pixels = [ 0 for i in range(PIXEL_COUNT) ] # YOU CAN EDIT FROM HERE DOWN # This program is intended to make a neuronal network out of the tree's LEDs. # # By neuronal network I mean: # the light of each LED will be set according to a dynamic variable V # that stands for a model of the electric potential in the membrane of a real neuron. # And these 'neurons' (i.e., LEDs) will have connections between them # that obey the dynamics of chemical synapses in the brain represented by the variable S. # The network is built according to a 'cubic-like' lattice: i.e., # a given LED receives input from the closest LEDs in each of the 6 spatial directions. # Thus, the 'synapse' is represented by a 'virtual' connection, and not a physical one (i.e., the LED wire) # I implemented other 2 types of networks: # a surface networks (only LEDs in the surface of the tree cone 'talk' to each other) # a proximity network (only LEDs within a radius R of each other are connected) # # to visualize the network generated by this algorithm, please run # python view_tree_network.py # first we need to define (a lot of) functions def memb_potential_to_01(V): # V -> dynamic variable (defined in [-1,1]) # the formula below is just a smart way to map # [-1,1] to [0,1], emphasizing bright colors (i.e., colors close to 1) # [0,1] is then mapped on the color_arr below if type(V) is numpy.ndarray: return ((V[:,0]+1.0)*0.5)**4 # raising to 4 is just to emphasize bright colors else: return ((V+1.0)*0.5)**4 # raising to 4 is just to emphasize bright colors def memb_potential_to_coloridx(V,n_colors): # V -> dynamic variable # n_colors -> total number of colors return numpy.floor(n_colors*memb_potential_to_01(V)).astype(int) def create_input_lists(neigh): # given a list of neighbors, where neigh[i] is a list of inputs to node i # generate the list of inputs to be used in the simulation presyn_neuron_list = [n for sublist in neigh for n in sublist] cs = numpy.insert(numpy.cumsum([ n.size for n in neigh ]),0,0) input_list = [ numpy.arange(a,b) for a,b in zip(cs[:-1],cs[1:]) ] return input_list,presyn_neuron_list def generate_list_of_neighbors(r,R=0.0,on_conic_surface_only=False): # generates a network of "pixels" # each pixel in position r[i,:] identifies its 6 closest neighbors and should receive a connection from it # if R is given, includes all pixels within a radius R of r[i,:] as a neighbor # the 6 neighbors are chosen such that each one is positioned to the left, right, top, bottom, front or back of each pixel (i.e., a simple attempt of a cubic lattice) # # r -> position vector (each line is the position of each pixel) # R -> neighborhood ball around each pixel # on_conic_surface_only -> if true, only links pixels that are on the conic shell of the tree # # returns: # list of neighbors # neigh[i] -> list of 6 "pixels" closest to i def is_left_neigh(u,v): # u and v are two vectors on the x,y plane # u may be a list of vectors (one vector per row) return numpy.dot(u,[-v[1],v[0]])>0.0 # # the vector [-v[1],v[0]] is the 90-deg CCW rotated version of v def get_first_val_not_in_list(v,l): # auxiliary function # returns first value in v that is not in l if v.size == 0: return None n = len(v) i = 0 while i < n: if not (v[i] in l): return v[i] i+=1 if on_conic_surface_only: # only adds 4 neighbors (top, bottom, left, right) that are outside of the cone defined by the estimated tree cone parameters # cone equation (x**2 + y**2)/c**2 = (z-z0)**2 z0 = numpy.max(r[:,2]) # cone height above the z=0 plane h = z0 + numpy.abs(numpy.min(r[:,2])) # cone total height base_r = (numpy.max( (numpy.max(r[:,1]),numpy.max(r[:,0])) ) + numpy.abs(numpy.min( ( numpy.min(r[:,1]),numpy.min(r[:,0]) ) )))/2.0 # cone base radius c = base_r / h # cone opening radius (defined by wolfram https://mathworld.wolfram.com/Cone.html ) #z_cone = lambda x,y,z0,c,s: z0+s*numpy.sqrt((x**2+y**2)/(c**2)) # s is the concavity of the cone: -1 turned down, +1 turned up cone_r_sqr = lambda z,z0,c: (c*(z-z0))**2 outside_cone = (r[:,0]**2+r[:,1]**2) > cone_r_sqr(r[:,2],z0,c) pixel_list = numpy.nonzero(outside_cone)[0] r_out = r[outside_cone,:] neigh = [ numpy.array([],dtype=int) for i in range(r.shape[0]) ] for i,r0 in enumerate(r_out): # a radius is not given, hence returns a crystalline-like cubic-like structure :P pixel_list_sorted = numpy.argsort(numpy.linalg.norm(r_out-r0,axis=1)) # sorted by Euler distance to r0 rs = r_out[pixel_list_sorted,:] # list of positions from the closest to the farthest one to r0 local_neigh_list = [] # local neighbor list x1_neigh = get_first_val_not_in_list(numpy.nonzero( is_left_neigh(rs[:,:2],r0[:2]) )[0],local_neigh_list) # gets first neighbor to the left that is not added yet if x1_neigh: local_neigh_list.append(x1_neigh) x2_neigh = get_first_val_not_in_list(numpy.nonzero( numpy.logical_not(is_left_neigh(rs[:,:2],r0[:2])) )[0],local_neigh_list) # gets first neighbor to the right that is not added yet if x2_neigh: local_neigh_list.append(x2_neigh) z1_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,2]<r0[2])[0],local_neigh_list) # gets first neighbor to the top that is not added yet if z1_neigh: local_neigh_list.append(z1_neigh) z2_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,2]>r0[2])[0],local_neigh_list) # gets first neighbor to the bottom that is not added yet if z2_neigh: local_neigh_list.append(z2_neigh) neigh[pixel_list[i]] = pixel_list[pixel_list_sorted[local_neigh_list]] # adds neighbors return neigh neigh = [] for r0 in r: if (R>0.0): # a neighborhood radius is given neigh.append(numpy.nonzero(numpy.linalg.norm(r-r0,axis=1)<R)[0]) else: # a radius is not given, hence returns a crystalline-like cubic-like structure :P pixel_list_sorted = numpy.argsort(numpy.linalg.norm(r-r0,axis=1)) # sorted by Euler distance to r0 rs = r[pixel_list_sorted,:] # list of positions from the closest to the farthest one to r0 local_neigh_list = [] # local neighbor list x1_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,0]<r0[0])[0],local_neigh_list) # gets first neighbor to the left that is not added yet if x1_neigh: local_neigh_list.append(x1_neigh) x2_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,0]>r0[0])[0],local_neigh_list) # gets first neighbor to the right that is not added yet if x2_neigh: local_neigh_list.append(x2_neigh) y1_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,1]<r0[1])[0],local_neigh_list) # gets first neighbor to the back that is not added yet if y1_neigh: local_neigh_list.append(y1_neigh) y2_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,1]>r0[1])[0],local_neigh_list) # gets first neighbor to the front that is not added yet if y2_neigh: local_neigh_list.append(y2_neigh) z1_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,2]<r0[2])[0],local_neigh_list) # gets first neighbor to the top that is not added yet if z1_neigh: local_neigh_list.append(z1_neigh) z2_neigh = get_first_val_not_in_list(numpy.nonzero(rs[:,2]>r0[2])[0],local_neigh_list) # gets first neighbor to the bottom that is not added yet if z2_neigh: local_neigh_list.append(z2_neigh) neigh.append(pixel_list_sorted[local_neigh_list]) # adds neighbors return neigh def build_network(r_nodes,R=0.0,conic_surface_only=False): # r_nodes vector of coordinates of each pixel # R connection radius # if R is zero, generates an attempt of a cubic-like lattice, otherwise connects all pixels within a radius R of each other neigh = generate_list_of_neighbors(r_nodes,R,on_conic_surface_only=conic_surface_only) # creates the interaction lists between dynamic variables input_list,presyn_neuron_list = create_input_lists(neigh) # creates dynamic variables N = len(neigh) # number of neurons (or pixels) Nsyn = len(presyn_neuron_list) V = numpy.zeros((N,3)) # membrane potential (dynamic variables) of each neuron (pixel) S = numpy.zeros((Nsyn,2)) # synaptic current input generated by each pixel towards each of its postsynaptic pixels return V,S,input_list,presyn_neuron_list def get_neuron_resting_state(neuron_map_iter,par,T=20000): V = -0.9*
numpy.ones((1,3))
numpy.ones
import localmodule import datetime import h5py import math import music21 as m21 import numpy as np import os import scipy import scipy.linalg import sys import time # Parse arguments args = sys.argv[1:] composer_str = args[0] track_str = args[1] # Define constants. J_tm = 8 N = 2**10 n_octaves = 8 midi_octave_offset = 2 quantization = 2.0 xi = 0.25 sigma = 0.1 # Print header. start_time = int(time.time()) print(str(datetime.datetime.now()) + " Start.") print("Eigenprogression transform.") print("Composer: " + composer_str + ".") print("Piece: " + track_str + ".") print("") print("h5py version: {:s}".format(h5py.__version__)) print("music21 version: {:s}".format(m21.__version__)) print("numpy version: {:s}".format(np.__version__)) print("scipy version: {:s}".format(scipy.__version__)) print("") ############################# (1) PARSING ################################## # Start clock. parsing_start_time = int(time.time()) # Parse Kern score with music21. data_dir = localmodule.get_data_dir() dataset_name = localmodule.get_dataset_name() kern_name = "_".join([dataset_name, "kern"]) kern_dir = os.path.join(data_dir, kern_name) composer_dir = os.path.join(kern_dir, composer_str) track_name = track_str + ".krn" track_path = os.path.join(composer_dir, track_name) score = m21.converter.parse(track_path) pianoroll_parts = [] n_parts = len(score.parts) n_semitones = 12 * n_octaves # Loop over parts to extract piano rolls. for part_id in range(n_parts): part = score.parts[part_id] pianoroll_part = np.zeros((n_semitones, N), dtype=np.float32) # Get the measure offsets measure_offset = {} for el in part.recurse(classFilter=('Measure')): measure_offset[el.measureNumber] = el.offset # Loop over notes for note in part.recurse(classFilter=('Note')): note_start = int(math.ceil( (measure_offset[note.measureNumber] +\ note.offset) *\ quantization)) note_end = int(math.ceil(( measure_offset[note.measureNumber] +\ note.offset +\ note.duration.quarterLength) *\ quantization)) pianoroll_part[ note.midi - midi_octave_offset * 12, note_start:note_end] = 1 pianoroll_parts.append(pianoroll_part) # Stack parts into piano roll. mtrack_pianoroll = np.stack(pianoroll_parts, 2) pianoroll = mtrack_pianoroll.max(axis=2) # Print elapsed time. elapsed_time = time.time() - int(parsing_start_time) elapsed_str = "{:>05.2f}".format(elapsed_time) print("Parsing took " + elapsed_str + " seconds.") ####################### (2) WAVELET TRANSFORM ############################## # Start clock. wavelet_start_time = int(time.time()) # Setup wavelet filter bank over time. wavelet_filterbank_ft = np.zeros((1, N, J_tm), dtype=np.float32) for j in range(J_tm-1): xi_j = xi * 2**(-j) sigma_j = sigma * 2**(-j) center = xi_j * N den = 2 * sigma_j * sigma_j * N * N psi_ft = localmodule.morlet(center, den, N, n_periods=4) wavelet_filterbank_ft[0, :, -1 - j] = psi_ft # Append scaling function phi (average). wavelet_filterbank_ft[0, 0, 0] = 1 # Convolve pianoroll with filterbank. pianoroll_ft = scipy.fftpack.fft(pianoroll, axis=1) pianoroll_ft = np.expand_dims(pianoroll_ft, axis=2) wavelet_transform_ft = pianoroll_ft * wavelet_filterbank_ft wavelet_transform = scipy.fftpack.ifft(wavelet_transform_ft, axis=1) # Print elapsed time. elapsed_time = time.time() - int(parsing_start_time) elapsed_str = "{:>05.2f}".format(elapsed_time) print("Wavelet transform took " + elapsed_str + " seconds.") ####################### (3) EIGENTRIAD TRANSFORM ########################### # Start clock. eigentriad_start_time = int(time.time()) # Reshape MIDI axis to chromagram chromagram = np.reshape(wavelet_transform, (12, -1, wavelet_transform.shape[1], wavelet_transform.shape[2]), 'F') # Construct eigentriads cosine_basis = np.array([[np.cos(2*np.pi*omega*t/3) for omega in range(3)] for t in range(3)]).T sine_basis = np.array([[np.sin(2*np.pi*omega*t/3) for omega in range(3)] for t in range(3)]).T fourier_basis = cosine_basis + 1.0j * sine_basis major_template = [0, 4, 7] minor_template = [0, 3, 7] major_eigentriads = np.zeros((12, 3), dtype=np.complex64) minor_eigentriads = np.zeros((12, 3), dtype=np.complex64) for omega in range(3): for t, p in enumerate(major_template): major_eigentriads[p, omega] = fourier_basis[t, omega] for t, p in enumerate(minor_template): minor_eigentriads[p, omega] = fourier_basis[t, omega] eigentriads = np.stack( (major_eigentriads, minor_eigentriads), axis=1) eigentriads = eigentriads.astype(np.complex64) # Convolve chromagram with eigentriads chromagram_ft = scipy.fftpack.fft(chromagram, axis=0) chromagram_ft = chromagram_ft[:, np.newaxis, :, :, :, np.newaxis] eigentriads_ft = scipy.fftpack.fft(eigentriads, axis=0) eigentriads_ft = eigentriads_ft[:, :, np.newaxis, np.newaxis, np.newaxis, :] eigentriad_transform_ft = chromagram_ft * eigentriads_ft eigentriad_transform = scipy.fftpack.fft( eigentriad_transform_ft, axis=0) # Apply modulus nonlinearity eigentriad_transform_modulus = np.abs(eigentriad_transform) # Print elapsed time. elapsed_time = time.time() - int(eigentriad_start_time) elapsed_str = "{:>05.2f}".format(elapsed_time) print("Eigentriad transform took " + elapsed_str + " seconds.") ####################### (4) SCATTERING TRANSFORM ########################### # Start clock. scattering_start_time = int(time.time()) # Setup scattering filter bank over time. scattering_filterbank_ft = np.zeros((1, N, 2*J_tm-1), dtype=np.float32) for j in range(J_tm-1): xi_j = xi * 2**(-j) sigma_j = sigma * 2**(-j) center = xi_j * N den = 2 * sigma_j * sigma_j * N * N psi_ft = localmodule.morlet(center, den, N, n_periods=4) conj_psi_ft = np.roll(psi_ft, -1)[::-1] scattering_filterbank_ft[0, :, -1 - 2*j] = psi_ft scattering_filterbank_ft[0, :, -1 - (2*j+1)] = conj_psi_ft scattering_filterbank_ft[0, 0, 0] = 1 # Convolve eigentriad transform with filterbank again. # This is akin to a scattering transform. # We remove the finest scale (last two coefficients). eigentriad_transform_modulus_ft =\ scipy.fftpack.fft(eigentriad_transform_modulus, axis=3) eigentriad_transform_modulus_ft =\ eigentriad_transform_modulus_ft[:, :, :, :, :, :, np.newaxis] scattering_filterbank_ft =\ wavelet_filterbank_ft[:, np.newaxis, np.newaxis, :, np.newaxis, np.newaxis, :-2] scattering_transform_ft =\ eigentriad_transform_modulus_ft * scattering_filterbank_ft scattering_transform = scipy.fftpack.ifft(scattering_transform_ft, axis=3) # Print elapsed time. elapsed_time = time.time() - int(scattering_start_time) elapsed_str = "{:>05.2f}".format(elapsed_time) print("Scattering transform took " + elapsed_str + " seconds.") ###################### (5) EIGENPROGRESSION TRANSFORM ###################### # Start clock. eigenprogression_start_time = int(time.time()) # Reshape chroma and quality into a chord axis sc_shape = scattering_transform.shape tonnetz_shape = ( sc_shape[0]*sc_shape[1], sc_shape[2], sc_shape[3], sc_shape[4], sc_shape[5], sc_shape[6]) tonnetz = np.reshape(scattering_transform, tonnetz_shape, 'F') # Build adjacency matrix for Tonnetz graph # (1/3) Major to minor transitions. major_edges = np.zeros((12,), dtype=np.float32) # Parallel minor (C major to C minor) major_edges[0] = 1 # Relative minor (C major to A minor) major_edges[9] = 1 # Leading tone minor (C major to E minor) major_edges[4] = 1 # (2/3) Minor to major transitions minor_edges = np.zeros((12,)) # Parallel major (C minor to C major) minor_edges[0] = 1 # Relative major (C minor to Eb major) minor_edges[3] = 1 # Leading tone major (C major to Ab minor) minor_edges[8] = 1 # (2/3) Build full adjacency matrix by 4 blocks. major_adjacency = scipy.linalg.toeplitz(major_edges, minor_edges) minor_adjacency = scipy.linalg.toeplitz(minor_edges, major_edges) tonnetz_adjacency =
np.zeros((24, 24), dtype=np.float32)
numpy.zeros
import pcp_utils import os import yaml import trimesh import numpy as np import xml.etree.ElementTree as ET # add gym and baselines to the dir gym_path = pcp_utils.utils.get_gym_dir() baseline_path = pcp_utils.utils.get_baseline_dir() os.sys.path.append(gym_path) os.sys.path.append(baseline_path) def maybe_check_obj_mean(mesh_path): mesh = trimesh.load(mesh_path) if not isinstance(mesh, trimesh.Trimesh): return None mean_vertex = mesh.vertices.mean(axis=0) return mean_vertex def get_mesh_paths(xml_path): tree = ET.parse(xml_path) root = tree.getroot() asset_tag = None for root_child in iter(root): if root_child.tag == 'asset': asset_tag = root_child if asset_tag is None: raise ValueError('given xml does not contain asset element') mesh_paths = list() for asset_child in iter(asset_tag): if asset_child.tag == 'mesh': mesh_paths.append(asset_child.attrib['file']) return mesh_paths def maybe_refine_mesh_paths(mesh_paths, source_mesh_dir): refined_mesh_paths = list() for m in mesh_paths: if os.path.exists(m): refined_mesh_paths.append(m) else: remove_str = '../meshes/' new_path = os.path.join(source_mesh_dir, m[len(remove_str):]) refined_mesh_paths.append(new_path) return refined_mesh_paths def compute_correction_factor(mesh_paths, combined=False): meshes = [trimesh.load(m) for m in mesh_paths] if combined: combined_mesh = np.sum(meshes) # compute the mean mean_position = combined_mesh.vertices.mean(axis=0) else: # for each mesh I will compute the geometric center mean_position = [m.vertices.mean(axis=0) for m in meshes] return mean_position def compute_correction_factor_bbox(mesh_paths): meshes = [trimesh.load(m) for m in mesh_paths] combined_mesh = np.sum(meshes) # compute the bounding box bounds bbox_bounds = combined_mesh.bounding_box.bounds # compute the center from the bounds bbox_center = bbox_bounds[0, :] + ((bbox_bounds[1, :] - bbox_bounds[0, :])/2.0) return bbox_center def correct_meshes_and_save(correction_factor, mesh_paths): # load all the meshes meshes = [trimesh.load(m) for m in mesh_paths] if isinstance(correction_factor, list): for i, (mesh, corr_factor) in enumerate(zip(meshes, correction_factor)): mesh.vertices -= corr_factor mesh.export(mesh_paths[i]) else: #It is an integer and I am using the combined mesh correction # from all meshes.vertices subtract the correction factor for mp, m in zip(mesh_paths, meshes): m.vertices -= correction_factor m.export(mp) def check_meshes(mesh_paths, combined=False): meshes = [trimesh.load(m) for m in mesh_paths] eps = np.zeros(3,) if combined: combined_mesh = np.sum(meshes) mean_pos = combined_mesh.vertices.mean(axis=0) truth_val =
np.allclose(mean_pos, eps)
numpy.allclose
## Copyright 2020 UT-Battelle, LLC. See LICENSE.txt for more information. ### # @author <NAME>, <NAME>, <NAME>, <NAME> # <EMAIL> # # Modification: # Baseline code # Date: Apr, 2020 # ************************************************************************** ### import os from multi_thread_run import * from deffe_utils import * import numpy as np import argparse import shlex import pathlib from read_config import * """ DeffeExtract class to extract cost metrics for the batch of samples with through multi-thread execution environment either with/without the help of slurm """ class DeffeExtract: def __init__(self, framework): self.framework = framework self.config = framework.config.GetExtract() self.slurm_flag = self.config.slurm self.slurm = LoadPyModule(self.config.GetSlurm().pyscript, self, self.config.GetSlurm()) if self.framework.args.no_slurm: self.slurm_flag = False self.sample_extract_script = self.config.sample_extract_script if not os.path.exists(self.sample_extract_script): self.sample_extract_script = os.path.join( self.framework.config_dir, self.sample_extract_script ) self.batch_size = self.config.batch_size self.fr_config = self.framework.fr_config if self.framework.args.batch_size!= -1: self.batch_size = self.framework.args.batch_size if self.framework.args.extract_batch_size!= -1: self.batch_size = self.framework.args.extract_batch_size self.output_flow = self.batch_size if self.config.output_flow != -1: self.output_flow = self.config.output_flow if self.framework.args.extract_out_flow != -1: self.output_flow = self.framework.args.extract_out_flow self.parameters = self.framework.parameters self.parser = self.AddArgumentsToParser() self.args = self.ReadArguments() def GetBatchSize(self): return self.batch_size def GetOutputFlow(self): return self.output_flow # Read arguments provided in JSON configuration file def ReadArguments(self): arg_string = self.config.arguments args = self.parser.parse_args(shlex.split(arg_string)) return args # Add command line arguments to parser def AddArgumentsToParser(self): parser = argparse.ArgumentParser() return parser # Initialize the class with parameters list and to be extracted cost metrics def Initialize(self, param_list, cost_list, param_data): self.param_list = param_list self.cost_list = cost_list self.param_data = param_data def GetExtractCommand(self, output, param_pattern, param_val_with_escapechar_hash, bash_param_val_with_escapechar_hash): (run_dir, counter, evaluate_script) = output extract_script = self.sample_extract_script if not os.path.isfile(extract_script): return None extract_script = self.parameters.CreateRunScript( extract_script, self.config.sample_extract_arguments, self.config.sample_extract_excludes, run_dir, param_pattern, param_val_with_escapechar_hash, bash_param_val_with_escapechar_hash, "extract_" ) cmd = ( "cd " + run_dir + " ; sh " + os.path.basename(extract_script) + " > " + self.config.output_log + " 2>&1 3>&1 ; cd " + os.getcwd() ) return cmd def GetResult(self, flag, param_val, eval_output): (run_dir, counter, evaluate_script) = eval_output file_path = os.path.join(run_dir, self.config.cost_output) if os.path.exists(file_path): if pathlib.Path(file_path).suffix == '.json': data = {} try: results_json = DeffeConfig(file_path) data = results_json.data except (ValueError, TypeError) as e: Log(f"Unable to read results json file due to Type/Value errors! file:{file_path} ", 'Error') param_hash_key = self.framework.config.GetCosts() if data != None: result = [] for p in param_hash_key: if p in data: result.append(str(data[p])) else: result.append("NULL") result = np.array(result).astype("str") if self.framework.args.hold_evaluated_data or \ self.config.hold_evaluated_data: self.param_data.PushEvaluatedData(param_val, result) return ( self.framework.valid_flag, flag, result, ) else: with open(file_path, "r") as fh: lines = fh.readlines() if len(lines) == 0: return (self.framework.not_valid_flag, flag, np.array([0,]).astype("str")) flines = [RemoveWhiteSpaces(lines[index]) if index < len(lines) else 0 for index in range(len(self.cost_list)) ] result =
np.array(flines)
numpy.array
import numpy as np from mot.common import Gaussian from mot.configs import Object COMMON_BIRTH_TIME = 10 COMMON_DEATH_TIME = 80 # TODO single static object (no motion single_static_object = [ Object( initial=Gaussian(x=np.array([10.0, 10.0, 0.0, 0.0]), P=np.eye(4)), t_birth=COMMON_BIRTH_TIME, t_death=COMMON_DEATH_TIME, ) ] # TODO two static objects (no motion) two_static_objects = [ Object( initial=Gaussian(x=np.array([-100.0, 100.0, 0.0, 0.0]), P=np.eye(4)), t_birth=COMMON_BIRTH_TIME, t_death=COMMON_DEATH_TIME, ), Object( initial=Gaussian(x=np.array([100.0, 100.0, 0.0, 0.0]), P=np.eye(4)), t_birth=COMMON_BIRTH_TIME, t_death=COMMON_DEATH_TIME, ), ] # TODO three static objects (no motion) three_static_objects = [ Object( initial=Gaussian(x=
np.array([-250.0, 250.0, 0.0, 0.0])
numpy.array
import pytest import numpy import scipy from numpy.testing import assert_allclose from jadapy import jdqr from jadapy import Target from jadapy.utils import norm try: from jadapy import schur n = 20 a = numpy.random.rand(n, n) t, q = schur.schur(a) schur.schur_sort(t, q, Target.LargestMagnitude) except ValueError: pytest.skip('SciPy too old', allow_module_level=True) REAL_DTYPES = [numpy.float32, numpy.float64] COMPLEX_DTYPES = [numpy.complex64, numpy.complex128] DTYPES = REAL_DTYPES + COMPLEX_DTYPES def generate_random_dtype_array(shape, dtype): if dtype in COMPLEX_DTYPES: return (numpy.random.rand(*shape) + numpy.random.rand(*shape) * 1.0j).astype(dtype) return numpy.random.rand(*shape).astype(dtype) def generate_mass_matrix(shape, dtype): x = numpy.zeros(shape, dtype) numpy.fill_diagonal(x, numpy.random.rand(shape[0])) return x def generate_test_matrix(shape, dtype): a = generate_random_dtype_array(shape, dtype) a += 3 * numpy.diag(numpy.ones([shape[0]], dtype)) return a @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_smallest_magnitude(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, num=k, tol=tol) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: abs(x))) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: abs(x))) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_smallest_magnitude_with_mass(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) m = generate_mass_matrix([n, n], dtype) alpha = jdqr.jdqr(a, num=k, tol=tol, M=m) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: abs(x))) eigs = scipy.linalg.eigvals(a, m) eigs = numpy.array(sorted(eigs, key=lambda x: abs(x))) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_largest_magnitude(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.LargestMagnitude, tol=tol) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: -abs(x))) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: -abs(x))) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_largest_magnitude_with_mass(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) m = generate_mass_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.LargestMagnitude, tol=tol, M=m) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: -abs(x))) eigs = scipy.linalg.eigvals(a, m) eigs = numpy.array(sorted(eigs, key=lambda x: -abs(x))) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_smallest_real(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.SmallestRealPart, tol=tol) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: x.real)) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: x.real)) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_largest_real(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.LargestRealPart, tol=tol) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: -x.real)) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: -x.real)) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_smallest_imag(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.SmallestImaginaryPart, tol=tol, arithmetic='complex') jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: x.imag)) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: x.imag)) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_smallest_imag_real(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 6 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.SmallestImaginaryPart, tol=tol) jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: x.imag)) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: x.imag)) eigs = eigs[:k] # In the real case, we store complex conjugate eigenpairs, so only # at least half of the eigenvalues are correct eigs = eigs[:k // 2] jdqr_eigs = jdqr_eigs[:k // 2] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_largest_imag(dtype): numpy.random.seed(1234) tol = numpy.finfo(dtype).eps * 1e3 atol = tol * 10 n = 20 k = 5 a = generate_test_matrix([n, n], dtype) alpha = jdqr.jdqr(a, k, Target.LargestImaginaryPart, tol=tol, arithmetic='complex') jdqr_eigs = numpy.array(sorted(alpha, key=lambda x: -x.imag)) eigs = scipy.linalg.eigvals(a) eigs = numpy.array(sorted(eigs, key=lambda x: -x.imag)) eigs = eigs[:k] assert_allclose(jdqr_eigs.real, eigs.real, rtol=0, atol=atol) assert_allclose(abs(jdqr_eigs.imag), abs(eigs.imag), rtol=0, atol=atol) @pytest.mark.parametrize('dtype', DTYPES) def test_jdqr_largest_imag_real(dtype): numpy.random.seed(1234) tol =
numpy.finfo(dtype)
numpy.finfo
import gc import numpy as np import pandas as pd import os from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import roc_auc_score from sklearn.model_selection import RepeatedKFold from sklearn.preprocessing import LabelEncoder from datetime import datetime from tqdm import tqdm import lightgbm as lgb # Load Data dtype = { 'id': str, 'teacher_id': str, 'teacher_prefix': str, 'school_state': str, 'project_submitted_datetime': str, 'project_grade_category': str, 'project_subject_categories': str, 'project_subject_subcategories': str, 'project_title': str, 'project_essay_1': str, 'project_essay_2': str, 'project_essay_3': str, 'project_essay_4': str, 'project_resource_summary': str, 'teacher_number_of_previously_posted_projects': int, 'project_is_approved': np.uint8, } # Write code that limits the rows until I've sorted out the kinks data_dir = "F:/Nerdy Stuff/Kaggle/DonorsChoose" sub_path = "F:/Nerdy Stuff/Kaggle submissions/DonorChoose" train = pd.read_csv(os.path.join(data_dir, 'data/train_stem.csv'), low_memory=True) test = pd.read_csv(os.path.join(data_dir, 'data/test_stem.csv'), low_memory=True) id_test = test['id'].values # Extract features def extract_features(df): df['project_title_len'] = df['project_title'].apply(lambda x: len(str(x))) df['project_essay_1_len'] = df['project_essay_1'].apply(lambda x: len(str(x))) df['project_essay_2_len'] = df['project_essay_2'].apply(lambda x: len(str(x))) df['project_essay_3_len'] = df['project_essay_3'].apply(lambda x: len(str(x))) df['project_essay_4_len'] = df['project_essay_4'].apply(lambda x: len(str(x))) df['project_resource_summary_len'] = df['project_resource_summary'].apply(lambda x: len(str(x))) df['project_title_wc'] = df['project_title'].apply(lambda x: len(str(x).split(' '))) df['project_essay_1_wc'] = df['project_essay_1'].apply(lambda x: len(str(x).split(' '))) df['project_essay_2_wc'] = df['project_essay_2'].apply(lambda x: len(str(x).split(' '))) df['project_essay_3_wc'] = df['project_essay_3'].apply(lambda x: len(str(x).split(' '))) df['project_essay_4_wc'] = df['project_essay_4'].apply(lambda x: len(str(x).split(' '))) df['project_resource_summary_wc'] = df['project_resource_summary'].apply(lambda x: len(str(x).split(' '))) extract_features(train) extract_features(test) train.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4'], axis=1, inplace=True) test.drop([ 'project_essay_1', 'project_essay_2', 'project_essay_3', 'project_essay_4'], axis=1, inplace=True) # Recoding as when stopwords are removed some titles have no values print("Recoding missing values once NLP preprocessing done. Might want to check that") train.loc[train['project_title'].isnull() == True, 'project_title'] = 'No values once NLP preprocessing is done' test.loc[test['project_title'].isnull() == True, 'project_title'] = 'No values once NLP preprocessing is done' train.loc[train['project_essay'].isnull() == True, 'project_essay'] = 'No values once NLP preprocessing is done' test.loc[test['project_essay'].isnull() == True, 'project_essay'] = 'No values once NLP preprocessing is done' train.loc[train['project_resource_summary'].isnull() == True, 'project_resource_summary'] = 'No values once NLP preprocessing is done' test.loc[test['project_resource_summary'].isnull() == True, 'project_resource_summary'] = 'No values once NLP preprocessing is done' train.loc[train['description_ttl'].isnull() == True, 'description_ttl'] = 'No values once NLP preprocessing is done' test.loc[test['description_ttl'].isnull() == True, 'description_ttl'] = 'No values once NLP preprocessing is done' gc.collect() # Preprocess columns with label encoder print('Label Encoder...') cols = [ 'teacher_id', 'teacher_prefix', 'school_state', 'project_grade_category', 'project_subject_categories', 'project_subject_subcategories' ] df_all = pd.concat([train, test], axis=0) for c in tqdm(cols): le = LabelEncoder() le.fit(df_all[c].astype(str)) train[c] = le.transform(train[c].astype(str)) test[c] = le.transform(test[c].astype(str)) del le gc.collect() print('Done.') # Preprocess timestamp print('Preprocessing timestamp...') def process_timestamp(df): df['project_submitted_datetime'] = pd.to_datetime(df['project_submitted_datetime']) df['year'] = df['project_submitted_datetime'].apply(lambda x: x.year) df['month'] = df['project_submitted_datetime'].apply(lambda x: x.month) df['day'] = df['project_submitted_datetime'].apply(lambda x: x.day) df['day_of_week'] = df['project_submitted_datetime'].apply(lambda x: x.dayofweek) df['hour'] = df['project_submitted_datetime'].apply(lambda x: x.hour) df['minute'] = df['project_submitted_datetime'].apply(lambda x: x.minute) df['project_submitted_datetime'] = df['project_submitted_datetime'].values.astype(np.int64) process_timestamp(train) process_timestamp(test) print('Done.') # Preprocess text print('Preprocessing text...') cols = [ 'project_title', 'project_essay', 'project_resource_summary', 'description_ttl' ] n_features = [ 400, 4040, 400, 400 ] for c_i, c in tqdm(enumerate(cols)): print("TFIDF for %s" % (c)) tfidf = TfidfVectorizer( max_features=n_features[c_i], norm='l2', ) tfidf.fit(df_all[c]) tfidf_train = np.array(tfidf.transform(train[c]).toarray(), dtype=np.float16) tfidf_test = np.array(tfidf.transform(test[c]).toarray(), dtype=np.float16) for i in range(n_features[c_i]): train[c + '_tfidf_' + str(i)] = tfidf_train[:, i] test[c + '_tfidf_' + str(i)] = tfidf_test[:, i] del tfidf, tfidf_train, tfidf_test gc.collect() print('Done.') gc.collect() # Prepare data cols_to_drop = [ 'Unnamed: 0' , 'id' , 'teacher_id' , 'project_title' , 'project_essay' , 'project_resource_summary' , 'project_is_approved' , 'description_ttl' ] X = train.drop(cols_to_drop, axis=1, errors='ignore') y = train['project_is_approved'] X_test = test.drop(cols_to_drop, axis=1, errors='ignore') id_test = test['id'].values feature_names = list(X.columns) print(X.shape, X_test.shape) # del train, test gc.collect() # Build the model cnt = 0 p_buf = [] n_splits = 5 n_repeats = 1 kf = RepeatedKFold( n_splits=n_splits, n_repeats=n_repeats, random_state=0) auc_buf = [] num_rows = 60000 X_train_test = X.iloc[0:num_rows, :] y_train_test = y.iloc[0:num_rows] prob_ests = [] y_test = [] prb = np.array(prob_ests[0]) y_tst =
np.asarray(y_test[0], np.int32)
numpy.asarray
# Copyright 2016 Princeton University # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Event segmentation using a Hidden Markov Model Given an ROI timeseries, this class uses an annealed fitting procedure to segment the timeseries into events with stable activity patterns. After learning the signature activity pattern of each event, the model can then be applied to other datasets to identify a corresponding sequence of events. Full details are available in the bioRxiv preprint: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME> Discovering event structure in continuous narrative perception and memory Neuron, Volume 95, Issue 3, 709 - 721.e5 http://www.cell.com/neuron/abstract/S0896-6273(17)30593-7 """ # Authors: <NAME> and <NAME> (Princeton University) import numpy as np from scipy import stats import logging import copy from sklearn.base import BaseEstimator from sklearn.utils.validation import check_is_fitted, check_array from sklearn.exceptions import NotFittedError from . import _utils as utils # type: ignore logger = logging.getLogger(__name__) __all__ = [ "EventSegment", ] class EventSegment(BaseEstimator): """Class for event segmentation of continuous fMRI data Parameters ---------- n_events: int Number of segments to learn step_var: Callable[[int], float] : default 4 * (0.98 ** (step - 1)) The Gaussian variance to use during fitting, as a function of the number of steps. Should decrease slowly over time. n_iter: int : default 500 Maximum number of steps to run during fitting Attributes ---------- p_start, p_end: length n_events+1 ndarray initial and final prior distributions over events P: n_events+1 by n_events+1 ndarray HMM transition matrix ll_ : ndarray with length = number of training datasets Log-likelihood for training datasets over the course of training segments_: list of (time by event) ndarrays Learned (soft) segmentation for training datasets event_var_ : float Gaussian variance at the end of learning event_pat_ : voxel by event ndarray Learned mean patterns for each event """ def _default_var_schedule(step): return 4 * (0.98 ** (step - 1)) def __init__(self, n_events=2, step_var=_default_var_schedule, n_iter=500): self.n_events = n_events self.step_var = step_var self.n_iter = n_iter def fit(self, X, y=None): """Learn a segmentation on training data Fits event patterns and a segmentation to training data. After running this function, the learned event patterns can be used to segment other datasets using find_events Parameters ---------- X: time by voxel ndarray, or a list of such ndarrays fMRI data to be segmented. If a list is given, then all datasets are segmented simultaneously with the same event patterns y: not used (added to comply with BaseEstimator definition) Returns ------- self: the EventSegment object """ X = copy.deepcopy(X) if type(X) is not list: X = check_array(X) X = [X] n_train = len(X) for i in range(n_train): X[i] = X[i].T self.classes_ = np.arange(self.n_events) n_dim = X[0].shape[0] for i in range(n_train): assert (X[i].shape[0] == n_dim) # Double-check that data is z-scored in time for i in range(n_train): X[i] = stats.zscore(X[i], axis=1, ddof=1) # Initialize variables for fitting log_gamma = [] for i in range(n_train): log_gamma.append(np.zeros((X[i].shape[1], self.n_events))) step = 1 best_ll = float("-inf") self.ll_ = np.empty((0, n_train)) while step <= self.n_iter: iteration_var = self.step_var(step) # Based on the current segmentation, compute the mean pattern # for each event seg_prob = [np.exp(lg) / np.sum(np.exp(lg), axis=0) for lg in log_gamma] mean_pat = np.empty((n_train, n_dim, self.n_events)) for i in range(n_train): mean_pat[i, :, :] = X[i].dot(seg_prob[i]) mean_pat =
np.mean(mean_pat, axis=0)
numpy.mean
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*- # vi: set ft=python sts=4 ts=4 sw=4 et: """Nipype translation of ANTs' workflows.""" # general purpose from pkg_resources import resource_filename as pkgr_fn # nipype from nipype.pipeline import engine as pe from nipype.interfaces import utility as niu from nipype.interfaces.ants import ( AI, ImageMath, N4BiasFieldCorrection, ) # niworkflows from niworkflows.interfaces.bids import DerivativesDataSink as _DDS from niworkflows.interfaces.images import RegridToZooms from niworkflows.interfaces.nibabel import ApplyMask, Binarize, IntensityClip from niworkflows.interfaces.fixes import ( FixHeaderRegistration as Registration, FixHeaderApplyTransforms as ApplyTransforms, ) from niworkflows.interfaces.reportlets.registration import ( SimpleBeforeAfterRPT as SimpleBeforeAfter, ) from templateflow.api import get as get_template from ..interfaces import DenoiseImage from .. import __version__ class DerivativesDataSink(_DDS): """Generate a BIDS-Derivatives-compatible output folder.""" out_path_base = f"nirodents-{__version__}" LOWRES_ZOOMS = (0.4, 0.4, 0.4) HIRES_ZOOMS = (0.1, 0.1, 0.1) def init_rodent_brain_extraction_wf( ants_affine_init=False, factor=20, arc=0.12, step=4, grid=(0, 4, 4), debug=False, interim_checkpoints=True, mem_gb=3.0, mri_scheme="T2w", name="rodent_brain_extraction_wf", omp_nthreads=None, output_dir=None, template_id="Fischer344", template_specs=None, use_float=True, ): """ Build an atlas-based brain extraction pipeline for rodent T1w and T2w MRI data. Parameters ---------- ants_affine_init : :obj:`bool`, optional Set-up a pre-initialization step with ``antsAI`` to account for mis-oriented images. """ inputnode = pe.Node( niu.IdentityInterface(fields=["in_files", "in_mask"]), name="inputnode" ) outputnode = pe.Node( niu.IdentityInterface(fields=["out_corrected", "out_brain", "out_mask"]), name="outputnode", ) template_specs = template_specs or {} if template_id == "WHS" and "resolution" not in template_specs: template_specs["resolution"] = 2 # Find a suitable target template in TemplateFlow tpl_target_path = get_template(template_id, suffix=mri_scheme, **template_specs,) if not tpl_target_path: raise RuntimeError( f"An instance of template <tpl-{template_id}> with MR scheme '{mri_scheme}'" " could not be found." ) tpl_brainmask_path = get_template( template_id, atlas=None, hemi=None, desc="brain", suffix="probseg", **template_specs, ) or get_template( template_id, atlas=None, hemi=None, desc="brain", suffix="mask", **template_specs, ) tpl_regmask_path = get_template( template_id, atlas=None, desc="BrainCerebellumExtraction", suffix="mask", **template_specs, ) denoise = pe.Node(DenoiseImage(dimension=3, copy_header=True), name="denoise", n_procs=omp_nthreads) # Resample template to a controlled, isotropic resolution res_tmpl = pe.Node(RegridToZooms(zooms=HIRES_ZOOMS, smooth=True), name="res_tmpl") # Create Laplacian images lap_tmpl = pe.Node(ImageMath(operation="Laplacian", copy_header=True), name="lap_tmpl") tmpl_sigma = pe.Node(niu.Function(function=_lap_sigma), name="tmpl_sigma", run_without_submitting=True) norm_lap_tmpl = pe.Node(niu.Function(function=_norm_lap), name="norm_lap_tmpl") lap_target = pe.Node(ImageMath(operation="Laplacian", copy_header=True), name="lap_target") target_sigma = pe.Node(niu.Function(function=_lap_sigma), name="target_sigma", run_without_submitting=True) norm_lap_target = pe.Node(niu.Function(function=_norm_lap), name="norm_lap_target") # Set up initial spatial normalization ants_params = "testing" if debug else "precise" norm = pe.Node( Registration( from_file=pkgr_fn( "nirodents", f"data/artsBrainExtraction_{ants_params}_{mri_scheme}.json" ) ), name="norm", n_procs=omp_nthreads, mem_gb=mem_gb, ) norm.inputs.float = use_float # main workflow wf = pe.Workflow(name) # truncate target intensity for N4 correction clip_target = pe.Node(IntensityClip(p_min=15, p_max=99.9), name="clip_target") # truncate template intensity to match target clip_tmpl = pe.Node(IntensityClip(p_min=5, p_max=98), name="clip_tmpl") clip_tmpl.inputs.in_file = _pop(tpl_target_path) # set INU bspline grid based on voxel size bspline_grid = pe.Node(niu.Function(function=_bspline_grid), name="bspline_grid") # INU correction of the target image init_n4 = pe.Node( N4BiasFieldCorrection( dimension=3, save_bias=False, copy_header=True, n_iterations=[50] * (4 - debug), convergence_threshold=1e-7, shrink_factor=4, rescale_intensities=True, ), n_procs=omp_nthreads, name="init_n4", ) clip_inu = pe.Node(IntensityClip(p_min=1, p_max=99.8), name="clip_inu") # Create a buffer interface as a cache for the actual inputs to registration buffernode = pe.Node( niu.IdentityInterface(fields=["hires_target"]), name="buffernode" ) # Merge image nodes mrg_target = pe.Node(niu.Merge(2), name="mrg_target") mrg_tmpl = pe.Node(niu.Merge(2), name="mrg_tmpl") # fmt: off wf.connect([ # Target image massaging (inputnode, denoise, [(("in_files", _pop), "input_image")]), (inputnode, bspline_grid, [(("in_files", _pop), "in_file")]), (bspline_grid, init_n4, [("out", "args")]), (denoise, clip_target, [("output_image", "in_file")]), (clip_target, init_n4, [("out_file", "input_image")]), (init_n4, clip_inu, [("output_image", "in_file")]), (clip_inu, target_sigma, [("out_file", "in_file")]), (clip_inu, buffernode, [("out_file", "hires_target")]), (buffernode, lap_target, [("hires_target", "op1")]), (target_sigma, lap_target, [("out", "op2")]), (lap_target, norm_lap_target, [("output_image", "in_file")]), (buffernode, mrg_target, [("hires_target", "in1")]), (norm_lap_target, mrg_target, [("out", "in2")]), # Template massaging (clip_tmpl, res_tmpl, [("out_file", "in_file")]), (res_tmpl, tmpl_sigma, [("out_file", "in_file")]), (res_tmpl, lap_tmpl, [("out_file", "op1")]), (tmpl_sigma, lap_tmpl, [("out", "op2")]), (lap_tmpl, norm_lap_tmpl, [("output_image", "in_file")]), (res_tmpl, mrg_tmpl, [("out_file", "in1")]), (norm_lap_tmpl, mrg_tmpl, [("out", "in2")]), # Setup inputs to spatial normalization (mrg_target, norm, [("out", "moving_image")]), (mrg_tmpl, norm, [("out", "fixed_image")]), ]) # fmt: on # Graft a template registration-mask if present if tpl_regmask_path: hires_mask = pe.Node( ApplyTransforms( input_image=_pop(tpl_regmask_path), transforms="identity", interpolation="Gaussian", float=True, ), name="hires_mask", mem_gb=1, ) # fmt: off wf.connect([ (res_tmpl, hires_mask, [("out_file", "reference_image")]), (hires_mask, norm, [("output_image", "fixed_image_masks")]), ]) # fmt: on # Finally project brain mask and refine INU correction map_brainmask = pe.Node( ApplyTransforms(interpolation="Gaussian", float=True), name="map_brainmask", mem_gb=1, ) map_brainmask.inputs.input_image = str(tpl_brainmask_path) thr_brainmask = pe.Node(Binarize(thresh_low=0.50), name="thr_brainmask") final_n4 = pe.Node( N4BiasFieldCorrection( dimension=3, save_bias=True, copy_header=True, n_iterations=[50] * 4, convergence_threshold=1e-7, rescale_intensities=True, shrink_factor=4, ), n_procs=omp_nthreads, name="final_n4", ) final_mask = pe.Node(ApplyMask(), name="final_mask") # fmt: off wf.connect([ (inputnode, map_brainmask, [(("in_files", _pop), "reference_image")]), (bspline_grid, final_n4, [("out", "args")]), (denoise, final_n4, [("output_image", "input_image")]), # Project template's brainmask into subject space (norm, map_brainmask, [("reverse_transforms", "transforms"), ("reverse_invert_flags", "invert_transform_flags")]), (map_brainmask, thr_brainmask, [("output_image", "in_file")]), # take a second pass of N4 (map_brainmask, final_n4, [("output_image", "mask_image")]), (final_n4, final_mask, [("output_image", "in_file")]), (thr_brainmask, final_mask, [("out_mask", "in_mask")]), (final_n4, outputnode, [("output_image", "out_corrected")]), (thr_brainmask, outputnode, [("out_mask", "out_mask")]), (final_mask, outputnode, [("out_file", "out_brain")]), ]) # fmt: on if interim_checkpoints: final_apply = pe.Node( ApplyTransforms(interpolation="BSpline", float=True), name="final_apply", mem_gb=1, ) final_report = pe.Node( SimpleBeforeAfter(after_label="target", before_label=f"tpl-{template_id}"), name="final_report", ) # fmt: off wf.connect([ (inputnode, final_apply, [(("in_files", _pop), "reference_image")]), (res_tmpl, final_apply, [("out_file", "input_image")]), (norm, final_apply, [("reverse_transforms", "transforms"), ("reverse_invert_flags", "invert_transform_flags")]), (final_apply, final_report, [("output_image", "before")]), (outputnode, final_report, [("out_corrected", "after"), ("out_mask", "wm_seg")]), ]) # fmt: on if ants_affine_init: # Initialize transforms with antsAI lowres_tmpl = pe.Node( RegridToZooms(zooms=LOWRES_ZOOMS, smooth=True), name="lowres_tmpl" ) lowres_trgt = pe.Node( RegridToZooms(zooms=LOWRES_ZOOMS, smooth=True), name="lowres_trgt" ) init_aff = pe.Node( AI( convergence=(100, 1e-6, 10), metric=("Mattes", 32, "Random", 0.25), principal_axes=False, search_factor=(factor, arc), search_grid=(step, grid), transform=("Affine", 0.1), verbose=True, ), name="init_aff", n_procs=omp_nthreads, ) # fmt: off wf.connect([ (clip_inu, lowres_trgt, [("out_file", "in_file")]), (lowres_trgt, init_aff, [("out_file", "moving_image")]), (clip_tmpl, lowres_tmpl, [("out_file", "in_file")]), (lowres_tmpl, init_aff, [("out_file", "fixed_image")]), (init_aff, norm, [("output_transform", "initial_moving_transform")]), ]) # fmt: on if tpl_regmask_path: lowres_mask = pe.Node( ApplyTransforms( input_image=_pop(tpl_regmask_path), transforms="identity", interpolation="MultiLabel", ), name="lowres_mask", mem_gb=1, ) # fmt: off wf.connect([ (lowres_tmpl, lowres_mask, [("out_file", "reference_image")]), (lowres_mask, init_aff, [("output_image", "fixed_image_mask")]), ]) # fmt: on if interim_checkpoints: init_apply = pe.Node( ApplyTransforms(interpolation="BSpline", invert_transform_flags=[True]), name="init_apply", mem_gb=1, ) init_mask = pe.Node( ApplyTransforms(interpolation="Gaussian", invert_transform_flags=[True]), name="init_mask", mem_gb=1, ) init_mask.inputs.input_image = str(tpl_brainmask_path) init_report = pe.Node( SimpleBeforeAfter( out_report="init_report.svg", before_label="target", after_label="template", ), name="init_report", ) # fmt: off wf.connect([ (lowres_trgt, init_apply, [("out_file", "reference_image")]), (lowres_tmpl, init_apply, [("out_file", "input_image")]), (init_aff, init_apply, [("output_transform", "transforms")]), (lowres_trgt, init_report, [("out_file", "before")]), (init_apply, init_report, [("output_image", "after")]), (lowres_trgt, init_mask, [("out_file", "reference_image")]), (init_aff, init_mask, [("output_transform", "transforms")]), (init_mask, init_report, [("output_image", "wm_seg")]), ]) # fmt: on else: norm.inputs.initial_moving_transform_com = 1 if output_dir: ds_final_inu = pe.Node( DerivativesDataSink( base_directory=str(output_dir), desc="preproc", compress=True, ), name="ds_final_inu", run_without_submitting=True ) ds_final_msk = pe.Node( DerivativesDataSink( base_directory=str(output_dir), desc="brain", suffix="mask", compress=True, ), name="ds_final_msk", run_without_submitting=True ) # fmt: off wf.connect([ (inputnode, ds_final_inu, [("in_files", "source_file")]), (inputnode, ds_final_msk, [("in_files", "source_file")]), (outputnode, ds_final_inu, [("out_corrected", "in_file")]), (outputnode, ds_final_msk, [("out_mask", "in_file")]), ]) # fmt: on if interim_checkpoints: ds_report = pe.Node( DerivativesDataSink( base_directory=str(output_dir), desc="brain", suffix="mask", datatype="figures" ), name="ds_report", run_without_submitting=True ) # fmt: off wf.connect([ (inputnode, ds_report, [("in_files", "source_file")]), (final_report, ds_report, [("out_report", "in_file")]), ]) # fmt: on if ants_affine_init and interim_checkpoints: ds_report_init = pe.Node( DerivativesDataSink( base_directory=str(output_dir), desc="init", suffix="mask", datatype="figures" ), name="ds_report_init", run_without_submitting=True ) # fmt: off wf.connect([ (inputnode, ds_report_init, [("in_files", "source_file")]), (init_report, ds_report_init, [("out_report", "in_file")]), ]) # fmt: on return wf def _pop(in_files): if isinstance(in_files, (list, tuple)): return in_files[0] return in_files def _bspline_grid(in_file): import nibabel as nb import numpy as np import math img = nb.load(in_file) zooms = img.header.get_zooms()[:3] extent = (np.array(img.shape[:3]) - 1) * zooms # get mesh resolution ratio retval = [f"{math.ceil(i / extent[np.argmin(extent)])}" for i in extent] return f"-b [{'x'.join(retval)}]" def _lap_sigma(in_file): import numpy as np import nibabel as nb img = nb.load(in_file) min_vox = np.amin(img.header.get_zooms()) return str(1.5 * min_vox ** 0.75) def _norm_lap(in_file): from pathlib import Path import numpy as np import nibabel as nb from nipype.utils.filemanip import fname_presuffix img = nb.load(in_file) data = img.get_fdata() data -=
np.median(data)
numpy.median
# coding=utf-8 # Copyright 2020 The TF-Agents Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Class implementation of the per-arm MovieLens Bandit environment.""" from __future__ import absolute_import # Using Type Annotations. import random from typing import Optional, Text import gin import numpy as np from tf_agents.bandits.environments import bandit_py_environment from tf_agents.bandits.environments import dataset_utilities from tf_agents.bandits.specs import utils as bandit_spec_utils from tf_agents.specs import array_spec from tf_agents.trajectories import time_step as ts GLOBAL_KEY = bandit_spec_utils.GLOBAL_FEATURE_KEY PER_ARM_KEY = bandit_spec_utils.PER_ARM_FEATURE_KEY @gin.configurable class MovieLensPerArmPyEnvironment(bandit_py_environment.BanditPyEnvironment): """Implements the per-arm version of the MovieLens Bandit environment. This environment implements the MovieLens 100K dataset, available at: https://www.kaggle.com/prajitdatta/movielens-100k-dataset This dataset contains 100K ratings from 943 users on 1682 items. This csv list of: user id | item id | rating | timestamp. This environment computes a low-rank matrix factorization (using SVD) of the data matrix `A`, such that: `A ~= U * Sigma * V^T`. The environment uses the rows of `U` as global (or user) features, and the rows of `V` as per-arm (or movie) features. The reward of recommending movie `v` to user `u` is `u * Sigma * v^T`. """ def __init__(self, data_dir: Text, rank_k: int, batch_size: int = 1, num_actions: int = 50, name: Optional[Text] = 'movielens_per_arm'): """Initializes the Per-arm MovieLens Bandit environment. Args: data_dir: (string) Directory where the data lies (in text form). rank_k : (int) Which rank to use in the matrix factorization. This will also be the feature dimension of both the user and the movie features. batch_size: (int) Number of observations generated per call. num_actions: (int) How many movies to choose from per round. name: (string) The name of this environment instance. """ self._batch_size = batch_size self._context_dim = rank_k self._num_actions = num_actions # Compute the matrix factorization. self._data_matrix = dataset_utilities.load_movielens_data(data_dir) self._num_users, self._num_movies = self._data_matrix.shape # Compute the SVD. u, s, vh = np.linalg.svd(self._data_matrix, full_matrices=False) # Keep only the largest singular values. self._u_hat = u[:, :rank_k].astype(np.float32) self._s_hat = s[:rank_k].astype(np.float32) self._v_hat = np.transpose(vh[:rank_k]).astype(np.float32) self._approx_ratings_matrix = np.matmul(self._u_hat * self._s_hat, np.transpose(self._v_hat)) self._action_spec = array_spec.BoundedArraySpec( shape=(), dtype=np.int32, minimum=0, maximum=num_actions - 1, name='action') observation_spec = { GLOBAL_KEY: array_spec.ArraySpec(shape=[rank_k], dtype=np.float32), PER_ARM_KEY: array_spec.ArraySpec( shape=[num_actions, rank_k], dtype=np.float32), } self._time_step_spec = ts.time_step_spec(observation_spec) self._current_user_indices = np.zeros(batch_size, dtype=np.int32) self._previous_user_indices = np.zeros(batch_size, dtype=np.int32) self._current_movie_indices = np.zeros([batch_size, num_actions], dtype=np.int32) self._previous_movie_indices = np.zeros([batch_size, num_actions], dtype=np.int32) self._observation = { GLOBAL_KEY: np.zeros([batch_size, rank_k]), PER_ARM_KEY:
np.zeros([batch_size, num_actions, rank_k])
numpy.zeros
""" Robust MLR via iteratively reweighted least squares. """ import numpy as np from utide.utilities import Bunch # Weighting functions: def andrews(r): r = np.abs(r) r = max(np.sqrt(np.spacing(1)), r) w = (r < np.pi) * np.sin(r) / r return w def bisquare(r): r = np.abs(r) w = (r < 1) * (1 - r ** 2) ** 2 return w def cauchy(r): r = np.abs(r) w = 1 / (1 + r ** 2) return w def fair(r): w = 1 / (1 + np.abs(r)) return w def huber(r): w = 1 / max(1, np.abs(r)) return w def logistic(r): r = np.abs(r) r = max(np.sqrt(np.single(1)), r) w = np.tanh(r) / r return w def ols(r): w = np.ones(len(r)) return w def talwar(r): w = (np.abs(r) < 1).astype(float) return w def welsch(r): r = np.abs(r) w = np.exp(-(r ** 2)) return w wfuncdict = dict( andrews=andrews, bisquare=bisquare, cauchy=cauchy, fair=fair, huber=huber, logistic=logistic, ols=ols, talwar=talwar, welsch=welsch, ) tune_defaults = { "andrews": 1.339, "bisquare": 4.685, "cauchy": 2.385, "fair": 1.400, "huber": 1.345, "logistic": 1.205, "ols": 1, "talwar": 2.795, "welsch": 2.985, } def sigma_hat(x): """ Robust estimate of standard deviation based on medians. """ # The center could be based on the mean or some other function. return np.median(np.abs(x - np.median(x))) / 0.6745 def leverage(x): """ Calculate leverage as the diagonal of the "Hat" matrix of the model matrix, x. """ # The Hat is x times its pseudo-inverse. # In einum, the diagonal is calculated for each row of x # and column of pinv as the dot product of column j of x.T # and column j of pinv; hence the 'j' in the output means # *don't* sum over j. hdiag = np.einsum("ij, ij -> j", x.T,
np.linalg.pinv(x)
numpy.linalg.pinv
from os.path import join import pandas as pd import numpy as np import random import cv2 from src import config def get_correct_train_ids(train_csv_path, train_dir): train_df = pd.read_csv(train_csv_path, index_col='id') train_df.fillna('', inplace=True) correct_ids = [] for index, row in train_df.iterrows(): image_path = join(train_dir, 'images', index + '.png') image = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE) pixel_sum = np.sum(image) if pixel_sum: correct_ids.append(index) return correct_ids def make_train_folds(train_csv_path, train_dir, depths_path, n_folds): depths_df = pd.read_csv(depths_path, index_col='id') train_ids = get_correct_train_ids(train_csv_path, train_dir) depths_df = depths_df.loc[train_ids] depths_df['image_path'] = depths_df.index.map( lambda x: join(train_dir, 'images', x + '.png')) depths_df['mask_path'] = depths_df.index.map( lambda x: join(train_dir, 'masks', x + '.png')) depths_df.sort_values('z', inplace=True) depths_df['fold'] = [i % n_folds for i in range(depths_df.shape[0])] depths_df.sort_index(inplace=True) return depths_df if __name__ == '__main__': random.seed(42)
np.random.seed(42)
numpy.random.seed
import os import shutil import subprocess import sparsechem as sc import numpy as np import string import glob import scipy.sparse from urllib.request import urlretrieve def download_chembl23(data_dir="test_chembl23", remove_previous=False): if remove_previous and os.path.isdir(data_dir): os.rmdir(data_dir) if not os.path.isdir(data_dir): os.mkdir(data_dir) files = ["chembl_23mini_x.npy", "chembl_23mini_y.npy", "chembl_23mini_folds.npy", "chembl_23mini_class_weights.csv", "chembl_23mini_regr_weights.csv", "chembl_23mini_y_censored.npy"] url = "https://www.esat.kuleuven.be/~jsimm/" for f in files: if not os.path.isfile(os.path.join(data_dir, f)): print(f"Downloading '{f}' into '{data_dir}'.") urlretrieve(f"{url}{f}", os.path.join(data_dir, f)) def create_weights(data_dir="test_chembl23"): df = pd.DataFrame({ "task_id": np.arange(100), "training_weight": np.clip(np.random.randn(100), 0, 1), "task_type": np.random.choice(["adme", "panel", "other"], size=100), }) df["aggregation_weight"] = np.sqrt(df.training_weight) df.to_csv(f"{data_dir}/chembl_23mini_class_weights.csv", index=False) ## censored weights for regression df["censored_weight"] = np.clip(np.random.randn(100), 0, 1) df.to_csv(f"{data_dir}/chembl_23mini_regr_weights.csv", index=False) def random_str(size): return "".join([string.ascii_lowercase[i] for i in np.random.randint(0, 26, size=12)]) def test_classification(dev, data_dir="test_chembl23", rm_output=True): rstr = random_str(12) output_dir = f"./{data_dir}/models-{rstr}/" cmd = ( f"python train.py --x ./{data_dir}/chembl_23mini_x.npy" + f" --y_class ./{data_dir}/chembl_23mini_y.npy" + f" --folding ./{data_dir}/chembl_23mini_folds.npy" + f" --batch_ratio 0.1" + f" --output_dir {output_dir}" + f" --hidden_sizes 20" + f" --epochs 2" + f" --lr 1e-3" + f" --lr_steps 1" + f" --dev {dev}" + f" --verbose 1" ) download_chembl23(data_dir) res = subprocess.run(cmd.split()) assert res.returncode == 0 conf_file = glob.glob(f"{output_dir}/*.json")[0] model_file = glob.glob(f"{output_dir}/*.pt")[0] results = sc.load_results(conf_file) assert os.path.isdir(os.path.join(output_dir, "boards")) assert "conf" in results assert "validation" in results assert results["validation"]["classification"].shape[0] > 0 cmd_pred = ( f"python predict.py --x ./{data_dir}/chembl_23mini_x.npy" + f" --outprefix {output_dir}/yhat" + f" --conf {conf_file}" + f" --model {model_file}" + f" --dev {dev}" ) res_pred = subprocess.run(cmd_pred.split()) assert res_pred.returncode == 0 yhat = np.load(f"{output_dir}/yhat-class.npy") assert results["conf"].class_output_size == yhat.shape[1] assert (yhat >= 0).all() assert (yhat <= 1).all() ## checking --last_hidden 1 cmd_hidden = ( f"python predict.py --x ./{data_dir}/chembl_23mini_x.npy" + f" --outprefix {output_dir}/yhat" + f" --conf {conf_file}" + f" --model {model_file}" + f" --last_hidden 1" + f" --dev {dev}" ) res_hidden = subprocess.run(cmd_hidden.split()) assert res_hidden.returncode == 0 hidden =
np.load(f"{output_dir}/yhat-hidden.npy")
numpy.load
#!/local/anaconda/bin/python # IMPORTANT: leave the above line as is. import sys import numpy as np DIMENSION = 400 # Dimension of the original data. DIMENSION_T = 401 # Dimension of the original data. CLASSES = (-1, +1) # The classes that we are trying to predict. def transform(x_orig): return np.append(x_orig, 1) def print_vector(v): for x_i in np.nditer(v): print(x_i), print('') def step(t, lam_sqrt, w_prev, x, y): w_next = w_prev eta = 1/np.sqrt(t) if y*x.dot(w_prev) < 1: w_prim = w_prev+eta*y*x w_next = w_prim * min(1, 1/(
np.linalg.norm(w_prim)
numpy.linalg.norm
import tensorflow as tf import pickle import time import os from tensorflow.python.keras.layers import Dense, Embedding, Conv2D, Dropout, Masking from tensorflow.python.keras.regularizers import l1, l2 import numpy as np #原版 class ADMN(): def __init__(self,args): tf.set_random_seed(0) np.random.seed(2019) #模型基本参数 self.review_max_word = args["review_max_word"] self.review_max_num = args["review_max_num"] #评论窗口 self.vocabulary_num = args["vocabulary_num"] self.user_num = args["user_num"] self.item_num = args["item_num"] self.regularizers = args["regularizers"] self.rating_weight = args["rating_weight"] #计算评分的方法 #用户id向量,文本,商品编码维度 ,一般用户和商品维度要一致 self.word_embedding_dimension = args["word_embedding_dimension"] self.user_embedding_dimension = args["user_embedding_dimension"] self.item_embedding_dimension = args["item_embedding_dimension"] #cnn卷积层参数 self.cnn_filters = args["cnn_filters"] self.cnn_padding = args["cnn_padding"] self.cnn_activation = args["cnn_activation"] self.cnn_kernel_regularizer = args["cnn_kernel_regularizer"] self.cnn_kernel_size = args["cnn_kernel_size"] self.cnn_strides = args["cnn_strides"] self.dropout_size = args["dropout_size"] #fm层参数 self.fm_size = args["fm_size"] self.fm_K = args["fm_K"] #训练参数 self.learning_rate = args["learning_rate"] self.beta1 = args["beta1"] self.beta2 = args["beta2"] self.epsilon = args["epsilon"] #self.word_embedding_path = os.path.join(args["root_path"],args["input_data_type"],"word_emb.pkl") self.batch_size = args["batch_size"] self.train_time = args["train_time"] self.sess = args["sess"] self.is_sample = args["is_sample"] self.sample_ratio = args["sample_ratio"] with tf.name_scope("creat_placeholder"): # shape(none)对应batch大小 self.user_id = tf.placeholder(dtype="int32", shape=(None, 1), name="user_id") # user_id self.item_id = tf.placeholder(dtype="int32", shape=(None, 1), name="item_id") # item_id self.user_review = tf.placeholder(tf.float32, [None, self.review_max_num , self.review_max_word], name="user_review") # user_review 用户评论 self.item_review = tf.placeholder(tf.float32, [None, self.review_max_num , self.review_max_word], name="item_review") # 商品评论 self.user_commented_items_id = tf.placeholder(dtype="int32", shape=(None, self.review_max_num), name="user_commented_items_id") # 用户评论过的商品的id self.user_commented_items_rate = tf.placeholder(dtype="float32", shape=(None,self.review_max_num),name="user_commented_items_rate") # 跟上面user_rid对应评论-评分 self.item_commented_users_id = tf.placeholder(dtype="int32", shape=(None, self.review_max_num), name="item_commented_users_id") # 商品评论的人的id self.item_commented_users_rate = tf.placeholder(dtype="float32", shape=(None, self.review_max_num),name="item_commented_users_rate") # 商品的评论的人的给的分数 self.input_y = tf.placeholder(tf.float32,[None, 1], name="input_y")#评分 # item商品评论 with tf.name_scope("build_review_embedding"): self.user_review_flat = tf.reshape(self.user_review,[-1,self.review_max_num*self.review_max_word]) print("user_review_flat:{}".format(self.user_review_flat.shape)) self.item_review_flat = tf.reshape(self.item_review,[-1,self.review_max_num*self.review_max_word]) print("item_review_flat:{}".format(self.item_review_flat.shape)) self.user_review_mask = Masking(mask_value=0,input_shape=(self.review_max_num,self.review_max_word))(self.user_review_flat)#mask掉0值,忽略0值 self.item_review_mask = Masking(mask_value=0,input_shape=(self.review_max_num,self.review_max_word))(self.item_review_flat)#忽略商品评论的0值 self.review_embedding_layer = Embedding(input_dim=self.vocabulary_num,output_dim=self.word_embedding_dimension,input_length=self.review_max_num*self.review_max_num) self.user_review_embedding = self.review_embedding_layer(self.user_review_mask) self.user_review_embedding = tf.reshape(self.user_review_embedding,shape=[-1, self.review_max_num, self.review_max_word, self.word_embedding_dimension]) print("user_review_embedding:{}".format(self.user_review_embedding.shape)) self.item_review_embedding = self.review_embedding_layer(self.item_review_mask) self.item_review_embedding = tf.reshape(self.item_review_embedding,shape=[-1, self.review_max_num, self.review_max_word, self.word_embedding_dimension]) print("item_review_embedding:{}".format(self.item_review_embedding.shape)) self.user_review_embedding_sentence = tf.reduce_sum(self.user_review_embedding,axis=2) print("user_review_embedding_sentence:{}".format(self.user_review_embedding_sentence.shape)) self.item_review_embedding_sentence = tf.reduce_sum(self.item_review_embedding,axis=2) print("item_review_embedding_sentence:{}".format(self.item_review_embedding_sentence.shape)) #用户商品id向量编码 with tf.name_scope("build_user_item_id_embedding"): self.user_embedding_layer = Embedding(input_dim=self.user_num,output_dim=self.user_embedding_dimension) self.user_id_embedding = self.user_embedding_layer(self.user_id) self.item_embedding_layer = Embedding(input_dim=self.item_num,output_dim=self.item_embedding_dimension) self.item_id_embedding = self.item_embedding_layer(self.item_id) self.user_commented_items_id_mask = Masking(mask_value=0)(self.user_commented_items_id) self.item_commented_users_id_mask = Masking(mask_value=0)(self.item_commented_users_id) self.user_commented_items_id_mask_embedding = self.item_embedding_layer(self.user_commented_items_id_mask) self.item_commented_users_id_mask_embedding = self.user_embedding_layer(self.item_commented_users_id_mask) print("user_commented_items_id_mask_embedding:{}".format(self.user_commented_items_id_mask_embedding.shape)) print("item_commented_users_id_mask_embedding:{}".format(self.item_commented_users_id_mask_embedding.shape)) with tf.name_scope("build_user_item_extra_embedding"): if (self.rating_weight == "base"): # 1 self.user_commented_items_rate_sum = tf.reduce_sum(self.user_commented_items_rate, axis=1, keepdims=True) self.user_commented_items_rate_base = self.user_commented_items_rate / self.user_commented_items_rate_sum self.user_commented_items_rate_base_weight = tf.reshape(self.user_commented_items_rate_base, shape=(-1, self.review_max_num, 1)) self.user_commented_items_weight = self.user_commented_items_rate_base_weight self.item_commented_users_rate_sum = tf.reduce_sum(self.item_commented_users_rate, axis=1, keepdims=True) self.item_commented_users_rate_base = self.item_commented_users_rate / self.item_commented_users_rate_sum self.item_commented_users_rate_base_weight = tf.reshape(self.item_commented_users_rate_base, shape=(-1, self.review_max_num, 1)) self.item_commented_users_weight = self.item_commented_users_rate_base_weight if(self.rating_weight=="softmax"): #2 self.user_commented_items_rate_softmax = tf.reshape(tf.nn.softmax(self.user_commented_items_rate,axis=1,name="user_commented_item_rate_softmax"),shape=(-1,self.review_max_num,1)) self.user_commented_items_weight = self.user_commented_items_rate_softmax print("user_commented_items_rate_softmax:{}".format(self.user_commented_items_rate_softmax.shape)) self.item_commented_users_rate_softmax = tf.reshape(tf.nn.softmax(self.item_commented_users_rate,axis=1,name="item_commented_item_rate_softmax"),shape=(-1,self.review_max_num,1)) print("item_commented_users_rate_softmax:{}".format(self.item_commented_users_rate_softmax.shape)) self.item_commented_users_weight = self.item_commented_users_rate_softmax if(self.rating_weight == "unbias_softmax"): #3 self.user_commented_items_rate_mean = tf.reduce_mean(self.user_commented_items_rate,axis=1,keepdims=True) self.user_commented_items_rate_unbias = self.user_commented_items_rate - self.user_commented_items_rate_mean self.user_commented_items_rate_unbias_softmax = tf.reshape(tf.nn.softmax(self.user_commented_items_rate_unbias,axis=1,name="user_commented_items_rate_unbias_softmax"),shape=(-1,self.review_max_num,1)) self.user_commented_items_weight = self.user_commented_items_rate_unbias_softmax self.item_commented_users_rate_mean = tf.reduce_mean(self.item_commented_users_rate,axis=1,keepdims=True) self.item_commented_users_rate_unbias = self.item_commented_users_rate - self.item_commented_users_rate_mean self.item_commented_users_rate_unbias_softmax = tf.reshape(tf.nn.softmax(self.item_commented_users_rate_unbias,axis=1,name="item_commented_user_rate_unbias_softmax"),shape=(-1,self.review_max_num,1)) self.item_commented_users_weight = self.item_commented_users_rate_unbias_softmax if (self.rating_weight == "abs_unbias"): # 4 self.user_commented_items_rate_mean = tf.reduce_mean(self.user_commented_items_rate, axis=1, keepdims=True) self.user_commented_items_rate_abs_unbias = tf.abs( self.user_commented_items_rate - self.user_commented_items_rate_mean) self.user_commented_items_rate_abs_unbias_sum = tf.reduce_sum(self.user_commented_items_rate, axis=1, keepdims=True) self.user_commented_items_rate_abs_unbias_weight = self.user_commented_items_rate / self.user_commented_items_rate_abs_unbias_sum self.user_commented_items_weight = tf.reshape(self.user_commented_items_rate_abs_unbias_weight, shape=(-1, self.review_max_num, 1)) self.item_commented_users_rate_mean = tf.reduce_mean(self.item_commented_users_rate, axis=1, keepdims=True) self.item_commented_users_rate_abs_unbias = tf.abs( self.item_commented_users_rate - self.item_commented_users_rate_mean) self.item_commented_users_rate_abs_unbias_sum = tf.reduce_sum(self.item_commented_users_rate_abs_unbias, axis=1, keepdims=True) self.item_commented_users_rate_abs_unbias_weight = self.item_commented_users_rate / self.item_commented_users_rate_abs_unbias_sum self.item_commented_users_weight = tf.reshape(self.item_commented_users_rate_abs_unbias_weight, shape=(-1, self.review_max_num, 1)) if(self.rating_weight == "abs_unbias_softmax"): #5 self.user_commented_items_rate_mean = tf.reduce_mean(self.user_commented_items_rate, axis=1, keepdims=True) self.user_commented_items_rate_abs_unbias = tf.abs(self.user_commented_items_rate - self.user_commented_items_rate_mean) self.user_commented_items_rate_abs_unbias_softmax = tf.reshape( tf.nn.softmax(self.user_commented_items_rate_abs_unbias, axis=1, name="user_commented_items_rate_abs_unbias_softmax"), shape=(-1, self.review_max_num, 1)) self.user_commented_items_weight = self.user_commented_items_rate_abs_unbias_softmax self.item_commented_users_rate_mean = tf.reduce_mean(self.item_commented_users_rate, axis=1, keepdims=True) self.item_commented_users_rate_abs_unbias = tf.abs(self.item_commented_users_rate - self.item_commented_users_rate_mean) self.item_commented_users_rate_abs_unbias_softmax = tf.reshape( tf.nn.softmax(self.item_commented_users_rate_abs_unbias, axis=1, name="item_commented_user_rate_abs_unbias_softmax"), shape=(-1, self.review_max_num, 1)) self.item_commented_users_weight = self.item_commented_users_rate_abs_unbias_softmax if(self.rating_weight == "no_rating"): #6 self.user_review_to_itemId = tf.reshape(tf.multiply(self.user_commented_items_id_mask_embedding,self.item_id_embedding),shape=(-1,self.user_embedding_dimension)) self.user_review_to_itemId_dense = Dense(1,activation="relu")(self.user_review_to_itemId) self.user_review_to_itemId_dense = tf.reshape(self.user_review_to_itemId_dense,shape=(-1,self.review_max_num,1)) print("user_review_to_itemId_dense:{}".format(self.user_review_to_itemId_dense.shape)) self.user_review_to_itemId_dense_softmax =tf.nn.softmax(self.user_review_to_itemId_dense, axis=1,name="user_review_to_itemId_dense_softmax") print("user_review_to_itemId_dense_softmax:{}".format(self.user_review_to_itemId_dense_softmax.shape)) self.user_review_to_itemId_dense_softmax = tf.reshape( self.user_review_to_itemId_dense_softmax,shape=[-1,self.review_max_num,1]) self.user_commented_items_weight = self.user_review_to_itemId_dense_softmax self.item_review_to_userId = tf.reshape(tf.multiply(self.item_commented_users_id_mask_embedding,self.user_id_embedding),shape=(-1,self.user_embedding_dimension)) self.item_review_to_userId_dense = Dense(1,activation="relu")(self.item_review_to_userId) self.item_review_to_userId_dense = tf.reshape(self.item_review_to_userId_dense,shape=(-1,self.review_max_num,1)) self.item_review_to_userId_dense_softmax = tf.nn.softmax(self.item_review_to_userId_dense,axis=1, name="item_review_to_userId_dense_softmax") self.item_review_to_userId_dense_softmax = tf.reshape(self.item_review_to_userId_dense_softmax,shape=[-1,self.review_max_num,1]) self.item_commented_users_weight = self.item_review_to_userId_dense_softmax self.user_review_weight = self.user_commented_items_weight * self.user_review_embedding_sentence self.item_review_weight = self.item_commented_users_weight * self.item_review_embedding_sentence self.user_review_feature = tf.reduce_sum(tf.multiply(self.user_review_weight,self.item_id_embedding),axis=1,keepdims=True) self.item_review_feature = tf.reduce_sum(tf.multiply(self.item_review_weight,self.user_id_embedding),axis=1,keepdims=True) print("user_review_feature:{}".format(self.user_review_feature.shape)) print("item_review_feature:{}".format(self.item_review_feature)) with tf.name_scope("build_item_attention"): self.item_attention = tf.matmul(self.user_id_embedding,tf.transpose(self.item_review_embedding_sentence,[0,2,1])) self.item_attention = tf.reshape(tf.nn.softmax(self.item_attention),shape=[-1,self.review_max_num,1]) print("item_attention:{}".format(self.item_attention.shape)) self.item_feature = self.item_attention * self.item_review_embedding_sentence self.item_feature = tf.reduce_sum(self.item_feature,axis=1,keepdims=True) with tf.name_scope("build_user_attention"): self.user_attention = tf.matmul(self.item_id_embedding,tf.transpose(self.user_review_embedding_sentence,[0,2,1])) self.user_attention = tf.reshape(tf.nn.softmax(self.user_attention),shape=[-1,self.review_max_num,1]) print("user_attention:{}".format(self.user_attention.shape)) self.user_feature = self.user_attention * self.user_review_embedding_sentence self.user_feature = tf.reduce_sum(self.user_feature,axis=1,keepdims=True) with tf.name_scope("build_concat_layer"): self.user_feature_concat = tf.concat([self.user_id_embedding,self.user_feature,self.user_review_feature],axis=2,name="user_concat") self.item_feature_concat = tf.concat([self.item_id_embedding,self.item_feature,self.item_review_feature],axis=2,name="item_concat") print("user_feature_concat:{}".format(self.user_feature_concat.shape)) print("item_feature_concat:{}".format(self.item_feature_concat.shape)) self.user_feature_dense = Dense(self.user_embedding_dimension,activation="relu")(self.user_feature_concat) self.item_feature_dense = Dense(self.item_embedding_dimension,activation="relu")(self.item_feature_concat) print("user_feature_dense:{}".format(self.user_feature_dense.shape)) print("item_feature_dense:{}".format(self.item_feature_dense.shape)) with tf.name_scope("build_outer_product"): self.user_item_matrix = tf.matmul(tf.transpose(self.user_feature_dense,perm=[0,2,1]),self.item_feature_dense) self.user_item_matrix = tf.expand_dims(self.user_item_matrix,-1,name="tran3D") with tf.name_scope("build_convolution_layer"): self.first_layer = Conv2D(filters=self.cnn_filters,kernel_size=self.cnn_kernel_size,strides=self.cnn_strides,padding=self.cnn_padding,activation=self.cnn_activation, kernel_regularizer=self.cnn_kernel_regularizer)(self.user_item_matrix) self.second_layer = Conv2D(filters=self.cnn_filters,kernel_size=self.cnn_kernel_size,strides=self.cnn_strides,padding=self.cnn_padding,activation=self.cnn_activation, kernel_regularizer=self.cnn_kernel_regularizer)(self.first_layer) self.third_layer = Conv2D(filters=self.cnn_filters,kernel_size=self.cnn_kernel_size,strides=self.cnn_strides,padding=self.cnn_padding,activation=self.cnn_activation, kernel_regularizer=self.cnn_kernel_regularizer)(self.second_layer) self.fourth_layer = Conv2D(filters=self.cnn_filters,kernel_size=self.cnn_kernel_size,strides=self.cnn_strides,padding=self.cnn_padding,activation=self.cnn_activation, kernel_regularizer=self.cnn_kernel_regularizer)(self.third_layer) self.fifth_layer = Conv2D(filters=self.cnn_filters,kernel_size=self.cnn_kernel_size,strides=self.cnn_strides,padding=self.cnn_padding,activation=self.cnn_activation, kernel_regularizer=self.cnn_kernel_regularizer)(self.fourth_layer) self.sixth_layer = Conv2D(filters=self.cnn_filters,kernel_size=self.cnn_kernel_size,strides=self.cnn_strides,padding=self.cnn_padding,activation=self.cnn_activation, kernel_regularizer=self.cnn_kernel_regularizer)(self.fifth_layer) self.dropout_layer = Dropout(self.dropout_size)(self.sixth_layer) with tf.name_scope("build_prediction"): self.final_vector = tf.reshape(self.dropout_layer,shape=[-1,self.cnn_filters]) self.fm_w0 = tf.Variable(tf.zeros([1])) self.fm_W = tf.Variable(tf.truncated_normal([self.cnn_filters])) self.fm_V = tf.Variable(tf.random_normal([self.fm_K,self.cnn_filters],stddev=0.01)) self.linear_terms = tf.add(self.fm_w0, tf.reduce_sum( tf.multiply(self.fm_W,self.final_vector),axis=1,keepdims=True )) self.interactions = tf.add(self.fm_w0,tf.reduce_sum( tf.subtract( tf.pow(tf.matmul(self.final_vector,tf.transpose(self.fm_V)),2), tf.matmul(tf.pow(self.final_vector,2),tf.transpose(tf.pow(self.fm_V,2)))), axis=1,keepdims=True ) ) self.output = tf.add(self.linear_terms,self.interactions) print("output:{}".format(self.output.shape)) self.error = tf.subtract(self.output, self.input_y) with tf.name_scope("train_loss"): self.loss = tf.sqrt(tf.reduce_mean(tf.square(tf.subtract(self.output, self.input_y)))) with tf.name_scope("test_loss"): #因为测试集没法一次性输入 self.test_loss = tf.square(tf.subtract(self.output,self.input_y)) def model_init(self): self.init = tf.global_variables_initializer() #sess.run(self.word_embedding_matrix.initializer, feed_dict={self.emb_initializer: self.emb}) self.sess.run(self.init) def load_data(self,train_data,test_data,para_file): #train_data为music.train para_data = pickle.load(open(para_file,"rb")) self.test_data = np.array(pickle.load(open(test_data,"rb"))) self.train_data = np.array(pickle.load(open(train_data,"rb"))) #这个只是用户商品评论数据 self.users_review = para_data['user_review'] self.items_review = para_data['item_review'] self.user_r_rating = para_data["user_r_rating"] self.item_r_rating = para_data["item_r_rating"] self.user_r_id = para_data["user_r_id"] self.item_r_id = para_data["item_r_id"] def search_train_data(self,uid, iid, user_r_id, item_r_id, user_r_rating, item_r_rating): data_num = len(uid) user_r_id_batch = np.zeros(shape=(data_num, self.review_max_num)) item_r_id_batch = np.zeros(shape=(data_num, self.review_max_num)) user_r_rating_batch = np.zeros(shape=(data_num, self.review_max_num)) item_r_rating_batch = np.zeros(shape=(data_num, self.review_max_num)) # user_r_id = list(user_r_id) # print (user_r_id[2]) for i, item in enumerate(uid): user_r_id_batch[i, :] = user_r_id[int(item)] # print (user_r_id) user_r_rating_batch[i, :] = user_r_rating[int(item)] for i, item in enumerate(iid): item_r_id_batch[i, :] = item_r_id[int(item)] item_r_rating_batch[i, :] = item_r_rating[int(item)] # print () return user_r_id_batch, item_r_id_batch, user_r_rating_batch, item_r_rating_batch def model_train(self): #self.model_init() print("model_train") #self.load_test_data() self.test_loss_list = [] #self.global_step = tf.Variable(0, name="global_step", trainable=False) self.total_optimizer = tf.train.AdamOptimizer(learning_rate =self.learning_rate,beta1=self.beta1,beta2=self.beta2,epsilon=self.epsilon).minimize(self.loss) self.train_data_size = len(self.train_data) self.model_init() print("data_size_train:{}".format(self.train_data_size)) self.ll = int(self.train_data_size / self.batch_size) + 1 print("train_time:{}".format(self.ll)) for epoch in range(self.train_time): print("epoch_i:{}".format(epoch)) train_rmse = [] self.shuffle_index = np.random.permutation(np.arange(self.train_data_size)) self.shuffle_data = self.train_data[self.shuffle_index] #print("shuffle_data:",self.shuffle_data.shape) for batch_num in range(self.ll): start_index = batch_num * self.batch_size end_index = min((batch_num+1)*self.batch_size,self.train_data_size-1) #print("end_index:",end_index) data_train = self.shuffle_data[start_index:end_index] batch_user_id,batch_item_id,batch_y = list(zip(*data_train)) batch_user_review = [] batch_item_review = [] for i in range(len(data_train)): batch_user_review.append(self.users_review[batch_user_id[i][0]]) batch_item_review.append(self.items_review[batch_item_id[i][0]]) batch_user_review = np.array(batch_user_review) batch_item_review = np.array(batch_item_review) batch_user_r_id,batch_item_r_id,batch_user_r_rate,batch_item_r_rate =self.search_train_data(batch_user_id, batch_item_id, self.user_r_id, self.item_r_id, self.user_r_rating, self.item_r_rating) feed_dict = { self.user_id: batch_user_id, self.item_id: batch_item_id, self.input_y: batch_y, self.user_review: batch_user_review, self.item_review: batch_item_review, self.user_commented_items_id: batch_user_r_id, self.user_commented_items_rate: batch_user_r_rate, self.item_commented_users_id: batch_item_r_id, self.item_commented_users_rate: batch_item_r_rate } _,t_rmse,error = self.sess.run([self.total_optimizer,self.loss,self.error],feed_dict) if self.is_sample==True: self.random_sample(batch_user_id,batch_item_id,batch_y,batch_user_r_id,batch_item_r_id,batch_user_r_rate,batch_item_r_rate,error) #current_step = tf.train.global_step(self.sess, self.global_step) train_rmse.append(t_rmse) print("t_rmse:{}".format(t_rmse)) if batch_num ==(self.ll-1): #预测 print("\nEvaluation:") print(batch_num) self.model_test() def show_test_result(self): print((" test_loss_list:{}".format(self.test_loss_list))) self.besr_test_mse = min(self.test_loss_list) print("best test_mse:{}".format(self.besr_test_mse )) print('end') def model_test(self): self.test_data_size = len(self.test_data) self.ll_test = int(self.test_data_size / self.batch_size) + 1 test_cost = [] for batch_num in range(self.ll_test): start_index = batch_num * self.batch_size end_index = min((batch_num+1)*self.batch_size,self.test_data_size-1) data_test = self.test_data[start_index:end_index] user_id_test,item_id_test,y_test = list(zip(*data_test)) user_valid = [] item_valid = [] for i in range(len(data_test)): user_valid.append(self.users_review[user_id_test[i][0]]) item_valid.append(self.items_review[item_id_test[i][0]]) user_valid = np.array(user_valid) item_valid = np.array(item_valid) user_r_id_batch, item_r_id_batch, user_r_rate_batch, item_r_rate_batch = self.search_train_data( user_id_test, item_id_test, self.user_r_id, self.item_r_id, self.user_r_rating, self.item_r_rating) feed_dict = { self.user_id: user_id_test, self.item_id: item_id_test, self.input_y: y_test, self.user_review: user_valid, self.item_review: item_valid, self.user_commented_items_id: user_r_id_batch, self.user_commented_items_rate: user_r_rate_batch, self.item_commented_users_id: item_r_id_batch, self.item_commented_users_rate: item_r_rate_batch } test_loss = self.sess.run([self.test_loss],feed_dict) test_cost.append(test_loss) total_mse = 0 for i in test_cost: for j in i: for k in j: total_mse += k final_mse = total_mse/self.test_data_size print("test_final_mse:{}".format(final_mse)) self.test_loss_list.append(final_mse) def random_sample(self,user_id,item_id,y,user_r_id, item_r_id, user_r_rate, item_r_rate,loss): num = len(user_id) np.random.seed(2019) loss =np.array(loss).flatten() probability = np.exp(loss)/sum(np.exp(loss)) #print("probability.shape:{}".format(probability.shape)) #print("probability length:{}".format(len(probability))) #print(probability) #print("num:{}".format(num)) sample_ratio = self.sample_ratio #print("sample:{}".format(int(num * sample_ratio))) index = np.random.choice(num,size=int(num*sample_ratio),replace=False,p = probability) s_user_id = np.array(user_id)[index] s_item_id = np.array(item_id)[index] s_y = np.array(y)[index] s_user_r_id =
np.array(user_r_id)
numpy.array
import cv2 import numpy as np import math from PIL import Image import random class DIP: def __init__(self): pass def read(self, file): return np.array(Image.open(file)) def save(self, file, image): return cv2.imwrite(file, image ) def resize(self, image, size): return cv2.resize(image, (size[0], size[1])) def cvtGreyscale(self, image): grey = np.dot(image[...,:3], [0.2989, 0.5870, 0.114]) grey /= np.max(grey) return grey def gaussianKernel(self, kernelSize, sigma, flag=True, BilSpatial=None): normal = 1 / (2.0 * np.pi * sigma * sigma) if flag: center = kernelSize // 2 x, y = np.mgrid[-center:center + 1, -center:center + 1] kernel = np.exp(-((x * x + y * y) / (2.0 * sigma * sigma))) * normal else: kernel = np.exp(-(kernelSize*kernelSize / (2.0 * sigma * sigma))) kernel = np.multiply(kernel, BilSpatial) return kernel def gaussianFilter(self, image, kernelSize, sigma): gKernel = self.gaussianKernel(kernelSize, sigma) output = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): output[col, row] = np.sum(gKernel * padded_image[col:col + kernelSize, row:row + kernelSize]) output /= np.max(output) return output def gabf(self, image, kernelSize, sigmaS, sigmaR): spatialKernel = self.gaussianKernel(kernelSize, sigmaS) LP_guide = np.zeros(image.shape, np.float) output = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): LP_guide[col, row] = np.sum(spatialKernel * padded_image[col:col + kernelSize, row:row + kernelSize]) LP_guide /= np.max(LP_guide) padded_image = np.pad(LP_guide, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): neighb_win = padded_image[col:col + kernelSize, row:row + kernelSize] intensity_diff = np.absolute(image[col, row] - neighb_win) weights = self.gaussianKernel(intensity_diff, sigmaR, flag=False, BilSpatial=spatialKernel) vals = np.sum(np.multiply(weights, neighb_win)) norm = np.sum(weights) output[col, row] = np.divide(vals, norm, out=np.zeros_like(vals), where=norm != 0) output /= np.max(output) return output def median(self, image, kernelSize): output = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): for col in range(image.shape[0]): neighb_win = padded_image[col:col + kernelSize, row:row + kernelSize] output[col, row] = np.median(neighb_win) output /= np.max(output) return output def gradient2x2(self, image): kernelSize = 2 gX = np.array([ [-1, 1], [-1, 1] ]) gY = np.array([ [1, 1], [-1, -1] ]) G_x = np.zeros(image.shape, np.float) G_y = np.zeros(image.shape, np.float) padded_image = np.pad(image, int((kernelSize - 1) / 2), 'edge') for row in range(image.shape[1]): # loop through row for col in range(image.shape[0]): # loop through col pix = padded_image[col:col + kernelSize, row:row + kernelSize] # get pixel value G_x[col, row] = np.sum(np.multiply(gX, pix)) G_y[col, row] = np.sum(
np.multiply(gY, pix)
numpy.multiply
"""Script contain the ReplayBuffer object. This script is adapted largely from: https://github.com/hill-a/stable-baselines """ import random import numpy as np class ReplayBuffer(object): """Experience replay buffer.""" def __init__(self, size): """Instantiate a ring buffer (FIFO). Parameters ---------- size : int Max number of transitions to store in the buffer. When the buffer overflows the old memories are dropped. """ self._storage = [] self._maxsize = size self._next_idx = 0 def __len__(self): """Return the number of elements stored.""" return len(self._storage) @property def storage(self): """Return the content of the replay buffer. Of the form: [(np.ndarray, float, float, np.ndarray, bool)] """ return self._storage @property def buffer_size(self): """Return the (float) max capacity of the buffer.""" return self._maxsize def can_sample(self, n_samples): """Check if n_samples samples can be sampled from the buffer. Parameters ---------- n_samples : int number of requested samples Returns ------- bool True if enough sample exist, False otherwise """ return len(self) >= n_samples def is_full(self): """Check whether the replay buffer is full or not. Returns ------- bool True if it is full, False otherwise """ return len(self) == self.buffer_size def add(self, obs_t, action, reward, obs_tp1, done): """Add a new transition to the buffer. Parameters ---------- obs_t : Any the last observation action : array_like the action reward : float the reward of the transition obs_tp1 : Any the current observation done : float is the episode done """ data = (obs_t, action, reward, obs_tp1, done) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): obses_t, actions, rewards, obses_tp1, dones = [], [], [], [], [] for i in idxes: data = self._storage[i] obs_t, action, reward, obs_tp1, done = data obses_t.append(np.array(obs_t, copy=False)) actions.append(np.array(action, copy=False)) rewards.append(reward) obses_tp1.append(np.array(obs_tp1, copy=False)) dones.append(done) return np.array(obses_t), np.array(actions), np.array(rewards), \ np.array(obses_tp1), np.array(dones) def sample(self, batch_size, **_kwargs): """Sample a batch of experiences. Parameters ---------- batch_size : int How many transitions to sample. Returns ------- np.ndarray batch of observations numpy float batch of actions executed given obs_batch numpy float rewards received as results of executing act_batch np.ndarray next set of observations seen after executing act_batch numpy bool done_mask[i] = 1 if executing act_batch[i] resulted in the end of an episode and 0 otherwise. """ indices = [random.randint(0, len(self._storage) - 1) for _ in range(batch_size)] return self._encode_sample(indices) class HierReplayBuffer(ReplayBuffer): """Hierarchical variant of ReplayBuffer.""" def add(self, obs_t, goal_t, action_t, reward_t, done, **kwargs): """Add a new transition to the buffer. Parameters ---------- obs_t : array_like the last observation action_t : array_like the action goal_t : array_like the goal reward_t : list of float the worker reward at every time step done : list of float or list of bool is the episode done """ data = (obs_t, goal_t, action_t, reward_t, done) if self._next_idx >= len(self._storage): self._storage.append(data) else: self._storage[self._next_idx] = data self._next_idx = (self._next_idx + 1) % self._maxsize def _encode_sample(self, idxes): """Return a sample from the replay buffer based on indices. Parameters ---------- idxes : list of int list of random indices Returns ------- sample from replay buffer (s_t, g_t, a_t, r, s_t+1, done, h(s,g,s')) """ obses_t, goals, actions, rewards = [], [], [], [] done, h_t, g_up, obs_tp1 = [], [], [], [] for i in idxes: # never use the last element, as it has no next state if i == (self._next_idx - 1) % self._maxsize: i = (i - 1) % self._maxsize data = self._storage[i] obstp1 = self._storage[(i+1) % self._maxsize][0] obs_t, goals_t, actions_t, rewards_t, d, h, g_uptd = data obses_t.append(np.array(obs_t, copy=False)) goals.append(np.array(goals_t, copy=False)) actions.append(np.array(actions_t, copy=False)) rewards.append(np.array(rewards_t, copy=False)) done.append(d) h_t.append(np.array(h, copy=False)) g_up.append(np.array(g_uptd, copy=False)) obs_tp1.append(
np.array(obstp1, copy=False)
numpy.array
"""Tests functionality of the ImageAugmenter class.""" from __future__ import print_function # make sure that ImageAugmenter can be imported from parent directory if __name__ == '__main__' and __package__ is None: from os import sys, path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) import unittest import numpy as np from ImageAugmenter import ImageAugmenter import random from skimage import data random.seed(123456789) np.random.seed(123456789) class TestImageAugmenter(unittest.TestCase): """Tests functionality of the ImageAugmenter class.""" def test_rotation(self): """Test rotation of 90 degrees on an image that should change upon rotation.""" image_before = [[0, 255, 0], [0, 255, 0], [0, 255, 0]] image_target = [[ 0, 0, 0], [1.0, 1.0, 1.0], [ 0, 0, 0]] images = np.array([image_before]).astype(np.uint8) augmenter = ImageAugmenter(3, 3, rotation_deg=(90, 90)) image_after = augmenter.augment_batch(images)[0] self.assertTrue(np.allclose(image_target, image_after)) def test_rotation_invariant(self): """Test rotation of -90 to 90 degrees on an rotation invariant image.""" image_before = [[0, 0, 0], [0, 255, 0], [0, 0, 0]] image_target = [[0, 0, 0], [0, 1.0, 0], [0, 0, 0]] images = np.array([image_before]).astype(np.uint8) # random rotation of up to 180 degress augmenter = ImageAugmenter(3, 3, rotation_deg=180) # all must be similar to target nb_similar = 0 for _ in range(100): image_after = augmenter.augment_batch(images)[0] # some tolerance here - interpolation problems can let the image # change a bit, even though it should be invariant to rotations if np.allclose(image_target, image_after, atol=0.1): nb_similar += 1 self.assertEquals(nb_similar, 100) def test_scaling(self): """Rough test for zooming/scaling (only zoom in / scaling >1.0). The test is rough, because interpolation problems make the result of scaling on synthetic images rather hard to predict (and unintuitive). """ size_x = 4 size_y = 4 # a 4x4 image of which the center 3x3 pixels are bright white, # everything else black image_before = np.zeros((size_y, size_x)) image_before[1:size_y-1, 1:size_x-1] = 255 images = np.array([image_before]).astype(np.uint8) # about 200% zoom in augmenter = ImageAugmenter(size_x, size_y, scale_to_percent=(1.99, 1.99), scale_axis_equally=True) image_after = augmenter.augment_batch(images)[0] # we scale positively (zoom in), therefor we expect the center bright # spot to grow, resulting in a higher total brightness self.assertTrue(np.sum(image_after) > np.sum(image_before)/255) def test_shear(self): """Very rough test of shear: It simply measures whether image tend to be significantly different after shear (any change).""" image_before = [[0, 255, 0], [0, 255, 0], [0, 255, 0]] image_target = [[0, 1.0, 0], [0, 1.0, 0], [0, 1.0, 0]] images = np.array([image_before]).astype(np.uint8) augmenter = ImageAugmenter(3, 3, shear_deg=50) # the majority should be different from the source image nb_different = 0 nb_augment = 1000 for _ in range(nb_augment): image_after = augmenter.augment_batch(images)[0] if not np.allclose(image_target, image_after): nb_different += 1 self.assertTrue(nb_different > nb_augment*0.9) def test_translation_x(self): """Testing translation on the x-axis.""" #image_before = np.zeros((2, 2), dtype=np.uint8) image_before = [[255, 0], [255, 0]] #image_after = np.zeros((2, 2), dtype=np.float32) image_target = [[0, 1.0], [0, 1.0]] images = np.array([image_before]).astype(np.uint8) augmenter = ImageAugmenter(2, 2, translation_x_px=(1,1)) # all must be similar for _ in range(100): image_after = augmenter.augment_batch(images)[0] self.assertTrue(np.allclose(image_target, image_after)) def test_translation_y(self): """Testing translation on the y-axis.""" image_before = [[ 0, 0], [255, 255]] image_target = [[1.0, 1.0], [ 0, 0]] images = np.array([image_before]).astype(np.uint8) # translate always by -1px on y-axis augmenter = ImageAugmenter(2, 2, translation_y_px=(-1,-1)) # all must be similar for _ in range(100): image_after = augmenter.augment_batch(images)[0] self.assertTrue(np.allclose(image_target, image_after)) def test_single_channel(self): """Tests images with channels (e.g. RGB channels).""" # One single channel # channel is last axis # test by translating an image with one channel on the x-axis (1 px) image_before = np.zeros((2, 2, 1), dtype=np.uint8) image_before[0, 0, 0] = 255 image_before[1, 0, 0] = 255 image_target = np.zeros((2, 2, 1), dtype=np.float32) image_target[0, 1, 0] = 1.0 image_target[1, 1, 0] = 1.0 images = np.array([image_before]).astype(np.uint8) augmenter = ImageAugmenter(2, 2, translation_x_px=(1,1)) # all must be similar for _ in range(100): image_after = augmenter.augment_batch(images)[0] self.assertTrue(np.allclose(image_target, image_after)) # One single channel # channel is first axis # test by translating an image with one channel on the x-axis (1 px) image_before = np.zeros((1, 2, 2), dtype=np.uint8) image_before[0] = [[255, 0], [255, 0]] image_target = np.zeros((1, 2, 2), dtype=np.float32) image_target[0] = [[0, 1.0], [0, 1.0]] images = np.array([image_before]).astype(np.uint8) augmenter = ImageAugmenter(2, 2, translation_x_px=(1,1), channel_is_first_axis=True) # all must be similar for _ in range(100): image_after = augmenter.augment_batch(images)[0] self.assertTrue(np.allclose(image_target, image_after)) def test_two_channels(self): """Tests augmentation of images with two channels (either first or last axis of each image). Tested using x-translation.""" # ----------------------------------------------- # two channels, # channel is the FIRST axis of each image # ----------------------------------------------- augmenter = ImageAugmenter(2, 2, translation_y_px=(0,1), channel_is_first_axis=True) image_before = np.zeros((2, 2, 2)).astype(np.uint8) # 1st channel: top row white, bottom row black image_before[0][0][0] = 255 image_before[0][0][1] = 255 image_before[0][1][0] = 0 image_before[0][1][1] = 0 # 2nd channel: top right corner white, everything else black image_before[1][0][0] = 0 image_before[1][0][1] = 255 image_before[1][1][0] = 0 image_before[1][1][1] = 0 # ^ channel # ^ y (row) # ^ x (column) image_target = np.zeros((2, 2, 2)).astype(np.float32) # 1st channel: bottom row white, bottom row black image_target[0][0][0] = 0 image_target[0][0][1] = 0 image_target[0][1][0] = 1.0 image_target[0][1][1] = 1.0 # 2nd channel: bottom right corner white, everything else black image_target[1][0][0] = 0 image_target[1][0][1] = 0 image_target[1][1][0] = 0 image_target[1][1][1] = 1.0 nb_augment = 1000 image = np.array([image_before]).astype(np.uint8) images = np.resize(image, (nb_augment, 2, 2, 2)) images_augmented = augmenter.augment_batch(images) nb_similar = 0 for image_after in images_augmented: if np.allclose(image_target, image_after): nb_similar += 1 self.assertTrue(nb_similar > (nb_augment*0.4) and nb_similar < (nb_augment*0.6)) # ----------------------------------------------- # two channels, # channel is the LAST axis of each image # ----------------------------------------------- augmenter = ImageAugmenter(2, 2, translation_y_px=(0,1), channel_is_first_axis=False) image_before = np.zeros((2, 2, 2)).astype(np.uint8) # 1st channel: top row white, bottom row black image_before[0][0][0] = 255 image_before[0][1][0] = 255 image_before[1][0][0] = 0 image_before[1][1][0] = 0 # 2nd channel: top right corner white, everything else black image_before[0][0][1] = 0 image_before[0][1][1] = 255 image_before[1][0][1] = 0 image_before[1][1][1] = 0 # ^ y # ^ x # ^ channel image_target = np.zeros((2, 2, 2)).astype(np.float32) # 1st channel: bottom row white, bottom row black image_target[0][0][0] = 0 image_target[0][1][0] = 0 image_target[1][0][0] = 1.0 image_target[1][1][0] = 1.0 # 2nd channel: bottom right corner white, everything else black image_target[0][0][1] = 0 image_target[0][1][1] = 0 image_target[1][0][1] = 0 image_target[1][1][1] = 1.0 nb_augment = 1000 image = np.array([image_before]).astype(np.uint8) images = np.resize(image, (nb_augment, 2, 2, 2)) images_augmented = augmenter.augment_batch(images) nb_similar = 0 for image_after in images_augmented: if np.allclose(image_target, image_after): nb_similar += 1 self.assertTrue(nb_similar > (nb_augment*0.4) and nb_similar < (nb_augment*0.6)) def test_transform_channels_unequally(self): """Tests whether 2 or more channels can be augmented non-identically at the same time. E.g. channel 0 is rotated by 20 degress, channel 1 (of the same image) is rotated by 5 degrees. """ # two channels, channel is first axis of each image augmenter = ImageAugmenter(3, 3, translation_x_px=(0,1), transform_channels_equally=False, channel_is_first_axis=True) image_before = np.zeros((2, 3, 3)).astype(np.uint8) image_before[0] = [[255, 0, 0], [ 0, 0, 0], [ 0, 0, 0]] image_before[1] = [[ 0, 0, 0], [ 0, 0, 0], [ 0, 255, 0]] # ^ channel image_target = np.zeros((2, 3, 3)).astype(np.float32) image_target[0] = [[ 0, 1.0, 0], [ 0, 0, 0], [ 0, 0, 0]] image_target[1] = [[ 0, 0, 0], [ 0, 0, 0], [ 0, 0, 1.0]] nb_similar_channel_0 = 0 nb_similar_channel_1 = 0 nb_equally_transformed = 0 #nb_unequally_transformed = 0 nb_augment = 1000 image = np.array([image_before]).astype(np.uint8) images = np.resize(image, (nb_augment, 2, 3, 3)) images_augmented = augmenter.augment_batch(images) # augment 1000 times and count how often the channels were transformed # in equal or unequal ways. for image_after in images_augmented: similar_channel_0 = np.allclose(image_target[0], image_after[0]) similar_channel_1 = np.allclose(image_target[1], image_after[1]) if similar_channel_0: nb_similar_channel_0 += 1 if similar_channel_1: nb_similar_channel_1 += 1 if similar_channel_0 == similar_channel_1: nb_equally_transformed += 1 #else: # nb_unequally_transformed += 1 # each one should be around 50% self.assertTrue(nb_similar_channel_0 > 0.40*nb_augment and nb_similar_channel_0 < 0.60*nb_augment) self.assertTrue(nb_similar_channel_1 > 0.40*nb_augment and nb_similar_channel_1 < 0.60*nb_augment) self.assertTrue(nb_equally_transformed > 0.40*nb_augment and nb_equally_transformed < 0.60*nb_augment) def test_no_blacks(self): """Test whether random augmentations can cause an image to turn completely black (cval=0.0), which should never happen.""" image_before = data.camera() y_size, x_size = image_before.shape augmenter = ImageAugmenter(x_size, y_size, scale_to_percent=1.5, scale_axis_equally=False, rotation_deg=90, shear_deg=20, translation_x_px=10, translation_y_px=10) image_black = np.zeros(image_before.shape, dtype=np.float32) nb_augment = 100 images = np.resize([image_before], (nb_augment, y_size, x_size)) images_augmented = augmenter.augment_batch(images) nb_black = 0 for image_after in images_augmented: if np.allclose(image_after, image_black): nb_black += 1 self.assertEqual(nb_black, 0) def test_non_square_images(self): """Test whether transformation of images with unequal x and y axis sizes works as expected.""" y_size = 11 x_size = 4 image_before = np.zeros((y_size, x_size), dtype=np.uint8) image_target = np.zeros((y_size, x_size), dtype=np.float32) # place a bright white line in the center (of the y-axis, so left to right) # Augmenter will move it up by 2 (translation on y by -2) y_line_pos = int(y_size/2) + 1 for x_pos in range(x_size): image_before[y_line_pos][x_pos] = 255 image_target[y_line_pos - 2][x_pos] = 1.0 augmenter = ImageAugmenter(x_size, y_size, translation_y_px=(-2,-2)) nb_augment = 100 images =
np.resize([image_before], (nb_augment, y_size, x_size))
numpy.resize
# Copyright (c) Facebook, Inc. and its affiliates. #Visualization Function import cv2 import numpy as np import PIL from PIL.Image import Image def __ValidateNumpyImg(inputImg): if isinstance(inputImg, Image): # inputImg = cv2.cvtColor(np.array(inputImg), cv2.COLOR_RGB2BGR) inputImg = np.array(inputImg) return inputImg #Q? is this copying someting (wasting memory or time?)? veryFirstImShow = True def ImShow(inputImg, waitTime=1, bConvRGB2BGR=False,name='image', scale=1.0): inputImg = __ValidateNumpyImg(inputImg) if scale!=1.0: inputImg = cv2.resize(inputImg, (inputImg.shape[0]*int(scale), inputImg.shape[1]*int(scale))) if bConvRGB2BGR: inputImg = cv2.cvtColor(inputImg, cv2.COLOR_RGB2BGR) cv2.imshow(name,inputImg) global veryFirstImShow if False:#veryFirstImShow: print(">> Press any key to move on") cv2.waitKey(0) #the initial one is always blank... why? veryFirstImShow = 0 else: cv2.waitKey(waitTime) def ImgSC(inputImg, waitTime=1, bConvRGB2BGR=False,name='image', scale=1.0): inputImg = __ValidateNumpyImg(inputImg) minVal = np.min(inputImg) maxVal = np.max(inputImg) #rescale inputImg = (inputImg-minVal)/ (maxVal-minVal)*255 if scale!=1.0: inputImg = cv2.resize(inputImg, (inputImg.shape[0]*int(scale), inputImg.shape[1]*int(scale))) if bConvRGB2BGR: inputImg = cv2.cvtColor(inputImg, cv2.COLOR_RGB2BGR) cv2.imshow(name,inputImg) global veryFirstImShow if veryFirstImShow: print(">> Press any key to move on") cv2.waitKey(0) #the initial one is always blank... why? veryFirstImShow = 0 else: cv2.waitKey(waitTime) # import matplotlib.pyplot as plt # def Plot(values, title=None): # plt.plot(values) # if title is not None: # plt.title(title)#, loc='left', fontsize=12, fontweight=0, color='orange') # plt.show() #bbe: min_pt, max_pt def Vis_Bbox_minmaxPt(inputImg, min_pt, max_pt, color=None): bbr = [min_pt[0],min_pt[1], max_pt[0]- min_pt[0], max_pt[1]- min_pt[1]] return Vis_Bbox(inputImg, bbr, color) def Vis_Bbox_XYXY(inputImg, bbox_xyxy, color=None): #draw biggest bbox pt1 = ( int(bbox_xyxy[0]),int(bbox_xyxy[1]) ) pt2 = (int(bbox_xyxy[2]),int(bbox_xyxy[3]) ) if color is None: color = (0,0,255) cv2.rectangle(inputImg, pt1, pt2,color, 3) return inputImg def Vis_Bbox(inputImg, bbox_xyhw, color= None): return Vis_Bbox_XYWH(inputImg, bbox_xyhw, color) #bbe: [leftTop_x,leftTop_y,width,height] def Vis_Bbox_XYWH(inputImg, bbox_xyhw, color= None): inputImg = __ValidateNumpyImg(inputImg) #draw biggest bbox pt1 = ( int(bbox_xyhw[0]),int(bbox_xyhw[1]) ) pt2 = (int(bbox_xyhw[0] + bbox_xyhw[2]),int(bbox_xyhw[1] + bbox_xyhw[3]) ) if color is None: color = (0,0,255) cv2.rectangle(inputImg, pt1, pt2,color, 3) return inputImg def Vis_CocoBbox(inputImg, coco_annot): inputImg = __ValidateNumpyImg(inputImg) bbr = np.round(coco_annot['bbox']) #[leftTop_x,leftTop_y,width,height] #draw biggest bbox pt1 = ( int(bbr[0]),int(bbr[1]) ) pt2 = (int(bbr[0] + bbr[2]),int(bbr[1] + bbr[3]) ) cv2.rectangle(inputImg, pt1, pt2,(255,255,255), 3) return inputImg # connections_right = [ # {0, 2}, {2, 4}, {0, 6} //nect, rightEye, rightEar # , {6, 8}, {8, 10}, {6,12}, {12,14} , {14, 16} # }; #] def Vis_CocoSkeleton(keypoints, image=None): # def Vis_CocoSkeleton(inputImg, coco_annot): if not isinstance(image, np.ndarray):#not image: #If no image is given, generate Blank image image = np.ones((1000,1000,3),np.uint8) *255 image = __ValidateNumpyImg(image) #COCO17 original annotation ordering link2D = [ [0, 1], [1,3], #nose(0), leftEye(1), leftEar(3) [0,5], [5, 7], [7, 9], #leftShoulder(5), leftArm(7), leftWrist(9) [0, 11], [11, 13], [13, 15], #leftHip(11), leftKnee(13), leftAnkle(15) [0,2], [2,4], #nose(0), rightEye(2), rightEar(4) [0,6], [6, 8], [8, 10], #rightShoulder(6), rightArm(8), rightWrist(10) [0, 12], [12, 14], [14, 16] #rightHip(12), rightKnee(14), rightAnkle(16) ] bLeft = [ 1,1, 1, 1, 1, 1,1,1, 0,0, 0,0,0, 0,0,0] # keypoints = np.round(coco_annot['keypoints']) #coco_annot['keypoints']: list with length 51 if keypoints.shape[0] == 51: keypoints = np.reshape(keypoints, (-1,3)) #(17,3): (X, Y, Label) else: keypoints = np.reshape(keypoints, (-1,2)) #(17,3): (X, Y, Label) radius = 4 for k in np.arange( len(keypoints) ): cv2.circle(image, (int(keypoints[k][0]), int(keypoints[k][1]) ), radius,(0,0,255),-1) for k in np.arange( len(link2D) ): parent = link2D[k][0] child = link2D[k][1] if bLeft[k]: c = (0,0,255)#BGR, RED else: c = (200,200,200) if keypoints[parent][0] ==0 or keypoints[child][0]==0: # //not annotated one continue cv2.line(image, (int(keypoints[parent][0]), int(keypoints[parent][1])), (int(keypoints[child][0]), int(keypoints[child][1])), c, radius - 2) return image DP_partIdx ={ 'Torso_Back': 1, 'Torso_Front': 2, 'RHand': 3, 'LHand': 4, 'LFoot': 5, 'RFoot': 6, 'R_upperLeg_back': 7, 'L_upperLeg_back': 8, 'R_upperLeg_front': 9, 'L_upperLeg_front': 10, 'R_lowerLeg_back': 11, 'L_lowerLeg_back': 12, 'R_lowerLeg_front': 13, 'L_lowerLeg_front': 14, 'L_upperArm_front': 15, 'R_upperArm_front': 16, 'L_upperArm_back': 17, 'R_upperArm_back': 18, 'L_lowerArm_back': 19, 'R_lowerArm_back': 20, 'L_lowerArm_front': 21, 'R_lowerArm_front': 22, 'RFace': 23, 'LFace': 24 } def Vis_Densepose(inputImg, coco_annot): inputImg = __ValidateNumpyImg(inputImg) import sys sys.path.append('/home/hjoo/data/DensePose/detectron/utils/') import densepose_methods as dp_utils DP = dp_utils.DensePoseMethods() if('dp_x' not in coco_annot.keys()): print("## Warning: No Densepose coco_annotation") return inputImg bbr = np.round(coco_annot['bbox']) #[leftTop_x,leftTop_y,width,height] Point_x = np.array(coco_annot['dp_x'])/ 255. * bbr[2] + bbr[0] # Strech the points to current box. from 255x255 -> [bboxWidth,bboxheight] Point_y =
np.array(coco_annot['dp_y'])
numpy.array
import argparse import os, sys import json from copy import deepcopy import numpy as np from scipy.spatial import cKDTree from tqdm import tqdm import trimesh from scipy.ndimage.morphology import binary_erosion, binary_dilation from ..utils.scannet_utils import get_global_part_labels_description, load_pickle, get_scannet from ..utils.vox import load_sample from ..utils.transforms import apply_transform, apply_inverse_transform import main_directories as md mag_factors = {'chair': 1.25, 'table': 1.35, 'storagefurniture': 1.25, 'bed': 1.15, 'trashcan': 1.4} struct_cats_to_scannet_cats = {'chair': ['chair'], 'table': ['table'], 'storagefurniture': ['cabinet', 'bookshelf'], 'bed': ['bed', 'sofa'], 'trashcan': ['garbagebin']} def perform_correction(mask, voxel_transform, min_1, max_1, max_2, min_1_pd, max_1_pd, max_2_pd, mag_factor, size): mask_coords = np.where(mask > 0) mask_coords = np.stack([mask_coords[2], mask_coords[1], mask_coords[0]]).T mask_coords = apply_transform(mask_coords, voxel_transform) mask_coords += max_2 mask_coords *= max_1 mask_coords += min_1 mask_coords -= min_1_pd mask_coords /= max_1_pd mask_coords -= max_2_pd mask_coords *= mag_factor mask_coords = apply_inverse_transform(mask_coords, voxel_transform) mask_tensor = np.zeros((32, 32, 32)) mask_coords = mask_coords.astype(int) mask_coords = np.maximum(0, np.minimum(size - 1, mask_coords)) mask_tensor[mask_coords[:, 2], mask_coords[:, 1], mask_coords[:, 0]] = 1 mask_tensor = binary_dilation(mask_tensor, structure=np.ones((2, 2, 2)), iterations=2) mask_tensor = binary_erosion(mask_tensor, structure=np.ones((2, 2, 2)), iterations=2) mask_tensor = mask_tensor.astype(int) return mask_tensor def perform_correction_on_parts(mask, voxel_transform, min_1, max_1, max_2, min_1_pd, max_1_pd, max_2_pd, mag_factor, size): mask_tensors = [] all_ratios = [] for part_mask in mask: part_mask = np.squeeze(part_mask) mask_coords = np.where(part_mask > 0) mask_coords = np.stack([mask_coords[2], mask_coords[1], mask_coords[0]]).T mask_coords = apply_transform(mask_coords, voxel_transform) mask_coords += max_2 mask_coords *= max_1 mask_coords += min_1 mask_coords -= min_1_pd mask_coords /= max_1_pd mask_coords -= max_2_pd mask_coords *= mag_factor mask_coords = apply_inverse_transform(mask_coords, voxel_transform) mask_tensor = np.zeros((32, 32, 32)) mask_coords = mask_coords.astype(int) mask_coords_above_limits = [x[0] < 0 or x[0] >= 32 or x[1] < 0 or x[1] >= 32 or x[2] < 0 or x[2] >= 32 for x in mask_coords] above_limits_ratio = sum(mask_coords_above_limits) / mask_coords.shape[0] all_ratios += [above_limits_ratio] mask_coords = np.maximum(0, np.minimum(size - 1, mask_coords)) mask_tensor[mask_coords[:, 2], mask_coords[:, 1], mask_coords[:, 0]] = 1 mask_tensor = binary_dilation(mask_tensor, structure=np.ones((2, 2, 2)), iterations=2) mask_tensor = binary_erosion(mask_tensor, structure=np.ones((2, 2, 2)), iterations=2) mask_tensor = mask_tensor.astype(int) mask_tensors += [mask_tensor[None, ...]] mask_tensors = np.stack(mask_tensors) return mask_tensors, max(all_ratios) def iou(mask_1, mask_2): smooth = 1e-4 intersection = mask_1 * mask_2 union = mask_1 + mask_2 - intersection metric = intersection.sum() / (union.sum() + smooth) return metric def load_metadata(args): global_labels = get_global_part_labels_description(md.DICTIONARIES) partnet_to_shapenet_transforms_path = '../dictionaries/partnet_to_shapenet_transforms.pkl' partnet_to_shapenet_transforms = load_pickle(partnet_to_shapenet_transforms_path) with open(os.path.join(md.DICTIONARIES, 'full_annotations.json'), 'rb') as f: scan2cad_anno = json.load(f) VALID_PARTNET_IDS = os.path.join(args.trees_dir, f'{args.category}_hier/full.txt') valid_partnet_ids = [] with open(VALID_PARTNET_IDS, 'r') as f: lines = f.readlines() for line in lines: valid_partnet_ids += [line[:-1]] with open(os.path.join(md.DICTIONARIES, 'scannetv2_train.txt'), 'r') as fin: lines = fin.readlines() scannet_train_scenes = [x[:-1] for x in lines] with open(os.path.join(md.DICTIONARIES, 'scannetv2_val.txt'), 'r') as fin: lines = fin.readlines() scannet_val_scenes = [x[:-1] for x in lines] mlcvnet_bboxes_filenames = [] for file in os.listdir(args.mlcvnet_output): if file.endswith('.ply'): mlcvnet_bboxes_filenames += [file] global_id_to_semantic_class = load_pickle(os.path.join(md.DICTIONARIES, 'global_id_to_semantic_class.pkl')) return scan2cad_anno, global_labels, partnet_to_shapenet_transforms, \ scannet_train_scenes, scannet_val_scenes, valid_partnet_ids, \ mlcvnet_bboxes_filenames, global_id_to_semantic_class def process_mlcvnet(args, scannet_train_scenes, scannet_val_scenes, scan2cad_anno, global_labels, partnet_to_shapenet_transforms, valid_partnet_ids, global_id_to_semantic_class, save_dir): size = args.voxel_dim scannet_split = scannet_train_scenes if (args.split == 'train') else scannet_val_scenes split_ids = [] type2class = {'cabinet': 0, 'bed': 1, 'chair': 2, 'sofa': 3, 'table': 4, 'door': 5, 'window': 6, 'bookshelf': 7, 'picture': 8, 'counter': 9, 'desk': 10, 'curtain': 11, 'refrigerator': 12, 'showercurtrain': 13, 'toilet': 14, 'sink': 15, 'bathtub': 16, 'garbagebin': 17} class2type = {u: v for v, u in type2class.items()} # for each scene at Scan2CAD for i, anno_item in enumerate(tqdm(scan2cad_anno)): all_scene_correspondences = [] # get Scan2CAD info scan_id = anno_item['id_scan'] if scan_id not in scannet_split: continue scan_transform = anno_item["trs"] aligned_models = anno_item['aligned_models'] # load raw scannet data scan_path = os.path.join(args.scannet_dir, scan_id, scan_id + '_vh_clean_2.ply') scan_data = trimesh.load_mesh(scan_path).metadata['ply_raw']['vertex']['data'] # get scannet point cloud (mesh vertices) and their colors scan_points_origin = np.array([list(x) for x in scan_data[['x', 'y', 'z']]]) scan_color = np.array([list(x) for x in scan_data[['red', 'green', 'blue']]]) / 255 # transform scan to Scan2CAD coordinate system scan_points = apply_transform(scan_points_origin, scan_transform) meta_file = os.path.join(args.scannet_dir, scan_id, scan_id + '.txt') lines = open(meta_file).readlines() axis_align_matrix = None for line in lines: if 'axisAlignment' in line: axis_align_matrix = [float(x) for x in line.rstrip().strip('axisAlignment = ').split(' ')] assert axis_align_matrix is not None axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4)) all_instances = [] all_instances_world = [] all_instances_partnet = [] all_scans_aligned = [] all_partnet_labels = [] instance_ids = [] shape_plys = [] partnet_ids = [] category_ids = [] shape_ids = [] voxel_transforms = [] shape_transforms = [] partnet_transforms = [] all_buf = [] # for each aligned shape object_id = 0 for j, anno_shape in enumerate(aligned_models): # init_scan_mask semantic_mask = -np.ones(len(scan_points)) instance_mask = -np.ones(len(scan_points)) # get Scan2CAD info about shape category_id = anno_shape['catid_cad'] shape_id = anno_shape['id_cad'] # get_global_info df_parts = global_labels[ (global_labels['category_id'] == category_id) & (global_labels['object_id'] == shape_id) ] from_part_id_2_global_id = dict(df_parts.reset_index()[['part_id', 'global_id']].values) if len(df_parts) == 0: continue # load shape pointcloud partnet_id = df_parts.object_partnet_id.values[0] partnet_path = os.path.join(args.partnet_dir, partnet_id, 'point_sample') if partnet_id not in valid_partnet_ids: continue # load shape part labels shape_label = np.loadtxt(os.path.join(partnet_path, 'label-10000.txt'), delimiter='\n') shape_label = np.array([from_part_id_2_global_id[p_id] for p_id in shape_label]) # LOAD partnet modalities shape_ply = np.loadtxt(os.path.join(partnet_path, 'pts-10000.pts'), delimiter=' ')[:, :3] shape_vox = load_sample(os.path.join(md.PARTNET_VOXELIZED, partnet_id, 'full_vox.df')) # LOAD WORLD -> SHAPENET -> PARTNET -> PARTNET_VOX transform shape_transform = anno_shape["trs"] if partnet_id not in partnet_to_shapenet_transforms: print('Transform for Partnet shape ', partnet_id, ' not found') continue partnet_transform = partnet_to_shapenet_transforms[partnet_id] voxel_transform = shape_vox.grid2world # MAP scan points: WORLD -> SHAPENET -> PARTNET scan_points_aligned = apply_inverse_transform(scan_points, shape_transform, partnet_transform) # get instance points from the scan # calculate distance tree = cKDTree(shape_ply) min_dist, min_idx = tree.query(scan_points_aligned) # Color for is_near, i_nn, i_point in zip(min_dist <= 0.07, min_idx, range(len(scan_points_aligned))): if is_near: instance_mask[i_point] = object_id instance_points = scan_points_aligned[np.where(instance_mask == object_id)[0]] instance_points_world = apply_transform(instance_points, partnet_transform, shape_transform) if len(instance_points) > 0: # Normalization instance_points -= instance_points.min(0) instance_points /= instance_points.max() / 0.95 instance_points -= instance_points.max(0) / 2 # MAP instance points: PARTNET -> PARTNET_VOX instance_grid = apply_inverse_transform(instance_points, voxel_transform).astype('int') instance_grid = np.maximum(0, np.minimum(size - 1, instance_grid)) # store data for further processing all_instances += [instance_grid] all_instances_world += [instance_points_world] all_instances_partnet += [instance_points] all_scans_aligned += [scan_points_aligned] all_partnet_labels += [shape_label] shape_plys += [shape_ply] instance_ids += [j] partnet_ids += [partnet_id] category_ids += [category_id] shape_ids += [shape_id] voxel_transforms += [voxel_transform] shape_transforms += [shape_transform] partnet_transforms += [partnet_transform] mask_instances = [x for x in os.listdir(os.path.join(args.mlcvnet_output, scan_id + '_vh_clean_2')) if x.endswith('.ply')] mask_classes = [int(x.split('_')[0]) for x in mask_instances] mask_class_names = [class2type[x] for x in mask_classes] mask_instances = [mask_instances[i] for i in range(len(mask_instances)) if mask_class_names[i] in struct_cats_to_scannet_cats[args.category]] box_vertices = [] box_vertices_fixed = [] for k in range(len(mask_instances)): box_meshes = trimesh.load(os.path.join(args.mlcvnet_output, scan_id + '_vh_clean_2', mask_instances[k])).split() for mesh in box_meshes: one_box_vertices = deepcopy(np.array(mesh.vertices)) z_vec = one_box_vertices[1] - one_box_vertices[0] offset = np.array([0, 0, 0.5]) if z_vec[2] < 0: buf = deepcopy(one_box_vertices[1]) one_box_vertices[1] = deepcopy(one_box_vertices[0]) one_box_vertices[0] = deepcopy(buf) z_vec_fixed = one_box_vertices[1] - one_box_vertices[0] + offset z_vec = one_box_vertices[1] - one_box_vertices[0] y_vec = one_box_vertices[2] - one_box_vertices[0] x_vec = one_box_vertices[4] - one_box_vertices[0] z_points_fixed = np.linspace(one_box_vertices[0] - offset, one_box_vertices[1], int(round(abs(z_vec_fixed[2]) / 0.05)))[:, 2] z_points = np.linspace(one_box_vertices[0], one_box_vertices[1], int(round(abs(z_vec[2]) / 0.05)))[:, 2] y_points = np.linspace(one_box_vertices[0], one_box_vertices[2], int(round(abs(y_vec[1]) / 0.05)))[:, 1] x_points = np.linspace(one_box_vertices[0], one_box_vertices[4], int(round(abs(x_vec[0]) / 0.05)))[:, 0] box_grid = deepcopy(np.meshgrid(x_points, y_points, z_points)) box_grid_fixed = deepcopy(np.meshgrid(x_points, y_points, z_points_fixed)) box_vertices += [
np.stack(box_grid)
numpy.stack
#!/usr/bin/env python #title :main.py #description :Tensorflow implementation of CapsNet. #author :<NAME> #date :2019/04/30 #version :1.0 #usage :python3 main.py #python_version :3.6.7 #============================================================================== import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from capsnet import CapsNet from tensorflow.examples.tutorials.mnist import input_data import functools mnist = input_data.read_data_sets('MNIST_data/') batch_size = 10 tf.reset_default_graph() tf.random.set_random_seed(0) np.random.seed(0) checkpoint_file = './tmp/model.ckpt' def train(model, restore = False, n_epochs = 50): init = tf.global_variables_initializer() n_iter_train_per_epoch = mnist.train.num_examples // batch_size n_iter_valid_per_epoch = mnist.validation.num_examples // batch_size best_loss_val = np.infty saver = tf.train.Saver() with tf.Session() as sess: writer = tf.summary.FileWriter("output", sess.graph) if restore and tf.train.checkpoint_exists('checkpoint_file'): saver.restore(sess, checkpoint_file) else: init.run() print('\n\nRunning CapsNet ...\n') count_params() for epoch in range(n_epochs): margin_loss_train_ep = [] recnst_loss_train_ep = [] loss_train_ep = [] acc_train_ep = [] for it in range(1, n_iter_train_per_epoch + 1): X_batch, y_batch = mnist.train.next_batch(batch_size) _, loss_batch_train, margin_loss_train, recnst_loss_train,acc_batch_train = sess.run( [model.train_op, model.margn_loss, model.recnst_loss_scale, model.batch_loss, model.accuracy], feed_dict = {model.X: X_batch.reshape([-1, 28, 28, 1]), model.y: y_batch, model.reconstruction: True}) print("\rIter: {}/{} [{:.1f}%] loss : {:.5f}".format( it, n_iter_train_per_epoch, 100.0 * it / n_iter_train_per_epoch, loss_batch_train), end="") plot_imgs = sess.run(model.X_cropped, feed_dict = {model.X: X_batch.reshape([-1, 28, 28, 1])}) #print(plot_imgs.shape) #print(X_batch[0]) #plt.imshow(X_batch[0].reshape((28,28)), cmap='gray') #plt.show() #plt.imshow(plot_imgs[0].reshape((28,28)), cmap='gray') #plt.show() loss_train_ep.append(loss_batch_train) acc_train_ep.append(acc_batch_train) margin_loss_train_ep.append(margin_loss_train) recnst_loss_train_ep.append(recnst_loss_train) loss_train = np.mean(loss_train_ep) margin_loss_train = np.mean(margin_loss_train_ep) recnst_loss_train = np.mean(recnst_loss_train_ep) acc_train = np.mean(acc_train_ep) loss_val_ep = [] acc_val_ep = [] for it in range(1, n_iter_valid_per_epoch + 1): X_batch, y_batch = mnist.validation.next_batch(batch_size) loss_batch_val, acc_batch_val = sess.run( [model.batch_loss, model.accuracy], feed_dict = {model.X_cropped: X_batch.reshape([-1, 28, 28, 1]), model.y: y_batch}) loss_val_ep.append(loss_batch_val) acc_val_ep.append(acc_batch_val) print("\rValidation {}/{} {:.1f}%".format(it, n_iter_valid_per_epoch, 100.0 * it / n_iter_valid_per_epoch), end=" "*30) loss_val = np.mean(loss_val_ep) acc_val = np.mean(acc_val_ep) print("\repoch: {} loss_train: {:.5f}, loss_val: {:.5f}, margin_loss: {:.5f}, recnst_loss: {:.5f}, train_acc: {:.4f}%, valid_acc: {:.4f}% {}".format( epoch + 1, loss_train, margin_loss_train, recnst_loss_train, loss_val, acc_train * 100.0, acc_val * 100.0, "(improved)" if loss_val < best_loss_val else "")) if loss_val < best_loss_val: saver.save(sess, checkpoint_file) best_loss_val = loss_val writer.close() def test(model): n_iter_test_per_epoch = mnist.test.num_examples // batch_size loss_test_ep = [] acc_test_ep = [] #init = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as sess: #init.run() #saver = tf.train.import_meta_graph(checkpoint_file +'.meta') saver.restore(sess, tf.train.latest_checkpoint('tmp/')) #init.run() print('\n\nTest\n') for it in range(1, n_iter_test_per_epoch + 1): X_batch, y_batch = mnist.test.next_batch(batch_size) loss_batch_test, acc_batch_test = sess.run( [model.batch_loss, model.accuracy], feed_dict = { model.X_cropped: X_batch.reshape([-1, 28, 28, 1]), model.y: y_batch, model.reconstruction: False}) loss_test_ep.append(loss_batch_test) acc_test_ep.append(acc_batch_test) print("\rTesting {}/{} {:.1f}%".format(it, n_iter_test_per_epoch, 100.0 * it / n_iter_test_per_epoch), end=" "*30) loss_test =
np.mean(loss_test_ep)
numpy.mean
import pickle import re import time import numpy as np import tensorflow as tf from keras_preprocessing.image import ImageDataGenerator from sklearn.utils import shuffle from tensorflow.python.keras.utils import to_categorical from lib.plot_curves import learning_curves from lib.helper_functions import validation_split from models.models_segmentation import select_model, IoU from scripts.run_BUvsTD import setup, preprocessing, finalize ''' Script for running a toy segmentation experiment. We extract a segmentation dataset based on Fashion-MNIST classification task. We propagate the global label based on thresholding the pixel values. The threshold is empirically set. This leads to a dataset of 12 classes (original 10 + background and ignore class). The ignore class contributes neither to loss nor to IoU computation. To increase the complexity of the task we extract 2x2 object meshes, leading to a total of 150000, 25000 training and testing samples respectively. Class weights are extracted for dealing with class-imbalance. ''' ''' Commandline inputs: -d FMNIST_S (Fashion-MNIST) -m Unet -l 0.01 -w 0 -e 20 -r 4 -b 128 -v 0.1 -s NA -m FCN -l 0.01 -w 0 -e 20 -r 4 -b 128 -v 0.1 -s NA -m TD -l 0.01 -w 0 -e 20 -r 4 -b 128 -v 0.1 -s NA ''' def extract_segmentation_mask(X, y, thres, n_classes=12): labels = np.zeros((X.shape[0], X.shape[1], X.shape[2], n_classes), dtype=int) labels[..., -1] = np.logical_and(X[..., 0] > 0, X[..., 0] <= thres) labels[..., -2] = X[..., 0] == 0 labels[..., :-2] = (X > thres) * to_categorical(y)[:, np.newaxis, np.newaxis, :] class_priors = np.sum(labels, axis=(0, 1, 2)) class_weights = np.sum(class_priors) / (n_classes * class_priors) class_weights = class_weights[y] return labels, class_weights def extract_segmentation_mesh(X, y, grid_ext, shuffle=True, n_classes=12): train_indexes = np.arange(len(y), dtype=int) if shuffle: np.random.shuffle(train_indexes) train_indexes = np.reshape(train_indexes, [len(train_indexes) // grid_ext ** 2, grid_ext ** 2]) train_data = [] train_labels = [] for i in train_indexes: data_app = [] labels_app = [] for j in range(grid_ext): data_app.append(np.concatenate(X[i[j * grid_ext:(j + 1) * grid_ext]], axis=0)) labels_app.append(np.concatenate(y[i[j * grid_ext:(j + 1) * grid_ext]], axis=0)) data_app = np.concatenate(data_app, axis=1) labels_app = np.concatenate(labels_app, axis=1) train_data.append(data_app) train_labels.append(labels_app) # class_weights = np.sum(train_labels) / (n_classes * np.sum(train_labels, axis=(0, 1, 2))) class_weights = 1 / np.sum(train_labels, axis=(0, 1, 2)) class_weights /= class_weights[-2] class_weights[-1] = 0 return np.array(train_data), np.array(train_labels), class_weights def train(args, filepath, f_output, x_train, y_train, x_test, y_test, class_weights=None, method=None): base_model_name = args.model_name if args.extension is not None: base_model_name = re.sub('_' + args.extension, '', base_model_name) # Extracting statistics for every model-set combination and history for learning curves n_classes = 12 history = [] test_acc = np.zeros(args.repetitions) test_loss = np.zeros_like(test_acc) test_IoU = np.zeros((args.repetitions, n_classes)) training_time = [] inference_time = np.zeros_like(test_acc) callbacks = [] print(class_weights) for i in range(args.repetitions): if args.scheduler != 'NA': sched = globals()[args.scheduler] if 'stage' in args.scheduler: print(args.scheduler) cb_decayLR = tf.keras.callbacks.LearningRateScheduler(sched(args.learning_rate, args.num_epochs), verbose=0) else: cb_decayLR = tf.keras.callbacks.LearningRateScheduler(sched, verbose=0) else: cb_decayLR = tf.keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, verbose=1, mode='auto', min_delta=0.0001, cooldown=0, min_lr=args.learning_rate/10) if not callbacks: callbacks.append(cb_decayLR) else: callbacks[0] = cb_decayLR input_shape = x_train.shape[1:] print('Loading model: ', base_model_name) optimizer = tf.keras.optimizers.SGD(args.learning_rate, momentum=0.9, nesterov=True) # optimizer = tf.keras.optimizers.Adam(learning_rate=args.learning_rate) if method is not None: model = select_model(input_shape, base_model_name, optimizer, args.weight_decay, method) else: model = select_model(input_shape, base_model_name, optimizer, args.weight_decay, class_weights=class_weights) x_train, y_train = shuffle(x_train, y_train) # Extract tranining and validation split indices if args.val_split != 0: train_ind, val_ind = validation_split(x_train, y_train, args.val_split, args.dataset == 'TOY') # Timing training start_train = time.time() if args.augmentation: datagen = ImageDataGenerator( featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False, samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0, width_shift_range=0.1, height_shift_range=0.1, brightness_range=None, shear_range=0.0, zoom_range=0, channel_shift_range=0., fill_mode='nearest', cval=0., horizontal_flip=True, vertical_flip=False, rescale=None, preprocessing_function=None, data_format='channels_last', validation_split=0, dtype='float32') datagen.fit(x_train[train_ind]) hist = model.fit_generator(datagen.flow(x_train[train_ind], y_train[train_ind], batch_size=args.batch_size), epochs=args.num_epochs, validation_data=(x_train[val_ind], y_train[val_ind]), callbacks=callbacks, verbose=2) else: hist = model.fit(x_train[train_ind], y=y_train[train_ind], batch_size=args.batch_size, epochs=args.num_epochs, verbose=2, validation_data=(x_train[val_ind], y_train[val_ind]), callbacks=callbacks) training_time.append(time.time() - start_train) history.append(hist.history) # Evaluate test_loss[i], test_acc[i], _ = model.evaluate(x_test, y_test, batch_size=args.batch_size, verbose=0) start_inference = time.time() y_pred = model.predict(x_test, batch_size=args.batch_size, verbose=0) inference_time[i] = time.time() - start_inference test_IoU[i] = IoU(y_test, y_pred) if i == args.repetitions - 1: model.save(filepath['models'] + filepath['dataset'] + args.model_name + '.h5') # Store history with open(filepath['history'] + filepath['dataset'] + 'history_' + args.model_name + '.txt', 'wb') as f_history: pickle.dump(history, f_history) # Extract and output metrics mean_test_loss = np.mean(test_loss) std_test_loss = np.std(test_loss, ddof=1) mean_test_acc = np.mean(test_acc) std_test_acc = np.std(test_acc, ddof=1) mean_inference_time =
np.mean(inference_time)
numpy.mean
import numpy as np import tvm from layers import autodiff, tvm_op tgt_host="llvm" tgt="llvm" dtype = "float32" ctx = tvm.context(tgt, 0) def test_matrix_elementwise_add(): shape = (500, 200) x = np.random.uniform(0, 10, size=shape).astype(dtype) y = np.random.uniform(0, 10, size=shape).astype(dtype) z = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) arr_z = tvm.nd.array(z, ctx=ctx) elemwise_add = tvm_op.make_elemwise_add(shape, tgt, tgt_host, "elem_add") elemwise_add(arr_x, arr_y, arr_z) z = arr_z.asnumpy() np.testing.assert_allclose(x + y, z, rtol=1e-5) def test_matrix_elementwise_add_by_const(): shape = (2000, 3000) x = np.random.uniform(0, 10, size=shape).astype(dtype) const_val = np.random.uniform(0, 10) y = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) elemwise_add_by_const = tvm_op.make_elemwise_add_by_const(shape, const_val, tgt, tgt_host, "elem_add_by_const") elemwise_add_by_const(arr_x, arr_y) y = arr_y.asnumpy() np.testing.assert_allclose(x + const_val, y, rtol=1e-5) def test_matrix_elementwise_mul(): shape = (500, 200) x = np.random.uniform(0, 10, size=shape).astype(dtype) y = np.random.uniform(0, 10, size=shape).astype(dtype) z = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) arr_z = tvm.nd.array(z, ctx=ctx) elemwise_mul = tvm_op.make_elemwise_mul(shape, tgt, tgt_host, "elem_add") elemwise_mul(arr_x, arr_y, arr_z) z = arr_z.asnumpy() np.testing.assert_allclose(x * y, z, rtol=1e-5) def test_matrix_elementwise_mul_by_const(): shape = (2000, 3000) x = np.random.uniform(0, 10, size=shape).astype(dtype) const_val = np.random.uniform(0, 10) y = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) elemwise_mul_by_const = tvm_op.make_elemwise_mul_by_const(shape, const_val, tgt, tgt_host, "elem_mul_by_const") elemwise_mul_by_const(arr_x, arr_y) y = arr_y.asnumpy() np.testing.assert_allclose(x * const_val, y, rtol=1e-5) def test_matrix_multiply(): shapeX = (500, 700) shapeY = (700, 1000) shapeZ = (500, 1000) x = np.random.uniform(0, 10, size=shapeX).astype(dtype) y = np.random.uniform(0, 10, size=shapeY).astype(dtype) z = np.zeros(shapeZ).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) arr_z = tvm.nd.array(z, ctx=ctx) matrix_mul = tvm_op.make_matrix_mul(shapeX, False, shapeY, False, tgt, tgt_host, "matrix_mul") matrix_mul(arr_x, arr_y, arr_z) z = arr_z.asnumpy() np.testing.assert_allclose(np.dot(x, y), z, rtol=1e-5) shapeX = (1000, 500) shapeY = (2000, 500) shapeZ = (1000, 2000) x = np.random.uniform(0, 10, size=shapeX).astype(dtype) y = np.random.uniform(0, 10, size=shapeY).astype(dtype) z = np.zeros(shapeZ).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) arr_z = tvm.nd.array(z, ctx=ctx) matrix_mul = tvm_op.make_matrix_mul(shapeX, False, shapeY, True, tgt, tgt_host, "matrix_mul") matrix_mul(arr_x, arr_y, arr_z) z = arr_z.asnumpy() np.testing.assert_allclose(np.dot(x, np.transpose(y)), z, rtol=1e-5) shapeX = (500, 1000) shapeY = (500, 2000) shapeZ = (1000, 2000) x = np.random.uniform(0, 10, size=shapeX).astype(dtype) y = np.random.uniform(0, 10, size=shapeY).astype(dtype) z = np.zeros(shapeZ).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) arr_z = tvm.nd.array(z, ctx=ctx) matrix_mul = tvm_op.make_matrix_mul(shapeX, True, shapeY, False, tgt, tgt_host, "matrix_mul") matrix_mul(arr_x, arr_y, arr_z) z = arr_z.asnumpy() np.testing.assert_allclose(np.dot(np.transpose(x), y), z, rtol=1e-5) shapeX = (500, 1000) shapeY = (2000, 500) shapeZ = (1000, 2000) x = np.random.uniform(0, 10, size=shapeX).astype(dtype) y = np.random.uniform(0, 10, size=shapeY).astype(dtype) z = np.zeros(shapeZ).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) arr_z = tvm.nd.array(z, ctx=ctx) matrix_mul = tvm_op.make_matrix_mul(shapeX, True, shapeY, True, tgt, tgt_host, "matrix_mul") matrix_mul(arr_x, arr_y, arr_z) z = arr_z.asnumpy() np.testing.assert_allclose(np.dot(np.transpose(x), np.transpose(y)), z, rtol=1e-5) def test_conv2d(): # im2col and np_conv2d are helper functions def im2col(X, filter_H, filter_W, padding, stride): N, C, H, W = X.shape assert (H + 2 * padding - filter_H) % stride == 0 assert (W + 2 * padding - filter_W) % stride == 0 out_H = int((H + 2 * padding - filter_H) / stride + 1) out_W = int((W + 2 * padding - filter_W) / stride + 1) y_row_size = C * filter_H * filter_W y_col_size = out_H * out_W y_shape = (N, y_row_size, y_col_size) Y = np.empty(y_shape, dtype = X.dtype) for batch_index in range(N): for col_index in range(y_col_size): out_y = int(col_index / out_W) out_x = int(col_index % out_W) in_y = out_y * stride - padding in_x = out_x * stride - padding row_idx = 0 for c in range(0, C): for y in range(in_y, in_y + filter_H): for x in range(in_x, in_x + filter_W): if (x < 0 or x >= W or y < 0 or y >= H): Y[batch_index, row_idx, col_index] = 0 else: Y[batch_index, row_idx, col_index] = X[batch_index, c, y, x] row_idx += 1 return Y def np_conv2d(X, Filter, padding=0, stride=1): """Implement a conv2d as a matrix multiply after im2col.""" filter_outChannel, filter_inChannel, filter_H, filter_W = Filter.shape N, C, H, W = X.shape assert (H + 2 * padding - filter_H) % stride == 0 assert (W + 2 * padding - filter_W) % stride == 0 out_H = int((H + 2 * padding - filter_H) / stride + 1) out_W = int((W + 2 * padding - filter_W) / stride + 1) im2col_matrix = im2col(X, int(filter_H), int(filter_W), int(padding), int(stride)) filter_matrix = Filter.reshape(filter_outChannel, -1) return np.matmul(filter_matrix, im2col_matrix).reshape(N, filter_outChannel, out_H, out_W) shapeX = (100, 3, 28, 28) shapeF = (10, 3, 5, 5) shapeY = (100, 10, 24, 24) x = np.random.uniform(0, 10, size=shapeX).astype(dtype) f = np.random.uniform(0, 10, size=shapeF).astype(dtype) y = np.zeros(shapeY).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_f = tvm.nd.array(f, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) conv2d = tvm_op.make_conv2d(shapeX, shapeF, tgt, tgt_host, "conv2d") conv2d(arr_x, arr_f, arr_y) y = arr_y.asnumpy() np.testing.assert_allclose(np_conv2d(x, f), y, rtol=1e-5) def test_relu(): shape = (2000, 2500) x = np.random.uniform(-1, 1, shape).astype(dtype) y = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) relu = tvm_op.make_relu(shape, tgt, tgt_host, "relu") relu(arr_x, arr_y) y = arr_y.asnumpy() np.testing.assert_allclose(np.maximum(x, 0).astype(dtype), y) def test_relu_gradient(): shape = (2000, 2500) x = np.random.uniform(-1, 1, shape).astype(dtype) grad_x = np.random.uniform(-5, 5, shape).astype(dtype) y = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_grad_x = tvm.nd.array(grad_x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) relu_gradient = tvm_op.make_relu_gradient(shape, tgt, tgt_host, "relu_gradient") relu_gradient(arr_x, arr_grad_x, arr_y) y = arr_y.asnumpy() np.testing.assert_allclose(((x > 0) * grad_x).astype(dtype), y) def test_softmax(): shape = (400, 1000) x = np.random.uniform(-5, 5, shape).astype(dtype) y = np.zeros(shape).astype(dtype) arr_x = tvm.nd.array(x, ctx=ctx) arr_y = tvm.nd.array(y, ctx=ctx) matrix_softmax = tvm_op.make_matrix_softmax(shape, tgt, tgt_host, "matrix_softmax") matrix_softmax(arr_x, arr_y) y = arr_y.asnumpy() np.testing.assert_allclose(autodiff.softmax_func(x), y, rtol=1e-5) def test_softmax_cross_entropy(): shape = (400, 1000) y = np.random.uniform(-5, 5, shape).astype(dtype) y_ = np.random.uniform(-5, 5, shape).astype(dtype) out = np.zeros((1,)).astype(dtype) arr_y = tvm.nd.array(y, ctx=ctx) arr_y_ = tvm.nd.array(y_, ctx=ctx) arr_out = tvm.nd.array(out, ctx=ctx) matrix_softmax_cross_entropy = tvm_op.make_matrix_softmax_cross_entropy(shape, tgt, tgt_host, "softmax_cross_entropy") matrix_softmax_cross_entropy(arr_y, arr_y_, arr_out) out = arr_out.asnumpy() # numpy calculation cross_entropy = np.mean( -np.sum(y_ * np.log(autodiff.softmax_func(y)), axis=1), keepdims=True)
np.testing.assert_allclose(cross_entropy, out, rtol=1e-5)
numpy.testing.assert_allclose
import os, sys, time import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.colorbar import Colorbar import matplotlib.colors as mcolors from matplotlib.patches import Ellipse from astropy.io import fits from astropy.visualization import (AsinhStretch, LinearStretch, ImageNormalize) from frank.radial_fitters import FrankFitter from frank.geometry import FixedGeometry from frank.io import save_fit # controls target = 'dx5_incl2' #target = 'dx5_PA5' #target = 'incl2_PA5' #target = 'incl2_PA5_dx5' #target = 'zr3_dx5' #target = 'zr3_dy5' #target = 'zr3_incl2' #target = 'zr3_PA5' frank = True im_dat = False im_res = True im_mdl = False annotate_res = False # constants c_ = 2.99792e10 k_ = 1.38057e-16 # residuals color map c2 = plt.cm.Reds(np.linspace(0, 1, 32)) c1 = plt.cm.Blues_r(np.linspace(0, 1, 32)) c1 = np.vstack([c1, np.ones((12, 4))]) colors = np.vstack((c1, c2)) mymap = mcolors.LinearSegmentedColormap.from_list('eddymap', colors) # crude passing mechanism f = open('whichdisk.txt', 'w') f.write(target) f.close() ### - IMAGE THE DATA if im_dat: print('....') print('Imaging the data') print('....') os.system('casa --nogui --nologger --nologfile -c data_imaging.py') print('....') print('Finished imaging the data') print('....') ### - PLOT THE ANNOTATED IMAGE # load data dhdu = fits.open('data/dx1mas_data.JvMcorr.fits') dimg, hd = np.squeeze(dhdu[0].data), dhdu[0].header # parse coordinate frame indices into physical numbers RA = 3600 * hd['CDELT1'] * (np.arange(hd['NAXIS1']) - (hd['CRPIX1'] - 1)) DEC = 3600 * hd['CDELT2'] * (np.arange(hd['NAXIS2']) - (hd['CRPIX2'] - 1)) dRA, dDEC = np.meshgrid(RA, DEC) freq = hd['CRVAL3'] # disk-frame polar coordinates inclr = np.radians(35.) PAr = np.radians(110.) xd = (dRA * np.cos(PAr) - dDEC * np.sin(PAr)) / np.cos(inclr) yd = (dRA * np.sin(PAr) + dDEC * np.cos(PAr)) r, theta = np.sqrt(xd**2 + yd**2), np.degrees(np.arctan2(yd, xd)) # beam parameters bmaj, bmin, bPA = 3600 * hd['BMAJ'], 3600 * hd['BMIN'], hd['BPA'] beam_area = (np.pi * bmaj * bmin / (4 * np.log(2))) / (3600 * 180 / np.pi)**2 # image setups rout = 1.1 im_bounds = (dRA.max(), dRA.min(), dDEC.min(), dDEC.max()) dRA_lims, dDEC_lims = [1.5*rout, -1.5*rout], [-1.5*rout, 1.5*rout] # intensity limits, and stretch norm = ImageNormalize(vmin=0, vmax=50., stretch=AsinhStretch()) cmap = 'inferno' ### Plot the data image plt.style.use('default') fig = plt.figure(figsize=(7.0, 5.9)) gs = gridspec.GridSpec(1, 2, width_ratios=(1, 0.04)) # image (sky-plane) ax = fig.add_subplot(gs[0,0]) Tb = (1e-23 * dimg / beam_area) * c_**2 / (2 * k_ * freq**2) im = ax.imshow(Tb, origin='lower', cmap=cmap, extent=im_bounds, norm=norm, aspect='equal') # annotations tbins = np.linspace(-np.pi, np.pi, 181) rgapi = [0.15, 0.70] rgapo = [0.18, 0.82] for ir in range(len(rgapi)): rgi = rgapi[ir] rgo = rgapo[ir] xgi, ygi = rgi * np.cos(tbins) * np.cos(inclr), rgi * np.sin(tbins) ax.plot( xgi * np.cos(PAr) + ygi * np.sin(PAr), -xgi * np.sin(PAr) + ygi * np.cos(PAr), ':w') xgo, ygo = rgo * np.cos(tbins) * np.cos(inclr), rgo * np.sin(tbins) ax.plot( xgo * np.cos(PAr) + ygo * np.sin(PAr), -xgo * np.sin(PAr) + ygo * np.cos(PAr), ':w') xout, yout = rout * np.cos(tbins) * np.cos(inclr), rout * np.sin(tbins) ax.plot( xout * np.cos(PAr) + yout * np.sin(PAr), -xout * np.sin(PAr) + yout * np.cos(PAr), '--w') # beam beam = Ellipse((dRA_lims[0] + 0.1*np.diff(dRA_lims), dDEC_lims[0] + 0.1*np.diff(dDEC_lims)), bmaj, bmin, 90-bPA) beam.set_facecolor('w') ax.add_artist(beam) # limits, labeling ax.set_xlim(dRA_lims) ax.set_ylim(dDEC_lims) ax.set_xlabel('RA offset ($^{\prime\prime}$)') ax.set_ylabel('DEC offset ($^{\prime\prime}$)') # add a scalebar cbax = fig.add_subplot(gs[:,1]) cb = Colorbar(ax=cbax, mappable=im, orientation='vertical', ticklocation='right') cb.set_label('brightness temperature (K)', rotation=270, labelpad=22) # adjust layout fig.subplots_adjust(wspace=0.02) fig.subplots_adjust(left=0.11, right=0.89, bottom=0.1, top=0.98) fig.savefig('../../figs/'+target+'_dataimage.pdf') ### - FRANK VISIBILITY MODELING if frank: print('....') print('Performing visibility modeling') print('....') # load the visibility data dat = np.load('data/'+target+'.vis.npz') u, v, vis, wgt = dat['u'], dat['v'], dat['Vis'], dat['Wgt'] # set the disk viewing geometry geom = FixedGeometry(35., 110., 0.0, 0.0) # configure the fitting code setup FF = FrankFitter(Rmax=2*rout, geometry=geom, N=300, alpha=1.3, weights_smooth=0.1) # fit the visibilities sol = FF.fit(u, v, vis, wgt) # save the fit save_fit(u, v, vis, wgt, sol, prefix='fits/'+target) print('....') print('Finished visibility modeling') print('....') ### Imaging if im_res: print('....') print('Imaging residuals') print('....') os.system('casa --nogui --nologger --nologfile -c resid_imaging.py') print('....') print('Finished imaging residuals') print('....') if im_mdl: print('....') print('Imaging model') print('....') os.system('casa --nogui --nologerr --nologfile -c model_imaging.py') print('....') print('Finished imaging model') print('....') ### +/- Residual plot if os.path.exists('data/'+target+'_resid.JvMcorr.fits'): print('....') print('Making residual +/- plot') print('using file created on: %s' % \ time.ctime(os.path.getctime('data/'+target+'_resid.JvMcorr.fits'))) print('....') # load residual image rhdu = fits.open('data/'+target+'_resid.JvMcorr.fits') rimg = np.squeeze(rhdu[0].data) # set up plot plt.style.use('classic') fig = plt.figure(figsize=(7.0, 5.9)) gs = gridspec.GridSpec(1, 2, width_ratios=(1, 0.04)) # image (sky-plane) ax = fig.add_subplot(gs[0,0]) vmin, vmax = -50, 50 # these are in microJy/beam units norm = ImageNormalize(vmin=vmin, vmax=vmax, stretch=LinearStretch()) im = ax.imshow(1e6*rimg, origin='lower', cmap=mymap, extent=im_bounds, norm=norm, aspect='equal') # gap markers gcols = ['k', 'darkgray'] for ir in range(len(rgapi)): rgi = rgapi[ir] rgo = rgapo[ir] xgi, ygi = rgi * np.cos(tbins) * np.cos(inclr), rgi * np.sin(tbins) ax.plot( xgi * np.cos(PAr) + ygi * np.sin(PAr), -xgi * np.sin(PAr) + ygi * np.cos(PAr), gcols[ir]) xgo, ygo = rgo * np.cos(tbins) *
np.cos(inclr)
numpy.cos
# This file is part of the # Bartolina Project (https://github.com/exiliadadelsur/Bartolina). # Copyright (c) 2020 <NAME> and <NAME> # License: MIT # Full Text: https://github.com/exiliadadelsur/Bartolina/blob/master/LICENSE """Bartolina : real space reconstruction algorithm for redshift.""" import astropy.constants as const import astropy.units as u from astropy.coordinates import SkyCoord from astropy.cosmology import LambdaCDM, z_at_value import attr import camb import cluster_toolkit as ctoolkit from halotools.empirical_models import NFWProfile import numpy as np import pmesh import pyfof from sklearn.base import BaseEstimator, ClusterMixin, clone as clone_estimator from sklearn.cluster import DBSCAN # ============================================================================ # CONSTANTS # ============================================================================ N_MONTE_CARLO = 300000 # ============================================================================ # AUXILIARY CLASS # ============================================================================ @attr.s(frozen=True) class Halo(object): """Store properties of dark matter halos. Attributes ---------- xyzcenters : ndarray Cartesian coordinates in Mpc to center of each halo. dc_centers : array_like Comoving distance to center of each halo. radius : array_like Radius of each halo in Mpc. mass : array_like Mass of each halo in solar mass. label_h_massive : array_like Label of halos with mass greater than the threshold mass. """ xyz_centers = attr.ib() dc_centers = attr.ib() z_centers = attr.ib() radius = attr.ib() mass = attr.ib() labels_h_massive = attr.ib() @attr.s(frozen=True) class GalInHalo(object): """Store clustering results. Attributes ---------- groups : array_like Cluster labels for each galaxy. Noisy samples are given the label -1. id_group : array_like List of ids used in groups attribute. """ groups = attr.ib() id_groups = attr.ib() # ============================================================================= # FOF WRAPPER # ============================================================================= class FoF(ClusterMixin, BaseEstimator): """SK-Learn like implementation of the Friend-of-Friends algorithm. Internally uses the pyfof library. """ def __init__(self, linking_length: float = 0.5): """Write description. Parameters ---------- linking_length : float, optional DESCRIPTION. The default is 0.5. Raises ------ TypeError DESCRIPTION. ValueError DESCRIPTION. Returns ------- None. """ if not isinstance(linking_length, (int, float)): raise TypeError("linking_length must be a float instance") elif linking_length <= 0: raise ValueError("linking_length must be > 0") self.linking_length = linking_length def fit(self, x, y=None, sample_weight=None): """Perform FoF clustering from features, or distance matrix. Parameters ---------- x : {array-like, sparse matrix} of shape (n_samples, n_features), or \ (n_samples, n_samples) Training instances to cluster, or distances between instances if y : Ignored Not used, present here for API consistency by convention. sample_weights : Ignored Not used, present here for API consistency by convention. Returns ------- self """ # pyfof returns a list of N elements, where N is the number of groups # found. Each list contains the indices of x that belongs to that group groups = pyfof.friends_of_friends(x, self.linking_length) # to turn the groups into sklearn-like labels, we create an array of # "labels" with the same size as data is in x x_len = len(x) labels = np.empty(x_len, dtype=int) # then we iterate over the groups, and assign the position of the group # as a label in the group indexes for idx, group in enumerate(groups): labels[group] = idx # Finally we assing he labels as an attribute of the object. self.labels_ = labels return self # ============================================================================ # MAIN CLASS # ============================================================================ @attr.s class ReZSpace(object): """Real space reconstruction algorithm. This class have methods for corrects galaxy positions affected by Kaiser and Finger of God (FoG) effects. Parameters ---------- ra : array_like Right ascension astronomy coordinate in decimal degrees. dec : array_like Declination astronomy coordinate in decimal degrees. z : array_like Observational redshift. cosmo : object, optional Instance of an astropy cosmology. Default cosmology is LambdaCDM with H0=100, Om0=0.27, Ode0=0.73. Mth : float, optional The threshold mass that determines massive halos in solar mass. Default is 10 ** 12.5. delta_c : string, optional Overdensity constant. Default is "200m". halo_clustering : sklearn.base.BaseEstimator Algorithm to identify the halos. Default ``sklearn.cluster.DBSCAN``. Notes ----- For the corrections is needed the center, radius and mass of each dark matter halo. For this, we consider the geometric center, and the mass is calculated following a NFW profile [navarro97]_ . The radius is estimated as in Merchán & Zandivarez (2005) [merchan2005]_ . The threshold mass is used to determine which of the halos are massive. This is, massive halos are those whose mass are higher than the threshold mass. For the identification of halos by default we use the DBSCAN method of the scikit-learn package, selecting the eps and min_samples parameters to obtained the same galaxy groups of Zapata et al. (2009) [zapata2009]_ that have more of 150 members. Any other estimator from sklearn can be used. References ---------- .. [navarro97] <NAME>., <NAME>., & <NAME>. (1997). A universal density profile from hierarchical clustering. The Astrophysical Journal, 490(2), 493. .. [merchan2005] <NAME>., & <NAME>. (2005). Galaxy groups in the third data release of the sloan digital sky survey. The Astrophysical Journal, 630(2), 759. .. [zapata2009] <NAME>., <NAME>., <NAME>., & <NAME>. (2009). The influence of halo assembly on galaxies and galaxy groups. Monthly Notices of the Royal Astronomical Society, 394(4), 2229-2237. """ # User input params ra = attr.ib() dec = attr.ib() z = attr.ib() cosmo = attr.ib() Mth = attr.ib(default=(10 ** 12.5)) delta_c = attr.ib(default="200m") _halo_clustering = attr.ib( validator=attr.validators.instance_of(BaseEstimator) ) @cosmo.default def _cosmo_default(self): return LambdaCDM(H0=100, Om0=0.27, Ode0=0.73) @_halo_clustering.default def __halo_clustering_default(self): return DBSCAN(eps=1.2, min_samples=24) # ======================================================================== # Public methods # ======================================================================== def dark_matter_halos(self): """Find properties of massive dark matter halos. Find massive dark matter halos and cartesian coordinates of his centers. Necesary for all the other methods. Properties of halos: geometric center, comoving distance to center, redshift to center, radius of halo and mass of halo. Returns ------- halos : object This class store properties of dark matter halos i.e. mass, radius, centers. galinhalo : This class store clustering results. Example ------- >>> import bartolina as bt >>> barto = bt.ReZSpace(ra, dec, z) >>> halos, galinhalo = barto.dark_matter_halos() Notes ----- This method is separated into 3 small methods that perform each step separately (xyzcoordinates, groups and group_prop). """ # cartesian coordinates for galaxies xyz = self.xyzcoordinates() # finding group of galaxies groups, id_groups = self._groups(xyz) # distance and redshifts to halo center radius and mass of halo xyz_center, dc_center, z_center, rad, mass = self._group_prop( id_groups, groups, xyz ) # selec massive halos labels_h_massive = np.where(mass > self.Mth) # store results of clustering galinhalo = GalInHalo(groups, id_groups) # store properties of halos halos = Halo( xyz_center, dc_center, z_center, rad, mass, labels_h_massive ) return halos, galinhalo def xyzcoordinates(self): """Convert galaxies coordinates to Cartesian coordinates xyz. Returns ------- xyz : ndarray Array containing Cartesian galaxies coordinates. Array has 3 columns and the same length as the number of galaxies. Example ------- >>> import bartolina as bt >>> barto = bt.ReZSpace(ra, dec, z) >>> xyz = barto.xyzcoordinates() """ # comoving distance to galaxies dc = self.cosmo.comoving_distance(self.z) # set Ra and Dec in degrees. Comoving distance in Mpc c = SkyCoord( ra=np.array(self.ra) * u.degree, dec=np.array(self.dec) * u.degree, distance=np.array(dc) * u.mpc, ) # create an array with the results xyz = np.array([c.cartesian.x, c.cartesian.y, c.cartesian.z]).T return xyz def _groups(self, xyz): """Galaxies clustering. Finds groups of galaxies. """ # set weights for clustering weights = self.z * 100 # clustering of galaxies # we never use the instance level cluster, we always clone # and use it internally clustering = clone_estimator(self._halo_clustering) clustering.fit(xyz, sample_weight=weights) # select only galaxies in groups unique_elements, counts_elements = np.unique( clustering.labels_, return_counts=True ) return clustering.labels_, unique_elements def _radius(self, ra, dec, z): """Dark matter halos radius. Calculate the radius of the halos. """ # number of galaxies galnum = len(ra) # comoving distance to galaxies dc = self.cosmo.comoving_distance(z) # prepare the coordinates for distance calculation c1 = SkyCoord(np.array(ra) * u.deg, np.array(dec) * u.deg) c2 = SkyCoord(np.array(ra) * u.deg, np.array(dec) * u.deg) # equation 6 of Merchán & Zandivarez (2005) [merchan2005]_ sum_rij = 0 indi = np.arange(galnum) for i in indi: sep = c1[i].separation(c2[
np.where(indi > i)
numpy.where
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for ReplicaExchangeMC.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging from absl.testing import parameterized import numpy as np import tensorflow.compat.v2 as tf import tensorflow_probability as tfp from tensorflow_probability.python.internal import prefer_static from tensorflow_probability.python.internal import test_util tfd = tfp.distributions def effective_sample_size(x, **kwargs): """tfp.mcmc.effective_sample_size, with a maximum appropriate for HMC.""" # Since ESS is an estimate, it can go wrong... E.g. we can have negatively # correlated samples, which *do* have ESS > N, but this ESS is only applicable # for variance reduction power for estimation of the mean. We want to # (blindly) use ESS everywhere (e.g. variance estimates)....and so... ess = tfp.mcmc.effective_sample_size(x, **kwargs) n = tf.cast(prefer_static.size0(x), x.dtype) return tf.minimum(ess, n) def _set_seed(): """Helper which uses graph seed if using TFE.""" # TODO(b/68017812): Deprecate once TFE supports seed. seed_stream = test_util.test_seed_stream() if tf.executing_eagerly(): tf.random.set_seed(seed_stream()) return None return seed_stream() @test_util.test_graph_and_eager_modes class DefaultSwapProposedFnTest(test_util.TestCase): @parameterized.named_parameters( ('prob1p0_n1', 1.0, 1), ('prob1p0_n2', 1.0, 2), ('prob1p0_n4', 1.0, 4), ('prob1p0_n5', 1.0, 5), ('prob0p5_n1', 0.5, 1), ('prob0p5_n4', 0.5, 4), ('prob0p5_n7', 0.5, 7), ('prob0p0_n1', 0.0, 1), ('prob0p0_n2', 0.0, 2), ('prob0p0_n5', 0.0, 5), ) def testProbSwapNumReplicaNoBatch(self, prob_swap, num_replica): fn = tfp.mcmc.default_swap_proposal_fn(prob_swap) num_results = 100 swaps = tf.stack( [fn(num_replica, seed=i) for i in range(num_results)], axis=0) self.assertAllEqual((num_results, num_replica), swaps.shape) self.check_swaps_with_no_batch_shape(self.evaluate(swaps), prob_swap) @parameterized.named_parameters( ('prob1p0_n1', 1.0, 1), ('prob1p0_n2', 1.0, 2), ('prob1p0_n5', 1.0, 5), ('prob0p5_n1', 0.5, 1), ('prob0p5_n2', 0.5, 2), ('prob0p5_n3', 0.5, 3), ('prob0p0_n1', 0.0, 1), ('prob0p0_n2', 0.0, 2), ('prob0p0_n5', 0.0, 5), ) def testProbSwapNumReplicaWithBatch(self, prob_swap, num_replica): fn = tfp.mcmc.default_swap_proposal_fn(prob_swap) num_results = 100 swaps = tf.stack( [fn(num_replica, batch_shape=[2], seed=i) for i in range(num_results)], axis=0) self.assertAllEqual((num_results, num_replica, 2), swaps.shape) swaps_ = self.evaluate(swaps) # Batch members should have distinct swaps in most cases. frac_same = np.mean(swaps_[..., 0] == swaps_[..., 1]) # If prob_swap == 0, swap is the null_swap always. if (prob_swap == 0 or # If num_replica == 1, swap = [0] always. num_replica == 1 or # In this case, we always swap and it's always [1, 0]. (num_replica == 2 and prob_swap == 1)): self.assertEqual(1.0, frac_same) else: self.assertLess(frac_same, 0.9) # Check that each batch member has proper statistics. for i in range(swaps_.shape[-1]): self.check_swaps_with_no_batch_shape(swaps_[..., i], prob_swap) def check_swaps_with_no_batch_shape(self, swaps_, prob_swap): assert swaps_.ndim == 2, 'Expected shape [num_results, num_replica]' num_results, num_replica = swaps_.shape null_swaps = np.arange(num_replica) # Check that we propose at least one swap, prob_swap fraction of the # time. # An exception is made for when num_replica == 1, since in this case the # only swap is the null swap. expected_prob_swap = prob_swap * np.float32(num_replica > 1) observed_prob_swap = np.mean(np.any(swaps_ != null_swaps, axis=1)) self.assertAllClose( expected_prob_swap, observed_prob_swap, rtol=0, # Accurate to 4 standard errors. atol=4 * np.sqrt(prob_swap * (1 - prob_swap) / num_results)) # Verify the swap is "once only." for n in range(20): self.assertAllEqual(null_swaps, np.take(swaps_[n], swaps_[n])) @test_util.test_graph_and_eager_modes class REMCTest(test_util.TestCase): def setUp(self): tf.random.set_seed(123) super(REMCTest, self).setUp() def _checkNormalREMCSampling(self, inverse_temperatures, num_results=1000, prob_swap=1.0, dtype=np.float32): """Sampling from standard normal with REMC.""" target = tfd.Normal(dtype(0.), dtype(1.)) inverse_temperatures = dtype(inverse_temperatures) num_replica = len(inverse_temperatures) step_size = 0.51234 / np.sqrt(inverse_temperatures) num_leapfrog_steps = 3 def make_kernel_fn(target_log_prob_fn, seed): return tfp.mcmc.HamiltonianMonteCarlo( target_log_prob_fn=target_log_prob_fn, seed=seed, step_size=step_size, store_parameters_in_results=True, num_leapfrog_steps=num_leapfrog_steps) remc = tfp.mcmc.ReplicaExchangeMC( target_log_prob_fn=tf.function(target.log_prob, autograph=False), inverse_temperatures=inverse_temperatures, make_kernel_fn=make_kernel_fn, swap_proposal_fn=tfp.mcmc.default_swap_proposal_fn( prob_swap), seed=_set_seed()) states, kernel_results = tfp.mcmc.sample_chain( num_results=num_results, current_state=target.sample(seed=_set_seed()), kernel=remc, num_burnin_steps=50, trace_fn=lambda _, results: results, parallel_iterations=1) # For determinism. self.assertAllEqual((num_results,), states.shape) states_, kr_, replica_ess_ = self.evaluate([ states, kernel_results, # Get the first (and only) state part for all replicas. effective_sample_size(kernel_results.post_swap_replica_states[0]), ]) logging.vlog( 2, '---- execution:{} mean:{} stddev:{}'.format( 'eager' if tf.executing_eagerly() else 'graph', states_.mean(), states_.std())) # Some shortened names. replica_log_accept_ratio = ( kr_.post_swap_replica_results.log_accept_ratio) replica_states_ = kr_.post_swap_replica_states[0] # Get rid of "parts" # Target state is at index 0. self.assertAllClose(states_, replica_states_[:, 0]) # Check that *each* replica has correct marginal. def _check_sample_stats(replica_idx): x = replica_states_[:, replica_idx] ess = replica_ess_[replica_idx] err_msg = 'replica_idx={}'.format(replica_idx) mean_atol = 5 * 1.0 / np.sqrt(ess) self.assertAllClose(x.mean(), 0.0, atol=mean_atol, msg=err_msg) # For a tempered Normal, Variance = T. expected_var = 1 / inverse_temperatures[replica_idx] var_atol = 5 * expected_var * np.sqrt(2) / np.sqrt(ess) self.assertAllClose(np.var(x), expected_var, atol=var_atol, msg=err_msg) for replica_idx in range(num_replica): _check_sample_stats(replica_idx) # Test log_accept_ratio and replica_log_accept_ratio. self.assertAllEqual((num_results, num_replica), replica_log_accept_ratio.shape) replica_mean_accept_ratio = np.mean( np.exp(np.minimum(0, replica_log_accept_ratio)), axis=0) for accept_ratio in replica_mean_accept_ratio: # Every single replica should have a decent P[Accept] self.assertBetween(accept_ratio, 0.2, 0.99) # Check swap probabilities for adjacent swaps. self.assertAllEqual((num_results, num_replica - 1), kr_.is_swap_accepted_adjacent.shape) conditional_swap_prob = ( np.sum(kr_.is_swap_accepted_adjacent, axis=0) /
np.sum(kr_.is_swap_proposed_adjacent, axis=0)
numpy.sum
import pytest from unittest.mock import Mock import numpy as np import matplotlib.pyplot as plt from PIL import Image from figpptx.slide_editor import SlideEditor, SlideTransformer @pytest.mark.parametrize( "instance, expected", [ ((1, 2), (11, 58)), ([3, 5], [13, 55]), ([1, 2, 3, 5], [11, 58, 13, 55]), (np.array([[1, 2], [3, 5]]), np.array([[11, 58], [13, 55]])), ], ) def test_transform(instance, expected): slide = Mock() left = 10 top = 20 size = (30, 40) transformer = SlideTransformer(left=left, top=top, size=size) editor = SlideEditor(slide, transformer) target = editor.transform(instance) assert np.allclose(np.array(target),
np.array(expected)
numpy.array
import matplotlib.pyplot as plt from matplotlib import rc import numpy as np from scipy.stats import multivariate_normal
np.random.seed(104)
numpy.random.seed
import transform import unittest import numpy as np import sys sys.path.insert(0, '../') import pdb import rotateCorrection as rc # another crude transformation computer def _angle(x1, y1, x2, y2): # inputs are in angle dx = x2 - x1 dy = y2 - y1 if dy < 0: return np.arctan(abs(dy)/dx) else: return -np.arctan(abs(dy)/dx) def simple_angle_converter(pointpx, top_right, top_left, bottom_left, bottom_right, imagesize): """ All coordinate tuples are in (x, y) i.e. (lon, lat) convention. pointpx (x, y): pixel coordinates counted from top left corner. top_right, top_left, bottom_left, bottom_right: (lon, lat) pairs imagesize: (width, height) tuple """ # first wrangle inputs image_width, image_height = imagesize px, py = pointpx tr, tl, bl, br = top_right, top_left, bottom_left, bottom_right # now start converting image_width_in_lon = (tr[0] - tl[0] + br[0] - bl[0])/2 image_height_in_lat = (tl[1] - bl[1] + tr[1] - br[1])/2 top_left_lon, top_left_lat = tl # 2. now convert (px, py) -> (dlon, dlat) dlon = px*image_width_in_lon/image_width dlat = py*image_height_in_lat/image_height # compute the angle via simple trig. angle_est1 = _angle(tl[0], tl[1], tr[0], tr[1]) angle_est2 = _angle(bl[0], bl[1], br[0], br[1]) angle = (angle_est1+angle_est2)/2 print(f"angle: {angle}") rot_matrix = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) # apply reverse rotation: x2, y2 (unit: meter) x2, y2 = np.dot(rot_matrix, np.array([dlon, dlat])) # convert x2, y2 to lon, lat actual_lon = top_left_lon + x2 actual_lat = top_left_lat - y2 return actual_lon, actual_lat class TestTransformLukas(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left = np.array([lon_min, lat_min]) bottom_right = np.array([lon_max, lat_min]) # check that top left is sane res = transform.transform(np.array([0, 0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_left)) # check that top right is sane res = transform.transform(np.array([width,0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_right)) # check that bottom left is sane res = transform.transform(np.array([0,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_left)) # check that bottom right is sane res = transform.transform(np.array([width,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, bottom_right)) class TestBasicTransform(unittest.TestCase): def test_unrotated_picture(self): width = 10 height = 60 lon_min = 20 lon_max = 30 lat_min = 10 lat_max = 70 top_left = np.array([lon_min, lat_max]) top_right = np.array([lon_max, lat_max]) bottom_left = np.array([lon_min, lat_min]) bottom_right = np.array([lon_max, lat_min]) # check that top left is sane res = simple_angle_converter(np.array([0, 0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_left)) # check that top right is sane res = simple_angle_converter(np.array([width,0]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(np.allclose(res, top_right)) # check that bottom left is sane res = simple_angle_converter(np.array([0,height]), top_right, top_left, bottom_left, bottom_right, np.array([width, height])) self.assertTrue(
np.allclose(res, bottom_left)
numpy.allclose
import numpy as np from .method.utils import sim_ranks, compute_sim from tqdm import tqdm def expand_query(query, database, db_indices): """ Expands a query with descriptors from database :param query: a single query vector :param database: database vectors :param db_indices: indices of database vectors to expand query :return: An expanded query vector. """ renewed_query = np.copy(query) for db_id in db_indices: renewed_query += database[db_id, :] renewed_query = renewed_query / np.linalg.norm(renewed_query) return renewed_query def apply_qe(query, database, k): """ Performs query expansion. :param query: a single query vector :param database: database vectors :param k: Top-k ranks to employ. :return: Re-ranked retrieval results. """ ranks =
np.zeros(shape=(query.shape[0], database.shape[0]))
numpy.zeros
""" Reaction Wheel discipline for CADRE: Reaction Wheel Dynamics component. """ from __future__ import print_function, division, absolute_import from six.moves import range import numpy as np from openmdao.api import ExplicitComponent class ReactionWheelDynamics(ExplicitComponent): """ Compute the angular velocity vector of reaction wheel. """ def initialize(self): self.options.declare('num_nodes', types=(int, ), desc="Number of time points.") self.options.declare('J_RW', 2.8e-5, desc="Mass moment of inertia of the reaction wheel.") def setup(self): nn = self.options['num_nodes'] J_RW = self.options['J_RW'] # Inputs self.add_input('w_B', np.zeros((nn, 3)), units='1/s', desc='Angular velocity vector in body-fixed frame over time') self.add_input('T_RW',
np.zeros((nn, 3))
numpy.zeros
import numpy as np import logging import time class TrainingEnvironment: """ Class to handle the processing of the game loop.""" def __init__(self, env, model, replay_memory, input_processor, phi_length, frame_skip, image_size, training, epochs, batches_per_epoch, reward_clip, null_op_max, play_epsilon, minibatch_size, save_path, consecutive_max): self._env = env self.model = model self.replay_memory = replay_memory self._process_image = input_processor self.logger = logging.getLogger(__name__) self.phi_length = phi_length self.frame_skip = frame_skip self.image_size = image_size self.training = training self.epochs = epochs self.batches_per_epoch = batches_per_epoch self.reward_clip = reward_clip self.null_op_max = null_op_max self.play_epsilon = play_epsilon self.minibatch_size = minibatch_size self.save_path = save_path self.consecutive_max = consecutive_max self.reset_recent_frames() def run(self): for epoch in range(self.epochs): start = time.time() reward, episodes = self.run_epoch(num_steps=self.batches_per_epoch, training=self.training) # Get model info for reporting avg_loss, average_q = self.model.get_training_info() eps = self.model.get_epsilon() batches = self.model._batch_updates self.logger.info \ ('Epoch: {epoch} | # Episodes: {episodes} | # Batches: {batches} | Average Reward: {reward} | Average Q Value: {avgq} | Average Loss: {loss} | Epsilon: {epsilon} | Elapsed Time: {time} mins'.format( batches = batches, epoch=epoch, reward=reward, loss=avg_loss, epsilon=eps, episodes=episodes, time=(time.time() - start ) /60., avgq = average_q)) if self.training: self.save_checkpoint(epoch=epoch) def reset_recent_frames(self): self._recent_frames = np.zeros(shape=(self.phi_length, self.image_size[0], self.image_size[1]), dtype=np.int8) def save_checkpoint(self, epoch): self.model.save(checkpoint=epoch, model_path = self.save_path) def render(self): self._env.render() def run_episode(self, training=True): state = self.reset_environment() is_terminal = False total_reward = 0 steps = 0 while not is_terminal: if not training: self.render() action = self.get_action(state, training) next_state, reward, is_terminal = self.step(action) if training: clipped_reward =
np.clip(reward ,-self.reward_clip ,self.reward_clip)
numpy.clip
from __future__ import annotations from copy import deepcopy import numpy as np import torch from torch import Tensor, nn from torch.utils import data from torch.ao.quantization import disable_observer from torch.ao.quantization.quantize import convert, prepare_qat from torch.ao.quantization.qconfig import get_default_qat_qconfig from torchvision import transforms import torchvision from .runner import Timer, Accumulator, Animator, show_images class Fx: ones = torch.ones zeros = torch.zeros tensor = torch.tensor arange = torch.arange meshgrid = torch.meshgrid sin = torch.sin sinh = torch.sinh cos = torch.cos cosh = torch.cosh tanh = torch.tanh linspace = torch.linspace exp = torch.exp log = torch.log normal = torch.normal rand = torch.rand matmul = torch.matmul int32 = torch.int32 float32 = torch.float32 concat = torch.cat stack = torch.stack abs = torch.abs eye = torch.eye numpy = lambda x, *args, **kwargs: x.detach().numpy(*args, **kwargs) size = lambda x, *args, **kwargs: x.numel(*args, **kwargs) reshape = lambda x, *args, **kwargs: x.reshape(*args, **kwargs) to = lambda x, *args, **kwargs: x.to(*args, **kwargs) reduce_sum = lambda x, *args, **kwargs: x.sum(*args, **kwargs) argmax = lambda x, *args, **kwargs: x.argmax(*args, **kwargs) astype = lambda x, *args, **kwargs: x.type(*args, **kwargs) transpose = lambda x, *args, **kwargs: x.t(*args, **kwargs) def try_gpu(i=0): """Return gpu(i) if exists, otherwise return cpu(). """ if torch.cuda.device_count() >= i + 1: return torch.device(f'cuda:{i}') return torch.device('cpu') def try_all_gpus(): """Return all available GPUs, or [cpu(),] if no GPU exists. """ devices = [torch.device(f'cuda:{i}') for i in range(torch.cuda.device_count())] return devices if devices else [torch.device('cpu')] class ModuleTool: '''将 inputs 转换为 NumPy 格式 Args: inputs: 批量数据 mean: 默认为 ImageNet 的 mean std: 默认为 ImageNet 的 std channel: 取值范围为 ['first', 'last'] ''' def __init__(self, inputs: Tensor, channel: str = 'first', mean: list[float] = [0.485, 0.456, 0.406], std: list[float] = [0.229, 0.224, 0.225]): self.inputs = inputs self.channel = channel self.mean, self.std = [mean, std] @property def images(self): inputs = self.inputs.cpu().numpy() if self.channel == 'first': inputs = inputs.transpose(0, 2, 3, 1) mean, std = (np.array(x) for x in [self.mean, self.std]) inputs = std * inputs + mean inputs =
np.clip(inputs, 0, 1)
numpy.clip
""" Helper functions for PASTIS. """ import glob import os import datetime import importlib import itertools import time from shutil import copy import sys from astropy.io import fits import astropy.units as u import fpdf import logging import logging.handlers import numpy as np from PyPDF2 import PdfFileMerger from pastis.config import CONFIG_PASTIS log = logging.getLogger() def write_fits(data, filepath, header=None, metadata=None): """ Writes a fits file and adds header and metadata when necessary. :param data: numpy data (aka image) :param filepath: path to save the file, include filename. :param header: astropy hdu.header. :param metadata: list of MetaDataEntry objects that will get added to header. :return: filepath """ # Make sure file ends with fit or fits. #if not (filepath.endswith(".fit") or filepath.endswith(".fits")): # filepath += ".fits" if not os.path.exists(os.path.dirname(filepath)): os.makedirs(os.path.dirname(filepath)) # Create a PrimaryHDU object to encapsulate the data. hdu = fits.PrimaryHDU(data) if header is not None: hdu.header = header # Add metadata to header. if metadata is not None: for entry in metadata: if len(entry.name_8chars) > 8: print('Fits Header Keyword: ' + entry.name_8chars + ' is greater than 8 characters and will be truncated.') if len(entry.comment) > 47: print('Fits Header comment for ' + entry.name_8chars + ' is greater than 47 characters and will be truncated.') hdu.header[entry.name_8chars[:8]] = (entry.value, entry.comment) # Create a HDUList to contain the newly created primary HDU, and write to a new file. fits.HDUList([hdu]) hdu.writeto(filepath, overwrite=True) #print('Wrote ' + filepath) return filepath def write_all_fits_to_cube(path): """ Write all fits files in a directory to an image cube. Directory can *only* contain fits files, and only files that you want in the cube. Subdirectories will be ignored. :param path: string, path to directory that contains all fits files that should be put into cube; cube gets saved into that same directory """ # Collect all filenames all_file_names = [fname for fname in os.listdir(path) if os.path.isfile(os.path.join(path, fname))] # Read all files into list allfiles = [] for fname in all_file_names: allfiles.append(fits.getdata(os.path.join(path, fname))) cube = np.array(allfiles) write_fits(cube, os.path.join(path, 'psf_cube.fits')) def circle_mask(im, xc, yc, rcirc): """ Create a circle on array im centered on xc, yc with radius rcirc; inside circle equals 1.""" x, y =
np.shape(im)
numpy.shape
import unittest import numpy as np from sklearn.metrics.pairwise import pairwise_distances_argmin_min from clusterz.algs.kzmedian import ( DistributedKZMedian, BELDistributedKMedian, k_median_my, kz_median, KZMedian, KMedianWrapped ) class MyTestCase(unittest.TestCase): def setUp(self): cluster = np.random.uniform(-1, 1, size=(40, 2)) self.centers_ = np.array([ [0, 30], [0, -30] ]) self.outliers_ = np.array([ [80, 0], [-80, 0] ]) # data set on a single machine self.X_without_outliers_ = np.vstack( [self.centers_, # clusters cluster + self.centers_[0] + np.array([5, 0]), cluster + self.centers_[0] + np.array([-5, 0]), cluster + self.centers_[1] + np.array([5, 0]), cluster + self.centers_[1] + np.array([-5, 0])]) self.X_with_outliers_ = np.vstack( [self.centers_, self.outliers_, # clusters cluster + self.centers_[0] + np.array([5, 0]), cluster + self.centers_[0] + np.array([-5, 0]), cluster + self.centers_[1] +
np.array([5, 0])
numpy.array
import numpy as np from Constants import BETS, HOUR, HOUSES, LINK, TEAMS, DECIMALS def analize_bet(bet): """ It analize which is the value of a bet and the percentages to invest in each option for achieving this value :param bet: List of floats (or something convertible to float). List of possible bets :return: List of floats. Percentage to invest in each bet Float. Cost of winning a unit of money (if positive is a sure bet). """ # Transform it to numpy for easier calculation bet = np.array(bet, dtype=np.float) # Check the cost of each odd (The amount of money you would need to invest to win an unit of money) odds_cost = 1/bet # Transform this cost to a percentage (The percentage that should be invested at each option) odd_percentage = odds_cost/np.sum(odds_cost) # Calculate the cost of the bet (The money that would cost to win an euro) [If positive it is a sure bet] total_euro_cost = 1-np.sum(odds_cost) return odd_percentage, total_euro_cost def process_information(information): """ Takes all the information extracted and prints all the sure bets and the general statistics :param information: List of dictionaries. List of dictionaries extracted from the MainScraper """ sure_bets, bad_bets = [], [] # For each sport for sport, days in information.items(): # For each day for day, bets in days.items(): #For each bet for bet in bets: # Get the value of the bet percentage, value = analize_bet(bet=bet[BETS]) # If is sure if value > 0: # Save it as sure and print the alert sure_bets.append((value, percentage, sport, day, bet)) #print(get_surebet_text(sport=sport, day=day, bet=bet, percentage=percentage, value=value)) # If not else: # Add it to the bad bets list bad_bets.append((value, percentage, sport, day, bet)) # Print the alerts about surebets alert_about_all_surebets(sure_bets=sure_bets) # Print the summary of the analysis print(get_txt_summary(sure_bets=sure_bets, bad_bets=bad_bets)) def alert_about_all_surebets(sure_bets): """ :param sure_bets: :return: """ sure_bets = np.array(sure_bets, dtype=[('value', np.float), ('percentage', np.object), ('sport', '<U64'), ('day', '<U64'), ('dict', np.object)]) sure_bets.sort(order='value') for sure_bet in sure_bets: print(get_surebet_text(sport=sure_bet['sport'], day=sure_bet['day'], bet=sure_bet['dict'], percentage=sure_bet['percentage'], value=sure_bet['value'])) def get_best_credible_values(values, min_bet=5, max_bet=80): all_posible_bets = np.arange(start=min_bet, stop=max_bet, step=0.01, dtype=values.dtype) all_posible_bets = np.repeat(all_posible_bets, len(values)).reshape(-1, len(values)) values = np.repeat(a=values, repeats=len(all_posible_bets)).reshape(len(values),-1).T possible_invests = values*all_posible_bets possible_rounded_invests = np.round(possible_invests) losses = np.sum(
np.abs(possible_rounded_invests-possible_invests)
numpy.abs
# ======================== # Stress Tensor Estimation # ======================== ''' Contributions ------------- fractoolbox was initiated by <NAME> https://github.com/ICWallis/fractoolbox as part of Doctoral Research at the University of Auckland that is supervised by <NAME> https://github.com/ddempsey and Julie (JR) Rowland, with math/code contributions from <NAME> https://github.com/edur409. Licence ------- fractoolbox is distributed under an Apache 2.0 licence https://choosealicense.com/licenses/apache-2.0/ ''' import numpy as np from scipy import integrate def linear_Sv(maxdepth,obsdepth,density): """Magnitude of overburden stress [Sv in MPa] at a given observation depth Simple integration model that uses single average density and returns Sv for the observation depth or list of depths. Args: maxdepth (float): The maximum depth of the stress model [m] obsdepth (float or list of floats): Depth(s) where Sv will be returned [m] density (float): average rock density [kg/m3] which is typically 2200 - 2800 All args accept float or interger values Returns: Sv at obsdepth [MPa] as float or list of floats """ depth_model = np.array([0,maxdepth]) density_model = np.array([density,density]) gravity = 9.8 # trapezoid integration with unit conversion from Pa to MPa Sv_model = (integrate.cumtrapz(density_model * gravity, depth_model, initial=0)) * 1.e-6 # linear interpolation from the Sv model Sv_obsdepth = np.around((
np.interp(obsdepth, depth_model, Sv_model)
numpy.interp
class EmptyError(Exception): print(Exception) #========================================================================================== # # #========================================================================================== def read_proxy_metadata_S1csv(datadir_proxy, datafile_proxy, proxy_region, proxy_resolution, \ proxy_definition): #========================================================================================== # # ... reads metadata worksheet from PAGES2K_DatabaseS1 dataset ... # #========================================================================================== import sys import numpy as np from random import sample # Library needed to read CSV file format xlrd_dir = '/home/disk/ekman/rtardif/nobackup/lib/pylibs/xlrd/xlrd/' sys.path.append(xlrd_dir) import xlrd # Parsing dictionary of proxy definitions proxy_list = {}; # dict list containing proxy types and associated proxy id's (sites) sites_assim = {} sites_eval = {} proxy_types = list(proxy_definition.keys()) # check if dealing with with "order" digits or not in definition of proxies try: proxy_types_unordered = [i.split(':', 1)[1] for i in list(proxy_definition.keys())] except: proxy_types_unordered = proxy_types for t in proxy_types: proxy_list[t] = [] sites_assim[t] = [] sites_eval[t] = [] proxy_category = [item.split('_')[0] for item in proxy_types_unordered] # Define name of file & open proxy_file = datadir_proxy + '/'+datafile_proxy; print('Reading metadata file: ', proxy_file) workbook = xlrd.open_workbook(proxy_file); # ==================== # Read in the metadata # ==================== metadata = workbook.sheet_by_name('Metadata'); # Get columns headers meta_fields = [metadata.cell(0,col_index).value for col_index in range(metadata.ncols)]; proxy_metadata = []; # dict list containing proxy metadata for row_index in range(1,metadata.nrows): d = {meta_fields[col_index]: metadata.cell(row_index, col_index).value for col_index in range(metadata.ncols)}; proxy_metadata.append(d) # ================================================================= # Restrict to proxy_region and proxy_assim items listed in NAMELIST # ================================================================= for row_index in range(0,metadata.nrows-1): if proxy_metadata[row_index]['PAGES 2k Region'] in proxy_region: if proxy_metadata[row_index]['Archive type'] in proxy_category: if proxy_metadata[row_index]['Resolution (yr)'] in proxy_resolution: indt = [i for i, s in enumerate(proxy_definition) if proxy_metadata[row_index]['Archive type'] in s] proxy_measurement = [proxy_definition[proxy_types[indt[k]]] for k in range(len(indt))] indm = [i for i, s in enumerate(proxy_measurement) if proxy_metadata[row_index]['Proxy measurement'] in s] if indm: indtype = indt[indm[0]] # Add chronology ID to appropriate list in dictionary proxy_list[proxy_types[indtype]].append(str(proxy_metadata[row_index]['PAGES ID'])) return proxy_list def create_proxy_lists_from_metadata_S1csv(datadir_proxy, datafile_proxy, proxy_region, proxy_resolution, \ proxy_definition, proxy_frac, psm_data, psm_r_crit): #========================================================================================== # # ... reads metadata worksheet from PAGES2K_DatabaseS1 dataset ... # #========================================================================================== import sys import numpy as np from random import sample # Library needed to read CSV file format xlrd_dir = '/home/disk/ekman/rtardif/nobackup/lib/pylibs/xlrd/xlrd/' sys.path.append(xlrd_dir) import xlrd # Parsing dictionary of proxy definitions proxy_list = {}; # dict list containing proxy types and associated proxy id's (sites) sites_assim = {} sites_eval = {} proxy_types = list(proxy_definition.keys()) proxy_types_unordered = [i.split(':', 1)[1] for i in list(proxy_definition.keys())] for t in proxy_types: proxy_list[t] = [] sites_assim[t] = [] sites_eval[t] = [] proxy_category = [item.split('_')[0] for item in proxy_types_unordered] # Define name of file & open proxy_file = datadir_proxy + '/'+datafile_proxy; print('Reading metadata file: ', proxy_file) workbook = xlrd.open_workbook(proxy_file); # ==================== # Read in the metadata # ==================== metadata = workbook.sheet_by_name('Metadata'); # Get columns headers meta_fields = [metadata.cell(0,col_index).value for col_index in range(metadata.ncols)]; proxy_metadata = []; # dict list containing proxy metadata for row_index in range(1,metadata.nrows): d = {meta_fields[col_index]: metadata.cell(row_index, col_index).value for col_index in range(metadata.ncols)}; proxy_metadata.append(d) # Restrict to proxy_region and proxy_assim items listed in NAMELIST for row_index in range(0,metadata.nrows-1): if proxy_metadata[row_index]['PAGES 2k Region'] in proxy_region: if proxy_metadata[row_index]['Archive type'] in proxy_category: if proxy_metadata[row_index]['Resolution (yr)'] in proxy_resolution: indt = [i for i, s in enumerate(proxy_definition) if proxy_metadata[row_index]['Archive type'] in s] proxy_measurement = [proxy_definition[proxy_types[indt[k]]] for k in range(len(indt))] indm = [i for i, s in enumerate(proxy_measurement) if proxy_metadata[row_index]['Proxy measurement'] in s] if indm: indtype = indt[indm[0]] # Add chronology ID to appropriate list in dictionary proxy_list[proxy_types[indtype]].append(str(proxy_metadata[row_index]['PAGES ID'])) # ========================================================================= # Filter list to retain sites with PSM calibration correlation > PSM_r_crit # ========================================================================= if psm_data is not None: proxy_TypesSites_psm = list(psm_data.keys()) proxy_TypesSites_psm_ok = [t for t in proxy_TypesSites_psm if abs(psm_data[t]['PSMcorrel']) > psm_r_crit] proxy_list_ok = {} for t in list(proxy_list.keys()): proxy = t.split(':', 1)[1] list_ok = [proxy_TypesSites_psm_ok[k][1] for k in range(len(proxy_TypesSites_psm_ok)) if proxy_TypesSites_psm_ok[k][0] == proxy] proxy_list_ok[t] = list_ok else: proxy_list_ok = proxy_list # ================================================================ # Create lists of sites to assimilate / keep for recon. evaluation # ================================================================ if proxy_frac < 1.0: # List all sites, regardless of proxy type mergedlist = [] tmp = [proxy_list_ok[x] for x in proxy_list_ok] nbtype = len(tmp) for k in range(nbtype): mergedlist.extend(tmp[k]) nbsites = len(mergedlist) nbsites_assim = int(nbsites*proxy_frac) # random selection over entire site list ind_assim = sample(list(range(0, nbsites)), nbsites_assim) ind_eval = set(range(0,nbsites)) - set(ind_assim) # list indices of sites not chosen p_assim = [mergedlist[p] for p in ind_assim] p_eval = [mergedlist[p] for p in ind_eval] #ind = [i for i, s in enumerate(proxy_definition) if proxy_metadata[row_index]['Archive type'] in s] # Re-populate lists by proxy type for t in proxy_types: inda = [i for i, s in enumerate(p_assim) if s in proxy_list_ok[t]] sites_assim[t] = [p_assim[k] for k in inda] inde = [i for i, s in enumerate(p_eval) if s in proxy_list_ok[t]] sites_eval[t] = [p_eval[k] for k in inde] else: sites_assim = proxy_list_ok # leave sites_eval list empty return sites_assim, sites_eval def read_proxy_metadata_S1csv_old(datadir_proxy, datafile_proxy, proxy_region, proxy_resolution, \ proxy_type, proxy_measurement): #========================================================================================== # # ... reads metadata worksheet from PAGES2K_DatabaseS1 dataset ... # #========================================================================================== import sys import numpy as np # Library needed to read CSV file format xlrd_dir = '/home/disk/ekman/rtardif/nobackup/lib/pylibs/xlrd/xlrd/' sys.path.append(xlrd_dir) import xlrd # Uploading proxy data proxy_file = datadir_proxy + '/'+datafile_proxy; print('Reading metadata file: ', proxy_file) workbook = xlrd.open_workbook(proxy_file); # Read in the metadata metadata = workbook.sheet_by_name('Metadata'); # Get columns headers meta_fields = [metadata.cell(0,col_index).value for col_index in range(metadata.ncols)]; proxy_metadata = []; # dict list containing proxy metadata for row_index in range(1,metadata.nrows): d = {meta_fields[col_index]: metadata.cell(row_index, col_index).value for col_index in range(metadata.ncols)}; proxy_metadata.append(d) # Restrict to proxy_region and proxy_assim items listed in NAMELIST proxy_type_to_assim = []; proxy_id_to_assim = []; proxy_lat_to_assim = []; proxy_lon_to_assim = []; for row_index in range(0,metadata.nrows-1): if proxy_metadata[row_index]['PAGES 2k Region'] in proxy_region: if proxy_metadata[row_index]['Archive type'] in proxy_type: if proxy_metadata[row_index]['Proxy measurement'] in proxy_measurement: if proxy_metadata[row_index]['Resolution (yr)'] in proxy_resolution: proxy_id_to_assim.append(proxy_metadata[row_index]['PAGES ID']) proxy_type_to_assim.append(proxy_metadata[row_index]['Archive type']) proxy_lat_to_assim.append(proxy_metadata[row_index]['Lat (N)']) proxy_lon_to_assim.append(proxy_metadata[row_index]['Lon (E)']) site_list = [str(item) for item in proxy_id_to_assim]; # getting rid of unicode site_lat = proxy_lat_to_assim site_lon = proxy_lon_to_assim return site_list, site_lat, site_lon def read_proxy_data_S1csv_site(datadir_proxy, datafile_proxy, proxy_site): #========================================================================================== # # ... reads data from a selected site (chronology) in PAGES2K_DatabaseS1 ... # ... site is passed as argument ... # #========================================================================================== import sys import numpy as np # Library needed to read CSV file format xlrd_dir = '/home/disk/ekman/rtardif/nobackup/lib/pylibs/xlrd/xlrd/' sys.path.append(xlrd_dir) import xlrd # Uploading proxy data proxy_file = datadir_proxy + '/'+datafile_proxy; #print 'Reading file: ', proxy_file workbook = xlrd.open_workbook(proxy_file); # Getting general (number & names of worksheets) info on file content nb_worksheets = workbook.nsheets; #worksheet_list = workbook.sheet_names(); worksheet_list = [str(item) for item in workbook.sheet_names()]; # getting rid of unicode # Create list of worksheet names containing data worksheet_list_data = worksheet_list; del worksheet_list[worksheet_list_data.index('ReadMe')] del worksheet_list[worksheet_list_data.index('Metadata')] # Read in the metadata metadata = workbook.sheet_by_name('Metadata'); # Get columns headers meta_fields = [metadata.cell(0,col_index).value for col_index in range(metadata.ncols)]; proxy_metadata = []; # dict list containing proxy metadata for row_index in range(1,metadata.nrows): d = {meta_fields[col_index]: metadata.cell(row_index, col_index).value for col_index in range(metadata.ncols)}; proxy_metadata.append(d) # Restrict to proxy_region and proxy_assim items listed in NAMELIST proxy_type_to_assim = []; proxy_id_to_assim = []; proxy_lat_to_assim = []; proxy_lon_to_assim = []; for row_index in range(0,metadata.nrows-1): if proxy_metadata[row_index]['PAGES ID'] in proxy_site: proxy_id_to_assim.append(proxy_metadata[row_index]['PAGES ID']) proxy_type_to_assim.append(proxy_metadata[row_index]['Archive type']) proxy_lat_to_assim.append(proxy_metadata[row_index]['Lat (N)']) proxy_lon_to_assim.append(proxy_metadata[row_index]['Lon (E)']) proxy_id_to_assim = [str(item) for item in proxy_id_to_assim]; # getting rid of unicode encoding proxy_type_to_assim = [str(item) for item in proxy_type_to_assim]; # getting rid of unicode encoding # ------------------------------------------ # Loop over worksheets containing proxy data # ------------------------------------------ # Dictionary containing proxy metadata & data proxy_data = {} nb_ob = -1 for worksheet in worksheet_list_data: data = workbook.sheet_by_name(worksheet) num_cols = data.ncols - 1 # Get columns headers tmp_headers = [data.cell(0,col_index).value for col_index in range(data.ncols)] data_headers = [str(item) for item in tmp_headers]; # getting rid of unicode encoding tmp_refs = [data.cell(1,col_index).value for col_index in range(data.ncols)] data_refs = [str(item) for item in tmp_refs] # getting rid of unicode encoding data_headers[0] = data_refs[0]; # correct tag for years # Column indices of proxy id's in proxy_id_to_assim list col_assim = [i for i, item in enumerate(data_headers) if item in proxy_id_to_assim] if col_assim: # if non-empty list for row_index in range(2,data.nrows): for col_index in col_assim: found = False # associate metadata to data record for meta_row_index in range(1,len(proxy_metadata)): if proxy_metadata[meta_row_index]['PAGES ID'] == data_headers[col_index]: found = True typedat = proxy_metadata[meta_row_index]['Archive type'] measure = proxy_metadata[meta_row_index]['Proxy measurement'] resolution = proxy_metadata[meta_row_index]['Resolution (yr)'] lat = proxy_metadata[meta_row_index]['Lat (N)'] lon = proxy_metadata[meta_row_index]['Lon (E)'] alt = 0.0 # no altitude info in data file if lon < 0: lon = 360 + lon if found: if data.cell(row_index, col_index).value: # only keep those with non-empty values nb_ob = nb_ob + 1 proxy_data[nb_ob] = {} proxy_data[nb_ob]['id'] = data_headers[col_index] proxy_data[nb_ob]['type'] = str(typedat) proxy_data[nb_ob]['meas'] = str(measure) proxy_data[nb_ob]['resol'] = resolution proxy_data[nb_ob]['lat'] = lat proxy_data[nb_ob]['lon'] = lon proxy_data[nb_ob]['alt'] = alt proxy_data[nb_ob]['time'] = data.cell(row_index, 0).value proxy_data[nb_ob]['value'] = data.cell(row_index, col_index).value id = proxy_data[0]['id'] lat = proxy_data[0]['lat'] lon = proxy_data[0]['lon'] alt = proxy_data[0]['alt'] # proxy time series time = [proxy_data[k]['time'] for k in range(0,len(proxy_data))] value = [proxy_data[k]['value'] for k in range(0,len(proxy_data))] return id, lat, lon, alt, time, value # could add more output here as we develop further #return proxy_data def read_proxy_data_S1csv(self, datadir_proxy, datafile_proxy, proxy_region, proxy_type, proxy_measurement): #========================================================================================== # # ... reads data from all sites (chronologies) in PAGES2K_DatabaseS1 dataset meeting # selection criteria from NAMELIST ... # #========================================================================================== import sys import numpy as np # Library needed to read CSV file format xlrd_dir = '/home/disk/ekman/rtardif/nobackup/lib/pylibs/xlrd/xlrd/' sys.path.append(xlrd_dir) import xlrd # Uploading proxy data proxy_file = datadir_proxy + '/'+datafile_proxy; print('Reading file: ', proxy_file) workbook = xlrd.open_workbook(proxy_file); # Getting general (number & names of worksheets) info on file content nb_worksheets = workbook.nsheets; #worksheet_list = workbook.sheet_names(); worksheet_list = [str(item) for item in workbook.sheet_names()]; # getting rid of unicode # Create list of worksheet names containing the data worksheet_list_data = worksheet_list; del worksheet_list[worksheet_list_data.index('ReadMe')] del worksheet_list[worksheet_list_data.index('Metadata')] # Read in the metadata metadata = workbook.sheet_by_name('Metadata'); # Get columns headers meta_fields = [metadata.cell(0,col_index).value for col_index in range(metadata.ncols)]; proxy_metadata = []; # dict list containing proxy metadata for row_index in range(1,metadata.nrows): d = {meta_fields[col_index]: metadata.cell(row_index, col_index).value for col_index in range(metadata.ncols)}; proxy_metadata.append(d) # Restrict to proxy_region and proxy_assim items listed in NAMELIST proxy_type_to_assim = []; proxy_id_to_assim = []; proxy_lat_to_assim = []; proxy_lon_to_assim = []; for row_index in range(0,metadata.nrows-1): if proxy_metadata[row_index]['PAGES 2k Region'] in proxy_region: if proxy_metadata[row_index]['Archive type'] in proxy_type: if proxy_metadata[row_index]['Proxy measurement'] in proxy_measurement: proxy_id_to_assim.append(proxy_metadata[row_index]['PAGES ID']) proxy_type_to_assim.append(proxy_metadata[row_index]['Archive type']) proxy_lat_to_assim.append(proxy_metadata[row_index]['Lat (N)']) proxy_lon_to_assim.append(proxy_metadata[row_index]['Lon (E)']) # Loop over worksheets containing proxy data # dictionary containing proxy metadata & data proxy_data = {} nb_ob = -1 for worksheet in worksheet_list_data: #print 'worksheet: ', worksheet data = workbook.sheet_by_name(worksheet) num_cols = data.ncols - 1 # Get columns headers tmp_headers = [data.cell(0,col_index).value for col_index in range(data.ncols)] data_headers = [str(item) for item in tmp_headers]; # getting rid of unicode encoding tmp_refs = [data.cell(1,col_index).value for col_index in range(data.ncols)] data_refs = [str(item) for item in tmp_refs] # getting rid of unicode encoding data_headers[0] = data_refs[0]; # correct tag for years # Column indices of proxy id's in proxy_id_to_assim list col_assim = [i for i, item in enumerate(data_headers) if item in proxy_id_to_assim] if col_assim: # if non-empty list for row_index in range(2,data.nrows): for col_index in col_assim: found = False # associate metadata to data record for meta_row_index in range(1,len(proxy_metadata)): if proxy_metadata[meta_row_index]['PAGES ID'] == data_headers[col_index]: found = True typedat = proxy_metadata[meta_row_index]['Archive type'] measure = proxy_metadata[meta_row_index]['Proxy measurement'] resolution = proxy_metadata[meta_row_index]['Resolution (yr)'] lat = proxy_metadata[meta_row_index]['Lat (N)'] lon = proxy_metadata[meta_row_index]['Lon (E)'] alt = 0.0 # no altitude info in data file if found: if data.cell(row_index, col_index).value: # only keep those with non-empty values nb_ob = nb_ob + 1 proxy_data[nb_ob] = {} proxy_data[nb_ob]['id'] = data_headers[col_index] proxy_data[nb_ob]['type'] = str(typedat) proxy_data[nb_ob]['meas'] = str(measure) proxy_data[nb_ob]['resol'] = resolution proxy_data[nb_ob]['lat'] = lat proxy_data[nb_ob]['lon'] = lon proxy_data[nb_ob]['alt'] = alt proxy_data[nb_ob]['time'] = data.cell(row_index, 0).value proxy_data[nb_ob]['value'] = data.cell(row_index, col_index).value id = [proxy_data[k]['id'] for k in range(0,len(proxy_data))] lat = [proxy_data[k]['lat'] for k in range(0,len(proxy_data))] lon = [proxy_data[k]['lon'] for k in range(0,len(proxy_data))] alt = [proxy_data[k]['alt'] for k in range(0,len(proxy_data))] time = [proxy_data[k]['time'] for k in range(0,len(proxy_data))] value = [proxy_data[k]['value'] for k in range(0,len(proxy_data))] return id, lat, lon, alt, time, value # should add more output here as we develop further #return proxy_data #========================================================================================== # # #========================================================================================== # ========================================================================================= def is_number(s): try: float(s) return True except ValueError: pass try: import unicodedata unicodedata.numeric(s) return True except (TypeError, ValueError): pass return False # ========================================================================================= def create_proxy_lists_from_metadata_NCDC(datadir_proxy, datafile_proxy, proxy_resolution, \ proxy_definition, proxy_frac): #========================================================================================== # # ... reads metadata worksheet for NCDC formatted proxy dataset ... # #========================================================================================== import sys import numpy as np from random import sample # NEED TO THINK OF SOMETHING ELSE HERE... ... ... ... ... ... ... ... ... # ... provide this library as part of LMR distribution? # Library needed to read CSV file format xlrd_dir = '/home/disk/ekman/rtardif/nobackup/lib/pylibs/xlrd/xlrd/' sys.path.append(xlrd_dir) import xlrd # Parsing dictionary of proxy definitions proxy_list = {}; # dict list containing proxy types and associated proxy id's (sites) sites_assim = {} sites_eval = {} proxy_types = list(proxy_definition.keys()) proxy_types_unordered = [i.split(':', 1)[1] for i in list(proxy_definition.keys())] for t in proxy_types: proxy_list[t] = [] sites_assim[t] = [] sites_eval[t] = [] proxy_category = [item.split('_')[0] for item in proxy_types_unordered] # Define name of file & open proxy_file = datadir_proxy + '/'+datafile_proxy; print('Reading metadata file: ', proxy_file) workbook = xlrd.open_workbook(proxy_file); # ==================== # Read in the metadata # ==================== metadata = workbook.sheet_by_name('Master Metadata File'); # Get columns headers meta_fields = [metadata.cell(0,col_index).value for col_index in range(metadata.ncols)]; proxy_metadata = []; # dict list containing proxy metadata for row_index in range(1,metadata.nrows): d = {meta_fields[col_index]: metadata.cell(row_index, col_index).value for col_index in range(metadata.ncols)}; proxy_metadata.append(d) # ================================================================= # Restrict to proxy_assim items listed in NAMELIST # ================================================================= for row_index in range(0,metadata.nrows-1): if proxy_metadata[row_index]['Archive'] in proxy_category: if proxy_metadata[row_index]['Resolution'] in proxy_resolution: indt = [i for i, s in enumerate(proxy_definition) if proxy_metadata[row_index]['Archive'] in s] proxy_measurement = [proxy_definition[proxy_types[indt[k]]] for k in range(len(indt))] l1 = proxy_metadata[row_index]['Variable Short Names'].split(",") l2 = [item.strip("[").strip("]").strip("'").strip().strip("'") for item in l1] # clean the crud... l3 = [str(l2[k]) for k in range(len(l2))] # Common elements in lists? for indm in range(len(proxy_measurement)): common_set = set(l3)&set(proxy_measurement[indm]) if common_set: # if common element has been found indtype = indt[indm] # Add chronology ID to appropriate list in dictionary # Do a check on consistency between 'Unique Identifier' & 'Filename.txt' ... sometimes doesn't match! siteid_from_filename = proxy_metadata[row_index]['Filename.txt'][:-4] # strip the '.txt' if str(proxy_metadata[row_index]['Unique Identifier']) != siteid_from_filename: print('Filename & Unique Identifier DO NOT MATCH: using filename instead ...', siteid_from_filename, \ 'vs', str(proxy_metadata[row_index]['Unique Identifier'])) proxy_list[proxy_types[indtype]].append(str(siteid_from_filename)) else: proxy_list[proxy_types[indtype]].append(str(proxy_metadata[row_index]['Unique Identifier'])) # Create lists of sites to assimilate / keep for recon. evaluation if proxy_frac < 1.0: # List all sites, regardless of proxy type mergedlist = [] tmp = [proxy_list[x] for x in proxy_list] nbtype = len(tmp) for k in range(nbtype): mergedlist.extend(tmp[k]) nbsites = len(mergedlist) nbsites_assim = int(nbsites*proxy_frac) # random selection over merged site list ind_assim = sample(list(range(0, nbsites)), nbsites_assim) ind_eval = set(range(0,nbsites)) - set(ind_assim) # list indices of sites not chosen p_assim = [mergedlist[p] for p in ind_assim] p_eval = [mergedlist[p] for p in ind_eval] #ind = [i for i, s in enumerate(proxy_definition) if proxy_metadata[row_index]['Archive type'] in s] # Re-populate lists by proxy type for t in proxy_types: inda = [i for i, s in enumerate(p_assim) if s in proxy_list[t]] sites_assim[t] = [p_assim[k] for k in inda] inde = [i for i, s in enumerate(p_eval) if s in proxy_list[t]] sites_eval[t] = [p_eval[k] for k in inde] else: sites_assim = proxy_list # leave sites_eval list empty # print ' ' # for t in proxy_types: # print t, proxy_list[t] # print ' ' print('Assim:', sites_assim) print(' ') print('Eval:', sites_eval) return sites_assim, sites_eval # ========================================================================================= def colonReader(string, fCon, fCon_low, end): '''This function seeks a specified string (or list of strings) within the transcribed file fCon (lowercase version fCon_low) until a specified character (typically end of the line) is found.x If a list of strings is provided, make sure they encompass all possibilities From <NAME> (Univ. of Southern California) ''' if isinstance(string, str): lstr = string + ': ' # append the annoying stuff Index = fCon_low.find(lstr) Len = len(lstr) if Index != -1: endlIndex = fCon_low[Index:].find(end) rstring = fCon[Index+Len:Index+endlIndex] # returned string if rstring[-1:] == '\r': # strip the '\r' character if it appears rstring = rstring[:-1] return rstring.strip() else: #print "Error: property " + string + " not found" return "" else: num_str = len(string) rstring = "" # initialize returned string for k in range(0,num_str): # loop over possible strings lstr = string[k] + ': ' # append the annoying stuff Index = fCon_low.find(lstr) Len = len(lstr) if Index != -1: endlIndex = fCon_low[Index:].find(end) rstring = fCon[Index+Len:Index+endlIndex] if rstring[-1:] == '\r': # strip the '\r' character if it appears rstring = rstring[:-1] if rstring == "": #print "Error: property " + string[0] + " not found" return "" else: return rstring.strip() # ========================================================================================= def read_proxy_data_NCDCtxt_site(datadir, site, measurement): #========================================================================================== # Purpose: Reads data from a selected site (chronology) in NCDC proxy dataset # # Input : # - datadir : Directory where proxy data files are located. # - site : Site ID (ex. 00aust01a) # - measurement : List of possible proxy measurement labels for specific proxy type # (ex. ['d18O','d18o','d18o_stk','d18o_int','d18o_norm'] for delta 18 oxygen isotope # measurements) # # Returns : # - id : Site id read from the data file # - lat/lon : latitude & longitude of the site # - alt : Elevation of the site # - time : Array containing the time of uploaded data # - value : Array of uploaded proxy data # # Author(s): <NAME>, Univ. of Washington, Dept. of Atmospheric Sciences # based on "ncdc_file_parser.py" code from <NAME> # (Univ. of Southern California) # # Date : March 2015 # # Revision : None # #========================================================================================== import os import numpy as np # Possible header definitions of time in data files ... time_defs = ['age','Age_AD','age_AD','age_AD_ass','age_AD_int','Midpt_year',\ 'age_yb1950','yb_1950','yrb_1950',\ 'yb_1989','age_yb1989',\ 'yr_b2k','yb_2k','ky_b2k','kyb_2k','kab2k','ka_b2k','ky_BP','kyr_BP','ka_BP','age_kaBP',\ 'yr_BP','calyr_BP','Age(yrBP)','age_calBP'] filename = datadir+'/'+site+'.txt' if os.path.isfile(filename): print('File:', filename) # Define root string for filename file_s = filename.replace(" ", '_') # strip all whitespaces if present fileroot = '_'.join(file_s.split('.')[:-1]) # Open the file and port content to a string object filein = open(filename,'U') # use the "universal newline mode" (U) to handle DOS formatted files fileContent = filein.read() fileContent_low = fileContent.lower() # Initialize empty dictionary d = {} # Assign default values to some metadata d['ElevationUnit'] = 'm' d['TimeUnit'] = 'y_ad' # note: 8240/2030 ASCII code for "permil" # =========================================================================== # Extract metadata from file # =========================================================================== try: # 'Archive' is the proxy type d['Archive'] = colonReader('archive', fileContent, fileContent_low, '\n') # Other info d['Title'] = colonReader('study_name', fileContent, fileContent_low, '\n') investigators = colonReader('investigators', fileContent, fileContent_low, '\n') d['Investigators'] = investigators.replace(';',' and') # take out the ; so that turtle doesn't freak out. d['PubDOI'] = colonReader('doi', fileContent, fileContent_low, '\n') d['SiteName'] = colonReader('site_name', fileContent, fileContent_low, '\n') str_lst = ['northernmost_latitude', 'northernmost latitude'] # documented instances of this field property d['NorthernmostLatitude'] = float(colonReader(str_lst, fileContent, fileContent_low, '\n')) str_lst = ['southernmost_latitude', 'southernmost latitude'] # documented instances of this field property d['SouthernmostLatitude'] = float(colonReader(str_lst, fileContent, fileContent_low, '\n')) str_lst = ['easternmost_longitude', 'easternmost longitude'] # documented instances of this field property d['EasternmostLongitude'] = float(colonReader(str_lst, fileContent, fileContent_low, '\n')) str_lst = ['westernmost_longitude', 'westernmost longitude'] # documented instances of this field property d['WesternmostLongitude'] = float(colonReader(str_lst, fileContent, fileContent_low, '\n')) elev = colonReader('elevation', fileContent, fileContent_low, '\n') if elev != 'nan' and len(elev)>0: elev_s = elev.split(' ') d['Elevation'] = float(''.join(c for c in elev_s[0] if c.isdigit())) # to only keep digits ... else: d['Elevation'] = float('NaN') d['CollectionName'] = colonReader('collection_name', fileContent, fileContent_low, '\n') d['EarliestYear'] = float(colonReader('earliest_year', fileContent, fileContent_low, '\n')) d['MostRecentYear'] = float(colonReader('most_recent_year', fileContent, fileContent_low, '\n')) d['TimeUnit'] = colonReader('time_unit', fileContent, fileContent_low, '\n') if not d['TimeUnit']: d['TimeUnit'] = colonReader('time unit', fileContent, fileContent_low, '\n') except EmptyError as e: print(e) # =========================================================================== # Extract information from the "Variables" section of the file # =========================================================================== # Find beginning of block sline_begin = fileContent.find('# Variables:') if sline_begin == -1: sline_begin = fileContent.find('# Variables') # Find end of block sline_end = fileContent.find('# Data:') if sline_end == -1: sline_end = fileContent.find('# Data\n') VarDesc = fileContent[sline_begin:sline_end].splitlines() nvar = 0 # counter for variable number for line in VarDesc: # handle all the NCDC convention changes # (TODO: more clever/general exception handling) if line and line[0] != '' and line[0] != ' ' and line[0:2] != '#-' and line[0:2] != '# ' and line != '#': #print line nvar = nvar + 1 line2 = line.replace('\t',',') # clean up sp_line = line2.split(',') # split line along commas if len(sp_line) < 9: continue else: d['DataColumn' + format(nvar, '02') + '_ShortName'] = sp_line[0].strip('#').strip(' ') d['DataColumn' + format(nvar, '02') + '_LongName'] = sp_line[1] d['DataColumn' + format(nvar, '02') + '_Material'] = sp_line[2] d['DataColumn' + format(nvar, '02') + '_Uncertainty'] = sp_line[3] d['DataColumn' + format(nvar, '02') + '_Units'] = sp_line[4] d['DataColumn' + format(nvar, '02') + '_Seasonality'] = sp_line[5] d['DataColumn' + format(nvar, '02') + '_Archive'] = sp_line[6] d['DataColumn' + format(nvar, '02') + '_Detail'] = sp_line[7] d['DataColumn' + format(nvar, '02') + '_Method'] = sp_line[8] d['DataColumn' + format(nvar, '02') + '_CharOrNum'] = sp_line[9].strip(' ') # =========================================================================== # Extract the data from the "Data" section of the file # =========================================================================== # Find line number at beginning of data block sline = fileContent.find('# Data:') if sline == -1: sline = fileContent.find('# Data\n') fileContent_datalines = fileContent[sline:].splitlines() start_line_index = 0 line_nb = 0 for line in fileContent_datalines: # skip lines without actual data #print line if not line or line[0]=='#' or line[0] == ' ': start_line_index += 1 else: start_line_index2 = line_nb break line_nb +=1 #print start_line_index, start_line_index2 # Extract column descriptions (headers) of the data matrix DataColumn_headers = fileContent_datalines[start_line_index].splitlines()[0].split('\t') # Strip possible blanks in column headers DataColumn_headers = [item.strip() for item in DataColumn_headers] nc = len(DataColumn_headers) #print '-:' + str(nvar) + ' variables identified in metadata' #print '-:' + str(nc) + ' columns in data matrix' # Which column contains the important data (time & proxy values) to be extracted? time_list = [] data_list = [] # Time TimeColumn_ided = False TimeColumn_tag = list(set(DataColumn_headers).intersection(time_defs)) if len(TimeColumn_tag) > 0: if len(TimeColumn_tag) == 1: # single match -> ok time_col_index = DataColumn_headers.index(', '.join(TimeColumn_tag)) TimeColumn_ided = True else: print('TimeColumn: More than one match ...do what then?') # Proxy data DataColumn_ided = False DataColumn_tag = list(set(DataColumn_headers).intersection(measurement)) if len(DataColumn_tag) > 0: if len(DataColumn_tag) == 1: # single match -> ok data_col_index = DataColumn_headers.index(', '.join(DataColumn_tag)) DataColumn_ided = True else: print('DataColumn: More than one match ...do what then?') print('Taking first one...') DataColumn_tag.remove(DataColumn_tag[1]) data_col_index = DataColumn_headers.index(', '.join(DataColumn_tag)) DataColumn_ided = True # If both columns identified, then load arrays with the data if TimeColumn_ided and DataColumn_ided: datalines = fileContent_datalines[start_line_index+1:] # +1 to skip 1st line (header line) for line in datalines: datalist = line.split() # if line not empty if datalist: try: # If data not empty, not NaN & only digits -> OK then fill lists if datalist and datalist[time_col_index] and datalist[data_col_index] and \ is_number(datalist[data_col_index]) and datalist[data_col_index].lower() != 'nan': time_list.append(datalist[time_col_index]) data_list.append(datalist[data_col_index]) except: continue # transform to numpy arrays => proxy time series time = np.asarray(time_list,dtype=np.float64) value = np.asarray(data_list,dtype=np.float64) # proxy identifier and geo location id = d['CollectionName'] alt = d['Elevation'] # Something crude in assignement of lat/lon: if d['NorthernmostLatitude'] != d['SouthernmostLatitude']: lat = (d['NorthernmostLatitude'] + d['SouthernmostLatitude'])/2.0 else: lat = d['NorthernmostLatitude'] if d['EasternmostLongitude'] != d['WesternmostLongitude']: lon = (d['EasternmostLongitude'] + d['WesternmostLongitude'])/2.0 else: lon = d['EasternmostLongitude'] # Modify "time" array into "years AD" if not already #print 'TimeUnit:', d['TimeUnit'] tdef = d['TimeUnit'] tdef_parsed = tdef.split('_') if len(tdef_parsed) == 2 and tdef_parsed[0] and tdef_parsed[1]: # tdef has expected structure ... if tdef_parsed[0] == 'yb' and is_number(tdef_parsed[1]): time = float(tdef_parsed[1]) - time elif tdef_parsed[0] == 'kyb' and is_number(tdef_parsed[1]): time = float(tdef_parsed[1]) - 1000.0*time elif tdef_parsed[0] == 'y' and tdef_parsed[1] == 'ad': pass # do nothing, time already in years_AD else: print('Unrecognized time definition. Returning empty arrays!') time = np.asarray([],dtype=np.float64) value = np.asarray([],dtype=np.float64) else: print('*** WARNING *** Unexpected time definition: string has more elements than expected. Returning empty arrays!') time = np.asarray([],dtype=np.float64) value =
np.asarray([],dtype=np.float64)
numpy.asarray
import math import warnings import numpy as np from scipy import stats from statsmodels.tsa import stattools from scipy.interpolate import interp1d from scipy.stats import chi2 from .Base import Base from .features.irregular_autoregressive import IAR_phi, CIAR_phiR_beta from .features.structure_function import SF_ML_amplitude, SF_ML_gamma from .features.damped_random_walk import GP_DRW_sigma, GP_DRW_tau from .features.harmonics import Harmonics from .features.periods import Period_fit_v2, PeriodPowerRate, PeriodLS_v2 from .features.conditional_autoregressive import CAR_mean, CAR_sigma, CAR_tau class Amplitude(Base): """Half the difference between the maximum and the minimum magnitude""" def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] n = len(magnitude) sorted_mag = np.sort(magnitude) return (np.median(sorted_mag[int(-math.ceil(0.05 * n)):]) - np.median(sorted_mag[0:int(math.ceil(0.05 * n))])) / 2.0 class Rcs(Base): """Range of cumulative sum""" def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] sigma = np.std(magnitude) N = len(magnitude) m = np.mean(magnitude) s = np.cumsum(magnitude - m) * 1.0 / (N * sigma) R = np.max(s) - np.min(s) return R class StetsonK(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'error'] def fit(self, data): magnitude = data[0] error = data[2] n = len(magnitude) mean_mag = (np.sum(magnitude/(error*error))/np.sum(1.0 / (error * error))) sigmap = (np.sqrt(n * 1.0 / (n - 1)) * (magnitude - mean_mag) / error) k = (1 / np.sqrt(n * 1.0) * np.sum(np.abs(sigmap)) / np.sqrt(np.sum(sigmap ** 2))) return k class Meanvariance(Base): """variability index""" def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] return np.std(magnitude) / np.mean(magnitude) class Autocor_length(Base): def __init__(self, shared_data, lags=100): super().__init__(shared_data) self.Data = ['magnitude'] self.nlags = lags def fit(self, data): magnitude = data[0] ac = stattools.acf(magnitude, nlags=self.nlags, fft=False) k = next((index for index, value in enumerate(ac) if value < np.exp(-1)), None) while k is None: if self.nlags > len(magnitude): warnings.warn('Setting autocorrelation length as light curve length') return len(magnitude) self.nlags = self.nlags + 100 ac = stattools.acf(magnitude, nlags=self.nlags, fft=False) k = next((index for index, value in enumerate(ac) if value < np.exp(-1)), None) return k class SlottedA_length(Base): def __init__(self, shared_data, T=-99): """ lc: MACHO lightcurve in a pandas DataFrame k: lag (default: 1) T: tau (slot size in days. default: 4) """ super().__init__(shared_data) self.Data = ['magnitude', 'time'] SlottedA_length.SAC = [] self.T = T def slotted_autocorrelation(self, data, time, T, K, second_round=False, K1=100): slots = np.zeros((K, 1)) i = 1 # make time start from 0 time = time - np.min(time) # subtract mean from mag values m = np.mean(data) data = data - m prod = np.zeros((K, 1)) pairs = np.subtract.outer(time, time) pairs[np.tril_indices_from(pairs)] = 10000000 ks = np.int64(np.floor(np.abs(pairs) / T + 0.5)) # We calculate the slotted autocorrelation for k=0 separately idx = np.where(ks == 0) prod[0] = ((sum(data ** 2) + sum(data[idx[0]] * data[idx[1]])) / (len(idx[0]) + len(data))) slots[0] = 0 # We calculate it for the rest of the ks if second_round is False: for k in np.arange(1, K): idx = np.where(ks == k) if len(idx[0]) != 0: prod[k] = sum(data[idx[0]] * data[idx[1]]) / (len(idx[0])) slots[i] = k i = i + 1 else: prod[k] = np.infty else: for k in np.arange(K1, K): idx = np.where(ks == k) if len(idx[0]) != 0: prod[k] = sum(data[idx[0]] * data[idx[1]]) / (len(idx[0])) slots[i - 1] = k i = i + 1 else: prod[k] = np.infty np.trim_zeros(prod, trim='b') slots = np.trim_zeros(slots, trim='b') return prod / prod[0], np.int64(slots).flatten() def fit(self, data): magnitude = data[0] time = data[1] N = len(time) if self.T == -99: deltaT = time[1:] - time[:-1] sorted_deltaT = np.sort(deltaT) self.T = sorted_deltaT[int(N * 0.05)+1] K = 100 [SAC, slots] = self.slotted_autocorrelation(magnitude, time, self.T, K) SAC2 = SAC[slots] SlottedA_length.autocor_vector = SAC2 k = next((index for index, value in enumerate(SAC2) if value < np.exp(-1)), None) while k is None: K = K+K if K > (np.max(time) - np.min(time)) / self.T: break else: [SAC, slots] = self.slotted_autocorrelation(magnitude, time, self.T, K, second_round=True, K1=K/2) SAC2 = SAC[slots] k = next((index for index, value in enumerate(SAC2) if value < np.exp(-1)), None) return slots[k] * self.T def getAtt(self): return SlottedA_length.autocor_vector class StetsonK_AC(SlottedA_length): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'time', 'error'] def fit(self, data): try: a = StetsonK_AC(self.shared_data) autocor_vector = a.getAtt() N_autocor = len(autocor_vector) sigmap = (np.sqrt(N_autocor * 1.0 / (N_autocor - 1)) * (autocor_vector - np.mean(autocor_vector)) / np.std(autocor_vector)) K = (1 / np.sqrt(N_autocor * 1.0) * np.sum(np.abs(sigmap)) / np.sqrt(np.sum(sigmap ** 2))) return K except: print("error: please run SlottedA_length first to generate values for StetsonK_AC ") class StetsonL(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'time', 'error', 'magnitude2', 'error2'] def fit(self, data): aligned_magnitude = data[4] aligned_magnitude2 = data[5] aligned_error = data[7] aligned_error2 = data[8] N = len(aligned_magnitude) mean_mag = (np.sum(aligned_magnitude/(aligned_error*aligned_error)) / np.sum(1.0 / (aligned_error * aligned_error))) mean_mag2 = (np.sum(aligned_magnitude2/(aligned_error2*aligned_error2)) / np.sum(1.0 / (aligned_error2 * aligned_error2))) sigmap = (np.sqrt(N * 1.0 / (N - 1)) * (aligned_magnitude[:N] - mean_mag) / aligned_error) sigmaq = (np.sqrt(N * 1.0 / (N - 1)) * (aligned_magnitude2[:N] - mean_mag2) / aligned_error2) sigma_i = sigmap * sigmaq J = (1.0 / len(sigma_i) * np.sum(np.sign(sigma_i) * np.sqrt(np.abs(sigma_i)))) K = (1 / np.sqrt(N * 1.0) * np.sum(np.abs(sigma_i)) / np.sqrt(np.sum(sigma_i ** 2))) return J * K / 0.798 class Con(Base): """Index introduced for selection of variable starts from OGLE database. To calculate Con, we counted the number of three consecutive measurements that are out of 2sigma range, and normalized by N-2 Pavlos not happy """ def __init__(self, shared_data, consecutiveStar=3): super().__init__(shared_data) self.Data = ['magnitude'] self.consecutiveStar = consecutiveStar def fit(self, data): magnitude = data[0] N = len(magnitude) if N < self.consecutiveStar: return 0 sigma = np.std(magnitude) m = np.mean(magnitude) count = 0 for i in range(N - self.consecutiveStar + 1): flag = 0 for j in range(self.consecutiveStar): if (magnitude[i + j] > m + 2 * sigma or magnitude[i + j] < m - 2 * sigma): flag = 1 else: flag = 0 break if flag: count = count + 1 return count * 1.0 / (N - self.consecutiveStar + 1) class Color(Base): """Average color for each MACHO lightcurve mean(B1) - mean(B2) """ def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'time', 'magnitude2'] def fit(self, data): magnitude = data[0] magnitude2 = data[3] return np.mean(magnitude) - np.mean(magnitude2) class Beyond1Std(Base): """Percentage of points beyond one st. dev. from the weighted (by photometric errors) mean """ def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'error'] def fit(self, data): magnitude = data[0] error = data[2] n = len(magnitude) weighted_mean = np.average(magnitude, weights=1 / error ** 2) # Standard deviation with respect to the weighted mean var = sum((magnitude - weighted_mean) ** 2) std = np.sqrt((1.0 / (n - 1)) * var) count = np.sum(np.logical_or(magnitude > weighted_mean + std, magnitude < weighted_mean - std)) return float(count) / n class SmallKurtosis(Base): """Small sample kurtosis of the magnitudes. See http://www.xycoon.com/peakedness_small_sample_test_1.htm """ def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] n = len(magnitude) mean = np.mean(magnitude) std = np.std(magnitude) S = sum(((magnitude - mean) / std) ** 4) c1 = float(n * (n + 1)) / ((n - 1) * (n - 2) * (n - 3)) c2 = float(3 * (n - 1) ** 2) / ((n - 2) * (n - 3)) return c1 * S - c2 class Std(Base): """Standard deviation of the magnitudes""" def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] return np.std(magnitude) class Skew(Base): """Skewness of the magnitudes""" def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] return stats.skew(magnitude) class StetsonJ(Base): """Stetson (1996) variability index, a robust standard deviation""" def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'time', 'error', 'magnitude2', 'error2'] #lc fields are [data, mjd, error, second_data, aligned_data, aligned_second_data, aligned_mjd] def fit(self, data): aligned_magnitude = data[4] aligned_magnitude2 = data[5] aligned_error = data[7] aligned_error2 = data[8] N = len(aligned_magnitude) mean_mag = (np.sum(aligned_magnitude/(aligned_error*aligned_error)) / np.sum(1.0 / (aligned_error * aligned_error))) mean_mag2 = (np.sum(aligned_magnitude2 / (aligned_error2*aligned_error2)) / np.sum(1.0 / (aligned_error2 * aligned_error2))) sigmap = (np.sqrt(N * 1.0 / (N - 1)) * (aligned_magnitude[:N] - mean_mag) / aligned_error) sigmaq = (np.sqrt(N * 1.0 / (N - 1)) * (aligned_magnitude2[:N] - mean_mag2) / aligned_error2) sigma_i = sigmap * sigmaq J = (1.0 / len(sigma_i) * np.sum(np.sign(sigma_i) * np.sqrt(np.abs(sigma_i)))) return J class MaxSlope(Base): """ Examining successive (time-sorted) magnitudes, the maximal first difference (value of delta magnitude over delta time) """ def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude', 'time'] def fit(self, data): magnitude = data[0] time = data[1] slope = np.abs(magnitude[1:] - magnitude[:-1]) / (time[1:] - time[:-1]) np.max(slope) return np.max(slope) class MedianAbsDev(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] median = np.median(magnitude) devs = (abs(magnitude - median)) return np.median(devs) class MedianBRP(Base): """Median buffer range percentage Fraction (<= 1) of photometric points within amplitude/10 of the median magnitude """ def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] median = np.median(magnitude) amplitude = (np.max(magnitude) - np.min(magnitude)) / 10 n = len(magnitude) count = np.sum(np.logical_and(magnitude < median + amplitude, magnitude > median - amplitude)) return float(count) / n class PairSlopeTrend(Base): """ Considering the last 30 (time-sorted) measurements of source magnitude, the fraction of increasing first differences minus the fraction of decreasing first differences. """ def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] data_last = magnitude[-30:] return (float(len(np.where(np.diff(data_last) > 0)[0]) - len(np.where(np.diff(data_last) <= 0)[0])) / 30) class FluxPercentileRatioMid20(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] sorted_data = np.sort(magnitude) lc_length = len(sorted_data) F_60_index = math.ceil(0.60 * lc_length) F_40_index = math.ceil(0.40 * lc_length) F_5_index = math.ceil(0.05 * lc_length) F_95_index = math.ceil(0.95 * lc_length) F_40_60 = sorted_data[F_60_index] - sorted_data[F_40_index] F_5_95 = sorted_data[F_95_index] - sorted_data[F_5_index] F_mid20 = F_40_60 / F_5_95 return F_mid20 class FluxPercentileRatioMid35(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] sorted_data = np.sort(magnitude) lc_length = len(sorted_data) F_325_index = math.ceil(0.325 * lc_length) F_675_index = math.ceil(0.675 * lc_length) F_5_index = math.ceil(0.05 * lc_length) F_95_index = math.ceil(0.95 * lc_length) F_325_675 = sorted_data[F_675_index] - sorted_data[F_325_index] F_5_95 = sorted_data[F_95_index] - sorted_data[F_5_index] F_mid35 = F_325_675 / F_5_95 return F_mid35 class FluxPercentileRatioMid50(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] sorted_data = np.sort(magnitude) lc_length = len(sorted_data) F_25_index = math.ceil(0.25 * lc_length) F_75_index = math.ceil(0.75 * lc_length) F_5_index = math.ceil(0.05 * lc_length) F_95_index = math.ceil(0.95 * lc_length) F_25_75 = sorted_data[F_75_index] - sorted_data[F_25_index] F_5_95 = sorted_data[F_95_index] - sorted_data[F_5_index] F_mid50 = F_25_75 / F_5_95 return F_mid50 class FluxPercentileRatioMid65(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] sorted_data = np.sort(magnitude) lc_length = len(sorted_data) F_175_index = math.ceil(0.175 * lc_length) F_825_index = math.ceil(0.825 * lc_length) F_5_index = math.ceil(0.05 * lc_length) F_95_index = math.ceil(0.95 * lc_length) F_175_825 = sorted_data[F_825_index] - sorted_data[F_175_index] F_5_95 = sorted_data[F_95_index] - sorted_data[F_5_index] F_mid65 = F_175_825 / F_5_95 return F_mid65 class FluxPercentileRatioMid80(Base): def __init__(self, shared_data): super().__init__(shared_data) self.Data = ['magnitude'] def fit(self, data): magnitude = data[0] sorted_data =
np.sort(magnitude)
numpy.sort
import numpy as np from numpy import linalg as LA class Hamiltonian: """ Contains: Matrix structure, elements, consistency equations, total energy equation and both static and dynamic parameters Model_Params must be a dictionary and at least contain: N_dim N_cells Filling mat_dim MF_Params must be a 1D np.array The class must contain the methods: update_variables Mat_q_calc Consistency Calculate_Energy All iterations done in HFA solver. """ def __init__(self, Model_params={}, MF_params=np.array([0, 0, 0, 0, 0])): # MFPs Names self.Dict = {0: 'Charge Modulation', 1: 'Ferromagnetism', 2: 'Orbital Disproportionation', 3: 'Anti Ferromagnetism', 4: 'Anti Ferroorbital'} # K_patn for bandstructure self.k_points = np.array([[0, 0, 0], [np.pi, 0, 0], [np.pi, np.pi/2, 0], [0, 0, 0]]) self.k_labels = ['M', r'$\Gamma$', 'X', 'M'] # initiates Model parameters self.mat_dim = 8 self.BZ_rot = 1 self.b = 0 self.k_res = 100 self.n_dim = 2 self.Filling = 0.25 self.stress = 0 self.Delta_CT = 0 self.eps = 0 self.t_1 = 1 self.t_2 = 0.15 self.t_4 = 0.05 self.U = 0 self.J = 0 for key, value in Model_params.items(): setattr(self, key, value) # initiates Mean field parameters self.MF_params = MF_params # define some numbers N = np.power(self.k_res, self.n_dim) * self.mat_dim N_c = 8 N_k = N / N_c self.N_ni = 2 * N_k N_s = N_k * 4 # projectors for DOSs Id = np.identity(8) z2_projectors = Id[[0, 1, 4, 5]] x2my2_projectors = Id[[2, 3, 6, 7]] hom1_up = Id[[0, 2]] hom2_up = Id[[1, 3]] hom1_down = Id[[4, 6]] hom2_down = Id[[5, 7]] site1_up = (hom1_up+hom2_up)/np.sqrt(2.) site1_down = (hom1_down+hom2_down)/np.sqrt(2.) site2_up = (hom1_up-hom2_up)/np.sqrt(2.) site2_down = (hom1_down-hom2_down)/np.sqrt(2.) self.proj_configs = [ {"name": 'Orbit', "title": '', "proj_1": z2_projectors, "proj_2": x2my2_projectors, "normalizer": self.N_ni, "/dE": True, "label_1": r'$3z^2-r^2$', "label_2": r'$x^2-y^2$' }, {"name": 'Site 1', "title": 'Site 1', "proj_1": site1_up, "proj_2": site1_down, "normalizer": 0.5*self.N_ni, "/dE": True, "label_1": r'$\uparrow$', "label_2": r'$\downarrow$' }, {"name": 'Site 2', "title": 'Site 2', "proj_1": site2_up, "proj_2": site2_down, "normalizer": 0.5*self.N_ni, "/dE": True, "label_1": r'$\uparrow$', "label_2": r'$\downarrow$' }, # {"name": 'spins', # "title": '', # "proj_1": hom1_up + hom2_up, # "proj_2": hom1_down + hom2_down, # "normalizer": self.N_ni, # "/dE": True, # "label_1": r'$\uparrow$', # "label_2": r'$\downarrow$' # } ] def func_tzz(self, Q): qx, qy, qz = Q B = self.b return -2*self.t_1*(B*np.cos(qz) + 1/4*(np.cos(qx) + np.cos(qy)))\ - 2*self.t_4*(B*np.cos(2*qz) + 1/4*(np.cos(2*qx) + np.cos(2*qy)))\ - 2*self.t_2*(np.cos(qx)*np.cos(qy) - 2*B*np.cos(qz)*(np.cos(qy) + np.cos(qx))) def func_tz_bz_b(self, Q): qx, qy, qz = Q return -3/2*self.t_1*(np.cos(qx) + np.cos(qy))\ - 3/2*self.t_4*(np.cos(2*qx) + np.cos(2*qy))\ + 6*self.t_2*np.cos(qx)*np.cos(qy) def func_tzz_b(self, Q): qx, qy, qz = Q B = self.b return np.sqrt(3)/2*self.t_1*(np.cos(qx) - np.cos(qy))\ + np.sqrt(3)/2*self.t_4*(np.cos(2*qx) - np.cos(2*qy))\ - 2*np.sqrt(3)*self.t_2*B*np.cos(qz)*(np.cos(qx) - np.cos(qy)) def static_variables(self): # Static variables, these never change, may depend on momentum indices # Strain Effect decay = 1 self.f = 4*self.Filling self.t_1 = self.t_1*np.exp(-decay*self.stress) self.t_2 = self.t_2*np.exp(-decay*np.sqrt(2)*self.stress) self.t_4 = self.t_4*np.exp(-decay*2*self.stress) self.N_cells = np.power(self.k_res, self.n_dim) # self.Q gets updated outside qc = np.pi Q = self.Q Qc = self.Q + qc self.tzz = self.func_tzz(Q) self.tzz_c = self.func_tzz(Qc) self.tz_bz_b = self.func_tz_bz_b(Q) self.tz_bz_b_c = self.func_tz_bz_b(Qc) self.tzz_b = self.func_tzz_b(Q) self.tzz_b_c = self.func_tzz_b(Qc) def dynamic_variables(self): """ Calculate dynamic variables These depend on MFP, not on momentum """ self.U_0 = (self.U + self.J)/2 self.U_bar = (3*self.U - 5*self.J)/4 self.J_bar = (-self.U + 5*self.J)/2 # Distortion alpha = 1 beta = 27/4*alpha*self.MF_params[0]**2 if
np.abs(self.MF_params[0])
numpy.abs
# Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # License: Simplified BSD import pytest import numpy as np from numpy.testing import (assert_array_equal, assert_array_almost_equal, assert_allclose, assert_array_less) from mne.inverse_sparse.mxne_optim import (mixed_norm_solver, tf_mixed_norm_solver, iterative_mixed_norm_solver, iterative_tf_mixed_norm_solver, norm_epsilon_inf, norm_epsilon, _Phi, _PhiT, dgap_l21l1) from mne.time_frequency._stft import stft_norm2 def _generate_tf_data(): n, p, t = 30, 40, 64 rng = np.random.RandomState(0) G = rng.randn(n, p) G /= np.std(G, axis=0)[None, :] X = np.zeros((p, t)) active_set = [0, 4] times = np.linspace(0, 2 * np.pi, t) X[0] = np.sin(times) X[4] = -2 * np.sin(4 * times) X[4, times <= np.pi / 2] = 0 X[4, times >= np.pi] = 0 M = np.dot(G, X) M += 1 * rng.randn(*M.shape) return M, G, active_set def test_l21_mxne(): """Test convergence of MxNE solver.""" n, p, t, alpha = 30, 40, 20, 1. rng = np.random.RandomState(0) G = rng.randn(n, p) G /= np.std(G, axis=0)[None, :] X = np.zeros((p, t)) X[0] = 3 X[4] = -2 M = np.dot(G, X) args = (M, G, alpha, 1000, 1e-8) with pytest.warns(None): # CD X_hat_prox, active_set, _ = mixed_norm_solver( *args, active_set_size=None, debias=True, solver='prox') assert_array_equal(np.where(active_set)[0], [0, 4]) with pytest.warns(None): # CD X_hat_cd, active_set, _, gap_cd = mixed_norm_solver( *args, active_set_size=None, debias=True, solver='cd', return_gap=True) assert_array_less(gap_cd, 1e-8) assert_array_equal(np.where(active_set)[0], [0, 4]) with pytest.warns(None): # CD X_hat_bcd, active_set, E, gap_bcd = mixed_norm_solver( M, G, alpha, maxit=1000, tol=1e-8, active_set_size=None, debias=True, solver='bcd', return_gap=True) assert_array_less(gap_bcd, 9.6e-9) assert_array_equal(np.where(active_set)[0], [0, 4]) assert_allclose(X_hat_prox, X_hat_cd, rtol=1e-2) assert_allclose(X_hat_prox, X_hat_bcd, rtol=1e-2) assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2) with pytest.warns(None): # CD X_hat_prox, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, solver='prox') assert_array_equal(np.where(active_set)[0], [0, 4]) with pytest.warns(None): # CD X_hat_cd, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, solver='cd') assert_array_equal(np.where(active_set)[0], [0, 4]) with pytest.warns(None): # CD X_hat_bcd, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, solver='bcd') assert_array_equal(np.where(active_set)[0], [0, 4]) assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2) assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2) with pytest.warns(None): # CD X_hat_prox, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, n_orient=2, solver='prox') assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5]) with pytest.warns(None): # CD X_hat_bcd, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, n_orient=2, solver='bcd') assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5]) # suppress a coordinate-descent warning here with pytest.warns(RuntimeWarning, match='descent'): X_hat_cd, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, n_orient=2, solver='cd') assert_array_equal(np.where(active_set)[0], [0, 1, 4, 5]) assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2) assert_allclose(X_hat_bcd, X_hat_cd, rtol=1e-2) with pytest.warns(None): # CD X_hat_bcd, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, n_orient=5, solver='bcd') assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4]) with pytest.warns(None): # CD X_hat_prox, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, n_orient=5, solver='prox') assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4]) with pytest.warns(RuntimeWarning, match='descent'): X_hat_cd, active_set, _ = mixed_norm_solver( *args, active_set_size=2, debias=True, n_orient=5, solver='cd') assert_array_equal(np.where(active_set)[0], [0, 1, 2, 3, 4]) assert_array_equal(X_hat_bcd, X_hat_cd) assert_allclose(X_hat_bcd, X_hat_prox, rtol=1e-2) def test_tf_mxne(): """Test convergence of TF-MxNE solver.""" alpha_space = 10. alpha_time = 5. M, G, active_set = _generate_tf_data() with pytest.warns(None): # CD X_hat_tf, active_set_hat_tf, E, gap_tfmxne = tf_mixed_norm_solver( M, G, alpha_space, alpha_time, maxit=200, tol=1e-8, verbose=True, n_orient=1, tstep=4, wsize=32, return_gap=True) assert_array_less(gap_tfmxne, 1e-8) assert_array_equal(np.where(active_set_hat_tf)[0], active_set) def test_norm_epsilon(): """Test computation of espilon norm on TF coefficients.""" tstep = np.array([2]) wsize = np.array([4]) n_times = 10 n_steps = np.ceil(n_times / tstep.astype(float)).astype(int) n_freqs = wsize // 2 + 1 n_coefs = n_steps * n_freqs phi = _Phi(wsize, tstep, n_coefs) Y = np.zeros(n_steps * n_freqs) l1_ratio = 0.03 assert_allclose(norm_epsilon(Y, l1_ratio, phi), 0.) Y[0] = 2. assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y)) l1_ratio = 1. assert_allclose(norm_epsilon(Y, l1_ratio, phi), np.max(Y)) # dummy value without random: Y = np.arange(n_steps * n_freqs).reshape(-1, ) l1_ratio = 0.0 assert_allclose(norm_epsilon(Y, l1_ratio, phi) ** 2, stft_norm2(Y.reshape(-1, n_freqs[0], n_steps[0]))) l1_ratio = 0.03 # test that vanilla epsilon norm = weights equal to 1 w_time = np.ones(n_coefs[0]) Y = np.abs(np.random.randn(n_coefs[0])) assert_allclose(norm_epsilon(Y, l1_ratio, phi), norm_epsilon(Y, l1_ratio, phi, w_time=w_time)) # scaling w_time and w_space by the same amount should divide # epsilon norm by the same amount Y = np.arange(n_coefs) + 1 mult = 2. assert_allclose( norm_epsilon(Y, l1_ratio, phi, w_space=1, w_time=np.ones(n_coefs)) / mult, norm_epsilon(Y, l1_ratio, phi, w_space=mult, w_time=mult * np.ones(n_coefs))) @pytest.mark.timeout(60) # ~30 sec on Travis OSX and Linux OpenBLAS def test_dgapl21l1(): """Test duality gap for L21 + L1 regularization.""" n_orient = 2 M, G, active_set = _generate_tf_data() n_times = M.shape[1] n_sources = G.shape[1] tstep, wsize = np.array([4, 2]), np.array([64, 16]) n_steps = np.ceil(n_times / tstep.astype(float)).astype(int) n_freqs = wsize // 2 + 1 n_coefs = n_steps * n_freqs phi = _Phi(wsize, tstep, n_coefs) phiT = _PhiT(tstep, n_freqs, n_steps, n_times) for l1_ratio in [0.05, 0.1]: alpha_max = norm_epsilon_inf(G, M, phi, l1_ratio, n_orient) alpha_space = (1. - l1_ratio) * alpha_max alpha_time = l1_ratio * alpha_max Z = np.zeros([n_sources, phi.n_coefs.sum()]) # for alpha = alpha_max, Z = 0 is the solution so the dgap is 0 gap = dgap_l21l1(M, G, Z, np.ones(n_sources, dtype=bool), alpha_space, alpha_time, phi, phiT, n_orient, -np.inf)[0] assert_allclose(0., gap) # check that solution for alpha smaller than alpha_max is non 0: X_hat_tf, active_set_hat_tf, E, gap = tf_mixed_norm_solver( M, G, alpha_space / 1.01, alpha_time / 1.01, maxit=200, tol=1e-8, verbose=True, debias=False, n_orient=n_orient, tstep=tstep, wsize=wsize, return_gap=True) # allow possible small numerical errors (negative gap) assert_array_less(-1e-10, gap) assert_array_less(gap, 1e-8) assert_array_less(1, len(active_set_hat_tf)) X_hat_tf, active_set_hat_tf, E, gap = tf_mixed_norm_solver( M, G, alpha_space / 5., alpha_time / 5., maxit=200, tol=1e-8, verbose=True, debias=False, n_orient=n_orient, tstep=tstep, wsize=wsize, return_gap=True) assert_array_less(-1e-10, gap) assert_array_less(gap, 1e-8) assert_array_less(1, len(active_set_hat_tf)) def test_tf_mxne_vs_mxne(): """Test equivalence of TF-MxNE (with alpha_time=0) and MxNE.""" alpha_space = 60. alpha_time = 0. M, G, active_set = _generate_tf_data() X_hat_tf, active_set_hat_tf, E = tf_mixed_norm_solver( M, G, alpha_space, alpha_time, maxit=200, tol=1e-8, verbose=True, debias=False, n_orient=1, tstep=4, wsize=32) # Also run L21 and check that we get the same X_hat_l21, _, _ = mixed_norm_solver( M, G, alpha_space, maxit=200, tol=1e-8, verbose=False, n_orient=1, active_set_size=None, debias=False) assert_allclose(X_hat_tf, X_hat_l21, rtol=1e-1) def test_iterative_reweighted_mxne(): """Test convergence of irMxNE solver.""" n, p, t, alpha = 30, 40, 20, 1 rng = np.random.RandomState(0) G = rng.randn(n, p) G /= np.std(G, axis=0)[None, :] X = np.zeros((p, t)) X[0] = 3 X[4] = -2 M = np.dot(G, X) with pytest.warns(None): # CD X_hat_l21, _, _ = mixed_norm_solver( M, G, alpha, maxit=1000, tol=1e-8, verbose=False, n_orient=1, active_set_size=None, debias=False, solver='bcd') with pytest.warns(None): # CD X_hat_bcd, active_set, _ = iterative_mixed_norm_solver( M, G, alpha, 1, maxit=1000, tol=1e-8, active_set_size=None, debias=False, solver='bcd') with pytest.warns(None): # CD X_hat_prox, active_set, _ = iterative_mixed_norm_solver( M, G, alpha, 1, maxit=1000, tol=1e-8, active_set_size=None, debias=False, solver='prox') assert_allclose(X_hat_bcd, X_hat_l21, rtol=1e-3) assert_allclose(X_hat_prox, X_hat_l21, rtol=1e-3) with pytest.warns(None): # CD X_hat_prox, active_set, _ = iterative_mixed_norm_solver( M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=None, debias=True, solver='prox') assert_array_equal(np.where(active_set)[0], [0, 4]) with pytest.warns(None): # CD X_hat_bcd, active_set, _ = iterative_mixed_norm_solver( M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=2, debias=True, solver='bcd') assert_array_equal(np.where(active_set)[0], [0, 4]) with pytest.warns(None): # CD X_hat_cd, active_set, _ = iterative_mixed_norm_solver( M, G, alpha, 5, maxit=1000, tol=1e-8, active_set_size=None, debias=True, solver='cd') assert_array_equal(
np.where(active_set)
numpy.where
#!/usr/bin/env python3 """ corrections.py: Script to apply corrections to the images. """ import os from argparse import ArgumentParser from datetime import date, datetime from typing import Optional, Sequence import numpy as np from astropy.io import fits from dresscode.utils import load_config def main(argv: Optional[Sequence[str]] = None) -> int: parser = ArgumentParser() parser.add_argument( "-c", "--config", help="path to config.txt", default="config.txt" ) args = parser.parse_args(argv) config = load_config(args.config) galaxy = config["galaxy"] path = config["path"] + galaxy + "/working_dir/" years = config["years"] # Loop over the different years. for year in years: print("Year: " + year) yearpath = path + year + "/" # PART 1: Apply a coincidence loss correction. print("Applying coincidence loss corrections...") if os.path.isfile(yearpath + "sum_um2_nm.img"): coicorr(yearpath + "sum_um2_nm.img") if os.path.isfile(yearpath + "sum_uw2_nm.img"): coicorr(yearpath + "sum_uw2_nm.img") if os.path.isfile(yearpath + "sum_uw1_nm.img"): coicorr(yearpath + "sum_uw1_nm.img") # PART 2: Apply a large scale sensitivity correction. print("Applying large scale sensitivity corrections...") if os.path.isfile(yearpath + "sum_um2_nm_coi.img"): lsscorr(yearpath + "sum_um2_nm_coi.img") if os.path.isfile(yearpath + "sum_uw2_nm_coi.img"): lsscorr(yearpath + "sum_uw2_nm_coi.img") if os.path.isfile(yearpath + "sum_uw1_nm_coi.img"): lsscorr(yearpath + "sum_uw1_nm_coi.img") # PART 3: Apply a zero point correction. print("Applying zero point corrections...") if os.path.isfile(yearpath + "sum_um2_nm_coilss.img"): zeropoint(yearpath + "sum_um2_nm_coilss.img", -2.330e-3, -1.361e-3) if os.path.isfile(yearpath + "sum_uw2_nm_coilss.img"): zeropoint(yearpath + "sum_uw2_nm_coilss.img", 1.108e-3, -1.960e-3) if os.path.isfile(yearpath + "sum_uw1_nm_coilss.img"): zeropoint(yearpath + "sum_uw1_nm_coilss.img", 2.041e-3, -1.748e-3) return 0 # Functions for PART 1: Coincidence loss correction. def coicorr(filename): # Open the image. Create arrays with zeros with the shape of the image. hdulist = fits.open(filename) data = hdulist[0].data header = hdulist[0].header total_flux =
np.full_like(data, np.nan, dtype=np.float64)
numpy.full_like
import colorspacious import numpy as np colorspace = 'CAM02-LCD' def mask_rgb(rgb, a, b, mask): ''' function that masks an rgb colormap with np.nan according to the string mask Args: rgb: (l,l,3) matrix a,b: values of a and b. if mask = 'circle' anyting with sqrt(a**2+b**2)>1 will be np.nan mask: string: 'circle' -> masks everything outside a circle defined as where sqrt(a**2+b**2)>1 'no-mask' -> do nothing 'unavailable'-> masks invalid rgb values (i.e. <0 or >1) ''' if mask == 'unavailable': rgb[rgb[:,:,:]<0] = np.nan rgb[rgb[:,:,:]>1] = np.nan mask = np.isnan(np.sum(rgb[:,:,:], axis = -1)) rgb[:,:,0][mask] = np.nan rgb[:,:,1][mask] = np.nan rgb[:,:,2][mask] = np.nan elif mask == 'no_mask': None elif mask == 'circle': l = rgb.shape[1] a_1 = np.linspace(a[0],a[1],l) b_1 = np.linspace(b[0],b[1],l) ab = np.sqrt(a_1[:,np.newaxis]**2+b_1[np.newaxis,:]**2) mask = ab > 1 rgb[:,:,0][mask] = np.nan rgb[:,:,1][mask] = np.nan rgb[:,:,2][mask] = np.nan else: raise ValueError("mask must be 'no_mask', 'unavailable' or 'circle'") def set_ab_rot(Jab, ar, br, rot): ''' sets the [:,:,1] and [:,:,2] axes of a Jab colormap to ar and br then rotates the ab color plane according to the angle rot Args: Jab: (l,l,3) colormap ar: 1d array, typically made by np.linspace() br: 1d array, typically made by np.linspace() rot: angle in degrees returns: None (but Jab changed in-place) ''' if rot==0: Jab[:,:,1] = ar[:,np.newaxis] Jab[:,:,2] = br[np.newaxis,:] else: ab = np.sqrt(ar[:,np.newaxis]**2+br[np.newaxis,:]**2) Jab[:,:,1] = ar[:,np.newaxis] Jab[:,:,2] = br[np.newaxis,:] phi = np.arctan2(Jab[:,:,1],Jab[:,:,2])+rot*np.pi/180 Jab[:,:,2] = ab*np.cos(phi) Jab[:,:,1] = ab*np.sin(phi) def get_const_J(J = 95, a = (-1,1), b = (-1,1), r = 33.0, l=256, mask = 'no_mask', rot = 0): ''' Generates am rgb colormap of (l,l,3) that attempts to keep a constant lightness in the CAM02-LCD colorspace The colormap is based on the a-b plane of the Jab colorspace for a constant J. Args: J: float (lighness), default 95, range approximately 1->128, a: tuple of 2 floats, default (-1,1). The limit along the a-axis will be (a[0]*r,a[1]*r) b: tuple of 2 floats, default (-1,1). The limit along the b-axis will be (b[0]*r,b[1]*r) r: float, default 33.0. The saturation where a or b is 1. (named 'r' for radius in the a-b plane) l: int, default 256. Size of the colormap. mask: string, default 'no_mask'. If 'circle' makes a circular mask, and everything outside will be np.nan If 'unavailable' makes a colors that "should" have rgb<0 or rgb>1 when transformed to sRGB will be np.nan rot: rotation of the hues on the a-b plane, in degrees returns: a (l,l,3) numpy array of rgb values ''' Jab = np.zeros((l,l,3)) Jab[:,:,0] = J ar = np.linspace(r*a[0], r*a[1],l) br = np.linspace(r*b[0], r*b[1],l) set_ab_rot(Jab, ar, br, rot) rgb = colorspacious.cspace_convert(Jab, colorspace, "sRGB1") mask_rgb(rgb, a, b, mask) rgb[rgb[:,:,:]<0] = 0 rgb[rgb[:,:,:]>1] = 1 return rgb def get_var_J(J = [95,128.5], a = (-1,1), b = (-1,1), r = 33.0, l=256, mask = 'no_mask', rot = 0, limit_sat = None): ''' Generates am rgb colormap of (l,l,3) that attempts to keep a constant lightness in the CAM02-LCD colorspace The colormap is based on the a-b plane of the Jab colorspace for a constant J. Args: J: (lighness) tuple of 2 floats, default [95,128.5] defining the range of lightness for the colormap, default 95, max range of J approximately 1 to 128.5 a: tuple of 2 floats, default (-1,1). The limit along the a-axis will be (a[0]*r,a[1]*r) b: tuple of 2 floats, default (-1,1). The limit along the b-axis will be (b[0]*r,b[1]*r) r: float, default 33.0. The saturation where a or b is 1. (named 'r' for radius in the a-b plane) l: int, default 256. Size of the colormap. mask: string, default 'no_mask'. If 'circle' makes a circular mask, and everything outside will be np.nan If 'unavailable' makes a colors that "should" have rgb<0 or rgb>1 when transformed to sRGB will be np.nan rot: rotation of the hues on the a-b plane, in degrees returns: a (l,l,3) numpy array of rgb values ''' Jab = np.zeros((l,l,3)) ar = np.linspace(r*a[0], r*a[1],l) br = np.linspace(r*b[0], r*b[1],l) set_ab_rot(Jab, ar, br, rot) ab = np.sqrt(ar[:,np.newaxis]**2+br[np.newaxis,:]**2) a_1 = np.linspace(a[0], a[1],l) b_1 = np.linspace(b[0], b[1],l) Jab[:,:,0] = J[0] + (J[1]-J[0])*(1-np.sqrt(a_1[:,np.newaxis]**2+b_1[np.newaxis,:]**2)) Jab[Jab[:,:,0]<1,0] = 1 Jab[Jab[:,:,0]>128,0] = 128 if not (limit_sat is None): apply_radial_sat_limit(Jab, limit_sat = limit_sat) rgb = colorspacious.cspace_convert(Jab, colorspace, "sRGB1") mask_rgb(rgb, a, b, mask) rgb[rgb[:,:,:]<0] = 0 rgb[rgb[:,:,:]>1] = 1 #print(r) return rgb def parse_name_postfix(cmap, a, b): ''' if a cmap name has a postfix that details the quadrant/side, this will translate that to ranges in a and/or b. example: parse_name_postfix('cone tr', a, b) return a and b so that they span the top right quadrant inputs a and b so that both can be returned even if only one is changed Args: cmap: string, potentially with a postfix detailing quadrant/side following a space, i.e. 'cone tr'. The postfix translates: 'b' -> bottom, 't' -> top, 'l' -> left, 'r' -> right. Any combination (b,t)+(l,r) is possible to select quadrants a: current limits for a, not checked but should be a tuple of length 2 b: current limits for b, not checked but should be a tuple of length 2 returns: tuple (cmap, a, b): cmap (stripped of the postfix) a, tuple of length 2 b, tuple of length 2 ''' # check if the cmap name has additional info regarding quadrant/side if len(cmap.split(' '))>1: param = cmap.split(' ')[1] if 'b' in param: a = (0,1) if 't' in param: a = (-1,0) if 'r' in param: b = (0,1) if 'l' in param: b = (-1,0) cmap = cmap.split(' ')[0] return cmap, a, b def get_cmap(name, l = None, rot = None, J = None, sat = None, limit_sat = None, a= None, b = None): ''' getter function for named colormaps the 'alt' colormaps are rotated 45 degrees flat colormaps are: ---------------- 'flat', 'disk' colormaps with a bright center: ---- 'peak', 'cone' colormaps with a dark center: ------ 'abyss', 'funnel' alternate with a bright center: ---- 'hsv', 'fourCorners', 'fourEdges', 'teuling0w' to 'teuling3w' colormaps with lighness on y axis: - 'barrel', 'cut', 'blues', 'reds', 'greens', 'yellows' teuling colormaps: --------- 'teuling0f', 'teuling1f', 'teuling2f', 'teuling3f', 'teuling0w', 'teuling1w', 'teuling2w', 'teuling3w' any matplotlib colormap can also be converted to a colormap with lighness on y-axis Args: name: string For radial colormaps the name may have a postfix separated by a space, i.e. 'cone tr' the postfix must be some combination of (t,b) and/or (l,r) which defines the quadrant/side of the colormap to include t-> top, b-> bottom, r-> right, l-> left, and 'tr'-> top right, etc. l: int, the size of the colormap will be (l,l), defaults to 256 if None rot: float, rotation of the colormap (where applicable) J: array-like of length 2 (float,float), determins min and max luminocity where applicable sat: float, maximum saturation where applicable limit_sat: string, 'individual' or 'shared'. How saturation is limited for relevant colormaps when colors outside sRGB are required 'individual': each combination J, hue in the colormap has an individual limit to saturation 'shared': for each J, all hues share a limit, the maximum where all hues can be represented a: range along a-axis, array-like [min,max] Used to move the center of the colormap where applicable. Defaults to (-1,1) which is then multiplied internally with sat b: range along b-axis, see a. returns: a (l,l,3) numpy array of rgb values ''' if l is None: l = 256 if rot is None: rot = 0 if sat is None: sat = 33.0 if a is None: a = (-1,1) if b is None: b = (-1,1) name, a, b = parse_name_postfix(name, a, b) # if there is a _ in the name, set a and b according to the postfix, and remove the postfix if name == 'flat': if J is None: J = [95] return get_const_J( J = J[0], a = a, b = b, r = sat, l = l, rot = rot) elif name == 'disk': if J is None: J = [95] return get_const_J(J = J[0], a = a, b = b, r = sat, l = l, rot = rot, mask = 'circle') elif name == 'peak': if J is None: J = [95,128.5] return get_var_J(J = J, a = a, b = b, r = sat, l = l, rot = rot, limit_sat = limit_sat) elif name == 'cone': if J is None: J = [95,128.5] return get_var_J(J = J, a = a, b = b, r = sat, l = l, rot = rot, mask = 'circle', limit_sat = limit_sat) elif name == 'abyss': if J is None: J = [95,1] return get_var_J(J = J, a = a, b = b, r = sat, l = l, rot = rot, limit_sat = limit_sat) elif name == 'funnel': if J is None: J = [95,1] return get_var_J(J = J, a = a, b = b, r = sat, l = l, rot = rot, mask = 'circle', limit_sat = limit_sat) elif name == 'hsv': hsv = np.ones((l,l,3)) ar = np.linspace(a[0],a[1],l)[:,np.newaxis]*np.ones((l,l)) br = np.linspace(b[0],b[1],l)[np.newaxis,:]*np.ones((l,l)) phi = np.arctan2(ar,br)+rot*np.pi/180 hsv[:,:,0] = phi/np.pi*0.5+0.5 hsv[:,:,1] = np.sqrt(ar**2+br**2)/np.sqrt(2) hsv[:,:,2] = 1 RGB = matplotlib.colors.hsv_to_rgb(hsv) return RGB elif name == 'fourEdges': return four_edges(l=l, a=a, b=b, rot = rot+90) elif name == 'fourCorners': return four_edges(l=l, a=(-0.85,0.85), b=(-0.85,0.85), rot = 45) # these are shared by all that follow if J is None: J = [15,120] if limit_sat is None: limit_sat = 'shared' # rest of colormaps if name == 'barrel': return barrel(sat = sat, phi = [-180,180], J =J, l = l, limit_sat = limit_sat) elif name == 'cut': return cut(a = a, sat = sat, rot = rot, J = J, l = l, limit_sat = limit_sat) elif name == 'blues': return cut(a = [0,1], sat = sat, rot = 180, J = J, l = l, limit_sat = limit_sat) elif name == 'reds': return cut(a = [0,1], sat = sat, rot = 90, J = J, l = l, limit_sat = limit_sat) elif name == 'greens': return cut(a = [0,1], sat = sat, rot = -90, J = J, l = l, limit_sat = limit_sat) elif name == 'yellows': return cut(a = [0,1], sat = sat, rot = 0, J = J, l = l, limit_sat = limit_sat) elif name == 'teuling0f': return teuling(l = l, a = 0.32, order = [0,1,2]) elif name == 'teuling1f': return teuling(l = l, a = 0.72, order = [1,0,2]) elif name == 'teuling2f': return teuling(l = l, a = 0.32, order = [1,0,2]) elif name == 'teuling3f': return teuling(l = l, a = 0.32, order = [1,0,2], green_multiplier = 0.75) elif name == 'teuling0w': return teuling(l = l, a = 0.32, order = [0,1,2], white_center = True) elif name == 'teuling1w': return teuling(l = l, a = 0.72, order = [1,0,2], white_center = True) elif name == 'teuling2w': return teuling(l = l, a = 0.32, order = [1,0,2], white_center = True) elif name == 'teuling3w': return teuling(l = l, a = 0.32, order = [1,0,2], green_multiplier = 0.75, white_center = True) elif name == 'orangeBlue': return bilinear(l) elif name == 'greenPurple': return bilinear(l, c0 = [0.5,1,0], c1 = [0.5,0,1]) elif name == 'greenTealBlue': return bilinear(l, c0 = [0,1,0], c1 = [0,0,1]) elif name == 'redPurpleBlue': return bilinear(l, c0 = [1,0,0], c1 = [0,0,1]) elif name in mpl_cmaps: return get_2dcmap_from_mpl(name, J = J, l = l, limit_sat = limit_sat) else: raise ValueError(f'colormap {name} not known') def get_sat_limts(): ''' returns the a 2d matrix of approximate limits to sat (radius in a-b space) in terms of phi and J ''' if not 'limit' in globals(): global limit, limit_ax_0_J, limit_ax_1_phi phi = np.linspace(-np.pi, np.pi, 256+1) J = np.linspace(1,130,128) sat = np.linspace(0,70,256) J_phi_sat = np.empty((len(J),len(phi),len(sat),3)) J_phi_sat[:,:,:,0] = J[:,np.newaxis,np.newaxis] J_phi_sat[:,:,:,1] = phi[np.newaxis,:,np.newaxis] J_phi_sat[:,:,:,2] = sat[np.newaxis,np.newaxis,:] Jab = np.empty(J_phi_sat.shape) Jab[:,:,:,0] = J_phi_sat[:,:,:,0] Jab[:,:,:,1] = J_phi_sat[:,:,:,2]*np.sin(J_phi_sat[:,:,:,1]) Jab[:,:,:,2] = J_phi_sat[:,:,:,2]*np.cos(J_phi_sat[:,:,:,1]) rgb = colorspacious.cspace_convert(Jab, colorspace, "sRGB1") rgb[rgb>1] = np.nan rgb[rgb<0] = np.nan flat_rgb = np.sum(rgb, axis = -1) flat_rgb[:,:,0] = 0 # there are some strange regsions in the limits-overview because there are 'jumps' as we go through phi # therefore limit the derivative in phi for i, _ in enumerate(sat[:-1]): flat_rgb[:,0,i] += flat_rgb[:,-1,i] flat_rgb[:,-1,i] += flat_rgb[:,0,i] flat_rgb[:,1:,i+1] += flat_rgb[:,:-1,i] flat_rgb[:,:-1,i+1] += flat_rgb[:,1:,i] flat_rgb[:,0,-1] += flat_rgb[:,-1,-1] flat_rgb[:,-1,-1] += flat_rgb[:,0,-1] valid = np.invert(np.isnan(flat_rgb)) + np.linspace(0,0.9,len(sat))[np.newaxis,np.newaxis,:] valid_argmax = np.argmax(valid, axis = -1) limit = sat[valid_argmax] limit_ax_0_J = J limit_ax_1_phi = phi return limit, limit_ax_0_J, limit_ax_1_phi import scipy.interpolate import matplotlib.cm def apply_sat_limit(Jab, limit_sat = 'shared'): ''' apply a saturation limit to Jab in order to ensure valid saturation when the limit of the RGB colorspace is reached Args: Jab: np array of shape (n,m,3) encoded in the colorspace limit_sat: 'shared' or 'individual' if 'shared', all hues share same limit to saturation (the minimum where all saturation values present in the colormap can be represented) if 'individual', different hues have different sauration limits returns: None (Jab is modified in-place) ''' #limit = sat[valid_argmax] #limit_ax_0_J = J #limit_ax_1_phi = phi limit, limit_ax_0_J, limit_ax_1_phi = get_sat_limts() inerpolator = scipy.interpolate.RectBivariateSpline(limit_ax_0_J, limit_ax_1_phi, limit) phi = np.arctan2(Jab[:,:,1],Jab[:,:,2]) sat = np.sqrt(Jab[:,:,1]**2 + Jab[:,:,2]**2) max_sat = inerpolator( Jab[:,:,0], phi, grid = False) if limit_sat == 'shared': max_sat[:,:] = np.min(max_sat, axis=1)[:,np.newaxis] mask = sat>max_sat #sat[mask] = max_sat[mask] change = (max_sat[mask]+0.000000001)/(sat[mask]+0.000000001) Jab[mask,1] *= change Jab[mask,2] *= change def apply_radial_sat_limit(Jab, limit_sat = 'shared'): ''' apply a radial saturation limit to Jab in order to make the saturation radial when the limit of the RGB colorspace is reached the behaviour if limit_sat == 'shared' is different from apply_sat_limit() in this function all possible hues are always included, but for apply_sat_limit() only present hues are considered Args: Jab: np array of shape (n,m,3) encoded in the colorspace limit_sat: 'shared' or 'individual' if 'shared', all hues share same limit to saturation (the minimum where all are present) if 'individual', different hues have different sauration limits returns: None (Jab is modified in-place) ''' limit, limit_ax_0_J, limit_ax_1_phi = get_sat_limts() if limit_sat == 'shared': limit_shared = np.min(limit, axis=1) inerpolator = scipy.interpolate.interp1d(limit_ax_0_J, limit_shared) max_sat = inerpolator( Jab[:,:,0]) else: inerpolator = scipy.interpolate.RectBivariateSpline(limit_ax_0_J, limit_ax_1_phi, limit) phi = np.arctan2(Jab[:,:,1],Jab[:,:,2]) max_sat = inerpolator( Jab[:,:,0], phi, grid = False) sat = np.sqrt(Jab[:,:,1]**2 + Jab[:,:,2]**2) mask = sat>max_sat #sat[mask] = max_sat[mask] change = (max_sat[mask]+0.000000001)/(sat[mask]+0.000000001) Jab[mask,1] *= change Jab[mask,2] *= change def get_2dcmap_from_mpl(string, J = [15,120], l = 256, limit_sat = 'shared'): ''' Generates a 2d colormap from a 1d colormap found in matplotlib Args: string: name of the matplotlib colormap J: limits to lighness on the y-axis, array like of length 2, default [15,120] l: desired size (l,l,3) of the colormap limit_sat: string, how to limit the saturation to say within the limits of the RGB colorspace 'shared': all hues share same limits 'individual': different hues have different limits returns: a (l,l,3) numpy array of rgb values ''' cmap = matplotlib.cm.get_cmap(string) # make 2d cmap in Jab colorspace rgb = np.zeros((l,l,3)) rgb[:,:,:] = cmap(np.linspace(0,1,l))[np.newaxis,:,:3] Jab = colorspacious.cspace_convert(rgb, "sRGB1", colorspace) J = np.linspace(J[0], J[1], l) Jab[:,:,0] = J[:,np.newaxis] # Jab now has colors that cannot be represented in rgb # limit the 'saturation' defined as radius in a-b space for a given J according to get_max_ab(J): apply_sat_limit(Jab, limit_sat = limit_sat) # convert the now limited Jab colorspace to rgb rgb = colorspacious.cspace_convert(Jab, colorspace,"sRGB1") rgb[rgb<0] = 0 rgb[rgb>1] = 1 return rgb mpl_cmaps = ['Accent', 'Accent_r', 'Blues', 'Blues_r', 'BrBG', 'BrBG_r', 'BuGn', 'BuGn_r', 'BuPu', 'BuPu_r', 'CMRmap', 'CMRmap_r', 'Dark2', 'Dark2_r', 'GnBu', 'GnBu_r', 'Greens', 'Greens_r', 'Greys', 'Greys_r', 'OrRd', 'OrRd_r', 'Oranges', 'Oranges_r', 'PRGn', 'PRGn_r', 'Paired', 'Paired_r', 'Pastel1', 'Pastel1_r', 'Pastel2', 'Pastel2_r', 'PiYG', 'PiYG_r', 'PuBu', 'PuBuGn', 'PuBuGn_r', 'PuBu_r', 'PuOr', 'PuOr_r', 'PuRd', 'PuRd_r', 'Purples', 'Purples_r', 'RdBu', 'RdBu_r', 'RdGy', 'RdGy_r', 'RdPu', 'RdPu_r', 'RdYlBu', 'RdYlBu_r', 'RdYlGn', 'RdYlGn_r', 'Reds', 'Reds_r', 'Set1', 'Set1_r', 'Set2', 'Set2_r', 'Set3', 'Set3_r', 'Spectral', 'Spectral_r', 'Wistia', 'Wistia_r', 'YlGn', 'YlGnBu', 'YlGnBu_r', 'YlGn_r', 'YlOrBr', 'YlOrBr_r', 'YlOrRd', 'YlOrRd_r', 'afmhot', 'afmhot_r', 'autumn', 'autumn_r', 'binary', 'binary_r', 'bone', 'bone_r', 'brg', 'brg_r', 'bwr', 'bwr_r', 'cividis', 'cividis_r', 'cool', 'cool_r', 'coolwarm', 'coolwarm_r', 'copper', 'copper_r', 'cubehelix', 'cubehelix_r', 'flag', 'flag_r', 'gist_earth', 'gist_earth_r', 'gist_gray', 'gist_gray_r', 'gist_heat', 'gist_heat_r', 'gist_ncar', 'gist_ncar_r', 'gist_rainbow', 'gist_rainbow_r', 'gist_stern', 'gist_stern_r', 'gist_yarg', 'gist_yarg_r', 'gnuplot', 'gnuplot2', 'gnuplot2_r', 'gnuplot_r', 'gray', 'gray_r', 'hot', 'hot_r', 'hsv', 'hsv_r', 'inferno', 'inferno_r', 'jet', 'jet_r', 'magma', 'magma_r', 'nipy_spectral', 'nipy_spectral_r', 'ocean', 'ocean_r', 'pink', 'pink_r', 'plasma', 'plasma_r', 'prism', 'prism_r', 'rainbow', 'rainbow_r', 'seismic', 'seismic_r', 'spring', 'spring_r', 'summer', 'summer_r', 'tab10', 'tab10_r', 'tab20', 'tab20_r', 'tab20b', 'tab20b_r', 'tab20c', 'tab20c_r', 'terrain', 'terrain_r', 'turbo', 'turbo_r', 'twilight', 'twilight_r', 'twilight_shifted', 'twilight_shifted_r', 'viridis', 'viridis_r', 'winter', 'winter_r'] def barrel(sat = 33, phi = [-180,180], J = [15,120], l = 256, limit_sat = 'shared'): ''' Generates a 2d colormap that cycles different hues on the x-axis and has lighness on the y-axis Args: sat: float, default 33. Desired saturation phi: range for the hues on the x-axis in degrees, array like of length 2, default [-180,180] J: limits to lighness on the y-axis, array like of length 2, default [15,120] l: desired size (l,l,3) of the colormap limit_sat: string, how to limit the saturation to say within the limits of the RGB colorspace 'shared': all hues share same limits 'individual': different hues have different limits returns: a (l,l,3) numpy array of rgb values ''' Jab = np.empty((l,l,3)) J =
np.linspace(J[0], J[1], l)
numpy.linspace
#!/usr/bin/env python # coding: utf-8 # Python TOV solver # <NAME>: Date 05/11/2020 ''' Information about the code: This code solves TOV equations for mass radius relations. This also can plot the mass radius curve. USE: To use the code, here are the steps: 1) Include the file in your main code e.g. import tov_class as tc 2) Load the EoS using the ToV loader, tc.ToV(filename, arraysize) 3) call the solver as tc.ToV.mass_radius(min_pressure, max_pressure) 4) To plot, follow the code in main() on creating the dictionary of inputs Updates: Version 0.0.1-1 Solves ToV, can only take inputs of pressure, energy density in MeV, baryon density in fm^-3 in ascending order. ''' import numpy as np from scipy.integrate import odeint from scipy.interpolate import interp1d import pylab from scipy.interpolate import InterpolatedUnivariateSpline # constants msol = 1.116e60 # Mass of sun in MeV Ggrav = 1.324e-42 # Mev^-1*fm rsol = 2.954e18 rhosol = msol * 3 / (4.0 * np.pi * rsol**3) # Schwarrzschild radius of the sun in fm class EoS: """ EoS Loader. Interpolates Energy, pressure and number density""" alf = 41325.0 def __init__(self, filename): self.file = filename self.e_in = np.empty(1000) self.p_in = np.empty(1000) self.nb_in = np.empty(1000) def open_file(self): data = np.loadtxt(self.file) self.e_in = data[:, 0] self.p_in = data[:, 1] self.nb_in = data[:, 2] print(self.e_in[0], self.p_in[0], self.nb_in[0]) return self.e_in, self.p_in, self.nb_in @staticmethod def energy_from_pressure(self, pressure): nidx = np.where(self.nb_in == 0.08) pcrust = self.p_in[nidx] plow = 1e-10 if pressure < plow: return 2.6e-310 elif pressure < pcrust: pres = [self.p_in[i] for i in range(48)] eden = [self.e_in[i] for i in range(48)] e1 = interp1d(pres, eden, axis=0, kind='linear', fill_value="extrapolate") return e1(pressure) else: e1 = interp1d(self.p_in, self.e_in, axis=0, kind='linear', fill_value="extrapolate") return e1(pressure) @staticmethod def pressure_from_energy(self, energy): p1 = interp1d(self.e_in, self.p_in, axis=0, kind='cubic', fill_value="extrapolate") return p1(energy) @staticmethod def baryon_from_energy(self, energy): n1 = interp1d(self.e_in, self.nb_in, axis=0, kind='cubic', fill_value='extrapolate') return n1(energy) class ToV(EoS): ''' Solves TOV equations and gives data-table, mass-radius plot and max. mass, central pressure and central density ''' alf = 41325.0 def __init__(self, filename, imax): super().__init__(filename) self.imax = imax self.radius = np.empty(self.imax) self.mass = np.empty(self.imax) def tov_rhs(self, initial, x): pres = initial[0] mass = initial[1] edn = EoS.energy_from_pressure(self, pres) # print("edn", edn, mass, ToV.alf, x) # Equations one: pressure, 2: mass one = -0.5 * edn * mass * (1.0 + (pres / edn)) * (1. + (4. * np.pi / ToV.alf) * (pres / mass) * x**3) / (x**2 - x * mass) two = 4.0 * np.pi * x**2 * edn / ToV.alf f = [one, two] return f def tovsolve(self, pcent, xfinal): eden = EoS.energy_from_pressure(self, pcent) #print("Eden", pcent, eden) dx = 0.001 x = np.arange(dx, xfinal, dx) initial = pcent, 4 * np.pi * dx**3 / (3.0 * ToV.alf) psol = odeint(self.tov_rhs, initial, x) rstar = 0. mstar = 0. count = 0 for i in psol[:, 0]: if i > 1.e-7: # print("i =", i, count) count += 1 rstar += 2.95 * dx mstar = psol[count, 1] return rstar, mstar def mass_radius(self, pmin, pmax): pc =
np.zeros(self.imax)
numpy.zeros
import numpy as np from abc import ABCMeta, abstractmethod import tensorflow as tf import tqdm from neural_nets import DuelingNetwork, QNetwork from replay_memory import ReplayMemory, PrioritizedReplayMemory from losses import weighted_mean_squared_error from mixin import AgentMixin class BaseDDQNAgent(AgentMixin, metaclass=ABCMeta): @abstractmethod def __init__(self, name, model, replay_memory, loss_fn, optimizer, batch_size, learning_rate, update_target_network_every, update_prediction_network_every, replay_memory_capacity, batches_before_training, gamma, eps_initial, eps_minimum, eps_decay, input_shape, output_dims, pretrained_weights, tf_summary_writer): self.name = name if tf_summary_writer: self.create_tf_summary_writer() # prediction network self.model = model(output_dims=output_dims) self.model.build(input_shape=input_shape) if pretrained_weights: self.model.load_weights(pretrained_weights) #print(self.model.trainable_weights[0][0][0]) # target network self.target_model = model(output_dims=output_dims) self.target_model.build(input_shape=input_shape) self.target_model.set_weights(self.model.get_weights()) # optimizer and loss function learning_rate_fn = tf.keras.optimizers.schedules.PolynomialDecay( initial_learning_rate=learning_rate, decay_steps=4096, end_learning_rate=learning_rate * 0.1, power=1, cycle=False, ) self.optimizer = optimizer(learning_rate_fn) self.loss_fn = loss_fn # replay memory self.replay_memory = replay_memory(capacity=replay_memory_capacity) self.batches_before_training = batches_before_training self.batch_size = batch_size self.update_target_network_every = update_target_network_every self.update_prediction_network_every = update_prediction_network_every self.gamma = gamma self.epsilon = eps_initial self.eps_minimum = eps_minimum self.eps_decay = eps_decay def _obtain_batch(self): batch = self.replay_memory.sample(self.batch_size) if len(batch) == 3: # if prioritized replay memory batch, importance, indices = batch else: # if vanilla replay memory importance, indices = None, None states = tf.convert_to_tensor(batch[0], dtype=tf.float32) actions = tf.convert_to_tensor(batch[1], dtype=tf.int32) rewards = tf.convert_to_tensor(batch[2], dtype=tf.float32) next_states = tf.convert_to_tensor(batch[3], dtype=tf.float32) dones = tf.convert_to_tensor(batch[4], dtype=tf.float32) return ( (states, actions, rewards, next_states, dones), importance, indices ) def _update_prediction_network(self): (states, actions, rewards, next_states, dones), importance, indices = \ self._obtain_batch() with tf.GradientTape() as tape: # current states -> current Q-values current_Q = self.model(states, training=True) # reduce Q to an 1-d array corresponding to the actions taken idx_to_gather = tf.stack( [tf.range(actions.shape[0]), actions], axis=1) current_Q = tf.gather_nd(current_Q, idx_to_gather) # next states -> next Q-values expected_Q = self.target_model(next_states).numpy() # Q learning: obtain target Q-values expected_Q = ( rewards + self.gamma * tf.math.reduce_max(expected_Q, axis=1) * (1 - dones) ) loss = self.loss_fn(current_Q, expected_Q, importance) gradients = tape.gradient(loss, self.model.trainable_variables) self.optimizer.apply_gradients( zip(gradients, self.model.trainable_variables)) if hasattr(self.replay_memory, 'update'): abs_td_error = np.abs((expected_Q - current_Q).numpy()) self.replay_memory.update(indices, abs_td_error) def _train(self, env, num_episodes, random_seed): tf.random.set_seed(random_seed) best_reward = float('-inf') # initialize accumulators self.errors = [] self.num_actions = [] self.rewards = [] self.td_errors = [] pbar = tqdm.tqdm(range(num_episodes), desc=' episodes') for _ in pbar: np.random.seed(random_seed) random_seed += 1 state = env.reset() episode_td_error = [] while True: q_values = self.model(state[np.newaxis], training=True) q_values = np.squeeze(q_values.numpy()) if
np.random.random()
numpy.random.random
#!/usr/bin/python import sys import time import threading import numpy import string import copy from scipy.optimize import curve_fit from math import sqrt,exp,log,pi,acos,atan,cos,asin def g_CIMP(x): x=x[0,:] g=numpy.zeros(len(x)) #g=2.691*(1-0.2288964/x)*1/((1+0.16*x)*(1+1.35*numpy.exp(-x/0.2))) if (max(x)<1): g=-18.743261164767357+101.6507221241339*x**(0.33333333)-104.59646433814892*numpy.sqrt(x)+33.73393945878933*x-10.325598001906716*x**(1.5) elif (min(x)>1): g=1.1976693536243692*(1-0.2660904859953754/x)*1/((1+0.04920104690300144*x)*(1-0.5874697493344921*numpy.exp(-x*0.09913039025775051))) else: g=2.691*(1-0.2288964/x)*1/((1+0.16*x)*(1+1.35*numpy.exp(-x/0.2))) return g def gauss_function(x, a, x0, sigma): return a*numpy.exp(-(x-x0)**2/(2*sigma**2)) def calc_sigma(pos,profile): max_val=max(profile) min_val=min(profile) profile=(profile-min_val)/max_val aux=profile*pos ycm=numpy.sum(aux)/numpy.sum(profile) aux=profile*(pos-ycm)**2 yvar=sqrt(numpy.sum(aux)/numpy.sum(profile)) return (ycm,yvar) def Calc_Growth(twiss,param): #Define parameters brel=sqrt(1-1/param['gamma']**2) ex=param['exi'] ey=param['eyi'] ss=param['ssi'] sp=param['spi'] #Define twiss arrays s=numpy.zeros(len(twiss)) betax=numpy.zeros(len(twiss)) alphax=numpy.zeros(len(twiss)) betay=numpy.zeros(len(twiss)) alphay=numpy.zeros(len(twiss)) Dx=numpy.zeros(len(twiss)) Dpx=numpy.zeros(len(twiss)) Dy=numpy.zeros(len(twiss)) Dpy=numpy.zeros(len(twiss)) s=twiss[:,0] betax=twiss[:,2] alphax=twiss[:,3] betay=twiss[:,6] alphay=twiss[:,7] Dx=twiss[:,4] Dpx=twiss[:,5] Dy=twiss[:,8] Dpy=twiss[:,9] #Calculate the parameters A=param['cluz']*param['Np']*param['r0']**2/(64*numpy.pi**2*brel**3*param['gamma']**4*ex*ey*ss*sp) logCIMP=numpy.log(param['gamma']**2*ex*numpy.sqrt(betay*ey)/(param['r0']*betax)) Hx=1/betax*[Dx**2+(betax*Dpx+alphax*Dx)**2] Hy=1/betay*[Dy**2+(betay*Dpy+alphay*Dy)**2] SigH=numpy.sqrt(1/sp**2+Hx/ex+Hy/ey)**(-1) aCIMP=SigH/param['gamma']*numpy.sqrt(betax/ex) bCIMP=SigH/param['gamma']*numpy.sqrt(betay/ey) #Calculate Function g g_ab=g_CIMP(aCIMP/bCIMP) g_ba=g_CIMP(bCIMP/aCIMP) #Saves values for the ration a/b and b/a #f=open('RatioAB.txt','w') #for j in range(len(aCIMP[0,:])): # f.write(str(aCIMP[0,j]/bCIMP[0,j])+'\t\t'+str(bCIMP[0,j]/aCIMP[0,j])+'\n') #f.close() #Calculate Growth Rates fp=A*logCIMP*(SigH**2/sp**2)*(g_ba/aCIMP+g_ab/bCIMP) fx=A*logCIMP*(-aCIMP*g_ba+Hx*SigH**2/ex*(g_ba/aCIMP+g_ab/bCIMP)) fy=A*logCIMP*(-bCIMP*g_ab+Hy*SigH**2/ey*(g_ba/aCIMP+g_ab/bCIMP)) #Integrate along the s coordinate invTp=2*pi**(3.0/2.0)*numpy.trapz(fp,s) invTx=2*pi**(3.0/2.0)*numpy.trapz(fx,s) invTy=2*pi**(3.0/2.0)*numpy.trapz(fy,s) #Calculate growth Tp=invTp Tx=invTx Ty=invTy return (Tx,Ty,Tp) # Fucntion that iterates emittances for the case with no harmonic system (simple calculation of the bunch length) def Iterate_emittances(twiss,param): #Define differences i=1 time=0 diff1=1 diff2=1 diff3=1 diff4=1 difftot=diff1+diff2+diff3+diff4 #Calculate U0 U0=param['Cgamma']/(2*pi)*(param['En']/1e+9)**4*param['I2']*1e+9 #print U0 #Calculate damping partition numbers Jx=1-param['I4']/param['I2'] Jy=1 Jp=2+param['I4']/param['I2'] #print Jx,Jy,Jp # Caluclate damping times taux=(2*param['En']*param['C'])/(Jx*U0*param['cluz']) tauy=(2*param['En']*param['C'])/(Jy*U0*param['cluz']) taup=(2*param['En']*param['C'])/(Jp*U0*param['cluz']) #print taux,tauy,taup #Define step for iteration tt=taux/5 # Synchrotron tune Qs0=sqrt(param['ap']*param['hh']*sqrt(param['Vrf']**2-U0**2)/(2*pi*param['En'])) #Cretaes an array that's a subgroup of param inter={} inter['exi']=param['ex0'] inter['eyi']=(param['k_dw']+param['k_beta'])*param['ex0'] inter['ssi']=param['ss0'] inter['spi']=param['sp0'] inter['gamma']=param['gamma'] inter['r0']=param['r0'] inter['Np']=param['Np'] inter['cluz']=param['cluz'] while (difftot>10**(-7)): (Tx,Ty,Tp)=Calc_Growth(twiss,inter) Tx=float(Tx)/param['C'] Ty=float(Ty)/param['C'] Tp=float(Tp)/param['C'] #print Tx,Ty,Tp exx=(-param['ex0']+exp(2*tt*(Tx-1/taux))*(param['ex0']+inter['exi']*(-1+Tx*taux)))/(-1+Tx*taux) eyy=(-(param['k_dw']*param['ex0']+param['k_beta']*exx*(1-tauy/Ty))+exp(2*tt*(Ty-1/tauy))*((param['k_dw']*param['ex0']+param['k_beta']*exx*(1-tauy/Ty))+inter['eyi']*(-1+Ty*tauy)))/(-1+Ty*tauy) spp=(-param['sp0']+exp(tt*(Tp-1/taup))*(param['sp0']+inter['spi']*(-1+Tp*taup)))/(-1+Tp*taup) # Accelerating cavity system only sss=inter['spi']*param['C']*sqrt(param['ap']*param['En']/(2*pi*param['hh']*(param['Vrf']**2-U0**2)**0.5)); #print exx,eyy,spp,sss diff1=abs(exx-inter['exi'])/inter['exi'] diff2=abs(eyy-inter['eyi'])/inter['eyi'] diff3=abs(spp-inter['spi'])/inter['spi'] diff4=abs(sss-inter['ssi'])/inter['ssi'] difftot=diff1+diff2+diff3+diff4 #print difftot inter['exi']=exx; inter['eyi']=eyy; inter['spi']=spp; inter['ssi']=sss; time=i*tt; i=i+1 return (exx,eyy,spp,sss) # Function that iterates emittances using the results from tracking to calculate bunch length def Iterate_emittances3HC(twiss,param,phimain,Vmain,phiharm,Vharm): #Define differences i=1 time=0 diff1=1 diff2=1 diff3=1 diff4=1 difftot=diff1+diff2+diff3+diff4 #Calculate U0 U0=param['Cgamma']/(2*pi)*(param['En']/1e+9)**4*param['I2']*1e+9 #Calculate synchronous phase Phi_sync_nat=asin(U0/param['Vrf']) #Calculate damping partition numbers Jx=1-param['I4']/param['I2'] Jy=1 Jp=2+param['I4']/param['I2'] #print Jx,Jy,Jp # Caluclate damping times taux=(2*param['En']*param['C'])/(Jx*U0*param['cluz']) tauy=(2*param['En']*param['C'])/(Jy*U0*param['cluz']) taup=(2*param['En']*param['C'])/(Jp*U0*param['cluz']) #print taux,tauy,taup #Define step for iteration tt=taux/5 #RF frequency w_rf =2*pi*(param['hh']*param['cluz']/param['C']-param['Detune0']) #Generator Frequency #Creates arrays for 3HC calculation posz=numpy.zeros(5000) perfil=
numpy.zeros(5000)
numpy.zeros
import numpy as np import cvxpy as cp from scipy.special import softmax from pprint import pformat import random class ControlledRangeVariance: def __init__(self, seed, wsupport, expwsq, rvala=1, rvalb=1, tv=None): wmax = max(wsupport) assert wmax > 1 assert wmax >= expwsq assert min(wsupport) < 1 self.wsupport = np.sort(np.array(wsupport)) wnice = self.wsupport / wmax A =
np.array([wnice, wnice * wnice])
numpy.array
from builtins import range import pandas as pd import numpy as np from chemml.chem import Molecule class CoulombMatrix(object): """ The implementation of coulomb matrix descriptors by <NAME> et. al. 2012, PRL (All 3 different variations). Parameters ---------- CMtype: str, optional (default='SC') The coulomb matrix type, one of the following types: * 'Unsorted_Matrix' or 'UM' * 'Unsorted_Triangular' or 'UT' * 'Eigenspectrum' or 'E' * 'Sorted_Coulomb' or 'SC' * 'Random_Coulomb' or 'RC' max_n_atoms: int or 'auto', optional (default = 'auto') Set the maximum number of atoms per molecule (to which all representations will be padded). If 'auto', we find it based on all input molecules. nPerm: int, optional (default = 3) Number of permutation of coulomb matrix per molecule for Random_Coulomb (RC) type of representation. const: float, optional (default = 1) The constant value for coordinates unit conversion to atomic unit example: atomic unit -> const=1, Angstrom -> const=0.529 const/|Ri-Rj|, which denominator is the euclidean distance between atoms i and j """ def __init__(self, CMtype='SC', max_n_atoms = 'auto', nPerm=3, const=1): self.CMtype = CMtype self.max_n_atoms = max_n_atoms self.nPerm = nPerm self.const = const def __cal_coul_mat(self, mol): """ Parameters ---------- mol: molecule object Returns ------- """ if isinstance(mol, Molecule): if mol.xyz is None: msg = "The molecule must be a chemml.chem.Molecule object with xyz information." raise ValueError(msg) else: msg = "The molecule must be a chemml.chem.Molecule object." raise ValueError(msg) mol = np.append(mol.xyz.atomic_numbers,mol.xyz.geometry, axis=1) cm = [] for i in range(len(mol)): vect = [] for k in range(0,i): vect.append(cm[k][i]) for j in range(i,len(mol)): if i==j: vect.append(0.5*mol[i,0]**2.4) else: vect.append((mol[i,0]*mol[j,0]*self.const)/np.linalg.norm(mol[i,1:]-mol[j,1:])) for m in range(len(mol),self.max_n_atoms): vect.append(0.0) cm.append(vect) for m in range(len(mol),self.max_n_atoms): cm.append([0]*self.max_n_atoms) return np.array(cm) #shape nAtoms*nAtoms def represent(self, molecules): """ provides coulomb matrix representation for input molecules. Parameters ---------- molecules: chemml.chem.Molecule object or list If list, it must be a list of chemml.chem.Molecule objects, otherwise we raise a ValueError. In addition, all the molecule objects must provide the XYZ information. Please make sure the XYZ geometry has been stored or optimized in advance. Returns ------- Pandas DataFrame A data frame with same number of rows as number of molecules will be returned. The exact shape of the dataframe depends on the type of CM as follows: - shape of Unsorted_Matrix (UM): (n_molecules, max_n_atoms**2) - shape of Unsorted_Triangular (UT): (n_molecules, max_n_atoms*(max_n_atoms+1)/2) - shape of eigenspectrums (E): (n_molecules, max_n_atoms) - shape of Sorted_Coulomb (SC): (n_molecules, max_n_atoms*(max_n_atoms+1)/2) - shape of Random_Coulomb (RC): (n_molecules, nPerm * max_n_atoms * (max_n_atoms+1)/2) """ if isinstance(molecules, list): molecules =
np.array(molecules)
numpy.array
# Modified from sklearn GP example. # Author: <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # <NAME> <<EMAIL>>s # License: BSD 3 clause import numpy as np from matplotlib import pyplot as plt from sklearn.neural_network import MLPRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel as C np.random.seed(1) def f(x): """The function to predict.""" return x * np.sin(x) + x * np.cos(2 * x) + 10 *
np.sin(x)
numpy.sin
# Copyright 2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import numpy as np import pytest import cunumeric as num fns = ["bartlett", "blackman", "hamming", "hanning"] def test(): for fn in fns: print(f"Testing cunumeric.{fn}") np_fn = getattr(np, fn) num_fn = getattr(num, fn) out_np = np_fn(0) out_num = num_fn(0) assert np.allclose(out_np, out_num) out_np = np_fn(1) out_num = num_fn(1) assert np.allclose(out_np, out_num) out_np = np_fn(10) out_num = num_fn(10) assert np.allclose(out_np, out_num) out_np = np_fn(100) out_num = num_fn(100) assert np.allclose(out_np, out_num) print("Testing cunumeric.kaiser") out_np = np.kaiser(0, 0) out_num = num.kaiser(0, 0) assert np.allclose(out_np, out_num) out_np =
np.kaiser(1, 0)
numpy.kaiser
# -*- coding: utf-8 -*- # @Time : 2019/8/23 21:53 # @Author : zhoujun import math import random import pyclipper import numpy as np import cv2 from .augment import DataAugment data_aug = DataAugment() def check_and_validate_polys(polys, xxx_todo_changeme): ''' check so that the text poly is in the same direction, and also filter some invalid polygons :param polys: :param tags: :return: ''' (h, w) = xxx_todo_changeme if polys.shape[0] == 0: return polys polys[:, :, 0] = np.clip(polys[:, :, 0], 0, w - 1) # x coord not max w-1, and not min 0 polys[:, :, 1] = np.clip(polys[:, :, 1], 0, h - 1) # y coord not max h-1, and not min 0 validated_polys = [] for poly in polys: p_area = cv2.contourArea(poly) if abs(p_area) < 1: continue validated_polys.append(poly) return np.array(validated_polys) def unshrink_offset(poly,ratio): area = cv2.contourArea(poly) peri = cv2.arcLength(poly, True) a = 8 b = peri - 4 c = 1-0.5 * peri - area/ratio return quadratic(a,b,c) def quadratic(a, b, c): if (b * b - 4 * a * c) < 0: return 'None' Delte = math.sqrt(b * b - 4 * a * c) if Delte > 0: x = (- b + Delte) / (2 * a) y = (- b - Delte) / (2 * a) return x, y else: x = (- b) / (2 * a) return x def generate_rbox(im_size, text_polys, text_tags,training_mask, shrink_ratio): """ 生成mask图,白色部分是文本,黑色是北京 :param im_size: 图像的h,w :param text_polys: 框的坐标 :param text_tags: 标注文本框是否参与训练 :param training_mask: 忽略标注为 DO NOT CARE 的矩阵 :return: 生成的mask图 """ h, w = im_size score_map = np.zeros((h, w), dtype=np.uint8) for i, (poly, tag) in enumerate(zip(text_polys, text_tags)): try: poly = poly.astype(np.int) # d_i = cv2.contourArea(poly) * (1 - shrink_ratio * shrink_ratio) / cv2.arcLength(poly, True) d_i = cv2.contourArea(poly) * (1 - shrink_ratio) / cv2.arcLength(poly, True) + 0.5 pco = pyclipper.PyclipperOffset() pco.AddPath(poly, pyclipper.JT_ROUND, pyclipper.ET_CLOSEDPOLYGON) shrinked_poly = np.array(pco.Execute(-d_i)) cv2.fillPoly(score_map, shrinked_poly, i + 1) if not tag: cv2.fillPoly(training_mask, shrinked_poly, 0) except: print(poly) return score_map, training_mask def augmentation(im: np.ndarray, text_polys: np.ndarray, scales: np.ndarray, degrees: int) -> tuple: # the images are rescaled with ratio {0.5, 1.0, 2.0, 3.0} randomly # im, text_polys = data_aug.random_scale(im, text_polys, scales) # the images are horizontally fliped and rotated in range [−10◦, 10◦] randomly if random.random() < 0.5: im, text_polys = data_aug.vertical_flip(im, text_polys) if random.random() < 0.5: im, text_polys = data_aug.random_rotate_img_bbox(im, text_polys, degrees) return im, text_polys def image_label(im: np.ndarray, text_polys: np.ndarray, text_tags: list, input_size: int = 640, shrink_ratio: float = 0.5, degrees: int = 10, train: bool = True, scales: np.ndarray = np.array([0.5, 1, 2.0, 3.0])) -> tuple: """ 读取图片并生成label :param im: 图片 :param text_polys: 文本标注框 :param text_tags: 是否忽略文本的标致:true 忽略, false 不忽略 :param input_size: 输出图像的尺寸 :param shrink_ratio: gt收缩的比例 :param degrees: 随机旋转的角度 :param scales: 随机缩放的尺度 :return: """ h, w, _ = im.shape # 检查越界 text_polys = check_and_validate_polys(text_polys, (h, w)) if train: im, text_polys = augmentation(im, text_polys, scales, degrees) h, w, _ = im.shape short_edge = min(h, w) if short_edge < input_size: # 保证短边 >= inputsize scale = input_size / short_edge im = cv2.resize(im, dsize=None, fx=scale, fy=scale) text_polys *= scale h, w, _ = im.shape training_mask = np.ones((h, w), dtype=np.uint8) score_maps = [] for i in (1, shrink_ratio): score_map, training_mask = generate_rbox((h, w), text_polys, text_tags,training_mask, i) score_maps.append(score_map) score_maps =
np.array(score_maps, dtype=np.float32)
numpy.array
import numpy as np import pandas as pd import os import cv2 from tqdm import tqdm import torch.nn as nn import torch.nn.functional as F from torchvision import transforms from torch.utils.data import Dataset, DataLoader import torch from efficientnet_pytorch import EfficientNet import pickle import pydicom import glob def window(x, WL=50, WW=350): upper, lower = WL+WW//2, WL-WW//2 x = np.clip(x, lower, upper) x = x - np.min(x) x = x / np.max(x) return x class BboxDataset(Dataset): def __init__(self, series_list): self.series_list = series_list def __len__(self): return len(self.series_list) def __getitem__(self,index): return index class BboxCollator(object): def __init__(self, series_list): self.series_list = series_list def _load_dicom_array(self, f): dicom_files = glob.glob(os.path.join(f, '*.dcm')) dicoms = [pydicom.dcmread(d) for d in dicom_files] M = np.float32(dicoms[0].RescaleSlope) B = np.float32(dicoms[0].RescaleIntercept) z_pos = [float(d.ImagePositionPatient[-1]) for d in dicoms] sorted_idx =
np.argsort(z_pos)
numpy.argsort
import shutil import numpy as np import torch import torch.nn as nn import torch.functional as tf import torch.utils.data import time from tqdm import tqdm import model import argparse try: import nvidia_smi NVIDIA_SMI = True except: NVIDIA_SMI = False import sys import os import pathlib class Dataset(torch.utils.data.Dataset): """ Dataset class that will provide data during training. Modify it accordingly for your dataset. This one shows how to do augmenting during training for a very simple training set """ def __init__(self, n_training): """ Very simple training set made of 200 Gaussians of width between 0.5 and 1.5 We later augment this with a velocity and amplitude. Args: n_training (int): number of training examples including augmenting """ super(Dataset, self).__init__() self.n_training = n_training x = np.linspace(-5.0, 5.0, 100) self.sigma = 1.0 * np.random.rand(200) + 0.5 self.y = np.exp(-x[None,:]**2 / self.sigma[:,None]**2) self.indices = np.random.randint(low=0, high=200, size=self.n_training) self.amplitude = 2.0 * np.random.rand(self.n_training) + 0.1 def __getitem__(self, index): amplitude = self.amplitude[index] sigma = self.sigma[self.indices[index]] inp = amplitude * self.y[self.indices[index],:] out =
np.array([sigma, amplitude])
numpy.array
import os import gzip import argparse import pickle import numpy as np import tensorflow as tf import tensorflow.keras as K import tensorflow.contrib.eager as tfe from pathlib import Path from model import Model lr_start = 1e-5 lr_end = 1e-5 max_epochs = 50 def load_instance(filename): with gzip.open(filename, 'rb') as file: sample = pickle.load(file) features = tf.convert_to_tensor(sample['solving_stats'], dtype=tf.float32) response = tf.convert_to_tensor(sample['nb_nodes_left'], dtype=tf.float32) instance = sample['instance_path'] return features, response, instance def load_batch(batch_filenames): batch_features, batch_responses, batch_instances = [], [], [] for count, filename in enumerate(batch_filenames): features, response, instance = load_instance(filename) batch_features.append(features) batch_responses.append(response) batch_instances.append(instance) batch_features = tf.stack(batch_features, axis=0) batch_responses = tf.stack(batch_responses, axis=0) batch_instances = tf.stack(batch_instances, axis=0) return batch_features, batch_responses, batch_instances def get_feature_stats(data, folder): outfile = folder/"feature_stats.pickle" if outfile.exists(): with outfile.open('rb') as file: feature_stats = pickle.load(file) feature_means = feature_stats['feature_means'] feature_stds = feature_stats['feature_stds'] else: feature_means, feature_stds = [], [] for features, _, _ in data: feature_means.append(tf.reduce_mean(features, axis=(0, 1))) mean = tf.expand_dims(tf.expand_dims(feature_means[-1], axis=0), axis=0) std = tf.reduce_mean(tf.reduce_mean((features - mean) ** 2, axis=0), axis=0) feature_stds.append(tf.sqrt(std)) feature_means = tf.reduce_mean(tf.stack(feature_means, axis=0), axis=0).numpy() feature_stds = tf.reduce_mean(tf.stack(feature_stds, axis=0), axis=0).numpy() feature_stds[feature_stds < 1e-5] = 1. with outfile.open('wb') as file: pickle.dump({'feature_means': feature_means, 'feature_stds': feature_stds}, file) return feature_means, feature_stds def learning_rate(episode): return (lr_start-lr_end) / np.e ** episode + lr_end if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( 'problem', help='Setcover or cauctions', type=str, choices=['setcover', 'cauctions'], ) parser.add_argument( '-g', '--gpu', help='CUDA GPU id (-1 for CPU).', type=int, default=0, ) args = parser.parse_args() if args.gpu == -1: print(f"Using CPU") os.environ['CUDA_VISIBLE_DEVICES'] = '' else: print(f"Using GPU {args.gpu}") os.environ['CUDA_VISIBLE_DEVICES'] = f'{args.gpu}' tfconfig = tf.ConfigProto() tfconfig.gpu_options.allow_growth = True tf.enable_eager_execution(tfconfig) tf.set_random_seed(seed=0) rng = np.random.RandomState(0) data_folder = Path('data/bnb_size_prediction')/args.problem train_folder = data_folder/"train" valid_folder = data_folder/"valid" output_folder = Path('results')/args.problem output_folder.mkdir(parents=True, exist_ok=True) train_filenames = [str(filename) for filename in train_folder.glob('sample*.pkl')] train_data = tf.data.Dataset.from_tensor_slices(train_filenames).batch(32) train_data = train_data.map(lambda x: tf.py_func(load_batch, [x], [tf.float32, tf.float32, tf.string])) train_data = train_data.prefetch(1) with (train_folder/"benchmark.pkl").open("rb") as file: train_benchmark = pickle.load(file) valid_filenames = [str(filename) for filename in valid_folder.glob('sample*.pkl')] valid_data = tf.data.Dataset.from_tensor_slices(valid_filenames).batch(128) valid_data = valid_data.map(lambda x: tf.py_func(load_batch, [x], [tf.float32, tf.float32, tf.string])) valid_data = valid_data.prefetch(1) with (valid_folder/"benchmark.pkl").open("rb") as file: valid_benchmark = pickle.load(file) feature_means, feature_stds = get_feature_stats(train_data, train_folder) model = Model(feature_means, feature_stds) optimizer = tf.train.AdamOptimizer(lambda: lr) best_valid_loss = np.inf for epoch in range(max_epochs): K.backend.set_learning_phase(1) # Set train epoch_train_filenames = rng.choice(train_filenames, len(train_filenames), replace=False) train_data = tf.data.Dataset.from_tensor_slices(epoch_train_filenames).batch(32) train_data = train_data.map(lambda x: tf.py_func(load_batch, [x], [tf.float32, tf.float32, tf.string])) train_data = train_data.prefetch(1) train_loss = [] for count, (features, responses, instances) in enumerate(train_data): response_centers, response_scales = [], [] for instance in instances: instance = instance.numpy().decode('utf-8') response_centers.append(np.mean(train_benchmark[instance]['nb_nodes'])) response_scales.append(np.mean(train_benchmark[instance]['nb_nodes'])/np.sqrt(12) +
np.std(train_benchmark[instance]['nb_nodes'])
numpy.std
import random import os import time import threading import sys import subprocess import numpy as np import matplotlib.pyplot as plt from sklearn import metrics import gzip import os.path import shutil import urllib.request as request import requests import zipfile import io currentdir = os.path.dirname(os.path.realpath(__file__)) def getChromosomeNum(string): if string == 'X': return 23 elif string == 'Y': return 24 else: try: return int(string) except: return None def parseConfigFile(configFile): config = open(configFile) settings = {} for line in config: if line[0] == '#': continue line = line.strip() if len(line) == 0: continue line = line.split('\t') settings[line[0]] = line[1] return settings def doWork(st, sema,shell): try: print (st) t = time.time() lst = st.split() pipe = None if lst[-2] == '>': pipe = lst[-1] lst = lst[:-2] if shell: lst = ' '.join(lst) if not pipe: p = subprocess.Popen(lst,shell=shell) print(p.communicate()) else: with open(pipe,'w') as output: p = subprocess.Popen(lst,stdout=output,shell=shell) print (p.communicate()) print ('Time = ' + str(time.time()-t)) except Exception as ex: print(ex) pass sema.release() def runLsts(lsts,threads,shell=False): print('start') for i in range(0,len(lsts)): lst = lsts[i] numThreads = threads[i] sema = threading.Semaphore(numThreads) #max number of threads at once for item in lst: sema.acquire() t = threading.Thread(target=doWork, args=(item,sema,shell)) t.start() for i in range(0,numThreads): sema.acquire() for i in range(0,numThreads): sema.release() def calcPrecisionRecallLsts(lst): #finalR = [] #finalP = [] #finalR.append([]) #finalP.append([]) lst = np.asarray(lst) ind = np.argsort(-lst[:,0]) lst = lst[ind,:] #get total true and cumulative sum of true totalPositive = np.sum(lst[:,1]) totalNegative = lst.shape[0]-totalPositive finalR = np.cumsum(lst[:,1]) FP = np.arange(1,finalR.shape[0]+1)-finalR #create precision array (recall counts / total counts) finalP = finalR/np.arange(1,lst.shape[0]+1) #find ties x = np.arange(finalR.shape[0]-1) ties = list(np.where(lst[x,0] == lst[x+1,0])[0]) for idx in range(len(ties)-1,-1,-1): finalR[ties[idx]] = finalR[ties[idx]+1] finalP[ties[idx]] = finalP[ties[idx]+1] FP[ties[idx]] = FP[ties[idx]+1] TN = totalNegative - FP ACC = (TN + finalR)/finalR.shape[0] TNR = TN/totalNegative #scale recall from 0 to 1 finalR = finalR / totalPositive return (finalP,finalR,ACC,TNR) def calcAndPlotCurvesLsts(predictionsLst,classLst,datanames,fileName,title,curveType,lineStyleLst=None,legFont=1,lineWidthLst=None,font=None,removeMargins=False,xMax=None,yMax=None,markerLst=None,colorLst=None,size=None,fig=None,dpi=300,reducePoints=None,frameon=True): xAxis = [] yAxis = [] for i in range(0,len(predictionsLst)): (prec,recall,acc,tnr) = calcPrecisionRecallLsts(np.hstack((np.expand_dims(predictionsLst[i],0).T,
np.expand_dims(classLst[i],0)
numpy.expand_dims
#! /usr/bin/env python # -*- coding: utf-8 -*- # # author: <NAME> # contact: <EMAIL> # MIT License # Copyright (c) 2020 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import torch import SimpleITK as sitk import numpy as np import nibabel as nib from torch.autograd import Variable from skimage.transform import resize from torchvision import transforms from time import gmtime, strftime from tqdm import tqdm import pdb import os from . import maybe_download from ..helpers import utils from ..helpers import postprocessing from ..helpers import preprocessing from .. import brainmask from os.path import expanduser home = expanduser("~") #======================================================================================== class tumorSeg(): """ class performs segmentation for a given sequence of patient data. to main platform for segmentation mask estimation one for the patient data in brats format other with any random format step followed for in estimation of segmentation mask 1. ABLnet for reducing false positives outside the brain Air Brain Lesson model (2D model, 103 layered) 2. BNet3Dnet 3D network for inner class classification Dual Path way network 3. Tir3Dnet 57 layered 3D convolutional network for inner class classification more on training details and network information: (https://link.springer.com/chapter/10.1007/978-3-030-11726-9_43<Paste>) ========================= quick: True (just evaluates on Dual path network (BNet3D) else copmutes an ensumble over all four networks """ def __init__(self, quick = False, device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")): map_location = device #======================================================================================== ckpt_tir3D = os.path.join(home, '.DeepBrainSeg/BestModels/tumor_Tramisu_FC57_3D.pth.tar') ckpt_BNET3D = os.path.join(home, '.DeepBrainSeg/BestModels/tumor_BrainNet_3D.pth.tar') ckpt_ABL = os.path.join(home, '.DeepBrainSeg/BestModels/tumor_ABL_2D.pth.tar') #======================================================================================== # air brain lesion segmentation.............. from .models.modelABL import FCDenseNet103 self.ABLnclasses = 3 self.ABLnet = FCDenseNet103(n_classes = self.ABLnclasses) ## intialize the graph maybe_download(ckpt_ABL) saved_parms=torch.load(ckpt_ABL, map_location=map_location) self.ABLnet.load_state_dict(saved_parms['state_dict']) ## fill the model with trained params print ("================================ ABLNET2D Loaded ==============================") self.ABLnet.eval() self.ABLnet = self.ABLnet.to(device) #======================================================================================== # Tir3D model................... from .models.modelTir3D import FCDenseNet57 self.T3Dnclasses = 5 self.Tir3Dnet = FCDenseNet57(self.T3Dnclasses) maybe_download(ckpt_tir3D) ckpt = torch.load(ckpt_tir3D, map_location=map_location) self.Tir3Dnet.load_state_dict(ckpt['state_dict']) print ("=============================== TIRNET2D Loaded ==============================") self.Tir3Dnet.eval() self.Tir3Dnet = self.Tir3Dnet.to(device) if not quick: # BrainNet3D model...................... from .models.model3DBNET import BrainNet_3D_Inception self.B3Dnclasses = 5 self.BNET3Dnet = BrainNet_3D_Inception() maybe_download(ckpt_BNET3D) ckpt = torch.load(ckpt_BNET3D, map_location=map_location) self.BNET3Dnet.load_state_dict(ckpt['state_dict']) print ("================================ KAMNET3D Loaded ==============================") self.BNET3Dnet.eval() self.BNET3Dnet = self.BNET3Dnet.to(device) #======================================================================================== self.device = device self.quick = quick def get_localization(self, t1, t1ce, t2, flair, brain_mask): """ ABLnetwork output, finds the brain, Whole tumor region t1_v = t1 volume (numpy array) t1c_v = t1c volume (numpy array) t2_v = t2 volume (numpy array) flair_v = flair volume (numpy array) brain_mask = brain, whole tumor mask (numpy array, output of ANTs pieline) """ t1 = preprocessing.standardize(t1, brain_mask) t1ce = preprocessing.standardize(t1ce, brain_mask) t2 = preprocessing.standardize(t2, brain_mask) flair = preprocessing.standardize(flair, brain_mask) generated_output_logits = np.empty((self.ABLnclasses, flair.shape[0], flair.shape[1], flair.shape[2])) for _slice_ in tqdm(range(flair.shape[2])): flair_slice = np.transpose(flair[:,:,_slice_]) t2_slice = np.transpose(t2[:,:,_slice_]) t1ce_slice = np.transpose(t1ce[:,:,_slice_]) t1_slice = np.transpose(t1[:,:,_slice_]) array = np.zeros((flair_slice.shape[0],flair_slice.shape[1],4)) array[:,:,0] = flair_slice array[:,:,1] = t2_slice array[:,:,2] = t1ce_slice array[:,:,3] = t1_slice transformed_array = torch.from_numpy(utils.convert_image(array)).float() transformed_array = transformed_array.unsqueeze(0) ## neccessary if batch size == 1 transformed_array = transformed_array.to(self.device) logits = self.ABLnet(transformed_array).detach().cpu().numpy()# 3 x 240 x 240 generated_output_logits[:,:,:, _slice_] = logits.transpose(0, 1, 3, 2) final_pred = utils.apply_argmax_to_logits(generated_output_logits) final_pred = postprocessing.class_wise_cc(final_pred) final_pred = utils.adjust_classes_air_brain_tumour(np.uint8(final_pred)) return np.uint8(final_pred) def inner_class_classification_with_logits_NCube(self, t1, t1ce, t2, flair, brain_mask, mask, N = 64): """ output of 3D tiramisu model (tir3Dnet) mask = numpy array output of ABLnet N = patch size during inference """ t1 = preprocessing.standardize(t1, brain_mask) t1ce = preprocessing.standardize(t1ce, brain_mask) t2 = preprocessing.standardize(t2, brain_mask) flair = preprocessing.standardize(flair, brain_mask) vol = {} vol['t1'] = t1 vol['t2'] = t2 vol['t1ce'] = t1ce vol['flair'] = flair s = N//4 for key in vol.keys(): vol[key] = np.pad(vol[key], ((s, s), (s, s), (s,s))) shape = vol['t1'].shape # to exclude batch_size final_prediction = np.zeros((self.T3Dnclasses, shape[0], shape[1], shape[2])) x_min, x_max, y_min, y_max, z_min, z_max = 0, shape[0], 0, shape[1], 0, shape[2] x_min, x_max, y_min, y_max, z_min, z_max = x_min, min(shape[0] - N, x_max), y_min, min(shape[1] - N, y_max), z_min, min(shape[2] - N, z_max) with torch.no_grad(): for x in tqdm(range(x_min, x_max, N//2)): for y in range(y_min, y_max, N//2): for z in range(z_min, z_max, N//2): high =
np.zeros((1, 4, N, N, N))
numpy.zeros
import numpy as np from gym.spaces import Box import pyflex from softgym.envs.fluid_env import FluidEnv import copy from softgym.utils.misc import rotate_rigid_object, quatFromAxisAngle from shapely.geometry import Polygon import random, math class PourWaterPosControlEnv(FluidEnv): def __init__(self, observation_mode, action_mode, config=None, cached_states_path='pour_water_init_states.pkl', **kwargs): ''' This class implements a pouring water task. observation_mode: "cam_rgb" or "point_cloud" or "key_point" action_mode: "rotation_bottom, rotation_top" ''' assert observation_mode in ['cam_rgb', 'point_cloud', 'key_point'] assert action_mode in ['rotation_bottom', 'rotation_top'] if action_mode == 'rotation_top': cached_states_path = 'pour_water_init_states_top.pkl' self.observation_mode = observation_mode self.action_mode = action_mode self.wall_num = 5 # number of glass walls. floor/left/right/front/back super().__init__(**kwargs) self.get_cached_configs_and_states(cached_states_path, self.num_variations) if observation_mode in ['point_cloud', 'key_point']: if observation_mode == 'key_point': obs_dim = 0 obs_dim += 13 # Pos (x, z, theta) and shape (w, h, l) of the two cups and the water height. else: max_particle_num = 13 * 13 * 13 * 4 obs_dim = max_particle_num * 3 self.particle_obs_dim = obs_dim # z and theta of the second cup (poured_glass) does not change and thus are omitted. # add: frac of water in control cup, frac of water in target cup self.observation_space = Box(low=np.array([-np.inf] * obs_dim), high=np.array([np.inf] * obs_dim), dtype=np.float32) elif observation_mode == 'cam_rgb': self.observation_space = Box(low=-np.inf, high=np.inf, shape=(self.camera_height, self.camera_width, 3), dtype=np.float32) default_config = self.get_default_config() border = default_config['glass']['border'] if action_mode in ["rotation_bottom", "rotation_top"]: self.action_direct_dim = 3 # control the (x, y) corrdinate of the floor center, and theta its rotation angle. action_low = np.array([-0.01, -0.01, -0.015]) action_high = np.array([0.01, 0.01, 0.015]) self.action_space = Box(action_low, action_high, dtype=np.float32) else: raise NotImplementedError self.prev_reward = 0 self.reward_min = 0 self.reward_max = 1 self.reward_range = self.reward_max - self.reward_min def get_default_config(self): config = { 'fluid': { 'radius': 0.033, 'rest_dis_coef': 0.55, 'cohesion': 0.1, # not actually used, instead, is computed as viscosity * 0.01 'viscosity': 2, 'surfaceTension': 0, 'adhesion': 0.0, # not actually used, instead, is computed as viscosity * 0.001 'vorticityConfinement': 40, 'solidpressure': 0., 'dim_x': 8, 'dim_y': 18, 'dim_z': 8, }, 'glass': { 'border': 0.045, 'height': 0.6, 'glass_distance': 1.0, 'poured_border': 0.04, 'poured_height': 0.6, }, 'camera_name': 'default_camera', } return config def generate_env_variation(self, num_variations=5, config=None, **kwargs): dim_xs = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] dim_zs = [4, 5, 6, 7, 8, 9, 10, 11, 12, 13] self.cached_configs = [] self.cached_init_states = [] if config is None: config = self.get_default_config() config_variations = [copy.deepcopy(config) for _ in range(num_variations)] for idx in range(num_variations): print("pour water generate env variations {}".format(idx)) dim_x = random.choice(dim_xs) dim_z = random.choice(dim_zs) m = min(dim_x, dim_z) p = np.random.rand() water_radius = config['fluid']['radius'] * config['fluid']['rest_dis_coef'] if p < 0.5: # midium water volumes print("generate env variation: medium volume water") dim_y = int(3.5 * m) v = dim_x * dim_y * dim_z h = v / ((dim_x + 1) * (dim_z + 1)) * water_radius / 2 glass_height = h + (np.random.rand() - 0.5) * 0.001 + config['glass']['border'] else: print("generate env variation: large volume water") dim_y = 4 * m v = dim_x * dim_y * dim_z h = v / ((dim_x + 1) * (dim_z + 1)) * water_radius / 3 glass_height = h + (m + np.random.rand()) * 0.001 + config['glass']['border'] config_variations[idx]['fluid']['dim_x'] = dim_x config_variations[idx]['fluid']['dim_y'] = dim_y config_variations[idx]['fluid']['dim_z'] = dim_z # if you want to change viscosity also, uncomment this # config_variations[idx]['fluid']['viscosity'] = self.rand_float(2.0, 10.0) config_variations[idx]['glass']['height'] = glass_height config_variations[idx]['glass']['poured_height'] = glass_height + np.random.rand() * 0.1 config_variations[idx]['glass']['glass_distance'] = self.rand_float(0.05 * m, 0.09 * m) + (dim_x + 4) * water_radius / 2. config_variations[idx]['glass']['poured_border'] = 0.03 self.set_scene(config_variations[idx]) init_state = copy.deepcopy(self.get_state()) self.cached_configs.append(config_variations[idx]) self.cached_init_states.append(init_state) combined = [self.cached_configs, self.cached_init_states] return self.cached_configs, self.cached_init_states def get_config(self): if self.deterministic: config_idx = 0 else: config_idx = np.random.randint(len(self.config_variations)) self.config = self.config_variations[config_idx] return self.config def _reset(self): ''' reset to environment to the initial state. return the initial observation. ''' self.inner_step = 0 self.performance_init = None info = self._get_info() self.performance_init = info['performance'] pyflex.step(render=True) return self._get_obs() def get_state(self): ''' get the postion, velocity of flex particles, and postions of flex shapes. ''' particle_pos = pyflex.get_positions() particle_vel = pyflex.get_velocities() shape_position = pyflex.get_shape_states() return {'particle_pos': particle_pos, 'particle_vel': particle_vel, 'shape_pos': shape_position, 'glass_x': self.glass_x, 'glass_y': self.glass_y, 'glass_rotation': self.glass_rotation, 'glass_states': self.glass_states, 'poured_glass_states': self.poured_glass_states, 'glass_params': self.glass_params, 'config_id': self.current_config_id} def set_state(self, state_dic): ''' set the postion, velocity of flex particles, and postions of flex shapes. ''' pyflex.set_positions(state_dic["particle_pos"]) pyflex.set_velocities(state_dic["particle_vel"]) pyflex.set_shape_states(state_dic["shape_pos"]) self.glass_x = state_dic['glass_x'] self.glass_y = state_dic['glass_y'] self.glass_rotation = state_dic['glass_rotation'] self.glass_states = state_dic['glass_states'] self.poured_glass_states = state_dic['poured_glass_states'] for _ in range(5): pyflex.step() def initialize_camera(self): self.camera_params = { 'default_camera': {'pos': np.array([1.4, 1.5, 0.1]), 'angle': np.array([0.45 * np.pi, -60 / 180. * np.pi, 0]), 'width': self.camera_width, 'height': self.camera_height}, 'cam_2d': {'pos': np.array([0.5, .7, 4.]), 'angle': np.array([0, 0, 0.]), 'width': self.camera_width, 'height': self.camera_height} } def set_poured_glass_params(self, config): params = config self.glass_distance = params['glass_distance'] self.poured_border = params['poured_border'] self.poured_height = params['poured_height'] fluid_radis = self.fluid_params['radius'] * self.fluid_params['rest_dis_coef'] self.poured_glass_dis_x = self.fluid_params['dim_x'] * fluid_radis + 0.07 # glass floor length self.poured_glass_dis_z = self.fluid_params['dim_z'] * fluid_radis + 0.07 # glass width params['poured_glass_dis_x'] = self.poured_glass_dis_x params['poured_glass_dis_z'] = self.poured_glass_dis_z params['poured_glass_x_center'] = self.x_center + params['glass_distance'] self.glass_params.update(params) def set_pouring_glass_params(self, config): params = config self.border = params['border'] self.height = params['height'] fluid_radis = self.fluid_params['radius'] * self.fluid_params['rest_dis_coef'] self.glass_dis_x = self.fluid_params['dim_x'] * fluid_radis + 0.1 # glass floor length self.glass_dis_z = self.fluid_params['dim_z'] * fluid_radis + 0.1 # glass width params['glass_dis_x'] = self.glass_dis_x params['glass_dis_z'] = self.glass_dis_z params['glass_x_center'] = self.x_center self.glass_params = params def set_scene(self, config, states=None, create_only=False): ''' Construct the pouring water scence. ''' # create fluid super().set_scene(config) # do not sample fluid parameters, as it's very likely to generate very strange fluid # compute glass params if states is None: self.set_pouring_glass_params(config["glass"]) self.set_poured_glass_params(config["glass"]) else: glass_params = states['glass_params'] self.border = glass_params['border'] self.height = glass_params['height'] self.glass_dis_x = glass_params['glass_dis_x'] self.glass_dis_z = glass_params['glass_dis_z'] self.glass_distance = glass_params['glass_distance'] self.poured_border = glass_params['poured_border'] self.poured_height = glass_params['poured_height'] self.poured_glass_dis_x = glass_params['poured_glass_dis_x'] self.poured_glass_dis_z = glass_params['poured_glass_dis_z'] self.glass_params = glass_params # create pouring glass & poured glass self.create_glass(self.glass_dis_x, self.glass_dis_z, self.height, self.border) self.create_glass(self.poured_glass_dis_x, self.poured_glass_dis_z, self.poured_height, self.poured_border) # move pouring glass to be at ground self.glass_states = self.init_glass_state(self.x_center, 0, self.glass_dis_x, self.glass_dis_z, self.height, self.border) # move poured glass to be at ground self.poured_glass_states = self.init_glass_state(self.x_center + self.glass_distance, 0, self.poured_glass_dis_x, self.poured_glass_dis_z, self.poured_height, self.poured_border) self.set_shape_states(self.glass_states, self.poured_glass_states) # record glass floor center x, y, and rotation self.glass_x = self.x_center if self.action_mode == 'rotation_bottom': self.glass_y = 0 elif self.action_mode == 'rotation_top': self.glass_y = 0.5 * self.border + self.height self.glass_rotation = 0 # only create the glass and water, without setting their states # this is only used in the pourwater amount env. if create_only: return # no cached init states passed in if states is None: fluid_pos = np.ones((self.particle_num, self.dim_position)) # move water all inside the glass fluid_radius = self.fluid_params['radius'] * self.fluid_params['rest_dis_coef'] fluid_dis = np.array([1.0 * fluid_radius, fluid_radius * 0.5, 1.0 * fluid_radius]) lower_x = self.glass_params['glass_x_center'] - self.glass_params['glass_dis_x'] / 2. + self.glass_params['border'] lower_z = -self.glass_params['glass_dis_z'] / 2 + self.glass_params['border'] lower_y = self.glass_params['border'] if self.action_mode in ['sawyer', 'franka']: lower_y += 0.56 # NOTE: robotics table lower = np.array([lower_x, lower_y, lower_z]) cnt = 0 rx = int(self.fluid_params['dim_x'] * 1) ry = int(self.fluid_params['dim_y'] * 1) rz = int(self.fluid_params['dim_z'] / 1) for x in range(rx): for y in range(ry): for z in range(rz): fluid_pos[cnt][:3] = lower + np.array([x, y, z]) * fluid_dis # + np.random.rand() * 0.01 cnt += 1 pyflex.set_positions(fluid_pos) print("stablize water!") for _ in range(100): pyflex.step() state_dic = self.get_state() water_state = state_dic['particle_pos'].reshape((-1, self.dim_position)) in_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) not_in_glass = 1 - in_glass not_total_num = np.sum(not_in_glass) while not_total_num > 0: max_height_now = np.max(water_state[:, 1]) fluid_dis = np.array([1.0 * fluid_radius, fluid_radius * 1, 1.0 * fluid_radius]) lower_x = self.glass_params['glass_x_center'] - self.glass_params['glass_dis_x'] / 4 lower_z = -self.glass_params['glass_dis_z'] / 4 lower_y = max_height_now lower = np.array([lower_x, lower_y, lower_z]) cnt = 0 dim_x = config['fluid']['dim_x'] dim_z = config['fluid']['dim_z'] for w_idx in range(len(water_state)): if not in_glass[w_idx]: water_state[w_idx][:3] = lower + fluid_dis * np.array([cnt % dim_x, cnt // (dim_x * dim_z), (cnt // dim_x) % dim_z]) cnt += 1 pyflex.set_positions(water_state) for _ in range(40): pyflex.step() state_dic = self.get_state() water_state = state_dic['particle_pos'].reshape((-1, self.dim_position)) in_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) not_in_glass = 1 - in_glass not_total_num = np.sum(not_in_glass) for _ in range(30): pyflex.step() else: # set to passed-in cached init states self.set_state(states) def _get_obs(self): ''' return the observation based on the current flex state. ''' if self.observation_mode == 'cam_rgb': return self.get_image(self.camera_width, self.camera_height) elif self.observation_mode == 'point_cloud': particle_pos = np.array(pyflex.get_positions()).reshape([-1, 4])[:, :3].flatten() pos = np.zeros(shape=self.particle_obs_dim, dtype=np.float) pos[:len(particle_pos)] = particle_pos return pos.flatten() elif 'key_point' in self.observation_mode: pos = np.empty(0, dtype=np.float) water_state = pyflex.get_positions().reshape([-1, 4]) in_poured_glass = self.in_glass(water_state, self.poured_glass_states, self.poured_border, self.poured_height) in_control_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) in_poured_glass = float(np.sum(in_poured_glass)) / len(water_state) in_control_glass = float(np.sum(in_control_glass)) / len(water_state) cup_state = np.array([self.glass_x, self.glass_y, self.glass_rotation, self.glass_dis_x, self.glass_dis_z, self.height, self.glass_distance + self.glass_x, self.poured_height, self.poured_glass_dis_x, self.poured_glass_dis_z, self._get_current_water_height(), in_poured_glass, in_control_glass]) return np.hstack([pos, cup_state]).flatten() else: raise NotImplementedError def compute_reward(self, obs=None, action=None, set_prev_reward=False): """ The reward is computed as the fraction of water in the poured glass. NOTE: the obs and action params are made here to be compatiable with the MultiTask env wrapper. """ state_dic = self.get_state() water_state = state_dic['particle_pos'].reshape((-1, self.dim_position)) water_num = len(water_state) in_poured_glass = self.in_glass(water_state, self.poured_glass_states, self.poured_border, self.poured_height) in_control_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) good_water = in_poured_glass * (1 - in_control_glass) good_water_num = np.sum(good_water) reward = float(good_water_num) / water_num return reward def _get_info(self): # Duplicate of the compute reward function! state_dic = self.get_state() water_state = state_dic['particle_pos'].reshape((-1, self.dim_position)) water_num = len(water_state) in_poured_glass = self.in_glass(water_state, self.poured_glass_states, self.poured_border, self.poured_height) in_control_glass = self.in_glass(water_state, self.glass_states, self.border, self.height) good_water = in_poured_glass * (1 - in_control_glass) good_water_num = np.sum(good_water) performance = float(good_water_num) / water_num performance_init = performance if self.performance_init is None else self.performance_init # Use the original performance return { 'normalized_performance': (performance - performance_init) / (self.reward_max - performance_init), 'performance': performance } def _step(self, action): ''' action: np.ndarray of dim 1x3, (x, y, theta). (x, y) specifies the floor center coordinate, and theta specifies the rotation. ''' # make action as increasement, clip its range move = action[:2] rotate = action[2] move = np.clip(move, a_min=self.action_space.low[0], a_max=self.action_space.high[0]) rotate = np.clip(rotate, a_min=self.action_space.low[2], a_max=self.action_space.high[2]) dx, dy, dtheta = move[0], move[1], rotate x, y, theta = self.glass_x + dx, self.glass_y + dy, self.glass_rotation + dtheta # check if the movement of the pouring glass collide with the poured glass. # the action only take effects if there is no collision new_states = self.rotate_glass(self.glass_states, x, y, theta) if not self.judge_glass_collide(new_states, theta) and self.above_floor(new_states, theta): self.glass_states = new_states self.glass_x, self.glass_y, self.glass_rotation = x, y, theta else: # invalid move, old state becomes the same as the current state self.glass_states[:, 3:6] = self.glass_states[:, :3].copy() self.glass_states[:, 10:] = self.glass_states[:, 6:10].copy() # pyflex takes a step to update the glass and the water fluid self.set_shape_states(self.glass_states, self.poured_glass_states) pyflex.step(render=True) self.inner_step += 1 def create_glass(self, glass_dis_x, glass_dis_z, height, border): """ the glass is a box, with each wall of it being a very thin box in Flex. each wall of the real box is represented by a box object in Flex with really small thickness (determined by the param border) dis_x: the length of the glass dis_z: the width of the glass height: the height of the glass. border: the thickness of the glass wall. the halfEdge determines the center point of each wall. Note: this is merely setting the length of each dimension of the wall, but not the actual position of them. That's why left and right walls have exactly the same params, and so do front and back walls. """ center = np.array([0., 0., 0.]) quat = quatFromAxisAngle([0, 0, -1.], 0.) boxes = [] # floor halfEdge = np.array([glass_dis_x / 2. + border, border / 2., glass_dis_z / 2. + border]) boxes.append([halfEdge, center, quat]) # left wall halfEdge = np.array([border / 2., (height) / 2., glass_dis_z / 2. + border]) boxes.append([halfEdge, center, quat]) # right wall boxes.append([halfEdge, center, quat]) # back wall halfEdge = np.array([(glass_dis_x) / 2., (height) / 2., border / 2.]) boxes.append([halfEdge, center, quat]) # front wall boxes.append([halfEdge, center, quat]) for i in range(len(boxes)): halfEdge = boxes[i][0] center = boxes[i][1] quat = boxes[i][2] pyflex.add_box(halfEdge, center, quat) return boxes def rotate_glass(self, prev_states, x, y, theta): ''' given the previous states of the glass, rotate it with angle theta. update the states of the 5 boxes that form the box: floor, left/right wall, back/front wall. rotate the glass, where the center point is the center of the floor or the top. state: 0-3: current (x, y, z) coordinate of the center point 3-6: previous (x, y, z) coordinate of the center point 6-10: current quat 10-14: previous quat ''' dis_x, dis_z = self.glass_dis_x, self.glass_dis_z quat_curr = quatFromAxisAngle([0, 0, -1.], theta) border = self.border # states of 5 walls states = np.zeros((5, self.dim_shape_state)) for i in range(5): states[i][3:6] = prev_states[i][:3] states[i][10:] = prev_states[i][6:10] x_center = x # rotation center is the floor center rotate_center = np.array([x_center, y, 0.]) if self.action_mode == 'rotation_bottom': # floor: center position does not change states[0, :3] = np.array([x_center, y, 0.]) # left wall: center must move right and move down. relative_coord = np.array([-(dis_x+ border) / 2., (self.height) / 2., 0.]) states[1, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) # right wall relative_coord = np.array([(dis_x+ border) / 2., (self.height) / 2., 0.]) states[2, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) # back wall relative_coord = np.array([0, (self.height) / 2., -(dis_z+ border) / 2.]) states[3, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) # front wall relative_coord = np.array([0, (self.height) / 2., (dis_z+ border) / 2.]) states[4, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) elif self.action_mode == 'rotation_top': # floor relative_coord = np.array([0, -self.height, 0.]) states[0, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) # left wall relative_coord = np.array([-(dis_x+ border) / 2., -self.height / 2., 0.]) states[1, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) # right wall relative_coord = np.array([(dis_x+ border) / 2., -self.height / 2., 0.]) states[2, :3] = rotate_rigid_object(center=rotate_center, axis=np.array([0, 0, -1]), angle=theta, relative=relative_coord) # back wall relative_coord = np.array([0, -self.height / 2., -(dis_z+ border) / 2.]) states[3, :3] = rotate_rigid_object(center=rotate_center, axis=
np.array([0, 0, -1])
numpy.array
import pandas as pd from matplotlib import pyplot as plt import PIL from PIL import ImageDraw import numpy as np from sklearn import preprocessing csv = pd.read_csv("output/results/results.csv") # print(result_csv) # result_csv.hist(column="06_MUCOSA", bins=50) # result_csv.hist(column="07_ADIPOSE", bins=50) # result_csv.hist(column="04_LYMPHO", bins=50) # result_csv.hist(column="03_COMPLEX", bins=50) # result_csv.hist(column="02_STROMA", bins=50) # result_csv.hist(column="01_TUMOR", bins=50) # result_csv.hist(column="uncertainty", bins=50) # plt.show() result_csv = csv.iloc[2145:] width = np.max(result_csv["patch_x"]) - np.min(result_csv["patch_x"]) width_ = width+width*0.3 height = np.max(result_csv["patch_y"]) - np.min(result_csv["patch_y"]) height_ = height+height*0.3 img = PIL.Image.new("RGB",(int(width_) , int(height_)), (255, 255, 255)) Drawer = ImageDraw.Draw(img) colors = ["green", "red", "blue", "purple", "yellow", "white", "black", "pink"] # min_max_scaler = preprocessing.MinMaxScaler() # scaled = (result_csv["uncertainty"]-result_csv["uncertainty"].min())/(result_csv["uncertainty"].max()-result_csv["uncertainty"].min()) for patch in range(len(result_csv)): # print(result_csv.iloc[patch]) x = result_csv.iloc[patch]["patch_x"] - np.min(result_csv["patch_x"]) y = result_csv.iloc[patch]["patch_y"] -
np.min(result_csv["patch_y"])
numpy.min
import cv2 import librosa import numpy as np from support.data_model import CLASSES FRAME_DIMS = [120, 160] MIN_LEFT_COLUMN = 1 MIN_TOP_ROW = 1 MAX_RIGHT_COLUMN = FRAME_DIMS[1] - 1 MAX_BOTTOM_ROW = FRAME_DIMS[0] - 1 MAX_DIMENSION = min(MAX_BOTTOM_ROW-MIN_TOP_ROW, MAX_RIGHT_COLUMN-MIN_LEFT_COLUMN) def extract_hdf5_frames(hdf5_frames): """ Extract frames from HDF5 dataset. This converts the frames to a list. :param hdf5_frames: original video frames :return [frame] list of frames """ frames = [] for i in range(len(hdf5_frames)): hdf5_frame = hdf5_frames[str(i)] assert len(hdf5_frame) == 120 frame_rows = [] for rnum in range(len(hdf5_frame)): row = hdf5_frame[rnum] frame_rows.append(row) frames.append(np.array(frame_rows)) return frames def extract_hdf5_crops(hdf5_crops): """ Extract crops from HDF5 dataset. This converts the crops to a list. :param hdf5_crops: stored crops :return [crop] list of crops """ crops = [] for i in range(len(hdf5_crops)): crops.append(hdf5_crops[str(i)][1]) return crops def center_position(low_bound, high_bound, low_limit, high_limit, space): """ Center bounds within available space. :param low_bound: current lower bound :param high_bound: current upper bound :param low_limit: minimum allowed bound :param high_limit: maximum allowed bound :param space: available space :return: centered low bound, centered high bound """ size = high_bound - low_bound extra = space - size if extra > 0: if low_bound == low_limit: return 0, size elif high_bound == high_limit: return space - size, space else: leading_pad = extra // 2 adjusted_low_bound = low_bound - leading_pad if adjusted_low_bound < low_limit: leading_pad = low_bound - low_limit adjusted_high_bound = low_bound - leading_pad + space if adjusted_high_bound > high_limit: leading_pad = space - size - (high_limit - high_bound) return leading_pad, leading_pad + size else: return 0, size def square_bounds(bounds, size): l, t, r, b = bounds if b-t != size or r-l != size: # pad or crop bounds to square size = min(size, MAX_DIMENSION) dc0, dc1 = center_position(l, r, MIN_LEFT_COLUMN, MAX_RIGHT_COLUMN, size) dr0, dr1 = center_position(t, b, MIN_TOP_ROW, MAX_BOTTOM_ROW, size) # adjust values for cropping frames t -= dr0 b = t + size l -= dc0 r = l + size assert t >= MIN_TOP_ROW and b <= MAX_BOTTOM_ROW and l >= MIN_LEFT_COLUMN and r <= MAX_RIGHT_COLUMN, \ f'square_cropped original bounds {bounds} with output bounds {(l, t, r, b)}' return (l, t, r, b) def normalize(x): x -= x.min() xmax = x.max() if xmax > 0: x = x.astype(np.float32) * (255 / xmax) return x def clip_and_scale(frame): """ Clip values in frame to [mean - 1.5*std, mean + 3*std], and scale to 0-255 range. :param frame: frame :return: clipped and scaled frame """ frame_min = np.min(frame) frame_max = np.max(frame) if frame_max > frame_min: frame_mean = np.mean(frame) frame_std = np.std(frame) use_min = max(frame_min, frame_mean - 3 * frame_std // 2) use_range = frame_max - use_min assert use_range > 0, f'clipping with use_min {use_min}, frame_max {frame_max}' frame = np.clip(frame, use_min, frame_max) - use_min return (frame / use_range) * 255 else: return frame def prune_frames(icrops, iframes, ibounds, imasses, clip_key, track_key, keepfn=lambda a, b: True): """ Drop useless frames, based on the cropped frame data. If a crop is either all zero, or the same bounds as the prior crop and with no significant change in pixel values, it's dropped from the list (along with the matching frame, bound, and mass). For all frames retained a count of non-zero pixels in the cropped frame data is calculated and returned. All returned values, except for the crops and frames, are in the form of numpy arrays. :param icrops: dataset crops :param iframes: original video frame :param ibounds: input bounds :param imasses: input masses :param clip_key: clip identifier :param track_key: track identifier :param keepfn: function (sum of pixels in frame, total difference in frames) to decide whether frame is kept :return: (crops, adjusts, bounds, masses, pixels) """ ocrops = [] oframes = [] obounds = [] omasses = [] opixels = [] zero_count = 0 static_count = 0 last_crop = None last_bound = None for crop, frame, bound, mass in zip(icrops, iframes, ibounds, imasses): if not np.any(crop): zero_count += 1 else: bound = np.array(bound) if last_crop is not None and np.array_equal(bound, last_bound) and not keepfn(np.sum(crop), np.sum(np.abs(crop - last_crop))): static_count += 1 else: last_crop = crop last_bound = bound ocrops.append(crop) oframes.append(frame) obounds.append(bound) omasses.append(mass) opixels.append((crop > 0).sum()) if zero_count > 0 or static_count > 0: print(f'{clip_key}-{track_key} dropped {zero_count} zero crops and {static_count} static crops leaving {len(ocrops)} frames') return ocrops, oframes, np.array(obounds), np.array(omasses), np.array(opixels) def stepped_resizer(resize_ratios): def calculate_resize_stepped(maxdim): return resize_ratios[maxdim] return calculate_resize_stepped def smooth_resizer(sample_dim): def calculate_smooth_resize(maxdim): ratio = maxdim / sample_dim if ratio < 0: return min(1, ratio * 1.5) else: return ratio return calculate_smooth_resize def convert_frames(iframes, background, ibounds, out_dim, resize_calculatorfn): """ Convert input crops and raw frames to standardized form for use with a model. The largest dimension of the crop is used to lookup a resize ratio. The portion of frame data used as input to the resizing is centered on the crop area (respecting the borders of the frame), and is first adjusted by subtracting the background and normalizing. :param iframes: original video frame :param background: background frame :param ibounds: input bounds :param out_dim: output size (same dimension for both rows and columns) :param resize_calculatorfn: function to calculate ratio for resizing images :return: (aframes, obounds, ratios) """ aframes = [] obounds = [] ratios = [] for frame, bound in zip(iframes, ibounds): af = frame - background af *= af > 0 l, t, r, b = bound maxdim = max(b-t, r-l) resize_ratio = resize_calculatorfn(maxdim) usedim = int(resize_ratio * out_dim) bnds = bound # dc0, dc1 = center_position(l, r, MIN_LEFT_COLUMN, MAX_RIGHT_COLUMN, usedim) # dr0, dr1 = center_position(t, b, MIN_TOP_ROW, MAX_BOTTOM_ROW, usedim) # expanded_crop = np.zeros((usedim,usedim), np.float32) # expanded_crop[dr0:dr1,dc0:dc1] = crop # crop = expanded_crop bnds = square_bounds(bnds, usedim) l, t, r, b = bnds af = clip_and_scale(af[t:b, l:r].astype(np.float32)) if not af.max() < 255.5: print(f'convert_frames invalid af.max()={af.max()} after initial clip_and_scale, maxdim={maxdim}, bounds={bound}') resize_inter = cv2.INTER_AREA if resize_ratio > 1 else cv2.INTER_CUBIC if resize_ratio < 1 else None if resize_inter is not None: resize_dims = (out_dim, out_dim) #crop = cv2.resize(crop, resize_dims, interpolation=resize_inter) af = cv2.resize(af, resize_dims, interpolation=resize_inter) afscaled = normalize(librosa.power_to_db(af, ref=np.max)) # crop = normalize(crop) # if not crop.max() < 255.5: # print(f'convert_frames invalid crop.max()={crop.max()} after normalize, maxdim={maxdim}, bounds={bounds}') af = normalize(af) if not af.max() < 255.5: print(f'convert_frames invalid af.max()={af.max()} after normalize, maxdim={maxdim}, bounds={bound}') # crop = np.round(crop).astype(np.uint8) # ocrops.append(crop) af =
np.round(af)
numpy.round
""" stscan ~~~~~~ Implements the "prospective" space-time permutation scan statistic algorithm. This was originally described in (1) in reference to disease outbreak detection. The algorithm is implemented in the software package (2). We apply it to crime predication as in (3). We look at events which have occurred in the past, and try to detect "clusters" which are existing up to the current time. To do this, a simple statistic which measures deviation was expected randomness is computed for every possible space/time "cylinder": events which occur is a circular disk in space, in an interval of time (always ending at the point of prediction). The space/ time cylinder with the largest statistic is deemed the most likely "cluster". Further clusters are computed by finding the next most likely cluster which does not intersect (in space only) the existing cluster. As detailed in (1) and (2) it is possible to use monte-carlo methods to estimate the p-value of the primary cluster, but for prediction purposes this is not necessary. As adapted from (3), we use the clusters in order to find a relative "risk" of crime. References ~~~~~~~~~~ 1. Kulldorff et al, "A Space–Time Permutation Scan Statistic for Disease Outbreak Detection", PLoS Med 2(3): e59, DOI:10.1371/journal.pmed.0020059 2. Kulldorff M. and Information Management Services, Inc. SaTScanTM v8.0: Software for the spatial and space-time scan statistics. http://www.satscan.org/, 2016. 3. Adepeju, <NAME>, "Novel evaluation metrics for sparse spatiotemporal point process hotspot predictions - a crime case study", International Journal of Geographical Information Science, 30:11, 2133-2154, DOI:10.1080/13658816.2016.1159684 """ from . import predictors from . import data import numpy as _np import collections as _collections import datetime as _datetime Cluster = _collections.namedtuple("Cluster", ["centre", "radius"]) def _possible_start_times(timestamps, max_interval_length, end_time): times = _np.datetime64(end_time) - timestamps zerotime = _np.timedelta64(0,"s") times = timestamps[(zerotime <= times) & (times <= max_interval_length)] if len(times) <= 1: return times deltas = times[1:] - times[:-1] return _np.hstack(([times[0]],times[1:][deltas > zerotime])) def _possible_space_clusters(points, max_radius=_np.inf): discs = [] for pt in points.T: distances = pt[:,None] - points distances = _np.sqrt(_np.sum(distances**2, axis=0)) distances.sort() discs.extend(Cluster(pt, r*1.00001) for r in distances if r <= max_radius) # Reduce number # Use a tuple here so we can use a set; this is _much_ faster allmasks = [tuple(_np.sum((points - cluster.centre[:,None])**2, axis=0) <= cluster.radius**2) for cluster in discs] masks = [] set_masks = set() for i,m in enumerate(allmasks): if m not in set_masks: masks.append(i) set_masks.add(m) return [discs[i] for i in masks] def grid_timed_points(timed_points, region, grid_size): """Return a new instance of :class:`TimedPoints` where each space coordinate is moved to the centre of each grid cell. :param timed_points: Input data. :param region: A `data.RectangularRegion` instance giving the region to grid to. Only the x,y offset is used. :param grid_size: The width and height of each grid cell. """ offset = _np.array([region.xmin, region.ymin]) newcoords = _np.floor((timed_points.coords - offset[:,None]) / grid_size) + 0.5 newcoords = newcoords * grid_size + offset[:,None] return data.TimedPoints(timed_points.timestamps, newcoords) def bin_timestamps(timed_points, offset, bin_length): """Return a new instance of :class:`TimedPoints` where each timestamped is adjusted. Any timestamp between `offset` and `offset + bin_length` is mapped to `offset`; timestamps between `offset + bin_length` and `offset + 2 * bin_length` are mapped to `offset + bin_length`, and so forth. :param timed_points: Input data. :param offset: A datetime-like object which is the start of the binning. :param bin_length: A timedelta-like object which is the length of each bin. """ offset = _np.datetime64(offset) bin_length = _np.timedelta64(bin_length) new_times = _np.floor((timed_points.timestamps - offset) / bin_length) new_times = offset + new_times * bin_length return data.TimedPoints(new_times, timed_points.coords) class _STSTrainerBase(predictors.DataTrainer): """Internal class, abstracting out some common features.""" def __init__(self): self.geographic_population_limit = 0.5 self.geographic_radius_limit = 3000 self.time_population_limit = 0.5 self.time_max_interval = _np.timedelta64(12, "W") self.data = None self.region = None @property def region(self): """The :class:`data.RectangularRegion` which contains the data; used by the output to generate grids etc. If set to `None` then will automatically be the bounding-box of the input data. """ if self._region is None: self.region = None return self._region @region.setter def region(self, value): if value is None and self.data is not None: value = self.data.bounding_box self._region = value @property def geographic_population_limit(self): """No space disc can contain more than this fraction of the total number of events. """ return self._geo_pop_limit @geographic_population_limit.setter def geographic_population_limit(self, value): if value < 0 or value > 1: raise ValueError("Should be fraction of total population, so value between 0 and 1") self._geo_pop_limit = value @property def geographic_radius_limit(self): """The maximum radius of the space discs.""" return self._geo_max_radius @geographic_radius_limit.setter def geographic_radius_limit(self, value): self._geo_max_radius = value @property def time_population_limit(self): """No time interval can contain more than this fraction of the total number of events.start_times """ return self._time_pop_limit @time_population_limit.setter def time_population_limit(self, value): if value < 0 or value > 1: raise ValueError("Should be fraction of total population, so value between 0 and 1") self._time_pop_limit = value @property def time_max_interval(self): """The maximum length of a time interval.""" return self._time_max_len @time_max_interval.setter def time_max_interval(self, value): self._time_max_len = _np.timedelta64(value) def _copy_settings(self, other): other.geographic_population_limit = self.geographic_population_limit other.geographic_radius_limit = self.geographic_radius_limit other.time_population_limit = self.time_population_limit other.time_max_interval = self.time_max_interval def bin_timestamps(self, offset, bin_length): """Returns a new instance with the underlying timestamped data adjusted. Any timestamp between `offset` and `offset + bin_length` is mapped to `offset`; timestamps between `offset + bin_length` and `offset + 2 * bin_length` are mapped to `offset + bin_length`, and so forth. :param offset: A datetime-like object which is the start of the binning. :param bin_length: A timedelta-like object which is the length of each bin. """ new = self.clone() new.data = bin_timestamps(self.data, offset, bin_length) return new def grid_coords(self, region, grid_size): """Returns a new instance with the underlying coordinate data adjusted to always be the centre point of grid cells. :param region: A `data.RectangularRegion` instance giving the region to grid to. Only the x,y offset is used. :param grid_size: The width and height of each grid cell. """ new = self.clone() new.data = grid_timed_points(self.data, region, grid_size) return new @staticmethod def _statistic(actual, expected, total): """Calculate the log likelihood""" stat = actual * (_np.log(actual) - _np.log(expected)) stat += (total - actual) * (_np.log(total - actual) - _np.log(total - expected)) return stat def maximise_clusters(self, clusters, time=None): """The prediction method will return the smallest clusters (subject to each cluster being centred on the coordinates of an event). This method will enlarge each cluster to the maxmimum radius it can be without including further events. :param clusters: List-like object of :class:`Cluster` instances. :param time: Only data up to and including this time is used when computing clusters. If `None` then use the last timestamp of the data. :return: Array of clusters with larger radii. """ events, time = self._events_time(time) out = [] for disc in clusters: distances = _np.sum((events.coords - disc.centre[:,None])**2, axis=0) rr = disc.radius ** 2 new_radius = _np.sqrt(min( dd for dd in distances if dd > rr )) out.append(Cluster(disc.centre, new_radius)) return out def to_satscan(self, filename): """Writes the training data to two SaTScan compatible files. Does *not* currently write settings, so these will need to be entered manually. :param filename: Saves files "filename.geo" and "filename.cas" containing the geometry and "cases" repsectively. """ def timeformatter(t): t = _np.datetime64(t, "s") return str(t) unique_coords = list(set( (x,y) for x,y in self.data.coords.T )) with open(filename + ".geo", "w") as geofile: for i, (x,y) in enumerate(unique_coords): print("{}\t{}\t{}".format(i+1, x, y), file=geofile) unique_times = list(set( t for t in self.data.timestamps )) with open(filename + ".cas", "w") as casefile: for i, (t) in enumerate(unique_times): pts = self.data.coords.T[self.data.timestamps == t] pts = [ (x,y) for x,y in pts ] import collections c = collections.Counter(pts) for pt in c: index = unique_coords.index(pt) print("{}\t{}\t{}".format(index+1, c[pt], timeformatter(t)), file=casefile) def _events_time(self, time=None): """If time is `None` set to last event in data. Return data clamped to time range, and timestamp actually used.""" events = self.data.events_before(time) if time is None: time = self.data.timestamps[-1] return events, time from . import stscan2 as _stscan2 class STSTrainer(_STSTrainerBase): """From past events, produce an instance of :class:`STSResult` which stores details of the found clusters. Contains a variety of properties which may be changed to affect the prediction behaviour. This version uses numpy code, and is far faster. As the *exact order* we consider regions in is not stable, the clusters found will be slightly different. """ def __init__(self): super().__init__() def clone(self): """Return a new instance which has all the underlying settings but with no data. """ new = STSTrainer() self._copy_settings(new) return new _TIME_UNIT = _np.timedelta64(1, "ms") def to_scanner(self, time=None): """Transform the input data into the "abstract representation". For testing. :param time: Timestamp of the prediction point. Only data up to and including this time is used when computing clusters. If `None` then use the last timestamp of the data. :return: An instance of :class:`STScanNumpy`. """ events, time = self._events_time(time) times_into_past = (time - events.timestamps) / self._TIME_UNIT scanner = _stscan2.STScanNumpy(events.coords, times_into_past) self._copy_settings(scanner) scanner.time_max_interval = self.time_max_interval / self._TIME_UNIT return scanner, time def predict(self, time=None, max_clusters=None): """Make a prediction. :param time: Timestamp of the prediction point. Only data up to and including this time is used when computing clusters. If `None` then use the last timestamp of the data. :param max_clusters: If not `None` then return at most this many clusters. :return: A instance of :class:`STSResult` giving the found clusters. """ scanner, time = self.to_scanner(time) clusters = [] time_regions = [] stats = [] for cluster in scanner.find_all_clusters(): clusters.append(Cluster(cluster.centre, cluster.radius)) start_time = time - cluster.time * self._TIME_UNIT time_regions.append((start_time, time)) stats.append(cluster.statistic) max_clusters = self.maximise_clusters(clusters, time) return STSResult(self.region, clusters, max_clusters, time_ranges=time_regions, statistics=stats) class STSTrainerSlow(_STSTrainerBase): """From past events, produce an instance of :class:`STSResult` which stores details of the found clusters. Contains a variety of properties which may be changed to affect the prediction behaviour. """ def __init__(self): super().__init__() def clone(self): """Return a new instance which has all the underlying settings but with no data. """ new = STSTrainerSlow() self._copy_settings(new) return new def _possible_start_times(self, end_time, timestamps): """A generator returing all possible start times""" N = len(timestamps) times = _np.unique(timestamps) for st in times: events_in_time = (timestamps >= st) & (timestamps <= end_time) count = _np.sum(events_in_time) if count <= self.time_population_limit * N: yield st, count, events_in_time def _disc_generator(self, discs, events): """A generator which yields triples `(disc, count, mask)` where `disc` is a :class:`Cluster` giving the space disk, `count` is the number of events in this disc, and `mask` is the boolean mask of which events are in the disc. :param discs: An iterable giving the discs """ for disc in discs: space_counts = ( _np.sum((events.coords - disc.centre[:,None])**2, axis=0) <= disc.radius ** 2 ) count = _np.sum(space_counts) yield disc, count, space_counts def _possible_discs(self, events): """Yield all possible discs which satisfy our limits""" all_discs = _possible_space_clusters(events.coords, self.geographic_radius_limit) N = events.number_data_points for disc, count, space_counts in self._disc_generator(all_discs, events): if count <= N * self.geographic_population_limit: yield disc, count, space_counts def _time_regions(self, disc_times, events, end_time, N, times_lookup): times = _np.unique(disc_times) for start_time in times: if end_time - start_time > self.time_max_interval: continue total_count = times_lookup.get(start_time) if total_count is None or total_count > self.time_population_limit * N: continue count = _np.sum(disc_times >= start_time) yield start_time, total_count, count def _scan_all(self, end_time, events, discs_generator, disc_output=None, timestamps=None): if timestamps is None: timestamps = events.timestamps best = (None, -_np.inf, None) N = events.number_data_points times_lookup = { time:count for time, count, _ in self._possible_start_times(end_time, timestamps) } for disc, space_count, space_mask in discs_generator: if disc_output is not None: disc_output.append(disc) for start, time_count, actual in self._time_regions( events.timestamps[space_mask], events, end_time, N, times_lookup): expected = time_count * space_count / N if actual > expected and actual > 1: stat = self._statistic(actual, expected, N) if stat > best[1]: best = (disc, stat, start) return best def _remove_intersecting(self, all_discs, disc): return [ d for d in all_discs if _np.sum((d.centre - disc.centre)**2) > (d.radius + disc.radius)**2 ] def predict(self, time=None, max_clusters=None): """Make a prediction. :param time: Timestamp of the prediction point. Only data up to and including this time is used when computing clusters. If `None` then use the last timestamp of the data. :param max_clusters: If not `None` then return at most this many clusters. :return: A instance of :class:`STSResult` giving the found clusters. """ events, time = self._events_time(time) all_discs = [] clusters = [] best_disc, stat, start_time = self._scan_all(time, events, self._possible_discs(events), all_discs) while best_disc is not None: clusters.append((best_disc, stat, start_time)) all_discs = self._remove_intersecting(all_discs, best_disc) if len(all_discs) == 0: break if max_clusters is not None and len(clusters) >= max_clusters: break best_disc, stat, start_time = self._scan_all(time, events, self._disc_generator(all_discs, events)) clusters, stats, start_times = zip(*clusters) time_regions = [(s,time) for s in start_times] max_clusters = self.maximise_clusters(clusters, time) return STSResult(self.region, clusters, max_clusters, time_ranges=time_regions, statistics=stats) def monte_carlo_simulate(self, time=None, runs=999): """Perform a monte carlo simulation for the purposes of estimating p-values. We repeatedly shuffle the timestamps of the data and then find the most likely cluster for each new dataset. This method is more efficient than calling :method:`predict` repeatedly with shuffled data. :param time: Optionally restrict the data to before this time, as for :method:`predict` :param runs: The number of samples to take, by default 999 :return: An ordered list of statistics. """ events, time = self._events_time(time) all_discs = [] best_disc, stat, start_time = self._scan_all(time, events, self._possible_discs(events), all_discs) timestamps = _np.array(events.timestamps) stats = [] for _ in range(runs): _np.random.shuffle(timestamps) _,stat,_ = self._scan_all(time, events, self._disc_generator(all_discs, events), timestamps = timestamps) stats.append(stat) stats = _np.asarray(stats) stats.sort() return stats class STSContinuousPrediction(predictors.ContinuousPrediction): """A :class:`predictors.ContinuousPrediction` which uses the computed clusters and a user-defined weight to generate a continuous "risk" prediction. Set the :attr:`weight` to change weight. It is not clear that the generated "risk" has much to do with reality! We, by default, use enlarged cluster sizes (with removes the problem of clusters with zero radius!) which can lead to overlapping clusters. :param clusters: List of computed clusters. """ def __init__(self, clusters): super().__init__() self.weight = self.quatric_weight self.clusters = clusters pass @staticmethod def quatric_weight(t): return (1 - t * t) ** 2 @property def weight(self): """A function-like object which when called with a float between 0 and 1 (interpreted as the distance to the edge of a unit disc) returns a float between 0 and 1, the "intensity". Default is the quatric function :math:`t \mapsto (1-t^2)^2`. """ return self._weight @weight.setter def weight(self, value): self._weight = value def _vectorised_weight(self, values): """Allows values to be a one-dimensional array. Returns 0 is the value is not in the interval [0,1). """ values = _np.asarray(values) allowed = (values >= 0) & (values < 1) if len(values.shape) > 0: return _np.asarray([self.weight(x) if a else 0.0 for x, a in zip(values,allowed)]) return self.weight(values) if allowed else 0.0 def risk(self, x, y): """The relative "risk", varying between 0 and `n`, the number of clusters detected. """ pt = _np.array([x,y]) if len(pt.shape) == 1: pt = pt[:,None] risk = _np.zeros(pt.shape[1]) for n, cluster in enumerate(self.clusters): dist = ( _np.sqrt(_np.sum((pt - _np.asarray(cluster.centre)[:,None])**2, axis=0)) / cluster.radius ) weights = self._vectorised_weight(dist) risk += (len(self.clusters) - n - 1 + weights) * (weights > 0) return risk class STSResult(): """Stores the computed clusters from :class:`STSTrainer`. These can be used to produce gridded or continuous "risk" predictions. :param region: The rectangular region enclosing the data. :param clusters: A list of :class:`Cluster` instances describing the found clusters. :param max_clusters: A list of :class:`Cluster` instances describing the clusters with radii enlarged to the maximal extent. :param time_ranges: The time range associated with each cluster. :param statistics: The value of the log likelihood for each cluster. :param pvalues: (Optionally) the estimated p-values. """ def __init__(self, region, clusters, max_clusters=None, time_ranges=None, statistics=None, pvalues=None): self.region = region self.clusters = clusters if max_clusters is None: max_clusters = clusters self.max_clusters = max_clusters self.time_ranges = time_ranges self.statistics = statistics self.pvalues = pvalues pass def _add_cluster(self, cluster, risk_matrix, grid_size, base_risk): """Adds risk in base_risk + (0,1]""" cells = [] for y in range(risk_matrix.shape[0]): for x in range(risk_matrix.shape[1]): xcoord = (x + 0.5) * grid_size + self.region.xmin ycoord = (y + 0.5) * grid_size + self.region.ymin distance = _np.sqrt((xcoord - cluster.centre[0]) ** 2 + (ycoord - cluster.centre[1]) ** 2) if distance <= cluster.radius: cells.append((x,y,distance)) cells.sort(key = lambda triple : triple[2], reverse=True) for i, (x,y,d) in enumerate(cells): risk_matrix[y][x] = base_risk + (i+1) / len(cells) def grid_prediction(self, grid_size, use_maximal_clusters=False): """Using the grid size, construct a grid from the region and produce an instance of :class:`predictors.GridPredictionArray` which contains the relative "risk". We treat each cluster in order, so that the primary cluster has higher risk than the secondary cluster, and so on. Within each cluster, cells near the centre have a higher risk than cells near the boundary. A grid cell is considered to be "in" the cluster is the centre of the grid is inside the cluster. :param grid_size: The size of resulting grid. :param use_maximal_clusters: If `True` then use the largest possible radii for each cluster. """ xs, ys = self.region.grid_size(grid_size) risk_matrix =
_np.zeros((ys, xs))
numpy.zeros
import numpy as np import warnings def evaluate(env, agent, writer, all_rewards, all_deviations_mean, all_deviations_std, over_episodes=100): done, ep_reward, values, values_std, action_values, entropies, qval_delta = False, [], [], [], [], [], [] state = env.reset() while not done: action, value, entropy = agent.policy(state, eval=True) state, reward, done, _ = env.step(action) ep_reward.append(reward) values.append(value.numpy().mean()) values_std.append(value.numpy().std()) if len(value.view(-1)) > action: action_values.append(value.view(-1)[action].item()) else: action_values.append(np.nan) entropies.append(entropy) # calculate target discounted reward cum_reward, cr = np.zeros_like(ep_reward), 0 for i in reversed(range(len(ep_reward))): cr = cr + ep_reward[i] cum_reward[i] = cr cr *= agent.discount for i, qval in enumerate(action_values): # compare action value with real outcome qval_delta.append(qval - cum_reward[i]) all_rewards.append(sum(ep_reward)) all_deviations_mean.append(np.mean(qval_delta)) all_deviations_std.append(np.std(qval_delta)) with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) writer.add_scalar("eval/Reward", sum(ep_reward), len(all_rewards)) writer.add_scalar("eval/Reward (SMA)", np.nanmean(all_rewards[-over_episodes:]), len(all_rewards)) writer.add_scalar("eval/Action-Value deviation (mean)", np.nanmean(qval_delta), len(all_rewards)) writer.add_scalar("eval/Action-Value deviation (mean) (SMA)", np.nanmean(all_deviations_mean[-over_episodes:]), len(all_rewards)) writer.add_scalar("eval/Action-Value deviation (std)", np.nanstd(qval_delta), len(all_rewards)) writer.add_scalar("eval/Action-Value deviation (std) (SMA)", np.nanmean(all_deviations_std[-over_episodes:]), len(all_rewards)) writer.add_scalar("eval/Max-Action-Value (mean)", np.nanmean(action_values), len(all_rewards)) writer.add_scalar("eval/Max-Action-Value (std)", np.nanstd(action_values), len(all_rewards)) writer.add_scalar("eval/Values", np.nanmean(values), len(all_rewards)) writer.add_scalar("eval/Action-Values std", np.nanmean(values_std), len(all_rewards)) writer.add_scalar("eval/Entropy",
np.nanmean(entropies)
numpy.nanmean
""" Tests for Univariate Hawkes processes """ import unittest as ut import mock import numpy as np import os from hawkeslib.model.uv_exp import UnivariateExpHawkesProcess as UVHP class UVExpSamplerTests(ut.TestCase): T = 10000 def setUp(self): self.uv = UVHP() self.uv.set_params(.5, .2, 10.) def test_branching_correct_number_samples(self): smp = self.uv.sample(self.T, method="branching") EN = .5 * self.T / (1 - self.uv._alpha) N = float(len(smp)) assert abs(N - EN) / N < .05 @mock.patch('hawkeslib.model.uv_exp.uv_exp_sample_branching') def test_branching_calls_correct_cython(self, mock_method): smp = self.uv.sample(self.T, method="branching") mock_method.assert_called_with(self.T, .5, .2, 10.) def test_ogata_correct_number_samples(self): smp = self.uv.sample(self.T, method="ogata") EN = .5 * self.T / (1 - self.uv._alpha) N = float(len(smp)) assert abs(N - EN) / N < .05 @mock.patch('hawkeslib.model.uv_exp.uv_exp_sample_ogata') def test_ogata_calls_correct_cython(self, mock_method): smp = self.uv.sample(self.T, method="ogata") mock_method.assert_called_with(self.T, .5, .2, 10.) class UVExpSetterGetterTests(ut.TestCase): def test_params_start_none(self): uv = UVHP() self.assertIsNone(uv._alpha) self.assertIsNone(uv._mu) self.assertIsNone(uv._theta) def test_getter(self): uv = UVHP() uv._mu, uv._alpha, uv._theta = .5, .4, .3 pars1 = np.array(uv.get_params()) pars2 = np.array([.5, .4, .3]) np.testing.assert_allclose(pars1, pars2) def test_setter(self): uv = UVHP() uv.set_params(.5, .4, .2) pars1 = np.array(uv.get_params()) pars2 =
np.array([.5, .4, .2])
numpy.array
# Digital Signal Processing - Lab 1 - Part 4 (BONUS) # <NAME> - 03117037 # <NAME> - 03117165 import numpy as np import matplotlib.pyplot as plt import scipy as sp import librosa import sounddevice as sd plt.close('all') counter = 0 # Part 4 (Bonus) #4.1 Open .wav file of salsa music signal 1 salsa1, fs = librosa.load('salsa_excerpt1.mp3') sd.play(salsa1, fs) #kommatara :) Ts = 1/fs # fs = 22050Hz sampling frequency segment = salsa1[10000:75536] #segment of 2^16=65536 samples t = np.arange(0,np.size(segment)*Ts, Ts) #time index counter = counter+1 plt.figure(counter) plt.plot(t,segment, 'b', label = 'Samples L=2^16') plt.xlabel('Time [sec]') plt.ylabel('Amplitude') plt.title('Segment of "salsa_excerpt1.mp3"') plt.legend() #4.2 Discrete Wavelet Transform from pywt import wavedec coeffs = wavedec(segment, 'db1', level=7)/np.sqrt(2) ya7, yd7, yd6, yd5, yd4, yd3, yd2, yd1 = coeffs #4.3 Envelope Detection #(a) Absolute Value absolutes = np.abs(coeffs) za7 = absolutes[0] zd7 = absolutes[1] zd6 = absolutes[2] zd5 = absolutes[3] zd4 = absolutes[4] zd3 = absolutes[5] zd2 = absolutes[6] zd1 = absolutes[7] #(b) Lowpass Filter a0 = 0.006 a = np.zeros(7) for i in range(1,8): a[i-1] = a0*(2**(i+1)) def envelope(signal, absolute, a): x = np.zeros(np.size(signal)) x[0] = a*absolute[0] for i in range(1,np.size(x)): x[i] = (1-a)*x[i-1] + a*absolute[i] x = x - np.mean(x) return x xa7 = envelope(ya7, za7, a[6]) xd7 = envelope(yd7, zd7, a[6]) xd6 = envelope(yd6, zd6, a[5]) xd5 = envelope(yd5, zd5, a[4]) xd4 = envelope(yd4, zd4, a[3]) xd3 = envelope(yd3, zd3, a[2]) xd2 = envelope(yd2, zd2, a[1]) xd1 = envelope(yd1, zd1, a[0]) n = np.arange(0,np.size(yd3),1) #number of samples counter=counter+1 plt.figure(counter) plt.plot(n, yd3, 'b', label = 'Detal yd3[n]') plt.plot(n, xd3, 'r', label = 'Envelope xd3[n]') plt.xlabel('Samples (2^13 = 8192)') plt.ylabel('Amplitude') plt.title('Envelope Detection of Detail yd3') plt.show() plt.legend() counter=counter+1 plt.figure(counter) n = np.arange(0,np.size(yd6),1) #number of samples plt.plot(n, yd6, 'b', label = 'Detail yd6[n]') plt.plot(n, xd6, 'r', label = 'Envelope xd6[n]') plt.xlabel('Samples (2^10 = 1024)') plt.ylabel('Amplitude') plt.title('Envelope Detection of Detail yd6') plt.show() plt.legend() #4.4 Sum of Envelopes and Autocorrelation nvalues = np.arange(0, 32768, 1) n = np.arange(0, 32768, 1) xd1 = np.interp(nvalues, n, xd1) n = np.arange(0, 16384, 1) xd2 = np.interp(nvalues, n, xd2) n = np.arange(0, 8192, 1) xd3 = np.interp(nvalues, n, xd3) n = np.arange(0, 4096, 1) xd4 = np.interp(nvalues, n, xd4) n = np.arange(0, 2048, 1) xd5 = np.interp(nvalues, n, xd5) n = np.arange(0, 1024, 1) xd6 = np.interp(nvalues, n, xd6) n = np.arange(0, 512, 1) xd7 = np.interp(nvalues, n, xd7) n = np.arange(0, 512, 1) xa7 = np.interp(nvalues, n, xa7) xsum = xd1+xd2+xd3+xd4+xd5+xd6+xd7+xa7 autocorrelation = np.correlate(xsum,xsum, 'full')[len(xsum)-1:] autocorrelation = sp.ndimage.filters.gaussian_filter1d(autocorrelation,150) counter = counter+1 plt.figure(counter) t = np.arange(Ts,np.size(autocorrelation)*Ts*2, 2*Ts) #time index plt.plot(t, autocorrelation) plt.xlabel('Time [sec]') plt.title('Autocorrelation of Salsa Excerpt 1') #Find the maximums of Autocorrelation maximums = np.array(sp.signal.argrelextrema(autocorrelation, np.greater)) #Keep every two of them - Maximums of great amplitude will show as the beat maximums = maximums[0,::2] #Calculate number of samples between every two peaks of autocorrelation samplesbetween = np.zeros(np.size(maximums)) for i in range(1,np.size(maximums)): samplesbetween[i] = maximums[i]-maximums[i-1] samplesbetween = samplesbetween[1:(np.size(samplesbetween))] #Find the mean number of samples between every two peaks of autocorrelation samplebeat = np.mean(samplesbetween) print('Salsa1: Autocorrelation peaks every %i samples.' %samplebeat) #Convert to time timebeat = samplebeat*2*Ts*1000 #msec print('Salsa1: Autocorrelation peaks approximately every %d msec.' %timebeat) #Calculate BPM os salsa1 bpm_rate = 60*(1000/(timebeat)) print('Salsa1: Beats Per Minute Rate = %d bpm.' %bpm_rate) #Visualise BPM of salsa1 with help of plotting counter = counter+1 plt.figure(counter) plt.plot(60/t,autocorrelation) plt.xlim(20, 180) plt.xlabel('Beats Per Minute (BPM)') plt.ylabel('Autocorrelation') plt.title('BPM of Salsa Excerpt 1') #################### SALSA 2 ##################### #4.1 Open .wav file of salsa music signal 2 salsa2, fs = librosa.load('salsa_excerpt2.mp3') #sd.play(salsa2, fs) Ts = 1/fs # fs = 22050Hz sampling frequency segment = salsa2[60000:125536] #segment of 2^16=65536 samples t = np.arange(0,np.size(segment)*Ts, Ts) #time index counter = counter+1 plt.figure(counter) plt.plot(t,segment, 'b', label = 'Samples L=2^16') plt.xlabel('Time [sec]') plt.ylabel('Amplitude') plt.title('Segment of "salsa_excerpt2.mp3"') plt.legend() #4.2 Discrete Wavelet Transform from pywt import wavedec coeffs = wavedec(segment, 'db1', level=7)/np.sqrt(2) ya7, yd7, yd6, yd5, yd4, yd3, yd2, yd1 = coeffs #4.3 Envelope Detection #(a) Absolute Value absolutes = np.abs(coeffs) za7 = absolutes[0] zd7 = absolutes[1] zd6 = absolutes[2] zd5 = absolutes[3] zd4 = absolutes[4] zd3 = absolutes[5] zd2 = absolutes[6] zd1 = absolutes[7] #(b) Lowpass Filter a0 = 0.003 a = np.zeros(7) for i in range(1,8): a[i-1] = a0*(2**(i+1)) def envelope(signal, absolute, a): x = np.zeros(np.size(signal)) x[0] = a*absolute[0] for i in range(1,np.size(x)): x[i] = (1-a)*x[i-1] + a*absolute[i] x = x - np.mean(x) return x xa7 = envelope(ya7, za7, a[6]) xd7 = envelope(yd7, zd7, a[6]) xd6 = envelope(yd6, zd6, a[5]) xd5 = envelope(yd5, zd5, a[4]) xd4 = envelope(yd4, zd4, a[3]) xd3 = envelope(yd3, zd3, a[2]) xd2 = envelope(yd2, zd2, a[1]) xd1 = envelope(yd1, zd1, a[0]) n = np.arange(0,np.size(yd3),1) #number of samples counter=counter+1 plt.figure(counter) plt.plot(n, yd3, 'b', label = 'Detal yd3[n]') plt.plot(n, xd3, 'r', label = 'Envelope xd3[n]') plt.xlabel('Samples (2^13 = 8192)') plt.ylabel('Amplitude') plt.title('Envelope Detection of Detail yd3') plt.show() plt.legend() counter=counter+1 plt.figure(counter) n = np.arange(0,np.size(yd6),1) #number of samples plt.plot(n, yd6, 'b', label = 'Detail yd6[n]') plt.plot(n, xd6, 'r', label = 'Envelope xd6[n]') plt.xlabel('Samples (2^10 = 1024)') plt.ylabel('Amplitude') plt.title('Envelope Detection of Detail yd6') plt.show() plt.legend() #4.4 Sum of Envelopes and Autocorrelation nvalues = np.arange(0, 32768, 1) n = np.arange(0, 32768, 1) xd1 = np.interp(nvalues, n, xd1) n = np.arange(0, 16384, 1) xd2 = np.interp(nvalues, n, xd2) n = np.arange(0, 8192, 1) xd3 = np.interp(nvalues, n, xd3) n = np.arange(0, 4096, 1) xd4 = np.interp(nvalues, n, xd4) n = np.arange(0, 2048, 1) xd5 = np.interp(nvalues, n, xd5) n = np.arange(0, 1024, 1) xd6 = np.interp(nvalues, n, xd6) n = np.arange(0, 512, 1) xd7 = np.interp(nvalues, n, xd7) n = np.arange(0, 512, 1) xa7 = np.interp(nvalues, n, xa7) xsum = xd1+xd2+xd3+xd4+xd5+xd6+xd7+xa7 autocorrelation = np.correlate(xsum,xsum, 'full')[len(xsum)-1:] autocorrelation = sp.ndimage.filters.gaussian_filter1d(autocorrelation,130) counter = counter+1 plt.figure(counter) t = np.arange(Ts,np.size(autocorrelation)*Ts*2, 2*Ts) #time index plt.plot(t, autocorrelation) plt.xlabel('Time [sec]') plt.title('Autocorrelation of Salsa Excerpt 2') #Find the maximums of Autocorrelation maximums = np.array(sp.signal.argrelextrema(autocorrelation, np.greater)) #Keep every two of them - Maximums of great amplitude will show as the beat maximums = maximums[0,::2] #Calculate number of samples between every two peaks of autocorrelation samplesbetween = np.zeros(np.size(maximums)) for i in range(1,np.size(maximums)): samplesbetween[i] = maximums[i]-maximums[i-1] samplesbetween = samplesbetween[1:(np.size(samplesbetween))] #Find the mean number of samples between every two peaks of autocorrelation samplebeat = np.mean(samplesbetween) print('Salsa2: Autocorrelation peaks every %i samples.' %samplebeat) #Convert to time timebeat = samplebeat*2*Ts*1000 #msec print('Salsa2: Autocorrelation peaks approximately every %d msec.' %timebeat) #Calculate BPM os salsa1 bpm_rate = 60*(1000/(timebeat)) print('Salsa2: Beats Per Minute Rate = %d bpm.' %bpm_rate) #Visualise BPM of salsa1 with help of plotting counter = counter+1 plt.figure(counter) plt.plot(60/t,autocorrelation) plt.xlim(20, 180) plt.xlabel('Beats Per Minute (BPM)') plt.ylabel('Autocorrelation') plt.title('BPM of Salsa Excerpt 2') #################### RUMBA ##################### #4.1 Open .wav file of rumba music signal rumba, fs = librosa.load('rumba_excerpt.mp3') #sd.play(rumba,fs) Ts = 1/fs # fs = 22050Hz sampling frequency segment = rumba[350000:415536] #segment of 2^16=65536 samples t = np.arange(0,np.size(segment)*Ts, Ts) #time index counter = counter+1 plt.figure(counter) plt.plot(t,segment, 'b', label = 'Samples L=2^16') plt.xlabel('Time [sec]') plt.ylabel('Amplitude') plt.title('Segment of "rumba_excerpt.mp3"') plt.legend() #4.2 Discrete Wavelet Transform from pywt import wavedec coeffs = wavedec(segment, 'db1', level=7)/np.sqrt(2) ya7, yd7, yd6, yd5, yd4, yd3, yd2, yd1 = coeffs #4.3 Envelope Detection #(a) Absolute Value absolutes = np.abs(coeffs) za7 = absolutes[0] zd7 = absolutes[1] zd6 = absolutes[2] zd5 = absolutes[3] zd4 = absolutes[4] zd3 = absolutes[5] zd2 = absolutes[6] zd1 = absolutes[7] #(b) Lowpass Filter a0 = 0.0005 a = np.zeros(7) for i in range(1,8): a[i-1] = a0*(2**(i+1)) def envelope(signal, absolute, a): x = np.zeros(np.size(signal)) x[0] = a*absolute[0] for i in range(1,np.size(x)): x[i] = (1-a)*x[i-1] + a*absolute[i] x = x - np.mean(x) return x xa7 = envelope(ya7, za7, a[6]) xd7 = envelope(yd7, zd7, a[6]) xd6 = envelope(yd6, zd6, a[5]) xd5 = envelope(yd5, zd5, a[4]) xd4 = envelope(yd4, zd4, a[3]) xd3 = envelope(yd3, zd3, a[2]) xd2 = envelope(yd2, zd2, a[1]) xd1 = envelope(yd1, zd1, a[0]) n = np.arange(0,np.size(yd3),1) #number of samples counter=counter+1 plt.figure(counter) plt.plot(n, yd3, 'b', label = 'Detal yd3[n]') plt.plot(n, xd3, 'r', label = 'Envelope xd3[n]') plt.xlabel('Samples (2^13 = 8192)') plt.ylabel('Amplitude') plt.title('Envelope Detection of Detail yd3') plt.show() plt.legend() counter=counter+1 plt.figure(counter) n = np.arange(0,np.size(yd6),1) #number of samples plt.plot(n, yd6, 'b', label = 'Detail yd6[n]') plt.plot(n, xd6, 'r', label = 'Envelope xd6[n]') plt.xlabel('Samples (2^10 = 1024)') plt.ylabel('Amplitude') plt.title('Envelope Detection of Detail yd6') plt.show() plt.legend() #4.4 Sum of Envelopes and Autocorrelation nvalues = np.arange(0, 32768, 1) n = np.arange(0, 32768, 1) xd1 = np.interp(nvalues, n, xd1) n = np.arange(0, 16384, 1) xd2 = np.interp(nvalues, n, xd2) n = np.arange(0, 8192, 1) xd3 =
np.interp(nvalues, n, xd3)
numpy.interp
from glob import glob import os import fitsio import numpy as np from scipy.ndimage.filters import median_filter from scipy.ndimage.morphology import binary_dilation from astrometry.util.fits import fits_table, merge_tables from astrometry.util.multiproc import multiproc dirprefix = '/global/cfs/cdirs/cosmo/staging/' def one_file(fn): T = fits_table() T.filename = [] T.ext = [] T.ccdname = [] T.expnum = [] T.obsid = [] T.acqnam = [] T.filter = [] T.wcs_ok = [] T.n_masked = [] T.n_dilated_masked = [] T.oow_min = [] T.oow_max = [] T.oow_median = [] T.oow_percentiles = [] T.oow_unmasked_min = [] T.oow_unmasked_max = [] T.oow_unmasked_median = [] T.oow_unmasked_percentiles = [] T.oow_dilated_min = [] T.oow_dilated_max = [] T.oow_dilated_median = [] T.oow_dilated_percentiles = [] T.oow_m3_min = [] T.oow_m3_max = [] T.oow_m3_median = [] T.oow_m3_percentiles = [] T.oow_m5_min = [] T.oow_m5_max = [] T.oow_m5_median = [] T.oow_m5_percentiles = [] print(fn) F = fitsio.FITS(fn) phdr = F[0].read_header() D = fitsio.FITS(fn.replace('_oow_', '_ood_')) wcs_ok = (phdr.get('WCSCAL', '').strip().lower().startswith('success') or phdr.get('SCAMPFLG', -1) == 0) #print(len(F), 'extensions') for ext in range(1, len(F)): oow = F[ext].read() hdr = F[ext].read_header() ood = D[ext].read() pct = np.arange(101) T.filename.append(fn.replace(dirprefix, '')) T.wcs_ok.append(wcs_ok) T.ext.append(ext) T.ccdname.append(hdr['EXTNAME']) expnum = phdr.get('EXPNUM', 0) # /global/cfs/cdirs/cosmo/staging/mosaic/CP/V4.3/CP20160124/k4m_160125_104535_oow_zd_ls9.fits.fz # has EXPNUM blank -> becomes None if expnum is None: expnum = 0 print(fn, ext, expnum) T.expnum.append(expnum) T.obsid.append(phdr.get('OBSID', '')) T.acqnam.append(phdr.get('DTACQNAM', '')) T.filter.append(phdr.get('FILTER')) bad = (ood > 0) T.n_masked.append(np.sum(bad)) dbad = binary_dilation(bad, structure=np.ones((3,3),bool)) T.n_dilated_masked.append(np.sum(dbad)) uw = oow[np.logical_not(dbad)] if len(uw) == 0: med = np.median(oow) T.oow_dilated_min.append(0.) T.oow_dilated_max.append(0.) T.oow_dilated_median.append(0.) T.oow_dilated_percentiles.append(np.zeros(len(pct), np.float32)) else: med = np.median(uw) T.oow_dilated_min.append(uw.min()) T.oow_dilated_max.append(uw.max()) T.oow_dilated_median.append(np.median(uw)) T.oow_dilated_percentiles.append(np.percentile(uw, pct, interpolation='nearest').astype(np.float32)) T.oow_min.append(oow.min()) T.oow_max.append(oow.max()) T.oow_median.append(np.median(oow)) T.oow_percentiles.append(np.percentile(oow, pct, interpolation='nearest').astype(np.float32)) uw = oow[ood == 0] if len(uw) == 0: med = np.median(oow) T.oow_unmasked_min.append(0.) T.oow_unmasked_max.append(0.) T.oow_unmasked_median.append(0.) T.oow_unmasked_percentiles.append(np.zeros(len(pct), np.float32)) else: med = np.median(uw) T.oow_unmasked_min.append(uw.min()) T.oow_unmasked_max.append(uw.max()) T.oow_unmasked_median.append(np.median(uw)) T.oow_unmasked_percentiles.append(np.percentile(uw, pct, interpolation='nearest').astype(np.float32)) # Fill masked OOW pixels with the median value. oow[ood > 0] = med # Median filter m3 = median_filter(oow, 3, mode='constant', cval=med) m5 = median_filter(oow, 5, mode='constant', cval=med) T.oow_m3_min.append(m3.min()) T.oow_m3_max.append(m3.max()) T.oow_m3_median.append(
np.median(m3)
numpy.median
# -*- coding: utf-8 -*- # Copyright © 2019 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ import turicreate.toolkits._tf_utils as _utils from .._tf_model import TensorFlowModel import numpy as _np from turicreate._deps.minimal_package import _minimal_package_import_check def _lazy_import_tensorflow(): _tf = _minimal_package_import_check("tensorflow") return _tf # Constant parameters for the neural network CONV_H = 64 LSTM_H = 200 DENSE_H = 128 class ActivityTensorFlowModel(TensorFlowModel): def __init__( self, net_params, batch_size, num_features, num_classes, prediction_window, seq_len, seed, ): _utils.suppress_tensorflow_warnings() self.num_classes = num_classes self.batch_size = batch_size tf = _lazy_import_tensorflow() keras = tf.keras ############################################# # Define the Neural Network ############################################# inputs = keras.Input(shape=(prediction_window * seq_len, num_features)) # First dense layer dense = keras.layers.Conv1D( filters=CONV_H, kernel_size=(prediction_window), padding='same', strides=prediction_window, use_bias=True, activation='relu', ) cur_outputs = dense(inputs) # First dropout layer dropout = keras.layers.Dropout( rate=0.2, seed=seed, ) cur_outputs = dropout(cur_outputs) # LSTM layer lstm = keras.layers.LSTM( units=LSTM_H, return_sequences=True, use_bias=True, ) cur_outputs = lstm(cur_outputs) # Second dense layer dense2 = keras.layers.Dense(DENSE_H) cur_outputs = dense2(cur_outputs) # Batch norm layer batch_norm = keras.layers.BatchNormalization() cur_outputs = batch_norm(cur_outputs) # ReLU layer relu = keras.layers.ReLU() cur_outputs = relu(cur_outputs) # Final dropout layer dropout = keras.layers.Dropout(rate=0.5, seed=seed) cur_outputs = dropout(cur_outputs) # Final dense layer dense3 = keras.layers.Dense(num_classes, use_bias=False) cur_outputs = dense3(cur_outputs) # Softmax layer softmax = keras.layers.Softmax() cur_outputs = softmax(cur_outputs) self.model = keras.Model(inputs=inputs, outputs=cur_outputs) self.model.compile( loss=tf.losses.categorical_crossentropy, optimizer=keras.optimizers.Adam(learning_rate=1e-3), sample_weight_mode="temporal" ) ############################################# # Load the Weights of the Neural Network ############################################# for key in net_params.keys(): net_params[key] = _utils.convert_shared_float_array_to_numpy(net_params[key]) # Set weight for first dense layer l = self.model.layers[1] l.set_weights( (_utils.convert_conv1d_coreml_to_tf(net_params["conv_weight"]), net_params["conv_bias"]) ) # Set LSTM weights i2h, h2h, bias = [], [], [] for i in ('i', 'f', 'c', 'o'): i2h.append(eval('net_params["lstm_i2h_%s_weight"]' % i)) h2h.append(eval('net_params["lstm_h2h_%s_weight"]' % i)) bias.append(eval('net_params["lstm_h2h_%s_bias"]' % i)) i2h = _np.concatenate(i2h, axis=0) h2h = _np.concatenate(h2h, axis=0) bias = _np.concatenate(bias, axis=0) i2h = _np.swapaxes(i2h, 1, 0) h2h = _np.swapaxes(h2h, 1, 0) l = self.model.layers[3] l.set_weights((i2h, h2h, bias)) # Set weight for second dense layer l = self.model.layers[4] l.set_weights( ( net_params['dense0_weight'].reshape(DENSE_H, LSTM_H).swapaxes(0, 1), net_params['dense0_bias'] ) ) # Set batch Norm weights l = self.model.layers[5] l.set_weights( ( net_params['bn_gamma'], net_params['bn_beta'], net_params['bn_running_mean'], net_params['bn_running_var'] ) ) # Set weights for last dense layer l = self.model.layers[8] l.set_weights( ( net_params['dense1_weight'].reshape((self.num_classes, DENSE_H)).swapaxes(0,1), ) ) def train(self, feed_dict): """ Run session for training with new batch of data (inputs, labels and weights) Parameters ---------- feed_dict: Dictionary Dictionary to store a batch of input data, corresponding labels and weights. This is currently passed from the ac_data_iterator.cpp file when a new batch of data is sent. Returns ------- result: Dictionary Loss per batch and probabilities """ for key in feed_dict.keys(): feed_dict[key] = _utils.convert_shared_float_array_to_numpy(feed_dict[key]) feed_dict[key] = _np.squeeze(feed_dict[key], axis=1) feed_dict[key] = _np.reshape( feed_dict[key], ( feed_dict[key].shape[0], feed_dict[key].shape[1], feed_dict[key].shape[2], ), ) keras = _lazy_import_tensorflow().keras loss = self.model.train_on_batch( x=feed_dict['input'], y=keras.utils.to_categorical(feed_dict['labels'], num_classes=self.num_classes), sample_weight=_np.reshape(feed_dict['weights'], (self.batch_size, 20)) ) prob = self.model.predict(feed_dict['input']) probabilities = _np.reshape( prob, (prob.shape[0], prob.shape[1] * prob.shape[2]) ) result = {"loss": _np.array(loss), "output": _np.array(probabilities)} return result def predict(self, feed_dict): """ Run session for predicting with new batch of validation data (inputs, labels and weights) as well as test data (inputs) Parameters ---------- feed_dict: Dictionary Dictionary to store a batch of input data, corresponding labels and weights. This is currently passed from the ac_data_iterator.cpp file when a new batch of data is sent. Returns ------- result: Dictionary Loss per batch and probabilities (in case of validation data) Probabilities (in case only inputs are provided) """ # Convert input for key in feed_dict.keys(): feed_dict[key] = _utils.convert_shared_float_array_to_numpy(feed_dict[key]) feed_dict[key] = _np.squeeze(feed_dict[key], axis=1) feed_dict[key] = _np.reshape( feed_dict[key], ( feed_dict[key].shape[0], feed_dict[key].shape[1], feed_dict[key].shape[2], ), ) # Generate predictions prob = self.model.predict(feed_dict['input']) probabilities = _np.reshape( prob, (prob.shape[0], prob.shape[1] * prob.shape[2]) ) result = {"output": probabilities} if "labels" in feed_dict.keys(): # Validation data? keras = _lazy_import_tensorflow().keras labels = keras.utils.to_categorical(feed_dict['labels'], num_classes=self.num_classes) loss = self.model.loss(y_true=labels, y_pred=prob) loss = keras.backend.get_value(loss) weights = feed_dict["weights"].reshape(loss.shape) loss = loss * weights loss = _np.sum(loss, axis=1) result["loss"] = loss return result def export_weights(self): """ Function to store TensorFlow weights back to into a dict in CoreML format to be used by the C++ implementation Returns ------- tf_export_params: Dictionary Dictionary of weights from TensorFlow stored as {weight_name: weight_value} """ tf_export_params = {} # First dense layer l = self.model.layers[1] tf_export_params["conv_weight"], tf_export_params["conv_bias"] = l.get_weights() tf_export_params["conv_weight"] = _utils.convert_conv1d_tf_to_coreml( tf_export_params["conv_weight"] ) # LSTM layer l = self.model.layers[3] i2h, h2h, bias = l.get_weights() biases = _np.split(bias, 4) i2h = _np.swapaxes(i2h, 0, 1) i2h =
_np.split(i2h, 4)
numpy.split
#stats.py #catalog creation for heliocats #https://github.com/cmoestl/heliocats import numpy as np import pandas as pd import scipy from sunpy.time import parse_time import copy import matplotlib.dates as mdates import matplotlib import seaborn as sns import datetime import urllib import json import os import pdb import scipy.io import pickle import sys import astropy from astropy.constants import au import importlib import cdflib import matplotlib.pyplot as plt import heliosat import heliopy.data.spice as spicedata import heliopy.spice as spice from astropy.io.votable import parse_single_table from config import data_path from heliocats import data as hd importlib.reload(hd) #reload again while debugging #define AU in km AU=au.value/1e3 ######################## general position functions # def get_mars_position_array(): # ############### Mars position # planet_kernel=spicedata.get_kernel('planet_trajectories') # starttime = datetime.datetime(2007, 1, 1) # endtime = datetime.datetime(2020, 12, 31) # res_in_hours=1 # mars_time = [] # while starttime < endtime: # mars_time.append(starttime) # starttime += datetime.timedelta(hours=res_in_hours) # mars=spice.Trajectory('4') # frame='HEEQ' # mars.generate_positions(mars_time,'Sun',frame) # mars.change_units(astropy.units.AU) # [mars_r, mars_lat, mars_lon]=hd.cart2sphere(mars.x,mars.y,mars.z) # print('mars position done') # mars_time=np.array(mars_time) # mars_r=np.array(mars_r) # mars_lat=np.array(mars_lat) # mars_lon=np.array(mars_lon) # return [mars_time,mars_r,np.degrees(mars_lat),np.degrees(mars_lon)] ################################ HI arrival catalog ARRCAT operations ############################## def load_higeocat_vot(file): #read HIGEOCAT from https://www.helcats-fp7.eu/catalogues/wp3_cat.html #https://docs.astropy.org/en/stable/io/votable/ table = parse_single_table('data/HCME_WP3_V06.vot') higeocat = table.array #usage e.g. #higeocat['Date']=parse_time(higeocat['Date'][10]).datetime #access data #a=table.array['HM HEEQ Long'][10] return higeocat def get_insitu_position_time(time1,insitu_location_string,insitu_str,insitu_kernel): insitu_exist=True if insitu_location_string=='PSP': #exclude if time before launch time if parse_time(time1).plot_date < parse_time(datetime.datetime(2018, 8, 13)).plot_date: insitu_exist=False if insitu_location_string=='Solo': if parse_time(time1).plot_date < parse_time(datetime.datetime(2020, 3, 1)).plot_date: insitu_exist=False if insitu_location_string=='Bepi': if parse_time(time1).plot_date < parse_time(datetime.datetime(2018, 10, 24)).plot_date: insitu_exist=False if insitu_location_string=='STB': if parse_time(time1).plot_date > parse_time(datetime.datetime(2014, 9, 27)).plot_date: insitu_exist=False if insitu_location_string=='Ulysses': #cut off ulysses when no decent in situ data is available anymore if parse_time(time1).plot_date > parse_time(datetime.datetime(2008, 5, 1)).plot_date: insitu_exist=False if insitu_exist == True: #insitu_kernel=spicedata.get_kernel('insitu_trajectories') #this needs to be an array, so make two similar times and take the first entry later insitu_time=[parse_time(time1).datetime,parse_time(time1).datetime] insitu=spice.Trajectory(insitu_str) frame='HEEQ' insitu.generate_positions(insitu_time,'Sun',frame) insitu.change_units(astropy.units.AU) [insitu_r, insitu_lat, insitu_lon]=hd.cart2sphere(insitu.x,insitu.y,insitu.z) #Earth position to Earth L1 if insitu_str=='3': insitu_r[0]=insitu_r[0]-1.5*1e6/AU insitu_time=np.array(insitu_time)[0] insitu_r=np.array(insitu_r)[0] insitu_lat=np.array(insitu_lat)[0] insitu_lon=np.array(insitu_lon)[0] else: insitu_time=np.nan insitu_r=np.nan insitu_lat=np.nan insitu_lon=np.nan return [insitu_time,insitu_r,np.degrees(insitu_lat),np.degrees(insitu_lon)] def calculate_arrival(vsse,delta,lamda,rdist,t0_num): #calculate arrival time after Möstl and Davies 2013 but using ta=t0+Ri/Visse equivalent to ta=t0+Risse/Vsse visse=vsse * ( np.cos(np.radians(delta)) \ + np.sqrt( np.sin(np.radians(lamda))**2-np.sin(np.radians(delta))**2 ) ) \ /(1+np.sin(np.radians(lamda)) ) #arrival time: convert AU to km and seconds to days ta=t0_num+(rdist*AU/visse)/(3600*24) return [mdates.num2date(ta),visse] def make_arrival_catalog_insitu_ssef30(higeocat,arrcat,ac_old, insitu_location_string, column_list): #get parameters from HIGEOCAT for arrival catalog higeocat_time=parse_time(higeocat['Date']).datetime #first HI observation higeocat_t0=parse_time(higeocat['SSE Launch']).datetime #backprojected launch time higeocat_t0_num=parse_time(higeocat_t0).plot_date higeocat_vsse=np.array(higeocat['SSE Speed']) higeocat_vsse_err=np.array(higeocat['SSE Speed Err']) higeocat_sse_lon=np.array(higeocat['SSE HEEQ Long' ]) higeocat_sse_lat=np.array(higeocat['SSE HEEQ Lat' ]) higeocat_id=np.array(higeocat['ID']) higeocat_sc=np.array(higeocat['SC']) higeocat_pan=np.array(higeocat['PA-N']) higeocat_pas=np.array(higeocat['PA-S']) higeocat_pafit=np.array(higeocat['PA-fit']) higeocat_pacenter=abs((higeocat_pan+higeocat_pas)/2) #load spice here once for each spacecraft if insitu_location_string=='STB': insitu_str='-235' insitu_kernel=spicedata.get_kernel('stereo_b') target_name='STEREO-B' if insitu_location_string=='STA': insitu_str='-234' insitu_kernel=spicedata.get_kernel('stereo_a_pred') insitu_kernel2=spicedata.get_kernel('stereo_a') spice.furnish(insitu_kernel2) target_name='STEREO-A' if insitu_location_string=='Mercury': insitu_str='1' insitu_kernel=spicedata.get_kernel('planet_trajectories') target_name='Mercury' if insitu_location_string=='Venus': insitu_str='2' insitu_kernel=spicedata.get_kernel('planet_trajectories') target_name='Venus' if insitu_location_string=='Earth': insitu_str='3' insitu_kernel=spicedata.get_kernel('planet_trajectories') target_name='Earth_L1' if insitu_location_string=='Mars': insitu_str='4' insitu_kernel=spicedata.get_kernel('planet_trajectories') target_name='Mars' if insitu_location_string=='PSP': insitu_str='-96' insitu_kernel=spicedata.get_kernel('psp_pred') target_name='PSP' if insitu_location_string=='Solo': insitu_str='Solar Orbiter' insitu_kernel=spicedata.get_kernel('solo_2020') target_name='SolarOrbiter' if insitu_location_string=='Bepi': insitu_str='BEPICOLOMBO MPO' insitu_kernel=spicedata.get_kernel('bepi_pred') target_name='BepiColombo' if insitu_location_string=='Ulysses': insitu_str='ulysses' insitu_kernel=spicedata.get_kernel('ulysses') target_name='Ulysses' spice.furnish(insitu_kernel) #half width for SSEF30 lamda=30.0 #new version of ARRCAT with iteration arrcat_insitu_list = [] #old version without iteration arrcat_insitu_list_old = [] #go through all HIGEOCAT CME events and check for hit at insitu, with 4 iterations in total for i in np.arange(len(higeocat_time)): #get insitu position for launch time t0 [insitu_time,insitu_r,insitu_lat,insitu_lon]=get_insitu_position_time(higeocat_t0[i], insitu_location_string,insitu_str, insitu_kernel) delta=abs(higeocat_sse_lon[i]-insitu_lon) #print([insitu_time,insitu_r,insitu_lat,insitu_lon]) if delta < 30: #calculate arrival time #print(delta,lamda,insitu_r) [ta,visse]=calculate_arrival(higeocat_vsse[i],delta, lamda, insitu_r,higeocat_t0_num[i]) #make old version of ARRCAT without iteration and errors list_old=[higeocat_id[i].decode(),higeocat_sc[i].decode(),target_name,\ parse_time(higeocat_t0[i]).iso[:-7],parse_time(ta).iso[:-7],0,\ np.round(insitu_r,3), np.round(insitu_lon,2), np.round(insitu_lat,2),np.round(insitu_lon-higeocat_sse_lon[i],1),\ higeocat_sse_lon[i],higeocat_sse_lat[i],higeocat_vsse[i],\ higeocat_vsse_err[i], int(np.rint(visse)),0,higeocat_pafit[i],higeocat_pan[i],higeocat_pas[i],higeocat_pacenter[i]] #print(list1) arrcat_insitu_list_old.append(list_old) [insitu_time2,insitu_r2,insitu_lat2,insitu_lon2]=get_insitu_position_time(ta, insitu_location_string,insitu_str, insitu_kernel) #print(insitu_lon-insitu_lon2) delta2=abs(higeocat_sse_lon[i]-insitu_lon2) if delta2 <30: [ta2,visse2]=calculate_arrival(higeocat_vsse[i],delta2, lamda, insitu_r2,higeocat_t0_num[i]) #print(int((parse_time(ta2).plot_date-parse_time(ta).plot_date)*24)) [insitu_time3,insitu_r3,insitu_lat3,insitu_lon3]=get_insitu_position_time(ta2, insitu_location_string,insitu_str, insitu_kernel) delta3=abs(higeocat_sse_lon[i]-insitu_lon3) if delta3 <30: [ta3,visse3]=calculate_arrival(higeocat_vsse[i],delta3, lamda, insitu_r3,higeocat_t0_num[i]) #print(np.round((parse_time(ta3).plot_date-parse_time(ta2).plot_date)*24,1),int(delta3)) [insitu_time4,insitu_r4,insitu_lat4,insitu_lon4]=get_insitu_position_time(ta3, insitu_location_string,insitu_str, insitu_kernel) delta4=abs(higeocat_sse_lon[i]-insitu_lon4) if delta4 <30: #calculate finally iterated arrival time [ta4,visse4]=calculate_arrival(higeocat_vsse[i],delta4, lamda, insitu_r4,higeocat_t0_num[i]) #print(np.round((parse_time(ta4).plot_date-parse_time(ta3).plot_date)*24,1),int(delta4)) #print(int(delta4-delta)) #estimate error bar on arrival time adding or subtracting the error in the Vsse speed [ta4_low,visse4_low]=calculate_arrival(higeocat_vsse[i]-higeocat_vsse_err[i],delta4, lamda, insitu_r4,higeocat_t0_num[i]) [ta4_high,visse4_high]=calculate_arrival(higeocat_vsse[i]+higeocat_vsse_err[i],delta4, lamda, insitu_r4,higeocat_t0_num[i]) #calculate difference in ours high / low to original arrival time and convert to hours ta4_err_low=abs(parse_time(ta4).plot_date-parse_time(ta4_low).plot_date)*24 ta4_err_high=abs(parse_time(ta4).plot_date-parse_time(ta4_high).plot_date)*24 ta4_err=np.round(np.mean([ta4_err_high,ta4_err_low]),1) #print(ta4_err_low,ta4_err_high,ta4_err) #same for arrival speed error visse4_err_low=abs(visse4_low-visse4) visse4_err_high=abs(visse4_high-visse4) visse4_err=int(np.rint(np.mean([visse4_err_high,visse4_err_low]))) #print(visse4_err_low,visse4_err_high,visse4_err,higeocat_vsse_err[i]) #print() list1=[higeocat_id[i].decode(),higeocat_sc[i].decode(),target_name,\ parse_time(higeocat_t0[i]).iso[:-7],parse_time(ta4).iso[:-7],ta4_err,\ np.round(insitu_r4,3), np.round(insitu_lon4,2), np.round(insitu_lat4,2),np.round(insitu_lon4-higeocat_sse_lon[i],1),\ higeocat_sse_lon[i],higeocat_sse_lat[i],higeocat_vsse[i],\ higeocat_vsse_err[i], int(np.rint(visse4)),visse4_err,higeocat_pafit[i],higeocat_pan[i],higeocat_pas[i],higeocat_pacenter[i]] #print(list1) arrcat_insitu_list.append(list1) #arrcat_insitu=np.array(arrcat_insitu_list) #print(arrcat_insitu_list) #make dataframe out of list ac_old1 = pd.DataFrame(arrcat_insitu_list_old, columns = column_list) ac_old=ac_old.append(ac_old1) #make dataframe out of list ac1 = pd.DataFrame(arrcat_insitu_list, columns = column_list) arrcat=arrcat.append(ac1) print('SSEF30 events: ',len(arrcat_insitu_list) ) print(insitu_location_string,' SSEF30 arrival catalog finished.') print() return [arrcat,ac_old] ###################################### SIRCAT operations ################################ def load_helio4cast_sircat_master_from_excel(file): ''' convert excel master file to pandas dataframe and convert times to datetime objects ''' print('load HELCATS SIRCAT from file:', file) sc=pd.read_excel(file) sc=sc.drop(columns='Unnamed: 0') #get beginning of tags for STA to identify allen and jian events tag_list=[] for i in np.arange(0,len(sc)): tag_list.append(sc.sircat_id[i][13]) #j #convert all times to datetime objects for i in np.arange(0,sc.shape[0]): #for STEREO and MAVEN same if sc.sc_insitu[i] == 'STEREO-A': #jian events if tag_list[i] =='J': #remove leading and ending blank spaces if any and write datetime object into dataframe sc.at[i,'sir_start_time']= parse_time(str(sc.sir_start_time[i]).strip()).datetime sc.at[i,'hss_start_time']= parse_time(str(sc.hss_start_time[i]).strip()).datetime sc.at[i,'sir_end_time']= parse_time(str(sc.sir_end_time[i]).strip()).datetime #allen events if tag_list[i] =='A': #remove leading and ending blank spaces if any and write datetime object into dataframe sc.at[i,'hss_start_time']= parse_time(str(sc.hss_start_time[i]).strip()).datetime sc.at[i,'hss_end_time']= parse_time(str(sc.hss_end_time[i]).strip()).datetime #for Wind PSP convert different - check PSP wind different sources if needed (Allen and Grandin) if sc.sc_insitu[i] == 'Wind': sc.at[i,'hss_start_time']= parse_time(str(sc.hss_start_time[i]).strip()).datetime sc.at[i,'hss_end_time']=parse_time(str(sc.hss_end_time[i]).strip()).datetime if sc.sc_insitu[i] == 'PSP': sc.at[i,'hss_start_time']= parse_time(str(sc.hss_start_time[i]).strip()).datetime sc.at[i,'hss_end_time']=parse_time(str(sc.hss_end_time[i]).strip()).datetime if sc.sc_insitu[i] == 'STEREO-B': #remove leading and ending blank spaces if any and write datetime object into dataframe sc.at[i,'sir_start_time']= parse_time(str(sc.sir_start_time[i]).strip()).datetime sc.at[i,'hss_start_time']= parse_time(str(sc.hss_start_time[i]).strip()).datetime sc.at[i,'sir_end_time']= parse_time(str(sc.sir_end_time[i]).strip()).datetime if sc.sc_insitu[i] == 'MAVEN': #remove leading and ending blank spaces if any and write datetime object into dataframe sc.at[i,'sir_start_time']= parse_time(str(sc.sir_start_time[i]).strip()).datetime sc.at[i,'hss_start_time']= parse_time(str(sc.hss_start_time[i]).strip()).datetime sc.at[i,'sir_end_time']= parse_time(str(sc.sir_end_time[i]).strip()).datetime return sc def get_sircat_parameters(sc, sci, scat, name): ''' get parameters sc - spacecraft data recarray sci - indscates for this spacecraft in sircat scat - scatmecat pandas dataframe ''' fileind='sircat/indices_sircat/SIRCAT_indices_'+name+'.p' ################ extract indices of ICMEs in the respective data (time consuming, so do it once and save) if os.path.isfile(fileind) == False: print('extract indices of SIRs in '+ name+ ' data') #### get all ICMECAT times for this spacecraft as datenum sc_sir_start=scat.sir_start_time[sci] sc_hss_start=scat.hss_start_time[sci] sc_sir_end=scat.sir_end_time[sci] sc_hss_end=scat.hss_end_time[sci] ### arrays containing the indices of where the SIRs are in the data sir_start_ind=np.zeros(len(sci),dtype=int) hss_start_ind=np.zeros(len(sci),dtype=int) sir_end_ind=np.zeros(len(sci),dtype=int) hss_end_ind=np.zeros(len(sci),dtype=int) #check where vt is < or > 450 km/s vt_lt_450=np.where(sc.vt < 450)[0] vt_gt_450=np.where(sc.vt > 450)[0] #check where vt is < or > 350 km/s vt_lt_350=np.where(sc.vt < 350)[0] vt_gt_350=np.where(sc.vt > 350)[0] #this takes some time, get indices in data for each SIRCAT time for i in np.arange(sci[0],sci[-1]+1): print(i-sci[0]) if (name== 'STEREO-A'): tag=scat.sircat_id[i][13] if tag=='J': #Jian events print('J', sc_sir_start[i] ) sir_start_ind[i-sci[0]]=np.where(sc.time > sc_sir_start[i])[0][0]-1 hss_start_ind[i-sci[0]]=np.where(sc.time > sc_hss_start[i])[0][0]-1 sir_end_ind[i-sci[0]]=np.where(sc.time > sc_sir_end[i])[0][0]-1 if tag=='A': #Allen events print('A', sc_sir_start[i]) hss_start_ind[i-sci[0]]=np.where(sc.time > sc_hss_start[i])[0][0]-1 hss_end_ind[i-sci[0]]=np.where(sc.time > sc_hss_end[i])[0][0]-1 if (name== 'STEREO-B'): sir_start_ind[i-sci[0]]=np.where(sc.time > sc_sir_start[i])[0][0]-1 hss_start_ind[i-sci[0]]=np.where(sc.time > sc_hss_start[i])[0][0]-1 sir_end_ind[i-sci[0]]=np.where(sc.time > sc_sir_end[i])[0][0]-1 #here the hss_end_time needs to be extracted - criteria similar to Grandin et al. 2018 #where stream goes back to (< 450 km/s) after hss start time #check the indices in the 450 array that are greater than the hss_start index +0.5 days #24*60 data points #and take the first one #take next data point > 450 km/s after hss_start + 6 hours (for getting rid of rapid variations) #next450=np.where(vt_gt_450 > hss_start_ind[i-sci[0]])[0][0]+6*60 #print(hss_start_ind[i-sci[0]],vt_gt_450[next450]) #then take next data point below 450 after this #hss_end_ind[i-sci[0]]=vt_lt_450[ np.where(vt_lt_450 > vt_gt_450[next450])[0][0] ] #print('hss duration in hours ',(hss_end_ind[i-sci[0]]-hss_start_ind[i-sci[0]])/60) #print(hss_start_ind[i-sci[0]],hss_end_ind[i-sci[0]]) if name== 'MAVEN': sir_start_ind[i-sci[0]]=np.where(sc.time > sc_sir_start[i])[0][0]-1 hss_start_ind[i-sci[0]]=np.where(sc.time > sc_hss_start[i])[0][0]-1 sir_end_ind[i-sci[0]]=np.where(sc.time > sc_sir_end[i])[0][0]-1 #hss_end_ind[i-sci[0]]=vt_lt_450[np.where(vt_lt_450 > sir_end_ind[i-sci[0]])[0][0] ] #take next data point > 450 km/s after hss_start + 2 orbits (for getting rid of rapid variations) #next350=np.where(vt_gt_350 > hss_start_ind[i-sci[0]])[0][0]+2 #print(hss_start_ind[i-sci[0]],vt_gt_450[next450]) #then take next data point below 450 after this #hss_end_ind[i-sci[0]]=vt_lt_350[ np.where(vt_lt_350 > vt_gt_350[next350])[0][0] ] #print('hss duration in hours ',(hss_end_ind[i-sci[0]]-hss_start_ind[i-sci[0]])*4.5) #print(hss_start_ind[i-sci[0]],hss_end_ind[i-sci[0]]) if name=='Wind': #here only hss start and hss end exist hss_start_ind[i-sci[0]]=np.where(sc.time > sc_hss_start[i])[0][0]-1 hss_end_ind[i-sci[0]]=np.where(sc.time > sc_hss_end[i])[0][0]-1 #future update: set hss_start as sir_start, and add time for hss_start by pt max after sir_start if name=='PSP': #here only hss start and hss end exist hss_start_ind[i-sci[0]]=np.where(sc.time > sc_hss_start[i])[0][0]-1 hss_end_ind[i-sci[0]]=np.where(sc.time > sc_hss_end[i])[0][0]-1 #future update: set hss_start as sir_start, and add time for hss_start by pt max after sir_start pickle.dump([sir_start_ind,hss_start_ind,sir_end_ind,hss_end_ind], open(fileind, 'wb')) ############################################ [sir_start_ind, hss_start_ind,sir_end_ind,hss_end_ind]=pickle.load(open(fileind, 'rb')) #first make hss end time for STEREO-A/B from hss_end_ind index #if (name== 'STEREO-A') or (name== 'STEREO-B') or (name== 'MAVEN'): # for i in np.arange(len(sci))-1: # scat.at[sci[i],'hss_end_time']=sc.time[hss_end_ind[i]] print('Get parameters for ',name) ####### position print('position') #SIR heliodistance for i in np.arange(len(sci))-1: scat.at[sci[i],'sc_heliodistance']=np.round(sc.r[hss_start_ind[i]],4) #SIR longitude scat.at[sci[i],'sc_long_heeq']=np.round(sc.lon[hss_start_ind[i]],2) ##SIR latitude scat.at[sci[i],'sc_lat_heeq']=np.round(sc.lat[hss_start_ind[i]],2) print('hss') if (name=='PSP'): sci_istart=mdates.date2num(scat.hss_start_time[sci]) sci_hss_iend=mdates.date2num(scat.hss_end_time[sci]) scat.at[sci,'hss_duration']=np.round((sci_hss_iend-sci_istart)*24,2) for i in np.arange(0,len(sci)): #print(i) #print('hss duration in hours ',(hss_end_ind[i]-hss_start_ind[i])/60) #v_max scat.at[sci[i],'hss_vtmax']=np.nan try: vmax=np.round(np.nanmax(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #if vmax ok: if np.isnan(vmax)==False: scat.at[sci[i],'hss_vtmax']=vmax #vtmaxtime - search for index in sliced array and at beginning of array to see the index in the whole dataset scat.at[sci[i],'hss_vtmax_time']=sc.time[np.nanargmax(sc.vt[hss_start_ind[i]:hss_end_ind[i]])+hss_start_ind[i]] except: print('vmax nan') # v_mean try: scat.at[sci[i],'hss_vtmean']=np.round(np.nanmean(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) except: print() #v_bstd try: scat.at[sci[i],'hss_vtstd']=np.round(np.nanstd(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) except: print() try: #B_max scat.at[sci[i],'hss_btmax']=np.round(np.nanmax(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) # B_mean scat.at[sci[i],'hss_btmean']=np.round(np.nanmean(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) #bstd scat.at[sci[i],'hss_btstd']=np.round(np.nanstd(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) #bz scat.at[sci[i],'hss_bzmin']=np.round(np.nanmin(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) scat.at[sci[i],'hss_bzmean']=np.round(np.nanmean(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) scat.at[sci[i],'hss_bzstd']=np.round(np.nanstd(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) except: print() if (name== 'Wind'): ############ HSS duration sci_istart=mdates.date2num(scat.hss_start_time[sci]) sci_hss_iend=mdates.date2num(scat.hss_end_time[sci]) scat.at[sci,'hss_duration']=np.round((sci_hss_iend-sci_istart)*24,2) for i in np.arange(0,len(sci)): #print(i) #print('hss duration in hours ',(hss_end_ind[i]-hss_start_ind[i])/60) tag=scat.sircat_id[i][13] #v_max scat.at[sci[i],'hss_vtmax']=np.round(np.nanmax(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #vtmaxtime - search for index in sliced array and at beginning of array to see the index in the whole dataset scat.at[sci[i],'hss_vtmax_time']=sc.time[np.nanargmax(sc.vt[hss_start_ind[i]:hss_end_ind[i]])+hss_start_ind[i]] # v_mean scat.at[sci[i],'hss_vtmean']=np.round(np.nanmean(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #v_bstd scat.at[sci[i],'hss_vtstd']=np.round(np.nanstd(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #B_max scat.at[sci[i],'hss_btmax']=np.round(np.nanmax(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) # B_mean scat.at[sci[i],'hss_btmean']=np.round(np.nanmean(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) #bstd scat.at[sci[i],'hss_btstd']=np.round(np.nanstd(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) #bz scat.at[sci[i],'hss_bzmin']=np.round(np.nanmin(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) scat.at[sci[i],'hss_bzmean']=np.round(np.nanmean(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) scat.at[sci[i],'hss_bzstd']=np.round(np.nanstd(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) print('sir') ###SIR parameters only for STEREO and MAVEN ############ SIR duration if (name== 'STEREO-B') or (name== 'MAVEN'): sci_istart=mdates.date2num(scat.hss_start_time[sci]) ##***Fehler? sir_start? sci_iend=mdates.date2num(scat.sir_end_time[sci]) scat.at[sci,'sir_duration']=np.round((sci_iend-sci_istart)*24,2) ########## SIR general parameters for i in np.arange(0,len(sci)): #v_max scat.at[sci[i],'sir_vtmax']=np.round(np.nanmax(sc.vt[sir_start_ind[i]:sir_end_ind[i]]),1) # v_mean scat.at[sci[i],'sir_vtmean']=np.round(np.nanmean(sc.vt[sir_start_ind[i]:sir_end_ind[i]]),1) #v_bstd scat.at[sci[i],'sir_vtstd']=np.round(np.nanstd(sc.vt[sir_start_ind[i]:sir_end_ind[i]]),1) #B_max scat.at[sci[i],'sir_btmax']=np.round(np.nanmax(sc.bt[sir_start_ind[i]:sir_end_ind[i]]),1) # B_mean scat.at[sci[i],'sir_btmean']=np.round(np.nanmean(sc.bt[sir_start_ind[i]:sir_end_ind[i]]),1) #bstd scat.at[sci[i],'sir_btstd']=np.round(np.nanstd(sc.bt[sir_start_ind[i]:sir_end_ind[i]]),1) #bz scat.at[sci[i],'sir_bzmin']=np.round(np.nanmin(sc.bz[sir_start_ind[i]:sir_end_ind[i]]),1) scat.at[sci[i],'sir_bzmean']=np.round(np.nanmean(sc.bz[sir_start_ind[i]:sir_end_ind[i]]),1) scat.at[sci[i],'sir_bzstd']=np.round(np.nanstd(sc.bz[sir_start_ind[i]:sir_end_ind[i]]),1) if (name== 'STEREO-A'): for i in np.arange(0,len(sci)): #check which catalog tag=scat.sircat_id[sci[i]][13] if tag=='J': #Jian events sci_istart=mdates.date2num(scat.sir_start_time[sci[i]]) sci_iend=mdates.date2num(scat.sir_end_time[sci[i]]) scat.at[sci[i],'sir_duration']=np.round((sci_iend-sci_istart)*24,2) #v_max scat.at[sci[i],'sir_vtmax']=np.round(np.nanmax(sc.vt[sir_start_ind[i]:sir_end_ind[i]]),1) # v_mean scat.at[sci[i],'sir_vtmean']=np.round(np.nanmean(sc.vt[sir_start_ind[i]:sir_end_ind[i]]),1) #v_bstd scat.at[sci[i],'sir_vtstd']=np.round(np.nanstd(sc.vt[sir_start_ind[i]:sir_end_ind[i]]),1) #B_max scat.at[sci[i],'sir_btmax']=np.round(np.nanmax(sc.bt[sir_start_ind[i]:sir_end_ind[i]]),1) # B_mean scat.at[sci[i],'sir_btmean']=np.round(np.nanmean(sc.bt[sir_start_ind[i]:sir_end_ind[i]]),1) #bstd scat.at[sci[i],'sir_btstd']=np.round(np.nanstd(sc.bt[sir_start_ind[i]:sir_end_ind[i]]),1) #bz scat.at[sci[i],'sir_bzmin']=np.round(np.nanmin(sc.bz[sir_start_ind[i]:sir_end_ind[i]]),1) scat.at[sci[i],'sir_bzmean']=np.round(np.nanmean(sc.bz[sir_start_ind[i]:sir_end_ind[i]]),1) scat.at[sci[i],'sir_bzstd']=np.round(np.nanstd(sc.bz[sir_start_ind[i]:sir_end_ind[i]]),1) if tag=='A': #Allen events ############ HSS duration sci_istart=mdates.date2num(scat.hss_start_time[sci[i]]) sci_hss_iend=mdates.date2num(scat.hss_end_time[sci[i]]) scat.at[sci[i],'hss_duration']=np.round((sci_hss_iend-sci_istart)*24,2) #v_max scat.at[sci[i],'hss_vtmax']=np.round(np.nanmax(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #vtmaxtime - search for index in sliced array and at beginning of array to see the index in the whole dataset scat.at[sci[i],'hss_vtmax_time']=sc.time[np.nanargmax(sc.vt[hss_start_ind[i]:hss_end_ind[i]])+hss_start_ind[i]] # v_mean scat.at[sci[i],'hss_vtmean']=np.round(np.nanmean(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #v_bstd scat.at[sci[i],'hss_vtstd']=np.round(np.nanstd(sc.vt[hss_start_ind[i]:hss_end_ind[i]]),1) #B_max scat.at[sci[i],'hss_btmax']=np.round(np.nanmax(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) # B_mean scat.at[sci[i],'hss_btmean']=np.round(np.nanmean(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) #bstd scat.at[sci[i],'hss_btstd']=np.round(np.nanstd(sc.bt[hss_start_ind[i]:hss_end_ind[i]]),1) #bz scat.at[sci[i],'hss_bzmin']=np.round(np.nanmin(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) scat.at[sci[i],'hss_bzmean']=np.round(np.nanmean(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) scat.at[sci[i],'hss_bzstd']=np.round(np.nanstd(sc.bz[hss_start_ind[i]:hss_end_ind[i]]),1) return scat ###################################### ICMECAT operations ################################ def load_helcats_icmecat_master_from_excel(file): ''' convert excel master file to pandas dataframe and convert times to datetime objects ''' print('load HELCATS ICMECAT from file:', file) ic=pd.read_excel(file) #convert all times to datetime objects for i in np.arange(0,ic.shape[0]): #remove leading and ending blank spaces if any and write datetime object into dataframe ic.at[i,'icme_start_time']= parse_time(str(ic.icme_start_time[i]).strip()).datetime ic.at[i,'mo_start_time']=parse_time(str(ic.mo_start_time[i]).strip()).datetime ic.at[i,'mo_end_time']=parse_time(str(ic.mo_end_time[i]).strip()).datetime return ic def pdyn(density, speed): ''' make dynamic pressure from density []# ccm-3] and speed [km/s] assume pdyn is only due to protons pdyn=np.zeros(len([density])) #in nano Pascals ''' proton_mass=1.6726219*1e-27 #kg pdyn=np.multiply(np.square(speed*1e3),density)*1e6*proton_mass*1e9 #in nanoPascal return pdyn def load_pickle(file): ic=pickle.load( open(file, 'rb')) return ic def get_cat_parameters(sc, sci, ic, name): ''' get parameters sc - spacecraft data recarray sci - indices for this spacecraft in icmecat ic - icmecat pandas dataframe ''' fileind='icmecat/indices_icmecat/ICMECAT_indices_'+name+'.p' #### extract indices of ICMEs in the respective data (time consuming, so do it once) if os.path.isfile(fileind) == False: print('extract indices of ICMEs in '+ name+ ' data') #### get all ICMECAT times for this spacecraft as datenum sc_icme_start=ic.icme_start_time[sci] sc_mo_start=ic.mo_start_time[sci] sc_mo_end=ic.mo_end_time[sci] ### arrays containing the indices of where the ICMEs are in the data icme_start_ind=np.zeros(len(sci),dtype=int) mo_start_ind=np.zeros(len(sci),dtype=int) mo_end_ind=np.zeros(len(sci),dtype=int) #this takes some time, get indices in data for each ICMECAT for i in np.arange(sci[0],sci[-1]+1): print(i-sci[0]) icme_start_ind[i-sci[0]]=np.where(sc.time > sc_icme_start[i])[0][0]-1 #print(icme_start_ind[i]) mo_start_ind[i-sci[0]]=np.where(sc.time > sc_mo_start[i])[0][0]-1 mo_end_ind[i-sci[0]]=np.where(sc.time > sc_mo_end[i])[0][0]-1 pickle.dump([icme_start_ind, mo_start_ind,mo_end_ind], open(fileind, 'wb')) ############################################ [icme_start_ind, mo_start_ind,mo_end_ind]=pickle.load(open(fileind, 'rb')) #plasma available? if name=='Wind': plasma=True if name=='STEREO-A': plasma=True if name=='STEREO-B': plasma=True if name=='ULYSSES': plasma=True if name=='MAVEN': plasma=True if name=='PSP': plasma=True if name=='VEX': plasma=False if name=='MESSENGER': plasma=False if name=='SolarOrbiter': plasma=False if name=='BepiColombo': plasma=False print('Get parameters for ',name) ####### position #MO heliodistance for i in np.arange(len(sci))-1: ic.at[sci[i],'mo_sc_heliodistance']=np.round(sc.r[mo_start_ind[i]],4) #MO longitude ic.at[sci[i],'mo_sc_long_heeq']=np.round(sc.lon[mo_start_ind[i]],2) #MO latitude ic.at[sci[i],'mo_sc_lat_heeq']=np.round(sc.lat[mo_start_ind[i]],2) ############ ICME # ICME duration sci_istart=mdates.date2num(ic.icme_start_time[sci]) sci_iend=mdates.date2num(ic.mo_end_time[sci]) ic.at[sci,'icme_duration']=np.round((sci_iend-sci_istart)*24,2) for i in np.arange(0,len(sci)): #ICME B_max ic.at[sci[i],'icme_bmax']=np.round(np.nanmax(sc.bt[icme_start_ind[i]:mo_end_ind[i]]),1) #ICME B_mean ic.at[sci[i],'icme_bmean']=np.round(np.nanmean(sc.bt[icme_start_ind[i]:mo_end_ind[i]]),1) #icme_bstd ic.at[sci[i],'icme_bstd']=np.round(np.nanstd(sc.bt[icme_start_ind[i]:mo_end_ind[i]]),1) if plasma==True: #ICME speed_mean and std for i in np.arange(len(sci))-1: ic.at[sci[i],'icme_speed_mean']=np.round(np.nanmean(sc.vt[icme_start_ind[i]:mo_end_ind[i]]),1) ic.at[sci[i],'icme_speed_std']=np.round(np.nanstd(sc.vt[icme_start_ind[i]:mo_end_ind[i]]),1) else: #set nan for i in np.arange(len(sci))-1: ic.at[sci[i],'icme_speed_mean']=np.nan ic.at[sci[i],'icme_speed_std']=np.nan ########### MO # MO duration sci_istart=mdates.date2num(ic.mo_start_time[sci]) sci_iend=mdates.date2num(ic.mo_end_time[sci]) ic.at[sci,'mo_duration']=np.round((sci_iend-sci_istart)*24,2) #print(sci_istart) #print(sci_iend) #print(mo_start_ind[i]) #print(mo_end_ind[i]) for i in np.arange(len(sci))-1: #MO B_max ic.at[sci[i],'mo_bmax']=np.round(np.nanmax(sc.bt[mo_start_ind[i]:mo_end_ind[i]]),1) #MO B_mean ic.at[sci[i],'mo_bmean']=np.round(np.nanmean(sc.bt[mo_start_ind[i]:mo_end_ind[i]]),1) #MO B_std ic.at[sci[i],'mo_bstd']=np.round(np.nanstd(sc.bt[mo_start_ind[i]:mo_end_ind[i]]),1) #MO Bz_mean ic.at[sci[i],'mo_bzmean']=np.round(np.nanmean(sc.bz[mo_start_ind[i]:mo_end_ind[i]]),1) #MO Bz_min ic.at[sci[i],'mo_bzmin']=np.round(np.nanmin(sc.bz[mo_start_ind[i]:mo_end_ind[i]]),1) #MO Bz_std ic.at[sci[i],'mo_bzstd']=np.round(
np.nanstd(sc.bz[mo_start_ind[i]:mo_end_ind[i]])
numpy.nanstd
# codeing=utf-8 """This module contains feasible region classes for the experiements.""" from abc import ABC, abstractmethod import logging import math from cvxopt import matrix, sparse, solvers import networkx as nx import numpy as np from scipy.optimize import linprog from scipy.sparse.linalg import eigsh from pflacg.experiments.experiments_helper import max_vertex from gurobipy import GRB, read, Column run_config_gurobi = { 'solution_only': True, 'verbosity': 'normal', 'OutputFlag': 0, 'dual_gap_acc': 1e-06, 'runningTimeLimit': None, 'use_LPSep_oracle': True, 'max_lsFW': 100000, 'strict_dropSteps': True, 'max_stepsSub': 100000, 'max_lsSub': 100000, 'LPsolver_timelimit': 100000, 'K': 1 } if __name__ == "__main__": logging.basicConfig( level=logging.INFO, format="%(levelname)s :: %(asctime)s :: %(message)s", datefmt="%Y-%m-%d %H:%M:%S", ) LOGGER = logging.getLogger() # Helper functions # Generate a valid DAG such that we can solve the shortest path problem. def generateRandomGraph(n, p): DG = nx.gnr_graph(n, p) return DG # Graph with a source and a sink, and a number of layers specified by layers # and a number of nodes per layer equal to nodes_per_layer. def generateStructuredGraph(layers, nodes_per_layer): m = layers s = nodes_per_layer DG = nx.DiGraph() DG.add_nodes_from(range(0, m * s + 1)) # Add first edges between source DG.add_edges_from([(0, x + 1) for x in range(s)]) # Add all the edges in the subsequent layers. for i in range(m - 1): DG.add_edges_from( [(x + 1 + s * i, y + 1 + s * (i + 1)) for x in range(s) for y in range(s)] ) DG.add_edges_from([(x + 1 + s * (m - 1), m * s + 1) for x in range(s)]) return DG # Core classes class _AbstractFeasibleRegion(ABC): """An abstract class to construct feasible region objects.""" def __init__(self, *args, **kwargs): """Initialise abstract feasible region class.""" pass @property def initial_point(self): raise NotImplementedError( "Initial point has not been set for this feasible region!" ) @property def initial_active_set(self): raise NotImplementedError( "Initial active set has not been set for this feasible region!" ) @abstractmethod def lp_oracle(self, d): """ Compute the linear oracle. Parameters ---------- d : np.ndarray The direction. Returns ------- np.ndarray """ pass @abstractmethod def away_oracle(self, d, point_x): """ Compute the away oracle. Parameters ---------- d: np.ndarray The direction. point_x: Point Point x with its proper support. Returns ------- Point """ pass def projection(self, x, accuracy): raise NotImplementedError( "Projection has not been implemented for this feasible region!" ) class ConvexHull(_AbstractFeasibleRegion): """Convex hull given a set of vertice.""" def __init__(self, vertices): self.vertices = vertices @property def initial_point(self): return self.vertices[0] @property def initial_active_set(self): return [self.vertices[0]] def lp_oracle(self, d): val, index = d.dot(self.vertices[0]), 0 for _index, vertex in enumerate(self.vertices): _val = d.dot(vertex) if _val < val: val, index = _val, _index return self.vertices[index] def away_oracle(self, d, point_x): return max_vertex(d, point_x.support) def projection(self, x, accuracy): pass class gurobi_MIP(_AbstractFeasibleRegion): """LP model implemented via Gurobi.""" def __init__(self, modelFilename): model = read(modelFilename) model.params.TimeLimit = run_config_gurobi['LPsolver_timelimit'] model.setParam('OutputFlag', False) model.params.threads = 4 model.params.MIPFocus = 0 model.update() self.dim = len(model.getVars()) self.model = model return @property def initial_point(self): v = np.ones(self.dim) return self.lp_oracle(v) @property def initial_active_set(self): return [self.initial_point()] def lp_oracle(self, cc): m = self.model for it, v in enumerate(m.getVars()): v.setAttr(GRB.attr.Obj, cc[it]) #Update the model with the new atributes. m.update() m.optimize(lambda mod, where: self.fakeCallback(mod, where, GRB.INFINITY)) # Status checking status = m.getAttr(GRB.Attr.Status) if status == GRB.INF_OR_UNBD or \ status == GRB.INFEASIBLE or \ status == GRB.UNBOUNDED: assert False, "The model cannot be solved because it is infeasible or unbounded" if status != GRB.OPTIMAL: print(status) assert False, "Optimization was stopped." #Store the solution that will be outputted. solution = np.array([v.x for v in m.getVars()], dtype=float)[:] #Check that the initial number of constraints and the final number is the same. return solution def away_oracle(self, grad, point_x): return max_vertex(grad, point_x.support) def fakeCallback(self, model, where, value): ggEps = 1e-08 if where == GRB.Callback.MIPSOL: obj = model.cbGet(GRB.Callback.MIPSOL_OBJ) if where == GRB.Callback.MIP: objBnd = model.cbGet(GRB.Callback.MIP_OBJBND) if objBnd >= value + ggEps: pass class BirkhoffPolytope(_AbstractFeasibleRegion): def __init__(self, dim): self.dim = dim self.mat_dim = int(np.sqrt(dim)) @property def initial_point(self): return np.identity(self.mat_dim).flatten() @property def initial_active_set(self): return [self.initial_point()] def lp_oracle(self, d): from scipy.optimize import linear_sum_assignment objective = d.reshape((self.mat_dim, self.mat_dim)) matching = linear_sum_assignment(objective) solution = np.zeros((self.mat_dim, self.mat_dim)) solution[matching] = 1 return solution.reshape(self.dim) def away_oracle(self, grad, point_x): return max_vertex(grad, point_x.support) class ConstrainedBirkhoffPolytope(_AbstractFeasibleRegion): def __init__( self, dim, const_vector_ineq=None, const_matrix_ineq=None, const_matrix_eq=None, const_vector_eq=None, linear_equality_vector=None, scipy_solver="revised simplex", ): self.dim = dim self.matdim = int(np.sqrt(dim)) self.scipy_solver = scipy_solver self.A = np.zeros((2 * self.matdim - 1, self.dim)) # Condition on the columns for j in range(self.matdim): for i in range(self.matdim): self.A[j, int(i * self.matdim) + j] = 1.0 # Condition on the rows for j in range(self.matdim - 1): for i in range(self.matdim): self.A[self.matdim + j, int(j * self.matdim) + i] = 1.0 if linear_equality_vector is not None: self.b = linear_equality_vector else: self.b = np.ones(2 * self.matdim - 1) if const_matrix_ineq is not None and const_vector_ineq is not None: num_ineq_constraints, dim_ineq_constraints = const_matrix_ineq.shape if not dim_ineq_constraints == self.dim: raise ValueError( "Dimension of the inequality constraints does not match the dimensionality of the problem." ) self.G = const_matrix_ineq self.h = const_vector_ineq else: self.G = None self.h = None if const_matrix_eq is not None and const_vector_eq is not None: num_eq_constraints, dim_eq_constraints = const_matrix_eq.shape if not dim_eq_constraints == self.dim: raise ValueError( "Dimension of the equality constraints does not match the dimensionality of the problem." ) self.A = np.vstack( ( self.A, const_matrix_eq, ) ) self.b = np.append(self.b, const_vector_eq).tolist() @property def initial_point(self): c = np.ones(self.dim) return self.lp_oracle(c) @property def initial_active_set(self): return [self.initial_point()] def lp_oracle(self, x): res = linprog( x, A_ub=self.G, b_ub=self.h, A_eq=self.A, b_eq=self.b, method=self.scipy_solver, bounds=(0.0, np.inf), ) if not res.status == 0: raise Exception("LP oracle did not return succesfully.") optimum = np.array(res.x) return optimum.flatten() def away_oracle(self, grad, point_x): return max_vertex(grad, point_x.support) class ProbabilitySimplexPolytope(_AbstractFeasibleRegion): def __init__(self, dim): self.dim = dim @property def initial_point(self): v = np.zeros(self.dim) v[0] = 1.0 return v @property def initial_active_set(self): return [self.initial_point()] def lp_oracle(self, x): v = np.zeros(len(x), dtype=float) v[np.argmin(x)] = 1.0 return v # #This is a faster implementation of the away oracle without having to loop through active set. # def away_oracle(self, grad, x): # aux = np.multiply(grad, np.sign(x)) # indices = np.where(x > 0.0)[0] # v = np.zeros(len(x), dtype=float) # index_max = indices[np.argmax(aux[indices])] # v[index_max] = 1.0 # return v, index_max def away_oracle(self, grad, point_x): return max_vertex(grad, point_x.support) def projection(self, x): (n,) = x.shape # will raise ValueError if v is not 1-D if x.sum() == 1.0 and np.alltrue(x >= 0): return x v = x - np.max(x) u = np.sort(v)[::-1] cssv = np.cumsum(u) rho = np.count_nonzero(u * np.arange(1, n + 1) > (cssv - 1.0)) - 1 theta = float(cssv[rho] - 1.0) / (rho + 1) w = (v - theta).clip(min=0) return w class L1UnitBallPolytope(_AbstractFeasibleRegion): def __init__(self, dim): self.dim = dim @property def initial_point(self): v = np.zeros(self.dim) v[0] = 1.0 return v @property def initial_active_set(self): return [self.initial_point()] def lp_oracle(self, x): v = np.zeros(len(x), dtype=float) max_ind = np.argmax(np.abs(x)) v[max_ind] = -1.0 * np.sign(x[max_ind]) return v def away_oracle(self, grad, point_x): return max_vertex(grad, point_x.support) def projection(self, x): u = np.abs(x) if u.sum() <= 1.0: return x w = self.projectionSimplex(u) w *= np.sign(x) return w def projectionSimplex(self, x): (n,) = x.shape # will raise ValueError if v is not 1-D if x.sum() == 1.0 and np.alltrue(x >= 0): return x v = x - np.max(x) u = np.sort(v)[::-1] cssv = np.cumsum(u) rho = np.count_nonzero(u * np.arange(1, n + 1) > (cssv - 1.0)) - 1 theta = float(cssv[rho] - 1.0) / (rho + 1) w = (v - theta).clip(min=0) return w class ConstrainedL1BallPolytope(_AbstractFeasibleRegion): def __init__( self, l1_regularization, dim, const_matrix_ineq=None, const_vector_ineq=None, const_matrix_eq=None, const_vector_eq=None, solver_type="cvxopt", scipy_solver="revised simplex", sparse_solver=False, ): self.dim = dim self.l1_regularization = l1_regularization self.solver_type = solver_type if not (solver_type == "cvxopt" or solver_type == "scipy"): raise TypeError("Wrong solver type") if solver_type == "cvxopt": solvers.options["show_progress"] = False else: self.scipy_solver = scipy_solver if sparse_solver and not solver_type == "cvxopt": raise TypeError("scipy solver cannot handle sparse matrices.") simplex_dimensionality = int(2 * dim) if const_matrix_ineq is not None and const_vector_ineq is not None: num_ineq_constraints, dim_ineq_constraints = const_matrix_ineq.shape if not (dim_ineq_constraints == self.dim): raise ValueError( "Dimension of the inequality constraints does not match the dimensionality of the problem." ) self.G = np.vstack( ( np.hstack((const_matrix_ineq, -const_matrix_ineq)), -np.identity(simplex_dimensionality), ) ) self.h = np.append(const_vector_ineq, np.zeros(simplex_dimensionality)) if solver_type == "cvxopt": self.G = matrix( self.G, ( simplex_dimensionality + num_ineq_constraints, simplex_dimensionality, ), ) if sparse_solver: self.G = sparse(self.G) self.h = matrix( self.h, (simplex_dimensionality + num_ineq_constraints, 1) ) else: self.G = -np.identity(simplex_dimensionality) self.h = np.zeros(simplex_dimensionality) if solver_type == "cvxopt": self.G = matrix( self.G, ) self.h = matrix(self.h, (simplex_dimensionality, 1)) if sparse_solver: self.G = sparse(self.G) if const_matrix_eq is not None and const_vector_eq is not None: num_eq_constraints, dim_eq_constraints = const_matrix_eq.shape if not dim_eq_constraints == self.dim: raise ValueError( "Dimension of the equality constraints does not match the dimensionality of the problem." ) self.A = np.vstack( ( np.hstack((const_matrix_eq, -const_matrix_eq)), np.ones(simplex_dimensionality), ) ) self.b = np.append(const_vector_eq, self.l1_regularization).tolist() if solver_type == "cvxopt": self.A = matrix( self.A, (1 + num_eq_constraints, simplex_dimensionality) ) self.b = matrix(self.b, (1 + len(const_vector_eq), 1), "d") if sparse_solver: self.A = sparse(self.A) else: self.A = np.ones(simplex_dimensionality) self.b = self.l1_regularization if solver_type == "cvxopt": self.A = matrix(self.A, (1, simplex_dimensionality)) self.b = matrix(self.b) else: self.A = np.ones(simplex_dimensionality).reshape( (simplex_dimensionality, 1) ) self.b = np.asarray(self.b).reshape((1,)) @property def initial_point(self): c = np.ones(self.dim) return self.lp_oracle(c) @property def initial_active_set(self): return [self.initial_point()] def lp_oracle(self, x): cost_vector =
np.hstack((x, -x))
numpy.hstack
import os import joblib import numpy as np import pandas as pd from Fuzzy_clustering.version2.common_utils.logging import create_logger def compute_area_grid(lat, long, resolution, round_coord, levels): lat_range = np.arange(np.around(lat, round_coord) - 20, np.around(lat, round_coord) + 20, resolution) lat1 = lat_range[np.abs(lat_range - lat).argmin()] - resolution / 10 lat2 = lat_range[np.abs(lat_range - lat).argmin()] + resolution / 10 long_range = np.arange(np.around(long, round_coord) - 20, np.around(long, round_coord) + 20, resolution) long1 = long_range[np.abs(long_range - long).argmin()] - resolution / 10 long2 = long_range[np.abs(long_range - long).argmin()] + resolution / 10 return [[lat1 - resolution * levels, long1 - resolution * levels], [lat2 + resolution * levels, long2 + resolution * levels]] class ProjectGroupInit: """ Class responsible for managing and loading the power output or load. """ def __init__(self, static_data): """ Parameters ---------- static_data: python dict contains all the information required to load the power measurement for specific project(s). """ self.static_data = static_data # dict containing information about project paths, model structure and training # params, input file, see in util_database_timos.py and config_timos.py self.file_data = static_data['data_file_name'] # input .csv file PROBLEM_TYPE + '_ts.csv' i.e. wind_ts.csv self.project_owner = static_data[ 'project_owner'] # Name of project owner or research program i.e. my_projects or CROSSBOW self.projects_group = static_data['projects_group'] # Name of the country self.area_group = static_data['area_group'] # coordinates of the country self.version_group = static_data['version_group'] self.version_model = static_data['version_model'] self.weather_in_data = static_data[ 'weather_in_data'] # True if input file contains more columns than the power output column self.nwp_model = static_data['NWP_model'] self.nwp_resolution = static_data['NWP_resolution'] self.data_variables = static_data['data_variables'] # Variable names used self.projects = [] # list containing all the parks, we're interested in. Each park is considered as a project. self.use_rated = True self.model_type = self.static_data['type'] self.sys_folder = self.static_data['sys_folder'] self.path_nwp = self.static_data['path_nwp'] self.path_group = self.static_data['path_group'] self.path_nwp_group = self.static_data['path_nwp_group'] self.group_static_data = [] self.logger = create_logger(logger_name=f'ProjectInitManager_{self.model_type}', abs_path=self.path_group, logger_path=f'log_{self.projects_group}.log', write_type='a') def initialize(self): if os.path.exists(os.path.join(os.path.dirname(self.file_data), 'coord_auto_' + self.model_type + '.csv')): self.file_coord = os.path.join(os.path.dirname(self.file_data), 'coord_auto_' + self.model_type + '.csv') else: self.file_coord = os.path.join(os.path.dirname(self.file_data), 'coord_' + self.model_type + '.csv') if not os.path.exists(self.file_coord) and not self.weather_in_data: raise IOError('File with coordinates does not exist') self.file_rated = os.path.join(os.path.dirname(self.file_data), 'rated_' + self.model_type + '.csv') if not os.path.exists(self.file_rated): if self.model_type in {'wind', 'pv'} and self.projects_group not in {'IPTO'}: raise ValueError('Provide rated_power for each project. The type of projects is %s', self.model_type) self.use_rated = False else: self.use_rated = True self.load_power_of_parks() # Loads power output, coordinates and rated power. if len(self.projects) == 0: raise ImportError('No project loaded. check the input file in configuration') if self.check_project_names(): for project_name in self.projects: path_project = self.path_group + '/' + project_name if not os.path.exists(path_project): os.makedirs(path_project) path_model = path_project + '/model_ver' + str(self.version_model) if not os.path.exists(path_model): os.makedirs(path_model) path_backup = self.path_group + '/backup_models/' + project_name + '/model_ver' + str( self.version_model) if not os.path.exists(path_backup): os.makedirs(path_backup) path_data = path_model + '/DATA' if not os.path.exists(path_data): os.makedirs(path_data) path_fuzzy_models = path_model + '/fuzzy_models' if not os.path.exists(path_fuzzy_models): os.makedirs(path_fuzzy_models) if self.use_rated: if project_name == self.projects_group + '_' + self.model_type and project_name not in self.rated.index.to_list(): rated = self.rated.sum().to_list()[0] else: rated = self.rated.loc[project_name].to_list()[0] else: rated = None if hasattr(self, 'coord'): if project_name == 'APE_net' or self.model_type == 'load' or project_name == self.projects_group + '_' + self.model_type: coord = dict() for name, lat_long in self.coord.iterrows(): coord[name] = lat_long.values.tolist() else: coord = self.coord.loc[project_name].to_list() # [lat, long] else: coord = None area = self.create_area(coord) temp = {'_id': project_name, 'owner': self.project_owner, 'project_group': self.projects_group, 'type': self.model_type, 'location': coord, 'areas': area, 'rated': rated, 'path_project': path_project, 'path_model': path_model, 'path_group': self.path_group, 'version_group': self.version_group, 'version_model': self.version_model, 'path_backup': path_backup, 'path_data': path_data, 'pathnwp': self.path_nwp_group, 'path_fuzzy_models': path_fuzzy_models, 'run_on_platform': False, } static_data = dict() for key, value in self.static_data.items(): static_data[key] = value for key, value in temp.items(): static_data[key] = value self.group_static_data.append({'_id': project_name, 'static_data': static_data}) joblib.dump(static_data, os.path.join(path_model, 'static_data.pickle')) with open(os.path.join(path_model, 'static_data.txt'), 'w') as file: for k, v in static_data.items(): if not isinstance(v, dict): file.write(str(k) + ' >>> ' + str(v) + '\n\n') else: file.write(str(k) + ' >>> ' + '\n') for kk, vv in v.items(): file.write('\t' + str(kk) + ' >>> ' + str(vv) + '\n') joblib.dump(self.group_static_data, os.path.join(self.path_group, 'static_data_projects.pickle')) self.logger.info('Static data of all projects created') def check_project_names(self): flag = True if self.model_type in {'wind', 'pv'}: for name in self.projects: if name not in self.coord.index.to_list() and name != self.projects_group + '_' + self.model_type and name != 'APE_net': flag = False self.logger.info('There is inconsistency to files data and coord for the project %s', name) if not flag: raise ValueError('Inconsistency in project names between data and coord') if self.use_rated: for name in self.projects: if name not in self.rated.index.to_list() and name != self.projects_group + '_' + self.model_type: flag = False self.logger.info('There is inconsistency to files data and rated for the project %s', name) if not flag: raise ValueError('Inconsistency in project names between data and rated') return flag def load_power_of_parks(self): try: # Data containing power output or load. Each column refers to a different wind, pv park. self.data = pd.read_csv(self.file_data, header=0, index_col=0, parse_dates=True, dayfirst=True) except Exception: self.logger.info(f'Cannot import timeseries from the file {self.file_data}') raise IOError(f'Cannot import timeseries from the file {self.file_data}') self.logger.info('Timeseries imported successfully from the file %s', self.file_data) if 'total' in self.data.columns: # In some cases, the total output of all parks is included. self.data = self.data.rename( columns={'total': self.projects_group + '_' + self.model_type}) # e.g group = 'Greece' if self.static_data['Evaluation_start']: valid_combination = True time_offset = pd.DateOffset(hours=0) if self.model_type == 'fa': time_offset = pd.DateOffset(days=372) elif self.model_type == 'load': if self.data.columns[0] == 'lv_load': time_offset = pd.DateOffset(days=9001) else: if self.static_data['horizon'] == 'short-term': time_offset = pd.DateOffset(hours = 350) else: if self.static_data['ts_resolution'] == 'hourly': time_offset = pd.DateOffset(hours = 9001) elif self.static_data['ts_resolution'] == '15min': time_offset = pd.DateOffset(minutes = 60 * 9001) if valid_combination: try: eval_date = pd.to_datetime(self.static_data['Evaluation_start'], format='%d%m%Y %H:%M') self.data_eval = self.data.iloc[np.where(self.data.index > eval_date - time_offset)] self.data = self.data.iloc[np.where(self.data.index <= eval_date)] except Exception: raise ValueError('Wrong date format, use %d%m%Y %H:%M. Or the date does not exist in the dataset') if self.model_type == 'load': self.projects.append(self.data.columns[0]) elif self.model_type == 'fa': if self.version_model == 0: self.projects.append('fa_curr_morning') elif self.version_model == 1: self.projects.append('fa_ahead_morning') else: raise ValueError( 'Version model should be 0 for current day and 1 for day ahead otherwise choose another group version') else: for name in self.data.columns: var = f'{self.projects_group}_{self.model_type}' if name == 'total' else name self.projects.append(var) if not self.weather_in_data: try: # For each of the park, load its coordinates. (lat,long) single tuple self.coord = pd.read_csv(self.file_coord, header=None, index_col=0) except Exception: self.logger.info('Cannot import coordinates from the file %s', self.file_coord) raise IOError('Cannot import coordinates from the file %s', self.file_coord) self.logger.info('Coordinates imported successfully from the file %s', self.file_coord) else: self.logger.info('Coordinates in the data') if self.use_rated: try: # For each park, read its rated (maximum) power. self.rated = pd.read_csv(self.file_rated, header=None, index_col=0) except Exception: self.logger.info('Cannot import Rated Power from the file %s', self.file_rated) raise IOError('Cannot import Rated Power from the file %s', self.file_rated) self.logger.info('Rated Power imported successfully from the file %s', self.file_rated) self.logger.info('Data loaded successfully') def create_area(self, coord): levels = 4 if self.nwp_resolution == 0.05 else 2 round_coord = 1 if self.nwp_resolution == 0.05 else 0 if coord is None: area = dict() elif isinstance(coord, list): if len(coord) == 2: lat, long = coord[0], coord[1] area = compute_area_grid(lat, long, self.nwp_resolution, round_coord, levels) elif len(coord) == 4: area = list(np.array(coord).reshape(2, 2)) else: raise ValueError( 'Wrong coordinates. Should be point (lat, long) or area [lat1, long1, lat2, long2]') elif isinstance(coord, dict): area = dict() for key, value in coord.items(): if len(value) == 2: lat, long = value[0], value[1] area[key] = compute_area_grid(lat, long, self.nwp_resolution, round_coord, levels) else: area[key] =
np.array(value)
numpy.array
# -*- coding: utf-8 -*- """ Created on Mon Dec 14 19:53:25 2009 Author: josef-pktd generate arma sample using fft with all the lfilter it looks slow to get the ma representation first apply arma filter (in ar representation) to time series to get white noise but seems slow to be useful for fast estimation for nobs=10000 change/check: instead of using marep, use fft-transform of ar and ma separately, use ratio check theory is correct and example works DONE : feels much faster than lfilter -> use for estimation of ARMA -> use pade (scipy.misc) approximation to get starting polynomial from autocorrelation (is autocorrelation of AR(p) related to marep?) check if pade is fast, not for larger arrays ? maybe pade doesn't do the right thing for this, not tried yet scipy.pade([ 1. , 0.6, 0.25, 0.125, 0.0625, 0.1],2) raises LinAlgError: singular matrix also doesn't have roots inside unit circle ?? -> even without initialization, it might be fast for estimation -> how do I enforce stationarity and invertibility, need helper function get function drop imag if close to zero from numpy/scipy source, where? """ from __future__ import print_function import numpy as np import numpy.fft as fft #import scipy.fftpack as fft from scipy import signal #from try_var_convolve import maxabs from statsmodels.tsa.arima_process import ArmaProcess #trying to convert old experiments to a class class ArmaFft(ArmaProcess): '''fft tools for arma processes This class contains several methods that are providing the same or similar returns to try out and test different implementations. Notes ----- TODO: check whether we don't want to fix maxlags, and create new instance if maxlag changes. usage for different lengths of timeseries ? or fix frequency and length for fft check default frequencies w, terminology norw n_or_w some ffts are currently done without padding with zeros returns for spectral density methods needs checking, is it always the power spectrum hw*hw.conj() normalization of the power spectrum, spectral density: not checked yet, for example no variance of underlying process is used ''' def __init__(self, ar, ma, n): #duplicates now that are subclassing ArmaProcess super(ArmaFft, self).__init__(ar, ma) self.ar = np.asarray(ar) self.ma = np.asarray(ma) self.nobs = n #could make the polynomials into cached attributes self.arpoly = np.polynomial.Polynomial(ar) self.mapoly = np.polynomial.Polynomial(ma) self.nar = len(ar) #1d only currently self.nma = len(ma) def padarr(self, arr, maxlag, atend=True): '''pad 1d array with zeros at end to have length maxlag function that is a method, no self used Parameters ---------- arr : array_like, 1d array that will be padded with zeros maxlag : int length of array after padding atend : boolean If True (default), then the zeros are added to the end, otherwise to the front of the array Returns ------- arrp : ndarray zero-padded array Notes ----- This is mainly written to extend coefficient arrays for the lag-polynomials. It returns a copy. ''' if atend: return np.r_[arr, np.zeros(maxlag-len(arr))] else: return np.r_[np.zeros(maxlag-len(arr)), arr] def pad(self, maxlag): '''construct AR and MA polynomials that are zero-padded to a common length Parameters ---------- maxlag : int new length of lag-polynomials Returns ------- ar : ndarray extended AR polynomial coefficients ma : ndarray extended AR polynomial coefficients ''' arpad = np.r_[self.ar, np.zeros(maxlag-self.nar)] mapad = np.r_[self.ma, np.zeros(maxlag-self.nma)] return arpad, mapad def fftar(self, n=None): '''Fourier transform of AR polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial ''' if n is None: n = len(self.ar) return fft.fft(self.padarr(self.ar, n)) def fftma(self, n): '''Fourier transform of MA polynomial, zero-padded at end to n Parameters ---------- n : int length of array after zero-padding Returns ------- fftar : ndarray fft of zero-padded ar polynomial ''' if n is None: n = len(self.ar) return fft.fft(self.padarr(self.ma, n)) def fftarma(self, n=None): '''Fourier transform of ARMA polynomial, zero-padded at end to n The Fourier transform of the ARMA process is calculated as the ratio of the fft of the MA polynomial divided by the fft of the AR polynomial. Parameters ---------- n : int length of array after zero-padding Returns ------- fftarma : ndarray fft of zero-padded arma polynomial ''' if n is None: n = self.nobs return (self.fftma(n) / self.fftar(n)) def spd(self, npos): '''raw spectral density, returns Fourier transform n is number of points in positive spectrum, the actual number of points is twice as large. different from other spd methods with fft ''' n = npos w = fft.fftfreq(2*n) * 2 * np.pi hw = self.fftarma(2*n) #not sure, need to check normalization #return (hw*hw.conj()).real[n//2-1:] * 0.5 / np.pi #doesn't show in plot return (hw*hw.conj()).real * 0.5 / np.pi, w def spdshift(self, n): '''power spectral density using fftshift currently returns two-sided according to fft frequencies, use first half ''' #size = s1+s2-1 mapadded = self.padarr(self.ma, n) arpadded = self.padarr(self.ar, n) hw = fft.fft(
fft.fftshift(mapadded)
numpy.fft.fftshift
"""smp_base.models_actinf ..moduleauthor:: <NAME>, 2016-2017 Active inference models based on :mod:`smp.actinf` project code. This file contains the models_learners which can be used as adaptive models of sensorimotor contexts designed for an active inference approach. Currently implemented models are - k nearest neighbours (knn) - sparse online gaussian process models powered by Harold Soh's OTL library (soesgp, storkgp) - gaussian mixture model based on pypr's gmm (gmm) - hebbian connected SOM via bruno lara, guido schillaci (hebbsom) - incremental gaussian mixtures (igmm via juan acevedo-valle) - SOMs connected with hebbian associative links TODO: - consolidate calling convention / api for all model types -- init with single argument config dictionary -- predict, fit, sample, conditionals, visualize -- common test code - implement missing models - missing: single hidden layer networks: linear/elm/res with RLS/FORCE/MDN/EH, merge with otl - missing: imol/models.py - missing: im/models.py - missing: smp/models_seq.py - missing: smp/models_karpmdn.py - MDN model: florens, karpathy, hardmaru, amjad, cbonnett, edward - including 'predict_naive' and 'predict_full' methods that would capture returning confidences about the current prediction - other variables that might be used by the context to modulate exploration, learning and behaviour - disambiguate static and dynamic (conditional inference types) idim/odim - consistent sampling from probabilistic models (gmm, hebbsom, ...): sample from prior, stick with last sample's vicinity - model visualization - def visualize for all models - plot current / final som configuration - plot densities - hebbsom - som track residual error from map training - som use residual for adjusting rbf width - som extend sampling to sample actual prediction from gaussian with unit's mu and sigma """ import pickle from functools import partial import numpy as np import scipy.sparse as sparse import scipy.stats as stats import pylab as pl import matplotlib.gridspec as gridspec import pandas as pd from pandas.plotting import scatter_matrix from smp_base.models import smpModelInit, smpModel from smp_base.plot_utils import savefig from smp_base.plot_models import plot_nodes_over_data_1d_components_fig, plot_nodes_over_data_1d_components # KNN from sklearn.neighbors import KNeighborsRegressor # Online Gaussian Processes try: from otl_oesgp import OESGP from otl_storkgp import STORKGP HAVE_SOESGP = True except ImportError as e: print("couldn't import online GP models:", e) HAVE_SOESGP = False # Gaussian mixtures PyPR try: import pypr.clustering.gmm as gmm except ImportError as e: print("Couldn't import pypr.clustering.gmm", e) # hebbsom try: from kohonen.kohonen import Map, Parameters, ExponentialTimeseries, ConstantTimeseries from kohonen.kohonen import Gas, GrowingGas, GrowingGasParameters, Filter from kohonen.kohonen import argsample except ImportError as e: print("Couldn't import lmjohns3's kohonon SOM lib", e) # IGMM try: from igmm_cond import IGMM_COND except ImportError as e: print("Couldn't import IGMM lib", e) # requirements: otl, kohonen, pypr, igmm from smp_base.models_reservoirs import LearningRules import logging from smp_base.common import get_module_logger logger = get_module_logger(modulename = 'models_actinf', loglevel = logging.DEBUG) saveplot = False # True model_classes = ["KNN", "SOESGP", "STORKGP", "GMM", "HebbSOM", ",IGMM", "all"] class smpKNN(smpModel): """smpKNN k-NN function approximator smpmodel originally used for the active inference developmental model but generally reusable. """ defaults = { 'idim': 1, 'odim': 1, 'n_neighbors': 5, 'prior': 'random', # ['random', 'linear'] 'prior_width': 0.01, } @smpModelInit() def __init__(self, conf): """smpKNN.__init__ init """ smpModel.__init__(self, conf) # comply if not hasattr(self, 'modelsize'): self.modelsize = 1000 # self.n_neighbors # the scikit base model self.fwd = KNeighborsRegressor(n_neighbors = self.n_neighbors) # the data store self.X_ = [] self.y_ = [] self.hidden_dist = np.zeros((1, self.n_neighbors)) self.hidden_dist_sum = np.zeros((1, 1)) self.hidden_dist_sum_avg = np.zeros((1, 1)) self.hidden_idx = np.zeros((1, self.n_neighbors)) # bootstrap the model with prior self.bootstrap() def get_params(self, *args, **kwargs): if 'param' in kwargs: if 'w_norm' in kwargs['param']: # return np.tile(np.array([(len(self.X_) + len(self.y_))/2.0]), (self.odim, 1)) return np.tile(np.array([len(self.y_)]), (self.odim, 1)) return self.fwd.get_params() def visualize(self): pass def bootstrap(self): """smpKNN.bootstrap Bootstrap the model with some initial dummy samples to prepare it for inference after init """ # bootstrap model self.n_samples_bootstrap = max(10, self.n_neighbors) logger.info("%s.bootstrapping with %s prior" % (self.__class__.__name__, self.prior)) if self.prior == 'random': for i in range(self.n_samples_bootstrap): if self.idim == self.odim: self.X_.append(np.ones((self.idim, )) * i * 0.1) self.y_.append(np.ones((self.odim, )) * i * 0.1) else: noise_amp = self.prior_width self.X_.append(np.random.uniform( -noise_amp, noise_amp, (self.idim,))) self.y_.append(np.random.uniform( -noise_amp, noise_amp, (self.odim,))) elif self.prior == 'linear': for i in range(self.n_samples_bootstrap): p_ = -self.prior_width/2.0 + float(i)/self.n_samples_bootstrap X = np.ones((self.idim, )) * p_ + np.random.uniform(-0.01, 0.01) y = np.ones((self.odim, )) * p_ + np.random.uniform(-0.01, 0.01) self.X_.append(X) self.y_.append(y) # print(self.X_, self.y_) self.fwd.fit(self.X_, self.y_) def predict(self, X): """smpKNN.predict Predict Y using X on the current model state """ # FIXME: change scikit to store intermediate query results # or: fully local predict def self.hidden_dist, self.hidden_idx = self.fwd.kneighbors(X) self.hidden_dist_sum = np.mean(self.hidden_dist) self.hidden_dist_sum_avg = 0.1 * self.hidden_dist_sum + 0.9 * self.hidden_dist_sum_avg # self.hidden_idx_norm = self.hidden_idx.astype(np.float) * self.hidden_dist_sum_avg/1000.0 self.hidden_idx_norm = self.hidden_idx.astype(np.float) * 1e-3 # logger.debug('hidden dist = %s, idx = %s', self.hidden_dist, self.hidden_idx) return self.fwd.predict(X) def fit(self, X, y): """smpKNN.fit Single fit Y to X step. If the input is a batch of data, fit that entire batch and forgetting existing data in X' and Y'. If the input is a single data point, append to X' and Y' and refit the model to that new data. """ if X.shape[0] > 1: # batch of data # self.modelsize = X.shape[0] return self.fit_batch(X, y) # logger.debug("%s.fit[%d] len(X_) = %d, len(y_) = %d, modelsize = %d", self.__class__.__name__, self.cnt, len(self.X_), len(self.y_), self.modelsize) self.cnt += 1 # if len(self.X_) > self.modelsize: return self.X_.append(X[0,:]) # self.y_.append(self.m[0,:]) # self.y_.append(self.goal[0,:]) self.y_.append(y[0,:]) self.fwd.fit(self.X_, self.y_) def fit_batch(self, X, y): """smpKNN.fit Batch fit Y to X """ self.X_ = X.tolist() self.y_ = y.tolist() self.fwd.fit(self.X_, self.y_) ################################################################################ # ActiveInference OTL library based model, base class implementing predict, # predict_step (otl can't handle batches), fit, save and load methods class smpOTLModel(smpModel): """smpOTLModel Sparse online echo state gaussian process function approximator for active inference """ defaults = { 'idim': 1, 'odim': 1, 'otlmodel_type': 'soesgp', 'otlmodel': None, 'memory': 1, 'lag_off': 1, } @smpModelInit() def __init__(self, conf): # if conf is None: conf = self.defaults smpModel.__init__(self, conf) # self.otlmodel_type = "soesgp" # self.otlmodel = None # introspection self.cnt = 0 # explicit short term memory needed for tapping across lag gaps self.r_l = [] print( "otlmodel.memory", self.memory) self.r_ = np.zeros((self.modelsize, self.memory)) # self.r_ = np.random.uniform(-1, 1, (self.modelsize, self.memory)) * 1.0 # output variables arrays self.pred = np.zeros((self.odim, 1)) self.var = np.zeros((self.odim, 1)) # output variables lists self.pred_l = [] self.var_l = [] def update(self, X_): # update state self.otlmodel.update(X_) # store state self.r_ = np.roll(self.r_, shift = -1, axis = -1) self.otlmodel.getState(self.r_l) tmp = np.array([self.r_l]).T # print("%s r_ = %s, r[...,[-1] = %s, tmp = %s" % (self.__class__.__name__, self.r_.shape, self.r_[...,[-1]].shape, tmp.shape)) self.r_[...,[-1]] = tmp.copy() def predict(self, X,rollback = False): # row vector input if X.shape[0] > 1: # batch input ret = np.zeros((X.shape[0], self.odim)) for i in range(X.shape[0]): ret[i] = self.predict_step(X[i].flatten().tolist(), rollback = rollback) return ret else: X_ = X.flatten().tolist() return self.predict_step(X_, rollback = rollback) def predict_step(self, X_, rollback = False): # update state and store it self.update(X_) # predict output variables from state self.otlmodel.predict(self.pred_l, self.var_l) # return np.zeros((1, self.odim)) # set prediction variables self.pred = np.array(self.pred_l) self.var = np.abs(np.array(self.var_l)) # roll back the reservoir state if rollback on if rollback: self.r_ = np.roll(self.r_, shift = 1, axis = -1) self.otlmodel.setState(self.r_[...,[-1]].copy().flatten().tolist()) self.cnt += 1 return self.pred.reshape((1, self.odim)) def fit(self, X, y, update = True): """smpOTLModel.fit Fit model to data X, y """ if self.cnt < self.memory: return if X.shape[0] > 1: # batch of data return self.fit_batch(X, y) if update: X_ = X.flatten().tolist() self.update(X_) # print("X.shape", X.shape, len(X_), X_) # self.otlmodel.update(X_) # copy state into predefined structure # self.otlmodel.getState(self.r) # consider lag and restore respective state # print("otlmodel.fit lag_off", self.lag_off) r_lagged = self.r_[...,[-self.lag_off]] # print ("r_lagged", r_lagged.shape) self.otlmodel.setState(r_lagged.flatten().tolist()) # prepare target and fit # print("soesgp.fit y", type(y)) y_ = y.flatten().tolist() self.otlmodel.train(y_) # restore chronologically most recent state r_lagged = self.r_[...,[-1]] self.otlmodel.setState(r_lagged.flatten().tolist()) def fit_batch(self, X, y): for i in range(X.shape[0]): self.fit(X[[i]], y[[i]]) def save(self, filename): otlmodel_ = self.otlmodel self.otlmodel.save(filename + "_%s_model" % self.otlmodel_type) print("otlmodel", otlmodel_) self.otlmodel = None print("otlmodel", otlmodel_) pickle.dump(self, open(filename, "wb")) self.otlmodel = otlmodel_ print("otlmodel", self.otlmodel) @classmethod def load(cls, filename): # otlmodel_ = cls.otlmodel otlmodel_wrap = pickle.load(open(filename, "rb")) print("%s.load cls.otlmodel filename = %s, otlmodel_wrap.otlmodel_type = %s" % (cls.__name__, filename, otlmodel_wrap.otlmodel_type)) if otlmodel_wrap.otlmodel_type == "soesgp": otlmodel_cls = OESGP elif otlmodel_wrap.otlmodel_type == "storkgp": otlmodel_cls = STORKGP else: otlmodel_cls = OESGP otlmodel_wrap.otlmodel = otlmodel_cls() print("otlmodel_wrap.otlmodel", otlmodel_wrap.otlmodel) otlmodel_wrap.otlmodel.load(filename + "_%s_model" % otlmodel_wrap.otlmodel_type) # print("otlmodel_wrap.otlmodel", dir(otlmodel_wrap.otlmodel)) # cls.bootstrap(otlmodel_wrap) # otlmodel_wrap.otlmodel = otlmodel_ return otlmodel_wrap ################################################################################ # Sparse Online Echo State Gaussian Process (SOESGP) OTL library model class smpSOESGP(smpOTLModel): """smpSOESGP Sparse online echo state gaussian process function approximator for active inference """ # # for input modulation style # defaults = { # 'idim': 1, # 'odim': 1, # 'otlmodel_type': 'soesgp', # 'otlmodel': None, # 'modelsize': 300, # 'input_weight': 2.0, # 'output_feedback_weight': 0.0, # 'activation_function': 1, # 'leak_rate': 0.8, # 0.9, # 'connectivity': 0.1, # 'spectral_radius': 0.99, # 0.999, # # 'kernel_params': [10.0, 10.0], # [2.0, 2.0], # # 'noise': 0.01, # # 'kernel_params': [10.0, 10.0], # [2.0, 2.0], # # 'noise': 1.0, # 0.01, # 'kernel_params': [2.0, 2.0], # [2.0, 2.0], # 'noise': 5e-2, # 0.01, # 'epsilon': 1e-3, # 'capacity': 100, # 10 # 'random_seed': 101, # 'visualize': False, # } # for self-sampling style defaults = { 'idim': 1, 'odim': 1, 'otlmodel_type': 'soesgp', 'otlmodel': None, 'memory': 1, 'lag_off': 1, 'modelsize': 200, 'output_feedback_weight': 0.0, 'use_inputs_in_state': False, 'activation_function': 0, 'connectivity': 0.1, # 'kernel_params': [10.0, 10.0], # [2.0, 2.0], # 'noise': 0.01, # 'kernel_params': [10.0, 10.0], # [2.0, 2.0], # 'noise': 1.0, # 0.01, # pointmass 'input_weight': 1.0, 'kernel_params': [10.0, 1.5], 'noise': 5e-3, #8e-2, # 0.01, 'leak_rate': 0.1, # 0.9, 'spectral_radius': 0.9, # # barrel # 'input_weight': 1.0, # 'kernel_params': [1.2, 1.2], # [2.0, 2.0], # 'noise': 1e-2, # 'leak_rate': 0.9, # 0.9, # 'spectral_radius': 0.99, # 0.999, 'epsilon': 1e-4, 'capacity': 200, # 10 'random_seed': 106, 'visualize': False, } @smpModelInit() def __init__(self, conf): smpOTLModel.__init__(self, conf = conf) # self.otlmodel_type = "soesgp" self.otlmodel = OESGP() # self.res_size = 100 # 20 # self.input_weight = 1.0 # 1.0 # self.output_feedback_weight = 0.0 # self.activation_function = 1 # # leak_rate: x <= (1-lr) * input + lr * x # self.leak_rate = 0.96 # 0.05 # 0.0 # 0.1 # 0.3 # self.connectivity = 0.1 # self.spectral_radius = 0.99 # # covariances # self.kernel_params = [2.0, 2.0] # # self.kernel_params = [1.0, 1.0] # # self.kernel_params = [0.1, 0.1] # self.noise = 0.05 # self.epsilon = 1e-3 # self.capacity = 100 # self.random_seed = 100 # FIXME: constant? # self.X_ = [] # self.y_ = [] self.bootstrap() def bootstrap(self): from .models_reservoirs import res_input_matrix_random_sparse self.otlmodel.init(self.idim, self.odim, self.modelsize, self.input_weight, self.output_feedback_weight, self.activation_function, self.leak_rate, self.connectivity, self.spectral_radius, False, self.kernel_params, self.noise, self.epsilon, self.capacity, self.random_seed) im = res_input_matrix_random_sparse(self.idim, self.modelsize, 0.2) * self.input_weight # print("im", type(im)) self.otlmodel.setInputWeights(im.tolist()) ################################################################################ # StorkGP OTL based model class smpSTORKGP(smpOTLModel): """smpSTORKGP Sparse online echo state gaussian process function approximator for active inference """ defaults = { 'idim': 1, 'odim': 1, 'otlmodel_type': 'storkgp', 'otlmodel': None, 'modelsize': 50, 'memory': 1, 'lag_off': 1, 'input_weight': 1.0, 'output_feedback_weight': 0.0, 'activation_function': 1, 'leak_rate': 0.96, 'connectivity': 0.1, 'spectral_radius': 0.99, 'kernel_params': [2.0, 2.0], 'noise': 0.05, 'epsilon': 1e-3, 'capacity': 100, 'random_seed': 100, 'visualize': False, } @smpModelInit() def __init__(self, conf): smpOTLModel.__init__(self, conf = conf) # self.otlmodel_type = "storkgp" self.otlmodel = STORKGP() # self.res_size = self.modelsize # 100 # 20 self.bootstrap() def bootstrap(self): self.otlmodel.init( self.idim, self.odim, self.modelsize, # window size 0, # kernel type [0.5, 0.99, 1.0, self.idim], 1e-4, 1e-4, 100 # seed ) self.otlmodel.getState(self.r_l) # print("|self.r_l| = ", len(self.r_l)) self.r_ = np.zeros((len(self.r_l), self.memory)) ################################################################################ # inference type multivalued models: GMM, SOMHebb, MDN # these are somewhat different in operation than the models above # - fit vs. fit_batch # - can create conditional submodels # GMM - gaussian mixture model class smpGMM(smpModel): """smpGMM Gaussian mixture model based on PyPR's gmm """ defaults = { 'idim': 1, 'odim': 1, 'K': 10, 'fit_interval': 100, 'numepisodes': 10, 'visualize': False, 'em_max_iter': 1000} @smpModelInit() def __init__(self, conf): """smpGMM.__init__ """ smpModel.__init__(self, conf) self.cdim = self.idim + self.odim # data self.Xy_ = [] self.X_ = [] self.y_ = [] self.Xy = np.zeros((1, self.cdim)) # fitting configuration # self.fit_interval = 100 self.fitted = False # number of mixture components # self.K = K # list of K component idim x 1 centroid vectors # self.cen_lst = [] self.cen_lst = [] # np.random.uniform(-1, 1, (self.K,)).tolist() # list of K component idim x idim covariances self.cov_lst = [] # [np.eye(self.cdim) * 0.1 for _ in range(self.K)] # K mixture coeffs # self.p_k = None self.p_k = None # [1.0/self.K for _ in range(self.K)] # log loss after training self.logL = 0 print("%s.__init__, idim = %d, odim = %d" % (self.__class__.__name__, self.idim, self.odim)) def fit(self, X, y): """smpGMM.fit Single step fit: X, y are single patterns """ # print("%s.fit" % (self.__class__.__name__), X.shape, y.shape) if X.shape[0] == 1: # single step update, add to internal data and refit if length matches update intervale self.Xy_.append(np.hstack((X[0], y[0]))) self.X_.append(X[0]) self.y_.append(y[0]) if len(self.Xy_) % self.fit_interval == 0: # print("len(Xy_)", len(self.Xy_), self.Xy_[99]) # pl.plot(self.Xy_) # pl.show() # self.fit_batch(self.Xy) self.fit_batch(self.X_, self.y_) else: # batch fit, just fit model to the input data batch self.Xy_ += np.hstack((X, y)).tolist() # self.X_ += X.tolist() # self.y_ += y.tolist() # self.Xy = np.hstack((X, y)) # self.Xy = np.asarray(self.Xy_) # print("X_, y_", self.X_, self.y_) self.fit_batch(X, y) def fit_batch(self, X, y): """smpGMM.fit_batch Fit the GMM model with batch data """ # print("%s.fit X.shape = %s, y.shape = %s" % (self.__class__.__name__, X.shape, y.shape)) # self.Xy = np.hstack((X[:,3:], y[:,:])) # self.Xy = np.hstack((X, y)) # self.Xy = np.asarray(self.Xy_) # self.Xy = Xy # X = np.asarray(X_) # y = np.asarray(y_) self.Xy = np.hstack((X, y)) # self.Xy = np.asarray(self.Xy_) print("%s.fit_batch self.Xy.shape = %s" % (self.__class__.__name__, self.Xy.shape)) # fit gmm # max_iter = 10 try: self.cen_lst, self.cov_lst, self.p_k, self.logL = gmm.em_gm( self.Xy, K = self.K, max_iter = self.em_max_iter, verbose = False, iter_call = None) self.fitted = True except Exception as e: print( "%s.fit_batch fit failed with %s" % (self.__class__.__name__, e.args ,)) # sys.exit() print("%s.fit_batch Log likelihood (how well the data fits the model) = %f" % (self.__class__.__name__, self.logL)) def predict(self, X, rollback = False): """smpGMM.predict Predict Y from X by forwarding to default sample call """ return self.sample(X, rollback = rollback) def sample(self, X, rollback = False): """smpGMM.sample Default sample function Assumes the input is X with dims = idim located in the first part of the conditional inference combined input vector This method constructs the corresponding conditioning input from the reduced input """ print("%s.sample: X.shape = %s, idim = %d" % (self.__class__.__name__, X.shape, self.idim)) assert X.shape[1] == self.idim # cond = np.zeros((, self.cdim)) uncond = np.empty((X.shape[0], self.odim)) uncond[:] = np.nan # print("%s.sample: uncond.shape = %s" % (self.__class__.__name__, uncond.shape)) # np.array([np.nan for i in range(self.odim)]) cond = np.hstack((X, uncond)) # cond[:self.idim] = X.copy() # cond[self.idim:] = np.nan # print("%s.sample: cond.shape = %s" % (self.__class__.__name__, cond.shape)) if X.shape[0] > 1: # batch return self.sample_batch(cond) return self.sample_cond(cond) def sample_cond(self, X): """smpGMM.sample_cond Single sample from the GMM model with conditioning on single input pattern X TODO: function conditional_dist, make predict/sample comply with sklearn and use the lowlevel cond_dist for advanced uses like dynamic conditioning """ # gmm.cond_dist want's a (n, ) shape, not (1, n) if len(X.shape) > 1: cond = X[0] else: cond = X # print("%s.sample_cond: cond.shape = %s" % (self.__class__.__name__, cond.shape)) if not self.fitted: # return np.zeros((3,1)) # model has not been bootstrapped, return random goal cond_sample = np.random.uniform(-1.0, 1.0, (1, self.odim)) # FIXME hardcoded shape # cen_con = self.cen_lst # cov_con = self.cov_lst # new_p_k = self.p_k else: (cen_con, cov_con, new_p_k) = gmm.cond_dist(cond, self.cen_lst, self.cov_lst, self.p_k) # print( "cen_con", cen_con, "cov_con", cov_con, "p_k", new_p_k) cond_sample = gmm.sample_gaussian_mixture(cen_con, cov_con, new_p_k, samples = 1) # print("%s.sample_cond: cond_sample.shape = %s" % (self.__class__.__name__, cond_sample.shape)) return cond_sample def sample_batch(self, X): """smpGMM.sample_batch If X has more than one rows, return batch of samples for every condition row in X """ samples = np.zeros((X.shape[0], self.odim)) for i in range(X.shape[0]): samples[i] = self.sample_cond(X[i]) return samples # def sample_batch_legacy(self, X, cond_dims = [0], out_dims = [1], resample_interval = 1): # """smpGMM.sample_batch_legacy # Sample from gmm model with conditioning batch input X legacy function # """ # # compute conditional # sampmax = 20 # numsamplesteps = X.shape[0] # odim = len(out_dims) # self.idim - X.shape[1] # self.y_sample_ = np.zeros((odim,)) # self.y_sample = np.zeros((odim,)) # self.y_samples_ = np.zeros((sampmax, numsamplesteps, odim)) # self.y_samples = np.zeros((numsamplesteps, odim)) # self.cond = np.zeros_like(X[0]) # print("%s.sample_batch: y_samples_.shape = %s" % (self.__class__.__name__, self.y_samples_.shape)) # for i in range(numsamplesteps): # # if i % 100 == 0: # if i % resample_interval == 0: # # print("%s.sample_batch: sampling gmm cond prob at step %d" % (self.__class__.__name__, i)) # ref_interval = 1 # # self.cond = self.logs["EP"][(i+ref_interval) % self.logs["EP"].shape[0]] # self.X__[i,:3] # self.cond = X[(i+ref_interval) % numsamplesteps] # self.X__[i,:3] # # self.cond = np.array() # # self.cond[:2] = X_ # # print(self.cond, out_dims, X.shape) # self.cond[out_dims] = np.nan # (self.cen_con, self.cov_con, self.new_p_k) = gmm.cond_dist(self.cond, self.cen_lst, self.cov_lst, self.p_k) # # print "run_hook_e2p_sample gmm.cond_dist:", np.array(self.cen_con).shape, np.array(self.cov_con).shape, self.new_p_k.shape # samperr = 1e6 # j = 0 # while samperr > 0.1 and j < sampmax: # self.y_sample = gmm.sample_gaussian_mixture(self.cen_con, self.cov_con, self.new_p_k, samples = 1) # self.y_samples_[j,i] = self.y_sample # samperr_ = np.linalg.norm(self.y_sample - X[(i+1) % numsamplesteps,:odim], 2) # if samperr_ < samperr: # samperr = samperr_ # self.y_sample_ = self.y_sample # j += 1 # # print "sample/real err", samperr # print("sampled", j, "times") # else: # # retain samples from last sampling interval boundary # self.y_samples_[:,i] = self.y_samples_[:,i-1] # # return sample array # self.y_samples[i] = self.y_sample_ # return self.y_samples, self.y_samples_ # IGMM - incremental gaussian mixture model, from juan class smpIGMM(smpModel): """smpIGMM Gaussian mixture model based on PyPR's gmm """ defaults = {'idim': 1, 'odim': 1, 'K': 10, 'numepisodes': 10, 'visualize': False} @smpModelInit() def __init__(self, conf): """smpIGMM.__init__ """ smpModel.__init__(self, conf) self.cdim = self.idim + self.odim # number of mixture components # self.K = K # list of K component idim x 1 centroid vectors self.cen_lst = [] # list of K component idim x idim covariances self.cov_lst = [] # K mixture coeffs self.p_k = None self.cen_lst = np.random.uniform(-1, 1, (self.K,)).tolist() # list of K component idim x idim covariances self.cov_lst = [np.eye(self.cdim) * 0.1 for _ in range(self.K)] # K mixture coeffs # self.p_k = None self.p_k = [1.0/self.K for _ in range(self.K)] # log loss after training self.logL = 0 # data self.Xy_ = [] self.X_ = [] self.y_ = [] self.Xy = np.zeros((1, self.cdim)) # fitting configuration self.fit_interval = 100 self.fitted = False self.model = IGMM_COND(min_components=3, forgetting_factor=0.5) # print("%s.__init__, idim = %d, odim = %d" % (self.__class__.__name__, self.idim, self.odim)) def fit(self, X, y): """smpIGMM.fit Single step fit: X, y are single patterns """ # print("%s.fit" % (self.__class__.__name__), X.shape, y.shape) if X.shape[0] == 1: # single step update, add to internal data and refit if length matches update intervale self.Xy_.append(np.hstack((X[0], y[0]))) self.X_.append(X[0]) self.y_.append(y[0]) if len(self.Xy_) % self.fit_interval == 0: # print("len(Xy_)", len(self.Xy_), self.Xy_[99]) # pl.plot(self.Xy_) # pl.show() # self.fit_batch(self.Xy) self.fit_batch(self.X_, self.y_) self.Xy_ = [] self.X_ = [] self.y_ = [] else: # batch fit, just fit model to the input data batch self.Xy_ += np.hstack((X, y)).tolist() # self.X_ += X.tolist() # self.y_ += y.tolist() # self.Xy = np.hstack((X, y)) # self.Xy = np.asarray(self.Xy_) # print("X_, y_", self.X_, self.y_) self.fit_batch(X, y) def fit_batch(self, X, y): """smpIGMM.fit_batch Fit the IGMM model with batch data """ # print("%s.fit X.shape = %s, y.shape = %s" % (self.__class__.__name__, X.shape, y.shape)) # self.Xy = np.hstack((X[:,3:], y[:,:])) # self.Xy = np.hstack((X, y)) # self.Xy = np.asarray(self.Xy_) # self.Xy = Xy # X = np.asarray(X_) # y = np.asarray(y_) self.Xy = np.hstack((X, y)) # self.Xy = np.asarray(self.Xy_) print("%s.fit_batch self.Xy.shape = %s" % (self.__class__.__name__, self.Xy.shape)) # fit gmm # self.cen_lst, self.cov_lst, self.p_k, self.logL = gmm.em_gm(self.Xy, K = self.K, max_iter = 1000, # verbose = False, iter_call = None) self.model.train(self.Xy) self.fitted = True # print("%s.fit_batch Log likelihood (how well the data fits the model) = %f" % (self.__class__.__name__, self.logL)) def predict(self, X): """smpIGMM.predict Predict Y from X by forwarding to default sample call """ # print("IGMM.predict X.shape", X.shape, X) return self.sample(X) def sample(self, X): """smpIGMM.sample Default sample function Assumes the input is X with dims = idim located in the first part of the conditional inference combined input vector This method constructs the corresponding conditioning input from the reduced input """ # print("%s.sample: X.shape = %s, idim = %d" % (self.__class__.__name__, X.shape, self.idim)) assert X.shape[1] == self.idim # cond = np.zeros((, self.cdim)) uncond = np.empty((X.shape[0], self.odim)) uncond[:] = np.nan # print("%s.sample: uncond.shape = %s, %s" % (self.__class__.__name__, uncond.shape, uncond)) cond = np.hstack((X, uncond)) # cond[:self.idim] = X.copy() # cond[self.idim:] = np.nan # print("%s.sample: cond.shape = %s, %s" % (self.__class__.__name__, cond.shape, cond)) if X.shape[0] > 1: # batch return self.sample_batch(cond) sample = self.sample_cond(cond) # print("%s.sample sample = %s, X = %s" % (self.__class__.__name__, sample.shape, X.shape)) # FIXME: fix that inference configuration if sample.shape[1] == self.odim: return sample else: return sample[...,X.shape[1]:] def sample_cond(self, X): """smpIGMM.sample_cond Single sample from the IGMM model with conditioning on single input pattern X TODO: function conditional_dist, make predict/sample comply with sklearn and use the lowlevel cond_dist for advanced uses like dynamic conditioning """ if not self.fitted: # return np.zeros((3,1)) # model has not been bootstrapped, return random prediction return np.random.uniform(-0.1, 0.1, (1, self.odim)) # FIXME hardcoded shape # gmm.cond_dist want's a (n, ) shape, not (1, n) if len(X.shape) > 1: cond = X[0] else: cond = X # print("%s.sample_cond: cond.shape = %s" % (self.__class__.__name__, cond.shape)) # (cen_con, cov_con, new_p_k) = gmm.cond_dist(cond, self.cen_lst, self.cov_lst, self.p_k) # cond_sample = gmm.sample_gaussian_mixture(cen_con, cov_con, new_p_k, samples = 1) cond_sample = self.model.sample_cond_dist(cond, 1) # print("%s.sample_cond: cond_sample.shape = %s, %s" % (self.__class__.__name__, cond_sample.shape, cond_sample)) return cond_sample def sample_batch(self, X): """smpIGMM.sample_batch If X has more than one rows, return batch of samples for every condition row in X """ samples = np.zeros((X.shape[0], self.odim)) for i in range(X.shape[0]): samples[i] = self.sample_cond(X[i]) return samples ################################################################################ # Hebbian SOM model: connect to SOMs with hebbian links class smpHebbianSOM(smpModel): """smpHebbianSOM class Hebbian SOM model FIXME: conf: kohonen/map.Map init distribution and scaling FIXME: conf: fit_hebb onset delay FIXME: conf: sampling mode (weights, gaussian(wgts, sigmas), ... """ defaults = { 'idim': 1, 'odim': 1, 'numepisodes': 100, 'visualize': False, 'mapsize_e': 10, 'mapsize_p': 10, 'som_lr': 1e-0, 'som_nhs': 3, 'init_range': (-1.0, 1.0)} @smpModelInit() def __init__(self, conf): """smpHebbianSOM Two SOM's coding the input and output space connected by associative Hebbian links """ smpModel.__init__(self, conf) # SOMs training self assessment self.cnt_fit = 0 self.cnt_predict = 0 self.fitted = False self.soms_cnt_fit = 0 self.soms_cnt_predict = 0 self.soms_fitted = False self.hebb_cnt_fit = 0 self.hebb_cnt_predict = 0 self.hebb_fitted = False self.decay_const = -1e-5 # learning rate proxy self.ET = ExponentialTimeseries self.CT = ConstantTimeseries self.mapsize = 10 ** 2 # 100 # self.mapsize_e = mapsize_e # 100 # int(np.sqrt(self.mapsize)) # max(10, self.idim * 3) # self.mapsize_p = mapsize_p # 150 # int(np.sqrt(self.mapsize)) # max(10, self.odim * 3) self.numepisodes_som = self.numepisodes self.numepisodes_hebb = self.numepisodes # FIXME: make neighborhood_size decrease with time # som_lr = som_lr # 1e0 # som_lr = 1e-1 # Haykin, p475 # som_lr = 5e-1 # som_lr = 5e-4 # self.som_nhs = 3 # 1.5 maptype = "som" # maptype = "gas" # SOM exteroceptive stimuli 2D input if maptype == "som": if self.idim == 1: mapshape_e = (self.mapsize_e, ) else: mapshape_e = (self.mapsize_e, self.mapsize_e) # 1D better? # mapshape_e = (self.mapsize_e, ) self.kw_e = self.kwargs( shape = mapshape_e, dimension = self.idim, lr_init = self.som_lr, neighborhood_size = self.som_nhs, init_variance = 1.0) #, z = 0.001) # self.kw_e = self.kwargs(shape = (self.mapsize_e, self.mapsize_e), dimension = self.idim, lr_init = 0.5, neighborhood_size = 0.6) self.som_e = Map(Parameters(**self.kw_e)) elif maptype == "gas": self.kw_e = self.kwargs_gas(shape = (self.mapsize_e ** 2, ), dimension = self.idim, lr_init = self.som_lr, neighborhood_size = 0.5) self.som_e = Gas(Parameters(**self.kw_e)) # SOM proprioceptive stimuli 3D input if maptype == "som": if self.idim == 1: mapshape_p = (self.mapsize_p, ) else: mapshape_p = (int(self.mapsize_p), int(self.mapsize_p)) # 1D better? mapshape_p = (self.mapsize_p, ) self.kw_p = self.kwargs(shape = mapshape_p, dimension = self.odim, lr_init = self.som_lr, neighborhood_size = self.som_nhs, init_variance = 0.2) #, z = 0.001) # self.kw_p = self.kwargs(shape = (int(self.mapsize_p * 1.5), int(self.mapsize_p * 1.5)), dimension = self.odim, lr_init = 0.5, neighborhood_size = 0.7) self.som_p = Map(Parameters(**self.kw_p)) elif maptype == "gas": self.kw_p = self.kwargs_gas(shape = (self.mapsize_p ** 2, ), dimension = self.odim, lr_init = self.som_lr, neighborhood_size = 0.5) self.som_p = Gas(Parameters(**self.kw_p)) print("HebbianSOM mapsize_e,p", self.mapsize_e, self.mapsize_p) # FIXME: there was a nice trick for node distribution init in _some_ recently added paper # create "filter" using existing SOM_e, filter computes activation on distance self.filter_e = Filter(self.som_e, history=lambda: 0.0) # print("neurons_e", self.filter_e.map.neurons) self.filter_e.reset() # print("neurons_e", self.filter_e.map.neurons) self.filter_e_lr = self.filter_e.map._learning_rate # kw_f_p = kwargs(shape = (mapsize * 3, mapsize * 3), dimension = 3, neighborhood_size = 0.5, lr_init = 0.1) # filter_p = Filter(Map(Parameters(**kw_f_p)), history=lambda: 0.01) # create "filter" using existing SOM_p, filter computes activation on distance self.filter_p = Filter(self.som_p, history=lambda: 0.0) self.filter_p.reset() self.filter_p_lr = self.filter_p.map._learning_rate # Hebbian links # hebblink_som = np.random.uniform(-1e-4, 1e-4, (np.prod(som_e._shape), np.prod(som_p._shape))) # hebblink_filter = np.random.uniform(-1e-4, 1e-4, (np.prod(filter_e.map._shape), np.prod(filter_p.map._shape))) self.hebblink_som = np.zeros((np.prod(self.som_e._shape), np.prod(self.som_p._shape))) # self.hebblink_filter = np.zeros((np.prod(self.filter_e.map._shape), np.prod(self.filter_p.map._shape))) self.hebblink_filter = np.random.normal(0, 1e-6, (np.prod(self.filter_e.map._shape), np.prod(self.filter_p.map._shape))) # # sparse hebblink # self.hebblink_filter = sparse.rand(m = np.prod(self.filter_e.map._shape), # n = np.prod(self.filter_p.map._shape)) * 1e-3 self.hebblink_use_activity = True # use activation or distance # Hebbian learning rate if self.hebblink_use_activity: # self.hebblink_et = ExponentialTimeseries(self.decay_const, 1e-0, 0) self.hebblink_et = ConstantTimeseries(1e-0) # self.hebblink_et = ConstantTimeseries(0.0) else: self.hebblink_et = ConstantTimeseries(1e-12) # visualization if self.visualize: self.figs.append(plot_nodes_over_data_1d_components_fig(title = self.__class__.__name__, numplots = self.idim + self.odim)) # SOM argument dict def kwargs(self, shape=(10, 10), z=0.001, dimension=2, lr_init = 1.0, neighborhood_size = 1, init_variance = 1.0): """smpHebbianSOM params function for Map""" return dict( dimension = dimension, shape = shape, neighborhood_size = self.ET(self.decay_const, neighborhood_size, 0.1), # 1.0), learning_rate=self.ET(self.decay_const, lr_init, 0.0), # learning_rate=self.CT(lr_init), noise_variance=z, init_variance = init_variance) def kwargs_gas(self, shape=(100,), z=0.001, dimension=3, lr_init = 1.0, neighborhood_size = 1): """smpHebbianSOM params function for Gas""" return dict( dimension=dimension, shape=shape, neighborhood_size = self.ET(self.decay_const, neighborhood_size, 1.0), learning_rate=self.ET(self.decay_const, lr_init, 0.0), noise_variance=z) def visualize_model(self): """smpHebbianSOM.visualize_model Plot the model state visualization """ e_nodes, p_nodes = hebbsom_get_map_nodes(self, self.idim, self.odim) e_nodes_cov = np.tile(np.eye(self.idim) * 0.05, e_nodes.shape[0]).T.reshape((e_nodes.shape[0], self.idim, self.idim)) p_nodes_cov = np.tile(np.eye(self.odim) * 0.05, p_nodes.shape[0]).T.reshape((p_nodes.shape[0], self.odim, self.odim)) X = np.vstack(self.Xhist) Y = np.vstack(self.Yhist) # print(X.shape) plot_nodes_over_data_1d_components( fig = self.figs[0], X = X, Y = Y, mdl = self, e_nodes = e_nodes, p_nodes = p_nodes, e_nodes_cov = e_nodes_cov, p_nodes_cov = p_nodes_cov, saveplot = False ) def set_learning_rate_constant(self, c = 0.0): # print("fit_hebb", self.filter_e.map._learning_rate) self.filter_e.map._learning_rate = self.CT(c) self.filter_p.map._learning_rate = self.CT(c) # fix the SOMs with learning rate constant 0 self.filter_e_lr = self.filter_e.map._learning_rate self.filter_p_lr = self.filter_p.map._learning_rate def fit_soms(self, X, y): """smpHebbianSOM""" # print("%s.fit_soms fitting X = %s, y = %s" % (self.__class__.__name__, X.shape, y.shape)) # if X.shape[0] != 1, r # e = EP[i,:dim_e] # p = EP[i,dim_e:] self.filter_e.map._learning_rate = self.filter_e_lr self.filter_p.map._learning_rate = self.filter_p_lr # don't learn twice # som_e.learn(e) # som_p.learn(p) # TODO for j in numepisodes if X.shape[0] > 1: numepisodes = self.numepisodes_som else: numepisodes = 1 if X.shape[0] > 100: print("%s.fit_soms batch fitting of size %d" % (self.__class__.__name__, X.shape[0])) i = 0 j = 0 eps_convergence = 0.01 # eps_convergence = 0.005 dWnorm_e_ = 1 # short horizon dWnorm_p_ = 1 dWnorm_e__ = dWnorm_e_ + 2 * eps_convergence # long horizon dWnorm_p__ = dWnorm_p_ + 2 * eps_convergence idx_shuffle = np.arange(X.shape[0]) # for j in range(numepisodes): # (dWnorm_e_ == 0 and dWnorm_p_ == 0) or # while (dWnorm_e_ > 0.05 and dWnorm_p_ > 0.05): do_convergence = True while (do_convergence) and (np.abs(dWnorm_e__ - dWnorm_e_) > eps_convergence and np.abs(dWnorm_p__ - dWnorm_p_) > eps_convergence): # and j < 10: if j > 0 and j % 10 == 0: print("%s.fit_soms episode %d / %d" % (self.__class__.__name__, j, numepisodes)) if X.shape[0] == 1: # print("no convergence") do_convergence = False dWnorm_e = 0 dWnorm_p = 0 np.random.shuffle(idx_shuffle) # print("neurons_e 1", self.filter_e.map.neurons.flatten()) for i in range(X.shape[0]): # lidx = idx_shuffle[i] lidx = i self.filter_e.learn(X[lidx]) dWnorm_e += np.linalg.norm(self.filter_e.map.delta) self.filter_p.learn(y[lidx]) dWnorm_p += np.linalg.norm(self.filter_p.map.delta) # print("neurons_e 2", self.filter_e.map.neurons.flatten(), X, X[lidx]) dWnorm_e /= X.shape[0] dWnorm_e /= self.filter_e.map.numunits dWnorm_p /= X.shape[0] dWnorm_p /= self.filter_p.map.numunits # short dWnorm_e_ = 0.8 * dWnorm_e_ + 0.2 * dWnorm_e dWnorm_p_ = 0.8 * dWnorm_p_ + 0.2 * dWnorm_p # long dWnorm_e__ = 0.83 * dWnorm_e__ + 0.17 * dWnorm_e_ dWnorm_p__ = 0.83 * dWnorm_p__ + 0.17 * dWnorm_p_ # print("%s.fit_soms batch e |dW| = %f, %f, %f" % (self.__class__.__name__, dWnorm_e, dWnorm_e_, dWnorm_e__)) # print("%s.fit_soms batch p |dW| = %f, %f, %f" % (self.__class__.__name__, dWnorm_p, dWnorm_p_, dWnorm_p__)) j += 1 if True and self.soms_cnt_fit % 100 == 0: print("%s.fit_soms batch e mean error = %f, min = %f, max = %f" % ( self.__class__.__name__, np.asarray(self.filter_e.distances_).mean(), np.asarray(self.filter_e.distances_[-1]).min(), np.asarray(self.filter_e.distances_).max() )) print("%s.fit_soms batch p mean error = %f, min = %f, max = %f" % ( self.__class__.__name__, np.asarray(self.filter_p.distances_).mean(), np.asarray(self.filter_p.distances_[-1]).min(), np.asarray(self.filter_p.distances_).max() )) # print np.argmin(som_e.distances(e)) # , som_e.distances(e) self.soms_cnt_fit += 1 def fit_hebb(self, X, y): """smpHebbianSOM""" # print("%s.fit_hebb fitting X = %s, y = %s" % (self.__class__.__name__, X.shape, y.shape)) if X.shape[0] == 1 and self.soms_cnt_fit < 200: # 200: # 1500: return # numepisodes_hebb = 1 if X.shape[0] > 100: print("%s.fit_hebb batch fitting of size %d" % (self.__class__.__name__, X.shape[0])) numsteps = X.shape[0] ################################################################################ # fix the SOMs with learning rate constant 0 self.filter_e_lr = self.filter_e.map._learning_rate self.filter_p_lr = self.filter_p.map._learning_rate # print("fit_hebb", self.filter_e.map._learning_rate) self.filter_e.map._learning_rate = self.CT(0.0) self.filter_p.map._learning_rate = self.CT(0.0) e_shape = (np.prod(self.filter_e.map._shape), 1) p_shape = (np.prod(self.filter_p.map._shape), 1) eps_convergence = 0.05 z_err_coef_1 = 0.8 z_err_coef_2 = 0.83 z_err_norm_ = 1 # fast z_err_norm__ = z_err_norm_ + 2 * eps_convergence # slow Z_err_norm = np.zeros((self.numepisodes_hebb*numsteps,1)) Z_err_norm_ = np.zeros((self.numepisodes_hebb*numsteps,1)) W_norm = np.zeros((self.numepisodes_hebb*numsteps,1)) # # plotting # pl.ion() # fig = pl.figure() # fig2 = pl.figure() # TODO for j in numepisodes # j = 0 if X.shape[0] > 1: numepisodes = self.numepisodes_hebb else: numepisodes = 1 i = 0 dWnorm_ = 10.0 j = 0 # for j in range(numepisodes): do_convergence = True while do_convergence and z_err_norm_ > eps_convergence and np.abs(z_err_norm__ - z_err_norm_) > eps_convergence: # and j < 20: if j > 0 and j % 10 == 0: print("%s.fit_hebb episode %d / %d" % (self.__class__.__name__, j, numepisodes)) if X.shape[0] == 1: # print("no convergence") do_convergence = False for i in range(X.shape[0]): # just activate self.filter_e.learn(X[i]) self.filter_p.learn(y[i]) # fetch data induced activity if self.hebblink_use_activity: p_ = self.filter_p.activity.reshape(p_shape) # print(p_.shape) else: p_ = self.filter_p.distances(p).flatten().reshape(p_shape) p__ = p_.copy() # p_ = p_ ** 2 p_ = (p_ == np.max(p_)) * 1.0 e_ = self.filter_e.activity.reshape(e_shape) # flatten() e__ = e_.copy() # e_ = e_ ** 2 e_ = (e_ == np.max(e_)) * 1.0 # compute prediction for p using e activation and hebbian weights if self.hebblink_use_activity: # print(self.hebblink_filter.T.shape, self.filter_e.activity.reshape(e_shape).shape) # p_bar = np.dot(self.hebblink_filter.T, self.filter_e.activity.reshape(e_shape)) # e_act = e_.reshape(e_shape) # e_act p_bar = np.dot(self.hebblink_filter.T, e_.reshape(e_shape)) # # sparse # p_bar = self.hebblink_filter.T.dot(e_.reshape(e_shape)) # print("p_bar", type(p_bar)) else: p_bar = np.dot(self.hebblink_filter.T, self.filter_e.distances(e).flatten().reshape(e_shape)) p_bar_ = p_bar.copy() p_bar = (p_bar == np.max(p_bar)) * 1.0 # print("p_bar", type(p_bar), type(p_bar_)) # # plotting # ax1 = fig.add_subplot(411) # ax1.cla() # ax1.plot(e_ * np.max(e__)) # ax1.plot(e__) # ax2 = fig.add_subplot(412) # ax2.cla() # ax2.plot(p_ * np.max(p_bar_)) # ax2.plot(p__) # ax2.plot(p_bar * np.max(p_bar_)) # ax2.plot(p_bar_) # ax3 = fig.add_subplot(413) # ax3.cla() # ax3.plot(self.filter_e.distances_[-1]) # ax4 = fig.add_subplot(414) # ax4.cla() # ax4.plot(self.filter_p.distances_[-1]) # pl.pause(0.001) # pl.draw() # inject activity prediction p_bar_sum = p_bar.sum() if p_bar_sum > 0: p_bar_normed = p_bar / p_bar_sum else: p_bar_normed = np.zeros(p_bar.shape) # compute prediction error: data induced activity - prediction # print("p_", np.linalg.norm(p_)) # print("p_bar", np.linalg.norm(p_bar)) z_err = p_ - p_bar idx = np.argmax(p_bar_) # print("sum E", np.sum(z_err)) # print("idx", p_bar_, idx, z_err[idx]) # z_err = (p_[idx] - p_bar[idx]) * np.ones_like(p_) # z_err = np.ones_like(p_) * # print("z_err", z_err) # z_err = p_bar - p_ # z_err_norm = np.linalg.norm(z_err, 2) z_err_norm = np.sum(np.abs(z_err)) # if j == 0 and i == 0: # z_err_norm_ = z_err_norm # else: z_err_norm_ = z_err_coef_1 * z_err_norm_ + (1 - z_err_coef_1) * z_err_norm z_err_norm__ = z_err_coef_2 * z_err_norm__ + (1 - z_err_coef_2) * z_err_norm w_norm = np.linalg.norm(self.hebblink_filter) # logidx = (j*numsteps) + i # Z_err_norm [logidx] = z_err_norm # Z_err_norm_[logidx] = z_err_norm_ # W_norm [logidx] = w_norm # z_err = p_bar - self.filter_p.activity.reshape(p_bar.shape) # print "p_bar.shape", p_bar.shape # print "self.filter_p.activity.flatten().shape", self.filter_p.activity.flatten().shape # if i % 100 == 0: # print("%s.fit_hebb: iter %d/%d: z_err.shape = %s, |z_err| = %f, |W| = %f, |p_bar_normed| = %f" % (self.__class__.__name__, logidx, (self.numepisodes_hebb*numsteps), z_err.shape, z_err_norm_, w_norm, np.linalg.norm(p_bar_normed))) # d_hebblink_filter = et() * np.outer(self.filter_e.activity.flatten(), self.filter_p.activity.flatten()) eta = self.hebblink_et() if eta > 0.0: if False and self.hebblink_use_activity: # eta = 5e-4 # outer = np.outer(self.filter_e.activity.flatten(), np.clip(z_err, 0, 1)) # outer = np.outer(e_, np.clip(z_err, 0, 1)) # outer = np.outer(e_, p_) # outer = np.outer(e_, p__ * np.clip(z_err, 0, 1)) # FIXME: this can be optimized with sparsity # print("e_", e_, e__, p_) outer = np.outer(e_ * e__, p_) # print(outer.shape, self.hebblink_filter.shape) # print("outer", outer) # print("modulator", z_err[idx]) # d_hebblink_filter = eta * outer * (-1e-3 - z_err[idx]) # d_hebblink_filter = eta * np.outer(z_err, self.filter_e.activity.flatten()).T # d_hebblink_filter = eta * outer * np.abs((z_err_norm_ - z_err_norm)) # d_hebblink_filter = eta * outer * (z_err_norm - z_err_norm_) d_hebblink_filter = eta * outer # # plotting # f2ax1 = fig2.add_subplot(111) # f2ax1.imshow(self.hebblink_filter.T, interpolation="none") # # im = f2ax1.imshow(outer, interpolation="none") # # f2ax2 = pl.colorbar(im, ax=f2ax1) # pl.pause(1e-5) # pl.draw() elif self.hebblink_use_activity: e_idx = np.argmax(e_) p_idx = np.argmax(p_) # print("e_", e_idx, "p_", p_idx) d_hebblink_filter = np.zeros_like(self.hebblink_filter) else: d_hebblink_filter = eta * np.outer(self.filter_e.distances(e), z_err) # does what? self.hebblink_filter[e_idx, p_idx] += eta * e__[e_idx] dWnorm = np.linalg.norm(d_hebblink_filter) dWnorm_ = 0.8 * dWnorm_ + 0.2 * dWnorm # print ("dWnorm", dWnorm) # self.hebblink_filter += d_hebblink_filter # print("hebblink_filter type", type(self.hebblink_filter)) # print("np.linalg.norm(self.hebblink_filter, 2)", np.linalg.norm(self.hebblink_filter, 2)) self.hebblink_filter /= np.linalg.norm(self.hebblink_filter, 2) j += 1 if False and self.hebb_cnt_fit % 100 == 0: # print("hebblink_filter type", type(self.hebblink_filter)) # print(Z_err_norm) # print("%s.fit_hebb error p/p_bar %f" % (self.__class__.__name__, np.array(Z_err_norm)[:logidx].mean())) print("%s.fit_hebb |dW| = %f, |W| = %f, mean err = %f / %f" % (self.__class__.__name__, dWnorm_, w_norm, np.min(z_err), np.max(z_err))) # z_err_norm_, z_err_norm__)) # print("%s.fit_hebb |W| = %f" % (self.__class__.__name__, w_norm)) self.hebb_cnt_fit += 1 def fit(self, X, y): """smpHebbianSOM Fit model to data """ # print("%s.fit fitting X = %s, y = %s" % (self.__class__.__name__, X, y)) # if X,y have more than one row, train do batch training on SOMs and links # otherwise do single step update on both or just the latter? self.fit_soms(X, y) self.fit_hebb(X, y) self.fitted = True # if self.visualize: # self.Xhist.append(X) # self.Yhist.append(y) # if self.cnt_fit % 100 == 0: # self.visualize_model() self.cnt_fit += 1 def predict(self, X): """smpHebbianSOM""" return self.sample(X) def sample(self, X): """smpHebbianSOM.sample""" # print("%s.sample X.shape = %s, %d" % (self.__class__.__name__, X.shape, 0)) if len(X.shape) == 2 and X.shape[0] > 1: # batch return self.sample_batch(X) return self.sample_cond(X) def sample_cond(self, X): """smpHebbianSOM.sample_cond: draw single sample from model conditioned on X""" # print("%s.sample_cond X.shape = %s, %d" % (self.__class__.__name__, X.shape, 0)) # fix the SOMs with learning rate constant 0 self.filter_e_lr = self.filter_e.map._learning_rate self.filter_p_lr = self.filter_p.map._learning_rate # print("fit_hebb", self.filter_e.map._learning_rate) self.filter_e.map._learning_rate = self.CT(0.0) self.filter_p.map._learning_rate = self.CT(0.0) e_shape = (np.prod(self.filter_e.map._shape), 1) p_shape = (np.prod(self.filter_p.map._shape), 1) # activate input network self.filter_e.learn(X) # pl.plot(self.filter_e. # propagate activation via hebbian associative links if self.hebblink_use_activity: e_ = self.filter_e.activity.reshape((np.prod(self.filter_e.map._shape), 1)) e_ = (e_ == np.max(e_)) * 1.0 e2p_activation = np.dot(self.hebblink_filter.T, e_) # print("e2p_activation", e2p_activation) self.filter_p.activity = np.clip((e2p_activation / (np.sum(e2p_activation) + 1e-9)).reshape(self.filter_p.map._shape), 0, np.inf) else: e2p_activation = np.dot(self.hebblink_filter.T, self.filter_e.distances(e).flatten().reshape(e_shape)) # sample the output network with sidxs = self.filter_p.sample(100) # print("sidxs", stats.mode(sidxs)[0], sidxs) # sidx = self.filter_p.sample(1)[0] # find the mode (most frequent realization) of distribution sidx = stats.mode(sidxs)[0][0] e2p_w_p_weights = self.filter_p.neuron(self.filter_p.flat_to_coords(sidx)) # e2p_w_p_weights = self.filter_p.neuron(self.filter_p.flat_to_coords(np.argmax(self.filter_p.activity))) # ret = np.random.normal(e2p_w_p_weights, self.filter_p.sigmas[sidx], (1, self.odim)) ret = np.random.normal(e2p_w_p_weights, np.sqrt(self.filter_p.sigmas[sidx]), (1, self.odim)) # ret = np.random.normal(e2p_w_p_weights, 0.01, (1, self.odim)) # print("hebbsom sample", sidx, e2p_w_p_weights) # , sidxs) # , self.filter_p.sigmas[sidx]) # ret = e2p_w_p_weights.reshape((1, self.odim)) return ret def sample_prior(self): """smpHebbianSOM.sample_prior Sample from input map prior distribution """ # print("pr") # pass # print("prior", self.filter_e.map.prior) # sidxs = argsample(self.filter_e.map.prior, n = 1) sidxs = argsample(np.sum(self.filter_e.sigmas, axis = 1), n = 1) prior_sample_mu = self.filter_e.neuron(self.filter_e.flat_to_coords(sidxs[0])) # print ('prior_sample_mu', prior_sample_mu.shape, self.filter_e.sigmas[sidxs[0]].shape) # prior_sample = np.random.normal(prior_sample_mu, self.filter_e.sigmas[sidxs[0]]).reshape((self.idim, 1)) prior_sample = prior_sample_mu.reshape((self.idim, 1)) # print("prior_sample", prior_sample) return prior_sample # def sample_cond_legacy(self, X): # """smpHebbianSOM.sample_cond: sample from model conditioned on X""" # sampling_search_num = 100 # e_shape = (np.prod(self.filter_e.map._shape), 1) # p_shape = (np.prod(self.filter_p.map._shape), 1) # # P_ = np.zeros((X.shape[0], self.odim)) # # E_ = np.zeros((X.shape[0], self.idim)) # e2p_w_p_weights = self.filter_p.neuron(self.filter_p.flat_to_coords(self.filter_p.sample(1)[0])) # for i in range(X.shape[0]): # # e = EP[i,:dim_e] # # p = EP[i,dim_e:] # e = X[i] # # print np.argmin(som_e.distances(e)), som_e.distances(e) # self.filter_e.learn(e) # # print "self.filter_e.winner(e)", self.filter_e.winner(e) # # filter_p.learn(p) # # print "self.filter_e.activity.shape", self.filter_e.activity.shape # # import pdb; pdb.set_trace() # if self.hebblink_use_activity: # e2p_activation = np.dot(self.hebblink_filter.T, self.filter_e.activity.reshape((np.prod(self.filter_e.map._shape), 1))) # self.filter_p.activity = np.clip((e2p_activation / np.sum(e2p_activation)).reshape(self.filter_p.map._shape), 0, np.inf) # else: # e2p_activation = np.dot(self.hebblink_filter.T, self.filter_e.distances(e).flatten().reshape(e_shape)) # # print "e2p_activation.shape, np.sum(e2p_activation)", e2p_activation.shape, np.sum(e2p_activation) # # print "self.filter_p.activity.shape", self.filter_p.activity.shape # # print "np.sum(self.filter_p.activity)", np.sum(self.filter_p.activity), (self.filter_p.activity >= 0).all() # # self.filter_p.learn(p) # # emodes: 0, 1, 2 # emode = 0 # # if i % 1 == 0: # if emode == 0: # e2p_w_p_weights_ = [] # for k in range(sampling_search_num): # # filter.sample return the index of the sampled unit # e2p_w_p_weights = self.filter_p.neuron(self.filter_p.flat_to_coords(self.filter_p.sample(1)[0])) # e2p_w_p_weights_.append(e2p_w_p_weights) # pred = np.array(e2p_w_p_weights_) # # print "pred", pred # # # if we can compare against something # # pred_err = np.linalg.norm(pred - p, 2, axis=1) # # # print "np.linalg.norm(e2p_w_p_weights - p, 2)", np.linalg.norm(e2p_w_p_weights - p, 2) # # e2p_w_p = np.argmin(pred_err) # # if not pick any # e2p_w_p = np.random.choice(pred.shape[0]) # # print("pred_err", e2p_w_p, pred_err[e2p_w_p]) # e2p_w_p_weights = e2p_w_p_weights_[e2p_w_p] # elif emode == 1: # if self.hebblink_use_activity: # e2p_w_p = np.argmax(e2p_activation) # else: # e2p_w_p = np.argmin(e2p_activation) # e2p_w_p_weights = self.filter_p.neuron(self.filter_p.flat_to_coords(e2p_w_p)) # elif emode == 2: # e2p_w_p = self.filter_p.winner(p) # e2p_w_p_weights = self.filter_p.neuron(self.filter_p.flat_to_coords(e2p_w_p)) # # P_[i] = e2p_w_p_weights # # E_[i] = environment.compute_sensori_effect(P_[i]) # # print("e2p shape", e2p_w_p_weights.shape) # return e2p_w_p_weights.reshape((1, self.odim)) def sample_batch(self, X): """smpHebbianSOM.sample_batch: If X has more than one rows, return batch of samples for every condition row in X""" samples = np.zeros((X.shape[0], self.odim)) for i in range(X.shape[0]): samples[i] = self.sample_cond(X[i]) return samples def sample_batch_legacy(self, X, cond_dims = [0], out_dims = [1], resample_interval = 1): """smpHebbianSOM""" print("%s.sample_batch_legacy data X = %s" % (self.__class__.__name__, X)) sampmax = 20 numsamplesteps = X.shape[0] odim = len(out_dims) # self.idim - X.shape[1] self.y_sample_ = np.zeros((odim,)) self.y_sample = np.zeros((odim,)) self.y_samples_ = np.zeros((sampmax, numsamplesteps, odim)) self.y_samples = np.zeros((numsamplesteps, odim)) self.cond = np.zeros_like(X[0]) return self.y_samples, self.y_samples_ ################################################################################ # models_actinf: model testing and plotting code ################################################################################ def hebbsom_get_map_nodes(mdl, idim, odim): """hebbsom_get_map_nodes Get all the nodes of the coupled SOM maps """ e_nodes = mdl.filter_e.map.neurons p_nodes = mdl.filter_p.map.neurons # print("e_nodes", e_nodes.shape, "p_nodes", p_nodes.shape) e_nodes = e_nodes.reshape((-1,idim)) p_nodes = p_nodes.reshape((-1,odim)) # print("e_nodes", e_nodes.shape, "p_nodes", p_nodes.shape) return (e_nodes, p_nodes) def hebbsom_predict_full(X, Y, mdl): """hebbsom_predict_full Predict using a HebbSOM and return full internal activations as tuple - (predictions (samples), distances (SOM distance func), activiations (distances after act. func)) """ distances = [] activities = [] predictions = np.zeros_like(Y) # have to loop over single steps until we generalize predict function to also yield distances and activities for h in range(X.shape[0]): # X_ = (Y[h]).reshape((1, odim)) X_ = X[h] # print("X_", X_.shape, X_) # predict proprio 3D from extero 2D predictions[h] = mdl.predict(X_) # print("X_.shape = %s, %d" % (X_.shape, 0)) # print("prediction.shape = %s, %d" % (prediction.shape, 0)) distances.append(mdl.filter_e.distances(X_).flatten()) activities.append(mdl.filter_e.activity.flatten()) activities_sorted = activities[-1].argsort() # print("Y[h]", h, Y[h].shape, prediction.shape) return (predictions, distances, activities) def plot_nodes_over_data_scattermatrix(X, Y, mdl, e_nodes, p_nodes, e_nodes_cov, p_nodes_cov, saveplot = False): """plot_nodes_over_data_scattermatrix Plot SOM node locations over input data as scattermatrix all X comps over all Y comps. """ idim = X.shape[1] odim = Y.shape[1] numplots = idim + odim # e_nodes, p_nodes = hebbsom_get_map_nodes(mdl, idim, odim) dfcols = [] dfcols += ["e_%d" % i for i in range(idim)] dfcols += ["p_%d" % i for i in range(odim)] # X_plus_e_nodes = np.vstack((X, e_nodes)) # Y_plus_p_nodes = np.vstack((Y, p_nodes)) # df = pd.DataFrame(np.hstack((X_plus_e_nodes, Y_plus_p_nodes)), columns=dfcols) df = pd.DataFrame(np.hstack((X, Y)), columns=dfcols) sm = scatter_matrix(df, alpha=0.2, figsize=(5,5), diagonal="hist") # print("sm = %s" % (sm)) # loop over i/o components idims = list(range(idim)) odims = list(range(idim, idim+odim)) for i in range(numplots): for j in range(numplots): if i != j and i in idims and j in idims: # center = np.array() # x1, x2 = gmm.gauss_ellipse_2d(centroids[i], ccov[i]) sm[i,j].plot(e_nodes[:,j], e_nodes[:,i], "ro", alpha=0.5, markersize=8) if i != j and i in odims and j in odims: sm[i,j].plot(p_nodes[:,j-idim], p_nodes[:,i-idim], "ro", alpha=0.5, markersize=8) # if i != j and i in idims and j in odims: # sm[i,j].plot(p_nodes[:,j-idim], e_nodes[:,i], "go", alpha=0.5, markersize=8) # if i != j and i in odims and j in idims: # sm[i,j].plot(e_nodes[:,j], p_nodes[:,i-idim], "go", alpha=0.5, markersize=8) # get figure reference from axis and show fig = sm[0,0].get_figure() fig.suptitle("Predictions over data scattermatrix (%s)" % (mdl.__class__.__name__)) if saveplot: filename = "plot_nodes_over_data_scattermatrix_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def plot_nodes_over_data_scattermatrix_hexbin(X, Y, mdl, predictions, distances, activities, saveplot = False): """models_actinf.plot_nodes_over_data_scattermatrix_hexbin Plot models nodes (if applicable) over the hexbinned data expanding dimensions as a scattermatrix. """ idim = X.shape[1] odim = Y.shape[1] numplots = idim * odim + 2 fig = pl.figure() fig.suptitle("Predictions over data xy scattermatrix/hexbin (%s)" % (mdl.__class__.__name__)) gs = gridspec.GridSpec(idim, odim) figaxes = [] for i in range(idim): figaxes.append([]) for o in range(odim): figaxes[i].append(fig.add_subplot(gs[i,o])) err = 0 # colsa = ["k", "r", "g", "c", "m", "y"] # colsb = ["k", "r", "g", "c", "m", "y"] colsa = ["k" for col in range(idim)] colsb = ["r" for col in range(odim)] for i in range(odim): # odim * 2 for j in range(idim): # pl.subplot(numplots, 1, (i*idim)+j+1) ax = figaxes[j][i] # target = Y[h,i] # X__ = X_[j] # X[h,j] # err += np.sum(np.square(target - prediction)) # ax.plot(X__, [target], colsa[j] + ".", alpha=0.25, label="target_%d" % i) # ax.plot(X__, [prediction[0,i]], colsb[j] + "o", alpha=0.25, label="pred_%d" % i) # ax.plot(X[:,j], Y[:,i], colsa[j] + ".", alpha=0.25, label="target_%d" % i) ax.hexbin(X[:,j], Y[:,i], gridsize = 20, alpha=0.75, cmap=pl.get_cmap("gray")) ax.plot(X[:,j], predictions[:,i], colsb[j] + "o", alpha=0.15, label="pred_%d" % i, markersize=8) # pred1 = mdl.filter_e.neuron(mdl.filter_e.flat_to_coords(activities_sorted[-1])) # ax.plot(X__, [pred1], "ro", alpha=0.5) # pred2 = mdl.filter_e.neuron(mdl.filter_e.flat_to_coords(activities_sorted[-2])) # ax.plot(X__, [pred2], "ro", alpha=0.25) # print("accum total err = %f" % (err / X.shape[0] / (idim * odim))) if saveplot: filename = "plot_nodes_over_data_scattermatrix_hexbin_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def plot_hebbsom_links_distances_activations(X, Y, mdl, predictions, distances, activities, saveplot = False): """plot the hebbian link matrix, and all node distances and activities for all inputs""" hebblink_log = np.log(mdl.hebblink_filter.T + 1.0) fig = pl.figure() fig.suptitle("Debugging SOM: hebbian links, distances, activities (%s)" % (mdl.__class__.__name__)) gs = gridspec.GridSpec(4, 1) # pl.plot(X, Y, "k.", alpha=0.5) # pl.subplot(numplots, 1, numplots-1) ax1 = fig.add_subplot(gs[0]) ax1.set_title('hebbian associative links') # im1 = ax1.imshow(mdl.hebblink_filter, interpolation="none", cmap=pl.get_cmap("gray")) im1 = ax1.pcolormesh(hebblink_log, cmap=pl.get_cmap("gray")) ax1.set_xlabel("in (e)") ax1.set_ylabel("out (p)") cbar = fig.colorbar(mappable = im1, ax=ax1, orientation="horizontal") ax2 = fig.add_subplot(gs[1]) ax2.set_title('distances over time') distarray = np.array(distances) # print("distarray.shape", distarray.shape) pcm = ax2.pcolormesh(distarray.T) cbar = fig.colorbar(mappable = pcm, ax=ax2, orientation="horizontal") # pl.subplot(numplots, 1, numplots) ax3 = fig.add_subplot(gs[2]) ax3.set_title('activations propagated via hebbian links') actarray = np.array(activities) # print("actarray.shape", actarray.shape) pcm = ax3.pcolormesh(actarray.T) cbar = fig.colorbar(mappable = pcm, ax=ax3, orientation="horizontal") ax4 = fig.add_subplot(gs[3]) ax4.set_title('flattened link table') ax4.plot(hebblink_log.flatten()) # print("hebblink_log", hebblink_log) if saveplot: filename = "plot_hebbsom_links_distances_activations_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def plot_mdn_mues_over_data_scan(X, Y, mdl, saveplot = False): mues = [] sigs = [] pis = [] print("plot_mdn_mues_over_data_scan: X", X.shape) fig = pl.figure() gs = gridspec.GridSpec(2, 2) dim = Y.shape[1] xscan = np.linspace(-np.pi, np.pi, 101).reshape((-1, 1)) num_mu = mdl.mixcomps * dim # num_sig = mixcomps * d ** 2 num_sig = ((dim ** 2 - dim)/2 + dim) * mdl.mixcomps num_pi = mdl.mixcomps if X.shape[1] > 1: xscan = np.hstack((xscan, xscan)) print("xscan", xscan.shape) xscan = X[:100] for xs in xscan: # print("xs", xs) xs = np.atleast_2d(xs) print("xs", xs) y = mdl.predict(xs) # mues.append(mdl.model.z[:mdl.mixcomps,0]) # sigs.append(np.exp(mdl.model.z[mdl.mixcomps:(2*mdl.mixcomps),0])) # pis.append(mdl.lr.softmax(mdl.model.z[(2*mdl.mixcomps):,0])) mues.append(mdl.model.z[:num_mu]) sigs.append(np.exp(mdl.model.z[num_mu:num_mu + num_sig])) pis.append(mdl.lr.softmax(mdl.model.z[-num_pi:])) # print("xs", xs, "ys", y) # print("mues", mues) numpoints = xscan.shape[0] mues = np.vstack(mues).reshape((numpoints, mdl.mixcomps, dim)) sigs = np.vstack(sigs).reshape((numpoints, mdl.mixcomps, num_sig / mdl.mixcomps)) pis = np.vstack(pis).reshape((numpoints, mdl.mixcomps)) print("mues", mues.shape) print("sigs", sigs.shape) print("pis", pis.shape) colors = ['r', 'g', 'b', 'c', 'y', 'm'] for h in range(dim): # ax = fig.add_subplot(dim, 2, h + 1) ax = fig.add_subplot(gs[h,0]) for i in range(mdl.mixcomps): for j in range(xscan.shape[0]): # print("mues", mues[[j],[i]], "pis", pis[j,i]) ax.plot( xscan[[j]], mues[[j],[i],[h]], marker = 'o', markerfacecolor = colors[i % len(colors)], markeredgecolor = colors[i % len(colors)], alpha = pis[j,i]) # ax.plot(xscan[[j]], mues[[j],[i],[h]] - sigs[[j],[i],[h]], "bo", alpha = pis[j,i], markersize = 2.5) # ax.plot(xscan[[j]], mues[[j],[i],[h]] + sigs[[j],[i],[h]], "bo", alpha = pis[j,i], markersize = 2.5) ax = fig.add_subplot(gs[0,1]) if dim == 1: plot_predictions_over_data(X, Y, mdl, saveplot, ax = ax, datalim = 1000) else: plot_predictions_over_data_2D(X, Y, mdl, saveplot, ax = ax, datalim = 1000) for i in range(mdl.mixcomps): ax.plot(mues[:,i,0], mues[:,i,1], linestyle = "none", marker = 'o', markerfacecolor = colors[i % len(colors)], alpha = np.mean(pis[:,i])) # ax.plot(xscan, mues - sigs, "bo", alpha = 0.5, markersize = 2.0) # ax.plot(xscan, mues + sigs, "bo", alpha = 0.5, markersize = 2.0) # ax.plot(xscan, mues, "ro", alpha = 0.5) # ax.plot(mues, xscan, "ro", alpha = 0.5) if saveplot: filename = "plot_mdn_mues_over_data_scan_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def plot_predictions_over_data(X, Y, mdl, saveplot = False, ax = None, datalim = 1000): do_hexbin = False if X.shape[0] > 4000: do_hexbin = False # True X = X[-4000:] Y = Y[-4000:] # plot prediction idim = X.shape[1] odim = Y.shape[1] numsamples = 1 # 2 Y_samples = [] for i in range(numsamples): Y_samples.append(mdl.predict(X)) # print("Y_samples[0]", Y_samples[0]) fig = pl.figure() fig.suptitle("Predictions over data xy (numsamples = %d, (%s)" % (numsamples, mdl.__class__.__name__)) gs = gridspec.GridSpec(odim, 1) for i in range(odim): ax = fig.add_subplot(gs[i]) target = Y[:,i] if do_hexbin: ax.hexbin(X, Y, gridsize = 20, alpha=1.0, cmap=pl.get_cmap("gray")) else: ax.plot(X, target, "k.", label="Y_", alpha=0.5) for j in range(numsamples): prediction = Y_samples[j][:,i] # print("X", X.shape, "prediction", prediction.shape) # print("X", X, "prediction", prediction) if do_hexbin: ax.hexbin(X[:,i], prediction, gridsize = 30, alpha=0.6, cmap=pl.get_cmap("Reds")) else: ax.plot(X[:,i], prediction, "r.", label="Y_", alpha=0.25) # get limits xlim = ax.get_xlim() ylim = ax.get_ylim() error = target - prediction mse = np.mean(np.square(error)) mae = np.mean(np.abs(error)) xran = xlim[1] - xlim[0] yran = ylim[1] - ylim[0] ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.3, "mse = %f" % mse) ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.5, "mae = %f" % mae) if saveplot: filename = "plot_predictions_over_data_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def plot_predictions_over_data_2D(X, Y, mdl, saveplot = False, ax = None, datalim = 1000): do_hexbin = False if X.shape[0] > datalim: do_hexbin = False # True X = X[-datalim:] Y = Y[-datalim:] # plot prediction idim = X.shape[1] odim = Y.shape[1] numsamples = 1 # 2 Y_samples = [] for i in range(numsamples): Y_samples.append(mdl.predict(X)) # print("Y_samples[0]", Y_samples[0].shape) # Y_samples if ax is None: fig = pl.figure() fig.suptitle("Predictions over data xy (numsamples = %d, (%s)" % (numsamples, mdl.__class__.__name__)) gs = gridspec.GridSpec(1, 1) ax = fig.add_subplot(gs[0]) else: fig = None ax.plot(Y[:,0], Y[:,1], 'ko', alpha = 0.1) ax.plot(Y_samples[0][:,0], Y_samples[0][:,1], 'r.', alpha = 0.1) ax.set_aspect(1) # for i in range(odim): # ax = fig.add_subplot(gs[i]) # target = Y[:,i] # if do_hexbin: # ax.hexbin(X, Y, gridsize = 20, alpha=1.0, cmap=pl.get_cmap("gray")) # else: # ax.plot(X, target, "k.", label="Y_", alpha=0.5) # for j in range(numsamples): # prediction = Y_samples[j][:,i] # # print("X", X.shape, "prediction", prediction.shape) # # print("X", X, "prediction", prediction) # if do_hexbin: # ax.hexbin(X[:,i], prediction, gridsize = 30, alpha=0.6, cmap=pl.get_cmap("Reds")) # else: # ax.plot(X[:,i], prediction, "r.", label="Y_", alpha=0.25) # # get limits # xlim = ax.get_xlim() # ylim = ax.get_ylim() # error = target - prediction # mse = np.mean(np.square(error)) # mae = np.mean(np.abs(error)) # xran = xlim[1] - xlim[0] # yran = ylim[1] - ylim[0] # ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.3, "mse = %f" % mse) # ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.5, "mae = %f" % mae) if fig is not None: if saveplot: filename = "plot_predictions_over_data_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def plot_predictions_over_data_ts(X, Y, mdl, saveplot = False): # plot prediction idim = X.shape[1] odim = Y.shape[1] numsamples = 2 Y_samples = [] print("Xxx", X.shape) for i in range(numsamples): Y_samples.append(mdl.predict(X)) print("Y_samples[0]", Y_samples[0]) fig = pl.figure() fig.suptitle("Predictions over data timeseries (numsamples = %d), (%s)" % (numsamples, mdl.__class__.__name__)) gs = gridspec.GridSpec(odim, 1) for i in range(odim): # pl.subplot(odim, 2, (i*2)+1) ax = fig.add_subplot(gs[i]) target = Y[:,i] ax.plot(target, "k.", label="Y_", alpha=0.5) # pl.subplot(odim, 2, (i*2)+2) # prediction = Y_[:,i] # pl.plot(target, "k.", label="Y") mses = [] maes = [] errors = [] for j in range(numsamples): prediction = Y_samples[j][:,i] error = target - prediction errors.append(error) mse = np.mean(np.square(error)) mae = np.mean(np.abs(error)) mses.append(mse) maes.append(mae) # pl.plot(prediction, target, "r.", label="Y_", alpha=0.25) ax.plot(prediction, "r.", label="Y_", alpha=0.25) errors = np.asarray(errors) # print("errors.shape", errors.shape) aes = np.min(np.abs(errors), axis=0) ses = np.min(np.square(errors), axis=0) mae = np.mean(aes) mse = np.mean(ses) # get limits xlim = ax.get_xlim() ylim = ax.get_ylim() xran = xlim[1] - xlim[0] yran = ylim[1] - ylim[0] ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.3, "mse = %f" % mse) ax.text(xlim[0] + xran * 0.1, ylim[0] + yran * 0.5, "mae = %f" % mae) # pl.plot(X[:,i], Y[:,i], "k.", alpha=0.25) if saveplot: filename = "plot_predictions_over_data_ts_%s.jpg" % (mdl.__class__.__name__,) savefig(fig, filename) fig.show() def get_class_from_name(name = "KNN"): """models_actinf.get_class_from_name Get a class by a common name string. """ if name == "KNN": cls = smpKNN elif name == "SOESGP": cls = smpSOESGP elif name == "STORKGP": cls = smpSTORKGP elif name == "GMM": cls = partial(smpGMM, K = 20) elif name == "IGMM": cls = partial(smpIGMM, K = 20) elif name == "HebbSOM": cls = smpHebbianSOM elif name == 'resRLS': from smp_base.models_learners import smpSHL cls = smpSHL else: cls = smpKNN return cls def generate_inverted_sinewave_dataset(N = 1000, f = 1.0, p = 0.0, a1 = 1.0, a2 = 0.3): """models_actinf.generate_inverted_sinewave_dataset Generate the inverted sine dataset used in Bishop's (Bishop96) mixture density paper Returns: - matrices X, Y """ X = np.linspace(0,1,N) # FIXME: include phase p Y = a1 * X + a2 * np.sin(f * (2 * 3.1415926) * X) + np.random.uniform(-0.1, 0.1, N) X,Y = Y[:,np.newaxis],X[:,np.newaxis] # pl.subplot(211) # pl.plot(Y, X, "ko", alpha=0.25) # pl.subplot(212) # pl.plot(X, Y, "ko", alpha=0.25) # pl.show() return X,Y def generate_2devensimpler_component(x): """models_actinf.generate_2devensimpler_component Generate a two-dimensional correspondence dataset to test covariance learning of the multivariate mixture density learning rule. Returns: - matrix X """ y1_1 = np.sin(x * 10.0) * 0.5 + x * 0.3 + x ** 2 * 0.05 y1_1 += np.random.normal(0, np.abs(x - np.mean(x)) * 0.3) y1_2 = np.sin(x * 5.0) * 0.3 + x * 0.5 - x ** 2 * 0.2 y1_2 += np.random.normal(0, np.abs(x - np.mean(x)) * 0.3) print(y1_1.shape, y1_2.shape) return
np.vstack((y1_1, y1_2))
numpy.vstack
# -*- coding: utf-8 -*- # Copyright 2018, IBM. # # This source code is licensed under the Apache License, Version 2.0 found in # the LICENSE.txt file in the root directory of this source tree """Common visualization utilities.""" import PIL import numpy as np from qiskit.converters import circuit_to_dag from qiskit.tools.visualization._error import VisualizationError def _validate_input_state(quantum_state): """Validates the input to state visualization functions. Args: quantum_state (ndarray): Input state / density matrix. Returns: rho: A 2d numpy array for the density matrix. Raises: VisualizationError: Invalid input. """ rho = np.asarray(quantum_state) if rho.ndim == 1: rho = np.outer(rho,
np.conj(rho)
numpy.conj
from __future__ import print_function try: import cv2 except ModuleNotFoundError: print("Please install opencv-python module using following command:\npip3 install opencv-python") import stmpy import numpy as np import scipy as sp import matplotlib as mpl import matplotlib.pyplot as plt import scipy.optimize as opt import scipy.ndimage as snd from scipy.interpolate import interp1d, interp2d from skimage import transform as tf from skimage.feature import peak_local_max from pprint import pprint import types ''' REFERENCES: [1] <NAME>, et al. "Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+d for phase determination in intra-unit-cell Fourier transform STM", New J. Phys. 14, 053017 (2012). [2] <NAME>, PhD thesis (Ch. 3), http://davisgroup.lassp.cornell.edu/theses/Thesis_JamesSlezak.pdf History: 2017-04-28 CREATED BY <NAME> 04/29/2019 RL : Add documents for all functions. Add another method to calculate phasemap. Add inverse FFT method to apply the drift field. 03/25/2021 RL : Change the whole drift corr library to function based library ''' ################################################################################## ######################### Wrapped functions for easy use ######################### ################################################################################## def find_drift_parameter(A, r=None, w=None, mask3=None, cut1=None, cut2=None, bp_angle=None, orient=None, bp_c=None,\ sigma=10, method='lockin', even_out=False, show=True, **kwargs): ''' This method find drift parameters from a 2D map automatically. Input: A - Required : 2D array of topo or LIY in real space. r - Optional : width of the gaussian mask, ratio to the full map size, to remove low-q noise, =r*width Set r=None will disable this mask. w - Optional : width of the mask that filters out noise along qx=0 and qy=0 lines. Set w=None will disable this mask. mask3 - Optional : Tuple for custom-defined mask. mask3 = [n, offset, width], where n is order of symmetry, offset is initial angle, width is the width of the mask. e.g., mask3 = [4, np.pi/4, 5], or mask3 = [6, 0, 10]. Set mask3=None will disable this mask. even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice cut1 - Optional : List of length 1 or length 4, specifying how much bad area or area with too large drift to be cut cut2 - Optional : List of length 1 or length 4, specifying after local drift correction how much to crop on the edge angle_offset- Optional : The min offset angle of the Bragg peak to the x-axis, in unit of rad bp_angle - Optional : The angle between neighboring Bragg peaks, if not given, it will be computed based on all Bragg peaks orient - Optional : The orientation of the Bragg peaks with respect to the x-axis bp_c - Optional : The correct Bragg peak position that user wants after the drift correction sigma - Optional : Floating number specifying the size of mask to be used in phasemap() method - Optional : Specifying which method to apply the drift correction "lockin": Interpolate A and then apply it to a new set of coordinates, (x-ux, y-uy) "convolution": Used inversion fft to apply the drift fields show - Optional : Boolean, if True then A and Bragg peaks will be plotted out. **kwargs - Optional : key word arguments for findBraggs function Returns: p : A dict of parameters that can be directly applied to drift correct orther 2D or 3D datasets Usage: p = find_drift(z, sigma=4, cut1=None, cut2=[0,7,0,7], show=True) History: 06/23/2020 - RL : Initial commit. ''' p = {} if cut1 is not None: A = cropedge(A, n=cut1) # find the Bragg peak before the drift correction bp1 = findBraggs(A, r=r, w=w, mask3=mask3, show=show, **kwargs) bp1 = sortBraggs(bp1, s=np.shape(A)) if bp_c is None: # Find the angle between each Bragg peaks if bp_angle is None: N = len(bp1) Q = bp_to_q(bp1, A) angles = [] for i in range(N-1): angles.append(np.arctan2(*Q[i+1]) - np.arctan2(*Q[i])) # Here is the commonly used angles in the real world angle_list = np.array([0, np.pi/6, np.pi/4, np.pi/3, np.pi/2]) offset = np.absolute(np.mean(angles) - angle_list) index = np.argmin(offset) bp_angle = angle_list[index] if orient is None: orient = np.absolute(np.arctan2(*Q[0])) # Calculate the correction position of each Bragg peak bp_c = generate_bp(A, bp1, angle=bp_angle, orient= orient, even_out=even_out) # Find the phasemap thetax, thetay, Q1, Q2 = phasemap(A, bp=bp_c, method=method, sigma=sigma) phix = fixphaseslip(thetax, method='unwrap') phiy = fixphaseslip(thetay, method='unwrap') ux, uy = driftmap(phix, phiy, Q1, Q2, method=method) z_temp = driftcorr(A, ux, uy, method=method, interpolation='cubic') # This part interpolates the drift corrected maps if cut2 is None: z_c = z_temp else: bp3 = findBraggs(z_temp, r=r, w=w, mask3=mask3, **kwargs) z_c = cropedge(z_temp, n=cut2, bp=bp3, force_commen=True) p['bp3'] = bp3 # This part displays the intermediate maps in the process of drift correction if show is True: fig, ax = plt.subplots(1, 2, figsize=[8, 4]) c = np.mean(phix) s = np.std(phix) fig.suptitle('Phasemaps after fixing phase slips:') ax[0].imshow(phix, origin='lower', clim=[c-5*s, c+5*s]) ax[1].imshow(phiy, origin='lower', clim=[c-5*s, c+5*s]) A_fft = stmpy.tools.fft(A, zeroDC=True) B_fft = stmpy.tools.fft(z_c, zeroDC=True) c1 = np.mean(A_fft) s1 = np.std(A_fft) c2 = np.mean(A) s2 = np.std(A) fig, ax = plt.subplots(2, 2, figsize=[8, 8]) fig.suptitle('Maps before and after drift correction:') ax[0,0].imshow(A, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2]) ax[0,1].imshow(A_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1]) ax[1,0].imshow(z_c, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2]) ax[1,1].imshow(B_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1]) p['cut1'] = cut1 p['cut2'] = cut2 p['r'] = r p['w'] = w p['mask3'] = mask3 p['sigma'] = sigma p['method'] = method p['even_out'] = even_out p['bp_c'] = bp_c p['bp_angle'] = bp_angle p['orient'] = orient p['bp1'] = bp1 p['phix'] = phix p['phiy'] = phiy p['ux'] = ux p['uy'] = uy return z_c, p def apply_drift_parameter(A, p, **kwargs): ''' Apply the drifr correction parameters p to the 2D or 3D map A. Input: A - Required : 2D or 3D map to be drift corrected p - Required : A collection of parameters to be used in drift correction. Use parameters (those parameters should be generated by find_drift_parameter automatically) cut1 : cut2 : ux : uy : method : bp3 : **kwargs - Optional : Returns: A_c : 2D or 3D map with drift removed. Usage: A_c = apply_drift_parameter(A, p) History: 06/23/2020 - RL : Initial commit. ''' data_c = np.copy(A) if p['cut1'] is None: data_c = data_c else: data_c = cropedge(data_c, n=p['cut1']) data_corr = driftcorr(data_c, ux=p['ux'], uy=p['uy'], method=p['method'], interpolation='cubic') if p['cut2'] is None: data_out = data_corr else: data_out = cropedge(data_corr, bp=p['bp3'], n=p['cut2'], force_commen=True) return data_out ################################################################################## ###################### Basic building blocks for OOD use ######################### ################################################################################## def get_para(A, a0=None, size=None, angle=np.pi/2, orient=np.pi/4, pixels=None, even_out=False, use_a0=False): ''' Get parameters that are useful for the drift correction Input: A - Required : Spy object of topo (2D) or map (3D). a0 - Optional : Lattice constant in the unit of nm. size - Optional : Size of the map in the unit of nm. If not offered, it'll be created automatically from header file. angle - Optional : Angle of the lattice. If the lattice is n-fold symmetry, then angle = 2*pi/n orient - Optional : Angle of the 1st Bragg peak. It's actually the orientation of the scan frame with respect to the Lattice. pixels - Optional : Number of pixels of the topo/map. If not offered, it'll be created automatically from header file. even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice Returns: p - Dict, contains necessary information for the Usage: import stmpy.driftcorr as dfc dfc.getAttrs(topo, a0=a0) ''' if size is None: try: size = A.header['scan_range'][-2:] except KeyError: try: #size = float(A.header['Grid settings'].split(";")[-2]) size = [float(k) for k in A.header['Grid settings'].split(";")[-2:]] except: print( "Error: Cannot find map size from header. Please input it manually.") if pixels is None: try: #pixels = int(A.header['scan_pixels'][-1]) pixels = [int(k) for k in A.header['scan_pixels'][-2:]] except KeyError: try: pixels = int(A.header['Grid dim'].split()[-1][:-1]) except: print( "Error: Cannot find number of pixels from header. Please input it manually.") if not isinstance(size, list): sizex, sizey = size, size else: sizex, sizey = size if not isinstance(pixels, list): pixelx, pixely = pixels, pixels else: pixelx, pixely = pixels if a0 is None: use_a0 = False a0 = 1 # parameters related to the map itself A.dfc_para = { 'a0': a0, 'size': np.array([sizex, sizey]), 'pixels': np.array([pixelx, pixely]), 'qmag': np.array([sizex, sizey]) / a0, 'qscale': np.array([pixelx, pixely]) / (2*np.array([sizex, sizey]) / a0), 'angle': angle, 'orient': orient, 'use_a0': use_a0, 'even_out': even_out, } def find_drift(self, A, r=None, w=None, mask3=None, cut1=None, cut2=None, \ sigma=10, method='convolution', even_out=False, show=True, **kwargs): ''' This method find drift field from a 2D map automatically. Input: A - Required : 2D array of topo or LIY in real space. r - Optional : width of the gaussian mask to remove low-q noise, =r*width Set r=None will disable this mask. w - Optional : width of the mask that filters out noise along qx=0 and qy=0 lines. Set w=None will disable this mask. mask3 - Optional : Tuple for custom-defined mask. mask3 = [n, offset, width], where n is order of symmetry, offset is initial angle, width is the width of the mask. e.g., mask3 = [4, np.pi/4, 5], or mask3 = [6, 0, 10] Set mask3=None will disable this mask. even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice cut1 - Optional : List of length 1 or length 4, specifying after global shear correction how much to crop on the edge cut2 - Optional : List of length 1 or length 4, specifying after local drift correction how much to crop on the edge sigma - Optional : Floating number specifying the size of mask to be used in phasemap() method - Optional : Specifying which method to apply the drift correction "lockin": Interpolate A and then apply it to a new set of coordinates, (x-ux, y-uy) "convolution": Used inversion fft to apply the drift fields show - Optional : Boolean, if True then A and Bragg peaks will be plotted out. **kwargs - Optional : key word arguments for findBraggs function Returns: coords - (4x2) array contains Bragg peaks in the format of [[x1,y1],[x2,y2],...,[x4,y4]] Usage: t.find_drift(t.z, sigma=4, cut1=None, cut2=[0,7,0,7], show=True) History: 06/09/2020 - RL : Initial commit. ''' if not hasattr(self, 'parameters'): self = getAttrs(self, a0=None, size=None, angle=np.pi/2, orient=np.pi/4, pixels=np.shape(A)[::-1], \ even_out=even_out, use_a0=None) # Find Bragg peaks that will be used in the drift correction part self.dfcPara = { 'cut1': cut1, 'cut2': cut2, 'method': method, 'sigma': sigma, } if cut1 is not None: A = cropedge(A, n=cut1) if not hasattr(self, 'bp_parameters'): self.bp1 = findBraggs(A, r=r, w=w, mask3=mask3, update_obj=True, obj=self, \ show=show, even_out=even_out, **kwargs) else: self.bp1 = findBraggs(A, r=r, w=w, mask3=mask3, update_obj=True, obj=self, \ show=show, even_out=even_out, **kwargs) # self.bp1 = findBraggs(A, obj=self, show=show) self.bp1 = sortBraggs(self.bp1, s=np.shape(A)) if self.parameters['angle'] is None: N = len(self.bp1) Q = bp_to_q(self.bp1, A) angles = [] for i in range(N-1): angles.append(np.arctan2(*Q[i+1]) - np.arctan2(*Q[i])) # Here are the commonly used angles in the real world angle_list = np.array([0, np.pi/6, np.pi/4, np.pi/3, np.pi/2]) offset = np.absolute(np.mean(angles) - angle_list) index = np.argmin(offset) self.parameters['angle'] = angle_list[index] if self.parameters['orient'] is None: orient = np.absolute(np.arctan2(*Q[0])) self.parameters['orient'] = orient # This is the correct value for the Bragg peak self.bp2 = generate_bp(A, self.bp1, angle=self.parameters['angle'], orient= self.parameters['orient'], even_out=self.parameters['even_out'], obj=self) # This part corrects for the drift thetax, thetay, Q1, Q2 = phasemap(A, bp=self.bp2, method=method, sigma=sigma) self.phix = fixphaseslip(thetax, method='unwrap') self.phiy = fixphaseslip(thetay, method='unwrap') self.ux, self.uy = driftmap(self.phix, self.phiy, Q1, Q2, method=method) ztemp = driftcorr(A, self.ux, self.uy, method=method, interpolation='cubic') # This part interpolates the drift corrected maps self.bp3 = findBraggs(ztemp, obj=self) if cut2 is None: cut2 = 0 force_commen = False else: force_commen = True self.zc = cropedge(ztemp, n=cut2, bp=self.bp3, force_commen=force_commen) # This part displays the intermediate maps in the process of drift correction if show is True: fig, ax = plt.subplots(1, 2, figsize=[8, 4]) c = np.mean(self.phix) s = np.std(self.phix) fig.suptitle('Phasemaps after fixing phase slips:') ax[0].imshow(self.phix, origin='lower', clim=[c-5*s, c+5*s]) ax[1].imshow(self.phiy, origin='lower', clim=[c-5*s, c+5*s]) A_fft = stmpy.tools.fft(A, zeroDC=True) B_fft = stmpy.tools.fft(self.zc, zeroDC=True) c1 = np.mean(A_fft) s1 = np.std(A_fft) c2 = np.mean(A) s2 = np.std(A) fig, ax = plt.subplots(2, 2, figsize=[8, 8]) fig.suptitle('Maps before and after drift correction:') ax[0,0].imshow(A, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2]) ax[0,1].imshow(A_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1]) ax[1,0].imshow(self.zc, cmap=stmpy.cm.blue2, origin='lower', clim=[c2-5*s2, c2+5*s2]) ax[1,1].imshow(B_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+5*s1]) self.bp = findBraggs(self.zc, obj=self) def correct(self, use): ''' Use attributes of object "self" to correc the 3D map use. Input: self - Required : Spy object of topo (2D) or map (3D). use - Required : 3D map to be corrected with attributes of the object. Returns: N/A Usage: d.correct(d.LIY) History: 06/09/2020 - RL : Initial commit. ''' data_c = np.copy(use) if self.dfcPara['cut1'] is None: data_c = data_c else: data_c = cropedge(data_c, n=self.dfcPara['cut1']) data_corr = driftcorr(data_c, ux=self.ux, uy=self.uy, method=self.dfcPara['method'], interpolation='cubic') if self.dfcPara['cut2'] is None: data_out = cropedge(data_corr, bp=self.bp3, n=0, force_commen=False) else: data_out = cropedge(data_corr, bp=self.bp3, n=self.dfcPara['cut2'], force_commen=True) self.liy_c = data_out def __update_parameters(obj, a0=None, bp=None, pixels=None, size=None, use_a0=True): if use_a0 is True: center = (np.array(pixels)-1) // 2 Q = bp - center q1, q2, q3, q4, *_ = Q delta_qx = (np.absolute(q1[0]-q3[0])+np.absolute(q2[0]-q4[0])) / 2 delta_qy = (np.absolute(q1[1]-q3[1])+np.absolute(q2[1]-q4[1])) / 2 sizex = np.absolute( delta_qx / (4 * a0 * np.cos(obj.parameters['angle']))) sizey = np.absolute( delta_qy / (4 * a0 * np.cos(obj.parameters['angle']))) bp_x = np.min(bp[:, 0]) ext_x = pixels[0] / (pixels[0] - 2*bp_x) bp_y = np.min(bp[:, 1]) ext_y = pixels[1] / (pixels[1] - 2*bp_y) obj.parameters['size'] = np.array([sizex, sizey]) obj.parameters['pixels'] = np.array(pixels) obj.parameters['qscale'] = np.array([ext_x, ext_y]) obj.qx = bp[0] - center obj.qy = bp[1] - center else: center = (np.array(pixels)-1) // 2 bp_x = np.min(bp[:, 0]) ext_x = pixels[0] / (pixels[0] - 2*bp_x) bp_y = np.min(bp[:, 1]) ext_y = pixels[1] / (pixels[1] - 2*bp_y) obj.parameters['size'] = np.array( pixels) / obj.parameters['pixels'] * obj.parameters['size'] obj.parameters['pixels'] = np.array(pixels) obj.parameters['qscale'] = np.array([ext_x, ext_y]) obj.qx = bp[0] - center obj.qy = bp[1] - center ################################################################################## ################## Basic building blocks for drift correction #################### ################################################################################## #1 - findBraggs def findBraggs(A, rspace=True, min_dist=5, thres=0.25, r=None, w=None, mask3=None, even_out=False, precise=False, width=10, p0=None, show=False): ''' Find Bragg peaks in the unit of pixels of topo or FT pattern A using peak_local_max. If obj is offered, an attribute of bp will be created for obj. Input: A - Required : 2D array of topo in real space, or FFT in q space. min_dist - Optional : Minimum distance (in pixels) between peaks. Default: 5 thres - Optional : Minimum intensity of Bragg peaks relative to max value. Default: 0.25 rspace - Optional : Boolean indicating if A is real or Fourier space image. Default: True r - Optional : width of the gaussian mask to remove low-q noise, =r*width Set r=None will disable this mask. w - Optional : width of the mask that filters out noise along qx=0 and qy=0 lines. Set w=None will disable this mask. mask3 - Optional : Tuple for custom-defined mask. mask3 = [n, offset, width], where n is order of symmetry, offset is initial angle, width is the width of the mask. e.g., mask3 = [4, np.pi/4, 5], or mask3 = [6, 0, 10] Set mask3=None will disable this mask. even_out - Optional : Boolean, if True then Bragg peaks will be rounded to the make sure there are even number of lattice precise - Optional : Boolean, if True then a 2D Gaussian fit will be used to find the precise location of Bragg peaks width - Optional : Integer, defines how large the 2D Gaussian fit will be performed around each Bragg peaks p0 - Optional : List of initial parameters for fitting. Default: p0 = [amplitude,x0,y0,sigmaX,sigmaY,offset]=[1, width, width, 1, 1, 0] show - Optional : Boolean, if True then data A and Bragg peaks will be plotted. Returns: coords - (4x2) array contains Bragg peaks in the format of [[x1,y1],[x2,y2],...,[x4,y4]] Usage: import stmpy.driftcorr as dfc bp = dfc.findBraggs(A, min_dist=10, thres=0.2, rspace=True, show=True) History: 04/28/2017 JG : Initial commit. 04/29/2019 RL : Add maskon option, add outAll option, and add documents. ''' if rspace is True: F = stmpy.tools.fft(A, zeroDC=True) else: F = np.copy(A) # Remove low-q high intensity data with multiple masks *_, Y, X = np.shape(A) if r is not None: Lx = X * r Ly = Y * r x = np.arange(X) y = np.arange(Y) p0 = [int(X/2), int(Y/2), Lx, Ly, 1, np.pi/2] G = 1-stmpy.tools.gauss2d(x, y, p=p0) else: G = 1 if w is not None: mask2 = np.ones([Y, X]) mask2[Y//2-int(Y*w):Y//2+int(Y*w), :] = 0 mask2[:, X//2-int(X*w):X//2+int(X*w)] = 0 else: mask2 = 1 if mask3 is None: mask3 = 1 else: mask3 = mask_bp(A, p=mask3) F *= G * mask2 * mask3 coords = peak_local_max(F, min_distance=min_dist, threshold_rel=thres) coords = np.fliplr(coords) # This part is to make sure the Bragg peaks are located at even number of pixels if even_out is not False: coords = __even_bp(coords, s=np.shape(A)) if precise is not False: coords = np.asarray(coords, dtype='float32') if p0 is None: p0 = [1, width, width, 1, 1, 0] for i in range(len(coords)): area = stmpy.tools.crop(F/np.sum(F), cen=[int(k) for k in coords[i]], width=width) popt, g = fitGaussian2d(area, p0=p0) coords[i][0] += popt[1] - width coords[i][1] += popt[2] - width # This part shows the Bragg peak positions if show is not False: plt.figure(figsize=[4, 4]) c = np.mean(F) s = np.std(F) plt.imshow(F, cmap=plt.cm.gray_r, interpolation='None', origin='lower', clim=[0, c+5*s], aspect=1) plt.plot(coords[:, 0], coords[:, 1], 'r.') plt.gca().set_aspect(1) plt.axis('tight') center = (np.array(np.shape(A)[::-1])-1) // 2 print('The coordinates of the Bragg peaks are:') pprint(coords) print() print('The coordinates of the Q vectors are:') pprint(coords-center) return coords # help function: fitting 2D gaussian peaks around Bragg peaks def fitGaussian2d(data, p0): ''' Fit a 2D gaussian to the data with initial parameters p0. ''' data = np.array(data) def gauss(xy,amplitude,x0,y0,sigmaX,sigmaY,offset): x,y = xy theta = 90 x0=float(x0);y0=float(y0) a = 0.5*(np.cos(theta)/sigmaX)**2 + 0.5*(np.sin(theta)/sigmaY)**2 b = -np.sin(2*theta)/(2*sigmaX)**2 + np.sin(2*theta)/(2*sigmaY)**2 c = 0.5*(np.sin(theta)/sigmaX)**2 + 0.5*(np.cos(theta)/sigmaY)**2 g = offset+amplitude*np.exp(-( a*(x-x0)**2 -2*b*(x-x0)*(y-y0) + c*(y-y0)**2 )) return g.ravel() x = np.arange(data.shape[0]); y = np.arange(data.shape[1]) X,Y = np.meshgrid(x,y) popt, pcov = opt.curve_fit(gauss, (X,Y), data.ravel(), p0=p0) return popt, gauss((X,Y),*popt).reshape(data.shape) # help function: custom mask to remove unwanted Bragg peaks def mask_bp(A, p): n, offset, thres, *_ = p s = np.shape(A)[-1] t = np.arange(s) x, y = np.meshgrid(t, t) center = (np.array([s, s])-1) // 2 mask = np.ones_like(x) theta = 2 * np.pi / n for i in range(n): angle = theta * i + offset index = np.where(np.absolute(np.cos(angle)*(y-center[1]) - \ np.sin(angle)*(x-center[0])) < thres) mask[index] = 0 return mask # help function: make sure the Bragg peaks are located on even pixels def __even_bp(bp, s): ''' This internal function rounds the Bragg peaks to their nearest even number of Q vectors. ''' *_, s2, s1 = s center = (np.array([s1, s2])-1) // 2 bp_temp = bp - center for i, ix in enumerate(bp_temp): for j, num in enumerate(ix): if (num % 2) != 0: if num > 0: bp_temp[i, j] = num + 1 elif num <0: bp_temp[i, j] = num - 1 else: pass bp_even = bp_temp + center return bp_even #2 - cropedge def cropedge(A, n, bp=None, c1=2, c2=2, a1=None, a2=None, force_commen=False): """ Crop out bad pixels or highly drifted regions from topo/dos map. Inputs: A - Required : 2D or 3D array of image to be cropped. n - Required : List of integers specifying how many bad pixels to crop on each side. Order: [left, right, down, up]. force_commen- Optional : Boolean determining if the atomic lattice is commensurate with the output image. Returns: A_crop - 2D or 3D array of image after cropping. Usage: import stmpy.driftcorr as dfc A_crop = dfc.cropedge(A, n=5) History: 06/04/2019 RL : Initial commit. 11/30/2019 RL : Add support for non-square dataset """ if not isinstance(n, list): n = [n] if force_commen is False: B = _rough_cut(A, n=n) print('Shape before crop:', end=' ') print(A.shape) print('Shape after crop:', end=' ') print(B.shape) return B else: if n != 0: B = _rough_cut(A, n) else: B = np.copy(A) *_, L2, L1 = np.shape(A) if bp is None: bp = findBraggs(A, show=False) bp = sortBraggs(bp, s=np.shape(A)) bp_new = bp - (np.array([L1, L2])-1) // 2 N1 = compute_dist(bp_new[0], bp_new[1]) N2 = compute_dist(bp_new[0], bp_new[-1]) if a1 is None: a1 = c1 * L1 / N1 if a2 is None: a2 = a1 #a2 = c2 * L2 / N2 *_, L2, L1 = np.shape(B) L_new1 = a1 * ((L1)//(a1)) L_new2 = a2 * ((L2)//(a2)) t1 = np.arange(L1) t2 = np.arange(L2) if len(np.shape(A)) == 2: f = interp2d(t1, t2, B, kind='cubic') t_new1 = np.linspace(0, L_new1, num=L1+1) t_new2 = np.linspace(0, L_new2, num=L2+1) z_new = f(t_new1[:-1], t_new2[:-1]) elif len(np.shape(A)) == 3: z_new = np.zeros([np.shape(A)[0], L2, L1]) for i in range(len(A)): f = interp2d(t1, t2, B[i], kind='cubic') t_new1 = np.linspace(0, L_new1, num=L1+1) t_new2 = np.linspace(0, L_new2, num=L2+1) z_new[i] = f(t_new1[:-1], t_new2[:-1]) else: print('ERR: Input must be 2D or 3D numpy array!') return z_new # help function: crop edge without any interpolation def _rough_cut(A, n): B = np.copy(A) if len(n) == 1: n1 = n2 = n3 = n4 = n[0] else: n1, n2, n3, n4, *_ = n if len(B.shape) is 2: if n2 == 0: n2 = -B.shape[1] if n4 == 0: n4 = -B.shape[0] return B[n3:-n4, n1:-n2] elif len(B.shape) is 3: if n2 == 0: n2 = -B.shape[2] if n4 == 0: n4 = -B.shape[1] return B[:, n3:-n4, n1:-n2] # 4. phasemap def phasemap(A, bp, sigma=10, method="lockin"): ''' Calculate local phase and phase shift maps. Two methods are available now: spatial lockin or Gaussian mask convolution Input: A - Required : 2D arrays after global shear correction with bad pixels cropped on the edge bp - Required : Coords of Bragg peaks of FT(A), can be computed by findBraggs(A) sigma - Optional : width of DC filter in lockin method or len(A)/s method - Optional : Specify which method to use to calculate phase map. "lockin": Spatial lock-in method to find phase map "convolution": Gaussian mask convolution method to find phase map Returns: thetax - 2D array, Phase shift map in x direction, relative to perfectly generated cos lattice thetay - 2D array, Phase shift map in y direction, relative to perfectly generated cos lattice Q1 - Coordinates of 1st Bragg peak Q2 - Coordinates of 2nd Bragg peak Usage: import stmpy.driftcorr as dfc thetax, thetay, Q1, Q2 = dfc.phasemap(A, bp, sigma=10, method='lockin') History: 04/28/2017 JG : Initial commit. 04/29/2019 RL : Add "convolution" method, and add documents. 11/30/2019 RL : Add support for non-square dataset ''' *_, s2, s1 = A.shape if not isinstance(sigma, list): sigma = [sigma] if len(sigma) == 1: sigmax = sigmay = sigma[0] else: sigmax, sigmay, *_ = sigma s = np.minimum(s1, s2) bp = sortBraggs(bp, s=np.shape(A)) t1 = np.arange(s1, dtype='float') t2 = np.arange(s2, dtype='float') x, y = np.meshgrid(t1, t2) Q1 = 2*np.pi*np.array([(bp[0][0]-int((s1-1)/2))/s1, (bp[0][1]-int((s2-1)/2))/s2]) Q2 = 2*np.pi*np.array([(bp[1][0]-int((s1-1)/2))/s1, (bp[1][1]-int((s2-1)/2))/s2]) if method is "lockin": Axx = A * np.sin(Q1[0]*x+Q1[1]*y) Axy = A * np.cos(Q1[0]*x+Q1[1]*y) Ayx = A * np.sin(Q2[0]*x+Q2[1]*y) Ayy = A * np.cos(Q2[0]*x+Q2[1]*y) Axxf = FTDCfilter(Axx, sigmax, sigmay) Axyf = FTDCfilter(Axy, sigmax, sigmay) Ayxf = FTDCfilter(Ayx, sigmax, sigmay) Ayyf = FTDCfilter(Ayy, sigmax, sigmay) thetax = np.arctan2(Axxf, Axyf) thetay = np.arctan2(Ayxf, Ayyf) return thetax, thetay, Q1, Q2 elif method is "convolution": t_x = np.arange(s1) t_y = np.arange(s2) xcoords, ycoords = np.meshgrid(t_x, t_y) # (2.* np.pi/s)*(Q1[0] * xcoords + Q1[1] * ycoords) exponent_x = (Q1[0] * xcoords + Q1[1] * ycoords) # (2.* np.pi/s)*(Q2[0] * xcoords + Q2[1] * ycoords) exponent_y = (Q2[0] * xcoords + Q2[1] * ycoords) A_x = A * np.exp(np.complex(0, -1)*exponent_x) A_y = A * np.exp(np.complex(0, -1)*exponent_y) # sx = sigma # sy = sigma * s1 / s2 sx = sigmax sy = sigmay Amp = 1/(4*np.pi*sx*sy) p0 = [int((s-1)/2), int((s-1)/2), sx, sy, Amp, np.pi/2] G = stmpy.tools.gauss2d(t_x, t_y, p=p0, symmetric=True) T_x = sp.signal.fftconvolve(A_x, G, mode='same',) T_y = sp.signal.fftconvolve(A_y, G, mode='same',) R_x = np.abs(T_x) R_y = np.abs(T_y) phi_y = np.angle(T_y) phi_x = np.angle(T_x) return phi_x, phi_y, Q1, Q2 else: print('Only two methods are available now:\n1. lockin\n2. convolution') #5 - fixphaseslip def fixphaseslip(A, thres=None, maxval=None, method='unwrap', orient=0): ''' Fix phase slip by adding 2*pi at phase jump lines. Inputs: A - Required : 2D arrays of phase shift map, potentially containing phase slips thres - Optional : Float number, specifying threshold for finding phase jumps in diff(A). Default: None method - Optional : Specifying which method to fix phase slips. "unwrap": fix phase jumps line by line in x direction and y direction, respectively "spiral": fix phase slip in phase shift maps by flattening A into a 1D array in a spiral way orient - Optional : Used in "spiral" phase fixing method. 0 for clockwise and 1 for counter-clockwise Returns: phase_corr - 2D arrays of phase shift map with phase slips corrected Usage: import stmpy.driftcorr as dfc thetaxf = dfc.fixphaseslip(thetax, method='unwrap') History: 04/28/2017 JG : Initial commit. 04/29/2019 RL : Add "unwrap" method, and add documents. ''' output = np.copy(A[::-1, ::-1]) maxval = 2 * np.pi tol = 0.25 * maxval if len(np.shape(A)) == 2: *_, s2, s1 = np.shape(A) mid2 = s2 // 2 mid1 = s1 // 2 for i in range(s2): output[i, :] = unwrap_phase( output[i, :], tolerance=thres, maxval=maxval) for i in range(s1): output[:, i] = unwrap_phase( output[:, i], tolerance=thres, maxval=maxval) linex = output[:, mid1] liney = output[mid2, :] dphx = np.diff(linex) dphy = np.diff(liney) dphx[np.where(np.abs(dphx) < tol)] = 0 dphx[np.where(dphx < -tol)] = 1 dphx[np.where(dphx > tol)] = -1 dphy[np.where(np.abs(dphy) < tol)] = 0 dphy[np.where(dphy < -tol)] = 1 dphy[np.where(dphy > tol)] = -1 for i in range(s2): output[i, 1:] += 2*np.pi * np.cumsum(dphy) for i in range(s1): output[1:, i] += 2*np.pi * np.cumsum(dphx) return output[::-1, ::-1] #6 - unwrap_phase def unwrap_phase(ph, tolerance=None, maxval=None): maxval = 2 * np.pi if maxval is None else maxval tol = 0.25*maxval if tolerance is None else tolerance*maxval if len(ph) < 2: return ph dph = np.diff(ph) dph[np.where(np.abs(dph) < tol)] = 0 dph[np.where(dph < -tol)] = 1 dph[np.where(dph > tol)] = -1 ph[1:] += maxval * np.cumsum(dph) return ph def unwrap_phase_2d(A, thres=None): output = np.copy(A[::-1, ::-1]) if len(np.shape(A)) == 2: n = np.shape(A)[-1] for i in range(n): output[i, :] = unwrap_phase(output[i, :], tolerance=thres) for i in range(n): output[:, i] = unwrap_phase(output[:, i], tolerance=thres) return output[::-1, ::-1] #7 - driftmap def driftmap(phix=None, phiy=None, Q1=None, Q2=None, method="lockin"): ''' Calculate drift fields based on phase shift maps, with Q1 and Q2 generated by phasemap. Inputs: phix - Optional : 2D arrays of phase shift map in x direction with phase slips corrected phiy - Optional : 2D arrays of phase shift map in y direction with phase slips corrected Q1 - Optional : Coordinates of 1st Bragg peak, generated by phasemap Q2 - Optional : Coordinates of 2nd Bragg peak, generated by phasemap method - Optional : Specifying which method to use. "lockin": Used for phase shift map generated by lockin method "convolution": Used for phase shift map generated by lockin method Returns: ux - 2D array of drift field in x direction uy - 2D array of drift field in y direction Usage: import stmpy.driftcorr as dfc ux, uy = dfc.driftmap(thetaxf, thetayf, Q1, Q2, method='lockin') History: 04/28/2017 JG : Initial commit. 04/29/2019 RL : Add "lockin" method, and add documents. 11/30/2019 RL : Add support for non-square dataset ''' if method is "lockin": tx = np.copy(phix) ty = np.copy(phiy) ux = -(Q2[1]*tx - Q1[1]*ty) / (Q1[0]*Q2[1]-Q1[1]*Q2[0]) uy = -(Q2[0]*tx - Q1[0]*ty) / (Q1[1]*Q2[0]-Q1[0]*Q2[1]) return ux, uy elif method is "convolution": #s = np.shape(thetax)[-1] Qx_mag = np.sqrt((Q1[0])**2 + (Q1[1])**2) Qy_mag = np.sqrt((Q2[0])**2 + (Q2[1])**2) Qx_ang = np.arctan2(Q1[1], Q1[0]) # in radians Qy_ang = np.arctan2(Q2[1], Q2[0]) # in radians Qxdrift = 1/(Qx_mag) * phix # s/(2*np.pi*Qx_mag) * thetax Qydrift = 1/(Qy_mag) * phiy # s/(2*np.pi*Qy_mag) * thetay ux = Qxdrift * np.cos(Qx_ang) - Qydrift * np.sin(Qy_ang-np.pi/2) uy = Qxdrift * np.sin(Qx_ang) + Qydrift * np.cos(Qy_ang-np.pi/2) return -ux, -uy else: print("Only two methods are available now:\n1. lockin\n2. convolution") #8. - driftcorr def driftcorr(A, ux=None, uy=None, method="lockin", interpolation='cubic'): ''' Correct the drift in the topo according to drift fields Inputs: A - Required : 2D or 3D arrays of topo to be drift corrected ux - Optional : 2D arrays of drift field in x direction, generated by driftmap() uy - Optional : 2D arrays of drift field in y direction, generated by driftmap() method - Optional : Specifying which method to use. "lockin": Interpolate A and then apply it to a new set of coordinates, (x-ux, y-uy) "convolution": Used inversion fft to apply the drift fields interpolation - Optional : Specifying which method to use for interpolating Returns: A_corr - 2D or 3D array of topo with drift corrected Usage: import stmpy.driftcorr as dfc A_corr = dfc.driftcorr(ux, uy, method='interpolate', interpolation='cubic') History: 04/28/2017 JG : Initial commit. 04/29/2019 RL : Add "invfft" method, and add documents. 11/30/2019 RL : Add support for non-square dataset ''' if method is "lockin": A_corr = np.zeros_like(A) *_, s2, s1 = np.shape(A) t1 = np.arange(s1, dtype='float') t2 = np.arange(s2, dtype='float') x, y = np.meshgrid(t1, t2) xnew = (x - ux).ravel() ynew = (y - uy).ravel() tmp = np.zeros(s1*s2) if len(A.shape) is 2: tmp_f = interp2d(t1, t2, A, kind=interpolation) for ix in range(tmp.size): tmp[ix] = tmp_f(xnew[ix], ynew[ix]) A_corr = tmp.reshape(s2, s1) return A_corr elif len(A.shape) is 3: for iz, layer in enumerate(A): tmp_f = interp2d(t1, t2, layer, kind=interpolation) for ix in range(tmp.size): tmp[ix] = tmp_f(xnew[ix], ynew[ix]) A_corr[iz] = tmp.reshape(s2, s1) print('Processing slice %d/%d...' % (iz+1, A.shape[0]), end='\r') return A_corr else: print('ERR: Input must be 2D or 3D numpy array!') elif method is "convolution": A_corr = np.zeros_like(A) if len(A.shape) is 2: return _apply_drift_field(A, ux=ux, uy=uy, zeroOut=True) elif len(A.shape) is 3: for iz, layer in enumerate(A): A_corr[iz] = _apply_drift_field( layer, ux=ux, uy=uy, zeroOut=True) print('Processing slice %d/%d...' % (iz+1, A.shape[0]), end='\r') return A_corr else: print('ERR: Input must be 2D or 3D numpy array!') # help function: apply drift field using inverse FT method def _apply_drift_field(A, ux, uy, zeroOut=True): A_corr = np.copy(A) *_, s2, s1 = np.shape(A) t1 = np.arange(s1, dtype='float') t2 = np.arange(s2, dtype='float') x, y = np.meshgrid(t1, t2) xshifted = x - ux yshifted = y - uy if zeroOut is True: A_corr[np.where(xshifted < 0)] = 0 A_corr[np.where(yshifted < 0)] = 0 A_corr[np.where(xshifted > s1)] = 0 A_corr[np.where(yshifted > s2)] = 0 qcoordx = (2*np.pi/s1)*(np.arange(s1)-int(s1/2)) qcoordy = (2*np.pi/s2)*(np.arange(s2)-int(s2/2)) #qcoord = (2*np.pi/s)*(np.arange(s)-(s/2)) xshifted = np.reshape(xshifted, [1, s1*s2]) yshifted = np.reshape(yshifted, [1, s1*s2]) qcoordx = np.reshape(qcoordx, [s1, 1]) qcoordy = np.reshape(qcoordy, [s2, 1]) xphase = np.exp(-1j*(np.matmul(xshifted.T, qcoordx.T).T)) yphase = np.exp(-1j*(np.matmul(yshifted.T, qcoordy.T).T)) avgData = np.mean(A_corr) A_corr -= avgData A_corr = np.reshape(A_corr, s1*s2) data_temp = np.zeros([s2, s1*s2]) for i in range(s2): data_temp[i] = A_corr FT = np.matmul(data_temp * xphase, yphase.T).T invFT = np.fft.ifft2(np.fft.fftshift(FT)) + avgData return np.real(invFT) #9 def generate_bp(A, bp, angle=np.pi/2, orient=np.pi/4, even_out=False, obj=None): ''' Generate Bragg peaks with given q-vectorss Input: A - Required : 2D array of topo in real space, or FFT in q space. bp - Required : Bragg peaks associated with A, to be checked angle - Optional : Angle of the lattice. If the lattice is n-fold symmetry, then angle = 2*pi/n orient - Optional : Initial angle of Bragg peak, or orientation of the scan. Default is np.pi/4 obj - Optional : Data object that has bp_parameters with it, Return: bp_new : new Bragg peak generated from q-vectors Usage: bp_new = dfc.check_bp(A, qx=[qx1,qx2], qy=[qy1,qy2], obj=obj) History: 05-25-2020 RL : Initial commit. 06-08-2020 RL : Add the ability to compute correct Bragg peaks automatically ''' *_, s2, s1 = np.shape(A) bp = sortBraggs(bp, s=np.shape(A)) center = (np.array([s1, s2])-1) // 2 Q1, Q2, Q3, Q4, *_ = bp Qx_mag = compute_dist(Q1, center) Qy_mag = compute_dist(Q2, center) Q_corr = np.mean([Qx_mag, Qy_mag]) Qc1 = np.array([int(k) for k in Q_corr*np.array([np.cos(orient+np.pi), np.sin(orient+np.pi)])]) Qc2 = np.array([int(k) for k in Q_corr*np.array([np.cos(-angle+orient+np.pi), np.sin(-angle+orient+np.pi)])]) bp_out = np.array([Qc1, Qc2, -Qc1, -Qc2]) + center if even_out is not False: bp_out = __even_bp(bp_out, s=np.shape(A)) if obj is not None: pixels = np.shape(A)[::-1] __update_parameters(obj, a0=obj.parameters['a0'], bp=bp_out, pixels=pixels, size=obj.parameters['size'], use_a0=obj.parameters['use_a0']) return sortBraggs(bp_out, s=np.shape(A)) ################################################################################## ####################### Useful functions in the processing ####################### ################################################################################## def sortBraggs(bp, s): ''' Sort the Bragg peaks in the order of "lower left, lower right, upper right, and upper left" ''' *_, s2, s1 = s center = np.array([(s1 - 1) // 2, (s2 - 1) // 2]) out = np.array(sorted(bp-center, key=lambda x: np.arctan2(*x))) + center return out def Gaussian2d(x, y, sigma_x, sigma_y, theta, x0, y0, Amp): ''' x, y: ascending 1D array x0, y0: center ''' a = np.cos(theta)**2/2/sigma_x**2 + np.sin(theta)**2/2/sigma_y**2 b = -np.sin(2*theta)**2/4/sigma_x**2 + np.sin(2*theta)**2/4/sigma_y**2 c = np.sin(theta)**2/2/sigma_x**2 + np.cos(theta)**2/2/sigma_y**2 z = np.zeros((len(x), len(y))) X, Y = np.meshgrid(x, y) z = Amp * np.exp(-(a*(X-x0)**2 + 2*b*(X-x0)*(Y-y0) + c*(Y-y0)**2)) return z def FTDCfilter(A, sigma1, sigma2): ''' Filtering DC component of Fourier transform and inverse FT, using a gaussian with one parameter sigma A is a 2D array, sigma is in unit of px ''' *_, s2, s1 = A.shape m1, m2 = np.arange(s1, dtype='float'), np.arange(s2, dtype='float') c1, c2 = np.float((s1-1)/2), np.float((s2-1)/2) # sigma1 = sigma # sigma2 = sigma * s1 / s2 g = Gaussian2d(m1, m2, sigma1, sigma2, 0, c1, c2, 1) ft_A = np.fft.fftshift(np.fft.fft2(A)) ft_Af = ft_A * g Af = np.fft.ifft2(np.fft.ifftshift(ft_Af)) return np.real(Af) def compute_dist(x1, x2, p=None): ''' Compute the distance between point x1 and x2. ''' if p is None: p1, p2 = 1, 1 else: p1, p2 = p return np.sqrt(((x1[0]-x2[0])*p1)**2+((x1[1]-x2[1])*p2)**2) def bp_to_q(bp, A): ''' Convert the Bragg peaks to Q vectors by subtracting the center of the image. Input: bp - Required : Array of Bragg peaks A - Required : ''' center = (np.array(np.shape(A)[::-1])-1) // 2 return bp - center #15. - display def display(A, B=None, sigma=3, clim_same=True): ''' Display or compare images in both real space and q-space. Inputs: A - Required : Real space image to display. B - Optional : Another real space image to be compared with A. sigma - Optional : sigma for the color limit. clim_same - Optional : If True, then both FT of A and B will be displayed under the same color limit (determined by A). Returns: N/A Usage: import stmpy.driftcorr as dfc dfc.display(topo.z) ''' if B is None: A_fft = stmpy.tools.fft(A, zeroDC=True) c = np.mean(A_fft) s = np.std(A_fft) fig, ax = plt.subplots(1, 2, figsize=[8, 4]) ax[0].imshow(A, cmap=stmpy.cm.blue2, origin='lower') ax[1].imshow(A_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c+sigma*s]) for ix in ax: ix.set_aspect(1) else: A_fft = stmpy.tools.fft(A, zeroDC=True) B_fft = stmpy.tools.fft(B, zeroDC=True) c1 = np.mean(A_fft) s1 = np.std(A_fft) if clim_same is True: c2 = c1 s2 = s1 else: c2 = np.mean(B_fft) s2 = np.std(B_fft) fig, ax = plt.subplots(2, 2, figsize=[8, 8]) ax[0, 0].imshow(A, cmap=stmpy.cm.blue2, origin='lower') ax[0, 1].imshow(A_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c1+sigma*s1]) ax[1, 0].imshow(B, cmap=stmpy.cm.blue2, origin='lower') ax[1, 1].imshow(B_fft, cmap=stmpy.cm.gray_r, origin='lower', clim=[0, c2+sigma*s2]) for ix in ax.flatten(): ix.set_aspect(1) def quick_linecut(A, width=2, n=4, bp=None, ax=None, thres=3): """ Take four linecuts automatically, horizontal, vertical, and two diagonal. Inputs: A - Required : FT space image to take linecuts. width - Optional : Number of pixels for averaging. bp - Optional : Bragg peaks thres - Optional : threshold for displaying FT Returns: N/A Usage: import stmpy.driftcorr as dfc r, cut = dfc.quick_linecut(A) """ Y = np.shape(A)[-2] / 2 X = np.shape(A)[-1] / 2 r = [] cut = [] start = [[0, Y], [X, 0], [0, 0], [0, Y*2]] end = [[X*2, Y], [X, Y*2], [X*2, Y*2], [X*2, 0]] color = ['r', 'g', 'b', 'k'] plt.figure(figsize=[4, 4]) if len(np.shape(A)) == 3: if bp is None: bp_x = np.min(findBraggs(
np.mean(A, axis=0)
numpy.mean
## Tutorial 03: Solving for Himmelblau function # After you successfully install the package and activate a conda environment from optimizer.gradient_free import NelderMeadSimplex import numpy as np import matplotlib.pyplot as plt class Himmelblau(): def __init__(self, x_ranges, y_ranges): self.x_limit = np.arange(x_ranges[0],x_ranges[1], x_ranges[-1]) self.y_limit = np.arange(y_ranges[0],y_ranges[1], y_ranges[-1]) self.z_mat = np.zeros((self.x_limit.size, self.y_limit.size)) counter_x = 0 for x in self.x_limit: counter_y = 0 for y in self.y_limit: self.z_mat[counter_x, counter_y] = np.log10(self.compute_z(
np.array([x, y])
numpy.array
# Copyright 2021 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Implement private clustering.""" import dataclasses import typing from absl import logging import numpy as np import sklearn.cluster from clustering import clustering_params from clustering import default_clustering_params from clustering import lsh_tree from clustering import private_outputs class ClusteringMetrics(): """Class for computing various clustering quality metrics. Note: This class is relevant only for data with specified ground truth labels. 1. Dominant Label Accuracy: For each cluster, as indicated by cluster labels, the accuracy is computed for the labeling of the points that assigns the most frequently occurring ground truth label to each cluster. 2. True Non-matches: Fraction of pairs of points with the same ground truth label, which get assigned to different clusters. The number of pairs of points with the same true label present in different clusters is computed as follows: For a single ground truth label with a histogram of cluster labels as (n_1, ... , n_k), the number of pairs of points in different clusters is given as ((n_1 + ... + n_k)^2 - (n_1^2 + ... + n_k^2))/2. 3. False Matches: Fraction of pairs of points with different ground truth labels, which get assigned to the same cluster. The number of pairs of points with different true labels in the same cluster can also be computed similarly as above. Attributes: cross_label_histogram: 2D histogram of (cluster label, true label) pairs. num_points: total number of points dominant_label_correct_count: number of labels correctly predicted dominant_label_accuracy: ratio of dominant_label_correct_count and num_points true_pairs: number of pairs of points with the same true label. true_nonmatch_count: number of pairs of points with same true label, but assigned to different clusters. true_nonmatch_frac: ratio of true_nonmatch_count and true_pairs false_pairs: number of pairs of points with different true labels. false_match_count: number of pairs of points with different true labels, but assigned to the same cluster. false_match_frac: ratio of false_match_count and false_pairs """ cross_label_histogram: np.ndarray num_points: int dominant_label_correct_count: int dominant_label_accuracy: float true_pairs: int true_nonmatch_count: int true_nonmatch_frac: float false_pairs: int false_match_count: int false_match_frac: float def __init__(self, cross_label_histogram: np.ndarray): self.cross_label_histogram = cross_label_histogram self.num_points = np.sum(cross_label_histogram) hist_square_sum = np.sum(cross_label_histogram**2) num_pairs = self.num_points * (self.num_points - 1) / 2 # Dominant Label Accuracy self.dominant_label_correct_count = np.sum( np.max(cross_label_histogram, axis=1)) self.dominant_label_accuracy = ( self.dominant_label_correct_count / self.num_points) # True Non-matches true_label_count = np.sum(cross_label_histogram, axis=0) self.true_pairs = np.sum(true_label_count * (true_label_count - 1) / 2) self.true_nonmatch_count = ( (np.sum(true_label_count**2) - hist_square_sum) / 2) self.true_nonmatch_frac = self.true_nonmatch_count / self.true_pairs # False Matches cluster_label_count = np.sum(cross_label_histogram, axis=1) self.false_pairs = num_pairs - self.true_pairs self.false_match_count = ( (np.sum(cluster_label_count**2) - hist_square_sum) / 2) self.false_match_frac = self.false_match_count / self.false_pairs @dataclasses.dataclass(frozen=True) class ClusteringResult(): """Result of labelling the data using the centers. Attributes: data: Data that is being labelled. centers: Cluster centers. labels: Indices of the closest center for each datapoint. loss: The k-means objective with respect to the centers, i.e., sum of squared distances of the data to their closest center. """ data: clustering_params.Data centers: clustering_params.Points labels: typing.Optional[np.ndarray] = None loss: typing.Optional[float] = None def __post_init__(self): def closest_center(datapoint: np.ndarray): """Returns closest center to data point and the squared distance from it. Args: datapoint: 1D np.ndarray containing a single datapoint """ squared_distances = np.sum((self.centers - datapoint)**2, axis=1) min_index = np.argmin(squared_distances) return (min_index, squared_distances[min_index]) if self.labels is None and self.loss is None: result = [closest_center(datapoint) for datapoint in self.data.datapoints] object.__setattr__(self, "labels", np.array([res[0] for res in result], dtype=int)) object.__setattr__(self, "loss", sum([res[1] for res in result])) if self.labels is None or self.loss is None: raise ValueError("Only one of labels or loss was initialized; " "either both should be initialized or none.") if self.data.num_points != len(self.labels): raise ValueError(f"number of labels ({self.labels.shape[0]}) is not " f"equal to number of points ({self.data.num_points})") num_clusters, centers_dim = self.centers.shape if centers_dim != self.data.dim: raise ValueError(f"Dimension of cluster centers ({centers_dim}) is not " f"equal to dimension of data points ({self.data.dim})") if not all([label in list(range(num_clusters)) for label in self.labels]): raise ValueError("Labels in incorrect format. Each entry of label must " "be an integer between 0 and number of clusters - 1") def cross_label_histogram(self) -> np.ndarray: """Returns 2D histogram of (cluster label, true label) pairs. Example: For cluster labels (self.labels) = [0, 0, 1, 1, 2, 2], and true labels (self.data.labels) = [0, 0, 0, 1, 1, 1] the 2D histogram is given as [[2, 0], [1, 1], [0, 2]] This is computed using np.histogram2d with bins [-0.5, 0.5, 1.5, 2.5] for cluster labels and [-0.5, 0.5, 1.5] for true labels. Raises: ValueError: if data does not have any specified true labels. """ if self.data.labels is None: raise ValueError("Cross label histogram is undefined since data does not " "have any specified labels") bin_start = -0.5 cluster_label_bins = np.arange(bin_start, np.max(self.labels) + 1, 1) true_label_bins = np.arange(bin_start, np.max(self.data.labels) + 1, 1) hist, _, _ = np.histogram2d(self.labels, self.data.labels, bins=(cluster_label_bins, true_label_bins)) return hist.astype(int) def get_clustering_metrics(self) -> ClusteringMetrics: """Returns various clustering quality metrics, when data labels are given. Raises: ValueError: if data does not have any specified true labels. """ return ClusteringMetrics(self.cross_label_histogram()) def private_lsh_clustering( k: int, data: clustering_params.Data, privacy_param: clustering_params.DifferentialPrivacyParam, privacy_budget_split: typing.Optional[ clustering_params.PrivacyBudgetSplit] = None, tree_param: typing.Optional[clustering_params.TreeParam] = None, short_description: str = "ClusteringParam") -> ClusteringResult: """Clusters data into k clusters. Args: k: Number of clusters to divide the data into. data: Data to find centers for. Centering the data around the origin beforehand may provide performance improvements. privacy_param: Differential privacy parameters. privacy_budget_split: Optional privacy budget split between operations in the clustering algorithm for fine-tuning. tree_param: Optional tree parameters for generating the LSH net tree for fine-tuning. short_description: Optional description to identify this parameter configuration. Returns: ClusteringResult with differentially private centers. The rest of ClusteringResult is nonprivate, and only provided for convenience. """ # Initialize the parameters. if privacy_budget_split is None: privacy_budget_split = clustering_params.PrivacyBudgetSplit() private_count = None if tree_param is None: # Saves the private count to re-use for the root node of the tree. tree_param, private_count = default_clustering_params.default_tree_param( k, data, privacy_param, privacy_budget_split) clustering_param = clustering_params.ClusteringParam(privacy_param, privacy_budget_split, tree_param, short_description, data.radius) logging.debug("clustering_param: %s", clustering_param) # To guarantee privacy, enforce the radius provided. clipped_data = clustering_params.Data(data.clip_by_radius(), data.radius, data.labels) coreset: private_outputs.PrivateWeightedData = get_private_coreset( clipped_data, clustering_param, private_count) k = min(k, len(coreset.datapoints)) logging.debug( "Starting k-means++ computation on private coreset with k=%d. This may " "be less than the original if generated coreset data ended up with " "less than k unique points.", k) kmeans = sklearn.cluster.KMeans( n_clusters=k, init="k-means++").fit( coreset.datapoints, sample_weight=coreset.weights) # Calculate the result relative to the original data. # Note: the calculations besides the centers are nonprivate. return ClusteringResult(data, kmeans.cluster_centers_) def get_private_coreset( data: clustering_params.Data, clustering_param: clustering_params.ClusteringParam, private_count: typing.Optional[int], ) -> private_outputs.PrivateWeightedData: """Returns private coreset, when clustered it approximates data clustering. Args: data: Data to approximate with the coreset. clustering_param: Parameters for generating the coreset. private_count: Optional private count. If None, the private count will be computed. """ logging.debug("Starting process to get private coreset.") root = lsh_tree.root_node(data, clustering_param, private_count) # Root node must have private count >= 1. root.private_count = max(1, root.private_count) leaves = lsh_tree.LshTree(root).leaves coreset_points = [] coreset_point_weights = [] for leaf in leaves: coreset_points.append(leaf.get_private_average()) coreset_point_weights.append(leaf.private_count) # To improve accuracy, we can clip the coreset points to the provided radius. coreset_points = data.clip_by_radius(
np.array(coreset_points)
numpy.array
import numpy as np import random import time import os.path from os import path import matplotlib.pyplot as plt import scipy.interpolate from nodeeditor.say import * print ("reloaded: "+ __file__) # tools for geometry ... def data2vecs(data): '''convert data to vector or list of vectors or other more complex vectorstructure''' ndat=np.array(data).flatten() say(ndat) if ndat.shape==(3,): say("vector") return FreeCAD.Vector(*ndat) else: classes=set([x.__class__.__name__ for x in data]) if not 'list' in classes : say("simple values") _points=
np.array(data)
numpy.array
# -*- coding: utf-8 -*- """ Created on Wed Mar 21 10:00:33 2018 @author: jdkern """ from __future__ import division from sklearn import linear_model from statsmodels.tsa.api import VAR import scipy.stats as st import pandas as pd import matplotlib.pyplot as plt import numpy as np import seaborn as sns ###################################################################### # LOAD ###################################################################### #import data df_load = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='hourly_load',header=0) df_weather = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='weather',header=0) BPA_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='BPA_location_weights',header=0) CAISO_weights = pd.read_excel('Synthetic_demand_pathflows/hist_demanddata.xlsx',sheet_name='CAISO_location_weights',header=0) Name_list=pd.read_csv('Synthetic_demand_pathflows/Covariance_Calculation.csv') Name_list=list(Name_list.loc['SALEM_T':]) Name_list=Name_list[1:] df_wind=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_years = int(len(df_wind)/8760) + 3 sim_weather=pd.read_csv('Synthetic_weather/synthetic_weather_data.csv',header=0,index_col=0) sim_weather = sim_weather.iloc[0:365*sim_years,:] sim_weather = sim_weather.iloc[365:len(sim_weather)-730,:] sim_weather = sim_weather.reset_index(drop=True) #weekday designation dow = df_weather.loc[:,'Weekday'] #generate simulated day of the week assuming starts from monday count=0 sim_dow= np.zeros(len(sim_weather)) for i in range(0,len(sim_weather)): count = count +1 if count <=5: sim_dow[i]=1 elif count > 5: sim_dow[i]=0 if count ==7: count =0 #Generate a datelist datelist=pd.date_range(pd.datetime(2017,1,1),periods=365).tolist() sim_month=np.zeros(len(sim_weather)) sim_day=np.zeros(len(sim_weather)) sim_year=np.zeros(len(sim_weather)) count=0 for i in range(0,len(sim_weather)): if count <=364: sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year else: count=0 sim_month[i]=datelist[count].month sim_day[i]=datelist[count].day sim_year[i]=datelist[count].year count=count+1 ###################################################################### # BPAT ###################################################################### #Find the simulated data at the sites col_BPA_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T'] col_BPA_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W'] BPA_sim_T=sim_weather[col_BPA_T].values BPA_sim_W=sim_weather[col_BPA_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) ########################################### #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*BPA_weights.loc[0,i] Wind[:,j] = df_weather.loc[:,n3] weighted_SimT[:,0] = weighted_SimT[:,0] + BPA_sim_T[:,j]*BPA_weights.loc[0,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 BPA_sim_T_F=(BPA_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-BPA_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,BPA_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(BPA_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(BPA_sim_W,binary_HDD_sim) #convert load to array BPA_load = df_load.loc[:,'BPA'].values #remove NaNs a = np.argwhere(np.isnan(BPA_load)) for i in a: BPA_load[i] = BPA_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(BPA_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X70p = M[(M[:,0] >= 70),2:] y70p = M[(M[:,0] >= 70),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),2:] y40_50 = M[(M[:,0] >= 40) & (M[:,0] < 50),1] X30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),2:] y30_40 = M[(M[:,0] >= 30) & (M[:,0] < 40),1] X25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),2:] y25_30 = M[(M[:,0] >= 25) & (M[:,0] < 30),1] X25m = M[(M[:,0] < 25),2:] y25m = M[(M[:,0] < 25),1] X70p_Sim = M_sim[(M_sim[:,0] >= 70),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X40_50_Sim = M_sim[(M_sim[:,0] >= 40) & (M_sim[:,0] < 50),1:] X30_40_Sim = M_sim[(M_sim[:,0] >= 30) & (M_sim[:,0] < 40),1:] X25_30_Sim = M_sim[(M_sim[:,0] >= 25) & (M_sim[:,0] < 30),1:] X25m_Sim = M_sim[(M_sim[:,0] < 25),1:] #multivariate regression #Create linear regression object reg70p = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg40_50 = linear_model.LinearRegression() reg30_40 = linear_model.LinearRegression() reg25_30 = linear_model.LinearRegression() reg25m = linear_model.LinearRegression() # Train the model using the training sets if len(y70p) > 0: reg70p.fit(X70p,y70p) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y40_50) > 0: reg40_50.fit(X40_50,y40_50) if len(y30_40) > 0: reg30_40.fit(X30_40,y30_40) if len(y25_30) > 0: reg25_30.fit(X25_30,y25_30) if len(y25m) > 0: reg25m.fit(X25m,y25m) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=70: y_hat = reg70p.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] >= 40 and M[i,0] < 50: y_hat = reg40_50.predict(s) elif M[i,0] >= 30 and M[i,0] < 40: y_hat = reg30_40.predict(s) elif M[i,0] >= 25 and M[i,0] < 30: y_hat = reg25_30.predict(s) elif M[i,0] < 25: y_hat = reg25m.predict(s) predicted = np.append(predicted,y_hat) BPA_p = predicted.reshape((len(predicted),1)) #Simulate using the regression above simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=70: y_hat = reg70p.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] >= 40 and M_sim[i,0] < 50: y_hat = reg40_50.predict(s) elif M_sim[i,0] >= 30 and M_sim[i,0] < 40: y_hat = reg30_40.predict(s) elif M_sim[i,0] >= 25 and M_sim[i,0] < 30: y_hat = reg25_30.predict(s) elif M_sim[i,0] < 25: y_hat = reg25m.predict(s) simulated = np.append(simulated,y_hat) BPA_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,BPA_p) print(a[0]**2, a[1]) # Residuals BPAresiduals = BPA_p - peaks BPA_y = peaks # RMSE RMSE = (np.sum((BPAresiduals**2))/len(BPAresiduals))**.5 output = np.column_stack((BPA_p,peaks)) ######################################################################### # CAISO ######################################################################### #Find the simulated data at the sites col_CAISO_T = ['FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_CAISO_W = ['FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] CAISO_sim_T=sim_weather[col_CAISO_T].values CAISO_sim_W=sim_weather[col_CAISO_W].values sim_days = len(sim_weather) weighted_SimT = np.zeros((sim_days,1)) #find average temps cities = ['Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_weather) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) weighted_AvgT = np.zeros((num_days,1)) for i in cities: n1 = i + '_MaxT' n2 = i + '_MinT' n3 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = 0.5*df_weather.loc[:,n1] + 0.5*df_weather.loc[:,n2] Wind[:,j] = df_weather.loc[:,n3] weighted_AvgT[:,0] = weighted_AvgT[:,0] + AvgT[:,j]*CAISO_weights.loc[1,i] weighted_SimT[:,0] = weighted_SimT[:,0] + CAISO_sim_T[:,j]*CAISO_weights.loc[1,i] #Convert simulated temperature to F weighted_SimT=(weighted_SimT * 9/5) +32 CAISO_sim_T_F=(CAISO_sim_T * 9/5) +32 #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) HDD_sim = np.zeros((sim_days,num_cities)) CDD_sim = np.zeros((sim_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) for i in range(0,sim_days): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-CAISO_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,CAISO_sim_T_F[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) CDD_wind_sim = np.multiply(CAISO_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(CAISO_sim_W,binary_HDD_sim) ########################### # CAISO - SDGE ########################### #convert load to array SDGE_load = df_load.loc[:,'SDGE'].values #remove NaNs a = np.argwhere(np.isnan(SDGE_load)) for i in a: SDGE_load[i] = SDGE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SDGE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SDGE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) SDGE_sim = simulated.reshape((len(simulated),1)) # Residuals SDGEresiduals = SDGE_p - peaks SDGE_y = peaks #a=st.pearsonr(peaks,SDGE_p) #print a[0]**2 # RMSE RMSE = (np.sum((SDGEresiduals**2))/len(SDGEresiduals))**.5 ########################### # CAISO - SCE ########################### #convert load to array SCE_load = df_load.loc[:,'SCE'].values #remove NaNs a = np.argwhere(np.isnan(SCE_load)) for i in a: SCE_load[i] = SCE_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(SCE_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) SCE_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) SCE_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,SCE_p) #print a[0]**2 # Residuals SCEresiduals = SCE_p - peaks SCE_y = peaks # RMSE RMSE = (np.sum((SCEresiduals**2))/len(SCEresiduals))**.5 ########################### # CAISO - PG&E Valley ########################### #convert load to array PGEV_load = df_load.loc[:,'PGE_V'].values #remove NaNs a = np.argwhere(np.isnan(PGEV_load)) for i in a: PGEV_load[i] = PGEV_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEV_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] ##multivariate regression # #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEV_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) simulated = np.append(simulated,y_hat) PGEV_sim = simulated.reshape((len(simulated),1)) a=st.pearsonr(peaks,PGEV_p) print(a[0]**2, a[1]) # Residuals PGEVresiduals = PGEV_p - peaks PGEV_y = peaks # RMSE RMSE = (np.sum((PGEVresiduals**2))/len(PGEVresiduals))**.5 ########################### # CAISO - PG&E Bay ########################### #convert load to array PGEB_load = df_load.loc[:,'PGE_B'].values #remove NaNs a = np.argwhere(np.isnan(PGEB_load)) for i in a: PGEB_load[i] = PGEB_load[i+24] peaks = np.zeros((num_days,1)) #find peaks for i in range(0,num_days): peaks[i] = np.max(PGEB_load[i*24:i*24+24]) #Separate data by weighted temperature M = np.column_stack((weighted_AvgT,peaks,dow,HDD,CDD,HDD_wind,CDD_wind)) M_sim=np.column_stack((weighted_SimT,sim_dow,HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) X80p = M[(M[:,0] >= 80),2:] y80p = M[(M[:,0] >= 80),1] X75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),2:] y75_80 = M[(M[:,0] >= 75) & (M[:,0] < 80),1] X70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),2:] y70_75 = M[(M[:,0] >= 70) & (M[:,0] < 75),1] X65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),2:] y65_70 = M[(M[:,0] >= 65) & (M[:,0] < 70),1] X60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),2:] y60_65 = M[(M[:,0] >= 60) & (M[:,0] < 65),1] X55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),2:] y55_60 = M[(M[:,0] >= 55) & (M[:,0] < 60),1] X50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),2:] y50_55 = M[(M[:,0] >= 50) & (M[:,0] < 55),1] X50 = M[(M[:,0] < 50),2:] y50 = M[(M[:,0] < 50),1] X80p_Sim = M_sim[(M_sim[:,0] >= 80),1:] X75_80_Sim = M_sim[(M_sim[:,0] >= 75) & (M_sim[:,0] < 80),1:] X70_75_Sim = M_sim[(M_sim[:,0] >= 70) & (M_sim[:,0] < 75),1:] X65_70_Sim = M_sim[(M_sim[:,0] >= 65) & (M_sim[:,0] < 70),1:] X60_65_Sim = M_sim[(M_sim[:,0] >= 60) & (M_sim[:,0] < 65),1:] X55_60_Sim = M_sim[(M_sim[:,0] >= 55) & (M_sim[:,0] < 60),1:] X50_55_Sim = M_sim[(M_sim[:,0] >= 50) & (M_sim[:,0] < 55),1:] X50_Sim = M_sim[(M_sim[:,0] < 50),1:] #Create linear regression object reg80p = linear_model.LinearRegression() reg75_80 = linear_model.LinearRegression() reg70_75 = linear_model.LinearRegression() reg65_70 = linear_model.LinearRegression() reg60_65 = linear_model.LinearRegression() reg55_60 = linear_model.LinearRegression() reg50_55 = linear_model.LinearRegression() reg50m = linear_model.LinearRegression() ## Train the model using the training sets if len(y80p) > 0: reg80p.fit(X80p,y80p) if len(y75_80) > 0: reg75_80.fit(X75_80,y75_80) if len(y70_75) > 0: reg70_75.fit(X70_75,y70_75) if len(y65_70) > 0: reg65_70.fit(X65_70,y65_70) if len(y60_65) > 0: reg60_65.fit(X60_65,y60_65) if len(y55_60) > 0: reg55_60.fit(X55_60,y55_60) if len(y50_55) > 0: reg50_55.fit(X50_55,y50_55) if len(y50) > 0: reg50m.fit(X50,y50) # Make predictions using the testing set predicted = [] for i in range(0,num_days): s = M[i,2:] s = s.reshape((1,len(s))) if M[i,0]>=80: y_hat = reg80p.predict(s) elif M[i,0] >= 75 and M[i,0] < 80: y_hat = reg75_80.predict(s) elif M[i,0] >= 70 and M[i,0] < 75: y_hat = reg70_75.predict(s) elif M[i,0] >= 65 and M[i,0] < 70: y_hat = reg65_70.predict(s) elif M[i,0] >= 60 and M[i,0] < 65: y_hat = reg60_65.predict(s) elif M[i,0] >= 55 and M[i,0] < 60: y_hat = reg55_60.predict(s) elif M[i,0] >= 50 and M[i,0] < 55: y_hat = reg50_55.predict(s) elif M[i,0] < 50: y_hat = reg50m.predict(s) predicted = np.append(predicted,y_hat) PGEB_p = predicted.reshape((len(predicted),1)) simulated=[] for i in range(0,sim_days): s = M_sim[i,1:] s = s.reshape((1,len(s))) if M_sim[i,0]>=80: y_hat = reg80p.predict(s) elif M_sim[i,0] >= 75 and M_sim[i,0] < 80: y_hat = reg75_80.predict(s) elif M_sim[i,0] >= 70 and M_sim[i,0] < 75: y_hat = reg70_75.predict(s) elif M_sim[i,0] >= 65 and M_sim[i,0] < 70: y_hat = reg65_70.predict(s) elif M_sim[i,0] >= 60 and M_sim[i,0] < 65: y_hat = reg60_65.predict(s) elif M_sim[i,0] >= 55 and M_sim[i,0] < 60: y_hat = reg55_60.predict(s) elif M_sim[i,0] >= 50 and M_sim[i,0] < 55: y_hat = reg50_55.predict(s) elif M_sim[i,0] < 50: y_hat = reg50m.predict(s) # simulated = np.append(simulated,y_hat) PGEB_sim = simulated.reshape((len(simulated),1)) #a=st.pearsonr(peaks,PGEB_p) #print a[0]**2 # Residuals PGEBresiduals = PGEB_p - peaks PGEB_y = peaks # RMSE RMSE = (np.sum((PGEBresiduals**2))/len(PGEBresiduals))**.5 #Collect residuals from load regression R = np.column_stack((BPAresiduals,SDGEresiduals,SCEresiduals,PGEVresiduals,PGEBresiduals)) ResidualsLoad = R[0:3*365,:] ################################### # PATH 46 ################################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/46_daily.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path46'}, inplace=True) df_data.rename(columns={4:'Weekday'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] y = df_data.loc[:,'Path46'] #multivariate regression jan_reg_46 = linear_model.LinearRegression() feb_reg_46 = linear_model.LinearRegression() mar_reg_46 = linear_model.LinearRegression() apr_reg_46 = linear_model.LinearRegression() may_reg_46 = linear_model.LinearRegression() jun_reg_46 = linear_model.LinearRegression() jul_reg_46 = linear_model.LinearRegression() aug_reg_46 = linear_model.LinearRegression() sep_reg_46 = linear_model.LinearRegression() oct_reg_46 = linear_model.LinearRegression() nov_reg_46 = linear_model.LinearRegression() dec_reg_46 = linear_model.LinearRegression() # Train the model using the training sets jan_reg_46.fit(jan.loc[:,'Weekday':],jan.loc[:,'Path46']) feb_reg_46.fit(feb.loc[:,'Weekday':],feb.loc[:,'Path46']) mar_reg_46.fit(mar.loc[:,'Weekday':],mar.loc[:,'Path46']) apr_reg_46.fit(apr.loc[:,'Weekday':],apr.loc[:,'Path46']) may_reg_46.fit(may.loc[:,'Weekday':],may.loc[:,'Path46']) jun_reg_46.fit(jun.loc[:,'Weekday':],jun.loc[:,'Path46']) jul_reg_46.fit(jul.loc[:,'Weekday':],jul.loc[:,'Path46']) aug_reg_46.fit(aug.loc[:,'Weekday':],aug.loc[:,'Path46']) sep_reg_46.fit(sep.loc[:,'Weekday':],sep.loc[:,'Path46']) oct_reg_46.fit(oct.loc[:,'Weekday':],oct.loc[:,'Path46']) nov_reg_46.fit(nov.loc[:,'Weekday':],nov.loc[:,'Path46']) dec_reg_46.fit(dec.loc[:,'Weekday':],dec.loc[:,'Path46']) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Weekday':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jan_reg_46.predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = feb_reg_46.predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = mar_reg_46.predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = apr_reg_46.predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = may_reg_46.predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jun_reg_46.predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jul_reg_46.predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = aug_reg_46.predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = sep_reg_46.predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = oct_reg_46.predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = nov_reg_46.predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = dec_reg_46.predict(s) predicted = np.append(predicted,p) Path46_p = predicted # Residuals residuals = predicted - y.values Residuals46 = np.reshape(residuals[730:],(1095,1)) Path46_y = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 ##R2 #a=st.pearsonr(y,predicted) #print a[0]**2 ############################### # NW PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/NW_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Weekday']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) H = df_data #df_data.to_excel('Synthetic_demand_pathflows/cX.xlsx') df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path8'}, inplace=True) df_data.rename(columns={4:'Path14'}, inplace=True) df_data.rename(columns={5:'Path3'}, inplace=True) df_data.rename(columns={6:'BPA_wind'}, inplace=True) df_data.rename(columns={7:'BPA_hydro'}, inplace=True) df_data.rename(columns={8:'Weekday'}, inplace=True) df_data.rename(columns={9:'Salem_HDD'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path8','Path14','Path3'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) NWPaths_p= np.zeros((len(cX),num_lines)) NWPaths_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name='jan_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='feb_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='mar_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='apr_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='may_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='jun_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='jul_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='aug_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='sep_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='oct_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='nov_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() name='dec_reg_NW' + str(line) locals()[name] = linear_model.LinearRegression() # Train the model using the training sets name='jan_reg_NW' + str(line) locals()[name].fit(jan.loc[:,'BPA_wind':],jan.loc[:,line]) name='feb_reg_NW' + str(line) locals()[name].fit(feb.loc[:,'BPA_wind':],feb.loc[:,line]) name='mar_reg_NW' + str(line) locals()[name].fit(mar.loc[:,'BPA_wind':],mar.loc[:,line]) name='apr_reg_NW' + str(line) locals()[name].fit(apr.loc[:,'BPA_wind':],apr.loc[:,line]) name='may_reg_NW' + str(line) locals()[name].fit(may.loc[:,'BPA_wind':],may.loc[:,line]) name='jun_reg_NW' + str(line) locals()[name].fit(jun.loc[:,'BPA_wind':],jun.loc[:,line]) name='jul_reg_NW' + str(line) locals()[name].fit(jul.loc[:,'BPA_wind':],jul.loc[:,line]) name='aug_reg_NW' + str(line) locals()[name].fit(aug.loc[:,'BPA_wind':],aug.loc[:,line]) name='sep_reg_NW' + str(line) locals()[name].fit(sep.loc[:,'BPA_wind':],sep.loc[:,line]) name='oct_reg_NW' + str(line) locals()[name].fit(oct.loc[:,'BPA_wind':],oct.loc[:,line]) name='nov_reg_NW' + str(line) locals()[name].fit(nov.loc[:,'BPA_wind':],nov.loc[:,line]) name='dec_reg_NW' + str(line) locals()[name].fit(dec.loc[:,'BPA_wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'BPA_wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jan_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='feb_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='mar_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='apr_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='may_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jun_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='jul_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='aug_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='sep_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='oct_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='nov_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) name='dec_reg_NW' + str(line) p = locals()[name].predict(s) predicted = np.append(predicted,p) NWPaths_p[:,line_index] = predicted # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals NWPaths_y[:,line_index] = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 # #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 ResidualsNWPaths = export_residuals ############################### # Other CA PATHS ############################### #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/OtherCA_Path_data.xlsx',sheet_name='Daily',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Tuscon','Phoenix','Vegas','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Path66']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path61'}, inplace=True) df_data.rename(columns={4:'Path42'}, inplace=True) df_data.rename(columns={5:'Path24'}, inplace=True) df_data.rename(columns={6:'Path45'}, inplace=True) df_data.rename(columns={7:'BPA_wind'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path61','Path42','Path24','Path45'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) OtherCA_Paths_p= np.zeros((len(cX),num_lines)) OtherCA_Paths_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name_1='jan_reg_CA' + str(line) name_2='feb_reg_CA' + str(line) name_3='mar_reg_CA' + str(line) name_4='apr_reg_CA' + str(line) name_5='may_reg_CA' + str(line) name_6='jun_reg_CA' + str(line) name_7='jul_reg_CA' + str(line) name_8='aug_reg_CA' + str(line) name_9='sep_reg_CA' + str(line) name_10='oct_reg_CA' + str(line) name_11='nov_reg_CA' + str(line) name_12='dec_reg_CA' + str(line) locals()[name_1] = linear_model.LinearRegression() locals()[name_2] = linear_model.LinearRegression() locals()[name_3] = linear_model.LinearRegression() locals()[name_4] = linear_model.LinearRegression() locals()[name_5] = linear_model.LinearRegression() locals()[name_6] = linear_model.LinearRegression() locals()[name_7] = linear_model.LinearRegression() locals()[name_8] = linear_model.LinearRegression() locals()[name_9] = linear_model.LinearRegression() locals()[name_10] = linear_model.LinearRegression() locals()[name_11] = linear_model.LinearRegression() locals()[name_12] = linear_model.LinearRegression() # Train the model using the training sets locals()[name_1].fit(jan.loc[:,'BPA_wind':],jan.loc[:,line]) locals()[name_2].fit(feb.loc[:,'BPA_wind':],feb.loc[:,line]) locals()[name_3].fit(mar.loc[:,'BPA_wind':],mar.loc[:,line]) locals()[name_4].fit(apr.loc[:,'BPA_wind':],apr.loc[:,line]) locals()[name_5].fit(may.loc[:,'BPA_wind':],may.loc[:,line]) locals()[name_6].fit(jun.loc[:,'BPA_wind':],jun.loc[:,line]) locals()[name_7].fit(jul.loc[:,'BPA_wind':],jul.loc[:,line]) locals()[name_8].fit(aug.loc[:,'BPA_wind':],aug.loc[:,line]) locals()[name_9].fit(sep.loc[:,'BPA_wind':],sep.loc[:,line]) locals()[name_10].fit(oct.loc[:,'BPA_wind':],oct.loc[:,line]) locals()[name_11].fit(nov.loc[:,'BPA_wind':],nov.loc[:,line]) locals()[name_12].fit(dec.loc[:,'BPA_wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'BPA_wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) OtherCA_Paths_p[:,line_index] = predicted # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals OtherCA_Paths_y[:,line_index] = y.values # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 # #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 ResidualsOtherCA_Paths = export_residuals ########################## # PATH 65 & 66 ########################## #import data df_data1 = pd.read_excel('Synthetic_demand_pathflows/Path65_66_regression_data.xlsx',sheet_name='Sheet1',header=0) #find average temps cities = ['Salem','Seattle','Portland','Eugene','Boise','Fresno','Oakland','LA','SanDiego','Sacramento','SanJose','SanFran'] num_cities = len(cities) num_days = len(df_data1) AvgT = np.zeros((num_days,num_cities)) Wind = np.zeros((num_days,num_cities)) for i in cities: n1 = i + '_AvgT' n2 = i + '_Wind' j = int(cities.index(i)) AvgT[:,j] = df_data1.loc[:,n1] Wind[:,j] = df_data1.loc[:,n2] #convert to degree days HDD = np.zeros((num_days,num_cities)) CDD = np.zeros((num_days,num_cities)) for i in range(0,num_days): for j in range(0,num_cities): HDD[i,j] = np.max((0,65-AvgT[i,j])) CDD[i,j] = np.max((0,AvgT[i,j] - 65)) #separate wind speed by cooling/heating degree day binary_CDD = CDD>0 binary_HDD = HDD>0 CDD_wind = np.multiply(Wind,binary_CDD) HDD_wind = np.multiply(Wind,binary_HDD) X1 = np.array(df_data1.loc[:,'Month':'Weekday']) X2 = np.column_stack((HDD,CDD,HDD_wind,CDD_wind)) cX = np.column_stack((X1,X2)) df_data = pd.DataFrame(cX) df_data.rename(columns={0:'Month'}, inplace=True) df_data.rename(columns={3:'Path65'}, inplace=True) df_data.rename(columns={4:'Path66'}, inplace=True) df_data.rename(columns={5:'Wind'}, inplace=True) jan = df_data.loc[df_data['Month'] == 1,:] feb = df_data.loc[df_data['Month'] == 2,:] mar = df_data.loc[df_data['Month'] == 3,:] apr = df_data.loc[df_data['Month'] == 4,:] may = df_data.loc[df_data['Month'] == 5,:] jun = df_data.loc[df_data['Month'] == 6,:] jul = df_data.loc[df_data['Month'] == 7,:] aug = df_data.loc[df_data['Month'] == 8,:] sep = df_data.loc[df_data['Month'] == 9,:] oct = df_data.loc[df_data['Month'] == 10,:] nov = df_data.loc[df_data['Month'] == 11,:] dec = df_data.loc[df_data['Month'] == 12,:] lines = ['Path65','Path66'] num_lines = len(lines) export_residuals = np.zeros((len(cX),num_lines)) Path65_66_p = np.zeros((len(cX),num_lines)) Path65_66_y = np.zeros((len(cX),num_lines)) for line in lines: y = df_data.loc[:,line] line_index = lines.index(line) #multivariate regression name_1='jan_reg_6566' + str(line) name_2='feb_reg_6566' + str(line) name_3='mar_reg_6566' + str(line) name_4='apr_reg_6566' + str(line) name_5='may_reg_6566' + str(line) name_6='jun_reg_6566' + str(line) name_7='jul_reg_6566' + str(line) name_8='aug_reg_6566' + str(line) name_9='sep_reg_6566' + str(line) name_10='oct_reg_6566' + str(line) name_11='nov_reg_6566' + str(line) name_12='dec_reg_6566' + str(line) locals()[name_1] = linear_model.LinearRegression() locals()[name_2] = linear_model.LinearRegression() locals()[name_3] = linear_model.LinearRegression() locals()[name_4] = linear_model.LinearRegression() locals()[name_5] = linear_model.LinearRegression() locals()[name_6] = linear_model.LinearRegression() locals()[name_7] = linear_model.LinearRegression() locals()[name_8] = linear_model.LinearRegression() locals()[name_9] = linear_model.LinearRegression() locals()[name_10] = linear_model.LinearRegression() locals()[name_11] = linear_model.LinearRegression() locals()[name_12] = linear_model.LinearRegression() # Train the model using the training sets locals()[name_1].fit(jan.loc[:,'Wind':],jan.loc[:,line]) locals()[name_2].fit(feb.loc[:,'Wind':],feb.loc[:,line]) locals()[name_3].fit(mar.loc[:,'Wind':],mar.loc[:,line]) locals()[name_4].fit(apr.loc[:,'Wind':],apr.loc[:,line]) locals()[name_5].fit(may.loc[:,'Wind':],may.loc[:,line]) locals()[name_6].fit(jun.loc[:,'Wind':],jun.loc[:,line]) locals()[name_7].fit(jul.loc[:,'Wind':],jul.loc[:,line]) locals()[name_8].fit(aug.loc[:,'Wind':],aug.loc[:,line]) locals()[name_9].fit(sep.loc[:,'Wind':],sep.loc[:,line]) locals()[name_10].fit(oct.loc[:,'Wind':],oct.loc[:,line]) locals()[name_11].fit(nov.loc[:,'Wind':],nov.loc[:,line]) locals()[name_12].fit(dec.loc[:,'Wind':],dec.loc[:,line]) # Make predictions using the testing set predicted = [] rc = np.shape(jan.loc[:,'Wind':]) n = rc[1] for i in range(0,len(y)): m = df_data.loc[i,'Month'] if m==1: s = jan.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) Path65_66_p[:,line_index] = predicted Path65_66_y[:,line_index] = y.values # Residuals residuals = predicted - y.values export_residuals[:,line_index] = residuals # # RMSE RMSE = (np.sum((residuals**2))/len(residuals))**.5 #R2 # a=st.pearsonr(y,predicted) # print a[0]**2 Residuals65_66 = export_residuals[730:,:] ##################################################################### # Residual Analysis ##################################################################### R = np.column_stack((ResidualsLoad,ResidualsNWPaths,ResidualsOtherCA_Paths,Residuals46,Residuals65_66)) rc = np.shape(R) cols = rc[1] mus = np.zeros((cols,1)) stds = np.zeros((cols,1)) R_w = np.zeros(np.shape(R)) sim_days = len(R_w) #whiten residuals for i in range(0,cols): mus[i] = np.mean(R[:,i]) stds[i] = np.std(R[:,i]) R_w[:,i] = (R[:,i] - mus[i])/stds[i] #Vector autoregressive model on residuals model = VAR(R_w) results = model.fit(1) sim_residuals = np.zeros((sim_days,cols)) errors = np.zeros((sim_days,cols)) p = results.params y_seeds = R_w[-1] C = results.sigma_u means = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] E = np.random.multivariate_normal(means,C,sim_days) ys = np.zeros((cols,1)) # Generate cross correlated residuals for i in range(0,sim_days): for j in range(1,cols+1): name='y' + str(j) locals()[name]= p[0,j-1] + p[1,j-1]*y_seeds[0]+ p[2,j-1]*y_seeds[1]+ p[3,j-1]*y_seeds[2]+ p[4,j-1]*y_seeds[3]+ p[5,j-1]*y_seeds[4]+ p[6,j-1]*y_seeds[5]+ p[7,j-1]*y_seeds[6]+ p[8,j-1]*y_seeds[7]+ p[9,j-1]*y_seeds[8]+ p[10,j-1]*y_seeds[9]+ p[11,j-1]*y_seeds[10]+ p[12,j-1]*y_seeds[11]+ p[13,j-1]*y_seeds[12]+ p[13,j-1]*y_seeds[12]+ p[14,j-1]*y_seeds[13]+ p[15,j-1]*y_seeds[14]+E[i,j-1] for j in range(1,cols+1): name='y' + str(j) y_seeds[j-1]=locals()[name] sim_residuals[i,:] = [y1,y2,y3,y4,y5,y6,y7,y8,y9,y10,y11,y12,y13,y14,y15] for i in range(0,cols): sim_residuals[:,i] = sim_residuals[:,i]*stds[i]*(1/np.std(sim_residuals[:,i])) + mus[i] #validation Y = np.column_stack((np.reshape(BPA_y[0:3*365],(1095,1)),np.reshape(SDGE_y[0:3*365],(1095,1)),np.reshape(SCE_y[0:3*365],(1095,1)),np.reshape(PGEV_y[0:3*365],(1095,1)),np.reshape(PGEB_y[0:3*365],(1095,1)),NWPaths_y,OtherCA_Paths_y,np.reshape(Path46_y[730:],(1095,1)),np.reshape(Path65_66_y[730:,:],(1095,2)))) combined_BPA = np.reshape(sim_residuals[:,0],(1095,1)) + np.reshape(BPA_p[0:3*365],(1095,1)) combined_SDGE = np.reshape(sim_residuals[:,1],(1095,1)) + np.reshape(SDGE_p[0:3*365],(1095,1)) combined_SCE = np.reshape(sim_residuals[:,2],(1095,1)) + np.reshape(SCE_p[0:3*365],(1095,1)) combined_PGEV = np.reshape(sim_residuals[:,3],(1095,1)) + np.reshape(PGEV_p[0:3*365],(1095,1)) combined_PGEB = np.reshape(sim_residuals[:,4],(1095,1)) + np.reshape(PGEB_p[0:3*365],(1095,1)) combined_Path8 = np.reshape(sim_residuals[:,5],(1095,1)) + np.reshape(NWPaths_p[:,0],(1095,1)) combined_Path14 = np.reshape(sim_residuals[:,6],(1095,1)) + np.reshape(NWPaths_p[:,1],(1095,1)) combined_Path3 = np.reshape(sim_residuals[:,7],(1095,1)) + np.reshape(NWPaths_p[:,2],(1095,1)) combined_Path61 = np.reshape(sim_residuals[:,8],(1095,1)) + np.reshape(OtherCA_Paths_p[:,0],(1095,1)) combined_Path42 = np.reshape(sim_residuals[:,9],(1095,1)) + np.reshape(OtherCA_Paths_p[:,1],(1095,1)) combined_Path24 = np.reshape(sim_residuals[:,10],(1095,1)) + np.reshape(OtherCA_Paths_p[:,2],(1095,1)) combined_Path45 = np.reshape(sim_residuals[:,11],(1095,1)) + np.reshape(OtherCA_Paths_p[:,3],(1095,1)) combined_Path46 = np.reshape(sim_residuals[:,12],(1095,1)) + np.reshape(Path46_p[730:],(1095,1)) combined_Path65 = np.reshape(sim_residuals[:,13],(1095,1)) + np.reshape(Path65_66_p[730:,0],(1095,1)) combined_Path66 = np.reshape(sim_residuals[:,14],(1095,1)) + np.reshape(Path65_66_p[730:,1],(1095,1)) combined = np.column_stack((combined_BPA,combined_SDGE,combined_SCE,combined_PGEV,combined_PGEB,combined_Path8,combined_Path14,combined_Path3,combined_Path61,combined_Path42,combined_Path24,combined_Path45,combined_Path46,combined_Path65,combined_Path66)) rc = np.shape(Y) cols = rc[1] names = ['BPA','SDGE','SCE','PGEV','PGEB','Path8','Path14','Path3','Path61','Path42','Path24','Path45','Path46','Path65','Path66'] #for n in names: # # n_index = names.index(n) # # plt.figure() # plt.plot(combined[:,n_index],'r') # plt.plot(Y[:,n_index],'b') # plt.title(n) # ########################################################################################################################################################## #Simulating demand and path ######################################################################################################################################################### #Sim Residual simulation_length=len(sim_weather) syn_residuals = np.zeros((simulation_length,cols)) errors = np.zeros((simulation_length,cols)) y_seeds = R_w[-1] C = results.sigma_u means = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0] E = np.random.multivariate_normal(means,C,simulation_length) ys = np.zeros((cols,1)) for i in range(0,simulation_length): for n in range(0,cols): ys[n] = p[0,n] for m in range(0,cols): ys[n] = ys[n] + p[m+1,n]*y_seeds[n] ys[n] = ys[n] + E[i,n] for n in range(0,cols): y_seeds[n] = ys[n] syn_residuals[i,:] = np.reshape([ys],(1,cols)) for i in range(0,cols): syn_residuals[:,i] = syn_residuals[:,i]*stds[i]*(1/np.std(syn_residuals[:,i])) + mus[i] ################################################## # PATH NW ################################################## #This only uses BPA wind and hydro col_nw_T =['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_nw_W =['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','<NAME>'] num_cities = len(col_nw_T) NW_sim_T=sim_weather[col_nw_T].values NW_sim_W=sim_weather[col_nw_W].values NW_sim_T=sim_weather[col_nw_T].values NW_sim_W=sim_weather[col_nw_W].values NW_sim_T_F=(NW_sim_T * 9/5) +32 NW_sim_W =NW_sim_W *2.23694 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-NW_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,NW_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(NW_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(NW_sim_W,binary_HDD_sim) #Need Month,Day,Year,8 14 3 BPA_wind,BPA_hydro sim_BPA_hydro = pd.read_csv('PNW_hydro/FCRPS/Path_dams.csv',header=None) sim_BPA_hydro=sim_BPA_hydro.values sim_BPA_hydro=np.sum(sim_BPA_hydro,axis=1)/24 #What is the common length effect_sim_year=int(len(sim_BPA_hydro)/365) sim_month=sim_month[:len(sim_BPA_hydro)] sim_day=sim_day[:len(sim_BPA_hydro)] sim_year=sim_year[:len(sim_BPA_hydro)] sim_dow= sim_dow[:len(sim_BPA_hydro)] sim_wind_power=pd.read_csv('Synthetic_wind_power/wind_power_sim.csv',header=0) sim_BPA_wind_power= sim_wind_power.loc[:,'BPA']/24 sim_wind_daily = np.zeros((effect_sim_year*365,1)) for i in range(0,effect_sim_year*365): sim_wind_daily[i] = np.sum((sim_BPA_wind_power.loc[i*24:i*24+24])) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,sim_dow)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path8'}, inplace=True) df_data_sim.rename(columns={4:'Path14'}, inplace=True) df_data_sim.rename(columns={5:'Path3'}, inplace=True) df_data_sim.rename(columns={6:'BPA_wind'}, inplace=True) df_data_sim.rename(columns={7:'BPA_hydro'}, inplace=True) df_data_sim.rename(columns={8:'Weekday'}, inplace=True) df_data_sim.rename(columns={9:'Salem_HDD'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path8','Path14','Path3'] upper = [1900,1500,1900] lower = [-600,-900,-2200] for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'BPA_wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_NW' + str(line) name_2='feb_reg_NW' + str(line) name_3='mar_reg_NW' + str(line) name_4='apr_reg_NW' + str(line) name_5='may_reg_NW' + str(line) name_6='jun_reg_NW' + str(line) name_7='jul_reg_NW' + str(line) name_8='aug_reg_NW' + str(line) name_9='sep_reg_NW' + str(line) name_10='oct_reg_NW' + str(line) name_11='nov_reg_NW' + str(line) name_12='dec_reg_NW' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) if predicted[i] > upper[line_index]: predicted[i] = upper[line_index] elif predicted[i] < lower[line_index]: predicted[i] = lower[line_index] name='predicted_' + str(line) locals()[name]=predicted syn_Path8=predicted_Path8+syn_residuals[:effect_sim_year*365,5] syn_Path14=predicted_Path14+syn_residuals[:effect_sim_year*365,6] syn_Path3=predicted_Path3+syn_residuals[:effect_sim_year*365,7] bias = np.mean(syn_Path8) - np.mean(NWPaths_y[:,0]) syn_Path8 = syn_Path8 - bias bias = np.mean(syn_Path14) - np.mean(NWPaths_y[:,1]) syn_Path14 = syn_Path14 - bias bias = np.mean(syn_Path3) - np.mean(NWPaths_y[:,2]) syn_Path3 = syn_Path3 - bias S = df_data_sim.values HO = H.values stats = np.zeros((69,4)) for i in range(0,69): stats[i,0] = np.mean(S[:,i]) stats[i,1] = np.mean(HO[:,i]) stats[i,2] = np.std(S[:,i]) stats[i,3] = np.std(HO[:,i]) ################################################################################ ################################################### ## PATH 65 & 66 ################################################### col_6566_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_6566_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','<NAME>_W'] num_cities = len(col_6566_T) P6566_sim_T=sim_weather[col_6566_T].values P6566_sim_W=sim_weather[col_6566_W].values P6566_sim_W =P6566_sim_W*2.23694 sim_days = len(sim_weather) P6566_sim_T_F=(P6566_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-P6566_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,P6566_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(P6566_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(P6566_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,syn_Path3,syn_Path8,syn_Path14,sim_dow)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path65'}, inplace=True) df_data_sim.rename(columns={4:'Path66'}, inplace=True) df_data_sim.rename(columns={5:'Wind'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path65','Path66'] upper = [3100,4300] lower = [-2210,-500] for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'Wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_6566' + str(line) name_2='feb_reg_6566' + str(line) name_3='mar_reg_6566' + str(line) name_4='apr_reg_6566' + str(line) name_5='may_reg_6566' + str(line) name_6='jun_reg_6566' + str(line) name_7='jul_reg_6566' + str(line) name_8='aug_reg_6566' + str(line) name_9='sep_reg_6566' + str(line) name_10='oct_reg_6566' + str(line) name_11='nov_reg_6566' + str(line) name_12='dec_reg_6566' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'Wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) if predicted[i] > upper[line_index]: predicted[i] = upper[line_index] elif predicted[i] < lower[line_index]: predicted[i] = lower[line_index] name='predicted_' + str(line) locals()[name]=predicted syn_Path65= predicted_Path65 + syn_residuals[:effect_sim_year*365,13] syn_Path66 = predicted_Path66 + syn_residuals[:effect_sim_year*365,14] bias = np.mean(syn_Path65) - np.mean(Path65_66_y[:,0]) syn_Path65 = syn_Path65 - bias bias = np.mean(syn_Path66) - np.mean(Path65_66_y[:,1]) syn_Path66 = syn_Path66 - bias ################################################### ## PATH 46 ################################################### #Find the simulated data at the sites col_46_T = ['TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_46_W = ['TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] num_cities = len(col_46_T) P46_sim_T=sim_weather[col_46_T].values P46_sim_W=sim_weather[col_46_W].values P46_sim_W =P46_sim_W *2.23694 sim_days = len(sim_weather) P46_sim_T_F=(P46_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-P46_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,P46_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(P46_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(P46_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] sim_Hoover = pd.read_csv('Synthetic_streamflows/synthetic_discharge_Hoover.csv',header=None) sim_Hoover=sim_Hoover.values sim_Hoover = sim_Hoover[:effect_sim_year*365] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),sim_dow,sim_Hoover,syn_Path65,syn_Path66)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path46'}, inplace=True) df_data_sim.rename(columns={4:'Weekday'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] y = df_data_sim.loc[:,'Path46'] predicted_Path46 =[] rc = np.shape(jan2.loc[:,'Weekday':]) n = rc[1] upper = 185000 lower = 48000 predicted=[] for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jan_reg_46.predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = feb_reg_46.predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = mar_reg_46.predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = apr_reg_46.predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = may_reg_46.predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jun_reg_46.predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = jul_reg_46.predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = aug_reg_46.predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = sep_reg_46.predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = oct_reg_46.predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = nov_reg_46.predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'Weekday':] s = np.reshape(s[:,None],(1,n)) p = dec_reg_46.predict(s) predicted = np.append(predicted,p) if predicted[i] > upper: predicted[i] = upper elif predicted[i] < lower: predicted[i] = lower predicted_Path46=predicted syn_Path46=predicted_Path46+syn_residuals[:effect_sim_year*365,12] bias = np.mean(syn_Path46) - np.mean(Path46_y) syn_Path46 = syn_Path46 - bias syn_Path46 = syn_Path46/24 # ################################ ## Other CA PATHS ################################ col_ca_T = ['SALEM_T','SEATTLE_T','PORTLAND_T','EUGENE_T','BOISE_T','TUCSON_T','PHOENIX_T','LAS VEGAS_T','FRESNO_T','OAKLAND_T','LOS ANGELES_T','SAN DIEGO_T','SACRAMENTO_T','SAN JOSE_T','SAN FRANCISCO_T'] col_ca_W = ['SALEM_W','SEATTLE_W','PORTLAND_W','EUGENE_W','BOISE_W','TUCSON_W','PHOENIX_W','LAS VEGAS_W','FRESNO_W','OAKLAND_W','LOS ANGELES_W','SAN DIEGO_W','SACRAMENTO_W','SAN JOSE_W','SAN FRANCISCO_W'] num_cities = len(col_ca_T) CA_sim_T=sim_weather[col_ca_T].values CA_sim_W=sim_weather[col_ca_W].values CA_sim_W =CA_sim_W *2.23694 CA_sim_T_F=(CA_sim_T * 9/5) +32 HDD_sim = np.zeros((simulation_length,num_cities)) CDD_sim = np.zeros((simulation_length,num_cities)) for i in range(0,simulation_length): for j in range(0,num_cities): HDD_sim[i,j] = np.max((0,65-CA_sim_T_F[i,j])) CDD_sim[i,j] = np.max((0,CA_sim_T_F[i,j] - 65)) binary_CDD_sim = CDD_sim > 0 binary_HDD_sim = HDD_sim > 0 CDD_wind_sim = np.multiply(CA_sim_W,binary_CDD_sim) HDD_wind_sim = np.multiply(CA_sim_W,binary_HDD_sim) #HDD_sim=HDD_sim[730:len(HDD_sim)-730] #CDD_sim=CDD_sim[730:len(CDD_sim)-730] # #HDD_wind_sim=HDD_wind_sim[730:len(HDD_wind_sim)-730] #CDD_wind_sim=CDD_wind_sim[730:len(CDD_wind_sim)-730] collect_data=np.column_stack((sim_month,sim_day,sim_year,np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),np.zeros(effect_sim_year*365),sim_wind_daily,sim_BPA_hydro,sim_dow,syn_Path46,sim_Hoover,syn_Path65,syn_Path66)) collect_data_2=np.column_stack((HDD_sim,CDD_sim,HDD_wind_sim,CDD_wind_sim)) Combined=np.column_stack((collect_data,collect_data_2)) df_data_sim = pd.DataFrame(Combined) df_data_sim.rename(columns={0:'Month'}, inplace=True) df_data_sim.rename(columns={3:'Path61'}, inplace=True) df_data_sim.rename(columns={4:'Path42'}, inplace=True) df_data_sim.rename(columns={5:'Path24'}, inplace=True) df_data_sim.rename(columns={6:'Path45'}, inplace=True) df_data_sim.rename(columns={7:'BPA_wind'}, inplace=True) jan2 = df_data_sim.loc[df_data_sim['Month'] == 1,:] feb2 = df_data_sim.loc[df_data_sim['Month'] == 2,:] mar2 = df_data_sim.loc[df_data_sim['Month'] == 3,:] apr2 = df_data_sim.loc[df_data_sim['Month'] == 4,:] may2 = df_data_sim.loc[df_data_sim['Month'] == 5,:] jun2 = df_data_sim.loc[df_data_sim['Month'] == 6,:] jul2 = df_data_sim.loc[df_data_sim['Month'] == 7,:] aug2 = df_data_sim.loc[df_data_sim['Month'] == 8,:] sep2 = df_data_sim.loc[df_data_sim['Month'] == 9,:] oct2 = df_data_sim.loc[df_data_sim['Month'] == 10,:] nov2 = df_data_sim.loc[df_data_sim['Month'] == 11,:] dec2 = df_data_sim.loc[df_data_sim['Month'] == 12,:] lines = ['Path61','Path42','Path24','Path45'] upper = [1940,98,92,340] lower = [240,-400,-48,-190] num_lines = len(lines) for line in lines: name='predicted_' + str(line) locals()[name]=[] for line in lines: predicted=[] rc = np.shape(jan2.loc[:,'BPA_wind':]) n = rc[1] y = df_data_sim.loc[:,line] line_index = lines.index(line) #regression names name_1='jan_reg_CA' + str(line) name_2='feb_reg_CA' + str(line) name_3='mar_reg_CA' + str(line) name_4='apr_reg_CA' + str(line) name_5='may_reg_CA' + str(line) name_6='jun_reg_CA' + str(line) name_7='jul_reg_CA' + str(line) name_8='aug_reg_CA' + str(line) name_9='sep_reg_CA' + str(line) name_10='oct_reg_CA' + str(line) name_11='nov_reg_CA' + str(line) name_12='dec_reg_CA' + str(line) for i in range(0,len(y)): m = df_data_sim.loc[i,'Month'] if m==1: s = jan2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_1].predict(s) predicted = np.append(predicted,p) elif m==2: s = feb2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_2].predict(s) predicted = np.append(predicted,p) elif m==3: s = mar2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_3].predict(s) predicted = np.append(predicted,p) elif m==4: s = apr2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_4].predict(s) predicted = np.append(predicted,p) elif m==5: s = may2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_5].predict(s) predicted = np.append(predicted,p) elif m==6: s = jun2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_6].predict(s) predicted = np.append(predicted,p) elif m==7: s = jul2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_7].predict(s) predicted = np.append(predicted,p) elif m==8: s = aug2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_8].predict(s) predicted = np.append(predicted,p) elif m==9: s = sep2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_9].predict(s) predicted = np.append(predicted,p) elif m==10: s = oct2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_10].predict(s) predicted = np.append(predicted,p) elif m==11: s = nov2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_11].predict(s) predicted = np.append(predicted,p) else: s = dec2.loc[i,'BPA_wind':] s = np.reshape(s[:,None],(1,n)) p = locals()[name_12].predict(s) predicted = np.append(predicted,p) # if predicted[i] > upper[line_index]: # predicted[i] = upper[line_index] # elif predicted[i] < lower[line_index]: # predicted[i] = lower[line_index] if predicted[i] > upper[line_index]: predicted[i] = np.mean(OtherCA_Paths_y[:,line_index]) elif predicted[i] < lower[line_index]: predicted[i] = np.mean(OtherCA_Paths_y[:,line_index]) name='predicted_' + str(line) locals()[name]=predicted syn_Path61= predicted_Path61 + syn_residuals[:effect_sim_year*365,8] syn_Path42 = predicted_Path42 + syn_residuals[:effect_sim_year*365,9] syn_Path24= predicted_Path24 + syn_residuals[:effect_sim_year*365,10] syn_Path45 = predicted_Path45 + syn_residuals[:effect_sim_year*365,11] bias = np.mean(syn_Path61) - np.mean(OtherCA_Paths_y[:,0]) syn_Path61 = syn_Path61 - bias bias = np.mean(syn_Path42) - np.mean(OtherCA_Paths_y[:,1]) syn_Path42 = syn_Path42 - bias bias = np.mean(syn_Path24) - np.mean(OtherCA_Paths_y[:,2]) syn_Path24 = syn_Path24 - bias bias = np.mean(syn_Path45) - np.mean(OtherCA_Paths_y[:,3]) syn_Path45 = syn_Path45 - bias ############################################################################ syn_BPA= BPA_sim + np.reshape(syn_residuals[:,0],(len(BPA_sim),1)) #syn_BPA= syn_BPA[365:len(BPA_sim)-730] syn_BPA=np.reshape(syn_BPA,(effect_sim_year*365)) syn_SDGE= SDGE_sim + np.reshape(syn_residuals[:,1],(len(BPA_sim),1)) #syn_SDGE= syn_SDGE[365:len(BPA_sim)-730] syn_SDGE=np.reshape(syn_SDGE,(effect_sim_year*365)) syn_SCE= SCE_sim + np.reshape(syn_residuals[:,2],(len(BPA_sim),1)) #syn_SCE= syn_SCE[365:len(BPA_sim)-730] syn_SCE=np.reshape(syn_SCE,(effect_sim_year*365)) syn_PGEV= PGEV_sim + np.reshape(syn_residuals[:,3],(len(BPA_sim),1)) #syn_PGEV= syn_PGEV[365:len(BPA_sim)-730] syn_PGEV=np.reshape(syn_PGEV,(effect_sim_year*365)) syn_PGEB= PGEB_sim + np.reshape(syn_residuals[:,4],(len(BPA_sim),1)) #syn_PGEB= syn_PGEB[365:len(BPA_sim)-730] syn_PGEB=np.reshape(syn_PGEB,(effect_sim_year*365)) ############################################################################### Demand_Path=pd.DataFrame() Demand_Path['BPA_Load_sim']=syn_BPA.tolist() Demand_Path['SDGE_Load_sim']= syn_SDGE.tolist() Demand_Path['SCE_Load_sim']= syn_SCE.tolist() Demand_Path['PGEV_Load_sim']= syn_PGEV.tolist() Demand_Path['PGEB_Load_sim']=syn_PGEB.tolist() Demand_Path['Path8_sim']=syn_Path8.tolist() Demand_Path['Path3_sim']=syn_Path3.tolist() Demand_Path['Path14_sim']=syn_Path14.tolist() Demand_Path['Path65_sim']=syn_Path65.tolist() Demand_Path['Path66_sim']=syn_Path66.tolist() Demand_Path['Path46_sim']=syn_Path46.tolist() Demand_Path['Path61_sim']=syn_Path61.tolist() Demand_Path['Path42_sim']=syn_Path42.tolist() Demand_Path['Path24_sim']=syn_Path24.tolist() Demand_Path['Path45_sim']=syn_Path45.tolist() Demand_Path.to_csv('Synthetic_demand_pathflows/Load_Path_Sim.csv') ###################################################################### ## Hourly Demand Simulation ###################################################################### # BPA_profile = np.zeros((24,365)) SDGE_profile = np.zeros((24,365)) SCE_profile = np.zeros((24,365)) PGEV_profile = np.zeros((24,365)) PGEB_profile = np.zeros((24,365)) # number of historical days hist_days = len(SCE_load)/24 hist_years = int(hist_days/365) sim_years = int(len(sim_weather)/365) # create profiles for i in range(0,hist_years): for j in range(0,365): # pull 24 hours of demand BPA_sample = BPA_load[i*8760+j*24:i*8760+j*24+24] SDGE_sample = SDGE_load[i*8760+j*24:i*8760+j*24+24] SCE_sample = SCE_load[i*8760+j*24:i*8760+j*24+24] PGEV_sample = PGEV_load[i*8760+j*24:i*8760+j*24+24] PGEB_sample = PGEB_load[i*8760+j*24:i*8760+j*24+24] # create fractional profile (relative to peak demand) sample_peak = np.max(BPA_sample) BPA_fraction = BPA_sample/sample_peak BPA_profile[:,j] = BPA_profile[:,j] + BPA_fraction*(1/hist_years) sample_peak = np.max(SDGE_sample) SDGE_fraction = SDGE_sample/sample_peak SDGE_profile[:,j] = SDGE_profile[:,j] + SDGE_fraction*(1/hist_years) sample_peak = np.max(SCE_sample) SCE_fraction = SCE_sample/sample_peak SCE_profile[:,j] = SCE_profile[:,j] + SCE_fraction*(1/hist_years) sample_peak = np.max(PGEV_sample) PGEV_fraction = PGEV_sample/sample_peak PGEV_profile[:,j] = PGEV_profile[:,j] + PGEV_fraction*(1/hist_years) sample_peak = np.max(PGEB_sample) PGEB_fraction = PGEB_sample/sample_peak PGEB_profile[:,j] = PGEB_profile[:,j] + PGEB_fraction*(1/hist_years) # simulate using synthetic peaks BPA_hourly = np.zeros((8760*effect_sim_year,1)) SDGE_hourly = np.zeros((8760*effect_sim_year,1)) SCE_hourly = np.zeros((8760*effect_sim_year,1)) PGEV_hourly = np.zeros((8760*effect_sim_year,1)) PGEB_hourly = np.zeros((8760*effect_sim_year,1)) PNW_hourly =
np.zeros((8760*effect_sim_year,1))
numpy.zeros
# -*- coding: utf-8 -*- '''Chemical Engineering Design Library (ChEDL). Utilities for process modeling. Copyright (C) 2017 <NAME> <<EMAIL>> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' from numpy.testing import assert_allclose import numpy as np import pytest from collections import OrderedDict from thermo.chemical import * from thermo.mixture import Mixture import thermo from scipy.integrate import quad from math import * from thermo.utils import R def test_Mixture(): Mixture(['water', 'ethanol'], ws=[.5, .5], T=320, P=1E5) Mixture(['water', 'phosphoric acid'], ws=[.5, .5], T=320, P=1E5) Mixture('air', T=320, P=1E5) Mixture(['ethanol', 'water'], ws=[0.5, 0.5], T=500) Mixture('water') s = Mixture(['water', 'ethanol'], P=5200, zs=[0.5, 0.5]) assert_allclose(s.V_over_F, 0.3061646720256255, rtol=1E-3) s = Mixture(['water', 'ethanol'], P=5200, zs=[0.5, 0.5]) assert_allclose(s.quality, 0.34745483870024646, rtol=1E-3) with pytest.raises(Exception): Mixture(['2,2-Dichloro-1,1,1-trifluoroethane'], T=276.15, P=37000, zs=[0.5, 0.5]) m = Mixture(['Na+', 'Cl-', 'water'], ws=[.01, .02, .97]).charge_balance assert_allclose(m, -0.0023550338411239182) def test_Mixture_input_forms(): # Run a test initializing a mixture from mole fractions, mass fractions, # liquid fractions, gas fractions (liq/gas are with volumes of pure components at T and P) kwargs = {'ws': [0.5, 0.5], 'zs': [0.7188789914193495, 0.2811210085806504], 'Vfls': [0.44054617180108374, 0.5594538281989162], 'Vfgs': [0.7229421485513368, 0.2770578514486633]} for key, val in kwargs.items(): m = Mixture(['water', 'ethanol'], **{key:val}) assert_allclose(m.zs, kwargs['zs'], rtol=1E-6) assert_allclose(m.zs, m.xs) assert_allclose(m.Vfls(), kwargs['Vfls'], rtol=1E-5) assert_allclose(m.Vfgs(), kwargs['Vfgs']) # Ordered dict inputs IDs = ['pentane', 'hexane', 'heptane'] kwargs = {'ws': [0.4401066297270966, 0.31540115235588945, 0.24449221791701395], 'zs': [.5, .3, .2], 'Vfls': [0.45711574619871703, 0.31076035223551646, 0.23212390156576654], 'Vfgs': [0.5127892380094016, 0.2979448661739439, 0.18926589581665448]} for key, val in kwargs.items(): d = OrderedDict() for i, j in zip(IDs, val): d.update({i: j}) m = Mixture(**{key:d}) assert_allclose(m.zs, kwargs['zs'], rtol=1E-6) assert_allclose(m.zs, m.xs) assert_allclose(m.Vfls(), kwargs['Vfls'], rtol=1E-5) assert_allclose(m.Vfgs(), kwargs['Vfgs'], rtol=2E-5) # numpy array inputs IDs = ['pentane', 'hexane', 'heptane'] kwargs = {'ws': np.array([0.4401066297270966, 0.31540115235588945, 0.24449221791701395]), 'zs': np.array([.5, .3, .2]), 'Vfls': np.array([0.45711574619871703, 0.31076035223551646, 0.23212390156576654]), 'Vfgs': np.array([0.5127892380094016, 0.2979448661739439, 0.18926589581665448])} for key, val in kwargs.items(): m = Mixture(IDs, **{key:val}) assert_allclose(m.zs, kwargs['zs'], rtol=1E-6) assert_allclose(m.zs, m.xs) assert_allclose(m.Vfls(), kwargs['Vfls'], rtol=1E-5) assert_allclose(m.Vfgs(), kwargs['Vfgs'], rtol=2E-5) with pytest.raises(Exception): Mixture(['water', 'ethanol']) Mixture(['water'], ws=[1], T=300, P=1E5) Mixture('water', ws=[1], T=365).SGl def test_Mixture_input_vfs_TP(): # test against the default arguments of T and P m0 = Mixture(['hexane', 'decane'], Vfls=[.5, .5]) m1 = Mixture(['hexane', 'decane'], Vfls=[.5, .5], Vf_TP=(298.15, None)) m2 = Mixture(['hexane', 'decane'], Vfls=[.5, .5], Vf_TP=(298.15, None)) m3 = Mixture(['hexane', 'decane'], Vfls=[.5, .5], Vf_TP=(None, 101325)) assert_allclose(m0.zs, m1.zs) assert_allclose(m0.zs, m2.zs) assert_allclose(m0.zs, m3.zs) # change T, P slightly - check that's it's still close to the result # and do one rough test that the result is still working m0 = Mixture(['hexane', 'decane'], Vfls=[.5, .5]) m1 = Mixture(['hexane', 'decane'], Vfls=[.5, .5], Vf_TP=(300, None)) m2 = Mixture(['hexane', 'decane'], Vfls=[.5, .5], Vf_TP=(300, 1E5)) m3 = Mixture(['hexane', 'decane'], Vfls=[.5, .5], Vf_TP=(None, 1E5)) assert_allclose(m0.zs, m1.zs, rtol=1E-3) assert_allclose(m2.zs, [0.5979237361861229, 0.402076263813877], rtol=1E-4) assert_allclose(m0.zs, m2.zs, rtol=1E-3) assert_allclose(m0.zs, m3.zs, rtol=1E-3) def test_Mixture_calculated_Vfs(): # Liquid standard fractions S = Mixture(['hexane', 'decane'], zs=[0.25, 0.75]) Vfls = S.Vfls(298.16, 101326) assert_allclose(Vfls, [0.18299723912903532, 0.8170027608709647]) assert_allclose(S.Vfls(), [0.18299676086285419, 0.8170032391371459]) assert_allclose(S.Vfls(P=1E6), [0.18291966593930253, 0.8170803340606975]) assert_allclose(S.Vfls(T=299.15), [0.18304482422114987, 0.8169551757788501]) # gas fractions S = Mixture(['hexane', 'decane'], zs=[0.25, 0.75], T=699) assert_allclose(S.Vfgs(700, 101326), [0.251236709756207, 0.748763290243793]) assert_allclose(S.Vfgs(), [0.25124363058052673, 0.7487563694194732]) assert_allclose(S.Vfgs(P=101326), [0.2512436429605387, 0.7487563570394613]) assert_allclose(S.Vfgs(T=699), [0.25124363058052673, 0.7487563694194732]) def test_Mixture_predefined(): for name in ['Air', 'air', u'Air', ['air']]: air = Mixture(name) assert air.CASs == ['7727-37-9', '7440-37-1', '7782-44-7'] assert_allclose(air.zs, [0.7811979754734807, 0.009206322604387548, 0.20959570192213187], rtol=1E-4) assert_allclose(air.ws, [0.7557, 0.0127, 0.2316], rtol=1E-3) R401A = Mixture('R401A') assert R401A.CASs == ['75-45-6', '75-37-6', '2837-89-0'] assert_allclose(R401A.zs, [0.578852219944875, 0.18587468325478565, 0.2352730968003393], rtol=1E-4)
assert_allclose(R401A.ws, [0.53, 0.13, 0.34], rtol=1E-3)
numpy.testing.assert_allclose
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Common methods shared by MNIST and ImageNet experiments.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import errno import getpass import numpy as np import tensorflow.compat.v1 as tf import matplotlib.pyplot as plt # mkdir -p in Python >2.5 def mkdir_p(path): try: os.makedirs(path, mode=0o755) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise # Returns path to postfix under user's Unix home directory. def make_experiment_dir(postfix): home = os.path.expanduser('~') exp_dir = os.path.join(home, postfix) mkdir_p(exp_dir) return exp_dir # appends .png to file name def save_fig(folder, filename): if folder is None: return filename_out = os.path.join(folder, filename + '.png') print('saving {}'.format(filename_out)) with open(filename_out, 'w') as out_file: plt.savefig(out_file) # appends .txt to file name def save_array(x, folder, filename, formatting): if folder is None: return filename_out = os.path.join(folder, filename + '.txt') print('saving {}'.format(filename_out)) with open(filename_out, 'w') as out_file: np.savetxt(out_file, x, fmt=formatting) def load_array(filename): with open(filename, 'r') as f: return
np.loadtxt(f)
numpy.loadtxt
import math import os import pathlib import random import re import time from queue import Queue from threading import Thread import keras import keras.backend as K import numpy as np import tensorflow as tf from keras.callbacks import Callback from sklearn.metrics import fbeta_score from util import data_loader from util import data_visualization as dv from util import metrics from util import path import config class KerasModelConfig(object): def __init__(self, k_fold_file, model_path: str, image_resolution, data_type, val_index=None, input_norm=True, downsampling=None, data_visualization=False, label_position=(1,), label_color_augment=None, label_up_sampling=None, train_batch_size=(32,), val_batch_size=32, predict_batch_size=32, epoch=(1,), initial_epoch=0, lr=(0.01,), clr=False, freeze_layers=(0,), tta_flip=False, tta_crop=False, debug=False): file_name = os.path.basename(model_path) model_dir = os.path.dirname(model_path) self.k_fold_file = k_fold_file self.model_path = model_path self.val_index = int("".join(filter(str.isdigit, file_name.split("_")[1]))) if val_index is None else val_index self.image_resolution = image_resolution self.image_size = (image_resolution, image_resolution) self.image_shape = (image_resolution, image_resolution, 3) self.input_norm = input_norm self.data_type = data_type self.record_dir = os.path.join(os.path.join(model_dir, "record"), file_name.split("_")[0]) self.record_dir = os.path.join(self.record_dir, "val%d" % self.val_index) self.model_name = os.path.split(model_dir)[-1] + ": " + file_name self.fit_img_record_dir = os.path.join(os.path.join(self.record_dir, "image"), "fit") self.predict_img_record_dir = os.path.join(os.path.join(self.record_dir, "image"), "predict") self.log_file = os.path.join(self.record_dir, "log.txt") self.label_position = label_position self.train_batch_size = train_batch_size self.val_batch_size = val_batch_size self.predict_batch_size = predict_batch_size self.epoch = epoch self.initial_epoch = initial_epoch self.lr = lr self.clr = clr self.freeze_layers = freeze_layers self.writer = tf.summary.FileWriter(self.record_dir) self.current_epoch = initial_epoch self.tta_flip = tta_flip self.tta_crop = False self.debug = debug self.label_color_augment = label_color_augment self.downsampling = downsampling self.label_up_sampling = label_up_sampling self.data_visualization = data_visualization self.val_files = [] self.train_files = [] self.train_file_cnt = 0 self.val_file_cnt = 0 self.up_sampling_cnt = [0 for i in range(13)] self.color_augment_cnt = 0 self.down_sampling_cnt = 0 # for i in self.data_type: # train_files, val_files = data_loader.get_k_fold_files(self.k_fold_file, self.val_index, [i]) # self.val_files.append(val_files) # self.val_file_cnt += len(val_files) # self.train_files += train_files # # if label_color_augment is not None and config.DATA_TYPE_ORIGINAL in data_type: # # # 将当前用于train的所有图片名称构成一个dict # train_file_dict = {} # for train_file in self.train_files: # train_file_dict.setdefault(os.path.split(train_file)[-1], None) # # from preprocess.augment import color # augment_image_dirs = color.get_augment_image_dirs() # labels = data_loader.get_labels(augment_image_dirs) # # augment_files = [] # for i in range(len(augment_image_dirs)): # # 如果augment的数据名称不在当前train集中,说明是val数据,跳过 # if os.path.split(augment_image_dirs[i])[-1] not in train_file_dict: # continue # label = labels[i] # for j in label_color_augment: # if label[j] == 1: # augment_files.append(augment_image_dirs[i]) # break # self.train_files += augment_files # self.color_augment_cnt = len(augment_files) # self.save_log("add %d color augmentation file" % self.color_augment_cnt) # # if label_up_sampling is not None: # self.save_log("train files is %d before up sampling" % len(self.train_files)) # sampling_files = [] # labels = data_loader.get_labels(self.train_files) # for i in range(len(labels)): # for j in range(len(label_up_sampling)): # label = labels[i] # if label[j] > 0 and label_up_sampling[j] > 0: # sampling_files += [self.train_files[i]] * label_up_sampling[j] # self.up_sampling_cnt[j] += label_up_sampling[j] # # self.train_files += sampling_files # self.save_log( # "up sampling times: %s, totaol: %d" % ( # str([str(i) for i in self.up_sampling_cnt]), sum(self.up_sampling_cnt))) # self.save_log("train files is %d after up sampling" % len(self.train_files)) # # self.val_y = np.array(data_loader.get_labels(self.val_files[0]), np.bool)[:, self.label_position] # if downsampling is not None: # new_train_files = [] # for _ in self.train_files: # _label = data_loader.get_label(_.split(os.sep)[-1]) # _labels = [ # ['0', '0', '1', '0', '0', '0', '0', '0', '1', '0', '0', '0', '0'], # ['0', '0', '1', '0', '0', '0', '0', '0', '0', '0', '0', '0', '0'], # ['0', '0', '1', '0', '1', '0', '0', '0', '1', '0', '0', '0', '0'], # ['0', '0', '0', '0', '0', '0', '0', '0', '1', '0', '0', '0', '0'] # ] # if _label in _labels and random.random() > downsampling: # self.down_sampling_cnt += 1 # continue # else: # new_train_files.append(_) # self.train_files = new_train_files # # random.shuffle(self.train_files) # self.train_file_cnt = len(self.train_files) # self.train_files = np.array(self.train_files) # # if self.data_visualization: # dv.show_label_calss_bar_per_epoch(self.train_files, self.record_dir) # # if debug: # self.train_files = self.train_files[:64] # for i in range(len(self.val_files)): # self.val_files[i] = self.val_files[i][:64] # self.val_y = self.val_y[:64] self.image_mean_file = path.get_image_mean_file(self.k_fold_file, self.val_index, data_type=self.data_type) self.image_std_file = path.get_image_std_file(self.k_fold_file, self.val_index, data_type=self.data_type) # # self.save_model_format = os.path.join(self.record_dir, # "%sweights.{epoch:03d}.hdf5" % str([str(i) for i in self.label_position])) # self.tem_model_file = os.path.join(self.record_dir, 'weights.hdf5') # pathlib.Path(self.record_dir).mkdir(parents=True, exist_ok=True) # pathlib.Path(self.fit_img_record_dir).mkdir(parents=True, exist_ok=True) # pathlib.Path(self.predict_img_record_dir).mkdir(parents=True, exist_ok=True) # # print("##########load model config") # print("##########file name is: %s" % file_name) # print("##########val index is: %d" % self.val_index) # print("##########model dir is: %s" % model_dir) # print("##########record dir is: %s" % self.record_dir) # self.save_log("train file: %d, val file: %d" % (len(self.train_files), len(self.val_y))) def save_log(self, log): log = time.strftime("%Y-%m-%d:%H:%M:%S") + ": " + log print(log) with open(self.log_file, "a") as f: f.write(log) f.write("\n") def decrease_train_files(self, num): self.train_files = self.train_files[:num] def decrease_val_files(self, num): for i in range(len(self.val_files)): self.val_files[i] = self.val_files[i][:num] self.val_y = self.val_y[:num] def get_init_stage(self): stage = 0 for i in range(len(self.epoch)): stage = i if self.initial_epoch + 1 <= self.epoch[i]: break return stage def get_stage(self, epoch): stage = 0 for i in range(len(self.epoch)): stage = i if epoch + 1 <= self.epoch[i]: break return stage def get_steps_per_epoch(self, stage): return math.ceil(len(self.train_files) / self.train_batch_size[stage]) def get_weights_path(self, epoch): return os.path.join(self.record_dir, "%sweights.%03d.hdf5" % (str([str(j) for j in self.label_position]), epoch)) def predict_tta_all(self, model): for epoch in range(1, self.epoch[-1]): unique_path = re.match(r".*competition[\\/]*(.*)", self.get_weights_path(epoch)).group(1) real_weight_file = os.path.join("E:\\backup\\jdfc", pathlib.Path(unique_path)) if not os.path.exists(real_weight_file): self.save_log("weight not existed in %s" % real_weight_file) continue model.load_weights(real_weight_file) predict = predict_tta(model, self) save_prediction_file(predict, self.get_weights_path(epoch), True) evaluate(self.val_y, predict, self.get_weights_path(epoch), self) def dynamic_model_import(weights_file=None, model_path_in=None): if model_path_in is None: model_file = "_".join(re.match(r".*record\\(.*)\\\[", weights_file).group(1).split("\\")) model_dir = re.match(r"(.*)\\record", weights_file).group(1) model_path = os.path.join(model_dir, model_file) else: model_path = model_path_in root_dir, type_dir, name = re.match(r".*competition\\(.*)", model_path).group(1).split("\\") package = __import__(".".join([root_dir, type_dir, name])) attr_get_model = getattr(getattr(getattr(package, type_dir), name), "get_model") attr_model_config = getattr(getattr(getattr(package, type_dir), name), "model_config") return attr_get_model, attr_model_config def predict_tta(model: keras.Model, model_config: KerasModelConfig, verbose=1): if model_config.input_norm: model_config.save_log("use image norm during predict tta") pre_datagen = data_loader.KerasGenerator(featurewise_center=True, featurewise_std_normalization=True, rescale=1. / 256, model_config=model_config, real_transform=True) pre_datagen.check_mean_std_file(model_config) pre_datagen.load_image_global_mean_std(model_config.image_mean_file, model_config.image_std_file) else: pre_datagen = data_loader.KerasGenerator(model_config=model_config, real_transform=True) y_pred = None start = time.time() tta = data_loader.TestTimeAugmentation(crop=model_config.tta_crop, flip=model_config.tta_flip) pre_datagen.tta = tta predict_times = 0 for i in range(len(model_config.val_files)): files = model_config.val_files[i] for j in range(tta.tta_times): predict_times += 1 model_config.save_log( "start predict with tta index is %d, data type is %s" % (j, model_config.data_type[i])) pre_flow = pre_datagen.flow_from_files(files, mode="predict", target_size=model_config.image_size, batch_size=model_config.predict_batch_size, tta_index=j) if y_pred is None: y_pred = np.array(model.predict_generator(pre_flow, steps=len(files) / model_config.predict_batch_size, verbose=verbose, workers=12)) else: y_pred += np.array(model.predict_generator(pre_flow, steps=len(files) / model_config.predict_batch_size, verbose=verbose, workers=12)) # assert y_pred.shape[0] == model_config.val_y.shape[0] y_pred = y_pred / (len(model_config.data_type) * tta.tta_times) print("####### predict %d times, spend %d seconds total ######" % (predict_times, time.time() - start)) return y_pred def predict(model: keras.Model, model_config: KerasModelConfig, verbose=1): if model_config.input_norm: pre_datagen = data_loader.KerasGenerator(model_config=model_config, featurewise_center=True, featurewise_std_normalization=True, rescale=1. / 256) print("use input norm in predict phase") else: pre_datagen = data_loader.KerasGenerator(model_config=model_config) pre_datagen.check_mean_std_file(model_config) pre_datagen.load_image_global_mean_std(model_config.image_mean_file, model_config.image_std_file) y_pred = None start = time.time() for i in range(len(model_config.val_files)): files = model_config.val_files[i] model_config.save_log("start predict data type %s" % model_config.data_type[i]) pre_flow = pre_datagen.flow_from_files(files, mode="predict", target_size=model_config.image_size, batch_size=model_config.predict_batch_size) if y_pred is None: y_pred = np.array(model.predict_generator(pre_flow, steps=len(files) / model_config.predict_batch_size, verbose=verbose, workers=16)) else: y_pred += np.array(model.predict_generator(pre_flow, steps=len(files) / model_config.predict_batch_size, verbose=verbose, workers=16)) # assert y_pred.shape[0] == model_config.val_y.shape[0] y_pred = y_pred / len(model_config.data_type) print("####### predict spend %d seconds ######" % (time.time() - start)) return y_pred def summary_val_value(name, value, model_config): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name model_config.writer.add_summary(summary, model_config.current_epoch) model_config.writer.flush() def evaluate(y, y_pred, weight_name, model_config: KerasModelConfig, search_times=100): if len(model_config.label_position) > 1: thread_f2_01 = fbeta_score(y, (
np.array(y_pred)
numpy.array
# -*- mode: python; coding: utf-8 -*- # Copyright (c) 2018 Radio Astronomy Software Group # Licensed under the 2-clause BSD License """Commonly used utility functions.""" import re import copy import warnings from collections.abc import Iterable from copy import deepcopy import numpy as np from scipy.spatial.distance import cdist from astropy.time import Time from astropy.coordinates import Angle from astropy.utils import iers from astropy.coordinates import SkyCoord, Distance, EarthLocation from astropy import units import erfa from . import _utils __all__ = [ "POL_STR2NUM_DICT", "POL_NUM2STR_DICT", "CONJ_POL_DICT", "JONES_STR2NUM_DICT", "JONES_NUM2STR_DICT", "LatLonAlt_from_XYZ", "XYZ_from_LatLonAlt", "rotECEF_from_ECEF", "ECEF_from_rotECEF", "ENU_from_ECEF", "ECEF_from_ENU", "phase_uvw", "unphase_uvw", "uvcalibrate", "apply_uvflag", "get_lst_for_time", "polstr2num", "polnum2str", "jstr2num", "jnum2str", "parse_polstr", "parse_jpolstr", "conj_pol", "reorder_conj_pols", "baseline_to_antnums", "antnums_to_baseline", "baseline_index_flip", "get_baseline_redundancies", "get_antenna_redundancies", "collapse", "mean_collapse", "absmean_collapse", "quadmean_collapse", "or_collapse", "and_collapse", ] # fmt: off # polarization constants # maps polarization strings to polarization integers POL_STR2NUM_DICT = {"pI": 1, "pQ": 2, "pU": 3, "pV": 4, "I": 1, "Q": 2, "U": 3, "V": 4, # support straight stokes names "rr": -1, "ll": -2, "rl": -3, "lr": -4, "xx": -5, "yy": -6, "xy": -7, "yx": -8} # maps polarization integers to polarization strings POL_NUM2STR_DICT = {1: "pI", 2: "pQ", 3: "pU", 4: "pV", -1: "rr", -2: "ll", -3: "rl", -4: "lr", -5: "xx", -6: "yy", -7: "xy", -8: "yx"} # maps how polarizations change when antennas are swapped CONJ_POL_DICT = {"xx": "xx", "yy": "yy", "xy": "yx", "yx": "xy", "ee": "ee", "nn": "nn", "en": "ne", "ne": "en", "rr": "rr", "ll": "ll", "rl": "lr", "lr": "rl", "I": "I", "Q": "Q", "U": "U", "V": "V", "pI": "pI", "pQ": "pQ", "pU": "pU", "pV": "pV"} # maps jones matrix element strings to jones integers # Add entries that don't start with "J" to allow shorthand versions JONES_STR2NUM_DICT = {"Jxx": -5, "Jyy": -6, "Jxy": -7, "Jyx": -8, "xx": -5, "x": -5, "yy": -6, "y": -6, "xy": -7, "yx": -8, "Jrr": -1, "Jll": -2, "Jrl": -3, "Jlr": -4, "rr": -1, "r": -1, "ll": -2, "l": -2, "rl": -3, "lr": -4} # maps jones integers to jones matrix element strings JONES_NUM2STR_DICT = {-1: "Jrr", -2: "Jll", -3: "Jrl", -4: "Jlr", -5: "Jxx", -6: "Jyy", -7: "Jxy", -8: "Jyx"} # maps uvdata pols to input feed polarizations POL_TO_FEED_DICT = {"xx": ["x", "x"], "yy": ["y", "y"], "xy": ["x", "y"], "yx": ["y", "x"], "ee": ["e", "e"], "nn": ["n", "n"], "en": ["e", "n"], "ne": ["n", "e"], "rr": ["r", "r"], "ll": ["l", "l"], "rl": ["r", "l"], "lr": ["l", "r"]} # fmt: on def _get_iterable(x): """Return iterable version of input.""" if isinstance(x, Iterable): return x else: return (x,) def _fits_gethduaxis(hdu, axis): """ Make axis arrays for fits files. Parameters ---------- hdu : astropy.io.fits HDU object The HDU to make an axis array for. axis : int The axis number of interest (1-based). Returns ------- ndarray of float Array of values for the specified axis. """ ax = str(axis) axis_num = hdu.header["NAXIS" + ax] val = hdu.header["CRVAL" + ax] delta = hdu.header["CDELT" + ax] index = hdu.header["CRPIX" + ax] - 1 return delta * (np.arange(axis_num) - index) + val def _fits_indexhdus(hdulist): """ Get a dict of table names and HDU numbers from a FITS HDU list. Parameters ---------- hdulist : list of astropy.io.fits HDU objects List of HDUs to get names for Returns ------- dict dictionary with table names as keys and HDU number as values. """ tablenames = {} for i in range(len(hdulist)): try: tablenames[hdulist[i].header["EXTNAME"]] = i except (KeyError): continue return tablenames def _get_fits_extra_keywords(header, keywords_to_skip=None): """ Get any extra keywords and return as dict. Parameters ---------- header : FITS header object header object to get extra_keywords from. keywords_to_skip : list of str list of keywords to not include in extra keywords in addition to standard FITS keywords. Returns ------- dict dict of extra keywords. """ # List standard FITS header items that are still should not be included in # extra_keywords # These are the beginnings of FITS keywords to ignore, the actual keywords # often include integers following these names (e.g. NAXIS1, CTYPE3) std_fits_substrings = [ "HISTORY", "SIMPLE", "BITPIX", "EXTEND", "BLOCKED", "GROUPS", "PCOUNT", "BSCALE", "BZERO", "NAXIS", "PTYPE", "PSCAL", "PZERO", "CTYPE", "CRVAL", "CRPIX", "CDELT", "CROTA", "CUNIT", ] if keywords_to_skip is not None: std_fits_substrings.extend(keywords_to_skip) extra_keywords = {} # find all the other header items and keep them as extra_keywords for key in header: # check if key contains any of the standard FITS substrings if np.any([sub in key for sub in std_fits_substrings]): continue if key == "COMMENT": extra_keywords[key] = str(header.get(key)) elif key != "": extra_keywords[key] = header.get(key) return extra_keywords def _check_history_version(history, version_string): """Check if version_string is present in history string.""" if version_string.replace(" ", "") in history.replace("\n", "").replace(" ", ""): return True else: return False def _check_histories(history1, history2): """Check if two histories are the same.""" if history1.replace("\n", "").replace(" ", "") == history2.replace( "\n", "" ).replace(" ", ""): return True else: return False def _combine_history_addition(history1, history2): """ Find extra history to add to have minimal repeats. Parameters ---------- history1 : str First history. history2 : str Second history Returns ------- str Extra history to add to first history. """ # first check if they're the same to avoid more complicated processing. if _check_histories(history1, history2): return None hist2_words = history2.split(" ") add_hist = "" test_hist1 = " " + history1 + " " for i, word in enumerate(hist2_words): if " " + word + " " not in test_hist1: add_hist += " " + word keep_going = i + 1 < len(hist2_words) while keep_going: if (hist2_words[i + 1] == " ") or ( " " + hist2_words[i + 1] + " " not in test_hist1 ): add_hist += " " + hist2_words[i + 1] del hist2_words[i + 1] keep_going = i + 1 < len(hist2_words) else: keep_going = False if add_hist == "": add_hist = None return add_hist def baseline_to_antnums(baseline, Nants_telescope): """ Get the antenna numbers corresponding to a given baseline number. Parameters ---------- baseline : int or array_like of ints baseline number Nants_telescope : int number of antennas Returns ------- int or array_like of int first antenna number(s) int or array_like of int second antenna number(s) """ if Nants_telescope > 2048: raise Exception( "error Nants={Nants}>2048 not supported".format(Nants=Nants_telescope) ) return_array = isinstance(baseline, (np.ndarray, list, tuple)) ant1, ant2 = _utils.baseline_to_antnums( np.ascontiguousarray(baseline, dtype=np.int64) ) if return_array: return ant1, ant2 else: return ant1.item(0), ant2.item(0) def antnums_to_baseline(ant1, ant2, Nants_telescope, attempt256=False): """ Get the baseline number corresponding to two given antenna numbers. Parameters ---------- ant1 : int or array_like of int first antenna number ant2 : int or array_like of int second antenna number Nants_telescope : int number of antennas attempt256 : bool Option to try to use the older 256 standard used in many uvfits files (will use 2048 standard if there are more than 256 antennas). Default is False. Returns ------- int or array of int baseline number corresponding to the two antenna numbers. """ if Nants_telescope is not None and Nants_telescope > 2048: raise Exception( "cannot convert ant1, ant2 to a baseline index " "with Nants={Nants}>2048.".format(Nants=Nants_telescope) ) return_array = isinstance(ant1, (np.ndarray, list, tuple)) baseline = _utils.antnums_to_baseline( np.ascontiguousarray(ant1, dtype=np.int64), np.ascontiguousarray(ant2, dtype=np.int64), attempt256=attempt256, ) if return_array: return baseline else: return baseline.item(0) def baseline_index_flip(baseline, Nants_telescope): """Change baseline number to reverse antenna order.""" ant1, ant2 = baseline_to_antnums(baseline, Nants_telescope) return antnums_to_baseline(ant2, ant1, Nants_telescope) def _x_orientation_rep_dict(x_orientation): """Create replacement dict based on x_orientation.""" if x_orientation.lower() == "east" or x_orientation.lower() == "e": return {"x": "e", "y": "n"} elif x_orientation.lower() == "north" or x_orientation.lower() == "n": return {"x": "n", "y": "e"} else: raise ValueError("x_orientation not recognized.") def polstr2num(pol, x_orientation=None): """ Convert polarization str to number according to AIPS Memo 117. Prefer 'pI', 'pQ', 'pU' and 'pV' to make it clear that these are pseudo-Stokes, not true Stokes, but also supports 'I', 'Q', 'U', 'V'. Parameters ---------- pol : str polarization string x_orientation : str, optional Orientation of the physical dipole corresponding to what is labelled as the x polarization ("east" or "north") to allow for converting from E/N strings. See corresonding parameter on UVData for more details. Returns ------- int Number corresponding to string Raises ------ ValueError If the pol string cannot be converted to a polarization number. Warns ----- UserWarning If the x_orientation not recognized. """ dict_use = copy.deepcopy(POL_STR2NUM_DICT) if x_orientation is not None: try: rep_dict = _x_orientation_rep_dict(x_orientation) for key, value in POL_STR2NUM_DICT.items(): new_key = key.replace("x", rep_dict["x"]).replace("y", rep_dict["y"]) dict_use[new_key] = value except ValueError: warnings.warn("x_orientation not recognized.") poldict = {k.lower(): v for k, v in dict_use.items()} if isinstance(pol, str): out = poldict[pol.lower()] elif isinstance(pol, Iterable): out = [poldict[key.lower()] for key in pol] else: raise ValueError( "Polarization {p} cannot be converted to a polarization number.".format( p=pol ) ) return out def polnum2str(num, x_orientation=None): """ Convert polarization number to str according to AIPS Memo 117. Uses 'pI', 'pQ', 'pU' and 'pV' to make it clear that these are pseudo-Stokes, not true Stokes Parameters ---------- num : int polarization number x_orientation : str, optional Orientation of the physical dipole corresponding to what is labelled as the x polarization ("east" or "north") to convert to E/N strings. See corresonding parameter on UVData for more details. Returns ------- str String corresponding to polarization number Raises ------ ValueError If the polarization number cannot be converted to a polarization string. Warns ----- UserWarning If the x_orientation not recognized. """ dict_use = copy.deepcopy(POL_NUM2STR_DICT) if x_orientation is not None: try: rep_dict = _x_orientation_rep_dict(x_orientation) for key, value in POL_NUM2STR_DICT.items(): new_val = value.replace("x", rep_dict["x"]).replace("y", rep_dict["y"]) dict_use[key] = new_val except ValueError: warnings.warn("x_orientation not recognized.") if isinstance(num, (int, np.int32, np.int64)): out = dict_use[num] elif isinstance(num, Iterable): out = [dict_use[i] for i in num] else: raise ValueError( "Polarization {p} cannot be converted to string.".format(p=num) ) return out def jstr2num(jstr, x_orientation=None): """ Convert jones polarization str to number according to calfits memo. Parameters ---------- jstr : str antenna (jones) polarization string x_orientation : str, optional Orientation of the physical dipole corresponding to what is labelled as the x polarization ("east" or "north") to allow for converting from E/N strings. See corresonding parameter on UVData for more details. Returns ------- int antenna (jones) polarization number corresponding to string Raises ------ ValueError If the jones string cannot be converted to a polarization number. Warns ----- UserWarning If the x_orientation not recognized. """ dict_use = copy.deepcopy(JONES_STR2NUM_DICT) if x_orientation is not None: try: rep_dict = _x_orientation_rep_dict(x_orientation) for key, value in JONES_STR2NUM_DICT.items(): new_key = key.replace("x", rep_dict["x"]).replace("y", rep_dict["y"]) dict_use[new_key] = value except ValueError: warnings.warn("x_orientation not recognized.") jdict = {k.lower(): v for k, v in dict_use.items()} if isinstance(jstr, str): out = jdict[jstr.lower()] elif isinstance(jstr, Iterable): out = [jdict[key.lower()] for key in jstr] else: raise ValueError( "Jones polarization {j} cannot be converted to index.".format(j=jstr) ) return out def jnum2str(jnum, x_orientation=None): """ Convert jones polarization number to str according to calfits memo. Parameters ---------- num : int antenna (jones) polarization number x_orientation : str, optional Orientation of the physical dipole corresponding to what is labelled as the x polarization ("east" or "north") to convert to E/N strings. See corresonding parameter on UVData for more details. Returns ------- str antenna (jones) polarization string corresponding to number Raises ------ ValueError If the jones polarization number cannot be converted to a jones polarization string. Warns ----- UserWarning If the x_orientation not recognized. """ dict_use = copy.deepcopy(JONES_NUM2STR_DICT) if x_orientation is not None: try: rep_dict = _x_orientation_rep_dict(x_orientation) for key, value in JONES_NUM2STR_DICT.items(): new_val = value.replace("x", rep_dict["x"]).replace("y", rep_dict["y"]) dict_use[key] = new_val except ValueError: warnings.warn("x_orientation not recognized.") if isinstance(jnum, (int, np.int32, np.int64)): out = dict_use[jnum] elif isinstance(jnum, Iterable): out = [dict_use[i] for i in jnum] else: raise ValueError( "Jones polarization {j} cannot be converted to string.".format(j=jnum) ) return out def parse_polstr(polstr, x_orientation=None): """ Parse a polarization string and return pyuvdata standard polarization string. See utils.POL_STR2NUM_DICT for options. Parameters ---------- polstr : str polarization string x_orientation : str, optional Orientation of the physical dipole corresponding to what is labelled as the x polarization ("east" or "north") to allow for converting from E/N strings. See corresonding parameter on UVData for more details. Returns ------- str AIPS Memo 117 standard string Raises ------ ValueError If the pol string cannot be converted to a polarization number. Warns ----- UserWarning If the x_orientation not recognized. """ return polnum2str( polstr2num(polstr, x_orientation=x_orientation), x_orientation=x_orientation ) def parse_jpolstr(jpolstr, x_orientation=None): """ Parse a Jones polarization string and return pyuvdata standard jones string. See utils.JONES_STR2NUM_DICT for options. Parameters ---------- jpolstr : str Jones polarization string Returns ------- str calfits memo standard string Raises ------ ValueError If the jones string cannot be converted to a polarization number. Warns ----- UserWarning If the x_orientation not recognized. """ return jnum2str( jstr2num(jpolstr, x_orientation=x_orientation), x_orientation=x_orientation ) def conj_pol(pol): """ Return the polarization for the conjugate baseline. For example, (1, 2, 'xy') = conj(2, 1, 'yx'). The returned polarization is determined by assuming the antenna pair is reversed in the data, and finding the correct polarization correlation which will yield the requested baseline when conjugated. Note this means changing the polarization for linear cross-pols, but keeping auto-pol (e.g. xx) and Stokes the same. Parameters ---------- pol : str or int Polarization string or integer. Returns ------- cpol : str or int Polarization as if antennas are swapped (type matches input) """ cpol_dict = {k.lower(): v for k, v in CONJ_POL_DICT.items()} if isinstance(pol, str): cpol = cpol_dict[pol.lower()] elif isinstance(pol, Iterable): cpol = [conj_pol(p) for p in pol] elif isinstance(pol, (int, np.int32, np.int64)): cpol = polstr2num(cpol_dict[polnum2str(pol).lower()]) else: raise ValueError("Polarization not recognized, cannot be conjugated.") return cpol def reorder_conj_pols(pols): """ Reorder multiple pols, swapping pols that are conjugates of one another. For example ('xx', 'xy', 'yx', 'yy') -> ('xx', 'yx', 'xy', 'yy') This is useful for the _key2inds function in the case where an antenna pair is specified but the conjugate pair exists in the data. The conjugated data should be returned in the order of the polarization axis, so after conjugating the data, the pols need to be reordered. For example, if a file contains antpair (0, 1) and pols 'xy' and 'yx', but the user requests antpair (1, 0), they should get: [(1x, 0y), (1y, 0x)] = [conj(0y, 1x), conj(0x, 1y)] Parameters ---------- pols : array_like of str or int Polarization array (strings or ints). Returns ------- conj_order : ndarray of int Indices to reorder polarization array. """ if not isinstance(pols, Iterable): raise ValueError("reorder_conj_pols must be given an array of polarizations.") cpols = np.array([conj_pol(p) for p in pols]) # Array needed for np.where conj_order = [np.where(cpols == p)[0][0] if p in cpols else -1 for p in pols] if -1 in conj_order: raise ValueError( "Not all conjugate pols exist in the polarization array provided." ) return conj_order def LatLonAlt_from_XYZ(xyz, check_acceptability=True): """ Calculate lat/lon/alt from ECEF x,y,z. Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. check_acceptability : bool Flag to check XYZ coordinates are reasonable. Returns ------- latitude : ndarray or float latitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians longitude : ndarray or float longitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians altitude : ndarray or float altitude, numpy array (if Npts > 1) or value (if Npts = 1) in meters """ # convert to a numpy array xyz = np.asarray(xyz) if xyz.ndim > 1 and xyz.shape[1] != 3: raise ValueError("The expected shape of ECEF xyz array is (Npts, 3).") squeeze = xyz.ndim == 1 if squeeze: xyz = xyz[np.newaxis, :] xyz = np.ascontiguousarray(xyz.T, dtype=np.float64) # checking for acceptable values if check_acceptability: norms = np.linalg.norm(xyz, axis=0) if not all(np.logical_and(norms >= 6.35e6, norms <= 6.39e6)): raise ValueError("xyz values should be ECEF x, y, z coordinates in meters") # this helper function returns one 2D array because it is less overhead for cython lla = _utils._lla_from_xyz(xyz) if squeeze: return lla[0, 0], lla[1, 0], lla[2, 0] return lla[0], lla[1], lla[2] def XYZ_from_LatLonAlt(latitude, longitude, altitude): """ Calculate ECEF x,y,z from lat/lon/alt values. Parameters ---------- latitude : ndarray or float latitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians longitude : ndarray or float longitude, numpy array (if Npts > 1) or value (if Npts = 1) in radians altitude : ndarray or float altitude, numpy array (if Npts > 1) or value (if Npts = 1) in meters Returns ------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. """ latitude = np.ascontiguousarray(latitude, dtype=np.float64) longitude = np.ascontiguousarray(longitude, dtype=np.float64) altitude = np.ascontiguousarray(altitude, dtype=np.float64) n_pts = latitude.size if longitude.size != n_pts: raise ValueError( "latitude, longitude and altitude must all have the same length" ) if altitude.size != n_pts: raise ValueError( "latitude, longitude and altitude must all have the same length" ) xyz = _utils._xyz_from_latlonalt(latitude, longitude, altitude) xyz = xyz.T if n_pts == 1: return xyz[0] return xyz def rotECEF_from_ECEF(xyz, longitude): """ Get rotated ECEF positions such that the x-axis goes through the longitude. Miriad and uvfits expect antenna positions in this frame (with longitude of the array center/telescope location) Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. longitude : float longitude in radians to rotate coordinates to (usually the array center/telescope location). Returns ------- ndarray of float Rotated ECEF coordinates, shape (Npts, 3). """ angle = -1 * longitude rot_matrix = np.array( [ [np.cos(angle), -1 * np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1], ] ) return rot_matrix.dot(xyz.T).T def ECEF_from_rotECEF(xyz, longitude): """ Calculate ECEF from a rotated ECEF (Inverse of rotECEF_from_ECEF). Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with rotated ECEF x,y,z coordinates. longitude : float longitude in radians giving the x direction of the rotated coordinates (usually the array center/telescope location). Returns ------- ndarray of float ECEF coordinates, shape (Npts, 3). """ angle = longitude rot_matrix = np.array( [ [np.cos(angle), -1 * np.sin(angle), 0], [np.sin(angle), np.cos(angle), 0], [0, 0, 1], ] ) return rot_matrix.dot(xyz.T).T def ENU_from_ECEF(xyz, latitude, longitude, altitude): """ Calculate local ENU (east, north, up) coordinates from ECEF coordinates. Parameters ---------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. latitude : float Latitude of center of ENU coordinates in radians. longitude : float Longitude of center of ENU coordinates in radians. altitude : float Altitude of center of ENU coordinates in radians. Returns ------- ndarray of float numpy array, shape (Npts, 3), with local ENU coordinates """ xyz = np.asarray(xyz) if xyz.ndim > 1 and xyz.shape[1] != 3: raise ValueError("The expected shape of ECEF xyz array is (Npts, 3).") squeeze = False if xyz.ndim == 1: squeeze = True xyz = xyz[np.newaxis, :] xyz = np.ascontiguousarray(xyz.T, dtype=np.float64) # check that these are sensible ECEF values -- their magnitudes need to be # on the order of Earth's radius ecef_magnitudes = np.linalg.norm(xyz, axis=0) sensible_radius_range = (6.35e6, 6.39e6) if np.any(ecef_magnitudes <= sensible_radius_range[0]) or np.any( ecef_magnitudes >= sensible_radius_range[1] ): raise ValueError( "ECEF vector magnitudes must be on the order of the radius of the earth" ) # the cython utility expects (3, Npts) for faster manipulation # transpose after we get the array back to match the expected shape enu = _utils._ENU_from_ECEF( xyz, np.ascontiguousarray(latitude, dtype=np.float64), np.ascontiguousarray(longitude, dtype=np.float64), np.ascontiguousarray(altitude, dtype=np.float64), ) enu = enu.T if squeeze: enu = np.squeeze(enu) return enu def ECEF_from_ENU(enu, latitude, longitude, altitude): """ Calculate ECEF coordinates from local ENU (east, north, up) coordinates. Parameters ---------- enu : ndarray of float numpy array, shape (Npts, 3), with local ENU coordinates. latitude : float Latitude of center of ENU coordinates in radians. longitude : float Longitude of center of ENU coordinates in radians. altitude : float Altitude of center of ENU coordinates in radians. Returns ------- xyz : ndarray of float numpy array, shape (Npts, 3), with ECEF x,y,z coordinates. """ enu = np.asarray(enu) if enu.ndim > 1 and enu.shape[1] != 3: raise ValueError("The expected shape of the ENU array is (Npts, 3).") squeeze = False if enu.ndim == 1: squeeze = True enu = enu[np.newaxis, :] enu = np.ascontiguousarray(enu.T, dtype=np.float64) # the cython utility expects (3, Npts) for faster manipulation # transpose after we get the array back to match the expected shape xyz = _utils._ECEF_from_ENU( enu, np.ascontiguousarray(latitude, dtype=np.float64), np.ascontiguousarray(longitude, dtype=np.float64), np.ascontiguousarray(altitude, dtype=np.float64), ) xyz = xyz.T if squeeze: xyz = np.squeeze(xyz) return xyz def phase_uvw(ra, dec, initial_uvw): """ Calculate phased uvws/positions from unphased ones in an icrs or gcrs frame. This code expects input uvws or positions relative to the telescope location in the same frame that ra/dec are in (e.g. icrs or gcrs) and returns phased ones in the same frame. Note that this code is nearly identical to ENU_from_ECEF, except that it uses an arbitrary phasing center rather than a coordinate center. Parameters ---------- ra : float Right ascension of phase center. dec : float Declination of phase center. initial_uvw : ndarray of float Unphased uvws or positions relative to the array center, shape (Nlocs, 3). Returns ------- uvw : ndarray of float uvw array in the same frame as initial_uvws, ra and dec. """ if initial_uvw.ndim == 1: initial_uvw = initial_uvw[np.newaxis, :] return _utils._phase_uvw( np.float64(ra), np.float64(dec), np.ascontiguousarray(initial_uvw.T, dtype=np.float64), ).T def unphase_uvw(ra, dec, uvw): """ Calculate unphased uvws/positions from phased ones in an icrs or gcrs frame. This code expects phased uvws or positions in the same frame that ra/dec are in (e.g. icrs or gcrs) and returns unphased ones in the same frame. Parameters ---------- ra : float Right ascension of phase center. dec : float Declination of phase center. uvw : ndarray of float Phased uvws or positions relative to the array center, shape (Nlocs, 3). Returns ------- unphased_uvws : ndarray of float Unphased uvws or positions relative to the array center, shape (Nlocs, 3). """ if uvw.ndim == 1: uvw = uvw[np.newaxis, :] return _utils._unphase_uvw( np.float64(ra), np.float64(dec), np.ascontiguousarray(uvw.T, dtype=np.float64), ).T def polar2_to_cart3(lon_array, lat_array): """ Convert 2D polar coordinates into 3D cartesian coordinates. This is a simple routine for converting a set of spherical angular coordinates into a 3D cartesian vectors, where the x-direction is set by the position (0, 0). Parameters ---------- lon_array : float or ndarray Longitude coordinates, which increases in the counter-clockwise direction. Units of radians. Can either be a float or ndarray -- if the latter, must have the same shape as lat_array. lat_array : float or ndarray Latitude coordinates, where 0 falls on the equator of the sphere. Units of radians. Can either be a float or ndarray -- if the latter, must have the same shape as lat_array. Returns ------- xyz_array : ndarray of float Cartesian coordinates of the given longitude and latitude on a unit sphere. Shape is (3, coord_shape), where coord_shape is the shape of lon_array and lat_array if they were provided as type ndarray, otherwise (3,). """ # Check to make sure that we are not playing with mixed types if type(lon_array) is not type(lat_array): raise ValueError( "lon_array and lat_array must either both be floats or ndarrays." ) if isinstance(lon_array, np.ndarray): if lon_array.shape != lat_array.shape: raise ValueError("lon_array and lat_array must have the same shape.") # Once we know that lon_array and lat_array are of the same shape, # time to create our 3D set of vectors! xyz_array = np.array( [ np.cos(lon_array) * np.cos(lat_array), np.sin(lon_array) * np.cos(lat_array), np.sin(lat_array), ], dtype=float, ) return xyz_array def cart3_to_polar2(xyz_array): """ Convert 3D cartesian coordinates into 2D polar coordinates. This is a simple routine for converting a set of 3D cartesian vectors into spherical coordinates, where the position (0, 0) lies along the x-direction. Parameters ---------- xyz_array : ndarray of float Cartesian coordinates, need not be of unit vector length. Shape is (3, coord_shape). Returns ------- lon_array : ndarray of float Longitude coordinates, which increases in the counter-clockwise direction. Units of radians, shape is (coord_shape,). lat_array : ndarray of float Latitude coordinates, where 0 falls on the equator of the sphere. Units of radians, shape is (coord_shape,). """ if not isinstance(xyz_array, np.ndarray): raise ValueError("xyz_array must be an ndarray.") if xyz_array.ndim == 0: raise ValueError("xyz_array must have ndim > 0") if xyz_array.shape[0] != 3: raise ValueError("xyz_array must be length 3 across the zeroth axis.") # The longitude coord is relatively easy to calculate, just take the X and Y # components and find the arctac of the pair. lon_array = np.mod(np.arctan2(xyz_array[1], xyz_array[0]), 2.0 * np.pi, dtype=float) # If we _knew_ that xyz_array was always of length 1, then this call could be a much # simpler one to arcsin. But to make this generic, we'll use the length of the XY # component along with arctan2. lat_array = np.arctan2( xyz_array[2], np.sqrt((xyz_array[0:2] ** 2.0).sum(axis=0)), dtype=float ) # Return the two arrays return lon_array, lat_array def _rotate_matmul_wrapper(xyz_array, rot_matrix, n_rot): """ Apply a rotation matrix to a series of vectors. This is a simple convenience function which wraps numpy's matmul function for use with various vector rotation functions in this module. This code could, in principle, be replaced by a cythonized piece of code, although the matmul function is _pretty_ well optimized already. This function is not meant to be called by users, but is instead used by multiple higher-level utility functions (namely those that perform rotations). Parameters ---------- xyz_array : ndarray of floats Array of vectors to be rotated. When nrot > 1, shape may be (n_rot, 3, n_vec) or (1, 3, n_vec), the latter is useful for when performing multiple rotations on a fixed set of vectors. If nrot = 1, shape may be (1, 3, n_vec), (3, n_vec), or (3,). rot_matrix : ndarray of floats Series of rotation matricies to be applied to the stack of vectors. Must be of shape (n_rot, 3, 3) n_rot : int Number of individual rotation matricies to be applied. Returns ------- rotated_xyz : ndarray of floats Array of vectors that have been rotated, of shape (n_rot, 3, n_vectors,). """ # Do a quick check to make sure that things look sensible if rot_matrix.shape != (n_rot, 3, 3): raise ValueError( "rot_matrix must be of shape (n_rot, 3, 3), where n_rot=%i." % n_rot ) if (xyz_array.ndim == 3) and ( (xyz_array.shape[0] not in [1, n_rot]) or (xyz_array.shape[-2] != 3) ): raise ValueError("Misshaped xyz_array - expected shape (n_rot, 3, n_vectors).") if (xyz_array.ndim < 3) and (xyz_array.shape[0] != 3): raise ValueError("Misshaped xyz_array - expected shape (3, n_vectors) or (3,).") rotated_xyz = np.matmul(rot_matrix, xyz_array) return rotated_xyz def _rotate_one_axis(xyz_array, rot_amount, rot_axis): """ Rotate an array of 3D positions around the a single axis (x, y, or z). This function performs a basic rotation of 3D vectors about one of the priciple axes -- the x-axis, the y-axis, or the z-axis. Note that the rotations here obey the right-hand rule -- that is to say, from the perspective of the positive side of the axis of rotation, a positive rotation will cause points on the plane intersecting this axis to move in a counter-clockwise fashion. Parameters ---------- xyz_array : ndarray of float Set of 3-dimensional vectors be rotated, in typical right-handed cartesian order, e.g. (x, y, z). Shape is (Nrot, 3, Nvectors). rot_amount : float or ndarray of float Amount (in radians) to rotate the given set of coordinates. Can either be a single float (or ndarray of shape (1,)) if rotating all vectors by the same amount, otherwise expected to be shape (Nrot,). rot_axis : int Axis around which the rotation is applied. 0 is the x-axis, 1 is the y-axis, and 2 is the z-axis. Returns ------- rotated_xyz : ndarray of float Set of rotated 3-dimensional vectors, shape (Nrot, 3, Nvector). """ # If rot_amount is None or all zeros, then this is just one big old no-op. if (rot_amount is None) or np.all(rot_amount == 0.0): if np.ndim(xyz_array) == 1: return deepcopy(xyz_array[np.newaxis, :, np.newaxis]) elif np.ndim(xyz_array) == 2: return deepcopy(xyz_array[np.newaxis, :, :]) else: return deepcopy(xyz_array) # Check and see how big of a rotation matrix we need n_rot = 1 if (not isinstance(rot_amount, np.ndarray)) else (rot_amount.shape[0]) n_vec = xyz_array.shape[-1] # The promotion of values to float64 is to suppress numerical precision issues, # since the matrix math can - in limited circumstances - introduce precision errors # of order 10x the limiting numerical precision of the float. For a float32/single, # thats a part in 1e6 (~arcsec-level errors), but for a float64 it translates to # a part in 1e15. rot_matrix = np.zeros((3, 3, n_rot), dtype=np.float64) # Figure out which pieces of the matrix we need to update temp_jdx = (rot_axis + 1) % 3 temp_idx = (rot_axis + 2) % 3 # Fill in the rotation matricies accordingly rot_matrix[rot_axis, rot_axis] = 1 rot_matrix[temp_idx, temp_idx] = np.cos(rot_amount, dtype=np.float64) rot_matrix[temp_jdx, temp_jdx] = rot_matrix[temp_idx, temp_idx] rot_matrix[temp_idx, temp_jdx] = np.sin(rot_amount, dtype=np.float64) rot_matrix[temp_jdx, temp_idx] = -rot_matrix[temp_idx, temp_jdx] # The rot matrix was shape (3, 3, n_rot) to help speed up filling in the elements # of each matrix, but now we want to flip it into its proper shape of (n_rot, 3, 3) rot_matrix = np.transpose(rot_matrix, axes=[2, 0, 1]) if (n_rot == 1) and (n_vec == 1) and (xyz_array.ndim == 3): # This is a special case where we allow the rotation axis to "expand" along # the 0th axis of the rot_amount arrays. For xyz_array, if n_vectors = 1 # but n_rot !=1, then it's a lot faster (by about 10x) to "switch it up" and # swap the n_vector and n_rot axes, and then swap them back once everything # else is done. return np.transpose( _rotate_matmul_wrapper( np.transpose(xyz_array, axes=[2, 1, 0]), rot_matrix, n_rot, ), axes=[2, 1, 0], ) else: return _rotate_matmul_wrapper(xyz_array, rot_matrix, n_rot) def _rotate_two_axis(xyz_array, rot_amount1, rot_amount2, rot_axis1, rot_axis2): """ Rotate an array of 3D positions sequentially around a pair of axes (x, y, or z). This function performs a sequential pair of basic rotations of 3D vectors about the priciple axes -- the x-axis, the y-axis, or the z-axis. Note that the rotations here obey the right-hand rule -- that is to say, from the perspective of the positive side of the axis of rotation, a positive rotation will cause points on the plane intersecting this axis to move in a counter-clockwise fashion. Parameters ---------- xyz_array : ndarray of float Set of 3-dimensional vectors be rotated, in typical right-handed cartesian order, e.g. (x, y, z). Shape is (Nrot, 3, Nvectors). rot_amount1 : float or ndarray of float Amount (in radians) of rotatation to apply during the first rotation of the sequence, to the given set of coordinates. Can either be a single float (or ndarray of shape (1,)) if rotating all vectors by the same amount, otherwise expected to be shape (Nrot,). rot_amount2 : float or ndarray of float Amount (in radians) of rotatation to apply during the second rotation of the sequence, to the given set of coordinates. Can either be a single float (or ndarray of shape (1,)) if rotating all vectors by the same amount, otherwise expected to be shape (Nrot,). rot_axis1 : int Axis around which the first rotation is applied. 0 is the x-axis, 1 is the y-axis, and 2 is the z-axis. rot_axis2 : int Axis around which the second rotation is applied. 0 is the x-axis, 1 is the y-axis, and 2 is the z-axis. Returns ------- rotated_xyz : ndarray of float Set of rotated 3-dimensional vectors, shape (Nrot, 3, Nvector). """ # Capture some special cases upfront, where we can save ourselves a bit of work no_rot1 = (rot_amount1 is None) or np.all(rot_amount1 == 0.0) no_rot2 = (rot_amount2 is None) or np.all(rot_amount2 == 0.0) if no_rot1 and no_rot2: # If rot_amount is None, then this is just one big old no-op. return deepcopy(xyz_array) elif no_rot1: # If rot_amount1 is None, then ignore it and just work w/ the 2nd rotation return _rotate_one_axis(xyz_array, rot_amount2, rot_axis2) elif no_rot2: # If rot_amount2 is None, then ignore it and just work w/ the 1st rotation return _rotate_one_axis(xyz_array, rot_amount1, rot_axis1) elif rot_axis1 == rot_axis2: # Capture the case where someone wants to do a sequence of rotations on the same # axis. Also known as just rotating a single axis. return _rotate_one_axis(xyz_array, rot_amount1 + rot_amount2, rot_axis1) # Figure out how many individual rotation matricies we need, accounting for the # fact that these can either be floats or ndarrays. n_rot = max( rot_amount1.shape[0] if isinstance(rot_amount1, np.ndarray) else 1, rot_amount2.shape[0] if isinstance(rot_amount2, np.ndarray) else 1, ) n_vec = xyz_array.shape[-1] # The promotion of values to float64 is to suppress numerical precision issues, # since the matrix math can - in limited circumstances - introduce precision errors # of order 10x the limiting numerical precision of the float. For a float32/single, # thats a part in 1e6 (~arcsec-level errors), but for a float64 it translates to # a part in 1e15. rot_matrix = np.empty((3, 3, n_rot), dtype=np.float64) # There are two permulations per pair of axes -- when the pair is right-hand # oriented vs left-hand oriented. Check here which one it is. For example, # rotating first on the x-axis, second on the y-axis is considered a # "right-handed" pair, whereas z-axis first, then y-axis would be considered # a "left-handed" pair. lhd_order = np.mod(rot_axis2 - rot_axis1, 3) != 1 temp_idx = [ np.mod(rot_axis1 - lhd_order, 3), np.mod(rot_axis1 + 1 - lhd_order, 3), np.mod(rot_axis1 + 2 - lhd_order, 3), ] # We're using lots of sin and cos calculations -- doing them once upfront saves # quite a bit of time by eliminating redundant calculations sin_lo = np.sin(rot_amount2 if lhd_order else rot_amount1, dtype=np.float64) cos_lo = np.cos(rot_amount2 if lhd_order else rot_amount1, dtype=np.float64) sin_hi = np.sin(rot_amount1 if lhd_order else rot_amount2, dtype=np.float64) cos_hi = np.cos(rot_amount1 if lhd_order else rot_amount2, dtype=np.float64) # Take care of the diagonal terms first, since they aren't actually affected by the # order of rotational opertations rot_matrix[temp_idx[0], temp_idx[0]] = cos_hi rot_matrix[temp_idx[1], temp_idx[1]] = cos_lo rot_matrix[temp_idx[2], temp_idx[2]] = cos_lo * cos_hi # Now time for the off-diagonal terms, as a set of 3 pairs. The rotation matrix # for a left-hand oriented pair of rotation axes (e.g., x-rot, then y-rot) is just # a transpose of the right-hand orientation of the same pair (e.g., y-rot, then # x-rot). rot_matrix[temp_idx[0 + lhd_order], temp_idx[1 - lhd_order]] = sin_lo * sin_hi rot_matrix[temp_idx[0 - lhd_order], temp_idx[lhd_order - 1]] = ( cos_lo * sin_hi * ((-1.0) ** lhd_order) ) rot_matrix[temp_idx[1 - lhd_order], temp_idx[0 + lhd_order]] = 0.0 rot_matrix[temp_idx[1 + lhd_order], temp_idx[2 - lhd_order]] = sin_lo * ( (-1.0) ** (1 + lhd_order) ) rot_matrix[temp_idx[lhd_order - 1], temp_idx[0 - lhd_order]] = sin_hi * ( (-1.0) ** (1 + lhd_order) ) rot_matrix[temp_idx[2 - lhd_order], temp_idx[1 + lhd_order]] = ( sin_lo * cos_hi * ((-1.0) ** (lhd_order)) ) # The rot matrix was shape (3, 3, n_rot) to help speed up filling in the elements # of each matrix, but now we want to flip it into its proper shape of (n_rot, 3, 3) rot_matrix = np.transpose(rot_matrix, axes=[2, 0, 1]) if (n_rot == 1) and (n_vec == 1) and (xyz_array.ndim == 3): # This is a special case where we allow the rotation axis to "expand" along # the 0th axis of the rot_amount arrays. For xyz_array, if n_vectors = 1 # but n_rot !=1, then it's a lot faster (by about 10x) to "switch it up" and # swap the n_vector and n_rot axes, and then swap them back once everything # else is done. return np.transpose( _rotate_matmul_wrapper( np.transpose(xyz_array, axes=[2, 1, 0]), rot_matrix, n_rot, ), axes=[2, 1, 0], ) else: return _rotate_matmul_wrapper(xyz_array, rot_matrix, n_rot) def calc_uvw( app_ra=None, app_dec=None, frame_pa=None, lst_array=None, use_ant_pos=True, uvw_array=None, antenna_positions=None, antenna_numbers=None, ant_1_array=None, ant_2_array=None, old_app_ra=None, old_app_dec=None, old_frame_pa=None, telescope_lat=None, telescope_lon=None, from_enu=False, to_enu=False, ): """ Calculate an array of baseline coordinates, in either uvw or ENU. This routine is meant as a convenience function for producing baseline coordinates based under a few different circumstances: 1) Calculating ENU coordinates using antenna positions 2) Calculating uwv coordinates at a given sky position using antenna positions 3) Converting from ENU coordinates to uvw coordinates 4) Converting from uvw coordinate to ENU coordinates 5) Converting from uvw coordinates at one sky position to another sky position Different conversion pathways have different parameters that are required. Parameters ---------- app_ra : ndarray of float Apparent RA of the target phase center, required if calculating baseline coordinates in uvw-space (vs ENU-space). Shape is (Nblts,), units are radians. app_dec : ndarray of float Apparent declination of the target phase center, required if calculating baseline coordinates in uvw-space (vs ENU-space). Shape is (Nblts,), units are radians. frame_pa : ndarray of float Position angle between the great circle of declination in the apparent frame versus that of the reference frame, used for making sure that "North" on the derived maps points towards a particular celestial pole (not just the topocentric one). Required if not deriving baseline coordinates from antenna positions, from_enu=False, and a value for old_frame_pa is given. Shape is (Nblts,), units are radians. old_app_ra : ndarray of float Apparent RA of the previous phase center, required if not deriving baseline coordinates from antenna positions and from_enu=False. Shape is (Nblts,), units are radians. old_app_dec : ndarray of float Apparent declination of the previous phase center, required if not deriving baseline coordinates from antenna positions and from_enu=False. Shape is (Nblts,), units are radians. old_frame_pa : ndarray of float Frame position angle of the previous phase center, required if not deriving baseline coordinates from antenna positions, from_enu=False, and a value for frame_pa is supplied. Shape is (Nblts,), units are radians. lst_array : ndarray of float Local apparent sidereal time, required if deriving baseline coordinates from antenna positions, or converting to/from ENU coordinates. Shape is (Nblts,). use_ant_pos : bool Switch to determine whether to derive uvw values from the antenna positions (if set to True), or to use the previously calculated uvw coordinates to derive new the new baseline vectors (if set to False). Default is True. uvw_array : ndarray of float Array of previous baseline coordinates (in either uvw or ENU), required if not deriving new coordinates from antenna positions. Shape is (Nblts, 3). antenna_positions : ndarray of float List of antenna positions relative to array center in ECEF coordinates, required if not providing `uvw_array`. Shape is (Nants, 3). antenna_numbers: ndarray of int List of antenna numbers, ordered in the same way as `antenna_positions` (e.g., `antenna_numbers[0]` should given the number of antenna that resides at ECEF position given by `antenna_positions[0]`). Shape is (Nants,), requred if not providing `uvw_array`. Contains all unique entires of the joint set of `ant_1_array` and `ant_2_array`. ant_1_array : ndarray of int Antenna number of the first antenna in the baseline pair, for all baselines Required if not providing `uvw_array`, shape is (Nblts,). ant_2_array : ndarray of int Antenna number of the second antenna in the baseline pair, for all baselines Required if not providing `uvw_array`, shape is (Nblts,). telescope_lat : float Latitude of the phase center, units radians, required if deriving baseline coordinates from antenna positions, or converting to/from ENU coordinates. telescope_lon : float Longitude of the phase center, units radians, required if deriving baseline coordinates from antenna positions, or converting to/from ENU coordinates. from_enu : boolean Set to True if uvw_array is expressed in ENU coordinates. Default is False. to_enu : boolean Set to True if you would like the output expressed in EN coordinates. Default is False. Returns ------- new_coords : ndarray of float64 Set of baseline coordinates, shape (Nblts, 3). """ if to_enu: if lst_array is None and not use_ant_pos: raise ValueError( "Must include lst_array to calculate baselines in ENU coordinates!" ) if telescope_lat is None: raise ValueError( "Must include telescope_lat to calculate baselines " "in ENU coordinates!" ) else: if ((app_ra is None) or (app_dec is None)) and frame_pa is None: raise ValueError( "Must include both app_ra and app_dec, or frame_pa to calculate " "baselines in uvw coordinates!" ) if use_ant_pos: # Assume at this point we are dealing w/ antenna positions if antenna_positions is None: raise ValueError("Must include antenna_positions if use_ant_pos=True.") if (ant_1_array is None) or (ant_2_array is None) or (antenna_numbers is None): raise ValueError( "Must include ant_1_array, ant_2_array, and antenna_numbers " "setting use_ant_pos=True." ) if lst_array is None and not to_enu: raise ValueError( "Must include lst_array if use_ant_pos=True and not calculating " "baselines in ENU coordinates." ) if telescope_lon is None: raise ValueError("Must include telescope_lon if use_ant_pos=True.") ant_dict = {ant_num: idx for idx, ant_num in enumerate(antenna_numbers)} ant_1_index = np.array([ant_dict[idx] for idx in ant_1_array], dtype=int) ant_2_index = np.array([ant_dict[idx] for idx in ant_2_array], dtype=int) N_ants = antenna_positions.shape[0] # Use the app_ra, app_dec, and lst_array arrays to figure out how many unique # rotations are actually needed. If the ratio of Nblts to number of unique # entries is favorable, we can just rotate the antenna positions and save # outselves a bit of work. if to_enu: # If to_enu, skip all this -- there's only one unique ha + dec combo unique_mask = np.zeros(len(ant_1_index), dtype=np.bool_) unique_mask[0] = True else: unique_mask = np.append( True, ( ((lst_array[:-1] - app_ra[:-1]) != (lst_array[1:] - app_ra[1:])) | (app_dec[:-1] != app_dec[1:]) ), ) # GHA -> Hour Angle as measured at Greenwich (because antenna coords are # centered such that x-plane intersects the meridian at longitude 0). if to_enu: # Unphased coordinates appear to be stored in ENU coordinates -- that's # equivalent to calculating uvw's based on zenith. We can use that to our # advantage and spoof the gha and dec based on telescope lon and lat unique_gha = np.zeros(1) - telescope_lon unique_dec = np.zeros(1) + telescope_lat unique_pa = None else: unique_gha = (lst_array[unique_mask] - app_ra[unique_mask]) - telescope_lon unique_dec = app_dec[unique_mask] unique_pa = 0.0 if frame_pa is None else frame_pa[unique_mask] # Tranpose the ant vectors so that they are in the proper shape ant_vectors = np.transpose(antenna_positions)[np.newaxis, :, :] # Apply rotations, and then reorganize the ndarray so that you can access # individual antenna vectors quickly. ant_rot_vectors = np.reshape( np.transpose( _rotate_one_axis( _rotate_two_axis(ant_vectors, unique_gha, unique_dec, 2, 1), unique_pa, 0, ), axes=[0, 2, 1], ), (-1, 3), ) unique_mask[0] = False unique_map = np.cumsum(unique_mask) * N_ants new_coords = ( ant_rot_vectors[unique_map + ant_2_index] - ant_rot_vectors[unique_map + ant_1_index] ) else: if uvw_array is None: raise ValueError("Must include uvw_array if use_ant_pos=False.") if from_enu: if to_enu: # Well this was pointless... returning your uvws unharmed return uvw_array # Unphased coordinates appear to be stored in ENU coordinates -- that's # equivalent to calculating uvw's based on zenith. We can use that to our # advantage and spoof old_app_ra and old_app_dec based on lst_array and # telescope_lat if telescope_lat is None: raise ValueError( "Must include telescope_lat if moving between " 'ENU (i.e., "unphased") and uvw coordinates!' ) if lst_array is None: raise ValueError( 'Must include lst_array if moving between ENU (i.e., "unphased") ' "and uvw coordinates!" ) else: if (old_frame_pa is None) and not (frame_pa is None or to_enu): raise ValueError( "Must include old_frame_pa values if data are phased and " "applying new position angle values (frame_pa)." ) if ((old_app_ra is None) and not (app_ra is None or to_enu)) or ( (old_app_dec is None) and not (app_dec is None or to_enu) ): raise ValueError( "Must include old_app_ra and old_app_dec values when data are " "already phased and phasing to a new position." ) # For this operation, all we need is the delta-ha coverage, which _should_ be # entirely encapsulated by the change in RA. if (app_ra is None) and (old_app_ra is None): gha_delta_array = 0.0 else: gha_delta_array = (lst_array if from_enu else old_app_ra) - ( lst_array if to_enu else app_ra ) # Notice below there's an axis re-orientation here, to go from uvw -> XYZ, # where X is pointing in the direction of the source. This is mostly here # for convenience and code legibility -- a slightly different pair of # rotations would give you the same result w/o needing to cycle the axes. # Up front, we want to trap the corner-case where the sky position you are # phasing up to hasn't changed, just the position angle (i.e., which way is # up on the map). This is a much easier transform to handle. if np.all(gha_delta_array == 0.0) and np.all(old_app_dec == app_dec): new_coords = _rotate_one_axis( uvw_array[:, [2, 0, 1], np.newaxis], frame_pa - (0.0 if old_frame_pa is None else old_frame_pa), 0, )[:, :, 0] else: new_coords = _rotate_two_axis( _rotate_two_axis( # Yo dawg, I heard you like rotation maticies... uvw_array[:, [2, 0, 1], np.newaxis], 0.0 if (from_enu or old_frame_pa is None) else (-old_frame_pa), (-telescope_lat) if from_enu else (-old_app_dec), 0, 1, ), gha_delta_array, telescope_lat if to_enu else app_dec, 2, 1, ) # One final rotation applied here, to compensate for the fact that we want # the Dec-axis of our image (Fourier dual to the v-axis) to be aligned with # the chosen frame, if we not in ENU coordinates if not to_enu: new_coords = _rotate_one_axis(new_coords, frame_pa, 0) # Finally drop the now-vestigal last axis of the array new_coords = new_coords[:, :, 0] # There's one last task to do, which is to re-align the axes from projected # XYZ -> uvw, where X (which points towards the source) falls on the w axis, # and Y and Z fall on the u and v axes, respectively. return new_coords[:, [1, 2, 0]] def transform_sidereal_coords( lon, lat, in_coord_frame, out_coord_frame, in_coord_epoch=None, out_coord_epoch=None, time_array=None, ): """ Transform a given set of coordinates from one sidereal coordinate frame to another. Uses astropy to convert from a coordinates from sidereal frame into another. This function will support transforms from several frames, including GCRS, FK5 (i.e., J2000), FK4 (i.e., B1950), Galactic, Supergalactic, CIRS, HCRS, and a few others (basically anything that doesn't require knowing the observers location on Earth/other celestial body). Parameters ---------- lon_coord : float or ndarray of floats Logitudinal coordinate to be transformed, typically expressed as the right ascension, in units of radians. Can either be a float, or an ndarray of floats with shape (Ncoords,). Must agree with lat_coord. lat_coord : float or ndarray of floats Latitudinal coordinate to be transformed, typically expressed as the declination, in units of radians. Can either be a float, or an ndarray of floats with shape (Ncoords,). Must agree with lon_coord. in_coord_frame : string Reference frame for the provided coordinates. Expected to match a list of those supported within the astropy SkyCoord object. An incomplete list includes 'gcrs', 'fk4', 'fk5', 'galactic', 'supergalactic', 'cirs', and 'hcrs'. out_coord_frame : string Reference frame to output coordinates in. Expected to match a list of those supported within the astropy SkyCoord object. An incomplete list includes 'gcrs', 'fk4', 'fk5', 'galactic', 'supergalactic', 'cirs', and 'hcrs'. in_coord_epoch : float Epoch for the input coordinate frame. Optional parameter, only required when using either the FK4 (B1950) or FK5 (J2000) coordinate systems. Units are in fractional years. out_coord_epoch : float Epoch for the output coordinate frame. Optional parameter, only required when using either the FK4 (B1950) or FK5 (J2000) coordinate systems. Units are in fractional years. time_array : float or ndarray of floats Julian date(s) to which the coordinates correspond to, only used in frames with annular motion terms (e.g., abberation in GCRS). Can either be a float, or an ndarray of floats with shape (Ntimes,), assuming that either lat_coord and lon_coord are floats, or that Ntimes == Ncoords. Returns ------- new_lat : float or ndarray of floats Longitudinal coordinates, in units of radians. Output will be an ndarray if any inputs were, with shape (Ncoords,) or (Ntimes,), depending on inputs. new_lon : float or ndarray of floats Latidudinal coordinates, in units of radians. Output will be an ndarray if any inputs were, with shape (Ncoords,) or (Ntimes,), depending on inputs. """ lon_coord = lon * units.rad lat_coord = lat * units.rad # Check here to make sure that lat_coord and lon_coord are the same length, # either 1 or len(time_array) if lat_coord.shape != lon_coord.shape: raise ValueError("lon and lat must be the same shape.") if lon_coord.ndim == 0: lon_coord.shape += (1,) lat_coord.shape += (1,) # Check to make sure that we have a properly formatted epoch for our in-bound # coordinate frame in_epoch = None if isinstance(in_coord_epoch, str) or isinstance(in_coord_epoch, Time): # If its a string or a Time object, we don't need to do anything more in_epoch = Time(in_coord_epoch) elif in_coord_epoch is not None: if in_coord_frame.lower() in ["fk4", "fk4noeterms"]: in_epoch = Time(in_coord_epoch, format="byear") else: in_epoch = Time(in_coord_epoch, format="jyear") # Now do the same for the outbound frame out_epoch = None if isinstance(out_coord_epoch, str) or isinstance(out_coord_epoch, Time): # If its a string or a Time object, we don't need to do anything more out_epoch = Time(out_coord_epoch) elif out_coord_epoch is not None: if out_coord_frame.lower() in ["fk4", "fk4noeterms"]: out_epoch = Time(out_coord_epoch, format="byear") else: out_epoch = Time(out_coord_epoch, format="jyear") # Make sure that time array matched up with what we expect. Thanks to astropy # weirdness, time_array has to be the same length as lat/lon coords rep_time = False rep_crds = False if time_array is None: time_obj_array = None else: if isinstance(time_array, Time): time_obj_array = time_array else: time_obj_array = Time(time_array, format="jd", scale="utc") if (time_obj_array.size != 1) and (lon_coord.size != 1): if time_obj_array.shape != lon_coord.shape: raise ValueError( "Shape of time_array must be either that of " " lat_coord/lon_coord if len(time_array) > 1." ) else: rep_crds = (time_obj_array.size != 1) and (lon_coord.size == 1) rep_time = (time_obj_array.size == 1) and (lon_coord.size != 1) if rep_crds: lon_coord = np.repeat(lon_coord, len(time_array)) lat_coord = np.repeat(lat_coord, len(time_array)) if rep_time: time_obj_array = Time( np.repeat(time_obj_array.jd, len(lon_coord)), format="jd", scale="utc", ) coord_object = SkyCoord( lon_coord, lat_coord, frame=in_coord_frame, equinox=in_epoch, obstime=time_obj_array, ) # Easiest, most general way to transform to the new frame is to create a dummy # SkyCoord with all the attributes needed -- note that we particularly need this # in order to use a non-standard equinox/epoch new_coord = coord_object.transform_to( SkyCoord(0, 0, unit="rad", frame=out_coord_frame, equinox=out_epoch) ) return new_coord.spherical.lon.rad, new_coord.spherical.lat.rad def transform_icrs_to_app( time_array, ra, dec, telescope_loc, epoch=2000.0, pm_ra=None, pm_dec=None, vrad=None, dist=None, astrometry_library="erfa", ): """ Transform a set of coordinates in ICRS to topocentric/apparent coordinates. This utility uses one of three libraries (astropy, NOVAS, or ERFA) to calculate the apparent (i.e., topocentric) coordinates of a source at a given time and location, given a set of coordinates expressed in the ICRS frame. These coordinates are most typically used for defining the phase center of the array (i.e, calculating baseline vectors). As of astropy v4.2, the agreement between the three libraries is consistent down to the level of better than 1 mas, with the values produced by astropy and pyERFA consistent to bettter than 10 µas (this is not surprising, given that astropy uses pyERFA under the hood for astrometry). ERFA is the default as it outputs coordinates natively in the apparent frame (whereas NOVAS and astropy do not), as well as the fact that of the three libraries, it produces results the fastest. Parameters ---------- time_array : float or array-like of float Julian dates to calculate coordinate positions for. Can either be a single float, or an array-like of shape (Ntimes,). ra : float or array-like of float ICRS RA of the celestial target, expressed in units of radians. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (with the exception of telescope location parameters). dec : float or array-like of float ICRS Dec of the celestial target, expressed in units of radians. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (with the exception of telescope location parameters). telescope_loc : array-like of floats or EarthLocation ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center of the array. Can either be provided as an astropy EarthLocation, or a tuple of shape (3,) containung (in order) the latitude, longitude, and altitude, in units of radians, radians, and meters, respectively. epoch : int or float or str or Time object Epoch of the coordinate data supplied, only used when supplying proper motion values. If supplying a number, it will assumed to be in Julian years. Default is J2000.0. pm_ra : float or array-like of float Proper motion in RA of the source, expressed in units of milliarcsec / year. Proper motion values are applied relative to the J2000 (i.e., RA/Dec ICRS values should be set to their expected values when the epoch is 2000.0). Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Note that units are in dRA/dt, not cos(Dec)*dRA/dt. Not required. pm_dec : float or array-like of float Proper motion in Dec of the source, expressed in units of milliarcsec / year. Proper motion values are applied relative to the J2000 (i.e., RA/Dec ICRS values should be set to their expected values when the epoch is 2000.0). Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required. vrad : float or array-like of float Radial velocity of the source, expressed in units of km / sec. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required. dist : float or array-like of float Distance of the source, expressed in milliarcseconds. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required. astrometry_library : str Library used for running the coordinate conversions. Allowed options are 'erfa' (which uses the pyERFA), 'novas' (which uses the python-novas library), and 'astropy' (which uses the astropy utilities). Default is erfa. Returns ------- app_ra : ndarray of floats Apparent right ascension coordinates, in units of radians, of shape (Ntimes,). app_dec : ndarray of floats Apparent declination coordinates, in units of radians, of shape (Ntimes,). """ # Make sure that the library requested is actually permitted if astrometry_library not in ["erfa", "novas", "astropy"]: raise ValueError( "Requested coordinate transformation library is not supported, please " "select either 'erfa', 'novas', or 'astropy' for astrometry_library." ) ra_coord = ra * units.rad dec_coord = dec * units.rad # Check here to make sure that ra_coord and dec_coord are the same length, # either 1 or len(time_array) multi_coord = ra_coord.size != 1 if ra_coord.shape != dec_coord.shape: raise ValueError("ra and dec must be the same shape.") pm_ra_coord = None if pm_ra is None else pm_ra * (units.mas / units.yr) pm_dec_coord = None if pm_dec is None else pm_dec * (units.mas / units.yr) d_coord = ( None if (dist is None or np.all(dist == 0.0)) else Distance(dist * units.pc) ) v_coord = None if vrad is None else vrad * (units.km / units.s) opt_list = [pm_ra_coord, pm_dec_coord, d_coord, v_coord] opt_names = ["pm_ra", "pm_dec", "dist", "vrad"] # Check the optional inputs, make sure that they're sensible for item, name in zip(opt_list, opt_names): if item is not None: if ra_coord.shape != item.shape: raise ValueError("%s must be the same shape as ra and dec." % name) if isinstance(telescope_loc, EarthLocation): site_loc = telescope_loc else: site_loc = EarthLocation.from_geodetic( telescope_loc[1] * (180.0 / np.pi), telescope_loc[0] * (180.0 / np.pi), height=telescope_loc[2], ) # Useful for both astropy and novas methods, the latter of which gives easy # access to the IERS data that we want. if isinstance(time_array, Time): time_obj_array = time_array else: time_obj_array = Time(time_array, format="jd", scale="utc") if time_obj_array.size != 1: if (time_obj_array.shape != ra_coord.shape) and multi_coord: raise ValueError( "time_array must be of either of length 1 (single " "float) or same length as ra and dec." ) elif time_obj_array.ndim == 0: # Make the array at least 1-dimensional so we don't run into indexing # issues later. time_obj_array = Time([time_obj_array]) # Check to make sure that we have a properly formatted epoch for our in-bound # coordinate frame coord_epoch = None if isinstance(epoch, str) or isinstance(epoch, Time): # If its a string or a Time object, we don't need to do anything more coord_epoch = Time(epoch) elif epoch is not None: coord_epoch = Time(epoch, format="jyear") # Note if time_array is a single element multi_time = time_obj_array.size != 1 # Get IERS data, which is needed for NOVAS and ERFA polar_motion_data = iers.earth_orientation_table.get() pm_x_array, pm_y_array = polar_motion_data.pm_xy(time_obj_array) delta_x_array, delta_y_array = polar_motion_data.dcip_xy(time_obj_array) pm_x_array = pm_x_array.to_value("arcsec") pm_y_array = pm_y_array.to_value("arcsec") delta_x_array = delta_x_array.to_value("marcsec") delta_y_array = delta_y_array.to_value("marcsec") # Catch the case where we don't have CIP delta values yet (they don't typically have # predictive values like the polar motion does) delta_x_array[np.isnan(delta_x_array)] = 0.0 delta_y_array[np.isnan(delta_y_array)] = 0.0 # If the source was instantiated w/ floats, it'll be a 0-dim object, which will # throw errors if we try to treat it as an array. Reshape to a 1D array of len 1 # so that all the calls can be uniform if ra_coord.ndim == 0: ra_coord.shape += (1,) dec_coord.shape += (1,) if pm_ra_coord is not None: pm_ra if d_coord is not None: d_coord.shape += (1,) if v_coord is not None: v_coord.shape += (1,) # If there is an epoch and a proper motion, apply that motion now if astrometry_library == "astropy": # Astropy doesn't have (oddly enough) a way of getting at the apparent RA/Dec # directly, but we can cheat this by going to AltAz, and then coverting back # to apparent RA/Dec using the telescope lat and LAST. if (epoch is not None) and (pm_ra is not None) and (pm_dec is not None): # astropy is a bit weird in how it handles proper motion, so rather than # fight with it to do it all in one step, we separate it into two: first # apply proper motion to ICRS, then transform to topocentric. sky_coord = SkyCoord( ra=ra_coord, dec=dec_coord, pm_ra_cosdec=pm_ra_coord * np.cos(dec_coord), pm_dec=pm_dec_coord, frame="icrs", ) sky_coord = sky_coord.apply_space_motion(dt=(time_obj_array - coord_epoch)) ra_coord = sky_coord.ra dec_coord = sky_coord.dec if d_coord is not None: d_coord = d_coord.repeat(ra_coord.size) if v_coord is not None: v_coord = v_coord.repeat(ra_coord.size) sky_coord = SkyCoord( ra=ra_coord, dec=dec_coord, distance=d_coord, radial_velocity=v_coord, frame="icrs", ) azel_data = sky_coord.transform_to( SkyCoord( np.zeros_like(time_obj_array) * units.rad, np.zeros_like(time_obj_array) * units.rad, location=site_loc, obstime=time_obj_array, frame="altaz", ) ) app_ha, app_dec = erfa.ae2hd( azel_data.az.rad, azel_data.alt.rad, site_loc.lat.rad, ) app_ra = np.mod( time_obj_array.sidereal_time("apparent", longitude=site_loc.lon).rad - app_ha, 2 * np.pi, ) elif astrometry_library == "novas": # Import the NOVAS library only if it's needed/available. try: from novas import compat as novas from novas.compat import eph_manager import novas_de405 # noqa except ImportError as e: # pragma: no cover raise ImportError( "novas and/or novas_de405 are not installed but is required for " "NOVAS functionality" ) from e # Call is needed to load high-precision ephem data in NOVAS jd_start, jd_end, number = eph_manager.ephem_open() # Define the obs location, which is needed to calculate diurnal abb term # and polar wobble corrections site_loc = novas.make_on_surface( site_loc.lat.deg, # latitude in deg site_loc.lon.deg, # Longitude in deg site_loc.height.to_value("m"), # Height in meters 0.0, # Temperature, set to 0 for now (no atm refrac) 0.0, # Pressure, set to 0 for now (no atm refrac) ) # NOVAS wants things in terrestial time and UT1 tt_time_array = time_obj_array.tt.jd ut1_time_array = time_obj_array.ut1.jd gast_array = time_obj_array.sidereal_time("apparent", "greenwich").rad if np.any(tt_time_array < jd_start) or np.any(tt_time_array > jd_end): raise ValueError( "No current support for JPL ephems outside of 1700 - 2300 AD. " "Check back later (or possibly earlier)..." ) app_ra = np.zeros(tt_time_array.shape) + np.zeros(ra_coord.shape) app_dec = np.zeros(tt_time_array.shape) + np.zeros(ra_coord.shape) for idx in range(len(app_ra)): if multi_coord or (idx == 0): # Create a catalog entry for the source in question cat_entry = novas.make_cat_entry( "dummy_name", # Dummy source name "GKK", # Catalog ID, fixed for now 156, # Star ID number, fixed for now ra_coord[idx].to_value("hourangle"), dec_coord[idx].to_value("deg"), 0.0 if pm_ra is None else ( pm_ra_coord.to_value("mas/yr") * np.cos(dec_coord[idx].to_value("rad")) ), 0.0 if pm_dec is None else pm_dec_coord.to_value("mas/yr"), 0.0 if (dist is None or np.any(dist == 0.0)) else (d_coord.kiloparsec ** -1.0), 0.0 if (vrad is None) else v_coord.to_value("km/s"), ) # Update polar wobble parameters for a given timestamp if multi_time or (idx == 0): gast = gast_array[idx] pm_x = pm_x_array[idx] * np.cos(gast) + pm_y_array[idx] * np.sin(gast) pm_y = pm_y_array[idx] * np.cos(gast) - pm_x_array[idx] * np.sin(gast) tt_time = tt_time_array[idx] ut1_time = ut1_time_array[idx] novas.cel_pole( tt_time, 2, delta_x_array[idx], delta_y_array[idx], ) # Calculate topocentric RA/Dec values [temp_ra, temp_dec] = novas.topo_star( tt_time, (tt_time - ut1_time) * 86400.0, cat_entry, site_loc, accuracy=0, ) xyz_array = polar2_to_cart3( temp_ra * (np.pi / 12.0), temp_dec * (np.pi / 180.0) ) xyz_array = novas.wobble(tt_time, pm_x, pm_y, xyz_array, 1) app_ra[idx], app_dec[idx] = cart3_to_polar2(np.array(xyz_array)) elif astrometry_library == "erfa": # liberfa wants things in radians pm_x_array *= np.pi / (3600.0 * 180.0) pm_y_array *= np.pi / (3600.0 * 180.0) [_, _, _, app_dec, app_ra, eqn_org] = erfa.atco13( ra_coord.to_value("rad"), dec_coord.to_value("rad"), 0.0 if (pm_ra is None) else pm_ra_coord.to_value("rad/yr"), 0.0 if (pm_dec is None) else pm_dec_coord.to_value("rad/yr"), 0.0 if (dist is None or np.any(dist == 0.0)) else (d_coord.pc ** -1.0), 0.0 if (vrad is None) else v_coord.to_value("km/s"), time_obj_array.utc.jd, 0.0, time_obj_array.delta_ut1_utc, site_loc.lon.rad, site_loc.lat.rad, site_loc.height.to_value("m"), pm_x_array, pm_y_array, 0, # ait pressure, used for refraction (ignored) 0, # amb temperature, used for refraction (ignored) 0, # rel humidity, used for refraction (ignored) 0, # wavelength, used for refraction (ignored) ) app_ra = np.mod(app_ra - eqn_org, 2 * np.pi) return app_ra, app_dec def transform_app_to_icrs( time_array, app_ra, app_dec, telescope_loc, astrometry_library="erfa", ): """ Transform a set of coordinates in topocentric/apparent to ICRS coordinates. This utility uses either astropy or erfa to calculate the ICRS coordinates of a given set of apparent source coordinates. These coordinates are most typically used for defining the celestial/catalog position of a source. Note that at present, this is only implemented in astropy and pyERFA, although it could hypothetically be extended to NOVAS at some point. Parameters ---------- time_array : float or ndarray of float Julian dates to calculate coordinate positions for. Can either be a single float, or an ndarray of shape (Ntimes,). app_ra : float or ndarray of float ICRS RA of the celestial target, expressed in units of radians. Can either be a single float or array of shape (Ncoord,). Note that if time_array is not a singleton value, then Ncoord must be equal to Ntimes. app_dec : float or ndarray of float ICRS Dec of the celestial target, expressed in units of radians. Can either be a single float or array of shape (Ncoord,). Note that if time_array is not a singleton value, then Ncoord must be equal to Ntimes. telescope_loc : tuple of floats or EarthLocation ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center of the array. Can either be provided as an astropy EarthLocation, or a tuple of shape (3,) containung (in order) the latitude, longitude, and altitude, in units of radians, radians, and meters, respectively. Returns ------- icrs_ra : ndarray of floats ICRS right ascension coordinates, in units of radians, of either shape (Ntimes,) if Ntimes >1, otherwise (Ncoord,). icrs_dec : ndarray of floats ICRS declination coordinates, in units of radians, of either shape (Ntimes,) if Ntimes >1, otherwise (Ncoord,). """ # Make sure that the library requested is actually permitted if astrometry_library not in ["erfa", "astropy"]: raise ValueError( "Requested coordinate transformation library is not supported, please " "select either 'erfa' or 'astropy' for astrometry_library." ) ra_coord = app_ra * units.rad dec_coord = app_dec * units.rad # Check here to make sure that ra_coord and dec_coord are the same length, # either 1 or len(time_array) multi_coord = ra_coord.size != 1 if ra_coord.shape != dec_coord.shape: raise ValueError("app_ra and app_dec must be the same shape.") if isinstance(telescope_loc, EarthLocation): site_loc = telescope_loc else: site_loc = EarthLocation.from_geodetic( telescope_loc[1] * (180.0 / np.pi), telescope_loc[0] * (180.0 / np.pi), height=telescope_loc[2], ) if isinstance(time_array, Time): time_obj_array = time_array else: time_obj_array = Time(time_array, format="jd", scale="utc") if time_obj_array.size != 1: if (time_obj_array.shape != ra_coord.shape) and multi_coord: raise ValueError( "time_array must be of either of length 1 (single " "float) or same length as ra and dec." ) elif time_obj_array.ndim == 0: # Make the array at least 1-dimensional so we don't run into indexing # issues later. time_obj_array = Time([time_obj_array]) if astrometry_library == "astropy": az_coord, el_coord = erfa.hd2ae( np.mod( time_obj_array.sidereal_time("apparent", longitude=site_loc.lon).rad - ra_coord.to_value("rad"), 2 * np.pi, ), dec_coord.to_value("rad"), site_loc.lat.rad, ) sky_coord = SkyCoord( az_coord * units.rad, el_coord * units.rad, frame="altaz", location=site_loc, obstime=time_obj_array, ) coord_data = sky_coord.transform_to("icrs") icrs_ra = coord_data.ra.rad icrs_dec = coord_data.dec.rad elif astrometry_library == "erfa": # Get IERS data, which is needed for highest precision polar_motion_data = iers.earth_orientation_table.get() pm_x_array, pm_y_array = polar_motion_data.pm_xy(time_obj_array) pm_x_array = pm_x_array.to_value("rad") pm_y_array = pm_y_array.to_value("rad") bpn_matrix = erfa.pnm06a(time_obj_array.tt.jd, 0.0) cip_x, cip_y = erfa.bpn2xy(bpn_matrix) cio_s = erfa.s06(time_obj_array.tt.jd, 0.0, cip_x, cip_y) eqn_org = erfa.eors(bpn_matrix, cio_s) # Observed to ICRS via ERFA icrs_ra, icrs_dec = erfa.atoc13( "r", ra_coord.to_value("rad") + eqn_org, dec_coord.to_value("rad"), time_obj_array.utc.jd, 0.0, # Second half of the UT date, not needed time_obj_array.delta_ut1_utc, site_loc.lon.rad, site_loc.lat.rad, site_loc.height.value, pm_x_array, pm_y_array, 0, # ait pressure, used for refraction (ignored) 0, # amb temperature, used for refraction (ignored) 0, # rel humidity, used for refraction (ignored) 0, # wavelength, used for refraction (ignored) ) # Return back the two RA/Dec arrays return icrs_ra, icrs_dec def calc_parallactic_angle( app_ra, app_dec, lst_array, telescope_lat, ): """ Calculate the parallactic angle between RA/Dec and the AltAz frame. Parameters ---------- app_ra : ndarray of floats Array of apparent RA values in units of radians, shape (Ntimes,). app_dec : ndarray of floats Array of apparent dec values in units of radians, shape (Ntimes,). telescope_lat : float Latitude of the observatory, in units of radians. lst_array : float or ndarray of float Array of local apparent sidereal timesto calculate position angle values for, in units of radians. Can either be a single float or an array of shape (Ntimes,). """ # This is just a simple wrapped around the pas function in ERFA return erfa.pas(app_ra, app_dec, lst_array, telescope_lat) def calc_frame_pos_angle( time_array, app_ra, app_dec, telescope_loc, ref_frame, ref_epoch=None, offset_pos=(np.pi / 360.0), ): """ Calculate an position angle given apparent position and reference frame. This function is used to determine the position angle between the great circle of declination in apparent coordinates, versus that in a given reference frame. Note that this is slightly different than parallactic angle, which is the difference between apparent declination and elevation. Paramters --------- time_array : float or ndarray of floats Array of julian dates to calculate position angle values for, of shape (Ntimes,). app_ra : ndarray of floats Array of apparent RA values in units of radians, shape (Ntimes,). app_dec : ndarray of floats Array of apparent dec values in units of radians, shape (Ntimes,). telescope_loc : tuple of floats or EarthLocation ITRF latitude, longitude, and altitude (rel to sea-level) of the observer. Can either be provided as an astropy EarthLocation, or an array-like of shape (3,) containing the latitude, longitude, and altitude, in that order, with units of radians, radians, and meters, respectively. offset_pos : float Distance of the offset position used to calculate the frame PA. Default is 0.5 degrees, which should be sufficent for most applications. ref_frame : str Coordinate frame to calculate position angles for. Can be any of the several supported frames in astropy (a limited list: fk4, fk5, icrs, gcrs, cirs, galactic). ref_epoch : str or flt Epoch of the coordinates, only used when ref_frame = fk4 or fk5. Given in unites of fractional years, either as a float or as a string with the epoch abbreviation (e.g, Julian epoch 2000.0 would be J2000.0). Returns ------- frame_pa : ndarray of floats Array of position angles, in units of radians. """ # Check to see if the position angles should default to zero if (ref_frame is None) or (ref_frame == "topo"): # No-op detected, ENGAGE MAXIMUM SNARK! return np.zeros_like(time_array) # This creates an array of unique entries of ra + dec + time, since the processing # time for each element can be non-negligible, and entries along the Nblt axis can # be highly redundant. unique_mask = np.union1d( np.union1d( np.unique(app_ra, return_index=True)[1], np.unique(app_dec, return_index=True)[1], ), np.unique(time_array, return_index=True)[1], ) # Pluck out the unique entries for each unique_ra = app_ra[unique_mask] unique_dec = app_dec[unique_mask] unique_time = time_array[unique_mask] # Figure out how many elements we need to transform n_coord = len(unique_mask) # Offset north/south positions by 0.5 deg, such that the PA is determined over a # 1 deg arc. up_dec = unique_dec + (np.pi / 360.0) dn_dec = unique_dec - (np.pi / 360.0) up_ra = dn_ra = unique_ra # Wrap the positions if they happen to go over the poles up_ra[up_dec > (np.pi / 2.0)] = np.mod( up_ra[up_dec > (np.pi / 2.0)] + np.pi, 2.0 * np.pi ) up_dec[up_dec > (np.pi / 2.0)] = np.pi - up_dec[up_dec > (np.pi / 2.0)] dn_ra[-dn_dec > (np.pi / 2.0)] = np.mod( dn_ra[dn_dec > (np.pi / 2.0)] + np.pi, 2.0 * np.pi ) dn_dec[-dn_dec > (np.pi / 2.0)] = np.pi - dn_dec[-dn_dec > (np.pi / 2.0)] # Run the set of offset coordinates through the "reverse" transform. The two offset # positions are concat'd together to help reduce overheads ref_ra, ref_dec = calc_sidereal_coords( np.tile(unique_time, 2), np.concatenate((dn_ra, up_ra)), np.concatenate((dn_dec, up_dec)), telescope_loc, ref_frame, coord_epoch=ref_epoch, ) # Use the pas function from ERFA to calculate the position angle. The negative sign # is here because we're measuring PA of app -> frame, but we want frame -> app. unique_pa = -erfa.pas( ref_ra[:n_coord], ref_dec[:n_coord], ref_ra[n_coord:], ref_dec[n_coord:] ) # Finally, we have to go back through and "fill in" the redundant entries frame_pa = np.zeros_like(app_ra) for idx in range(n_coord): select_mask = np.logical_and( np.logical_and(unique_ra[idx] == app_ra, unique_dec[idx] == app_dec,), unique_time[idx] == time_array, ) frame_pa[select_mask] = unique_pa[idx] return frame_pa def lookup_jplhorizons( target_name, time_array, telescope_loc=None, high_cadence=False, force_indv_lookup=None, ): """ Lookup solar system body coordinates via the JPL-Horizons service. This utility is useful for generating ephemerides, which can then be interpolated in order to provide positional data for a target which is moving, such as planetary bodies and other solar system objects. Use of this function requires the installation of the `astroquery` module. Parameters ---------- target_name : str Name of the target to gather an ephemeris for. Must match the name in the JPL-Horizons database. time_array : array-like of float Times in UTC Julian days to gather an ephemeris for. telescope_loc : array-like of float ITRF latitude, longitude, and altitude (rel to sea-level) of the observer. Must be an array-like of shape (3,) containing the latitude, longitude, and altitude, in that order, with units of radians, radians, and meters, respectively. high_cadence : bool If set to True, will calculate ephemeris points every 3 minutes in time, as opposed to the default of every 3 hours. force_indv_lookup : bool If set to True, will calculate coordinate values for each value found within `time_array`. If False, a regularized time grid is sampled that encloses the values contained within `time_array`. Default is False, unless `time_array` is of length 1, in which the default is set to True. Returns ------- ephem_times : ndarray of float Times for which the ephemeris values were calculated, in UTC Julian days. ephem_ra : ndarray of float ICRS Right ascension of the target at the values within `ephem_times`, in units of radians. ephem_dec : ndarray of float ICRS Declination of the target at the values within `ephem_times`, in units of radians. ephem_dist : ndarray of float Distance of the target relative to the observer, at the values within `ephem_times`, in units of parsecs. ephem_vel : ndarray of float Velocity of the targets relative to the observer, at the values within `ephem_times`, in units of km/sec. """ try: from astroquery.jplhorizons import Horizons except ImportError as err: # pragma: no cover raise ImportError( "astroquery is not installed but is required for " "planet ephemeris functionality" ) from err from pyuvdata.data import DATA_PATH from os.path import join as path_join from json import load as json_load # Get the telescope location into a format that JPL-Horizons can understand, # which is nominally a dict w/ entries for lon (units of deg), lat (units of # deg), and elevation (units of km). if isinstance(telescope_loc, EarthLocation): site_loc = { "lon": telescope_loc.lon.deg, "lat": telescope_loc.lat.deg, "elevation": telescope_loc.height.to_value(unit=units.km), } elif telescope_loc is None: # Setting to None will report the geocentric position site_loc = None else: site_loc = { "lon": telescope_loc[1] * (180.0 / np.pi), "lat": telescope_loc[0] * (180.0 / np.pi), "elevation": telescope_loc[2] * (0.001), # m -> km } # If force_indv_lookup is True, or unset but only providing a single value, then # just calculate the RA/Dec for the times requested rather than creating a table # to interpolate from. if force_indv_lookup or ( (np.array(time_array).size == 1) and (force_indv_lookup is None) ): epoch_list = np.unique(time_array) if len(epoch_list) > 50: raise ValueError( "Requesting too many individual ephem points from JPL-Horizons. This " "can be remedied by setting force_indv_lookup=False or limiting the " "number of values in time_array." ) else: # When querying for multiple times, its faster (and kinder to the # good folks at JPL) to create a range to query, and then interpolate # between values. The extra buffer of 0.001 or 0.25 days for high and # low cadence is to give enough data points to allow for spline # interpolation of the data. if high_cadence: start_time = np.min(time_array) - 0.001 stop_time = np.max(time_array) + 0.001 step_time = "3m" n_entries = (stop_time - start_time) * (1440.0 / 3.0) else: # The start/stop time here are setup to maximize reusability of the # data, since astroquery appears to cache the results from previous # queries. start_time = (0.25 * np.floor(4.0 * np.min(time_array))) - 0.25 stop_time = (0.25 * np.ceil(4.0 * np.max(time_array))) + 0.25 step_time = "3h" n_entries = (stop_time - start_time) * (24.0 / 3.0) # We don't want to overtax the JPL service, so limit ourselves to 1000 # individual queries at a time. Note that this is likely a conservative # cap for JPL-Horizons, but there should be exceptionally few applications # that actually require more than this. if n_entries > 1000: if (len(np.unique(time_array)) <= 50) and (force_indv_lookup is None): # If we have a _very_ sparse set of epochs, pass that along instead epoch_list = np.unique(time_array) else: # Otherwise, time to raise an error raise ValueError( "Too many ephem points requested from JPL-Horizons. This " "can be remedied by setting high_cadance=False or limiting " "the number of values in time_array." ) else: epoch_list = { "start": Time(start_time, format="jd").isot, "stop": Time(stop_time, format="jd").isot, "step": step_time, } # Check to make sure dates are within the 1700-2200 time range, # since not all targets are supported outside of this range if (np.min(time_array) < 2341973.0) or (np.max(time_array) > 2524593.0): raise ValueError( "No current support for JPL ephems outside of 1700 - 2300 AD. " "Check back later (or possibly earlier)..." ) # JPL-Horizons has a separate catalog with what it calls 'major bodies', # and will throw an error if you use the wrong catalog when calling for # astrometry. We'll use the dict below to capture this behavior. with open(path_join(DATA_PATH, "jpl_major_bodies.json"), "r") as fhandle: major_body_dict = json_load(fhandle) target_id = target_name id_type = "smallbody" # If we find the target in the major body database, then we can extract the # target ID to make the query a bit more robust (otherwise JPL-Horizons will fail # on account that id will find multiple partial matches: e.g., "Mars" will be # matched with "Mars", "Mars Explorer", "Mars Barycenter"..., and JPL-Horizons will # not know which to choose). if target_name in major_body_dict.keys(): target_id = major_body_dict[target_name] id_type = "majorbody" query_obj = Horizons( id=target_id, location=site_loc, epochs=epoch_list, id_type=id_type, ) # If not in the major bodies catalog, try the minor bodies list, and if # still not found, throw an error. try: ephem_data = query_obj.ephemerides(extra_precision=True) except KeyError: # This is a fix for an astroquery + JPL-Horizons bug, that's related to # API change on JPL's side. In this case, the source is identified, but # astroquery can't correctly parse the return message from JPL-Horizons. # See astroquery issue #2169. ephem_data = query_obj.ephemerides(extra_precision=False) # pragma: no cover except ValueError as err: query_obj._session.close() raise ValueError( "Target ID is not recognized in either the small or major bodies " "catalogs, please consult the JPL-Horizons database for supported " "targets (https://ssd.jpl.nasa.gov/?horizons)." ) from err # This is explicitly closed here to trap a bug that occassionally throws an # unexpected warning, see astroquery issue #1807 query_obj._session.close() # Now that we have the ephem data, extract out the relevant data ephem_times = np.array(ephem_data["datetime_jd"]) ephem_ra = np.array(ephem_data["RA"]) * (np.pi / 180.0) ephem_dec = np.array(ephem_data["DEC"]) * (np.pi / 180.0) ephem_dist = np.array(ephem_data["delta"]) # AU ephem_vel = np.array(ephem_data["delta_rate"]) # km/s return ephem_times, ephem_ra, ephem_dec, ephem_dist, ephem_vel def interpolate_ephem( time_array, ephem_times, ephem_ra, ephem_dec, ephem_dist=None, ephem_vel=None, ): """ Interpolates ephemerides to give positions for requested times. This is a simple tool for calculated interpolated RA and Dec positions, as well as distances and velocities, for a given ephemeris. Under the hood, the method uses as cubic spline interpolation to calculate values at the requested times, provided that there are enough values to interpolate over to do so (requires >= 4 points), otherwise a linear interpolation is used. Parameters ---------- time_array : array-like of floats Times to interpolate positions for, in UTC Julian days. ephem_times : array-like of floats Times in UTC Julian days which describe that match to the recorded postions of the target. Must be array-like, of shape (Npts,), where Npts is the number of ephemeris points. ephem_ra : array-like of floats Right ascencion of the target, at the times given in `ephem_times`. Units are in radians, must have the same shape as `ephem_times`. ephem_dec : array-like of floats Declination of the target, at the times given in `ephem_times`. Units are in radians, must have the same shape as `ephem_times`. ephem_dist : array-like of floats Distance of the target from the observer, at the times given in `ephem_times`. Optional argument, in units of parsecs. Must have the same shape as `ephem_times`. ephem_vel : array-like of floats Velocities of the target, at the times given in `ephem_times`. Optional argument, in units of km/sec. Must have the same shape as `ephem_times`. Returns ------- ra_vals : ndarray of float Interpolated RA values, returned as an ndarray of floats with units of radians, and the same shape as `time_array`. dec_vals : ndarray of float Interpolated declination values, returned as an ndarray of floats with units of radians, and the same shape as `time_array`. dist_vals : None or ndarray of float If `ephem_dist` was provided, an ndarray of floats (with same shape as `time_array`) with the interpolated target distances, in units of parsecs. If `ephem_dist` was not provided, this returns as None. vel_vals : None or ndarray of float If `ephem_vals` was provided, an ndarray of floats (with same shape as `time_array`) with the interpolated target velocities, in units of km/sec. If `ephem_vals` was not provided, this returns as None. """ # We're importing this here since it's only used for this one function from scipy.interpolate import interp1d ephem_shape = np.array(ephem_times).shape # Make sure that things look reasonable if np.array(ephem_ra).shape != ephem_shape: raise ValueError("ephem_ra must have the same shape as ephem_times.") if np.array(ephem_dec).shape != ephem_shape: raise ValueError("ephem_dec must have the same shape as ephem_times.") if (np.array(ephem_dist).shape != ephem_shape) and (ephem_dist is not None): raise ValueError("ephem_dist must have the same shape as ephem_times.") if (np.array(ephem_vel).shape != ephem_shape) and (ephem_vel is not None): raise ValueError("ephem_vel must have the same shape as ephem_times.") ra_vals = np.zeros_like(time_array, dtype=float) dec_vals = np.zeros_like(time_array, dtype=float) dist_vals = None if ephem_dist is None else np.zeros_like(time_array, dtype=float) vel_vals = None if ephem_vel is None else np.zeros_like(time_array, dtype=float) if len(ephem_times) == 1: ra_vals += ephem_ra dec_vals += ephem_dec if ephem_dist is not None: dist_vals += ephem_dist if ephem_vel is not None: vel_vals += ephem_vel else: if len(ephem_times) > 3: interp_kind = "cubic" else: interp_kind = "linear" # If we have values that line up perfectly, just use those directly select_mask = np.isin(time_array, ephem_times) if np.any(select_mask): time_select = time_array[select_mask] ra_vals[select_mask] = interp1d(ephem_times, ephem_ra, kind="nearest")( time_select ) dec_vals[select_mask] = interp1d(ephem_times, ephem_dec, kind="nearest")( time_select ) if ephem_dist is not None: dist_vals[select_mask] = interp1d( ephem_times, ephem_dist, kind="nearest" )(time_select) if ephem_vel is not None: vel_vals[select_mask] = interp1d( ephem_times, ephem_vel, kind="nearest" )(time_select) # If we have values lining up between grid points, use spline interpolation # to calculate their values select_mask = ~select_mask if np.any(select_mask): time_select = time_array[select_mask] ra_vals[select_mask] = interp1d(ephem_times, ephem_ra, kind=interp_kind)( time_select ) dec_vals[select_mask] = interp1d(ephem_times, ephem_dec, kind=interp_kind)( time_select ) if ephem_dist is not None: dist_vals[select_mask] = interp1d( ephem_times, ephem_dist, kind=interp_kind )(time_select) if ephem_vel is not None: vel_vals[select_mask] = interp1d( ephem_times, ephem_vel, kind=interp_kind )(time_select) return (ra_vals, dec_vals, dist_vals, vel_vals) def calc_app_coords( lon_coord, lat_coord, coord_frame="icrs", coord_epoch=None, coord_times=None, coord_type="sidereal", time_array=None, lst_array=None, telescope_loc=None, pm_ra=None, pm_dec=None, vrad=None, dist=None, ): """ Calculate apparent coordinates for several different coordinate types. This function calculates apparent positions at the current epoch. Parameters ---------- lon_coord : float or ndarray of float Longitudinal (e.g., RA) coordinates, units of radians. Must match the same shape as lat_coord. lat_coord : float or ndarray of float Latitudinal (e.g., Dec) coordinates, units of radians. Must match the same shape as lon_coord. coord_frame : string The requested reference frame for the output coordinates, can be any frame that is presently supported by astropy. coord_epoch : float or str or Time object Epoch for ref_frame, nominally only used if converting to either the FK4 or FK5 frames, in units of fractional years. If provided as a float and the coord_frame is an FK4-variant, value will assumed to be given in Besselian years (i.e., 1950 would be 'B1950'), otherwise the year is assumed to be in Julian years. coord_times : float or ndarray of float Only used when `coord_type="ephem"`, the JD UTC time for each value of `lon_coord` and `lat_coord`. These values are used to interpolate `lon_coord` and `lat_coord` values to those times listed in `time_array`. coord_type : str coord_type : str Type of source to calculate coordinates for. Must be one of: "sidereal" (fixed RA/Dec), "ephem" (RA/Dec that moves with time), "driftscan" (fixed az/el position), "unphased" (alias for "driftscan" with (Az, Alt) = (0 deg, 90 deg)). time_array : float or ndarray of float or Time object Times for which the apparent coordinates were calculated, in UTC JD. If more than a single element, must be the same shape as lon_coord and lat_coord if both of those are arrays (instead of single floats). telescope_loc : array-like of floats or EarthLocation ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center of the array. Can either be provided as an astropy EarthLocation, or a tuple of shape (3,) containung (in order) the latitude, longitude, and altitude, in units of radians, radians, and meters, respectively. coord_frame : string The requested reference frame for the output coordinates, can be any frame that is presently supported by astropy. Default is ICRS. coord_epoch : float or str or Time object Epoch for ref_frame, nominally only used if converting to either the FK4 or FK5 frames, in units of fractional years. If provided as a float and the ref_frame is an FK4-variant, value will assumed to be given in Besselian years (i.e., 1950 would be 'B1950'), otherwise the year is assumed to be in Julian years. pm_ra : float or ndarray of float Proper motion in RA of the source, expressed in units of milliarcsec / year. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required, motion is calculated relative to the value of `coord_epoch`. pm_dec : float or ndarray of float Proper motion in Dec of the source, expressed in units of milliarcsec / year. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required, motion is calculated relative to the value of `coord_epoch`. vrad : float or ndarray of float Radial velocity of the source, expressed in units of km / sec. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required. dist : float or ndarray of float Distance of the source, expressed in milliarcseconds. Can either be a single float or array of shape (Ntimes,), although this must be consistent with other parameters (namely ra_coord and dec_coord). Not required. Returns ------- app_ra : ndarray of floats Apparent right ascension coordinates, in units of radians. app_dec : ndarray of floats Apparent declination coordinates, in units of radians. """ if isinstance(telescope_loc, EarthLocation): site_loc = telescope_loc else: site_loc = EarthLocation.from_geodetic( telescope_loc[1] * (180.0 / np.pi), telescope_loc[0] * (180.0 / np.pi), height=telescope_loc[2], ) # Time objects and unique don't seem to play well together, so we break apart # their handling here if isinstance(time_array, Time): unique_time_array, unique_mask = np.unique(time_array.utc.jd, return_index=True) else: unique_time_array, unique_mask = np.unique(time_array, return_index=True) if coord_type in ["driftscan", "unphased"]: if lst_array is None: unique_lst = get_lst_for_time( unique_time_array, site_loc.lat.deg, site_loc.lon.deg, site_loc.height.to_value("m"), ) else: unique_lst = lst_array[unique_mask] if coord_type == "sidereal": # If the coordinates are not in the ICRS frame, go ahead and transform them now if coord_frame != "icrs": icrs_ra, icrs_dec = transform_sidereal_coords( lon_coord, lat_coord, coord_frame, "icrs", in_coord_epoch=coord_epoch, time_array=unique_time_array, ) else: icrs_ra = lon_coord icrs_dec = lat_coord unique_app_ra, unique_app_dec = transform_icrs_to_app( unique_time_array, icrs_ra, icrs_dec, site_loc, pm_ra=pm_ra, pm_dec=pm_dec, vrad=vrad, dist=dist, ) elif coord_type == "driftscan": # Use the ERFA function ae2hd, which will do all the heavy # lifting for us unique_app_ha, unique_app_dec = erfa.ae2hd( lon_coord, lat_coord, site_loc.lat.rad ) # The above returns HA/Dec, so we just need to rotate by # the LST to get back app RA and Dec unique_app_ra = np.mod(unique_app_ha + unique_lst, 2 * np.pi) unique_app_dec = unique_app_dec + np.zeros_like(unique_app_ra) elif coord_type == "ephem": interp_ra, interp_dec, _, _ = interpolate_ephem( unique_time_array, coord_times, lon_coord, lat_coord, ) if coord_frame != "icrs": icrs_ra, icrs_dec = transform_sidereal_coords( interp_ra, interp_dec, coord_frame, "icrs", in_coord_epoch=coord_epoch, time_array=unique_time_array, ) else: icrs_ra = interp_ra icrs_dec = interp_dec # TODO: Vel and distance handling to be integrated here, once they are are # needed for velocity frame tracking unique_app_ra, unique_app_dec = transform_icrs_to_app( unique_time_array, icrs_ra, icrs_dec, site_loc, pm_ra=pm_ra, pm_dec=pm_dec, ) elif coord_type == "unphased": # This is the easiest one - this is just supposed to be ENU, so set the # apparent coords to the current lst and telescope_lon. unique_app_ra = unique_lst.copy() unique_app_dec = np.zeros_like(unique_app_ra) + site_loc.lat.rad else: raise ValueError("Object type %s is not recognized." % coord_type) # Now that we've calculated all the unique values, time to backfill through the # "redundant" entries in the Nblt axis. app_ra = np.zeros(np.array(time_array).shape) app_dec = np.zeros(np.array(time_array).shape) # Need this promotion in order to match entries if isinstance(time_array, Time): unique_time_array = Time(unique_time_array, format="jd", scale="utc") for idx, unique_time in enumerate(unique_time_array): select_mask = time_array == unique_time app_ra[select_mask] = unique_app_ra[idx] app_dec[select_mask] = unique_app_dec[idx] return app_ra, app_dec def calc_sidereal_coords( time_array, app_ra, app_dec, telescope_loc, coord_frame, coord_epoch=None, ): """ Calculate sidereal coordinates given apparent coordinates. This function calculates coordinates in the requested frame (at a given epoch) from a set of apparent coordinates. Parameters ---------- time_array : float or ndarray of float or Time object Times for which the apparent coordinates were calculated, in UTC JD. Must match the shape of app_ra and app_dec. app_ra : float or ndarray of float Array of apparent right ascension coordinates, units of radians. Must match the shape of time_array and app_dec. app_ra : float or ndarray of float Array of apparent right declination coordinates, units of radians. Must match the shape of time_array and app_dec. telescope_loc : tuple of floats or EarthLocation ITRF latitude, longitude, and altitude (rel to sea-level) of the phase center of the array. Can either be provided as an astropy EarthLocation, or a tuple of shape (3,) containung (in order) the latitude, longitude, and altitude, in units of radians, radians, and meters, respectively. coord_frame : string The requested reference frame for the output coordinates, can be any frame that is presently supported by astropy. Default is ICRS. coord_epoch : float or str or Time object Epoch for ref_frame, nominally only used if converting to either the FK4 or FK5 frames, in units of fractional years. If provided as a float and the ref_frame is an FK4-variant, value will assumed to be given in Besselian years (i.e., 1950 would be 'B1950'), otherwise the year is assumed to be in Julian years. Returns ------- ref_ra : ndarray of floats Right ascension coordinates in the requested frame, in units of radians. Either shape (Ntimes,) if Ntimes >1, otherwise (Ncoord,). ref_dec : ndarray of floats Declination coordinates in the requested frame, in units of radians. Either shape (Ntimes,) if Ntimes >1, otherwise (Ncoord,). """ # Check to make sure that we have a properly formatted epoch for our in-bound # coordinate frame epoch = None if isinstance(coord_epoch, str) or isinstance(coord_epoch, Time): # If its a string or a Time object, we don't need to do anything more epoch = Time(coord_epoch) elif coord_epoch is not None: if coord_frame.lower() in ["fk4", "fk4noeterms"]: epoch = Time(coord_epoch, format="byear") else: epoch = Time(coord_epoch, format="jyear") icrs_ra, icrs_dec = transform_app_to_icrs( time_array, app_ra, app_dec, telescope_loc ) if coord_frame == "icrs": ref_ra, ref_dec = (icrs_ra, icrs_dec) else: ref_ra, ref_dec = transform_sidereal_coords( icrs_ra, icrs_dec, "icrs", coord_frame, out_coord_epoch=epoch, time_array=time_array, ) return ref_ra, ref_dec def get_lst_for_time( jd_array, latitude, longitude, altitude, astrometry_library="erfa" ): """ Get the local apparent sidereal time for a set of jd times at an earth location. This function calculates the local apparent sidereal time (LAST), given a UTC time and a position on the Earth, using either the astropy or NOVAS libraries. It is important to note that there is an apporoximate 20 microsecond difference between the two methods, presumably due to small differences in the apparent reference frame. These differences will cancel out when calculating coordinates in the TOPO frame, so long as apparent coordinates are calculated using the same library (i.e., astropy or NOVAS). Failing to do so can introduce errors up to ~1 mas in the horizontal coordinate system (i.e., AltAz). Parameters ---------- jd_array : ndarray of float JD times to get lsts for. latitude : float Latitude of location to get lst for in degrees. longitude : float Longitude of location to get lst for in degrees. altitude : float Altitude of location to get lst for in meters. astrometry_library : str Library used for running the LST calculations. Allowed options are 'erfa' (which uses the pyERFA), 'novas' (which uses the python-novas library), and 'astropy' (which uses the astropy utilities). Default is erfa. Returns ------- ndarray of float LASTs in radians corresponding to the jd_array. """ if isinstance(jd_array, np.ndarray): lst_array = np.zeros_like(jd_array) else: lst_array = np.zeros(1) jd, reverse_inds = np.unique(jd_array, return_inverse=True) times = Time( jd, format="jd", scale="utc", location=(Angle(longitude, unit="deg"), Angle(latitude, unit="deg"), altitude), ) if iers.conf.auto_max_age is None: # pragma: no cover delta, status = times.get_delta_ut1_utc(return_status=True) if np.any( np.isin(status, (iers.TIME_BEFORE_IERS_RANGE, iers.TIME_BEYOND_IERS_RANGE)) ): warnings.warn( "time is out of IERS range, setting delta ut1 utc to " "extrapolated value" ) times.delta_ut1_utc = delta if astrometry_library == "erfa": # This appears to be what astropy is using under the hood, # so it _should_ be totally consistent. gast_array = erfa.gst06a(times.ut1.jd, 0.0, times.tt.jd, 0.0) lst_array = np.mod(gast_array + (longitude * (np.pi / 180.0)), 2.0 * np.pi)[ reverse_inds ] elif astrometry_library == "astropy": lst_array = times.sidereal_time("apparent").radian[reverse_inds] elif astrometry_library == "novas": # Import the NOVAS library only if it's needed/available. try: from novas import compat as novas from novas.compat import eph_manager import novas_de405 # noqa except ImportError as e: # pragma: no cover raise ImportError( "novas and/or novas_de405 are not installed but is required for " "NOVAS functionality" ) from e jd_start, jd_end, number = eph_manager.ephem_open() tt_time_array = times.tt.value ut1_time_array = times.ut1.value polar_motion_data = iers.earth_orientation_table.get() delta_x_array = np.interp( times.mjd, polar_motion_data["MJD"].value, polar_motion_data["dX_2000A_B"].value, left=0.0, right=0.0, ) delta_y_array = np.interp( times.mjd, polar_motion_data["MJD"].value, polar_motion_data["dY_2000A_B"].value, left=0.0, right=0.0, ) # Catch the case where we don't have CIP delta values yet (they don't typically # have predictive values like the polar motion does) delta_x_array[np.isnan(delta_x_array)] = 0.0 delta_y_array[np.isnan(delta_y_array)] = 0.0 for idx in range(len(times)): novas.cel_pole( tt_time_array[idx], 2, delta_x_array[idx], delta_y_array[idx] ) # The NOVAS routine will return Greenwich Apparent Sidereal Time (GAST), # in units of hours lst_array[reverse_inds == idx] = novas.sidereal_time( ut1_time_array[idx], 0.0, (tt_time_array[idx] - ut1_time_array[idx]) * 86400.0, ) # Add the telescope lon to convert from GAST to LAST (local) lst_array = np.mod(lst_array + (longitude / 15.0), 24.0) # Convert from hours back to rad lst_array *= np.pi / 12.0 return lst_array def _adj_list(vecs, tol, n_blocks=None): """Identify neighbors of each vec in vecs, to distance tol.""" n_items = len(vecs) max_items = 2 ** 10 # Max array size used is max_items**2. Avoid using > 1 GiB if n_blocks is None: n_blocks = max(n_items // max_items, 1) # We may sort blocks so that some pairs of blocks may be skipped. # Reorder vectors by x. order = np.argsort(vecs[:, 0]) blocks = np.array_split(order, n_blocks) adj = [{k} for k in range(n_items)] # Adjacency lists for b1 in blocks: for b2 in blocks: v1, v2 = vecs[b1], vecs[b2] # Check for no overlap, with tolerance. xmin1 = v1[0, 0] - tol xmax1 = v1[-1, 0] + tol xmin2 = v2[0, 0] - tol xmax2 = v2[-1, 0] + tol if max(xmin1, xmin2) > min(xmax1, xmax2): continue adj_mat = cdist(vecs[b1], vecs[b2]) < tol for bi, col in enumerate(adj_mat): adj[b1[bi]] = adj[b1[bi]].union(b2[col]) return [frozenset(g) for g in adj] def _find_cliques(adj, strict=False): n_items = len(adj) loc_gps = [] visited = np.zeros(n_items, dtype=bool) for k in range(n_items): if visited[k]: continue a0 = adj[k] visited[k] = True if all(adj[it].__hash__() == a0.__hash__() for it in a0): group = list(a0) group.sort() visited[list(a0)] = True loc_gps.append(group) # Require all adjacency lists to be isolated maximal cliques: if strict: if not all(sorted(st) in loc_gps for st in adj): raise ValueError("Non-isolated cliques found in graph.") return loc_gps def find_clusters(location_ids, location_vectors, tol, strict=False): """ Find clusters of vectors (e.g. redundant baselines, times). Parameters ---------- location_ids : array_like of int ID labels for locations. location_vectors : array_like of float location vectors, can be multidimensional tol : float tolerance for clusters strict : bool Require that all adjacency lists be isolated maximal cliques. This ensures that vectors do not fall into multiple clusters. Default: False Returns ------- list of list of location_ids """ location_vectors = np.asarray(location_vectors) location_ids = np.asarray(location_ids) if location_vectors.ndim == 1: location_vectors = location_vectors[:, np.newaxis] adj = _adj_list(location_vectors, tol) # adj = list of sets loc_gps = _find_cliques(adj, strict=strict) loc_gps = [np.sort(location_ids[gp]).tolist() for gp in loc_gps] return loc_gps def get_baseline_redundancies(baselines, baseline_vecs, tol=1.0, with_conjugates=False): """ Find redundant baseline groups. Parameters ---------- baselines : array_like of int Baseline numbers, shape (Nbls,) baseline_vecs : array_like of float Baseline vectors in meters, shape (Nbls, 3) tol : float Absolute tolerance of redundancy, in meters. with_conjugates : bool Option to include baselines that are redundant when flipped. Returns ------- baseline_groups : list of lists of int list of lists of redundant baseline numbers vec_bin_centers : list of array_like of float List of vectors describing redundant group centers lengths : list of float List of redundant group baseline lengths in meters baseline_ind_conj : list of int List of baselines that are redundant when reversed. Only returned if with_conjugates is True """ Nbls = baselines.shape[0] if not baseline_vecs.shape == (Nbls, 3): raise ValueError("Baseline vectors must be shape (Nbls, 3)") baseline_vecs = copy.copy(baseline_vecs) # Protect the vectors passed in. if with_conjugates: conjugates = [] for bv in baseline_vecs: uneg = bv[0] < -tol uzer = np.isclose(bv[0], 0.0, atol=tol) vneg = bv[1] < -tol vzer = np.isclose(bv[1], 0.0, atol=tol) wneg = bv[2] < -tol conjugates.append(uneg or (uzer and vneg) or (uzer and vzer and wneg)) conjugates = np.array(conjugates, dtype=bool) baseline_vecs[conjugates] *= -1 baseline_ind_conj = baselines[conjugates] bl_gps, vec_bin_centers, lens = get_baseline_redundancies( baselines, baseline_vecs, tol=tol, with_conjugates=False ) return bl_gps, vec_bin_centers, lens, baseline_ind_conj try: bl_gps = find_clusters(baselines, baseline_vecs, tol, strict=True) except ValueError as exc: raise ValueError( "Some baselines are falling into multiple" " redundant groups. Lower the tolerance to resolve ambiguity." ) from exc n_unique = len(bl_gps) vec_bin_centers = np.zeros((n_unique, 3)) for gi, gp in enumerate(bl_gps): inds = [np.where(i == baselines)[0] for i in gp] vec_bin_centers[gi] = np.mean(baseline_vecs[inds, :], axis=0) lens = np.sqrt(np.sum(vec_bin_centers ** 2, axis=1)) return bl_gps, vec_bin_centers, lens def get_antenna_redundancies( antenna_numbers, antenna_positions, tol=1.0, include_autos=False ): """ Find redundant baseline groups based on antenna positions. Parameters ---------- antenna_numbers : array_like of int Antenna numbers, shape (Nants,). antenna_positions : array_like of float Antenna position vectors in the ENU (topocentric) frame in meters, shape (Nants, 3). tol : float Redundancy tolerance in meters. include_autos : bool Option to include autocorrelations. Returns ------- baseline_groups : list of lists of int list of lists of redundant baseline numbers vec_bin_centers : list of array_like of float List of vectors describing redundant group centers lengths : list of float List of redundant group baseline lengths in meters Notes ----- The baseline numbers refer to antenna pairs (a1, a2) such that the baseline vector formed from ENU antenna positions, blvec = enu[a1] - enu[a2] is close to the other baselines in the group. This is achieved by putting baselines in a form of the u>0 convention, but with a tolerance in defining the signs of vector components. To guarantee that the same baseline numbers are present in a UVData object, ``UVData.conjugate_bls('u>0', uvw_tol=tol)``, where `tol` is the tolerance used here. """ Nants = antenna_numbers.size bls = [] bl_vecs = [] for aj in range(Nants): mini = aj + 1 if include_autos: mini = aj for ai in range(mini, Nants): anti, antj = antenna_numbers[ai], antenna_numbers[aj] bidx = antnums_to_baseline(antj, anti, Nants) bv = antenna_positions[ai] - antenna_positions[aj] bl_vecs.append(bv) bls.append(bidx) bls = np.array(bls) bl_vecs = np.array(bl_vecs) gps, vecs, lens, conjs = get_baseline_redundancies( bls, bl_vecs, tol=tol, with_conjugates=True ) # Flip the baselines in the groups. for gi, gp in enumerate(gps): for bi, bl in enumerate(gp): if bl in conjs: gps[gi][bi] = baseline_index_flip(bl, Nants) return gps, vecs, lens def mean_collapse( arr, weights=None, axis=None, return_weights=False, return_weights_square=False ): """ Collapse by averaging data. This is similar to np.average, except it handles infs (by giving them zero weight) and zero weight axes (by forcing result to be inf with zero output weight). Parameters ---------- arr : array Input array to process. weights: ndarray, optional weights for average. If none, will default to equal weight for all non-infinite data. axis : int or tuple, optional Axis or axes to collapse (passed to np.sum). Default is all. return_weights : bool Whether to return sum of weights. return_weights_square: bool Whether to return the sum of the square of the weights. Default is False. """ arr = copy.deepcopy(arr) # avoid changing outside if weights is None: weights = np.ones_like(arr) else: weights = copy.deepcopy(weights) weights = weights * np.logical_not(np.isinf(arr)) arr[np.isinf(arr)] = 0 weight_out = np.sum(weights, axis=axis) if return_weights_square: weights_square = weights ** 2 weights_square_out = np.sum(weights_square, axis=axis) out = np.sum(weights * arr, axis=axis) where = weight_out > 1e-10 out = np.true_divide(out, weight_out, where=where) out = np.where(where, out, np.inf) if return_weights and return_weights_square: return out, weight_out, weights_square_out elif return_weights: return out, weight_out elif return_weights_square: return out, weights_square_out else: return out def absmean_collapse( arr, weights=None, axis=None, return_weights=False, return_weights_square=False ): """ Collapse by averaging absolute value of data. Parameters ---------- arr : array Input array to process. weights: ndarray, optional weights for average. If none, will default to equal weight for all non-infinite data. axis : int or tuple, optional Axis or axes to collapse (passed to np.sum). Default is all. return_weights : bool Whether to return sum of weights. return_weights_square: bool whether to return the sum of the squares of the weights. Default is False. """ return mean_collapse( np.abs(arr), weights=weights, axis=axis, return_weights=return_weights, return_weights_square=return_weights_square, ) def quadmean_collapse( arr, weights=None, axis=None, return_weights=False, return_weights_square=False ): """ Collapse by averaging in quadrature. Parameters ---------- arr : array Input array to process. weights: ndarray, optional weights for average. If none, will default to equal weight for all non-infinite data. axis : int or tuple, optional Axis or axes to collapse (passed to np.sum). Default is all. return_weights : bool Whether to return sum of weights. return_weights_square: bool whether to return the sum of the squares of the weights. Default is False. """ out = mean_collapse( np.abs(arr) ** 2, weights=weights, axis=axis, return_weights=return_weights, return_weights_square=return_weights_square, ) if return_weights and return_weights_square: return np.sqrt(out[0]), out[1], out[2] elif return_weights or return_weights_square: return np.sqrt(out[0]), out[1] else: return np.sqrt(out) def or_collapse( arr, weights=None, axis=None, return_weights=False, return_weights_square=False ): """ Collapse using OR operation. Parameters ---------- arr : array Input array to process. weights: ndarray, optional NOT USED, but kept for symmetry with other collapsing functions. axis : int or tuple, optional Axis or axes to collapse (take OR over). Default is all. return_weights : bool Whether to return dummy weights array. NOTE: the dummy weights will simply be an array of ones return_weights_square: bool NOT USED, but kept for symmetry with other collapsing functions. """ if arr.dtype != np.bool_: raise ValueError("Input to or_collapse function must be boolean array") out = np.any(arr, axis=axis) if (weights is not None) and not np.all(weights == weights.reshape(-1)[0]): warnings.warn("Currently weights are not handled when OR-ing boolean arrays.") if return_weights: return out, np.ones_like(out, dtype=np.float64) else: return out def and_collapse( arr, weights=None, axis=None, return_weights=False, return_weights_square=False ): """ Collapse using AND operation. Parameters ---------- arr : array Input array to process. weights: ndarray, optional NOT USED, but kept for symmetry with other collapsing functions. axis : int or tuple, optional Axis or axes to collapse (take AND over). Default is all. return_weights : bool Whether to return dummy weights array. NOTE: the dummy weights will simply be an array of ones return_weights_square: bool NOT USED, but kept for symmetry with other collapsing functions. """ if arr.dtype != np.bool_: raise ValueError("Input to and_collapse function must be boolean array") out = np.all(arr, axis=axis) if (weights is not None) and not np.all(weights == weights.reshape(-1)[0]): warnings.warn("Currently weights are not handled when AND-ing boolean arrays.") if return_weights: return out, np.ones_like(out, dtype=np.float64) else: return out def collapse( arr, alg, weights=None, axis=None, return_weights=False, return_weights_square=False ): """ Parent function to collapse an array with a given algorithm. Parameters ---------- arr : array Input array to process. alg : str Algorithm to use. Must be defined in this function with corresponding subfunction above. weights: ndarray, optional weights for collapse operation (e.g. weighted mean). NOTE: Some subfunctions do not use the weights. See corresponding doc strings. axis : int or tuple, optional Axis or axes to collapse. Default is all. return_weights : bool Whether to return sum of weights. return_weights_square: bool Whether to return the sum of the squares of the weights. Default is False. """ collapse_dict = { "mean": mean_collapse, "absmean": absmean_collapse, "quadmean": quadmean_collapse, "or": or_collapse, "and": and_collapse, } try: out = collapse_dict[alg]( arr, weights=weights, axis=axis, return_weights=return_weights, return_weights_square=return_weights_square, ) except KeyError: raise ValueError( "Collapse algorithm must be one of: " + ", ".join(collapse_dict.keys()) + "." ) return out def uvcalibrate( uvdata, uvcal, inplace=True, prop_flags=True, Dterm_cal=False, flip_gain_conj=False, delay_convention="minus", undo=False, time_check=True, ant_check=True, ): """ Calibrate a UVData object with a UVCal object. Parameters ---------- uvdata : UVData object UVData object to calibrate. uvcal : UVCal object UVCal object containing the calibration. inplace : bool, optional if True edit uvdata in place, else return a calibrated copy prop_flags : bool, optional if True, propagate calibration flags to data flags and doesn't use flagged gains. Otherwise, uses flagged gains and does not propagate calibration flags to data flags. Dterm_cal : bool, optional Calibrate the off-diagonal terms in the Jones matrix if present in uvcal. Default is False. Currently not implemented. flip_gain_conj : bool, optional This function uses the UVData ant_1_array and ant_2_array to specify the antennas in the UVCal object. By default, the conjugation convention, which follows the UVData convention (i.e. ant2 - ant1), is that the applied gain = ant1_gain * conjugate(ant2_gain). If the other convention is required, set flip_gain_conj=True. delay_convention : str, optional Exponent sign to use in conversion of 'delay' to 'gain' cal_type if the input uvcal is not inherently 'gain' cal_type. Default to 'minus'. undo : bool, optional If True, undo the provided calibration. i.e. apply the calibration with flipped gain_convention. Flag propagation rules apply the same. time_check : bool Option to check that times match between the UVCal and UVData objects if UVCal has a single time or time range. Times are always checked if UVCal has multiple times. ant_check : bool Option to check that all antennas with data on the UVData object have calibration solutions in the UVCal object. If this option is set to False, uvcalibrate will proceed without erroring and data for antennas without calibrations will be flagged. Returns ------- UVData, optional Returns if not inplace """ if not inplace: uvdata = uvdata.copy() # Check whether the UVData antennas *that have data associated with them* # have associated data in the UVCal object uvdata_unique_nums = np.unique(np.append(uvdata.ant_1_array, uvdata.ant_2_array)) uvdata.antenna_names = np.asarray(uvdata.antenna_names) uvdata_used_antnames = np.array( [ uvdata.antenna_names[np.where(uvdata.antenna_numbers == antnum)][0] for antnum in uvdata_unique_nums ] ) uvcal_unique_nums = np.unique(uvcal.ant_array) uvcal.antenna_names = np.asarray(uvcal.antenna_names) uvcal_used_antnames = np.array( [ uvcal.antenna_names[np.where(uvcal.antenna_numbers == antnum)][0] for antnum in uvcal_unique_nums ] ) ant_arr_match = uvcal_used_antnames.tolist() == uvdata_used_antnames.tolist() if not ant_arr_match: # check more carefully name_missing = [] for this_ant_name in uvdata_used_antnames: wh_ant_match = np.nonzero(uvcal_used_antnames == this_ant_name) if wh_ant_match[0].size == 0: name_missing.append(this_ant_name) if len(name_missing) > 0: if len(name_missing) == uvdata_used_antnames.size: # all antenna_names with data on UVData are missing on UVCal. if not ant_check: warnings.warn( "All antenna names with data on UVData are missing " "on UVCal. Since ant_check is False, calibration will " "proceed but all data will be flagged." ) else: raise ValueError( "All antenna names with data on UVData are missing " "on UVCal. To continue with calibration " "(and flag all the data), set ant_check=False." ) else: # Only some antenna_names with data on UVData are missing on UVCal if not ant_check: warnings.warn( f"Antennas {name_missing} have data on UVData but are missing " "on UVCal. Since ant_check is False, calibration will " "proceed and the data for these antennas will be flagged." ) else: raise ValueError( f"Antennas {name_missing} have data on UVData but " "are missing on UVCal. To continue calibration and " "flag the data from missing antennas, set ant_check=False." ) uvdata_times = np.unique(uvdata.time_array) downselect_cal_times = False if uvcal.Ntimes > 1: if uvcal.Ntimes < uvdata.Ntimes: raise ValueError( "The uvcal object has more than one time but fewer than the " "number of unique times on the uvdata object." ) uvcal_times = np.unique(uvcal.time_array) try: time_arr_match = np.allclose( uvcal_times, uvdata_times, atol=uvdata._time_array.tols[1], rtol=uvdata._time_array.tols[0], ) except ValueError: time_arr_match = False if not time_arr_match: # check more carefully uvcal_times_to_keep = [] for this_time in uvdata_times: wh_time_match = np.nonzero( np.isclose( uvcal.time_array - this_time, 0, atol=uvdata._time_array.tols[1], rtol=uvdata._time_array.tols[0], ) ) if wh_time_match[0].size > 0: uvcal_times_to_keep.append(uvcal.time_array[wh_time_match][0]) else: raise ValueError( f"Time {this_time} exists on UVData but not on UVCal." ) if len(uvcal_times_to_keep) < uvcal.Ntimes: downselect_cal_times = True elif uvcal.time_range is None: # only one UVCal time, no time_range. # This cannot match if UVData.Ntimes > 1. # If they are both NTimes = 1, then check if they're close. if uvdata.Ntimes > 1 or not np.isclose( uvdata_times, uvcal.time_array, atol=uvdata._time_array.tols[1], rtol=uvdata._time_array.tols[0], ): if not time_check: warnings.warn( "Times do not match between UVData and UVCal " "but time_check is False, so calibration " "will be applied anyway." ) else: raise ValueError( "Times do not match between UVData and UVCal. " "Set time_check=False to apply calibration anyway." ) else: # time_array is length 1 and time_range exists: check uvdata_times in time_range if ( np.min(uvdata_times) < uvcal.time_range[0] or np.max(uvdata_times) > uvcal.time_range[1] ): if not time_check: warnings.warn( "Times do not match between UVData and UVCal " "but time_check is False, so calibration " "will be applied anyway." ) else: raise ValueError( "Times do not match between UVData and UVCal. " "Set time_check=False to apply calibration anyway. " ) downselect_cal_freq = False if uvdata.future_array_shapes: uvdata_freq_arr_use = uvdata.freq_array else: uvdata_freq_arr_use = uvdata.freq_array[0, :] try: freq_arr_match = np.allclose( np.sort(uvcal.freq_array[0, :]), np.sort(uvdata_freq_arr_use), atol=uvdata._freq_array.tols[1], rtol=uvdata._freq_array.tols[0], ) except ValueError: freq_arr_match = False if freq_arr_match is False: # check more carefully uvcal_freqs_to_keep = [] for this_freq in uvdata_freq_arr_use: wh_freq_match = np.nonzero( np.isclose( uvcal.freq_array - this_freq, 0, atol=uvdata._freq_array.tols[1], rtol=uvdata._freq_array.tols[0], ) ) if wh_freq_match[0].size > 0: uvcal_freqs_to_keep.append(uvcal.freq_array[wh_freq_match][0]) else: raise ValueError( f"Frequency {this_freq} exists on UVData but not on UVCal." ) if len(uvcal_freqs_to_keep) < uvcal.Nfreqs: downselect_cal_freq = True uvdata_pol_strs = polnum2str( uvdata.polarization_array, x_orientation=uvdata.x_orientation ) uvcal_pol_strs = jnum2str(uvcal.jones_array, x_orientation=uvcal.x_orientation) uvdata_feed_pols = { feed for pol in uvdata_pol_strs for feed in POL_TO_FEED_DICT[pol] } for feed in uvdata_feed_pols: # get diagonal jones str jones_str = parse_jpolstr(feed, x_orientation=uvcal.x_orientation) if jones_str not in uvcal_pol_strs: raise ValueError( f"Feed polarization {feed} exists on UVData but not on UVCal. " ) # downselect UVCal times, frequencies if downselect_cal_freq or downselect_cal_times: if not downselect_cal_times: uvcal_times_to_keep = None elif not downselect_cal_freq: uvcal_freqs_to_keep = None uvcal_use = uvcal.select( times=uvcal_times_to_keep, frequencies=uvcal_freqs_to_keep, inplace=False ) new_uvcal = True else: uvcal_use = uvcal new_uvcal = False # input checks if uvcal_use.cal_type == "delay": if not new_uvcal: # make a copy to convert to gain uvcal_use = uvcal_use.copy() new_uvcal = True uvcal_use.convert_to_gain(delay_convention=delay_convention) # D-term calibration if Dterm_cal: # check for D-terms if -7 not in uvcal_use.jones_array and -8 not in uvcal_use.jones_array: raise ValueError( "Cannot apply D-term calibration without -7 or -8" "Jones polarization in uvcal object." ) raise NotImplementedError("D-term calibration is not yet implemented.") # No D-term calibration else: # key is number, value is name uvdata_ant_dict = dict(zip(uvdata.antenna_numbers, uvdata.antenna_names)) # opposite: key is name, value is number uvcal_ant_dict = dict(zip(uvcal.antenna_names, uvcal.antenna_numbers)) # iterate over keys for key in uvdata.get_antpairpols(): # get indices for this key blt_inds = uvdata.antpair2ind(key) pol_ind = np.argmin( np.abs( uvdata.polarization_array - polstr2num(key[2], uvdata.x_orientation) ) ) # try to get gains for each antenna ant1_num = key[0] ant2_num = key[1] feed1, feed2 = POL_TO_FEED_DICT[key[2]] try: uvcal_ant1_num = uvcal_ant_dict[uvdata_ant_dict[ant1_num]] except KeyError: uvcal_ant1_num = None try: uvcal_ant2_num = uvcal_ant_dict[uvdata_ant_dict[ant2_num]] except KeyError: uvcal_ant2_num = None uvcal_key1 = (uvcal_ant1_num, feed1) uvcal_key2 = (uvcal_ant2_num, feed2) if (uvcal_ant1_num is None or uvcal_ant2_num is None) or not ( uvcal_use._has_key(*uvcal_key1) and uvcal_use._has_key(*uvcal_key2) ): if uvdata.future_array_shapes: uvdata.flag_array[blt_inds, :, pol_ind] = True else: uvdata.flag_array[blt_inds, 0, :, pol_ind] = True continue if flip_gain_conj: gain = ( np.conj(uvcal_use.get_gains(uvcal_key1)) * uvcal_use.get_gains(uvcal_key2) ).T # tranpose to match uvdata shape else: gain = ( uvcal_use.get_gains(uvcal_key1) * np.conj(uvcal_use.get_gains(uvcal_key2)) ).T # tranpose to match uvdata shape flag = (uvcal_use.get_flags(uvcal_key1) | uvcal_use.get_flags(uvcal_key2)).T # propagate flags if prop_flags: mask = np.isclose(gain, 0.0) | flag gain[mask] = 1.0 if uvdata.future_array_shapes: uvdata.flag_array[blt_inds, :, pol_ind] += mask else: uvdata.flag_array[blt_inds, 0, :, pol_ind] += mask # apply to data mult_gains = uvcal_use.gain_convention == "multiply" if undo: mult_gains = not mult_gains if uvdata.future_array_shapes: if mult_gains: uvdata.data_array[blt_inds, :, pol_ind] *= gain else: uvdata.data_array[blt_inds, :, pol_ind] /= gain else: if mult_gains: uvdata.data_array[blt_inds, 0, :, pol_ind] *= gain else: uvdata.data_array[blt_inds, 0, :, pol_ind] /= gain # update attributes uvdata.history += "\nCalibrated with pyuvdata.utils.uvcalibrate." if undo: uvdata.vis_units = "uncalib" else: if uvcal_use.gain_scale is not None: uvdata.vis_units = uvcal_use.gain_scale if not inplace: return uvdata def apply_uvflag( uvd, uvf, inplace=True, unflag_first=False, flag_missing=True, force_pol=True ): """ Apply flags from a UVFlag to a UVData instantiation. Note that if uvf.Nfreqs or uvf.Ntimes is 1, it will broadcast flags across that axis. Parameters ---------- uvd : UVData object UVData object to add flags to. uvf : UVFlag object A UVFlag object in flag mode. inplace : bool If True overwrite flags in uvd, otherwise return new object unflag_first : bool If True, completely unflag the UVData before applying flags. Else, OR the inherent uvd flags with uvf flags. flag_missing : bool If input uvf is a baseline type and antpairs in uvd do not exist in uvf, flag them in uvd. Otherwise leave them untouched. force_pol : bool If True, broadcast flags to all polarizations if they do not match. Only works if uvf.Npols == 1. Returns ------- UVData If not inplace, returns new UVData object with flags applied """ # assertions if uvf.mode != "flag": raise ValueError("UVFlag must be flag mode") if not inplace: uvd = uvd.copy() # make a deepcopy by default b/c it is generally edited inplace downstream uvf = uvf.copy() # convert to baseline type if uvf.type != "baseline": # edits inplace uvf.to_baseline(uvd, force_pol=force_pol) else: # make sure polarizations match or force_pol uvd_pols, uvf_pols = ( uvd.polarization_array.tolist(), uvf.polarization_array.tolist(), ) if set(uvd_pols) != set(uvf_pols): if uvf.Npols == 1 and force_pol: # if uvf is 1pol we can make them match: also edits inplace uvf.polarization_array = uvd.polarization_array uvf.Npols = len(uvf.polarization_array) uvf_pols = uvf.polarization_array.tolist() else: raise ValueError("Input uvf and uvd polarizations do not match") # make sure polarization ordering is correct: also edits inplace uvf.polarization_array = uvf.polarization_array[ [uvd_pols.index(pol) for pol in uvf_pols] ] # check time and freq shapes match: if Ntimes or Nfreqs is 1, allow # implicit broadcasting if uvf.Ntimes == 1: mismatch_times = False elif uvf.Ntimes == uvd.Ntimes: tdiff = np.unique(uvf.time_array) -
np.unique(uvd.time_array)
numpy.unique
import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import matplotlib import pandas as pd from sklearn.metrics import confusion_matrix from .confusion_matrix import pretty_plot_confusion_matrix def create_ara(c, steps=10): mini = np.min(c) maxi = np.max(c) if (maxi-mini) > 0: ara = np.arange(start=mini, stop=maxi, step=(maxi-mini)/steps) else: ara = np.ones(steps) return ara def plot_constant_prototypes(prototypes, directory='figures\\', title='', xlabel='Features [-]', ylabel='Value [-]', size=[6.2992, 2], fname='constant_prototypes', save=False, single_figures=False): colo = matplotlib.cm.YlOrBr(255) if single_figures: for proto in prototypes: plt.figure(figsize=size, tight_layout=True) plt.plot(proto, c=colo) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if save: plt.savefig(directory + fname + '.png', dpi=500) else: plt.figure(figsize=size, tight_layout=True) marker = ['-', '--', ':', '-.'] for i, proto in enumerate(prototypes): plt.plot(proto, linestyle=marker[i], c=colo) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(title) if save: plt.savefig(directory + fname + '.png', dpi=500) def plot_prototypes_over_env_2d( signal, ara, fname, xlabel='Features [-]', ylabel='$v [m/s]$', zlabel='Value [-]', title='Prototypen nach Geschwindigkeit sortiert', directory='figures\\', size=[6.2992, 2], save=False): """ Plot single Signal/Prototype per class """ plt.figure(tight_layout=True, figsize=size) cm = matplotlib.cm colormaps = [cm.YlOrBr, cm.Reds, cm.Greens] c_offset = 30 index_c = np.arange(start=c_offset, stop=255 + (255-c_offset)//len(signal), step=(255-c_offset)//len(signal)) c = [colormaps[0](i) for i in index_c] for i in range(len(signal)): plt.plot(signal[i], color=c[i+1], # color=c2+i/10*d_c, label='v = ' + str(int(ara[i]))+'km/h') plt.ylabel(ylabel, fontsize=11) plt.xlabel(xlabel, fontsize=11) if save: plt.savefig(directory + fname + '_protos_vis_2d' + '.png', dpi=1200) def plot_multi_prototypes_2d_over_env( signal_list, ara, fname, xlabel='$Features [-]$', ylabel='$Value [-]$', title='Prototypen nach Geschwindigkeit sortiert', directory='figures\\', size=[6.2992, 2], save=False): """ Plot multiple Signals/Prototypes per class """ plt.figure(figsize=size, tight_layout=True) cm = matplotlib.cm colormaps = [cm.Blues, cm.Reds, cm.Greens] c_offset = 50 for j, signal in enumerate(signal_list): # d_c = c[j] - c2[j] index_c = np.arange(start=c_offset, stop=255 + (255-c_offset)//len(signal), step=(255-c_offset)//len(signal)) c = [colormaps[j](i) for i in index_c] for i in range(len(signal)-1): plt.plot(signal[i], color=c[i+1]) i = i + 1 plt.plot(signal[i], color=c[i+1], label='class' + str(j)) plt.legend(bbox_to_anchor=(0., 1.02, 1., .102), loc='lower left', ncol=3, mode="expand", borderaxespad=0.) plt.ylabel(ylabel) plt.xlabel(xlabel) if save: plt.savefig(directory + fname + '_protos_vis_2d_multi' + '.png', dpi=1200) def plot_prototypes_over_env_3d( signal, ara, fname, xlabel='Features [-]', ylabel='$v [m/s]$', zlabel='Value [-]', title='Prototypen nach Geschwindigkeit sortiert', directory='figures\\', size=[20, 10], save=False): """ Plot multiple Signals/Prototypes per class in 3d """ plt.figure(figsize=size, constrained_layout=True) ax = plt.axes(projection='3d') length = signal.shape[1] x, y = np.meshgrid(
np.arange(length)
numpy.arange
import cv2 import numpy as np def canny(image): gray = cv2.cvtColor(image,cv2.COLOR_RGB2GRAY) blur = cv2.GaussianBlur(gray,(5,5),0) #canny = cv2.Canny(blur,low_threshold,high_threshold) canny = cv2.Canny(blur,50,150) return canny def region_of_interest(image): height = image.shape[0] polygons = np.array([ [(200,height),(1100,height),(550,250)] ]) mask = np.zeros_like(image) cv2.fillPoly(mask,polygons,255) masked_image = cv2.bitwise_and(image,mask) return masked_image def average_slope_intercept(image,lines): left_fit = [] right_fit = [] for line in lines: print(line) x1,y1,x2,y2 = line.reshape(4) parameters =
np.polyfit((x1,x2),(y1,y2),1)
numpy.polyfit
import numpy as np import h5py as h import numpy as np import matplotlib as mpl mpl.use('Qt5Agg') """ USEFUL METHODS. """ def toPoint(point): point = np.array(point) point[1] *= -1 return point-250 def toIndex(point): point = np.array(point) point[1] *= -1 return point+250 """ START OF MASK STUFF. """ import imageio as io arr = io.read('../scratch/testMask.png').get_data(0) arr = np.int64(np.all(arr[:, :, :3] == 0, axis=2)) from matplotlib import pyplot as plt from matplotlib.collections import PatchCollection from matplotlib.patches import Circle,Rectangle # N pixels per mm. pixelSize = 10 # Beam height in mm converted to pixels. beamHeight = 0.5 # Look at beam position (center position in mm). _lookAt = 10 _beamB = _lookAt - beamHeight/2 _beamT = _lookAt + beamHeight/2 # Initialise mask start and stop positions. # Start and stop are index positions of the array. start = [0,0] stop = [0,0] # Find mask horizontal start and stop positions. for row in range(arr.shape[0]): # Find the first row with a 0 in it. if np.sum(arr[row,:]) != arr.shape[0]: # Find the middle position of all the values that are 0. middle = np.argwhere(arr[row,:] == 0).mean() # Store the start position. start = [row,middle] break for row in reversed(range(arr.shape[0])): if np.sum(arr[row,:]) != arr.shape[0]: middle = np.argwhere(arr[row,:] == 0).mean() stop = [row,middle] break # Set diameter for the mask (in mm). _radius = 25 # Create datapoints for two half circles in degrees. leftCircleAngle = np.linspace(90, 270, 2000) rightCircleAngle = np.linspace(90, -90, 2000) # Find the tangent values of the points in each half circle. leftCircleTangent = np.tan(np.deg2rad(leftCircleAngle)) rightCircleTangent = np.tan(np.deg2rad(rightCircleAngle)) # Get subArray of mask. # subArray = arr[b:t,:] # Investigate beam area: _bt = int( np.absolute(25-_beamT)*10 ) _bb = int( np.absolute(25-_beamB)*10 ) subArray = arr[_bt:_bb,:] # Get the top and bottom line of the sub array. line1 = subArray[0,:] line2 = subArray[-1,:] # Find the left and right most points for each line. line1 = np.argwhere(line1 == 0) line2 = np.argwhere(line2 == 0) tl = line1.min() tr = line1.max() bl = line2.min() br = line2.max() # Calculate the tangent for each side. left = np.arctan(((tl-bl)/pixelSize)/beamHeight) right = np.arctan(((tr-br)/pixelSize)/beamHeight) # Find the tangent condition that matches in the circle. leftAngle = np.deg2rad(leftCircleAngle[ np.argmin(np.absolute(leftCircleTangent-left)) ]) rightAngle = np.deg2rad(rightCircleAngle[ np.argmin(np.absolute(rightCircleTangent-right)) ]) # Find the position of the mask that matches the tangent condition. circleLeftPosition = np.array([_radius*np.cos(leftAngle),-_radius*np.sin(leftAngle)]) circleRightPosition = np.array([_radius*np.cos(rightAngle),-_radius*np.sin(rightAngle)]) # Get the position of the matched pixel. x1 = (0 + np.min(np.array([tl,bl])) +
np.absolute(tl-bl)
numpy.absolute
# Copyright (C) 2021 Intel Corporation # SPDX-License-Identifier: Apache-2.0 import numpy as np import pytest import openvino.runtime as ov import openvino.runtime.opset8 as ops from openvino.runtime import Model, Output, Type from openvino.runtime.utils.decorators import custom_preprocess_function from openvino.runtime import Core from tests.runtime import get_runtime from openvino.preprocess import PrePostProcessor, ColorFormat, ResizeAlgorithm def test_ngraph_preprocess_mean(): shape = [2, 2] parameter_a = ops.parameter(shape, dtype=np.float32, name="A") model = parameter_a function = Model(model, [parameter_a], "TestFunction") p = PrePostProcessor(function) inp = p.input() prep = inp.preprocess() prep.mean(1.0) function = p.build() input_data = np.array([[1, 2], [3, 4]]).astype(np.float32) expected_output = np.array([[0, 1], [2, 3]]).astype(np.float32) runtime = get_runtime() computation = runtime.computation(function) output = computation(input_data) assert np.equal(output, expected_output).all() def test_ngraph_preprocess_mean_vector(): shape = [2, 2] parameter_a = ops.parameter(shape, dtype=np.float32, name="A") model = parameter_a function = Model(model, [parameter_a], "TestFunction") layout = ov.Layout("NCHW") p = PrePostProcessor(function) p.input().tensor().set_layout(layout) p.input().preprocess().mean([1., 2.]) function = p.build() input_data = np.array([[1, 2], [3, 4]]).astype(np.float32) expected_output = np.array([[0, 0], [2, 2]]).astype(np.float32) runtime = get_runtime() computation = runtime.computation(function) output = computation(input_data) assert np.equal(output, expected_output).all() def test_ngraph_preprocess_scale_vector(): shape = [2, 2] parameter_a = ops.parameter(shape, dtype=np.float32, name="A") model = parameter_a function = Model(model, [parameter_a], "TestFunction") layout = ov.Layout("NCHW") p = PrePostProcessor(function) inp = p.input() inp.tensor().set_layout(layout) inp.preprocess().scale([0.5, 2.0]) function = p.build() input_data = np.array([[1, 2], [3, 4]]).astype(np.float32) expected_output = np.array([[2, 1], [6, 2]]).astype(np.float32) runtime = get_runtime() computation = runtime.computation(function) output = computation(input_data) assert
np.equal(output, expected_output)
numpy.equal
import json import argparse import copy import datetime import logging import os import numpy as np import torch import wandb from torch.utils.data import ConcatDataset, DataLoader from algs.fedavg import train_nets from algs.fednova import local_train_net_fednova from algs.fedprox import local_train_net_fedprox from algs.scaffold import local_train_net_scaffold from data.dataloader import get_loaderargs from data.partition import partition_data from metrics.basic import compute_accuracy from models.nets import init_nets from utils import mkdirs, init_logger, check_disk_space, save_model DATASETS = ['mnist', 'fmnist', 'cifar10', 'svhn', 'celeba', 'femnist', 'generated', 'rcv1', 'SUSY', 'covtype', 'a9a'] def get_args(): parser = argparse.ArgumentParser() # Experiment setting parser.add_argument('--name', type=str, required=True, help='Name of each experiment') # Model & Dataset parser.add_argument('--arch', type=str, default='MLP', help='Neural network architecture used in training') parser.add_argument('--modeldir', type=str, required=False, default='./ckpt/', help='Model directory path') parser.add_argument('--dataset', type=str, choices=DATASETS, help='dataset used for training') parser.add_argument('--datadir', type=str, required=False, default='./data/', help='Data directory') parser.add_argument('--save_round', type=int, default=10, help='Save model once in n comm rounds') parser.add_argument('--save_local', action='store_true', help='Save local model for analysis') parser.add_argument('--save_epoch', type=int, default=5, help='Save local model once in n epochs') # Train, Hyperparams, Optimizer parser.add_argument('--batch-size', type=int, default=64, help='input batch size for training (default: 64)') parser.add_argument('--lr', type=float, default=0.01, help='learning rate (default: 0.01)') parser.add_argument('--epochs', type=int, default=5, help='number of local epochs') parser.add_argument('--dropout', type=float, required=False, default=0.0, help='Dropout probability. Default=0.0') parser.add_argument('--loss', type=str, choices=['ce', 'srip', 'ocnn'], default='ce', help='Loss function') parser.add_argument('--optimizer', type=str, choices=['adam', 'amsgrad', 'sgd'], default='sgd', help='Optimizer') parser.add_argument('--momentum', type=float, default=0, help='Parameter controlling the momentum SGD') parser.add_argument('--nesterov', type=bool, default=True, help='nesterov momentum') parser.add_argument('--mu', type=float, default=1, help='the mu parameter for fedprox') parser.add_argument('--reg', type=float, default=1e-5, help='L2 losses strength') parser.add_argument('--odecay', type=float, default=1e-2, help='Orth loss strength') # Averaging algorithms parser.add_argument('--alg', type=str, choices=['fedavg', 'fedprox', 'scaffold', 'fednova'], help='communication strategy') parser.add_argument('--comm_round', type=int, default=50, help='number of maximum communication roun') parser.add_argument('--is_same_initial', type=int, default=1, help='All models with same parameters in fedavg') # Data partitioning parser.add_argument('--n_clients', type=int, default=2, help='number of workers in a distributed cluster') parser.add_argument('--partition', type=str, choices=['homo', 'noniid-labeldir', 'iid-diff-quantity', 'mixed', 'real', 'femnist'] \ + ['noniid-#label' + str(i) for i in range(10)], default='homo', help='the data partitioning strategy') parser.add_argument('--beta', type=float, default=0.5, help='The parameter for the dirichlet distribution for data partitioning') parser.add_argument('--noise', type=float, default=0, help='how much noise we add to some party') parser.add_argument('--noise_type', type=str, choices=['space', 'level'], default='level', help='Different level of noise or different space of noise') parser.add_argument('--sample', type=float, default=1, help='Sample ratio for each communication round') # Misc. parser.add_argument('--num_workers', default=8, type=int, help='core usage (default: 1)') parser.add_argument('--ngpu', default=1, type=int, help='total number of gpus (default: 1)') parser.add_argument('--device', type=str, default='cuda:0', help='The device to run the program') parser.add_argument('--amp', action='store_true', help='Turn Automatic Mixed Precision on') parser.add_argument('--init_seed', type=int, default=0, help='Random seed') parser.add_argument('--logdir', type=str, required=False, default='./logs/', help='Log directory path') args = parser.parse_args() return args if __name__ == '__main__': args = get_args() # Logging mkdirs(args.logdir) mkdirs(args.modeldir) args_path = f'{args.name}_arguments-{datetime.datetime.now().strftime("%Y-%m-%d-%H:%M-%S")}.json' with open(os.path.join(args.logdir, args_path), 'w') as f: json.dump(str(args), f) init_logger(args.name, args.logdir) logger = logging.getLogger() # Wandb wandb.init( name=args.name, config=args.__dict__, project='federated-learning', tags=['train', args.arch, args.dataset, args.loss], ) # Device device = torch.device(args.device) logger.info(f'Device: {device}') # Set random seeds logger.info(f'Seed: {args.init_seed}') seed = args.init_seed np.random.seed(seed) torch.manual_seed(seed) # Data partitioning logger.info('Partitioning data...') X_train, y_train, X_test, y_test, net_dataidx_map, traindata_cls_counts = partition_data( args.dataset, args.datadir, args.logdir, args.partition, args.n_clients, beta=args.beta) # Prepare dataloader logger.info('Creating dataloaders...') if args.noise_type == 'space': noise_level = lambda net_idx: 0 if net_idx == args.n_clients - 1 else args.noise dl_args = lambda net_idx: {'net_id': net_idx, 'total': args.n_clients - 1} else: noise_level = lambda net_idx: args.noise / (args.n_clients - 1) * net_idx dl_args = lambda net_idx: {} trainargs, _, trainsets, testsets = [ {idx: obj for idx, obj in enumerate(tup)} for tup in list(zip( *[get_loaderargs( args.dataset, args.datadir, args.batch_size, 32, net_dataidx_map[i], noise_level(i), **dl_args(i), num_workers=(args.num_workers, args.num_workers) ) for i in range(args.n_clients)] )) ] # if noise if args.noise > 0: trainset_global = ConcatDataset(trainsets) testset_global = ConcatDataset(testsets) trainargs_global = DataLoader( dataset=trainset_global, batch_size=args.batch_size, shuffle=True, pin_memory=True, num_workers=args.num_workers, persistent_workers=True ) testargs_global = DataLoader( dataset=testset_global, batch_size=args.batch_size, shuffle=False, pin_memory=True, num_workers=args.num_workers, persistent_workers=True ) else: trainargs_global, testargs_global, trainset_global, testset_global = get_loaderargs( args.dataset, args.datadir, args.batch_size, 32, num_workers=(args.num_workers, args.num_workers) ) logger.info(f'Global train size: {len(trainset_global)}') logger.info(f'Global test size: {len(testset_global)}') if args.alg == 'fedavg': logger.info('Initializing nets...') nets, local_model_meta_data, layer_type = init_nets(args.dropout, args.n_clients, args) logger.info('Complete.') global_models, global_model_meta_data, global_layer_type = init_nets(0, 1, args) global_model = global_models[0] # TODO # commented out for consecutive run # check_disk_space( # global_model, args.n_clients, args.comm_round, args.save_round, # args.save_local, args.epochs, args.save_epoch # ) global_para = global_model.state_dict() if args.is_same_initial: for net_id, net in nets.items(): net.load_state_dict(global_para) for round_ in range(1, args.comm_round + 1): logger.info('=' * 58) logger.info('Communication round: ' + str(round_)) arr = np.arange(args.n_clients) np.random.shuffle(arr) selected = arr[:int(args.n_clients * args.sample)] global_para = global_model.state_dict() if round_ == 1: if args.is_same_initial: for idx in selected: nets[idx].load_state_dict(global_para) else: for idx in selected: nets[idx].load_state_dict(global_para) train_nets(nets, selected, args, net_dataidx_map, trainargs, round_, testargs=testargs_global, device=device) # update global model total_data_points = sum([len(net_dataidx_map[r]) for r in selected]) fed_avg_freqs = [len(net_dataidx_map[r]) / total_data_points for r in selected] for idx in range(len(selected)): net_para = nets[selected[idx]].state_dict() if idx == 0: for key in net_para: global_para[key] = net_para[key] * fed_avg_freqs[idx] else: for key in net_para: global_para[key] += net_para[key] * fed_avg_freqs[idx] global_model.load_state_dict(global_para) global_model.to(device) trainloader_global = DataLoader(**trainargs_global) train_acc = compute_accuracy(global_model, trainloader_global, device=device) del trainloader_global testloader_global = DataLoader(**testargs_global) test_acc, conf_matrix = compute_accuracy( global_model, testloader_global, get_confusion_matrix=True, device=device ) del testloader_global global_model.cpu() logger.info(f'>> Global Train accuracy: {train_acc * 100:5.2f} %') logger.info(f'>> Global Test accuracy: {test_acc * 100:5.2f} %') wandb.log( data={ f'Global': { 'train': {'Accuracy': train_acc}, 'test': {'Accuracy': test_acc}, }, 'round': round_ }, ) # Save global model if (round_ % args.save_round == 0) or round_ == args.comm_round: save_model(global_model, args.name, args.modeldir, f'comm{round_:03}-GLOBAL') logger.info('=' * 58) elif args.alg == 'fedprox': logger.info('Initializing nets') nets, local_model_meta_data, layer_type = init_nets(args.dropout, args.n_clients, args) global_models, global_model_meta_data, global_layer_type = init_nets(0, 1, args) global_model = global_models[0] global_para = global_model.state_dict() if args.is_same_initial: for net_id, net in nets.items(): net.load_state_dict(global_para) for round_ in range(args.comm_round): logger.info('Communication round: ' + str(round_)) arr = np.arange(args.n_clients) np.random.shuffle(arr) selected = arr[:int(args.n_clients * args.sample)] global_para = global_model.state_dict() if round_ == 0: if args.is_same_initial: for idx in selected: nets[idx].load_state_dict(global_para) else: for idx in selected: nets[idx].load_state_dict(global_para) local_train_net_fedprox(nets, selected, global_model, args, net_dataidx_map, testargs=testargs_global, device=device) global_model.to('cpu') # update global model total_data_points = sum([len(net_dataidx_map[r]) for r in selected]) fed_avg_freqs = [len(net_dataidx_map[r]) / total_data_points for r in selected] for idx in range(len(selected)): net_para = nets[selected[idx]].state_dict() if idx == 0: for key in net_para: global_para[key] = net_para[key] * fed_avg_freqs[idx] else: for key in net_para: global_para[key] += net_para[key] * fed_avg_freqs[idx] global_model.load_state_dict(global_para) trainloader_global = DataLoader(**trainargs_global) logger.info('global n_training: %d' % len(trainloader_global)) train_acc = compute_accuracy(global_model, trainloader_global, device=device) del trainloader_global testloader_global = DataLoader(**testargs_global) logger.info('global n_test: %d' % len(testloader_global)) test_acc, conf_matrix = compute_accuracy( global_model, testloader_global, get_confusion_matrix=True, device=device ) del testloader_global logger.info('>> Global Model Train accuracy: %f' % train_acc) logger.info('>> Global Model Test accuracy: %f' % test_acc) elif args.alg == 'scaffold': logger.info('Initializing nets') nets, local_model_meta_data, layer_type = init_nets(args.dropout, args.n_clients, args) global_models, global_model_meta_data, global_layer_type = init_nets(0, 1, args) global_model = global_models[0] c_nets, _, _ = init_nets(args.dropout, args.n_clients, args) c_globals, _, _ = init_nets(0, 1, args) c_global = c_globals[0] c_global_para = c_global.state_dict() for net_id, net in c_nets.items(): net.load_state_dict(c_global_para) global_para = global_model.state_dict() if args.is_same_initial: for net_id, net in nets.items(): net.load_state_dict(global_para) for round_ in range(args.comm_round): logger.info('Communication round: ' + str(round_)) arr =
np.arange(args.n_clients)
numpy.arange
import unittest import numpy as np import mock from activepipe import ActivePipeline from corpus import Corpus from featureforge.vectorizer import Vectorizer from scipy.sparse import csr_matrix from sklearn.preprocessing import normalize testing_config = { 'features': Vectorizer([lambda x : x]), 'em_adding_instances': 3, 'u_corpus_f': 'test_files/unlabeled_corpus.pickle', 'test_corpus_f': 'test_files/test_corpus.pickle', 'training_corpus_f': 'test_files/training_corpus.pickle', 'feature_corpus_f': 'test_files/feature_corpus.pickle', 'dummy_config': None, 'number_of_features': 2, } X = [ [0.0, 1.0, 0.0], [1.0, 1.0, 1.0], [0.0, 1.0, 1.0] ] Y = [[1], [0, 1] , [0, 0]] U_vectors = [ [1.0, 1.0, 1.0], [1.0, 1.0, 2.0], [0.0, 0.0, 1.0], [1.0, 0.0, 0.0], [2.0, 2.0, 2.0], ] T_vectors = [ [1.0, 3.0, 5.0], [3.0, 1.0, 0.0] ] T_targets = [[1], [2]] feat_corpus = [[-1, -1, 0], [1, -1, 0]] class TestActivePipe(unittest.TestCase): def setUp(self): self.pipe = ActivePipeline(**testing_config) self.instance_class_prob = np.array( [[0.5, 0.5], [0.25, 0.75], [0.7, 0.3], [0.1, 0.9], [0.8, 0.2]] ) self.instance_prob = np.array([0.02, 0.09, 0.01, 0.12, 0.08]) def test_em_feat_class_no_labeled(self): """Tests if the feature_log_prob matrix is calculated correctly. P(fj|ck) = sum_i(P(xi) * fj(xi) * P(ck|xi)) P(f0|c0) = 0.5*0.02*1 + 0.25*0.09*1 + 0.7*0*0.01 + 0.1*1*0.12 + 0.8*2*0.08 = 0.1725 P(f0|c1) = 0.5*0.02*1 + 0.75*0.09*1 + 0.3*0*0.01 + 0.9*1*0.12 + 0.2*2*0.08 = 0.2175 P(f1|c0) = 0.5*0.02*1 + 0.25*0.09*1 + 0.7*0*0.01 + 0.1*0*0.12 + 0.8*2*0.08 = 0.1605 P(f1|c1) = 0.5*0.02*1 + 0.75*0.09*1 + 0.3*0*0.01 + 0.9*0*0.12 + 0.2*2*0.08 = 0.1095 P(f2|c0) = 0.5*0.02*1 + 0.25*0.09*2 + 0.7*1*0.01 + 0.1*0*0.12 + 0.8*2*0.08 = 0.19 P(f2|c1) = 0.5*0.02*1 + 0.75*0.09*2 + 0.3*1*0.01 + 0.9*0*0.12 + 0.2*2*0.08 = 0.18 """ expected = np.array([[0.32982792, 0.30688337, 0.36328872], [0.42899408, 0.21597633, 0.35502959]]) with mock.patch('featmultinomial.FeatMultinomialNB.predict_proba', return_value=self.instance_class_prob) as mock_pred: with mock.patch('featmultinomial.FeatMultinomialNB.instance_proba', return_value=self.instance_prob) as mock_inst_p: self.pipe.training_corpus = Corpus() self.pipe._expectation_maximization() np.testing.assert_array_almost_equal( self.pipe.classifier.feature_log_prob_, np.log(expected) ) def test_em_class_no_labeled(self): """Tests if the class_log_prior_ matrix is calculated correctly. P(ck) = sum_i(P(xi) * P(ck|xi)) P(c0) = 0.5*0.02 + 0.25*0.09 + 0.7*0.01 + 0.1*0.12 + 0.8*0.08 = 0.1155 P(c1) = 0.5*0.02 + 0.75*0.09 + 0.3*0.01 + 0.9*0.12 + 0.2*0.08 = 0.2045 """ expected = np.array([0.3609375, 0.6390625]) with mock.patch('featmultinomial.FeatMultinomialNB.predict_proba', return_value=self.instance_class_prob) as mock_pred: with mock.patch('featmultinomial.FeatMultinomialNB.instance_proba', return_value=self.instance_prob) as mock_inst_p: self.pipe.training_corpus = Corpus() self.pipe._expectation_maximization() np.testing.assert_array_almost_equal( self.pipe.classifier.class_log_prior_, np.log(expected) ) def test_em_feat_class(self): """ P(fj|ck) = Pu(fj|ck) * 0.1 + 0.9* sum_i(P(xl_i) * fj(xl_i) * {0,1}) P(f0|c0) = 0.1 * 0.1725 + 0.9 * (0.02*0*0 + 0.09*1*1 + 0.01*0*1) = 0.09825 P(f0|c1) = 0.1 * 0.2175 + 0.9 * (0.02*0*1 + 0.09*1*0 + 0.01*0*0) = 0.02175 P(f1|c0) = 0.1 * 0.1605 + 0.9 * (0.02*1*0 + 0.09*1*1 + 0.01*1*1) = 0.10605 P(f1|c1) = 0.1 * 0.1095 + 0.9 * (0.02*1*1 + 0.09*1*0 + 0.01*1*0) = 0.02895 P(f2|c0) = 0.1 * 0.19 + 0.9 * (0.02*0*0 + 0.09*1*1 + 0.01*1*1) = 0.109 P(f2|c1) = 0.1 * 0.18 + 0.9 * (0.02*0*1 + 0.09*1*0 + 0.01*1*0) = 0.018 """ expected = np.array([[0.31359719, 0.3384934, 0.34790935], [0.31659388, 0.421397379, 0.262008733]]) instance_prob_fun = lambda s, x: self.instance_prob[:x.shape[0]] with mock.patch('featmultinomial.FeatMultinomialNB.predict_proba', return_value=self.instance_class_prob) as mock_pred: with mock.patch('featmultinomial.FeatMultinomialNB.instance_proba', new=instance_prob_fun) as mock_inst_p: self.pipe._expectation_maximization() np.testing.assert_array_almost_equal( self.pipe.classifier.feature_log_prob_, np.log(expected) ) def test_em_class(self): """Tests if the class_log_prior_ matrix is calculated correctly. P(ck) = sum_i(P(xui) * P(ck|xui)) * 0.1 + sum_i(P(xli) * P(ck|xli)) * 0.9 P(c0) = 0.1155 * 0.1 + 0.9 * (0*0.02 + 1*0.09 + 1*0.01) = 0.10155 P(c1) = 0.2045 * 0.1 + 0.9 * (1*0.02 + 0*0.09 + 0*0.01) = 0.03845 """ expected = np.array([0.725357142, 0.27464285714]) instance_prob_fun = lambda s, x: self.instance_prob[:x.shape[0]] with mock.patch('featmultinomial.FeatMultinomialNB.predict_proba', return_value=self.instance_class_prob) as mock_pred: with mock.patch('featmultinomial.FeatMultinomialNB.instance_proba', new=instance_prob_fun) as mock_inst_p: self.pipe._expectation_maximization() np.testing.assert_array_almost_equal( self.pipe.classifier.class_log_prior_,
np.log(expected)
numpy.log
""" Copyright (c) 2014, Samsung Electronics Co.,Ltd. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. The views and conclusions contained in the software and documentation are those of the authors and should not be interpreted as representing official policies, either expressed or implied, of Samsung Electronics Co.,Ltd.. """ """ cuda4py - CUDA cffi bindings and helper classes. URL: https://github.com/ajkxyz/cuda4py Original author: <NAME> <<EMAIL>> """ """ Tests some of the api in cuda4py.blas._cublas module. """ import cuda4py as cu import cuda4py.blas as blas import gc import logging import numpy import os import unittest class Test(unittest.TestCase): def setUp(self): logging.basicConfig(level=logging.DEBUG) self.old_env = os.environ.get("CUDA_DEVICE") if self.old_env is None: os.environ["CUDA_DEVICE"] = "0" self.ctx = cu.Devices().create_some_context() self.blas = blas.CUBLAS(self.ctx) self.path = os.path.dirname(__file__) if not len(self.path): self.path = "." def tearDown(self): if self.old_env is None: del os.environ["CUDA_DEVICE"] else: os.environ["CUDA_DEVICE"] = self.old_env del self.old_env del self.blas del self.ctx gc.collect() def test_constants(self): self.assertEqual(blas.CUBLAS_OP_N, 0) self.assertEqual(blas.CUBLAS_OP_T, 1) self.assertEqual(blas.CUBLAS_OP_C, 2) self.assertEqual(blas.CUBLAS_DATA_FLOAT, 0) self.assertEqual(blas.CUBLAS_DATA_DOUBLE, 1) self.assertEqual(blas.CUBLAS_DATA_HALF, 2) self.assertEqual(blas.CUBLAS_DATA_INT8, 3) self.assertEqual(blas.CUBLAS_POINTER_MODE_HOST, 0) self.assertEqual(blas.CUBLAS_POINTER_MODE_DEVICE, 1) self.assertEqual(blas.CUBLAS_STATUS_SUCCESS, 0) self.assertEqual(blas.CUBLAS_STATUS_NOT_INITIALIZED, 1) self.assertEqual(blas.CUBLAS_STATUS_ALLOC_FAILED, 3) self.assertEqual(blas.CUBLAS_STATUS_INVALID_VALUE, 7) self.assertEqual(blas.CUBLAS_STATUS_ARCH_MISMATCH, 8) self.assertEqual(blas.CUBLAS_STATUS_MAPPING_ERROR, 11) self.assertEqual(blas.CUBLAS_STATUS_EXECUTION_FAILED, 13) self.assertEqual(blas.CUBLAS_STATUS_INTERNAL_ERROR, 14) self.assertEqual(blas.CUBLAS_STATUS_NOT_SUPPORTED, 15) self.assertEqual(blas.CUBLAS_STATUS_LICENSE_ERROR, 16) def test_errors(self): idx = cu.CU.ERRORS[blas.CUBLAS_STATUS_NOT_INITIALIZED].find(" | ") self.assertGreater(idx, 0) def _test_gemm(self, gemm, dtype): for mode in (blas.CUBLAS_POINTER_MODE_HOST, blas.CUBLAS_POINTER_MODE_DEVICE): self._test_gemm_with_mode(gemm, dtype, mode) def _test_gemm_with_mode(self, gemm, dtype, mode): self.blas.set_pointer_mode(mode) a = numpy.zeros([127, 353], dtype=dtype) b = numpy.zeros([135, a.shape[1]], dtype=dtype) c = numpy.zeros([a.shape[0], b.shape[0]], dtype=dtype) try: numpy.random.seed(123) except AttributeError: # PyPy workaround pass a[:] = numpy.random.rand(a.size).astype(dtype).reshape(a.shape) - 0.5 b[:] = numpy.random.rand(b.size).astype(dtype).reshape(b.shape) - 0.5 gold_c = numpy.dot(a.astype(numpy.float64), b.transpose().astype(numpy.float64)) a_buf = cu.MemAlloc(self.ctx, a.nbytes) b_buf = cu.MemAlloc(self.ctx, b.nbytes) c_buf = cu.MemAlloc(self.ctx, c.nbytes * 2) alpha = numpy.ones( 1, dtype={numpy.float16: numpy.float32}.get(dtype, dtype)) beta = numpy.zeros( 1, dtype={numpy.float16: numpy.float32}.get(dtype, dtype)) if mode == blas.CUBLAS_POINTER_MODE_DEVICE: alpha = cu.MemAlloc(self.ctx, alpha) beta = cu.MemAlloc(self.ctx, beta) a_buf.to_device_async(a) b_buf.to_device_async(b) c_buf.to_device_async(c) c_buf.to_device_async(c, c.nbytes) gemm(blas.CUBLAS_OP_T, blas.CUBLAS_OP_N, b.shape[0], a.shape[0], a.shape[1], alpha, b_buf, a_buf, beta, c_buf) c_buf.to_host(c) max_diff = numpy.fabs(gold_c - c.astype(numpy.float64)).max() logging.debug("Maximum difference is %.6f", max_diff) self.assertLess( max_diff, {numpy.float32: 1.0e-5, numpy.float64: 1.0e-13, numpy.float16: 3.0e-3}[dtype]) c_buf.to_host(c, c.nbytes) max_diff = numpy.fabs(c).max() # To avoid destructor call before gemm completion del beta del alpha self.assertEqual(max_diff, 0, "Written some values outside of the target array") def test_sgemm(self): logging.debug("ENTER: test_sgemm") with self.ctx: self._test_gemm(self.blas.sgemm, numpy.float32) logging.debug("EXIT: test_sgemm") def test_dgemm(self): logging.debug("ENTER: test_dgemm") with self.ctx: self._test_gemm(self.blas.dgemm, numpy.float64) logging.debug("EXIT: test_dgemm") def test_sgemm_ex(self): logging.debug("ENTER: test_sgemm_ex") with self.ctx: self._test_gemm(self.blas.sgemm_ex, numpy.float16) logging.debug("EXIT: test_sgemm_ex") def test_kernel(self): logging.debug("ENTER: test_kernel") cap = self.ctx.device.compute_capability if cap < (3, 5): logging.debug("Requires compute capability >= (3, 5), got %s", cap) logging.debug("EXIT: test_kernel") return with self.ctx: module = cu.Module( self.ctx, source_file=("%s/cublas.cu" % self.path), nvcc_options2=cu.Module.OPTIONS_CUBLAS, compute_capability=(cap[0], 0) if cap >= (6, 0) else cap) # minor version of compute has to be set to 0 # to work on Pascal with CUDA 8.0 logging.debug("Compiled") f = module.create_function("test") logging.debug("Got function") n = 256 a = numpy.random.rand(n, n).astype(numpy.float32) b = numpy.random.rand(n, n).astype(numpy.float32) c =
numpy.zeros_like(a)
numpy.zeros_like
# -------------------------------------------------------- # Multi-Epitope-Ligand Cartography (MELC) phase-contrast image based segmentation pipeline # # # Written by <NAME> # -------------------------------------------------------- import json import tifffile import cv2 import pandas as pd import numpy as np from os.path import join # MELC packages from MELC.utils.ptr import Pointer class JSONDataset: """ Description of really cool class ... Attributes ---------- attr1 : str this is very cool attribute Methods ------- __init__(data_path) very cool init function """ def __init__(self, image_path=None): self.image_path = image_path self.COCO_structure = { 'info': [], 'licences': [], 'images': [], 'annotations': [], 'categories': [] } self.COCO_info = { 'info': [], 'licences': [], 'images': [], 'annotations': [], 'categories': [] } self.COCO_categories = { 'subcategory': '', 'id': 0, 'name': '' } self.COCO_licences = list() self.COCO_images = list() self.number_of_annotations = 0 self.ImagesObj = list() @classmethod def fromdata(cls, image_path): return cls(image_path) @classmethod def fromjson(cls, json_dict, image_path): clsObj = cls(image_path) annotations_pd = pd.DataFrame(json_dict['annotations']) for image in json_dict['images']: temp = JSONImage.fromjson(image, annotations_pd.loc[annotations_pd['image_id'] == image['id']].sort_values('id')) clsObj.ImagesObj.append(temp) return clsObj def add_image(self, image, annotations, file_name): ImageInputDict = { 'image': image, 'annotations': annotations, 'filename': file_name + '.tif', 'img_id': len(self.ImagesObj) } image = image.round().astype(np.uint16) #print(join(self.image_path, ImageInputDict['filename'])) #print(image.dtype) #print(image.shape) #print(image) tifffile.imsave(join(self.image_path, ImageInputDict['filename']), image) JImg = JSONImage.fromdata(ImageInputDict) JImg.set_annotation_base_id_ptr(self.number_of_annotations) self.number_of_annotations += JImg.COCO_annotations.__len__() self.ImagesObj.append(JImg) def write_json(self, path_json_file): self.COCO_structure['info'] = self.COCO_info self.COCO_structure['licences'] = self.COCO_licences self.COCO_structure['categories'] = [{"subcategory": "", "id": 1, "name": "phaseCell", "supercategory": "cell"}] for ImgObj in self.ImagesObj: img_json, annot_json = ImgObj.get_JSON() self.COCO_structure['images'].append(img_json) self.COCO_structure['annotations'] = self.COCO_structure['annotations'] + annot_json with open(path_json_file, 'w') as f: json.dump(self.COCO_structure, f) return self.COCO_structure # with open(json_file, 'w') as f: # json.dump(json_file, f) class JSONImage: """ Description of really cool class ... Attributes ---------- attr1 : str this is very cool attribute Methods ------- __init__(data_path) very cool init function """ def __init__(self): #self._init_from_data(Image) pass @classmethod def fromjson(cls, Image_json = { 'licenses': '', 'file_name': None, 'coco_url': '', 'height': None, 'width': None, 'date_captured': '', 'flickr_url': '', 'id': None }, annotations_pdDataFrame = pd.DataFrame ): clsObj = cls() clsObj.license = Image_json['license'] clsObj.file_name = Image_json['file_name'] clsObj.coco_url = Image_json['coco_url'] clsObj.height = Image_json['height'] clsObj.width = Image_json['width'] clsObj.date_captured = Image_json['date_captured'] clsObj.flick_url = Image_json['flickr_url'] clsObj.PTR_id = Pointer(Image_json['id']) clsObj.PTR_annotation_base_id = Pointer(annotations_pdDataFrame['id'].min()) clsObj.annotation_relative_id = annotations_pdDataFrame['id'].__len__() clsObj.COCO_annotations = list() for annotation in annotations_pdDataFrame.iterrows(): input_annotation_dict = { 'annotation_pdDataFrame': annotation[1], 'PTR_annotation_base_id': clsObj.PTR_annotation_base_id, 'annotation_relative_id': annotation[1]['id'] - clsObj.PTR_annotation_base_id.get(), 'PTR_image_id': clsObj.PTR_id, } clsObj.COCO_annotations.append(JSONAnnotation.fromjson(input_annotation_dict)) return clsObj @classmethod def fromdata(cls, Image={ 'image':
np.array([])
numpy.array
from __future__ import print_function import math import time import numpy as np import tensorflow as tf def create_padding_dimension(n): # Halve the padded dimension and round up the first result, and round down the second to create a correct # padding dimension. return [int(math.ceil(n / 2.0)), int(math.floor(n / 2.0))] def zero_pad(input, shape): #print "input shape %s" % np.array(input.get_shape().as_list()) #print "target shape %s" % np.array(shape) input_shape = input.get_shape().as_list() shape_disparity = np.array(shape) -
np.array(input_shape)
numpy.array