Datasets:

Modalities:
Text
Formats:
parquet
Languages:
English
Libraries:
Datasets
pandas
License:
parquet-converter commited on
Commit
49d1ede
·
1 Parent(s): 5a1e54e

Update parquet files

Browse files
.gitattributes DELETED
@@ -1,38 +0,0 @@
1
- *.7z filter=lfs diff=lfs merge=lfs -text
2
- *.arrow filter=lfs diff=lfs merge=lfs -text
3
- *.bin filter=lfs diff=lfs merge=lfs -text
4
- *.bz2 filter=lfs diff=lfs merge=lfs -text
5
- *.ftz filter=lfs diff=lfs merge=lfs -text
6
- *.gz filter=lfs diff=lfs merge=lfs -text
7
- *.h5 filter=lfs diff=lfs merge=lfs -text
8
- *.joblib filter=lfs diff=lfs merge=lfs -text
9
- *.lfs.* filter=lfs diff=lfs merge=lfs -text
10
- *.model filter=lfs diff=lfs merge=lfs -text
11
- *.msgpack filter=lfs diff=lfs merge=lfs -text
12
- *.onnx filter=lfs diff=lfs merge=lfs -text
13
- *.ot filter=lfs diff=lfs merge=lfs -text
14
- *.parquet filter=lfs diff=lfs merge=lfs -text
15
- *.pb filter=lfs diff=lfs merge=lfs -text
16
- *.pt filter=lfs diff=lfs merge=lfs -text
17
- *.pth filter=lfs diff=lfs merge=lfs -text
18
- *.rar filter=lfs diff=lfs merge=lfs -text
19
- saved_model/**/* filter=lfs diff=lfs merge=lfs -text
20
- *.tar.* filter=lfs diff=lfs merge=lfs -text
21
- *.tflite filter=lfs diff=lfs merge=lfs -text
22
- *.tgz filter=lfs diff=lfs merge=lfs -text
23
- *.wasm filter=lfs diff=lfs merge=lfs -text
24
- *.xz filter=lfs diff=lfs merge=lfs -text
25
- *.zip filter=lfs diff=lfs merge=lfs -text
26
- *.zstandard filter=lfs diff=lfs merge=lfs -text
27
- *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- # Audio files - uncompressed
29
- *.pcm filter=lfs diff=lfs merge=lfs -text
30
- *.sam filter=lfs diff=lfs merge=lfs -text
31
- *.raw filter=lfs diff=lfs merge=lfs -text
32
- # Audio files - compressed
33
- *.aac filter=lfs diff=lfs merge=lfs -text
34
- *.flac filter=lfs diff=lfs merge=lfs -text
35
- *.mp3 filter=lfs diff=lfs merge=lfs -text
36
- *.ogg filter=lfs diff=lfs merge=lfs -text
37
- *.wav filter=lfs diff=lfs merge=lfs -text
38
- WIESP2022-NER-TESTING.jsonl filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md DELETED
@@ -1,85 +0,0 @@
1
- ---
2
- annotations_creators:
3
- - expert-generated
4
- language_creators:
5
- - found
6
- language:
7
- - en
8
- license:
9
- - cc-by-4.0
10
- multilinguality:
11
- - monolingual
12
- pretty_name: 'WIESP2022-NER'
13
- size_categories:
14
- - 1K<n<10K
15
- source_datasets: []
16
- task_categories:
17
- - token-classification
18
- task_ids:
19
- - named-entity-recognition
20
- ---
21
- # Dataset for the first <a href="https://ui.adsabs.harvard.edu/WIESP/" style="color:blue">Workshop on Information Extraction from Scientific Publications (WIESP/2022)</a>.
22
-
23
-
24
- ## Dataset Description
25
- Datasets with text fragments from astrophysics papers, provided by the [NASA Astrophysical Data System](https://ui.adsabs.harvard.edu/) with manually tagged astronomical facilities and other entities of interest (e.g., celestial objects).
26
- Datasets are in JSON Lines format (each line is a json dictionary).
27
- The datasets are formatted similarly to the CONLL2003 format. Each token is associated with an NER tag. The tags follow the "B-" and "I-" convention from the [IOB2 syntax]("https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)")
28
-
29
- Each entry consists of a dictionary with the following keys:
30
- - `"unique_id"`: a unique identifier for this data sample. Must be included in the predictions.
31
- - `"tokens"`: the list of tokens (strings) that form the text of this sample. Must be included in the predictions.
32
- - `"ner_tags"`: the list of NER tags (in IOB2 format)
33
-
34
- The following keys are not strictly needed by the participants:
35
- - `"ner_ids"`: the pre-computed list of ids corresponding ner_tags, as given by the dictionary in ner_tags.json
36
- - `"label_studio_id"`, `"section"`, `"bibcode"`: references for internal NASA/ADS use.
37
-
38
- ## Instructions for Workshop participants:
39
- How to load the data using the Huggingface library:
40
- ```python
41
- from datasets import load_dataset
42
- dataset = load_dataset("adsabs/WIESP2022-NER")
43
- ```
44
-
45
- How to load the data if you cloned the repository locally:
46
- (assuming `./WIESP2022-NER-DEV.jsonl` is in the current directory, change as needed)
47
- - python (as list of dictionaries):
48
- ```python
49
- import json
50
- with open("./WIESP2022-NER-DEV.jsonl", 'r') as f:
51
-     wiesp_dev_json = [json.loads(l) for l in list(f)]
52
- ```
53
- - into Huggingface (as a Huggingface Dataset):
54
- ```python
55
- from datasets import Dataset
56
- wiesp_dev_from_json = Dataset.from_json(path_or_paths="./WIESP2022-NER-DEV.jsonl")
57
- ```
58
-
59
-
60
- How to compute your scores on the training data:
61
- 1. format your predictions as a list of dictionaries, each with the same `"unique_id"` and `"tokens"` keys from the dataset, as well as the list of predicted NER tags under the `"pred_ner_tags"` key (see `WIESP2022-NER-DEV-sample-predictions.jsonl` for an example).
62
- 2. pass the references and predictions datasets to the `compute_MCC()` and `compute_seqeval()` functions (from the `.py` files with the same names).
63
-
64
- Requirement to run the scoring scripts:
65
- [NumPy](https://numpy.org/install/)
66
- [scikit-learn](https://scikit-learn.org/stable/install.html)
67
- [seqeval](https://github.com/chakki-works/seqeval#installation)
68
-
69
- To get scores on the validation data, zip your predictions file (a single `.jsonl' file formatted following the same instructions as above) and upload the `.zip` file to the [Codalabs](https://codalab.lisn.upsaclay.fr/competitions/5062) competition.
70
-
71
- ## File list
72
- ```
73
- ├── WIESP2022-NER-TRAINING.jsonl : 1753 samples for training.
74
- ├── WIESP2022-NER-DEV.jsonl : 20 samples for development.
75
- ├── WIESP2022-NER-DEV-sample-predictions.jsonl : an example file with properly formatted predictions on the development data.
76
- ├── WIESP2022-NER-VALIDATION-NO-LABELS.jsonl : 1366 samples for validation without the NER labels. Used for the WIESP2022 workshop.
77
- ├── WIESP2022-NER-VALIDATION.jsonl : 1366 samples for validation
78
- ├── WIESP2022-NER-TESTING-NO-LABELS.jsonl : 2505 samples for testing without the NER labels. Used for the WIESP2022 workshop.
79
- ├── WIESP2022-NER-TESTING.jsonl : 2505 samples for testing
80
- ├── README.MD : this file.
81
- ├── tag_definitions.md : short descriptions and examples of the tags used in the task.
82
- └── scoring-scripts/ : scripts used to evaluate submissions.
83
- ├── compute_MCC.py : computes the Matthews correlation coefficient between two datasets.
84
- └── compute_seqeval.py : computes the seqeval scores (precision, recall, f1, overall and for each class) between two datasets.
85
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
WIESP2022-NER-DEV-sample-predictions.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
WIESP2022-NER-DEV.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
WIESP2022-NER-TESTING-NO-LABELS.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
WIESP2022-NER-TESTING.jsonl DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:69c832d9a687765c297960096a5d6b9013dc228f8dd64ccb01f698f186e90753
3
- size 13930556
 
 
 
 
WIESP2022-NER-TRAINING.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
WIESP2022-NER-VALIDATION-NO-LABELS.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
WIESP2022-NER-VALIDATION.jsonl DELETED
The diff for this file is too large to render. See raw diff
 
dataset_infos.json DELETED
@@ -1 +0,0 @@
1
- {"fgrezes--WIESP2022-NER": {"description": "", "citation": "", "homepage": "", "license": "", "features": {"bibcode": {"dtype": "string", "id": null, "_type": "Value"}, "label_studio_id": {"dtype": "int64", "id": null, "_type": "Value"}, "ner_ids": {"feature": {"dtype": "int64", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "section": {"dtype": "string", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "unique_id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "json", "config_name": "default", "version": {"version_str": "0.0.0", "description": null, "major": 0, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 13805842, "num_examples": 1753, "dataset_name": "WIESP2022-NER"}, "validation": {"name": "validation", "num_bytes": 10803621, "num_examples": 1366, "dataset_name": "WIESP2022-NER"}, "test": {"name": "test", "num_bytes": 19270355, "num_examples": 2505, "dataset_name": "WIESP2022-NER"}}, "download_checksums": null, "download_size": 5518829, "post_processing_size": null, "dataset_size": 43879818, "size_in_bytes": 49398647}}
 
 
data/test-00000-of-00001.parquet → fgrezes--WIESP2022-NER/parquet-test.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d4ad3630109b4cc6dbcb0cdfc33c8a6ed53850c21cc0b9d4473b0e0c5f0665b1
3
- size 2336920
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed3267d8c12d2d6f8aaac50aada06c55dd9c9f5dd781c2dd44087615e3045bb7
3
+ size 2566381
data/train-00000-of-00001.parquet → fgrezes--WIESP2022-NER/parquet-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cc1c6035ed28a3036cd07ad3ab50e5888fd03c4822756ba9b0ae829c779ac852
3
- size 1765222
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc3dfd28a3781060df502fb9ffeb9b8f725f4b0bbffa35d645ffd8123c139848
3
+ size 1898176
data/validation-00000-of-00001.parquet → fgrezes--WIESP2022-NER/parquet-validation.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:33567503c5baae11f93e98b486ac3702a672a981af2d7dd30f63906aee364c7e
3
- size 1416687
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ec6d2978c219bb9eba5b40bbdc2af479ef1b61682723000d292d8c0a70f78f7
3
+ size 1493619
ner_tags.json DELETED
@@ -1 +0,0 @@
1
- {"B-Archive": 0, "B-CelestialObject": 1, "B-CelestialObjectRegion": 2, "B-CelestialRegion": 3, "B-Citation": 4, "B-Collaboration": 5, "B-ComputingFacility": 6, "B-Database": 7, "B-Dataset": 8, "B-EntityOfFutureInterest": 9, "B-Event": 10, "B-Fellowship": 11, "B-Formula": 12, "B-Grant": 13, "B-Identifier": 14, "B-Instrument": 15, "B-Location": 16, "B-Mission": 17, "B-Model": 18, "B-ObservationalTechniques": 19, "B-Observatory": 20, "B-Organization": 21, "B-Person": 22, "B-Proposal": 23, "B-Software": 24, "B-Survey": 25, "B-Tag": 26, "B-Telescope": 27, "B-TextGarbage": 28, "B-URL": 29, "B-Wavelength": 30, "I-Archive": 31, "I-CelestialObject": 32, "I-CelestialObjectRegion": 33, "I-CelestialRegion": 34, "I-Citation": 35, "I-Collaboration": 36, "I-ComputingFacility": 37, "I-Database": 38, "I-Dataset": 39, "I-EntityOfFutureInterest": 40, "I-Event": 41, "I-Fellowship": 42, "I-Formula": 43, "I-Grant": 44, "I-Identifier": 45, "I-Instrument": 46, "I-Location": 47, "I-Mission": 48, "I-Model": 49, "I-ObservationalTechniques": 50, "I-Observatory": 51, "I-Organization": 52, "I-Person": 53, "I-Proposal": 54, "I-Software": 55, "I-Survey": 56, "I-Tag": 57, "I-Telescope": 58, "I-TextGarbage": 59, "I-URL": 60, "I-Wavelength": 61, "O": 62}
 
 
scoring-scripts/compute_MCC.py DELETED
@@ -1,31 +0,0 @@
1
- from sklearn.metrics import matthews_corrcoef
2
- import numpy as np
3
- def compute_MCC_jsonl(references_jsonl, predictions_jsonl, ref_col='ner_tags', pred_col='pred_ner_tags'):
4
- '''
5
- Computes the Matthews correlation coeff between two datasets in jsonl format (list of dicts each with same keys).
6
- Sorts the datasets by 'unique_id' and verifies that the tokens match.
7
- '''
8
- # reverse the dict
9
- ref_dict = {k:[e[k] for e in references_jsonl] for k in references_jsonl[0].keys()}
10
- pred_dict = {k:[e[k] for e in predictions_jsonl] for k in predictions_jsonl[0].keys()}
11
-
12
- # sort by unique_id
13
- ref_idx = np.argsort(ref_dict['unique_id'])
14
- pred_idx = np.argsort(pred_dict['unique_id'])
15
- ref_ner_tags = np.array(ref_dict[ref_col], dtype=object)[ref_idx]
16
- pred_ner_tags = np.array(pred_dict[pred_col], dtype=object)[pred_idx]
17
- ref_tokens = np.array(ref_dict['tokens'], dtype=object)[ref_idx]
18
- pred_tokens = np.array(pred_dict['tokens'], dtype=object)[pred_idx]
19
-
20
- # check that tokens match
21
- for t1,t2 in zip(ref_tokens, pred_tokens):
22
- assert(t1==t2)
23
-
24
- # the lists have to be flattened
25
- flat_ref_tags = np.concatenate(ref_ner_tags)
26
- flat_pred_tags = np.concatenate(pred_ner_tags)
27
-
28
- mcc_score = matthews_corrcoef(y_true=flat_ref_tags,
29
- y_pred=flat_pred_tags)
30
-
31
- return(mcc_score)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scoring-scripts/compute_seqeval.py DELETED
@@ -1,49 +0,0 @@
1
- from seqeval.metrics import classification_report, f1_score, precision_score, recall_score, accuracy_score
2
- from seqeval.scheme import IOB2
3
- import numpy as np
4
- def compute_seqeval_jsonl(references_jsonl, predictions_jsonl, ref_col='ner_tags', pred_col='pred_ner_tags'):
5
- '''
6
- Computes the seqeval scores between two datasets loaded from jsonl (list of dicts with same keys).
7
- Sorts the datasets by 'unique_id' and verifies that the tokens match.
8
- '''
9
- # extract the tags and reverse the dict
10
- ref_dict = {k:[e[k] for e in references_jsonl] for k in references_jsonl[0].keys()}
11
- pred_dict = {k:[e[k] for e in predictions_jsonl] for k in predictions_jsonl[0].keys()}
12
-
13
- # sort by unique_id
14
- ref_idx = np.argsort(ref_dict['unique_id'])
15
- pred_idx = np.argsort(pred_dict['unique_id'])
16
- ref_ner_tags = np.array(ref_dict[ref_col], dtype=object)[ref_idx]
17
- pred_ner_tags = np.array(pred_dict[pred_col], dtype=object)[pred_idx]
18
- ref_tokens = np.array(ref_dict['tokens'], dtype=object)[ref_idx]
19
- pred_tokens = np.array(pred_dict['tokens'], dtype=object)[pred_idx]
20
-
21
- # check that tokens match
22
- assert((ref_tokens==pred_tokens).all())
23
-
24
-
25
- # get report
26
- report = classification_report(y_true=ref_ner_tags, y_pred=pred_ner_tags,
27
- scheme=IOB2, output_dict=True,
28
- )
29
-
30
- # extract values we care about
31
- report.pop("macro avg")
32
- report.pop("weighted avg")
33
- overall_score = report.pop("micro avg")
34
-
35
- seqeval_results = {
36
- type_name: {
37
- "precision": score["precision"],
38
- "recall": score["recall"],
39
- "f1": score["f1-score"],
40
- "suport": score["support"],
41
- }
42
- for type_name, score in report.items()
43
- }
44
- seqeval_results["overall_precision"] = overall_score["precision"]
45
- seqeval_results["overall_recall"] = overall_score["recall"]
46
- seqeval_results["overall_f1"] = overall_score["f1-score"]
47
- seqeval_results["overall_accuracy"] = accuracy_score(y_true=ref_ner_tags, y_pred=pred_ner_tags)
48
-
49
- return(seqeval_results)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tag_definitions.md DELETED
@@ -1,38 +0,0 @@
1
- ## Definitions of the Labels used in the DEAL Shared Task
2
- Below you will find the full list of labels used in the DEAL shared task, along with their definitions and some examples.
3
- In the dataset, tokens are labeled using the [IOB2 format](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)) (ex: B-Archive, I-Archive).
4
-
5
-
6
- | **Label** (abbreviation) | **Definition** | **Example** |
7
- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
8
- | Archive (Arc) | A curated collection of the literature or data. Very similar to Database | NASA ADS, MAST |
9
- | CelestialObject (COb) | A named object in the sky | ONC, Andromeda galaxy |
10
- | CelestialObjectRegion (COR) | A named area on/in a celestial body | Inner galaxy |
11
- | CelestialRegion (CeR) | A defined region projected onto the sky, or celestial coordinates | GOODS field, l=2, b=15 |
12
- | Citation (Cit) | A reference to previous work in the literature | Allen et al. 2012 |
13
- | Collaboration (Col) | An organizational entity containing multiple organizations, observatories, and/or countries | the Plank Collaboration |
14
- | ComputingFacility (CoF) | A facility whose primary purpose is to operate computational resources. | Example: Australian National Computational Infrastructure high-performance computing centre, CINECA supercomputing Centre |
15
- | Database (DaB) | A curated and searchable set of related data tables (very similar to Archive) | Simbad |
16
- | Dataset (DaS) | A curated set of data (essentially a single data table) | Gaia EDR3 |
17
- | EntityOfFutureInterest (EFI) | A general catch all for things that we think may be worth thinking about in the future (often terms related to gravitational waves) | |
18
- | Event (Eve) | A conference, workshop or other event that often brings scientists together | Protostars and Planets VI |
19
- | Fellowship (Fel) | A grant focused towards students and/or early career researchers | Hubble Fellowship |
20
- | Formula (For) | Mathematical formula or equations | F = Gm1m2/r^2, z=2.3 |
21
- | Grant (Gra) | An allocation of money and/or time for a research project | grant No. 12345, ADAP grant 12345 |
22
- | Identifier (Ide) | A unique identifier for data, images, etc | ALMA 123.12345 |
23
- | Instrument (Ins) | A device, often, but not always, placed on a telescope, to make a measurement | Infrared Array Camera, NIRCam |
24
- | Location (Loc) | A named location on Earth | Canada |
25
- | Mission (Mis) | A spacecraft that is not a telescope or observatory that carries multiple instruments | WIND |
26
- | Model (Mod) | A named scientific or computational model. | TNG100, Salpeter IMF |
27
- | ObservationalTechniques (ObT) | A method used to observe celestial objects | Resolved Long-slit Spectroscopy, adaptive optics imaging |
28
- | Observatory (Obs) | A, often similarly located, group of telescopes | Keck Observatory, Fermi |
29
- | Organization (Org) | A named organization that is not an observatory | NASA, University of Toledo |
30
- | Person (Per) | A named person or their initials | A. Einstein |
31
- | Proposal (Pro) | A request for telescope time or funding | 74.C-0209(A), GN-2014B-Q-26 |
32
- | Software (Sof) | Named computer code or language | Python, Numpy, ClumpFind |
33
- | Survey (Sur) | An organized search of the sky often dedicated to large scale science projects | 2MASS, SDSS |
34
- | Tag (Tag) | A HTML tag | <bold><\bold> |
35
- | Telescope (Tel) | A "bucket" to catch light | Hubble Space Telescope, Discovery Channel Telescope |
36
- | TextGarbage (TeG) | Incorrect text, often multiple punctuation marks with no inner text | ',,,,,' |
37
- | URL (URL) | A link to a website | https://www.astropy.org/ |
38
- | Wavelength (Wav) | A portion of the electromagnetic spectrum (can be communicated as a particular wavelength, a name, or a particular transition) | 656.46 nm, H-alpha |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tag_definitions.txt DELETED
@@ -1,38 +0,0 @@
1
- ## Definitions of the Labels used in the DEAL Shared Task
2
- Below you will find the full list of labels used in the DEAL shared task, along with their definitions and some examples.
3
- In the dataset, tokens are labeled using the [IOB2 format](https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging)) (ex: B-Archive, I-Archive).
4
-
5
-
6
- | **Label** (abbreviation) | **Definition** | **Example** |
7
- | ----------------------------- | ----------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------- |
8
- | Archive (Arc) | A curated collection of the literature or data. Very similar to Database | NASA ADS, MAST |
9
- | CelestialObject (COb) | A named object in the sky | ONC, Andromeda galaxy |
10
- | CelestialObjectRegion (COR) | A named area on/in a celestial body | Inner galaxy |
11
- | CelestialRegion (CeR) | A defined region projected onto the sky, or celestial coordinates | GOODS field, l=2, b=15 |
12
- | Citation (Cit) | A reference to previous work in the literature | Allen et al. 2012 |
13
- | Collaboration (Col) | An organizational entity containing multiple organizations, observatories, and/or countries | the Plank Collaboration |
14
- | ComputingFacility (CoF) | A facility whose primary purpose is to operate computational resources. | Example: Australian National Computational Infrastructure high-performance computing centre, CINECA supercomputing Centre |
15
- | Database (DaB) | A curated and searchable set of related data tables (very similar to Archive) | Simbad |
16
- | Dataset (DaS) | A curated set of data (essentially a single data table) | Gaia EDR3 |
17
- | EntityOfFutureInterest (EFI) | A general catch all for things that we think may be worth thinking about in the future (often terms related to gravitational waves) | |
18
- | Event (Eve) | A conference, workshop or other event that often brings scientists together | Protostars and Planets VI |
19
- | Fellowship (Fel) | A grant focused towards students and/or early career researchers | Hubble Fellowship |
20
- | Formula (For) | Mathematical formula or equations | F = Gm1m2/r^2, z=2.3 |
21
- | Grant (Gra) | An allocation of money and/or time for a research project | grant No. 12345, ADAP grant 12345 |
22
- | Identifier (Ide) | A unique identifier for data, images, etc | ALMA 123.12345 |
23
- | Instrument (Ins) | A device, often, but not always, placed on a telescope, to make a measurement | Infrared Array Camera, NIRCam |
24
- | Location (Loc) | A named location on Earth | Canada |
25
- | Mission (Mis) | A spacecraft that is not a telescope or observatory that carries multiple instruments | WIND |
26
- | Model (Mod) | A named scientific or computational model. | TNG100, Salpeter IMF |
27
- | ObservationalTechniques (ObT) | A method used to observe celestial objects | Resolved Long-slit Spectroscopy, adaptive optics imaging |
28
- | Observatory (Obs) | A, often similarly located, group of telescopes | Keck Observatory, Fermi |
29
- | Organization (Org) | A named organization that is not an observatory | NASA, University of Toledo |
30
- | Person (Per) | A named person or their initials | A. Einstein |
31
- | Proposal (Pro) | A request for telescope time or funding | 74.C-0209(A), GN-2014B-Q-26 |
32
- | Software (Sof) | Named computer code or language | Python, Numpy, ClumpFind |
33
- | Survey (Sur) | An organized search of the sky often dedicated to large scale science projects | 2MASS, SDSS |
34
- | Tag (Tag) | A HTML tag | <bold><\bold> |
35
- | Telescope (Tel) | A "bucket" to catch light | Hubble Space Telescope, Discovery Channel Telescope |
36
- | TextGarbage (TeG) | Incorrect text, often multiple punctuation marks with no inner text | ',,,,,' |
37
- | URL (URL) | A link to a website | https://www.astropy.org/ |
38
- | Wavelength (Wav) | A portion of the electromagnetic spectrum (can be communicated as a particular wavelength, a name, or a particular transition) | 656.46 nm, H-alpha |