removed original data
Browse files- README.md +0 -8
- original_data/qasper-test-and-evaluator-v0.3/README-test.md +0 -26
- original_data/qasper-test-and-evaluator-v0.3/qasper-test-v0.3.json +0 -3
- original_data/qasper-test-and-evaluator-v0.3/qasper_evaluator.py +0 -167
- original_data/qasper-train-dev-v0.3/README.md +0 -71
- original_data/qasper-train-dev-v0.3/qasper-dev-v0.3.json +0 -3
- original_data/qasper-train-dev-v0.3/qasper-train-v0.3.json +0 -3
README.md
CHANGED
@@ -8,14 +8,6 @@ configs:
|
|
8 |
path: "data/dev_instances.json"
|
9 |
- split: test
|
10 |
path: "data/test_instances.json"
|
11 |
-
# - config_name: original
|
12 |
-
# data_files:
|
13 |
-
# - split: train
|
14 |
-
# path: "original_data/qasper-train-dev-v0.3/qasper-train-v0.3.json"
|
15 |
-
# - split: dev
|
16 |
-
# path: "original_data/qasper-train-dev-v0.3/qasper-dev-v0.3.json"
|
17 |
-
# - split: test
|
18 |
-
# path: "original_data/qasper-test-and-evaluator-v0.3/qasper-test-v0.3.json"
|
19 |
---
|
20 |
|
21 |
# Preprocessed QASPER dataset
|
|
|
8 |
path: "data/dev_instances.json"
|
9 |
- split: test
|
10 |
path: "data/test_instances.json"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
# Preprocessed QASPER dataset
|
original_data/qasper-test-and-evaluator-v0.3/README-test.md
DELETED
@@ -1,26 +0,0 @@
|
|
1 |
-
Dataset of Information Seeking Questions and Answers Anchored in Research Papers: Test Set and Evaluator
|
2 |
-
--------------------------------------------------------------------------------------------------------
|
3 |
-
|
4 |
-
## Version: 0.3
|
5 |
-
|
6 |
-
The tarball you found this file in should contain the test split of the Qasper dataset version 0.3 and the official evaluator script.
|
7 |
-
|
8 |
-
Please make sure you access the test file only to evaluate your finalized model.
|
9 |
-
|
10 |
-
## Images of tables and figures
|
11 |
-
|
12 |
-
You can download them here: https://qasper-dataset.s3.us-west-2.amazonaws.com/test_figures_and_tables.tgz
|
13 |
-
|
14 |
-
## Evaluation
|
15 |
-
|
16 |
-
You can evaluate your model using the stand alone evaluator as follows:
|
17 |
-
|
18 |
-
```
|
19 |
-
python qasper_evaluator.py --predictions predictions.jsonl --gold qasper-test-v0.3.json [--text_evidence_only]
|
20 |
-
```
|
21 |
-
|
22 |
-
Run the following to understand the arguments
|
23 |
-
|
24 |
-
```
|
25 |
-
python qasper_evaluator.py -h
|
26 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
original_data/qasper-test-and-evaluator-v0.3/qasper-test-v0.3.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:6e29ad410e6e39aa1936017fb965b30a20eb2e7751997f55b97c9d281aa884e5
|
3 |
-
size 18078957
|
|
|
|
|
|
|
|
original_data/qasper-test-and-evaluator-v0.3/qasper_evaluator.py
DELETED
@@ -1,167 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Official script for evaluating models built for the Qasper dataset. The script
|
3 |
-
outputs Answer F1 and Evidence F1 reported in the paper.
|
4 |
-
"""
|
5 |
-
from collections import Counter
|
6 |
-
import argparse
|
7 |
-
import string
|
8 |
-
import re
|
9 |
-
import json
|
10 |
-
|
11 |
-
|
12 |
-
def normalize_answer(s):
|
13 |
-
"""
|
14 |
-
Taken from the official evaluation script for v1.1 of the SQuAD dataset.
|
15 |
-
Lower text and remove punctuation, articles and extra whitespace.
|
16 |
-
"""
|
17 |
-
|
18 |
-
def remove_articles(text):
|
19 |
-
return re.sub(r"\b(a|an|the)\b", " ", text)
|
20 |
-
|
21 |
-
def white_space_fix(text):
|
22 |
-
return " ".join(text.split())
|
23 |
-
|
24 |
-
def remove_punc(text):
|
25 |
-
exclude = set(string.punctuation)
|
26 |
-
return "".join(ch for ch in text if ch not in exclude)
|
27 |
-
|
28 |
-
def lower(text):
|
29 |
-
return text.lower()
|
30 |
-
|
31 |
-
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
32 |
-
|
33 |
-
|
34 |
-
def token_f1_score(prediction, ground_truth):
|
35 |
-
"""
|
36 |
-
Taken from the official evaluation script for v1.1 of the SQuAD dataset.
|
37 |
-
"""
|
38 |
-
prediction_tokens = normalize_answer(prediction).split()
|
39 |
-
ground_truth_tokens = normalize_answer(ground_truth).split()
|
40 |
-
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
41 |
-
num_same = sum(common.values())
|
42 |
-
if num_same == 0:
|
43 |
-
return 0
|
44 |
-
precision = 1.0 * num_same / len(prediction_tokens)
|
45 |
-
recall = 1.0 * num_same / len(ground_truth_tokens)
|
46 |
-
f1 = (2 * precision * recall) / (precision + recall)
|
47 |
-
return f1
|
48 |
-
|
49 |
-
|
50 |
-
def paragraph_f1_score(prediction, ground_truth):
|
51 |
-
if not ground_truth and not prediction:
|
52 |
-
# The question is unanswerable and the prediction is empty.
|
53 |
-
return 1.0
|
54 |
-
num_same = len(set(ground_truth).intersection(set(prediction)))
|
55 |
-
if num_same == 0:
|
56 |
-
return 0.0
|
57 |
-
precision = num_same / len(prediction)
|
58 |
-
recall = num_same / len(ground_truth)
|
59 |
-
f1 = (2 * precision * recall) / (precision + recall)
|
60 |
-
return f1
|
61 |
-
|
62 |
-
|
63 |
-
def get_answers_and_evidence(data, text_evidence_only):
|
64 |
-
answers_and_evidence = {}
|
65 |
-
for paper_data in data.values():
|
66 |
-
for qa_info in paper_data["qas"]:
|
67 |
-
question_id = qa_info["question_id"]
|
68 |
-
references = []
|
69 |
-
for annotation_info in qa_info["answers"]:
|
70 |
-
answer_info = annotation_info["answer"]
|
71 |
-
if answer_info["unanswerable"]:
|
72 |
-
references.append({"answer": "Unanswerable", "evidence": [], "type": "none"})
|
73 |
-
else:
|
74 |
-
if answer_info["extractive_spans"]:
|
75 |
-
answer = ", ".join(answer_info["extractive_spans"])
|
76 |
-
answer_type = "extractive"
|
77 |
-
elif answer_info["free_form_answer"]:
|
78 |
-
answer = answer_info["free_form_answer"]
|
79 |
-
answer_type = "abstractive"
|
80 |
-
elif answer_info["yes_no"]:
|
81 |
-
answer = "Yes"
|
82 |
-
answer_type = "boolean"
|
83 |
-
elif answer_info["yes_no"] is not None:
|
84 |
-
answer = "No"
|
85 |
-
answer_type = "boolean"
|
86 |
-
else:
|
87 |
-
raise RuntimeError(f"Annotation {answer_info['annotation_id']} does not contain an answer")
|
88 |
-
if text_evidence_only:
|
89 |
-
evidence = [text for text in answer_info["evidence"] if "FLOAT SELECTED" not in text]
|
90 |
-
else:
|
91 |
-
evidence = answer_info["evidence"]
|
92 |
-
references.append({"answer": answer, "evidence": evidence, "type": answer_type})
|
93 |
-
answers_and_evidence[question_id] = references
|
94 |
-
|
95 |
-
return answers_and_evidence
|
96 |
-
|
97 |
-
|
98 |
-
def evaluate(gold, predicted):
|
99 |
-
max_answer_f1s = []
|
100 |
-
max_evidence_f1s = []
|
101 |
-
max_answer_f1s_by_type = {
|
102 |
-
"extractive": [],
|
103 |
-
"abstractive": [],
|
104 |
-
"boolean": [],
|
105 |
-
"none": [],
|
106 |
-
}
|
107 |
-
num_missing_predictions = 0
|
108 |
-
for question_id, references in gold.items():
|
109 |
-
if question_id not in predicted:
|
110 |
-
num_missing_predictions += 1
|
111 |
-
max_answer_f1s.append(0.0)
|
112 |
-
max_evidence_f1s.append(0.0)
|
113 |
-
continue
|
114 |
-
answer_f1s_and_types = [
|
115 |
-
(token_f1_score(predicted[question_id]["answer"], reference["answer"]),
|
116 |
-
reference["type"])
|
117 |
-
for reference in gold[question_id]
|
118 |
-
]
|
119 |
-
max_answer_f1, answer_type = sorted(answer_f1s_and_types, key=lambda x: x[0], reverse=True)[0]
|
120 |
-
max_answer_f1s.append(max_answer_f1)
|
121 |
-
max_answer_f1s_by_type[answer_type].append(max_answer_f1)
|
122 |
-
evidence_f1s = [
|
123 |
-
paragraph_f1_score(predicted[question_id]["evidence"], reference["evidence"])
|
124 |
-
for reference in gold[question_id]
|
125 |
-
]
|
126 |
-
max_evidence_f1s.append(max(evidence_f1s))
|
127 |
-
|
128 |
-
mean = lambda x: sum(x) / len(x) if x else 0.0
|
129 |
-
return {
|
130 |
-
"Answer F1": mean(max_answer_f1s),
|
131 |
-
"Answer F1 by type": {key: mean(value) for key, value in max_answer_f1s_by_type.items()},
|
132 |
-
"Evidence F1": mean(max_evidence_f1s),
|
133 |
-
"Missing predictions": num_missing_predictions
|
134 |
-
}
|
135 |
-
|
136 |
-
if __name__ == "__main__":
|
137 |
-
parser = argparse.ArgumentParser()
|
138 |
-
parser.add_argument(
|
139 |
-
"--predictions",
|
140 |
-
type=str,
|
141 |
-
required=True,
|
142 |
-
help="""JSON lines file with each line in format:
|
143 |
-
{'question_id': str, 'predicted_answer': str, 'predicted_evidence': List[str]}"""
|
144 |
-
)
|
145 |
-
parser.add_argument(
|
146 |
-
"--gold",
|
147 |
-
type=str,
|
148 |
-
required=True,
|
149 |
-
help="Test or dev set from the released dataset"
|
150 |
-
)
|
151 |
-
parser.add_argument(
|
152 |
-
"--text_evidence_only",
|
153 |
-
action="store_true",
|
154 |
-
help="If set, the evaluator will ignore evidence in figures and tables while reporting evidence f1"
|
155 |
-
)
|
156 |
-
args = parser.parse_args()
|
157 |
-
gold_data = json.load(open(args.gold))
|
158 |
-
gold_answers_and_evidence = get_answers_and_evidence(gold_data, args.text_evidence_only)
|
159 |
-
predicted_answers_and_evidence = {}
|
160 |
-
for line in open(args.predictions):
|
161 |
-
prediction_data = json.loads(line)
|
162 |
-
predicted_answers_and_evidence[prediction_data["question_id"]] = {
|
163 |
-
"answer": prediction_data["predicted_answer"],
|
164 |
-
"evidence": prediction_data["predicted_evidence"]
|
165 |
-
}
|
166 |
-
evaluation_output = evaluate(gold_answers_and_evidence, predicted_answers_and_evidence)
|
167 |
-
print(json.dumps(evaluation_output, indent=2))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
original_data/qasper-train-dev-v0.3/README.md
DELETED
@@ -1,71 +0,0 @@
|
|
1 |
-
A Dataset of Information Seeking Questions and Answers Anchored in Research Papers
|
2 |
-
----------------------------------------------------------------------------------
|
3 |
-
|
4 |
-
## Version 0.3
|
5 |
-
|
6 |
-
The tarball you found this README in should contain the training and development sets of Qasper version 0.3. The images of the tables and figures
|
7 |
-
in the papers associated can be found here: https://qasper-dataset.s3.us-west-2.amazonaws.com/train_dev_figures_and_tables.tgz
|
8 |
-
|
9 |
-
The full text of the papers is extracted from S2ORC (Lo et al., 2020).
|
10 |
-
|
11 |
-
Each file is in JSON format, where the keys are arxiv ids, and the values are dicts containing `title`, `abstract`, `full_text`, `figures_and_tables`, and `qas` (QA pairs).
|
12 |
-
|
13 |
-
## Differences from v0.2
|
14 |
-
|
15 |
-
Due to an issue in the annotation interface, a small number of annotations (about 0.6%) had multiple answer types (e.g.: unanswerable and boolean; see more information on answer types in the final section of this README) in v0.2. These were manually fixed to create v0.3. These fixes affected train, development, and test sets.
|
16 |
-
|
17 |
-
## Figures and tables
|
18 |
-
|
19 |
-
These are new starting version 0.2. The actual images of the figures and tables can be downloaded from the link above. The JSON files contain the
|
20 |
-
captions to those images in the `figure_and_table_captions` field.
|
21 |
-
|
22 |
-
This field is a dict whose keys are file names of the images of tables and figures, and the values are their captions.
|
23 |
-
|
24 |
-
For example, the paper with arxiv id `1811.00942` is in the training set, and contains the following `figures_and_tables` field:
|
25 |
-
|
26 |
-
```
|
27 |
-
"figures_and_tables": [
|
28 |
-
{
|
29 |
-
"file": "3-Table1-1.png",
|
30 |
-
"caption": "Table 1: Comparison of neural language models on Penn Treebank and WikiText-103."
|
31 |
-
},
|
32 |
-
{
|
33 |
-
"file": "4-Figure1-1.png",
|
34 |
-
"caption": "Figure 1: Log perplexity\u2013recall error with KN-5."
|
35 |
-
},
|
36 |
-
{
|
37 |
-
"file": "4-Figure2-1.png",
|
38 |
-
"caption": "Figure 2: Log perplexity\u2013recall error with QRNN."
|
39 |
-
},
|
40 |
-
{
|
41 |
-
"file": "4-Table2-1.png",
|
42 |
-
"caption": "Table 2: Language modeling results on performance and model quality."
|
43 |
-
}
|
44 |
-
]
|
45 |
-
```
|
46 |
-
|
47 |
-
and when you download the `train_dev_figures_and_tables` tarball, you will see four files in `train/1811.00942`, with file names corresponding to
|
48 |
-
the `file` fields in the list above.
|
49 |
-
|
50 |
-
## Fields specific to questions:
|
51 |
-
|
52 |
-
- `nlp_background` shows the experience the question writer had. The values can be `zero` (no experience), `two` (0 - 2 years of experience), `five` (2 - 5 years of experience), and `infinity` (> 5 years of experience). The field may be empty as well, indicating the writer has chosen not to share this information.
|
53 |
-
|
54 |
-
- `topic_background` shows how familiar the question writer was with the topic of the paper. The values are `unfamiliar`, `familiar`, `research` (meaning that the topic is the research area of the writer), or null.
|
55 |
-
|
56 |
-
- `paper_read`, when specified shows whether the questionwriter has read the paper.
|
57 |
-
|
58 |
-
- `search_query`, if not empty, is the query the question writer used to find the abstract of the paper from a large pool of abstracts we made available to them.
|
59 |
-
|
60 |
-
## Fields specific to answers
|
61 |
-
|
62 |
-
Unanswerable answers have `unanswerable` set to true. The remaining answers have exactly one of the following fields being non-empty.
|
63 |
-
|
64 |
-
- `extractive_spans` are spans in the paper which serve as the answer.
|
65 |
-
- `free_form_answer` is a written out answer.
|
66 |
-
- `yes_no` is true iff the answer is Yes, and false iff the answer is No.
|
67 |
-
|
68 |
-
`evidence` is the set of paragraphs, figures or tables used to arrive at the answer. When the evidence is a table or a figure, it starts with the
|
69 |
-
string `FLOAT SELECTED`, and contains the caption of the corresponding table or figure.
|
70 |
-
|
71 |
-
`highlighted_evidence` is the set of sentences the answer providers selected as evidence if they chose textual evidence. The text in the `evidence` field is a mapping from these sentences to the paragraph level. That is, if you see textual evidence in the `evidence` field, it is guaranteed to be entire paragraphs, while that is not the case with `highlighted_evidence`.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
original_data/qasper-train-dev-v0.3/qasper-dev-v0.3.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:2ae7ee62a65b1c4225791c70de80c2aad4e8998cf1fd4f09a53103db4f21af93
|
3 |
-
size 11398686
|
|
|
|
|
|
|
|
original_data/qasper-train-dev-v0.3/qasper-train-v0.3.json
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:9458bfe76074a8fa8d1685af02bcc73537aa6d338ad20591dfaff1946bc88bf4
|
3 |
-
size 31969387
|
|
|
|
|
|
|
|