added original qasper data & preprocessed version using dataset_reader.py script
Browse files- .gitattributes +2 -0
- .gitignore +162 -0
- README.md +40 -0
- data/dev_instances.json +3 -0
- data/test_instances.json +3 -0
- data/train_instances.json +3 -0
- dataset_reader.py +426 -0
- original_data/qasper-test-and-evaluator-v0.3/README-test.md +26 -0
- original_data/qasper-test-and-evaluator-v0.3/qasper-test-v0.3.json +3 -0
- original_data/qasper-test-and-evaluator-v0.3/qasper_evaluator.py +167 -0
- original_data/qasper-train-dev-v0.3/README.md +71 -0
- original_data/qasper-train-dev-v0.3/qasper-dev-v0.3.json +3 -0
- original_data/qasper-train-dev-v0.3/qasper-train-v0.3.json +3 -0
- qasper.ipynb +2561 -0
.gitattributes
CHANGED
@@ -53,3 +53,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
56 |
+
*.csv filter=lfs diff=lfs merge=lfs -text
|
57 |
+
*.json filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
161 |
+
|
162 |
+
*.DS_Store
|
README.md
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
configs:
|
3 |
+
- config_name: default
|
4 |
+
data_files:
|
5 |
+
- split: train
|
6 |
+
path: "data/train_instances.json"
|
7 |
+
- split: dev
|
8 |
+
path: "data/dev_instances.json"
|
9 |
+
- split: test
|
10 |
+
path: "data/test_instances.json"
|
11 |
+
---
|
12 |
+
|
13 |
+
# Preprocessed QASPER dataset
|
14 |
+
|
15 |
+
Working doc: https://docs.google.com/document/d/1gYPhPNJ5LGttgjix1dwai8pdNcqS6PbqhsM7W0rhKNQ/edit?usp=sharing
|
16 |
+
|
17 |
+
Original:
|
18 |
+
- Dataset: https://github.com/allenai/qasper-led-baseline
|
19 |
+
- Baseline repo: https://github.com/allenai/qasper-led-baseline
|
20 |
+
- HF: https://huggingface.co/datasets/allenai/qasper
|
21 |
+
|
22 |
+
|
23 |
+
Differences of our implementation over the original implementation:
|
24 |
+
1. We use the dataset provided at https://huggingface.co/datasets/allenai/qasper since it doesn't require manually downloading files.
|
25 |
+
2. We remove usage of `allennlp` since the Python package cannot be installed anymore.
|
26 |
+
3. We add baselines to [qasper/models](qasper/models/). Currently, we have
|
27 |
+
- QASPER (Longformer Encoder Decoder)
|
28 |
+
- GPT-3.5-Turbo
|
29 |
+
- TODO: RAG (with R=TF-IDF or Contriever) implemented in LangChain?
|
30 |
+
4. We replace `allennlp` special tokens with the special tokens of the HF transformer tokenizer:
|
31 |
+
- paragraph separator: '</s>' -> tokenizer.sep_token
|
32 |
+
- sequence pair start tokens: _tokenizer.sequence_pair_start_tokens -> tokenizer.bos_token
|
33 |
+
|
34 |
+
## Usage
|
35 |
+
|
36 |
+
```
|
37 |
+
from datasets import load_dataset
|
38 |
+
|
39 |
+
dataset = load_dataset("ag2435/qasper")
|
40 |
+
```
|
data/dev_instances.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:83809d9b5c0f41e5651f828851bb9c76056ecc16191b511fd6f0284c3f02768d
|
3 |
+
size 290717275
|
data/test_instances.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d5b87b8a24fe75cdedfa820b0d25fc0964153d2f204a54a0c3c66c509dd1730f
|
3 |
+
size 412658386
|
data/train_instances.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9814da951c76f774c07ea8f86e03f1bdde4e842d8122f9aae7e5c34b1594c3e1
|
3 |
+
size 811748147
|
dataset_reader.py
ADDED
@@ -0,0 +1,426 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Adapted from https://github.com/allenai/qasper-led-baseline/blob/main/qasper_baselines/dataset_reader.py
|
3 |
+
to get ride of allennlp dependencies.
|
4 |
+
"""
|
5 |
+
|
6 |
+
import json
|
7 |
+
import logging
|
8 |
+
import random
|
9 |
+
from enum import Enum
|
10 |
+
from collections import defaultdict
|
11 |
+
from typing import Any, Dict, List, Optional, Iterable, Tuple
|
12 |
+
|
13 |
+
# from overrides import overrides
|
14 |
+
|
15 |
+
# import spacy
|
16 |
+
import torch
|
17 |
+
|
18 |
+
# from allennlp.common.util import JsonDict
|
19 |
+
# from allennlp.data.fields import (
|
20 |
+
# MetadataField,
|
21 |
+
# TextField,
|
22 |
+
# IndexField,
|
23 |
+
# ListField,
|
24 |
+
# TensorField,
|
25 |
+
# )
|
26 |
+
# from allennlp.common.file_utils import cached_path, open_compressed
|
27 |
+
# from allennlp.data.dataset_readers.dataset_reader import DatasetReader
|
28 |
+
# from allennlp.data.instance import Instance
|
29 |
+
# from allennlp.data.token_indexers import PretrainedTransformerIndexer
|
30 |
+
# from allennlp.data.tokenizers import Token, PretrainedTransformerTokenizer
|
31 |
+
from transformers import AutoTokenizer
|
32 |
+
|
33 |
+
logger = logging.getLogger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
class AnswerType(Enum):
|
37 |
+
EXTRACTIVE = 1
|
38 |
+
ABSTRACTIVE = 2
|
39 |
+
BOOLEAN = 3
|
40 |
+
NONE = 4
|
41 |
+
|
42 |
+
|
43 |
+
# @DatasetReader.register("qasper")
|
44 |
+
class QasperReader(object):
|
45 |
+
"""
|
46 |
+
Reads a JSON-formatted Qasper data file and returns a `Dataset` where the `Instances` have
|
47 |
+
four fields:
|
48 |
+
* `question_with_context`, a `TextField` that contains the concatenation of question and
|
49 |
+
context,
|
50 |
+
* `paragraph_indices`, a `ListField` of `IndexFields` indicating paragraph-start tokens
|
51 |
+
in `question_with_context`.
|
52 |
+
* `global_attention_mask`, a mask that can be used by a longformer to specify which tokens in
|
53 |
+
`question_with_context` should have global attention (only present if
|
54 |
+
`include_global_attention_mask` is `True`).
|
55 |
+
* `evidence`, a 0/1 `TensorField` indicating whether each paragraph in `paragraph_indices`
|
56 |
+
should be selected as evidence.
|
57 |
+
* `answer`, a `TextField` that contains the (wordpiece-tokenized) answer to the question
|
58 |
+
* A `MetadataField` that stores the instance's ID, paper ID, the original question, the
|
59 |
+
original passage text, both of these in tokenized form, and the context also broken into
|
60 |
+
paragraphs, and the gold evidence spans, accessible as `metadata['question_id']`,
|
61 |
+
`metadata['article_id']`, `metadata['question']`, `metadata['context']`,
|
62 |
+
`metadata['question_tokens']`, `metadata['context_tokens']`,
|
63 |
+
`metadata['context_paragraphs']`, `metadata['all_evidence']`, `metadata['all_answers']`.
|
64 |
+
|
65 |
+
Parameters
|
66 |
+
----------
|
67 |
+
transformer_model_name : `str`, optional (default=`allenai/led-large-16384`)
|
68 |
+
This reader chooses tokenizer and token indexer according to this setting.
|
69 |
+
max_query_length : `int`, optional (default=128)
|
70 |
+
The maximum number of wordpieces dedicated to the question. If the question is longer than
|
71 |
+
this, it will be truncated.
|
72 |
+
max_document_length : `int` , optional (default=16384)
|
73 |
+
This is the maximum number of wordpieces allowed per one whole document (including the
|
74 |
+
question, for simplicity). If the document is longer than this many word pieces, it will be
|
75 |
+
truncated.
|
76 |
+
paragraph_separator : `Optional[str]`, optional (default="</s>")
|
77 |
+
If given, we will use this as a separator token in between paragraphs. Pass in `None` to
|
78 |
+
have this not be used.
|
79 |
+
include_global_attention_mask : `bool` (default = True)
|
80 |
+
If `True`, we will include a field in the output containing a global attention mask for use
|
81 |
+
with a longformer, which is `True` for all starts of paragraphs and question tokens, so
|
82 |
+
attention will always be placed on those tokens.
|
83 |
+
context : `str` (default = `full_text`)
|
84 |
+
To reproduce the baselines from the paper that do not have access to the full text of the paper
|
85 |
+
you can change this argument. Options are `question_only`, `question_and_abstract`,
|
86 |
+
`question_and_introduction`, `question_and_evidence`. If this is set to `question_andevidence`,
|
87 |
+
the reader will ignore answers that are `None`, and those that are boolean.
|
88 |
+
for_training : `bool` (default = False)
|
89 |
+
This flag affects how questions with multiple answers are handled. When set to True, this flag
|
90 |
+
causes the reader to yield one instance per answer. When set to False, the instance will contain
|
91 |
+
only the first answer. The metadata will always contain all the answers and evidence, which can be
|
92 |
+
used at evaluation time to compute aggregated metrics.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
transformer_model_name: str = "allenai/led-base-16384",
|
98 |
+
max_query_length: int = 128,
|
99 |
+
max_document_length: int = 16384,
|
100 |
+
paragraph_separator: Optional[str] = "</s>",
|
101 |
+
include_global_attention_mask: bool = True,
|
102 |
+
context: str = "full_text",
|
103 |
+
for_training: bool = False,
|
104 |
+
**kwargs,
|
105 |
+
) -> None:
|
106 |
+
# super().__init__(
|
107 |
+
# manual_distributed_sharding=True,
|
108 |
+
# manual_multiprocess_sharding=True,
|
109 |
+
# **kwargs,
|
110 |
+
# )
|
111 |
+
self._transformer_model_name = transformer_model_name
|
112 |
+
# self._tokenizer = PretrainedTransformerTokenizer(
|
113 |
+
# transformer_model_name, add_special_tokens=False
|
114 |
+
# )
|
115 |
+
self._tokenizer = AutoTokenizer.from_pretrained(transformer_model_name)
|
116 |
+
# Albert: hack
|
117 |
+
self._tokenizer.sequence_pair_start_tokens = [self._tokenizer.bos_token,]
|
118 |
+
|
119 |
+
self._include_global_attention_mask = include_global_attention_mask
|
120 |
+
# self._token_indexers = {
|
121 |
+
# "tokens": PretrainedTransformerIndexer(transformer_model_name)
|
122 |
+
# }
|
123 |
+
self.max_query_length = max_query_length
|
124 |
+
self.max_document_length = max_document_length
|
125 |
+
self._paragraph_separator = paragraph_separator
|
126 |
+
if context not in [
|
127 |
+
"full_text",
|
128 |
+
"question_only",
|
129 |
+
"question_and_abstract",
|
130 |
+
"question_and_introduction",
|
131 |
+
"question_and_evidence"
|
132 |
+
]:
|
133 |
+
raise RuntimeError(f"Unrecognized context type: {context}")
|
134 |
+
self._context = context
|
135 |
+
self._for_training = for_training
|
136 |
+
self._stats = defaultdict(int)
|
137 |
+
|
138 |
+
# @overrides
|
139 |
+
def _read(self, file_path: str):
|
140 |
+
# if `file_path` is a URL, redirect to the cache
|
141 |
+
# file_path = cached_path(file_path)
|
142 |
+
|
143 |
+
logger.info("Reading the dataset")
|
144 |
+
if file_path.endswith(".json"):
|
145 |
+
yield from self._read_json(file_path)
|
146 |
+
elif file_path.endswith(".jsonl"):
|
147 |
+
yield from self._read_json_lines(file_path)
|
148 |
+
else:
|
149 |
+
raise RuntimeError(
|
150 |
+
f"Unsupported extension on file: {file_path}. Only json and jsonl are supported."
|
151 |
+
)
|
152 |
+
|
153 |
+
def _read_json(self, file_path: str):
|
154 |
+
logger.info("Reading json file at %s", file_path)
|
155 |
+
with open(file_path, 'r') as dataset_file:
|
156 |
+
dataset = json.load(dataset_file)
|
157 |
+
for article_id, article in dataset.items():
|
158 |
+
if not article["full_text"]:
|
159 |
+
continue
|
160 |
+
article["article_id"] = article_id
|
161 |
+
yield from self._article_to_instances(article)
|
162 |
+
self._log_stats()
|
163 |
+
|
164 |
+
def _read_json_lines(self, file_path: str):
|
165 |
+
logger.info("Reading json lines file at %s", file_path)
|
166 |
+
with open(file_path, 'r') as dataset_file:
|
167 |
+
for data_line in self.shard_iterable(dataset_file):
|
168 |
+
data = json.loads(data_line)
|
169 |
+
yield from self._article_to_instances(data)
|
170 |
+
self._log_stats()
|
171 |
+
|
172 |
+
def _log_stats(self) -> None:
|
173 |
+
logger.info("Stats:")
|
174 |
+
for key, value in self._stats.items():
|
175 |
+
logger.info("%s: %d", key, value)
|
176 |
+
|
177 |
+
def _article_to_instances(self, article: Dict[str, Any]):
|
178 |
+
paragraphs = self._get_paragraphs_from_article(article)
|
179 |
+
tokenized_context = None
|
180 |
+
paragraph_start_indices = None
|
181 |
+
# If the context is evidence, text_to_instance will make the appropriate tokenized_context.
|
182 |
+
if not self._context == "question_and_evidence":
|
183 |
+
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs(
|
184 |
+
paragraphs
|
185 |
+
)
|
186 |
+
|
187 |
+
self._stats["number of documents"] += 1
|
188 |
+
for question_answer in article["qas"]:
|
189 |
+
self._stats["number of questions"] += 1
|
190 |
+
self._stats["number of answers"] += len(question_answer["answers"])
|
191 |
+
if len(question_answer["answers"]) > 1:
|
192 |
+
self._stats["questions with multiple answers"] += 1
|
193 |
+
|
194 |
+
all_answers = []
|
195 |
+
all_evidence = []
|
196 |
+
all_evidence_masks = []
|
197 |
+
for answer_annotation in question_answer["answers"]:
|
198 |
+
answer, evidence, answer_type = self._extract_answer_and_evidence(
|
199 |
+
answer_annotation["answer"]
|
200 |
+
)
|
201 |
+
all_answers.append({"text": answer, "type": answer_type})
|
202 |
+
all_evidence.append(evidence)
|
203 |
+
evidence_mask = self._get_evidence_mask(evidence, paragraphs)
|
204 |
+
all_evidence_masks.append(evidence_mask)
|
205 |
+
|
206 |
+
additional_metadata = {
|
207 |
+
"question_id": question_answer["question_id"],
|
208 |
+
"article_id": article.get("article_id"),
|
209 |
+
"all_answers": all_answers,
|
210 |
+
"all_evidence": all_evidence,
|
211 |
+
"all_evidence_masks": all_evidence_masks,
|
212 |
+
}
|
213 |
+
answers_to_yield = [x['text'] for x in all_answers] if self._for_training else [all_answers[0]['text']]
|
214 |
+
evidence_masks_to_yield = all_evidence_masks if self._for_training else [all_evidence_masks[0]]
|
215 |
+
evidence_to_yield = all_evidence if self._for_training else [all_evidence[0]]
|
216 |
+
for answer, evidence, evidence_mask in zip(answers_to_yield, evidence_to_yield, evidence_masks_to_yield):
|
217 |
+
if self._context == "question_and_evidence" and answer in ['Unanswerable', 'Yes', 'No']:
|
218 |
+
continue
|
219 |
+
yield self.text_to_instance(
|
220 |
+
question_answer["question"],
|
221 |
+
paragraphs,
|
222 |
+
tokenized_context,
|
223 |
+
paragraph_start_indices,
|
224 |
+
evidence_mask,
|
225 |
+
answer,
|
226 |
+
evidence,
|
227 |
+
additional_metadata,
|
228 |
+
)
|
229 |
+
|
230 |
+
@staticmethod
|
231 |
+
def _get_evidence_mask(evidence: List[str], paragraphs: List[str]) -> List[int]:
|
232 |
+
"""
|
233 |
+
Takes a list of evidence snippets, and the list of all the paragraphs from the
|
234 |
+
paper, and returns a list of indices of the paragraphs that contain the evidence.
|
235 |
+
"""
|
236 |
+
evidence_mask = []
|
237 |
+
for paragraph in paragraphs:
|
238 |
+
for evidence_str in evidence:
|
239 |
+
if evidence_str in paragraph:
|
240 |
+
evidence_mask.append(1)
|
241 |
+
break
|
242 |
+
else:
|
243 |
+
evidence_mask.append(0)
|
244 |
+
return evidence_mask
|
245 |
+
|
246 |
+
# @overrides
|
247 |
+
def text_to_instance(
|
248 |
+
self, # type: ignore # pylint: disable=arguments-differ
|
249 |
+
question: str,
|
250 |
+
paragraphs: List[str],
|
251 |
+
tokenized_context: List = None,
|
252 |
+
paragraph_start_indices: List[int] = None,
|
253 |
+
evidence_mask: List[int] = None,
|
254 |
+
answer: str = None,
|
255 |
+
evidence: List[str] = None,
|
256 |
+
additional_metadata: Dict[str, Any] = None):
|
257 |
+
fields = {}
|
258 |
+
|
259 |
+
tokenized_question = self._tokenizer.tokenize(question)
|
260 |
+
if len(tokenized_question) > self.max_query_length:
|
261 |
+
self._stats["number of truncated questions"] += 1
|
262 |
+
tokenized_question = tokenized_question[:self.max_query_length]
|
263 |
+
|
264 |
+
if tokenized_context is None or paragraph_start_indices is None:
|
265 |
+
if self._context == "question_and_evidence":
|
266 |
+
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs(
|
267 |
+
evidence
|
268 |
+
)
|
269 |
+
else:
|
270 |
+
tokenized_context, paragraph_start_indices = self._tokenize_paragraphs(
|
271 |
+
paragraphs
|
272 |
+
)
|
273 |
+
|
274 |
+
allowed_context_length = (
|
275 |
+
self.max_document_length
|
276 |
+
- len(tokenized_question)
|
277 |
+
- len(self._tokenizer.sequence_pair_start_tokens)
|
278 |
+
- 1 # for paragraph seperator
|
279 |
+
)
|
280 |
+
if len(tokenized_context) > allowed_context_length:
|
281 |
+
self._stats["number of truncated contexts"] += 1
|
282 |
+
tokenized_context = tokenized_context[:allowed_context_length]
|
283 |
+
paragraph_start_indices = [index for index in paragraph_start_indices
|
284 |
+
if index <= allowed_context_length]
|
285 |
+
if evidence_mask is not None:
|
286 |
+
num_paragraphs = len(paragraph_start_indices)
|
287 |
+
evidence_mask = evidence_mask[:num_paragraphs]
|
288 |
+
|
289 |
+
# This is what Iz's code does.
|
290 |
+
question_and_context = (
|
291 |
+
self._tokenizer.sequence_pair_start_tokens
|
292 |
+
+ tokenized_question
|
293 |
+
+ [self._paragraph_separator]
|
294 |
+
+ tokenized_context
|
295 |
+
)
|
296 |
+
# make the question field
|
297 |
+
question_field = question_and_context
|
298 |
+
fields["question_with_context"] = question_field
|
299 |
+
|
300 |
+
start_of_context = (
|
301 |
+
len(self._tokenizer.sequence_pair_start_tokens)
|
302 |
+
+ len(tokenized_question)
|
303 |
+
)
|
304 |
+
|
305 |
+
paragraph_indices_list = [x + start_of_context for x in paragraph_start_indices]
|
306 |
+
|
307 |
+
paragraph_indices_field = (
|
308 |
+
[x for x in paragraph_indices_list] if paragraph_indices_list else
|
309 |
+
[-1]
|
310 |
+
)
|
311 |
+
|
312 |
+
fields["paragraph_indices"] = paragraph_indices_field
|
313 |
+
|
314 |
+
if self._include_global_attention_mask:
|
315 |
+
# We need to make a global attention array. We'll use all the paragraph indices and the
|
316 |
+
# indices of question tokens.
|
317 |
+
mask_indices = set(list(range(start_of_context)) + paragraph_indices_list)
|
318 |
+
mask = [
|
319 |
+
True if i in mask_indices else False for i in range(len(question_field))
|
320 |
+
]
|
321 |
+
fields["global_attention_mask"] = torch.tensor(mask)
|
322 |
+
|
323 |
+
if evidence_mask is not None:
|
324 |
+
# evidence_field = torch.tensor(evidence_mask)
|
325 |
+
evidence_field = evidence_mask
|
326 |
+
fields["evidence"] = evidence_field
|
327 |
+
|
328 |
+
if answer:
|
329 |
+
# fields["answer"] = (
|
330 |
+
# self._tokenizer.add_special_tokens(self._tokenizer.tokenize(answer))
|
331 |
+
# )
|
332 |
+
fields["answer"] = self._tokenizer.tokenize(answer) #, add_special_tokens=True)
|
333 |
+
|
334 |
+
# make the metadata
|
335 |
+
metadata = {
|
336 |
+
"question": question,
|
337 |
+
"question_tokens": tokenized_question,
|
338 |
+
"paragraphs": paragraphs,
|
339 |
+
"context_tokens": tokenized_context,
|
340 |
+
}
|
341 |
+
if additional_metadata is not None:
|
342 |
+
metadata.update(additional_metadata)
|
343 |
+
fields["metadata"] = metadata
|
344 |
+
return fields
|
345 |
+
|
346 |
+
# @overrides
|
347 |
+
def apply_token_indexers(self, instance) -> None:
|
348 |
+
instance.fields["question_with_context"].token_indexers = self._token_indexers
|
349 |
+
instance.fields["answer"].token_indexers = self._token_indexers
|
350 |
+
|
351 |
+
def _tokenize_paragraphs(
|
352 |
+
self, paragraphs: List[str]):
|
353 |
+
|
354 |
+
tokenized_context = []
|
355 |
+
paragraph_start_indices = []
|
356 |
+
for paragraph in paragraphs:
|
357 |
+
tokenized_paragraph = self._tokenizer.tokenize(paragraph)
|
358 |
+
paragraph_start_indices.append(len(tokenized_context))
|
359 |
+
tokenized_context.extend(tokenized_paragraph)
|
360 |
+
if self._paragraph_separator:
|
361 |
+
tokenized_context.append(self._paragraph_separator)
|
362 |
+
if self._paragraph_separator:
|
363 |
+
# We added the separator after every paragraph, so we remove it after the last one.
|
364 |
+
tokenized_context = tokenized_context[:-1]
|
365 |
+
return tokenized_context, paragraph_start_indices
|
366 |
+
|
367 |
+
def _extract_answer_and_evidence(
|
368 |
+
self, answer: List
|
369 |
+
) -> Tuple[str, List[str]]:
|
370 |
+
evidence_spans = [x.replace("\n", " ").strip() for x in answer["evidence"]]
|
371 |
+
evidence_spans = [x for x in evidence_spans if x != ""]
|
372 |
+
if not evidence_spans:
|
373 |
+
self._stats["answers with no evidence"] += 1
|
374 |
+
# TODO (pradeep): Deal with figures and tables.
|
375 |
+
if any(["FLOAT SELECTED" in span for span in evidence_spans]):
|
376 |
+
# Ignoring question if any of the selected evidence is a table or a figure.
|
377 |
+
self._stats["answers with table or figure as evidence"] += 1
|
378 |
+
if len(evidence_spans) > 1:
|
379 |
+
self._stats["multiple_evidence_spans_count"] += 1
|
380 |
+
|
381 |
+
answer_string = None
|
382 |
+
answer_type = None
|
383 |
+
if answer.get("unanswerable", False):
|
384 |
+
self._stats["unanswerable questions"] += 1
|
385 |
+
answer_string = "Unanswerable"
|
386 |
+
answer_type = AnswerType.NONE.name
|
387 |
+
elif answer.get("yes_no") is not None:
|
388 |
+
self._stats["yes/no questions"] += 1
|
389 |
+
answer_string = "Yes" if answer["yes_no"] else "No"
|
390 |
+
answer_type = AnswerType.BOOLEAN.name
|
391 |
+
elif answer.get("extractive_spans", []):
|
392 |
+
self._stats["extractive questions"] += 1
|
393 |
+
if len(answer["extractive_spans"]) > 1:
|
394 |
+
self._stats["extractive questions with multiple spans"] += 1
|
395 |
+
answer_string = ", ".join(answer["extractive_spans"])
|
396 |
+
answer_type = AnswerType.EXTRACTIVE.name
|
397 |
+
else:
|
398 |
+
answer_string = answer.get("free_form_answer", "")
|
399 |
+
if not answer_string:
|
400 |
+
self._stats["questions with empty answer"] += 1
|
401 |
+
else:
|
402 |
+
self._stats["freeform answers"] += 1
|
403 |
+
answer_type = AnswerType.ABSTRACTIVE.name
|
404 |
+
|
405 |
+
return answer_string, evidence_spans, answer_type
|
406 |
+
|
407 |
+
def _get_paragraphs_from_article(self, article: Dict) -> List[str]:
|
408 |
+
if self._context == "question_only":
|
409 |
+
return []
|
410 |
+
if self._context == "question_and_abstract":
|
411 |
+
return [article["abstract"]]
|
412 |
+
full_text = article["full_text"]
|
413 |
+
paragraphs = []
|
414 |
+
for section_info in full_text:
|
415 |
+
# TODO (pradeep): It is possible there are other discrepancies between plain text, LaTeX and HTML.
|
416 |
+
# Do a thorough investigation and add tests.
|
417 |
+
if section_info["section_name"] is not None:
|
418 |
+
paragraphs.append(section_info["section_name"])
|
419 |
+
for paragraph in section_info["paragraphs"]:
|
420 |
+
paragraph_text = paragraph.replace("\n", " ").strip()
|
421 |
+
if paragraph_text:
|
422 |
+
paragraphs.append(paragraph_text)
|
423 |
+
if self._context == "question_and_introduction":
|
424 |
+
# Assuming the first section is the introduction and stopping here.
|
425 |
+
break
|
426 |
+
return paragraphs
|
original_data/qasper-test-and-evaluator-v0.3/README-test.md
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Dataset of Information Seeking Questions and Answers Anchored in Research Papers: Test Set and Evaluator
|
2 |
+
--------------------------------------------------------------------------------------------------------
|
3 |
+
|
4 |
+
## Version: 0.3
|
5 |
+
|
6 |
+
The tarball you found this file in should contain the test split of the Qasper dataset version 0.3 and the official evaluator script.
|
7 |
+
|
8 |
+
Please make sure you access the test file only to evaluate your finalized model.
|
9 |
+
|
10 |
+
## Images of tables and figures
|
11 |
+
|
12 |
+
You can download them here: https://qasper-dataset.s3.us-west-2.amazonaws.com/test_figures_and_tables.tgz
|
13 |
+
|
14 |
+
## Evaluation
|
15 |
+
|
16 |
+
You can evaluate your model using the stand alone evaluator as follows:
|
17 |
+
|
18 |
+
```
|
19 |
+
python qasper_evaluator.py --predictions predictions.jsonl --gold qasper-test-v0.3.json [--text_evidence_only]
|
20 |
+
```
|
21 |
+
|
22 |
+
Run the following to understand the arguments
|
23 |
+
|
24 |
+
```
|
25 |
+
python qasper_evaluator.py -h
|
26 |
+
```
|
original_data/qasper-test-and-evaluator-v0.3/qasper-test-v0.3.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6e29ad410e6e39aa1936017fb965b30a20eb2e7751997f55b97c9d281aa884e5
|
3 |
+
size 18078957
|
original_data/qasper-test-and-evaluator-v0.3/qasper_evaluator.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Official script for evaluating models built for the Qasper dataset. The script
|
3 |
+
outputs Answer F1 and Evidence F1 reported in the paper.
|
4 |
+
"""
|
5 |
+
from collections import Counter
|
6 |
+
import argparse
|
7 |
+
import string
|
8 |
+
import re
|
9 |
+
import json
|
10 |
+
|
11 |
+
|
12 |
+
def normalize_answer(s):
|
13 |
+
"""
|
14 |
+
Taken from the official evaluation script for v1.1 of the SQuAD dataset.
|
15 |
+
Lower text and remove punctuation, articles and extra whitespace.
|
16 |
+
"""
|
17 |
+
|
18 |
+
def remove_articles(text):
|
19 |
+
return re.sub(r"\b(a|an|the)\b", " ", text)
|
20 |
+
|
21 |
+
def white_space_fix(text):
|
22 |
+
return " ".join(text.split())
|
23 |
+
|
24 |
+
def remove_punc(text):
|
25 |
+
exclude = set(string.punctuation)
|
26 |
+
return "".join(ch for ch in text if ch not in exclude)
|
27 |
+
|
28 |
+
def lower(text):
|
29 |
+
return text.lower()
|
30 |
+
|
31 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
32 |
+
|
33 |
+
|
34 |
+
def token_f1_score(prediction, ground_truth):
|
35 |
+
"""
|
36 |
+
Taken from the official evaluation script for v1.1 of the SQuAD dataset.
|
37 |
+
"""
|
38 |
+
prediction_tokens = normalize_answer(prediction).split()
|
39 |
+
ground_truth_tokens = normalize_answer(ground_truth).split()
|
40 |
+
common = Counter(prediction_tokens) & Counter(ground_truth_tokens)
|
41 |
+
num_same = sum(common.values())
|
42 |
+
if num_same == 0:
|
43 |
+
return 0
|
44 |
+
precision = 1.0 * num_same / len(prediction_tokens)
|
45 |
+
recall = 1.0 * num_same / len(ground_truth_tokens)
|
46 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
47 |
+
return f1
|
48 |
+
|
49 |
+
|
50 |
+
def paragraph_f1_score(prediction, ground_truth):
|
51 |
+
if not ground_truth and not prediction:
|
52 |
+
# The question is unanswerable and the prediction is empty.
|
53 |
+
return 1.0
|
54 |
+
num_same = len(set(ground_truth).intersection(set(prediction)))
|
55 |
+
if num_same == 0:
|
56 |
+
return 0.0
|
57 |
+
precision = num_same / len(prediction)
|
58 |
+
recall = num_same / len(ground_truth)
|
59 |
+
f1 = (2 * precision * recall) / (precision + recall)
|
60 |
+
return f1
|
61 |
+
|
62 |
+
|
63 |
+
def get_answers_and_evidence(data, text_evidence_only):
|
64 |
+
answers_and_evidence = {}
|
65 |
+
for paper_data in data.values():
|
66 |
+
for qa_info in paper_data["qas"]:
|
67 |
+
question_id = qa_info["question_id"]
|
68 |
+
references = []
|
69 |
+
for annotation_info in qa_info["answers"]:
|
70 |
+
answer_info = annotation_info["answer"]
|
71 |
+
if answer_info["unanswerable"]:
|
72 |
+
references.append({"answer": "Unanswerable", "evidence": [], "type": "none"})
|
73 |
+
else:
|
74 |
+
if answer_info["extractive_spans"]:
|
75 |
+
answer = ", ".join(answer_info["extractive_spans"])
|
76 |
+
answer_type = "extractive"
|
77 |
+
elif answer_info["free_form_answer"]:
|
78 |
+
answer = answer_info["free_form_answer"]
|
79 |
+
answer_type = "abstractive"
|
80 |
+
elif answer_info["yes_no"]:
|
81 |
+
answer = "Yes"
|
82 |
+
answer_type = "boolean"
|
83 |
+
elif answer_info["yes_no"] is not None:
|
84 |
+
answer = "No"
|
85 |
+
answer_type = "boolean"
|
86 |
+
else:
|
87 |
+
raise RuntimeError(f"Annotation {answer_info['annotation_id']} does not contain an answer")
|
88 |
+
if text_evidence_only:
|
89 |
+
evidence = [text for text in answer_info["evidence"] if "FLOAT SELECTED" not in text]
|
90 |
+
else:
|
91 |
+
evidence = answer_info["evidence"]
|
92 |
+
references.append({"answer": answer, "evidence": evidence, "type": answer_type})
|
93 |
+
answers_and_evidence[question_id] = references
|
94 |
+
|
95 |
+
return answers_and_evidence
|
96 |
+
|
97 |
+
|
98 |
+
def evaluate(gold, predicted):
|
99 |
+
max_answer_f1s = []
|
100 |
+
max_evidence_f1s = []
|
101 |
+
max_answer_f1s_by_type = {
|
102 |
+
"extractive": [],
|
103 |
+
"abstractive": [],
|
104 |
+
"boolean": [],
|
105 |
+
"none": [],
|
106 |
+
}
|
107 |
+
num_missing_predictions = 0
|
108 |
+
for question_id, references in gold.items():
|
109 |
+
if question_id not in predicted:
|
110 |
+
num_missing_predictions += 1
|
111 |
+
max_answer_f1s.append(0.0)
|
112 |
+
max_evidence_f1s.append(0.0)
|
113 |
+
continue
|
114 |
+
answer_f1s_and_types = [
|
115 |
+
(token_f1_score(predicted[question_id]["answer"], reference["answer"]),
|
116 |
+
reference["type"])
|
117 |
+
for reference in gold[question_id]
|
118 |
+
]
|
119 |
+
max_answer_f1, answer_type = sorted(answer_f1s_and_types, key=lambda x: x[0], reverse=True)[0]
|
120 |
+
max_answer_f1s.append(max_answer_f1)
|
121 |
+
max_answer_f1s_by_type[answer_type].append(max_answer_f1)
|
122 |
+
evidence_f1s = [
|
123 |
+
paragraph_f1_score(predicted[question_id]["evidence"], reference["evidence"])
|
124 |
+
for reference in gold[question_id]
|
125 |
+
]
|
126 |
+
max_evidence_f1s.append(max(evidence_f1s))
|
127 |
+
|
128 |
+
mean = lambda x: sum(x) / len(x) if x else 0.0
|
129 |
+
return {
|
130 |
+
"Answer F1": mean(max_answer_f1s),
|
131 |
+
"Answer F1 by type": {key: mean(value) for key, value in max_answer_f1s_by_type.items()},
|
132 |
+
"Evidence F1": mean(max_evidence_f1s),
|
133 |
+
"Missing predictions": num_missing_predictions
|
134 |
+
}
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
parser = argparse.ArgumentParser()
|
138 |
+
parser.add_argument(
|
139 |
+
"--predictions",
|
140 |
+
type=str,
|
141 |
+
required=True,
|
142 |
+
help="""JSON lines file with each line in format:
|
143 |
+
{'question_id': str, 'predicted_answer': str, 'predicted_evidence': List[str]}"""
|
144 |
+
)
|
145 |
+
parser.add_argument(
|
146 |
+
"--gold",
|
147 |
+
type=str,
|
148 |
+
required=True,
|
149 |
+
help="Test or dev set from the released dataset"
|
150 |
+
)
|
151 |
+
parser.add_argument(
|
152 |
+
"--text_evidence_only",
|
153 |
+
action="store_true",
|
154 |
+
help="If set, the evaluator will ignore evidence in figures and tables while reporting evidence f1"
|
155 |
+
)
|
156 |
+
args = parser.parse_args()
|
157 |
+
gold_data = json.load(open(args.gold))
|
158 |
+
gold_answers_and_evidence = get_answers_and_evidence(gold_data, args.text_evidence_only)
|
159 |
+
predicted_answers_and_evidence = {}
|
160 |
+
for line in open(args.predictions):
|
161 |
+
prediction_data = json.loads(line)
|
162 |
+
predicted_answers_and_evidence[prediction_data["question_id"]] = {
|
163 |
+
"answer": prediction_data["predicted_answer"],
|
164 |
+
"evidence": prediction_data["predicted_evidence"]
|
165 |
+
}
|
166 |
+
evaluation_output = evaluate(gold_answers_and_evidence, predicted_answers_and_evidence)
|
167 |
+
print(json.dumps(evaluation_output, indent=2))
|
original_data/qasper-train-dev-v0.3/README.md
ADDED
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
A Dataset of Information Seeking Questions and Answers Anchored in Research Papers
|
2 |
+
----------------------------------------------------------------------------------
|
3 |
+
|
4 |
+
## Version 0.3
|
5 |
+
|
6 |
+
The tarball you found this README in should contain the training and development sets of Qasper version 0.3. The images of the tables and figures
|
7 |
+
in the papers associated can be found here: https://qasper-dataset.s3.us-west-2.amazonaws.com/train_dev_figures_and_tables.tgz
|
8 |
+
|
9 |
+
The full text of the papers is extracted from S2ORC (Lo et al., 2020).
|
10 |
+
|
11 |
+
Each file is in JSON format, where the keys are arxiv ids, and the values are dicts containing `title`, `abstract`, `full_text`, `figures_and_tables`, and `qas` (QA pairs).
|
12 |
+
|
13 |
+
## Differences from v0.2
|
14 |
+
|
15 |
+
Due to an issue in the annotation interface, a small number of annotations (about 0.6%) had multiple answer types (e.g.: unanswerable and boolean; see more information on answer types in the final section of this README) in v0.2. These were manually fixed to create v0.3. These fixes affected train, development, and test sets.
|
16 |
+
|
17 |
+
## Figures and tables
|
18 |
+
|
19 |
+
These are new starting version 0.2. The actual images of the figures and tables can be downloaded from the link above. The JSON files contain the
|
20 |
+
captions to those images in the `figure_and_table_captions` field.
|
21 |
+
|
22 |
+
This field is a dict whose keys are file names of the images of tables and figures, and the values are their captions.
|
23 |
+
|
24 |
+
For example, the paper with arxiv id `1811.00942` is in the training set, and contains the following `figures_and_tables` field:
|
25 |
+
|
26 |
+
```
|
27 |
+
"figures_and_tables": [
|
28 |
+
{
|
29 |
+
"file": "3-Table1-1.png",
|
30 |
+
"caption": "Table 1: Comparison of neural language models on Penn Treebank and WikiText-103."
|
31 |
+
},
|
32 |
+
{
|
33 |
+
"file": "4-Figure1-1.png",
|
34 |
+
"caption": "Figure 1: Log perplexity\u2013recall error with KN-5."
|
35 |
+
},
|
36 |
+
{
|
37 |
+
"file": "4-Figure2-1.png",
|
38 |
+
"caption": "Figure 2: Log perplexity\u2013recall error with QRNN."
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"file": "4-Table2-1.png",
|
42 |
+
"caption": "Table 2: Language modeling results on performance and model quality."
|
43 |
+
}
|
44 |
+
]
|
45 |
+
```
|
46 |
+
|
47 |
+
and when you download the `train_dev_figures_and_tables` tarball, you will see four files in `train/1811.00942`, with file names corresponding to
|
48 |
+
the `file` fields in the list above.
|
49 |
+
|
50 |
+
## Fields specific to questions:
|
51 |
+
|
52 |
+
- `nlp_background` shows the experience the question writer had. The values can be `zero` (no experience), `two` (0 - 2 years of experience), `five` (2 - 5 years of experience), and `infinity` (> 5 years of experience). The field may be empty as well, indicating the writer has chosen not to share this information.
|
53 |
+
|
54 |
+
- `topic_background` shows how familiar the question writer was with the topic of the paper. The values are `unfamiliar`, `familiar`, `research` (meaning that the topic is the research area of the writer), or null.
|
55 |
+
|
56 |
+
- `paper_read`, when specified shows whether the questionwriter has read the paper.
|
57 |
+
|
58 |
+
- `search_query`, if not empty, is the query the question writer used to find the abstract of the paper from a large pool of abstracts we made available to them.
|
59 |
+
|
60 |
+
## Fields specific to answers
|
61 |
+
|
62 |
+
Unanswerable answers have `unanswerable` set to true. The remaining answers have exactly one of the following fields being non-empty.
|
63 |
+
|
64 |
+
- `extractive_spans` are spans in the paper which serve as the answer.
|
65 |
+
- `free_form_answer` is a written out answer.
|
66 |
+
- `yes_no` is true iff the answer is Yes, and false iff the answer is No.
|
67 |
+
|
68 |
+
`evidence` is the set of paragraphs, figures or tables used to arrive at the answer. When the evidence is a table or a figure, it starts with the
|
69 |
+
string `FLOAT SELECTED`, and contains the caption of the corresponding table or figure.
|
70 |
+
|
71 |
+
`highlighted_evidence` is the set of sentences the answer providers selected as evidence if they chose textual evidence. The text in the `evidence` field is a mapping from these sentences to the paragraph level. That is, if you see textual evidence in the `evidence` field, it is guaranteed to be entire paragraphs, while that is not the case with `highlighted_evidence`.
|
original_data/qasper-train-dev-v0.3/qasper-dev-v0.3.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ae7ee62a65b1c4225791c70de80c2aad4e8998cf1fd4f09a53103db4f21af93
|
3 |
+
size 11398686
|
original_data/qasper-train-dev-v0.3/qasper-train-v0.3.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9458bfe76074a8fa8d1685af02bcc73537aa6d338ad20591dfaff1946bc88bf4
|
3 |
+
size 31969387
|
qasper.ipynb
ADDED
@@ -0,0 +1,2561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"# QASPER evaluation"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": 1,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"%load_ext autoreload\n",
|
17 |
+
"%autoreload 2"
|
18 |
+
]
|
19 |
+
},
|
20 |
+
{
|
21 |
+
"cell_type": "code",
|
22 |
+
"execution_count": 2,
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stderr",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"/Users/ag2435/anaconda3/envs/arxiv-agent/lib/python3.12/site-packages/tqdm/auto.py:21: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
|
30 |
+
" from .autonotebook import tqdm as notebook_tqdm\n"
|
31 |
+
]
|
32 |
+
}
|
33 |
+
],
|
34 |
+
"source": [
|
35 |
+
"import json\n",
|
36 |
+
"import os\n",
|
37 |
+
"import plotly.express as px\n",
|
38 |
+
"import plotly.graph_objects as go\n",
|
39 |
+
"import dataset_reader\n",
|
40 |
+
"from transformers.tokenization_utils_base import BatchEncoding"
|
41 |
+
]
|
42 |
+
},
|
43 |
+
{
|
44 |
+
"cell_type": "code",
|
45 |
+
"execution_count": 3,
|
46 |
+
"metadata": {},
|
47 |
+
"outputs": [],
|
48 |
+
"source": [
|
49 |
+
"# input_path = 'original_data/qasper-train-dev-v0.3/qasper-train-v0.3.json'\n",
|
50 |
+
"input_path = 'original_data/qasper-test-and-evaluator-v0.3/qasper-test-v0.3.json'\n",
|
51 |
+
"output_path = 'data'\n",
|
52 |
+
"split = 'test'\n",
|
53 |
+
"assert split in input_path"
|
54 |
+
]
|
55 |
+
},
|
56 |
+
{
|
57 |
+
"cell_type": "code",
|
58 |
+
"execution_count": 4,
|
59 |
+
"metadata": {},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"reader = dataset_reader.QasperReader(include_global_attention_mask=False)\n",
|
63 |
+
"instances = list(reader._read(input_path))"
|
64 |
+
]
|
65 |
+
},
|
66 |
+
{
|
67 |
+
"cell_type": "code",
|
68 |
+
"execution_count": 5,
|
69 |
+
"metadata": {},
|
70 |
+
"outputs": [
|
71 |
+
{
|
72 |
+
"data": {
|
73 |
+
"text/plain": [
|
74 |
+
"defaultdict(int,\n",
|
75 |
+
" {'number of documents': 416,\n",
|
76 |
+
" 'number of questions': 1451,\n",
|
77 |
+
" 'number of answers': 3554,\n",
|
78 |
+
" 'questions with multiple answers': 1427,\n",
|
79 |
+
" 'extractive questions': 1817,\n",
|
80 |
+
" 'extractive questions with multiple spans': 787,\n",
|
81 |
+
" 'multiple_evidence_spans_count': 1063,\n",
|
82 |
+
" 'freeform answers': 878,\n",
|
83 |
+
" 'answers with table or figure as evidence': 391,\n",
|
84 |
+
" 'answers with no evidence': 444,\n",
|
85 |
+
" 'unanswerable questions': 366,\n",
|
86 |
+
" 'yes/no questions': 493,\n",
|
87 |
+
" 'number of truncated contexts': 2})"
|
88 |
+
]
|
89 |
+
},
|
90 |
+
"execution_count": 5,
|
91 |
+
"metadata": {},
|
92 |
+
"output_type": "execute_result"
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"source": [
|
96 |
+
"reader._stats"
|
97 |
+
]
|
98 |
+
},
|
99 |
+
{
|
100 |
+
"cell_type": "code",
|
101 |
+
"execution_count": 6,
|
102 |
+
"metadata": {},
|
103 |
+
"outputs": [
|
104 |
+
{
|
105 |
+
"data": {
|
106 |
+
"application/vnd.plotly.v1+json": {
|
107 |
+
"config": {
|
108 |
+
"plotlyServerURL": "https://plot.ly"
|
109 |
+
},
|
110 |
+
"data": [
|
111 |
+
{
|
112 |
+
"alignmentgroup": "True",
|
113 |
+
"bingroup": "x",
|
114 |
+
"hovertemplate": "variable=0<br>value=%{x}<br>count=%{y}<extra></extra>",
|
115 |
+
"legendgroup": "0",
|
116 |
+
"marker": {
|
117 |
+
"color": "#636efa",
|
118 |
+
"pattern": {
|
119 |
+
"shape": ""
|
120 |
+
}
|
121 |
+
},
|
122 |
+
"name": "0",
|
123 |
+
"offsetgroup": "0",
|
124 |
+
"orientation": "v",
|
125 |
+
"showlegend": true,
|
126 |
+
"type": "histogram",
|
127 |
+
"x": [
|
128 |
+
7574,
|
129 |
+
7569,
|
130 |
+
7574,
|
131 |
+
7577,
|
132 |
+
4103,
|
133 |
+
5491,
|
134 |
+
5489,
|
135 |
+
5489,
|
136 |
+
5491,
|
137 |
+
5492,
|
138 |
+
5489,
|
139 |
+
4802,
|
140 |
+
4802,
|
141 |
+
6355,
|
142 |
+
6358,
|
143 |
+
6363,
|
144 |
+
2632,
|
145 |
+
2638,
|
146 |
+
2633,
|
147 |
+
3556,
|
148 |
+
3557,
|
149 |
+
3557,
|
150 |
+
3954,
|
151 |
+
3948,
|
152 |
+
3947,
|
153 |
+
3948,
|
154 |
+
2593,
|
155 |
+
2592,
|
156 |
+
2589,
|
157 |
+
7232,
|
158 |
+
4374,
|
159 |
+
4379,
|
160 |
+
4375,
|
161 |
+
7679,
|
162 |
+
7679,
|
163 |
+
7680,
|
164 |
+
7680,
|
165 |
+
7679,
|
166 |
+
7681,
|
167 |
+
2631,
|
168 |
+
2629,
|
169 |
+
2627,
|
170 |
+
2627,
|
171 |
+
2627,
|
172 |
+
5644,
|
173 |
+
5644,
|
174 |
+
5641,
|
175 |
+
5642,
|
176 |
+
4153,
|
177 |
+
4153,
|
178 |
+
4152,
|
179 |
+
3628,
|
180 |
+
3627,
|
181 |
+
3626,
|
182 |
+
6481,
|
183 |
+
6471,
|
184 |
+
6477,
|
185 |
+
5854,
|
186 |
+
5851,
|
187 |
+
5855,
|
188 |
+
2812,
|
189 |
+
2814,
|
190 |
+
4355,
|
191 |
+
4355,
|
192 |
+
4352,
|
193 |
+
4355,
|
194 |
+
5766,
|
195 |
+
5763,
|
196 |
+
5767,
|
197 |
+
5764,
|
198 |
+
5758,
|
199 |
+
3341,
|
200 |
+
3339,
|
201 |
+
3360,
|
202 |
+
3341,
|
203 |
+
3345,
|
204 |
+
1649,
|
205 |
+
1651,
|
206 |
+
1650,
|
207 |
+
2317,
|
208 |
+
2315,
|
209 |
+
2314,
|
210 |
+
2893,
|
211 |
+
2891,
|
212 |
+
2895,
|
213 |
+
2664,
|
214 |
+
2668,
|
215 |
+
2668,
|
216 |
+
2663,
|
217 |
+
5552,
|
218 |
+
5559,
|
219 |
+
5557,
|
220 |
+
5555,
|
221 |
+
6438,
|
222 |
+
6443,
|
223 |
+
6438,
|
224 |
+
6437,
|
225 |
+
5294,
|
226 |
+
5290,
|
227 |
+
5291,
|
228 |
+
5291,
|
229 |
+
4229,
|
230 |
+
4224,
|
231 |
+
4224,
|
232 |
+
2715,
|
233 |
+
2711,
|
234 |
+
2716,
|
235 |
+
2710,
|
236 |
+
2711,
|
237 |
+
2712,
|
238 |
+
2710,
|
239 |
+
3279,
|
240 |
+
3282,
|
241 |
+
3282,
|
242 |
+
3282,
|
243 |
+
3283,
|
244 |
+
3280,
|
245 |
+
3474,
|
246 |
+
3474,
|
247 |
+
3475,
|
248 |
+
3476,
|
249 |
+
5646,
|
250 |
+
5646,
|
251 |
+
5646,
|
252 |
+
5642,
|
253 |
+
4563,
|
254 |
+
4561,
|
255 |
+
4562,
|
256 |
+
4567,
|
257 |
+
4563,
|
258 |
+
4563,
|
259 |
+
4561,
|
260 |
+
5194,
|
261 |
+
5189,
|
262 |
+
5196,
|
263 |
+
8518,
|
264 |
+
8519,
|
265 |
+
8518,
|
266 |
+
8520,
|
267 |
+
8519,
|
268 |
+
8519,
|
269 |
+
3673,
|
270 |
+
3673,
|
271 |
+
3676,
|
272 |
+
6399,
|
273 |
+
6407,
|
274 |
+
4527,
|
275 |
+
4522,
|
276 |
+
4522,
|
277 |
+
5838,
|
278 |
+
5836,
|
279 |
+
5836,
|
280 |
+
8347,
|
281 |
+
8349,
|
282 |
+
1179,
|
283 |
+
1177,
|
284 |
+
1176,
|
285 |
+
1177,
|
286 |
+
1176,
|
287 |
+
3294,
|
288 |
+
3294,
|
289 |
+
6697,
|
290 |
+
6708,
|
291 |
+
6707,
|
292 |
+
5097,
|
293 |
+
5094,
|
294 |
+
5105,
|
295 |
+
2141,
|
296 |
+
2144,
|
297 |
+
2143,
|
298 |
+
4648,
|
299 |
+
4643,
|
300 |
+
4645,
|
301 |
+
3723,
|
302 |
+
3723,
|
303 |
+
3723,
|
304 |
+
3721,
|
305 |
+
2445,
|
306 |
+
2444,
|
307 |
+
3659,
|
308 |
+
3649,
|
309 |
+
3647,
|
310 |
+
3650,
|
311 |
+
4460,
|
312 |
+
4460,
|
313 |
+
3645,
|
314 |
+
3641,
|
315 |
+
3641,
|
316 |
+
3643,
|
317 |
+
2776,
|
318 |
+
2783,
|
319 |
+
2771,
|
320 |
+
3348,
|
321 |
+
3341,
|
322 |
+
3344,
|
323 |
+
3341,
|
324 |
+
2778,
|
325 |
+
2779,
|
326 |
+
2783,
|
327 |
+
2781,
|
328 |
+
3659,
|
329 |
+
3653,
|
330 |
+
3658,
|
331 |
+
3653,
|
332 |
+
2624,
|
333 |
+
2628,
|
334 |
+
2627,
|
335 |
+
2625,
|
336 |
+
2625,
|
337 |
+
2626,
|
338 |
+
3584,
|
339 |
+
3580,
|
340 |
+
2838,
|
341 |
+
2837,
|
342 |
+
4610,
|
343 |
+
4607,
|
344 |
+
4605,
|
345 |
+
4604,
|
346 |
+
4605,
|
347 |
+
4802,
|
348 |
+
4802,
|
349 |
+
4804,
|
350 |
+
4802,
|
351 |
+
4801,
|
352 |
+
4798,
|
353 |
+
4800,
|
354 |
+
2959,
|
355 |
+
2954,
|
356 |
+
2956,
|
357 |
+
5573,
|
358 |
+
5578,
|
359 |
+
2539,
|
360 |
+
2537,
|
361 |
+
2537,
|
362 |
+
14957,
|
363 |
+
14954,
|
364 |
+
14946,
|
365 |
+
14953,
|
366 |
+
4510,
|
367 |
+
4502,
|
368 |
+
4502,
|
369 |
+
4504,
|
370 |
+
4501,
|
371 |
+
4774,
|
372 |
+
4775,
|
373 |
+
5710,
|
374 |
+
5929,
|
375 |
+
5928,
|
376 |
+
3004,
|
377 |
+
3003,
|
378 |
+
3003,
|
379 |
+
3007,
|
380 |
+
3008,
|
381 |
+
4526,
|
382 |
+
4530,
|
383 |
+
4528,
|
384 |
+
4526,
|
385 |
+
2903,
|
386 |
+
2906,
|
387 |
+
2906,
|
388 |
+
3373,
|
389 |
+
3379,
|
390 |
+
3371,
|
391 |
+
3375,
|
392 |
+
3375,
|
393 |
+
3637,
|
394 |
+
3637,
|
395 |
+
2096,
|
396 |
+
2090,
|
397 |
+
6331,
|
398 |
+
6327,
|
399 |
+
6328,
|
400 |
+
5317,
|
401 |
+
5320,
|
402 |
+
5310,
|
403 |
+
5314,
|
404 |
+
5963,
|
405 |
+
5960,
|
406 |
+
2989,
|
407 |
+
2989,
|
408 |
+
2991,
|
409 |
+
3545,
|
410 |
+
3551,
|
411 |
+
3546,
|
412 |
+
3544,
|
413 |
+
6593,
|
414 |
+
6609,
|
415 |
+
6586,
|
416 |
+
5183,
|
417 |
+
5189,
|
418 |
+
5182,
|
419 |
+
6773,
|
420 |
+
6760,
|
421 |
+
6772,
|
422 |
+
6761,
|
423 |
+
5712,
|
424 |
+
5710,
|
425 |
+
5710,
|
426 |
+
6712,
|
427 |
+
6711,
|
428 |
+
6715,
|
429 |
+
4002,
|
430 |
+
3992,
|
431 |
+
3998,
|
432 |
+
6192,
|
433 |
+
6184,
|
434 |
+
6186,
|
435 |
+
6189,
|
436 |
+
5478,
|
437 |
+
5485,
|
438 |
+
4384,
|
439 |
+
4386,
|
440 |
+
4385,
|
441 |
+
4384,
|
442 |
+
3545,
|
443 |
+
3264,
|
444 |
+
3266,
|
445 |
+
3263,
|
446 |
+
3266,
|
447 |
+
5838,
|
448 |
+
5840,
|
449 |
+
2884,
|
450 |
+
2880,
|
451 |
+
2883,
|
452 |
+
2884,
|
453 |
+
2998,
|
454 |
+
2998,
|
455 |
+
2998,
|
456 |
+
3001,
|
457 |
+
2706,
|
458 |
+
2701,
|
459 |
+
2704,
|
460 |
+
2704,
|
461 |
+
4195,
|
462 |
+
4197,
|
463 |
+
4194,
|
464 |
+
2768,
|
465 |
+
2761,
|
466 |
+
2767,
|
467 |
+
2762,
|
468 |
+
3169,
|
469 |
+
6721,
|
470 |
+
4036,
|
471 |
+
2888,
|
472 |
+
2887,
|
473 |
+
8826,
|
474 |
+
8826,
|
475 |
+
8826,
|
476 |
+
8824,
|
477 |
+
2398,
|
478 |
+
2404,
|
479 |
+
5021,
|
480 |
+
5038,
|
481 |
+
5030,
|
482 |
+
5825,
|
483 |
+
3670,
|
484 |
+
3669,
|
485 |
+
3577,
|
486 |
+
3206,
|
487 |
+
3204,
|
488 |
+
4054,
|
489 |
+
8719,
|
490 |
+
4150,
|
491 |
+
4153,
|
492 |
+
854,
|
493 |
+
7084,
|
494 |
+
7088,
|
495 |
+
7086,
|
496 |
+
6814,
|
497 |
+
3623,
|
498 |
+
3624,
|
499 |
+
7944,
|
500 |
+
4680,
|
501 |
+
4682,
|
502 |
+
4682,
|
503 |
+
4680,
|
504 |
+
4683,
|
505 |
+
4682,
|
506 |
+
4679,
|
507 |
+
4680,
|
508 |
+
5535,
|
509 |
+
5542,
|
510 |
+
5534,
|
511 |
+
5539,
|
512 |
+
5542,
|
513 |
+
5537,
|
514 |
+
4813,
|
515 |
+
4816,
|
516 |
+
4815,
|
517 |
+
4812,
|
518 |
+
4812,
|
519 |
+
4813,
|
520 |
+
2785,
|
521 |
+
2783,
|
522 |
+
2786,
|
523 |
+
2792,
|
524 |
+
2784,
|
525 |
+
2792,
|
526 |
+
4384,
|
527 |
+
4383,
|
528 |
+
4386,
|
529 |
+
4385,
|
530 |
+
4387,
|
531 |
+
4825,
|
532 |
+
4827,
|
533 |
+
4832,
|
534 |
+
4823,
|
535 |
+
4823,
|
536 |
+
2876,
|
537 |
+
2877,
|
538 |
+
2873,
|
539 |
+
2877,
|
540 |
+
2873,
|
541 |
+
7625,
|
542 |
+
7631,
|
543 |
+
7632,
|
544 |
+
7629,
|
545 |
+
7625,
|
546 |
+
3088,
|
547 |
+
3090,
|
548 |
+
3087,
|
549 |
+
3087,
|
550 |
+
2874,
|
551 |
+
2870,
|
552 |
+
2870,
|
553 |
+
2867,
|
554 |
+
2866,
|
555 |
+
2868,
|
556 |
+
2867,
|
557 |
+
2867,
|
558 |
+
1977,
|
559 |
+
1975,
|
560 |
+
1979,
|
561 |
+
1976,
|
562 |
+
4580,
|
563 |
+
4587,
|
564 |
+
4585,
|
565 |
+
4590,
|
566 |
+
8314,
|
567 |
+
8310,
|
568 |
+
8307,
|
569 |
+
8314,
|
570 |
+
5827,
|
571 |
+
5823,
|
572 |
+
5823,
|
573 |
+
5825,
|
574 |
+
5974,
|
575 |
+
5971,
|
576 |
+
5974,
|
577 |
+
5972,
|
578 |
+
5974,
|
579 |
+
5973,
|
580 |
+
5974,
|
581 |
+
5798,
|
582 |
+
5800,
|
583 |
+
5786,
|
584 |
+
4363,
|
585 |
+
4363,
|
586 |
+
4362,
|
587 |
+
3041,
|
588 |
+
3039,
|
589 |
+
3036,
|
590 |
+
4393,
|
591 |
+
4394,
|
592 |
+
4393,
|
593 |
+
6195,
|
594 |
+
6199,
|
595 |
+
6196,
|
596 |
+
6384,
|
597 |
+
6384,
|
598 |
+
6384,
|
599 |
+
6384,
|
600 |
+
6383,
|
601 |
+
6386,
|
602 |
+
3365,
|
603 |
+
3366,
|
604 |
+
3379,
|
605 |
+
5022,
|
606 |
+
5019,
|
607 |
+
5017,
|
608 |
+
2636,
|
609 |
+
2646,
|
610 |
+
2639,
|
611 |
+
2635,
|
612 |
+
2636,
|
613 |
+
2650,
|
614 |
+
5039,
|
615 |
+
5035,
|
616 |
+
5037,
|
617 |
+
4184,
|
618 |
+
4185,
|
619 |
+
4184,
|
620 |
+
4807,
|
621 |
+
4809,
|
622 |
+
4806,
|
623 |
+
4806,
|
624 |
+
4808,
|
625 |
+
4815,
|
626 |
+
3033,
|
627 |
+
3044,
|
628 |
+
3045,
|
629 |
+
3314,
|
630 |
+
3313,
|
631 |
+
3313,
|
632 |
+
3308,
|
633 |
+
3313,
|
634 |
+
3311,
|
635 |
+
4984,
|
636 |
+
4977,
|
637 |
+
4985,
|
638 |
+
5919,
|
639 |
+
5918,
|
640 |
+
5919,
|
641 |
+
4500,
|
642 |
+
4505,
|
643 |
+
4516,
|
644 |
+
4341,
|
645 |
+
4348,
|
646 |
+
4347,
|
647 |
+
4507,
|
648 |
+
4522,
|
649 |
+
4514,
|
650 |
+
7900,
|
651 |
+
7887,
|
652 |
+
7888,
|
653 |
+
7887,
|
654 |
+
7886,
|
655 |
+
7887,
|
656 |
+
7891,
|
657 |
+
7888,
|
658 |
+
5912,
|
659 |
+
5908,
|
660 |
+
5904,
|
661 |
+
5905,
|
662 |
+
5902,
|
663 |
+
3650,
|
664 |
+
3648,
|
665 |
+
3651,
|
666 |
+
3651,
|
667 |
+
3648,
|
668 |
+
3554,
|
669 |
+
3557,
|
670 |
+
3553,
|
671 |
+
3557,
|
672 |
+
3557,
|
673 |
+
2572,
|
674 |
+
2569,
|
675 |
+
2569,
|
676 |
+
2569,
|
677 |
+
2572,
|
678 |
+
6191,
|
679 |
+
6188,
|
680 |
+
6189,
|
681 |
+
6189,
|
682 |
+
6190,
|
683 |
+
4172,
|
684 |
+
4174,
|
685 |
+
4174,
|
686 |
+
4172,
|
687 |
+
4170,
|
688 |
+
5597,
|
689 |
+
5596,
|
690 |
+
5598,
|
691 |
+
5597,
|
692 |
+
5598,
|
693 |
+
9010,
|
694 |
+
9011,
|
695 |
+
9013,
|
696 |
+
9013,
|
697 |
+
9009,
|
698 |
+
9012,
|
699 |
+
5407,
|
700 |
+
5413,
|
701 |
+
5408,
|
702 |
+
5406,
|
703 |
+
5406,
|
704 |
+
5406,
|
705 |
+
5713,
|
706 |
+
5711,
|
707 |
+
5713,
|
708 |
+
5712,
|
709 |
+
6142,
|
710 |
+
6142,
|
711 |
+
6140,
|
712 |
+
6144,
|
713 |
+
5549,
|
714 |
+
5543,
|
715 |
+
5419,
|
716 |
+
5420,
|
717 |
+
7092,
|
718 |
+
7089,
|
719 |
+
7086,
|
720 |
+
7089,
|
721 |
+
6252,
|
722 |
+
6256,
|
723 |
+
6257,
|
724 |
+
6251,
|
725 |
+
2699,
|
726 |
+
2698,
|
727 |
+
5691,
|
728 |
+
5691,
|
729 |
+
2859,
|
730 |
+
2858,
|
731 |
+
2860,
|
732 |
+
2861,
|
733 |
+
4917,
|
734 |
+
4921,
|
735 |
+
4923,
|
736 |
+
4918,
|
737 |
+
1770,
|
738 |
+
1772,
|
739 |
+
6205,
|
740 |
+
6206,
|
741 |
+
5200,
|
742 |
+
5199,
|
743 |
+
3112,
|
744 |
+
3108,
|
745 |
+
2603,
|
746 |
+
2597,
|
747 |
+
2599,
|
748 |
+
2598,
|
749 |
+
4933,
|
750 |
+
4931,
|
751 |
+
4929,
|
752 |
+
4928,
|
753 |
+
3285,
|
754 |
+
3292,
|
755 |
+
3289,
|
756 |
+
3291,
|
757 |
+
3290,
|
758 |
+
3287,
|
759 |
+
3996,
|
760 |
+
4002,
|
761 |
+
8335,
|
762 |
+
8340,
|
763 |
+
6619,
|
764 |
+
6614,
|
765 |
+
2819,
|
766 |
+
2822,
|
767 |
+
2816,
|
768 |
+
2817,
|
769 |
+
2819,
|
770 |
+
2478,
|
771 |
+
2472,
|
772 |
+
2470,
|
773 |
+
2471,
|
774 |
+
2466,
|
775 |
+
4815,
|
776 |
+
4824,
|
777 |
+
4822,
|
778 |
+
4821,
|
779 |
+
4819,
|
780 |
+
7170,
|
781 |
+
7168,
|
782 |
+
7169,
|
783 |
+
7171,
|
784 |
+
7170,
|
785 |
+
7169,
|
786 |
+
7170,
|
787 |
+
7171,
|
788 |
+
5122,
|
789 |
+
5120,
|
790 |
+
5120,
|
791 |
+
5123,
|
792 |
+
5123,
|
793 |
+
5123,
|
794 |
+
2853,
|
795 |
+
2854,
|
796 |
+
2853,
|
797 |
+
13450,
|
798 |
+
13449,
|
799 |
+
13449,
|
800 |
+
2814,
|
801 |
+
2824,
|
802 |
+
2818,
|
803 |
+
5580,
|
804 |
+
5579,
|
805 |
+
5578,
|
806 |
+
5929,
|
807 |
+
5933,
|
808 |
+
5949,
|
809 |
+
5880,
|
810 |
+
5881,
|
811 |
+
5886,
|
812 |
+
5572,
|
813 |
+
5574,
|
814 |
+
5575,
|
815 |
+
3336,
|
816 |
+
3336,
|
817 |
+
3333,
|
818 |
+
3336,
|
819 |
+
3339,
|
820 |
+
3336,
|
821 |
+
3336,
|
822 |
+
3336,
|
823 |
+
3333,
|
824 |
+
3337,
|
825 |
+
8766,
|
826 |
+
8769,
|
827 |
+
8764,
|
828 |
+
8766,
|
829 |
+
5958,
|
830 |
+
5979,
|
831 |
+
5958,
|
832 |
+
5957,
|
833 |
+
6918,
|
834 |
+
6924,
|
835 |
+
6924,
|
836 |
+
6920,
|
837 |
+
7068,
|
838 |
+
7063,
|
839 |
+
7064,
|
840 |
+
7064,
|
841 |
+
4862,
|
842 |
+
4860,
|
843 |
+
4859,
|
844 |
+
4860,
|
845 |
+
5358,
|
846 |
+
5358,
|
847 |
+
5360,
|
848 |
+
5360,
|
849 |
+
5284,
|
850 |
+
5268,
|
851 |
+
5270,
|
852 |
+
5271,
|
853 |
+
3054,
|
854 |
+
3047,
|
855 |
+
3051,
|
856 |
+
3052,
|
857 |
+
3045,
|
858 |
+
7561,
|
859 |
+
7574,
|
860 |
+
7568,
|
861 |
+
7567,
|
862 |
+
7564,
|
863 |
+
3948,
|
864 |
+
3943,
|
865 |
+
3947,
|
866 |
+
3943,
|
867 |
+
3943,
|
868 |
+
2973,
|
869 |
+
2975,
|
870 |
+
2974,
|
871 |
+
2981,
|
872 |
+
2973,
|
873 |
+
2979,
|
874 |
+
2783,
|
875 |
+
2783,
|
876 |
+
2779,
|
877 |
+
5075,
|
878 |
+
5079,
|
879 |
+
5070,
|
880 |
+
5083,
|
881 |
+
5071,
|
882 |
+
7581,
|
883 |
+
7580,
|
884 |
+
7576,
|
885 |
+
7584,
|
886 |
+
7581,
|
887 |
+
7579,
|
888 |
+
7581,
|
889 |
+
3112,
|
890 |
+
3109,
|
891 |
+
3108,
|
892 |
+
3108,
|
893 |
+
3108,
|
894 |
+
3077,
|
895 |
+
3075,
|
896 |
+
4773,
|
897 |
+
4772,
|
898 |
+
4770,
|
899 |
+
2703,
|
900 |
+
3717,
|
901 |
+
3721,
|
902 |
+
3723,
|
903 |
+
3723,
|
904 |
+
6314,
|
905 |
+
6311,
|
906 |
+
6311,
|
907 |
+
1775,
|
908 |
+
1771,
|
909 |
+
1773,
|
910 |
+
1774,
|
911 |
+
8750,
|
912 |
+
8754,
|
913 |
+
8756,
|
914 |
+
8746,
|
915 |
+
6554,
|
916 |
+
6558,
|
917 |
+
6560,
|
918 |
+
6557,
|
919 |
+
6401,
|
920 |
+
6398,
|
921 |
+
6399,
|
922 |
+
6403,
|
923 |
+
6226,
|
924 |
+
6222,
|
925 |
+
6220,
|
926 |
+
6222,
|
927 |
+
6224,
|
928 |
+
6221,
|
929 |
+
6222,
|
930 |
+
5838,
|
931 |
+
5844,
|
932 |
+
6234,
|
933 |
+
6231,
|
934 |
+
6231,
|
935 |
+
6382,
|
936 |
+
6382,
|
937 |
+
6385,
|
938 |
+
2205,
|
939 |
+
2208,
|
940 |
+
2204,
|
941 |
+
5028,
|
942 |
+
5024,
|
943 |
+
5023,
|
944 |
+
3681,
|
945 |
+
3681,
|
946 |
+
3678,
|
947 |
+
5719,
|
948 |
+
5722,
|
949 |
+
5721,
|
950 |
+
5722,
|
951 |
+
5720,
|
952 |
+
3376,
|
953 |
+
3371,
|
954 |
+
3361,
|
955 |
+
3356,
|
956 |
+
3016,
|
957 |
+
3013,
|
958 |
+
3014,
|
959 |
+
3014,
|
960 |
+
6692,
|
961 |
+
6698,
|
962 |
+
6695,
|
963 |
+
6693,
|
964 |
+
6693,
|
965 |
+
3209,
|
966 |
+
3223,
|
967 |
+
3700,
|
968 |
+
5471,
|
969 |
+
5471,
|
970 |
+
5471,
|
971 |
+
5476,
|
972 |
+
5473,
|
973 |
+
5254,
|
974 |
+
5255,
|
975 |
+
5225,
|
976 |
+
5226,
|
977 |
+
5225,
|
978 |
+
5224,
|
979 |
+
5224,
|
980 |
+
4233,
|
981 |
+
4237,
|
982 |
+
5952,
|
983 |
+
5952,
|
984 |
+
5951,
|
985 |
+
5949,
|
986 |
+
1684,
|
987 |
+
1684,
|
988 |
+
1681,
|
989 |
+
1682,
|
990 |
+
1686,
|
991 |
+
2975,
|
992 |
+
2973,
|
993 |
+
2976,
|
994 |
+
2975,
|
995 |
+
2535,
|
996 |
+
2534,
|
997 |
+
2532,
|
998 |
+
2534,
|
999 |
+
928,
|
1000 |
+
923,
|
1001 |
+
948,
|
1002 |
+
929,
|
1003 |
+
2386,
|
1004 |
+
2382,
|
1005 |
+
2388,
|
1006 |
+
4987,
|
1007 |
+
4984,
|
1008 |
+
4983,
|
1009 |
+
4985,
|
1010 |
+
6879,
|
1011 |
+
6884,
|
1012 |
+
6880,
|
1013 |
+
6881,
|
1014 |
+
6877,
|
1015 |
+
6877,
|
1016 |
+
6880,
|
1017 |
+
6879,
|
1018 |
+
2558,
|
1019 |
+
2556,
|
1020 |
+
2563,
|
1021 |
+
2183,
|
1022 |
+
2181,
|
1023 |
+
2181,
|
1024 |
+
9704,
|
1025 |
+
9707,
|
1026 |
+
9699,
|
1027 |
+
9704,
|
1028 |
+
2234,
|
1029 |
+
2258,
|
1030 |
+
2254,
|
1031 |
+
5560,
|
1032 |
+
5560,
|
1033 |
+
5575,
|
1034 |
+
5564,
|
1035 |
+
2608,
|
1036 |
+
2604,
|
1037 |
+
2603,
|
1038 |
+
2604,
|
1039 |
+
2605,
|
1040 |
+
5704,
|
1041 |
+
4044,
|
1042 |
+
4038,
|
1043 |
+
4035,
|
1044 |
+
6779,
|
1045 |
+
6766,
|
1046 |
+
6766,
|
1047 |
+
5841,
|
1048 |
+
5840,
|
1049 |
+
5841,
|
1050 |
+
5575,
|
1051 |
+
5572,
|
1052 |
+
4692,
|
1053 |
+
4694,
|
1054 |
+
4696,
|
1055 |
+
4693,
|
1056 |
+
4696,
|
1057 |
+
4700,
|
1058 |
+
4700,
|
1059 |
+
4700,
|
1060 |
+
2548,
|
1061 |
+
2548,
|
1062 |
+
2548,
|
1063 |
+
2552,
|
1064 |
+
2551,
|
1065 |
+
2549,
|
1066 |
+
2546,
|
1067 |
+
2545,
|
1068 |
+
6862,
|
1069 |
+
6866,
|
1070 |
+
6871,
|
1071 |
+
6864,
|
1072 |
+
9929,
|
1073 |
+
4639,
|
1074 |
+
4643,
|
1075 |
+
4642,
|
1076 |
+
3431,
|
1077 |
+
3429,
|
1078 |
+
2752,
|
1079 |
+
2756,
|
1080 |
+
2759,
|
1081 |
+
3365,
|
1082 |
+
3364,
|
1083 |
+
3369,
|
1084 |
+
3364,
|
1085 |
+
3364,
|
1086 |
+
6938,
|
1087 |
+
6943,
|
1088 |
+
6941,
|
1089 |
+
6946,
|
1090 |
+
6950,
|
1091 |
+
2610,
|
1092 |
+
2612,
|
1093 |
+
3340,
|
1094 |
+
5471,
|
1095 |
+
5471,
|
1096 |
+
5473,
|
1097 |
+
5476,
|
1098 |
+
3291,
|
1099 |
+
3296,
|
1100 |
+
3297,
|
1101 |
+
5973,
|
1102 |
+
5970,
|
1103 |
+
5970,
|
1104 |
+
5969,
|
1105 |
+
5971,
|
1106 |
+
14168,
|
1107 |
+
3347,
|
1108 |
+
3347,
|
1109 |
+
3096,
|
1110 |
+
3093,
|
1111 |
+
3100,
|
1112 |
+
3102,
|
1113 |
+
8357,
|
1114 |
+
8354,
|
1115 |
+
8360,
|
1116 |
+
2799,
|
1117 |
+
2800,
|
1118 |
+
2804,
|
1119 |
+
2801,
|
1120 |
+
2800,
|
1121 |
+
3020,
|
1122 |
+
3024,
|
1123 |
+
3017,
|
1124 |
+
3310,
|
1125 |
+
3308,
|
1126 |
+
3308,
|
1127 |
+
3707,
|
1128 |
+
3707,
|
1129 |
+
3703,
|
1130 |
+
3702,
|
1131 |
+
3705,
|
1132 |
+
3703,
|
1133 |
+
7470,
|
1134 |
+
2723,
|
1135 |
+
2724,
|
1136 |
+
4837,
|
1137 |
+
4838,
|
1138 |
+
4840,
|
1139 |
+
4839,
|
1140 |
+
4839,
|
1141 |
+
4839,
|
1142 |
+
4526,
|
1143 |
+
4527,
|
1144 |
+
4526,
|
1145 |
+
4525,
|
1146 |
+
16384,
|
1147 |
+
10069,
|
1148 |
+
10070,
|
1149 |
+
7411,
|
1150 |
+
7420,
|
1151 |
+
7412,
|
1152 |
+
4638,
|
1153 |
+
4638,
|
1154 |
+
4644,
|
1155 |
+
4421,
|
1156 |
+
4415,
|
1157 |
+
4417,
|
1158 |
+
4416,
|
1159 |
+
3425,
|
1160 |
+
3422,
|
1161 |
+
3426,
|
1162 |
+
3423,
|
1163 |
+
2247,
|
1164 |
+
2242,
|
1165 |
+
2244,
|
1166 |
+
4973,
|
1167 |
+
4964,
|
1168 |
+
4970,
|
1169 |
+
7050,
|
1170 |
+
7050,
|
1171 |
+
7057,
|
1172 |
+
8247,
|
1173 |
+
8244,
|
1174 |
+
8236,
|
1175 |
+
8239,
|
1176 |
+
2632,
|
1177 |
+
2629,
|
1178 |
+
2633,
|
1179 |
+
6967,
|
1180 |
+
6968,
|
1181 |
+
6967,
|
1182 |
+
6971,
|
1183 |
+
5029,
|
1184 |
+
5031,
|
1185 |
+
5030,
|
1186 |
+
5034,
|
1187 |
+
2770,
|
1188 |
+
2769,
|
1189 |
+
2763,
|
1190 |
+
2765,
|
1191 |
+
2783,
|
1192 |
+
6005,
|
1193 |
+
6006,
|
1194 |
+
6008,
|
1195 |
+
6005,
|
1196 |
+
7366,
|
1197 |
+
7360,
|
1198 |
+
7361,
|
1199 |
+
4916,
|
1200 |
+
4915,
|
1201 |
+
4914,
|
1202 |
+
4917,
|
1203 |
+
1401,
|
1204 |
+
1422,
|
1205 |
+
1398,
|
1206 |
+
1405,
|
1207 |
+
1404,
|
1208 |
+
1399,
|
1209 |
+
1403,
|
1210 |
+
2565,
|
1211 |
+
4880,
|
1212 |
+
4879,
|
1213 |
+
4878,
|
1214 |
+
5056,
|
1215 |
+
5053,
|
1216 |
+
5059,
|
1217 |
+
5055,
|
1218 |
+
5055,
|
1219 |
+
5055,
|
1220 |
+
1057,
|
1221 |
+
1059,
|
1222 |
+
5954,
|
1223 |
+
5959,
|
1224 |
+
5954,
|
1225 |
+
5956,
|
1226 |
+
5503,
|
1227 |
+
5501,
|
1228 |
+
3995,
|
1229 |
+
3998,
|
1230 |
+
3987,
|
1231 |
+
3990,
|
1232 |
+
6485,
|
1233 |
+
6476,
|
1234 |
+
6476,
|
1235 |
+
6481,
|
1236 |
+
6343,
|
1237 |
+
6340,
|
1238 |
+
6344,
|
1239 |
+
2536,
|
1240 |
+
2937,
|
1241 |
+
2939,
|
1242 |
+
2941,
|
1243 |
+
2938,
|
1244 |
+
2940,
|
1245 |
+
992,
|
1246 |
+
993,
|
1247 |
+
6614,
|
1248 |
+
6615,
|
1249 |
+
6615,
|
1250 |
+
3348,
|
1251 |
+
4479,
|
1252 |
+
4479,
|
1253 |
+
4482,
|
1254 |
+
4481,
|
1255 |
+
4486,
|
1256 |
+
4481,
|
1257 |
+
4482,
|
1258 |
+
2845,
|
1259 |
+
2843,
|
1260 |
+
1390,
|
1261 |
+
1389,
|
1262 |
+
1393,
|
1263 |
+
1398,
|
1264 |
+
8632,
|
1265 |
+
8626,
|
1266 |
+
6202,
|
1267 |
+
6205,
|
1268 |
+
6200,
|
1269 |
+
5081,
|
1270 |
+
5085,
|
1271 |
+
5081,
|
1272 |
+
5082,
|
1273 |
+
8441,
|
1274 |
+
8439,
|
1275 |
+
10067,
|
1276 |
+
10051,
|
1277 |
+
4189,
|
1278 |
+
4179,
|
1279 |
+
4176,
|
1280 |
+
4181,
|
1281 |
+
5106,
|
1282 |
+
5093,
|
1283 |
+
5101,
|
1284 |
+
5093,
|
1285 |
+
2917,
|
1286 |
+
2920,
|
1287 |
+
4627,
|
1288 |
+
4629,
|
1289 |
+
4631,
|
1290 |
+
3333,
|
1291 |
+
3332,
|
1292 |
+
3335,
|
1293 |
+
4089,
|
1294 |
+
4086,
|
1295 |
+
5323,
|
1296 |
+
5330,
|
1297 |
+
5323,
|
1298 |
+
5324,
|
1299 |
+
4734,
|
1300 |
+
4732,
|
1301 |
+
4732,
|
1302 |
+
4700,
|
1303 |
+
4705,
|
1304 |
+
4065,
|
1305 |
+
4068,
|
1306 |
+
6630,
|
1307 |
+
6628,
|
1308 |
+
6624,
|
1309 |
+
6626,
|
1310 |
+
4687,
|
1311 |
+
4681,
|
1312 |
+
4681,
|
1313 |
+
4681,
|
1314 |
+
2247,
|
1315 |
+
2254,
|
1316 |
+
2252,
|
1317 |
+
3083,
|
1318 |
+
3083,
|
1319 |
+
3085,
|
1320 |
+
3083,
|
1321 |
+
3089,
|
1322 |
+
3085,
|
1323 |
+
6165,
|
1324 |
+
6169,
|
1325 |
+
8331,
|
1326 |
+
8336,
|
1327 |
+
8329,
|
1328 |
+
4388,
|
1329 |
+
4389,
|
1330 |
+
4398,
|
1331 |
+
4394,
|
1332 |
+
4387,
|
1333 |
+
5780,
|
1334 |
+
5780,
|
1335 |
+
5784,
|
1336 |
+
8566,
|
1337 |
+
8565,
|
1338 |
+
8569,
|
1339 |
+
8568,
|
1340 |
+
1127,
|
1341 |
+
2902,
|
1342 |
+
2906,
|
1343 |
+
2906,
|
1344 |
+
2901,
|
1345 |
+
9027,
|
1346 |
+
9025,
|
1347 |
+
9029,
|
1348 |
+
2142,
|
1349 |
+
2141,
|
1350 |
+
2142,
|
1351 |
+
1924,
|
1352 |
+
1925,
|
1353 |
+
1924,
|
1354 |
+
5633,
|
1355 |
+
5629,
|
1356 |
+
5632,
|
1357 |
+
5344,
|
1358 |
+
5343,
|
1359 |
+
8741,
|
1360 |
+
8746,
|
1361 |
+
8746,
|
1362 |
+
6040,
|
1363 |
+
6045,
|
1364 |
+
6038,
|
1365 |
+
1303,
|
1366 |
+
1302,
|
1367 |
+
1302,
|
1368 |
+
1301,
|
1369 |
+
4192,
|
1370 |
+
4207,
|
1371 |
+
4198,
|
1372 |
+
4202,
|
1373 |
+
3193,
|
1374 |
+
3195,
|
1375 |
+
3191,
|
1376 |
+
3190,
|
1377 |
+
3191,
|
1378 |
+
3189,
|
1379 |
+
3191,
|
1380 |
+
3191,
|
1381 |
+
3189,
|
1382 |
+
4008,
|
1383 |
+
4009,
|
1384 |
+
4291,
|
1385 |
+
4285,
|
1386 |
+
4291,
|
1387 |
+
4289,
|
1388 |
+
2603,
|
1389 |
+
2606,
|
1390 |
+
2606,
|
1391 |
+
2602,
|
1392 |
+
2604,
|
1393 |
+
4724,
|
1394 |
+
4722,
|
1395 |
+
4723,
|
1396 |
+
4723,
|
1397 |
+
2524,
|
1398 |
+
2529,
|
1399 |
+
5882,
|
1400 |
+
5880,
|
1401 |
+
5883,
|
1402 |
+
5881,
|
1403 |
+
5880,
|
1404 |
+
5879,
|
1405 |
+
3867,
|
1406 |
+
3859,
|
1407 |
+
6677,
|
1408 |
+
6674,
|
1409 |
+
6678,
|
1410 |
+
6677,
|
1411 |
+
6681,
|
1412 |
+
7845,
|
1413 |
+
7842,
|
1414 |
+
5504,
|
1415 |
+
5499,
|
1416 |
+
5654,
|
1417 |
+
5650,
|
1418 |
+
4914,
|
1419 |
+
4916,
|
1420 |
+
3199,
|
1421 |
+
3197,
|
1422 |
+
3200,
|
1423 |
+
3200,
|
1424 |
+
3197,
|
1425 |
+
2928,
|
1426 |
+
2927,
|
1427 |
+
2926,
|
1428 |
+
5112,
|
1429 |
+
5113,
|
1430 |
+
5110,
|
1431 |
+
5115,
|
1432 |
+
6886,
|
1433 |
+
6891,
|
1434 |
+
6885,
|
1435 |
+
6895,
|
1436 |
+
6891,
|
1437 |
+
2794,
|
1438 |
+
2796,
|
1439 |
+
2796,
|
1440 |
+
1483,
|
1441 |
+
1486,
|
1442 |
+
4629,
|
1443 |
+
4628,
|
1444 |
+
4628,
|
1445 |
+
3537,
|
1446 |
+
3531,
|
1447 |
+
6720,
|
1448 |
+
6724,
|
1449 |
+
6718,
|
1450 |
+
6491,
|
1451 |
+
6489,
|
1452 |
+
6487,
|
1453 |
+
2942,
|
1454 |
+
2948,
|
1455 |
+
3826,
|
1456 |
+
3827,
|
1457 |
+
3877,
|
1458 |
+
3878,
|
1459 |
+
15066,
|
1460 |
+
15064,
|
1461 |
+
15064,
|
1462 |
+
9732,
|
1463 |
+
9746,
|
1464 |
+
9735,
|
1465 |
+
5568,
|
1466 |
+
5565,
|
1467 |
+
5568,
|
1468 |
+
5567,
|
1469 |
+
5576,
|
1470 |
+
1437,
|
1471 |
+
1436,
|
1472 |
+
1438,
|
1473 |
+
1438,
|
1474 |
+
1438,
|
1475 |
+
5750,
|
1476 |
+
5747,
|
1477 |
+
5750,
|
1478 |
+
5750,
|
1479 |
+
5748,
|
1480 |
+
3338,
|
1481 |
+
3339,
|
1482 |
+
11847,
|
1483 |
+
11853,
|
1484 |
+
11857,
|
1485 |
+
11847,
|
1486 |
+
2241,
|
1487 |
+
2238,
|
1488 |
+
2246,
|
1489 |
+
3751,
|
1490 |
+
3758,
|
1491 |
+
3757,
|
1492 |
+
2891,
|
1493 |
+
2891,
|
1494 |
+
2890,
|
1495 |
+
16384,
|
1496 |
+
9942,
|
1497 |
+
1548,
|
1498 |
+
4793,
|
1499 |
+
4793,
|
1500 |
+
4789,
|
1501 |
+
4790,
|
1502 |
+
1767,
|
1503 |
+
1767,
|
1504 |
+
1770,
|
1505 |
+
3794,
|
1506 |
+
3795,
|
1507 |
+
13007,
|
1508 |
+
13014,
|
1509 |
+
13005,
|
1510 |
+
13009,
|
1511 |
+
3176,
|
1512 |
+
3179,
|
1513 |
+
3185,
|
1514 |
+
3178,
|
1515 |
+
3178,
|
1516 |
+
3178,
|
1517 |
+
5356,
|
1518 |
+
5355,
|
1519 |
+
5355,
|
1520 |
+
6301,
|
1521 |
+
6306,
|
1522 |
+
4021,
|
1523 |
+
4023,
|
1524 |
+
4023,
|
1525 |
+
4029,
|
1526 |
+
4024,
|
1527 |
+
4567,
|
1528 |
+
4566,
|
1529 |
+
8079,
|
1530 |
+
8077,
|
1531 |
+
8078,
|
1532 |
+
8080,
|
1533 |
+
2661,
|
1534 |
+
2660,
|
1535 |
+
1454,
|
1536 |
+
7845,
|
1537 |
+
7828,
|
1538 |
+
8313,
|
1539 |
+
8317,
|
1540 |
+
8312,
|
1541 |
+
8317,
|
1542 |
+
5162,
|
1543 |
+
5165,
|
1544 |
+
5159,
|
1545 |
+
5161,
|
1546 |
+
7341,
|
1547 |
+
7343,
|
1548 |
+
7338,
|
1549 |
+
7344,
|
1550 |
+
5199,
|
1551 |
+
5196,
|
1552 |
+
5198,
|
1553 |
+
5196,
|
1554 |
+
4082,
|
1555 |
+
4085,
|
1556 |
+
4081,
|
1557 |
+
4081,
|
1558 |
+
3258,
|
1559 |
+
3263,
|
1560 |
+
3257,
|
1561 |
+
7372,
|
1562 |
+
4943,
|
1563 |
+
4938,
|
1564 |
+
4946,
|
1565 |
+
4944,
|
1566 |
+
2477,
|
1567 |
+
2479,
|
1568 |
+
9025,
|
1569 |
+
9025,
|
1570 |
+
9024,
|
1571 |
+
5528,
|
1572 |
+
5529,
|
1573 |
+
5530,
|
1574 |
+
7757,
|
1575 |
+
7737,
|
1576 |
+
7739,
|
1577 |
+
7734,
|
1578 |
+
7736
|
1579 |
+
],
|
1580 |
+
"xaxis": "x",
|
1581 |
+
"yaxis": "y"
|
1582 |
+
}
|
1583 |
+
],
|
1584 |
+
"layout": {
|
1585 |
+
"barmode": "relative",
|
1586 |
+
"legend": {
|
1587 |
+
"title": {
|
1588 |
+
"text": "variable"
|
1589 |
+
},
|
1590 |
+
"tracegroupgap": 0
|
1591 |
+
},
|
1592 |
+
"template": {
|
1593 |
+
"data": {
|
1594 |
+
"bar": [
|
1595 |
+
{
|
1596 |
+
"error_x": {
|
1597 |
+
"color": "#2a3f5f"
|
1598 |
+
},
|
1599 |
+
"error_y": {
|
1600 |
+
"color": "#2a3f5f"
|
1601 |
+
},
|
1602 |
+
"marker": {
|
1603 |
+
"line": {
|
1604 |
+
"color": "#E5ECF6",
|
1605 |
+
"width": 0.5
|
1606 |
+
},
|
1607 |
+
"pattern": {
|
1608 |
+
"fillmode": "overlay",
|
1609 |
+
"size": 10,
|
1610 |
+
"solidity": 0.2
|
1611 |
+
}
|
1612 |
+
},
|
1613 |
+
"type": "bar"
|
1614 |
+
}
|
1615 |
+
],
|
1616 |
+
"barpolar": [
|
1617 |
+
{
|
1618 |
+
"marker": {
|
1619 |
+
"line": {
|
1620 |
+
"color": "#E5ECF6",
|
1621 |
+
"width": 0.5
|
1622 |
+
},
|
1623 |
+
"pattern": {
|
1624 |
+
"fillmode": "overlay",
|
1625 |
+
"size": 10,
|
1626 |
+
"solidity": 0.2
|
1627 |
+
}
|
1628 |
+
},
|
1629 |
+
"type": "barpolar"
|
1630 |
+
}
|
1631 |
+
],
|
1632 |
+
"carpet": [
|
1633 |
+
{
|
1634 |
+
"aaxis": {
|
1635 |
+
"endlinecolor": "#2a3f5f",
|
1636 |
+
"gridcolor": "white",
|
1637 |
+
"linecolor": "white",
|
1638 |
+
"minorgridcolor": "white",
|
1639 |
+
"startlinecolor": "#2a3f5f"
|
1640 |
+
},
|
1641 |
+
"baxis": {
|
1642 |
+
"endlinecolor": "#2a3f5f",
|
1643 |
+
"gridcolor": "white",
|
1644 |
+
"linecolor": "white",
|
1645 |
+
"minorgridcolor": "white",
|
1646 |
+
"startlinecolor": "#2a3f5f"
|
1647 |
+
},
|
1648 |
+
"type": "carpet"
|
1649 |
+
}
|
1650 |
+
],
|
1651 |
+
"choropleth": [
|
1652 |
+
{
|
1653 |
+
"colorbar": {
|
1654 |
+
"outlinewidth": 0,
|
1655 |
+
"ticks": ""
|
1656 |
+
},
|
1657 |
+
"type": "choropleth"
|
1658 |
+
}
|
1659 |
+
],
|
1660 |
+
"contour": [
|
1661 |
+
{
|
1662 |
+
"colorbar": {
|
1663 |
+
"outlinewidth": 0,
|
1664 |
+
"ticks": ""
|
1665 |
+
},
|
1666 |
+
"colorscale": [
|
1667 |
+
[
|
1668 |
+
0,
|
1669 |
+
"#0d0887"
|
1670 |
+
],
|
1671 |
+
[
|
1672 |
+
0.1111111111111111,
|
1673 |
+
"#46039f"
|
1674 |
+
],
|
1675 |
+
[
|
1676 |
+
0.2222222222222222,
|
1677 |
+
"#7201a8"
|
1678 |
+
],
|
1679 |
+
[
|
1680 |
+
0.3333333333333333,
|
1681 |
+
"#9c179e"
|
1682 |
+
],
|
1683 |
+
[
|
1684 |
+
0.4444444444444444,
|
1685 |
+
"#bd3786"
|
1686 |
+
],
|
1687 |
+
[
|
1688 |
+
0.5555555555555556,
|
1689 |
+
"#d8576b"
|
1690 |
+
],
|
1691 |
+
[
|
1692 |
+
0.6666666666666666,
|
1693 |
+
"#ed7953"
|
1694 |
+
],
|
1695 |
+
[
|
1696 |
+
0.7777777777777778,
|
1697 |
+
"#fb9f3a"
|
1698 |
+
],
|
1699 |
+
[
|
1700 |
+
0.8888888888888888,
|
1701 |
+
"#fdca26"
|
1702 |
+
],
|
1703 |
+
[
|
1704 |
+
1,
|
1705 |
+
"#f0f921"
|
1706 |
+
]
|
1707 |
+
],
|
1708 |
+
"type": "contour"
|
1709 |
+
}
|
1710 |
+
],
|
1711 |
+
"contourcarpet": [
|
1712 |
+
{
|
1713 |
+
"colorbar": {
|
1714 |
+
"outlinewidth": 0,
|
1715 |
+
"ticks": ""
|
1716 |
+
},
|
1717 |
+
"type": "contourcarpet"
|
1718 |
+
}
|
1719 |
+
],
|
1720 |
+
"heatmap": [
|
1721 |
+
{
|
1722 |
+
"colorbar": {
|
1723 |
+
"outlinewidth": 0,
|
1724 |
+
"ticks": ""
|
1725 |
+
},
|
1726 |
+
"colorscale": [
|
1727 |
+
[
|
1728 |
+
0,
|
1729 |
+
"#0d0887"
|
1730 |
+
],
|
1731 |
+
[
|
1732 |
+
0.1111111111111111,
|
1733 |
+
"#46039f"
|
1734 |
+
],
|
1735 |
+
[
|
1736 |
+
0.2222222222222222,
|
1737 |
+
"#7201a8"
|
1738 |
+
],
|
1739 |
+
[
|
1740 |
+
0.3333333333333333,
|
1741 |
+
"#9c179e"
|
1742 |
+
],
|
1743 |
+
[
|
1744 |
+
0.4444444444444444,
|
1745 |
+
"#bd3786"
|
1746 |
+
],
|
1747 |
+
[
|
1748 |
+
0.5555555555555556,
|
1749 |
+
"#d8576b"
|
1750 |
+
],
|
1751 |
+
[
|
1752 |
+
0.6666666666666666,
|
1753 |
+
"#ed7953"
|
1754 |
+
],
|
1755 |
+
[
|
1756 |
+
0.7777777777777778,
|
1757 |
+
"#fb9f3a"
|
1758 |
+
],
|
1759 |
+
[
|
1760 |
+
0.8888888888888888,
|
1761 |
+
"#fdca26"
|
1762 |
+
],
|
1763 |
+
[
|
1764 |
+
1,
|
1765 |
+
"#f0f921"
|
1766 |
+
]
|
1767 |
+
],
|
1768 |
+
"type": "heatmap"
|
1769 |
+
}
|
1770 |
+
],
|
1771 |
+
"heatmapgl": [
|
1772 |
+
{
|
1773 |
+
"colorbar": {
|
1774 |
+
"outlinewidth": 0,
|
1775 |
+
"ticks": ""
|
1776 |
+
},
|
1777 |
+
"colorscale": [
|
1778 |
+
[
|
1779 |
+
0,
|
1780 |
+
"#0d0887"
|
1781 |
+
],
|
1782 |
+
[
|
1783 |
+
0.1111111111111111,
|
1784 |
+
"#46039f"
|
1785 |
+
],
|
1786 |
+
[
|
1787 |
+
0.2222222222222222,
|
1788 |
+
"#7201a8"
|
1789 |
+
],
|
1790 |
+
[
|
1791 |
+
0.3333333333333333,
|
1792 |
+
"#9c179e"
|
1793 |
+
],
|
1794 |
+
[
|
1795 |
+
0.4444444444444444,
|
1796 |
+
"#bd3786"
|
1797 |
+
],
|
1798 |
+
[
|
1799 |
+
0.5555555555555556,
|
1800 |
+
"#d8576b"
|
1801 |
+
],
|
1802 |
+
[
|
1803 |
+
0.6666666666666666,
|
1804 |
+
"#ed7953"
|
1805 |
+
],
|
1806 |
+
[
|
1807 |
+
0.7777777777777778,
|
1808 |
+
"#fb9f3a"
|
1809 |
+
],
|
1810 |
+
[
|
1811 |
+
0.8888888888888888,
|
1812 |
+
"#fdca26"
|
1813 |
+
],
|
1814 |
+
[
|
1815 |
+
1,
|
1816 |
+
"#f0f921"
|
1817 |
+
]
|
1818 |
+
],
|
1819 |
+
"type": "heatmapgl"
|
1820 |
+
}
|
1821 |
+
],
|
1822 |
+
"histogram": [
|
1823 |
+
{
|
1824 |
+
"marker": {
|
1825 |
+
"pattern": {
|
1826 |
+
"fillmode": "overlay",
|
1827 |
+
"size": 10,
|
1828 |
+
"solidity": 0.2
|
1829 |
+
}
|
1830 |
+
},
|
1831 |
+
"type": "histogram"
|
1832 |
+
}
|
1833 |
+
],
|
1834 |
+
"histogram2d": [
|
1835 |
+
{
|
1836 |
+
"colorbar": {
|
1837 |
+
"outlinewidth": 0,
|
1838 |
+
"ticks": ""
|
1839 |
+
},
|
1840 |
+
"colorscale": [
|
1841 |
+
[
|
1842 |
+
0,
|
1843 |
+
"#0d0887"
|
1844 |
+
],
|
1845 |
+
[
|
1846 |
+
0.1111111111111111,
|
1847 |
+
"#46039f"
|
1848 |
+
],
|
1849 |
+
[
|
1850 |
+
0.2222222222222222,
|
1851 |
+
"#7201a8"
|
1852 |
+
],
|
1853 |
+
[
|
1854 |
+
0.3333333333333333,
|
1855 |
+
"#9c179e"
|
1856 |
+
],
|
1857 |
+
[
|
1858 |
+
0.4444444444444444,
|
1859 |
+
"#bd3786"
|
1860 |
+
],
|
1861 |
+
[
|
1862 |
+
0.5555555555555556,
|
1863 |
+
"#d8576b"
|
1864 |
+
],
|
1865 |
+
[
|
1866 |
+
0.6666666666666666,
|
1867 |
+
"#ed7953"
|
1868 |
+
],
|
1869 |
+
[
|
1870 |
+
0.7777777777777778,
|
1871 |
+
"#fb9f3a"
|
1872 |
+
],
|
1873 |
+
[
|
1874 |
+
0.8888888888888888,
|
1875 |
+
"#fdca26"
|
1876 |
+
],
|
1877 |
+
[
|
1878 |
+
1,
|
1879 |
+
"#f0f921"
|
1880 |
+
]
|
1881 |
+
],
|
1882 |
+
"type": "histogram2d"
|
1883 |
+
}
|
1884 |
+
],
|
1885 |
+
"histogram2dcontour": [
|
1886 |
+
{
|
1887 |
+
"colorbar": {
|
1888 |
+
"outlinewidth": 0,
|
1889 |
+
"ticks": ""
|
1890 |
+
},
|
1891 |
+
"colorscale": [
|
1892 |
+
[
|
1893 |
+
0,
|
1894 |
+
"#0d0887"
|
1895 |
+
],
|
1896 |
+
[
|
1897 |
+
0.1111111111111111,
|
1898 |
+
"#46039f"
|
1899 |
+
],
|
1900 |
+
[
|
1901 |
+
0.2222222222222222,
|
1902 |
+
"#7201a8"
|
1903 |
+
],
|
1904 |
+
[
|
1905 |
+
0.3333333333333333,
|
1906 |
+
"#9c179e"
|
1907 |
+
],
|
1908 |
+
[
|
1909 |
+
0.4444444444444444,
|
1910 |
+
"#bd3786"
|
1911 |
+
],
|
1912 |
+
[
|
1913 |
+
0.5555555555555556,
|
1914 |
+
"#d8576b"
|
1915 |
+
],
|
1916 |
+
[
|
1917 |
+
0.6666666666666666,
|
1918 |
+
"#ed7953"
|
1919 |
+
],
|
1920 |
+
[
|
1921 |
+
0.7777777777777778,
|
1922 |
+
"#fb9f3a"
|
1923 |
+
],
|
1924 |
+
[
|
1925 |
+
0.8888888888888888,
|
1926 |
+
"#fdca26"
|
1927 |
+
],
|
1928 |
+
[
|
1929 |
+
1,
|
1930 |
+
"#f0f921"
|
1931 |
+
]
|
1932 |
+
],
|
1933 |
+
"type": "histogram2dcontour"
|
1934 |
+
}
|
1935 |
+
],
|
1936 |
+
"mesh3d": [
|
1937 |
+
{
|
1938 |
+
"colorbar": {
|
1939 |
+
"outlinewidth": 0,
|
1940 |
+
"ticks": ""
|
1941 |
+
},
|
1942 |
+
"type": "mesh3d"
|
1943 |
+
}
|
1944 |
+
],
|
1945 |
+
"parcoords": [
|
1946 |
+
{
|
1947 |
+
"line": {
|
1948 |
+
"colorbar": {
|
1949 |
+
"outlinewidth": 0,
|
1950 |
+
"ticks": ""
|
1951 |
+
}
|
1952 |
+
},
|
1953 |
+
"type": "parcoords"
|
1954 |
+
}
|
1955 |
+
],
|
1956 |
+
"pie": [
|
1957 |
+
{
|
1958 |
+
"automargin": true,
|
1959 |
+
"type": "pie"
|
1960 |
+
}
|
1961 |
+
],
|
1962 |
+
"scatter": [
|
1963 |
+
{
|
1964 |
+
"fillpattern": {
|
1965 |
+
"fillmode": "overlay",
|
1966 |
+
"size": 10,
|
1967 |
+
"solidity": 0.2
|
1968 |
+
},
|
1969 |
+
"type": "scatter"
|
1970 |
+
}
|
1971 |
+
],
|
1972 |
+
"scatter3d": [
|
1973 |
+
{
|
1974 |
+
"line": {
|
1975 |
+
"colorbar": {
|
1976 |
+
"outlinewidth": 0,
|
1977 |
+
"ticks": ""
|
1978 |
+
}
|
1979 |
+
},
|
1980 |
+
"marker": {
|
1981 |
+
"colorbar": {
|
1982 |
+
"outlinewidth": 0,
|
1983 |
+
"ticks": ""
|
1984 |
+
}
|
1985 |
+
},
|
1986 |
+
"type": "scatter3d"
|
1987 |
+
}
|
1988 |
+
],
|
1989 |
+
"scattercarpet": [
|
1990 |
+
{
|
1991 |
+
"marker": {
|
1992 |
+
"colorbar": {
|
1993 |
+
"outlinewidth": 0,
|
1994 |
+
"ticks": ""
|
1995 |
+
}
|
1996 |
+
},
|
1997 |
+
"type": "scattercarpet"
|
1998 |
+
}
|
1999 |
+
],
|
2000 |
+
"scattergeo": [
|
2001 |
+
{
|
2002 |
+
"marker": {
|
2003 |
+
"colorbar": {
|
2004 |
+
"outlinewidth": 0,
|
2005 |
+
"ticks": ""
|
2006 |
+
}
|
2007 |
+
},
|
2008 |
+
"type": "scattergeo"
|
2009 |
+
}
|
2010 |
+
],
|
2011 |
+
"scattergl": [
|
2012 |
+
{
|
2013 |
+
"marker": {
|
2014 |
+
"colorbar": {
|
2015 |
+
"outlinewidth": 0,
|
2016 |
+
"ticks": ""
|
2017 |
+
}
|
2018 |
+
},
|
2019 |
+
"type": "scattergl"
|
2020 |
+
}
|
2021 |
+
],
|
2022 |
+
"scattermapbox": [
|
2023 |
+
{
|
2024 |
+
"marker": {
|
2025 |
+
"colorbar": {
|
2026 |
+
"outlinewidth": 0,
|
2027 |
+
"ticks": ""
|
2028 |
+
}
|
2029 |
+
},
|
2030 |
+
"type": "scattermapbox"
|
2031 |
+
}
|
2032 |
+
],
|
2033 |
+
"scatterpolar": [
|
2034 |
+
{
|
2035 |
+
"marker": {
|
2036 |
+
"colorbar": {
|
2037 |
+
"outlinewidth": 0,
|
2038 |
+
"ticks": ""
|
2039 |
+
}
|
2040 |
+
},
|
2041 |
+
"type": "scatterpolar"
|
2042 |
+
}
|
2043 |
+
],
|
2044 |
+
"scatterpolargl": [
|
2045 |
+
{
|
2046 |
+
"marker": {
|
2047 |
+
"colorbar": {
|
2048 |
+
"outlinewidth": 0,
|
2049 |
+
"ticks": ""
|
2050 |
+
}
|
2051 |
+
},
|
2052 |
+
"type": "scatterpolargl"
|
2053 |
+
}
|
2054 |
+
],
|
2055 |
+
"scatterternary": [
|
2056 |
+
{
|
2057 |
+
"marker": {
|
2058 |
+
"colorbar": {
|
2059 |
+
"outlinewidth": 0,
|
2060 |
+
"ticks": ""
|
2061 |
+
}
|
2062 |
+
},
|
2063 |
+
"type": "scatterternary"
|
2064 |
+
}
|
2065 |
+
],
|
2066 |
+
"surface": [
|
2067 |
+
{
|
2068 |
+
"colorbar": {
|
2069 |
+
"outlinewidth": 0,
|
2070 |
+
"ticks": ""
|
2071 |
+
},
|
2072 |
+
"colorscale": [
|
2073 |
+
[
|
2074 |
+
0,
|
2075 |
+
"#0d0887"
|
2076 |
+
],
|
2077 |
+
[
|
2078 |
+
0.1111111111111111,
|
2079 |
+
"#46039f"
|
2080 |
+
],
|
2081 |
+
[
|
2082 |
+
0.2222222222222222,
|
2083 |
+
"#7201a8"
|
2084 |
+
],
|
2085 |
+
[
|
2086 |
+
0.3333333333333333,
|
2087 |
+
"#9c179e"
|
2088 |
+
],
|
2089 |
+
[
|
2090 |
+
0.4444444444444444,
|
2091 |
+
"#bd3786"
|
2092 |
+
],
|
2093 |
+
[
|
2094 |
+
0.5555555555555556,
|
2095 |
+
"#d8576b"
|
2096 |
+
],
|
2097 |
+
[
|
2098 |
+
0.6666666666666666,
|
2099 |
+
"#ed7953"
|
2100 |
+
],
|
2101 |
+
[
|
2102 |
+
0.7777777777777778,
|
2103 |
+
"#fb9f3a"
|
2104 |
+
],
|
2105 |
+
[
|
2106 |
+
0.8888888888888888,
|
2107 |
+
"#fdca26"
|
2108 |
+
],
|
2109 |
+
[
|
2110 |
+
1,
|
2111 |
+
"#f0f921"
|
2112 |
+
]
|
2113 |
+
],
|
2114 |
+
"type": "surface"
|
2115 |
+
}
|
2116 |
+
],
|
2117 |
+
"table": [
|
2118 |
+
{
|
2119 |
+
"cells": {
|
2120 |
+
"fill": {
|
2121 |
+
"color": "#EBF0F8"
|
2122 |
+
},
|
2123 |
+
"line": {
|
2124 |
+
"color": "white"
|
2125 |
+
}
|
2126 |
+
},
|
2127 |
+
"header": {
|
2128 |
+
"fill": {
|
2129 |
+
"color": "#C8D4E3"
|
2130 |
+
},
|
2131 |
+
"line": {
|
2132 |
+
"color": "white"
|
2133 |
+
}
|
2134 |
+
},
|
2135 |
+
"type": "table"
|
2136 |
+
}
|
2137 |
+
]
|
2138 |
+
},
|
2139 |
+
"layout": {
|
2140 |
+
"annotationdefaults": {
|
2141 |
+
"arrowcolor": "#2a3f5f",
|
2142 |
+
"arrowhead": 0,
|
2143 |
+
"arrowwidth": 1
|
2144 |
+
},
|
2145 |
+
"autotypenumbers": "strict",
|
2146 |
+
"coloraxis": {
|
2147 |
+
"colorbar": {
|
2148 |
+
"outlinewidth": 0,
|
2149 |
+
"ticks": ""
|
2150 |
+
}
|
2151 |
+
},
|
2152 |
+
"colorscale": {
|
2153 |
+
"diverging": [
|
2154 |
+
[
|
2155 |
+
0,
|
2156 |
+
"#8e0152"
|
2157 |
+
],
|
2158 |
+
[
|
2159 |
+
0.1,
|
2160 |
+
"#c51b7d"
|
2161 |
+
],
|
2162 |
+
[
|
2163 |
+
0.2,
|
2164 |
+
"#de77ae"
|
2165 |
+
],
|
2166 |
+
[
|
2167 |
+
0.3,
|
2168 |
+
"#f1b6da"
|
2169 |
+
],
|
2170 |
+
[
|
2171 |
+
0.4,
|
2172 |
+
"#fde0ef"
|
2173 |
+
],
|
2174 |
+
[
|
2175 |
+
0.5,
|
2176 |
+
"#f7f7f7"
|
2177 |
+
],
|
2178 |
+
[
|
2179 |
+
0.6,
|
2180 |
+
"#e6f5d0"
|
2181 |
+
],
|
2182 |
+
[
|
2183 |
+
0.7,
|
2184 |
+
"#b8e186"
|
2185 |
+
],
|
2186 |
+
[
|
2187 |
+
0.8,
|
2188 |
+
"#7fbc41"
|
2189 |
+
],
|
2190 |
+
[
|
2191 |
+
0.9,
|
2192 |
+
"#4d9221"
|
2193 |
+
],
|
2194 |
+
[
|
2195 |
+
1,
|
2196 |
+
"#276419"
|
2197 |
+
]
|
2198 |
+
],
|
2199 |
+
"sequential": [
|
2200 |
+
[
|
2201 |
+
0,
|
2202 |
+
"#0d0887"
|
2203 |
+
],
|
2204 |
+
[
|
2205 |
+
0.1111111111111111,
|
2206 |
+
"#46039f"
|
2207 |
+
],
|
2208 |
+
[
|
2209 |
+
0.2222222222222222,
|
2210 |
+
"#7201a8"
|
2211 |
+
],
|
2212 |
+
[
|
2213 |
+
0.3333333333333333,
|
2214 |
+
"#9c179e"
|
2215 |
+
],
|
2216 |
+
[
|
2217 |
+
0.4444444444444444,
|
2218 |
+
"#bd3786"
|
2219 |
+
],
|
2220 |
+
[
|
2221 |
+
0.5555555555555556,
|
2222 |
+
"#d8576b"
|
2223 |
+
],
|
2224 |
+
[
|
2225 |
+
0.6666666666666666,
|
2226 |
+
"#ed7953"
|
2227 |
+
],
|
2228 |
+
[
|
2229 |
+
0.7777777777777778,
|
2230 |
+
"#fb9f3a"
|
2231 |
+
],
|
2232 |
+
[
|
2233 |
+
0.8888888888888888,
|
2234 |
+
"#fdca26"
|
2235 |
+
],
|
2236 |
+
[
|
2237 |
+
1,
|
2238 |
+
"#f0f921"
|
2239 |
+
]
|
2240 |
+
],
|
2241 |
+
"sequentialminus": [
|
2242 |
+
[
|
2243 |
+
0,
|
2244 |
+
"#0d0887"
|
2245 |
+
],
|
2246 |
+
[
|
2247 |
+
0.1111111111111111,
|
2248 |
+
"#46039f"
|
2249 |
+
],
|
2250 |
+
[
|
2251 |
+
0.2222222222222222,
|
2252 |
+
"#7201a8"
|
2253 |
+
],
|
2254 |
+
[
|
2255 |
+
0.3333333333333333,
|
2256 |
+
"#9c179e"
|
2257 |
+
],
|
2258 |
+
[
|
2259 |
+
0.4444444444444444,
|
2260 |
+
"#bd3786"
|
2261 |
+
],
|
2262 |
+
[
|
2263 |
+
0.5555555555555556,
|
2264 |
+
"#d8576b"
|
2265 |
+
],
|
2266 |
+
[
|
2267 |
+
0.6666666666666666,
|
2268 |
+
"#ed7953"
|
2269 |
+
],
|
2270 |
+
[
|
2271 |
+
0.7777777777777778,
|
2272 |
+
"#fb9f3a"
|
2273 |
+
],
|
2274 |
+
[
|
2275 |
+
0.8888888888888888,
|
2276 |
+
"#fdca26"
|
2277 |
+
],
|
2278 |
+
[
|
2279 |
+
1,
|
2280 |
+
"#f0f921"
|
2281 |
+
]
|
2282 |
+
]
|
2283 |
+
},
|
2284 |
+
"colorway": [
|
2285 |
+
"#636efa",
|
2286 |
+
"#EF553B",
|
2287 |
+
"#00cc96",
|
2288 |
+
"#ab63fa",
|
2289 |
+
"#FFA15A",
|
2290 |
+
"#19d3f3",
|
2291 |
+
"#FF6692",
|
2292 |
+
"#B6E880",
|
2293 |
+
"#FF97FF",
|
2294 |
+
"#FECB52"
|
2295 |
+
],
|
2296 |
+
"font": {
|
2297 |
+
"color": "#2a3f5f"
|
2298 |
+
},
|
2299 |
+
"geo": {
|
2300 |
+
"bgcolor": "white",
|
2301 |
+
"lakecolor": "white",
|
2302 |
+
"landcolor": "#E5ECF6",
|
2303 |
+
"showlakes": true,
|
2304 |
+
"showland": true,
|
2305 |
+
"subunitcolor": "white"
|
2306 |
+
},
|
2307 |
+
"hoverlabel": {
|
2308 |
+
"align": "left"
|
2309 |
+
},
|
2310 |
+
"hovermode": "closest",
|
2311 |
+
"mapbox": {
|
2312 |
+
"style": "light"
|
2313 |
+
},
|
2314 |
+
"paper_bgcolor": "white",
|
2315 |
+
"plot_bgcolor": "#E5ECF6",
|
2316 |
+
"polar": {
|
2317 |
+
"angularaxis": {
|
2318 |
+
"gridcolor": "white",
|
2319 |
+
"linecolor": "white",
|
2320 |
+
"ticks": ""
|
2321 |
+
},
|
2322 |
+
"bgcolor": "#E5ECF6",
|
2323 |
+
"radialaxis": {
|
2324 |
+
"gridcolor": "white",
|
2325 |
+
"linecolor": "white",
|
2326 |
+
"ticks": ""
|
2327 |
+
}
|
2328 |
+
},
|
2329 |
+
"scene": {
|
2330 |
+
"xaxis": {
|
2331 |
+
"backgroundcolor": "#E5ECF6",
|
2332 |
+
"gridcolor": "white",
|
2333 |
+
"gridwidth": 2,
|
2334 |
+
"linecolor": "white",
|
2335 |
+
"showbackground": true,
|
2336 |
+
"ticks": "",
|
2337 |
+
"zerolinecolor": "white"
|
2338 |
+
},
|
2339 |
+
"yaxis": {
|
2340 |
+
"backgroundcolor": "#E5ECF6",
|
2341 |
+
"gridcolor": "white",
|
2342 |
+
"gridwidth": 2,
|
2343 |
+
"linecolor": "white",
|
2344 |
+
"showbackground": true,
|
2345 |
+
"ticks": "",
|
2346 |
+
"zerolinecolor": "white"
|
2347 |
+
},
|
2348 |
+
"zaxis": {
|
2349 |
+
"backgroundcolor": "#E5ECF6",
|
2350 |
+
"gridcolor": "white",
|
2351 |
+
"gridwidth": 2,
|
2352 |
+
"linecolor": "white",
|
2353 |
+
"showbackground": true,
|
2354 |
+
"ticks": "",
|
2355 |
+
"zerolinecolor": "white"
|
2356 |
+
}
|
2357 |
+
},
|
2358 |
+
"shapedefaults": {
|
2359 |
+
"line": {
|
2360 |
+
"color": "#2a3f5f"
|
2361 |
+
}
|
2362 |
+
},
|
2363 |
+
"ternary": {
|
2364 |
+
"aaxis": {
|
2365 |
+
"gridcolor": "white",
|
2366 |
+
"linecolor": "white",
|
2367 |
+
"ticks": ""
|
2368 |
+
},
|
2369 |
+
"baxis": {
|
2370 |
+
"gridcolor": "white",
|
2371 |
+
"linecolor": "white",
|
2372 |
+
"ticks": ""
|
2373 |
+
},
|
2374 |
+
"bgcolor": "#E5ECF6",
|
2375 |
+
"caxis": {
|
2376 |
+
"gridcolor": "white",
|
2377 |
+
"linecolor": "white",
|
2378 |
+
"ticks": ""
|
2379 |
+
}
|
2380 |
+
},
|
2381 |
+
"title": {
|
2382 |
+
"x": 0.05
|
2383 |
+
},
|
2384 |
+
"xaxis": {
|
2385 |
+
"automargin": true,
|
2386 |
+
"gridcolor": "white",
|
2387 |
+
"linecolor": "white",
|
2388 |
+
"ticks": "",
|
2389 |
+
"title": {
|
2390 |
+
"standoff": 15
|
2391 |
+
},
|
2392 |
+
"zerolinecolor": "white",
|
2393 |
+
"zerolinewidth": 2
|
2394 |
+
},
|
2395 |
+
"yaxis": {
|
2396 |
+
"automargin": true,
|
2397 |
+
"gridcolor": "white",
|
2398 |
+
"linecolor": "white",
|
2399 |
+
"ticks": "",
|
2400 |
+
"title": {
|
2401 |
+
"standoff": 15
|
2402 |
+
},
|
2403 |
+
"zerolinecolor": "white",
|
2404 |
+
"zerolinewidth": 2
|
2405 |
+
}
|
2406 |
+
}
|
2407 |
+
},
|
2408 |
+
"title": {
|
2409 |
+
"text": "Histogram of question + context token lengths (total=1451)"
|
2410 |
+
},
|
2411 |
+
"xaxis": {
|
2412 |
+
"anchor": "y",
|
2413 |
+
"domain": [
|
2414 |
+
0,
|
2415 |
+
1
|
2416 |
+
],
|
2417 |
+
"title": {
|
2418 |
+
"text": "value"
|
2419 |
+
}
|
2420 |
+
},
|
2421 |
+
"yaxis": {
|
2422 |
+
"anchor": "x",
|
2423 |
+
"domain": [
|
2424 |
+
0,
|
2425 |
+
1
|
2426 |
+
],
|
2427 |
+
"title": {
|
2428 |
+
"text": "count"
|
2429 |
+
}
|
2430 |
+
}
|
2431 |
+
}
|
2432 |
+
}
|
2433 |
+
},
|
2434 |
+
"metadata": {},
|
2435 |
+
"output_type": "display_data"
|
2436 |
+
}
|
2437 |
+
],
|
2438 |
+
"source": [
|
2439 |
+
"# plot histogram of full_text lengths\n",
|
2440 |
+
"question_token_lengths = []\n",
|
2441 |
+
"for inst in instances:\n",
|
2442 |
+
" question_token_lengths.append(len(inst['question_with_context']))\n",
|
2443 |
+
" \n",
|
2444 |
+
"px.histogram(question_token_lengths, \n",
|
2445 |
+
" title=f'Histogram of question + context token lengths (total={len(question_token_lengths)})')"
|
2446 |
+
]
|
2447 |
+
},
|
2448 |
+
{
|
2449 |
+
"cell_type": "markdown",
|
2450 |
+
"metadata": {},
|
2451 |
+
"source": [
|
2452 |
+
"## Save instances to JSON"
|
2453 |
+
]
|
2454 |
+
},
|
2455 |
+
{
|
2456 |
+
"cell_type": "code",
|
2457 |
+
"execution_count": 7,
|
2458 |
+
"metadata": {},
|
2459 |
+
"outputs": [],
|
2460 |
+
"source": [
|
2461 |
+
"# recursively check the type of each field in the dataset\n",
|
2462 |
+
"def check_type(data, level=0):\n",
|
2463 |
+
" tabs = '\\t' * level\n",
|
2464 |
+
" if isinstance(data, dict):\n",
|
2465 |
+
" for key, value in data.items():\n",
|
2466 |
+
" print(f'{tabs}{key}: {type(value)}')\n",
|
2467 |
+
" check_type(value, level + 1)\n",
|
2468 |
+
" elif isinstance(data, list):\n",
|
2469 |
+
" for i in data:\n",
|
2470 |
+
" check_type(i, level + 1)\n",
|
2471 |
+
" else:\n",
|
2472 |
+
" pass\n",
|
2473 |
+
" # print(f'{tabs}{type(data)}')\n",
|
2474 |
+
" # if isinstance(data, BatchEncoding):\n",
|
2475 |
+
" # print(f'{tabs}{data[:100]}')"
|
2476 |
+
]
|
2477 |
+
},
|
2478 |
+
{
|
2479 |
+
"cell_type": "code",
|
2480 |
+
"execution_count": 8,
|
2481 |
+
"metadata": {},
|
2482 |
+
"outputs": [
|
2483 |
+
{
|
2484 |
+
"name": "stdout",
|
2485 |
+
"output_type": "stream",
|
2486 |
+
"text": [
|
2487 |
+
"question_with_context: <class 'list'>\n",
|
2488 |
+
"paragraph_indices: <class 'list'>\n",
|
2489 |
+
"evidence: <class 'list'>\n",
|
2490 |
+
"answer: <class 'list'>\n",
|
2491 |
+
"metadata: <class 'dict'>\n",
|
2492 |
+
"\tquestion: <class 'str'>\n",
|
2493 |
+
"\tquestion_tokens: <class 'list'>\n",
|
2494 |
+
"\tparagraphs: <class 'list'>\n",
|
2495 |
+
"\tcontext_tokens: <class 'list'>\n",
|
2496 |
+
"\tquestion_id: <class 'str'>\n",
|
2497 |
+
"\tarticle_id: <class 'str'>\n",
|
2498 |
+
"\tall_answers: <class 'list'>\n",
|
2499 |
+
"\t\t\ttext: <class 'str'>\n",
|
2500 |
+
"\t\t\ttype: <class 'str'>\n",
|
2501 |
+
"\t\t\ttext: <class 'str'>\n",
|
2502 |
+
"\t\t\ttype: <class 'str'>\n",
|
2503 |
+
"\t\t\ttext: <class 'str'>\n",
|
2504 |
+
"\t\t\ttype: <class 'str'>\n",
|
2505 |
+
"\t\t\ttext: <class 'str'>\n",
|
2506 |
+
"\t\t\ttype: <class 'str'>\n",
|
2507 |
+
"\t\t\ttext: <class 'str'>\n",
|
2508 |
+
"\t\t\ttype: <class 'str'>\n",
|
2509 |
+
"\t\t\ttext: <class 'str'>\n",
|
2510 |
+
"\t\t\ttype: <class 'str'>\n",
|
2511 |
+
"\tall_evidence: <class 'list'>\n",
|
2512 |
+
"\tall_evidence_masks: <class 'list'>\n"
|
2513 |
+
]
|
2514 |
+
}
|
2515 |
+
],
|
2516 |
+
"source": [
|
2517 |
+
"check_type(instances[0])"
|
2518 |
+
]
|
2519 |
+
},
|
2520 |
+
{
|
2521 |
+
"cell_type": "code",
|
2522 |
+
"execution_count": 9,
|
2523 |
+
"metadata": {},
|
2524 |
+
"outputs": [],
|
2525 |
+
"source": [
|
2526 |
+
"# save instances to file\n",
|
2527 |
+
"with open(os.path.join(output_path, f'{split}_instances.json'), 'w') as f:\n",
|
2528 |
+
" # pretty print json\n",
|
2529 |
+
" json.dump(instances, f, indent=4)"
|
2530 |
+
]
|
2531 |
+
},
|
2532 |
+
{
|
2533 |
+
"cell_type": "code",
|
2534 |
+
"execution_count": null,
|
2535 |
+
"metadata": {},
|
2536 |
+
"outputs": [],
|
2537 |
+
"source": []
|
2538 |
+
}
|
2539 |
+
],
|
2540 |
+
"metadata": {
|
2541 |
+
"kernelspec": {
|
2542 |
+
"display_name": "arxiv-agent",
|
2543 |
+
"language": "python",
|
2544 |
+
"name": "python3"
|
2545 |
+
},
|
2546 |
+
"language_info": {
|
2547 |
+
"codemirror_mode": {
|
2548 |
+
"name": "ipython",
|
2549 |
+
"version": 3
|
2550 |
+
},
|
2551 |
+
"file_extension": ".py",
|
2552 |
+
"mimetype": "text/x-python",
|
2553 |
+
"name": "python",
|
2554 |
+
"nbconvert_exporter": "python",
|
2555 |
+
"pygments_lexer": "ipython3",
|
2556 |
+
"version": "3.12.0"
|
2557 |
+
}
|
2558 |
+
},
|
2559 |
+
"nbformat": 4,
|
2560 |
+
"nbformat_minor": 2
|
2561 |
+
}
|