|
import datasets |
|
from tqdm import tqdm |
|
import os |
|
import json |
|
import multiprocessing as mp |
|
from functools import partial |
|
|
|
def process_item(idx_data, dataset_name): |
|
idx, d = idx_data |
|
conversations = d['conversations'] |
|
image = d['image'] |
|
image_path = f"{dataset_name}/{idx}.png" |
|
os.makedirs(os.path.dirname(f"data/{image_path}"), exist_ok=True) |
|
image.save(f"data/{image_path}") |
|
for i, c in enumerate(conversations): |
|
conversations[i]['content'] = c['content'].replace("<image>", "") |
|
if len(conversations) > 1: |
|
conversations[1]['content'] = "<image>" + conversations[1]['content'] |
|
return { |
|
"images": [image_path], |
|
"system": SYSTEM_PROMPT, |
|
"conversations": conversations |
|
} |
|
|
|
ds_id = "ahmedheakl/r1_90k_instruct" |
|
dataset_name = "r1_onevision_90k" |
|
out_root = "data" |
|
SYSTEM_PROMPT = ( |
|
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant " |
|
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning " |
|
"process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., " |
|
"<think> reasoning process here </think><answer> answer here </answer>" |
|
) |
|
os.makedirs(f"{out_root}/{dataset_name}", exist_ok=True) |
|
print("Loading dataset...") |
|
ds = datasets.load_dataset(ds_id, split="train", trust_remote_code=True) |
|
num_processes = mp.cpu_count() - 6 |
|
print(f"Using {num_processes} processes") |
|
process_func = partial(process_item, dataset_name=dataset_name) |
|
with mp.Pool(processes=num_processes) as pool: |
|
data = list(tqdm(pool.imap(process_func, enumerate(ds)), total=len(ds), desc="Processing items")) |
|
output_path = f"{out_root}/{dataset_name}.json" |
|
print(f"Saving dataset to {output_path}") |
|
with open(output_path, "w") as f: |
|
json.dump(data, f, indent=4, ensure_ascii=False) |
|
with open(f"{out_root}/dataset_info.json", "r") as f: |
|
dataset_info = json.load(f) |
|
dataset_info[dataset_name] = { |
|
"file_name": f"{dataset_name}.json", |
|
"formatting": "sharegpt", |
|
"columns": { |
|
"messages": "conversations", |
|
"images": "images", |
|
"system": "system" |
|
}, |
|
"tags": { |
|
"role_tag": "role", |
|
"content_tag": "content", |
|
"user_tag": "user", |
|
"assistant_tag": "assistant" |
|
} |
|
} |
|
with open(f"{out_root}/dataset_info.json", "w") as f: |
|
json.dump(dataset_info, f, indent=4, ensure_ascii=False) |
|
|