xx / down_r1onevision.py
ahmedheakl's picture
Create down_r1onevision.py
df1db28 verified
import datasets
from tqdm import tqdm
import os
import json
import multiprocessing as mp
from functools import partial
def process_item(idx_data, dataset_name):
idx, d = idx_data
conversations = d['conversations']
image = d['image']
image_path = f"{dataset_name}/{idx}.png"
os.makedirs(os.path.dirname(f"data/{image_path}"), exist_ok=True)
image.save(f"data/{image_path}")
for i, c in enumerate(conversations):
conversations[i]['content'] = c['content'].replace("<image>", "")
if len(conversations) > 1:
conversations[1]['content'] = "<image>" + conversations[1]['content']
return {
"images": [image_path],
"system": SYSTEM_PROMPT,
"conversations": conversations
}
ds_id = "ahmedheakl/r1_90k_instruct"
dataset_name = "r1_onevision_90k"
out_root = "data"
SYSTEM_PROMPT = (
"A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant "
"first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning "
"process and answer are enclosed within <think> </think> and <answer> </answer> tags, respectively, i.e., "
"<think> reasoning process here </think><answer> answer here </answer>"
)
os.makedirs(f"{out_root}/{dataset_name}", exist_ok=True)
print("Loading dataset...")
ds = datasets.load_dataset(ds_id, split="train", trust_remote_code=True)
num_processes = mp.cpu_count() - 6
print(f"Using {num_processes} processes")
process_func = partial(process_item, dataset_name=dataset_name)
with mp.Pool(processes=num_processes) as pool:
data = list(tqdm(pool.imap(process_func, enumerate(ds)), total=len(ds), desc="Processing items"))
output_path = f"{out_root}/{dataset_name}.json"
print(f"Saving dataset to {output_path}")
with open(output_path, "w") as f:
json.dump(data, f, indent=4, ensure_ascii=False)
with open(f"{out_root}/dataset_info.json", "r") as f:
dataset_info = json.load(f)
dataset_info[dataset_name] = {
"file_name": f"{dataset_name}.json",
"formatting": "sharegpt",
"columns": {
"messages": "conversations",
"images": "images",
"system": "system"
},
"tags": {
"role_tag": "role",
"content_tag": "content",
"user_tag": "user",
"assistant_tag": "assistant"
}
}
with open(f"{out_root}/dataset_info.json", "w") as f:
json.dump(dataset_info, f, indent=4, ensure_ascii=False)