xx / merge_qwen.py
ahmedheakl's picture
Create merge_qwen.py
9be0b9d verified
from transformers import Qwen2Model, Qwen2ForCausalLM, Qwen2_5_VLPreTrainedModel, Qwen2_5_VLForConditionalGeneration, AutoProcessor, AutoTokenizer, AddedToken
import torch
from qwen_vl_utils import process_vision_info
qwen25_model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", device_map="auto", torch_dtype=torch.bfloat16)
llm_device = qwen25_model.model.device
deepseek_model = Qwen2ForCausalLM.from_pretrained("deepseek-ai/DeepSeek-R1-Distill-Qwen-7B").to(torch.bfloat16).to(llm_device)
qwen25_model.model.load_state_dict(deepseek_model.model.state_dict())
qwen25_model.lm_head.load_state_dict(deepseek_model.lm_head.state_dict())
qwen25_model = qwen25_model.to(torch.bfloat16)
min_pixels = 256*28*28
max_pixels = 1280*28*28
processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels, use_fast=False)
ID_TO_NEW_TOKEN = {
151643: "<|end▁of▁sentence|>",
151644: "<|User|>",
151645: "<|Assistant|>",
151646: "<|begin▁of▁sentence|>",
151648: "<think>",
151649: "</think>",
}
# The reverse mapping: new text -> old ID
NEW_TOKEN_TO_ID = {v: k for k, v in ID_TO_NEW_TOKEN.items()}
for old_id, text in ID_TO_NEW_TOKEN.items():
# Create an AddedToken that won't get split
# 'special=True' ensures it is recognized as one piece
# 'normalized=False' means "do not lowercase or strip it"
# so it is preserved exactly.
tok = AddedToken(
text,
special=True,
normalized=False,
lstrip=False,
rstrip=False,
single_word=False
)
# Register in the slow tokenizer's internal data structures:
# _added_tokens_decoder: maps ID -> AddedToken object
# _added_tokens_encoder: maps text -> ID
# Then update the trie so that it can match them in raw text.
processor.tokenizer._added_tokens_decoder[old_id] = tok
processor.tokenizer._added_tokens_encoder[text] = old_id
processor.tokenizer._update_trie()
print("Model loaded and move to GPU")
repo_name = "ahmedheakl/vlm-r1-base2"
qwen25_model.push_to_hub(repo_name)
processor.push_to_hub(repo_name)
# messages = [
# {
# "role": "user",
# "content": [
# # {
# # "type": "image",
# # "image": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-VL/assets/demo.jpeg",
# # },
# {"type": "text", "text": "What is the integration of cos^2(x)"},
# ],
# }
# ]
# text = processor.apply_chat_template(
# messages, tokenize=False, add_generation_prompt=True
# )
# image_inputs, video_inputs = process_vision_info(messages)
# inputs = processor(
# text=[text],
# images=image_inputs,
# videos=video_inputs,
# padding=True,
# return_tensors="pt",
# )
# inputs = inputs.to("cuda")
# # Inference: Generation of the output
# generated_ids = qwen25_model.generate(**inputs, max_new_tokens=1000)
# generated_ids_trimmed = [
# out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
# ]
# output_text = processor.batch_decode(
# generated_ids_trimmed, skip_special_tokens=False, clean_up_tokenization_spaces=False
# )
# print(output_text[0])