Create llamav-o1-inference.py
Browse files- llamav-o1-inference.py +129 -0
llamav-o1-inference.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
import json
|
5 |
+
from tqdm import tqdm
|
6 |
+
from transformers import MllamaForConditionalGeneration, AutoProcessor
|
7 |
+
import argparse
|
8 |
+
|
9 |
+
parser = argparse.ArgumentParser()
|
10 |
+
parser.add_argument("--num_beams", type=int, default=1)
|
11 |
+
args = parser.parse_args()
|
12 |
+
|
13 |
+
model_id = "/proj/berzelius-2023-191/CoT/llama-recipes/finetuned_model_llama_pixmogeo_mt/Llama-3.2-11B-Vision-Instruct_epoch_2"
|
14 |
+
|
15 |
+
|
16 |
+
model = MllamaForConditionalGeneration.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
torch_dtype=torch.bfloat16,
|
19 |
+
device_map="auto",
|
20 |
+
).eval()
|
21 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
22 |
+
num_beams = args.num_beams
|
23 |
+
max_new_tokens = 1024
|
24 |
+
summary_prompt = "\nSummarize how you will approach the problem and explain the steps you will take to reach the answer."
|
25 |
+
caption_prompt = "Provide a detailed description of the image, particularly emphasizing the aspects related to the question."
|
26 |
+
reasoning_prompt = "Provide a chain-of-thought, logical explanation of the problem. This should outline step-by-step reasoning."
|
27 |
+
conclusion_prompt = "State the final answer in a clear and direct format. It must match the correct answer exactly."
|
28 |
+
|
29 |
+
def generate_inner(question, image):
|
30 |
+
start_n = 1
|
31 |
+
kwargs = {
|
32 |
+
'max_new_tokens': max_new_tokens,
|
33 |
+
"top_p": 0.9,
|
34 |
+
"pad_token_id": 128004,
|
35 |
+
"bos_token_id": 128000,
|
36 |
+
"do_sample": False,
|
37 |
+
"eos_token_id": [
|
38 |
+
128001,
|
39 |
+
128008,
|
40 |
+
128009
|
41 |
+
],
|
42 |
+
"temperature": 0.6,
|
43 |
+
"num_beams": num_beams,
|
44 |
+
"use_cache": True,
|
45 |
+
|
46 |
+
}
|
47 |
+
messages = [[
|
48 |
+
|
49 |
+
{
|
50 |
+
'role': 'user',
|
51 |
+
'content': [
|
52 |
+
{'type': 'image'},
|
53 |
+
{'type': 'text', 'text': question+summary_prompt}
|
54 |
+
],
|
55 |
+
}
|
56 |
+
|
57 |
+
]]
|
58 |
+
|
59 |
+
def infer(messages: dict, n) -> str:
|
60 |
+
input_text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
61 |
+
inputs = processor(image, input_text, return_tensors='pt').to(model.device)
|
62 |
+
output = model.generate(**inputs, **kwargs)
|
63 |
+
return [processor.decode(output[i][inputs['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace("<|end_of_text|>", "") for i in range(n)]
|
64 |
+
|
65 |
+
def tmp(inp, out):
|
66 |
+
return [
|
67 |
+
{
|
68 |
+
'role': 'assistant',
|
69 |
+
'content': [
|
70 |
+
{'type': 'text', 'text': inp}
|
71 |
+
]
|
72 |
+
},
|
73 |
+
{
|
74 |
+
'role': 'user',
|
75 |
+
'content': [
|
76 |
+
{'type': 'text', 'text': out}
|
77 |
+
]
|
78 |
+
}
|
79 |
+
]
|
80 |
+
outs = infer(messages[0])
|
81 |
+
for i, out in enumerate(outs):
|
82 |
+
messages[i].extend(tmp(out, caption_prompt))
|
83 |
+
out = infer(messages)
|
84 |
+
messages.extend(tmp(out, reasoning_prompt))
|
85 |
+
reasoning = infer(messages)
|
86 |
+
messages.extend(tmp(reasoning, conclusion_prompt))
|
87 |
+
out = infer(messages)
|
88 |
+
print(f"Question: {question}\nAnswer: {out}")
|
89 |
+
return out, reasoning
|
90 |
+
|
91 |
+
|
92 |
+
def reasoning_steps_answer(img, question, choices):
|
93 |
+
|
94 |
+
predicted_answer, reasoning = generate_inner(question, img)
|
95 |
+
return predicted_answer, reasoning
|
96 |
+
|
97 |
+
print(f"Evaluating with {num_beams=}")
|
98 |
+
print("="*50)
|
99 |
+
|
100 |
+
all_data = []
|
101 |
+
json_paths = "/proj/berzelius-2023-191/CoT/cot_eval/jsonv2"
|
102 |
+
image_path = "/proj/berzelius-2023-191/CoT/cot_eval/images"
|
103 |
+
for file in tqdm(os.listdir(json_paths)):
|
104 |
+
if not file.endswith(".json"): continue
|
105 |
+
with open(f"{json_paths}/{file}", "r") as json_file:
|
106 |
+
data = json.load(json_file)
|
107 |
+
try:
|
108 |
+
image = Image.open(f"{image_path}/{data['image']}")
|
109 |
+
question = data["question"]
|
110 |
+
final_answer = data["final_answer"]
|
111 |
+
idx = data["idx"]
|
112 |
+
reasoning_answer = data["answer"]
|
113 |
+
question += "\nPlease select the correct option by its letter." if "Choices" in question else ""
|
114 |
+
model_answer, reasoning = generate_inner(question, image)
|
115 |
+
|
116 |
+
all_data.append({
|
117 |
+
"idx": idx,
|
118 |
+
"question": question,
|
119 |
+
"final_answer": final_answer,
|
120 |
+
"answer": reasoning_answer,
|
121 |
+
"llm_response": reasoning+"\n\n\n"+model_answer,
|
122 |
+
})
|
123 |
+
except Exception as e:
|
124 |
+
print("Skipping file", file, "for", e)
|
125 |
+
continue
|
126 |
+
|
127 |
+
model_pref = model_id.replace("/", "_")
|
128 |
+
with open(f"results_llavao1_pixmogeo_mt_beams{num_beams}_nosample.json", "w") as json_file:
|
129 |
+
json.dump(all_data, json_file, indent=4)
|