Create eval_peacock.py
Browse files- eval_peacock.py +205 -0
eval_peacock.py
ADDED
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
from typing import Callable, List
|
4 |
+
import pandas as pd
|
5 |
+
import json
|
6 |
+
import os
|
7 |
+
from tqdm import tqdm
|
8 |
+
from transformers import AutoTokenizer, AutoModel
|
9 |
+
from utils import *
|
10 |
+
from PIL import Image
|
11 |
+
import shutil
|
12 |
+
from glob import glob
|
13 |
+
import numpy as np
|
14 |
+
from transformers import InstructBlipProcessor, InstructBlipForConditionalGeneration, AddedToken
|
15 |
+
from datasets import load_dataset
|
16 |
+
|
17 |
+
model = InstructBlipForConditionalGeneration.from_pretrained("UBC-NLP/Peacock")
|
18 |
+
processor = InstructBlipProcessor.from_pretrained("UBC-NLP/Peacock")
|
19 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
20 |
+
model.to(device)
|
21 |
+
|
22 |
+
def handle_images1(row: pd.Series) -> List[str]:
|
23 |
+
return [row["image"].convert("RGB")]
|
24 |
+
|
25 |
+
|
26 |
+
def handle_images2(row: pd.Series) -> List[str]:
|
27 |
+
return [
|
28 |
+
row.get(f"image_{i}", None).convert("RGB")
|
29 |
+
for i in range(9)
|
30 |
+
if row.get(f"image_{i}", None) is not None
|
31 |
+
]
|
32 |
+
|
33 |
+
|
34 |
+
def save_images(images: List[str], with_resize: bool = True):
|
35 |
+
for i, image in enumerate(images):
|
36 |
+
if image is None:
|
37 |
+
continue
|
38 |
+
|
39 |
+
if with_resize:
|
40 |
+
img = image
|
41 |
+
width, height = img.size
|
42 |
+
req_dim = 420
|
43 |
+
new_width = req_dim if width > height else int((req_dim / height) * width)
|
44 |
+
new_height = int((req_dim / width) * height) if width > height else req_dim
|
45 |
+
img = img.resize((420, 420))
|
46 |
+
img = img.convert("RGB")
|
47 |
+
img.save(f"temp/image{i}.png")
|
48 |
+
|
49 |
+
|
50 |
+
def generate_qwen(prompt: str, images: List[str]) -> str:
|
51 |
+
images = images[:1]
|
52 |
+
save_images(images)
|
53 |
+
inputs = processor(images=Image.open("temp/image0.png").convert("RGB"), text=prompt, return_tensors="pt").to(device)
|
54 |
+
outputs = model.generate(
|
55 |
+
**inputs,
|
56 |
+
do_sample=False,
|
57 |
+
num_beams=1,
|
58 |
+
max_length=256,
|
59 |
+
min_length=2,
|
60 |
+
top_p=0.9,
|
61 |
+
temperature=1,
|
62 |
+
length_penalty=1.0,
|
63 |
+
repetition_penalty=1.5,
|
64 |
+
)
|
65 |
+
generated_text = processor.batch_decode(outputs, skip_special_tokens=True)[0].strip()
|
66 |
+
return generated_text
|
67 |
+
|
68 |
+
|
69 |
+
answer_field = "answer"
|
70 |
+
|
71 |
+
|
72 |
+
def process_row(row: pd.Series, fn: Callable, fn_images: Callable) -> dict:
|
73 |
+
i, row = row
|
74 |
+
d = {}
|
75 |
+
try:
|
76 |
+
d["index"] = i
|
77 |
+
images = fn_images(row)
|
78 |
+
d["pred_answer"] = generate_qwen(fn(row), images)
|
79 |
+
d["answer"] = str(row[answer_field])
|
80 |
+
d["question"] = fn(row)
|
81 |
+
print(f"Question: {fn(row)}\nPredicted: {d['pred_answer']}")
|
82 |
+
return d
|
83 |
+
except Exception as e:
|
84 |
+
print(f"Error processing row: {e}")
|
85 |
+
return None
|
86 |
+
|
87 |
+
|
88 |
+
name_to_processor = {
|
89 |
+
"mmmu": mmmu_doc_to_text,
|
90 |
+
"mme": mme_doc_to_text,
|
91 |
+
"gqa": gqa_doc_to_text,
|
92 |
+
"realworldqa": realworldqa_doc_to_text,
|
93 |
+
"vqav2": vqav2_doc_to_text,
|
94 |
+
"vizwiz": vizwiz_doc_to_text,
|
95 |
+
"pope": pope_doc_to_text,
|
96 |
+
"countbench": countbench_doc_to_text,
|
97 |
+
"medicalMMMU": medicalMMMU_doc_to_text,
|
98 |
+
"medicalMMMUPro": medicalMMMUPro_doc_to_text,
|
99 |
+
"diagramsMMMU": diagramsMMMU_doc_to_text,
|
100 |
+
"mmbench": mmbench_doc_to_text,
|
101 |
+
"seed": seed_doc_to_text,
|
102 |
+
"medicalmmt": medicalmmt_doc_to_text,
|
103 |
+
"hallucinationmmt": hallucinationmmt_doc_to_text,
|
104 |
+
"vqammt": vqammt_doc_to_text,
|
105 |
+
"mutliimagemmt": mutliimagemmt_doc_to_text,
|
106 |
+
"isidocvqa": isidocvqa_doc_to_text,
|
107 |
+
"patddocvqa": patddocvqa_doc_to_text,
|
108 |
+
"celebvqa": celebvqa_doc_to_text,
|
109 |
+
"countriesvqa": countriesvqa_doc_to_text,
|
110 |
+
"foodvqa": foodvqa_doc_to_text,
|
111 |
+
"objectcoco": objectcoco_doc_to_text,
|
112 |
+
"blink": blink_doc_to_text,
|
113 |
+
"examsv": examsv_doc_to_text,
|
114 |
+
"chartqa": chartqa_doc_to_text,
|
115 |
+
"mtvqa": mtvqa_doc_to_text,
|
116 |
+
"mathvista": mathvista_doc_to_text,
|
117 |
+
"infographicsvqa": infographicsvqa_doc_to_text,
|
118 |
+
"agrovqa": agrovqa_doc_to_text,
|
119 |
+
"diagramsvqa": diagramsvqa_doc_to_text,
|
120 |
+
"tablesvqa": tablesvqa_doc_to_text,
|
121 |
+
"iconqa": iconqa_doc_to_text,
|
122 |
+
"scienceqa": scienceqa_doc_to_text,
|
123 |
+
"ocrisi": ocrisi_doc_to_text,
|
124 |
+
"evarest": evarest_doc_to_text,
|
125 |
+
"historicalbooks": historicalbooks_doc_to_text,
|
126 |
+
"khatt": khatt_doc_to_text,
|
127 |
+
"patsocr": patsocr_doc_to_text,
|
128 |
+
"arabicocr": arabicocr_doc_to_text,
|
129 |
+
"culturevideovqa": culturevideovqa_doc_to_text,
|
130 |
+
"videomme": videomme_doc_to_text,
|
131 |
+
"geochat": geochat_doc_to_text,
|
132 |
+
"muribench": muribench_doc_to_text,
|
133 |
+
}
|
134 |
+
name_to_handle_type = {
|
135 |
+
# "mmmu": handle_images2,
|
136 |
+
# "mme": handle_images1,
|
137 |
+
# "gqa": handle_images1,
|
138 |
+
# "realworldqa": handle_images1,
|
139 |
+
# "vqav2": handle_images1,
|
140 |
+
# "vizwiz": handle_images1,
|
141 |
+
# "pope": handle_images1,
|
142 |
+
# "countbench": handle_images1,
|
143 |
+
# "medicalMMMU": handle_images2,
|
144 |
+
# "medicalMMMUPro": handle_images2,
|
145 |
+
# "diagramsMMMU": handle_images2,
|
146 |
+
# "mmbench": handle_images1,
|
147 |
+
# "seed": handle_images2,
|
148 |
+
"vqammt": handle_images1,
|
149 |
+
"isidocvqa": handle_images1,
|
150 |
+
"patddocvqa": handle_images1,
|
151 |
+
"celebvqa": handle_images1,
|
152 |
+
"countriesvqa": handle_images1,
|
153 |
+
"foodvqa": handle_images1,
|
154 |
+
"objectcoco": handle_images1,
|
155 |
+
"blink": handle_images2,
|
156 |
+
"examsv": handle_images1,
|
157 |
+
"chartqa": handle_images1,
|
158 |
+
"mtvqa": handle_images1,
|
159 |
+
"mathvista": handle_images1,
|
160 |
+
"infographicsvqa": handle_images1,
|
161 |
+
"agrovqa": handle_images1,
|
162 |
+
"diagramsvqa": handle_images1,
|
163 |
+
"tablesvqa": handle_images1,
|
164 |
+
"scienceqa": handle_images1,
|
165 |
+
"geochat": handle_images1,
|
166 |
+
"ocrisi": handle_images1,
|
167 |
+
"evarest": handle_images1,
|
168 |
+
"historicalbooks": handle_images1,
|
169 |
+
"khatt": handle_images1,
|
170 |
+
"patsocr": handle_images1,
|
171 |
+
"hallucinationmmt": handle_images1,
|
172 |
+
"medicalmmt": handle_images1,
|
173 |
+
"arabicocr": handle_images1,
|
174 |
+
# "iconqa": handle_images2,
|
175 |
+
# "culturevideovqa": handle_images2,
|
176 |
+
# "muribench": handle_images2,
|
177 |
+
# "videomme": handle_images2,
|
178 |
+
# "mutliimagemmt": handle_images2,
|
179 |
+
}
|
180 |
+
names = list(name_to_handle_type.keys())
|
181 |
+
os.makedirs("results", exist_ok=True)
|
182 |
+
os.makedirs("temp", exist_ok=True)
|
183 |
+
|
184 |
+
for name in tqdm(names):
|
185 |
+
try:
|
186 |
+
ds = load_dataset(f"ahmedheakl/arabicp_{name}", split="train", num_proc=4)
|
187 |
+
except:
|
188 |
+
continue
|
189 |
+
# if os.path.exists(f"results/peacock_{name}.json"):
|
190 |
+
# with open(f"results/peacock_{name}.json", "r", encoding="utf-8") as f:
|
191 |
+
# dd = json.load(f)
|
192 |
+
# if len(dd) >= (len(ds) // 2): continue
|
193 |
+
|
194 |
+
df = pd.DataFrame(ds)
|
195 |
+
print(f"Evaluating {name} dataset")
|
196 |
+
fn = name_to_processor[name]
|
197 |
+
fn_images = name_to_handle_type[name]
|
198 |
+
results = []
|
199 |
+
for i in tqdm(range(len(df))):
|
200 |
+
results.append(process_row((i, df.iloc[i]), fn, fn_images))
|
201 |
+
report = [r for r in results if r is not None]
|
202 |
+
with open(f"results/peacock_{name}.json", "w", encoding="utf-8") as f:
|
203 |
+
json.dump(report, f, ensure_ascii=False, indent=2)
|
204 |
+
|
205 |
+
shutil.rmtree("temp")
|