ahmedheakl commited on
Commit
ff275df
·
verified ·
1 Parent(s): 10b127e

Create get_results.py

Browse files
Files changed (1) hide show
  1. get_results.py +259 -0
get_results.py ADDED
@@ -0,0 +1,259 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import sys
3
+ import numpy as np
4
+ from utils import *
5
+ from tqdm import tqdm
6
+ from pydantic import BaseModel
7
+ from openai import OpenAI
8
+ from typing import List
9
+ import multiprocessing as mp
10
+ from functools import partial
11
+ from glob import glob
12
+
13
+
14
+ class AnswerScore(BaseModel):
15
+ score: int
16
+
17
+ data_functions = {
18
+ # medical
19
+ "medicalmmt": medicalmmt_eval,
20
+ "medicalMMMU": medicalMMMU_eval,
21
+ "medicalMMMUPro": medicalMMMU_eval,
22
+
23
+ # cultural
24
+ "celebvqa": celebvqa_eval,
25
+ "foodvqa": foodvqa_eval,
26
+ "countriesvqa": countriesvqa_eval,
27
+
28
+ # agro
29
+ "agrovqa": agrovqa_eval,
30
+
31
+ # chart and diagrams
32
+ "iconqa": iconqa_eval,
33
+ "chartqa": chartqa_eval,
34
+ "diagramsMMMU": diagramsMMMU_eval,
35
+ "diagramsvqa": diagramsvqa_eval,
36
+ "tablesvqa": tablesvqa_eval,
37
+
38
+ # video
39
+ "culturevideovqa": culturevideovqa_eval,
40
+ "videomme": videomme_eval,
41
+
42
+ # ocr
43
+ "ocrisi": ocrisi_eval,
44
+ "khatt": khatt_eval,
45
+ "isidocvqa": isidocvqa_eval,
46
+ "patddocvqa": patddocvqa_eval,
47
+ "patsocr": patsocr_eval,
48
+ "evarest": evarest_eval,
49
+ "historicalbooks": historicalbooks_eval,
50
+ "arabicocr": arabicocr_eval,
51
+
52
+ # vqa
53
+ "mme": mme_eval,
54
+ "mmbench": mmbench_eval,
55
+ "vqammt": vqammt_eval,
56
+ "seed": seed_eval,
57
+ "mmmu": mmmu_eval,
58
+ "countbench": countbench_eval,
59
+ "hallucinationmmt": hallucinationmmt_eval,
60
+ "pope": pope_eval,
61
+ "scienceqa": scienceqa_eval,
62
+ "examsv": examsv_eval,
63
+ "gqa": gqa_eval,
64
+ "vizwiz": vizwiz_eval,
65
+ "infographicsvqa": infographicsvqa_eval,
66
+ "blink": blink_eval,
67
+ "realworldqa": realworldqa_eval,
68
+ "mutliimagemmt": mutliimagemmt_eval,
69
+ "muribench": muribench_eval,
70
+ "objectcoco": objectcoco_eval,
71
+ }
72
+
73
+ fuzz = {
74
+ "mtvqa": mtvqa_user_prompt,
75
+ "geochat": geochat_user_prompt,
76
+ "mathvista": mathvista_user_prompt,
77
+ "vqav2": vqav2_user_prompt,
78
+ }
79
+
80
+ medical_data = ["medicalmmt", "medicalMMMU", "medicalMMMUPro"]
81
+ medical_results = {}
82
+
83
+ cultural_data = ["celebvqa", "foodvqa", "countriesvqa"]
84
+ cultural_results = {}
85
+
86
+ agro_data = ["agrovqa"]
87
+ agro_results = {}
88
+
89
+ charts_data = ["iconqa", "chartqa", "diagramsMMMU", "diagramsvqa", "tablesvqa"]
90
+ charts_results = {}
91
+
92
+ remotesensing_data = ["geochat"]
93
+ remotesensing_results = {}
94
+
95
+ video_data = ["culturevideovqa", "videomme"]
96
+ video_results = {}
97
+
98
+ ocr_data = ["ocrisi", "khatt", "isidocvqa", "patddocvqa", "patsocr", "mtvqa", "evarest", "historicalbooks", "arabicocr"]
99
+ ocr_results = {}
100
+
101
+ vqa_data = ["mme", "mmbench", "vqammt", "seed", "mmmu", "countbench", "hallucinationmmt", "pope", "mathvista", "scienceqa", "examsv", "gqa", "vizwiz", "vqav2", "infographicsvqa", "blink", "realworldqa", "mutliimagemmt", "muribench", "objectcoco"]
102
+ vqa_results = {}
103
+
104
+
105
+ def eval_gpt(row, user_prompt):
106
+ client = OpenAI(
107
+ api_key="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"
108
+ )
109
+ question = row['question'].split("\n")[0]
110
+ pred = row['pred_answer']
111
+ pred = pred.split("assistant\n")[-1].strip()
112
+ gt = row['answer']
113
+
114
+ messages = [
115
+ {
116
+ "role": "system",
117
+ "content": fuzz_eval_system_prompt,
118
+ },
119
+ {
120
+ "role": "user",
121
+ "content": user_prompt.format(question=question, pred=pred, gt=gt)
122
+ },
123
+ ]
124
+
125
+ completion = client.chat.completions.create(
126
+ model="gpt-4o-mini",
127
+ messages=messages,
128
+ max_tokens=300,
129
+ tools=[
130
+ {
131
+ "type": "function",
132
+ "function": {
133
+ "name": "answer_score",
134
+ "description": "Provide a [0, 1] score to the semantic similarity between two sentences",
135
+ "parameters": AnswerScore.model_json_schema(),
136
+ },
137
+ }
138
+ ],
139
+ tool_choice={"type": "function", "function": {"name": "answer_score"}},
140
+ )
141
+
142
+ vqa_answer = AnswerScore.model_validate_json(
143
+ completion.choices[0].message.tool_calls[0].function.arguments
144
+ )
145
+ return {
146
+ 'index': row['index'],
147
+ 'question': question,
148
+ 'pred_answer': pred,
149
+ 'answer': gt,
150
+ 'evaluation': vqa_answer.score
151
+ }
152
+
153
+ def process_chunk(user_prompt, chunk):
154
+ d = []
155
+ for row in chunk:
156
+ try:
157
+ d.append(eval_gpt(row, user_prompt))
158
+ except Exception as e:
159
+ print("ERROR", e)
160
+ continue
161
+ return d
162
+
163
+ def fuzz_eval(user_prompt, data):
164
+ num_cores = mp.cpu_count()
165
+ chunk_size = len(data) // num_cores
166
+ chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)]
167
+ pool = mp.Pool(num_cores)
168
+ results = []
169
+ process_chunk_f = partial(process_chunk, user_prompt)
170
+ with tqdm(total=len(data)) as pbar:
171
+ for chunk_result in pool.imap_unordered(process_chunk_f, chunks):
172
+ results.extend(chunk_result)
173
+ pbar.update(len(chunk_result))
174
+
175
+ pool.close()
176
+ pool.join()
177
+
178
+ correct_count = sum(1 for item in results if item['evaluation'] == 1)
179
+ total_count = len(results)
180
+ return round(correct_count * 100 / total_count, 2)
181
+
182
+
183
+ MODEL = "peacock"
184
+ files = glob(f"results/{MODEL}_*.json")
185
+ for file in files:
186
+ name = file.split(f"_")[-1].replace(".json", "")
187
+ print(name)
188
+ with open(file, "r") as f:
189
+ data = json.load(f)
190
+ if len(data) == 0: continue
191
+
192
+ accuracy = 0
193
+ if name in fuzz:
194
+ accuracy = fuzz_eval(fuzz[name], data)
195
+ else:
196
+ tot = 0
197
+ for r in data:
198
+ tot += data_functions[name](r["pred_answer"], r["answer"])
199
+ accuracy = round(tot * 100 / len(data), 2)
200
+ print(f"{name}: {tot} / {len(data)} -> {accuracy:.2f}")
201
+
202
+ if name in medical_data:
203
+ medical_results[name] = accuracy
204
+ elif name in cultural_data:
205
+ cultural_results[name] = accuracy
206
+ elif name in agro_data:
207
+ agro_results[name] = accuracy
208
+ elif name in charts_data:
209
+ charts_results[name] = accuracy
210
+ elif name in remotesensing_data:
211
+ remotesensing_results[name] = accuracy
212
+ elif name in video_data:
213
+ video_results[name] = accuracy
214
+ elif name in ocr_data:
215
+ ocr_results[name] = accuracy
216
+ elif name in vqa_data:
217
+ vqa_results[name] = accuracy
218
+
219
+
220
+ from pprint import pprint
221
+ print("\nMedical Results")
222
+ pprint(medical_results)
223
+ if len(medical_results) > 0:
224
+ print("Medical average:", round(sum(list(medical_results.values())) / len(medical_results), 2))
225
+
226
+ print("\ncultural Results")
227
+ pprint(cultural_results)
228
+ if len(cultural_results) > 0:
229
+ print("cultural average:", round(sum(list(cultural_results.values())) / len(cultural_results), 2))
230
+
231
+ print("\nagro Results")
232
+ pprint(agro_results)
233
+ if len(agro_results) > 0:
234
+ print("agro average:", round(sum(list(agro_results.values())) / len(agro_results), 2))
235
+
236
+ print("\ncharts Results")
237
+ pprint(charts_results)
238
+ if len(charts_results) > 0:
239
+ print("charts average:", round(sum(list(charts_results.values())) / len(charts_results), 2))
240
+
241
+ print("\nremotesensing Results")
242
+ pprint(remotesensing_results)
243
+ if len(remotesensing_results) > 0:
244
+ print("remotesensing average:", round(sum(list(remotesensing_results.values())) / len(remotesensing_results), 2))
245
+
246
+ print("\nvideo Results")
247
+ pprint(video_results)
248
+ if len(video_results) > 0:
249
+ print("video average:", round(sum(list(video_results.values())) / len(video_results), 2))
250
+
251
+ print("\nocr Results")
252
+ pprint(ocr_results)
253
+ if len(ocr_results) > 0:
254
+ print("ocr average:", round(sum(list(ocr_results.values())) / len(ocr_results), 2))
255
+
256
+ print("\nvqa Results")
257
+ pprint(vqa_results)
258
+ if len(vqa_results) > 0:
259
+ print("vqa average:", round(sum(list(vqa_results.values())) / len(vqa_results), 2))