import json from tqdm import tqdm import os # GAIA data_path = "data/mat_train.json" with open(data_path, "r") as f: dataset = json.load(f) def _convert(image_path_map, conversations): output = [] for turn in conversations: role = turn["role"] content = turn["content"] turn_new = dict() turn_new["from"] = role pid = 1 keys = sorted(list(image_path_map.keys())) for k in keys: v = image_path_map[k] if k in content: content = content.replace(k, f"Picture {pid}: {v}\n") content = content.replace(f"\n\n", "\n") pid += 1 turn_new["value"] = content output.append(turn_new) return output for item in tqdm(dataset): #print(item["image"]) #print(item.keys()) conversations = item["conversations"] #print(len(conversations), conversations[1]) image_path_map = dict() if "image" not in item: pass elif type(item["image"]) == str: image_path_map[""] = item["image"] item['image'] = f"{os.getcwd()}/data/{item['image']}" else: for k, v in item["image"].items(): image_path_map[k] = v item["image"][k] = f"{os.getcwd()}/data/{v}" item["conversations"] = _convert(image_path_map, conversations) from datetime import datetime import json now = "20241209_1731" print("write to", f"data/train_{now}.json") with open(f"data/train_{now}.json", "w") as f: json.dump(dataset, f, indent=4, ensure_ascii=False) import random with open(f"data/train_{now}_subset.json", "w") as f: random.shuffle(dataset) json.dump(dataset[:1000], f, indent=4, ensure_ascii=False)