import json from tqdm import tqdm from datasets import load_dataset import os ds_id = "lmms-lab/multimodal-open-r1-8k-verified" out_root = "LLaMA-Factory/data" dataset_name = "open_r1_v2" ds = load_dataset(ds_id, split="train") SYSTEM_PROMPT = ( "A conversation between User and Assistant. The user asks a question, and the Assistant solves it. The assistant " "first thinks about the reasoning process in the mind and then provides the user with the answer. The reasoning " "process and answer are enclosed within and tags, respectively, i.e., " " reasoning process here answer here " ) data = [] os.makedirs(f"{out_root}/{dataset_name}", exist_ok=True) for idx, d in tqdm(enumerate(ds), total=len(ds)): base_image_path = f"{dataset_name}/{idx}.png" image_path = f"{out_root}/{base_image_path}" image = d['image'] image.save(image_path) conversations = [ { "role": "user", "content": "\n" + d['problem'] }, { "role": "assistant", "content": d['solution'] } ] data.append({ "conversations": conversations, "images": [base_image_path], "system": SYSTEM_PROMPT }) output_path = f"{out_root}/{dataset_name}.json" with open(output_path, "w") as f: json.dump(data, f, indent=4, ensure_ascii=False) with open(f"{out_root}/dataset_info.json", "r") as f: dataset_info = json.load(f) dataset_info[dataset_name] = { "file_name": f"{dataset_name}.json", "formatting": "sharegpt", "columns": { "messages": "conversations", "images": "images", "system": "system" }, "tags": { "role_tag": "role", "content_tag": "content", "user_tag": "user", "assistant_tag": "assistant" } } with open(f"{out_root}/dataset_info.json", "w") as f: json.dump(dataset_info, f, indent=4, ensure_ascii=False)