import json import sys import numpy as np from utils import * from tqdm import tqdm from pydantic import BaseModel from openai import OpenAI from typing import List import multiprocessing as mp from functools import partial from glob import glob class AnswerScore(BaseModel): score: int data_functions = { # medical "medicalmmt": medicalmmt_eval, "medicalMMMU": medicalMMMU_eval, "medicalMMMUPro": medicalMMMU_eval, # cultural "celebvqa": celebvqa_eval, "foodvqa": foodvqa_eval, "countriesvqa": countriesvqa_eval, # agro "agrovqa": agrovqa_eval, # chart and diagrams "iconqa": iconqa_eval, "chartqa": chartqa_eval, "diagramsMMMU": diagramsMMMU_eval, "diagramsvqa": diagramsvqa_eval, "tablesvqa": tablesvqa_eval, # video "culturevideovqa": culturevideovqa_eval, "videomme": videomme_eval, # ocr "ocrisi": ocrisi_eval, "khatt": khatt_eval, "isidocvqa": isidocvqa_eval, "patddocvqa": patddocvqa_eval, "patsocr": patsocr_eval, "evarest": evarest_eval, "historicalbooks": historicalbooks_eval, "arabicocr": arabicocr_eval, # vqa "mme": mme_eval, "mmbench": mmbench_eval, "vqammt": vqammt_eval, "seed": seed_eval, "mmmu": mmmu_eval, "countbench": countbench_eval, "hallucinationmmt": hallucinationmmt_eval, "pope": pope_eval, "scienceqa": scienceqa_eval, "examsv": examsv_eval, "gqa": gqa_eval, "vizwiz": vizwiz_eval, "infographicsvqa": infographicsvqa_eval, "blink": blink_eval, "realworldqa": realworldqa_eval, "mutliimagemmt": mutliimagemmt_eval, "muribench": muribench_eval, "objectcoco": objectcoco_eval, } fuzz = { "mtvqa": mtvqa_user_prompt, "geochat": geochat_user_prompt, "mathvista": mathvista_user_prompt, "vqav2": vqav2_user_prompt, } medical_data = ["medicalmmt", "medicalMMMU", "medicalMMMUPro"] medical_results = {} cultural_data = ["celebvqa", "foodvqa", "countriesvqa"] cultural_results = {} agro_data = ["agrovqa"] agro_results = {} charts_data = ["iconqa", "chartqa", "diagramsMMMU", "diagramsvqa", "tablesvqa"] charts_results = {} remotesensing_data = ["geochat"] remotesensing_results = {} video_data = ["culturevideovqa", "videomme"] video_results = {} ocr_data = ["ocrisi", "khatt", "isidocvqa", "patddocvqa", "patsocr", "mtvqa", "evarest", "historicalbooks", "arabicocr"] ocr_results = {} vqa_data = ["mme", "mmbench", "vqammt", "seed", "mmmu", "countbench", "hallucinationmmt", "pope", "mathvista", "scienceqa", "examsv", "gqa", "vizwiz", "vqav2", "infographicsvqa", "blink", "realworldqa", "mutliimagemmt", "muribench", "objectcoco"] vqa_results = {} def eval_gpt(row, user_prompt): client = OpenAI() question = row['question'].split("\n")[0] pred = row['pred_answer'] pred = pred.split("assistant\n")[-1].strip() gt = row['answer'] messages = [ { "role": "system", "content": fuzz_eval_system_prompt, }, { "role": "user", "content": user_prompt.format(question=question, pred=pred, gt=gt) }, ] completion = client.chat.completions.create( model="gpt-4o-mini", messages=messages, max_tokens=300, tools=[ { "type": "function", "function": { "name": "answer_score", "description": "Provide a [0, 1] score to the semantic similarity between two sentences", "parameters": AnswerScore.model_json_schema(), }, } ], tool_choice={"type": "function", "function": {"name": "answer_score"}}, ) vqa_answer = AnswerScore.model_validate_json( completion.choices[0].message.tool_calls[0].function.arguments ) return { 'index': row['index'], 'question': question, 'pred_answer': pred, 'answer': gt, 'evaluation': vqa_answer.score } def process_chunk(user_prompt, chunk): d = [] for row in chunk: try: d.append(eval_gpt(row, user_prompt)) except Exception as e: print("ERROR", e) continue return d def fuzz_eval(user_prompt, data): num_cores = mp.cpu_count() chunk_size = len(data) // num_cores chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)] pool = mp.Pool(num_cores) results = [] process_chunk_f = partial(process_chunk, user_prompt) with tqdm(total=len(data)) as pbar: for chunk_result in pool.imap_unordered(process_chunk_f, chunks): results.extend(chunk_result) pbar.update(len(chunk_result)) pool.close() pool.join() correct_count = sum(1 for item in results if item['evaluation'] == 1) total_count = len(results) return round(correct_count * 100 / total_count, 2) MODEL = "peacock" files = glob(f"results/{MODEL}_*.json") for file in files: name = file.split(f"_")[-1].replace(".json", "") print(name) with open(file, "r") as f: data = json.load(f) if len(data) == 0: continue accuracy = 0 if name in fuzz: accuracy = fuzz_eval(fuzz[name], data) else: tot = 0 for r in data: tot += data_functions[name](r["pred_answer"], r["answer"]) accuracy = round(tot * 100 / len(data), 2) print(f"{name}: {tot} / {len(data)} -> {accuracy:.2f}") if name in medical_data: medical_results[name] = accuracy elif name in cultural_data: cultural_results[name] = accuracy elif name in agro_data: agro_results[name] = accuracy elif name in charts_data: charts_results[name] = accuracy elif name in remotesensing_data: remotesensing_results[name] = accuracy elif name in video_data: video_results[name] = accuracy elif name in ocr_data: ocr_results[name] = accuracy elif name in vqa_data: vqa_results[name] = accuracy from pprint import pprint print("\nMedical Results") pprint(medical_results) if len(medical_results) > 0: print("Medical average:", round(sum(list(medical_results.values())) / len(medical_results), 2)) print("\ncultural Results") pprint(cultural_results) if len(cultural_results) > 0: print("cultural average:", round(sum(list(cultural_results.values())) / len(cultural_results), 2)) print("\nagro Results") pprint(agro_results) if len(agro_results) > 0: print("agro average:", round(sum(list(agro_results.values())) / len(agro_results), 2)) print("\ncharts Results") pprint(charts_results) if len(charts_results) > 0: print("charts average:", round(sum(list(charts_results.values())) / len(charts_results), 2)) print("\nremotesensing Results") pprint(remotesensing_results) if len(remotesensing_results) > 0: print("remotesensing average:", round(sum(list(remotesensing_results.values())) / len(remotesensing_results), 2)) print("\nvideo Results") pprint(video_results) if len(video_results) > 0: print("video average:", round(sum(list(video_results.values())) / len(video_results), 2)) print("\nocr Results") pprint(ocr_results) if len(ocr_results) > 0: print("ocr average:", round(sum(list(ocr_results.values())) / len(ocr_results), 2)) print("\nvqa Results") pprint(vqa_results) if len(vqa_results) > 0: print("vqa average:", round(sum(list(vqa_results.values())) / len(vqa_results), 2))