from PIL import Image import os import torch import json from tqdm import tqdm from transformers import MllamaForConditionalGeneration, AutoProcessor import argparse parser = argparse.ArgumentParser() parser.add_argument("--num_beams", type=int, default=1) args = parser.parse_args() model_id = "/proj/berzelius-2023-191/CoT/llama-recipes/finetuned_model_llama_pixmogeo_mt/Llama-3.2-11B-Vision-Instruct_epoch_2" model = MllamaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map="auto", ).eval() processor = AutoProcessor.from_pretrained(model_id) num_beams = args.num_beams max_new_tokens = 1024 summary_prompt = "\nSummarize how you will approach the problem and explain the steps you will take to reach the answer." caption_prompt = "Provide a detailed description of the image, particularly emphasizing the aspects related to the question." reasoning_prompt = "Provide a chain-of-thought, logical explanation of the problem. This should outline step-by-step reasoning." conclusion_prompt = "State the final answer in a clear and direct format. It must match the correct answer exactly." def generate_inner(question, image): start_n = 1 kwargs = { 'max_new_tokens': max_new_tokens, "top_p": 0.9, "pad_token_id": 128004, "bos_token_id": 128000, "do_sample": False, "eos_token_id": [ 128001, 128008, 128009 ], "temperature": 0.6, "num_beams": num_beams, "use_cache": True, } messages = [[ { 'role': 'user', 'content': [ {'type': 'image'}, {'type': 'text', 'text': question+summary_prompt} ], } ]] def infer(messages: dict, n) -> str: input_text = processor.apply_chat_template(messages, add_generation_prompt=True) inputs = processor(image, input_text, return_tensors='pt').to(model.device) output = model.generate(**inputs, **kwargs) return [processor.decode(output[i][inputs['input_ids'].shape[1]:]).replace('<|eot_id|>', '').replace("<|end_of_text|>", "") for i in range(n)] def tmp(inp, out): return [ { 'role': 'assistant', 'content': [ {'type': 'text', 'text': inp} ] }, { 'role': 'user', 'content': [ {'type': 'text', 'text': out} ] } ] outs = infer(messages[0]) for i, out in enumerate(outs): messages[i].extend(tmp(out, caption_prompt)) out = infer(messages) messages.extend(tmp(out, reasoning_prompt)) reasoning = infer(messages) messages.extend(tmp(reasoning, conclusion_prompt)) out = infer(messages) print(f"Question: {question}\nAnswer: {out}") return out, reasoning def reasoning_steps_answer(img, question, choices): predicted_answer, reasoning = generate_inner(question, img) return predicted_answer, reasoning print(f"Evaluating with {num_beams=}") print("="*50) all_data = [] json_paths = "/proj/berzelius-2023-191/CoT/cot_eval/jsonv2" image_path = "/proj/berzelius-2023-191/CoT/cot_eval/images" for file in tqdm(os.listdir(json_paths)): if not file.endswith(".json"): continue with open(f"{json_paths}/{file}", "r") as json_file: data = json.load(json_file) try: image = Image.open(f"{image_path}/{data['image']}") question = data["question"] final_answer = data["final_answer"] idx = data["idx"] reasoning_answer = data["answer"] question += "\nPlease select the correct option by its letter." if "Choices" in question else "" model_answer, reasoning = generate_inner(question, image) all_data.append({ "idx": idx, "question": question, "final_answer": final_answer, "answer": reasoning_answer, "llm_response": reasoning+"\n\n\n"+model_answer, }) except Exception as e: print("Skipping file", file, "for", e) continue model_pref = model_id.replace("/", "_") with open(f"results_llavao1_pixmogeo_mt_beams{num_beams}_nosample.json", "w") as json_file: json.dump(all_data, json_file, indent=4)