File size: 8,489 Bytes
28128e7
 
 
 
 
 
 
 
fa7ff13
28128e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fa7ff13
28128e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93476d
28128e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837cc58
28128e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdb3992
28128e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
837cc58
28128e7
 
 
 
 
 
 
 
e93476d
28128e7
 
 
 
 
 
 
 
 
e93476d
28128e7
 
 
 
 
 
 
e93476d
9787a70
28128e7
 
e93476d
28128e7
 
 
e93476d
28128e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e93476d
2bbb799
 
 
 
 
e93476d
 
 
 
 
 
 
 
 
 
2bbb799
 
 
 
 
 
e93476d
 
2bbb799
e93476d
 
 
 
 
 
 
 
 
2bbb799
 
e93476d
 
2bbb799
28128e7
 
 
 
e93476d
 
 
 
 
 
 
 
28128e7
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
---
annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
- machine-generated
- found
- other
language:
- asm-IN
- ben-IN
- brx-IN
- guj-IN
- hin-IN
- kan-IN
- kas-IN
- kok-IN
- mai-IN
- mal-IN
- mar-IN
- mni-IN
- nep-IN
- ori-IN
- pan-IN
- san-IN
- sid-IN
- tam-IN
- tel-IN
- urd-IN
license:
- cc-by-nc-4.0
multilinguality:
- multilingual
pretty_name: Aksharantar
size_categories: []
source_datasets:
- original
task_categories:
- text-generation
task_ids: []
---

# Dataset Card for Aksharantar

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://indicnlp.ai4bharat.org/indic-xlit/
- **Repository:** https://github.com/AI4Bharat/IndicXlit/
- **Paper:** [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

Aksharantar is the largest publicly available transliteration dataset for 20 Indic languages. The corpus has 26M Indic language-English transliteration pairs.

### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

| <!-- -->  	 | <!-- --> 	  | <!-- --> 	   | <!-- -->	     | <!-- -->       | <!-- -->      |
| -------------- | -------------- | -------------- | --------------- | -------------- | ------------- |
| Assamese (asm) | Hindi (hin) 	  | Maithili (mai) | Marathi (mar)   | Punjabi (pan)  | Tamil (tam)   |
| Bengali (ben)  | Kannada (kan)  | Malayalam (mal)| Nepali (nep)    | Sanskrit (san) | Telugu (tel)  | 
| Bodo(brx)      | Kashmiri (kas) | Manipuri (mni) | Oriya (ori)     | Sindhi (snd)   | Urdu (urd)    |
| Gujarati (guj) | Konkani (kok)  | 


## Dataset Structure


### Data Instances

```
A random sample from Hindi (hin) Train dataset.

{
'unique_identifier': 'hin1241393', 
'native word': 'स्वाभिमानिक', 
'english word': 'swabhimanik', 
'source': 'IndicCorp', 
'score': -0.1028788579
}

```

### Data Fields

- `unique_identifier` (string): 3-letter language code followed by a unique number in each set (Train, Test, Val).
- `native word` (string): A word in Indic language.
- `english word` (string): Transliteration of native word in English (Romanised word).
- `source` (string): Source of the data.
- `score` (num): Character level log probability of indic word given roman word by IndicXlit (model). Pairs with average threshold of the 0.35 are considered.

  For created data sources, depending on the destination/sampling method of a pair in a language, it will be one of:
  - Dakshina Dataset
  - IndicCorp 
  - Samanantar
  - Wikidata
  - Existing sources
  - Named Entities Indian (AK-NEI)
  - Named Entities Foreign (AK-NEF)
  - Data from Uniform Sampling method. (Ak-Uni)
  - Data from Most Frequent words sampling method. (Ak-Freq)
  
  
  
  
### Data Splits

| Subset | asm-en | ben-en | brx-en | guj-en | hin-en | kan-en | kas-en | kok-en | mai-en | mal-en | mni-en | mar-en | nep-en | ori-en | pan-en | san-en | sid-en | tam-en | tel-en | urd-en |
|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|:------:|
| Training | 179K | 1231K | 36K | 1143K | 1299K | 2907K | 47K | 613K | 283K | 4101K | 10K | 1453K | 2397K | 346K | 515K | 1813K | 60K | 3231K | 2430K | 699K |
| Validation | 4K | 11K | 3K | 12K | 6K | 7K | 4K | 4K | 4K | 8K | 3K | 8K | 3K | 3K | 9K | 3K | 8K | 9K | 8K | 12K |
| Test | 5531 | 5009 | 4136 | 7768 | 5693 | 6396 | 7707 | 5093 | 5512 | 6911 | 4925 | 6573 | 4133 | 4256 | 4316 | 5334 | - | 4682 | 4567 | 4463 |


## Dataset Creation

Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)

#### Who are the source language producers?

[More Information Needed]

### Annotations

Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)

#### Annotation process

Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)

#### Who are the annotators?

Information in the paper. [Aksharantar: Towards building open transliteration tools for the next billion users](https://arxiv.org/abs/2205.03018)

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

<!-- <a rel="license" float="left" href="http://creativecommons.org/publicdomain/zero/1.0/">
  <img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100" />
  <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100" href="http://creativecommons.org/publicdomain/zero/1.0/"/>
</a>
<br/> -->


This data is released under the following licensing scheme:

- Manually collected data: Released under CC-BY license. 
- Mined dataset (from Samanantar and IndicCorp): Released under CC0 license. 
- Existing sources: Released under CC0 license. 

**CC-BY License**

<a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/">
  <img src="https://mirrors.creativecommons.org/presskit/buttons/88x31/png/by.png" style="border-style: none;" alt="CC-BY" width="100"/>
</a>

<br>
<br>
<!-- 
and the Aksharantar benchmark and all manually transliterated data under the [Creative Commons CC-BY license (“no rights reserved”)](https://creativecommons.org/licenses/by/4.0/). -->


**CC0 License Statement**

<a rel="license" float="left" href="https://creativecommons.org/about/cclicenses/">
  <img src="https://licensebuttons.net/p/zero/1.0/88x31.png" style="border-style: none;" alt="CC0" width="100"/>
</a>

<br>
<br>

- We do not own any of the text from which this data has been extracted.
- We license the actual packaging of the mined data under the [Creative Commons CC0 license (“no rights reserved”)](http://creativecommons.org/publicdomain/zero/1.0).
- To the extent possible under law, <a rel="dct:publisher" href="https://indicnlp.ai4bharat.org/aksharantar/"> <span property="dct:title">AI4Bharat</span></a> has waived all copyright and related or neighboring rights to <span property="dct:title">Aksharantar</span> manually collected data and existing sources.
- This work is published from: India.

### Citation Information

```
@misc{madhani2022aksharantar,
      title={Aksharantar: Towards Building Open Transliteration Tools for the Next Billion Users}, 
      author={Yash Madhani and Sushane Parthan and Priyanka Bedekar and Ruchi Khapra and Anoop Kunchukuttan and Pratyush Kumar and Mitesh Shantadevi Khapra},
      year={2022},
      eprint={},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

### Contributions