annotations_creators: []
language_creators:
- crowdsourced
- expert-generated
- machine-generated
- found
- other
languages:
- asm-IN
- ben-IN
- brx-IN
- guj-IN
- hin-IN
- kan-IN
- kas-IN
- kok-IN
- mai-IN
- mal-IN
- mar-IN
- mni-IN
- nep-IN
- ori-IN
- pan-IN
- san-IN
- sid-IN
- tam-IN
- tel-IN
- urd-IN
licenses:
- cc-by-nc-4.0
multilinguality:
- multilingual
pretty_name: Aksharantar
size_categories: []
source_datasets:
- original
task_categories:
- text-generation
task_ids: []
Dataset Card for Aksharantar
Table of Contents
- Table of Contents
- Dataset Description
- Dataset Structure
- Dataset Creation
- Considerations for Using the Data
- Additional Information
Dataset Description
- Homepage: https://indicnlp.ai4bharat.org/indic-xlit/
- Repository: https://github.com/AI4Bharat/IndicXlit/
- Paper:
- Leaderboard:
- Point of Contact:
Dataset Summary
Aksharantar is the largest publicly available transliteration dataset for 20 Indic languages. The corpus has 26M Indic language-English transliteration pairs.
Supported Tasks and Leaderboards
[More Information Needed]
Languages
Assamese (asm) | Hindi (hin) | Maithili (mai) | Marathi (mar) | Punjabi (pan) | Tamil (tam) |
Bengali (ben) | Kannada (kan) | Malayalam (mal) | Nepali (nep) | Sanskrit (san) | Telugu (tel) |
Bodo(brx) | Kashmiri (kas) | Manipuri (mni) | Oriya (ori) | Sindhi (snd) | Urdu (urd) |
Gujarati (guj) | Konkani (kok) |
Dataset Structure
Data Instances
A random sample from Hindi (hin) Train dataset.
{
'unique_identifier': 'hin1241393',
'native word': 'स्वाभिमानिक',
'english word': 'swabhimanik',
'source': 'IndicCorp',
'score': -0.1028788579
}
Data Fields
unique_identifier
(string): 3-letter language code followed by a unique number in each set (Train, Test, Val).native word
(string): A word in Indic language.english word
(string): Transliteration of native word in English (Romanised word).source
(string): Source of the data.score
(num): Character level log probability of indic word given roman word by IndicXlit (model). Pairs with average threshold of the 0.35 are considered.For created data sources, depending on the destination/sampling method of a pair in a language, it will be one of:
- Dakshina Dataset
- IndicCorp
- Samanantar
- Wikidata
- Existing sources
- Named Entities Indian (AK-NEI)
- Named Entities Foreign (AK-NEF)
- Data from Uniform Sampling method. (Ak-Uni)
- Data from Most Frequent words sampling method. (Ak-Freq)
Data Splits
Subset | asm-en | ben-en | brx-en | guj-en | hin-en | kan-en | kas-en | kok-en | mai-en | mal-en | mni-en | mar-en | nep-en | ori-en | pan-en | san-en | sid-en | tam-en | tel-en | urd-en |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Training | 179K | 1231K | 36K | 1143K | 1299K | 2907K | 47K | 613K | 283K | 4101K | 10K | 1453K | 2397K | 346K | 515K | 1813K | 60K | 3231K | 2430K | 699K |
Validation | 4K | 11K | 3K | 12K | 6K | 7K | 4K | 4K | 4K | 8K | 3K | 8K | 3K | 3K | 9K | 3K | 8K | 9K | 8K | 12K |
Test | 5531 | 5009 | 4136 | 7768 | 5693 | 6396 | 7707 | 5093 | 5512 | 6911 | 4925 | 6573 | 4133 | 4256 | 4316 | 5334 | - | 4682 | 4567 | 4463 |
Dataset Creation
Information in the paper.
Curation Rationale
[More Information Needed]
Source Data
Initial Data Collection and Normalization
Information in the paper.
Who are the source language producers?
[More Information Needed]
Annotations
Information in the paper.
Annotation process
Information in the paper.
Who are the annotators?
Information in the paper.
Personal and Sensitive Information
[More Information Needed]
Considerations for Using the Data
Social Impact of Dataset
[More Information Needed]
Discussion of Biases
[More Information Needed]
Other Known Limitations
[More Information Needed]
Additional Information
Dataset Curators
[More Information Needed]
Licensing Information
This data is released under the following licensing scheme:
- We do not own any of the text from which this data has been extracted.
- We license the actual packaging of the mined data under the Creative Commons CC0 license (“no rights reserved”), and the Aksharantar benchmark and all manually transliterated data under the Creative Commons CC-BY license (“no rights reserved”).
- To the extent possible under law, AI4Bharat has waived all copyright and related or neighboring rights to Aksharantar.
- This work is published from: India.
Creative Commons Attribution-NonCommercial 4.0 International.
Citation Information