Datasets:

ArXiv:
License:
zl3466 commited on
Commit
31a3897
·
verified ·
1 Parent(s): 387ce9c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +64 -19
README.md CHANGED
@@ -4,41 +4,80 @@ tags:
4
  - Autonomous Driving
5
  - Computer Vision
6
  ---
7
- # Dataset Tutorial
8
 
9
- ### The MARS dataset follows the same structure as the NuScenes Dataset.
10
 
11
- Multitraversal: each location is saved as one NuScenes object, and each traversal is one scene.
12
 
13
- Multiagent: the whole set is a NuScenes object, and each multi-agent encounter is one scene.
14
 
15
- ---
16
- ## Initialization
 
 
 
 
 
 
 
 
 
 
 
 
17
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip:
19
  ```
20
  pip install nuscenes-devkit
21
  ```
22
 
23
- ## Usage:
24
  Import NuScenes devkit:
25
  ```
26
  from nuscenes.nuscenes import NuScenes
27
  ```
28
 
29
- Multitraversal example: loading data of location 10:
 
30
  ```
31
  # The "version" variable is the name of the folder holding all .json metadata tables.
32
  location = 10
33
- mars_10 = NuScenes(version='v1.0', dataroot=f'/MARS_multitraversal/{location}', verbose=True)
34
  ```
35
 
36
- Multiagent example: loading data for the full set:
 
37
  ```
38
- mars_multiagent = NuScenes(version='v1.0', dataroot=f'/MARS_multiagent', verbose=True)
39
  ```
40
 
41
- ---
 
42
  ## Scene
43
  To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set):
44
  ```
@@ -76,7 +115,8 @@ Output:
76
  - `intersection`: location index.
77
  - `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene.
78
 
79
- ---
 
80
  ## Sample
81
  Get the first sample (frame) of one scene:
82
  ```
@@ -109,7 +149,8 @@ Output:
109
  - `data`: dict of data tokens of this sample's sensor data.
110
  - `anns`: empty as we do not have annotation data at this moment.
111
 
112
- ---
 
113
  ## Sample Data
114
  Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are:
115
  ```
@@ -174,7 +215,7 @@ array([[661.094568 , 0. , 370.6625195],
174
  [ 0. , 0. , 1. ]]))
175
  ```
176
 
177
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/piuFfzzsBrzW4LKgKHxAJ.png)
178
 
179
  ---
180
  ### LiDAR Data
@@ -237,8 +278,7 @@ Output:
237
  2.6000000e+01 7.5000000e+01]]
238
  ```
239
 
240
-
241
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/gxyTJM7Y45AWE9k54Q9ur.png)
242
 
243
 
244
  ---
@@ -330,7 +370,8 @@ CAM_FRONT_CENTER pose:
330
 
331
  ```
332
 
333
- ---
 
334
  ## LiDAR-Image projection
335
  - Use NuScenes devkit's `render_pointcloud_in_image()` method.
336
  - The first variable is a sample token.
@@ -345,4 +386,8 @@ nusc.render_pointcloud_in_image(my_sample['token'],
345
 
346
  Output:
347
 
348
- ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/KV715ekDEgLt3CysI4R9S.png)
 
 
 
 
 
4
  - Autonomous Driving
5
  - Computer Vision
6
  ---
7
+ # Open MARS Dataset
8
 
9
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ooi8v0KOUhWYDbqbfLkVG.jpeg)
10
 
11
+ <br/>
12
 
13
+ ## Welcome to the tutorial of Open MARS Dataset!
14
 
15
+ Our paper has been accepted on CVPR 2024 🎉🎉🎉
16
+
17
+ Checkout our [project website](https://ai4ce.github.io/MARS/) for demo videos.
18
+ Codes to reproduce the videos are available in `/visualize` folder of `main` branch.
19
+
20
+ <br/>
21
+
22
+ ## Intro
23
+ ### The MARS dataset is collected with a fleet of autonomous vehicles from [MayMobility](https://maymobility.com/).
24
+
25
+ Our dataset uses the same structure as the [NuScenes](https://www.nuscenes.org/nuscenes) Dataset:
26
+
27
+ - Multitraversal: each location is saved as one NuScenes object, and each traversal is one scene.
28
+ - Multiagent: the whole set is a NuScenes object, and each multiagent encounter is one scene.
29
 
30
+ <br/>
31
+
32
+ ## Download
33
+ Both Multiagent and Multitraversal subsets are now available for [download on huggingface](https://huggingface.co/datasets/ai4ce/MARS).
34
+
35
+ <br/>
36
+
37
+ ## Overview
38
+ This tutorial explains how the NuScenes structure works in our dataset, including how you may access a scene and query its samples of sensor data.
39
+
40
+ - [Devkit Initialization](#initialization)
41
+ - [Multitraversal](#load-multitraversal)
42
+ - [Multiagent](#load-multiagent)
43
+ - [Scene](#scene)
44
+ - [Sample](#sample)
45
+ - [Sample Data](#sample-data)
46
+ - [Camera](#camera-data)
47
+ - [LiDAR](#lidar-data)
48
+ - [IMU](#imu-data)
49
+ - [Ego & Sensor Pose](#vehicle-and-sensor-pose)
50
+ - [LiDAR-Image projection](#lidar-image-projection)
51
+
52
+ <br/>
53
+
54
+ ## Initialization
55
  First, install `nuscenes-devkit` following NuScenes's repo tutorial, [Devkit setup section](https://github.com/nutonomy/nuscenes-devkit?tab=readme-ov-file#devkit-setup). The easiest way is install via pip:
56
  ```
57
  pip install nuscenes-devkit
58
  ```
59
 
 
60
  Import NuScenes devkit:
61
  ```
62
  from nuscenes.nuscenes import NuScenes
63
  ```
64
 
65
+ #### Load Multitraversal
66
+ loading data of location 10:
67
  ```
68
  # The "version" variable is the name of the folder holding all .json metadata tables.
69
  location = 10
70
+ nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multitraversal/{location}', verbose=True)
71
  ```
72
 
73
+ #### Load Multiagent
74
+ loading data for the full set:
75
  ```
76
+ nusc = NuScenes(version='v1.0', dataroot=f'/MARS_multiagent', verbose=True)
77
  ```
78
 
79
+ <br/>
80
+
81
  ## Scene
82
  To see all scenes in one set (one location of the Multitraversal set, or the whole Multiagent set):
83
  ```
 
115
  - `intersection`: location index.
116
  - `err_max`: maximum time difference (in millisecond) between camera images of a same frame in this scene.
117
 
118
+ <br/>
119
+
120
  ## Sample
121
  Get the first sample (frame) of one scene:
122
  ```
 
149
  - `data`: dict of data tokens of this sample's sensor data.
150
  - `anns`: empty as we do not have annotation data at this moment.
151
 
152
+ <br/>
153
+
154
  ## Sample Data
155
  Our sensor names are different from NuScenes' sensor names. It is important that you use the correct name when querying sensor data. Our sensor names are:
156
  ```
 
215
  [ 0. , 0. , 1. ]]))
216
  ```
217
 
218
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/EBo7WeD9JV1asBfbONTym.png)
219
 
220
  ---
221
  ### LiDAR Data
 
278
  2.6000000e+01 7.5000000e+01]]
279
  ```
280
 
281
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/ZED1ba3r7qeBzkeNQK3oq.png)
 
282
 
283
 
284
  ---
 
370
 
371
  ```
372
 
373
+ <br/>
374
+
375
  ## LiDAR-Image projection
376
  - Use NuScenes devkit's `render_pointcloud_in_image()` method.
377
  - The first variable is a sample token.
 
386
 
387
  Output:
388
 
389
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/66651bd4e4be2069a695e5a1/zDrqBzfs6oV5ugVCsCQLL.png)
390
+
391
+
392
+
393
+