Datasets:

Modalities:
Text
Formats:
csv
Libraries:
Datasets
pandas
train-dataset-checksums / create_checksums.py
osbm's picture
Update create_checksums.py
7f10458
import os
import hashlib
import glob
import pathlib
from tqdm import tqdm
import subprocess
all_files = glob.glob("./*")
folder_path = pathlib.Path("train_valid_data")
print(folder_path)
all_files = list(folder_path.rglob("*"))
all_files = [i for i in all_files if not os.path.isdir(i)]
from pprint import pprint
def get_checksum(file_path):
output = str(subprocess.Popen(["/usr/bin/sha256sum" , str(file_path)], stdout=subprocess.PIPE).communicate()[0].decode("UTF-8"))
output = output.replace(" ", ",")
return output
# print(get_checksum(all_files[0]))
# all_files = all_files[:5]
with open("sha256_checksums.csv", "w+") as file:
file.write("checksum,file_path\n")
for file_path in tqdm(all_files):
file.write(get_checksum(file_path))
import huggingface as hh
from huggingface_hub import HfApi
api = HfApi()
# upload results to a public dataset
# also save as a file
api.upload_file(
path_or_fileobj="sha256_checksums.csv",
path_in_repo="sha256_checksums.csv",
repo_id="osbm/project-checksums",
repo_type="dataset",
token="TOKEN"
)