Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
raileymontalan's picture
Update README.md
d15b3db verified
metadata
pretty_name: SEA Natural Language Inference
license:
  - cc-by-sa-4.0
  - cc-by-nc-4.0
task_categories:
  - text-generation
language:
  - id
  - ta
  - th
  - vi
dataset_info:
  features:
    - name: label
      dtype: string
    - name: prompts
      list:
        - name: sentence1
          dtype: string
        - name: sentence2
          dtype: string
    - name: prompt_templates
      sequence: string
    - name: metadata
      struct:
        - name: language
          dtype: string
    - name: id
      dtype: string
  splits:
    - name: id
      num_bytes: 829632
      num_examples: 1000
    - name: id_fewshot
      num_bytes: 1026
      num_examples: 5
    - name: ta
      num_bytes: 1999488
      num_examples: 1000
    - name: ta_fewshot
      num_bytes: 3228
      num_examples: 5
    - name: th
      num_bytes: 1640723
      num_examples: 1000
    - name: th_fewshot
      num_bytes: 2301
      num_examples: 5
    - name: vi
      num_bytes: 877251
      num_examples: 1000
    - name: vi_fewshot
      num_bytes: 1245
      num_examples: 5
  download_size: 475196
  dataset_size: 5354894
configs:
  - config_name: default
    data_files:
      - split: id
        path: data/id-*
      - split: id_fewshot
        path: data/id_fewshot-*
      - split: ta
        path: data/ta-*
      - split: ta_fewshot
        path: data/ta_fewshot-*
      - split: th
        path: data/th-*
      - split: th_fewshot
        path: data/th_fewshot-*
      - split: vi
        path: data/vi-*
      - split: vi_fewshot
        path: data/vi_fewshot-*
size_categories:
  - 1K<n<10K

SEA Abstractive Summarization

SEA Abstractive Summarization evaluates a model's ability to read a document, identify the key points within, and summarize them into a coherent and fluent text while paraphrasing the document. It is sampled from IndoNLI for Indonesian, IndicXNLI for Tamil, and XNLI for Thai and Vietnamese.

Supported Tasks and Leaderboards

SEA Abstractive Summarization is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the SEA-HELM leaderboard from AI Singapore.

Languages

  • Indonesian (id)
  • Tamil (ta)
  • Thai (th)
  • Vietnamese (vi)

Dataset Details

SEA Abstractive Summarization is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the prompts column.

Split # of examples # of GPT-4o tokens # of Gemma 2 tokens # of Llama 3 tokens
id 1000 48864 46813 61750
ta 1000 61925 83420 245601
th 1000 61000 57695 71124
vi 1000 49181 47982 48960
id_fewshot 5 209 191 261
ta_fewshot 5 365 507 1495
th_fewshot 5 325 321 362
vi_fewshot 5 260 257 258
total 4020 222129 237186 429811

Data Sources

Data Source License Language/s Split/s
IndoNLI CC BY-SA 4.0 Indonesian id, id_fewshot
IndicXNLI CC BY-NC 4.0 Tamil ta, ta_fewshot
XNLI CC BY-NC 4.0 Thai, Vietnamese th, th_fewshot, vi, vi_fewshot

License

For the license/s of the dataset/s, please refer to the data sources table above.

We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data.

References

@inproceedings{mahendra-etal-2021-indonli,
      title = "{I}ndo{NLI}: A Natural Language Inference Dataset for {I}ndonesian",
      author = "Mahendra, Rahmad and Aji, Alham Fikri and Louvan, Samuel and Rahman, Fahrurrozi and Vania, Clara",
      booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
      month = nov,
      year = "2021",
      address = "Online and Punta Cana, Dominican Republic",
      publisher = "Association for Computational Linguistics",
      url = "https://aclanthology.org/2021.emnlp-main.821",
      pages = "10511--10527",
}

@misc{aggarwal2022indicxnlievaluatingmultilingualinference,
      title={IndicXNLI: Evaluating Multilingual Inference for Indian Languages}, 
      author={Divyanshu Aggarwal and Vivek Gupta and Anoop Kunchukuttan},
      year={2022},
      eprint={2204.08776},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2204.08776}, 
}

@InProceedings{conneau2018xnli,
      author = {Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin},
      title = {XNLI: Evaluating Cross-lingual Sentence Representations},
      booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing},
      year = {2018},
      publisher = {Association for Computational Linguistics},
      location = {Brussels, Belgium},
}

@misc{leong2023bhasaholisticsoutheastasian,
      title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models}, 
      author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
      year={2023},
      eprint={2309.06085},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2309.06085}, 
}