Datasets:
raileymontalan
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,66 +1,195 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pretty_name: SEA Natural Language Inference
|
3 |
+
license:
|
4 |
+
- cc-by-sa-4.0
|
5 |
+
- cc-by-nc-4.0
|
6 |
+
task_categories:
|
7 |
+
- text-generation
|
8 |
+
language:
|
9 |
+
- id
|
10 |
+
- ta
|
11 |
+
- th
|
12 |
+
- vi
|
13 |
+
dataset_info:
|
14 |
+
features:
|
15 |
+
- name: label
|
16 |
+
dtype: string
|
17 |
+
- name: prompts
|
18 |
+
list:
|
19 |
+
- name: sentence1
|
20 |
+
dtype: string
|
21 |
+
- name: sentence2
|
22 |
+
dtype: string
|
23 |
+
- name: prompt_templates
|
24 |
+
sequence: string
|
25 |
+
- name: metadata
|
26 |
+
struct:
|
27 |
+
- name: language
|
28 |
+
dtype: string
|
29 |
+
- name: id
|
30 |
+
dtype: string
|
31 |
+
splits:
|
32 |
+
- name: id
|
33 |
+
num_bytes: 829632
|
34 |
+
num_examples: 1000
|
35 |
+
num_tokens_gpt_4o: 48864
|
36 |
+
num_tokens_gemma_2: 46813
|
37 |
+
num_tokens_llama_3: 61750
|
38 |
+
- name: id_fewshot
|
39 |
+
num_bytes: 1026
|
40 |
+
num_examples: 5
|
41 |
+
num_tokens_gpt_4o: 209
|
42 |
+
num_tokens_gemma_2: 191
|
43 |
+
num_tokens_llama_3: 261
|
44 |
+
- name: ta
|
45 |
+
num_bytes: 1999488
|
46 |
+
num_examples: 1000
|
47 |
+
num_tokens_gpt_4o: 61925
|
48 |
+
num_tokens_gemma_2: 83420
|
49 |
+
num_tokens_llama_3: 245601
|
50 |
+
- name: ta_fewshot
|
51 |
+
num_bytes: 3228
|
52 |
+
num_examples: 5
|
53 |
+
num_tokens_gpt_4o: 365
|
54 |
+
num_tokens_gemma_2: 507
|
55 |
+
num_tokens_llama_3: 1495
|
56 |
+
- name: th
|
57 |
+
num_bytes: 1640723
|
58 |
+
num_examples: 1000
|
59 |
+
num_tokens_gpt_4o: 61000
|
60 |
+
num_tokens_gemma_2: 57695
|
61 |
+
num_tokens_llama_3: 71124
|
62 |
+
- name: th_fewshot
|
63 |
+
num_bytes: 2301
|
64 |
+
num_examples: 5
|
65 |
+
num_tokens_gpt_4o: 325
|
66 |
+
num_tokens_gemma_2: 321
|
67 |
+
num_tokens_llama_3: 362
|
68 |
+
- name: vi
|
69 |
+
num_bytes: 877251
|
70 |
+
num_examples: 1000
|
71 |
+
num_tokens_gpt_4o: 49181
|
72 |
+
num_tokens_gemma_2: 47982
|
73 |
+
num_tokens_llama_3: 48960
|
74 |
+
- name: vi_fewshot
|
75 |
+
num_bytes: 1245
|
76 |
+
num_examples: 5
|
77 |
+
num_tokens_gpt_4o: 260
|
78 |
+
num_tokens_gemma_2: 257
|
79 |
+
num_tokens_llama_3: 258
|
80 |
+
download_size: 475196
|
81 |
+
dataset_size: 5354894
|
82 |
+
total_tokens_gpt_4o: 222129
|
83 |
+
total_tokens_gemma_2: 237186
|
84 |
+
total_tokens_llama_3: 429811
|
85 |
+
configs:
|
86 |
+
- config_name: default
|
87 |
+
data_files:
|
88 |
+
- split: id
|
89 |
+
path: data/id-*
|
90 |
+
- split: id_fewshot
|
91 |
+
path: data/id_fewshot-*
|
92 |
+
- split: ta
|
93 |
+
path: data/ta-*
|
94 |
+
- split: ta_fewshot
|
95 |
+
path: data/ta_fewshot-*
|
96 |
+
- split: th
|
97 |
+
path: data/th-*
|
98 |
+
- split: th_fewshot
|
99 |
+
path: data/th_fewshot-*
|
100 |
+
- split: vi
|
101 |
+
path: data/vi-*
|
102 |
+
- split: vi_fewshot
|
103 |
+
path: data/vi_fewshot-*
|
104 |
+
size_categories:
|
105 |
+
- 1K<n<10K
|
106 |
+
---
|
107 |
+
|
108 |
+
# SEA Abstractive Summarization
|
109 |
+
|
110 |
+
SEA Abstractive Summarization evaluates a model's ability to read a document, identify the key points within, and summarize them into a coherent and fluent text while paraphrasing the document. It is sampled from [IndoNLI](https://aclanthology.org/2021.emnlp-main.821) for Indonesian, [IndicXNLI](https://aclanthology.org/2022.emnlp-main.755/) for Tamil, and [XNLI](https://aclanthology.org/D18-1269/) for Thai and Vietnamese.
|
111 |
+
|
112 |
+
### Supported Tasks and Leaderboards
|
113 |
+
|
114 |
+
SEA Abstractive Summarization is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the [SEA-HELM](https://leaderboard.sea-lion.ai/) leaderboard from [AI Singapore](https://aisingapore.org/).
|
115 |
+
|
116 |
+
### Languages
|
117 |
+
- Indonesian (id)
|
118 |
+
- Tamil (ta)
|
119 |
+
- Thai (th)
|
120 |
+
- Vietnamese (vi)
|
121 |
+
|
122 |
+
### Dataset Details
|
123 |
+
SEA Abstractive Summarization is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the `prompts` column.
|
124 |
+
|
125 |
+
| Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
|
126 |
+
|-|:-|:-|:-|:-|
|
127 |
+
| id | 1000 | 48864 | 46813 | 61750
|
128 |
+
| ta | 1000 | 61925 | 83420 | 245601
|
129 |
+
| th | 1000 | 61000 | 57695 | 71124
|
130 |
+
| vi | 1000 | 49181 | 47982 | 48960
|
131 |
+
| id_fewshot | 5 | 209 | 191 | 261
|
132 |
+
| ta_fewshot | 5 | 365 | 507 | 1495
|
133 |
+
| th_fewshot | 5 | 325 | 321 | 362
|
134 |
+
| vi_fewshot | 5 | 260 | 257 | 258
|
135 |
+
| **total** | 4020 | 222129 | 237186 | 429811 |
|
136 |
+
|
137 |
+
### Data Sources
|
138 |
+
|
139 |
+
| Data Source | License | Language/s | Split/s
|
140 |
+
|-|:-|:-| :-|
|
141 |
+
| [IndoNLI](https://huggingface.co/datasets/afaji/indonli) | [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) | Indonesian | id, id_fewshot
|
142 |
+
| [IndicXNLI](https://huggingface.co/datasets/Divyanshu/indicxnli) | [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) | Tamil | ta, ta_fewshot
|
143 |
+
| [XNLI](https://huggingface.co/datasets/facebook/xnli) | [CC BY-NC 4.0](https://creativecommons.org/licenses/by-nc/4.0/) | Thai, Vietnamese | th, th_fewshot, vi, vi_fewshot
|
144 |
+
|
145 |
+
### License
|
146 |
+
|
147 |
+
For the license/s of the dataset/s, please refer to the data sources table above.
|
148 |
+
|
149 |
+
We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data.
|
150 |
+
|
151 |
+
|
152 |
+
### References
|
153 |
+
|
154 |
+
```bibtex
|
155 |
+
@inproceedings{mahendra-etal-2021-indonli,
|
156 |
+
title = "{I}ndo{NLI}: A Natural Language Inference Dataset for {I}ndonesian",
|
157 |
+
author = "Mahendra, Rahmad and Aji, Alham Fikri and Louvan, Samuel and Rahman, Fahrurrozi and Vania, Clara",
|
158 |
+
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
|
159 |
+
month = nov,
|
160 |
+
year = "2021",
|
161 |
+
address = "Online and Punta Cana, Dominican Republic",
|
162 |
+
publisher = "Association for Computational Linguistics",
|
163 |
+
url = "https://aclanthology.org/2021.emnlp-main.821",
|
164 |
+
pages = "10511--10527",
|
165 |
+
}
|
166 |
+
|
167 |
+
@misc{aggarwal2022indicxnlievaluatingmultilingualinference,
|
168 |
+
title={IndicXNLI: Evaluating Multilingual Inference for Indian Languages},
|
169 |
+
author={Divyanshu Aggarwal and Vivek Gupta and Anoop Kunchukuttan},
|
170 |
+
year={2022},
|
171 |
+
eprint={2204.08776},
|
172 |
+
archivePrefix={arXiv},
|
173 |
+
primaryClass={cs.CL},
|
174 |
+
url={https://arxiv.org/abs/2204.08776},
|
175 |
+
}
|
176 |
+
|
177 |
+
@InProceedings{conneau2018xnli,
|
178 |
+
author = {Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin},
|
179 |
+
title = {XNLI: Evaluating Cross-lingual Sentence Representations},
|
180 |
+
booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing},
|
181 |
+
year = {2018},
|
182 |
+
publisher = {Association for Computational Linguistics},
|
183 |
+
location = {Brussels, Belgium},
|
184 |
+
}
|
185 |
+
|
186 |
+
@misc{leong2023bhasaholisticsoutheastasian,
|
187 |
+
title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models},
|
188 |
+
author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
|
189 |
+
year={2023},
|
190 |
+
eprint={2309.06085},
|
191 |
+
archivePrefix={arXiv},
|
192 |
+
primaryClass={cs.CL},
|
193 |
+
url={https://arxiv.org/abs/2309.06085},
|
194 |
+
}
|
195 |
+
```
|