Datasets:

Modalities:
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 8,081 Bytes
d447695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5376619
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
---
pretty_name: SEA Sentiment Analysis
license:
- cc-by-sa-4.0
- cc-by-4.0
- cc0-1.0
task_categories:
- text-generation
- text-classification
language:
- id
- jv
- su
- ta
- th
- vi
dataset_info:
  features:
  - name: id
    dtype: string
  - name: label
    dtype: string
  - name: prompts
    list:
    - name: text
      dtype: string
  - name: prompt_templates
    sequence: string
  - name: metadata
    struct:
    - name: language
      dtype: string
  splits:
  - name: id
    num_bytes: 188736
    num_examples: 400
  - name: id_fewshot
    num_bytes: 702
    num_examples: 5
  - name: jv
    num_bytes: 168113
    num_examples: 394
  - name: jv_fewshot
    num_bytes: 913
    num_examples: 5
  - name: su
    num_bytes: 178579
    num_examples: 394
  - name: su_fewshot
    num_bytes: 911
    num_examples: 5
  - name: ta
    num_bytes: 1225066
    num_examples: 1000
  - name: ta_fewshot
    num_bytes: 1859
    num_examples: 5
  - name: th
    num_bytes: 898057
    num_examples: 1000
  - name: th_fewshot
    num_bytes: 523
    num_examples: 5
  - name: vi
    num_bytes: 434373
    num_examples: 1000
  - name: vi_fewshot
    num_bytes: 655
    num_examples: 5
  download_size: 506409
  dataset_size: 3098487
configs:
- config_name: default
  data_files:
  - split: id
    path: data/id-*
  - split: id_fewshot
    path: data/id_fewshot-*
  - split: jv
    path: data/jv-*
  - split: jv_fewshot
    path: data/jv_fewshot-*
  - split: su
    path: data/su-*
  - split: su_fewshot
    path: data/su_fewshot-*
  - split: ta
    path: data/ta-*
  - split: ta_fewshot
    path: data/ta_fewshot-*
  - split: th
    path: data/th-*
  - split: th_fewshot
    path: data/th_fewshot-*
  - split: vi
    path: data/vi-*
  - split: vi_fewshot
    path: data/vi_fewshot-*
size_categories:
- 1K<n<10K
---

# SEA Sentiment Analysis

SEA Sentiment Analysis evaluates a model's ability to identify the sentiment polarity of a text. It is sampled from [NusaX](https://aclanthology.org/2023.eacl-main.57/) for Indonesian, Javanese, and Sundanese, [IndicSentiment](https://aclanthology.org/2023.acl-long.693) for Tamil, [Wisesight Sentiment](https://doi.org/10.5281/zenodo.3457446) for Thai, and [UIT-VSFC](https://www.researchgate.net/publication/329645066_UIT-VSFC_Vietnamese_Students%27_Feedback_Corpus_for_Sentiment_Analysis) for Vietnamese.

### Supported Tasks and Leaderboards

SEA Sentiment Analysis is designed for evaluating chat or instruction-tuned large language models (LLMs). It is part of the [SEA-HELM](https://leaderboard.sea-lion.ai/) leaderboard from [AI Singapore](https://aisingapore.org/).

### Languages
- Indonesian (id)
- Javanese (jv)
- Sundanese (su)
- Tamil (ta)
- Thai (th)
- Vietnamese (vi)

### Dataset Details
SEA Sentiment Analysis is split by language, with additional splits containing fewshot examples. Below are the statistics for this dataset. The number of tokens only refer to the strings of text found within the `prompts` column.

| Split | # of examples | # of GPT-4o tokens | # of Gemma 2 tokens | # of Llama 3 tokens |
|-|:-|:-|:-|:-|
| id | 400 | 15131 | 13918 | 19274
| jv | 394 | 16731 | 17453 | 20638
| su | 394 | 17123 | 18632 | 22056
| ta | 1000 | 54038 | 71449 | 211075
| th | 1000 | 38252 | 38111 | 4444
| vi | 1000 | 16732 | 16307 | 16755
| id_fewshot | 5 | 145 | 137 | 175
| jv_fewshot | 5 | 201 | 219 | 255
| su_fewshot | 5 | 201 | 217 | 253
| ta_fewshot | 5 | 192 | 264 | 792
| th_fewshot | 5 | 50 | 54 | 63
| vi_fewshot | 5 | 87 | 87 | 90
| **total** | 4218 | 158883 | 176848 | 335873 |

### Data Sources

| Data Source | License | Language/s | Split/s
|-|:-|:-| :-|
| [NusaX-Senti](https://huggingface.co/datasets/indonlp/NusaX-senti) | [CC BY-SA 4.0](https://creativecommons.org/licenses/by-sa/4.0/) | Indonesian, Javanese, Sundanese | id, id_fewshot, jv, jv_fewshot, su, su_fewshot
| [IndicSentiment](https://huggingface.co/datasets/ai4bharat/IndicQA) | [CC BY 4.0](https://creativecommons.org/licenses/by/4.0/) | Tamil | ta, ta_fewshot
| [Wisesight Sentiment](https://github.com/PyThaiNLP/wisesight-sentiment) | [CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/) | Thai | th, th_fewshot
| [UIT-VSFC](https://huggingface.co/datasets/uitnlp/vietnamese_students_feedback) | - | Vietnamese | vi, vi_fewshot


### License

For the license/s of the dataset/s, please refer to the data sources table above.

We endeavor to ensure data used is permissible and have chosen datasets from creators who have processes to exclude copyrighted or disputed data. 


### References

```bibtex
@inproceedings{winata-etal-2023-nusax,
    title = "{N}usa{X}: Multilingual Parallel Sentiment Dataset for 10 {I}ndonesian Local Languages",
    author = "Winata, Genta Indra  and
      Aji, Alham Fikri  and
      Cahyawijaya, Samuel  and
      Mahendra, Rahmad  and
      Koto, Fajri  and
      Romadhony, Ade  and
      Kurniawan, Kemal  and
      Moeljadi, David  and
      Prasojo, Radityo Eko  and
      Fung, Pascale  and
      Baldwin, Timothy  and
      Lau, Jey Han  and
      Sennrich, Rico  and
      Ruder, Sebastian",
    editor = "Vlachos, Andreas  and
      Augenstein, Isabelle",
    booktitle = "Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics",
    month = may,
    year = "2023",
    address = "Dubrovnik, Croatia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.eacl-main.57",
    doi = "10.18653/v1/2023.eacl-main.57",
    pages = "815--834",
}

@inproceedings{doddapaneni-etal-2023-towards,
    title = "Towards Leaving No {I}ndic Language Behind: Building Monolingual Corpora, Benchmark and Models for {I}ndic Languages",
    author = "Doddapaneni, Sumanth  and
      Aralikatte, Rahul  and
      Ramesh, Gowtham  and
      Goyal, Shreya  and
      Khapra, Mitesh M.  and
      Kunchukuttan, Anoop  and
      Kumar, Pratyush",
    editor = "Rogers, Anna  and
      Boyd-Graber, Jordan  and
      Okazaki, Naoaki",
    booktitle = "Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = jul,
    year = "2023",
    address = "Toronto, Canada",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2023.acl-long.693",
    doi = "10.18653/v1/2023.acl-long.693",
    pages = "12402--12426",
}

@misc{Suriyawongkul_PyThaiNLP_Wisesight_Sentiment_Corpus_2020,
  author       = {Suriyawongkul, Arthit and
                  Chuangsuwanich, Ekapol and
                  Chormai, Pattarawat and
                  Chantarapratin, Nitchakarn and
                  Prasertsom, Ponrawee and
                  Sawatphol, Jitkapat and
                  Yamada, Nozomi and
                  Rutherford, Attapol and
                  Polpanumas, Charin and
                  Udomcharoenchaikit, Can},
  doi          = {10.5281/zenodo.3457446},
  license      = {CC0-1.0},
  month        = nov,
  publisher    = {Zenodo},
  title        = {{PyThaiNLP/Wisesight Sentiment Corpus with Word Tokenization Label}},
  url          = {https://doi.org/10.5281/zenodo.3457446},
  version      = {v1.1},
  year         = 2024
}

@InProceedings{8573337,
  author={Nguyen, Kiet Van and Nguyen, Vu Duc and Nguyen, Phu X. V. and Truong, Tham T. H. and Nguyen, Ngan Luu-Thuy},
  booktitle={2018 10th International Conference on Knowledge and Systems Engineering (KSE)},
  title={UIT-VSFC: Vietnamese Students’ Feedback Corpus for Sentiment Analysis},
  year={2018},
  volume={},
  number={},
  pages={19-24},
  doi={10.1109/KSE.2018.8573337}
}

@misc{leong2023bhasaholisticsoutheastasian,
      title={BHASA: A Holistic Southeast Asian Linguistic and Cultural Evaluation Suite for Large Language Models}, 
      author={Wei Qi Leong and Jian Gang Ngui and Yosephine Susanto and Hamsawardhini Rengarajan and Kengatharaiyer Sarveswaran and William Chandra Tjhi},
      year={2023},
      eprint={2309.06085},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2309.06085}, 
}
```