import os.path import pickle from pathlib import Path from typing import Any, Callable, Optional, Tuple, Union import numpy as np from PIL import Image from torchvision.datasets.utils import check_integrity, download_and_extract_archive from torchvision.datasets.vision import VisionDataset class CINIC10(VisionDataset): """`CINIC10 `_ Dataset. Args: root (str or ``pathlib.Path``): Root directory of dataset where directory ``cinic-10-batches-py`` exists or will be saved to if download is set to True. train (bool, optional): If True, creates dataset from training set, otherwise creates from test set. transform (callable, optional): A function/transform that takes in a PIL image and returns a transformed version. E.g, ``transforms.RandomCrop`` target_transform (callable, optional): A function/transform that takes in the target and transforms it. download (bool, optional): If true, downloads the dataset from the internet and puts it in root directory. If dataset is already downloaded, it is not downloaded again. """ base_folder = "cinic-10-batches-py" url = "https://huggingface.co/datasets/alexey-zhavoronkin/CINIC10/resolve/main/cinic-10-python.tar.gz?download=true" filename = "cinic-10-python.tar.gz" tgz_md5 = None train_list = [ ["data_batch_1", None], ["data_batch_2", None], ["data_batch_3", None], ["data_batch_4", None], ["data_batch_5", None], ["data_batch_6", None], ["data_batch_7", None], ["data_batch_8", None], ["data_batch_9", None], ["data_batch_10", None], ["data_batch_11", None], ["data_batch_12", None], ["data_batch_13", None], ["data_batch_14", None], ] test_list = [ ["test_batch_1", None], ["test_batch_2", None], ["test_batch_3", None], ["test_batch_4", None], ["test_batch_5", None], ["test_batch_6", None], ["test_batch_7", None], ] meta = { "filename": "batches.meta", "key": "label_names", "md5": None, } def __init__( self, root: Union[str, Path], train: bool = True, transform: Optional[Callable] = None, target_transform: Optional[Callable] = None, download: bool = False, ) -> None: super().__init__(root, transform=transform, target_transform=target_transform) self.train = train # training set or test set if download: self.download() if not self._check_integrity(): raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it") if self.train: downloaded_list = self.train_list else: downloaded_list = self.test_list self.data: Any = [] self.targets = [] # now load the picked numpy arrays for file_name, checksum in downloaded_list: file_path = os.path.join(self.root, self.base_folder, file_name) with open(file_path, "rb") as f: entry = pickle.load(f, encoding="latin1") self.data.append(entry["data"]) if "labels" in entry: self.targets.extend(entry["labels"]) else: self.targets.extend(entry["fine_labels"]) self.data = np.vstack(self.data).reshape(-1, 3, 32, 32) self.data = self.data.transpose((0, 2, 3, 1)) # convert to HWC self._load_meta() def _load_meta(self) -> None: path = os.path.join(self.root, self.base_folder, self.meta["filename"]) if not check_integrity(path, self.meta["md5"]): raise RuntimeError("Dataset metadata file not found or corrupted. You can use download=True to download it") with open(path, "rb") as infile: data = pickle.load(infile, encoding="latin1") self.classes = data[self.meta["key"]] self.class_to_idx = {_class: i for i, _class in enumerate(self.classes)} def __getitem__(self, index: int) -> Tuple[Any, Any]: """ Args: index (int): Index Returns: tuple: (image, target) where target is index of the target class. """ img, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) if self.transform is not None: img = self.transform(img) if self.target_transform is not None: target = self.target_transform(target) return img, target def __len__(self) -> int: return len(self.data) def _check_integrity(self) -> bool: for filename, md5 in self.train_list + self.test_list: fpath = os.path.join(self.root, self.base_folder, filename) if not check_integrity(fpath, md5): return False return True def download(self) -> None: if self._check_integrity(): print("Files already downloaded and verified") return download_and_extract_archive(self.url, self.root, filename=self.filename, md5=self.tgz_md5) def extra_repr(self) -> str: split = "Train" if self.train is True else "Test" return f"Split: {split}"