Alexander Suslov commited on
Commit
4943c60
1 Parent(s): 3b0a9fb

updated readme

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md CHANGED
@@ -25,3 +25,51 @@ dataset_info:
25
  download_size: 404252480
26
  dataset_size: 278950336
27
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  download_size: 404252480
26
  dataset_size: 278950336
27
  ---
28
+ ## MVTec Capsule Category
29
+
30
+ ### Dataset Labels
31
+
32
+ ```
33
+ {0: "normal", 1: "abnormal"}
34
+ ```
35
+
36
+
37
+ ### Number of Images
38
+
39
+ ```json
40
+ {'train': 219, 'test': 132}
41
+ ```
42
+
43
+
44
+ ### How to Use
45
+
46
+ - Install [datasets](https://pypi.org/project/datasets/):
47
+
48
+ ```bash
49
+ pip install datasets
50
+ ```
51
+
52
+ - Load the dataset:
53
+
54
+ ```python
55
+ from datasets import load_dataset
56
+ ds = load_dataset("alexsu52/mvtec_capsule")
57
+ example = ds['train'][0]
58
+ ```
59
+
60
+ ### MVTEC Dataset Page
61
+ [https://www.mvtec.com/company/research/datasets/mvtec-ad](https://www.mvtec.com/company/research/datasets/mvtec-ad)
62
+
63
+ ### Citation
64
+
65
+ Paul Bergmann, Kilian Batzner, Michael Fauser, David Sattlegger, Carsten Steger: The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection; in: International Journal of Computer Vision 129(4):1038-1059, 2021, DOI: 10.1007/s11263-020-01400-4.
66
+
67
+ Paul Bergmann, Michael Fauser, David Sattlegger, Carsten Steger: MVTec AD — A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection; in: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 9584-9592, 2019, DOI: 10.1109/CVPR.2019.00982.
68
+
69
+ ### License
70
+ CC BY-NC-SA 4.0
71
+
72
+ ### Dataset Summary
73
+ MVTec AD is a dataset for benchmarking anomaly detection methods with a focus on industrial inspection. It contains over 5000 high-resolution images divided into fifteen different object and texture categories. Each category comprises a set of defect-free training images and a test set of images with various kinds of defects as well as images without defects.
74
+
75
+ Pixel-precise annotations of all anomalies are also provided. More information can be in our paper "MVTec AD – A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection" and its extended version "The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection".