File size: 4,915 Bytes
27c75aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce073b9
 
 
 
 
 
 
27c75aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce073b9
27c75aa
 
 
 
 
 
 
 
ce073b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""

"""Natural Language Inference (NLI) Chinese Corpus.(nli_zh)"""

import os
import json
import datasets

_DESCRIPTION = """SimCLUE:3000000+中文语义理解与匹配数据集"""

GITHUB_HOME = "https://github.com/CLUEbenchmark/SimCLUE"

_CITATION = "https://github.com/CLUEbenchmark/SimCLUE"

_DATA_URL = "https://storage.googleapis.com/cluebenchmark/tasks/simclue_public.zip"


class SimCLUEConfig(datasets.BuilderConfig):

    def __init__(self, features, data_url, citation, url, label_classes=(0, 1), **kwargs):
        super().__init__(version=datasets.Version("1.0.0"), **kwargs)
        self.features = features
        self.label_classes = label_classes
        self.data_url = data_url
        self.citation = citation
        self.url = url


class SimCLUE(datasets.GeneratorBasedBuilder):
    """The Natural Language Inference Chinese(NLI_zh) Corpus."""

    part_file = {'train_rank': 'train_rank.json',
                 'train_pair': 'train_pair.json',
                 'corpus': 'corpus.txt',
                 'train_pair_postive': 'train_pair_postive.json',
                 'dev': 'dev.json',
                 'test_public': 'test_public.json'}

    part_split = {'train_rank': datasets.Split.TRAIN,
                 'train_pair': datasets.Split.TRAIN,
                 'corpus': datasets.Split.TRAIN,
                 'train_pair_postive': datasets.Split.TRAIN,
                 'dev': datasets.Split.VALIDATION,
                 'test_public': datasets.Split.TEST}

    BUILDER_CONFIGS = [
        SimCLUEConfig(
            name="train_rank",
            description=_DESCRIPTION,
            features=datasets.Features({"query": datasets.Value("string"),
                                          "title": datasets.Value("string"),
                                          "neg_title": datasets.Value("string")}),
            data_url=_DATA_URL,
            citation=_CITATION,
            url=GITHUB_HOME,
        ),
        SimCLUEConfig(
            name="train_pair",
            description=_DESCRIPTION,
            features=datasets.Features({"sentence1": datasets.Value("string"),
                                       "sentence2": datasets.Value("string"),
                                       "label": datasets.Value("int32")}),
            data_url=_DATA_URL,
            citation=_CITATION,
            url=GITHUB_HOME,
        ),
        SimCLUEConfig(
            name="corpus",
            description=_DESCRIPTION,
            features=datasets.Features({"sentence1": datasets.Value("string")}),
            data_url=_DATA_URL,
            citation=_CITATION,
            url=GITHUB_HOME,
        ),
        SimCLUEConfig(
            name="train_pair_postive",
            description=_DESCRIPTION,
            features=datasets.Features({"sentence1": datasets.Value("string"),
                                          "sentence2": datasets.Value("string"),
                                          "label": datasets.Value("int32")}),
            data_url=_DATA_URL,
            citation=_CITATION,
            url=GITHUB_HOME,
        ),
        SimCLUEConfig(
            name="dev",
            description=_DESCRIPTION,
            features=datasets.Features({"sentence1": datasets.Value("string"),
                                          "sentence2": datasets.Value("string"),
                                          "label": datasets.Value("int32")}),
            data_url=_DATA_URL,
            citation=_CITATION,
            url=GITHUB_HOME,
        ),
        SimCLUEConfig(
            name="test_public",
            description=_DESCRIPTION,
            features=datasets.Features({"sentence1": datasets.Value("string"),
                                          "sentence2": datasets.Value("string"),
                                          "label": datasets.Value("int32")}),
            data_url=_DATA_URL,
            citation=_CITATION,
            url=GITHUB_HOME,
        ),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=self.config.description,
            features=self.config.features,
            homepage=self.config.url,
            citation=self.config.citation,
        )

    def _split_generators(self, dl_manager):
        dl_dir = dl_manager.download_and_extract(self.config.data_url)
        return [datasets.SplitGenerator(
                        name=self.part_split[self.config.name],
                        gen_kwargs={
                            "filepath": os.path.join(dl_dir, self.part_file[self.config.name]),
                        })]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        with open(filepath, 'r', encoding="utf-8") as f:
            for idx, row in enumerate(f):
                yield idx, json.loads(row)