Create datasets-for-simcse
Browse files- datasets-for-simcse +63 -0
datasets-for-simcse
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
|
3 |
+
import os
|
4 |
+
import json
|
5 |
+
import datasets
|
6 |
+
|
7 |
+
_DESCRIPTION = """datasets-for-simcse"""
|
8 |
+
|
9 |
+
_CITATION = ''
|
10 |
+
|
11 |
+
GITHUB_HOME = ''
|
12 |
+
|
13 |
+
class DatasetsForSimCSEConfig(datasets.BuilderConfig):
|
14 |
+
|
15 |
+
def __init__(self, features, data_url, citation, url, label_classes=(0, 1), **kwargs):
|
16 |
+
super().__init__(version=datasets.Version("1.0.0"), **kwargs)
|
17 |
+
self.features = features
|
18 |
+
self.label_classes = label_classes
|
19 |
+
self.data_url = data_url
|
20 |
+
self.citation = citation
|
21 |
+
self.url = url
|
22 |
+
|
23 |
+
|
24 |
+
class DatasetsForSimCSE(datasets.GeneratorBasedBuilder):
|
25 |
+
"""The Natural Language Inference Chinese(NLI_zh) Corpus."""
|
26 |
+
|
27 |
+
BUILDER_CONFIGS = [
|
28 |
+
DatasetsForSimCSEConfig(
|
29 |
+
name="nli_for_simcse",
|
30 |
+
description=_DESCRIPTION,
|
31 |
+
features=datasets.Features({"sent0": datasets.Value("string"),
|
32 |
+
"sent1": datasets.Value("string"),
|
33 |
+
"hard_neg": datasets.Value("string")}),
|
34 |
+
data_url='https://huggingface.co/datasets/princeton-nlp/datasets-for-simcse/resolve/main/nli_for_simcse.csv',
|
35 |
+
citation=_CITATION,
|
36 |
+
url=GITHUB_HOME,
|
37 |
+
)
|
38 |
+
]
|
39 |
+
|
40 |
+
def _info(self):
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
description=self.config.description,
|
43 |
+
features=self.config.features,
|
44 |
+
homepage=self.config.url,
|
45 |
+
citation=self.config.citation,
|
46 |
+
)
|
47 |
+
|
48 |
+
def _split_generators(self, dl_manager):
|
49 |
+
filepath = dl_manager.download(self.config.data_url)
|
50 |
+
return [datasets.SplitGenerator(
|
51 |
+
name='nli_for_simcse',
|
52 |
+
gen_kwargs={
|
53 |
+
"filepath": filepath,
|
54 |
+
})]
|
55 |
+
|
56 |
+
def _generate_examples(self, filepath):
|
57 |
+
"""This function returns the examples in the raw (text) form."""
|
58 |
+
with open(filepath, 'r', encoding="utf-8") as f:
|
59 |
+
f.readline()
|
60 |
+
for idx, row in enumerate(f.readlines()):
|
61 |
+
sent0, sent1, hard_neg = row.split(',')
|
62 |
+
context = {'sent0': sent0, 'sent1': sent1, 'hard_neg': hard_neg}
|
63 |
+
yield idx, context
|