File size: 5,874 Bytes
27ea105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18c0514
27ea105
 
 
 
18c0514
 
27ea105
 
 
 
18c0514
 
 
 
27ea105
 
 
 
18c0514
 
27ea105
 
 
 
18c0514
c65860a
27ea105
18c0514
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""The Atommic Dataset"""


import json

import datasets


_CITATION = """@article{Sap2019ATOMICAA,
  title={ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning},
  author={Maarten Sap and Ronan Le Bras and Emily Allaway and Chandra Bhagavatula and Nicholas Lourie and Hannah Rashkin and Brendan Roof and Noah A. Smith and Yejin Choi},
  journal={ArXiv},
  year={2019},
  volume={abs/1811.00146}
}
"""


_DESCRIPTION = """This dataset provides the template sentences and
relationships defined in the ATOMIC common sense dataset. There are
three splits - train, test, and dev.

From the authors.

Disclaimer/Content warning: the events in atomic have been
automatically extracted from blogs, stories and books written at
various times. The events might depict violent or problematic actions,
which we left in the corpus for the sake of learning the (probably
negative but still important) commonsense implications associated with
the events. We removed a small set of truly out-dated events, but
might have missed some so please email us ([email protected]) if
you have any concerns.

"""

_HOMEPAGE = "https://homes.cs.washington.edu/~msap/atomic/"

_LICENSE = "The Creative Commons Attribution 4.0 International License. https://creativecommons.org/licenses/by/4.0/"

_URLs = {"atomic": "https://homes.cs.washington.edu/~msap/atomic/data/atomic_data.tgz"}


class Atomic(datasets.GeneratorBasedBuilder):
    """Atomic Common Sense Dataset"""

    VERSION = datasets.Version("1.1.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="atomic", version=VERSION, description="The Atomic dataset"),
    ]

    def _info(self):
        features = datasets.Features(
            {
                "event": datasets.Value("string"),
                "oEffect": datasets.Sequence(datasets.Value("string")),
                "oReact": datasets.Sequence(datasets.Value("string")),
                "oWant": datasets.Sequence(datasets.Value("string")),
                "xAttr": datasets.Sequence(datasets.Value("string")),
                "xEffect": datasets.Sequence(datasets.Value("string")),
                "xIntent": datasets.Sequence(datasets.Value("string")),
                "xNeed": datasets.Sequence(datasets.Value("string")),
                "xReact": datasets.Sequence(datasets.Value("string")),
                "xWant": datasets.Sequence(datasets.Value("string")),
                "prefix": datasets.Sequence(datasets.Value("string")),
                "split": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        my_urls = _URLs[self.config.name]
        archive = dl_manager.download(my_urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={
                    "filepath": "v4_atomic_trn.csv",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={
                    "filepath": "v4_atomic_tst.csv",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={
                    "filepath": "v4_atomic_dev.csv",
                    "files": dl_manager.iter_archive(archive),
                },
            ),
        ]

    def _generate_examples(self, filepath, files):
        """Yields examples from the Atomic dataset."""

        for path, f in files:
            if path == filepath:
                for id_, row in enumerate(f):
                    row = row.decode("utf-8")
                    if row.startswith("event"):
                        continue
                    row = row.replace('"[', "[").replace(']"', "]")
                    sent, rest = row.split("[", 1)
                    sent = sent.strip(', "')
                    rest = "[" + rest
                    rest = rest.replace('""', '"').replace('\\\\"]', '"]')
                    rest = rest.split(",")
                    rest[-1] = '"' + rest[-1].strip() + '"'
                    rest = ",".join(rest)
                    row = '["' + sent + '",' + rest + "]"
                    row = json.loads(row)
                    yield id_, {
                        "event": str(row[0]),
                        "oEffect": row[1],
                        "oReact": row[2],
                        "oWant": row[3],
                        "xAttr": row[4],
                        "xEffect": row[5],
                        "xIntent": row[6],
                        "xNeed": row[7],
                        "xReact": row[8],
                        "xWant": row[9],
                        "prefix": row[10],
                        "split": str(row[11]),
                    }
                break