Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
concepts-to-text
License:
File size: 6,990 Bytes
14e81fd 44ae4b9 76c5aad 02914f8 44ae4b9 df7a7a3 44ae4b9 8cee06e 637e307 0001418 44ae4b9 0001418 6c78bee 33b7078 6c78bee 14e81fd 6f0d08b 14e81fd 6f0d08b 14e81fd 680edab 14e81fd 44ae4b9 14e81fd 680edab 14e81fd 6f0d08b 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 6f0d08b 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 6f0d08b 14e81fd 680edab 14e81fd 6f0d08b 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 680edab 14e81fd 44ae4b9 14e81fd 680edab 14e81fd 0001418 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
annotations_creators:
- crowdsourced
language:
- en
language_creators:
- found
- crowdsourced
license:
- mit
multilinguality:
- monolingual
pretty_name: CommonGen
size_categories:
- 10K<n<100K
source_datasets:
- original
task_categories:
- text2text-generation
task_ids: []
paperswithcode_id: commongen
tags:
- concepts-to-text
dataset_info:
features:
- name: concept_set_idx
dtype: int32
- name: concepts
sequence: string
- name: target
dtype: string
splits:
- name: train
num_bytes: 6724250
num_examples: 67389
- name: validation
num_bytes: 408752
num_examples: 4018
- name: test
num_bytes: 77530
num_examples: 1497
download_size: 1845699
dataset_size: 7210532
---
# Dataset Card for "common_gen"
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://inklab.usc.edu/CommonGen/index.html](https://inklab.usc.edu/CommonGen/index.html)
- **Repository:** https://github.com/INK-USC/CommonGen
- **Paper:** [CommonGen: A Constrained Text Generation Challenge for Generative Commonsense Reasoning](https://arxiv.org/abs/1911.03705)
- **Point of Contact:** [More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
- **Size of downloaded dataset files:** 1.76 MB
- **Size of the generated dataset:** 6.88 MB
- **Total amount of disk used:** 8.64 MB
### Dataset Summary
CommonGen is a constrained text generation task, associated with a benchmark dataset,
to explicitly test machines for the ability of generative commonsense reasoning. Given
a set of common concepts; the task is to generate a coherent sentence describing an
everyday scenario using these concepts.
CommonGen is challenging because it inherently requires 1) relational reasoning using
background commonsense knowledge, and 2) compositional generalization ability to work
on unseen concept combinations. Our dataset, constructed through a combination of
crowd-sourcing from AMT and existing caption corpora, consists of 30k concept-sets and
50k sentences in total.
### Supported Tasks and Leaderboards
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Languages
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Dataset Structure
### Data Instances
#### default
- **Size of downloaded dataset files:** 1.76 MB
- **Size of the generated dataset:** 6.88 MB
- **Total amount of disk used:** 8.64 MB
An example of 'train' looks as follows.
```
{
"concept_set_idx": 0,
"concepts": ["ski", "mountain", "skier"],
"target": "Three skiers are skiing on a snowy mountain."
}
```
### Data Fields
The data fields are the same among all splits.
#### default
- `concept_set_idx`: a `int32` feature.
- `concepts`: a `list` of `string` features.
- `target`: a `string` feature.
### Data Splits
| name |train|validation|test|
|-------|----:|---------:|---:|
|default|67389| 4018|1497|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The dataset is licensed under [MIT License](https://github.com/INK-USC/CommonGen/blob/master/LICENSE).
### Citation Information
```bib
@inproceedings{lin-etal-2020-commongen,
title = "{C}ommon{G}en: A Constrained Text Generation Challenge for Generative Commonsense Reasoning",
author = "Lin, Bill Yuchen and
Zhou, Wangchunshu and
Shen, Ming and
Zhou, Pei and
Bhagavatula, Chandra and
Choi, Yejin and
Ren, Xiang",
booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2020",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://www.aclweb.org/anthology/2020.findings-emnlp.165",
doi = "10.18653/v1/2020.findings-emnlp.165",
pages = "1823--1840"
}
```
### Contributions
Thanks to [@JetRunner](https://github.com/JetRunner), [@yuchenlin](https://github.com/yuchenlin), [@thomwolf](https://github.com/thomwolf), [@lhoestq](https://github.com/lhoestq) for adding this dataset. |