Datasets:
Tasks:
Multiple Choice
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
ArXiv:
License:
Commit
·
6323813
0
Parent(s):
Update files from the datasets library (from 1.0.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.0.0
- .gitattributes +27 -0
- cosmos_qa.py +125 -0
- dataset_infos.json +1 -0
- dummy/0.1.0/dummy_data.zip +3 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
cosmos_qa.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""TODO(cosmos_qa): Add a description here."""
|
2 |
+
|
3 |
+
from __future__ import absolute_import, division, print_function
|
4 |
+
|
5 |
+
import csv
|
6 |
+
import json
|
7 |
+
import os
|
8 |
+
|
9 |
+
import datasets
|
10 |
+
|
11 |
+
|
12 |
+
# TODO(cosmos_qa): BibTeX citation
|
13 |
+
_CITATION = """\
|
14 |
+
@inproceedings{cosmos,
|
15 |
+
title={COSMOS QA: Machine Reading Comprehension
|
16 |
+
with Contextual Commonsense Reasoning},
|
17 |
+
author={Lifu Huang and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},
|
18 |
+
booktitle ={arXiv:1909.00277v2},
|
19 |
+
year={2019}
|
20 |
+
}
|
21 |
+
"""
|
22 |
+
|
23 |
+
# TODO(cosmos_qa):
|
24 |
+
_DESCRIPTION = """\
|
25 |
+
Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context
|
26 |
+
"""
|
27 |
+
_URL = "https://github.com/wilburOne/cosmosqa/raw/master/data/"
|
28 |
+
_TEST_FILE = "test.jsonl"
|
29 |
+
_TRAIN_FILE = "train.csv"
|
30 |
+
_DEV_FILE = "valid.csv"
|
31 |
+
|
32 |
+
|
33 |
+
class CosmosQa(datasets.GeneratorBasedBuilder):
|
34 |
+
"""TODO(cosmos_qa): Short description of my dataset."""
|
35 |
+
|
36 |
+
# TODO(cosmos_qa): Set up version.
|
37 |
+
VERSION = datasets.Version("0.1.0")
|
38 |
+
|
39 |
+
def _info(self):
|
40 |
+
# TODO(cosmos_qa): Specifies the datasets.DatasetInfo object
|
41 |
+
return datasets.DatasetInfo(
|
42 |
+
# This is the description that will appear on the datasets page.
|
43 |
+
description=_DESCRIPTION,
|
44 |
+
# datasets.features.FeatureConnectors
|
45 |
+
features=datasets.Features(
|
46 |
+
{
|
47 |
+
"id": datasets.Value("string"),
|
48 |
+
"context": datasets.Value("string"),
|
49 |
+
"question": datasets.Value("string"),
|
50 |
+
"answer0": datasets.Value("string"),
|
51 |
+
"answer1": datasets.Value("string"),
|
52 |
+
"answer2": datasets.Value("string"),
|
53 |
+
"answer3": datasets.Value("string"),
|
54 |
+
"label": datasets.Value("int32")
|
55 |
+
# These are the features of your dataset like images, labels ...
|
56 |
+
}
|
57 |
+
),
|
58 |
+
# If there's a common (input, target) tuple from the features,
|
59 |
+
# specify them here. They'll be used if as_supervised=True in
|
60 |
+
# builder.as_dataset.
|
61 |
+
supervised_keys=None,
|
62 |
+
# Homepage of the dataset for documentation
|
63 |
+
homepage="https://wilburone.github.io/cosmos/",
|
64 |
+
citation=_CITATION,
|
65 |
+
)
|
66 |
+
|
67 |
+
def _split_generators(self, dl_manager):
|
68 |
+
"""Returns SplitGenerators."""
|
69 |
+
# TODO(cosmos_qa): Downloads the data and defines the splits
|
70 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
71 |
+
# download and extract URLs
|
72 |
+
urls_to_download = {
|
73 |
+
"train": os.path.join(_URL, _TRAIN_FILE),
|
74 |
+
"test": os.path.join(_URL, _TEST_FILE),
|
75 |
+
"dev": os.path.join(_URL, _DEV_FILE),
|
76 |
+
}
|
77 |
+
dl_dir = dl_manager.download_and_extract(urls_to_download)
|
78 |
+
return [
|
79 |
+
datasets.SplitGenerator(
|
80 |
+
name=datasets.Split.TRAIN,
|
81 |
+
# These kwargs will be passed to _generate_examples
|
82 |
+
gen_kwargs={"filepath": dl_dir["train"], "split": "train"},
|
83 |
+
),
|
84 |
+
datasets.SplitGenerator(
|
85 |
+
name=datasets.Split.TEST,
|
86 |
+
# These kwargs will be passed to _generate_examples
|
87 |
+
gen_kwargs={"filepath": dl_dir["test"], "split": "test"},
|
88 |
+
),
|
89 |
+
datasets.SplitGenerator(
|
90 |
+
name=datasets.Split.VALIDATION,
|
91 |
+
# These kwargs will be passed to _generate_examples
|
92 |
+
gen_kwargs={"filepath": dl_dir["dev"], "split": "dev"},
|
93 |
+
),
|
94 |
+
]
|
95 |
+
|
96 |
+
def _generate_examples(self, filepath, split):
|
97 |
+
"""Yields examples."""
|
98 |
+
# TODO(cosmos_qa): Yields (key, example) tuples from the dataset
|
99 |
+
with open(filepath, encoding="utf-8") as f:
|
100 |
+
if split == "test":
|
101 |
+
for id_, row in enumerate(f):
|
102 |
+
data = json.loads(row)
|
103 |
+
yield id_, {
|
104 |
+
"id": data["id"],
|
105 |
+
"context": data["context"],
|
106 |
+
"question": data["question"],
|
107 |
+
"answer0": data["answer0"],
|
108 |
+
"answer1": data["answer1"],
|
109 |
+
"answer2": data["answer2"],
|
110 |
+
"answer3": data["answer3"],
|
111 |
+
"label": int(data.get("label", -1)),
|
112 |
+
}
|
113 |
+
else:
|
114 |
+
data = csv.DictReader(f)
|
115 |
+
for id_, row in enumerate(data):
|
116 |
+
yield id_, {
|
117 |
+
"id": row["id"],
|
118 |
+
"context": row["context"],
|
119 |
+
"question": row["question"],
|
120 |
+
"answer0": row["answer0"],
|
121 |
+
"answer1": row["answer1"],
|
122 |
+
"answer2": row["answer2"],
|
123 |
+
"answer3": row["answer3"],
|
124 |
+
"label": int(row.get("label", -1)),
|
125 |
+
}
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "Cosmos QA is a large-scale dataset of 35.6K problems that require commonsense-based reading comprehension, formulated as multiple-choice questions. It focuses on reading between the lines over a diverse collection of people's everyday narratives, asking questions concerning on the likely causes or effects of events that require reasoning beyond the exact text spans in the context\n", "citation": "@inproceedings{cosmos,\n title={COSMOS QA: Machine Reading Comprehension\n with Contextual Commonsense Reasoning},\n author={Lifu Huang and Ronan Le Bras and Chandra Bhagavatula and Yejin Choi},\n booktitle ={arXiv:1909.00277v2},\n year={2019}\n}\n", "homepage": "https://wilburone.github.io/cosmos/", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answer0": {"dtype": "string", "id": null, "_type": "Value"}, "answer1": {"dtype": "string", "id": null, "_type": "Value"}, "answer2": {"dtype": "string", "id": null, "_type": "Value"}, "answer3": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "int32", "id": null, "_type": "Value"}}, "supervised_keys": null, "builder_name": "cosmos_qa", "config_name": "default", "version": {"version_str": "0.1.0", "description": null, "datasets_version_to_prepare": null, "major": 0, "minor": 1, "patch": 0}, "splits": {"test": {"name": "test", "num_bytes": 5128447, "num_examples": 6963, "dataset_name": "cosmos_qa"}, "train": {"name": "train", "num_bytes": 17185126, "num_examples": 25262, "dataset_name": "cosmos_qa"}, "validation": {"name": "validation", "num_bytes": 2189979, "num_examples": 2985, "dataset_name": "cosmos_qa"}}, "download_checksums": {"https://github.com/wilburOne/cosmosqa/raw/master/data/train.csv": {"num_bytes": 16660449, "checksum": "d8d5ca1f9f6534b6530550718591af89372d976a8fc419360fab4158dee4d0b2"}, "https://github.com/wilburOne/cosmosqa/raw/master/data/test.jsonl": {"num_bytes": 5610681, "checksum": "70005196dc2588b95de34f1657b25e2c1a4810cfe55b5bb0c0e15580c37b3ed0"}, "https://github.com/wilburOne/cosmosqa/raw/master/data/valid.csv": {"num_bytes": 2128345, "checksum": "a6a94fc1463ca82bb10f98ef68ed535405e6f5c36e044ff8e136b5c19dea63f3"}}, "download_size": 24399475, "dataset_size": 24503552, "size_in_bytes": 48903027}}
|
dummy/0.1.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c83fe07c5e4cc1381a999258f8e787c735a0d763b10b9436ed0f0bafc0393f00
|
3 |
+
size 6688
|