# coding=utf-8 # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """No Language Left Behind (NLLB)""" import datasets import csv import json _CITATION = "" # TODO _DESCRIPTION = "" _HOMEPAGE = ( "" ) _LICENSE = ( "" ) with open("https://huggingface.co/datasets/allenai/nllb/resolve/main/all_lang_pairs.json") as f: _LANGUAGE_PAIRS = json.load(f) _LANGUAGE_PAIRS = _LANGUAGE_PAIRS[:2] _URL_BASE = "https://storage.googleapis.com/allennlp-data-bucket/nllb/" _URLs = { f"{src_lg}-{trg_lg}": f"{_URL_BASE}{src_lg}-{trg_lg}.gz" for src_lg, trg_lg in _LANGUAGE_PAIRS } class NLLBTaskConfig(datasets.BuilderConfig): """BuilderConfig for No Language Left Behind Dataset.""" def __init__(self, src_lg, tgt_lg, **kwargs): super(NLLBTaskConfig, self).__init__(**kwargs) self.src_lg = src_lg self.tgt_lg = tgt_lg class NLLB(datasets.GeneratorBasedBuilder): """No Language Left Behind Dataset.""" BUILDER_CONFIGS = [ NLLBTaskConfig( name=f"{src_lg}-{tgt_lg}", version=datasets.Version("1.0.0"), description=f"No Language Left Behind (NLLB): {src_lg} - {tgt_lg}", src_lg=src_lg, tgt_lg=tgt_lg, ) for (src_lg, tgt_lg) in _LANGUAGE_PAIRS ] BUILDER_CONFIG_CLASS = NLLBTaskConfig def _info(self): # define feature types features = datasets.Features( { "translation": datasets.Translation( languages=(self.config.src_lg, self.config.tgt_lg) ), "laser_score": datasets.Value("float32"), "source_sentence_lid": datasets.Value("float32"), "target_sentence_lid": datasets.Value("float32"), "source_sentence_source": datasets.Value("string"), "source_sentence_url": datasets.Value("string"), "target_sentence_source": datasets.Value("string"), "target_sentence_url": datasets.Value("string") } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" pair = f"{self.config.src_lg}-{self.config.tgt_lg}" # string identifier for language pair url = _URLs[pair] # url for download of pair-specific file data_file = dl_manager.download_and_extract( url ) # extract downloaded data and store path in data_file return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_file, "source_lg": self.config.src_lg, "target_lg": self.config.tgt_lg, }, ) ] def _generate_examples(self, filepath, source_lg, target_lg): with open(filepath, encoding="utf-8") as f: # reader = csv.reader(f, delimiter="\t") for id_, example in enumerate(f): try: datarow = example.split("\t") row = {} row["translation"] = { source_lg: datarow[0], target_lg: datarow[1], } # create translation json row["laser_score"] = float(datarow[2]) row["source_sentence_lid"] = float(datarow[3]) row["target_sentence_lid"] = float(datarow[4]) row["source_sentence_source"] = datarow[5] row["source_sentence_url"] = datarow[6] row["target_sentence_source"] = datarow[7] row["target_sentence_url"] = datarow[8] row = { k: None if not v else v for k, v in row.items() } # replace empty values except: print(datarow) raise yield id_, row # to test the script, go to the root folder of the repo (nllb) and run: # datasets-cli test nllb --save_infos --all_configs