|
import gzip |
|
import json |
|
import datasets |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
|
|
_URL = "https://huggingface.co/datasets/allenai/pes2o" |
|
|
|
_VARIANTS = ["v1", "v2"] |
|
|
|
_N_SHARDS_PER_SPLIT = { |
|
"v1": {"train": {'s2orc': 10, 's2ag': 10}, "valid": {'s2orc': 1, 's2ag': 1}}, |
|
"v2": {"train": {'s2orc': 10, 's2ag': 10}, "valid": {'s2orc': 1, 's2ag': 1}}, |
|
} |
|
|
|
_DATA_URL = "\ |
|
https://huggingface.co/datasets/allenai/pes2o/resolve/main/\ |
|
{name}/{subset}/{split}/{shard:05d}.json.gz\ |
|
" |
|
|
|
_DESCRIPTION = "\ |
|
The PES2O dataset is a collection of ~40M creative commmon licensed academic \ |
|
papers, cleaned, filtered, and formatted for pre-training of language models. \ |
|
It is derived from the Semantic Scholar Open Research Corpus(Lo et al, 2020), \ |
|
or S2ORC.\ |
|
" |
|
|
|
_CITATION = "" |
|
|
|
|
|
class pes2o(datasets.GeneratorBasedBuilder): |
|
"""Pretraining Efficiently on S2ORC!""" |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"added": datasets.Value("string"), |
|
"created": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
"source": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"version": datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_URL, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_urls = {} |
|
for split in ["train", "validation"]: |
|
n_shards = _N_SHARDS_PER_SPLIT[self.config.name][split] |
|
data_urls[split] = [ |
|
_DATA_URL.format( |
|
name=self.config.name, |
|
split=split, |
|
subset=subset, |
|
index=index |
|
) |
|
for subset, n_shards in n_shards.items() |
|
for index in range(n_shards) |
|
] |
|
train_downloaded_files = dl_manager.download( |
|
data_urls["train"] |
|
) |
|
validation_downloaded_files = dl_manager.download( |
|
data_urls["validation"] |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=str(datasets.Split.TRAIN), gen_kwargs={ |
|
"filepaths": train_downloaded_files |
|
}), |
|
datasets.SplitGenerator( |
|
name=str(datasets.Split.VALIDATION), gen_kwargs={ |
|
"filepaths": validation_downloaded_files |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
"""This function returns the examples in the raw (text) form by |
|
iterating on all the files.""" |
|
id_ = 0 |
|
for filepath in filepaths: |
|
logger.info("generating examples from = %s", filepath) |
|
with gzip.open(open(filepath, "rb"), "rt", encoding="utf-8") as f: |
|
for line in f: |
|
if line: |
|
example = json.loads(line) |
|
yield id_, example |
|
id_ += 1 |
|
|