Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
extractive-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
File size: 5,296 Bytes
cfc8fbe 79fd48c cfc8fbe 79fd48c cfc8fbe 79fd48c cfc8fbe 79fd48c cfc8fbe 79fd48c cfc8fbe 79fd48c cfc8fbe 79fd48c cfc8fbe 79fd48c 3334fe6 79fd48c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
# coding=utf-8
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""ROPES dataset.
Code is heavily inspired from https://github.com/huggingface/datasets/blob/master/datasets/squad/squad.py"""
import json
import datasets
_CITATION = """\
@inproceedings{Lin2019ReasoningOP,
title={Reasoning Over Paragraph Effects in Situations},
author={Kevin Lin and Oyvind Tafjord and Peter Clark and Matt Gardner},
booktitle={MRQA@EMNLP},
year={2019}
}
"""
_DESCRIPTION = """\
ROPES (Reasoning Over Paragraph Effects in Situations) is a QA dataset
which tests a system's ability to apply knowledge from a passage
of text to a new situation. A system is presented a background
passage containing a causal or qualitative relation(s) (e.g.,
"animal pollinators increase efficiency of fertilization in flowers"),
a novel situation that uses this background, and questions that require
reasoning about effects of the relationships in the background
passage in the background of the situation.
"""
_LICENSE = "CC BY 4.0"
_URLs = {
"train+dev": "https://ropes-dataset.s3-us-west-2.amazonaws.com/train_and_dev/ropes-train-dev-v1.0.tar.gz",
"test": "https://ropes-dataset.s3-us-west-2.amazonaws.com/test/ropes-test-questions-v1.0.tar.gz",
}
class Ropes(datasets.GeneratorBasedBuilder):
"""ROPES datset: testing a system's ability
to apply knowledge from a passage of text to a new situation.."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="plain_text", description="Plain text", version=VERSION),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"background": datasets.Value("string"),
"situation": datasets.Value("string"),
"question": datasets.Value("string"),
"answers": datasets.features.Sequence(
{
"text": datasets.Value("string"),
}
),
}
),
supervised_keys=None,
homepage="https://allenai.org/data/ropes",
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
archives = dl_manager.download(_URLs)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": "/".join(["ropes-train-dev-v1.0", "train-v1.0.json"]),
"split": "train",
"files": dl_manager.iter_archive(archives["train+dev"]),
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": "/".join(["ropes-test-questions-v1.0", "test-1.0.json"]),
"split": "test",
"files": dl_manager.iter_archive(archives["test"]),
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": "/".join(["ropes-train-dev-v1.0", "dev-v1.0.json"]),
"split": "dev",
"files": dl_manager.iter_archive(archives["train+dev"]),
},
),
]
def _generate_examples(self, filepath, split, files):
"""Yields examples."""
for path, f in files:
if path == filepath:
ropes = json.loads(f.read().decode("utf-8"))
for article in ropes["data"]:
for paragraph in article["paragraphs"]:
background = paragraph["background"].strip()
situation = paragraph["situation"].strip()
for qa in paragraph["qas"]:
question = qa["question"].strip()
id_ = qa["id"]
answers = [] if split == "test" else [answer["text"].strip() for answer in qa["answers"]]
yield id_, {
"background": background,
"situation": situation,
"question": question,
"id": id_,
"answers": {
"text": answers,
},
}
break
|