|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO(scicite): Add a description here.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@InProceedings{Cohan2019Structural, |
|
author={Arman Cohan and Waleed Ammar and Madeleine Van Zuylen and Field Cady}, |
|
title={Structural Scaffolds for Citation Intent Classification in Scientific Publications}, |
|
booktitle={NAACL}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
This is a dataset for classifying citation intents in academic papers. |
|
The main citation intent label for each Json object is specified with the label |
|
key while the citation context is specified in with a context key. Example: |
|
{ |
|
'string': 'In chacma baboons, male-infant relationships can be linked to both |
|
formation of friendships and paternity success [30,31].' |
|
'sectionName': 'Introduction', |
|
'label': 'background', |
|
'citingPaperId': '7a6b2d4b405439', |
|
'citedPaperId': '9d1abadc55b5e0', |
|
... |
|
} |
|
You may obtain the full information about the paper using the provided paper ids |
|
with the Semantic Scholar API (https://api.semanticscholar.org/). |
|
The labels are: |
|
Method, Background, Result |
|
""" |
|
|
|
_SOURCE_NAMES = ["properNoun", "andPhrase", "acronym", "etAlPhrase", "explicit", "acronymParen", "nan"] |
|
|
|
|
|
class Scicite(datasets.GeneratorBasedBuilder): |
|
"""This is a dataset for classifying citation intents in academic papers.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=datasets.Features( |
|
{ |
|
"string": datasets.Value("string"), |
|
"sectionName": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel(names=["method", "background", "result"]), |
|
"citingPaperId": datasets.Value("string"), |
|
"citedPaperId": datasets.Value("string"), |
|
"excerpt_index": datasets.Value("int32"), |
|
"isKeyCitation": datasets.Value("bool"), |
|
"label2": datasets.features.ClassLabel( |
|
names=["supportive", "not_supportive", "cant_determine", "none"] |
|
), |
|
"citeEnd": datasets.Value("int64"), |
|
"citeStart": datasets.Value("int64"), |
|
"source": datasets.features.ClassLabel(names=_SOURCE_NAMES), |
|
"label_confidence": datasets.Value("float32"), |
|
"label2_confidence": datasets.Value("float32"), |
|
"id": datasets.Value("string"), |
|
} |
|
), |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage="https://github.com/allenai/scicite", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_paths = dl_manager.download_and_extract( |
|
{ |
|
"scicite": "https://s3-us-west-2.amazonaws.com/ai2-s2-research/scicite/scicite.tar.gz", |
|
} |
|
) |
|
path = os.path.join(dl_paths["scicite"], "scicite") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": os.path.join(path, "train.jsonl")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"path": os.path.join(path, "dev.jsonl")}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"path": os.path.join(path, "test.jsonl")}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
with open(path, encoding="utf-8") as f: |
|
unique_ids = {} |
|
for line in f: |
|
d = json.loads(line) |
|
unique_id = str(d["unique_id"]) |
|
if unique_id in unique_ids: |
|
continue |
|
unique_ids[unique_id] = True |
|
yield unique_id, { |
|
"string": d["string"], |
|
"label": str(d["label"]), |
|
"sectionName": str(d["sectionName"]), |
|
"citingPaperId": str(d["citingPaperId"]), |
|
"citedPaperId": str(d["citedPaperId"]), |
|
"excerpt_index": int(d["excerpt_index"]), |
|
"isKeyCitation": bool(d["isKeyCitation"]), |
|
"label2": str(d.get("label2", "none")), |
|
"citeEnd": _safe_int(d["citeEnd"]), |
|
"citeStart": _safe_int(d["citeStart"]), |
|
"source": str(d["source"]), |
|
"label_confidence": float(d.get("label_confidence", 0.0)), |
|
"label2_confidence": float(d.get("label2_confidence", 0.0)), |
|
"id": str(d["id"]), |
|
} |
|
|
|
|
|
def _safe_int(a): |
|
try: |
|
|
|
return int(a) |
|
except ValueError: |
|
return -1 |
|
|