|
import glob |
|
import os |
|
import datasets |
|
from PIL import Image |
|
import csv |
|
|
|
|
|
_VERSION = "2024-07-17" |
|
_URL = f"https://github.com/DEFI-COLaF/LADaS/archive/refs/tags/{_VERSION}.tar.gz" |
|
_HOMEPAGE = "https://github.com/DEFI-COLaF/LADaS" |
|
_LICENSE = "CC BY 4.0" |
|
_CITATION = """\ |
|
@misc{Clerice_Layout_Analysis_Dataset, |
|
author = {Clérice, Thibault and Janès, Juliette and Scheithauer, Hugo and Bénière, Sarah and Romary, Laurent and Sagot, Benoit and Bougrelle, Roxane}, |
|
title = {{Layout Analysis Dataset with SegmOnto (LADaS)}}, |
|
url = {https://github.com/DEFI-COLaF/LADaS} |
|
} |
|
""" |
|
|
|
_CATEGORIES: list[str] = ["AdvertisementZone", "DigitizationArtefactZone", "DropCapitalZone", "FigureZone", |
|
"FigureZone-FigDesc", "FigureZone-Head", "GraphicZone", "GraphicZone-Decoration", |
|
"GraphicZone-FigDesc", "GraphicZone-Head", "GraphicZone-Maths", "GraphicZone-Part", |
|
"GraphicZone-TextualContent", "MainZone-Date", "MainZone-Entry", "MainZone-Entry-Continued", |
|
"MainZone-Form", "MainZone-Head", "MainZone-Lg", "MainZone-Lg-Continued", "MainZone-List", |
|
"MainZone-List-Continued", "MainZone-Other", "MainZone-P", "MainZone-P-Continued", |
|
"MainZone-Signature", "MainZone-Sp", "MainZone-Sp-Continued", |
|
"MarginTextZone-ManuscriptAddendum", "MarginTextZone-Notes", "MarginTextZone-Notes-Continued", |
|
"NumberingZone", "TitlePageZone", "TitlePageZone-Index", "QuireMarksZone", "RunningTitleZone", |
|
"StampZone", "StampZone-Sticker", "TableZone", "TableZone-Continued", "TableZone-Head"] |
|
|
|
|
|
class LadasConfig(datasets.BuilderConfig): |
|
"""Builder Config for LADaS""" |
|
def __init__(self, *args, **kwargs): |
|
super().__init__(*args, **kwargs) |
|
|
|
|
|
class LadasDataset(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version(_VERSION.replace("-", ".")) |
|
BUILDER_CONFIGS = [ |
|
LadasConfig( |
|
name="full", |
|
description="Full version of the dataset" |
|
) |
|
] |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
features = datasets.Features({ |
|
"image_path": datasets.Value("string"), |
|
"year": datasets.Value("int32"), |
|
"dating-certainty": datasets.Value("bool"), |
|
"set": datasets.Value("string"), |
|
"image": datasets.Image(), |
|
"width": datasets.Value("int32"), |
|
"height": datasets.Value("int32"), |
|
"objects": datasets.Sequence( |
|
{ |
|
"bbox": datasets.Sequence(datasets.Value("float32"), length=4), |
|
"category": datasets.Value("string"), |
|
} |
|
) |
|
}) |
|
return datasets.DatasetInfo( |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls_to_download = _URL |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"local_dir": downloaded_files, |
|
"split": "train" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"local_dir": downloaded_files, |
|
"split": "valid" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"local_dir": downloaded_files, |
|
"split": "test" |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, local_dir: str, split: str): |
|
idx = 0 |
|
|
|
df = {} |
|
for file in glob.glob(os.path.join(local_dir, "*", "metadata.csv")): |
|
with open(file) as f: |
|
reader = csv.DictReader(f) |
|
for line in reader: |
|
df[line["file"]] = line |
|
|
|
for file in glob.glob(os.path.join(local_dir, "*", "data", "*", split, "labels", "*.txt")): |
|
objects = [] |
|
with open(file) as f: |
|
for line in f: |
|
cls, *bbox = line.strip().split() |
|
objects.append({"category": _CATEGORIES[int(cls)], "bbox": list(map(float, bbox))}) |
|
|
|
image_path = os.path.normpath(file).split(os.sep) |
|
image_path = os.path.join(*image_path[:-2], "images", image_path[-1].replace(".txt", ".jpg")) |
|
if file.startswith("/") and not image_path.startswith("/"): |
|
image_path = "/" + image_path |
|
|
|
with open(image_path, "rb") as f: |
|
image_bytes = f.read() |
|
|
|
with Image.open(image_path) as im: |
|
width, height = im.size |
|
|
|
filename = os.path.basename(image_path) |
|
line = df[filename] |
|
|
|
yield idx, { |
|
"image_path": f"{line['subset']}/{filename}", |
|
"image": {"path": image_path, "bytes": image_bytes}, |
|
"year": line["year"] or None, |
|
"dating-certainty": line["dating-certainty"], |
|
"set": line["subset"], |
|
"width": width, |
|
"height": height, |
|
"objects": objects, |
|
} |
|
idx += 1 |
|
|
|
if __name__ == "__main__": |
|
LadasDataset().download_and_prepare() |